

FINITE ELEMENT ANALYSIS OF
DISCONTINUOUS CONTACT PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET ATA BODUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ENGINEERING SCIENCES

JANUARY 2006

Approval of the Graduate School of Natural and Applied Sciences

 Prof.Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. M. Ruşen GEÇİT
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Sciences.

 Prof. Dr. M. Ruşen GEÇİT
 Supervisor

Examining Committee Members

Prof. Dr. Turgut TOKDEMİR (METU, ES) _______________

Prof. Dr. M. Ruşen GEÇİT (METU, ES) _______________

Prof. Dr. Yusuf ORÇAN (METU, ES) _______________

Assoc.Prof. Dr. Ahmet N. ERASLAN (METU, ES) _______________

Assoc.Prof. Dr. Sibel TARI (METU, CENG) _______________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

 Name, Last name : Mehmet Ata BODUR
 Signature :

 iv

ABSTRACT

FINITE ELEMENT ANALYSIS OF DISCONTINUOUS

CONTACT PROBLEM

BODUR, Mehmet Ata

M. Sc., Department of Engineering Sciences

Supervisor: Prof. Dr. M. Ruşen Geçit

January 2006, 122 pages

Contact is a phenomenon faced in every day life, which is actually a complex

problem to tackle for engineers. Most of the times, may be impossible to get analytic

or exact results for the interaction of bodies in contact.

In this thesis work, solution of the frictionless contact of an elastic body, touching to a

rigid planar surface for two-dimensional elasticity; namely plane stress, plane strain

and axi-symmetric formulations is aimed. The problem is solved numerically, with

Finite Element Method, and an Object Oriented computer program in C++ for this

purpose is written, and the results are verified with some basic analytic solutions and

ABAQUS package program.

It is not aimed in this thesis work to give a new solution in the area of solution of

contact problems, but instead, it is aimed to form a strong basis, and computational

library, which is extendible for further development of the subject to include friction,

plasticity, and different material modeling in this advanced field of mechanics.

Keywords: Finite Element, Contact, OOP, C++

 v

ÖZ

SÜREKSİZ TEMAS PROBLEMLER İNİN SONLU ELEMANLAR

YÖNTEM İ İLE ÇÖZÜMÜ

Bodur, Mehmet Ata

Yüksek Lisans, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Prof.Dr. M. Ruşen Geçit

Ocak 2006, 122 sayfa

Temas, günlük hayatta karşılaşılan bir olgu, fakat aslında mühendisler için uğraşması

zor bir problemdir. Temasla etkileşen cisimler için çoğu zaman analitik ya da kesin

çözüm elde etmek mümkün değildir.

Bu tez çalışmasında, bir elastik cisim ile bir katı düz yüzey arasındaki sürtünmesiz

temasın, iki boyutlu elastik; düzlem gerilme, düzlem şekil değiştirme ya da eksenel

simetrik olarak adlandırılan modellemeyle çözülmesi amaçlanmaktadır. Problem,

sayısal olarak, Sonlu Elemanlar Yöntemi ile, ve bu amaçla C++ programlama dilinde

Nesne Tabanlı bilgisayar programı yazılarak çözülmektedir, ve sonuçlar bazı bilinen

analitik çözümlerle ve ABAQUS Paket Programı ile karşılaştırılmaktadır.

Bu tez çalışmasında, temas problemleri çözümü alanında çok yeni ve özel birşeyler

eklemek yerine, hesaba dair konunun daha öteye, sürtünme, plastikleşme ve farklı

malzeme modellemesine yönelik olarak genişletilebilmesine imkan tanıyan sağlam

bir temel oluşturulması amaçlanmaktadır.

Anahtar Kelimeler: Sonlu Elemanlar, Temas, Nesne Tabanlı Programlama, C++.

 vi

To My Parents

For their endless trust and help

Prof. Dr. M. Ruşen Geçit

For his unceasing trust, belief and effort to me in completing this dissertation

Prof. Dr. Turgut Tokdemir

For his invaluble discussions and comments

 vii

ACKNOWLEDGMENTS

The author wishes to give his special thanks to Prof Dr. M. Ruşen Geçit for his

unceasing help and support in completing this dissertation. The author is grateful for

his proofreading, and correcting many things, and especially his belief in completion

of this work, and giving inspiration; and Prof. Dr. Turgut Tokdemir for his comments

and support for the program developed, and for teaching Finite Element, and other

numerical methods.

Thanks also go to Prof. Dr. Yalçın Mengi for his sharing invaluable knowledge on

Continuum Mechanics with the courses he teaches in the Engineering Sciences

Department of METU, and Prof. Dr. Gerhard Wilhelm Weber in the Industrial

Applied Mathematics department of METU for his optimization course and for his

reading and checking the text, and being very supportive.

The author also wishes to mention his colleague PhD. candidate Celal Soyarslan, for

his friendship, discussions, and sharing his experience and knowledge on Finite

Element Method.

Finally, but most special thanks go to his parents Sabriye and İbrahim Bodur for their

endless, unceasing support and love.

 viii

TABLE OF CONTENTS

ABSTRACT.. IV

ÖZ ..V

ACKNOWLEDGMENTS ...VII

TABLE OF CONTENTS...VIII

LIST OF TABLES... XI

LIST OF FIGURES..XII

LIST OF ALGORITHMS ... XIV

LIST OF SYMBOLS..XV

CHAPTER

1. INTRODUCTION ..1

2. CONTINUUM MECHANICS PRELIMINARIES..................3

2.1 INTRODUCTION ...3

2.2 STRAIN DISPLACEMENT RELATIONS3

2.3 STRESS...14

2.4 FRAME INDIFFERENCE...18

2.5 CONSTITUTIVE RELATIONS..21

2.6 CONSERVATION EQUATIONS...26
2.6.1 Mass Conservation ... 26
2.6.2 Linear Momentum Conservation ... 27
2.6.3 Angular Momentum Conservation .. 27
2.6.4 Energy Conservation .. 28

 ix

3. FEM FORMULATION ...30

3.1 INTRODUCTION ...30

3.2 FORMULATION OF STRAINS...31

3.3 RECTANGULAR ELEMENT FORMULATION....................35

3.4 TRIANGULAR ELEMENT FORMULATION.....................35

3.5 VARIATIONAL FORM...36

3.6 FEM LINEARIZATION ..39

4. CONTACT FORMULATION..48

4.1 INTRODUCTION ...48

4.2 PROBLEM STATEMENT...48

4.3 RIGID SURFACE DEFINITION..54

4.4 VARIATIONAL FORMULATION OF CONTACT58

4.5 METHODS OF SOLUTION..59
4.5.1 Penalty Method... 60
4.5.2 Lagrange Multiplier Method.. 64
4.5.3 Augmented Lagrange Multiplier Method.. 67
4.5.4 Barrier Method ... 69
4.5.5 Constraint Function Method .. 70
4.5.6 Cross Constraint Method.. 71

4.6 CONTACT SEARCH, AND SURFACE DETECTION75

5. IMPLEMENTATION ISSUES...78

5.1 INTRODUCTION ...78

5.2 CLASS STRUCTURE...79
5.2.1 class CObject .. 80
5.2.2 class FEGrObj .. 81
5.2.3 class FENd2D... 81
5.2.4 class CntNd2D.. 82
5.2.5 class El2D... 82
5.2.6 class Rct2D and class Tri2D .. 83
5.2.7 class CntctSrf2D... 83
5.2.8 class C1Hermite2D .. 83
5.2.9 class C1Bernstein2D .. 83
5.2.10 class GsPt2D... 84
5.2.11 class Obj2D .. 84

5.3 IMPLEMENTATION DETAILS..85
5.3.1 Copy Constructors, Assignment Operators and Destructors................................... 85
5.3.2 Element Transformations... 85
5.3.3 Late or Dynamic Binding... 86
5.3.4 Program Interface ... 87

 x

6. TEST PROBLEM COMPARISONS AND BENCMARK PROBLEM..91

6.1 INTRODUCTION ...91

6.2 NON-LINEAR BUCKLING ..91

6.3 BEAM ON RIGID FOUNDATION ..93

6.4 CIRCULAR DISK ON RIGID FOUNDATION95

6.5 THE BENCHMARK PROBLEM...96

7. FURTHER REMARKS AND CONCLUSION ..100

7.1 INTRODUCTION ...100

7.2 FURTHER DEVELOPMENT ISSUES..100

7.3 CONCLUSION ..101

REFERENCES ...103

APPENDIX..106

FEGrObj.h.. 106
FENd2D.h .. 107
CntNd2D.h ... 109
Element2D.h .. 110
Rct2D.h .. 112
Tri2D.h ... 113
CntctSrf2D.h .. 114
C1Hermit.h... 116
C1Bernstein.h... 117
GsPt2D.h .. 118
Obj2D.h.. 120

 xi

LIST OF TABLES

Number Page
Table 4.1: Table of next nodes for boundary detection. The grey colored indices are the deleted ones in

the second stage. ...77
Table 6.1: Analysis results for cantilever loaded axially with small perturbation lateral force for Plane

Stress and Plane Strain analysis. The system analyzed by both Total Lagrange and Updated
Lagrange methods and by Kirchoff Material and Hyperelastic Material models....................92

 xii

LIST OF FIGURES

Number Page

Figure 2.1: Initial state of object at time t0 and deformed state of object at t1. P0 at the initial state

defined with the position vector X, deforming and moving to P1 defined with the position vector
x. x is a function of X and t..4

Figure 2.2: Deformation of the edges of a rectangle in initial state to current state...................................9
Figure 2.3: Angle change of the rectangle in current state from the initial un-deformed parallel piped.12
Figure 2.4: A cut on a body in current state and traction defined on the surface per unit area................15
Figure 2.5: Cauchy stress tensor components in current state. ...16
Figure 2.6: A deformable object making rigid body motion; translating and rotating in space. With

respect to the frame of the body, stress and strains remain unchanged. However for the fixed
frame, at the initial state some definitions of stress or strains change..19

Figure 3.1: A FEM element patch defined in initial state mapped to current state. Also mapping from
master element to both initial and current states of the element is represented.30

Figure 3.2: Triangular element area coordinates with total area A. ...36
Figure 3.3: Representative Newton approximation scheme. ..39
Figure 4.1:Slave node moving on the master contact surface. The figure represents the parameters

involved in the gap function. ...51
Figure 4.2: A simple 1D contact problem. A spring with an applied load and a contact constraint. The

energy function and the effect of the contact interface to the energy system.................................52
Figure 4.3: Free body diagram for contact interface...53
Figure 4.4: The function of pN with respect to gN Note the sharp change in the graph at gN=0, which

creates the major problem in optimization. ...54
Figure 4.5: Representation of Hermit interpolation surface definition..55
Figure 4.6: Representation of Bernstein Interpolation Surface definition. ..57
Figure 4.7: Lagrange Function L(x,λ). ..64
Figure 4.8: w(λ,gN) approximately satisfying complementary slackness...70
Figure 4.9: Boundary node detection system. Next nodes are entered by tracing elements in row

directions in the first stage. ..77
Figure 5.1: Diagram representing class hierarchy of FEM objects. Lower order are the child classes

derived from higher parent classes. ..80
Figure 5.2: Input SideBar dialog. ..88
Figure 5.3: Result parameters SideBar dialog...89
Figure 5.4: Zoom ToolBar providing interface for zoom functions...89
Figure 6.1: The analyzed cantilever model. The same model is analyzed with TL and UL approaches

for both plane stress and plane strain cases. ..92
Figure 6.2: Beam on rigid foundation. This is at the preprocessor stage of new program developed (i.e.

not analyzed yet). ...93
Figure 6.3: Beam on rigid foundation analyzed with the program developed. Linear Elastic case with

Lagrange Multiplier Approach is considered. Vertical displacements are pictured......................94
Figure 6.4: Beam on rigid foundation analyzed with the ABAQUS commercial program. Linear Elastic

case with Augmented Lagrange Approach is considered. Vertical displacements are pictured....94
Figure 6.5: Circular disk interacting with rigid foundation. Axisymmetric analysis with the new

program developed for this dissertation. Linear elastic case analyzed with Lagrange multiplier
approach. ...95

Figure 6.6: Circular disk interacting with rigid foundation. Axisymmetric analysis performed with the
commercial ABAQUS program. Linear elastic case with augmented Lagrange approach is the
analysis options. ...96

Figure 6.7: The benchmark problem. Plug in the preprocessor stage. This is the model entered from the
graphical interface. The Dialog Bar on the left is in the preprocessor state.97

 xiii

Figure 6.8: The benchmark problem. Plug in the post processor stage. This is the result of the analysis
representing y-direction Cauchy’s stress distribution when pushed against to the contact surface
in x-direction. The Dialog Bar on the left is in the post processor state.98

Figure 6.9: Beam on elastic half-space. ρ0 is the load per unit length, ρ1 is the load per unit volume, g is
the gravitational constant. ..99

 xiv

 LIST OF ALGORITHMS

Number Page

Algorithm 1: Newton’s method for FEM equation system. ..46
Algorithm 2: Pseudo algorithm for contact solution with the Penalty method...................................63
Algorithm 3: Cross constraints method..74

 xv

 LIST OF SYMBOLS

b : Eulerian deformation tensor.
B0 : Derivative matrix with respect to reference coordinates.
B : Derivative matrix with respect to current coordinates.
C : Green Lagrange Deformation Tensor.
C
)

 : Constitutive tensor in reference coordinate system.
c
) : Constitutive tensor in current coordinate system.
ds : Length of small vector in current coordinates.
dS : Length of small vector in reference coordinates.
dX : Infinitesimall vector in reference coordinates.
dx : Infinitesimall length in current coordinates.
detF : Determinant of deformation gradient.
E : Green’s Strain Tensor.
e : Almansi’s Strain Tensor.
F : Deformation gradient.
F : Contact force for cross constraints method.
F : Modified force matrix for contact.
F̂ : Assumed contact force for cross constraints method.
J : Jacobian from master element to element in curent state.
J0 : Jacobian from master element to element in reference state.
K : Contact stiffness for cross constraints method.
KL : Linear stiffness matrix.
KNL : Non-linear stiffness matrix.
KT : Tangential stiffness matrix for Newton solution.
K : Modified stiffness for contact.
K̂ : Assumed initial contact stiffness for cross constraints method.
N̂ : Unit normal vector in reference coordinates
n̂ : Unit normal vector in current coordinates.
P : First Piola Kirchoff stress tensor.
R : Rotation part of deformation gradient.
R : Residual vector for Newton iteration.
S : Second Piola Kirchoff stress tensor.
S
)
 : Second Piola Kirchoff stress tensor in matrix form for Newton iter.

t : Traction vector in current coordinates.
T : Traction vector in reference coordinates.
U : Lagrangian stretch tensor.
u : Displacement vector.
V : Eulerian stretch tensor.
X : Position vector in reference coordinates.
x : Position vecctor in current coordinates.
ε : Engineering strain.
κ : Penalty stiffness.
λ : Lame’s modulus.

 xvi

ρ : Mass density in current coordinates.
ρ0 : Mass density in reference coordinates.
µ : Shear modulus (p.21).
µ : Barrier parameter for barrier method (p.69)
ν : Poisson’s ratio.
σ : Cauchy stress tensor.
σ
) : Cauchy stress tensor in matrix form for Newton iteration.

 1

CHAPTER 1

INTRODUCTION

Contact is a phenomenon faced in everyday life, but a problem hard to tackle for

engineers. It is well known that it is a phenomenon dealt from the Egyptians time at

least. In [1] some historical remarks have been given about history of approaches to

the event. First modern approaches attributed to Da Vinci (15th century), Coulomb

(1785), Euler (1748) etc.[1]. Though it is not a new event faced in human life, till the

last few decades it was only possible to analyse some special types of contact

problems analytically, with some crude assumptions. As the industry evolved, more

and more elaborate techniques needed to deal with contact. In automobile industry,

design of wheels interacting with road, design of clutches, brakes, gears, etc. needs

elaborate techniques to analyze this natural event. In civil engineering applications,

interaction of girder beams with supports, interaction of foundation with ground etc.

are events simply coming into mind about contact. Also in the recent years, one can

see some successful designs of plugs of the mobile phone chargers, and some other

interesting industrial applications.

By the advent of the computers, new numerical solution techniques have been

developed in the last few decades, one of which Finite Element Method (FEM) have

found enormously wide applications in engineering. FEM is a numerical technique to

solve mechanical problems in engineering with the aid of computers, where it is hard

or impossible to get an analytic solution. For having a solution with FEM, one has to

have a well posed mathematical model, which, representing the physical phenomena

in a good way in the domain of the problem. The mathematical model, in general to

be defined by differential equations, to be solved numerically by a set of governing

algebraic equations [2]. [3] gives a summary about history of FEM. For an

understanding of the subject, the reader should consult to references [2]-[5] or other

uncountably many references in literature.

 2

While posing the problem initially, one can assume a continuous body supported

from some part of the boundary, with some boundary and internal forces defined, and

another object to interact with is awaiting or moving in the process of deformation.

As the deformation progresses, one expects to see an interaction of the bodies on their

boundaries, which is unpredictable at the beginning, and makes the problem highly

non-linear. Due to this nature of unpredictability, in the past, the contact interactions

were approximated with special crude assumptions.

While attacking to the problem, it becomes very difficult to include all aspects of the

problem at once. For that reason, in this study, the topic is bounded by obtaining a

FEM implementation of discontinious, frictionless linearly elastic 2D contact, namely

the plane stress, plane strain and axi-symmetric problems, which is to be robust,

dependable and extendible for further abilities. For the robustness and extendibility

issues, C++ programming language, which has been very popular in the last decade is

selected for it provides robust and extendable object oriented environment. It also has

the support of defining types different than the standard data types like integers, real

numbers, arrays etc.. In the object oriented environment, data is organized and

distributed in the classes, which provides seperate compilation, neater and cleaner

programming environment. Also the data hiding and extraction mechanisms of C++

prevent many errors while programming. Even though the code is implemented for

2D case, most of the mathematical idea are valid and extendible to 3D cases.

The organization of the material is in the following order: In Chapter 2, general

continuum equations used in the program developed are presented briefly. In Chapter

3, FEM formulation is introduced. For the completeness, triangular and rectangular

elements are defined. In Chapter 4, constraint formulation techniques is dealt

mathematically and application to contact formulation is discussed, application of

these techniques to general FEM equations are explained briefly. In Chapter 5, OOP

approach to FEM is discussed and some implementation details regarding this issue

are introduced. In Chapter 6, some benchmark tests are considered and comparison to

another FEM program ABAQUS and some exact analytical solutions are done.

Finally, in Chapter 7, concluding remarks and further development issues are

presented.

 3

CHAPTER 2

CONTINUUM MECHANICS PRELIMINARIES

2.1 INTRODUCTION

In this section, necessary continuum mechanics equations are presented. Since there

are too many items, which all cannot be mentioned here, the context in this chapter is

restricted to the applied formulations to justify the applied ones. Most of the details

are left to the reader with giving references [2] and [5] and the references therein.

2.2 STRAIN DISPLACEMENT RELATIONS

In the context of continuum mechanics, stresses are defined as the function of strains.

Strain is in general a second order tensor representing the deformation state of the

object at a point in the domain, which is a function of displacements. One can initially

define an object moving and deforming in space and time (Figure 2.1). Initial

configuration is defined as X and current configuration as x. It should be declared

here that variables written in bold are representing vector values, where in 2D having

two components, and in 3D having three components and parameters referring to

initial state are defined in capital letters, whereby parameters referring to current state

are represented by minuscule.

 4

Figure 2.1: Initial state of object at time t0 and deformed state of object at t1. P0 at the
initial state defined with the position vector X, deforming and moving to P1 defined
with the position vector x. x is a function of X and t.

In the above, all the coordinates defined with respect to a reference frame, which,

fixed in space and time, is the Lagrangian Description, where in the opposite case, in

which the reference frame is moving in space and time, is called the Eulerian

Description. In the Lagrangian analysis, the particles are followed individually,

whereby in the Eulerian approach, particles passing through a fixed point are

watched. In structural analysis, in general, the Lagrangian Description, whereby in

fluid dynamics Eulerian Description is preferred.

The motion of the body can be defined as:

),(tXφx =

 Or in indicial notation

),(tXx jii ϕ=

(2.1)

The function),(tXφ maps the reference configuration at time t=0 into current

configuration at time t=t and, it is called the mapping from the initial to current

configuration. At time t=0 , x is coincident to X .

From the above figure, it can easily be seen that:

Xxu −= , or in indicial notation IiIii Xxu δ⋅−=

(2.2)

X1,x1

X2, x2

X
x(X,t)

u(X,t
)

P0
P1

t=t0 t=t1

0Ω

1Ω

dX

d
x

dS
ds

 5

The above can be also written as:

IiIJii XtXu δϕ ⋅−=),(

(2.3)

At this point, one may like to define the deformation gradient F, which transforms the

infinitely small vector in the reference configuration to the current configuration.

In tensorial notation:

T)(0ϕ
ϕ ∇≡

∂
∂≡

∂
∂=

X
x

X
F , or in indicial notation:

J

i

J

i
iJ X

x

X
F

∂
∂=

∂
∂= ϕ

(2.4)

From the above formula, it is obvious that:

dXFdx ⋅= , or in indicial notation: JiJi dXFdx ⋅=

(2.5)

The formula in Eq. (2.2) can be applied to the previous Eq. (2.4) with an arrangement

and the equation below is obtained.

J

i
iJiJ X

u
F

∂
∂+= δ

(2.6)

The deformation gradient can be written as a matrix expression in 3D as follows:

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

X

x

X

x

X

x
X

x

X

x

X

x
X

x

X

x

X

x

F

(2.7)

 6

The determinant of F is important in the formulation of general equations of

continuum mechanics in transforming integrations from current to initial state forms.

In literature it is defined as J, but since in finite element context J refers to mapping

from master element to actual element, which will be clear in the foregoing chapters,

the determinant of F is denoted by detF instead of J.

For mapping from the reference to current configuration to be possible, φ should be

one to one, continuously differentiable, and detF>0. The condition one to one means,

there exists only one point in the current configuration for a point in reference

configuration or vice versa. For the backward compatibility, F should be invertible,

which requires that 0det ≠F . In the above, the more strict condition requiring that

0det >F is written, which comes from mass conservation, and is dealt in

conservation equations. Continuous differentiability is obviously necessary for

calculation of F.

The above conditions can be violated in special situations, such as crack propagation,

but in the context of this dissertation, formulation is based on the above assumptions

(Belytschko et al. [5]).

Here it should also be stated that detF relates the volume in reference configuration to

present configuration as:

dVdVF =⋅ 0det

(2.8)

In the above equation, dV0 is the volume in the reference configuration, and dV is the

volume in the current configuration.

The deformation gradient can be decomposed into rotation and stretch parts as:

URF ⋅=

(2.9)

and,

RVF ⋅=

(2.10)

 7

In both of the decompositions, R is the rotation part; U is the stretch with respect to

the initial state and is called the Lagrangian stretch tensor. Conversely, V is the

stretch with respect to current state and is the Eulerian stretch tensor.

Now that deformation gradient has been defined, it is expected to have a relation for

strain. The general requirements for strain can be stated as:

It must vanish for any rigid body motion, in particular for rigid body rotation; should

increase as the deformation increases (Belytschko et al. [5]). Those requirements are

crucial, especially, in the non-linear theory.

A small length in the current state ds, can be related to the initial state dS, by use of

Eq. (2.5) and the formulations below:

)(2
ii dxdxds ⋅= , or in matrix form:

dxdx ⋅= Tds2

(2.11)

)(2
II dXdXdS ⋅= , or in matrix form:

dXdX ⋅= TdS2

(2.12)

By use of Eq. (2.5):

)()(2
MiMJiJ dXFdXFds ⋅⋅⋅= or in matrix form:

dXFFdX T ⋅⋅⋅= Tds2

(2.13)

In the above formulation, FFC T ⋅= is called the right Cauchy-Green deformation

tensor.

Then,

dXCdXT ⋅⋅=2ds

(2.14)

 8

From the above formula, stretch of the vector can be defined and given in indicial

form as below:

2/1

 ⋅⋅⋅=
dS

dX
F

dS

dX
F

dS

ds M
iM

J
iJ

(2.15)

which is equivalent to:

2/1)ˆˆ(MJMJdS

ds
NCN ⋅⋅=

(2.16)

where, N̂ is the unit vector defined in reference configuration in the direction ofdX .

Now the change in square length can be defined as:

dXdXdXCdX ⋅−⋅⋅=− TTdSds 22

(2.17)

Dividing both sides of Eq. (2.17) by dXdX ⋅= TdS2 , the equation following can be

obtained:

∧∧
⋅−⋅=−
NICN)(

2

22 T

dS

dSds

(2.18)

In literature, the above)(IC − is defined as:

)(2 ICE −=

(2.19)

in whichΕ is called the Green’s strain tensor.

From the formula in Eq. ((2.18) one can also write the stretch defined as follows:

12 +⋅⋅==
∧∧
NEN

T

dS

dsλ

(2.20)

Here one can define the well-known engineering strain in one dimension:

 9

112 −+⋅⋅=−=
∧∧
NENε

T

dS

dSds

(2.21)

When
∧∧

⋅⋅ NEN 2
T

 is small, by Taylor’s expansion of the square root, ignoring higher

order terms, one can get:

∧∧
⋅⋅=−= NENε

T

dS

dSds

(2.22)

This is the engineering definition of strain for one-dimensional state. For strain being

small, the difference between Green’s strain and the engineering strain becomes

ignorable. Nevertheless, for large deformation case one obviously needs to employ a

strain definition different from the engineering strain i.e., the Green’s strain. In the

sequel, this distinction will be further well understood while deriving Non-Linear

FEM equations.

Up to this point, a measure for deformation of a vector has been obtained. Now, a

relation is needed for the deformation of the edges of a rectangular infinitesimally

small element in the reference configuration.

Now that infinitesimal length in current state has been related to infinitesimal length

in initial state, one can derive relations for deformation of the edges of a rectangle,

which is the angle change, in reference configuration to current state (Figure 2.2).

Figure 2.2: Deformation of the edges of a rectangle in initial state to current state.

dX1

dX2
dx2

dx1
θ

γ1

γ2

 10

The dot product of the edges of the parallelogram in the current state referring to the

rectangle edges in the initial state can be written as:

212121)cos(dXCdXdXFFdXdxdx T ⋅⋅=⋅⋅⋅=⋅⋅ TTθ

(2.23)

or rearranging terms:

2

2

1

1)cos(
dx

dX
C

dx

dX
⋅⋅=θ

(2.24)

By utilization of Eq. (2.20), the above is equivalent to:

11

)21sin()cos(

22

2

11

1

+⋅⋅

⋅⋅

+⋅⋅

=+≡

∧∧

∧

∧∧

∧

N2EN

N
C

N2EN

N
TT

γγθ

(2.25)

Considering the small strain situation in the above equations, and observing that N1

and N2 are parallel to axes, i.e. parallel to i and j axes:

 1111 ≈+⋅⋅
∧∧
N2EN

T

, and

1122 ≈+⋅⋅
∧∧
N2EN

T

(2.26)

ijij EC 2= , when ji ≠ ,

γγγγγ =+≈+)21()21sin(, then:

ijE2≈γ

(2.27)

In the above, it is not aimed to create confusion to the reader, but it is aimed to

present the distinction and understanding of strain in large deformation state, and

recovery to general engineering definitions of strain in small deformation case.

 11

In the sequel of this section, it is aimed to relate current state to the initial state. As

previously stated, the deformation gradient F is one to one, and there exists an inverse

relation from current state to initial state. Hence, one can define:

),(),(1 tt xXxX ≡= −ϕ

(2.28)

An infinitesimally small length in the current state can be transformed back to initial

state by the next equation:

1
1

−
−

≡
∂

∂=
∂
∂

F
xx

X ϕ
 or xFX dd ⋅= −1

(2.29)

A small length in initial state dS, can be related to current state ds, by use of Eq.

(2.29) as follows:

)()(112
jjMiiM dxFdxFdS ⋅⋅⋅= −− , or in matrix form:

dxFFdx T ⋅⋅⋅= −− 12 TdS

(2.30)

This is equivalent to:

dxbdx ⋅⋅= −12 TdS

(2.31)

In the above, b is called the left Cauchy-Green deformation tensor.

One can also express the length change with respect to current state:

nbIn ˆ)(ˆ 1
2

22

⋅−⋅=− −T

ds

dSds

(2.32)

where n̂ is the unit vector in the direction of dx in the current state. From the above

formulation, Almansi’s strain tensor is defined as:

)2 1−−= b(Ie

(2.33)

 12

Figure 2.3: Angle change of the rectangle in current state from the initial un-deformed
parallel piped.

Angle change for the edges of a rectangle in the current state can also be defined as in

the Lagrange strain tensor case by the following:

2
T
12

TT
121 dxbdxdxFFdxdXdX ⋅⋅=⋅⋅⋅=⋅⋅ −−− 11)cos(θ

(2.34)

or rearranging terms:

2

21

1

1

dX
dx

b
dX
dx ⋅⋅= −)cos(θ

(2.35)

which is equivalent to:

2
T
2

21

1
T
1

T
1

n2en1

n
b

n2en1

n

ˆˆ

ˆ

ˆˆ

ˆ
)21sin()cos(

⋅⋅−
⋅⋅

⋅⋅−

=+≡
−

γγθ

(2.36)

Considering the small strain case from the above equations and observing that 1n̂ and

2n̂ are parallel to axes in current configuration, the angle change from initial state to

current state can be defined as γ, which can be obtained as follows:

dX1

dX2
dx2

dx1
γ2

γ1

θ

 13

 1ˆˆ1 ≈⋅⋅− 1
T
1 n2en , and

1ˆˆ1 22 ≈⋅⋅− n2enT

ijij eb 21 =− − , when ji ≠ ,

 γγγγγ =+≈+)21()21sin(,

ije2=γ

(2.37)

At this point, one should look at what is obtained when Almansi’s Strain Tensor is

multiplied with the deformation gradient on both sides:

2EI)F(FF))F(F(IFF2eF T1TTT =−=⋅⋅−=⋅⋅ −

(2.38)

The above is defined as the pull back operation of Almansi’s Strain Tensor.

One more thing to be considered left is writing the strain tensors in displacement

form, which constitutes the main framework for working in FEM displacement

formulation. Using Eq. (2.6), Green’s strain tensor can be written as:

)(
2

1

J

M

I

M

I

J

J

I
IJ X

u

X

u

X

u

X

u
E

∂
∂

⋅
∂
∂

+
∂
∂

+
∂
∂

=

(2.39)

In the same way, the Almansi’s strain tensor can also be represented by:

)(
2

1

j

m

i

m

i

j

j

i
ij x

u

x

u

x

u

x

u
e

∂
∂⋅

∂
∂−

∂
∂

+
∂
∂=

(2.40)

For small strain conditions, in both of these equations; the multiplication terms

become small and the difference between the current and the initial states becomes

negligible, then the equations reduce to:

)(
2
1

i

j

j

i
ij x

u

x

u

∂
∂

+
∂
∂=ε

(2.41)

 14

It is shown up to here that, in small strain conditions, the difference of terms being

defined either in the initial state or in the final state is not being obvious. In contrast,

in large strain conditions, the difference becomes considerable by taking into account

of the multiplication terms. For the non-linear case, the term strain is being rather a

mathematical definition, the physical meaning not directly being obvious to a user in

contrast to the engineering definition of strain. In large deformation analysis, length

square change is employed, while in the small strain analysis, simply the length

change is used. That creates consistency problems to deal with in relating stress to

strain. This will be made clear in the sequel of this chapter. It must be stated that no

further terms exist in the expression for for Green’s strain and Almansi’s strain as

given by Eqs. (2.39) and (2.40) i.e. no Taylor’s expansion and truncation of higher

order terms have been performed. That is, they are complete. In the following, the

definition of stress will be given.

2.3 STRESS

In this section, the same approach to explanation of stress for large deformation

analysis and limiting case for small deformation solutions will be followed as in the

previous. Again, one needs to distinguish the initial and the current states for the

definition of stress. Although in literature many different stress definitions exist, in

this dissertation, only the two of them will be considered since they are applied in the

written program for including geometric non-linearity. They are the Cauchy stress

and the Second Piola Kirchoff stress. Except the Cauchy stress, the stress definitions

have a rather mathematical meaning; they are in general not attributed to a direct

physical meaning. Although Cauchy stress has a meaning in engineering point of

view, the Cauchy stress varies under rotations, which creates difficulties in some

FEM formulations. That is why different stress definitions exist in literature. The

conversion is virtually always possible from one definition to the other by use of the

deformation gradient, or components of it. The main reason for selection of one or the

other is the computational efficiency. In the context of this dissertation, consideration

will not be given to all the stress definitions, but two of them, which are applied in the

formulations and solutions in this dissertation.

 15

In the engineering point of view, Cauchy stress, which is defined in the current state,

has major importance and meaning, and it will be obtained. Other definitions are, in

general, means to reach Cauchy stresses, and they are rather mathematical

expressions.

Now consider a cut on a body in current state on which some forces and tractions are

acting (Figure 2.4).

Figure 2.4: A cut on a body in current state and traction defined on the surface per unit
area.

The traction on the surface is defined by the formulae below:

σnt ⋅= Tˆ ,

or in indicial notation:

jiji nt σ⋅= ˆ

(2.42)

where, t is the traction vector, n̂ is the unit normal vector on the cut and σ, a second

order tensor, is defined to be the Cauchy’s stress tensor. In engineering analysis, it

has a major importance and has a physical meaning. The first index represents the cut

normal direction, and the second index represents the direction of the traction with

respect to the reference frame in the current state. It is written in matrix form as:

t
r

n̂

x1

x2

 16

=

333231

232221

121211

σσσ
σσσ
σσσ

σ

2.43

Figure 2.5: Cauchy stress tensor components in current state.

Now one may consider the traction on a body, and want to retrieve the fictitious same

traction defined in the initial state such that:

0dAdA ⋅=⋅ Tt

(2.44)

where t is the traction in the current state, dAis the infinitesimal area in the current

state, T is the assumed fictitious same traction corresponding to reference state, and

0dA is the same area in the reference state.

Next one needs the formulation of the area change from the current state to the initial

state or vice versa for formulating the transformation:

σ23

σ22

x1

x2

x3

σ21

σ11

σ12

σ13

σ31

σ32

σ33

 17

kjijki dxdxdAn ε=ˆ

(2.45)

KJRJKR dXdXdAN ε=0
ˆ

(2.46)

Eq. (2.45) can be converted to current state by:

1−≡ iRKJkKjJrRrjkriKkKJjJrjk FdXdXFFFdXFdXF εδε ,

or,

1
0

1 ˆdetdet −− ⋅⋅≡⋅ iRRiRKJRJK FdANFFdXdXFε

(2.47)

The above can be written in matrix form as:

NFn ˆdetˆ 0 ⋅⋅⋅=⋅ −TdAFdA

(2.48)

For derivation of T in Eq. (2.44), another stress definition in the initial state may be

written such that:

TPN =⋅Tˆ

(2.49)

In the above equation, P is defined to be the nominal stress tensor. Combining Eqs.

(2.44), (2.48), and (2.49):

σFNPN ⋅⋅⋅⋅=⋅⋅ −1
00

ˆdetˆ TT dAFdA

(2.50)

Then from above it can easily be deduced that:

σFP ⋅⋅= −1detF

(2.51)

Here P is not symmetric in general, and changes under rotations. Due to this reason,

in general it is not used in this form. It is transformed by multiplying both sides by F-

T, and another stress definition; Second Piola Kirchoff stress is obtained as:

 18

T1 FσFS −− ⋅⋅⋅= Fdet

(2.52)

Second Piola Kirchoff stress is a symmetric second order tensor. For small

deformation case, F is approximate to identity, detF is approximately 1, and thus no

considerable difference between the Cauchy stress, Nominal stress, and the Second

Piola Kirchoff stress is observed. Nevertheless, in non-linear elasticity or non-linear

plastic analysis, where there exist large straining, and large deformations, the analyst

must perform the operations either in the current state or in the initial state. In case of

performing the operations in the initial state, S must be used for the stress definition.

However, in case the analysis is performed in the current state, Cauchy stress or some

other variants should be used. S may be considered as the pull back of σ from current

state to initial state. S is frame indifferent as will be shown in the sequel. Thus, S is

preferred in some analysis when frame indifference is to be considered, but the pull

back and push forward operations constitute a large amount of work. For this reason,

sometimes, invariant variances of Cauchy stress are preferably used in some analysis,

where stress incrementation is necessary. This fact will not be dealt here.

2.4 FRAME INDIFFERENCE

Since in the above definitions of stress or strain, frame indifference is declared, for

the continuity of the subject, this concept will be discussed a little. Assume that the

body dealt with makes a rigid body motion in which there is only translation and

rotation, where there is no deformation except the previous stresses and strains

remain intact. Now, regard the stress and the strain definitions on the body, and

compare those stress or strain definitions for both states.

 19

Figure 2.6: A deformable object making rigid body motion; translating and rotating in
space. With respect to the frame of the body, stress and strains remain unchanged.
However for the fixed frame, at the initial state some definitions of stress or strains
change.

The motion of the body can be defined as:

T

tt

QQ

cxQx

=
+⋅=

−1

*),()(

(2.53)

where x is the coordinate in the current state, c(t) represents the translation of the

object and Q(t) represents only the rotational motion. The deformation gradient in

this case would constitute of the rotation part only. Now see what happens to the

stress or the strain tensors as the body rotates.

Considering the deformation gradient, the equation below must hold:

dXFdXFQdxQdx ** ⋅=⋅⋅=⋅=

(2.54)

Thus, from the above equation, it can be concluded that the deformation gradient

transforms like a vector under rotations of the object with respect to the initial frame,

which can be stated mathematically as:

x1

x2

x*
1

x*
2

 20

FQF* ⋅=

(2.55)

When one looks at the rotated Cauchy stress from the initial x-frame, then:

TQσQσ* ⋅⋅=

(2.56)

and it is obvious that it does not remain the same under rotations. Therefore, it rotates

with the rotating frame.

Looking at the Second Piola Kirchoff stress:

TTTT
FFS −−−− ⋅⋅⋅⋅⋅⋅⋅≡⋅⋅⋅= FQQσQQFFσF

II
321321

1**1** detdet

(2.57)

Thus, from above it can easily be concluded that:

SS =*

(2.58)

The above equation simply implies that S is frame indifferent, which means it does

not change under rotations and/or translations of frame.

Continuing the procedure for the Green-Lagrange deformation tensor:

CFQQFFFC
I

TT*T** =⋅⋅⋅=⋅= 321

(2.59)

The above equation means that Green Lagrange Deformation Tensor is unaffected by

rotations of the object. It implies also frame indifference of the Green’s Strain Tensor

E.

Considering the Eulerian deformation tensor:

bQFFQFFb TTT*** ≠⋅⋅⋅=⋅=

(2.60)

 21

From the above equation, it is seen that Eulerian deformation tensor rotates with the

object. It directly implies that Eulerian strain tensor also rotates with the object

rotation.

2.5 CONSTITUTIVE RELATIONS

Constitutive relations are the equations relating the strains to the stresses. For this

kind of a relation to exist, a consistent material model is needed. In literature, many

different material constitutive relations exist. For the linear small deformation, small

strain analysis, the relation of stress to strain in 2D for plane stress, plane strain and

axisymmetric cases are defined simply as below:

Plane Stress:

+
−
−

−
−

−
−+

−
−

=

≅

12

22

11

12

22

11

12

22

11

200

02
)1(

)21(

)1(

)21(

0
)1(

)21(
2

)1(

)21(

ε
ε
ε

µ

µ
ν

νλ
ν

νλ
ν

νλµ
ν

νλ

σ
σ
σ

S

S

S

(2.61)

Plane Strain:

+
+

=

≅

12

22

11

12

22

11

12

22

11

200

02

02

ε
ε
ε

µ
µλλ

λµλ

σ
σ
σ

S

S

S

(2.62)

Axi-symmetric:

+

+
+

=

≅

θθε
ε

ε
ε

µλλλ
µ

λµλλ
λλµλ

σ
σ
σ
σ

rz

zz

rr

S

S

S

S

2

20

000

02

02

33

12

22

11

33

12

22

11

(2.63)

 22

In the above formulation, it should be noted that S, σ, and ε are written in vector

form, which is called as Voigt notation in [5]. Unless otherwise stated, in the FEM

context, they will be assumed in this vector form, but in the general continuum

mechanics equations, they should be considered in the matrix form. Here, λ and µ are

the Lame’s constants defined as:

)21)(1(νν
νλ

−+
= E

(2.64)

)1(2 ν
µ

+
= E

(2.65)

The non-linear case is more complicated. Consistency becomes an important issue to

deal with. In that case, the models are classified in general for path independence,

reversibility, and non-dissipative behaviors (Belytschko et al. [5]). In this work, only

two of the constitutive models are dealt with; one of which is the direct extension of

the Hooke’s Law, called the Saint Venant-Kirchoff material model, and the other is

the Hyperelastic Neo-Hookean material model.

Kirchoff Material model is a model used in general for large deformation – small

strain type of problems. It does not have much practical importance in general. It only

includes the rotations of the body. In the small strain range, both of the strain matrices

approximate to engineering definition of strains. That is why it is used in the small

strain range. However, in case of the large straining, it results in stiffer results. The

reason may be explained by the strain definition is changing considerably in case of

large strain. Referring to initial state, the relation is defined as:

,KLIJKLIJ ECS
)

= or in matrix form: ECS :
)

=

(2.66)

where, S is the Second Piola Kirchoff stress tensor, and E is the Green’s strain

tensor, which are defined before, and C
)

 is the constant constitutive matrix defined in

the assumed unstressed initial state. When referring to current state, stress or strain

definitions should change accordingly as:

 23

klijklij ec
)=σ , or in matrix form: e:cσ

)=

(2.67)

where σ is the Cauchy stress, and e is the Almansi’s strain tensor as are previously

defined, and c
)

 is the constitutive matrix, changing as the deformation state changes.

The change of c
)

 is defined by the transformation rule from the unstressed initial state

constitutive matrix according to the formulation:

IJKLlLkKjJiIijkl CFFFF
F

c
))

det

1=

(2.68)

Hyperelastic model is used for large deformation and large strain analysis. In this

model, stored strain energy potential is defined as a function of Green’s deformation

tensor or Green Lagrange strain tensor. Stresses and constitutive relations are

obtained accordingly from the potential function. This formulation has variations [5],

[6], but the one in [6] is adapted for the program developed. Hyperelastic model

guarantees path independent work and is more consistent with the non-linear stress

definitions. In terms, this means:

E
E

C
C

S
∂

∂=
∂

Ψ∂=)()(
2

w

(2.69)

In the above formulation, Ψ is the potential defined for the Green’s deformation

tensor, while w is the potential defined for Green’s strain tensor. The transformation

to the current state is performed by use of Eq. (2.52) as:

TT w

FF
F

E
FF

C
Fσ ⋅

∂
∂⋅⋅=⋅

∂
Ψ∂⋅⋅=

det

1

det

2

(2.70)

The constitutive matrices are derived from Eq. (2.69) by taking one more derivative,

which yields:

EECC
C

∂∂
∂=

∂∂
Ψ∂⋅= w22

4
)

(2.71)

 24

The above equation is also transformed to the current state as written in Eq. (2.68).

These formulations are general to hyperelastic constitutive model.

Now there comes the definition of the energy function. For the compressible Neo-

Hookean hyperelastic model, the energy function is defined as ([6], Chapter 7):

)3)((
2

1
)ln(det)

2
()1)((det

4
)(2 −⋅⋅+⋅+−−⋅=Ψ CC trFF µµλλ

(2.72)

Then substituting equations (2.69) (2.71) in (2.72) gives:

)()1)((det
2

112 −− −⋅+⋅−⋅= CICS µλ
F ,

 or in indicial form:

)()1)((det 112 −− −⋅+⋅−⋅= IJIJIJIJ CCFS δµλ

(2.73)

)()1)((det2(
2
1

)(det

11112

112

−−−−

−−

+⋅−−

+⋅⋅=

JKILJLIK

KLIJIJKL

F

F

CCCC

CCC

λµ

λ
)

(2.74)

are obtained. Eqs. (2.73) and (2.74) are defined for the Total Lagrange Approach,

which means calculations are performed in the initial state. The same transformations

as in Eqs. (2.52), and (2.68) apply for the current state calculations; stresses and

strains are also defined for Updated Lagrange Approach as follows:

)(
det

)1)((det
det2

2 IbIσ −⋅+⋅−⋅=
F

F
F

µλ
,

or in indicial form:

)(
det

)1)((det
det2

2
ijijijij b

F
F

F
δµδλσ −+−=

(2.75)

 25

)()1)((det2(
2

1
)(det 22

kjiljlikklijijkl FFc δδδδλµδδλ +⋅−−+=

(2.76)

In “Voigt notation” (Belytschko et al. [5]), the constitutive matrix can be written in

2D for updated Lagrange method as:

Plane Stress:

−
−
−−

+
−
−

−
−

−
−+

−
−

=

)1)((det
)1(2

)21(
00

02
)1(

)21(
)(det

)1(

)21(

0)(det
)1(

)21(
2

)1(
)21(

2

2

2

F

F

F

ν
νλµ

µ
ν

νλ
ν

νλ
ν

νλµ
ν

νλ

c
)

(2.77)

Plane Strain:

−−

+
+

=

)1)((det
2

00

02)(det
0)(det2

2

2

2

F

F
F

λµ

µλλ
λµλ

c
)

(2.78)

Axi-symmetric:

+

−−

+
+

=

µλλλ

λµ

λµλλ
λλµλ

20)(det)(det

0)1)((det
2

00

)(det02)(det
)(det0)(det2

22

2

22

22

FF

F

FF
FF

c
)

(2.79)

For the Kirchoff model, at the initial undeformed state, the constitutive matrix is the

same as in the linear case. Nevertheless, for the deformed state, the transformations

must be performed according to Eq. (2.68). Those transformations are done for the

fourth order tensor, than reduced to second order tensor in Voigt notation form.

It should be stressed here that, in the hyperelastic model, the stresses are calculated

from Eqs. (2.73) or (2.75) and the constitutive matrix from Eqs. (2.74) or (2.76).

 26

In the plane stress analysis, for the stress calculations, λ should be changed

accordingly as:

211

21

ν
ν

ν
νλλ

−
⋅=

−
⋅−⋅= E

plstrs

(2.80)

In addition, constitutive matrix should be changed accordingly for the plane stress

analysis. For the updated Lagrange formulation it is written as in Eq. (2.77) but for

the total Lagrange formulation it must be written as below:

)CCC(C1))-((detF)
)-(1

)2-(1

2
-(

CC)(det
)-(1

)2-(1
C

1-
JK

1-
IL

1-
JL

1-
IK

2

1-
KL

1-
IJ

2
IJKL

+⋅⋅⋅⋅

+⋅⋅⋅⋅=

ν
νλµ

ν
νλ F

)

(2.81)

2.6 CONSERVATION EQUATIONS

Having defined the stress, strain, and the constitutive relations, conservation

equations may be stated briefly as promised in the previous sections. In the

framework of continuum mechanics, four conservation equations related to the

context may be defined, namely the mass conservation, linear momentum

conservation, angular momentum conservation and the energy conservation.

2.6.1 Mass Conservation

In Newtonian mechanics mass is conserved. That is, no mass is lost, and no mass is

produced during deformation of a body. In FEM context it is not used, or included in

to the equations directly, but its result is used indirectly. In the mathematical form,

mass conservation may be stated as:

∫ ∫ ⋅=⋅ dVdV ρρ 00

(2.82)

 27

In the above equation, ρ0 is the mass density in the reference configuration, while ρ is

the mass density in the current configuration. Considering Eq. (2.8) and the integral

Eq. (2.82), the following formula can be written:

Fdet
1

0

=
ρ
ρ

(2.83)

If detF approaches zero and if ρ0≠0, ρ approaches infinity, which is not admissible;

then detF must be greater than zero.

Here it should be emphasized that, the above equation is written for the Lagrangian

mesh, since we are dealing with this kind of a system as stated previously. For

Eulerian meshes, it should be stated in a different form [5].

2.6.2 Linear Momentum Conservation

Newton’s second law states that the rate of linear momentum is equal to the applied

external forces. In the quasi-static case, where the forces are applied slowly, i.e.

acceleration terms are omitted and the motion is independent of time, the linear

momentum equation reduces to equilibrium equations. Here, it is sufficient to give the

direct result of linear momentum equation, be the equilibrium equation as:

0=⋅+⋅∇ Bfσ ρ

(2.84)

where σ is the Cauchy stress, ρ is the mass density and fB is the internal body force

per unit mass. It should be obvious to the reader that the above equation is defined

over the current state of the body.

2.6.3 Angular Momentum Conservation

The angular momentum is obtained by the cross product of the terms in linear

momentum equation by the position vector. The direct result is the symmetry of the

Cauchy stress tensor:

 28

Tσσ =

(2.85)

This result is important and is used to reduce the number of equations to be solved.

No other result is obtained by angular momentum conservation equation.

2.6.4 Energy Conservation

Energy relations constitute the mainframe of FEM method. In the context of

mechanical problems, the sum of work done by internal stresses and external forces

must be minimized. In the actual case of the energy conservation, one has the

equilibrium of internal and external energy rates, but time variations are not in the

context of this dissertation. Here one is only interested in the form of internal work

done by the internal elastic stresses and external work done by the external forces

instantaneously, which is called the quasi-static case.

As may be seen from the previous section, Second Piola Kirchoff stress is related to

the Green’s Strain tensor, while Cauchy stress tensor is related to the Almansi’s

strain tensor. In literature, they are defined to be work conjugate. Internal Energy

forms for both the total Lagrangian and updated Lagrangian formulations may be

written for the Kirchoff material model as:

dVdV
VV
∫∫ ==Π eσES :

2

1
:

2

1
0int

0

(2.86)

It should be noted for the above equation that, in the first integral, integration is

performed in the initial volume, whereas in the second, integration is performed in the

current volume. Conversion from one to other is easy, which means they are

dependent and equivalent. Both of them should give the same result as long as the

conversions from one state to another are performed consistently. One of them is

selected for internal energy calculations. Depending on the selection of the integration

form, formulation is called either Total Lagrangian, or Updated Lagrangian,

respectively.

 29

In case of the Hyperelastic material model, the above can be written as the integration

of Eq. (2.72) as:

∫Ψ=Π
0

0int)(
V

dVC

(2.87)

The external work done by external forces may be formulated as follows:

∫ ∫∫
Γ Γ

Γ⋅−Γ⋅−⋅−=Π
t u

uu
T
utt

T
t

V

B
T

ext dddV
0 00

0000 tutufu ρ

(2.88)

In this equation, the first integral is the work done by the internal body forces (i.e.,

magnetic, gravity, etc.). Here ρ0 is the mass density defined in the initial state, fB is

the body force per mass. The second integral is the work done by the tractions on

traction-defined surface. The third integral is the work done by the displacements of

the restrained nodes on restraint surface. The above formulation in Eq. (2.88) in the

initial state can also be written in the current state without loss of generality as:

∫ ∫∫
Γ Γ

Γ⋅−Γ⋅−⋅−=Π
t u

uu
T
utt

T
t

V

B
T

ext dddV tutufu ρ

(2.89)

The difference between equations (2.88) and (2.89) is that, in Eq. (2.87) the

integrations are performed in the initial volume or surface, but in Eq. (2.88), the

integrations are performed in the current volume or surface. However, they are in

general equivalent, and since the follower forces are not dealt with, for either total

Lagrange formulation or updated Lagrange formulation, Eq. (2.88) may be utilized

for the prescribed forces and displacements. That is, non-linear forces are not used in

the implementation program. Non-linearity is only associated with the internal strain

energy.

 30

CHAPTER 3

FEM FORMULATION

3.1 INTRODUCTION

In this chapter, element formulation for plane stress, plane strain and axisymmetric,

2D elastic solutions and implementation of FEM is going to be investigated. This part

will be presented here only for the completeness of the subject matter. It will not be

elaborately dealt with since there are numerous books and publications about this

issue. The interested reader should refer to references [2]-[5] for a deeper

understanding.

Figure 3.1: A FEM element patch defined in initial state mapped to current state. Also
mapping from master element to both initial and current states of the element is
represented.

ξ1

ξ2

(-1,-1) (1,-1)

(1, 1) (-1, 1)

X1, x1

X2, x2

F(X1,X2)

F-1(x1, x2)

J0(ξ,η)

J1(ξ,η)

Ω0 R.C.

Ω P.C.

1 2

3 4

1 2

4
3

1

2

3

4

 31

In the context of FEM, the approach is to discretize a complicated body Ω into

simpler rectangular or triangular patches Ωi, and let connectivity between them.

Those patches are further transformed to base square parametric elements for being

able to do the Gauss integrations, and a switch between the base element and the

actual patch is realized with the Jacobian transformation (Figure 3.1).

3.2 FORMULATION OF STRAINS

In the FEM context, information is lumped in the nodes, and values are interpolated

on rectangular or triangular elements from the nodes by utilization of the Lagrange

interpolation functions. Displacement formulation is followed, that is displacement

form of strains, Eq. (2.39) or Eq. (2.40) is used. To be able to make calculations, the

derivatives with respect to spatial coordinates are needed; which requires following

some sub steps and equations.

For the elements, iso-parametric element formulation is being used. That is, the same

interpolation functions are utilized for the interpolation of coordinates and the

displacements at a point in an element. At an interior point of the element domain, a

variable may be found by multiplying each nodal value by the corresponding nodal

base function value at the point. Actually, the base functions define the weight of the

corresponding node at a point in the domain of the element. In mathematical terms:

∑

∑

∑

=

=

=

⋅=

⋅=

⋅=

N

I

I
iIi

N

I

I
iIi

N

I

I
iIi

uu

xx

XX

1

1

1

)(

)(

,)(

ξ

ξ

ξ

φ

φ

φ

(3.1)

Here, i refers to the spatial index, where for the 2D case it would assume the values

1,2, and in the 3D the values 1,2,3. The index I refers to the local index of the nodes

on the element and ranges from 1 to N, where N is the number of nodes of the

element. The above may also be written in matrix form:

 32

12

3
1

2
2

2
1

1
2

1
1

2221

321

2

1

0)(0)(0
)(0)(0)(

Nx

Nx

u
u
u
u
u

u
u

=

M

44444444 344444444 21
L
L

H

ξξ
ξξξ

φφ
φφφ

(3.2)

As may be seen in previous chapter, one will need the derivatives of the

displacements with respect to spatial coordinates. This is achieved by the Jacobian

transformation written by the formula:

ji

j

i x

x

∂
•∂⋅

∂
∂

=
∂

•∂)()(
ξξ

(3.3)

in which, (•) refers to any variable defined in the domain to take the derivative, and is

straightforward. In the two dimensional case, it may be written in open form as:

∂
•∂

∂
•∂

∂
∂

∂
∂

∂
∂

∂
∂

=

∂
•∂

∂
•∂

2

1

2

2

2

1

1

2

1

1

2

1

)(

)(

)(

)(

x

x
xx

xx

4434421
J

ξξ

ξξ

ξ

ξ

(3.4)

The Jacobian J in the above equation may be expressed more clearly for

transformations to the reference state and transformations to the current state

respectively as:

⋅
∂

∂
⋅

∂
∂

⋅
∂

∂
⋅

∂
∂

=

⋅
∂

∂
⋅

∂
∂

⋅
∂

∂
⋅

∂
∂

=

∑∑

∑∑

∑∑

∑∑

==

==

==

==

N

I

II
N

I

II

N

I

II
N

I

II

N

I

II
N

I

II

N

I

II
N

I

II

x
ξξ

x
ξξ

x
ξξ

x
ξξ

J

X
ξξ

X
ξξ

X
ξξ

X
ξξ

J

1
2

2

21

1
1

2

21

1
2

1

21

1
1

1

21

1
2

2

21

1
1

2

21

1
2

1

21

1
1

1

21

0

),(),(

),(),(

)(

),(),(

),(),(

)(

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ
φ

ξ

ξ

(3.5 a, b)

 33

As stated in the above paragraphs, in the actual case, the derivatives with respect to

true global coordinates are necessary, which may be obtained by rearrangement of

Eq. (3.3) or (3.4).

ζ

)(
ξJ

X
)(

ζ

)(
ξJ

x
)(1

∂
•∂⋅=

∂
•∂

∂
•∂⋅=

∂
•∂

−

−

)(

,)(

1
0

or

(3.6)

Now that those transformations from base element to real elements in reference and

current states have been defined, the transformation from reference to current, or the

inverse relation may be expressed. It is actually the deformation gradient F, or the

inverse of it, defined in the previous chapter. It should be stated here that

multiplicative decomposition is valid for the deformation gradient:

TT)()(ξJFξJ 0⋅=

(3.7)

In Eq. (3.7), the only unknown is the deformation gradient F. By rearranging the

terms:

TT)()()(1
0 ξJξJξF −⋅=

(3.8)

This equation requires the Jacobian to be invertible. One may note here that too much

distorted elements may jeopardize the inversion of J for its determinant may be too

small in that case.

For the linear analysis, which is the simple case and constitute the beginning point for

the non-linear analysis, the engineering strain ε may be written as:

 34

∂
∂+

∂
∂

∂
∂
∂
∂

=

=
=

1

2

2

1

2

2

1

1

1212

22

11

2

x

u

x

u
x

u
x

u

εγ
ε
ε

ε

(3.9)

which can be written in open form for 2D as:

NNx

u

u

u

u

u

xxxx

xx

xx

B

where

uB

2

2
2

2
1

1
2

1
1

231212

22

11

,00

00

:

,

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

⋅=

M
L

L

L

ε

(3.10)

The above formula is standard in FEM formulations and the same notational

convention is used in virtually all of the FEM books. Note that, the derivatives are

with respect to the current state coordinates, but the reader should know once more

that for the linear analysis, the distinction between the initial or the current state

becomes invisible. Thus taking the derivatives with respect to initial state is also

valid, and implemented so for the linear analysis. However, for the non-linear

analysis, this distinction will be important, and B will be called B0 when referring to

initial state from here and after.

The strains seen in Eq. (2.39) or (2.40) are split into linear part and non-linear part.

The nonlinear part has been treated in linearization of equations. For the formulation,

Bathe [2], Chapter 6 is followed. The linear part is dealt within the Newton iterations

as described in the sequel.

 35

3.3 RECTANGULAR ELEMENT FORMULATION

A rectangular element has at least four nodes, thus has at least four interpolation

functions for each node. For the ith node, ith interpolating function is assuming the

value 1.0. If the element is of second order, it may have up to nine nodes. Nine-node

rectangular element would be complete second order. In the implementation program,

only four node rectangular elements have been implemented in the graphical

interface, however beneath the graphical interface, up to eight nodes can be

implemented. The four interpolation functions may be written as follows:

4,3,2,1),1)(1(
4

1
),(221121 =⋅+⋅+= iii

i ξξξξξξφ

(3.11)

For details and higher order element formulation, reference [4] may be followed.

The strains are defined as a 2nd order tensor, but Voigt notation, which reduces the

second order tensor to a first order tensor is preferred in general for the FEM

formulation (Belytschko et al. [5]).

3.4 TRIANGULAR ELEMENT FORMULATION

For the triangular element, area coordinates are used. A triangular element has at least

three nodes, thus it has at least three interpolation functions for each node. For the ith

node, ith interpolating function is assuming the value 1.0 in the same way as the

rectangular element. If the element is of second order, it may have up to six nodes.

Six-node triangular element would be complete second order. In the implementation

program, only three node triangular elements have been implemented in the graphical

interface, however beneath the graphical interface, up to six nodes can be

implemented. The three interpolation functions may be written as follows:

 36

A

A
A

A
A

A

3
21213

2
2212

1
1211

1),(

),(

),(

=−−=

==

==

ξξξξφ

ξξξφ

ξξξφ

(3.12)

For details and higher order element formulation, reference [4] may be followed.

Figure 3.2: Triangular element area coordinates with total area A.

3.5 VARIATIONAL FORM

In the context of FEM, Eq. (2.84) is called the strong form of momentum balance

equation. To obtain the weak form, that equation is multiplied with a variational

displacement δu called the test function and integrated over the body. The property of

the test function is such that, it is zero over the displacement-defined boundary. It is

actually a small perturbation to the system at the equilibrium:

1

3

P

2

A3

A2 A1

X1

X2

03 =φ

01 =φ

02 =φ

 37

0)(=⋅⋅+
∂
∂

=Π ∫ dVf
x

u
V

B
j

ji
i i

ρ
σ

δδ

(3.13)

Integrating by parts and using the Gauss Theorem for the above equation:

0
)(=Γ⋅−⋅⋅−

∂
∂=Π ∫ ∫∫

ΓV

iiBi

V

ji
j

i

t

i
dtudVfudV

x

u δδρσδδ

(3.14)

This the weak form of the momentum equation. Note that in the above equation, the

boundary conditions are included. The weak form above implies the strong form.

That is the strong form can be obtained from the weak form by one more integration

by parts.

In the above integration formula, terms may be ascribed physical names. The first

integral is called the virtual internal work, the second and the third terms are the

virtual external work. In the first integral, the derivative of the variation of u may be

split into symmetric and anti-symmetric parts. Since σ is defined to be symmetric in

the previous chapter, multiplication with the anti-symmetric part vanishes. Then, the

first integral above may be written as:

dV
x

u

x

u
dV

x

u
ij

V i

j

j

i

V

ij
j

i σ
δδσδ

∫∫ ∂
∂

+
∂
∂=

∂
∂

)(
2

1)(

(3.15)

Now take the variation of the Almansi’s strain tensor at equilibrium, expecting to get

some interesting results.

)(
2

1

00
4342143421 j

m

i

m

j

m

i

m

i

j

j

i

x

u

x

u

x

u

x

u

x

u

x

u
e

∂
∂⋅

∂
∂−

∂
∂⋅

∂
∂−

∂
∂

+
∂
∂= δδδδδ

(3.16)

Since at the solution point, um is assumes the displacement corresponding to the

stationary point satisfying equilibrium, derivative with respect to x vanishes. Then the

above integral in Eq. (3.15) becomes equivalent to:

 38

dVdV
x

u

V

ijij

V

ij
j

i ⋅=⋅
∂
∂

∫∫ eσ δσδ

(3.17)

This equation may be compared to Eq. (2.86) and can be concluded to be the

variational form of energy. Equivalently the variation of Green Lagrange strain can

be taken and one more equivalence may be obtained. Thus, variational equality may

be written:

0int

0

:: dVdV
V V

⋅=⋅=Π ∫ ∫ ESeσ δδδ

(3.18)

For small stress and small strain analysis, the above formula may be written as:

uBCBu T ⋅⋅⋅⋅=Π ∫ 000int

0

dV
V

T
)

δδ

(3.19)

in which, B0 is the derivative matrix defined in Eq. (3.10) with the only difference

that the derivative is taken with respect to initial coordinates.

The variational form of the external work is the sum of the second and third integrals

in Eq. (3.14). Since one is not interested in follower forces in the context of this

dissertation, they are not changed much for the current and deformed states. One can

write the variation of external forces as:

∫ ∫
Γ

Γ⋅−⋅⋅−=Π
V

iiBiext

t

i
dtudVfu δδρδ

(3.20)

Thus, a variational form is obtained, which will be helpful in the linearization of the

general non-linear FEM. Since the summation of the internal and the external

energies is supposed to be minimized, it is expected that the summation of the

variations of the internal and the external energies vanish. Actually, Eq. (3.14)

implies this result. In the next section, this variational form will be linearized for

application of Newton algorithm to the solution.

 39

3.6 FEM LINEARIZATION

For the details of this section, Bathe [2], Chapter 6, should be followed. Also in [4]

and [7], the topic of FEM linearization has been considered. For solution of the non-

linear equations, Newton solution technique has been applied, which requires

linearization of the variation of the total energy. In general, it is required that the total

energy is minimized, which requires that the gradient of total energy function

vanishes (first order necessary condition). Another requirement would be the Hessian

of the potential is positive definite (second order necessary condition). In this section,

those concepts will be made comprehensible to the reader.

In the context of Newton Algorithm, the stationary point of a function is aimed,

beginning from some initially assumed unstressed position by tangents to the function

(Figure 3.3).

Figure 3.3: Representative Newton approximation scheme.

One is to solve the equations following in general:

R

∆u

1

F(u)
F=F0

u

F

KT

Target Point

 40

tttt

ttt
T

uuu

RuK

∆+=

=∆⋅
∆+

,

(3.21)

Here, KT
t is called the tangential stiffness at virtual time t, which in mathematical

terms is the Hessian of the internal energy term and is always positive definite. ∆ut is

the incremental displacement for current virtual time t, and Rt is the residual force at

virtual time t.

The tangents of the function are needed in general. This is achieved by the

linearization process. Consider beginning linearization on the initial configuration. It

is already mentioned that, when everything is transformed to initial configurations

and calculations are performed there, the method is called the total Lagrange

approach. Now considering the rightmost integral in Eq. (3.18), the linearization can

be written as:

∫∫

∫

+=

=∆+Π=Π
=

00

0

00

0int
0

int

):():)((

):()(

VV

V

dVDdVD

dVDu
d

d
D

SESE

SE

δδ

δεφδ
ε

δ
ε

(3.22)

To achieve the linearization of the above expression, it is needed that some

intermediate components be linearized.

The deformation gradient can be linearized as [7]:

)()(

)(
)(

0

00

uFu
X
u

X
u

uFF

∆∇=⋅∆∇=
∂
∆∂=

∂
∆+∂=∆+=

==

εφ
ε

εφ
ε εε d

d

d

d
D

(3.23)

in which, ∆u is the small change in displacement as stated before, and u∇ represents

the gradient with respect to current coordinates, while u0∇ represents the gradient

with respect to the initial coordinates.

The Green Lagrange strain can be linearized as follows [7]:

 41

,)))(()((
2

1
))()((

2

1
00 FuuFFuuFE TTTTD ∆∇+∆∇=∆∇+∆∇=

(3.24)

This is the pull back of the small strain defined at the current state to the initial state.

It can also be written in terms of u and ∆u in indicial notation by use of Eq. (2.6) for

deformation gradient F as:

∂
∆∂⋅

∂
∂+

∂
∂⋅

∂
∆∂+

∂
∆∂+

∂
∆∂=

J

M

I

M

J

M

I

M

I

J

J

I

X

u

X

u

X

u

X

u

X

u

X

u)()()()(

2

1
)D(EIJ

(3.25)

When looking at Eq. ((3.25) carefully, it should be recognized that, it is linear in ∆u

when u is known. It can be written as:

uBBE 10 ∆+= TD)(

(3.26)

Here, B0 is defined in Eq.(3.10) and the paragraph following, with the only difference

that, derivatives are taken with respect to current coordinates. Furthermore, B1 is

defined as (Bathe [2], Chapter 6):

,

1,2,22,1,21,2,12,1,1

2,2,22,2,1

1,1,21,1,1

2
1,2,2

2
2,1,2

2
1,2,1

2
2,1,1

1
1,2,2

1
2,1,2

1
1,1,1

1
2,1,1

2
2,2,2

2
2,2,1

1
2,2,2

1
2,2,1

2
1,1,2

2
1,1,1

1
1,1,2

1
1,1,1

1

++

++++
=

NNNN

NN

NN

uuuu

uu

uu

uuuuuuuu

uuuu

uuuu

B

φφφφ
φφ
φφ

φφφφφφφφ
φφφφ
φφφφ

L

L

L

(3.27)

in which, uI,M is the derivative of displacements with respect to initial coordinates

(I={1,2} and M={1,2} for 2D case). Furthermore, kJ,φ is the derivative of kth base

function with respect to initial coordinates (J={1,2} for 2D case) and is given in Eq.

(3.6). This derivative is taken by use of the inverse Jacobian. The matrix in Eq. (3.27)

is only used for the Total Lagrange approach as will be clearer in the sequel. It is not

used for the Updated Lagrange case. Writing those statements in equation form to

make things more clear:

 42

,
),(

),(),(

,

2

21
21

1
)2,(0

1
21

1
)1,(0,

1
,,

ξ
ξξφξξ

ξ
φξξφ

φ

∂
∂+

∂
∂=

=
∂
∂=

−−
=
∑

k

J

k

J
k
J

N

k

kk
J

M

I
MI

JJ

andu
X

u
u

J=1,2 for 2D case.

(3.28)

In Eq. (3.22), the derivation of D(δE) and DS are also needed:

[])()()()(
2

1

))](())([(
2

1
)(

2

1

0000

00

uuuu

uFFuFFFFE

δδ

δδδδδ

∇∆∇+∆∇∇=

 ∇+⋅∇=

 +=

TT

TTTT DDD

(3.29)

Eq. ((3.29) can also be written in indicial form by use of Eq. (2.6) for deformation

gradient F as:

∂
∂

∂
∂+

∂
∂

∂
∂=

J

M

I

M

J

M

I

M
IJ X

δu

X

∆u

X

∆u

X

δu
ED

2

1δ

(3.30)

This is used in the first integral on the right hand side of Eq. (3.22). By use of the

symmetry, the integrand may be written as:

 :)(00

00

dVdVD NL
V

NL
T

V

⋅∆⋅⋅⋅= ∫∫ uBSBuSE 0
T
0

)
δδ

(3.31)

where,

=

N

N

N

N

NLB

2,
3
2,

2
2,

1
2,

1,
3
1,

2
1,

1
1,

2,
3
2,

2
2,

1
2,

1,
3
1,

2
1,

1
1,

0

0000
0000

0000

0000

φφφφ
φφφφ

φφφφ
φφφφ

L

L

L

L

(3.32)

The elements of the matrix in Eq. (3.32) are defined in Eq. (3.28). Note that S is

defined a little differently to be able to write things in this form:

 43

=

2221

1211

2221

1211

00
00

00
00

SS
SS

SS
SS

S
)

(3.33)

Now, the only term, linearization of S with respect to u, is left. It can simply be

written as:

)(:)()D(S

:form indicialin or

),(:)(:)(

IJ KLIJKLKL
KL

IJ EDCED
E

S

DDD

)

)

=
∂
∂=

=
∂
∂= ECE
E
S

S

(3.34)

Now one has tools for the linearization of the variational internal energy. Then Eq.

(3.22) can be written more explicitly in the form:

uKu

uBSBu

uBBCBBu

T
T

0
T

1010
T

∆=

∆⋅⋅+

∆++=Π

∫

∫

δ

δ

δδ

0

0

00

0int)(::)(

V
NLNL

T
V

T

dV

dVD

)

)

(3.35)

where KT is the tangential stiffness defined as the summation of the integrals. This is

the end of the derivations for the linearization of the internal energy variation for the

non-linear FEM, TL formulation.

Now considering the first integral in Eq. (3.18), when linearization is performed for

this integral, the solution strategy is called the updated Lagrange approach.

Nevertheless, this is not possible since the current state of the object is not known.

However, there is the last state of the object at hand on which one can make all the

linearization. In this case, one is still dealing with the Lagrangian mesh. So,

transforming the previous linearization to the latest incremental state at hand is

enough for the updated Lagrange formulation. In general, one may expect to get the

same results for both of the methods. The choice on one to the other is the

 44

computational efficiency on the specific problem type. For elasticity problems, no

considerable gaining or loss have been observed on using one method to the other.

At this point note that when writing x, it is meant the last obtained incremental step of

the body in consideration. Now formulate the same internal energy term at that state:

∫∫

∫

+=

=∆+Π=Π
=

tt

t

V

t
tt

V

t
tt

V

t
tt

dVDSEdVSED

dVSEDu
d

d
D

):():)((

):()(int
0

int

δδ

δεφδ
ε

δ
ε

(3.36)

Considering the system this way, one may obtain the same system of equations as in

the above formulation for the TL formulation. There are only two differences to be

considered. One is the use of xt, which is the position at the latest state, and the other

is getting rid of B1 term in the integration. The reason is that in Eq. ((3.25), in the last

two terms, uM is being actually equivalent to ∆uM since solution is being performed

from the last incremental state. Then the integral formula in Eq. ((3.35) is converted

to:

uKu

uBσBuuBcBu

T
T

TT

∆=

∆⋅⋅⋅+∆⋅=Π ∫∫
δ

δδδ
tt V

tNLNL

V

t
T dVdVD

))
::int

(3.37)

Here, KT is the tangential stiffness matrix defined as the summation of the integrals.

It is equivalent with Eq. ((3.35), but with the difference that calculations are

performed in the current state, and B1 does not exist. It should also be noted that, σ is

defined a bit differently in the second integral on the right side, which is written as:

=

2221

1211

2221

1211

00

00

00

00

σσ
σσ

σσ
σσ

σ)

(3.38)

Examining Eq. (3.20), it is seen that, forces are defined in the current state. Since in

the context of this dissertation, follower forces (i.e. fluid pressure), are not

 45

considered, the external forces do not change. In addition, the body force lumped on

the nodes do not change. Thus, the linearization of loads vanishes.

For Eq. ((3.21), now left is the residual term Rt. It is already mentioned, at

equilibrium, that the total of internal variational energy and the external variational

energy vanish. However, at an approximate state, one may expect to have some

residual, which is the unbalancing of internal energy and the external energy. It can

be written in mathematical terms as follows:

∫∫ ∫ ∂⋅−Γ⋅+⋅⋅=
∇⋅−Π=

Γ V

jiji

V

iiBi

T
ext

udtudVfu
uR

t

i
σδδδρ

σδδ

(3.39)

For the TL and UL cases, the above is written respectively as:

∫∫ ∫ ⋅⋅+⋅−Γ⋅⋅+⋅⋅⋅=
Γ 00 0

0000)(
V

TT

V

TT dVddVR
t

SBButufu 1B δδρδ

(3.40)

∫∫ ∫ ⋅⋅⋅−Γ⋅⋅+⋅⋅⋅=
Γ VV

dVddVR
t

σButufu B δδρδ

(3.41)

In Eqs. (3.39) (3.40), S and σ are to be written in the vector form as in Eqs. (2.61),

(2.62) or (2.63).

It should also be stated here that Newton’s method is highly instable away from the

solution. It may cause oscillations or diverging of residual. To prevent this, the loads

and displacements must be applied slowly to force to convergence, that is,

incremental solution may be needed. In the program interface, number of increments

is entered as a solution parameter. In addition, some measure must be taken for in

case oscillations to occur and the program fall into infinite loop, which is not

terminating. For that reason, maximum number of iterations is entered for solution

parameters of non-linear elastic solution. The formulations may be summarized by

the following algorithm:

 46

Algorithm 1: Newton’s method for FEM equation system.

FALSE

Make Initial Linear Solution for increment=1
Solve FuK =⋅

Calculate tangential stiffness KT (3.35) or (3.37).
Calculate Residual R (3.40) or (3.41).

Solve linear equation system R∆uK T =⋅ , and find ∆u.

Update u, u=u+∆u.

Test termination criteria:

<

⋅
⋅ ε
Fu

R∆u
T

T

Exit

Number of iterations <
Maximum allowed number of
iterations entered

Increment=increment+1
uincrement+1=uincrement

TRUE

TRUE

FALSE

If increment<Number of increments

entered or
Fu

R∆u
T

T

⋅
⋅

is less than some

small threshold value.

TRUE

FALSE

 47

The statements and formulas above may seem hard to comprehend. However, they

are straightforward for implementation. Having written the general FEM equations

briefly, the main topic, contact formulation and the solution techniques, and the

binding to the above equations may be derived. In the next chapter, those will be dealt

in detail.

 48

CHAPTER 4

CONTACT FORMULATION

4.1 INTRODUCTION

In this chapter, formulation of contact constraints, and the solution methods will be

presented. In order to simulate contact with FEM, one needs a mathematical contact

model. In the context of FEM, penalty method, and the Lagrange multiplier method

are the two main strategies for dealing with contact. Other methods, in general, are

extension of those methods, at least currently. They will be presented in this chapter,

as applied to the program written for this dissertation. Before directly relating the

subject matter to FEM formulation, some optimization concepts will be included in

the chapter. Then, general active set solution strategies, application details to the

linear elastic case will be presented. Afterwards, the difficulties arising in the

application of the techniques to non-linear elastic case will be discussed, and solution

strategies offered in [11], [13], [14], [15] will be briefly explained and the method

proposed in [15], which constituting the backbone of this dissertation will be

presented in a bit more detail.

4.2 PROBLEM STATEMENT

In general, the minimization problem of the sum of internal energy due to the

straining of the body, and the external energy due to the applied external loads on that

body is to be solved. Nevertheless, by defining a contact surface, a constraint is

defined on that energy equation of the body, such that the energy imposed being very

large or infinity when penetration to occur. In effect, that deteriorates the smoothness

properties of the energy equation system. In the optimization world, inequality

constrained minimization is defined as:

 49

{ }
{ }
{ }s

m

ℜ→ℜ≥

ℜ→ℜ=

ℜ→ℜ

n:g 0,)g(

n:h 0,)h(subject to

n:f),f(minimize

x

x

x

(4.1)

In the above ℜ is the Euclidean Space. In the context of FEM, h(x) are the

displacement-defined boundary conditions, which are handled easily, and are called

the soft constraints. g(x) are the contact constraints, which are hard to deal with

because of derivative of total energy is not being easily obtained at the point of

contact; and called the hard constraints. When the constraints are put in the FEM

context, the system of equations becomes:

)(I ,0I

 I,Ij ,0()(

I i ,0x)(h

:ubject to

),()()(minimize

2121

2
2

1ii

extint

Ι⊂Ι∪=Ι∩

⊂∈≥⋅−=

Ι⊂∈=−=

Π+Π=Π

11 n)xxx

x

xxx

jj

i

g

c

s

(4.2)

To state the above equation by words more explicitly, in the discretized world, there

is an energy expression to be minimized, with displacement-defined constraints at

some nodes in the index set, IIi ⊂∈ 1 , of the system analyzed. There are also the

contact constraints in the index set IIj ⊂∈ 2 , but those indices are not coinciding

with the displacement-defined indices (i.e. 021 =∩ II), in other words, they are

disjoint sets. It should also be stated here that, in the framework of this dissertation,

only normal contact is dealt, which means, there is no tangential contact force,

namely the friction is ignored. That is why the notation gN(x) is used for normal gap

here and after instead of g(x). The body must be supported such that, it cannot

undergo rigid body motion when disregarding the contact constraints.

Internal and external energy definitions for FEM are made in Chapter 2 by Eq’s

(2.86)-(2.89). Soft constraints h(x) are easy to handle. References [2]-[5] may be

followed for them. The inequality constraints, gN(x), will be explained here.

Regarding g(x) in Eq. (4.2), xα are the coordinates in current configuration mapped by

φ(Xα) for body α. In the framework of this dissertation, an elastic body and a rigid

 50

surface is dealt. Thus α=1 will correspond to the rigid surface, while α=2 will

correspond to the elastic deformable body. All equations will be presented here for

the 2D case, leaving the 3D case for a further work. However, in general, the contact

formulations do not change much for 3D case. It is also assumed that the rigid contact

surface is stationary (i.e., not moving in any direction). This situation is called

unilateral contact in literature [1]. By using the fact that displacements will be zero

for rigid stationary body, and by use of Eq. (2.2), in a more explicit form, gN(x) may

be written in this context as:

)(

)())((

 where ,

ξ

ξξ
12

112

nu

nXX

⋅=

⋅−=

−=

N

N

NNN

u

G

uGg

(4.3)

In Eq. (4.3), GN is defined as the initial normal gap, and gN being the current normal

gap. It should be observed that GN and gN are scalar values obtained by dot products

of two vectors. It should also be stated here that)(ξ1X is the nearest point,

parametrically defined on the rigid surface, obtained with respect to the slave node of

the elastic body at the deformed state (Figure 4.1), which will be made clear in the

next section.

 51

Figure 4.1:Slave node moving on the master contact surface. The figure represents the
parameters involved in the gap function.

Now, with the aid of the gap function, the energy term associated with contact force

should be formulated. It is plausible to treat the contact force as an external traction

force in the form:

∫
Γ

Γ⋅=Π
c

cc
T
cc dtu

(4.4)

However, it should be mentioned in here that, at the equilibrium of the body with the

interface, the contact force would be a reaction force. So, equal and opposite forces

are associated to the same point. Therefore, contact forces do no work. Nevertheless,

if the contact surface had not been there, the body would continue moving and

deforming, thus reducing its energy and it can be said that the energy level of the

body stays at a higher level due to the existence of contact interface. If a simple 1D

case is assumed, a simple spring with a constraint as an example, the situation

becomes more comprehensible.

gN

GN

uN

X2

)(ˆ ξ1n

)(ξ1X

u

x2 Moved slave node after
some intermediate time
without considering contact
surface position.

Slave node at the
initial position

Master surface

 52

Figure 4.2: A simple 1D contact problem. A spring with an applied load and a contact
constraint. The energy function and the effect of the contact interface to the energy
system.

The 1D situation considered is simple but instructive for comprehension of the things

happening when a contact constraint exists. For the spring-force system, if the force is

small, the spring will not see the constraint. However, when the force is large enough,

the spring will stop at –h, and will not be able to minimize the total energy and reach

x=F/k. Therefore, some work term is associated with contact.

Though the integral in Eq. (4.4) seems simple in the first sight, the problem there is

that, the contact force, and even the contact surface is not known. Eq. (4.4) is only

written to state that, the problem is an interaction problem happening only at the

interface of two bodies, which is represented by Γc, but it is to be determined

somehow. In case of multi-body contact, the integral must be calculated for each

body and must be added to the total energy equation. The traction vector appearing in

Eq. (4.4) can be written in a different form by:

111
c annσt ˆˆˆ2 ⋅−⋅−=⋅= TN pp

(4.5)

x=0

x=-h

F

x=-h x=F/k П=½*k*x2-Fx

Пc
gN

 53

Figure 4.3: Free body diagram for contact interface.

In Eq. (4.5), pN is the normal pressure, and pT is the tangential shear, 1n̂ is the unit

normal, and 1â is the tangent defined on the master surface. It should be noted here

that, pN and pT defined as scalars in Eq. (4.5). Tangential traction will not be dealt in

the framework of this dissertation, thus pT is assumed to be zero. Also considering

that, living in the discretized world, the integral equation in Eq. (4.4) is transformed

to summation for contact nodes as:

∑ ⋅=Π
i

i
N

i
Nc gp

(4.6)

In the optimization context, the inequality constraint defined in Eq. (4.2) can be

reduced to equilibrium constraint with the following conditions at equilibrium:

)(,0

,0

,0

:subject to , minimize extint

essary SlacknComplementgp

p

g

NN

N

N

=⋅
≤
≥

Π+Π

(4.7)

The Eq. (4.7) are called as Hertz-Signorini-Moreau conditions for frictionless contact

[1]. In the context of optimization, they are called the Karush-Kuhn-Tucker

Conditions. It can be said that, when 0≥Ng , no contact pressure is expected. When

there is contact force, gN is zero. The first and second inequalities in Eq.(4.7) are

1â
1n̂⋅− Np

1n̂⋅Np

Rigid Surface

Elastic Body

1n̂

 54

called necessary optimality conditions for inequality constraints in optimization

context [8]. In the optimization context, the term pN used here is the Lagrange

multiplier.

Figure 4.4: The function of pN with respect to gN Note the sharp change in the graph at
gN=0, which creates the major problem in optimization.

It can be noted for the complementary slackness term that the dimension of pN is

force, while the dimension of gN is distance. Then it can be said that, the

complementary slackness is associated to energy, which means that zero energy is

associated with contact forces at equilibrium when gN is zero, that is, equal and

opposite forces do no work at equilibrium. However, in case of penetration, pN and

gN being less than zero, a positive energy term is associated with contact. Else, if gN is

larger than zero, which is the gap open state, then pN being zero. Therefore, zero

energy is associated with gap open state. Complementary slackness condition in Eq.

(4.7) includes both of these situations. In the following sections, the above energy

form will be tackled.

4.3 RIGID SURFACE DEFINITION

In the framework of this dissertation, the rigid surface needs to be defined

mathematically. As the solution technique, master surface-slave node technique is

gN

pN

 55

used, which is the most widely used and accepted technique in the numerical

treatment of contact. The definition of Bezier surfaces is used as in [1] and [9]. In

effect, this section is based on [9]. The methods proposed results in smooth third

order polynomial definition of contact surface, satisfying C1 continuity. In [9], two

types of Bezier curves have been presented as cubic Hermite and cubic Bernstein

interpolations, both of which have been applied in the program developed for this

dissertation. The program implementation is explained in the next chapter. They stand

as an option of visualization and analysis in the program interface.

The discretized surface model is local, that is, a change in the position of a node only

affects the curves corresponding to that node. Every node is associated to a single

surface.

Figure 4.5: Representation of Hermit interpolation surface definition.

The cubic Hermit interpolation surface is formulated as a curve tangent to two lines

drawn connecting three nodes at their mid points (Figure 4.5). The conditions of the

curve may be stated as:

X1

X2

)(ξ1X

G
N

X2

ξ=0.0
ξ=1.0

Master Node

X12

X23

X3

Parametric Slave Surface

l

 56

X2X3
X2X3

X1X2
X1X2X

X23X

X12X

−
−=

−
−=

=

=

=

=

=

=

1

0

1

0

,

,)(

,)(

ξ

ξ

ξ

ξ

ξ

ξ

ξ

ξ

d

dX

d

d

(4.8)

Then the Hermit interpolation is given by:

N121
1 eXXXX ˆ)()()(⋅+−⋅+= ξξξ w

(4.9)

where, X1, X2, X3 are the position vectors of points for representing the contact

surface, and Nê is a unit vector defined normal to the line connecting X12 and X23

and w(ξ) is a third order polynomial defined as:

X12X23−=
+⋅⋅+⋅⋅+⋅⋅=

l

DlClBlAw where,)(2233 ξξξξ

(4.10)

where, A, B, C and D are the constants to be determined for the conditions in Eq.

(4.8), and l is the length of line connecting midpoints of two lines, X12 and X23.

 57

Figure 4.6: Representation of Bernstein Interpolation Surface definition.

In case of Cubic Bernstein Interpolation, two more points are needed. There are four

intermediate points to represent the curve, b0, b1, b2, b3 (Figure 4.6). The function is

defined as:

)()()()()(3210 ξξξξξ BBBB ⋅+⋅+⋅+⋅= 3210
1 bbbbX

(4.11)

With the interpolating polynomials:

3
3

2
2

2
1

3
0

)(

),1(3)(

,)1(3)(

,)1()(

ξξ

ξξξ

ξξξ

ξξ

=

−⋅⋅=

−⋅⋅=

−=

B

B

B

B

(4.12)

Both of the formulations (Hermite and Bernstein) have been applied in the program

developed as stated before. The surface type is optionally selected from the interface.

For this purpose, the inheritance property of OOP has been utilized, which will be

made clear in the next chapter. The implementation of the second form seemed

b3

b1

b0

X2

)(ξ1X

GN

X2

ξ=0.0
ξ=1.0

Master Node

X1

X3

Parametric Slave Surface

b2

 58

simpler and more efficient because a less number of parameters is dealt. Moreover,

invariance under rotation of frame is stated as an advantage in [9].

For the contact formulation, a nearest contact position needs to be determined, which

is achieved by Newton-Raphson iteration for ξ, with quadratic convergence within 4

or 5 iterations, however maximum number of iterations being fixed as 10. There are

also other rigid surface definitions in literature, as NURBS curves [10]. The

application of other types of curves is left for a further work. However, once more the

general properties of a convenient curve definition for contact problems can be stated

as:

1. Local with respect to a node on the surface, that is, moving of a node for the

definition of the rigid surface should not affect the entire curve, or should

result in change of the surface within a bounded region around the point that

was moved.

2. Smooth, that is, easily differentiable on the entire curve; no sharp changes

should occur for the normal. Although at least C0 continuity may be enough

for frictionless contact, at least C1 continuity is required for friction solutions.

Though friction is not considered for this work, for a further work, it may be

implemented.

The above requirements are best discussed in [10], with the discussion of NURBS

curve with Cn continuity; which have been left for a further development issue as

stated previously.

4.4 VARIATIONAL FORMULATION OF CONTACT

In this section, the variational form of contact constraints should be dealt since the

variational weak form is used in the FEM context. The contact constraint defined as

the complementary slackness in Eq. (4.7) should be represented in the variational

form, to be implemented in the general context of FEM. As stated previously in the

second chapter, variation is the small perturbation at the equilibrium state. In case of

contact, both the contact force and the penetration may be perturbed. So the

variational form may simply be written as:

 59

0)(≥⋅+⋅=Π ∑
∈Ii

i
N

i
N

i
N

i
Nc gpgp δδδ

(4.13)

However, since one is still dealing with the minimization problem, the total energy

variation is defined as:

0int =Π+Π+Π=Π cext δδδδ

(4.14)

In Eq. (4.14), the first two terms are dealt previously in Chapter 2, and the third term

is defined in Eq. (4.13). It is really an interesting result to be noted. At equilibrium,

the total variation must be zero, though there are inequality constraints.

In Eq. (4.13), the variation of gN is needed, which may be written as:

112112 nxxnxx ˆ))(()(ˆ))((δξξξδδδ ⋅−+⋅−=Ng

(4.15)

Using the fact that))((ξ12 xx − being in the direction of 1n̂ , and 1n̂δ being normal to

1n̂ , the second term on the right vanish. In addition, since the master surface is not

moving, Eq. (4.15) reduces, and it can be written as:

12 nu ˆ⋅= δδ Ng

(4.16)

Now, it is time to explain the methods of implementation of contact constraints to

general FEM equations, which will be done in the next section.

4.5 METHODS OF SOLUTION

In this section, the methods of the solution to (4.14) will be discussed. Due to the

inequality constraint, there is the differentiability problem being faced for the Пc term

defined. That needs special handling techniques to be discussed. For the linear elastic

case, the differentiability problem is in general solved with active set strategies.

While for the nonlinear elastic case, this method is not being so convenient, due to the

linearization issues of Newton type algorithms.

 60

4.5.1 Penalty Method

This method is the simplest to formulate and implement, and this is the oldest method

for those types of problems. In the penalty method, it is assumed that contact force pN

is proportional to gap gN. However, it is defined so that, a very large force is

associated to penetration. In mathematical terms:

2

2

1
Nc g⋅=Π κ

(4.17)

where κ is a very large number. It should be noted in here that the contact energy

function in Eq. (4.17) is very similar to energy function of a spring. The effect of Eq.

(4.17) can be conceived as, a very stiff spring being active in case of penetration, such

that the penetration is virtually prevented. It is not possible to say totally prevented,

since this method always results in some amount of penetration. However, as κ

approaches to infinity, it is expected to have zero penetration. Nevertheless, giving

the value infinity to κ is not possible for the numerical reasons. It creates ill

conditioning problems if too large a value is entered. For the implementation issues,

Eq. (4.17) must be written in the variational form:

NNc gg δκδ ⋅⋅=Π

(4.18)

Writing gN and δgN in terms of u:

44 344 21443442144 344 2144 344 21
NNNN uuuG

NNNc uuG

δδ

κκ

δκδ
112112112112 nδuδunuunδuδunXX ˆ)(ˆ)(ˆ)(ˆ)(

)(

⋅−⋅⋅−⋅+⋅−⋅⋅−⋅=

⋅+⋅=Π

(4.19)

Since in case of unilateral contact with the master surface being stationary, Eq. (4.19)

further reduces to:

)ˆ()ˆ()ˆ(ˆ)(121212112 nδununδunXX ⋅⋅⋅⋅+⋅⋅⋅−⋅=Π κκδ c

(4.20)

Eq. (4.20) cannot be linearized due to the differentiability reasons, since it is valid

only for active nodes. There is nothing partially being in contact. There is for a node

 61

penetrating or not penetrating, which is like 0 or 1 and changing quickly and sharp in

the course of the solution. Therefore, the active set strategy is only valid for linear

elastic case, which is valid for small stress, small strain, and small deformation case

in terms of FEM formulation. However, the penalty method still has practical

applications, and further methods have been developed based on this method with

some improvement, which will be dealt in the sequel. Now, the implementation of

Eq. (4.20) will be explained for this section.

The general linear elastic FEM energy variational form can be written without

considering contact, as:

FuuKu T ⋅=⋅⋅ δδ T

(4.21)

For the Eq. (4.21), looking at Eq. (3.19) and Eq. (3.20), the terms K and F can be

deduced. Considering Eq. (4.14), and Eq. (4.20) being applied to ith node with the

corresponding degrees of freedoms m and n, it is obvious that Eq. (4.20) modifies Eq.

(4.21) as:

⋅⋅+⋅⋅+

⋅⋅+⋅⋅+=

NNNNN

nNnnnmnnn

mNmnmmmmm

Nnm

Nnm

Nnm

KKKK

KnnKnnKKKK

KnnKnnKKKK

KKKKKK

KKKKKK

KKKKKK

K

LLLLL

MOMOMOMMM

LLL

MOMOMOMMM

LLL

MOMOMOMMM

LLL

LLL

LLL

321

1
2

1
2

1
1

1
2321

1
2

1
1

1
1

1
1321

333333231

222232221

111131211

ˆˆˆˆ

ˆˆˆˆ

κκ

κκ

(4.22)

 and

 62

⋅⋅−

⋅⋅−=

N

Nn

Nm

F

nGF

nGF

F

F

F

F

M

M

M

1
2

1
1

3

2

1

ˆ

ˆ

κ

κ

(4.23)

As it is obvious from the modifications in the stiffness and the force terms, the first

part on the right hand side of Eq. (4.20) modifies the force vector, while the second

part modifies the stiffness matrix. The modification is applied for every contacting

node. Nevertheless, initially one cannot know which nodes are contacting. Therefore,

it is not known prior to the solution which indices to modify. There should be a way

of guessing which nodes are contacting, and that makes the linear simple problem

complicated and non-linear. The general algorithm may be summarized as in

Algorithm 2.

This method in general permits some small amount of penetration. As the penalty

term κ increases, the amount of penetration decreases. However, the penalty term

cannot be increased without bound. Too high a penalty term results in ill-

conditioning of system of equations. A reasonable choice would be the largest

number at the diagonal of the stiffness matrix. In the program interface, it is permitted

to enter different values for being able to make tests. The entered value from the

program interface is multiplied by the largest number at the diagonal of the stiffness

matrix.

Advantages of this method can be summarized as being simple to apply, and easy to

implement. Disadvantages can be listed as ill conditioning, and giving approximate

results in the infeasible region.

 63

Algorithm 2: Pseudo algorithm for contact solution with the Penalty method.

FALSE

Make initial solution
Solve FuK =⋅

Set possible contact nodes (i.e. set boundary

nodes), which can be achieved with an
algorithm based on connectivity of elements.

Check penetration of possible contact
nodes

(i.e., check if gN<0. If so set node as
being contact node).

Modify stiffness matrix and force vector for each
contacting node, and solve modified system of

equations.
Solve FuK =⋅

Exit

TRUE

Check for separation or changing position
more than some allowable tolerance of the

contacting nodes, and check if newly
added contacting nodes, check necessary

conditions

FALSE

 64

4.5.2 Lagrange Multiplier Method

This method is applicable to linear elastic problems with small stress, small strain,

and small deformation problems like the previous penalty method. For non-linear

elastic solutions, it is prohibitively difficult to apply. It has advantages and

disadvantages compared to the penalty method. A Lagrange function defined as:

mRxgxfuL ×ℜ∈⋅+= n)(x,),()(),(λλλ

(4.24)

Figure 4.7: Lagrange Function L(x,λ).

where nℜ is the Euclidean space, ℜ→ℜnf : , nXx ℜ⊂∈ , 0: ≤ℜ∈ λλ m , and

+ℜ→ℜng : , +ℜ being the positive octant, while λ is defined in the negative octant.

The primal problem is defined as [8]:

∞
≥

==
≤ otherwise ,

 0g(x) if),(
),(max)(

0

* xf
xLxL λ

λ

(4.25)

For the Eq. (4.24), L(x) will be maximized when λ is zero. If g(x)<0 the Lagrange

function L will increase without limit. Then the min-max problem is:

λ

x

L(x,λ)

 65

)(minimize),(minimize
Xx

*

Xx
xfxL

∈∈
=λ

(4.26)

The dual function is defined as:

),(min)(* λλ xLL
Xx∈

=

(4.27)

and the dual problem is defined as:

),(min maximize
0

λ
λ

xL
Xx∈≤

(4.28)

The uniqueness of the optimum (x,λ) is proved by the duality theorems for convex

functions [8]. The uniqueness of the solution requires the optimal point being the

saddle point of the Lagrangian function defined in Eq. (4.24). As it may be obvious, λ

is a new unknown parameter to be determined for the minimization problem. The

system of equations to be solved takes the form:

=

∇
∇∇

0

0

0)(

)()(

λ
x

xg

xgxf

x

xxx

(4.29)

The preparations are complete for application of the technique. Now turning to the

solution of the contact problem, one needs to solve Eq. (4.14). In that case, δПc can be

written as:

∫∫
ΓΓ

Γ⋅⋅+Γ⋅⋅=Π
cc

cNcNc dxgdxg)()(δλδλδ

(4.30)

Since in the discretized world one is to impose constraints onto the nodes, Eq. (4.30)

can be written in a more explicit form for nodes as:

∑∑
∈∈

⋅++⋅=Π
Ii

i
N

i

Ii

i
N

i
N

i
c uuG δλδλδ)(

(4.31)

Eq. (4.31) can be imposed on the general FEM equations for the ith node with

corresponding degrees of freedom being m and n as:

 66

=

000ˆ0ˆ000

0

0

ˆ

0

ˆ

0

0

0

1
2

1
1

21

1
221

1
121

2222221

111211

nn

KKKKK

nKKKKK

nKKKKK

KKKKK

KKKKK

K

NNNnNmNN

nNnnnmnn

mNmnmmmm

Nnm

NNnm

LLL

MOMOMOMM

LLL

MOMOMOMM

LLL

MOMOMOMM

LLL

LLL

(4.32)

and,

−

=

N

N

n

m

G

F

F

F

F

F

F

M

M

M

2

1

(4.33)

The above modification in stiffness matrix and the force vector must be performed for

each contacting node. Therefore, the size of the stiffness matrix and the force vector

increase by one for each contacting node. For speed considerations, in the program

implementation, the global stiffness matrix is stored, and whenever an update is

necessary, it is called and copied to new larger matrix and modified stiffness matrix is

created. That doubles the storage needs. Or, else, every time the global stiffness

matrix had to be regenerated. The advantage of this method may be that it is an exact

solution, that is gN=0 is exactly satisfied. The disadvantage may be the need for a

larger storage, every time changing size of the stiffness matrix becomes expensive.

As stated before, this method is applicable to linear elastic case. For non-linear

elasticity problems, the use of this method is prohibitive. The algorithm can be

summarized as in Algorithm 2, except the method of calculating the modified

stiffness matrix. The algorithm also includes some index tracking for the Lagrange

multiplier.

 67

4.5.3 Augmented Lagrange Multiplier Method

This method combines the penalty method and the Lagrange multiplier method to

utilize advantages of both. It is nearly exact, but criticized for slow in convergence,

being strongly dependent on penalty term, and offering not much advantage

compared to Lagrange Multiplier method for the linear elastic case [11][15].

However, this method is applicable for non-linear elastic solutions. It is also

applicable to non-linear frictional solutions [11], [12]. Actually, this section will be

based on [11]. This method has not been applied in the program developed since a

better method is proposed by the same authors in [15]. This method will briefly be

introduced for completeness.

In this method, an initial penalty solution is performed. The resultant contact forces

are applied as external forces and the system is solved again for contact with the

penalty method. The procedure continues until the gap reduces to a reasonable value.

In mathematical terms, the method can be written as:

i
N

i

Ii

i
Nc gg ⋅+⋅=Π ∑

∈

λκ
2

2

1

(4.34)

Looking at the above equation carefully, it is obvious that if λ=0, penalty formulation

is recovered. The stiffness matrix and the force matrices are modified in the same

way as in the penalty method, but only one more modification to force matrix is

performed due to the Lagrange Multiplier term. One begins with λ=0 and augments it

continuously. As reaching to convergence, the effect of penalty term approaches to

zero.

Eq. (4.34) should be written in variational form for implementing it in general FEM

equations:

NNNc ggg δλδκδ ⋅+⋅⋅=Π

(4.35)

Note that in Eq. (4.35), there is no variation of λ, since it is determined previously and

not vary for an increment. It comes from the previous solution.

 68

For implementing this method in Newton type algorithms, one also needs the

linearization of Eq. (4.35), which can be written as:

NNNNNNc gDgDgDggDgD δλδλδδκδ ⋅+⋅++⋅=Π)()(

(4.36)

Eq. (4.36) is written in a more explicit form in [11] as:

()
() ()

⋅∇+⋅∇⋅+Π∇−=∆∇+∆⋅∇⋅

+∆⋅∇⋅∇⋅+∆∇+∆⋅Π∇

∑∑

∑

∈∈

∈

Ii

ii
N

i
N

i
N

Ii
i

i
N

Ti
Ni

Ii

i
N

i
N

Ti
N

i
N

T

gggcgxg

xggcxggcx

λλλ)(

)()()(

2

22

(4.37)

where Π∇2 is the Hessian matrix. This is previously called the tangential stiffness

matrix and defined as KT in Chapter 2, of the general FEM equations, and Π∇ is the

gradient of the general FEM equations being the residual term, which also defined in

Chapter 2. The above may be written in a more compact form as [11]:

LgxL −∇=∆⋅∇+∆⋅∇ λ2

(4.38)

There is one more equation to be included in the system, which is gN being equal to

zero, from the linearization of which, one can get [11]:

i
N

i
N gxg −=∆⋅∇

(4.39)

Combining them, the equation needed to solve becomes [11]:

−
∇−

=

∆
∆

∇
∇∇

)(

)(

0)(

)(),(2

xg

xgx

xg

xgxL

λ
λ

(4.40)

Eq. (4.40) seems equivalent to the standard Lagrange Multiplier Method, but not

completely. Since this method has not been applied, most of the details are skipped.

The interested reader should consult to [11] or [12] for the details. Actually, in [11], a

method for speeding the algorithm has been proposed, but though it needs much user

intervention, and does not seem much preferable compared to other methods. Here, it

 69

should be mentioned that this method is applied in most of the commercial FEM

programs handling contact, like ABAQUS, ANSYS, and MARC.

4.5.4 Barrier Method

This method is designed in the contact mechanics for non-linear elasticity problems.

However, it can also be applicable to linear problems in this framework. In this

method, instead of setting nodes being active or inactive, and changing activity of

constraint continuously, all the boundary nodes are set as being active, and that does

not change in the course of the solution. This is a penalty kind of method, but the

difference is that the penalty term κ is a function of the gap. This section is based on

[13].

It should be mentioned here that, this method is not being applied to the program

developed for this dissertation either. In [9] it is criticized and a better approach is

suggested. it is mentioned here for the completeness of the subject matter.

Turning again to the contact problem, the energy term may be defined this time as:

∑
∈

+=Π

Ii

i
i

c
xd

µ
λµ)(

1ln

(4.41)

In Eq. (4.41), d(x) is written instead of gN since it is defined also in the positive side,

which means distance instead of penetration. Also in the same equation, µ>0 but

small, is the barrier parameter to be entered to the program. In addition, λi<0 are the

fixed estimates of the Lagrange multipliers. It should be noted that, as di(x)

approaches -µ and considering 0≤λ , Пc approaches infinity. This causes ill

conditioning problems. For that reason after some small amount of penetration, a

parabola is fit to the barrier function in Eq. (4.41). To speed up the convergence, also

a scaling method is proposed [13].

The smooth function in Eq. (4.41) can easily be linearized and implemented into the

general non-linear tangential stiffness. An initial linear elastic solution with the

standard penalty method can be performed. This way λ
i’s may be initiated. Contact

tangential stiffness is to be imposed into general tangential stiffness. Newton

 70

iterations can be performed until convergence, and λ
i’s may be reset and the Newton

iterations may be repeated. Continue until λi’s change by some allowable limit.

This method is also an approximate one. It is criticized for always being in the

feasible region, which means preventing penetration totally and causing some small

gap. It also needs one more parameter µ to be entered to the program. Details of the

method are not elaborated since it is not implemented in this dissertation. The

algorithm seemed complicated for implementing.

4.5.5 Constraint Function Method

This section is based on [14]. The method is offered for non-linear elastic problems.

In this method, since at gN=0 there is the differentiability problems, a smooth function

approximately satisfying the complementary slackness Eq. (4.7) is offered (Figure

4.8). Again all possible contact nodes are set active and this constraint function is

applied to all of them.

The constraint function is defined as [2], [14]:

ελλλ +

 +
−

−
=

2

22
),(NN gg

gw

(4.42)

Figure 4.8: w(λ,gN) approximately satisfying complementary slackness.

w(λ,gN)=0

 71

where, 0≥Ng is the gap, 0≤λ is the Lagrange multiplier term, being the contact

force, and ε>0 is a small number. The constraint w(g,λ)=0 is imposed on the general

FEM equations. For this purpose, of course Eq. (4.42) must be linearized first. It

should be noted here that unknown extra parameters to be determined, λ, enter into

the equations. Considering all possible contact nodes being active, and iterative

Newton solution being applied, this method seems costly and is not preferred. It is

also mentioned and criticized in [9]. References [2] and [14] offer a function also for

friction solutions with the method.

The details are not elaborated because this method is mentioned for the completeness

of the subject, and is not applied in the program developed for this dissertation.

4.5.6 Cross Constraint Method

This method is applied nicely in the program developed. It has super-linear

convergence rate and nicely adaptable to Newton algorithm. This section is based on

[15], in which the barrier method and the constraint function method have also been

criticized, and this method is submitted as a new and a better approach. However,

nothing is mentioned about friction. Nevertheless, it is very convenient for the

purposes of this dissertation and fits nicely into the context, unilateral frictionless

contact.

The approach in [15] is similar to the barrier method or the constraint function

method in the sense that no distinction is made for the gap status (i.e. gap open or gap

closed), all boundary nodes being active and a continuous function with respect to

gap is defined. However, different from the constraint function method, stiffness

matrix size is not increased, and different from the barrier method, the function in

here is defined in both feasible and infeasible regions (i.e. giving possibility of gap

being open or closed for a contacting node).

Now coming to the details of the method, the contact energy is defined as an

exponential function in the form:

 72

()∫
Γ

⋅⋅ Γ+=Π
c

NN
c

gbga
c dee βµ

(4.43)

where µ, β, a, b are constants to be determined from conditions of contact surface and

contact force. In addition, contact force and the contact stiffness are defined as:

)(
,

c

c
K
F

Π∇∇=
Π∇=

(4.44a,b)

With the conditions 0lim =Π
∞→ c

gN

, FF
Ng

ˆlim
0

=
→

 and KK
Ng

ˆlim
0

=
→

, constant parameters are

determined with, 0ˆ <F being some approximation to contact force, and 0ˆ >K being

an approximation to contact stiffness. It should also be mentioned here that F is the

gradient of the potential, and K is the Hessian of the same potential with respect to gN

and Eq. ((4.43) is defined on both sides of the constraint surface (i.e. when gN is

positive or negative).

Then after some manipulations, the potential, force, and the contact stiffness becomes

for node i as:

i
Ni

i
N

i
Ni

g
F

K

g

g
F

Ki
i
c e

K

F

⋅

⋅

⋅

⋅=

⋅=

⋅=Π

ˆ

ˆ

i

F̂

K̂
ii

ˆ

ˆ2

eK̂K

 ,eF̂F

 ,
ˆ

ˆ

i

(4.45a,b,c)

Looking at Eqs. (4.45a,b,c), as gN becomes negative, that is in case of penetration, the

contact stiffness, which is the penalty term becomes large and may cause ill-

conditioning of the general matrix equation. However, as gN becomes positive, the

contact stiffness gets smaller. In the penetration case, to prevent ill conditioning due

to K being large, a parabola is fitted smoothly to the contact potential at gN=0. The

derivative of the parabola with respect to gN being the force term, and the second

derivative being the contact stiffness term, which can be written for contacting node i

as:

 73

K̂K

 ,gK̂F̂F

 ,
2

ˆ
ˆ

ˆ

ˆ

i

i
N

ii

2
2

=

⋅+=

+⋅+=Π i
N

i
N

i
i

i
c g

K
gF

K

F

(4.46a,b,c)

Note that in Eq. (4.46a,b,c), the standard penalty is recovered in case of penetration.

For application to general FEM equations, Пc must be written in variational form:

<⋅⋅+

≥⋅⋅=Π
0g if)ˆˆ(

0g if ˆ

i
N

i
N

ˆ

ˆ

i
N

i
N

i

i
N

g
K

F
ii

c

ggKF

geF
i
N

i

δ

δδ

(4.47)

For applying Eq. (4.47) to non-linear equations, also needed is the writing of it in

linearized form.

<∆⋅+∆⋅⋅

≥∆⋅⋅+∆⋅⋅⋅
=Π

0g if F̂ˆ

0g if F̂ˆ

)(
i
N

0

i

i
N

0

ˆ

ˆ

iˆ

ˆ

4342144 344 21

444 3444 21444 3444 21

i
N

K

i
N

i
N

i
N

g
K

F

K

i
N

g
K

F
i
N

i
c

ggKg

gegeKg

D

c

i
N

i

c

i
N

i

δδ

δδ
δ

(4.48)

The contact linearization in Eq. (4.48) can be adapted to the general Newton

algorithm into the tangential stiffness term as it is done in the linear elastic case, with

instead of using κ, using the tangential stiffness terms in Eq. (4.48). For the residual,

the update is done by adding contact forces as written in Eq. (4.47).

To explain the method briefly, make initial penalty solution. Initialize F̂ for every

boundary node. If contact force for a boundary node is zero, initialize it to some small

number to prevent division by zero. K̂ is entered from the program interface as

penalty parameter. Usually 0.1 is being convenient for multiplying with largest

diagonal. Still too large a penalty parameter may cause ill conditioning, while too

small a penalty results in long computation time. Assemble tangential stiffness

defined with Eqs. (3.35) or (3.37) and modify it with contact stiffness Kc in Eq.

((4.48), and modify residual term defined with Eqs. ((3.40) or (3.41), with Eq. (4.47).

Repeat this until convergence. If F is too different than F̂ , update F̂ and repeat the

full process (Algorithm 3).

 74

Algorithm 3: Cross constraints method.

Make initial linear elastic solution of contact with penalty
method for the initial increment (Algorithm 2).

Initiate F̂ from the previous solution. K̂ is entered as
penalty parameter from the program interface.

Make Newton Iterations with:
• Assembling tangential stiffness KT (3.35) (3.37).
• Calculating residual R (3.40) (3.41).
• For all boundary nodes, calculating contact

stiffness (4.45c) (4.46c), Modifying KT as in the
penalty method but using contact stiffness from
calculations instead of using κ. In this way, for

each iteration obtaining TK .
• Modifying residual for each contact node, with

calculating contact force (4.45b) (4.46b),
subtracting it from R and obtainingR .

• Solving for ∆u by R∆uK T =⋅ .
• Updating u by ∆uuu += until convergence.

If change in penetration, or

difference of F from F̂ being
larger than some tolerance

If increment < Number of increments,
uincrement+1=uincrement,

incrementincrement FF =+1

TRUE

FALSE

EXIT

FALSE

TRUE

 75

4.6 CONTACT SEARCH, AND SURFACE DETECTION

Although there are not many contacting surfaces in the case considered in the

framework of this dissertation, in case of multi-body contact problems involving

complicated surface structure and having large deformation, contact search takes

considerable CPU time and should be mentioned for any program developed for the

solution of contact. For that purpose, two papers [16], [17] will be referenced since

some inspiration has been gained, although implementation of the methods mentioned

has not been possible.

“Contact searching is to detect and keep in trace the contact points in a deformation

system, where contact and discontact phenomena occur frequently. This is one of the

fundamental abilities required to conduct FE simulation. Usually it includes the local

and global search processes. The former is to roughly find all the possible candidates

around a specific point. The latter is to find exactly the contact point after the global

searching [16].”

In this framework, contact search process is split into local and global searches.

Global search in general involves some index operations to detect which node is

contacting on which master surface. The local search involves the exact detection of

the nearest point, which is performed with Newton’s algorithm. According to [16], a

maximum of 10 iterations is being enough in general, which is also preferred in the

program developed for this dissertation.

The local search is in general the same. The main discussion point in general becomes

the global detection. Many methods have been proposed for this purpose until now,

but to mention the methods proposed in the two references [16] and [17], they are the

inside-outside search algorithm, binary search algorithm and the bucket search

algorithm. They are only mentioned for the completeness of the topic, and the details

left for a further work on the area. However, the main idea, being the global search

and the local search has been applied in the program developed.

In the program developed for this work, whether a contact surface is defined is

checked first. If so, a boundary detection process, which will be explained in the

sequel, is performed. After that, the global search is performed for each boundary

node to detect the nearest contact surface node. Since the nearest surface is locally

 76

defined, each surface node is associated to a surface segment. Thus, at this segment

the local search is performed with the Newton algorithm to find the nearest surface

position.

For the boundary detection process, the element connectivity properties are used. It is

performed only once before the beginning of contact analysis. Element nodes are

defined in the counter-clockwise direction, nodes know connected elements, and the

elements know the connected nodes, by use of which, the boundary nodes may be

detected. This function is provided in the class Obj2D since all the information is

contained in it (Appendix p.120).

The algorithm can be summarized as follows:

Every node holds a list of unsigned integer for the next node information. The process

has two stages:

1. For every node, connected elements are traced for the next node counter-

clockwise to the node in consideration. The next node detected is pushed into

the list of next node indices in the node in consideration.

2. A process of deletion of next nodes is performed. For this, again the nodes are

traced one by one. If the next node indexed in the list of a node contains in its

next node list, the index of the node in consideration, that index is deleted

from next node’s list, and the index of the next node is deleted from the node

in consideration. (i.e. if the nodes are mutually next node of each other, their

indices are mutually deleted from list of the other.)

At the end, every boundary node is left with node indices on the counter-clockwise to

it if the node is at the external boundary. If the node is at an interior of the body, the

next node list will be empty. If the node is at the boundary of an interior hole, the next

node will be in clockwise direction (see Figure 4.9 and Table 4.1).

 77

Figure 4.9: Boundary node detection system. Next nodes are entered by tracing
elements in row directions in the first stage.

Table 4.1: Table of next nodes for boundary detection. The grey colored indices are
the deleted ones in the second stage.

Node
1 5
2 1 6
3 2 7
4 3
5 6 9
6 2 7 5
7 3 8 11
8 4 7
9 10 13
10 6 9 14
11 12 10 15
12 8 11
13 14
14 10 15
15 11 16
16 12

Next Node List

 78

CHAPTER 5

IMPLEMENTATION ISSUES

5.1 INTRODUCTION

FEM programming has evolved in the last two decades with the evolution of the

computer programming techniques. Introduction of OOP techniques have given

possibility to develop general robust and structured programming solutions to

complicated problems in the last decade.

“Recent developments in software engineering and in the field of object oriented C++

programming have made it possible to model physical processes and mechanisms

more expressively than ever before” [23].

“Much of the early research on FEM implementation has focused on the speed of

execution or equation solving. However, as the complexity of finite element programs

increase, it is obvious that improving the maintainability, extendibility and reusability

of the software is equally important”[24].

Similar ideas are also written and explained in [25], which gives a bibliography of

OOP FEM programming. The differences of OOP from traditional FORTRAN

programming and concepts of OOP are elaborated with some detail.

In this chapter, the modern techniques of FEM programming are presented briefly.

This chapter includes OOP programming concepts and techniques with C++, and the

application to contact solution in 2D. In this regard, to give some references,

Strustrup [18] is the monumental book for learning C++. Nevertheless, it would not

be enough to develop a complicated FEM program. To give some other references of

C++ programming, the references [19], [20], [21], [22]may be offered. Especially for

the OOP FEM programming techniques, papers [23], [24], [25], [26], [27], [28] could

be followed. An implementation program has been written in C++ by use of the

general concepts developed from those books and papers. The papers present their

 79

own approach on their own implementation issues, not being the same, but not being

much different in the programming point of view. Now, the details are ready to be

presented for the implementation issue in consideration.

5.2 CLASS STRUCTURE

A class is user-defined type, where type is a concrete representation of a concept

[18]. In the FEM context, there are nodes, elements, domains, Gauss points… All

these have specific data and specific relations with each other. OOP provides them to

be represented conceptually as they are, and organize the data and functions

conveniently in a structured manner. It also provides separate compilation and error

detection mechanisms. For large problems, with complicated organization, those

considerations become indispensable.

In a FEM program, there is the domain, which is defined in the program by class

Obj2D, and it is decomposed into sub domains called elements, which are declared in

the program by class El2D. In addition, there are the nodes, represented by class

Node2D to define element edges. The Gauss points, where the integrations and most

of the calculations on the element are performed, are handled in the program by class

GsPt2D. For the contact solution, it is also needed to define classes related to contact

surface. For that purpose, class Surface2D is written for the contact surface, and the

class CntNd2D for the contact node. Most of the data have been organized in these

classes.

Those classes handle jobs specific to themselves by functions declared in them, called

methods. The methods may have common properties, among classes of the same

type, handling common jobs by some means, or in all means distinct jobs intrinsic to

the object itself. Some common functions may be declared in a virtual abstract base

class, and child classes may be derived from it. For instance, all of the mentioned

classes are graphical objects, which can be drawn into the graphical environment. All

of them may be captured from the graphical interface with a mouse click etc... Those

properties are declared in the base class FEGrObj . Some of the functions may be

handled in the base class, or some may need specific handling in the class itself, or

else some common part of the function may be implemented in the base and the rest

 80

specific part to be handled in the child. Therefore, other then the classes declared

above, there might be base classes in the lower order, and child classes derived from

the mentioned ones, which are of higher order.

To give another instance for class relations, consider the element class. As it has been

stated in chapter 2, there are two types of planar elements dealt in here, triangular and

rectangular. Though they differ in some ways, they have common properties too. For

instance, both are composed of Gauss points, nodes, etc… However, the ways they

handle drawing or calculating stiffness differ considerably. So two classes class

Tri2D , and class Rec2D are derived from class El2D. The class relations are

represented simply in Figure 5.1.

Figure 5.1: Diagram representing class hierarchy of FEM objects. Lower order are the
child classes derived from higher parent classes.

Below given are some brief explanations of the classes in Figure 5.1. They are only to

give some idea of how the things handled. The class definition headers are given in

the Appendices. For more details, refer to related appendix.

5.2.1 class CObject

In the above diagram (Figure 5.1), class CObject is the virtual base of all of the

classes. It is actually a Microsoft Foundation Class Library (MFC) specific class, and

FEGrObj

FENd2D El2D CntNd2D CntctSrf2D GsPt2D

Rct2D Tri2D C1Hermit C1Bernstein

CObject

Obj2D

 81

virtually all of the MFC specific codes are derived from it. It handles the runtime type

checking, serialization (saving and reading binary data), and runtime checking of

objects for debugging purposes. (For more specific details refer to MSDN Library of

Microsoft Visual C++.Net.)

5.2.2 class FEGrObj

This class is derived from class CObject, and it handles mouse events, like left

button down, left button up, mouse move etc… It also has a static variable, pointer to

class FEGrObj , to handle mouse captures called m_pCaptured. Since only one

mouse would be active in the graphical interface, a static pointer of the same type is

defined in the class, this way capturing a single object of this type from the graphical

interface. For example, in the event of left button click, the function handling this

event in the view class searches for clicked object, which can be a node, an element, a

contact node, etc… In case a hit occurs, the address of the hit object is assigned to

m_pCaptured. Actually, this technique is called late or dynamic binding [28], which

will be elaborated in the sequel for other issues.

5.2.3 class FENd2D

This class is derived from the above class FEGrObj , and it holds data related to

node, like its index, initial coordinates, final coordinates, nodal results etc...

Furthermore, it also handles mouse events and drawing of itself into the view. In a

graphical environment, a node should know connected elements for stress averaging

and error analysis [28], though in old style of FEM programming, only elements

knowing connected nodes would be sufficient for assembling purposes. It also needs

to store results related to itself and serve those results to the elements connected to

itself. It needs to reach to the domain body it is connected to, for reaching elements,

which it belongs to, for stress averaging etc… This is achieved by keeping a pointer

to class Obj2D.

 82

5.2.4 class CntNd2D

This class is also derived from class FEGrObj , as well as class FENd2D. It holds

data related to contact node, like its fixed coordinates, etc. It also handles mouse

events and drawing of itself into the view. It needs to reach to the rigid surface

definition it is connected to, since a node is associated to a segment of curve, and

curve is defined with respect to neighboring contact nodes. This is achieved by

keeping a pointer to class CntctSrf2D.

5.2.5 class El2D

This class is also derived from class FEGrObj , but it still serves as a virtual base

class for specific element definitions (i.e. rectangle, triangle or other element types

may be derived). Common data are stored in the class and some common

functionality is performed other than pure virtual declaration of some other functions.

It stores connected nodes as both pointers and indices, which makes code

maintenance easier. Since elements need to reach nodes frequently in drawing issues,

element deletion issues, stiffness calculations, assemblage processes, etc., it becomes

an urge to reach connected nodes directly, which is achieved by keeping pointers of

nodes in elements. For serialization issues, setting degrees of freedoms etc., it needs

the node indices.

Elements also hold Gauss points for calculating necessary data. An element object

has functions to calculate element stiffness namely linear and non-linear stiffness.

Linear stiffness is calculated by Eq. (3.19) for linear elastic analysis and by first

integrations in Eq’s. (3.35), or (3.37) for non-linear elastic case. The non-linear

stiffness is calculated by Eq. (3.31) or second integration in Eq’s (3.35), or (3.37).

However, the calculation of element stiffness is specifically performed differently for

specific kind of element. Thus, class El2D should have the declaration of common

functions only. The Implementation of those functions is specific to the derived child

class. It also has to deduce solution specific parameters from the data of class Obj2D.

For instance, it has index of the material definition of itself, and material definitions

are actually kept at class Obj2D. Thus, it should also hold the address of the

connected body.

 83

5.2.6 class Rct2D and class Tri2D

These classes are derived from class El2D. They handle specific jobs related to

themselves. The intrinsic implementation of pure virtual functions defined in class

El2D is performed in those classes separately. For instance actual implementation of

how they will be drawn into the graphical interface, how they will respond to mouse

events specifically is written and defined in them. They contain all properties of class

El2D, that is those classes inherit from it all the variables, and methods.

5.2.7 class CntctSrf2D

This class is also derived from class FEGrObj , since it is a graphical object to be

drawn into the view and to be captured from the view. It serves as a base class for

discrete contact surface definitions. Finding nearest contact node for a FEM node is a

common functionality to be supported. In addition, finding nearest surface point,

drawing are purely virtual functions to be declared in here.

5.2.8 class C1Hermite2D

This class is derived from class CntctSrf2D. It implements the functionality defined

in Section 0 for the Hermit surface, defined by the functions in Eqs. (4.8), (4.9), and

(4.10). It handles specific drawing and mouse handling issues for itself. Furthermore,

it contains the implementation of finding the nearest surface point for a FEM node.

5.2.9 class C1Bernstein2D

This class is also derived from class CntctSrf2D. It implements the functionality

defined in Section 0 for the Bernstein surface, defined by Eqs. (4.11) and (4.12). It

handles specific drawing and mouse handling issues for itself. It contains the

implementation of finding the nearest surface point for a FEM node specifically for

this surface definition.

 84

5.2.10 class GsPt2D

This class handles most of the calculations. Every element stores as many of this class

as the integration point number. For instance a rectangle with four nodes must have

four integration points for exact evaluation of the integrations, while a triangle having

three nodes must have three integration points for the same purpose [2][3][4]. It has

the local coordinates of itself, which are defined on the master element (Figure 3.1),

and the global coordinates defined on the real element patch. It also has graphical

coordinates for drawing issues. It serves the functions for calculating stresses, strains,

Jacobian (Eq. (3.5 a, b)), deformation gradient (Eq. (3.8)), determinant of deformation

gradient, derivative matrices (Eqs. (3.10), (3.27), (3.32)), etc… It also needs to keep

the address of the element it is belonged to, which is achieved by holding a pointer of

class El2D. However, for calculations, it needs to know the connected element type,

which is achieved by runtime type information (RTTI) checking. For instance,

rectangular element has different base function definitions than triangle. Base

functions are defined as global functions in the program. Therefore, it needs to know

which type of element is connected to itself for correctly calling the base functions.

Due elements knowing the connected domain, it has indirect access to connected

domain defined by class Obj2D.

5.2.11 class Obj2D

This class is derived from class CObject. It stores the elements, and nodes

constituting itself. How elements and nodes kept in the class is a very technical issue.

For this purpose Standard Template Library (STL) is utilized [21][22].

There are many ways of storing data in a container, namely, vector, list, map, multi-

map, set, multi-set, etc… It would be a challenging task to select which type of a

container to use. This is one of the first issues to be resolved to write a good FEM

program. A user should easily interact with the program, that is, delete, or add nodes

or elements in the preprocessor. Also left as a further task, on the runtime, mesh

refinement possibilities must be considered. STL serves as a perfect tool to do such

tasks. In the program developed, vector, holding pointer to objects is selected as best

suiting in the framework of this dissertation. Knowing STL helps making judicious

 85

decisions on container types. In some of the implementations, list is preferred, while

in some others, map implementation is selected. Both have been tried during the

development but the implementation of a vector of pointers is judiciously selected as

best appealing for giving most flexibility and functionality.

5.3 IMPLEMENTATION DETAILS

Here, some minor specific details of calculation in the OOP environment will be

elaborated. They are important and without understanding them, FEM programming

becomes painful for the program developer. The issues considered in this section are

critical to be able to implement all the things mentioned up to now.

5.3.1 Copy Constructors, Assignment Operators and Destructors

Since the class structure is so much interconnected with keeping addresses of each

other, address tracking is important and should be given special attention. For

instance, in element copy process, since class GsPt2D keeping the address of the

element it is connected to, copied Gauss points must be initialized to new element

address. In addition, this kind of details should be given special attention in the

assignment operators. Another special subject to be shared is the destruction of class

Obj2D. In the destructor, it must delete all the elements and nodes it stores as pointers

in the vectors. Those issues are slightly touched and mentioned in [28]. Constructors

and destructors must be designed carefully in order to design strong codes, not

crashing on the run time.

5.3.2 Element Transformations

The implementation of Jacobian J is exactly formulated as in Eqs. (3.5 a, b) in a

single function in class GsPt2D, and ξ, η not being arguments, but as private variables

in class GsPt2D. For calculation of J, the argument to be entered is the current

increment number, which for the linear elastic case entered as zero. The calculation of

deformation gradient F is implemented in the same way as in Eq. (3.8) in class

 86

GsPt2D, but with two variables being the reference increment and the current

increment numbers, and ξ, η are held in the class itself as private variables. The

inverse is achieved by switching the reference and current increment numbers for the

arguments in the same function. A Gauss point should be initialized to the element it

is connected to, and to the master coordinates where it belongs to, before its any

attempt of use. When initialized, its global position is set automatically in the

initialization function.

5.3.3 Late or Dynamic Binding

Now consider how contact calculations are performed. Boundary nodes are detected

and constraint is applied only at those nodes. However, for application of contact

constraints to nodes, several parameters are necessary as the surface normal, nearest

surface position normal gap etc… To keep and handle all those parameters in nodes

would be expensive, since they are needed only for possible contact nodes (i.e.

boundary nodes). In addition, keeping all those parameters in a structured manner

becomes crucial. To achieve that, a class to provide those variables is created called

class CntParamVals. Instead of keeping all those variables in nodes, nodes are only

provided with a pointer of type class CntParamVals. A pointer is of size 32 bits,

being much cheaper compared to keeping all those values in all the nodes. This

pointer is initially assigned to NULL. In the case of contact solution, when boundary

nodes are detected, a new object of type class CntParamVals is allocated on the run

time for each boundary node, and assigned to these boundary nodes’s pointer

variable. This type of binding is called the late or dynamic binding. In [28], this name

is mentioned but any detail is not given as in here. In the FEM context, this method

may be very efficient for different types of problems. For instance in plastic analysis,

Gauss points need to hold plastic deformation history in case plastic deformations to

occur. Though plastic analysis is not implemented in the context of this dissertation,

this method may be very convenient and efficient in that case too. This issue stands as

a further work to develop in the authors mind.

 87

5.3.4 Program Interface

The program interface must be designed such that, the user would be prevented from

erroneous selections or entering wrong parameters to the program as much as

possible. A text based FEM program would have an input file and when the program

is executed, it would generate an output file. In a graphical interfaced program as the

one developed here for solution of contact, the program must have preprocessor and

post processor. In the case considered, both are implemented in the same

environment. However, the interaction with the program should change according to

status of the solution environment (i.e., preprocessing, post processing). In addition,

drawing of the body, capturing of elements of drawing, (i.e. nodes, elements, contact

nodes etc…) must be done efficiently, effectively, and fast. For this purpose, Open

Graphics Library (OpenGL) is utilized [29] [30]. OpenGL is designed as a

streamlined, hardware-independent interface to be implemented on many different

hardware platforms [29]. It provides coordinate transformation, selection and

feedback utilities, drawing of lines and polygons. It has also the 3D support for

further development of the FEM program; however, some primitive knowledge of

OpenGL is enough for the drawing issues considered in here.

In the program developed, the switch between preprocessor and the post processor is

achieved by a flag, handling if the analysis is complete. In case of preprocessing,

there is the solution parameters dialog bar being active, and any change to the body in

consideration is possible, like moving nodes, element addition or deletion, node

addition or deletion, etc. In the analysis parameters bar, there are the options of which

kind of analysis is to be performed (plane stress, plane strain, axi-symmetric),

whether non-linear analysis is to be performed, non-linear analysis parameters,

contact solution parameters, etc. (Figure 5.2).

 88

Figure 5.2: Input SideBar dialog.

However, in case when the analysis is complete, those options must be automatically

disabled, and the sidebar must change automatically from solution parameters to

results parameters (Figure 5.3). In the result parameters bar, there are the options of

viewing the object in displaced shape, selection of displaying deformations, stress

components, strain components, color ranging.

 89

Figure 5.3: Result parameters SideBar dialog.

There are common functions of both preprocessor and the post processor, being the

zooming options, zoom in, zoom out, dynamic zooming, window zooming, going to

previous zoom are the provided functionality.

Figure 5.4: Zoom ToolBar providing interface for zoom functions.

Other than those, viewing options, like node sizes, text sizes, color selections are

provided with the view settings SideBar. Menu bar is provided for further optional

selections as is used in today’s modern software. Snapping to grid, setting grid sizes,

Dynamic Zoom

Zoom Window Zoom Previous

Drag View

 90

setting window sizes, regular mesh generation, etc. are other functionalities provided.

StatusBar provides aid in understanding functions of buttons in the program, writes

coordinates of mouse position, and when analysis is complete provide with

interpolated scalar values on the element on which mouse is moving.

It is not possible to provide information about all functions and abilities of the

program here, but the usage is straightforward to understand when playing with the

program interface for those familiar with graphical interfaced programs. A setup

program and sample files are provided with the CD attached.

 91

CHAPTER 6

TEST PROBLEM COMPARISONS AND BENCMARK

PROBLEM

6.1 INTRODUCTION

In this section, some benchmark and test problems will be solved to verify the results.

First, the results without contact, the internal consistency of the program for different

solution selections will be tested, and the results will be interpreted. Then some

comparisons with commercial program ABAQUS will be given, with and without

contact.

6.2 NON-LINEAR BUCKLING

Here, a cantilever loaded axially at the tip with a small perturbation lateral force is

selected as a test problem. The length of the bar is 800 units, section depth of 100

units and section thickness of 1 unit is selected. Elastic modulus is 1000, and the

Poisson’s ratio is 0.3. The bar is subdivided into 20 by 4 elements. Support conditions

are as seen on the figure. This beam should buckle around 321.28 units of axial tip

load according to Euler Beam Theory. In the analysis axial tip load entered as

300/100 units per unit length and tip shear load 10/100 units per length (

Figure 6.1). Maximum tip deflections are given in (Table 6.1).

 92

Figure 6.1: The analyzed cantilever model. The same model is analyzed with TL and
UL approaches for both plane stress and plane strain cases.

Table 6.1: Analysis results for cantilever loaded axially with small perturbation lateral
force for Plane Stress and Plane Strain analysis. The system analyzed by both Total
Lagrange and Updated Lagrange methods and by Kirchoff Material and Hyperelastic
Material models.

Total
Lagrange

Updated
Lagrange

Abaqus
Result

U 33.23 33.23
V 148.01 148.15
U 29.38 29.64 29.04
V 136.40 137.17 135.30

Total
Lagrange

Updated
Lagrange

Abaqus
Result

U 15.65 15.73
V 84.07 84.44
U 14.58 14.69 20.19
V 79.60 80.12 103.80

Abs. Max.
Tip Defl.

Plane Stress Analysis
Abs. Max.
Tip Defl.

Kirchoff Model

Hyperelastic Model

Plane Strain Analysis

Kirchoff Model

Hyperelastic Model

The above test is performed to check the consistency of the TL and UL approaches

for both Kirchoff and the hyperelastic models. From the above table, it is obvious that

TL and UL approaches give approximately same results. The results seem different

from the ABAQUS results especially for Plain Strain case. However, the Hyperelastic

model used in ABAQUS is different. There are numerous hyperelastic models in

literature, which are devised for different material characteristics. For the details of

the hyperelastic model used in ABAQUS, refer to ABAQUS help manuals. It is

known that Kirchoff model may give unrealistic results in large strain case, but for

slender beam, it can handle non-linear behavior and give realistic results.

 93

6.3 BEAM ON RIGID FOUNDATION

This time, same mesh is analyzed for plane strain case with same material constants

as in the previous section, but this time with a rigid linear base, with different

boundary conditions on the left side and different loading conditions. The left bottom

edge is fixed, while other nodes on the left side are only supported in x-direction.

Instead of tip loading, it is loaded at the left top along 25% of its length with 1.0

units/length of downward force (Figure 6.2). It is expected that, right edge is elevated

and contact is lost, while on the left edge along the contact surface, there is the

contact reaction.

The beam is analyzed as linear-elastic and hyperelastic. The results are compared to

ABAQUS. In ABAQUS, contact is modeled with augmented Lagrange approach. In

the program developed for this dissertation, Lagrange multiplier approach is

preferred for linear elastic case while cross constraints method is used for

hyperelastic non-linear elastic case.

Figure 6.2: Beam on rigid foundation. This is at the preprocessor stage of new
program developed (i.e. not analyzed yet).

 94

Figure 6.3: Beam on rigid foundation analyzed with the program developed. Linear
Elastic case with Lagrange Multiplier Approach is considered. Vertical displacements
are pictured.

Figure 6.4: Beam on rigid foundation analyzed with the ABAQUS commercial
program. Linear Elastic case with Augmented Lagrange Approach is considered.
Vertical displacements are pictured.

In the above, (Figure 6.3) and (Figure 6.4), vertical displacements are plotted. From

the figures, it is obvious that the results are comparable for the linear elastic case. The

 95

small difference may be due to different contact handling technique used in the new

program developed and the commercial program ABAQUS.

6.4 CIRCULAR DISK ON RIGID FOUNDATION

This time the same mesh as in the previous section (Figure 6.2) with the same

material constants is analyzed, but with the axisymmetric analysis option. The same

loading conditions and the same boundary conditions on the left side have been

applied. Result is compared to ABAQUS and comparable results have been obtained.

Figure 6.5: Circular disk interacting with rigid foundation. Axisymmetric analysis with
the new program developed for this dissertation. Linear elastic case analyzed with
Lagrange multiplier approach.

 96

Figure 6.6: Circular disk interacting with rigid foundation. Axisymmetric analysis
performed with the commercial ABAQUS program. Linear elastic case with
augmented Lagrange approach is the analysis options.

In the linear elastic case, comparable results have been obtained. The small difference

in displacements may be attributed to different approaches in handling the contact

conditions.

6.5 THE BENCHMARK PROBLEM

The benchmark problem is inspired from an industrial application, the analysis of

Ericsson cell phones charging plug (Figure 6.7). A model is tried visually, not by

measure. Only half bottom is modeled because of the symmetry for the upper part.

This analysis is performed only to show that, the program can handle this kind of an

interesting complicated analysis, and industrial applications may be performed with

the program.

For the model, both the triangular and the rectangular element formulations are used

coherently, with Hermit Interpolation surface representing the phone side. It is

pressed 4.25 mm against the contact surface in x-direction. Non-linear Hyperelastic

analysis performed in 100 increments of Newton iterations. For application of

contact, cross constraints method is used. Solution took around 1 hour. The result at

the 60th increment is represented in Figure 6.8.

 97

The problem is interesting for an analytic solution is expected to be impossible for

that complicated problem, and it represents a challenging engineering application. It

does not seem possible to compare it with other programs.

Figure 6.7: The benchmark problem. Plug in the preprocessor stage. This is the model
entered from the graphical interface. The Dialog Bar on the left is in the preprocessor
state.

 98

Figure 6.8: The benchmark problem. Plug in the post processor stage. This is the result
of the analysis representing y-direction Cauchy’s stress distribution when pushed
against to the contact surface in x-direction. The Dialog Bar on the left is in the post
processor state.

6.6 TESTING WITH ANALYTIC RESULTS

In general, it is difficult to test this kind of a problem in a good way with analytic

results, due the method developed in here is being numerical approximation, and the

it includes different complicated aspects of the problem. .In [31], result for infinite

elastic beam resting on elastic half-space is given (Figure 6.9). To compare the

results, model mesh in (Figure 6.2) is used. In [31], two ratios for elastic layer and

rigid half-space, hPePcr ⋅= /λ , is given for critical elevating load P, being tensile and

compressive as 1.088 and 44.139. In the model, for the program developed, around

1.2 and 45, the separation occurs. The result obtained is comparable to the result in

the considered paper.

 99

Figure 6.9: Beam on elastic half-space. ρ0 is the load per unit length, ρ1 is the load per
unit volume, g is the gravitational constant.

P
Pe=ρ1gh+ρ0

h

y

x

 100

CHAPTER 7

FURTHER REMARKS AND CONCLUSION

7.1 INTRODUCTION

In this chapter, further development issues and the achievements with the program

developed is discussed.

7.2 FURTHER DEVELOPMENT ISSUES

At the very beginning, the aim is declared as writing an extendible program, which

solves contact problems. The program is developed in view of this aim, considering

further development issues. Though writing a perfect program handling every aspect

of a problem at once is never possible in consideration of the extent of FEM, some

near future development issues may be foreseen. Most of the technical details would

stand valid, and as program evolves, by the gained expertise, the art of science can be

flourished with the evolved new ideas.

As the first attempt, different surface definitions; i.e NURBS curves [10] as

mentioned before, and other analytic surface definitions, may be implemented. The

program may further be developed for contact solution by considering self-contacting

of the body, i.e a boundary surface may be fitted onto the detected boundary nodes of

the body. Therefore, in that case, surface would also be moving, and that must be

handled in a convenient way. Multiple body definitions may be implemented, and

interactions of them may be formulated. For that purpose, more efficient global

search methods, i.e. bucket search, binary search [16], [17] as mentioned in Chapter

3, may become an obligation. Friction is also a challenging problem, which stands as

a further development issue.

 101

Automatic mesh generation is indispensable in the modern FEM programs. Good

automatic mesh generators, i.e. advancing front, Delaunay triangulation can be

implemented.

In the current work only two material models, namely the Kirchoff material model

and the Hyperelastic model have been implemented. Other material models may be

searched and investigated.

In the future, for a PhD. work, the program may further be developed to handle

impact problems, in which dynamic effects must be considered. Plastic analysis may

also be implemented. That way metal-forming process can be simulated.

The program written up to now is a good shell core code, around which many other

functions and abilities may be woven.

7.3 CONCLUSION

In the framework of this dissertation, unilateral discontinuous contact for an elastic

body moving and deforming in space, interacting with a rigid surface only in the

normal direction to that surface have been solved numerically, by applying FEM. For

the solution of the problem, OOP is seen as crucial instrument, and the OOP

programming techniques have been devised for this purpose. By use of OpenGL, a

good graphical interface has been created. The problem is solved in 2D for the plane

stress, plane strain and axisymetric cases.

For the rigid surface definition, two discrete 2 dimensional surface models have been

implemented effectively, namely the Hermit and Bernstein surface models.

First, a test problem to check the internal consistency of the program is generated for

the non-linear analysis, comparing TL and UL approaches. For this purpose, a beam

is loaded near to Euler buckling load with a small perturbing tip force. Nice results

have been obtained with little numerical deviations for both approaches. It is

observed that Kirchoff material model and Hyperelastic material model give different

results as expected. However, results differ from commercial ABAQUS program due

to different material models are used.

 102

Some test problems have been solved and compared to the commercial ABAQUS

program. For the linear elastic, small stress, small strain type of problems,

comparable results have been obtained for both plane strain and axisymmetric cases.

In that case, the small differences are attributed to the differences in the contact

formulation. For the linear elastic case, the new program developed used Lagrange

multiplier approach, which satisfies contact constraints exactly.

For the non-linear elastic case, due to the use of different hyperelastic models, larger

differences have been observed compared to the results of ABAQUS program.

ABAQUS program used Augmented Lagrange Approach for the solution of contact

in all cases. In addition, strain models differ from that program.

It is not possible to check every aspect of the program developed with the commercial

programs, since it is devised independently, without consideration of other programs.

The program is self-contained as much as possible, proving itself with the application

of different methods of solutions. It contains similarities and differences compared to

other commercial programs. For instance, Bezier Curve is not implemented in

ABAQUS though it is in one of the other popular FEM program MARC.

Nevertheless, the implementation in MARC is not the same. No test is performed for

MARC. ABAQUS does not have surface detection algorithm, since boundary is

entered at the very beginning and automatic meshing is performed. After meshing,

the user intervention is a bit restricted in most of the popular FEM programs. In the

program developed, a regular mesh is directly created, and it can easily be modified

in the preprocessor stage. This approach may have advantages and disadvantages

compared to other package programs.

In general, the program developed gives good and comparable results, and serves as a

perfect core shell for possible further development. The contact problem is solved

efficiently for both linear-elastic and non-linear elastic cases for the unilateral

frictionless case with that program.

 103

REFERENCES

[1] Wriggers, Peter, Computational Contact Mechanics., John Wiley & Sons,

England (2002).

[2] Bathe, K. J., Finite Element Procedures., Prentice Hall, Englewood Cliffs,

New Jersey (1996).

[3] Cook, Robert D., Malkus David S., Plesha Michael E., Concepts and

Applications of Finite Element Analysis., John Wiley & Sons, New York

(1989).

[4] Reddy, J. N., An Introduction to the finite element method., McGraw-Hill,

Inc., Singapore (1993).

[5] Belytschko, T., Liu, W., K., Moran, B., Nonlinear Finite Elements for

Continua and Structures., John Wiley & Sons, New York (2000).

[6] Simo, J. C., Hughes, T.J.R., Computational Inelasticity., Springer-Verlag,

New York, Berlin Heidelberg (1997).

[7] Bonet, Javier., Nonlinear continuum mechanics for the finite element

analysis., Cambridge University Press, USA (2000).

[8] Nash, Stephen G., Sofer Ariela., Linear and Nonlinear Programming., The

McGraw-Hill Companies, Inc., Singapore(1996).

[9] Wriggers P., Krstulovic-Opara L., Korelc J., “Smooth C1-interpolations for

two-dimensional frictional contact problems.”, Int. J. Numer. Meth. Engng.,

51:1469-1495 (2001).

[10] Stadler M., Holzapfel G. A., Korelc J., “Cn continuous modeling of

smooth contact surfaces using NURBS and application to 2D problems.”, Int. J.

Numer. Meth. Engng., 57:2177-2203 (2003).

[11] Zavarise G., Wriggers P., “A superlinear convergent augmented

Lagrangian procedure for contact problems.”, Engineering Computations,

16:88-119 (1999).

 104

[12] Pietrzak G., Curnier A., “Large deformation frictional contact mechanics:

continuum formulation and augmented Lagrangian treatment” Comput.

Methods Appl. Mech. Engrg., 177:351-381 (1999).

[13] Kloosterman G., van Damme R. M. J., van den Boogaard A. H., “A

geometrical-based contact algorithm using a barrier method.”, Int. J. Numer.

Meth. Engng., 51:865-882 (2001).

[14] Bathe K. J., Bouzinov P.A., “On the constraint function method for

contact problems.”, Computers & Structures, 64:1069-1085 (1997).

[15] Zavarise G., Wriggers P., Schrefler B. A., “A method for solving contact

problems.”, Int. J. Numer. Meth. Engng., 42:473-498 (1998).

[16] Wang S. P., Nakamachi E., “The inside-outside contact search algorithm

for finite element analysis.”, Int. J. Numer. Meth. Engng., 40:3665-3685 (1997).

[17] Heinstein M. W., Mello F. J., Attaway S. W., Laursen T. A., “Contact-

impact modeling in explicit transient dynamics.”, Comput. Methods Appl.

Mech. Engrg., 187:621-640 (2000).

[18] Stroustrup, Bjarne., The C++ Programming Language., Addison-Wesley,

Massachussets, (1998)

[19] Ford, W., Topp, W., Data Structures With C++, Prentice Hall, Inc.,

Englewood Cliffs, New Jersey, (1996)

[20] Murray, W. H., Pappas C. H., Visual C++.NET: The Complete Reference,

McGraw-Hill, California, (2002)

[21] Austern, M. H., Generic Programming and the STL: Using and Extending

The C++ Standard Template Library, Addison-Wesley Longman, inc.,

Massachussets, (1998)

[22] Musser, D. R., Saini, A., STL Tutorial and Reference Guide: C++

Programming with the Standard Template Library, Addison-Wesley, Reading,

MA, (1996)

 105

[23] Zabaras N, Srikanth A., “An object-oriented programming approach to the

Lagrangian FEM analysis of large inelastic deformations and metal forming

processes.”, Int. J. Numer. Meth. Engng., 45:399-445 (1999).

[24] Yu L., Kumar A. V., “An Object-Oriented Modular Framework For

Implementing The finite Element Method”, Computers & Structures, 79:919-

928 (2001).

[25] Mackerle Jaroslav, “Object-oriented programming in FEM and BEM: a

bibliography (1990-2003).”, Advances in Engineering Software, 35:325-336

(2004).

[26] Pantale O, Caperaa S, Rokotomala R., “Development of an object-

oriented finite element program: application to metal-forming and impact

simulations.”, Journal of Computational and Applied Mathematics, 341-351

(2004).

[27] Gil Lluis, Bugeda G., “A C++ object-oriented programming strategy for

the implementation of the finite element sensitivity analysis for a non-linear

structural material model.”, Advances in Engineering Software, 32:927-935

(2001).

[28] Balopoulos V. Abel J. F., “Use of shallow class hierarchies to facilitate

object-oriented nonlinear structural simulations.”, Finite Elements in Analysis

and Design, 38:1047-1074 (2002).

[29] Woo, Mason., Neider, Jackie., Davis, Tom., Shreiner, Dave., OpenGL

Architecture Review Board, OpenGL Programming Guide, 3rd ed., Addison

Wesley Longman, Inc., Massachusetts (1999).

[30] Hearn, Donald., Baker, Pauline M., Computer Graphics with OpenGL, 3rd

Ed., Pearson Prentice Hall, Pearson Education Inc., USA, (2004).

[31] Geçit M. R., “A Tensionless contact without friction between an elastic

layer and an elastic foundation”, Int. J. Solids Structures, 16:387-396, (1980).

 106

APPENDIX

FEGrObj.h

class FEGrObj : public CObject
{
public:
 FEGrObj();
 virtual ~FEGrObj();
 static FEGrObj* m_pCaptured; //For mouse capturing;

 BOOL m_bSelected; //Bool to hold object selection state

 virtual void Draw(CFEMGLView* pView)=0;

 virtual void OnLButtonDown (CFEMGLView* pView,
 UINT nFlags, CPoint point) = 0;
 virtual void OnLButtonUp (CFEMGLView* pView,
 UINT nFlags, CPoint point) = 0;
 virtual void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point)=0;
};

 107

FENd2D.h

class FENd2D : public FEGrObj
{
public:
 DECLARE_SERIAL(FENd2D)
 //Constructors
 FENd2D (double X=0.0, double Y=0.0,

 unsigned Idx=0, class Obj2D *Ob=NULL);
 FENd2D(const FENd2D& Nd);

 Obj2D* Obj; //Pointer to the connected domain

 virtual ~FENd2D();
 double X;
 double Y;
 double x;
 double y;

 BOOL m_bUxdefined;
 BOOL m_bUydefined;
 double m_dBCX; //Boundary Condition in Y
 double m_dBCY; //Boundary Condition in X
 double m_dKx; //Spring constant in X
 double m_dKy; //Spring constant in Y
 double Rx; // Reaction force in X
 double Ry; // Reaction Force in Y

 vector<class NodalRes2D> m_VResults; //Vector of results structure
 vector<unsigned> ElLst; //Connected element list

 //List for boundary node detection
 //Firs index stores previous node, second index stores next node!
 list< pair<unsigned, unsigned> > Neighbours;

 static GLint m_nDisplySz;
 static CFont m_NdFnt;
 static BOOL m_bVwNodes; //If to draw nodes on the screen;
 static BOOL m_bVwIdx; //If to draw nodal indices on the screen;
 static BOOL m_bVwNdLd; //Boolean to view node on the display
 static BOOL m_bVwNdBC; //Boolean to view node boundary condition
 static float m_fLdDispFc; //Load display factor
 static unsigned m_nNdTxtSz; //Text height for drawing indices

 void SetIdx(unsigned i); //Setting index of the node in the node list.
 unsigned GetIdx() const
 { return Idx;}

 void operator = (const FENd2D &N); //Assignment operator

 virtual BOOL operator == (const FENd2D &N)const;
 virtual BOOL operator != (const FENd2D &N)const;

 108

 void Draw(CFEMGLView* pView);
 void DrawBdry(CFEMGLView* pView);
 void DrawSprng(CFEMGLView* pView);

 //Mouse Function declarations
 void OnLButtonDown (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnLButtonUp (CFEMGLView* pView,

 UINT nFlags, CPoint point);
 void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 virtual void Serialize(CArchive& ar); //Handle saving and reading from file issues

private:
 unsigned Idx;

#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

 109

CntNd2D.h
class CntNd2D:public FEGrObj
{
public:
 DECLARE_SERIAL(CntNd2D)
 //Constructors
 CntNd2D (double X=0.0, double Y=0.0,
 class CntctSrf2D* pSurf=NULL);
 CntNd2D(const CntNd2D& Cont);

 //Address of the connected surface
 CntctSrf2D* pSrf;

 //Fixed coordinates of contact node
 double X, Y;

 static GLint m_nDisplySz;

 static CFont m_NdFnt;
 static BOOL m_bVwCntNds; //View Contact Nodes

 void operator = (const CntNd2D &Cont);
 BOOL operator == (const CntNd2D &N)const;
 BOOL operator != (const CntNd2D &N)const;

 //Function to handle drawing issues of contact node
 void Draw(CFEMGLView* pView);

 //Functions to handle mouse events for contact node
 void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnLButtonDown (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnLButtonUp (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 virtual ~CntNd2D(){}; //Destructor
 virtual void Serialize(CArchive& ar);

#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

 110

Element2D.h

class El2D:public FEGrObj
{
public:
 static ofstream fout;
 El2D (class Obj2D *Ob=NULL, //Default Constructor
 unsigned Idx=0,
 double thck=1.0,
 unsigned short MtIdx=0);

 El2D (const El2D& El); //Copy constructor

 Obj2D* Obj; //Pointer to connected domain

 virtual double Dimension(void)=0;
 virtual void operator = (const El2D &N);
 virtual bool operator == (const El2D &N);
 virtual bool operator != (const El2D &N);

 //Liner stiffness matrix of element for both linear anaysis,
 //total and updated lagrangian formulations.
 virtual matrix K_Lin()=0;
 //Tangential stiffnes matrix of element for Newton solution
 //style for both Total & Updated Lagrange formulations
 virtual matrix K_NL()=0;

 //Calculate Body Loading
 virtual colvec Fb()=0;

 //Calculate load from initial displacement effect.
 //Used for residual calculation.
 virtual colvec F_DisplEff (unsigned short m_nCurInc=1,
 unsigned short m_nRefInc=0)=0;

 //Get local displacements and incremental from connected domain.
 virtual colvec U_Loc(unsigned inc=0);
 virtual colvec D_U_Loc(void);

 vector<struct NdIdxing> NdLst; //List of connected nodes.

 virtual void IdxtoPtr(void);
 virtual void PtrtoIdx(void);

 unsigned short m_nMtIdx;

 vector<class GsPtData2D> GsPt;
 vector<class GsPtData2D> RedGs;

 double Thick; //Thickness of Element
 double m_dRho; //Mass Density of Element (kg/m3)

 111

 //Internal body loading per unit mass in X (N/m3)
 double m_dFx;
 //Internal body loading per unit mass in Y (N/m3)
 double m_dFy;

 virtual void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 virtual void OnLButtonDown (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 virtual void OnLButtonUp (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 static unsigned m_nElTxtSz;

 virtual unsigned GetIdx();
 virtual void SetIdx(unsigned i);

 virtual void InitGs(void)=0;

 virtual ~El2D(); //Destructor
 unsigned short GetType(){return TYPE;};
protected:
 virtual void Serialize(CArchive& ar);

 unsigned m_nIdx;
 unsigned short m_nIntOrd;
 unsigned short m_nMinNdNumbr;
 unsigned short m_nMaxNdNumbr;
 unsigned short TYPE;
#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

 112

Rct2D.h

class Rct2D:public El2D
{
 public:
 DECLARE_SERIAL(Rct2D)
 //Constructors
 Rct2D (class Obj2D *Ob=NULL, unsigned Idx=0,
 double thick=1.0, unsigned short MtIdx=0);
 Rct2D (const Rct2D& El);
 friend matrix RctBase_2D (double ksi, double eta,
 const vector<unsigned int> LocIdx);

 //Function for calculating linear stiffness matrix for rectangle
 matrix K_Lin();
 //Function for calculating non-linear stiffness matrix for rectangle
 matrix K_NL();
 colvec Fb (); //Calculate Body Loading
 //Calculate load from displacement effect for residual calculation
 colvec F_DisplEff(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0);

 double Dimension(); //Area of rectangle
 //Function to handle mouse move message for rectangle
 virtual void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 //Function to handle drawing for rectangle.
 void Draw(CFEMGLView* pView);
 void InitGs(void);
 virtual void Serialize(CArchive& ar);
 virtual ~Rct2D(); //Destructor for rectangle
private:
 unsigned short m_nInt_x, m_nInt_y;
#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

 113

Tri2D.h

class Tri2D:public El2D
{
public:
 DECLARE_SERIAL(Tri2D)
 //Constructors
 Tri2D (class Obj2D *Ob=NULL, unsigned Idx=0,
 double thick=1.0, unsigned short MtIdx=0);
 Tri2D (const Tri2D& El); //Copy constructor

 friend matrix TriBase_2D (double ksi, double eta,
 const vector<unsigned int> LocIdx);

 //Function for calculating linear stiffness matrix for triangle
 matrix K_Lin();
 //Function for calculating non-linear stiffness matrix for triangle
 matrix K_NL();
 colvec Fb(); //Calculate Body Loading

 //Calculate load from displacement effect for residual calculation
 colvec F_DisplEff(unsigned short m_nCurInc=1,
 unsigned short m_nRefInc=0) ;
 double Dimension(); //Area of triangle
 //Function to handle mouse move message for rectangle
 void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 //Function to handle drawing for triangle.
 void Draw(CFEMGLView* pView);
 void InitGs(void);
 virtual void Serialize(CArchive& ar);
 virtual ~Tri2D(); //Destructor for triangle
#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

 114

CntctSrf2D.h

class CntctSrf2D:public FEGrObj
{
public:
 //Constructors
 CntctSrf2D(void);
 CntctSrf2D(const CntctSrf2D & Cont);
 CntctSrf2D(CntctSrf2D* const Cont);

 //List of contact nodes
 vector<class CntNd2D*> NdList;

 COLORREF Node_Clr; //Contact node color
 COLORREF SlctNd_Clr; //Selected contact node color

 COLORREF Surf_Clr; //Contact surface color
 COLORREF SlctSrf_Clr; //Selected contact surface color

 static BOOL m_bVwCntSrf;
 static BOOL m_bClosedCnt;

 virtual bool DeleteNode(CntNd2D* pNode);
 virtual void CalcParam(FENd2D* pNd)=0;

 //Find nearest contact node to a FEM node.
 virtual unsigned Nearest (FENd2D* const pNd);

 //Pure virtual function to calculate nearest
 //parametric point to a FEM node.
 virtual void Ksi_bar (FENd2D* pNd)=0;

 //Saving and reading of surface specific data from the binary file
 virtual void Serialize(CArchive& ar);

 //Functions to handle mouse events
 void OnLButtonDown (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnLButtonUp (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 virtual ~CntctSrf2D();
 unsigned short GetType(){return TYPE;};

protected:

 //Used for drawing purpose!
 virtual void CalcParam (CntParamVals*)=0;
 virtual unsigned Nearest (const double x, const double y);
 virtual double Ksi_bar (const double x, const double y)=0;

 115

 //Stores type of contact surface (Bernstein, Hermite, etc.)
 unsigned short TYPE;
#ifdef _DEBUG
 virtual void Dump(CDumpContext &dc) const;
#endif
};

 116

C1Hermit.h

class C1Hermit :public CntctSrf2D
{
public:
 DECLARE_SERIAL(C1Hermit)
 C1Hermit(void);
 C1Hermit(const C1Hermit & Cont);
 C1Hermit(CntctSrf2D* const Cont);

 //Calculate nearest contact node to a FEM node.
 unsigned Nearest (FENd2D* const pNd);
 //Calculate nearest parametric point to a FEM node.
 void Ksi_bar (FENd2D* pNd);

 void CalcParam(FENd2D* pNd);

 //Find nearest contact node to point.
 unsigned Nearest (const double x, const double y);
 //Calculate nearest parametric point to point.
 double Ksi_bar (const double x, const double y);

 void CalcParam(CntParamVals*);

 //Handle drawing issues of Hermit Bezier Curve
 void Draw(CFEMGLView* pView);

 //Handle mouse events for hermite surface
 void OnLButtonDown (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnLButtonUp (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 //Handle saving and reading of Hermite Surface
 virtual void Serialize(CArchive& ar);

 ~C1Hermit(void); //Destructor

#ifdef _DEBUG
 virtual void Dump(CDumpContext &dc) const;
#endif
};

 117

C1Bernstein.h

class C1Bernstein :public CntctSrf2D
{
public:
 DECLARE_SERIAL(C1Bernstein)

 //Constructors
 C1Bernstein(void);
 C1Bernstein(const C1Bernstein & Cont);
 C1Bernstein(CntctSrf2D* const Cont);

 //Calculate nearest contact node to a FEM node.
 unsigned Nearest (FENd2D* const pNd);
 //Calculate nearest parametric point to a FEM node.
 void Ksi_bar (FENd2D* pNd);

 void CalcParam(CntParamVals* pPrm);

 //Calculate nearest contact node point to point.
 unsigned Nearest (const double x, const double y);

 //Calculate nearest parametric point to point.
 double Ksi_bar (const double x, const double y);

 void CalcParam(FENd2D* pNd);

 //Function to handle drawing issues
 void Draw(CFEMGLView* pView);

 //Functions to handle mouse events for Bernstein surface
 virtual void OnLButtonDown(CFEMGLView* pView,
 UINT nFlags, CPoint point);
 virtual void OnLButtonUp (CFEMGLView* pView,
 UINT nFlags, CPoint point);
 virtual void OnMouseMove (CFEMGLView* pView,
 UINT nFlags, CPoint point);

 virtual void Serialize(CArchive& ar);
 ~C1Bernstein(void);
private:
#ifdef _DEBUG
 virtual void Dump(CDumpContext &dc) const;
#endif
};

 118

GsPt2D.h

class GsPt2D: public FEGrObj
{
public:
 DECLARE_SERIAL(GsPt2D)

 //Constructors
 GsPt2D (El2D *El=NULL,
 double ksi=0.0,
 double eta=0.0,
 double Coeff=2.0);
 GsPt2D (const GsPt2D &GsPt);

 bool Init (El2D *El, double ksi,
 double eta, double Coeff);

 //Jackobian matrix (Default referred to initial state)
 matrix J (unsigned short m_nInc=0);
 double detJ (unsigned short m_nInc=0);

 //Constitutive matrix
 matrix C (unsigned short m_nInc=0);

 //For calculating derivatives (Default referred to initial state
 matrix B(unsigned short m_nInc=0, bool m_bCurent=FALSE);
 //Always referred to initial state (Calculated only for Total Lagrangian Solution)
 matrix BL1(unsigned short m_nInc =1);

 //For calculating Non_Lin part of stiffness matrix.
 //For TL Approach should always refer to initial state (=0)
 //For UL Approach should refer to curent state.
 matrix BNL(unsigned short m_nInc=1,
 bool m_bCurent=FALSE);
 //For calculating mass matrix or internal body forces
 matrix H();

 //Calculates strains.
 //For TL approach Green’s Strain.
 //For UL approach Almansi’s strain
 matrix E (unsigned short m_nCurInc=1,
 BOOL m_bVForm=TRUE,
 unsigned short m_nRefInc=0);

 //Cauchy Stress
 colvec CST(unsigned short m_nCurInc=1,unsigned short m_nRefInc=0);

 //Deformation Gradient
 matrix F(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0); //Deformation
 //Determinant of deformation gradient matrix
 double detF(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0);

 //Second Piola Kirchoff Stress
 PKST2(unsigned short m_nCurInc=1, unsigned short m_nRefInc=0);

 119

 // Set ksi and eta local coordinates
 void SetLocal(double ksi, double eta, unsigned short m_nInc);
 //Calculate Global coordinates
 void To_Glob (unsigned short m_nInc = 0);

 void operator = (const GsPt2D &GsPt);

 BOOL operator == (const GsPt2D &N)const;
 BOOL operator != (const GsPt2D &N)const;

 ~GsPt2D(){}; //Destructor

 virtual void Serialize(CArchive& ar);
 double Coeff; //Effect pf GsPt on Element Integration

 El2D* m_pEl;
 static GLint m_nDisplySz;
 double x, y; //Coords of GsPt on Global Elem in curent coordinates
 double X, Y; //Coords of GsPt on Global Elem in reference coordinates
 double Displ_X, Displ_Y;

 virtual void Draw(CFEMGLView* pView);

 //Functions to handle mouse events
 virtual void OnLButtonDown(CFEMGLView* pView, UINT nFlags, CPoint point);
 virtual void OnLButtonUp(CFEMGLView* pView, UINT nFlags, CPoint point);
 virtual void OnMouseMove(CFEMGLView* pView, UINT nFlags, CPoint point);

private:
 double ksi, eta;//Coords of GsPt on Master Elem

public:
#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

 120

Obj2D.h

class Obj2D: public CObject
{
public:
 DECLARE_SERIAL(Obj2D)

 //Constructors
 Obj2D (void);
 Obj2D (const Obj2D & Ob);

 friend class std::basic_ostream;
 friend class std::basic_istream;

 //For output to file
 static ofstream fout;

 //*******************************
 //Solvers

 //This function also called from Newton solution for an initial
 //solution to Newton iteration.
 //When making incremental solution for NonLinear solution
 //option, it does not make incrementation.
 //Only makes a single solution at the curent incrementation.
 virtual BOOL Lin_Solve (const unsigned short inc);

 //This function handles both Total Lagrangian and
 //Updated Lagrangian solutions.
 virtual BOOL Nwt_Solve (void);
 //**************************************
 double TotFx, TotFy;
 //***************************************
 //Containers:
 std::vector < class FENd2D*>GlNodes; //Node Container
 std::vector < class El2D* >Elements; //Element Container
 std::vector<class Lin_Mat> Mater; //Material Container
 //***

 static Solution_Parameters SolnPrm; //Solution Parameters
 static Results_Parameters ResPrm; //Results Parameters

 //Find maximum number of free nodes.
 //(Assembler() must be called first)
 unsigned maxff()const;
 //Find maximum number of restrained nodes.
 //(Assembler() must be called first)
 unsigned maxrr()const;
 //Set matrix Dof for assemblage
 virtual int Assembler();

 //Assemble global stiffness matrix

 121

 virtual int Assemble_K(matrix & Kff,
 matrix & Kfr,
 matrix & Krr,
 BOOL m_bLinear=1);

 //Assembledisplacement vector at the incremental time
 virtual Assemble_Ur (colvec &Ur, unsigned m_nInc=1) const;

 //Assemble free node force vector at the incremental time
 virtual Assemble_Ff (colvec &Ff, unsigned m_nInc=1) const;

 //Calculates internal element loads at the increment
 virtual Assemble_El_Fb(colvec &Ff, colvec &Fr,
 unsigned m_nInc=1) const;

 //Calculates loads from displacement effects from elements at the increment;
 virtual Assemble_El_Fd (colvec &Ff, colvec &Fr,
 unsigned m_nCurInc=1, unsigned m_nRefInc=0) const;

 virtual void ResetNdIdx();
 virtual void ResetElIdx();

 //Reset indices after node iterator
 virtual void ResetNdIdx(FNdit);
 //Reset indices after element iterator
 virtual void ResetElIdx(FElit);

 //***************************
 //Coloring Parameters
 //Node Coloring
 COLORREF Node_Clr;
 COLORREF SlcNd_Clr;

 COLORREF Load_Clr;
 COLORREF Supp_Clr;
 COLORREF Reac_Clr;
 COLORREF Sprng_Clr;

 //Element Coloring
 COLORREF Element_Clr;
 COLORREF Element_Slctd_Clr;
 COLORREF Element_Frm_Clr;

 //Element VwPrms
 static BOOL m_bVwElEdges;
 static BOOL m_bVwElIdx;
 static BOOL m_bVwGsPts;
 //************************

 colvec Ur, D_Ur, Uf, D_Uf;

 //******************************
 //Real display items
 vector<double> Disp_Real_Vals;
 //To display color values
 vector <COLORREF> Disp_Col_Val;
 //**********************************
 CMatrix<unsigned> Dof; //Stores Degrees of Freedoms

 122

 BOOL m_bAnalysed; //For checking state of analysis

 void DeleteElem(const unsigned ElIdx);
 bool DeleteElem(El2D* pElem);
 void DeleteNode(const unsigned NdIdx);
 bool DeleteNode(FENd2D* pNode);

 //Set boundary nodes next boundary node index table
 void SetBoundary(void);

 //Set global U, V, Fx, Fy for curent increment number
 bool SetColorTable();

 int Construct;
 virtual ~Obj2D();

 virtual void Serialize(CArchive& ar);

protected:
 //Penalty solution returns number of iterations
 unsigned PenaltyContact(const matrix & m_Kff,
 const matrix & m_Kfr,
 const matrix & m_Krr,
 const colvec & m_Ur,
 const colvec & m_Ff);

 //Lagrange multiplier solution returns number of iterations
 unsigned LagMultContact(const matrix & m_Kff,
 const matrix & m_Kfr,
 const matrix & m_Krr,
 const colvec & m_Ur,
 const colvec & m_Ff);

#ifdef _DEBUG
 void Dump(CDumpContext &dc) const;
#endif
};

