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ABSTRACT

FINITE ELEMENT ANALYSIS OF DISCONTINUOUS
CONTACT PROBLEM

BODUR, Mehmet Ata
M. Sc., Department of Engineering Sciences

Supervisor: Prof. Dr. M. Ren Gegit

January 2006, 122 pages

Contact is a phenomenon faced in every day lifechvis actually a complex
problem to tackle for engineers. Most of the tinmeay be impossible to get analytic

or exact results for the interaction of bodiesantact.

In this thesis work, solution of the frictionlesantact of an elastic body, touching to a
rigid planar surface for two-dimensional elasticitgmely plane stress, plane strain
and axi-symmetric formulations is aimed. The proble solved numerically, with
Finite Element Methqdand arObject Orienteccomputer program in C++ for this
purpose is written, and the results are verifieith wwome basic analytic solutions and

ABAQUS package program.

It is not aimed in this thesis work to give a meslution in the area of solution of
contact problems, but instead, it is aimed to farstrong basis, and computational
library, which is extendible for further developneiithe subject to include friction,

plasticity, and different material modeling in thidvanced field of mechanics.

Keywords: Finite Element, Contact, OOP, C++



oz

SUREKSIZ TEMAS PROBLEMLER INiN SONLU ELEMANLAR
YONTEMI ILE COZUMU

Bodur, Mehmet Ata
Yuksek Lisans, Mihendislik Bilimleri Bolumu

Tez Yoneticisi: Prof.Dr. M. Reen Gegit

Ocak 2006, 122 sayfa

Temas, gunlik hayatta kdesilan bir olgu, fakat aslinda mihendisler icgragmasi
zor bir problemdir. Temasla etkgken cisimler igin ¢gu zaman analitik ya da kesin

¢c6zum elde etmek mumkungielir.

Bu tez cakmasinda, bir elastik cisim ile bir katl diz yizesgsandaki surtinmesiz
temasin, iki boyutlu elastik; diizlem gerilme, dinzkgekil degistirme ya da eksenel
simetrik olarak adlandirilan modellemeyle ¢ozilnaeacglanmaktadir. Problem,
sayisal olarakSonlu Elemanlar Yonterie, ve bu amagla C++ programlama dilinde
Nesne Tabanbilgisayar programi yazilarak ¢oziulmektedir, vewggar bazi bilinen

analitik coziimlerle ve ABAQUS Paket Programi ileskastiriimaktadir.

Bu tez cakmasinda, temas problemleri ¢cozimu alaninda cokweedrel bigeyler
eklemek yerine, hesaba dair konunun daha oteytginsie, plastiklgme ve farkl
malzeme modellemesine yonelik olarak gletiiebilmesine imkan taniyan gam

bir temel olgturulmasi amaglanmaktadir.

Anahtar Kelimeler: Sonlu Elemanlar, Temas, Nesr@amh Programlama, C++.
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CHAPTER 1

INTRODUCTION

Contact is a phenomenon faced in everyday lifeatproblem hard to tackle for
engineers. It is well known that it is a phenomedealt from the Egyptians time at
least. In [1] some historical remarks have beeemabout history of approaches to
the event. First modern approaches attributed t¥iBea (15th century), Coulomb
(1785), Euler (1748) etc.[1]. Though it is not awrevent faced in human life, till the
last few decades it was only possible to analyseesgpecial types of contact
problems analytically, with some crude assumptiéssthe industry evolved, more
and more elaborate techniques needed to deal antilact. In automobile industry,
design of wheels interacting with road, designlofobes, brakes, gears, etc. needs
elaborate techniques to analyze this natural elrentvil engineering applications,
interaction of girder beams with supports, intecacof foundation with ground etc.
are events simply coming into mind about contattoAn the recent years, one can
see some successful designs of plugs of the mpltdee chargers, and some other

interesting industrial applications.

By the advent of the computers, new numerical miuechniques have been
developed in the last few decades, one of whiolte Element Metho(FEM) have
found enormously wide applications in engineerfigM is a numerical technique to
solve mechanical problems in engineering with ideohcomputers, where it is hard
or impossible to get an analytic solution. For hgwa solution with FEM, one has to
have a well posed mathematical model, which, retesy the physical phenomena
in a good way in the domain of the problem. Thehmatatical model, in general to
be defined by differential equations, to be solwatherically by a set of governing
algebraic equations [2]. [3] gives a summary algtory of FEM. For an
understanding of the subject, the reader shouldutoto references [2]-[5] or other

uncountably many references in literature.



While posing the problem initially, one can assia@ntinuous body supported
from some part of the boundary, with some boundadyinternal forces defined, and
another object to interact with is awaiting or nmayin the process of deformation.
As the deformation progresses, one expects torsggesiaction of the bodies on their
boundaries, which is unpredictable at the beginrangd makes the problem highly
non-linear. Due to this nature of unpredictabilitythe past, the contact interactions

were approximated with special crude assumptions.

While attacking to the problem, it becomes verfidift to include all aspects of the
problem at once. For that reason, in this studytapic is bounded by obtaining a
FEM implementation of discontinious, frictionlegsglarly elastic 2D contact, namely
theplane stresgplane strainandaxi-symmetrigoroblems, which is to be robust,
dependable and extendible for further abilities. the robustness and extendibility
iIssues, C++ programming language, which has begrpepular in the last decade is
selected for it provides robust and extendableoblgeented environment. It also has
the support of defining types different than thendiard data types like integers, real
numbers, arrays etc.. In the object oriented enuient, data is organized and
distributed in the classes, which provides sep@@tepilation, neater and cleaner
programming environment. Also the data hiding axtdbetion mechanisms of C++
prevent many errors while programming. Even thahghcode is implemented for

2D case, most of the mathematical idea are vaticeatendible to 3D cases.

The organization of the material is in the follogiiorder: In Chapter 2, general
continuum equations used in the program developegrasented briefly. In Chapter
3, FEM formulation is introduced. For the completes triangular and rectangular
elements are defined. In Chapter 4, constraintdation techniques is dealt
mathematically and application to contact formolais discussed, application of
these techniques to general FEM equations areiegglariefly. In Chapter 5, OOP
approach to FEM is discussed and some implementdétails regarding this issue
are introduced. In Chapter 6, some benchmark aestsonsidered and comparison to
another FEM program ABAQUS and some exact anal\dm@ations are done.
Finally, in Chapter 7, concluding remarks and ferttievelopment issues are
presented.



CHAPTER 2

CONTINUUM MECHANICS PRELIMINARIES

2.1 INTRODUCTION

In this section, necessary continuum mechanicstieqsaare presented. Since there
are too many items, which all cannot be mentiorezd lthe context in this chapter is
restricted to the applied formulations to justtie tapplied ones. Most of the details

are left to the reader with giving references j&j §] and the references therein.

2.2 STRAIN DISPLACEMENT RELATIONS

In the context of continuum mechanics, stressedeiieed as the function of strains.
Strain is in general a second order tensor reptiagethe deformation state of the
object at a point in the domain, which is a functid displacements. One can initially
define an object moving and deforming in spacetené (Figure 2.1). Initial
configuration is defined as and current configuration aslt should be declared

here that variables written in bold are represgniictor values, where in 2D having
two components, and in 3D having three componerdgarameters referring to
initial state are defined in capital letters, whgrearameters referring to current state

are represented by minuscule.



Figure 2.1: Initial state of object at timgaind deformed state of object atR, at the
initial state defined with the position vecdr deforming and moving tB; defined
with the position vectox. x is a function oX and t.

In the above, all the coordinates defined with eesfo a reference frame, which,
fixed in space and time, is thagrangian Descriptionwhere in the opposite case, in
which the reference frame is moving in space and,tis called th&ulerian
Description In the Lagrangian analysis, the particles ardeviad individually,
whereby in the Eulerian approach, particles padsirggigh a fixed point are
watched. In structural analysis, in general Llthgrangian Descriptionwhereby in

fluid dynamicsEulerian Descriptions preferred.

The motion of the body can be defined as:

x=¢(X,1)
Or in indicial notation

% =@ (X;,1)
2.1)

The functiong(X,t) maps the reference configuration at titm@ into current

configuration at timé=t and, it is called the mapping from the initiactarrent

configuration. At timeé=0 , X is coincident toX .

From the above figure, it can easily be seen that:

u =x-X, orinindicial notationt; = x — X, [J,

(2.2)



The above can be also written as:

u =¢(X;,t) =X, [9,
2.3)

At this point, one may like to define tdeformation gradienf, which transforms the

infinitely small vector in the reference configuoaitto the current configuration.

In tensorial notation:

F :% = g—; =(0,@)", or in indicial notation:
_ 09 _ 0%
Fy = =
X, 0X,
(2.4)
From the above formula, it is obvious that:
dx =F [dX, orin indicial notationdx = F; [dX;
(2.5)

The formula in Eqg. (2.2) can be applied to the jmev Eq. (2.4) with an arrangement
and the equation below is obtained.
ou,

Fo =3+
iJ [N] aXJ

(2.6)

The deformation gradient can be written as a mattptession in 3D as follows:

(0 0% 9% |
0X, 0X, 0X,
F= ox, 0x, 0X,
0X, 0X, 0X,
X, 0% 0%

| 0X, 0X, 09X, |

(2.7)



The determinant oF is important in the formulation of general equasianh
continuum mechanics in transforming integrationsficurrent to initial state forms.
In literature it is defined a¥ but since in finite element contektefers to mapping
from master element to actual element, which vélckear in the foregoing chapters,

the determinant df is denoted byetFinstead ofl.

For mapping from the reference to current configanaio be possibley should be
one to one, continuously differentiable, aledF>0. The condition one to one means,
there exists only one point in the current configion for a point in reference
configuration or vice versa. For the backward cawbpily, F should be invertible,
which requires thatletF # 0. In the above, the more strict condition requitingt
detF > 0is written, which comes from mass conservation,iamtkalt in

conservation equations. Continuous differentigbiitobviously necessary for
calculation ofF.

The above conditions can be violated in speciabsiins, such as crack propagation,
but in the context of this dissertation, formulatie based on the above assumptions
(Belytschko et al. [5]).

Here it should also be stated tdatFrelates the volume in reference configuration to
present configuration as:
detF [dV, =dV
(2.8)

In the above equation, @\s the volume in the reference configuration, dwds the

volume in the current configuration.

The deformation gradient can be decomposed inddioatand stretch parts as:

2.9)

(2.10)



In both of the decompositionR, is the rotation part; is the stretch with respect to
the initial state and is called thagrangian stretch tensoConverselyV is the

stretch with respect to current state and isgihlerian stretch tensor

Now that deformation gradient has been definad,akpected to have a relation for

strain. The general requirements for strain castéed as:

It must vanish for any rigid body motion, in padii@r for rigid body rotation; should
increase as the deformation increases (Belytsch#tb [®]). Those requirements are

crucial, especially, in the non-linear theory.

A small length in the current state ds, can beedlto the initial state dS, by use of

Eq. (2.5) and the formulations below:

ds” = (dx [@lx ), or in matrix form:

ds’ =dx' [dx
(2.11)
dS? = (dX, [@X, ), or in matrix form:
dS? =dXx" [@X
(2.12)
By use of Eq. (2.5):
ds’ = (F, [@X,) [qF,, @x,,) or in matrix form:
ds’ =dX" [F' [F [dX
(2.13)

In the above formulationG =F' [F is called theight Cauchy-Green deformation

tensor

Then,

ds’ =dX T [T X
(2.14)



From the above formula, stretch of the vector caddfined and given in indicial

form as below:

ds_(F A%, £ X, )1’2
iJ dS iM dS

el
(2.15)
which is equivalent to:
ds_ ¢ ~
d_S: (N, [T,y Ny, )1/2
(2.16)

where,N is the unit vector defined in reference configrain the direction afiX .
Now the change in square length can be defined as:
ds’ —dS* =dX' [C X —-dX" [@X
(2.17)

Dividing both sides of Eq. (2.17) byS* =dX' [@X , the equation following can be

obtained:

ds’ —ds* _ o7 0
T - N mC - | ) [N
(2.18)
In literature, the abovéC — 1) is defined as:
2E=(C-1)
(2.19)

in whichE is called the&Green’s strain tensor

From the formula in Eq. ((2.18) one can also witieestretch defined as follows:

oT O
/1:$:VN [PEIN+1
ds

(2.20)

Here one can define the well-knowngineering strairin one dimension:



_ oT o
e=05"9S N pEmN+1-1

ds
(2.21)

ol O

WhenN [2EN is small, by Taylor's expansion of the square ragwtoring higher
order terms, one can get:
_ds-ds_2"

D O
€ =N [EIN
ds

(2.22)

This is the engineering definition of strain foreedimensional state. For strain being
small, the difference betwe@&reen’s strairand theengineering straifbecomes
ignorable. Nevertheless, for large deformation caseobviously needs to employ a
strain definition different from the engineeringast i.e., theGreen’s strainIn the
sequel, this distinction will be further well undeyod while deriving Non-Linear
FEM equations.

Up to this point, a measure for deformation of et@ehas been obtained. Now, a
relation is needed for the deformation of the edgesrectangular infinitesimally

small element in the reference configuration.

Now that infinitesimal length in current state ha&en related to infinitesimal length
in initial state, one can derive relations for dafation of the edges of a rectangle,

which is the angle change, in reference configomatd current state (Figure 2.2).

é

»
»

dXy

Figure 2.2: Deformation of the edges of a rectaiglaitial state to current state.
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The dot product of the edges of the parallelograthe current state referring to the
rectangle edges in the initial state can be wriign

|dx,| x| [Eos@) =dX | OF' [F @X, =dX; [CEX,

(2.23)
or rearranging terms:
=—le
€050 = 1] oy
(2.24)
By utilization of Eq. (2.20), the above is equivdléo:
cos@) =sin(yl+y2) =
O
Ny [C3 AF
JDT O JDT O
N1 2EIN1+1 N22EN2+1
(2.25)

Considering the small strain situation in the abegeations, and observing that N1

and N2 are parallel to axes, i.e. parallel to i jpaxks:

ol u]

N1 2EN1+1=1, and
ol u]
No2EN,2+1=1

(2.26)
C, =2E; wheri % |,
sin(yl+y2) = (yl+y2) =y, then:
y = 2E;

(2.27)

In the above, it is not aimed to create confusiotihé reader, but it is aimed to
present the distinction and understanding of stralarge deformation state, and
recovery to general engineering definitions ofistia small deformation case.
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In the sequel of this section, it is aimed to eelairrent state to the initial state. As
previously stated, the deformation gradiEng one to one, and there exists an inverse

relation from current state to initial state. Henmee can define:

X = @7 (x,1) = X(x,1t)
(2.28)
An infinitesimally small length in the current statan be transformed back to initial
state by the next equation:

X _ag™

0X 0Xx

=F ' ordX = F* [l

(2.29)

A small length in initial statdS can be related to current steeby use of Eq.
(2.29) as follows:

dS? = (Fm [tlx ) (F ju Lélx;) , or in matrix form:
dS® =dx' OF " [F* [@x
(2.30)
This is equivalent to:
dS* =dx' b [dx
(2.31)
In the aboveb is called thdeft Cauchy-Green deformation tensor
One can also express the length change with regpeatrent state:

ds’ -dS? _

=T -b) 0

(2.32)

wherenis the unit vector in the direction dk in the current state. From the above

formulation,Almansi’s strain tensois defined as:

2e=(1-b™)
(2.33)
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A A
dX2 @ dX2
vl

0 dX,
y2

[ >

dxq

v

Figure 2.3: Angle change of the rectangle in curséate from the initial un-deformed
parallel piped.

Angle change for the edges of a rectangle in theentistate can also be defined as in

theLagrange strain tensarase by the following:

|dX | fHX | [Eos@) = dx; OF " [OF ™ [dix, = dx; (b~ [eix,

(2.34)
or rearranging terms:
dx -1 X5
cos@) =—21-[b
ldX4| ﬁdx2|
(2.35)
which is equivalent to:
cosf) =sin(y1+ y2) =
A 1 Ny
e
J1-A] [2eld, J1-A] [2elf,
(2.36)

Considering the small strain case from the abovatsans and observing that and
n, are parallel to axes in current configuration,dhgle change from initial state to

current state can be definedyasvhich can be obtained as follows:

12



J1-A] (e, =1, and
J1-AJ 2ef, =1

-b™ = 2e,, when#j,
sin(yl+y2)=()1+y2) =y,
y =2¢
(2.37)

At this point, one should look at what is obtaingtenAlmansi’s Strain Tensas

multiplied with the deformation gradient on bottes:
FTReF=F (-(FF)")F=(F'F-I)=2E
(2.38)
The above is defined as the pull back operatiohlmfnsi’s Strain Tensor

One more thing to be considered left is writing ¢h@in tensors in displacement
form, which constitutes the main framework for wiagkin FEM displacement
formulation. Using Eq. (2.6§3reen’s strain tensocan be written as:

zl(au, +6uJ +6uM E@u“")
2 0X; 0X, 0X, 0X,

EIJ

(2.39)

In the same way, th&lmansi’s strain tensotan also be represented by:

1,0u OU  Qdu_ du

— i 4 ] m m

%720 0% 0% OX

(2.40)

For small strain conditions, in both of these equat the multiplication terms
become small and the difference between the cuarahthe initial states becomes
negligible, then the equations reduce to:

_1,0u  Ou

& == (= + L
! 2(6xj ax,.)

(2.41)
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It is shown up to here that, in small strain caonds, the difference of terms being
defined either in the initial state or in the fiistdte is not being obvious. In contrast,
in large strain conditions, the difference becoonwssiderable by taking into account
of the multiplication terms. For the non-lineareae term strain is being rather a
mathematical definition, the physical meaning na¢aly being obvious to a user in
contrast to the engineering definition of stramldrge deformation analysis, length
square change is employed, while in the smallrsiraalysis, simply the length
change is used. That creates consistency probtedesat with in relating stress to
strain. This will be made clear in the sequel f tihapter. It must be stated that no
further terms exist in the expression for @reen’s straimndAlmansi’s strainas
given by Egs. (2.39) and (2.40) i.e. no Taylor'pansion and truncation of higher
order terms have been performed. That is, theg@rglete. In the following, the

definition of stress will be given.

2.3 STRESS

In this section, the same approach to explanafistress for large deformation
analysis and limiting case for small deformatiolusons will be followed as in the
previous. Again, one needs to distinguish theah&nd the current states for the
definition of stress. Although in literature maniferent stress definitions exist, in
this dissertation, only the two of them will be satered since they are applied in the
written program for including geometric non-linggriThey are th€auchy stress

and theSecond Piola Kirchoff stresExcept theCauchy stresghe stress definitions
have a rather mathematical meaning; they are iargénot attributed to a direct
physical meaning. AlthougBauchy streshas a meaning in engineering point of
view, theCauchy stressaries under rotations, which creates difficultresome

FEM formulations. That is why different stress dafons exist in literature. The
conversion is virtually always possible from onérdgon to the other by use of the
deformation gradient, or components of it. The nmaason for selection of one or the
other is the computational efficiency. In the caht this dissertation, consideration
will not be given to all the stress definitionst buo of them, which are applied in the

formulations and solutions in this dissertation.
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In the engineering point of vieWfauchy stresswhich is defined in the current state,
has major importance and meaning, and it will b@iakd. Other definitions are, in
general, means to reaCauchy stresseand they are rather mathematical

expressions.

Now consider a cut on a body in current state oichwvkome forces and tractions are
acting (Figure 2.4).

X2

X1

Figure 2.4: A cut on a body in current state aadtion defined on the surface per unit
area.

The traction on the surface is defined by the fdamielow:

t=n'l6,

or in indicial notation:

ti :ﬁj I]T“

(2.42)
where t is the traction vectom is the unit normal vector on the cut and second
order tensor, is defined to be f@auchy’s stress tensdn engineering analysis, it
has a major importance and has a physical meahimgfirst index represents the cut
normal direction, and the second index represaetsglitection of the traction with

respect to the reference frame in the current.dtatewritten in matrix form as:
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0, 0O, Oy
O=|0, 0y 0y

2.43

2 023

622

v

c21

X3
cl2

X2

X1

Figure 2.5: Cauchy stress tensor components ircustate.

Now one may consider the traction on a body, anat ¥earetrieve the fictitious same

traction defined in the initial state such that:

t[dA=T [dA,
(2.44)

wheret is the traction in the current stathiis the infinitesimal area in the current
state,T is the assumed fictitious same traction corresjognib reference state, and

dA is the same area in the reference state.

Next one needs the formulation of the area charge the current state to the initial

state or vice versa for formulating the transfororat

16



ndA= g, dx dx,

(2.45)
NLdA, = £q,,dX,dX,
(2.46)
Eqg. (2.45) can be converted to current state by:
‘Erjk Fj.] dXJ FdeXK 5ri = Erjk FrR Fj.] FdeXJ dXK FiFgl'
or,
£ detF [X,dX, F:! = detF [N dA, [Ft
(2.47)
The above can be written in matrix form as:
A A= detF [6A, (F T [N
(2.48)

For derivation ofT in Eq. (2.44)another stress definition in the initial state rbay

written such that:
NTP=T
(2.49)

In the above equation, P is defined to be the nalhstness tensor. Combining Egs.
(2.44), (2.48), and (2.49):

NT [P [@lA, = detF (@A, INT (F* (&
(2.50)
Then from above it can easily be deduced that:
P =detF (F ' [&
(2.51)

HereP is not symmetric in general, and changes undatioots. Due to this reason,
in general it is not used in this form. It is triorened by multiplying both sides by

T and another stress definitid®econd Piola Kirchoff stress obtained as:
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S=detF F'6F '
(2.52)

Second Piola Kirchoff stress a symmetric second order tensor. For small
deformation casd; is approximate to identitgletFis approximately 1, and thus no
considerable difference between @&uchy stressNominal stressand theSecond
Piola Kirchoff stresss observed. Neverthelessnan-linear elasticityor non-linear
plasticanalysis, where there exist large straining, angl deformations, the analyst
must perform the operations either in the curreater in the initial state. In case of
performing the operations in the initial sté@anust be used for the stress definition.
However, in case the analysis is performed in thieeat stateCauchy stressr some
other variants should be us&imay be considered as thell backof ¢ from current
state to initial state. S is frame indifferent at me shown in the sequel. Thusjs
preferred in some analysis when frame indifferaade be considered, but tpell
backandpush forwardoperations constitute a large amount of work.tRisrreason,
sometimes, invariant variances@duchy stresare preferably used in some analysis,

where stress incrementation is necessary. Thisvidlatot be dealt here.

2.4 FRAME INDIFFERENCE

Since in the above definitions of stress or stfaame indifference is declared, for
the continuity of the subject, this concept willdiscussed a little. Assume that the
body dealt with makes a rigid body motion in whibkre is only translation and
rotation, where there is no deformation excepptie®ious stresses and strains
remain intact. Now, regard the stress and thenstigiinitions on the body, and

compare those stress or strain definitions for stdtes.
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X2

X1 . X*l
X2

Figure 2.6: A deformable object making rigid bodgtion; translating and rotating in
space. With respect to the frame of the body, staes strains remain unchanged.
However for the fixed frame, at the initial stater® definitions of stress or strains
change.

The motion of the body can be defined as:

X =Q(t) XX +c(t),
Q=Q
(2.53)

wherex is the coordinate in the current sta{g) represents the translation of the
object andQ(t) represents only the rotational motion. The defttion gradient in
this case would constitute of the rotation paryoNlow see what happens to the

stress or the strain tensors as the body rotates.
Considering the deformation gradient, the equdiglow must hold:
dx =Qix =QF X =F [@X
(2.54)

Thus, from the above equation, it can be concludatthe deformation gradient
transforms like a vector under rotations of thesobyvith respect to the initial frame,

which can be stated mathematically as:
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F =QI[F
(2.55)
When one looks at the rotat€duchy stresfrom the initial x-frame, then:
¢ =Q6 M’
(2.56)

and it is obvious that it does not remain the sangker rotations. Therefore, it rotates

with the rotating frame.

Looking at theSecond Piola Kirchoff stress
S =detFF ' F  =detFF'QD QMO F "
T T
(2.57)
Thus, from above it can easily be concluded that:
S =S
(2.58)

The above equation simply implies ti&s frame indifferent, which means it does

not change under rotations and/or translationsaphé.

Continuing the procedure for ti&reen-Lagrange deformation tensor

(2.59)

The above equation means tlaeen Lagrange Deformation Tenssrunaffected by
rotations of the object. It implies also frame ffetence of th&sreen’s Strain Tensor
E.

Considering thé&ulerian deformation tensor

b'=F [F =QFF M@ #b
(2.60)
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From the above equation, it is seen thalerian deformation tensaptates with the
object. It directly implies thaulerian strain tensoalso rotates with the object

rotation.

2.5 CONSTITUTIVE RELATIONS

Constitutive relations are the equations relativegstrains to the stresses. For this

kind of a relation to exist, a consistent matemaldel is needed. In literature, many
different material constitutive relations existr fee linearsmall deformation, small

strain analysis, the relation of stress to strain in @pfane stresyplane strainand

axisymmetricases are defined simply as below:

Plane Stress:

-, Al-2v)
o L-v) L-v) &
:121 . 0_“ _| Aty a-) 20 0 511
2 22 1-v) 1-v) 22
%z O, 0 0 7] _2‘912
(2.61)
Plane Strain:
Sy Oy A+2u A 0 &,
Sy U0y | = A A+2u 0| &,
SlZ 012 0 O /'l 2‘912
(2.62)
Axi-symmetric:
Sul [ou] [A+2u 2 0 A Te,
S, 0l %2 | - A A+2u 0 A £,
%2 012 O 0 /'I O 2£rz
Sis| [T A A 0 A+2u| &
(2.63)
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In the above formulation, it should be noted ®at, ande are written in vector
form, which is called a¥oigt notationin [5]. Unless otherwise stated, in the FEM
context, they will be assumed in this vector fobmt, in the general continuum
mechanics equations, they should be considerdaimatrix form. Here}, andu are

theLame’s constantdefined as:

_ Ev
@+v)1-2v)
(2.64)
_E
K= oay)
(2.65)

Thenon-linear cases more complicated. Consistency becomes an irapoigsue to
deal with. In that case, the models are classifiggeneral for path independence,
reversibility, and non-dissipative behaviors (Bstytko et al. [5]). In this work, only
two of the constitutive models are dealt with; ohgvhich is the direct extension of
theHooke’s Law called theSaint Venant-Kirchoff material modend the other is
theHyperelastic Neo-Hookean material madel

Kirchoff Material models a model used in general farge deformation — small
straintype of problems. It does not have much praciiopbrtance in general. It only
includes the rotations of the body. In the smadlistrange, both of the strain matrices
approximate to engineering definition of strainkaffis why it is used in the small
strain range. However, in case of the large strgirit results in stiffer results. The
reason may be explained by the strain definitiarthenging considerably in case of

large strain. Referring to initial state, the nelatis defined as:

S, = élJKL E., or in matrix form:S = C:E
(2.66)
where,Sis theSecond Piola Kirchoff stress tensandE is theGreen'’s strain

tensor which are defined before, a® is the constant constitutive matrix defined in
the assumed unstressed initial state. When refgetoigurrent state, stress or strain

definitions should change accordingly as:
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0; =Cyy€y, orin matrix form:¢ = C :e

(2.67)
wherego is theCauchy stressande is theAlmansi’s strain tensoas are previously
defined, andc is the constitutive matrix, changing as the defdrom state changes.
The change ot is defined by the transformation rule from thettessed initial state
constitutive matrix according to the formulation:

Ciw = deim F. Fu FucFiCu

(2.68)
Hyperelastic modék used for large deformation and large straifyaig In this
model, stored strain energy potential is defined asction ofGreen’s deformation
tensoror Green Lagrange strain tensdbtresses and constitutive relations are
obtained accordingly from the potential functiohislformulation has variations [5],
[6], but the one in [6] is adapted for the progmeneloped. Hyperelastic model
guarantees path independent work and is more t¢ensisith the non-linear stress

definitions. In terms, this means:

_,¥(C) _ WE)
aC  OE

S

(2.69)

In the above formulation¥ is the potential defined for ti@&reen’s deformation
tensor whilew is the potential defined f@reen’s strain tensoiThe transformation

to the current state is performed by use of E§2)2as:

2 IZIFJEDFT— 1 DFBOlVDFT

T detF ~ oC detF  oE

(2.70)

The constitutive matrices are derived from Eq.4RI§y taking one more derivative,

which yields:

2 2
6:4D6 Wy - 0w
0CoC OEOE

(2.71)
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The above equation is also transformed to the custate as written in Eq. (2.68).
These formulations are generahigperelastic constitutive model

Now there comes the definition of the energy funttiFor thecompressible Neo-

Hookean hyperelastic modéhe energy function is defined as ([6], Chapler 7

Y(C) = % [{(detF)? -1) - (/% + 1) On(detF) + % Cu [{tr (C) - 3)

(2.72)
Then substituting equations (2.69) (2.71) in (2gig2gs:
S:%Ed(detF)z ~)ICr+ull -C™),
or in indicial form:
S, =AL(detF)* -1 [T+ u{J, -Cy)
(2.73)
Cy =AdetF)’ [T, "Cit +
> (@u-A(detF) ~hCCS: +Ciici
(2.74)

are obtained. Egs. (2.73) and (2.74) are defineth&Tl otal Lagrange Approach,
which means calculations are performed in thealnstiate. The same transformations
as in Eqgs. (2.52), and (2.68) apply for the curstaie calculations; stresses and
strains are also defined fopdated Lagrange Approads follows:

detF)2 -0 +—* o-1,
Sdetr Wdeth) ~hi+ e o)

or in indicial form:

A
O'i. =
' 2detF

2 _ _H -
(detF)" =1)g; + = (0 =9)

(2.75)
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1
G = /](detF)zé_ij Oy +§ (2u = A((detF)? -1) mo_ika-jl +0, 5kj)
(2.76)

In “Voigt notatiori (Belytschko et al. [5]), theonstitutive matrixcan be written in

2D forupdated Lagrange methad:

Plane Stress:

Al-2v) 49 AQ-2v) (detF)? 0
L-v) 1l-v)
o= |22 epy AL o) 0
@-v) @-v)
0 0 —-———((detF)" -1
_ U=y (P D)
(2.77)
Plane Strain:
A+2u  A(detF)? 0
c=|A(detF)> A+2u 0
0 0 ,u—%((detF)z—l)
(2.78)
Axi-symmetric:
[ A+2u A(detF)? 0 A(detF)? ]|
A(detF)*>  A+2u 0 A(detF)?
““l o 0 ,u—%((detF)z—l) 0
| A(detF)?  A(detF)? 0 A+2u |
(2.79)

For theKirchoff mode]l at the initial undeformed state, the constitutharix is the
same as in the linear case. Nevertheless, forafuerded state, the transformations
must be performed according to Eq. (2.68). Thamestormations are done for the

fourth order tensor, than reduced to second oestesor inVoigt notationform.

It should be stressed here that, in thednelastic modethe stresses are calculated
from Egs. (2.73) or (2.75) and thenstitutive matrirom Eqs. (2.74) or (2.76).
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In theplane stresanalysis, for the stress calculatiohshould be changed

accordingly as:

Amm:/]ﬂ.—Z[v _ E[l/2
1-v 1-v

(2.80)

In addition,constitutive matrixshould be changed accordingly for fiiane stress
analysis. For thapdated Lagrange formulatiahis written as in Eq. (2.77) but for

thetotal Lagrange formulatioiit must be written as below:

Con, =22 ) tgetF Y (i, +
-2

@) [(detFf -1))CLCE +ClCL)

(u

(2.81)

2.6 CONSERVATION EQUATIONS

Having defined the stress, strain, and the cotistituelations, conservation
equations may be stated briefly as promised iptaeious sections. In the
framework of continuum mechanics, four conservagiquations related to the
context may be defined, namely tinass conservatigfinear momentum

conservationangular momentum conservatiaand theenergy conservation

2.6.1 Mass Conservation

In Newtonian mechanics mass is conserved. Thabdimass is lost, and no mass is
produced during deformation of a body. In FEM cahieis not used, or included in
to the equations directly, but its result is uswdirectly. In the mathematical form,

mass conservation may be stated as:

_[/00 [V, = J"O )Y
(2.82)
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In the above equatiopy is the mass density in the reference configuratdnle p is
the mass density in the current configuration. @emgg Eq. (2.8) and the integral

Eqg. (2.82), the following formula can be written:

(2.83)

If detFapproaches zero angif0, p approaches infinity, which is not admissible;

thendetF must be greater than zero.

Here it should be emphasized that, the above eguigtwritten for the Lagrangian
mesh, since we are dealing with this kind of aesysas stated previously. For
Eulerian meshes, it should be stated in a diffei@m [5].

2.6.2 Linear Momentum Conservation

Newton’s second law states that the rate of linme@mentum is equal to the applied
external forces. In the quasi-static case, whexddites are applied slowly, i.e.
acceleration terms are omitted and the motiondependent of time, the linear
momentum equation reduces to equilibrium equatidese, it is sufficient to give the

direct result of linear momentum equation, be taldrium equation as:
Ole+plf, =0
(2.84)

whereo is theCauchy stresy is the mass density afiglis the internal body force
per unit mass. It should be obvious to the reddsrthe above equation is defined
over the current state of the body.

2.6.3 Angular Momentum Conservation

The angular momentum is obtained by the cross ptaafuhe terms in linear
momentum equation by the position vector. The tiesult is the symmetry of the

Cauchy stress tensor
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(2.85)

This result is important and is used to reducentimaber of equations to be solved.

No other result is obtained by angular momentunsensation equation.

2.6.4 Energy Conservation

Energy relations constitute the mainframe of FEMhoe. In the context of
mechanical problems, the sum of work done by itestresses and external forces
must be minimized. In the actual case of the eneogygervation, one has the
equilibrium of internal and external energy rateg,time variations are not in the
context of this dissertation. Here one is onlyneséed in the form of internal work
done by the internal elastic stresses and extemrd done by the external forces

instantaneously, which is called theasi-staticcase.

As may be seen from the previous sectiecond Piola Kirchoff stress related to
theGreen’s Strain tenspwhile Cauchy stress tensa related to th&lmansi's
strain tensorn literature, they are defined to be work coajigg Internal Energy
forms for both theotal Lagrangianandupdated Lagrangiaformulations may be

written for theKirchoff material modeés:

n,. :%jS:EdVO:%jc:edV
Vo %

(2.86)

It should be noted for the above equation thaterfirst integral, integration is
performed in the initial volume, whereas in theosel; integration is performed in the
current volume. Conversion from one to other iygafich means they are
dependent and equivalent. Both of them should thigesame result as long as the
conversions from one state to another are perfoguasistently. One of them is
selected for internal energy calculations. Depandimthe selection of the integration
form, formulation is called eithdrotal Lagrangian or Updated Lagrangian

respectively.
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In case of thélyperelastic material modethe above can be written as the integration
of Eq. (2.72) as:

N, = [WE)dV,

Vo

(2.87)

The external work done by external forces may bedtated as follows:

Moo=~ [u" CogfedV, = [ul fdry, =~ [ul (,dr,
Vo To, To,
(2.88)
In this equation, the first integral is the worknédoy the internal body forces (i.e.,
magnetic, gravity, etc.). Hegg is the mass density defined in the initial sthiés
the body force per mass. The second integral ig/thie done by the tractions on
traction-defined surface. The third integral is Waek done by the displacements of
the restrained nodes on restraint surface. Theeatoomulation in Eq. (2.88) in the

initial state can also be written in the curreatestwithout loss of generality as:
Mo ==[u" DpfedV ~ ul T,dr, - [u] @,dr,
\% I Fu

(2.89)

The difference between equations (2.88) and (2s8®gt, in Eq. (2.87) the
integrations are performed in the initial volumesarface, but in Eq. (2.88), the
integrations are performed in the current volumsusface. However, they are in
general equivalent, and since the follower forcesnat dealt with, for eithdotal
Lagrange formulatioror updated Lagrange formulatioiq. (2.88) may be utilized
for the prescribed forces and displacements. Bhabin-linear forces are not used in
the implementation program. Non-linearity is onbgaciated with the internal strain

energy.
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CHAPTER 3

FEM FORMULATION

3.1 INTRODUCTION

In this chapter, element formulation for plane strglane strain and axisymmetric,
2D elastic solutions and implementation of FEMagg to be investigated. This part
will be presented here only for the completenesh@tubject matter. It will not be
elaborately dealt with since there are numeroug$aad publications about this
issue. The interested reader should refer to mefese[2]-[5] for a deeper

understanding.

Ji(&m)
&

(1.1 (L1 @

(-11) 1 2(1:1) 4‘F (X2, %)

X1, %1 F(X1,X2)

w

Figure 3.1: A FEM element patch defined in inistédte mapped to current state. Also
mapping from master element to both initial andentr states of the element is
represented.



In the context of FEM, the approach is to disceetizomplicated bod§ into
simpler rectangular or triangular patclégsand let connectivity between them.
Those patches are further transformed to baseesgasametric elements for being
able to do the Gauss integrations, and a switckdsst the base element and the

actual patch is realized with the Jacobian transédion (Figure 3.1).

3.2 FORMULATION OF STRAINS

In the FEM context, information is lumped in thedes, and values are interpolated
on rectangular or triangular elements from the sdajeutilization of thé_agrange
interpolation functionsDisplacement formulation is followed, that isplecement
form of strains, Eq. (2.39) or Eq. (2.40) is usBdlbe able to make calculations, the
derivatives with respect to spatial coordinatesnaexled; which requires following

some sub steps and equations.

For the elements, iso-parametric element formulasdeing used. That is, the same
interpolation functions are utilized for the intel@tion of coordinates and the
displacements at a point in an element. At aniort@oint of the element domain, a
variable may be found by multiplying each nodalreaby the corresponding nodal
base function value at the point. Actually, theebfamctions define the weight of the
corresponding node at a point in the domain oetament. In mathematical terms:

N

X :Zﬂ(é)D(il'
X =2, 4@
U :iﬂ(@mil

(3.1)

Here,i refers to the spatial index, where for the 2D d¢aseuld assume the values
1,2, and in the 3D the values 1,2,3. The indesters to the local index of the nodes
on the element and ranges from NfavhereN is the number of nodes of the

element. The above may also be written in matnisnfo
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H ul

L ° Jd2Nx

(3.2)
As may be seen in previous chapter, one will needlerivatives of the

displacements with respect to spatial coordindiess. is achieved by the Jacobian

transformation written by the formula:

9¢) _ 9% 9()
0& ~3& ox,
(3.3)

in which, (¢) refers to any variable defined in tt@main to take the derivative, and is

straightforward. In the two dimensional case, iyrba written in open form as:

0() | |9% 0% | 0()
0§, |_| 06 04 | 0%
0(*) | | 9% 0% | 0(*)
9, | |0&, ¢, | ox,

- 7
J

(3.4)

The Jacobiad in the above equation may be expressed more\chkearl
transformations to the reference state and tramsfibons to the current state

respectively as:

iaﬂ (¢1.¢5,) D(ll iaﬂ (¢1.45) DQ

K@= iF o 3 o
Za(ﬂl (SH) X/ Zaﬂ (SH) X
1=1 0¢2 =1 0¢2
ZN:‘)W (SH) X! ZN:a(ﬂl (SH)) X!
JE©) = |'\:11 06y |;1 06
Zaﬂ (SH) %! Zaﬂ (SH)) b
1=1 652 1=1 652

(354a, b)
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As stated in the above paragraphs, in the actgal tiae derivatives with respect to
true global coordinates are necessary, which matsned by rearrangement of
Eqg. (3.3) or (3.4).

a( ) —1(§)|jL or
a( ) _ G@

=1

(3.6)
Now that those transformations from base elemergabelements in reference and
current states have been defined, the transformfben reference to current, or the
inverse relation may be expressed. It is actub#ydeformation gradieft, or the
inverse of it, defined in the previous chapteshibuld be stated here that

multiplicative decomposition is valid for the defmation gradient:

JE) =F,E)
(3.7)

In Eq. (3.7), the only unknown is the deformatioadientF. By rearranging the

terms:

FE)=3@)" 15'©)

(3.8)

This equation requires the Jacobian to be invertibhe may note here that too much
distorted elements may jeopardize the inversiahfof its determinant may be too

small in that case.

For the linear analysis, which is the simple casmk@nstitute the beginning point for

the non-linear analysis, the engineering stsaimay be written as:
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_ a, -
0%,
E
~ 11 ~ auz
E £y = —=
0X,
Vie=262] | gu, au
—1 4772
| 0%, 0 |
(3.9)
which can be written in open form for 2D as:
& =Blu,
where:
i 0 i 0 _Ui_
0x, 0x, Ut
_ 0 0 _| 2
B=l0 — 0 — - U=y
0X, 0X, )
9 9 o0 9 %
(0%, 0% 0%, Ox | L+ don
(3.10)

The above formula is standard in FEM formulationd the same notational
convention is used in virtually all of the FEM baolote that, the derivatives are
with respect to the current state coordinatesti®iteader should know once more
that for the linear analysis, the distinction begwéhe initial or the current state
becomes invisible. Thus taking the derivatives watbpect to initial state is also
valid, and implemented so for the linear analyd®wever, for the non-linear
analysis, this distinction will be important, aBdvill be calledB, when referring to

initial state from here and after.

The strains seen in Eq. (2.39) or (2.40) are spbitlinear part and non-linear part.
The nonlinear part has been treated in linearigaifequations. For the formulation,
Bathe [2], Chapter 6 is followed. The linear partlealt within the Newton iterations

as described in the sequel.

34



3.3 RECTANGULAR ELEMENT FORMULATION

A rectangular element has at least four nodes,lthsst least four interpolation
functions for each node. For tHeriode, ' interpolating function is assuming the
value 1.0. If the element is of second order, iy tmave up to nine nodes. Nine-node
rectangular element would be complete second drére implementation program,
only four node rectangular elements have been mmghéed in the graphical
interface, however beneath the graphical interfapdo eight nodes can be

implemented. The four interpolation functions maywritten as follows:

1 i i .
Q(El’é(z) :Z(l"'fl gl)(l'*'fz g2)1 I=1234
(3.11)
For details and higher order element formulatiefenence [4] may be followed.

The strains are defined as"™ @der tensor, bu¢oigt notation which reduces the
second order tensor to a first order tensor isspred in general for the FEM

formulation (Belytschko et al. [5]).

3.4 TRIANGULAR ELEMENT FORMULATION

For the triangular element, area coordinates ard.Ustriangular element has at least
three nodes, thus it has at least three interpaldtinctions for each node. For tffe i
node, ' interpolating function is assuming the value h.thie same way as the
rectangular element. If the element is of secodémit may have up to six nodes.
Six-node triangular element would be complete seé@rder. In the implementation
program, only three node triangular elements haes limplemented in the graphical
interface, however beneath the graphical interfapdo six nodes can be

implemented. The three interpolation functions meayvritten as follows:
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—z=A
Q({lufz) - 51 - A

_s_A
@(51,52)_52_ A
_1_s_z A
@(61162)_1 51 52 A
(3.12)

For details and higher order element formulatiefenence [4] may be followed.

Xz

¢; =0
X1

Figure 3.2: Triangular element area coordinateh toital area A.

3.5 VARIATIONAL FORM

In the context of FEM, Eq. (2.84) is called g8teong formof momentum balance
equation To obtain the weak form, that equation is mukgwith a variational
displacemendu called theest functiorand integrated over the body. The property of
the test function is such that, it is zero overdisplacement-defined boundary. It is
actually a small perturbation to the system aetipalibrium:
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jau( +pr Y@V =0

(3.13)

Integrating by parts and using tBauss Theorerfor the above equation:

aw‘”aolv jpmuf vV - jautmr 0

l It

=1
(3.14)

This the weak form of themomentum equatiofNote that in the above equation, the
boundary conditions are included. The weak fornvabmplies the strong form.
That is the strong form can be obtained from thakiferm by one more integration

by parts.

In the above integration formula, terms may beilbsdrphysical names. The first
integral is called the virtual internal work, thecend and the third terms are the
virtual external work. In the first integral, therd/ative of the variation af may be
split into symmetric and anti-symmetric parts. 8iads defined to be symmetric in
the previous chapter, multiplication with the asyimmetric part vanishes. Then, the

first integral above may be written as:

o(au) 1,0 O
oX. 0' J. (_

]

—)odv
0x,

<e—,

(3.15)

Now take the variation of th&lmansi’s strain tensaoat equilibrium, expecting to get

some interesting results.

o,
_g(aau _0du, E@um _au, E@chm)
2°0x;  Ox ox 0x, 0x 0x

0 0

(3.16)

Since at the solution point,us assumes the displacement corresponding to the
stationary point satisfying equilibrium, derivatiwéth respect to x vanishes. Then the

above integral in Eq. (3.15) becomes equivalent to:
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J-adJi o, [V :Icij Y
v 0X, v
(3.17)

This equation may be compared to Eq. (2.86) andearoncluded to be the
variational form of energy. Equivalently the vaioatof Green Lagrange strainan
be taken and one more equivalence may be obtaihed, variational equality may

be written:

I, =[o: @@V = [S: E @Y,

% Vo

(3.18)

For small stress and small strain analysis, theeabwrmula may be written as:
I, =" B, [CIB, @V, [
Vo

(3.19)

in which, By is the derivative matrix defined in Eq. (3.10)wibe only difference

that the derivative is taken with respect to ihit@ordinates.

The variational form of the external work is themsaf the second and third integrals
in Eg. (3.14). Since one is not interested in fodo forces in the context of this
dissertation, they are not changed much for theentiend deformed states. One can

write the variation of external forces as:

I == p B, o TV -~ [ dut, T
\%

Iy
(3.20)
Thus, a variational form is obtained, which will lielpful in the linearization of the
general non-linear FEM. Since the summation ofriternal and the external
energies is supposed to be minimized, it is expletia the summation of the
variations of the internal and the external enarganish. Actually, Eq. (3.14)
implies this result. In the next section, this &aanal form will be linearized for

application of Newton algorithm to the solution.
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3.6 FEM LINEARIZATION

For the details of this section, Bathe [2], Chapieshould be followed. Also in [4]
and [7], the topic of FEM linearization has beensidered. For solution of the non-
linear equations, Newton solution technique has lagplied, which requires
linearization of the variation of the total energgygeneral, it is required that the total
energy is minimized, which requires that the graiae# total energy function
vanishes (first order necessary condition). Anotegquirement would be the Hessian
of the potential is positive definite (second ondecessary condition). In this section,

those concepts will be made comprehensible tocthder.

In the context of Newton Algorithm, the station@agint of a function is aimed,
beginning from some initially assumed unstresseitipa by tangents to the function
(Figure 3.3).

F(u)

\—,Target Point

v

Figure 3.3: Representative Newton approximatioreseh

One is to solve the equations following in general:
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K; AU =R,
ut™ =u' +Au'
(3.21)
Here, K is called the tangential stiffness at virtual timeshich in mathematical
terms is the Hessian of the internal energy terdnisalways positive definitu' is
the incremental displacement for current virtualtit, and Ris the residual force at

virtual time t.

The tangents of the function are needed in genEna.is achieved by the
linearization process. Consider beginning linedioreon the initial configuration. It
is already mentioned that, when everything is fiansed to initial configurations
and calculations are performed there, the methodllisd theotal Lagrange
approach Now considering the rightmost integral in Eq1@, the linearization can
be written as:

-4

int

Dd1l

iy (+ 2bU) = [ D(E: )V,

£=0 Vo

= [(D(&):9)aV, +[ (% : DS)aV,

Vo Vo

(3.22)

To achieve the linearization of the above expressias needed that some

intermediate components be linearized.

The deformation gradient can be linearized as [7]:

DF :i F(¢+5Au):i M
del,- del,., OX
_ 0Au

—W = D(AU) F = DO(AU)
(3.23)

in which,Au is the small change in displacement as stateddyedad Ju represents

the gradient with respect to current coordinatdslei],u represents the gradient

with respect to the initial coordinates.

The Green Lagrange strainan be linearized as follows [7]:
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DE = % FT(0(Au) + 0(Au)T)F = %(FTDO(AU) +(0,(Au))"F),
(3.24)

This is the pull back of the small strain definéth& current state to the initial state.
It can also be written in terms ofandAu in indicial notation by use of Eq. (2.6) for

deformation gradierft as:

D(E ):1 0(Au,) , 9(Au,) . 0(Auy ) E@uM L 9y, D@(AUM)
VT2] oX, X, oX, o0X, X, 0X,

(3.25)

When looking at Eq. ((3.25) carefully, it shouldreeognized that, it is linear ku

whenu is known. It can be written as:

DE =(B, +B,)"Au
(3.26)

Here,By is defined in Eq.(3.10) and the paragraph folla@yinith the only difference
that, derivatives are taken with respect to curceotdinates. FurthermorB; is
defined as (Bathe [2], Chapter 6):

Uy, @, Uy, U, &, Uy,
B, = u1,2¢7,12 uz,z(ﬂ,lz ULZ% U2,2§0,22
ul,l¢}2 + ul,lw,}. uz,lw}z + u2,2¢,}. ul,l¢,22 + ulzﬁ u2,l¢,22 + u2,2¢§

N N
u,@, Uy, @,
N N
U@, Uy, @, ,
N N N
ul,l¢,gl + ul,2¢,l u2,l¢,2 + u2,2¢,1

(3.27)
in which, yy is the derivative of displacements with respeatittal coordinates
(1I={1,2} and M={1,2} for 2D case). Furthermorey; is the derivative of Rbase
function with respect to initial coordinatel={1,2} for 2D case) and is given in Eq.
(3.6). This derivative is taken by use of the imeedacobian. The matrix in Eq. (3.27)
is only used for th@otal Lagrangeapproachas will be clearer in the sequel. It is not

used for thdJpdated Lagrangease. Writing those statements in equation form to

make things more clear:
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N

Uy = ou, :Z@Juk,and

S Xy &
- 0 - 0 ,
75 = o3y (fl,ma—‘i +Jo3 2 (5@%252),

J=1,2 for 2D case.
(3.28)

In Eq. (3.22), the derivation of BE) and [5 are also needed:

D& = DB(&FTF ; FTd:)} - DB[(DO@T)) = (Do(a))]}

(3.29)

EqQ. ((3.29) can also be written in indicial formise of Eq. (2.6) for deformation

gradientF as:

_ 1| dduy 04u, +0AuM 0du,,
2| oX, 0X; 0X, 0X,

DJE,;
(3.30)

This is used in the first integral on the right thande of Eq. (3.22). By use of the

symmetry, the integrand may be written as:

[D(&E):sdV, =" [B],, (5B, (BuldV,

Vo Vo
(3.31)
where,
4 0 @ 0 ¢ o0 @) 0]
5 L% 0 @ 0 @ 0 g o
ONL 0 ¢ 0 ¢ 0 ¢ - 0 ¢
0 ¢ 0 ¢ 0 ¢ - 0 @]
(3.32)

The elements of the matrix in Eq. (3.32) are defimeEq. (3.28). Note th&is

defined a little differently to be able to writartgs in this form:
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Sy S, 0 0
S= S S, 0 0
0 0 S, S
0 0 S Sy

(3.33)

Now, the only term, linearization &with respect tay, is left. It can simply be

written as:

D(S) =g—:: D(E) =C: D(E),

orinindicialform:
9 _
D(S,) = GSJ D(Ex.) =C. 1 D(Ey)

KL

(3.34)

Now one has tools for the linearization of the &@onal internal energy. Then Eq.

(3.22) can be written more explicitly in the form:

DI, =" [(B,+B,)" :C:(B, +B,)AudV,

AudV,

ONL ONL

+ dﬂvoj B, BB
= dJTéoTAu
(3.35)
whereK is the tangential stiffness defined as the sunanatf the integrals. This is
the end of the derivations for the linearizationha internal energy variation for the

non-linear FEM, TL formulation.

Now considering the first integral in Eq. (3.18)emn linearization is performed for
this integral, the solution strategy is called uipelated Lagrange approach
Nevertheless, this is not possible since the cusgtae of the object is not known.
However, there is the last state of the objecaaton which one can make all the
linearization. In this case, one is still dealingivthe Lagrangian meshSo,
transforming the previous linearization to thesatacremental state at hand is
enough for theipdated Lagrangérmulation. In general, one may expect to get the

same results for both of the methods. The choicenerto the other is the
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computational efficiency on the specific problerpdyFor elasticity problems, no
considerable gaining or loss have been observediog one method to the other.

At this point note that when writing it is meant the last obtained incremental step of
the body in consideration. Now formulate the samternal energy term at that state:

-4

int

Dd1l

a1 (p+&hu) = j D(E':S")dV,

=0 \A

= [(D(E"):S)aV, +[ (" : DS")aV,

v,
(3.36)

Considering the system this way, one may obtairséimee system of equations as in
the above formulation for the TL formulation. Thare only two differences to be
considered. One is the usexbfwhich is the position at the latest state, aeddther

Is getting rid ofB; term in the integration. The reason is that in(E2}25), in the last
two terms,uy is being actually equivalent fay since solution is being performed
from the last incremental state. Then the intefgrahula in Eq. ((3.35) is converted

to:

DI, =" [B":¢:BDudV, + &' [B,, BB, Budy,
K Vi

= 'K ;Au
(3.37)
Here,K is the tangential stiffness matrix defined assin@mation of the integrals.
It is equivalent with Eq. ((3.35), but with thefeifence that calculations are
performed in the current state, @ddoes not exist. It should also be noted i,

defined a bit differently in the second integraltba right side, which is written as:

o, o0, 0 0

5= g, 0, 0 0
0 0 o, o,
0 0 o, o0,

(3.38)

Examining Eq. (3.20), it is seen that, forces afned in the current state. Since in

the context of this dissertation, follower forces.(fluid pressure), are not
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considered, the external forces do not changedditian, the body force lumped on
the nodes do not change. Thus, the linearizatidoaols vanishes.

For Eq. ((3.21), now left is the residual terimIRis already mentioned, at
equilibrium, that the total of internal variatioreergy and the external variational
energy vanish. However, at an approximate statenmay expect to have some
residual, which is the unbalancing of internal ggeand the external energy. It can
be written in mathematical terms as follows:

R=dJ1_-a' Mo

= [ plau fy [0V + [t @ - [ & @0,
\% \%

M

(3.39)

For the TL and UL cases, the above is written respey as:
R=a" [ plly, [V, + &’ (ft@r -&' o (B, +B,)" (B[4,
Vo ot Vo
(3.40)
R=ai[p, @V +d Oft @r - & B oV
\%

[ \Y

(3.41)

In Eqgs. (3.39) (3.40% ande are to be written in the vector form as in Eq61},
(2.62) or (2.63).

It should also be stated here tNewton’s methods highly instable away from the
solution. It may cause oscillations or divergingesidual. To prevent this, the loads
and displacements must be applied slowly to favamhvergence, that is,
incremental solution may be needed. In the prognéenface, number of increments
is entered as a solution parameter. In additiomesmeasure must be taken for in
case oscillations to occur and the program fadl infinite loop, which is not
terminating. For that reason, maximum number ohiiens is entered for solution
parameters of non-linear elastic solution. The fdations may be summarized by

the following algorithm:
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Make Initial Linear Solution for increment=1
SolveK [u=F

v
Calculate tangential stiffness; (3.35) or (3.37).
Calculate Residudt (3.40) or (3.41).

v
Solve linear equation systekh; [Au =R, and findAu.

A 4
A

v
Updateu, u=u+Au.

Test termination criteria:

Au' [R
T <€
u 0F

FALSE

If increment<Number of increments
T

FALSE

is less than some

AU
entered or -

u F
small threshold value.

Number of iterations -
Maximum allowed number of
iterations entered

Increment=increment+1

Uincrement+ T Uincrement

»EXit

Algorithm 1: Newton’s method for FEM equation system.
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The statements and formulas above may seem haairprehend. However, they
are straightforward for implementation. Having venit the general FEM equations
briefly, the main topic, contact formulation ane solution techniques, and the
binding to the above equations may be derivechémext chapter, those will be dealt

in detail.
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CHAPTER 4

CONTACT FORMULATION

4.1 INTRODUCTION

In this chapter, formulation of contact constraiatsd the solution methods will be
presented. In order to simulate contact with FEM; needs a mathematical contact
model. In the context of FENpenalty methodand thd.agrange multiplier method
are the two main strategies for dealing with cant@ther methods, in general, are
extension of those methods, at least currentlyy Tk be presented in this chapter,
as applied to the program written for this dissgenta Before directly relating the
subject matter to FEM formulation, some optimizattoncepts will be included in
the chapter. Then, general active set solutiotesfies, application details to the
linear elastic case will be presented. Afterwatiais difficulties arising in the
application of the techniques to non-linear elastise will be discussed, and solution
strategies offered in [11], [13], [14], [15] wilktbriefly explained and the method
proposed in [15], which constituting the backbohthis dissertation will be

presented in a bit more detail.

4.2 PROBLEM STATEMENT

In general, the minimization problem of the sunintérnal energy due to the
straining of the body, and the external energytdube applied external loads on that
body is to be solved. Nevertheless, by definingratact surface, a constraint is
defined on that energy equation of the body, sbahthe energy imposed being very
large or infinity when penetration to occur. Ineeff, that deteriorates the smoothness
properties of the energy equation system. In thienigation world, inequality

constrained minimization is defined as:
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minimize f(x), {f Ju LI D}
subject to h(x) = O,[h 0" .o m]
g(x) 2 0,{g:Dn - DS}
(4.1)
In the abovel is the Euclidean Space. In the context of FEM, hfe)the
displacement-defined boundary conditions, whichharedled easily, and are called
the soft constraints. g(x) are the contact comgsawhich are hard to deal with
because of derivative of total energy is not beiagjly obtained at the point of

contact; and called the hard constraints. Whewahstraints are put in the FEM

context, the system of equations becomes:

minimizel (x) = My (X) + M gy (X),
subject ta:

h,(x)=x; -¢; =0, oL 0Ol
9(x); =(x{-x")ym'=zo0, jOI, 01
I;nl, =0, (1,01,)01

(4.2)
To state the above equation by words more expiidrtlthe discretized world, there
IS an energy expression to be minimized, with dispment-defined constraints at
some nodes in the index setiI, O |, of the system analyzed. There are also the
contact constraints in the index getl, O | , but those indices are not coinciding
with the displacement-defined indices (iLen 1, =0), in other words, they are
disjoint sets. It should also be stated here thahe framework of this dissertation,
only normal contact is dealt, which means, theroitangential contact force,
namely the friction is ignored. That is why theatmn gy(X) is used for normal gap
here and after instead ofx( The body must be supported such that, it cannot

undergo rigid body motion when disregarding thetacinconstraints.

Internal and external energy definitions for FEM arade in Chapter 2 by EqQ’s
(2.86)-(2.89). Soft constraints¥)(are easy to handle. References [2]-[5] may be
followed for them. The inequality constraintg(x) will be explained here.
Regarding g{) in Eq. (4.2) x* are the coordinates in current configuration mdgpe
o(X*) for bodyo. In the framework of this dissertation, an elabtdy and a rigid
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surface is dealt. Thus=1 will correspond to the rigid surface, white2 will
correspond to the elastic deformable body. All ¢igua will be presented here for
the 2D case, leaving the 3D case for a further wiadwever, in general, the contact
formulations do not change much for 3D case.dtss assumed that the rigid contact
surface is stationary (i.e., not moving in any cli@). This situation is called
unilateral contaciin literature [1]. By using the fact that displagents will be zero

for rigid stationary body, and by use of Eq. (2i@)a more explicit form, gx) may

be written in this context as:

gy =Gy —uy, where
Gy =(X* = XHENM'()
uy =u? (&)

(4.3)
In Eq. (4.3), G is defined as the initial normal gap, andoging the current normal
gap. It should be observed that @d g are scalar values obtained by dot products
of two vectors. It should also be stated here )('i‘z(t:: ) is the nearest point,

parametrically defined on the rigid surface, oladimvith respect to the slave node of
the elastic body at the deformed state (Figure which will be made clear in the

next section.
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Slave node at the e
initial position ‘

x> Moved slave node after
some intermediate time
without considering contact
surface position.

Master surface

Figure 4.1:Slave node moving on the master costatace. The figure represents the
parameters involved in the gap function.

Now, with the aid of the gap function, the enermgyrt associated with contact force
should be formulated. It is plausible to treat¢batact force as an external traction

force in the form:
n,=fuld.dr,
rC

(4.4)

However, it should be mentioned in here that, aettuilibrium of the body with the
interface, the contact force would be a reactioodoSo, equal and opposite forces
are associated to the same point. Therefore, ddotaes do no work. Nevertheless,
if the contact surface had not been there, the badyd continue moving and
deforming, thus reducing its energy and it candie that the energy level of the
body stays at a higher level due to the existehcertact interface. If a simple 1D
case is assumed, a simple spring with a consaaiah example, the situation

becomes more comprehensible.
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=1%k*x%Fx  x=F/k x=-h
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v

x=-h Si0N i<

Figure 4.2: A simple 1D contact problem. A sprimigh an applied load and a contact
constraint. The energy function and the effechefd¢ontact interface to the energy
system.

The 1D situation considered is simple but instugcfor comprehension of the things
happening when a contact constraint exists. Fosphiag-force system, if the force is
small, the spring will not see the constraint. Hegrewhen the force is large enough,
the spring will stop ath, and will not be able to minimize the total eneagyl reach

x=F/k. Therefore, some work term is associated withazint

Though the integral in Eq. (4.4) seems simple @fitst sight, the problem there is
that, the contact force, and even the contact@ifanot known. Eq. (4.4) is only
written to state that, the problem is an interacpooblem happening only at the
interface of two bodies, which is represented fyout it is to be determined
somehow. In case of multi-body contact, the integuast be calculated for each
body and must be added to the total energy equdatimntraction vector appearing in

EqQ. (4.4) can be written in a different form by:

t. =6’ M =-p, ' - p; @&
(4.5)
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Figure 4.3: Free body diagram for contact interface

In Eqg. (4.5), p is the normal pressure, angip the tangential sheai’ is the unit
normal, anda?® is the tangent defined on the master surfaceoltld be noted here
that, py and p defined as scalars in Eq. (4.5). Tangential wacivill not be dealt in
the framework of this dissertation, thusip assumed to be zero. Also considering
that, living in the discretized world, the integegjuation in Eq. (4.4) is transformed

to summation for contact nodes as:

M. =Z Py D
(4.6)

In the optimization context, the inequality constralefined in Eq. (4.2) can be

reduced to equilibrium constraint with the followinonditions at equilibrium:

minimizel;,, + Mg, subjectta

gn 20,

pn <0,

py [N =0, (Complemeratry Slackes9

4.7)

The Eq. (4.7) are called &kertz-Signorini-Moreawconditions for frictionless contact
[1]. In the context of optimization, they are cdlkbheKarush-Kuhn-Tucker

Conditions It can be said that, whe), =0, no contact pressure is expected. When
there is contact forcgy is zero. The first and second inequalities in£d)(are
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callednecessary optimality conditiofgr inequality constraints in optimization
context [8]. In the optimization context, the tegprused here is theagrange

multiplier.

A

v
Q
Z

Figure 4.4: The function ofypwith respect to gNote the sharp change in the graph at
gn=0, which creates the major problem in optimization

It can be noted for the complementary slackness tieat the dimension ofps
force, while the dimension gf is distance. Then it can be said that, the
complementary slackness is associated to enerdgghwieans that zero energy is
associated with contact forces at equilibrium whers zero, that is, equal and
opposite forces do no work at equilibrium. HoweweiGase of penetrationypand
On being less than zero, a positive energy termssaated with contact. Else, if
larger than zero, which is the gap open state, phdreing zero. Therefore, zero
energy is associated with gap open state. Complanyesiackness condition in Eq.
(4.7) includes both of these situations. In théofeing sections, the above energy

form will be tackled.

4.3 RIGID SURFACE DEFINITION

In the framework of this dissertation, the rigidfaae needs to be defined
mathematically. As the solution techniquegster surface-slave notkchnique is
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used, which is the most widely used and acceptduhigue in the numerical
treatment of contact. The definition Bézier surfaces used as in [1] and [9]. In
effect, this section is based on [9]. The methadpgsed results in smooth third
order polynomial definition of contact surfacejsigtng C* continuity. In [9], two
types of Bezier curves have been presentedlais Hermiteandcubic Bernstein
interpolations, both of which have been appliethenprogram developed for this
dissertation. The program implementation is exgldim the next chapter. They stand

as an option of visualization and analysis in tftegpam interface.

The discretized surface model is local, that hange in the position of a node only
affects the curves corresponding to that node.yEvede is associated to a single

surface.

Figure 4.5: Representation ldérmit interpolation surfaceefinition.

Thecubic Hermit interpolatiorsurface is formulated as a curve tangent to taesli
drawn connecting three nodes at their mid pointgufe 4.5). The conditions of the

curve may be stated as:
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X(&)| o = X12,

X(é)] o, =X23
dX|  _ X2-X1
A€o [x2-xq]
dx| _ X3-X2
dley  [x3-X7
(4.8)
Then theHermit interpolationis given by:
xl(f) =X, +§(mxz _Xl) +Ww(<) |:éN
(4.9)

where, X1, X2, X3 are the position vectors of points for representite contact

surface, and, is a unit vector defined normal to the line coriimgcX12 andX23
and wg) is a third order polynomial defined as:
w(&) = A® 3 + BOI? [F? +C I LF + D, where
| =[x23-X12
(4.10)

where, A, B, C and D are the constants to be datedror the conditions in Eq.
(4.8), and is the length of line connecting midpoints of tlivees,X12 andX23.
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Figure 4.6: Representation Bérnstein Interpolation Surfaaefinition.

In case ofCubic Bernstein Interpolatigriwo more points are needed. There are four
intermediate points to represent the cubegebs, by, bs (Figure 4.6). The function is

defined as:

X&) = b, [B,(¢) +b, B, (&) +b, [B,($) +b,; [B,(<)

(4.11)
With the interpolating polynomials:
By () = (1-§)°,
B,(¢) =31~ ¢)?,
B, (§) =3 L-¢),
By(¢) =¢&°
(4.12)

Both of the formulationsHermiteandBernstei have been applied in the program
developed as stated before. The surface typeimnafly selected from the interface.
For this purpose, theheritanceproperty of OOP has been utilized, which will be

made clear in the next chapter. The implementatidhe second form seemed
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simpler and more efficient because a less numbeam@imeters is dealt. Moreover,

invariance under rotation of frame is stated aadvantage in [9].

For the contact formulation, a nearest contactipposneeds to be determined, which
is achieved by Newton-Raphson iterationgowith quadratic convergence within 4
or 5 iterations, however maximum number of iteraibeing fixed as 10. There are
also other rigid surface definitions in literatuas, NURBS curves [10]. The
application of other types of curves is left fdugher work. However, once more the
general properties of a convenient curve definif@mrcontact problems can be stated

as:

1. Local with respect to a node on the surface, #hahoving of a node for the
definition of the rigid surface should not affeu tentire curve, or should
result in change of the surface within a boundegibrearound the point that

was moved.

2. Smooth, that is, easily differentiable on therenturve; no sharp changes
should occur for the normal. Although at le@&tontinuity may be enough
for frictionless contact, at lea®t continuity is required for friction solutions.
Though friction is not considered for this worky fofurther work, it may be

implemented.

The above requirements are best discussed infit@]the discussion of NURBS
curve withC" continuity; which have been left for a further dimpment issue as

stated previously.

4.4 VARIATIONAL FORMULATION OF CONTACT

In this section, the variational form of contachstaints should be dealt since the
variational weak form is used in the FEM contexte Tontact constraint defined as
the complementary slackness in Eq. (4.7) shoulejpesented in the variational
form, to be implemented in the general contextEi¥-As stated previously in the
second chaptevariation is the small perturbation at the equilibrium statecase of
contact, both the contact force and the penetratiay be perturbed. So the

variational form may simply be written as:

58



a1 = (P oy + Py [EY) 20

iol
(4.13)
However, since one is still dealing with the mirgation problem, the total energy

variation is defined as:

O =N+ + A1 =0

ext
(4.14)

In EqQ. (4.14), the first two terms are dealt pregly in Chapter 2, and the third term

is defined in Eq. (4.13). It is really an interagtresult to be noted. At equilibrium,

the total variation must be zero, though theraraequality constraints.

In Eq. (4.13), the variation ofgs needed, which may be written as:

N = (2 = &HE) M (E) + (x* —xH (&) '
(4.15)

Using the fact thaix? - x*(£)) being in the direction of', and s being normal to

n', the second term on the right vanish. In additsim;e the master surface is not

moving, Eq. (4.15) reduces, and it can be writgen a

&y =au’ it
(4.16)

Now, it is time to explain the methods of implenatian of contact constraints to

general FEM equations, which will be done in thetsection.

4.5 METHODS OF SOLUTION

In this section, the methods of the solution ta43will be discussed. Due to the
inequality constraint, there is the differentiaijproblem being faced for thé. term
defined. That needs special handling techniques iscussed. For the linear elastic
case, the differentiability problem is in gene@ived with active set strategies.

While for the nonlinear elastic case, this mettsoddt being so convenient, due to the

linearization issues of Newton type algorithms.

59



45.1 Penalty Method

This method is the simplest to formulate and im@etnand this is the oldest method
for those types of problems. In the penalty metitad,assumed that contact forge p
is proportional to gapng However, it is defined so that, a very large éosc

associated to penetration. In mathematical terms:

1
r c :EK Egl%l
(4.17)

wherex is a very large number. It should be noted in tlemethe contact energy
function in Eq. (4.17) is very similar to energyétion of a spring. The effect of Eq.
(4.17) can be conceived as, a very stiff springdpeictive in case of penetration, such
that the penetration is virtually prevented. ihat possible to say totally prevented,
since this method always results in some amoupéoétration. However, &s
approaches to infinity, it is expected to have zmmetration. Nevertheless, giving
the value infinity tac is not possible for the numerical reasons. lttessedl

conditioning problems if too large a value is eeterFor the implementation issues,

EqQ. (4.17) must be written in the variational form:
al. =klgy Ay
(4.18)
Writing gy andogy in terms of u:
a1, =k [(Gy +uy)[duy

=k X2 -XHm gou? -sul) it +xQu? -u) B ou? -sut) M
GN dJN Un d'IN

(4.19)

Since in case of unilateral contact with the mastieface being stationary, Eq. (4.19)

further reduces to:

A =k X2 -xH M u? ') + « Qu? ') [ou? MhY)
(4.20)
Eq. (4.20) cannot be linearized due to the diffeadility reasons, since it is valid

only for active nodes. There is nothing partialgmyg in contact. There is for a node
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penetrating or not penetrating, which is like @@nd changing quickly and sharp in
the course of the solution. Therefore, the actatesgategy is only valid for linear
elastic case, which is valid for small stress, $stedin, and small deformation case
in terms of FEM formulation. However, the penaltgthod still has practical
applications, and further methods have been degdlbpsed on this method with
some improvement, which will be dealt in the seghiel, the implementation of

Eq. (4.20) will be explained for this section.

The general linear elastic FEM energy variatiopainf can be written without

considering contact, as:

ou' K W =ou' (F
(4.21)
For the Eq. (4.21), looking at Eqg. (3.19) and BRQ), the term& andF can be
deduced. Considering Eq. (4.14), and Eq. (4.26)coapplied to"f node with the
corresponding degrees of freedamandn, it is obvious that Eq. (4.20) modifies Eq.
(4.21) as:

Kii Kz Ky Kim K Kin

Kar Ko Kyg Kom Kan Kon

Kas1 Kgp Kgg Kam Ksn Kan

K=Ky Kp Kig K m + & Ty Ty K o + & Ty Oy Kmn

Km K2 Kpgg K o + & 0 Oy K o + & Oy T Knn

| Knt Knz Kis Knn
(4.22)

and

61



_ ‘, )
FZ
F3
F =| F,—«[Gy 0
F, — Kk [Gy Oy
L Fn ]

(4.23)

As it is obvious from the modifications in the Bidss and the force terms, the first
part on the right hand side of Eq. (4.20) modiffesforce vector, while the second
part modifies the stiffness matrix. The modificatie applied for every contacting
node. Nevertheless, initially one cannot know wirodes are contacting. Therefore,
it is not known prior to the solution which indicesmodify. There should be a way
of guessing which nodes are contacting, and thikesthe linear simple problem
complicated and non-linear. The general algorithay e summarized as in
Algorithm 2.

This method in general permits some small amoupeoétration. As the penalty
termx increases, the amount of penetration decreasege\to, the penalty term
cannot be increased without bound. Too high a peterin results in ill-

conditioning of system of equations. A reasonaht@ee would be the largest
number at the diagonal of the stiffness matrixhiprogram interface, it is permitted
to enter different values for being able to malststeThe entered value from the
program interface is multiplied by the largest nemdit the diagonal of the stiffness

matrix.

Advantages of this method can be summarized ag kample to apply, and easy to
implement. Disadvantages can be listed as ill ¢mming, and giving approximate
results in the infeasible region.
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Make initial solution
SolveK [u=F

v

Set possible contact nodes (i.e. set boundary
nodes), which can be achieved with an
algorithm based on connectivity of elements.

nodes
(i.e., check if g<0. If so set node as
being contact node).

Modify stiffness matrix and force vector for ea¢h
contacting node, and solve modified system pf
equations.

SolveK W =F

A 4

TRUE

Check for separatioor changing positio
more than some allowable tolerancetef

contacting nodes, and check if newly
added contacting nodes, check necessary
condition:

Exit

Check penetrationf possible conta FALSE

A

Algorithm 2: Pseudo algorithm for contact solutisith the Penalty method.

63



4.5.2 Lagrange Multiplier Method

This method is applicable to linear elastic protdemith small stress, small strain,
and small deformation problems like the previousgtty method. For non-linear
elastic solutions, it is prohibitively difficult tapply. It has advantages and

disadvantages compared to the penalty method. fabhgg function defined as:

L(u,A) = f(X)+Am(x), x,A)00" xR™
(4.24)

R L(x,\)

Figure 4.7: Lagrange Function LI},

whered"is the Euclidean space,0" . 0O, xdxO0O", A0DO0™:A1<0, and

g:0" - O,, O, being the positive octant, whiles defined in the negative octant.

The primal problem is defined as [8]:

f(x),if g(x)=0

L™ (x) = maxL(x,A) =
() A<0 (xA) {oo, otherwise

(4.25)

For the Eq. (4.24).(x) will be maximized whet is zero. If g(x)<0 théagrange

functionL will increase without limit. Then the min-max ptem is:
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minimizeL" (x, A) = minimize f (x)
XOX xOX

(4.26)
The dual function is defined as:
L. (1) =minL(x,A)
XX
(4.27)
and the dual problem is defined as:
maximize min L(x, A)
A<0 xOX
(4.28)

The uniqueness of the optimuryj is proved by the duality theorems for convex
functions [8]. The uniqueness of the solution reggithe optimal point being the
saddle point of the Lagrangian function define& (4.24). As it may be obvious,
Is a new unknown parameter to be determined fomihemization problem. The

system of equations to be solved takes the form:
O f () 0y9(x) | x| _| 0
0,9(X) o |A] |o

The preparations are complete for application eftéthnique. Now turning to the

(4.29)

solution of the contact problem, one needs to satyg4.14). In that caséll. can be

written as:

AN = [ 9ty (9, + [ A By (9
I I

(4.30)
Since in the discretized world one is to imposestraimts onto the nodes, Eqg. (4.30)
can be written in a more explicit form for nodes as
Il =) N Gy +uy)+ Y A @y
idl idl
(4.31)
Eq. (4.31) can be imposed on the general FEM ampsafor thé™ node with
corresponding degrees of freedom bemgndn as:
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K11 KlZ K1m Kln KNN 0
K21 K22 K2m K2n K2N 0
: 0
_ Krnl Km2 Kmm Kmn KmN ﬁ%
K= : 0
Knl Kn2 Knm Knn KnN ﬁ%
: 0
KNl KNZ KNm KNn KNN 0
0 0 O @& O A3 0O 0 O]
(4.32)
and,
_ Fl -
I:2
Fm
F=| :
I:n
I:N
[ ~Gn ]
(4.33)

The above modification in stiffness matrix and fibree vector must be performed for
each contacting node. Therefore, the size of tfieests matrix and the force vector
increase by one for each contacting node. For spaesiderations, in the program
implementation, the global stiffness matrix is sthrand whenever an update is
necessary, it is called and copied to new largéerixrend modified stiffness matrix is
created. That doubles the storage needs. Orgeslsg; time the global stiffness
matrix had to be regenerated. The advantage ofrteikod may be that it is an exact
solution, that igin=0 is exactly satisfied. The disadvantage may bentied for a
larger storage, every time changing size of tHes matrix becomes expensive.
As stated before, this method is applicable tcaliredastic case. For non-linear
elasticity problems, the use of this method is fitiie. The algorithm can be
summarized as in Algorithm 2, except the methochdfulating the modified
stiffness matrix. The algorithm also includes sanaex tracking for théagrange

multiplier.
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4.5.3 Augmented Lagrange Multiplier Method

This method combines tipenalty methodnd the_agrange multiplier methotb
utilize advantages of both. It is nearly exact, diticized for slow in convergence,
being strongly dependent on penalty term, andioffarot much advantage
compared td.agrange Multiplier methodbr the linear elastic case [11][15].
However, this method is applicable for non-lindasgc solutions. It is also
applicable to non-linear frictional solutions [1[]2]. Actually, this section will be
based on [11]. This method has not been applidteiprogram developed since a
better method is proposed by the same author$nThis method will briefly be
introduced for completeness.

In this method, an initial penalty solution is merhed. The resultant contact forces
are applied as external forces and the systeniviedsagain for contact with the
penalty method. The procedure continues until Hgergduces to a reasonable value.

In mathematical terms, the method can be written as
Ne=>"2xoh” +4 o)
‘ iol 2
(4.34)
Looking at the above equation carefully, it is ama that if1=0, penalty formulation
is recovered. The stiffness matrix and the forctioes are modified in the same
way as in the penalty method, but only one moreifigation to force matrix is
performed due to thieagrange Multiplierterm. One begins with=0 and augments it

continuously. As reaching to convergence, the etfepenalty term approaches to

Z€ero.

EqQ. (4.34) should be written in variational fornn fimplementing it in general FEM

equations:

adl, =«lgy[dgy +A 1y
(4.35)

Note that in Eq. (4.35), there is no variatiori,afince it is determined previously and

not vary for an increment. It comes from the prasigolution.
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For implementing this method in Newton type aldoris, one also needs the
linearization of Eq. (4.35), which can be written a

D(d1.) =«(Dgy [y +gnDAgy) + DALy +A DAy

(4.36)
EqQ. (4.36) is written in a more explicit form inllas:
()" i+ [0k (07g)T Ax+ Mg, [0l ) )+
il
Zm:(ai qO2gh)" x+ DgiNMi): - on +ch%"(ng gl +0gl Dn‘)
(4.37)

where 0%n is theHessian matrixThis is previously called the tangential stiffaes
matrix and defined as+ in Chapter 2, of the general FEM equations, andis the
gradient of the general FEM equations being thidwatsterm, which also defined in

Chapter 2. The above may be written in a more cotrfpam as [11]:
0°L [Ax+0Og A = -0L
(4.38)

There is one more equation to be included in tiseesy, which igy being equal to

zero, from the linearization of which, one can[g4i:

Ogy X = -gy
(4.39)
Combining them, the equation needed to solve besdiig:
02L(x,A)  Og(x) {Ax}{— Dg(x)}
Og(x) 0 |[A4] [ -9(%
(4.40)

Eqg. (4.40) seems equivalent to the stantlagtange Multiplier Methodbut not
completely. Since this method has not been appiedt of the details are skipped.
The interested reader should consult to [11] of fa2the details. Actually, in [11], a
method for speeding the algorithm has been propasgdhough it needs much user

intervention, and does not seem much preferablgaoed to other methods. Here, it
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should be mentioned that this method is appliedast of the commercial FEM
programs handling contact, like ABAQUS, ANSYS, &anARC.

45.4 Barrier Method

This method is designed in the contact mechanrasdo-linear elasticity problems.
However, it can also be applicable to linear protden this framework. In this
method, instead of setting nodes being activeawtive, and changing activity of
constraint continuously, all the boundary nodessateas being active, and that does
not change in the course of the solution. Thisperalty kind of method, but the
difference is that the penalty ternis a function of the gap. This section is based on
[13].

It should be mentioned here that, this method idamg applied to the program
developed for this dissertation either. In [9Fitriticized and a better approach is

suggested. it is mentioned here for the completeokthe subject matter.

Turning again to the contact problem, the energy t@ay be defined this time as:

ALY

iol

(4.41)
In Eq. (4.41)d(x) is written instead ady since it is defined also in the positive side,
which means distance instead of penetration. Alibe same equatiop>0 but
small, is the barrier parameter to be enteredegthgram. In additiori/<0 are the
fixed estimates of theagrange multipliersit should be noted that, €§x)
approachegtand consideringi <0, Il approaches infinity. This causes ill
conditioning problems. For that reason after somallsamount of penetration, a
parabola is fit to the barrier function in Eq. (.4To speed up the convergence, also

a scaling method is proposed [13].

The smooth function in Eq. (4.41) can easily bediized and implemented into the
general non-linear tangential stiffness. An iniliaéar elastic solution with the
standard penalty method can be performed. Thisiisgnay be initiated. Contact

tangential stiffness is to be imposed into genaragential stiffness. Newton
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iterations can be performed until convergence J4sdnay be reset and the Newton
iterations may be repeated. Continue Uil change by some allowable limit.

This method is also an approximate one. It isaiziéd for always being in the
feasible region, which means preventing penetratitally and causing some small
gap. It also needs one more parameter [ to beedrtethe program. Details of the
method are not elaborated since it is not implestkint this dissertation. The

algorithm seemed complicated for implementing.

455 Constraint Function Method

This section is based on [14]. The method is offéoe non-linear elastic problems.
In this method, since at=0 there is the differentiability problems, a sniofnction
approximately satisfying the complementary slacknes. (4.7) is offered (Figure
4.8). Again all possible contact nodes are se¥@etind this constraint function is

applied to all of them.

The constraint function is defined as [2], [14]:

-A +1)?
W(g,/l)=gN2 - (gNZ j+£

(4.42)

A
v

W(}"vgN):O

Figure 4.8: wi,gy) approximately satisfyingomplementary slackness
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where, g, 20 is the gapA <0 is theLagrange multiplieterm, being the contact

force, an&>0 is a small number. The constrai(g)=0 is imposed on the general
FEM equations. For this purpose, of course Eq2j4rust be linearized first. It
should be noted here that unknown extra paramietéss determined,, enter into
the equations. Considering all possible contacesading active, and iterative
Newton solution being applied, this method seemsfiycand is not preferred. It is
also mentioned and criticized in [9]. Referencgsaffl [14] offer a function also for

friction solutions with the method.

The details are not elaborated because this méhnodntioned for the completeness
of the subject, and is not applied in the prograwetbped for this dissertation.

45.6 Cross Constraint Method

This method is applied nicely in the program depetb It has super-linear
convergence rate and nicely adaptabldéa/ton algorithmThis section is based on
[15], in which thebarrier methodand theconstraint function methddave also been
criticized, and this method is submitted as a nesvabetter approach. However,
nothing is mentioned about friction. Nevertheldsss, very convenient for the
purposes of this dissertation and fits nicely thg context, unilateral frictionless
contact.

The approach in [15] is similar to tharrier methodor theconstraint function
methodn the sense that no distinction is made for thesjatus (i.e. gap open or gap
closed), all boundary nodes being active and araamiis function with respect to
gap is defined. However, different from tb@nstraint function methodtiffness

matrix size is not increased, and different fromldarrier method the function in

here is defined in both feasible and infeasibléoregy(i.e. giving possibility of gap
being open or closed for a contacting node).

Now coming to the details of the method, the cdr¢aergy is defined as an

exponential function in the form:
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rc

(4.43)

wherey, S, a, b are constants to be determined from conditiore®nfact surface and
contact force. In addition, contact force and thetact stiffness are defined as:
F=0M,,
K =0(0n,)
(4.44a,b)

With the conditionslim M, =0, “moF =F and Iim0 K =K, constant parameters are
gN —® In — In —

determined withF <0 being some approximation to contact force, &neb being
an approximation to contact stiffness. It shousbdle mentioned here tiats the
gradient of the potential, aldis the Hessian of the same potential with resiosg
and Eq. ((4.43) is defined on both sides of thestamt surface (i.e. wham, is
positive or negative).

Then after some manipulations, the potential, faaoe the contact stiffness becomes
for nodei as:
£? K

Mo=g e

K
Ffr "

K' =K Ee%@l”
(4.45a,b,c)

Looking at Egs. (4.45a,b,c), gs becomes negative, that is in case of penetrdtien,
contact stiffness, which is the penalty term becltasge and may cause ill-
conditioning of the general matrix equation. Howewasgy becomes positive, the
contact stiffness gets smaller. In the penetratase, to prevent ill conditioning due
to K being large, a parabola is fitted smoothlyhi® contact potential at=0. The
derivative of the parabola with respecttgbeing the force term, and the second
derivative being the contact stiffness term, wiaah be written for contacting node i
as:
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(4.46a,b,c)
Note that in Eq. (4.46a,b,c), the standard pemsitgcovered in case of penetration.

For application to general FEM equatiofig,must be written in variational form:
~ iig' ) )
i =/F ek ) if gl =0
(F'+Ko\) By if gl <0
(4.47)

For applying Eq. (4.47) to non-linear equationspaleeded is the writing of it in

linearized form.

F' F'

. ~ —=Q . ~A. —=0 . .

&L K@K ' Mgl +F @K @ngy ifgy =0
D(d1¢) = Ke 0

dyy K Bgy +F By if gy <0

K

c

(4.48)

The contact linearization in Eq. (4.48) can be &thfo the generdlewton
algorithminto the tangential stiffness term as it is danthe linear elastic case, with
instead of using, using the tangential stiffness terms in Eq. (%.B8r the residual,

the update is done by adding contact forces atewiih Eq. (4.47).

To explain the method briefly, make initial penatjution. InitializeF for every
boundary node. If contact force for a boundary riedro, initialize it to some small
number to prevent division by zerg. is entered from the program interface as
penalty parameter. Usually 0.1 is being converfenmultiplying with largest
diagonal. Still too large a penalty parameter nmayse ill conditioning, while too
small a penalty results in long computation timssémble tangential stiffness
defined with Egs. (3.35) or (3.37) and modify ithvcontact stiffnesk. in Eq.

((4.48), and modify residual term defined with Eg8.40) or (3.41), with Eq. (4.47).
Repeat this until convergenceRis too different tharF , updateF and repeat the

full process (Algorithm 3).
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Make initial linear elastic solution of contact wvjppenalty
method for the initial increment (Algorithm 2).

v

Initiate F from the previous solutiorK is entered as
penalty parameter from the program interface.

v

Make Newton Iterations with:

Assembling tangential stiffness; (3.35) (3.37).
Calculating residudR (3.40 (3.41).

For all boundary nodes, calculating cont
stiffness (4.45c) (4.46¢), Modifying+ as in th
penalty method but using contact stiffness

calculations instead of using In this way, fg

each iteration obtaining " .

Modifying residual for each contact node,
calculating contact force (4.45b) (4.4

subtracting it fronR and obtainingR .
Solving forAu by KT Au=R.
Updatingu by u =u+Au until convergence.

5b)

TRUE

TRUE

If change in penetration, or

difference of F fromF being
larger than some tolerance

If increment < Number of increments
uincrement+1:uincrement,

Fincrementrl = Fincrement

Algorithm 3: Cross constraints method.
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4.6 CONTACT SEARCH, AND SURFACE DETECTION

Although there are not many contacting surfacesercase considered in the
framework of this dissertation, in case of multdipa@ontact problems involving
complicated surface structure and having largerdeftion, contact search takes
considerable CPU time and should be mentionedfppeaogram developed for the
solution of contact. For that purpose, two pap&é$, [17] will be referenced since
some inspiration has been gained, although imple&tien of the methods mentioned

has not been possible.

“Contact searching is to detect and keep in traeectintact points in a deformation
system, where contact and discontact phenomena fsequiently. This is one of the
fundamental abilities required to conduct FE sintidia. Usually it includes the local
and global search processes. The former is to riyuigid all the possible candidates
around a specific point. The latter is to find ethathe contact point after the global
searching[16].”

In this framework, contact search process is spbtlocal and global searches.
Global search in general involves some index ojerato detect which node is
contacting on which master surface. The local $eianmlves the exact detection of
the nearest point, which is performed witbwton’s algorithmAccording to [16], a
maximum of 10 iterations is being enough in genevhlich is also preferred in the

program developed for this dissertation.

The local search is in general the same. The mstuiskion point in general becomes
the global detection. Many methods have been peapfos this purpose until now,

but to mention the methods proposed in the twaeafees [16] and [17], they are the
inside-outside search algorithm, binary searchrdlgn and the bucket search
algorithm. They are only mentioned for the complets of the topic, and the details
left for a further work on the area. However, th@imdea, being the global search

and the local search has been applied in the progexeloped.

In the program developed for this work, whetheomtact surface is defined is
checked first. If so, a boundary detection processch will be explained in the
sequel, is performed. After that, the global se@gierformed for each boundary

node to detect the nearest contact surface naalee 8ie nearest surface is locally
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defined, each surface node is associated to ecels&gment. Thus, at this segment
the local search is performed with tdewton algorithnto find the nearest surface

position.

For the boundary detection process, the elememismbinity properties are used. It is
performed only once before the beginning of cordadlysis. Element nodes are
defined in the counter-clockwise direction, nodesw connected elements, and the
elements know the connected nodes, by use of witielhoundary nodes may be
detected. This function is provided in ttlassObj2D since all the information is

contained in it (Appendix p.120).
The algorithm can be summarized as follows:

Every node holds a list of unsigned integer forritegt node information. The process

has two stages:

1. For every node, connected elements are tracetidarext node counter-
clockwise to the node in consideration. The nextendetected is pushed into

the list of next node indices in the node in coasation.

2. A process of deletion of next nodes is performed.this, again the nodes are
traced one by one. If the next node indexed ilishef a node contains in its
next node list, the index of the node in considenathat index is deleted
from next node’s list, and the index of the nexd@ds deleted from the node
in consideration. (i.e. if the nodes are mutuadixtmode of each other, their

indices are mutually deleted from list of the other

At the end, every boundary node is left with natiides on the counter-clockwise to
it if the node is at the external boundary. If tioele is at an interior of the body, the
next node list will be empty. If the node is at bmindary of an interior hole, the next

node will be in clockwise direction (see Figure drf2l Table 4.1).
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Figure 4.9: Boundary node detection system.

elements in row directions in the first stage.

Table 4.1: Table of next nodes for boundary detectlhe grey colored indices are
the deleted ones in the second stage.

Nedenare entered by tracing

Node Next Node Lis
1 5
2 1 6
3 2 7
4 3
5 6 9
6 2 7 5
7 3 8 11
8 4 7
9 10 13
1C 6 9 14
11 12 10 15
12 8 11
13 14
14 10 15
15 11 16
16 12
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CHAPTER 5

IMPLEMENTATION ISSUES

5.1 INTRODUCTION

FEM programming has evolved in the last two decadtsthe evolution of the
computer programming techniques. Introduction offRa€chniques have given
possibility to develop general robust and structymeogramming solutions to

complicated problems in the last decade.

“Recent developments in software engineering atieeifield of object oriented C++
programming have made it possible to model phygicaesses and mechanisms

more expressively than ever befdi23].

“Much of the early research on FEM implementatios fogused on the speed of
execution or equation solving. However, as the dexity of finite element programs
increase, it is obvious that improving the maingditity, extendibility and reusability

of the software is equally import&fa4].

Similar ideas are also written and explained ifj,[@hich gives a bibliography of
OOP FEM programming. The differences of OOP fraaditional FORTRAN
programming and concepts of OOP are elaboratedswitie detail.

In this chapter, the modern techniques of FEM ogning are presented briefly.
This chapter includes OOP programming conceptdeuithiques with C++, and the
application to contact solution in 2D. In this redyd@o give some references,
Strustrup [18] is the monumental book for learn@¥gt. Nevertheless, it would not
be enough to develop a complicated FEM prograngii®@ some other references of
C++ programming, the references [19], [20], [22R]inay be offered. Especially for
the OOP FEM programming techniques, papers [28], [25], [26], [27], [28] could
be followed. An implementation program has beerteniin C++ by use of the

general concepts developed from those books aretpakhe papers present their
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own approach on their own implementation issuessbaimg the same, but not being
much different in the programming point of view.Wdhe details are ready to be

presented for the implementation issue in consiera

5.2 CLASS STRUCTURE

A class isuser-defined typavheretype is a concrete representation of a concept
[18]. In the FEM context, there are nodes, elemelusiains, Gauss points... All
these have specific data and specific relations gach other. OOP provides them to
be represented conceptually as they are, and amgdre data and functions
conveniently in a structured manner. It also presideparate compilation and error
detection mechanisms. For large problems, with dicatpd organization, those

considerations become indispensable.

In a FEM program, there is the domain, which israf in the program bglass
Obj2D, and it is decomposed into sub domains callededsnwhich are declared in
the program byglassEI2D. In addition, there are the nodes, representeziisg
Node2Dto define element edges. The Gauss points, whernategrations and most
of the calculations on the element are performedhandled in the program bilass
GsPt2D. For the contact solution, it is also needed fomdeclasses related to contact
surface. For that purposd#assSurface2Dis written for the contact surface, and the
classCntNd2D for the contact node. Most of the data have beganized in these

classes.

Those classes handle jobs specific to themselvésioions declared in them, called
methods. The methods may have common properties)golasses of the same
type, handling common jobs by some means, or imadins distinct jobs intrinsic to
the object itself. Some common functions may bdaded in a virtual abstract base
class, and child classes may be derived from itirfstance, all of the mentioned
classes are graphical objects, which can be dnaterthe graphical environment. All
of them may be captured from the graphical interfaith a mouse click etc... Those
properties are declared in the bakssFEGrObj . Some of the functions may be
handled in the base class, or some may need speaifdling in the class itself, or
else some common part of the function may be imefeed in the base and the rest
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specific part to be handled in the child. Therefotber then the classes declared
above, there might be base classes in the lower,add child classes derived from

the mentioned ones, which are of higher order.

To give another instance for class relations, dmrghe element class. As it has been
stated in chapter 2, there are two types of plaleanents dealt in here, triangular and
rectangular. Though they differ in some ways, thaye common properties too. For
instance, both are composed of Gauss points, nettes, However, the ways they
handle drawing or calculating stiffness differ ddesably. So two classetass

Tri2D, andclassRec2Dare derived fronclassEI2D. The class relations are
represented simply in Figure 5.1.

A

FEGrObj Obj2D

FENd2D | | CntNd2D| | EI2D | [CntctSri2h | GsPt2D

A\ 4 \ 4
| Ret2D | | Tri2D | | CiHermit| |ClBernsteir

Figure 5.1: Diagram representing class hierarchiye¥ objects. Lower order are the
child classeglerived from higheparent classes

Below given are some brief explanations of thesgdasn Figure 5.1. They are only to
give some idea of how the things handled. The defrition headers are given in

the Appendices. For more details, refer to relajgaendix.

5.2.1 class CObject

In the above diagram (Figure 5.&)assCObject is the virtual base of all of the

classes. It is actually a Microsoft Foundation €lakrary (MFC) specific class, and
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virtually all of the MFC specific codes are derivieain it. It handles the runtime type
checking, serialization (saving and reading birdata), and runtime checking of
objects for debugging purposes. (For more spedéiails refer to MSDN Library of

Microsoft Visual C++.Net.)

5.2.2 class FEGrObj

This class is derived froclassCObject, and it handles mouse events, like left
button down, left button up, mouse move etc... b &las a static variable, pointer to
classFEGrObj, to handle mouse captures calledpCapturedSince only one

mouse would be active in the graphical interfacgatic pointer of the same type is
defined in the class, this way capturing a singliect of this type from the graphical
interface. For example, in the event of left buitbok, the function handling this

event in the view class searches for clicked objeleich can be a node, an element, a
contact node, etc.In case a hit occurs, the address of the hit bigexssigned to
m_pCapturedActually, this technique is callddte or dynamic binding28], which

will be elaborated in the sequel for other issues.

5.2.3 class FENd2D

This class is derived from the abastassFEGrObj, and it holds data related to
node, like its index, initial coordinates, finalozdinates, nodal results etc...
Furthermore, it also handles mouse events and digaofiitself into the view. In a
graphical environment, a node should know connegaents for stress averaging
and error analysis [28], though in old style of FEMgramming, only elements
knowing connected nodes would be sufficient foeagding purposes. It also needs
to store results related to itself and serve theselts to the elements connected to
itself. It needs to reach to the domain body @tdenected to, for reaching elements,
which it belongs to, for stress averaging etc... Thechieved by keeping a pointer
to classObj2D.
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5.2.4 class CntNd2D

This class is also derived froctassFEGrObj , as well azlassFENd2D. It holds
data related to contact node, like its fixed cauaiths, etc. It also handles mouse
events and drawing of itself into the view. It neéal reach to the rigid surface
definition it is connected to, since a node is asged to a segment of curve, and
curve is defined with respect to neighboring cantacles. This is achieved by
keeping a pointer tolassCntctSrf2D.

5.25 class EI2D

This class is also derived frottassFEGrObj , but it still serves as a virtual base
class for specific element definitions (i.e. regiantriangle or other element types
may be derived). Common data are stored in the elad some common

functionality is performed other than pure virtdaktlaration of some other functions.
It stores connected nodes as both pointers anceisidivhich makes code
maintenance easier. Since elements need to redels frequently in drawing issues,
element deletion issues, stiffness calculatiorsgrablage processes, etc., it becomes
an urge to reach connected nodes directly, whiaekthgeved by keeping pointers of
nodes in elements. For serialization issues, gatiagrees of freedoms etc., it needs
the node indices.

Elements also holGauss pointsor calculating necessary data. An element object
has functions to calculate element stiffness natiredar and non-linear stiffness.
Linear stiffness is calculated by Eq. (3.19) faehr elastic analysis and by first
integrations in Eq’s. (3.35), or (3.37) for nonear elastic case. The non-linear
stiffness is calculated by Eq. (3.31) or seconegrdtion in Eqg’s (3.35), or (3.37).
However, the calculation of element stiffness isciically performed differently for
specific kind of element. ThuslassEl2D should have the declaration of common
functions only. The Implementation of those funesias specific to the derived child
class. It also has to deduce solution specificrpaters from the data ofassObj2D.
For instance, it has index of the material defamitof itself, and material definitions
are actually kept atlassObj2D. Thus, it should also hold the address of the
connected body.
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5.2.6 class Rct2D and class Tri2D

These classes are derived frolassEI2D. They handle specific jobs related to
themselves. The intrinsic implementation of puréual functions defined inlass
EI2D is performed in those classes separately. Farnnostactual implementation of
how they will be drawn into the graphical interfabhew they will respond to mouse
events specifically is written and defined in thdihey contain all properties ofass

El2D, that is those classes inherit from it all thdatales, and methods.

5.2.7 class CntctSrf2D

This class is also derived frottassFEGrObj , since it is a graphical object to be
drawn into the view and to be captured from thevvié serves as a base class for
discrete contact surface definitions. Finding nelazentact node for a FEM node is a
common functionality to be supported. In additifamlling nearest surface point,

drawing are purely virtual functions to be declaretere.

5.2.8 class Cl1Hermite2D

This class is derived fromlassCntctSrf2D. It implements the functionality defined
in Section 0 for thélermit surfacedefined by the functions in Egs. (4.8), (4.94d an
(4.10). It handles specific drawing and mouse hagdssues for itself. Furthermore,
it contains the implementation of finding the nesasurface point for a FEM node.

5.2.9 class C1Bernstein2D

This class is also derived froctassCntctSrf2D. It implements the functionality
defined in Section O for thBernstein surfacedefined by Eqgs. (4.11) and (4.12). It
handles specific drawing and mouse handling iskwetself. It contains the
implementation of finding the nearest surface pfuina FEM node specifically for

this surface definition.
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5.2.10 class GsPt2D

This class handles most of the calculations. Eetgnent stores as many of this class
as the integration point number. For instance &ngge with four nodes must have
four integration points for exact evaluation of thieegrations, while a triangle having
three nodes must have three integration pointh&same purpose [2][3][4]. It has
the local coordinates of itself, which are defimedthe master element (Figure 3.1),
and the global coordinates defined on the real ehepatch. It also has graphical
coordinates for drawing issues. It serves the fanstfor calculating stresses, strains,
Jacobian (Eq. (3.5 a, b)), deformation gradient (B®)), determinant of deformation
gradient, derivative matrices (Egs. (3.10), (3.23)32)), etc... It also needs to keep
the address of the element it is belonged to, wikieltchieved by holding a pointer of
classel2D. However, for calculations, it needs to know tharected element type,
which is achieved byuntime type informatio(RTTI) checking. For instance,
rectangular element has different base functiomiiehs than triangle. Base
functions are defined as global functions in thegpam. Therefore, it needs to know
which type of element is connected to itself fareotly calling the base functions.
Due elements knowing the connected domain, itindiseict access to connected
domain defined bglassObj2D.

5.2.11 class Obj2D

This class is derived fromiassCObiject. It stores the elements, and nodes
constituting itself. How elements and nodes kephéclass is a very technical issue.
For this purpose Standard Template Library (STlitigzed [21][22].

There are many ways of storing data in a contaim@nely, vector, list, map, multi-
map, set, multi-set, etc... It would be a challengask to select which type of a
container to use. This is one of the first issodse resolved to write a good FEM
program. A user should easily interact with thegpam, that is, delete, or add nodes
or elements in the preprocessor. Also left asthdutask, on the runtime, mesh
refinement possibilities must be considered. STieseas a perfect tool to do such
tasks. In the program developed, vector, holdingtpoto objects is selected as best
suiting in the framework of this dissertation. Know STL helps making judicious
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decisions on container types. In some of the impleations, list is preferred, while
in some others, map implementation is selectech Bave been tried during the
development but the implementation of a vectoradfifers is judiciously selected as

best appealing for giving most flexibility and faionality.

5.3 IMPLEMENTATION DETAILS

Here, some minor specific details of calculatiothi@ OOP environment will be
elaborated. They are important and without undedstg them, FEM programming
becomes painful for the program developer. Theessonsidered in this section are

critical to be able to implement all the things tn@med up to now.

5.3.1 Copy Constructors, Assignment Operators and Destruors

Since the class structure is so much interconnedgtédeeping addresses of each
other, address tracking is important and shoulgiven special attention. For
instance, in element copy process, sitlass GsPt2D keeping the address of the
element it is connected to, copied Gauss points beumitialized to new element
address. In addition, this kind of details showddyiven special attention in the
assignment operators. Another special subject &haeed is the destructionaéss
Obj2D. In the destructor, it must delete all the elemamid nodes it stores as pointers
in the vectors. Those issues are slightly touclmeldnaentioned in [28]. Constructors
and destructors must be designed carefully in daddesign strong codes, not

crashing on the run time.

5.3.2 Element Transformations

The implementation of Jacobian J is exactly fornadas in Egs. (3.5 a, b) in a

single function irclassGsPt2D, and¢,  not being arguments, but as private variables
in class GsPt2D. For calculation ofl, the argument to be entered is the current
increment number, which for the linear elastic castered as zero. The calculation of
deformation gradienf is implemented in the same way as in Eq. (3.8)das
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GsPt2D, but with two variables being the reference inaetrand the current
increment numbers, ardgly are held in the class itself as private variablés

inverse is achieved by switching the referencecamdent increment numbers for the
arguments in the same function. A Gauss point shiogllinitialized to the element it
Is connected to, and to the master coordinatesenhbelongs to, before its any
attempt of use. When initialized, its global pasitis set automatically in the

initialization function.

5.3.3 Late or Dynamic Binding

Now consider how contact calculations are perforrBedindary nodes are detected
and constraint is applied only at those nodes. Wewdor application of contact
constraints to nodes, several parameters are egessthe surface normal, nearest
surface position normal gap etc... To keep and haalbteose parameters in nodes
would be expensive, since they are needed onlgdssible contact nodes (i.e.
boundary nodes). In addition, keeping all thoseupgters in a structured manner
becomes crucial. To achieve that, a class to pea¥idse variables is created called
classCntParamVals. Instead of keeping all those variables in nodedgs are only
provided with a pointer of typdassCntParamVals. A pointer is of size 32 bits,
being much cheaper compared to keeping all thdsewva all the nodes. This
pointer is initially assigned to NULL. In the casfecontact solution, when boundary
nodes are detected, a new object of tpesCntParamVals is allocated on the run
time for each boundary node, and assigned to timsedary nodes’s pointer
variable. This type of binding is called tla¢e or dynamic bindingln [28], this name
is mentioned but any detail is not given as in hieréhe FEM context, this method
may be very efficient for different types of pratge. For instance in plastic analysis,
Gauss points need to hold plastic deformation hjistocase plastic deformations to
occur. Though plastic analysis is not implementetthé context of this dissertation,
this method may be very convenient and efficietthat case too. This issue stands as

a further work to develop in the authors mind.
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5.3.4 Program Interface

The program interface must be designed such tlatder would be prevented from
erroneous selections or entering wrong parameigrgetprogram as much as
possible. A text based FEM program would have patifile and when the program
IS executed, it would generate an output file. graphical interfaced program as the
one developed here for solution of contact, thgm must have preprocessor and
post processor. In the case considered, both genmented in the same
environment. However, the interaction with the pamg should change according to
status of the solution environment (i.e., preprsicgs post processing). In addition,
drawing of the body, capturing of elements of drayyii.e. nodes, elements, contact
nodes etc...) must be done efficiently, effectivelyd fast. For this purpos@pen
Graphics Library(OpenGL) is utilized [29] [30]OpenGL is designed as a
streamlined, hardware-independent interface tonyglémented on many different
hardware platformg$29]. It provides coordinate transformation, satetand
feedback utilities, drawing of lines and polygolhéas also the 3D support for
further development of the FEM program; howeveme@rimitive knowledge of

OpenGL is enough for the drawing issues consideredre.

In the program developed, the switch between pogssor and the post processor is
achieved by a flag, handling if the analysis is ptate. In case of preprocessing,
there is the solution parameters dialog bar beitigeg and any change to the body in
consideration is possible, like moving nodes, el@raddition or deletion, node
addition or deletion, etc. In the analysis paransdbar, there are the options of which
kind of analysis is to be performed (plane strplse strain, axi-symmetric),
whether non-linear analysis is to be performed;lim@ar analysis parameters,

contact solution parameters, etc. (Figure 5.2).
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Analysis Type
Plane Stress

Plane Strain
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Axisymetric
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Mumber of Increments [ 1IIIEI

Mon-Linear Solution
Mandinear Settings

Solution Method
Total Lagrangian i)
IUpdated Lagrangian )
Material Model
Kirchoff Material £
Hyperelastic Material &)

Maximum Iterations | 70 ' 7

Caritact Salution Parameters

Contact Formulation

0

Penalty Formulation

Penalty Factor [oa

Mandimurm Iterations il 20

4k

Maximum Cont. Updates 1.3

bt

Figure 5.2: Input SideBar dialog.

However, in case when the analysis is completsgetioptions must be automatically
disabled, and the sidebar must change automatfcaity solution parameters to
results parameters (Figure 5.3). In the resultpaters bar, there are the options of
viewing the object in displaced shape, selectiodisglaying deformations, stress

components, strain components, color ranging.
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Displaced View Settings
View On Displaced Shape
Displacement Facb:uri 1

Display Farameters

f Epsilon XY W

4 ¥

Display Increment EEI

Caloring Range
Automatic Setup
Mir : [

Max

Figure 5.3: Result parameters SideBar dialog.

There are common functions of both preprocessotl@gdost processor, being the
zooming options, zoom in, zoom out, dynamic zoomwigdow zooming, going to

previous zoom are the provided functionality.

Dynamic Zoo

Figure 5.4: Zoom ToolBar providing interface forono functions.

Other than those, viewing options, like node si#eg, sizes, color selections are
provided with the view settingdideBar Menu baris provided for further optional

selections as is used in today’s modern softwarapfing to grid, setting grid sizes,
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setting window sizes, regular mesh generation aeécother functionalities provided.
StatusBaiprovides aid in understanding functions of buttonghe program, writes
coordinates of mouse position, and when analysisrnigplete provide with

interpolated scalar values on the element on winichse is moving.

It is not possible to provide information aboutfatctions and abilities of the
program here, but the usage is straightforwarahttetstand when playing with the
program interface for those familiar with graphicaérfaced programs. A setup

program and sample files are provided with the @&ched.
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CHAPTER 6

TEST PROBLEM COMPARISONS AND BENCMARK
PROBLEM

6.1 INTRODUCTION

In this section, some benchmark and test probleithbavsolved to verify the results.
First, the results without contact, the internailgistency of the program for different
solution selections will be tested, and the resuilisoe interpreted. Then some
comparisons with commercial program ABAQUS willdieen, with and without

contact.

6.2 NON-LINEAR BUCKLING

Here, a cantilever loaded axially at the tip witbnaall perturbation lateral force is
selected as a test problem. The length of thest#00 units, section depth of 100
units and section thickness of 1 unit is selediastic modulus is 1000, and the
Poisson’s ratio is 0.3. The bar is subdivided By 4 elements. Support conditions
are as seen on the figure. This beam should bac&lend 321.28 units of axial tip
load according to Euler Beam Theory. In the analgsial tip load entered as

300/100 units per unit length and tip shear loddA®@ units per length (

Figure 6.1). Maximum tip deflections are givenTakle 6.1).
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Figure 6.1: The analyzed cantilever model. The sanoéel is analyzed with TL and
UL approaches for both plane stress and planensteaes.

Table 6.1: Analysis results for cantilever loadg@ly with small perturbation lateral
force forPlane StresandPlane Strainanalysis. The system analyzed by bbdal
LagrangeandUpdated Lagrangenethods and bigirchoff MaterialandHyperelastic

Material models.

Plane Stress Analysis
Abs. Max. Total Updated Abaqus
Tip Defl. Lagrange | Lagrange Result
. U 33.2¢ 33.2¢
Kirchoff Model v 148.0. 14810
. U 29.3¢ 29.6¢ 29.0¢
Hyperelastic Model v 136.4( 137.1 135.3(
Plane Strain Analysis
Abs. Max. Total Updated Abaqus
Tip Defl. Lagrange | Lagrange Result
. U 15.6¢ 15.7:
Kirchoff Model v 840 YWY,
. U 14.5¢ 14.6¢ 20.1¢
Hyperelastic Model v 79.6( 80.17 103.8(

The above test is performed to check the consigteitie TL and UL approaches
for bothKirchoff and thenyperelastic model$-rom the above table, it is obvious that
TL and UL approaches give approximately same reslilte results seem different
from the ABAQUS results especially for Plain Strease. However, the Hyperelastic
model used in ABAQUS is different. There are numetyperelastic models
literature, which are devised for different matectsaracteristics. For the details of
thehyperelastic modalsed in ABAQUS, refer to ABAQUS help manualssilt i
known that Kirchoff model may give unrealistic riésun large strain case, but for

slender beam, it can handle non-linear behaviomgarerealistic results.
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6.3 BEAM ON RIGID FOUNDATION

This time, same mesh is analyzedgtane straincase with same material constants
as in the previous section, but this time withgadriinear base, with different
boundary conditions on the left side and diffeteatling conditions. The left bottom
edge is fixed, while other nodes on the left sideamly supported in x-direction.
Instead of tip loading, it is loaded at the left adong 25% of its length with 1.0
units/length of downward force (Figure 6.2). leigected that, right edge is elevated
and contact is lost, while on the left edge aldrggdontact surface, there is the

contact reaction.

The beam is analyzed lsear-elasticandhyperelastic The results are compared to
ABAQUS. In ABAQUS, contact is modeled witugmented Lagrange approadh
the program developed for this dissertaticagrange multiplier approacts

preferred for linear elastic case whal®ss constraints methasl used for
hyperelastimmon-linear elastic case.

Figure 6.2: Beam on rigid foundation. This is & fireprocessor stage of new
program developed (i.e. not analyzed yet).
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Figure 6.3: Beam on rigid foundation analyzed wfith program developetinear
Elastic case witH_Lagrange Multiplier Approacls considered. Vertical displacements
are pictured.
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Figure 6.4: Beam on rigid foundation analyzed it ABAQUS commercial
program.Linear Elasticcase withAugmented Lagrange Approaishconsidered.
Vertical displacements are pictured.

In the above, (Figure 6.3) and (Figure 6.4), valtitisplacements are plotted. From

the figures, it is obvious that the results are garable for the linear elastic case. The
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small difference may be due to different contacidtiag technique used in the new

program developed and the commercial program ABAQUS

6.4 CIRCULAR DISK ON RIGID FOUNDATION

This time the same mesh as in the previous seignre 6.2) with the same
material constants is analyzed, but with the axiegtnic analysis option. The same
loading conditions and the same boundary conditiorihe left side have been
applied. Result is compared to ABAQUS and comparegsults have been obtained.
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Figure 6.5: Circular disk interacting with rigiduindation. Axisymmetric analysis with

the new program developed for this dissertationear elastic case analyzed with
Lagrange multiplier approach
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Figure 6.6: Circular disk interacting with rigidundation. Axisymmetric analysis
performed with the commercial ABAQUS program. Linekastic case with
augmented Lagrange approaihthe analysis options.

In the linear elastic case, comparable results haea obtained. The small difference
in displacements may be attributed to differentragphes in handling the contact

conditions.

6.5 THE BENCHMARK PROBLEM

The benchmark problem is inspired from an indusapplication, the analysis of
Ericsson cell phones charging plug (Figure 6.7nddel is tried visually, not by
measure. Only half bottom is modeled because dfythremetry for the upper part.
This analysis is performed only to show that, thegpam can handle this kind of an
interesting complicated analysis, and industrigliaptions may be performed with

the program.

For the model, both the triangular and the rectimgglement formulations are used
coherently, wittHermit Interpolation surfaceepresenting the phone side. It is
pressed 4.25 mm against the contact surface iregtain. Non-linear Hyperelastic
analysis performed in 100 increments of Newtorattens. For application of
contact, cross constraints method is used. Soltdimkaround 1 hour. The result at

the 60" increment is represented in Figure 6.8.
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The problem is interesting for an analytic soluti®expected to be impossible for
that complicated problem, and it represents a@hgilhg engineering application. It

does not seem possible to compare it with othegrpros.

i OGL 2D FEM - Plug6Solved.fe2d
Add Select Draning Options  Assign Help

For Help, press F1 o0& 47 [

Figure 6.7: The benchmark problem. Plug in the megssor stage. This is the model
entered from the graphical interface. Thialog Baron the left is in the preprocessor

State.
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Figure 6.8: The benchmark problem. Plug in the postessor stage. This is the result
of the analysis representing y-direction Cauchtrsss distribution when pushed
against to the contact surface in x-direction. Diedog Bar on the left is in the post
processor state.

6.6 TESTING WITH ANALYTIC RESULTS

In general, it is difficult to test this kind ofpgoblem in a good way with analytic
results, due the method developed in here is bingerical approximation, and the
it includes different complicated aspects of thabpem. .In [31], result for infinite
elastic beam resting on elastic half-space is gi#@ure 6.9). To compare the
results, model mesh in (Figure 6.2) is used. I, [8do ratios for elastic layer and

rigid half-space . =P/ Pelh, is given for critical elevating lod@, being tensile and

compressive as 1.088 and 44.139. In the modehéoprogram developed, around
1.2 and 45, the separation occurs. The resultreddas comparable to the result in
the considered paper.
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Figure 6.9: Beam on elastic half-spaggis the load per unit length; is the load per
unit volume, g is the gravitational constant.
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CHAPTER 7

FURTHER REMARKS AND CONCLUSION

7.1 INTRODUCTION

In this chapter, further development issues anédhevements with the program
developed is discussed.

7.2 FURTHER DEVELOPMENT ISSUES

At the very beginning, the aim is declared as ngitan extendible program, which
solves contact problems. The program is develape&w of this aim, considering
further development issues. Though writing a pérfeagram handling every aspect
of a problem at once is never possible in consimeraf the extent of FEM, some
near future development issues may be foreseert. dfltse technical details would
stand valid, and as program evolves, by the gampdrtise, the art of science can be
flourished with the evolved new ideas.

As the first attempt, different surface definitiphe NURBS curves [10] as
mentioned before, and other analytic surface defirs, may be implemented. The
program may further be developed for contact smiubly considering self-contacting
of the body, i.e a boundary surface may be fitiet the detected boundary nodes of
the body. Therefore, in that case, surface wowd bé moving, and that must be
handled in a convenient way. Multiple body defonits may be implemented, and
interactions of them may be formulated. For thappse, more efficient global
search methods, i.e. bucket search, binary seaé¢h[L7] as mentioned in Chapter
3, may become an obligation. Friction is also dlehging problem, which stands as

a further development issue.
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Automatic mesh generation is indispensable in thdem FEM programs. Good
automatic mesh generators, advancing frontDelaunay triangulatiorcan be

implemented.

In the current work only two material models, nayrtbe Kirchoff material model
and the Hyperelastic model have been implementtétr@aterial models may be
searched and investigated.

In the future, for a PhD. work, the program mayHar be developed to handle
impact problems, in which dynamic effects must twestdered. Plastic analysis may

also be implemented. That way metal-forming procassbe simulated.

The program written up to now is a good shell @m@e, around which many other

functions and abilities may be woven.

7.3 CONCLUSION

In the framework of this dissertation, unilaterslodntinuous contact for an elastic
body moving and deforming in space, interactindgaitigid surface only in the
normal direction to that surface have been solwederically, by applying FEM. For
the solution of the problem, OOP is seen as cruts#lument, and the OOP
programming techniques have been devised for thigose. By use of OpenGL, a
good graphical interface has been created. Thdgmois solved in 2D for thplane

stressplane strainandaxisymetriccases.

For the rigid surface definition, two discrete thénsional surface models have been
implemented effectively, namely tiermitandBernstein surfacenodels.

First, a test problem to check the internal coanisy of the program is generated for
the non-linear analysis, comparing TL and UL apphea. For this purpose, a beam
is loaded near to Euler buckling load with a srpaltturbing tip force. Nice results
have been obtained with little numerical deviatitorboth approaches. It is
observed thairchoff material modeandHyperelastic material modejive different
results as expected. However, results differ frommercial ABAQUS program due

to different material models are used.
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Some test problems have been solved and compatieel tommercial ABAQUS
program. For the linear elast&mall stress, small strailype of problems,
comparable results have been obtained for botletain and axisymmetric cases.
In that case, the small differences are attribtgete differences in the contact
formulation. For the linear elastic case, the nesg@am developed uséégrange
multiplier approachwhich satisfies contact constraints exactly.

For the non-linear elastic case, due to the usifefent hyperelastic models, larger
differences have been observed compared to thiesre$ WABAQUS program.
ABAQUS program usedugmented Lagrange Approafdr the solution of contact
in all cases. In addition, strain models diffemirthat program.

It is not possible to check every aspect of thg@mm developed with the commercial
programs, since it is devised independently, witltomsideration of other programs.
The program is self-contained as much as posgiteing itself with the application
of different methods of solutions. It contains $amties and differences compared to
other commercial programs. For instari8ezier Curvas not implemented in
ABAQUS though it is in one of the other popular Fipkdgram MARC.
Nevertheless, the implementation in MARC is notdame. No test is performed for
MARC. ABAQUS does not have surface detection atborj since boundary is
entered at the very beginning and automatic meskipgrformed. After meshing,
the user intervention is a bit restricted in mdghe popular FEM programs. In the
program developed, a regular mesh is directly eteatnd it can easily be modified
in the preprocessor stage. This approach may libwantages and disadvantages

compared to other package programs.

In general, the program developed gives good angpacable results, and serves as a
perfect core shell for possible further developm&he contact problem is solved
efficiently for both linear-elastic and non-linedastic cases for the unilateral

frictionless case with that program.
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APPENDIX

FEGrObj.h

classFEGrODbj :public CObject

{
public:
FEGrObj();
virtual ~FEGrObj();
staticFEGrObj* m_pCaptured;//For mouse capturing;
BOOL m_bSelected; //Bool to hold object selection state
virtual void Draw(CFEMGLView* pView)=0;
virtual void OnLButtonDown ( CFEMGLView* pView,
UINT nFlags, CPoint point) = 0;
virtual void OnLButtonUp ( CFEMGLView* pView,
UINT nFlags, CPoint point) = 0;
virtual void OnMouseMove  ( CFEMGLView* pView,
UINT nFlags, CPoint point)=0;
3
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FENd2D.h

classFENd2D :public FEGrObj
{
public:
DECLARE_SERIAL(FENd2D)
/IConstructors
FENd2D (doubleX=0.0,doubleY=0.0,
unsignedidx=0, classObj2D *Ob=NULL);
FENd2D¢onstFENd2D& Nd);

Obj2D* Obj;  //Pointer to the connected domain

virtual ~FENd2D();
doubleX;
doubleY;
doublex;
doubley;

BOOL m_bUxdefined;

BOOL m_bUydefined;

doublem_dBCX; //Boundary Condition inY
doublem_dBCY; //Boundary Condition in X
doublem_dKXx; /ISpring constant in X
doublem_dKy; //Spring constant in Y
doubleRx; /I Reaction force in X
doubleRy; /l Reaction Force in Y

vector<lassNodalRes2D> m_VResultsy/Vector of results structure
vector<unsigned EILst; IConnected element list

/IList for boundary node detection
/IFirs index stores previous node, second indepestnext node!
list< pairunsignegunsigned > Neighbours;

staticGLint m_nDisplySz;

staticCFont m_NdFnt;

staticBOOL m_bVwNodes; //If to draw nodes on the screen;
staticBOOL m_bVwlidx; //If to draw nodal indices on the screen;
staticBOOL m_bVwNdLd; //Boolean to view node on the display
staticBOOL m_bVwNdBC; //Boolean to view node boundary condition
staticfloatm_fLdDispFc; //Load display factor
staticunsignedn_nNdTxtSz; //Text height for drawing indices

void Setldx(nsigned); /[Setting index of the node in the node list.
unsignedGetldx()const
{returnidx;}

void operator= (constFENd2D &N);//Assignment operator

virtual BOOL operator== (constFENd2D &N)onst
virtual BOOL operatori= (constFENd2D &N)onst
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void Draw(CFEMGLView* pView);
void DrawBdry(CFEMGLView* pView);
void DrawSprng(CFEMGLView* pView);

/IMouse Function declarations
void OnLButtonDown ( CFEMGLView* pView,
UINT nFlags, CPoint point);
void OnLButtonUp ( CFEMGLView* pView,
UINT nFlags, CPoint point);
void OnMouseMove (CFEMGLView* pView,
UINT nFlags, CPoint point);

virtual void Serialize(CArchive& ar); //Handle saving and reading from file issues

private

unsigneddyx;

#ifdef DEBUG

#endif

}

void Dump(CDumpContext &dajonst
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CntNd2D.h

classCntNd2Dpublic FEGrObj

{

public:
DECLARE_SERIAL(CntNd2D)
/[Constructors
CntNd2D (doubleX=0.0,doubleY=0.0,

classCntctSrf2D* pSurf=NULL);

CntNd2D¢onstCntNd2D& Cont);

/IAddress of the connected surface
CntctSrf2D* pSrf;

/IFixed coordinates of contact node
doubleX, Y;

staticGLint m_nDisplySz;

staticCFont m_NdFnt;
staticBOOL m_bVwCntNds/{/View Contact Nodes

void operator= (constCntNd2D &Cont);
BOOL operator== (constCntNd2D &N)onst
BOOL operator= (constCntNd2D &N)onst

/IFunction to handle drawing issues of contactenod
void Draw(CFEMGLView* pView);

/[Functions to handle mouse events for contacenod
void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);
void OnLButtonDown( CFEMGLView* pView,
UINT nFlags, CPoint point);
void OnLButtonUp  ( CFEMGLView* pView,
UINT nFlags, CPoint point);

virtual ~CntNd2D(){}; //Destructor
virtual void Serialize(CArchive& ar);

#ifdef _DEBUG
void Dump(CDumpContext &dayonst
#endif

%
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Element2D.h

classEI2D:public FEGrObj
{
public:
staticofstream fout;
EI2D ( classObj2D *Ob=NULL, //Default Constructor
unsigneddx=0,
doublethck=1.0,
unsignedshortMtldx=0);

EI2D (constEI2D& El); //Copy constructor
Obj2D* Obj; /[Pointer to connected domain

virtual doubleDimensionyoid)=0;
virtual void operator=(constEI2D &N);
virtual bool operator==(constEI2D &N);
virtual bool operatori= (constEI2D &N);

/ILiner stiffness matrix of element for both linearaysis,
[Itotal andupdated lagrangian formulations.

virtual matrix K_Lin()=0;

/[Tangential stiffnes matrix of element fidewton solution
/Istyle for both Total & Updated Lagrange formidat
virtual matrix K_NL()=0;

/[Calculate Body Loading
virtual colvec Fb()=0;

/[Calculate load from initial displacement effect.

/lUsed for residual calculation.

virtual colvec F_DisplEff (unsignedshortm_nCurinc=1,
unsigneshortm_nReflnc=0)=0;

/IGet local displacements and incremental from ected domain.

virtual colvec U_Loaflnsignednc=0);

virtual colvec D_U_Locyoid);

vectorsstructNdIdxing> NdLst;//List of connected nodes.

virtual void ldxtoPtr{/oid);
virtual void Ptrtoldx{oid);

unsignedshortm_nMtldx;

vector<lassGsPtData2D> GsPt;
vector<lassGsPtData2D> RedGs;

doubleThick; //Thickness of Element
doublem_dRho; //Mass Density of Element (kg/m3)
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/lInternal body loading per unit maissX (N/m3)
doublem_dFx;
/lInternal body loading per unit maissY (N/m3)
doublem_dFy;

virtual void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);

virtual void OnLButtonDown ( CFEMGLView* pView,
UINT nFlags, CPoint point);

virtual void OnLButtonUp  ( CFEMGLView* pView,
UINT nFlags, CPoint point);

staticunsignedn_nEITxtSz;

virtual unsignedGetldx();
virtual void Setldx(nsigned);

virtual void InitGs(void)=0;

virtual ~EI2D(); //Destructor
unsignedshortGetType()feturnTYPE;};

protected

virtual void Serialize(CArchive& ar);

unsignedm_nldx;
unsignedshortm_nintOrd;
unsignedshortm_nMinNdNumbr;
unsignedshortm_nMaxNdNumbr;
unsignedshortTYPE;

#ifdef DEBUG

void Dump(CDumpContext &dajonst
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Rct2D.h

classRct2Dpublic EI2D
{
public:
DECLARE_SERIAL(Rct2D)
/IConstructors
Rct2D (classObj2D *Ob=NULL, unsigneddx=0,
doublghick=1.0unsignedshortMtldx=0);
Rct2D constRct2D& El);
friend matrix RctBase_2D qoubleksi, doubleeta,
constector<unsignednt> Locldx);

/[Function for calculating linear stiffness matfor rectangle

matrix K_Lin();

/I[Function for calculating non-linear stiffness mafor rectangle

matrix K_NL();

colvec Fb ()//Calculate Body Loading

/[Calculate load from displacement effect for rasidcalculation

colvec F_DisplEffunsignedshortm_nCurlnc=1,unsignedshortm_nReflnc=0);

doubleDimension(); //Area of rectangle

/[Function to handle mouse move message for reletang

virtual void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);

/[Function to handle drawing for rectangle.

void Draw(CFEMGLView* pView);

void InitGs(void);

virtual void Serialize(CArchive& ar);

virtual ~Rct2D();//Destructor for rectangle
private

unsignedshortm_nint_x, m_nint_y;
#ifdef _DEBUG

void Dump(CDumpContext &dajonst
#endif

k
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Tri2D.h

classTri2D:public EI2D
{
public:
DECLARE_SERIAL(Tri2D)
//Constructors
Tri2D (classObj2D *Ob=NULL, unsigneddx=0,
doublghick=1.0unsignedshortMtldx=0);
Tri2D (constTri2D& El);  //Copy constructor

friend matrix TriBase_2D (doubleksi, doubleeta,
constector<unsignednt> Locldx);

/[Function for calculating linear stiffness matfox triangle
matrix K_Lin();

/[Function for calculating non-linear stiffness mafor triangle
matrix K_NL();

colvec Fb(); //Calculate Body Loading

/ICalculate load from displacement effect for rasidcalculation
colvec F_DisplEffunsignedshortm_nCurlnc=1,
unsignedghortm_nRefinc=0) ;
doubleDimension(); //Area of triangle
/[Function to handle mouse move message for reletang
void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);
/I[Function to handle drawing for triangle.
void Draw(CFEMGLView* pView);
void InitGs(void);
virtual void Serialize(CArchive& ar);
virtual ~Tri2D(); //Destructor for triangle
#ifdef _DEBUG
void Dump(CDumpContext &dajonst
#endif

k
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CntctSrf2D.h

classCntctSrf2Dpublic FEGrObj

{

public:
/IConstructors
CntctSrf2Dgoid);
CntctSrf2D€¢onstCntctSrf2D & Cont);
CntctSrf2D(CntctSrf2D*tonstCont);

/IList of contact nodes
vector<classCntNd2D*> NdList;

COLORREF Node_CiIr; //Contact node color
COLORREF SlctNd_Clr; //Selected contact node color

COLORREF Surf_Clr; //Contact surface color
COLORREF Silctsrf_Clr; //Selected contact surface color

staticBOOL m_bVwCntSrf;
staticBOOL m_bClosedCnt;

virtual bool DeleteNode(CntNd2D* pNode);
virtual void CalcParam(FENd2D* pNd)=0;

/I[Find nearest contact node to a FEM node.
virtual unsigned\earest (FENd2DtonstpNd);

/[Pure virtual function to calculate nearest
/lparametric point to a FEM node.
virtual void Ksi_bar (FENd2D* pNd)=0;

/ISaving and reading of surface specific data fthenbinary file
virtual void Serialize(CArchive& ar);

//[Functions to handle mouse events

void OnLButtonDown ( CFEMGLView* pView,
UINT nFlags, CPoint point);

void OnLButtonUp ( CFEMGLView* pView,
UINT nFlags, CPoint point);

void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);

virtual ~CntctSrf2D();
unsignedshortGetType()feturnTYPE;};

protected
//lUsed for drawing purpose!
virtual void CalcParam (CntParamVals*)=0;

virtual unsigned\earest ¢onstdoublex, constdoubley);
virtual doubleKsi_bar(const double x, const double y)=0;
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/IStores type of contact surface (Bernstein, Hexnatc.)
unsignedshortTYPE;

#ifdef _DEBUG
virtual void Dump(CDumpContext &dajonst

#endif

k
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ClHermit.h

classC1Hermit public CntctSrf2D

{

public:

DECLARE_SERIAL(C1Hermit)
C1Hermit(oid);
C1HermitconstC1Hermit & Cont);
C1Hermit(CntctSrf2D*constCont);

/[Calculate nearest contact node to a FEM node.
unsigned\earest (FENd2DtonstpNd);

/[Calculate nearest parametric point to a FEM node.
void Ksi_bar (FENd2D* pNd);

void CalcParam(FENd2D* pNd);

/[Find nearest contact node to point.
unsigned\earest ¢onstdoublex, constdoubley);
/[Calculate nearest parametric point to point.
doubleKsi_bar ¢onstdoublex, constdoubley);

void CalcParam(CntParamVals*);

/[Handle drawing issues of Hermit Bezier Curve
void Draw(CFEMGLView* pView);

/[Handle mouse events for hermite surface
void OnLButtonDown ( CFEMGLView* pView,
UINT nFlags, CPoint point);
void OnLButtonUp ( CFEMGLView* pView,
UINT nFlags, CPoint point);
void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);

/[Handle saving and reading of Hermite Surface
virtual void Serialize(CArchive& ar);

~C1Hermitfoid); //Destructor

#ifdef DEBUG

virtual void Dump(CDumpContext &dajonst

#endif

}
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ClBernstein.h

classC1Bernsteinpublic CntctSrf2D

{

public:
DECLARE_SERIAL(C1Bernstein)

//Constructors

C1Bernsteinfoid);
C1BernsteinfonstC1Bernstein & Cont);
C1Bernstein(CntctSrf2D*tonstCont);

/[Calculate nearest contact node to a FEM node.
unsigned\earest (FENd2DtonstpNd);

/[Calculate nearest parametric point to a FEM node.
void Ksi_bar (FENd2D* pNd);

void CalcParam(CntParamVals* pPrm);

/[Calculate nearest contact node point to point.
unsigned\earest ¢onstdoublex, constdoubley);

/[Calculate nearest parametric point to point.
doubleKsi_bar ¢€onstdoublex, constdoubley);

void CalcParam(FENd2D* pNd);

/[Function to handle drawing issues
void Draw(CFEMGLView* pView);

/[Functions to handle mouse events for Bernstaifase
virtual void OnLButtonDown( CFEMGLView* pView,
UINT nFlags, CPoint point);
virtual void OnLButtonUp ( CFEMGLView* pView,
UINT nFlags, CPoint point);
virtual void OnMouseMove ( CFEMGLView* pView,
UINT nFlags, CPoint point);

virtual void Serialize(CArchive& ar);
~C1Bernstein(oid);
private
#ifdef _DEBUG
virtual void Dump(CDumpContext &dajonst
#endif

3
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GsPt2D.h

classGsPt2D:public FEGrObj

{
public:
DECLARE_SERIAL(GsPt2D)
/IConstructors
GsPt2D ( EI2D *EI=NULL,
doubleksi=0.0,

doubleeta=0.0,
doubleCoeff=2.0);
GsPt2D (constGsPt2D &GsPt );

bool Init ( EI2D *EIl, doubleksi,
doubleeta, doubleCoeff);

/lJackobian matrix (Default referred to initiadhts)
matrix J (unsignedshortm_ninc=0);
doubledetJ (unsignedshortm_ninc=0);

/IConstitutive matrix
matrix C (unsignedshortm_ninc=0);

/[For calculating derivatives (Default referredrdial state

matrix Bnsignedshortm_ninc=0bool m_bCurent=FALSE);

/IAlways referred to initial state (Calculated ofdy Total Lagrangian Solution)
matrix BL1Uunsignedshortm_ninc =1);

/[For calculating Non_Lin part of stiffness matrix.
/[For TL Approach should always refer to initightst (=0)
/I[For UL Approach should refer to curent state.
matrix BNL( unsignedshortm_ninc=1,

bool m_bCurent=FALSE );
/[For calculating mass matrix or internal body &sc
matrix H();

/ICalculates strains.

/[For TL approach Green’s Strain.

/[For UL approach Almansi’s strain

matrix E (unsignedshortm_nCurinc=1,
BOOL m_bVForm=TRUE,

unsignedshortm_nReflnc=0);

/[Cauchy Stress
colvec CSTgnsignedshortm_nCurlnc=1unsignedshortm_nReflnc=0);

/[Deformation Gradient

matrix Funsignedshortm_nCurlnc=1unsignedshortm_nReflnc=0);//Deformation
/[Determinant of deformation gradient matrix
doubledetFUnsignedshortm_nCurlnc=1unsignedshortm_nReflnc=0);

//Second Piola Kirchoff Stress
PKST2@nsignedshortm_nCurlnc=1unsignedshortm_nReflnc=0);
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/I Set ksi and eta local coordinates

void SetLocalfoubleksi, doubleeta,unsignedshortm_ninc);
/ICalculate Global coordinates

void To_Glob (insignedshortm_ninc = 0);

void operator= (constGsPt2D &GsPt);

BOOL operator== (constGsPt2D &N}onst
BOOL operator= (constGsPt2D &N}onst

~GsPt2D(){}; //Destructor

virtual void Serialize(CArchive& ar);
doubleCoeff; //Effect pf GsPt on Element Integration

EI2D* m_pEl;

staticGLint m_nDisplySz;

doublex, y; //Coords of GsPt on Global Elem in curent coordisat
double X, Y;//Coords of GsPt on Global Elem in reference cowtis
doubleDispl_X, Displ_Y;

virtual void Draw(CFEMGLView* pView);

/[Functions to handle mouse events

virtual void OnLButtonDown(CFEMGLView* pView, UINT nFlags, CRdipoint);
virtual void OnLButtonUp(CFEMGLView* pView, UINT nFlags, CPoipbint);
virtual void OnMouseMove(CFEMGLView* pView, UINT nFlags, CPoimbint);

private
doubleksi, etal/Coords of GsPt on Master Elem

public:
#ifdef _DEBUG

void Dump(CDumpContext &dojonst
#endif

%

119



Obj2D.h

classObj2D: public CObject

{

public:
DECLARE_SERIAL(Obj2D)
/IConstructors
Obj2D (void);

Obj2D (constObj2D & Ob);

friend classstd::basic_ostream;
friend classstd::basic_istream;

/[For output to file
staticofstream fout;

// *kk KKk *kk *kkk

/ISolvers

/IThis function also called from Newton solutiar fin initial
/[solution to Newton iteration.

/IWhen making incremental solution for NonLinealusion
/loption, it does not make incrementation.

/IOnly makes a single solution at the curent inm@etation.
virtual BOOL Lin_Solve ¢onstunsignedshortinc);

/[This function handles both Total Lagrangian and
//Updated Lagrangian solutions.
virtual BOOL Nwt_Solve Yoid);

//**************************************

doubleTotFx, TotFy;

/IContainers:

std::vector <lassFENd2D*>GINodes]/Node Container
std::vector <lassEl2D* >Elements;//Element Container
std::vector<classLin_Mat> Mater; //Material Container

// * *% *% * * * * * *

staticSolution_Parameters SolnPrifSolution Parameters
staticResults_ParametersResPfiRgsults Parameters

/IFind maximum number of free nodes.
/I[(Assembler() must be called first)
unsignedmaxff()const

/[Find maximum number of restrained nodes.
/I(Assembler() must be called first)
unsignedmaxrr(const

//Set matrix Dof for assemblage

virtual int Assembler();

//Assemble global stiffness matrix
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virtual int Assemble_K( matrix & Kiff,
matrix & Kifr,
matrix & Kirr,
BOOL m_bLinear=1);

/IAssembledisplacement vector at the incrementa ti
virtual Assemble_Ur (colvec &Urnsignedm_ninc=1)const

/IAssemble free node force vector at the increnteima
virtual Assemble_Ff (colvec &Ffjnsignedm_ninc=1)const

/[Calculates internal element loads at the incrémen
virtual Assemble_EI_Fb( colvec &Ff, colvec &Fr,
unsignedm_ninc=1)const

/[Calculates loads from displacement effects fréements at the increment;
virtual Assemble_EI _Fd ( colvec &Ff, colvec &Fr,
unsignemh_nCurlnc=1,unsignedn_nReflnc=0)xonst

virtual void ResetNdIdx();
virtual void ResetEIlldx();

/IReset indices after node iterator
virtual void ResetNdldx(FNdit);
/IReset indices after element iterator
virtual void ResetEIlldx(FElit);

//***************************

/[Coloring Parameters
/INode Coloring
COLORREF Node_Clr;
COLORREF SIcNd_Clr;

COLORREF Load_Clr;
COLORREF Supp_Clr;
COLORREF Reac_Clr;
COLORREF Sprng_Cilr;

/[Element Coloring

COLORREF Element_ClIr;
COLORREF Element_Sictd_Clr;
COLORREF Element_Frm_Clr;

[[Element VwPrms
staticBOOL m_bVwEIEdges;
staticBOOL m_bVweEIlldx;
staticBOOL m_bVwGsPts;
1** * *

colvec Ur, D_Ur, Uf, D_Uf;

//******************************

/IReal display items
vector<double> Disp_Real_Vals;
/[To display color values

vector <COLORREF> Disp_Col_Val;

1l * ok

CMatrix<unsigned Dof;//Stores Degrees of Freedoms

121



BOOL m_bAnalysed//For checking state of analysis

void DeleteElem¢onstunsignedElldx);
bool DeleteElem(EI2D* pElem);

void DeleteNodegonstunsignedNdIdx);
bool DeleteNode(FENd2D* pNode);

//Set boundary nodes next boundary node index table
void SetBoundary(oid);

/ISet global U, V, Fx, Fy for curent increment rhen
bool SetColorTable();

int Construct;
virtual ~Obj2D();

virtual void Serialize(CArchive& ar);

protected
/[Penalty solution returns number of iterations
unsignedPenaltyContact(constmatrix & m_Kff,
constmatrix & m_Kifr,
constmatrix & m_Krr,
constcolvec & m_Ur,
constcolvec & m_Ff);

/lLagrange multiplier solution returns number ef#@tions
unsigned_agMultContact¢onstmatrix & m_Kff,
constmatrix & m_Kifr,
constmatrix & m_Krr,
constcolvec & m_Ur,
constcolvec & m_Ff);

#ifdef _DEBUG
void Dump(CDumpContext &dojonst
#endif

3
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