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ABSTRACT 

FINITE ELEMENT ANALYSIS OF DISCONTINUOUS 

CONTACT PROBLEM 

BODUR, Mehmet Ata 

M. Sc., Department of Engineering Sciences 

Supervisor: Prof. Dr. M. Ruşen Geçit 

 

January 2006, 122 pages 

Contact is a phenomenon faced in every day life, which is actually a complex 

problem to tackle for engineers. Most of the times, may be impossible to get analytic 

or exact results for the interaction of bodies in contact.  

In this thesis work, solution of the frictionless contact of an elastic body, touching to a 

rigid planar surface for two-dimensional elasticity; namely plane stress, plane strain 

and axi-symmetric formulations is aimed. The problem is solved numerically, with 

Finite Element Method, and an Object Oriented computer program in C++ for this 

purpose is written, and the results are verified with some basic analytic solutions and 

ABAQUS package program. 

It is not aimed in this thesis work to give a  new solution in the area of solution of 

contact problems, but instead, it is aimed to form a strong basis, and computational 

library, which is extendible for further development of the subject to include friction, 

plasticity, and different material modeling in this advanced field of mechanics. 

Keywords: Finite Element, Contact, OOP, C++ 
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ÖZ 

SÜREKSİZ TEMAS PROBLEMLER İNİN SONLU ELEMANLAR 

YÖNTEM İ İLE ÇÖZÜMÜ 

Bodur, Mehmet Ata 

Yüksek Lisans, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Prof.Dr. M. Ruşen Geçit 

 

Ocak 2006, 122 sayfa 

Temas, günlük hayatta karşılaşılan bir olgu, fakat aslında mühendisler için uğraşması 

zor bir problemdir. Temasla etkileşen cisimler için çoğu zaman analitik ya da kesin 

çözüm elde etmek mümkün değildir. 

Bu tez çalışmasında, bir elastik cisim ile bir katı düz yüzey arasındaki sürtünmesiz 

temasın, iki boyutlu elastik; düzlem gerilme, düzlem şekil değiştirme ya da eksenel 

simetrik olarak adlandırılan modellemeyle çözülmesi amaçlanmaktadır. Problem, 

sayısal olarak, Sonlu Elemanlar Yöntemi ile, ve bu amaçla C++ programlama dilinde 

Nesne Tabanlı bilgisayar programı yazılarak çözülmektedir, ve sonuçlar bazı bilinen 

analitik çözümlerle ve ABAQUS Paket Programı ile karşılaştırılmaktadır. 

Bu tez çalışmasında, temas problemleri çözümü alanında çok yeni ve özel birşeyler 

eklemek yerine, hesaba dair konunun daha öteye, sürtünme, plastikleşme ve farklı 

malzeme modellemesine yönelik olarak  genişletilebilmesine imkan tanıyan  sağlam 

bir temel oluşturulması amaçlanmaktadır. 

Anahtar Kelimeler: Sonlu Elemanlar, Temas, Nesne Tabanlı Programlama, C++.
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CHAPTER 1  

INTRODUCTION 

Contact is a phenomenon faced in everyday life, but a problem hard to tackle for 

engineers. It is well known that it is a phenomenon dealt from the Egyptians time at 

least. In [1] some historical remarks have been given about history of approaches to 

the event. First modern approaches attributed to Da Vinci (15th century), Coulomb 

(1785), Euler (1748) etc.[1]. Though it is not a new event faced in human life, till the 

last few decades it was only possible to analyse some special types of contact 

problems analytically, with some crude assumptions. As the industry evolved, more 

and more elaborate techniques needed to deal with contact. In automobile industry, 

design of wheels interacting with road, design of clutches, brakes, gears, etc. needs 

elaborate techniques to analyze this natural event. In civil engineering applications, 

interaction of girder beams with supports, interaction of foundation with ground etc. 

are events simply coming into mind about contact. Also in the recent years, one can 

see some successful designs of plugs of the mobile phone chargers, and some other 

interesting industrial applications. 

By the advent of the computers, new numerical solution techniques have been 

developed in the last few decades, one of which Finite Element Method (FEM) have 

found enormously wide applications in engineering. FEM is a numerical technique to 

solve mechanical problems in engineering with the aid of computers, where it is hard 

or impossible to get an analytic solution. For having a solution with FEM, one has to 

have a well posed mathematical model, which, representing the physical phenomena 

in a good way in the domain of the problem. The mathematical model, in general to 

be defined by differential equations, to be solved numerically by a set of governing 

algebraic equations [2]. [3] gives a summary about history of FEM. For an 

understanding of the subject, the reader should consult to references [2]-[5] or other 

uncountably many references in literature. 
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While posing the problem initially, one can assume a continuous body supported 

from some part of the boundary, with some boundary and internal forces defined, and 

another object to interact with is awaiting or moving in the process of deformation. 

As the deformation progresses, one expects to see an interaction of the bodies on their 

boundaries, which is unpredictable at the beginning, and makes the problem highly 

non-linear. Due to this nature of unpredictability, in the past, the contact interactions 

were approximated with special crude assumptions.  

While attacking to the problem, it becomes very difficult to include all aspects of the 

problem at once. For that reason, in this study, the topic is bounded by obtaining a 

FEM implementation of discontinious, frictionless linearly elastic 2D contact, namely 

the plane stress, plane strain and axi-symmetric problems, which is to be robust, 

dependable and extendible for further abilities. For the robustness and extendibility 

issues, C++ programming language, which has been very popular in the last decade is 

selected for it provides robust and extendable object oriented environment. It also has 

the support of defining types different than the standard data types like integers, real 

numbers, arrays etc.. In the object oriented environment, data is organized and 

distributed in the classes, which provides seperate compilation, neater and cleaner 

programming environment. Also the data hiding and extraction mechanisms of C++ 

prevent many errors while programming. Even though the code is implemented for 

2D case, most of the mathematical idea are valid and extendible to 3D cases. 

The organization of the material is in the following order: In Chapter 2, general 

continuum equations used in the program developed are presented briefly. In Chapter 

3, FEM formulation is introduced. For the completeness, triangular and rectangular 

elements are defined. In Chapter 4, constraint formulation techniques is dealt 

mathematically and application to contact formulation is discussed, application of 

these techniques to general FEM equations are explained briefly. In Chapter 5, OOP 

approach to FEM is discussed and some implementation details regarding this issue 

are introduced. In Chapter 6, some benchmark tests are considered and comparison to 

another FEM program ABAQUS and some exact analytical solutions are done. 

Finally, in Chapter 7, concluding remarks and further development issues are 

presented. 
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CHAPTER 2  

CONTINUUM MECHANICS PRELIMINARIES 

2.1 INTRODUCTION 

In this section, necessary continuum mechanics equations are presented. Since there 

are too many items, which all cannot be mentioned here, the context in this chapter is 

restricted to the applied formulations to justify the applied ones. Most of the details 

are left to the reader with giving references [2] and [5] and the references therein.  

2.2 STRAIN DISPLACEMENT RELATIONS 

In the context of continuum mechanics, stresses are defined as the function of strains. 

Strain is in general a second order tensor representing the deformation state of the 

object at a point in the domain, which is a function of displacements. One can initially 

define an object moving and deforming in space and time (Figure 2.1). Initial 

configuration is defined as X and current configuration as x. It should be declared 

here that variables written in bold are representing vector values, where in 2D having 

two components, and in 3D having three components and parameters referring to 

initial state are defined in capital letters, whereby parameters referring to current state 

are represented by minuscule.  
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Figure 2.1: Initial state of object at time t0 and deformed state of object at t1. P0 at the 
initial state defined with the position vector X, deforming and moving to P1 defined 
with the position vector x. x is a function of X and t. 

In the above, all the coordinates defined with respect to a reference frame, which, 

fixed in space and time, is the Lagrangian Description, where in the opposite case, in 

which the reference frame is moving in space and time, is called the Eulerian 

Description. In the Lagrangian analysis, the particles are followed individually, 

whereby in the Eulerian approach, particles passing through a fixed point are 

watched. In structural analysis, in general, the Lagrangian Description, whereby in 

fluid dynamics Eulerian Description is preferred. 

The motion of the body can be defined as: 

),( tXφx =    

 Or in indicial notation  

),( tXx jii ϕ=  

(2.1) 

The function ),( tXφ maps the reference configuration at time t=0 into current 

configuration at time t=t  and, it is called the mapping from the initial to current 

configuration. At time t=0 , x is coincident to X . 

From the above figure, it can easily be seen that: 

Xxu −= , or in indicial notation IiIii Xxu δ⋅−=  

(2.2) 

X1,x1 

X2, x2 

X
x(X,t) 

u(X,t
) 

P0 
P1 

t=t0 t=t1 

0Ω  

1Ω

dX 

d
x 

dS
ds



 

  5 

The above can be also written as: 

IiIJii XtXu δϕ ⋅−= ),(  

(2.3) 

  

At this point, one may like to define the deformation gradient F, which transforms the 

infinitely small vector in the reference configuration to the current configuration. 

In tensorial notation:  

T)( 0ϕ
ϕ ∇≡

∂
∂≡

∂
∂=

X
x

X
F , or in indicial notation: 

J

i

J

i
iJ X

x

X
F

∂
∂=

∂
∂= ϕ

 

(2.4) 

From the above formula, it is obvious that: 

dXFdx ⋅= , or in indicial notation: JiJi dXFdx ⋅=  

(2.5) 

The formula in Eq. (2.2) can be applied to the previous Eq. (2.4) with an arrangement 

and the equation below is obtained. 

J

i
iJiJ X

u
F

∂
∂+= δ  

(2.6) 

The deformation gradient can be written as a matrix expression in 3D as follows: 

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

X

x

X

x

X

x
X

x

X

x

X

x
X

x

X

x

X

x

F  

(2.7) 
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The determinant of F is important in the formulation of general equations of 

continuum mechanics in transforming integrations from current to initial state forms. 

In literature it is defined as J, but since in finite element context J refers to mapping 

from master element to actual element, which will be clear in the foregoing chapters, 

the determinant of F is denoted by detF instead of J.    

For mapping from the reference to current configuration to be possible, φ should be 

one to one, continuously differentiable, and detF>0. The condition one to one means, 

there exists only one point in the current configuration for a point in reference 

configuration or vice versa. For the backward compatibility, F should be invertible, 

which requires that 0det ≠F . In the above, the more strict condition requiring that 

0det >F is written, which comes from mass conservation, and is dealt in 

conservation equations. Continuous differentiability is obviously necessary for 

calculation of F.   

The above conditions can be violated in special situations, such as crack propagation, 

but in the context of this dissertation, formulation is based on the above assumptions 

(Belytschko et al. [5]). 

Here it should also be stated that detF relates the volume in reference configuration to 

present configuration as: 

dVdVF =⋅ 0det  

(2.8) 

In the above equation, dV0 is the volume in the reference configuration, and dV is the 

volume in the current configuration. 

The deformation gradient can be decomposed into rotation and stretch parts as: 

URF ⋅=  

(2.9) 

and, 

RVF ⋅=  

(2.10) 
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In both of the decompositions, R is the rotation part; U is the stretch with respect to 

the initial state and is called the Lagrangian stretch tensor. Conversely, V is the 

stretch with respect to current state and is the Eulerian stretch tensor. 

Now that deformation gradient has been defined, it is expected to have a relation for 

strain. The general requirements for strain can be stated as: 

It must vanish for any rigid body motion, in particular for rigid body rotation; should 

increase as the deformation increases (Belytschko et al. [5]). Those requirements are 

crucial, especially, in the non-linear theory. 

A small length in the current state ds, can be related to the initial state dS, by use of 

Eq. (2.5) and the formulations below: 

)(2
ii dxdxds ⋅= , or in matrix form:  

dxdx ⋅= Tds2  

(2.11) 

)(2
II dXdXdS ⋅= , or in matrix form:  

dXdX ⋅= TdS2  

(2.12) 

  

By use of Eq. (2.5): 

)()(2
MiMJiJ dXFdXFds ⋅⋅⋅=   or in matrix form: 

dXFFdX T ⋅⋅⋅= Tds2  

(2.13) 

In the above formulation, FFC T ⋅=  is called the right Cauchy-Green deformation 

tensor. 

Then,  

dXCdXT ⋅⋅=2ds  

(2.14) 
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From the above formula, stretch of the vector can be defined and given in indicial 

form as below: 

2/1








 ⋅⋅⋅=
dS

dX
F

dS

dX
F

dS

ds M
iM

J
iJ  

(2.15) 

which is equivalent to: 

2/1)ˆˆ( MJMJdS

ds
NCN ⋅⋅=  

(2.16) 

where, N̂  is the unit vector defined in reference configuration in the direction ofdX . 

Now the change in square length can be defined as: 

dXdXdXCdX ⋅−⋅⋅=− TTdSds 22  

(2.17) 

Dividing both sides of Eq. (2.17) by dXdX ⋅= TdS2 , the equation following can be 

obtained: 

∧∧
⋅−⋅=−
NICN )(

2

22 T

dS

dSds
 

(2.18) 

In literature, the above )( IC − is defined as: 

 )(2 ICE −=  

(2.19) 

in whichΕ  is called the Green’s  strain tensor.  

From the formula in Eq. ((2.18) one can also write the stretch defined as follows: 

12 +⋅⋅==
∧∧
NEN

T

dS

dsλ  

(2.20) 

Here one can define the well-known engineering strain in one dimension: 
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112 −+⋅⋅=−=
∧∧
NENε

T

dS

dSds
 

(2.21) 

When 
∧∧

⋅⋅ NEN 2
T

 is small, by Taylor’s expansion of the square root, ignoring higher 

order terms, one can get: 

∧∧
⋅⋅=−= NENε

T

dS

dSds
 

(2.22) 

This is the engineering definition of strain for one-dimensional state. For strain being 

small, the difference between Green’s strain and the engineering strain becomes 

ignorable. Nevertheless, for large deformation case one obviously needs to employ a 

strain definition different from the engineering strain i.e., the Green’s strain. In the 

sequel, this distinction will be further well understood while deriving Non-Linear 

FEM equations.  

Up to this point, a measure for deformation of a vector has been obtained. Now, a 

relation is needed for the deformation of the edges of a rectangular infinitesimally 

small element in the reference configuration. 

Now that infinitesimal length in current state has been related to infinitesimal length 

in initial state, one can derive relations for deformation of the edges of a rectangle, 

which is the angle change, in reference configuration to current state (Figure 2.2). 

 

 

 

Figure 2.2: Deformation of the edges of a rectangle in initial state to current state. 

dX1 

dX2 
dx2 

dx1 
θ 

γ1 

γ2 
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The dot product of the edges of the parallelogram in the current state referring to the 

rectangle edges in the initial state can be written as:   

212121 )cos( dXCdXdXFFdXdxdx T ⋅⋅=⋅⋅⋅=⋅⋅ TTθ  

(2.23) 

  

or rearranging terms: 

2

2

1

1)cos(
dx

dX
C

dx

dX
⋅⋅=θ  

(2.24)  

By utilization of Eq. (2.20), the above is equivalent to: 

11

)21sin()cos(

22

2

11

1

+⋅⋅

⋅⋅

+⋅⋅

=+≡

∧∧

∧

∧∧

∧

N2EN

N
C

N2EN

N
TT

γγθ

 

(2.25) 

Considering the small strain situation in the above equations, and observing that N1 

and N2 are parallel to axes, i.e. parallel to i and j axes: 

 1111 ≈+⋅⋅
∧∧
N2EN

T

, and 

1122 ≈+⋅⋅
∧∧
N2EN

T

 

(2.26) 

 

ijij EC 2= ,  when ji ≠ ,  

γγγγγ =+≈+ )21()21sin( , then: 

ijE2≈γ  

(2.27) 

In the above, it is not aimed to create confusion to the reader, but it is aimed to 

present the distinction and understanding of strain in large deformation state, and 

recovery to general engineering definitions of strain in small deformation case.  
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In the sequel of this section, it is aimed to relate current state to the initial state. As 

previously stated, the deformation gradient F is one to one, and there exists an inverse 

relation from current state to initial state. Hence, one can define: 

),(),(1 tt xXxX ≡= −ϕ  

(2.28) 

An infinitesimally small length in the current state can be transformed back to initial 

state by the next equation: 

1
1

−
−

≡
∂

∂=
∂
∂

F
xx

X ϕ
 or xFX dd ⋅= −1  

(2.29) 

A small length in initial state dS, can be related to current state ds, by use of Eq. 

(2.29) as follows: 

)()( 112
jjMiiM dxFdxFdS ⋅⋅⋅= −− ,  or in matrix form: 

dxFFdx T ⋅⋅⋅= −− 12 TdS  

(2.30) 

This is equivalent to: 

dxbdx ⋅⋅= −12 TdS  

(2.31) 

In the above, b is called the left Cauchy-Green deformation tensor. 

One can also express the length change with respect to current state:  

nbIn ˆ)(ˆ 1
2

22

⋅−⋅=− −T

ds

dSds
 

(2.32) 

where n̂ is the unit vector in the direction of dx in the current state. From the above 

formulation, Almansi’s strain tensor is defined as: 

)2 1−−= b(Ie  

(2.33) 
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Figure 2.3: Angle change of the rectangle in current state from the initial un-deformed 
parallel piped. 

Angle change for the edges of a rectangle in the current state can also be defined as in 

the Lagrange strain tensor case by the following:  

  

2
T
12

TT
121 dxbdxdxFFdxdXdX ⋅⋅=⋅⋅⋅=⋅⋅ −−− 11)cos(θ  

(2.34) 

or rearranging terms: 

2

21

1

1

dX
dx

b
dX
dx ⋅⋅= −)cos(θ  

(2.35) 

which is equivalent to: 

2
T
2

21

1
T
1

T
1

n2en1

n
b

n2en1

n

ˆˆ

ˆ

ˆˆ

ˆ
)21sin()cos(

⋅⋅−
⋅⋅

⋅⋅−

=+≡
−

γγθ
 

(2.36) 

Considering the small strain case from the above equations and observing that 1n̂  and 

2n̂  are parallel to axes in current configuration, the angle change from initial state to 

current state can be defined as γ, which can be obtained as follows: 

dX1 

dX2 
dx2 

dx1 
γ2 

γ1 

θ 
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 1ˆˆ1 ≈⋅⋅− 1
T
1 n2en , and 

1ˆˆ1 22 ≈⋅⋅− n2enT  

ijij eb 21 =− − , when ji ≠ , 

 γγγγγ =+≈+ )21()21sin( , 

ije2=γ  

(2.37) 

At this point, one should look at what is obtained when Almansi’s Strain Tensor is 

multiplied with the deformation gradient on both sides: 

2EI)F(FF))F(F(IFF2eF T1TTT =−=⋅⋅−=⋅⋅ −  

(2.38) 

The above is defined as the pull back operation of Almansi’s Strain Tensor.  

One more thing to be considered left is writing the strain tensors in displacement 

form, which constitutes the main framework for working in FEM displacement 

formulation. Using Eq. (2.6), Green’s strain tensor can be written as: 

)(
2

1

J

M

I

M

I

J

J

I
IJ X

u

X

u

X

u

X

u
E

∂
∂

⋅
∂
∂

+
∂
∂

+
∂
∂

=  

(2.39) 

In the same way, the Almansi’s strain tensor can also be represented by: 

)(
2

1

j

m

i

m

i

j

j

i
ij x

u

x

u

x

u

x

u
e

∂
∂⋅

∂
∂−

∂
∂

+
∂
∂=  

(2.40) 

For small strain conditions, in both of these equations; the multiplication terms 

become small and the difference between the current and the initial states becomes 

negligible, then the equations reduce to: 

)(
2
1

i

j

j

i
ij x

u

x

u

∂
∂

+
∂
∂=ε  

(2.41) 
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It is shown up to here that, in small strain conditions, the difference of terms being 

defined either in the initial state or in the final state is not being obvious. In contrast, 

in large strain conditions, the difference becomes considerable by taking into account 

of the multiplication terms. For the non-linear case, the term strain is being rather a 

mathematical definition, the physical meaning not directly being obvious to a user in 

contrast to the engineering definition of strain. In large deformation analysis, length 

square change is employed, while in the small strain analysis, simply the length 

change is used. That creates consistency problems to deal with in relating stress to 

strain. This will be made clear in the sequel of this chapter. It must be stated that no 

further terms exist in the expression for for Green’s strain and Almansi’s strain as 

given by Eqs. (2.39) and (2.40) i.e. no Taylor’s expansion and truncation of higher 

order terms have been performed. That is, they are complete. In the following, the 

definition of stress will be given.  

2.3 STRESS 

In this section, the same approach to explanation of stress for large deformation 

analysis and limiting case for small deformation solutions will be followed as in the 

previous. Again, one needs to distinguish the initial and the current states for the 

definition of stress. Although in literature many different stress definitions exist, in 

this dissertation, only the two of them will be considered since they are applied in the 

written program for including geometric non-linearity. They are the Cauchy stress 

and the Second Piola Kirchoff stress. Except the Cauchy stress, the stress definitions 

have a rather mathematical meaning; they are in general not attributed to a direct 

physical meaning. Although Cauchy stress has a meaning in engineering point of 

view, the Cauchy stress varies under rotations, which creates difficulties in some 

FEM formulations. That is why different stress definitions exist in literature. The 

conversion is virtually always possible from one definition to the other by use of the 

deformation gradient, or components of it. The main reason for selection of one or the 

other is the computational efficiency. In the context of this dissertation, consideration 

will not be given to all the stress definitions, but two of them, which are applied in the 

formulations and solutions in this dissertation.       
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In the engineering point of view, Cauchy stress, which is defined in the current state, 

has major importance and meaning, and it will be obtained. Other definitions are, in 

general, means to reach Cauchy stresses, and they are rather mathematical 

expressions. 

Now consider a cut on a body in current state on which some forces and tractions are 

acting (Figure 2.4).  

 

 

  

Figure 2.4: A cut on a body in current state and traction defined on the surface per unit 
area. 

The traction on the surface is defined by the formulae below: 

σnt ⋅= Tˆ ,  

or in indicial notation:  

jiji nt σ⋅= ˆ  

(2.42) 

where, t is the traction vector, n̂ is the unit normal vector on the cut and σ, a second 

order tensor, is defined to be the Cauchy’s stress tensor. In engineering analysis, it 

has a major importance and has a physical meaning. The first index represents the cut 

normal direction, and the second index represents the direction of the traction with 

respect to the reference frame in the current state. It is written in matrix form as: 

t
r

n̂

x1 

x2 
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232221

121211

σσσ
σσσ
σσσ
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2.43 

 

 

 

Figure 2.5: Cauchy stress tensor components in current state. 

Now one may consider the traction on a body, and want to retrieve the fictitious same 

traction defined in the initial state such that: 

0dAdA ⋅=⋅ Tt  

(2.44) 

where t is the traction in the current state, dAis the infinitesimal area in the current 

state, T is the assumed fictitious same traction corresponding to reference state, and 

0dA  is the same area in the reference state.  

Next one needs the formulation of the area change from the current state to the initial 

state or vice versa for formulating the transformation: 

σ23 

σ22 

x1 

x2 

x3 

σ21 

σ11 

σ12 

σ13 

σ31 

σ32 

σ33 
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kjijki dxdxdAn ε=ˆ  

(2.45) 

KJRJKR dXdXdAN ε=0
ˆ  

(2.46) 

Eq. (2.45) can be converted to current state by: 

1−≡ iRKJkKjJrRrjkriKkKJjJrjk FdXdXFFFdXFdXF εδε , 

or, 

1
0

1 ˆdetdet −− ⋅⋅≡⋅ iRRiRKJRJK FdANFFdXdXFε  

(2.47) 

The above can be written in matrix form as: 

NFn ˆdetˆ 0 ⋅⋅⋅=⋅ −TdAFdA  

(2.48) 

For derivation of T in Eq. (2.44), another stress definition in the initial state may be 

written such that: 

TPN =⋅Tˆ  

(2.49) 

In the above equation, P is defined to be the nominal stress tensor. Combining Eqs. 

(2.44), (2.48), and (2.49): 

σFNPN ⋅⋅⋅⋅=⋅⋅ −1
00

ˆdetˆ TT dAFdA  

(2.50) 

Then from above it can easily be deduced that: 

σFP ⋅⋅= −1detF  

(2.51) 

Here P is not symmetric in general, and changes under rotations. Due to this reason, 

in general it is not used in this form. It is transformed by multiplying both sides by F-

T, and another stress definition; Second Piola Kirchoff stress is obtained as: 
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T1 FσFS −− ⋅⋅⋅= Fdet  

(2.52) 

Second Piola Kirchoff stress is a symmetric second order tensor. For small 

deformation case, F is approximate to identity, detF is approximately 1, and thus no 

considerable difference between the Cauchy stress, Nominal stress, and the Second 

Piola Kirchoff stress is observed. Nevertheless, in non-linear elasticity or non-linear 

plastic analysis, where there exist large straining, and large deformations, the analyst 

must perform the operations either in the current state or in the initial state. In case of 

performing the operations in the initial state, S must be used for the stress definition. 

However, in case the analysis is performed in the current state, Cauchy stress or some 

other variants should be used. S may be considered as the pull back of σ from current 

state to initial state. S is frame indifferent as will be shown in the sequel. Thus, S is 

preferred in some analysis when frame indifference is to be considered, but the pull 

back and push forward operations constitute a large amount of work. For this reason, 

sometimes, invariant variances of Cauchy stress are preferably used in some analysis, 

where stress incrementation is necessary. This fact will not be dealt here. 

2.4 FRAME INDIFFERENCE 

Since in the above definitions of stress or strain, frame indifference is declared, for 

the continuity of the subject, this concept will be discussed a little. Assume that the 

body dealt with makes a rigid body motion in which there is only translation and 

rotation, where there is no deformation except the previous stresses and strains 

remain intact. Now, regard the stress and the strain definitions on the body, and 

compare those stress or strain definitions for both states. 
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Figure 2.6: A deformable object making rigid body motion; translating and rotating in 
space. With respect to the frame of the body, stress and strains remain unchanged. 
However for the fixed frame, at the initial state some definitions of stress or strains 
change. 

The motion of the body can be defined as: 

T

tt

QQ

cxQx

=
+⋅=

−1

* ),()(
 

(2.53) 

     

where x is the coordinate in the current state, c(t) represents the translation of the 

object and Q(t) represents only the rotational motion. The deformation gradient in 

this case would constitute of the rotation part only. Now see what happens to the 

stress or the strain tensors as the body rotates. 

Considering the deformation gradient, the equation below must hold: 

dXFdXFQdxQdx ** ⋅=⋅⋅=⋅=  

(2.54) 

Thus, from the above equation, it can be concluded that the deformation gradient 

transforms like a vector under rotations of the object with respect to the initial frame, 

which can be stated mathematically as: 

x1 

x2 

x*
1 

x*
2 
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FQF* ⋅=  

(2.55) 

When one looks at the rotated Cauchy stress from the initial x-frame, then: 

TQσQσ* ⋅⋅=  

(2.56) 

and it is obvious that it does not remain the same under rotations. Therefore, it rotates 

with the rotating frame.  

Looking at the Second Piola Kirchoff stress: 

TTTT
FFS −−−− ⋅⋅⋅⋅⋅⋅⋅≡⋅⋅⋅= FQQσQQFFσF

II
321321

1**1** detdet  

(2.57) 

Thus, from above it can easily be concluded that: 

SS =*  

(2.58) 

The above equation simply implies that S is frame indifferent, which means it does 

not change under rotations and/or translations of frame. 

Continuing the procedure for the Green-Lagrange deformation tensor: 

CFQQFFFC
I

TT*T** =⋅⋅⋅=⋅= 321  

(2.59) 

The above equation means that Green Lagrange Deformation Tensor is unaffected by 

rotations of the object. It implies also frame indifference of the Green’s Strain Tensor 

E. 

Considering the Eulerian deformation tensor: 

bQFFQFFb TTT*** ≠⋅⋅⋅=⋅=  

(2.60) 
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From the above equation, it is seen that Eulerian deformation tensor rotates with the 

object. It directly implies that Eulerian strain tensor also rotates with the object 

rotation. 

2.5 CONSTITUTIVE RELATIONS 

Constitutive relations are the equations relating the strains to the stresses. For this 

kind of a relation to exist, a consistent material model is needed. In literature, many 

different material constitutive relations exist. For the linear small deformation, small 

strain analysis, the relation of stress to strain in 2D for plane stress, plane strain and 

axisymmetric cases are defined simply as below: 

Plane Stress: 
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(2.61) 

  

Plane Strain: 
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(2.62) 

Axi-symmetric: 
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(2.63) 
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In the above formulation, it should be noted that S, σ, and ε are written in vector 

form, which is called as Voigt notation in [5]. Unless otherwise stated, in the FEM 

context, they will be assumed in this vector form, but in the general continuum 

mechanics equations, they should be considered in the matrix form. Here, λ and µ are 

the Lame’s constants defined as: 

)21)(1( νν
νλ

−+
= E

 

(2.64) 

)1(2 ν
µ

+
= E

 

(2.65) 

The non-linear case is more complicated. Consistency becomes an important issue to 

deal with. In that case, the models are classified in general for path independence, 

reversibility, and non-dissipative behaviors (Belytschko et al. [5]). In this work, only 

two of the constitutive models are dealt with; one of which is the direct extension of 

the Hooke’s Law, called the Saint Venant-Kirchoff material model, and the other is 

the Hyperelastic Neo-Hookean material model. 

Kirchoff Material model is a model used in general for large deformation – small 

strain type of problems. It does not have much practical importance in general. It only 

includes the rotations of the body. In the small strain range, both of the strain matrices 

approximate to engineering definition of strains. That is why it is used in the small 

strain range. However, in case of the large straining, it results in stiffer results. The 

reason may be explained by the strain definition is changing considerably in case of 

large strain. Referring to initial state, the relation is defined as: 

,KLIJKLIJ ECS
)

= or in matrix form: ECS :
)

=  

(2.66) 

where, S is the Second Piola Kirchoff stress tensor, and E is the Green’s strain 

tensor, which are defined before, and C
)

 is the constant constitutive matrix defined in 

the assumed unstressed initial state. When referring to current state, stress or strain 

definitions should change accordingly as: 
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klijklij ec
)=σ , or in matrix form: e:cσ

)=  

(2.67) 

where σ is the Cauchy stress, and e is the Almansi’s strain tensor as are previously 

defined, and c
)

 is the constitutive matrix, changing as the deformation state changes. 

The change of c
)

 is defined by the transformation rule from the unstressed initial state 

constitutive matrix according to the formulation: 

IJKLlLkKjJiIijkl CFFFF
F

c
))

det

1=  

(2.68) 

Hyperelastic model is used for large deformation and large strain analysis. In this 

model, stored strain energy potential is defined as a function of Green’s deformation 

tensor or Green Lagrange strain tensor. Stresses and constitutive relations are 

obtained accordingly from the potential function. This formulation has variations [5], 

[6], but the one in [6] is adapted for the program developed. Hyperelastic model 

guarantees path independent work and is more consistent with the non-linear stress 

definitions. In terms, this means: 

E
E

C
C

S
∂

∂=
∂

Ψ∂= )()(
2

w
 

(2.69) 

In the above formulation, Ψ is the potential defined for the Green’s deformation 

tensor, while w is the potential defined for Green’s strain tensor. The transformation 

to the current state is performed by use of Eq. (2.52) as: 

TT w

FF
F

E
FF

C
Fσ ⋅

∂
∂⋅⋅=⋅

∂
Ψ∂⋅⋅=

det

1

det

2
 

(2.70) 

The constitutive matrices are derived from Eq. (2.69) by taking one more derivative, 

which yields: 

EECC
C

∂∂
∂=

∂∂
Ψ∂⋅= w22

4
)

 

(2.71) 
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The above equation is also transformed to the current state as written in Eq. (2.68). 

These formulations are general to hyperelastic constitutive model.  

Now there comes the definition of the energy function. For the compressible Neo-

Hookean hyperelastic model, the energy function is defined as ([6], Chapter 7): 

)3)((
2

1
)ln(det)

2
()1)((det

4
)( 2 −⋅⋅+⋅+−−⋅=Ψ CC trFF µµλλ

 

(2.72) 

Then substituting equations (2.69) (2.71) in (2.72) gives: 

)()1)((det
2

112 −− −⋅+⋅−⋅= CICS µλ
F , 

 or in indicial form: 

)()1)((det 112 −− −⋅+⋅−⋅= IJIJIJIJ CCFS δµλ  

(2.73) 

)()1)((det2(
2
1

)(det

11112

112

−−−−

−−

+⋅−−

+⋅⋅=

JKILJLIK

KLIJIJKL

F

F

CCCC

CCC

λµ

λ
)

 

(2.74) 

    

are obtained. Eqs. (2.73) and (2.74) are defined for the Total Lagrange Approach, 

which means calculations are performed in the initial state. The same transformations 

as in Eqs. (2.52), and (2.68) apply for the current state calculations; stresses and 

strains are also defined for Updated Lagrange Approach as follows: 

)(
det

)1)((det
det2

2 IbIσ −⋅+⋅−⋅=
F

F
F

µλ
, 

or in indicial form: 

)(
det

)1)((det
det2

2
ijijijij b

F
F

F
δµδλσ −+−=  

(2.75) 



 

  25 

)()1)((det2(
2

1
)(det 22

kjiljlikklijijkl FFc δδδδλµδδλ +⋅−−+=  

(2.76) 

In “Voigt notation” (Belytschko et al. [5]), the constitutive matrix can be written in 

2D for updated Lagrange method as: 

Plane Stress: 

























−
−
−−

+
−
−

−
−

−
−+

−
−

=

)1)((det
)1(2

)21(
00

02
)1(

)21(
)(det

)1(

)21(

0)(det
)1(

)21(
2

)1(
)21(

2

2

2

F

F

F

ν
νλµ

µ
ν

νλ
ν

νλ
ν

νλµ
ν

νλ

c
)

 

(2.77) 

Plane Strain: 
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(2.78) 

Axi-symmetric: 
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(2.79) 

For the Kirchoff model, at the initial undeformed state, the constitutive matrix is the 

same as in the linear case. Nevertheless, for the deformed state, the transformations 

must be performed according to Eq. (2.68). Those transformations are done for the 

fourth order tensor, than reduced to second order tensor in Voigt notation form. 

It should be stressed here that, in the hyperelastic model, the stresses are calculated 

from Eqs. (2.73) or (2.75) and the constitutive matrix from Eqs. (2.74) or (2.76).   
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In the plane stress analysis, for the stress calculations, λ should be changed 

accordingly as: 

211

21

ν
ν

ν
νλλ

−
⋅=

−
⋅−⋅= E

plstrs  

(2.80) 

In addition, constitutive matrix should be changed accordingly for the plane stress 

analysis. For the updated Lagrange formulation it is written as in Eq. (2.77) but for 

the total Lagrange formulation it must be written as below: 
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(2.81) 

2.6 CONSERVATION EQUATIONS 

Having defined the stress, strain, and the constitutive relations, conservation 

equations may be stated briefly as promised in the previous sections. In the 

framework of continuum mechanics, four conservation equations related to the 

context may be defined, namely the mass conservation, linear momentum 

conservation, angular momentum conservation  and the energy conservation. 

2.6.1 Mass Conservation 

In Newtonian mechanics mass is conserved. That is, no mass is lost, and no mass is 

produced during deformation of a body. In FEM context it is not used, or included in 

to the equations directly, but its result is used indirectly. In the mathematical form, 

mass conservation may be stated as: 

∫ ∫ ⋅=⋅ dVdV ρρ 00  

(2.82) 



 

  27 

In the above equation, ρ0 is the mass density in the reference configuration, while ρ is 

the mass density in the current configuration. Considering Eq. (2.8) and the integral 

Eq. (2.82), the following formula can be written: 

Fdet
1

0

=
ρ
ρ

 

(2.83) 

If detF approaches zero and if ρ0≠0, ρ approaches infinity, which is not admissible; 

then detF must be greater than zero. 

Here it should be emphasized that, the above equation is written for the Lagrangian 

mesh, since we are dealing with this kind of a system as stated previously. For 

Eulerian meshes, it should be stated in a different form [5]. 

2.6.2 Linear Momentum Conservation 

Newton’s second law states that the rate of linear momentum is equal to the applied 

external forces. In the quasi-static case, where the forces are applied slowly, i.e. 

acceleration terms are omitted and the motion is independent of time, the linear 

momentum equation reduces to equilibrium equations. Here, it is sufficient to give the 

direct result of linear momentum equation, be the equilibrium equation as: 

0=⋅+⋅∇ Bfσ ρ  

(2.84) 

where σ is the Cauchy stress, ρ is the mass density and fB is the internal body force 

per unit mass. It should be obvious to the reader that the above equation is defined 

over the current state of the body. 

2.6.3 Angular Momentum Conservation 

The angular momentum is obtained by the cross product of the terms in linear 

momentum equation by the position vector. The direct result is the symmetry of the 

Cauchy stress tensor: 
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Tσσ =  

(2.85) 

This result is important and is used to reduce the number of equations to be solved. 

No other result is obtained by angular momentum conservation equation. 

2.6.4 Energy Conservation 

Energy relations constitute the mainframe of FEM method. In the context of 

mechanical problems, the sum of work done by internal stresses and external forces 

must be minimized. In the actual case of the energy conservation, one has the 

equilibrium of internal and external energy rates, but time variations are not in the 

context of this dissertation. Here one is only interested in the form of internal work 

done by the internal elastic stresses and external work done by the external forces 

instantaneously, which is called the quasi-static case.  

As may be seen from the previous section, Second Piola Kirchoff stress is related to 

the Green’s Strain tensor, while Cauchy stress tensor is related to the Almansi’s 

strain tensor. In literature, they are defined to be work conjugate. Internal Energy 

forms for both the total Lagrangian and updated Lagrangian formulations may be 

written for the Kirchoff material model as: 

dVdV
VV
∫∫ ==Π eσES :

2

1
:

2

1
0int

0

 

(2.86) 

It should be noted for the above equation that, in the first integral, integration is 

performed in the initial volume, whereas in the second, integration is performed in the 

current volume. Conversion from one to other is easy, which means they are 

dependent and equivalent. Both of them should give the same result as long as the 

conversions from one state to another are performed consistently. One of them is 

selected for internal energy calculations. Depending on the selection of the integration 

form, formulation is called either Total Lagrangian, or Updated Lagrangian, 

respectively. 



 

  29 

In case of the Hyperelastic material model, the above can be written as the integration 

of Eq. (2.72) as: 

∫Ψ=Π
0

0int )(
V

dVC  

(2.87) 

The external work done by external forces may be formulated as follows: 

∫ ∫∫
Γ Γ

Γ⋅−Γ⋅−⋅−=Π
t u

uu
T
utt

T
t

V

B
T

ext dddV
0 00

0000 tutufu ρ  

(2.88) 

In this equation, the first integral is the work done by the internal body forces (i.e., 

magnetic, gravity, etc.). Here ρ0 is the mass density defined in the initial state, fB is 

the body force per mass. The second integral is the work done by the tractions on 

traction-defined surface. The third integral is the work done by the displacements of 

the restrained nodes on restraint surface. The above formulation in Eq. (2.88) in the 

initial state can also be written in the current state without loss of generality as: 

∫ ∫∫
Γ Γ

Γ⋅−Γ⋅−⋅−=Π
t u

uu
T
utt

T
t

V

B
T

ext dddV tutufu ρ  

(2.89) 

The difference between equations (2.88) and (2.89) is that, in Eq. (2.87) the 

integrations are performed in the initial volume or surface, but in Eq. (2.88), the 

integrations are performed in the current volume or surface. However, they are in 

general equivalent, and since the follower forces are not dealt with, for either total 

Lagrange formulation or updated Lagrange formulation, Eq. (2.88) may be utilized 

for the prescribed forces and displacements. That is, non-linear forces are not used in 

the implementation program. Non-linearity is only associated with the internal strain 

energy. 
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CHAPTER 3  

FEM FORMULATION 

3.1 INTRODUCTION 

In this chapter, element formulation for plane stress, plane strain and axisymmetric, 

2D elastic solutions and implementation of FEM is going to be investigated. This part 

will be presented here only for the completeness of the subject matter. It will not be 

elaborately dealt with since there are numerous books and publications about this 

issue. The interested reader should refer to references [2]-[5] for a deeper 

understanding.  

 

 

 

Figure 3.1: A FEM element patch defined in initial state mapped to current state. Also 
mapping from master element to both initial and current states of the element is 
represented. 
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In the context of FEM, the approach is to discretize a complicated body Ω into 

simpler rectangular or triangular patches Ωi, and let connectivity between them. 

Those patches are further transformed to base square parametric elements for being 

able to do the Gauss integrations, and a switch between the base element and the 

actual patch is realized with the Jacobian transformation (Figure 3.1). 

3.2 FORMULATION OF STRAINS 

In the FEM context, information is lumped in the nodes, and values are interpolated 

on rectangular or triangular elements from the nodes by utilization of the Lagrange 

interpolation functions. Displacement formulation is followed, that is displacement 

form of strains, Eq. (2.39) or Eq. (2.40) is used. To be able to make calculations, the 

derivatives with respect to spatial coordinates are needed; which requires following 

some sub steps and equations.  

For the elements, iso-parametric element formulation is being used. That is, the same 

interpolation functions are utilized for the interpolation of coordinates and the 

displacements at a point in an element. At an interior point of the element domain, a 

variable may be found by multiplying each nodal value by the corresponding nodal 

base function value at the point. Actually, the base functions define the weight of the 

corresponding node at a point in the domain of the element. In mathematical terms: 
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ξ

ξ

ξ

φ

φ

φ

  

(3.1)  

Here, i refers to the spatial index, where for the 2D case it would assume the values 

1,2, and in the 3D the values 1,2,3. The index I refers to the local index of the nodes 

on the element and ranges from 1 to N, where N is the number of nodes of the 

element. The above may also be written in matrix form: 
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(3.2) 

As may be seen in previous chapter, one will need the derivatives of the 

displacements with respect to spatial coordinates. This is achieved by the Jacobian 

transformation written by the formula: 
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(3.3) 

in which, (•) refers to any variable defined in the domain to take the derivative, and is 

straightforward. In the two dimensional case, it may be written in open form as: 
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(3.4) 

The Jacobian J in the above equation may be expressed more clearly for 

transformations to the reference state and transformations to the current state 

respectively as: 





















⋅
∂

∂
⋅

∂
∂

⋅
∂

∂
⋅

∂
∂

=





















⋅
∂

∂
⋅

∂
∂

⋅
∂

∂
⋅

∂
∂

=

∑∑

∑∑

∑∑

∑∑

==

==

==

==

N

I

II
N

I

II

N

I

II
N

I

II

N

I

II
N

I

II

N

I

II
N

I

II

x
ξξ

x
ξξ

x
ξξ

x
ξξ

J

X
ξξ

X
ξξ

X
ξξ

X
ξξ

J

1
2

2

21

1
1

2

21

1
2

1

21

1
1

1

21

1
2

2

21

1
1

2

21

1
2

1

21

1
1

1

21

0

),(),(

),(),(

)(

),(),(

),(),(

)(

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ

ξ

 

(3.5 a, b) 
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As stated in the above paragraphs, in the actual case, the derivatives with respect to 

true global coordinates are necessary, which may be obtained by rearrangement of 

Eq. (3.3) or (3.4). 
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x
)( 1
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−

−

)(

,)(

1
0

or

 

(3.6)  

Now that those transformations from base element to real elements in reference and 

current states have been defined, the transformation from reference to current, or the 

inverse relation may be expressed. It is actually the deformation gradient F, or the 

inverse of it, defined in the previous chapter. It should be stated here that 

multiplicative decomposition is valid for the deformation gradient: 

TT )()( ξJFξJ 0⋅=  

(3.7)  

In Eq. (3.7), the only unknown is the deformation gradient F. By rearranging the 

terms: 

TT )()()( 1
0 ξJξJξF −⋅=  

(3.8) 

This equation requires the Jacobian to be invertible. One may note here that too much 

distorted elements may jeopardize the inversion of J for its determinant may be too 

small in that case.   

For the linear analysis, which is the simple case and constitute the beginning point for 

the non-linear analysis, the engineering strain ε may be written as: 
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which can be written in open form for 2D as:  
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(3.10) 

The above formula is standard in FEM formulations and the same notational 

convention is used in virtually all of the FEM books. Note that, the derivatives are 

with respect to the current state coordinates, but the reader should know once more 

that for the linear analysis, the distinction between the initial or the current state 

becomes invisible. Thus taking the derivatives with respect to initial state is also 

valid, and implemented so for the linear analysis. However, for the non-linear 

analysis, this distinction will be important, and B will be called B0 when referring to 

initial state from here and after. 

The strains seen in Eq. (2.39) or (2.40) are split into linear part and non-linear part. 

The nonlinear part has been treated in linearization of equations. For the formulation, 

Bathe [2], Chapter 6 is followed. The linear part is dealt within the Newton iterations 

as described in the sequel. 
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3.3 RECTANGULAR ELEMENT FORMULATION 

A rectangular element has at least four nodes, thus has at least four interpolation 

functions for each node. For the ith node, ith interpolating function is assuming the 

value 1.0. If the element is of second order, it may have up to nine nodes. Nine-node 

rectangular element would be complete second order. In the implementation program, 

only four node rectangular elements have been implemented in the graphical 

interface, however beneath the graphical interface, up to eight nodes can be 

implemented. The four interpolation functions may be written as follows:     

4,3,2,1     ),1)(1(
4

1
),( 221121 =⋅+⋅+= iii

i ξξξξξξφ  

(3.11) 

For details and higher order element formulation, reference [4] may be followed. 

The strains are defined as a 2nd order tensor, but Voigt notation, which reduces the 

second order tensor to a first order tensor is preferred in general for the FEM 

formulation (Belytschko et al. [5]). 

3.4 TRIANGULAR ELEMENT FORMULATION 

For the triangular element, area coordinates are used. A triangular element has at least 

three nodes, thus it has at least three interpolation functions for each node. For the ith 

node, ith interpolating function is assuming the value 1.0 in the same way as the 

rectangular element. If the element is of second order, it may have up to six nodes. 

Six-node triangular element would be complete second order. In the implementation 

program, only three node triangular elements have been implemented in the graphical 

interface, however beneath the graphical interface, up to six nodes can be 

implemented. The three interpolation functions may be written as follows:     
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(3.12) 

For details and higher order element formulation, reference [4] may be followed. 

 

 

 

Figure 3.2: Triangular element area coordinates with total area A. 

3.5 VARIATIONAL FORM 

In the context of FEM, Eq. (2.84) is called the strong form of momentum balance 

equation. To obtain the weak form, that equation is multiplied with a variational 

displacement δu called the test function and integrated over the body. The property of 

the test function is such that, it is zero over the displacement-defined boundary. It is 

actually a small perturbation to the system at the equilibrium: 
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(3.13) 

Integrating by parts and using the Gauss Theorem for the above equation: 
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(3.14) 

This the weak form of the momentum equation. Note that in the above equation, the 

boundary conditions are included. The weak form above implies the strong form. 

That is the strong form can be obtained from the weak form by one more integration 

by parts. 

In the above integration formula, terms may be ascribed physical names. The first 

integral is called the virtual internal work, the second and the third terms are the 

virtual external work. In the first integral, the derivative of the variation of u may be 

split into symmetric and anti-symmetric parts. Since σ is defined to be symmetric in 

the previous chapter, multiplication with the anti-symmetric part vanishes. Then, the 

first integral above may be written as: 
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(3.15) 

Now take the variation of the Almansi’s strain tensor at equilibrium, expecting to get 

some interesting results. 
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(3.16) 

Since at the solution point, um is assumes the displacement corresponding to the 

stationary point satisfying equilibrium, derivative with respect to x vanishes. Then the 

above integral in Eq. (3.15) becomes equivalent to: 
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(3.17) 

This equation may be compared to Eq. (2.86) and can be concluded to be the 

variational form of energy. Equivalently the variation of Green Lagrange strain can 

be taken and one more equivalence may be obtained. Thus, variational equality may 

be written: 

0int

0

:: dVdV
V V

⋅=⋅=Π ∫ ∫ ESeσ δδδ  

(3.18) 

For small stress and small strain analysis, the above formula may be written as: 

uBCBu T ⋅⋅⋅⋅=Π ∫ 000int

0

dV
V

T
)

δδ  

(3.19) 

in which, B0 is the derivative matrix defined in Eq. (3.10) with the only difference 

that the derivative is taken with respect to initial coordinates. 

The variational form of the external work is the sum of the second and third integrals 

in Eq. (3.14). Since one is not interested in follower forces in the context of this 

dissertation, they are not changed much for the current and deformed states. One can 

write the variation of external forces as: 

∫ ∫
Γ

Γ⋅−⋅⋅−=Π
V

iiBiext

t

i
dtudVfu δδρδ  

(3.20) 

Thus, a variational form is obtained, which will be helpful in the linearization of the 

general non-linear FEM. Since the summation of the internal and the external 

energies is supposed to be minimized, it is expected that the summation of the 

variations of the internal and the external energies vanish. Actually, Eq. (3.14) 

implies this result. In the next section, this variational form will be linearized for 

application of Newton algorithm to the solution.   
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3.6 FEM LINEARIZATION 

For the details of this section, Bathe [2], Chapter 6, should be followed. Also in [4] 

and [7], the topic of FEM linearization has been considered. For solution of the non-

linear equations, Newton solution technique has been applied, which requires 

linearization of the variation of the total energy. In general, it is required that the total 

energy is minimized, which requires that the gradient of total energy function 

vanishes (first order necessary condition). Another requirement would be the Hessian 

of the potential is positive definite (second order necessary condition). In this section, 

those concepts will be made comprehensible to the reader. 

In the context of Newton Algorithm, the stationary point of a function is aimed, 

beginning from some initially assumed unstressed position by tangents to the function 

(Figure 3.3). 

 

 

 

Figure 3.3: Representative Newton approximation scheme. 
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Here, KT
t is called the tangential stiffness at virtual time t, which in mathematical 

terms is the Hessian of the internal energy term and is always positive definite. ∆ut is 

the incremental displacement for current virtual time t, and Rt is the residual force at 

virtual time t. 

The tangents of the function are needed in general. This is achieved by the 

linearization process. Consider beginning linearization on the initial configuration. It 

is already mentioned that, when everything is transformed to initial configurations 

and calculations are performed there, the method is called the total Lagrange 

approach. Now considering the rightmost integral in Eq. (3.18), the linearization can 

be written as: 
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(3.22) 

To achieve the linearization of the above expression, it is needed that some 

intermediate components be linearized.  

The deformation gradient can be linearized as [7]: 
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(3.23) 

in which, ∆u is the small change in displacement as stated before, and u∇ represents 

the gradient with respect to current coordinates, while u0∇ represents the gradient 

with respect to the initial coordinates. 

The Green Lagrange strain can be linearized as follows [7]: 



 

  41 

,)))(()((
2

1
))()((

2

1
00 FuuFFuuFE TTTTD ∆∇+∆∇=∆∇+∆∇=  

(3.24) 

This is the pull back of the small strain defined at the current state to the initial state. 

It can also be written in terms of u and ∆u in indicial notation by use of Eq. (2.6) for 

deformation gradient F as: 
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(3.25) 

When looking at Eq. ((3.25) carefully, it should be recognized that, it is linear in ∆u 

when u is known. It can be written as: 

uBBE 10 ∆+= TD )(  

(3.26) 

Here, B0 is defined in Eq.(3.10) and the paragraph following, with the only difference 

that, derivatives are taken with respect to current coordinates. Furthermore, B1 is 

defined as (Bathe [2], Chapter 6): 
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(3.27) 

in which, uI,M is the derivative of displacements with respect to initial coordinates 

(I={1,2} and M={1,2} for 2D case). Furthermore, kJ,φ is the derivative of kth base 

function with respect to initial coordinates (J={1,2} for 2D case) and is given in Eq. 

(3.6). This derivative is taken by use of the inverse Jacobian. The matrix in Eq. (3.27) 

is only used for the Total Lagrange approach as will be clearer in the sequel. It is not 

used for the Updated Lagrange case. Writing those statements in equation form to 

make things more clear: 
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J=1,2 for 2D case. 

(3.28) 

In Eq. (3.22), the derivation of D(δE) and DS are also needed: 
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(3.29) 

Eq. ((3.29) can also be written in indicial form by use of Eq. (2.6) for deformation 

gradient F as: 
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This is used in the first integral on the right hand side of Eq. (3.22). By use of the 

symmetry, the integrand may be written as: 
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(3.32) 

The elements of the matrix in Eq. (3.32) are defined in Eq. (3.28). Note that S is 

defined a little differently to be able to write things in this form: 
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Now, the only term, linearization of S with respect to u, is left. It can simply be 

written as:  
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(3.34) 

Now one has tools for the linearization of the variational internal energy. Then Eq. 

(3.22) can be written more explicitly in the form: 
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(3.35) 

where KT is the tangential stiffness defined as the summation of the integrals. This is 

the end of the derivations for the linearization of the internal energy variation for the 

non-linear FEM, TL formulation. 

Now considering the first integral in Eq. (3.18), when linearization is performed for 

this integral, the solution strategy is called the updated Lagrange approach. 

Nevertheless, this is not possible since the current state of the object is not known. 

However, there is the last state of the object at hand on which one can make all the 

linearization. In this case, one is still dealing with the Lagrangian mesh. So, 

transforming the previous linearization to the latest incremental state at hand is 

enough for the updated Lagrange formulation. In general, one may expect to get the 

same results for both of the methods. The choice on one to the other is the 
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computational efficiency on the specific problem type. For elasticity problems, no 

considerable gaining or loss have been observed on using one method to the other.  

At this point note that when writing x, it is meant the last obtained incremental step of 

the body in consideration. Now formulate the same internal energy term at that state: 
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(3.36) 

Considering the system this way, one may obtain the same system of equations as in 

the above formulation for the TL formulation. There are only two differences to be 

considered. One is the use of xt, which is the position at the latest state, and the other 

is getting rid of B1 term in the integration. The reason is that in Eq. ((3.25), in the last 

two terms, uM is being actually equivalent to ∆uM since solution is being performed 

from the last incremental state. Then the integral formula in Eq. ((3.35) is converted 

to: 
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(3.37) 

Here, KT is the tangential stiffness matrix defined as the summation of the integrals. 

It is equivalent with Eq. ((3.35), but with the difference that calculations are 

performed in the current state, and B1 does not exist. It should also be noted that, σ is 

defined a bit differently in the second integral on the right side, which is written as: 
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Examining Eq. (3.20), it is seen that, forces are defined in the current state. Since in 

the context of this dissertation, follower forces (i.e. fluid pressure), are not 
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considered, the external forces do not change. In addition, the body force lumped on 

the nodes do not change. Thus, the linearization of loads vanishes.  

For Eq. ((3.21), now left is the residual term Rt. It is already mentioned, at 

equilibrium, that the total of internal variational energy and the external variational 

energy vanish. However, at an approximate state, one may expect to have some 

residual, which is the unbalancing of internal energy and the external energy. It can 

be written in mathematical terms as follows: 
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(3.39) 

For the TL and UL cases, the above is written respectively as: 
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(3.40) 

∫∫ ∫ ⋅⋅⋅−Γ⋅⋅+⋅⋅⋅=
Γ VV

dVddVR
t

σButufu B δδρδ  

(3.41) 

In Eqs. (3.39) (3.40), S and σ are to be written in the vector form as in Eqs. (2.61), 

(2.62) or (2.63). 

It should also be stated here that Newton’s method is highly instable away from the 

solution. It may cause oscillations or diverging of residual. To prevent this, the loads 

and displacements must be applied slowly to force to convergence, that is, 

incremental solution may be needed. In the program interface, number of increments 

is entered as a solution parameter. In addition, some measure must be taken for in 

case oscillations to occur and the program fall into infinite loop, which is not 

terminating. For that reason, maximum number of iterations is entered for solution 

parameters of non-linear elastic solution. The formulations may be summarized by 

the following algorithm: 
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Algorithm 1: Newton’s method for FEM equation system. 

FALSE 

Make Initial Linear Solution for increment=1 
Solve FuK =⋅  

Calculate tangential stiffness KT (3.35) or (3.37). 
Calculate Residual R (3.40) or (3.41). 
 

Solve linear equation system R∆uK T =⋅ , and find ∆u. 

 

Update u, u=u+∆u. 
 

Test termination criteria: 

 












<

⋅
⋅ ε
Fu

R∆u
T

T

 

Exit 
 

Number of iterations < 
Maximum allowed number of 
iterations entered 
  

Increment=increment+1 
uincrement+1=uincrement 
 

TRUE 

TRUE 

FALSE 

If increment<Number of increments 

entered or 
Fu

R∆u
T

T

⋅
⋅

is less than some 

small threshold value. 

TRUE 

FALSE 
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The statements and formulas above may seem hard to comprehend. However, they 

are straightforward for implementation. Having written the general FEM equations 

briefly, the main topic, contact formulation and the solution techniques, and the 

binding to the above equations may be derived. In the next chapter, those will be dealt 

in detail.   
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CHAPTER 4  

CONTACT FORMULATION 

4.1 INTRODUCTION 

In this chapter, formulation of contact constraints, and the solution methods will be 

presented. In order to simulate contact with FEM, one needs a mathematical contact 

model. In the context of FEM, penalty method, and the Lagrange multiplier method 

are the two main strategies for dealing with contact. Other methods, in general, are 

extension of those methods, at least currently. They will be presented in this chapter, 

as applied to the program written for this dissertation. Before directly relating the 

subject matter to FEM formulation, some optimization concepts will be included in 

the chapter. Then, general active set solution strategies, application details to the 

linear elastic case will be presented. Afterwards, the difficulties arising in the 

application of the techniques to non-linear elastic case will be discussed, and solution 

strategies offered in [11], [13], [14], [15] will be briefly explained and the method 

proposed in [15], which constituting the backbone of this dissertation will be 

presented in a bit more detail.  

4.2 PROBLEM STATEMENT 

In general, the minimization problem of the sum of internal energy due to the 

straining of the body, and the external energy due to the applied external loads on that 

body is to be solved. Nevertheless, by defining a contact surface, a constraint is 

defined on that energy equation of the body, such that the energy imposed being very 

large or infinity when penetration to occur. In effect, that deteriorates the smoothness 

properties of the energy equation system. In the optimization world, inequality 

constrained minimization is defined as: 
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(4.1) 

In the above ℜ is the Euclidean Space. In the context of FEM, h(x) are the 

displacement-defined boundary conditions, which are handled easily, and are called 

the soft constraints. g(x) are the contact constraints, which are hard to deal with 

because of derivative of total energy is not being easily obtained at the point of 

contact; and called the hard constraints. When the constraints are put in the FEM 

context, the system of equations becomes: 
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(4.2) 

To state the above equation by words more explicitly, in the discretized world, there 

is an energy expression to be minimized, with displacement-defined constraints at 

some nodes in the index set, IIi ⊂∈ 1 , of the system analyzed. There are also the 

contact constraints in the index set IIj ⊂∈ 2 , but those indices are not coinciding 

with the displacement-defined indices (i.e. 021 =∩ II ), in other words, they are 

disjoint sets. It should also be stated here that, in the framework of this dissertation, 

only normal contact is dealt, which means, there is no tangential contact force, 

namely the friction is ignored. That is why the notation gN(x) is used for normal gap 

here and after instead of g(x). The body must be supported such that, it cannot 

undergo rigid body motion when disregarding the contact constraints. 

Internal and external energy definitions for FEM are made in Chapter 2 by Eq’s 

(2.86)-(2.89). Soft constraints h(x) are easy to handle. References [2]-[5] may be 

followed for them. The inequality constraints, gN(x), will be explained here. 

Regarding g(x) in Eq. (4.2), xα are the coordinates in current configuration mapped by 

φ(Xα) for body α. In the framework of this dissertation, an elastic body and a rigid 
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surface is dealt. Thus α=1 will correspond to the rigid surface, while α=2 will 

correspond to the elastic deformable body. All equations will be presented here for 

the 2D case, leaving the 3D case for a further work. However, in general, the contact 

formulations do not change much for 3D case. It is also assumed that the rigid contact 

surface is stationary (i.e., not moving in any direction). This situation is called 

unilateral contact in literature [1]. By using the fact that displacements will be zero 

for rigid stationary body, and by use of Eq. (2.2), in a more explicit form, gN(x) may 

be written in this context as:  

)(

)())((

  where                    ,
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ξξ
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nXX
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u
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(4.3) 

In Eq. (4.3), GN is defined as the initial normal gap, and gN being the current normal 

gap. It should be observed that GN and gN are scalar values obtained by dot products 

of two vectors. It should also be stated here that )(ξ1X is the nearest point, 

parametrically defined on the rigid surface, obtained with respect to the slave node of 

the elastic body at the deformed state (Figure 4.1), which will be made clear in the 

next section. 
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Figure 4.1:Slave node moving on the master contact surface. The figure represents the 
parameters involved in the gap function. 

Now, with the aid of the gap function, the energy term associated with contact force 

should be formulated. It is plausible to treat the contact force as an external traction 

force in the form:  

∫
Γ

Γ⋅=Π
c

cc
T
cc dtu  

(4.4) 

However, it should be mentioned in here that, at the equilibrium of the body with the 

interface, the contact force would be a reaction force. So, equal and opposite forces 

are associated to the same point. Therefore, contact forces do no work. Nevertheless, 

if the contact surface had not been there, the body would continue moving and 

deforming, thus reducing its energy and it can be said that the energy level of the 

body stays at a higher level due to the existence of contact interface. If a simple 1D 

case is assumed, a simple spring with a constraint as an example, the situation 

becomes more comprehensible. 

gN 
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uN 

X2 

)(ˆ ξ1n  

)(ξ1X  
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x2 Moved slave node after 
some intermediate time 
without considering contact 
surface position. 

Slave node at the 
initial position 

Master surface 
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Figure 4.2:  A simple 1D contact problem. A spring with an applied load and a contact 
constraint. The energy function and the effect of the contact interface to the energy 
system. 

The 1D situation considered is simple but instructive for comprehension of the things 

happening when a contact constraint exists. For the spring-force system, if the force is 

small, the spring will not see the constraint. However, when the force is large enough, 

the spring will stop at –h, and will not be able to minimize the total energy and reach 

x=F/k. Therefore, some work term is associated with contact.  

Though the integral in Eq. (4.4) seems simple in the first sight, the problem there is 

that, the contact force, and even the contact surface is not known. Eq. (4.4) is only 

written to state that, the problem is an interaction problem happening only at the 

interface of two bodies, which is represented by Γc, but it is to be determined 

somehow. In case of multi-body contact, the integral must be calculated for each 

body and must be added to the total energy equation. The traction vector appearing in 

Eq. (4.4) can be written in a different form by: 

111
c annσt ˆˆˆ2 ⋅−⋅−=⋅= TN pp  

(4.5) 

 

x=0 

x=-h
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x=-h x=F/k П=½*k*x2-Fx 

Пc 
gN 
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Figure 4.3: Free body diagram for contact interface. 

In Eq. (4.5), pN is the normal pressure, and pT is the tangential shear, 1n̂  is the unit 

normal, and 1â  is the tangent defined on the master surface. It should be noted here 

that, pN and pT defined as scalars in Eq. (4.5). Tangential traction will not be dealt in 

the framework of this dissertation, thus pT is assumed to be zero. Also considering 

that, living in the discretized world, the integral equation in Eq. (4.4) is transformed 

to summation for contact nodes as: 

∑ ⋅=Π
i

i
N

i
Nc gp  

(4.6) 

In the optimization context, the inequality constraint defined in Eq. (4.2) can be 

reduced to equilibrium constraint with the following conditions at equilibrium: 
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(4.7) 

The Eq. (4.7) are called as Hertz-Signorini-Moreau conditions for frictionless contact 

[1]. In the context of optimization, they are called the Karush-Kuhn-Tucker 

Conditions. It can be said that, when 0≥Ng , no contact pressure is expected. When 

there is contact force, gN is zero. The first and second inequalities in Eq.(4.7) are 

1â  
1n̂⋅− Np  

1n̂⋅Np  

Rigid Surface 

Elastic Body 

1n̂
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called necessary optimality conditions for inequality constraints in optimization 

context [8]. In the optimization context, the term pN used here is the Lagrange 

multiplier. 

 

 

 

Figure 4.4:  The function of pN with respect to gN Note the sharp change in the graph at 
gN=0, which creates the major problem in optimization. 

It can be noted for the complementary slackness term that the dimension of pN is 

force, while the dimension of gN is distance. Then it can be said that, the 

complementary slackness is associated to energy, which means that zero energy is 

associated with contact forces at equilibrium when gN is zero, that is, equal and 

opposite forces do no work at equilibrium. However, in case of penetration, pN  and 

gN being less than zero, a positive energy term is associated with contact. Else, if gN is 

larger than zero, which is the gap open state, then pN being zero. Therefore, zero 

energy is associated with gap open state. Complementary slackness condition in Eq. 

(4.7) includes both of these situations. In the following sections, the above energy 

form will be tackled. 

4.3 RIGID SURFACE DEFINITION 

In the framework of this dissertation, the rigid surface needs to be defined 

mathematically. As the solution technique, master surface-slave node technique is 

gN 

pN 
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used, which is the most widely used and accepted technique in the numerical 

treatment of contact. The definition of Bezier surfaces is used as in [1] and [9]. In 

effect, this section is based on [9]. The methods proposed results in smooth third 

order polynomial definition of contact surface, satisfying C1 continuity. In [9], two 

types of Bezier curves have been presented as cubic Hermite and cubic Bernstein 

interpolations, both of which have been applied in the program developed for this 

dissertation. The program implementation is explained in the next chapter. They stand 

as an option of visualization and analysis in the program interface. 

The discretized surface model is local, that is, a change in the position of a node only 

affects the curves corresponding to that node. Every node is associated to a single 

surface. 

 

  

Figure 4.5: Representation of Hermit interpolation surface definition. 

The cubic Hermit interpolation surface is formulated as a curve tangent to two lines 

drawn connecting three nodes at their mid points (Figure 4.5). The conditions of the 

curve may be stated as: 
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(4.8) 

Then the Hermit interpolation is given by: 

N121
1 eXXXX ˆ)()()( ⋅+−⋅+= ξξξ w  

(4.9) 

where, X1, X2, X3 are the position vectors of points for representing the contact 

surface, and Nê  is a unit vector defined normal to the line connecting X12 and X23 

and w(ξ) is a third order polynomial defined as: 

X12X23−=
+⋅⋅+⋅⋅+⋅⋅=

l

DlClBlAw  where,)( 2233 ξξξξ
 

(4.10) 

where, A, B, C and D are the constants to be determined for the conditions in Eq. 

(4.8), and l is the length of line connecting midpoints of  two lines, X12 and X23. 
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Figure 4.6: Representation of Bernstein Interpolation Surface definition. 

In case of Cubic Bernstein Interpolation, two more points are needed. There are four 

intermediate points to represent the curve, b0, b1, b2, b3 (Figure 4.6). The function is 

defined as: 
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With the interpolating polynomials: 
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(4.12) 

Both of the formulations (Hermite and Bernstein) have been applied in the program 

developed as stated before. The surface type is optionally selected from the interface. 

For this purpose, the inheritance property of OOP has been utilized, which will be 

made clear in the next chapter. The implementation of the second form seemed 
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simpler and more efficient because a less number of parameters is dealt. Moreover, 

invariance under rotation of frame is stated as an advantage in [9].   

For the contact formulation, a nearest contact position needs to be determined, which 

is achieved by Newton-Raphson iteration for ξ, with quadratic convergence within 4 

or 5 iterations, however maximum number of iterations being fixed as 10. There are 

also other rigid surface definitions in literature, as NURBS curves [10]. The 

application of other types of curves is left for a further work. However, once more the 

general properties of a convenient curve definition for contact problems can be stated 

as: 

1. Local with respect to a node on the surface, that is, moving of a node for the 

definition of the rigid surface should not affect the entire curve, or should 

result in change of the surface within a bounded region around the point that 

was moved. 

2.  Smooth, that is, easily differentiable on the entire curve; no sharp changes 

should occur for the normal. Although at least C0 continuity may be enough 

for frictionless contact, at least C1 continuity is required for friction solutions. 

Though friction is not considered for this work, for a further work, it may be 

implemented. 

The above requirements are best discussed in [10], with the discussion of NURBS 

curve with Cn continuity; which have been left for a further development issue as 

stated previously. 

4.4 VARIATIONAL FORMULATION OF CONTACT 

In this section, the variational form of contact constraints should be dealt since the 

variational weak form is used in the FEM context. The contact constraint defined as 

the complementary slackness in Eq. (4.7) should be represented in the variational 

form, to be implemented in the general context of FEM. As stated previously in the 

second chapter, variation is the small perturbation at the equilibrium state. In case of 

contact, both the contact force and the penetration may be perturbed. So the 

variational form may simply be written as: 
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(4.13) 

However, since one is still dealing with the minimization problem, the total energy 

variation is defined as: 

0int =Π+Π+Π=Π cext δδδδ  

(4.14) 

In Eq. (4.14), the first two terms are dealt previously in Chapter 2, and the third term 

is defined in Eq. (4.13). It is really an interesting result to be noted. At equilibrium, 

the total variation must be zero, though there are inequality constraints. 

In Eq. (4.13), the variation of gN is needed, which may be written as: 

112112 nxxnxx ˆ))(()(ˆ))(( δξξξδδδ ⋅−+⋅−=Ng  

(4.15) 

Using the fact that ))(( ξ12 xx −  being in the direction of 1n̂ , and 1n̂δ being normal to 

1n̂ , the second term on the right vanish. In addition, since the master surface is not 

moving, Eq. (4.15) reduces, and it can be written as: 

12 nu ˆ⋅= δδ Ng  

(4.16) 

Now, it is time to explain the methods of implementation of contact constraints to 

general FEM equations, which will be done in the next section. 

4.5 METHODS OF SOLUTION 

In this section, the methods of the solution to (4.14) will be discussed. Due to the 

inequality constraint, there is the differentiability problem being faced for the Пc term 

defined. That needs special handling techniques to be discussed. For the linear elastic 

case, the differentiability problem is in general solved with active set strategies. 

While for the nonlinear elastic case, this method is not being so convenient, due to the 

linearization issues of Newton type algorithms.   
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4.5.1 Penalty Method 

This method is the simplest to formulate and implement, and this is the oldest method 

for those types of problems. In the penalty method, it is assumed that contact force pN 

is proportional to gap gN. However, it is defined so that, a very large force is 

associated to penetration. In mathematical terms: 

2

2

1
Nc g⋅=Π κ  

(4.17) 

where κ is a very large number. It should be noted in here that the contact energy 

function in Eq. (4.17) is very similar to energy function of a spring. The effect of Eq. 

(4.17) can be conceived as, a very stiff spring being active in case of penetration, such 

that the penetration is virtually prevented. It is not possible to say totally prevented, 

since this method always results in some amount of penetration. However, as κ 

approaches to infinity, it is expected to have zero penetration. Nevertheless, giving 

the value infinity to κ is not possible for the numerical reasons. It creates ill 

conditioning problems if too large a value is entered. For the implementation issues, 

Eq. (4.17) must be written in the variational form: 

NNc gg δκδ ⋅⋅=Π  

(4.18) 

Writing gN and δgN in terms of u: 

44 344 21443442144 344 2144 344 21
NNNN uuuG

NNNc uuG

δδ

κκ

δκδ
112112112112 nδuδunuunδuδunXX ˆ)(ˆ)(ˆ)(ˆ)(

)(

⋅−⋅⋅−⋅+⋅−⋅⋅−⋅=

⋅+⋅=Π
 

(4.19) 

Since in case of unilateral contact with the master surface being stationary, Eq. (4.19) 

further reduces to: 

)ˆ()ˆ()ˆ(ˆ)( 121212112 nδununδunXX ⋅⋅⋅⋅+⋅⋅⋅−⋅=Π κκδ c  

(4.20) 

Eq. (4.20) cannot be linearized due to the differentiability reasons, since it is valid 

only for active nodes. There is nothing partially being in contact. There is for a node 
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penetrating or not penetrating, which is like 0 or 1 and changing quickly and sharp in 

the course of the solution. Therefore, the active set strategy is only valid for linear 

elastic case, which is valid for small stress, small strain, and small deformation case 

in terms of FEM formulation. However, the penalty method still has practical 

applications, and further methods have been developed based on this method with 

some improvement, which will be dealt in the sequel. Now, the implementation of 

Eq. (4.20) will be explained for this section. 

The general linear elastic FEM energy variational form can be written without 

considering contact, as: 

FuuKu T ⋅=⋅⋅ δδ T  

(4.21) 

For the Eq. (4.21), looking at Eq. (3.19) and Eq. (3.20), the terms K  and F can be 

deduced. Considering Eq. (4.14), and Eq. (4.20) being applied to ith node with the 

corresponding degrees of freedoms m and n, it is obvious that Eq. (4.20) modifies Eq. 

(4.21) as: 
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(4.23) 

As it is obvious from the modifications in the stiffness and the force terms, the first 

part on the right hand side of Eq. (4.20) modifies the force vector, while the second 

part modifies the stiffness matrix. The modification is applied for every contacting 

node. Nevertheless, initially one cannot know which nodes are contacting. Therefore, 

it is not known prior to the solution which indices to modify. There should be a way 

of guessing which nodes are contacting, and that makes the linear simple problem 

complicated and non-linear. The general algorithm may be summarized as in 

Algorithm 2. 

This method in general permits some small amount of penetration. As the penalty 

term κ increases, the amount of penetration decreases. However, the penalty term 

cannot be increased without bound. Too high a penalty term results in ill- 

conditioning of system of equations. A reasonable choice would be the largest 

number at the diagonal of the stiffness matrix. In the program interface, it is permitted 

to enter different values for being able to make tests. The entered value from the 

program interface is multiplied by the largest number at the diagonal of the stiffness 

matrix. 

Advantages of this method can be summarized as being simple to apply, and easy to 

implement. Disadvantages can be listed as ill conditioning, and giving approximate 

results in the infeasible region. 
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Algorithm 2: Pseudo algorithm for contact solution with the Penalty method. 

 

FALSE 

Make initial solution 
Solve FuK =⋅  

 
Set possible contact nodes (i.e. set boundary 

nodes), which can be achieved with an 
algorithm based on connectivity of elements. 

Check penetration of possible contact 
nodes 

(i.e., check if gN<0. If so set node as 
being contact node). 

Modify stiffness matrix and force vector for each 
contacting node, and solve modified system of 

equations. 
Solve FuK =⋅  

Exit 

TRUE 

Check for separation or changing position 
more than some allowable tolerance of the 

contacting nodes, and check if newly 
added contacting nodes, check necessary 

conditions 

FALSE 
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4.5.2 Lagrange Multiplier Method 

This method is applicable to linear elastic problems with small stress, small strain, 

and small deformation problems like the previous penalty method. For non-linear 

elastic solutions, it is prohibitively difficult to apply. It has advantages and 

disadvantages compared to the penalty method. A Lagrange function defined as: 

mRxgxfuL ×ℜ∈⋅+= n)(x,  ),()(),( λλλ  

(4.24) 

 

 

 

Figure 4.7: Lagrange Function L(x,λ). 

where nℜ is the Euclidean space, ℜ→ℜnf : , nXx ℜ⊂∈ , 0: ≤ℜ∈ λλ m , and 

+ℜ→ℜng : , +ℜ  being the positive octant, while λ is defined in the negative octant. 

The primal problem is defined as [8]: 





∞
≥

==
≤ otherwise     ,

 0g(x) if ),(
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* xf
xLxL λ
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(4.25) 

For the Eq. (4.24), L(x) will be maximized when λ is zero. If g(x)<0 the Lagrange 

function L  will increase without limit. Then the min-max problem is: 

λ 

x 

L(x,λ) 
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)(minimize),(minimize
Xx

*

Xx
xfxL

∈∈
=λ  

(4.26) 

The dual function is defined as: 

),(min)(* λλ xLL
Xx∈

=  

(4.27) 

and the dual problem is defined as: 

),(min    maximize
0

λ
λ

xL
Xx∈≤

 

(4.28) 

The uniqueness of the optimum (x,λ) is proved by the duality theorems for convex 

functions [8]. The uniqueness of the solution requires the optimal point being the 

saddle point of the Lagrangian function defined in Eq. (4.24). As it may be obvious, λ 

is a new unknown parameter to be determined for the minimization problem. The 

system of equations to be solved takes the form: 
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(4.29) 

The preparations are complete for application of the technique. Now turning to the 

solution of the contact problem, one needs to solve Eq. (4.14). In that case, δПc can be 

written as: 

∫∫
ΓΓ

Γ⋅⋅+Γ⋅⋅=Π
cc

cNcNc dxgdxg )()( δλδλδ  

(4.30) 

Since in the discretized world one is to impose constraints onto the nodes, Eq. (4.30) 

can be written in a more explicit form for nodes as: 

∑∑
∈∈

⋅++⋅=Π
Ii

i
N

i

Ii

i
N

i
N

i
c uuG δλδλδ )(  

(4.31) 

Eq. (4.31) can be imposed on the general FEM equations for the ith node with 

corresponding degrees of freedom being m and n as: 
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(4.32) 

and, 
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(4.33) 

The above modification in stiffness matrix and the force vector must be performed for 

each contacting node. Therefore, the size of the stiffness matrix and the force vector 

increase by one for each contacting node. For speed considerations, in the program 

implementation, the global stiffness matrix is stored, and whenever an update is 

necessary, it is called and copied to new larger matrix and modified stiffness matrix is 

created. That doubles the storage needs. Or, else, every time the global stiffness 

matrix had to be regenerated. The advantage of this method may be that it is an exact 

solution, that is gN=0 is exactly satisfied. The disadvantage may be the need for a 

larger storage, every time changing size of the stiffness matrix becomes expensive. 

As stated before, this method is applicable to linear elastic case. For non-linear 

elasticity problems, the use of this method is prohibitive. The algorithm can be 

summarized as in Algorithm 2, except the method of calculating the modified 

stiffness matrix. The algorithm also includes some index tracking for the Lagrange 

multiplier. 
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4.5.3 Augmented Lagrange Multiplier Method 

This method combines the penalty method and the Lagrange multiplier method to 

utilize advantages of both. It is nearly exact, but criticized for slow in convergence, 

being strongly dependent on penalty term, and offering not much advantage 

compared to Lagrange Multiplier method for the linear elastic case [11][15]. 

However, this method is applicable for non-linear elastic solutions. It is also 

applicable to non-linear frictional solutions [11], [12]. Actually, this section will be 

based on [11]. This method has not been applied in the program developed since a 

better method is proposed by the same authors in [15]. This method will briefly be 

introduced for completeness. 

In this method, an initial penalty solution is performed. The resultant contact forces 

are applied as external forces and the system is solved again for contact with the 

penalty method. The procedure continues until the gap reduces to a reasonable value. 

In mathematical terms, the method can be written as: 

i
N

i

Ii

i
Nc gg ⋅+⋅=Π ∑

∈

λκ
2

2

1
 

(4.34) 

Looking at the above equation carefully, it is obvious that if λ=0, penalty formulation 

is recovered. The stiffness matrix and the force matrices are modified in the same 

way as in the penalty method, but only one more modification to force matrix is 

performed due to the Lagrange Multiplier term. One begins with λ=0 and augments it 

continuously. As reaching to convergence, the effect of penalty term approaches to 

zero. 

Eq. (4.34) should be written in variational form for implementing it in general FEM 

equations: 

NNNc ggg δλδκδ ⋅+⋅⋅=Π  

(4.35) 

Note that in Eq. (4.35), there is no variation of λ, since it is determined previously and 

not vary for an increment. It comes from the previous solution. 
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For implementing this method in Newton type algorithms, one also needs the 

linearization of Eq. (4.35), which can be written as: 

NNNNNNc gDgDgDggDgD δλδλδδκδ ⋅+⋅++⋅=Π )()(  

(4.36) 

Eq. (4.36) is written in a more explicit form in [11] as: 
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(4.37) 

where Π∇2  is the Hessian matrix. This is previously called the tangential stiffness 

matrix and defined as KT in Chapter 2, of the general FEM equations, and Π∇  is the 

gradient of the general FEM equations being the residual term, which also defined in 

Chapter 2. The above may be written in a more compact form as [11]: 

LgxL −∇=∆⋅∇+∆⋅∇ λ2  

(4.38) 

There is one more equation to be included in the system, which is gN being equal to 

zero, from the linearization of which, one can get [11]: 

i
N

i
N gxg −=∆⋅∇  

(4.39) 

Combining them, the equation needed to solve becomes [11]: 
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(4.40) 

Eq. (4.40) seems equivalent to the standard Lagrange Multiplier Method, but not 

completely. Since this method has not been applied, most of the details are skipped. 

The interested reader should consult to [11] or [12] for the details. Actually, in [11], a 

method for speeding the algorithm has been proposed, but though it needs much user 

intervention, and does not seem much preferable compared to other methods. Here, it 
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should be mentioned that this method is applied in most of the commercial FEM 

programs handling contact, like ABAQUS, ANSYS, and MARC. 

4.5.4 Barrier Method 

This method is designed in the contact mechanics for non-linear elasticity problems. 

However, it can also be applicable to linear problems in this framework. In this 

method, instead of setting nodes being active or inactive, and changing activity of 

constraint continuously, all the boundary nodes are set as being active, and that does 

not change in the course of the solution. This is a penalty kind of method, but the 

difference is that the penalty term κ is a function of the gap. This section is based on 

[13]. 

It should be mentioned here that, this method is not being applied to the program 

developed for this dissertation either. In [9] it is criticized and a better approach is 

suggested. it is mentioned here for the completeness of the subject matter. 

Turning again to the contact problem, the energy term may be defined this time as: 

∑
∈














+=Π
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i
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c
xd

µ
λµ )(

1ln  

(4.41) 

In Eq. (4.41), d(x) is written instead of gN since it is defined also in the positive side, 

which means distance instead of penetration. Also in the same equation, µ>0 but 

small, is the barrier parameter to be entered to the program. In addition, λi<0 are the 

fixed estimates of the Lagrange multipliers. It should be noted that, as di(x) 

approaches -µ and considering 0≤λ , Пc approaches infinity. This causes ill 

conditioning problems. For that reason after some small amount of penetration, a 

parabola is fit to the barrier function in Eq. (4.41). To speed up the convergence, also 

a scaling method is proposed [13]. 

The smooth function in Eq. (4.41) can easily be linearized and implemented into the 

general non-linear tangential stiffness. An initial linear elastic solution with the 

standard penalty method can be performed. This way λ
i’s may be initiated. Contact 

tangential stiffness is to be imposed into general tangential stiffness. Newton 
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iterations can be performed until convergence, and λ
i’s may be reset and the Newton 

iterations may be repeated. Continue until λi’s change by some allowable limit. 

This method is also an approximate one. It is criticized for always being in the 

feasible region, which means preventing penetration totally and causing some small 

gap. It also needs one more parameter µ to be entered to the program. Details of the 

method are not elaborated since it is not implemented in this dissertation. The 

algorithm seemed complicated for implementing.  

4.5.5 Constraint Function Method 

This section is based on [14]. The method is offered for non-linear elastic problems. 

In this method, since at gN=0 there is the differentiability problems, a smooth function 

approximately satisfying the complementary slackness Eq. (4.7) is offered (Figure 

4.8). Again all possible contact nodes are set active and this constraint function is 

applied to all of them. 

The constraint function is defined as [2], [14]: 

ελλλ +






 +
−

−
=

2

22
),( NN gg

gw  

(4.42) 

 

Figure 4.8: w(λ,gN) approximately satisfying complementary slackness. 

w(λ,gN)=0 
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where, 0≥Ng  is the gap, 0≤λ  is the Lagrange multiplier term, being the contact 

force, and ε>0 is a small number. The constraint w(g,λ)=0 is imposed on the general 

FEM equations. For this purpose, of course Eq. (4.42) must be linearized first. It 

should be noted here that unknown extra parameters to be determined, λ, enter into 

the equations. Considering all possible contact nodes being active, and iterative 

Newton solution being applied, this method seems costly and is not preferred. It is 

also mentioned and criticized in [9]. References [2] and [14] offer a function also for 

friction solutions with the method.  

The details are not elaborated because this method is mentioned for the completeness 

of the subject, and is not applied in the program developed for this dissertation. 

4.5.6 Cross Constraint Method 

This method is applied nicely in the program developed. It has super-linear 

convergence rate and nicely adaptable to Newton algorithm. This section is based on 

[15], in which the barrier method and the constraint function method have also been 

criticized, and this method is submitted as a new and a better approach. However, 

nothing is mentioned about friction. Nevertheless, it is very convenient for the 

purposes of this dissertation and fits nicely into the context, unilateral frictionless 

contact.  

The approach in [15] is similar to the barrier method or the constraint function 

method in the sense that no distinction is made for the gap status (i.e. gap open or gap 

closed), all boundary nodes being active and a continuous function with respect to 

gap is defined. However, different from the constraint function method, stiffness 

matrix size is not increased, and different from the barrier method, the function in 

here is defined in both feasible and infeasible regions (i.e. giving possibility of gap 

being open or closed for a contacting node). 

Now coming to the details of the method, the contact energy is defined as an 

exponential function in the form: 
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(4.43) 

where µ, β, a, b are constants to be determined from conditions of contact surface and 

contact force. In addition, contact force and the contact stiffness are defined as: 
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, constant parameters are 

determined with, 0ˆ <F  being some approximation to contact force, and 0ˆ >K being 

an approximation to contact stiffness. It should also be mentioned here that F is the 

gradient of the potential, and K is the Hessian of the same potential with respect to gN 

and Eq. ((4.43) is defined on both sides of the constraint surface (i.e. when gN is 

positive or negative). 

Then after some manipulations, the potential, force, and the contact stiffness becomes 

for node i as: 
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(4.45a,b,c) 

Looking at Eqs. (4.45a,b,c), as gN becomes negative, that is in case of penetration, the 

contact stiffness, which is the penalty term becomes large and may cause ill- 

conditioning of the general matrix equation. However, as gN becomes positive, the 

contact stiffness gets smaller. In the penetration case, to prevent ill conditioning due 

to K being large, a parabola is fitted smoothly to the contact potential at gN=0. The 

derivative of the parabola with respect to gN being the force term, and the second 

derivative being the contact stiffness term, which can be written for contacting node i 

as: 
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(4.46a,b,c) 

Note that in Eq. (4.46a,b,c), the standard penalty is recovered in case of penetration. 

For application to general FEM equations, Пc must be written in variational form: 
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For applying Eq. (4.47) to non-linear equations, also needed is the writing of it in 

linearized form. 
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(4.48) 

The contact linearization in Eq. (4.48) can be adapted to the general Newton 

algorithm into the tangential stiffness term as it is done in the linear elastic case, with 

instead of using κ, using the tangential stiffness terms in Eq. (4.48). For the residual, 

the update is done by adding contact forces as written in Eq. (4.47). 

To explain the method briefly, make initial penalty solution. Initialize F̂  for every 

boundary node. If contact force for a boundary node is zero, initialize it to some small 

number to prevent division by zero. K̂  is entered from the program interface as 

penalty parameter. Usually 0.1 is being convenient for multiplying with largest 

diagonal. Still too large a penalty parameter may cause ill conditioning, while too 

small a penalty results in long computation time. Assemble tangential stiffness 

defined with Eqs. (3.35) or (3.37) and modify it with contact stiffness Kc in Eq. 

((4.48), and modify residual term defined with Eqs. ((3.40) or (3.41), with Eq. (4.47). 

Repeat this until convergence. If F is too different than F̂ , update F̂  and repeat the 

full process (Algorithm 3). 
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Algorithm 3: Cross constraints method. 

 

Make initial linear elastic solution of contact with penalty 
method for the initial increment (Algorithm 2). 

Initiate F̂ from the previous solution. K̂ is entered as 
penalty parameter from the program interface. 

Make Newton Iterations with: 
• Assembling tangential stiffness KT (3.35) (3.37). 
• Calculating residual R (3.40) (3.41). 
• For all boundary nodes, calculating contact 

stiffness (4.45c) (4.46c), Modifying KT as in the 
penalty method but using contact stiffness from 
calculations instead of using κ. In this way, for 

each iteration obtaining TK . 
• Modifying residual for each contact node, with 

calculating contact force (4.45b) (4.46b), 
subtracting it from R and obtainingR . 

• Solving for ∆u  by R∆uK T =⋅ . 
• Updating u by ∆uuu +=  until convergence. 

If change in penetration, or 

difference of F from F̂ being 
larger than some tolerance 

If increment < Number of increments, 
uincrement+1=uincrement, 

incrementincrement FF =+1  

TRUE 

FALSE 

EXIT 

FALSE 

TRUE 
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4.6 CONTACT SEARCH, AND SURFACE DETECTION 

Although there are not many contacting surfaces in the case considered in the 

framework of this dissertation, in case of multi-body contact problems involving 

complicated surface structure and having large deformation, contact search takes 

considerable CPU time and should be mentioned for any program developed for the 

solution of contact. For that purpose, two papers [16], [17] will be referenced since 

some inspiration has been gained, although implementation of the methods mentioned 

has not been possible. 

“Contact searching is to detect and keep in trace the contact points in a deformation 

system, where contact and discontact phenomena occur frequently. This is one of the 

fundamental abilities required to conduct FE simulation. Usually it includes the local 

and global search processes. The former is to roughly find all the possible candidates 

around a specific point. The latter is to find exactly the contact point after the global 

searching [16].” 

In this framework, contact search process is split into local and global searches. 

Global search in general involves some index operations to detect which node is 

contacting on which master surface. The local search involves the exact detection of 

the nearest point, which is performed with Newton’s algorithm. According to [16], a 

maximum of 10 iterations is being enough in general, which is also preferred in the 

program developed for this dissertation. 

The local search is in general the same. The main discussion point in general becomes 

the global detection. Many methods have been proposed for this purpose until now, 

but to mention the methods proposed in the two references [16] and [17], they are the 

inside-outside search algorithm, binary search algorithm and the bucket search 

algorithm. They are only mentioned for the completeness of the topic, and the details 

left for a further work on the area. However, the main idea, being the global search 

and the local search has been applied in the program developed. 

In the program developed for this work, whether a contact surface is defined is 

checked first. If so, a boundary detection process, which will be explained in the 

sequel, is performed. After that, the global search is performed for each boundary 

node to detect the nearest contact surface node. Since the nearest surface is locally 
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defined, each surface node is associated to a surface segment. Thus, at this segment 

the local search is performed with the Newton algorithm to find the nearest surface 

position. 

For the boundary detection process, the element connectivity properties are used. It is 

performed only once before the beginning of contact analysis. Element nodes are 

defined in the counter-clockwise direction, nodes know connected elements, and the 

elements know the connected nodes, by use of which, the boundary nodes may be 

detected. This function is provided in the class Obj2D since all the information is 

contained in it (Appendix p.120). 

The algorithm can be summarized as follows: 

Every node holds a list of unsigned integer for the next node information. The process 

has two stages: 

1. For every node, connected elements are traced for the next node counter-

clockwise to the node in consideration. The next node detected is pushed into 

the list of next node indices in the node in consideration.  

2. A process of deletion of next nodes is performed. For this, again the nodes are 

traced one by one. If the next node indexed in the list of a node contains in its 

next node list, the index of the node in consideration, that index is deleted 

from next node’s list, and the index of the next node is deleted from the node 

in consideration. (i.e. if the nodes are mutually next node of each other, their 

indices are mutually deleted from list of the other.) 

At the end, every boundary node is left with node indices on the counter-clockwise to 

it if the node is at the external boundary. If the node is at an interior of the body, the 

next node list will be empty. If the node is at the boundary of an interior hole, the next 

node will be in clockwise direction (see Figure 4.9 and Table 4.1). 
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Figure 4.9: Boundary node detection system. Next nodes are entered by tracing 
elements in row directions in the first stage. 

 

Table 4.1: Table of next nodes for boundary detection. The grey colored indices are 
the deleted ones in the second stage.  

Node
1 5
2 1 6
3 2 7
4 3
5 6 9
6 2 7 5
7 3 8 11
8 4 7
9 10 13
10 6 9 14
11 12 10 15
12 8 11
13 14
14 10 15
15 11 16
16 12

Next Node List
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CHAPTER 5  

IMPLEMENTATION ISSUES 

5.1 INTRODUCTION 

FEM programming has evolved in the last two decades with the evolution of the 

computer programming techniques. Introduction of OOP techniques have given 

possibility to develop general robust and structured programming solutions to 

complicated problems in the last decade.  

“Recent developments in software engineering and in the field of object oriented C++ 

programming have made it possible to model physical processes and mechanisms 

more expressively than ever before” [23]. 

“Much of the early research on FEM implementation has focused on the speed of 

execution or equation solving. However, as the complexity of finite element programs 

increase, it is obvious that improving the maintainability, extendibility and reusability 

of the software is equally important”[24]. 

Similar ideas are also written and explained in [25], which gives a bibliography of 

OOP FEM programming. The differences of OOP from traditional FORTRAN 

programming and concepts of OOP are elaborated with some detail. 

In this chapter, the modern techniques of FEM programming are presented briefly. 

This chapter includes OOP programming concepts and techniques with C++, and the 

application to contact solution in 2D. In this regard, to give some references, 

Strustrup [18] is the monumental book for learning C++. Nevertheless, it would not 

be enough to develop a complicated FEM program. To give some other references of 

C++ programming, the references [19], [20], [21], [22]may be offered. Especially for 

the OOP FEM programming techniques, papers [23], [24], [25], [26], [27], [28] could 

be followed. An implementation program has been written in C++ by use of the 

general concepts developed from those books and papers. The papers present their 
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own approach on their own implementation issues, not being the same, but not being 

much different in the programming point of view. Now, the details are ready to be 

presented for the implementation issue in consideration.  

5.2 CLASS STRUCTURE 

A class is user-defined type, where type is a concrete representation of a concept 

[18]. In the FEM context, there are nodes, elements, domains, Gauss points… All 

these have specific data and specific relations with each other. OOP provides them to 

be represented conceptually as they are, and organize the data and functions 

conveniently in a structured manner. It also provides separate compilation and error 

detection mechanisms. For large problems, with complicated organization, those 

considerations become indispensable. 

In a FEM program, there is the domain, which is defined in the program by class 

Obj2D, and it is decomposed into sub domains called elements, which are declared in 

the program by class El2D. In addition, there are the nodes, represented by class 

Node2D to define element edges. The Gauss points, where the integrations and most 

of the calculations on the element are performed, are handled in the program by class 

GsPt2D. For the contact solution, it is also needed to define classes related to contact 

surface. For that purpose, class Surface2D is written for the contact surface, and the 

class CntNd2D for the contact node. Most of the data have been organized in these 

classes. 

Those classes handle jobs specific to themselves by functions declared in them, called 

methods. The methods may have common properties, among classes of the same 

type, handling common jobs by some means, or in all means distinct jobs intrinsic to 

the object itself. Some common functions may be declared in a virtual abstract base 

class, and child classes may be derived from it. For instance, all of the mentioned 

classes are graphical objects, which can be drawn into the graphical environment. All 

of them may be captured from the graphical interface with a mouse click etc... Those 

properties are declared in the base class FEGrObj . Some of the functions may be 

handled in the base class, or some may need specific handling in the class itself, or 

else some common part of the function may be implemented in the base and the rest 
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specific part to be handled in the child. Therefore, other then the classes declared 

above, there might be base classes in the lower order, and child classes derived from 

the mentioned ones, which are of higher order. 

To give another instance for class relations, consider the element class. As it has been 

stated in chapter 2, there are two types of planar elements dealt in here, triangular and 

rectangular. Though they differ in some ways, they have common properties too. For 

instance, both are composed of Gauss points, nodes, etc… However, the ways they 

handle drawing or calculating stiffness differ considerably. So two classes class 

Tri2D , and class Rec2D are derived from class El2D. The class relations are 

represented simply in Figure 5.1. 

 

 

 

Figure 5.1: Diagram representing class hierarchy of FEM objects. Lower order are the 
child classes derived from higher parent classes. 

Below given are some brief explanations of the classes in Figure 5.1. They are only to 

give some idea of how the things handled. The class definition headers are given in 

the Appendices. For more details, refer to related appendix. 

5.2.1 class CObject 

In the above diagram (Figure 5.1), class CObject is the virtual base of all of the 

classes. It is actually a Microsoft Foundation Class Library (MFC) specific class, and 

FEGrObj 

FENd2D El2D CntNd2D CntctSrf2D GsPt2D 

Rct2D Tri2D C1Hermit C1Bernstein 

CObject 

Obj2D 
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virtually all of the MFC specific codes are derived from it. It handles the runtime type 

checking, serialization (saving and reading binary data), and runtime checking of 

objects for debugging purposes. (For more specific details refer to MSDN Library of 

Microsoft Visual C++.Net.) 

5.2.2 class FEGrObj    

This class is derived from class CObject, and it handles mouse events, like left 

button down, left button up, mouse move etc… It also has a static variable, pointer to 

class FEGrObj , to handle mouse captures called m_pCaptured. Since only one 

mouse would be active in the graphical interface, a static pointer of the same type is 

defined in the class, this way capturing a single object of this type from the graphical 

interface. For example, in the event of left button click, the function handling this 

event in the view class searches for clicked object, which can be a node, an element, a 

contact node, etc… In case a hit occurs, the address of the hit object is assigned to 

m_pCaptured. Actually, this technique is called late or dynamic binding [28], which 

will be elaborated in the sequel for other issues. 

5.2.3 class FENd2D 

This class is derived from the above class FEGrObj , and it holds data related to 

node, like its index, initial coordinates, final coordinates, nodal results etc... 

Furthermore, it also handles mouse events and drawing of itself into the view. In a 

graphical environment, a node should know connected elements for stress averaging 

and error analysis [28], though in old style of FEM programming, only elements 

knowing connected nodes would be sufficient for assembling purposes. It also needs 

to store results related to itself and serve those results to the elements connected to 

itself. It needs to reach to the domain body it is connected to, for reaching elements, 

which it belongs to, for stress averaging etc… This is achieved by keeping a pointer 

to class Obj2D.    
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5.2.4 class CntNd2D 

This class is also derived from class FEGrObj , as well as class FENd2D. It holds 

data related to contact node, like its fixed coordinates, etc. It also handles mouse 

events and drawing of itself into the view. It needs to reach to the rigid surface 

definition it is connected to, since a node is associated to a segment of curve, and 

curve is defined with respect to neighboring contact nodes. This is achieved by 

keeping a pointer to class CntctSrf2D.    

5.2.5 class El2D 

This class is also derived from class FEGrObj , but it still serves as a virtual base 

class for specific element definitions (i.e. rectangle, triangle or other element types 

may be derived). Common data are stored in the class and some common 

functionality is performed other than pure virtual declaration of some other functions. 

It stores connected nodes as both pointers and indices, which makes code 

maintenance easier. Since elements need to reach nodes frequently in drawing issues, 

element deletion issues, stiffness calculations, assemblage processes, etc., it becomes 

an urge to reach connected nodes directly, which is achieved by keeping pointers of 

nodes in elements. For serialization issues, setting degrees of freedoms etc., it needs 

the node indices.  

Elements also hold Gauss points for calculating necessary data. An element object 

has functions to calculate element stiffness namely linear and non-linear stiffness. 

Linear stiffness is calculated by Eq. (3.19) for linear elastic analysis and by first 

integrations in Eq’s. (3.35), or (3.37) for non-linear elastic case. The non-linear 

stiffness is calculated by Eq. (3.31) or second integration in Eq’s (3.35), or (3.37). 

However, the calculation of element stiffness is specifically performed differently for 

specific kind of element. Thus, class El2D should have the declaration of common 

functions only. The Implementation of those functions is specific to the derived child 

class. It also has to deduce solution specific parameters from the data of class Obj2D. 

For instance, it has index of the material definition of itself, and material definitions 

are actually kept at class Obj2D. Thus, it should also hold the address of the 

connected body.     
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5.2.6 class Rct2D and class Tri2D 

These classes are derived from class El2D. They handle specific jobs related to 

themselves. The intrinsic implementation of pure virtual functions defined in class 

El2D is performed in those classes separately. For instance actual implementation of 

how they will be drawn into the graphical interface, how they will respond to mouse 

events specifically is written and defined in them. They contain all properties of class 

El2D, that is those classes inherit from it all the variables, and methods.   

5.2.7 class CntctSrf2D 

This class is also derived from class FEGrObj , since it is a graphical object to be 

drawn into the view and to be captured from the view. It serves as a base class for 

discrete contact surface definitions. Finding nearest contact node for a FEM node is a 

common functionality to be supported. In addition, finding nearest surface point, 

drawing are purely virtual functions to be declared in here. 

5.2.8 class C1Hermite2D  

This class is derived from class CntctSrf2D. It implements the functionality defined 

in Section 0 for the Hermit surface, defined by the functions in Eqs. (4.8), (4.9), and 

(4.10). It handles specific drawing and mouse handling issues for itself. Furthermore, 

it contains the implementation of finding the nearest surface point for a FEM node. 

5.2.9 class C1Bernstein2D 

This class is also derived from class CntctSrf2D. It implements the functionality 

defined in Section 0 for the Bernstein surface, defined by Eqs. (4.11) and (4.12). It 

handles specific drawing and mouse handling issues for itself. It contains the 

implementation of finding the nearest surface point for a FEM node specifically for 

this surface definition. 



 

  84 

5.2.10 class GsPt2D 

This class handles most of the calculations. Every element stores as many of this class 

as the integration point number. For instance a rectangle with four nodes must have 

four integration points for exact evaluation of the integrations, while a triangle having 

three nodes must have three integration points for the same purpose [2][3][4]. It has 

the local coordinates of itself, which are defined on the master element (Figure 3.1), 

and the global coordinates defined on the real element patch. It also has graphical 

coordinates for drawing issues. It serves the functions for calculating stresses, strains, 

Jacobian (Eq. (3.5 a, b)), deformation gradient (Eq. (3.8)), determinant of deformation 

gradient, derivative matrices (Eqs. (3.10), (3.27), (3.32)), etc… It also needs to keep 

the address of the element it is belonged to, which is achieved by holding a pointer of 

class El2D. However, for calculations, it needs to know the connected element type, 

which is achieved by runtime type information (RTTI) checking. For instance, 

rectangular element has different base function definitions than triangle. Base 

functions are defined as global functions in the program. Therefore, it needs to know 

which type of element is connected to itself for correctly calling the base functions. 

Due elements knowing the connected domain, it has indirect access to connected 

domain defined by class Obj2D. 

5.2.11 class Obj2D 

This class is derived from class CObject. It stores the elements, and nodes 

constituting itself. How elements and nodes kept in the class is a very technical issue. 

For this purpose Standard Template Library (STL) is utilized [21][22].  

There are many ways of storing data in a container, namely, vector, list, map, multi-

map, set, multi-set, etc… It would be a challenging task to select which type of a 

container to use. This is one of the first issues to be resolved to write a good FEM 

program. A user should easily interact with the program, that is, delete, or add nodes 

or elements in the preprocessor. Also left as a further task, on the runtime, mesh 

refinement possibilities must be considered. STL serves as a perfect tool to do such 

tasks. In the program developed, vector, holding pointer to objects is selected as best 

suiting in the framework of this dissertation. Knowing STL helps making judicious 
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decisions on container types. In some of the implementations, list is preferred, while 

in some others, map implementation is selected. Both have been tried during the 

development but the implementation of a vector of pointers is judiciously selected as 

best appealing for giving most flexibility and functionality. 

5.3 IMPLEMENTATION DETAILS 

Here, some minor specific details of calculation in the OOP environment will be 

elaborated. They are important and without understanding them, FEM programming 

becomes painful for the program developer. The issues considered in this section are 

critical to be able to implement all the things mentioned up to now.  

5.3.1 Copy Constructors, Assignment Operators and Destructors  

Since the class structure is so much interconnected with keeping addresses of each 

other, address tracking is important and should be given special attention. For 

instance, in element copy process, since class GsPt2D keeping the address of the 

element it is connected to, copied Gauss points must be initialized to new element 

address. In addition, this kind of details should be given special attention in the 

assignment operators. Another special subject to be shared is the destruction of class 

Obj2D. In the destructor, it must delete all the elements and nodes it stores as pointers 

in the vectors. Those issues are slightly touched and mentioned in [28]. Constructors 

and destructors must be designed carefully in order to design strong codes, not 

crashing on the run time. 

5.3.2 Element Transformations 

The implementation of Jacobian J is exactly formulated as in Eqs. (3.5 a, b) in a 

single function in class GsPt2D, and ξ, η not being arguments, but as private variables 

in class GsPt2D. For calculation of J, the argument to be entered is the current 

increment number, which for the linear elastic case entered as zero. The calculation of 

deformation gradient F is implemented in the same way as in Eq. (3.8) in class 
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GsPt2D, but with two variables being the reference increment and the current 

increment numbers, and ξ, η are held in the class itself as private variables. The 

inverse is achieved by switching the reference and current increment numbers for the 

arguments in the same function. A Gauss point should be initialized to the element it 

is connected to, and to the master coordinates where it belongs to, before its any 

attempt of use. When initialized, its global position is set automatically in the 

initialization function.  

5.3.3 Late or Dynamic Binding 

Now consider how contact calculations are performed. Boundary nodes are detected 

and constraint is applied only at those nodes. However, for application of contact 

constraints to nodes, several parameters are necessary as the surface normal, nearest 

surface position normal gap etc… To keep and handle all those parameters in nodes 

would be expensive, since they are needed only for possible contact nodes (i.e. 

boundary nodes). In addition, keeping all those parameters in a structured manner 

becomes crucial. To achieve that, a class to provide those variables is created called 

class CntParamVals. Instead of keeping all those variables in nodes, nodes are only 

provided with a pointer of type class CntParamVals. A pointer is of size 32 bits, 

being much cheaper compared to keeping all those values in all the nodes. This 

pointer is initially assigned to NULL. In the case of contact solution, when boundary 

nodes are detected, a new object of type class CntParamVals is allocated on the run 

time for each boundary node, and assigned to these boundary nodes’s pointer 

variable. This type of binding is called the late or dynamic binding. In [28], this name 

is mentioned but any detail is not given as in here. In the FEM context, this method 

may be very efficient for different types of problems. For instance in plastic analysis, 

Gauss points need to hold plastic deformation history in case plastic deformations to 

occur. Though plastic analysis is not implemented in the context of this dissertation, 

this method may be very convenient and efficient in that case too. This issue stands as 

a further work to develop in the authors mind.      



 

  87 

5.3.4 Program Interface 

The program interface must be designed such that, the user would be prevented from 

erroneous selections or entering wrong parameters to the program as much as 

possible. A text based FEM program would have an input file and when the program 

is executed, it would generate an output file. In a graphical interfaced program as the 

one developed here for solution of contact, the program must have preprocessor and 

post processor. In the case considered, both are implemented in the same 

environment. However, the interaction with the program should change according to 

status of the solution environment (i.e., preprocessing, post processing). In addition, 

drawing of the body, capturing of elements of drawing, (i.e. nodes, elements, contact 

nodes etc…) must be done efficiently, effectively, and fast. For this purpose, Open 

Graphics Library (OpenGL) is utilized [29] [30]. OpenGL is designed as a 

streamlined, hardware-independent interface to be implemented on many different 

hardware platforms [29]. It provides coordinate transformation, selection and 

feedback utilities, drawing of lines and polygons. It has also the 3D support for 

further development of the FEM program; however, some primitive knowledge of 

OpenGL is enough for the drawing issues considered in here.  

In the program developed, the switch between preprocessor and the post processor is 

achieved by a flag, handling if the analysis is complete. In case of preprocessing, 

there is the solution parameters dialog bar being active, and any change to the body in 

consideration is possible, like moving nodes, element addition or deletion, node 

addition or deletion, etc. In the analysis parameters bar, there are the options of which 

kind of analysis is to be performed (plane stress, plane strain, axi-symmetric), 

whether non-linear analysis is to be performed, non-linear analysis parameters, 

contact solution parameters, etc. (Figure 5.2). 
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Figure 5.2: Input SideBar dialog. 

However, in case when the analysis is complete, those options must be automatically 

disabled, and the sidebar must change automatically from solution parameters to 

results parameters (Figure 5.3). In the result parameters bar, there are the options of 

viewing the object in displaced shape, selection of displaying deformations, stress 

components, strain components, color ranging.  

 



 

  89 

 

Figure 5.3: Result parameters SideBar dialog. 

There are common functions of both preprocessor and the post processor, being the 

zooming options, zoom in, zoom out, dynamic zooming, window zooming, going to 

previous zoom are the provided functionality. 

 

 

 

Figure 5.4: Zoom ToolBar providing interface for zoom functions. 

Other than those, viewing options, like node sizes, text sizes, color selections are 

provided with the view settings SideBar. Menu bar is provided for further optional 

selections as is used in today’s modern software. Snapping to grid, setting grid sizes, 

Dynamic Zoom 

Zoom Window Zoom Previous 

Drag View 



 

  90 

setting window sizes, regular mesh generation, etc. are other functionalities provided. 

StatusBar provides aid in understanding functions of buttons in the program, writes 

coordinates of mouse position, and when analysis is complete provide with 

interpolated scalar values on the element on which mouse is moving. 

It is not possible to provide information about all functions and abilities of the 

program here, but the usage is straightforward to understand when playing with the 

program interface for those familiar with graphical interfaced programs. A setup 

program and sample files are provided with the CD attached.  
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CHAPTER 6  

TEST PROBLEM COMPARISONS AND BENCMARK 

PROBLEM 

6.1 INTRODUCTION 

In this section, some benchmark and test problems will be solved to verify the results. 

First, the results without contact, the internal consistency of the program for different 

solution selections will be tested, and the results will be interpreted. Then some 

comparisons with commercial program ABAQUS will be given, with and without 

contact.  

6.2 NON-LINEAR BUCKLING 

Here, a cantilever loaded axially at the tip with a small perturbation lateral force is 

selected as a test problem. The length of the bar is 800 units, section depth of 100 

units and section thickness of 1 unit is selected. Elastic modulus is 1000, and the 

Poisson’s ratio is 0.3. The bar is subdivided into 20 by 4 elements. Support conditions 

are as seen on the figure. This beam should buckle around 321.28 units of axial tip 

load according to Euler Beam Theory. In the analysis axial tip load entered as 

300/100 units per unit length and tip shear load 10/100 units per length ( 

Figure 6.1). Maximum tip deflections are given in (Table 6.1). 
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Figure 6.1: The analyzed cantilever model. The same model is analyzed with TL and 
UL approaches for both plane stress and plane strain cases. 

Table 6.1: Analysis results for cantilever loaded axially with small perturbation lateral 
force for Plane Stress and Plane Strain analysis. The system analyzed by both Total 
Lagrange and Updated Lagrange methods and by Kirchoff Material and Hyperelastic 
Material models. 

Total 
Lagrange

Updated 
Lagrange

Abaqus 
Result

U 33.23 33.23
V 148.01 148.15
U 29.38 29.64 29.04
V 136.40 137.17 135.30

Total 
Lagrange

Updated 
Lagrange

Abaqus 
Result

U 15.65 15.73
V 84.07 84.44
U 14.58 14.69 20.19
V 79.60 80.12 103.80

Abs. Max. 
Tip Defl.

Plane Stress Analysis
Abs. Max. 
Tip Defl.

Kirchoff Model

Hyperelastic Model

Plane Strain Analysis

Kirchoff Model

Hyperelastic Model

 

 

 

The above test is performed to check the consistency of the TL and UL approaches 

for both Kirchoff and the hyperelastic models. From the above table, it is obvious that 

TL and UL approaches give approximately same results. The results seem different 

from the ABAQUS results especially for Plain Strain case. However, the Hyperelastic 

model used in ABAQUS is different. There are numerous hyperelastic models in 

literature, which are devised for different material characteristics. For the details of 

the hyperelastic model used in ABAQUS, refer to ABAQUS help manuals. It is 

known that Kirchoff model may give unrealistic results in large strain case, but for 

slender beam, it can handle non-linear behavior and give realistic results.   
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6.3 BEAM ON RIGID FOUNDATION 

This time, same mesh is analyzed for plane strain case with same material constants 

as in the previous section, but this time with a rigid linear base, with different 

boundary conditions on the left side and different loading conditions. The left bottom 

edge is fixed, while other nodes on the left side are only supported in x-direction. 

Instead of tip loading, it is loaded at the left top along 25% of its length with 1.0 

units/length of downward force (Figure 6.2). It is expected that, right edge is elevated 

and contact is lost, while on the left edge along the contact surface, there is the 

contact reaction.  

The beam is analyzed as linear-elastic and hyperelastic. The results are compared to 

ABAQUS. In ABAQUS, contact is modeled with augmented Lagrange approach. In 

the program developed for this dissertation, Lagrange multiplier approach is 

preferred for linear elastic case while cross constraints method is used for 

hyperelastic non-linear elastic case.  

 

 

 

Figure 6.2: Beam on rigid foundation. This is at the preprocessor stage of new 
program developed (i.e. not analyzed yet). 
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Figure 6.3: Beam on rigid foundation analyzed with the program developed. Linear 
Elastic case with Lagrange Multiplier Approach is considered. Vertical displacements 
are pictured. 

 

Figure 6.4: Beam on rigid foundation analyzed with the ABAQUS commercial 
program. Linear Elastic case with Augmented Lagrange Approach is considered. 
Vertical displacements are pictured. 

In the above, (Figure 6.3) and (Figure 6.4), vertical displacements are plotted. From 

the figures, it is obvious that the results are comparable for the linear elastic case. The 
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small difference may be due to different contact handling technique used in the new 

program developed and the commercial program ABAQUS.  

6.4 CIRCULAR DISK ON RIGID FOUNDATION 

This time the same mesh as in the previous section (Figure 6.2) with the same 

material constants is analyzed, but with the axisymmetric analysis option. The same 

loading conditions and the same boundary conditions on the left side have been 

applied. Result is compared to ABAQUS and comparable results have been obtained. 

 

 

 

Figure 6.5: Circular disk interacting with rigid foundation. Axisymmetric analysis with 
the new program developed for this dissertation. Linear elastic case analyzed with 
Lagrange multiplier approach. 
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Figure 6.6: Circular disk interacting with rigid foundation. Axisymmetric analysis 
performed with the commercial ABAQUS program. Linear elastic case with 
augmented Lagrange approach is the analysis options. 

In the linear elastic case, comparable results have been obtained. The small difference 

in displacements may be attributed to different approaches in handling the contact 

conditions. 

6.5 THE BENCHMARK PROBLEM 

The benchmark problem is inspired from an industrial application, the analysis of 

Ericsson cell phones charging plug (Figure 6.7). A model is tried visually, not by 

measure. Only half bottom is modeled because of the symmetry for the upper part. 

This analysis is performed only to show that, the program can handle this kind of an 

interesting complicated analysis, and industrial applications may be performed with 

the program.  

For the model, both the triangular and the rectangular element formulations are used 

coherently, with Hermit Interpolation surface representing the phone side. It is 

pressed 4.25 mm against the contact surface in x-direction. Non-linear Hyperelastic 

analysis performed in 100 increments of Newton iterations. For application of 

contact, cross constraints method is used. Solution took around 1 hour. The result at 

the 60th increment is represented in Figure 6.8.  
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The problem is interesting for an analytic solution is expected to be impossible for 

that complicated problem, and it represents a challenging engineering application. It 

does not seem possible to compare it with other programs. 

 

 

 

Figure 6.7: The benchmark problem. Plug in the preprocessor stage. This is the model 
entered from the graphical interface. The Dialog Bar on the left is in the preprocessor 
state. 
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Figure 6.8: The benchmark problem. Plug in the post processor stage. This is the result 
of the analysis representing y-direction Cauchy’s stress distribution when pushed 
against to the contact surface in x-direction. The Dialog Bar on the left is in the post 
processor state. 

6.6 TESTING WITH ANALYTIC RESULTS 

In general, it is difficult to test this kind of a problem in a good way with analytic 

results, due the method developed in here is being numerical approximation, and the 

it includes different complicated aspects of the problem. .In [31], result for infinite 

elastic beam resting on elastic half-space is given (Figure 6.9). To compare the 

results, model mesh in (Figure 6.2) is used. In [31], two ratios for elastic layer and 

rigid half-space, hPePcr ⋅= /λ , is given for critical elevating load P, being tensile and 

compressive as 1.088 and 44.139. In the model, for the program developed, around 

1.2 and 45, the separation occurs. The result obtained is comparable to the result in 

the considered paper.   
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Figure 6.9: Beam on elastic half-space. ρ0 is the load per unit length, ρ1 is the load per 
unit volume, g is the gravitational constant. 
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CHAPTER 7  

FURTHER REMARKS AND CONCLUSION 

7.1 INTRODUCTION 

In this chapter, further development issues and the achievements with the program 

developed is discussed.    

7.2 FURTHER DEVELOPMENT ISSUES 

At the very beginning, the aim is declared as writing an extendible program, which 

solves contact problems. The program is developed in view of this aim, considering 

further development issues. Though writing a perfect program handling every aspect 

of a problem at once is never possible in consideration of the extent of FEM, some 

near future development issues may be foreseen. Most of the technical details would 

stand valid, and as program evolves, by the gained expertise, the art of science can be 

flourished with the evolved new ideas.   

As the first attempt, different surface definitions; i.e NURBS curves [10] as 

mentioned before, and other analytic surface definitions, may be implemented. The 

program may further be developed for contact solution by considering self-contacting 

of the body, i.e a boundary surface may be fitted onto the detected boundary nodes of 

the body. Therefore, in that case, surface would also be moving, and that must be 

handled in a convenient way. Multiple body definitions may be implemented, and 

interactions of them may be formulated. For that purpose, more efficient global 

search methods, i.e. bucket search, binary search [16], [17] as mentioned in Chapter 

3, may become an obligation. Friction is also a challenging problem, which stands as 

a further development issue. 
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Automatic mesh generation is indispensable in the modern FEM programs. Good 

automatic mesh generators, i.e. advancing front, Delaunay triangulation can be 

implemented.  

In the current work only two material models, namely the Kirchoff material model 

and the Hyperelastic model have been implemented. Other material models may be 

searched and investigated.  

In the future, for a PhD. work, the program may further be developed to handle 

impact problems, in which dynamic effects must be considered. Plastic analysis may 

also be implemented. That way metal-forming process can be simulated. 

The program written up to now is a good shell core code, around which many other 

functions and abilities may be woven.    

7.3 CONCLUSION 

 

In the framework of this dissertation, unilateral discontinuous contact for an elastic 

body moving and deforming in space, interacting with a rigid surface only in the 

normal direction to that surface have been solved numerically, by applying FEM. For 

the solution of the problem, OOP is seen as crucial instrument, and the OOP 

programming techniques have been devised for this purpose. By use of OpenGL, a 

good graphical interface has been created. The problem is solved in 2D for the plane 

stress, plane strain and axisymetric cases. 

For the rigid surface definition, two discrete 2 dimensional surface models have been 

implemented effectively, namely the Hermit and Bernstein surface models. 

First, a test problem to check the internal consistency of the program is generated for 

the non-linear analysis, comparing TL and UL approaches. For this purpose, a beam 

is loaded near to Euler buckling load with a small perturbing tip force. Nice results 

have been obtained with little numerical deviations for both approaches. It is 

observed that Kirchoff material model and Hyperelastic material model give different 

results as expected. However, results differ from commercial ABAQUS program due 

to different material models are used.   
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Some test problems have been solved and compared to the commercial ABAQUS 

program. For the linear elastic, small stress, small strain type of problems, 

comparable results have been obtained for both plane strain and axisymmetric cases. 

In that case, the small differences are attributed to the differences in the contact 

formulation. For the linear elastic case, the new program developed used Lagrange 

multiplier approach, which satisfies contact constraints exactly. 

For the non-linear elastic case, due to the use of different hyperelastic models, larger 

differences have been observed compared to the results of ABAQUS program. 

ABAQUS program used Augmented Lagrange Approach for the solution of contact 

in all cases. In addition, strain models differ from that program.  

It is not possible to check every aspect of the program developed with the commercial 

programs, since it is devised independently, without consideration of other programs. 

The program is self-contained as much as possible, proving itself with the application 

of different methods of solutions. It contains similarities and differences compared to 

other commercial programs. For instance, Bezier Curve is not implemented in 

ABAQUS though it is in one of the other popular FEM program MARC. 

Nevertheless, the implementation in MARC is not the same. No test is performed for 

MARC. ABAQUS does not have surface detection algorithm, since boundary is 

entered at the very beginning and automatic meshing is performed. After meshing, 

the user intervention is a bit restricted in most of the popular FEM programs. In the 

program developed, a regular mesh is directly created, and it can easily be modified 

in the preprocessor stage. This approach may have advantages and disadvantages 

compared to other package programs. 

In general, the program developed gives good and comparable results, and serves as a 

perfect core shell for possible further development. The contact problem is solved 

efficiently for both linear-elastic and non-linear elastic cases for the unilateral 

frictionless case with that program. 
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APPENDIX 

FEGrObj.h 

class FEGrObj : public CObject 
{ 
public: 
 FEGrObj(); 
 virtual ~FEGrObj(); 
 static FEGrObj* m_pCaptured;  //For mouse capturing; 
  
 BOOL m_bSelected;         //Bool to hold object selection state 
 
 virtual void Draw(CFEMGLView* pView)=0; 
 
 virtual void OnLButtonDown  ( CFEMGLView* pView, 
                        UINT nFlags, CPoint point) = 0; 
 virtual void OnLButtonUp    ( CFEMGLView* pView, 
                        UINT nFlags, CPoint point) = 0; 
 virtual void OnMouseMove   ( CFEMGLView* pView, 
                        UINT nFlags, CPoint point)=0; 
}; 
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FENd2D.h 

class FENd2D : public FEGrObj 
{ 
public: 
 DECLARE_SERIAL(FENd2D) 
 //Constructors 
 FENd2D ( double X=0.0, double Y=0.0, 

         unsigned Idx=0, class Obj2D *Ob=NULL); 
 FENd2D(const FENd2D& Nd); 
 
 Obj2D* Obj;   //Pointer to the connected domain 
 
 virtual ~FENd2D(); 
 double X; 
 double Y; 
 double x; 
 double y; 
 
 BOOL m_bUxdefined; 
 BOOL m_bUydefined; 
 double m_dBCX;   //Boundary Condition in Y 
 double m_dBCY;   //Boundary Condition in X 
 double m_dKx;    //Spring constant in X 
 double m_dKy;    //Spring constant in Y 
 double Rx;       // Reaction force in X 
 double Ry;       // Reaction Force in Y 
 
 vector<class NodalRes2D> m_VResults;  //Vector of results structure 
 vector<unsigned> ElLst;             //Connected element list  
 
 //List for boundary node detection  
 //Firs index stores previous node, second index stores next node! 
 list< pair<unsigned, unsigned> > Neighbours;   
  
 static GLint m_nDisplySz; 
 static CFont  m_NdFnt; 
 static BOOL  m_bVwNodes;  //If to draw nodes on the screen; 
 static BOOL  m_bVwIdx;    //If to draw nodal indices on the screen; 
 static BOOL  m_bVwNdLd;   //Boolean to view node on the display 
 static BOOL  m_bVwNdBC;  //Boolean to view node boundary condition 
 static float m_fLdDispFc;      //Load display factor 
 static unsigned m_nNdTxtSz;   //Text height for drawing indices 
 
 void SetIdx(unsigned i);      //Setting index of the node in the node list. 
 unsigned GetIdx() const 
 { return Idx;} 
 
 void operator =  (const FENd2D &N); //Assignment operator 
 
 virtual BOOL    operator == (const FENd2D &N)const; 
 virtual BOOL    operator != (const FENd2D &N)const; 
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 void Draw(CFEMGLView* pView); 
 void DrawBdry(CFEMGLView* pView); 
 void DrawSprng(CFEMGLView* pView); 
  
 //Mouse Function declarations 
 void OnLButtonDown  ( CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
 void OnLButtonUp    ( CFEMGLView* pView, 

                   UINT nFlags, CPoint point); 
 void OnMouseMove (CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
 
 virtual void Serialize(CArchive& ar);  //Handle saving and reading from file issues 
 
 
private: 
 unsigned Idx; 
  
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
};
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CntNd2D.h 
class CntNd2D:public FEGrObj 
{ 
public: 
 DECLARE_SERIAL(CntNd2D) 
 //Constructors 
 CntNd2D ( double X=0.0, double Y=0.0,  
          class CntctSrf2D* pSurf=NULL);  
 CntNd2D(const CntNd2D& Cont);   
  
 //Address of the connected surface 
 CntctSrf2D* pSrf;          
 
 //Fixed coordinates of contact node 
 double X, Y; 
 
 static GLint m_nDisplySz; 
 
 static CFont m_NdFnt; 
 static BOOL m_bVwCntNds; //View Contact Nodes 
  
 void operator =  (const CntNd2D &Cont); 
 BOOL    operator == (const CntNd2D &N)const; 
 BOOL    operator != (const CntNd2D &N)const; 
  
 //Function to handle drawing issues of contact node 
 void Draw(CFEMGLView* pView); 
 
 //Functions to handle mouse events for contact node 
 void OnMouseMove  ( CFEMGLView* pView,  
                  UINT nFlags, CPoint point); 
 void OnLButtonDown ( CFEMGLView* pView, 
                  UINT nFlags, CPoint point); 
 void OnLButtonUp   ( CFEMGLView* pView, 
                  UINT nFlags, CPoint point); 
 
 virtual ~CntNd2D(){};  //Destructor 
 virtual void Serialize(CArchive& ar); 
 
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
};
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Element2D.h 

class El2D:public FEGrObj 
{  
public:  
 static ofstream fout; 
 El2D ( class Obj2D *Ob=NULL, //Default Constructor  
  unsigned Idx=0,  
  double thck=1.0,  
  unsigned short MtIdx=0); 
 
 El2D (const El2D& El);  //Copy constructor 
  
 Obj2D* Obj;    //Pointer to connected domain 
   
 virtual double Dimension(void)=0; 
 virtual void operator = (const El2D &N);  
 virtual bool operator == (const El2D &N); 
 virtual bool operator != (const El2D &N); 
  
 //Liner stiffness matrix of element for both linear anaysis,  
 //total and updated lagrangian formulations. 
 virtual matrix K_Lin()=0; 
 //Tangential stiffnes matrix of element for Newton solution 
 //style for both Total & Updated Lagrange formulations 
 virtual matrix K_NL()=0;  
  
 //Calculate Body Loading               
 virtual colvec Fb()=0;     
  
 //Calculate load from initial displacement effect.  
 //Used for residual calculation. 
 virtual colvec F_DisplEff  ( unsigned short m_nCurInc=1, 
                     unsigned short m_nRefInc=0)=0;                 
  
 //Get local displacements and incremental from connected domain. 
 virtual colvec   U_Loc(unsigned inc=0);  
 virtual colvec D_U_Loc(void); 
 
 vector<struct NdIdxing> NdLst; //List of connected nodes. 
   
 virtual void IdxtoPtr(void); 
 virtual void PtrtoIdx(void); 
   
 unsigned short m_nMtIdx; 
   
 vector<class GsPtData2D> GsPt; 
 vector<class GsPtData2D> RedGs; 
 
 double Thick;  //Thickness of Element 
 double m_dRho; //Mass Density of Element (kg/m3) 
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 //Internal body loading per unit mass in X (N/m3) 
  double m_dFx;  
 //Internal body loading per unit mass in Y (N/m3)    
 double m_dFy; 
  
 virtual void OnMouseMove  ( CFEMGLView* pView,  
                       UINT nFlags, CPoint point); 
 virtual void OnLButtonDown ( CFEMGLView* pView,  
                       UINT nFlags, CPoint point); 
 virtual void OnLButtonUp   ( CFEMGLView* pView,  
                       UINT nFlags, CPoint point); 
 
 static unsigned m_nElTxtSz; 
 
 virtual unsigned GetIdx(); 
 virtual void SetIdx(unsigned i); 
 
 virtual void InitGs(void)=0; 
 
 virtual ~El2D();  //Destructor 
 unsigned short GetType(){return TYPE;}; 
protected: 
 virtual void Serialize(CArchive& ar); 
  
 unsigned m_nIdx; 
 unsigned short m_nIntOrd; 
 unsigned short m_nMinNdNumbr; 
 unsigned short m_nMaxNdNumbr; 
 unsigned short TYPE; 
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
}; 
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Rct2D.h 

class Rct2D:public El2D 
{  
 public: 
 DECLARE_SERIAL(Rct2D) 
 //Constructors 
 Rct2D ( class Obj2D *Ob=NULL, unsigned Idx=0, 
        double thick=1.0, unsigned short MtIdx=0); 
 Rct2D (const Rct2D& El);    
 friend matrix RctBase_2D ( double ksi, double eta, 
                     const vector<unsigned int> LocIdx); 
 
 //Function for calculating linear stiffness matrix for rectangle  
 matrix K_Lin(); 
 //Function for calculating non-linear stiffness matrix for rectangle  
 matrix K_NL();      
 colvec Fb (); //Calculate Body Loading 
 //Calculate load from displacement effect for residual calculation 
 colvec F_DisplEff( unsigned short m_nCurInc=1, unsigned short m_nRefInc=0);   
            
 double Dimension();  //Area of rectangle 
 //Function to handle mouse move message for rectangle 
 virtual void OnMouseMove ( CFEMGLView* pView, 
      UINT nFlags, CPoint point); 
  
 //Function to handle drawing for rectangle. 
 void Draw(CFEMGLView* pView); 
 void InitGs(void); 
 virtual void Serialize(CArchive& ar); 
 virtual ~Rct2D(); //Destructor for rectangle 
private: 
 unsigned short m_nInt_x, m_nInt_y; 
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
}; 
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Tri2D.h 

class Tri2D:public El2D  
{  
public: 
 DECLARE_SERIAL(Tri2D) 
 //Constructors 
 Tri2D  ( class Obj2D *Ob=NULL, unsigned Idx=0, 
        double thick=1.0, unsigned short MtIdx=0); 
 Tri2D (const Tri2D& El);   //Copy constructor 
 
 friend matrix TriBase_2D ( double ksi, double eta, 
                     const vector<unsigned int> LocIdx); 
  
 //Function for calculating linear stiffness matrix for triangle  
 matrix K_Lin(); 
 //Function for calculating non-linear stiffness matrix for triangle 
 matrix K_NL(); 
 colvec Fb();  //Calculate Body Loading 
  
 //Calculate load from displacement effect for residual calculation 
 colvec F_DisplEff( unsigned short m_nCurInc=1, 
    unsigned short m_nRefInc=0) ; 
 double Dimension();  //Area of triangle 
 //Function to handle mouse move message for rectangle 
 void OnMouseMove ( CFEMGLView* pView, 
                 UINT nFlags, CPoint point); 
 //Function to handle drawing for triangle. 
 void Draw(CFEMGLView* pView); 
 void InitGs(void); 
 virtual void Serialize(CArchive& ar); 
 virtual ~Tri2D(); //Destructor for triangle 
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
};
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CntctSrf2D.h 

class CntctSrf2D:public FEGrObj 
{ 
public: 
 //Constructors 
 CntctSrf2D(void); 
 CntctSrf2D(const CntctSrf2D & Cont); 
 CntctSrf2D(CntctSrf2D* const Cont); 
  
 //List of contact nodes 
 vector<class CntNd2D*> NdList; 
  
 COLORREF Node_Clr;  //Contact node color 
 COLORREF SlctNd_Clr;  //Selected contact node color 
  
 COLORREF Surf_Clr;  //Contact surface color 
 COLORREF SlctSrf_Clr;  //Selected contact surface color 
 
 static BOOL m_bVwCntSrf; 
 static BOOL m_bClosedCnt; 
 
 virtual bool DeleteNode(CntNd2D* pNode); 
 virtual void CalcParam(FENd2D* pNd)=0; 
 
 //Find nearest contact node to a FEM node. 
 virtual unsigned Nearest (FENd2D* const pNd); 
 
 //Pure virtual function to calculate nearest 
 //parametric point to a FEM node. 
 virtual void Ksi_bar  (FENd2D* pNd)=0; 
 
 //Saving and reading of surface specific data from the binary file 
 virtual void Serialize(CArchive& ar); 
 
 //Functions to handle mouse events 
 void OnLButtonDown  ( CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
 void OnLButtonUp    ( CFEMGLView* pView,  
                   UINT nFlags, CPoint point); 
 void OnMouseMove   ( CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
  
 virtual ~CntctSrf2D(); 
 unsigned short GetType(){return TYPE;}; 
 
protected: 
 
 //Used for drawing purpose! 
 virtual void CalcParam (CntParamVals*)=0;   
 virtual unsigned Nearest (const double x, const double y); 
 virtual double Ksi_bar (const double x, const double y)=0; 
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 //Stores type of contact surface (Bernstein, Hermite, etc.) 
 unsigned short TYPE; 
#ifdef _DEBUG 
 virtual void Dump(CDumpContext &dc) const; 
#endif 
}; 
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C1Hermit.h 

class C1Hermit :public CntctSrf2D 
{ 
public: 
 DECLARE_SERIAL(C1Hermit) 
 C1Hermit(void); 
 C1Hermit(const C1Hermit & Cont); 
 C1Hermit(CntctSrf2D*  const Cont); 
  
 //Calculate nearest contact node to a FEM node. 
 unsigned Nearest (FENd2D* const pNd); 
 //Calculate nearest parametric point to a FEM node. 
 void Ksi_bar  (FENd2D* pNd); 
 
 void CalcParam(FENd2D* pNd); 
  
 //Find nearest contact node to point. 
 unsigned Nearest (const double x, const double y); 
 //Calculate nearest parametric point to point. 
 double Ksi_bar  (const double x, const double y); 
 
 void CalcParam(CntParamVals*); 
 
 //Handle drawing issues of Hermit Bezier Curve 
 void Draw(CFEMGLView* pView); 
 
 //Handle mouse events for hermite surface 
 void OnLButtonDown  ( CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
 void OnLButtonUp    ( CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
 void OnMouseMove   ( CFEMGLView* pView, 
                   UINT nFlags, CPoint point); 
  
 //Handle saving and reading of Hermite Surface 
 virtual void Serialize(CArchive& ar); 
 
 ~C1Hermit(void);  //Destructor 
  
#ifdef _DEBUG 
 virtual void Dump(CDumpContext &dc) const; 
#endif 
}; 
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C1Bernstein.h 

class C1Bernstein :public CntctSrf2D 
{ 
public: 
 DECLARE_SERIAL(C1Bernstein) 
  
 //Constructors 
 C1Bernstein(void); 
 C1Bernstein(const C1Bernstein & Cont); 
 C1Bernstein(CntctSrf2D*  const Cont); 
  
 //Calculate nearest contact node to a FEM node. 
 unsigned Nearest (FENd2D* const pNd); 
 //Calculate nearest parametric point to a FEM node. 
 void Ksi_bar  (FENd2D* pNd); 
 
 void CalcParam(CntParamVals* pPrm); 
  
 //Calculate nearest contact node point to point. 
 unsigned Nearest (const double x, const double y); 
 
 //Calculate nearest parametric point to point. 
 double Ksi_bar (const double x, const double y); 
 
 void CalcParam(FENd2D* pNd); 
 
 //Function to handle drawing issues 
 void Draw(CFEMGLView* pView); 
 
 //Functions to handle mouse events for Bernstein surface 
 virtual void OnLButtonDown( CFEMGLView* pView, 
       UINT nFlags, CPoint point); 
 virtual void OnLButtonUp ( CFEMGLView* pView, 
      UINT nFlags, CPoint point); 
 virtual void OnMouseMove ( CFEMGLView* pView, 
      UINT nFlags, CPoint point); 
  
 virtual void Serialize(CArchive& ar); 
 ~C1Bernstein(void); 
private: 
#ifdef _DEBUG 
 virtual void Dump(CDumpContext &dc) const; 
#endif 
}; 
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GsPt2D.h 

class GsPt2D: public FEGrObj 
{ 
public: 
 DECLARE_SERIAL(GsPt2D) 
 
 //Constructors 
 GsPt2D ( El2D *El=NULL, 
    double ksi=0.0,  
    double eta=0.0, 
    double Coeff=2.0); 
 GsPt2D ( const GsPt2D &GsPt ); 
  
 bool Init ( El2D *El, double ksi, 
    double eta, double Coeff); 
  
 //Jackobian matrix (Default referred to initial state) 
 matrix J ( unsigned short m_nInc=0); 
 double detJ ( unsigned short m_nInc=0); 
 
 //Constitutive matrix  
 matrix C ( unsigned short m_nInc=0);   
  
 //For calculating derivatives (Default referred to initial state 
 matrix B(unsigned short m_nInc=0, bool m_bCurent=FALSE);  
 //Always referred to initial state (Calculated only for Total Lagrangian Solution) 
 matrix BL1(unsigned short m_nInc =1); 
  
 //For calculating Non_Lin part of stiffness matrix. 
 //For TL Approach should always refer to initial state (=0) 
 //For UL Approach should refer to curent state.  
 matrix BNL( unsigned short m_nInc=1, 
   bool m_bCurent=FALSE ); 
 //For calculating mass matrix or internal body forces 
 matrix H(); 
  
 //Calculates strains.  
 //For TL approach Green’s Strain. 
 //For UL approach Almansi’s strain   
 matrix E ( unsigned short m_nCurInc=1,  
         BOOL m_bVForm=TRUE,  
  unsigned short m_nRefInc=0); 
  
 //Cauchy Stress 
 colvec CST(unsigned short m_nCurInc=1,unsigned short m_nRefInc=0); 
  
 //Deformation Gradient 
 matrix F(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0); //Deformation   
 //Determinant of deformation gradient matrix 
 double detF(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0);   
  
 //Second Piola Kirchoff Stress 
 PKST2(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0);  
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 // Set ksi and eta local coordinates  
 void SetLocal(double ksi, double eta, unsigned short m_nInc); 
 //Calculate Global coordinates 
 void To_Glob (unsigned short m_nInc = 0); 
  
 void operator =  (const GsPt2D &GsPt); 
 
 BOOL    operator == (const GsPt2D &N)const; 
 BOOL    operator != (const GsPt2D &N)const; 
  
 
 ~GsPt2D(){};  //Destructor 
 
 virtual void Serialize(CArchive& ar); 
 double Coeff;  //Effect pf GsPt on Element Integration  
  
 El2D* m_pEl; 
 static GLint m_nDisplySz; 
 double x, y; //Coords of GsPt on Global Elem in curent coordinates 
 double X, Y; //Coords of GsPt on Global Elem in reference coordinates 
 double Displ_X, Displ_Y; 
 
 virtual void Draw(CFEMGLView* pView); 
 
 //Functions to handle mouse events 
 virtual void OnLButtonDown(CFEMGLView* pView, UINT nFlags, CPoint point); 
 virtual void OnLButtonUp(CFEMGLView* pView, UINT nFlags, CPoint point); 
 virtual void OnMouseMove(CFEMGLView* pView, UINT nFlags, CPoint point); 
 
private: 
 double ksi, eta;//Coords of GsPt on Master Elem 
 
public: 
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
}; 
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Obj2D.h 

class Obj2D: public CObject 
{ 
public: 
 DECLARE_SERIAL(Obj2D) 
 
 //Constructors 
 Obj2D (void);     
 Obj2D (const Obj2D & Ob);  
 
 friend class std::basic_ostream; 
 friend class std::basic_istream; 
 
 //For output to file 
 static ofstream fout; 
  
 //******************************* 
 //Solvers 
  
 //This function also called from Newton solution for an initial 
 //solution to Newton iteration. 
 //When making incremental solution for NonLinear solution 
 //option, it does not make incrementation. 
 //Only makes a single solution at the curent incrementation. 
 virtual BOOL Lin_Solve  (const unsigned short inc); 
 
 //This function handles both Total Lagrangian and 
 //Updated Lagrangian solutions. 
 virtual BOOL Nwt_Solve (void);  
 //************************************** 
 double TotFx, TotFy; 
 //*************************************** 
 //Containers: 
 std::vector < class FENd2D*>GlNodes; //Node Container 
 std::vector < class El2D*  >Elements; //Element Container 
 std::vector<class Lin_Mat> Mater;  //Material Container 
 //******************************************* 
 
 static Solution_Parameters SolnPrm; //Solution Parameters 
 static Results_Parameters ResPrm; //Results Parameters 
  
 //Find maximum number of free nodes. 
 //(Assembler() must be called first) 
 unsigned maxff()const;   
 //Find maximum number of restrained nodes. 
 //(Assembler() must be called first) 
 unsigned maxrr()const;   
 //Set matrix Dof for assemblage  
 virtual int Assembler();  
 
 //Assemble global stiffness matrix 
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 virtual int Assemble_K( matrix & Kff, 
     matrix & Kfr, 
     matrix & Krr, 
     BOOL m_bLinear=1); 
 
 //Assembledisplacement vector at the incremental time 
 virtual Assemble_Ur (colvec &Ur, unsigned m_nInc=1) const;   
  
 //Assemble free node force vector at the incremental time 
 virtual Assemble_Ff (colvec &Ff, unsigned m_nInc=1) const;  
  
 //Calculates internal element loads at the increment 
 virtual Assemble_El_Fb( colvec &Ff,  colvec &Fr, 
     unsigned m_nInc=1) const;   
  
 //Calculates loads from displacement effects from elements at the increment; 
 virtual Assemble_El_Fd ( colvec &Ff, colvec &Fr, 
                    unsigned m_nCurInc=1, unsigned m_nRefInc=0) const;   
  
 virtual void ResetNdIdx(); 
 virtual void ResetElIdx(); 
  
 //Reset indices after node iterator 
 virtual void ResetNdIdx(FNdit); 
 //Reset indices after element iterator 
 virtual void ResetElIdx(FElit);  
 
 //*************************** 
 //Coloring Parameters 
 //Node Coloring 
 COLORREF Node_Clr; 
 COLORREF SlcNd_Clr; 
 
 COLORREF Load_Clr; 
 COLORREF Supp_Clr; 
 COLORREF Reac_Clr; 
 COLORREF Sprng_Clr; 
  
 //Element Coloring 
 COLORREF Element_Clr; 
 COLORREF Element_Slctd_Clr; 
 COLORREF Element_Frm_Clr; 
 
 //Element VwPrms 
 static BOOL m_bVwElEdges; 
 static BOOL m_bVwElIdx; 
 static BOOL m_bVwGsPts; 
 //************************ 
 
  colvec Ur, D_Ur, Uf, D_Uf; 
  
 //****************************** 
 //Real display items 
 vector<double> Disp_Real_Vals;  
 //To display color values 
 vector <COLORREF> Disp_Col_Val;   
 //********************************** 
 CMatrix<unsigned> Dof; //Stores Degrees of Freedoms 
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 BOOL m_bAnalysed; //For checking state of analysis 
 
 void DeleteElem(const unsigned ElIdx); 
 bool DeleteElem(El2D* pElem); 
 void DeleteNode(const unsigned NdIdx); 
 bool DeleteNode(FENd2D* pNode); 
  
 //Set boundary nodes next boundary node index table 
 void SetBoundary(void);   
  
 //Set global U, V, Fx, Fy for curent increment number 
 bool SetColorTable(); 
  
 int Construct; 
 virtual ~Obj2D(); 
  
 virtual void Serialize(CArchive& ar); 
 
protected: 
 //Penalty solution returns number of iterations 
 unsigned PenaltyContact( const matrix & m_Kff,  
     const matrix & m_Kfr,  
     const matrix & m_Krr, 
     const colvec & m_Ur, 
     const colvec & m_Ff);  
  
 //Lagrange multiplier solution returns number of iterations 
 unsigned LagMultContact( const matrix & m_Kff,  
     const matrix & m_Kfr,  
     const matrix & m_Krr,  
     const colvec & m_Ur, 
     const colvec & m_Ff);  
 
#ifdef _DEBUG 
 void Dump(CDumpContext &dc) const; 
#endif 
}; 

 


