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abstract

INFERENCE OF SWITCHING NETWORKS BY USING A

PIECEWISE LINEAR FORMULATION

Didem Akçay

M.Sc., Department of Scientific Computing

Supervisor: Assist. Prof. Dr. Hakan Öktem

Co-supervisor: Prof. Dr. Semra Kocabıyık

December 2005, 87 pages

Inference of regulatory networks has received attention of researchers from many

fields. The challenge offered by this problem is its being a typical modeling problem

under insufficient information about the process. Hence, we need to derive the apri-

ori unavailable information from the empirical observations. Modeling by inference

consists of selecting or defining the most appropriate model structure and inferring

the parameters. An appropriate model structure should have the following prop-

erties. The model parameters should be inferable. Given the observation and the

model class, all parameters used in the model should have a unique solution (restric-

tion of the solution space). The forward model should be accurately computable

(restriction of the solution space). The model should be capable of exhibiting the

essential qualitative features of the system (limit of the restriction). The model

should be relevant with the process (limit of the restriction). A piecewise linear

formulation, described by a switching state transition matrix and a switching state

transition vector with a Boolean function indicating the switching conditions is pro-

posed for the inference of gene regulatory networks. This thesis mainly concerns

using a formulation of switching networks obeying all the above mentioned require-
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ments and developing an inference algorithm for estimating the parameters of the

formulation. The methodologies used or developed during this study are applicable

to various fields of science and engineering.

Keywords: Inference, inferential modeling, statistical learning, piecewise linear sys-

tems, gene regulatory networks, hybrid systems.
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öz

PARÇALI DOĞRUSAL FORMÜLASYON

KULLANILARAK DEĞİŞMELİ AĞLARIN ÇIKARIMI

Didem Akçay

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Hakan Öktem

Tez Yardımcısı: Prof. Dr. Semra Kocabıyık

Aralık 2005, 87 sayfa

Düzenleyici ağların çıkarımı birçok alandan araştırmacının dikkatini çekmektedir.

Çıkarım problemlerinin önemi, modellenmesi düşünülen süreç hakkında yeterli bil-

ginin olmadığı problemlerle ilgili olmasından kaynaklanmaktadır. Bu durumlarda

ihtiyaç duyulan bilginin deneysel verilerden elde edilmesi gerekmektedir. Model

çıkarımı; en uygun model sınıfının seçimi veya tanımlanması, ve model paramet-

relerin belirlenmesini içerir. Uygun bir model şu özellikleri taşımalıdır: Model

parametreleri çıkarılabilir olmalıdır. Verili gözlem ve model sınıfı kullanılarak elde

edilen parametrelerin tek bir çözümü olmalıdır (Çözüm uzayının sınırlanması). İleri

adımlı model doğru şekilde hesaplanabilmelidir (Çözüm uzayının sınırlanması). Mo-

del, ilgilenilen sistemin gereken önemli özelliklerini ifade edebilmelidir (Sınırlamaya

limit konması). Süreç ve model birbirine uyumlu olmalıdır (Sınırlamaya limit kon-

ması). Gen düzenleyici ağların çıkarımı için önerilen parçalı doğrusal formülasyon,

değişen durum geçiş matrisi ve değişen durum geçiş vektörü ile kullanılan geçiş

koşullarının gerçekleşmesinden sorumlu Boole fonksiyon ile tanımlanmaktadır. Bu

tez temel olarak yukarıda belirtilen koşulları sağlayan değişmeli ağların formülas-
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yonunu kullanmayı ve formülasyondaki parametrelerin tahmini için çıkarım algorit-

ması geliştirmeyi amaçlamaktadır. Bu çalışma sırasında kullanılan yada geliştirilen

metodların çeşitli mühendislik ve temel bilimler alanlarında uygulanabilirliği vardır.

Anahtar Kelimeler: Çıkarım, model çıkarımı, istatistiksel öğrenme, parçalı doğrusal

sistemler, gen düzenleyici ağlar, hibrid sistemler.
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chapter 1

INTRODUCTION

1.1 Modeling of Dynamical Systems

Physical systems can be observed, studied and measured using experimental devices.

After such an analysis over the system of interest, the description of the behaviour

of the observed system and its interpretation is delivered to mathematical models

[6].

Nowadays, mathematical modeling is an indispensable tool for applied sciences.

New and continuing developments in the applied sciences such as biology, genomics,

ecology and climatology stimulated an interest in understanding and modeling the

regulatory mechanisms underlying these dynamical systems [44]. Here, by the means

of a dynamical system, the study of the long term behavior of evolving systems is

emphasized [7]. The proper modeling approach depends on the prior information

about the system, the behavior that is desired to model and so on.

First principles models attempt to describe the dynamic behaviour of the system

from a detailed understanding of the components making up the system and their

interconnections. This modeling approach leads to large systems of ordinary or

partial differential equations, integral equations, integro differential equations, func-

tional differential equations and differential algebraic equations. These equations

are evolving in time continuously like the system they are intended to model so if

sufficient knowledge about the system is available they lead to exact models. The
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primary disadvantage of these equations is their immense complexity. Also the lack

of information on a single interaction within the system, might result with totally

incorrect predictions [47].

In some situations, sufficient information to build a first principles model is not

available. This provides a strong motivation to consider alternative models. Infer-

ential modeling deals with estimating the underlying dynamics from the empirical

observations. In this case, the modeling approach consists of first selecting the most

appropriate model class and, then, inferring the model parameters from the empir-

ical data [44]. An appropriate model class should have the following properties:

• The model parameters should be uniquely inferable.

• The model should be capable of exhibiting the essential qualitative features of

the interested system.

• The model should be relevant with the process.

Modeling attempts of natural phenomena lead to the development of mathematical

model structures which in turn improve available modeling capabilities. It is crucial

to realize that each problem needs its own considerations. This thesis mainly con-

cerns with the inferential modeling of gene regulatory networks from gene expression

data sets.

1.2 Problem Statement

Considerable evolution in microarray technologies allow simultaneous measuring of

the transcription levels of thousands of genes evolving over time, reacting to different

environmental or medical conditions [33].
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While simultaneous measurements of thousands of gene expressions provides an

access to the state of cells, integration of computational tools for data mining, visu-

alization and statistical learning are essential to interpret the data. The elaboration

of data mining and analytical tools are needed to show a causal relationship of the

expression data, to group the data in a meaningful way and to perform statistical

analysis in order to investigate its consequences [28].

Most of the publicly available gene data contains limited number of time point

measurements with respect to a large number of genes. This brings requirement for

additional simplifications.

1.3 Purpose and Scope

Gene regulation mechanism is a nonlinear multistationary system. It has more than

one possible stationary states and sometimes a switching from one stationary state

to another might occur [53, 61].

The main concept of this study is to use a piecewise linear formulation, described

by a switching state transition matrix and a switching state transition vector with

a Boolean function indicating the switching conditions, for the modeling of gene

regulatory networks. Additionally, the aim is developing an inference algorithm for

the estimation of model parameters and system states.

The second chapter of this thesis provides a basic introduction of gene regulation,

brief definition of its units and the available data that come up with DNA microarray

technology.

The third chapter describes some popular modeling approaches that are proposed

to model gene regulatory networks in the literature.

The fourth chapter deals with the mathematical modeling of gene networks by using

3



piecewise linear equations. A step by step approach to piecewise linear equation

models are given. Additionally the motivations for the selection of this model class

and the explanation of this model is provided in that chapter.

The fifth chapter includes the inference algorithm and the procedures that are used

to estimate the switching times and model parameters of each state.

The sixth chapter discuss the data requirement of the inference algorithm and the

analysis of a 6 variables network.

Finally, a conclusion of the thesis by further discussions and outlooks on future

perspectives is given in the seventh chapter.
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chapter 2

BACKGROUND

Genetic regulation is a very complex and complicated process when it is considered

in molecular level [43, 66]. This chapter provides a basic introduction of genetic

regulation occurred on transcriptional level, brief definition of its units that play a

central role in this process and available data that come up with developing tech-

nology.

2.1 DNA, Genes and Proteins

2.1.1 DNA

A DNA molecule is a huge double helix made up of chains of chemical building

blocks called nucleotides. Each nucleotide consists of a phosphate group, a deoxyri-

bose sugar molecule and one of four different nitrogeneous bases referred by their

initial letters: Guanine (G), Cytosine (C), Adenine (A), or Thymine (T). Genetic

information is encoded in DNA by the sequence of these nucleotides (see Figure

2.1). It was proposed by Watson and Crick in 1953 that the two nucleotide chains

are held together by hydrogen bonds that is formed between the nitrogeneous bases.

Guanine hydrogen bonds with cytosine and adenine hydrogen bonds with thymine

[39].
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Figure 2.1: DNA structure [52].

2.1.2 Genes

A gene is a specific section of DNA which contains information that is used somehow

to construct the organism [49]. There are two general types of genes. A structural

gene contains information that specifies the primary structure of a protein. A reg-

ulatory gene is a section of DNA whose function is helping to control the access

to the information in structural genes (see Figure 2.2) and it is usually near to a

particular structural gene. In most cases there is a single gene that codes for each

6



protein, in other words each protein has its own gene [49].

Figure 2.2: Gene structure [52].

2.1.3 Proteins

Proteins are the essential structural and metabolic components of the cell [57]. Al-

most every function in the body is controlled or promoted by some type of protein.

There are many kinds of proteins serving different functions, such as hormone re-

ceptors, enzymes and transcription factors [49].

2.2 Gene Regulation is a Dynamical System

Each multicellular organism carries an identical set of genes. Every cell type of

multicellular organisms exhibits a distinct behavior because the genes are expressed

differently in different cell types. Thus, for understanding what makes a specific cell
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type behave the way it does, we need to investigate how genes are regulated in that

cell.

The genetic information is stored in DNA. Although DNA is very stable storage

molecule, it is also rather passive molecule. For the information stored within the

DNA to be utilized it must be transformed into a molecular form with a more

active role. This is what is meant by expressing a gene. The first step in gene

expression is to produce mRNA molecules by a process of transcription. In higher

organisms, a structural gene’s information specifying the primary structure of a

particular protein must go to the place where proteins are synthesized. The molecule

which transmits the genetic information to the place where proteins are synthesized

is the messenger RNA (mRNA). Molecules of mRNA are synthesized by using the

gene as a guide. The information contained in the mRNA is used to guide the

synthesis of a protein which is a much more versatile type of molecule and this

process is named as translation. The overall working mechanism until the end of

the synthesis of a protein is referred to as Central Dogma of Molecular Biology [43].

The gene expression is regulated by many mechanisms at its different stages. These

include mechanisms for controlling transcription initiation, RNA splicing, mRNA

transport, translation initiation, post-translational modifications, and degradation

of mRNA/protein.

One of the main junctions at which regulation occurs is mRNA transcription. In

order for a gene to be transcribed into mRNA, it is often necessary for a specific

protein to bind to regulatory regions along the DNA. Other proteins may also bind

to the DNA if they have an effect on the rate of transcription, this proteins are

known as transcription factors [56]. Since the transcription factors are the products

of transcription and translation, this completes a feedback loop that allows genes to

control each others’ expression levels. In other words, this cycle defines a dynamic

system involving highly nonlinear feedback mechanisms (see Figure 2.3).
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Figure 2.3: Gene regulation mechanism.

2.3 Gene Regulatory Networks

Genes regulate each other’s activity by coding for transcription factors, which may

enhance or repress the expression of other genes by binding (sometimes in form of

complexes) at particular sites. Though a particular gene directly regulates just a

small set of other genes, those genes regulate other genes in turn. So a gene will

indirectly influence the activity of many genes downstream. Conversely, a particular

gene is indirectly influenced by many genes upstream. A gene may directly or indi-

rectly contribute to regulating itself. The result is a regulatory network, a complex

feedback web of genes turning each other on and off [68].
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2.4 Multistationarity of a Cell & Positive

Feedback Circuits

Each cell of an organism has exactly the same DNA, yet there are many distinct

kinds of cells in an organism. Also it is known that not all of the DNA information

is used in each cell, and not all the information is used all of the time.

Max Delbruck suggested that identical DNA does not imply identical patterns of

gene expression. Cell differentiation in organisms might be interrelated with the

existence of distinct states of expression in the genetic regulatory networks of the cell

[12, 61]. Each type of cell would then correspond to distinct states in the dynamics

of the network of interacting genes and proteins. The process of differentiation

corresponds to each cell, evolving to the state of its class. On the other hand,

transition of the cell from one such state to another represents temporal changes in

the metabolic state of a cell.

A gene, when expressed, leads to the production of proteins that can act to either

activate or repress the activation of other genes. Within a network of such interact-

ing genes and proteins, feedback mechanisms play a central role in controlling the

dynamics [10, 53, 62]. For example, many transcription factors function in an au-

toregulatory capacity to control the expression of their own genes in either positive

or a negative feedback loop [66].

It is long before recognized that negative circuits are necessary for stabilizing gene

expression. For instance, the protein product of a gene can repress the synthesis of

that gene. In this situation, when the concentration of the protein increases, it will

decisively turn off its own synthesis [60, 61].

When it is analyzed from the window of positive circuits, the protein product of a

gene exerts a positive action on its own synthesis. In the absence of that protein

the gene is off and remains off. In the presence of that protein, the gene will be on
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and since it is on, more product will be synthesized and the gene will remain on

[60]. Actually, there are other factors which always come into play and positive feed-

back tends to be associated with the dynamics that switch the cell from one stable

condition to another. In short, positive circuits are essential for multistationarity

[37].

The answer to the question ”Is it possible to have multiple stationary states within

a genetic regulatory network without positive feedback circuits?” was first studied

by Rene Thomas who suggested that multiple stationary states can exist in the

presence of at least one positive feedback loop in 1984 [53]. His observation is proved

by various researchers [25, 61] over the past years. At the moment, most biologists

seem to accept that positive feedback is a regular component of gene regulatory

networks, and strongly associated with cellular multistability [60, 61].

2.5 DNA Microarray Experiments

2.5.1 Functional Genomics

The purpose of functional genomics is to place all of the genes in the genome within

a functional framework, both in the most basic terms of what the protein encoded by

each gene does and also in the broadest sense of the role of each gene in the overall

functioning of the cell and organism [33]. It is widely believed that thousands of

genes and their products (mRNA and proteins) in a given organism function in a

complicated way which is still preserved to be one of the mystery of life.

Technologies for simultaneously analyzing the expression levels (i.e., the amount of

mRNA produced from a gene) of large amounts of genes provides the opportunity

to study the activity of whole genomes, rather than the activities of single or a

few genes. The technology gives the chance to look for groups of genes involved

in a particular biological process or in a specific disease by identifying genes whose
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expression levels change under certain circumstances [52].

2.5.2 DNA Microarray Technology

DNA microarrays have been developed as a method for rapidly analyzing the ex-

pression of all genes within a genome. DNA microarrays measure the expression of

a gene in a cell by measuring the amount of mRNA present for that gene. A DNA

microarray experiment starts with microarray construction in which the nucleotide

sequences for a few thousand genes are printed on a glass slide. mRNA samples

which are being transcription products, are then collected from a population of

cells subjected to various experimental conditions. These samples are converted to

cDNA and are labeled with one of two different fluorescent dyes (green or red) in

the process. A single experiment consists of hybridizing the microarray with two

differently labeled cDNA samples collected at different times. Generally, one of the

samples is from the reference or background state of the cell, while the other sample

represents a special condition set up by the experimenter. The level of expression

of a particular gene is roughly proportional to the amount of cDNA that hybridizes

with the DNA fixed to the slide. The relative levels of gene expression for any pair

of conditions can be measured by using laser scanning flourescence detection tech-

nology [14, 39, 52]. The result, from an experiment with n DNA samples on a single

chip, is a series of n expression-level ratios. Typically, the numerator of each ratio

is the expression level of the gene in the condition of interest to the experimenter,

while the denominator is the expression level of the gene in the reference state of

the cell.

The data from a series of m such experiments may be represented as a gene expres-

sion matrix, in which each of the n rows consists of an m-element expression vector

for a single gene [28, 65].
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chapter 3

MODELS OF GENE NETWORKS

IN LITERATURE

3.1 Models of Gene Networks

Increasing volumes of data coming with DNA microarray technology directed re-

searchers to analyze and explain the information underlying the available data.

Various types of gene regulation network models have been proposed for trying

to reveal the behavior of complex mechanisms included in gene regulation.

The models of gene regulation can vary from Boolean networks to biochemical in-

teraction models with stochastic kinetics [4]. Former models are more tractable in

mathematical sense and also it simplifies the analysis of systems with thousand of

genes. On the other hand, the latter model supports the biochemical reality better,

but the complexity of the model make it applicable to very small systems. As it

is also exemplified in [13], a detailed biochemical model of lysis-lsogeny switch in

Lambda phage [4] which has five genes with 67 parameters are decided at the end of

nearly 50 years work and supercomputers are required for its stochastic simulation.

Biochemical modeling is necessary for understanding the molecular interactions un-

derlying the regulatory mechanisms. Since a detailed molecular model is very com-

plex for a network of 5 genes, it is very doubtful to construct it for a network of

thousand genes.
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As a result, researchers tend to more general methods for the interpretation of the

gene expression data.

Comprehensive reviews [11, 21, 56] can be found in the literature discussing various

methods that have been employed in mathematical biology and bioinformatics to de-

scribe genetic regulatory systems. In this chapter, three different popular modeling

frameworks are introduced, namely Boolean networks, differential equation models

and piecewise linear equation models.

3.2 Boolean Networks

A variable x that can take only two values is called Boolean. The values are usu-

ally denoted by 1 or 0, and they correspond to the logical values true and false

respectively. The logic operators and, or and not are defined to correspond to the

intuitive notion of truthfulness and composition of those operators. For example,

x1 or x2 = true if and only if one of the terms x1 or x2 is true.

A Boolean function is a function of Boolean variables connected by logic operators.

For example,

f(x1, x2, x3) = x1 and (not(x2 or x3))

is a Boolean function of three variables.

A Boolean network is a directed graph G(X, E), where the nodes xi ∈ X, are

Boolean variables. To each node, xi is associated by a Boolean function,

fi(xi1, xi2, ..., xil) (l ≤ p, xij ∈ X),

where the arguments are all and only the parent nodes of xi in G. At any given

time, the values of all nodes represent the states of the network, given by the vector

s(t) = (x1(t), x2(t), ..., xp(t)).

14



For gene networks, the node variables correspond to gene expression levels present

(1) and absent (0). The value of each node variable depend on prior activity of some

other nodes and the states of all nodes are updated at the same time (synchronously)

according to their Boolean functions

xi(t + 1) = fi(xi1(t), xi2(t), ..., xil(t))

corresponding to a state transition of the network from s(t) to the new network

state s(t + 1).

The series of state transitions are called trajectories ; for example, 100 → 000 →
001 → ... → 001 defines one trajectory of length 3 in the 3 variable network. The

repeating parts of the trajectories are called attractors and can be one ore more states

long. In this example, 001 is an attractor. All the states leading to the same attractor

are the basin of attraction. Please refer to [68] for a detailed explanation of gene

network modeling with basins of attraction. Wuensche developed a software named

Discrete Dynamics Lab (DDLab) for the investigation of characteristics, parameters

and measures of global dynamics, dynamics along particular trajectories, their size

and distribution and topology, stability and adaptability to perturbations of network

architecture and order chaos measures on network dynamics [68].

The goal in inference of Boolean networks is, the determination of the edges of the

network and the Boolean functions of the nodes from gene expression data.

The amount of data needed to completely determine a unique network is known

as the data requirement problem in network inference. Required data points for the

inference of a gene network of p genes depends on the complexity of the model. Con-

straining the number of regulatory inputs per gene can drop the amount of required

data significantly. The required data for fully connected and reduced connected

cases of a Boolean network model is seen in Table 3.1. Please refer to [15] for the

details.
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Table 3.1: Fully connected: each gene can receive regulatory inputs from all other
genes. Connectivity k: at most k regulatory inputs per gene.

MODEL Required data
Boolean, fully connected 2p

Boolean, connectivity k 2k(k + log(p))

In [2], Akutsu et al. showed that if the number of input nodes to each node is

bounded by a constant, O(log p) state transition pairs (from 2p pairs) are necessary

and sufficient for identifying the Boolean network of p nodes correctly with high

probability.

The dynamical properties of Boolean networks make them be attractive models

of gene networks. Boolean networks can represent a complex behavior, and they

can be characterized with stable and reproducible attractor states. The range of

behaviors of the system is completely known and analyzable for smaller networks.

However, these models are eventually limited by their definition. They are Boolean

and synchronous. In reality, the levels of gene expression do not only have two states,

they take continuous values. So, reducing the data values into two states may not be

sufficient most of the time [21]. Additionally, biological networks are asynchronous,

however, the updates of the network states are synchronous in Boolean networks.

For making Boolean network models biologically realistic, some extensions are made.

In [47], a model class is introduced with Boolean interaction of binary state variables

evolving in continuous time. With this model, Öktem et al. are able to describe

epigenetic differences, adoption and learning mechanisms of evolutionary variation.
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3.3 Differential Equation Models

Differential equations (DE) are the most widespread formalism for the quantita-

tive modeling of complex systems. DE’s are continuous and deterministic (non-

stochastic) modeling formalism.

DE models of gene networks are based on rate equations. Rate equations determine

the rate of change of a gene expression from the function of the expressions of the

other genes.

If a gene network consists of p genes, the DE model will consist of p equations, one

for each gene. The general form of the equations for the ith gene is as follows:

d

dt
Ei(t) = fi(E1(t), E2(t), ..., Ep(t)). (3.3.1)

The right-hand side identifies the rate of change in time. The function fi describes

how each of the p genes directly effects the transcription rate of the ith gene. If fi

is positive, the change in the expression level of genei is positive, if fi is negative,

the change in the expression level of genei is negative, and if it is zero there is no

change in the expression level. Hence, in some states of the network other genes

are acting to switch on the ith gene, and in other states they are switching it off. If

fi(E1(t), E2(t), ..., Ep(t)) = 0 for all i = 1, 2, ..., p, then the system is in a fixed point

stationary state.

Additional terms like degradation of mRNA with time or other processes which can

affect the activity of a gene can be included to the right-hand side of the equation

(3.3.1). D’haesseler et al. [16] add an extra term to the right-hand side of the model

indicating the influence of kainate (a glutamatergic against which causes seizures,

localized cell death and severely disrupts the normal gene expression patterns) and

a constant bias term to model the activation level of the gene in the absence on any

other regulatory inputs.
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In real biological systems, to utilize the measurements of transcription, translation

and diffusion to the place of action of a protein an additional time delay can be

introduced. This required time can be represented by discrete time delays as

d

dt
Ei(t) = fi(E1(t− τi1), E2(t− τi2), ..., Ep(t− τip)) (1 ≤ i ≤ p),

where τ
i1
, τ

i2
, ..., τ

ip
> 0 denote discrete time delays [11].

Identifying a gene network from gene expression data means estimating any existing

parameters in the functions fi(.). The simplest case is that the fi(.) are linear

d

dt
Ei(t) = bi + mi1E1(t) + mi2E2(t) + ... + mipEp(t), (3.3.2)

where the matrix notation of the whole system is

d

dt
E(t) = ME(t) + b.

In equation (3.3.2), the parameter bi represents the background level of transcription

of the ith gene [54]. Here, mij describes the regulatory effect of genej on genei and

corresponds to the strength of this effect. If the jth gene does not directly effect the

transcription rate of the ith gene then mij = 0. If the jth gene does not effect the

ith gene directly, the Ej will not appear as an argument in fi(.), and fi(.) will only

be a function of a small subset of E1, E2, ..., Ep.

In the literature, various differential equation modeling approaches to the dynamic

nature of gene expression time series exists.

Chen et al. [9] proposed a system of differential equations d
dt

E(t) = ME(t), where

E is a vector of mRNA’s and protein concentrations at time t and M is a constant

matrix representing regulatory interactions for both mRNA’s and proteins.

Due to the fact that from the DNA microarray measurements only the mRNA con-

centrations of the corresponding genes are available, whereas the protein concentra-
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tions are not known, many researchers build their models on the basis of mRNA

data. The simplicity of linear differential equation models make them preferable for

researchers. Hoon et al. [32] proposed a system of linear differential equations in

the form of
d

dt
E(t) = ME(t)

and in [31] applied this model on the mRNA data of Bacillus subtilis where a

coefficient mij of the coefficient matrix M represents the effect of gene j on gene i.

The number of nonzero entries in M was determined from the data by using Akaikes

Information Criterion [28].

In [24], the approach of Hoon et al. and Chen et al. is extended by letting the

matrix M depend on E where, a system of differential equations is defined as

d

dt
E(t) = M(E(t))E(t).

The algorithm presented by Gebert, Latsch, Pickl, Weber and Wunschiers [22] de-

tects the parametrical regions of stability and unstability of this time continuous

system.

Sakamoto and Iba [50] choose an arbitrary form in the right-hand side of the system

of differential equations to allow flexibility of the model. They consider the following

form
d

dt
Ei(t) = fi(E1(t), E2(t), ..., Ep(t))

and infer the right-hand sides by using genetic programming.

Yılmaz [70] modeled gene expression patterns by ordinary differential equations as

in the approach of Sakamoto and Iba, by letting the right-hand side f(E) component

wisely consists of a sum of non-linear functions. In [70], special attention is paid

to the case of quadratic model functions. They behave superior to linear ones with

respect to both accuracy of data fitting and quality of future state prediction.
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Taştan [58] developed the models of [24, 70] with an affine term C(E) where the

system takes the form of

d

dt
E(t) = M(E(t))E(t) + C(E(t)).

For the linear differential equation models, if the matrix M is dense, p + 1 arrays

of p genes are needed to solve the system. If the average connectivity per node is

a fixed constant k as in the case of real gene networks then k log p experiments are

needed [15, 59, 69].

When the gene expression measurements have been performed around a steady state

or on a slow changing system, linear models yield good predictions. Otherwise the

rates of change of the expression levels of genes cannot be estimated well [21].

Since most of the gene regulatory interactions are nonlinear, one way to approach

the systems steady states is to identify the system with the collaboration of Boolean

networks and differential equations which will also establish our modeling approach

to gene regulatory networks.

3.4 Piecewise Linear Equation Models

Linear models of gene networks yield good predictions in the close vicinity of steady

states. However, they are not flexible enough to model nonlinear behavior of gene

networks.

Boolean networks allow large regulatory networks to be analyzed by making strong

simplifying assumptions on the structure and dynamics of a genetic regulatory sys-

tem. They assume that the transitions between the activation states of the genes

occur synchronously, while it is asynchronous in reality.

The use of piecewise linear equation models combines the linear equation models
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and the Boolean networks to profit from both methods in terms of computational

effectiveness.

Gene expression measurements are real-valued and change continuously in time;

therefore, the rules that specify the time derivatives of expression levels can take

logical forms. Piecewise linear equation models can represent many of the complex,

nonlinear regulatory phenomena observed in real gene networks.

The simplest piecewise linear system can be represented as follows

d

dt
E(t) = Ms(t)E(t) + bs(t) (3.4.1)

si(t) =

 1 if Ei(t) ≥ thri

0 if Ei(t) < thri

,

where M is a matrix valued function and b is a vector valued function which can

take varying values depending on the state vector s. Here, thri is the corresponding

threshold of the ith gene. The thresholds of the variables divide the state space into

2p subspaces (p is the number of variables) where each subspace is governed by a

piecewise linear differential equation.

Edwards et al. [18, 19] proposed a system of piecewise linear equation model where

M is taken as a constant diagonal matrix with diagonal entries of −1. Furthermore,

b has the form of bi = fi(s(t)), where s(t) is a vector containing the logical states of

the regulators of genei for the state of s(t). The values of fi(.) define focal points

determined by the current state of the system. Threshold values of the variables are

taken as 0 and focal points are defined as -1 or 1 for the corresponding variables.

Hence, the dynamics of the system is specified by b which allows most of the non-

linear behavior of gene networks to be represented in that way.

Perkins et al. [48] applied the same approach as Edwards et al. did. However, in

[48], threshold values of each variable are taken as 1/2 and focal points are defined

to be 0 or 1. The detailed analysis of piecewise linear systems can be found in [17].
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More general forms of equation (3.4.1) exists in the literature [23, 26, 35, 36]. In

these models, more than two logical levels per variables are introduced and these

variables are separated by arbitrary real thresholds where each threshold is defined

for production and decay rates. In [34], the application of the method to model the

sporulation network and simulation of the response of the cell nutrient derivation

can be found.

In our modeling approach, we restrict our attention to the simplest form of the

models given in equation (3.4.1), where the transition matrix M and the transition

vector b are the parameters of the corresponding state. Also the threshold values

of the variables are unknown and extracted from the available data. The details of

our model will be given in the proceeding chapter.

For the piecewise linear differential equation models when identifying b is assumed to

be a statistically independent process for each gene, the expected number of switches

before the whole vector b for the system states can be identified is pHp2
k, where k

represents the number of regulators, p is the number of genes and Hp = 1+ 1
2
+ ...+ 1

p

is the pth harmonic number [48].

A network of p genes, each regulated by k genes can be connected in p

k

p

' ppk (3.4.1)

different ways [48]. When the network in consideration is larger, there is an excessive

increase in the total number of different networks that capture network structure.

As it is discussed in [18], for 3 dimensions there are 112 different networks, for 4

dimensions there are 107 ones, and in 5 dimensions 3 × 1020 different networks are

found.
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chapter 4

MATHEMATICAL MODELING

4.1 The Regulatory Network Inference Problem

Developing technology for monitoring expression profiles, genomic sequences and

others gives the opportunity to measure the activity of thousands of genes simulta-

neously evolving in time or respond to different environmental, pharmaceutical or

genetic conditions. Such an access to the states of cells offer more accurate inference

of the network of interactions that regulates gene expression [48].

In reality, gene expressions are real-valued and are evolving continuously in time.

The time evolution of p state variables (i.e., genes) can be represented by a vector

valued function

E(t) = (E1(t), E2(t), ..., Ep(t))
T .

However, a restricted number of bits in computers for storing the information allows

us to store only a finite number of samples of continuously evolving system. DNA

microarray measurements are observed from sampling of gene expression levels in

time. For this study, a uniform (equidistant) sampling is assumed.

Gene expression time series might be represented as

E(n) := E(nts) (n ∈ N),

where E(n) is the expression level vector for the nth time sample with sampling
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periods of length ts. To be more precise, the symbol E(n) is used as an approximative

time-discrete description of the value E(nts) which the time-continuous system takes

at the sample time nts.

The regulatory network inference problem deals with the inference of the dynamics

of the corresponding system from the available data. Assume that the correct real

function f ∗ is underlying the data and our goal is to find a simple parametric function

fp that accurately approximates f ∗. This problem can be summarized as follows:

•
m∑

n=1

(E(n + 1)− fp(E(n)))2 is minimum,

• fp is as simple as reasonably possible.

As an error function, least square error (LSE) is selected due to the fact that its

solutions are linear functions which are analytically solvable.

In this thesis, the relation between present and next states of the gene expressions

are preferred to be explained by difference equations E(n + 1) = f(E(n)), rather

than differential equations.

4.2 Appropriate Model Class Selection

for Gene Regulatory Dynamics

Missing information, noisy measurements, apparent complexity of gene regulation

mechanism make the inference problem difficult [56]. Because of these difficulties

the main questions that arise are:

• Is it possible to infer gene regulatory dynamics from expression time series

data?
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• If so, what inference algorithms are preferable?

• How much data are required to infer the system dynamics?

Theoretical answers to these questions depend on how one models gene regulation

and expression dynamics [48].

It is critical that the selected model should be computable. Additionally, if a poor

model structure is chosen, the outcoming numerical results will not have any signif-

icant use.

Qualitative behavior matching is a useful criterion for model structure selection.

This approach is based on the selection of the most appropriate model class that is

capable of exhibiting the qualitative behavior of primary interest [44].

In addition, for the interpretation of the numerical results, the model variables need

to be relevant for the investigated process [3, 44].

Inference of gene regulatory dynamics is a typical inverse problem [5]. We have the

temporal evolution of expression levels of genes (mRNA concentrations E(n) for the

nth time sample) from DNA microarray measurements. We would like to infer the

system dynamics by defining the most appropriate model function f that represents

the relation between previous and next states of expression levels (see Figure 4.1).

Let us study some cases in order to find the appropriate model which defines the

regulatory mechanisms underlying gene networks.

4.2.1 When f is Taken as Any Function

When f is taken as any function, adoption to a very wide range of dynamics is

possible. Infinitely many different functions fitting to an available data set can be

found thus selecting the correct particular model is not possible.
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Figure 4.1: Inference of gene regulatory dynamics is an inverse problem.

For finding the unique solution to the inverse problem, the selected model class

should restrict the solution space.

4.2.2 When f is Taken as a Linear Function

When f is taken as a linear function, the primary function takes the following form:

E(n + 1) = ME(n) (n ∈ N).

In this case, model parameter M can be uniquely determined by using least squares

method (the coefficient matrix of the linear system is supposed to be nonsingular-it

will be clarified in Section 5.2); so a unique optimum solution can be found to the

inverse problem [29]. The equation E(n + 1) = ME(n) can be extended without

losing generality of linear system features as follows

E(n + 1) = ME(n) + b (n ∈ N),

where b is a vector shifting the origin of a linear system.
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However, most of the regulatory interactions are nonlinear in structure. This means

that the rate of the controlled process is not a linear function of the concentration

of the regulator.

Most biological regulatory interactions -genetic regulation is also included in this

class- are sigmoid in shape [60]. Consider, for example, a gene whose expression

depends on the presence of a positive regulator. When the concentration of the

regulator increases, the rate of expression of the gene is first insignificant, then it

sharply raises within a rather narrow range and then levels off (see Figure 4.2).

Figure 4.2: A non-linear sigmoid shape interaction of gene regulation.

As regulatory interactions are nonlinear in structure, the equations used for their

description are nonlinear. This proves the fact that linear functions are not sufficient

to hold the regulatory behavior.

4.2.3 When f is Taken as a Piecewise Linear Function

Nonlinear structure of regulatory interactions strongly implies to consider some ide-

alizations for simplifying the numerical computations [60].
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The most obvious one consists of a linear approximation. As it is also mentioned in

Section 3.3 that this simplification is valid in the close vicinity of stationary steady

states, but disastrous elsewhere.

Another idealization is to simplify the sigmoid shape function by logical descrip-

tions. Logical descriptions use variables which can take only a limited number of

values, most often only two: 0 and 1 (in this case, one speaks of a “Boolean,” or

binary, description; see Section 3.2). In biology, a regulator is often inefficient be-

low a “threshold” range of concentration, and its effect rapidly levels up above this

threshold. In the simplest cases, this description treats a gene as “ON” (1) if it is

over its threshold, or “OFF” (0) if it is under its threshold [61].

In piecewise linear equation models, linear approximation and logical description

idealizations are combined. In an approach based on a class of piecewise linear

equation models, piecewise linear equations represents the dynamics of the system

states and the use of the Boolean functions is motivated by the nonlinear, switch-like

character of many of the interactions in gene expression.

4.3 Piecewise Linearity

Let the state space U ⊆ Rp of a dynamical system is formed by z disjoint subspaces

such that

U = U1 ∪ U2 ∪ ... ∪ Uz

and

Ui ∩ Uj = φ if i 6= j.

Consider three different initial states which are elements of the same subspace Ui.

This means

y0 ∈ Ui, y1 ∈ Ui, y2 ∈ Ui,
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which satisfies the following equality:

y2 − y0 = r(y1 − y0) (r ∈ R).

Let y0, y1, y2 yield y0(t), y1(t), y2(t), respectively. This means: If the system started

with the initial state y(t0) = y0 then the function representing its temporal evolution

for t > t0 is denoted by y0(t).

The system is piecewise linear in Ui if

y2[t0, ti]− y0[t0, ti] = r(y1[t0, ti]− y0[t0, ti]) (r ∈ R)

and y0(t), y1(t), y2(t) ∈ Ui for all t0 < t < ti where [t0, ti] stands for the time interval

that is spent in subspace Ui. Herewith, the system itself is said to be piecewise linear

if it is piecewise linear in all subspaces of its state space [45].

4.4 Switching Difference Equations

A piecewise linear system can be represented by switching difference equations as

follows [45]:

y(n + 1) = Ms(n)y(n) + bs(n) (4.4.1)

si(n) =

 1

0

if

if

yi(n) ≥ thri

yi(n) < thri

where y(n), y(n + 1) represent the present and next sample values of the variables,

s(n) is a Boolean vector representing the state of the system at nth time sample.

Furthermore, M. : {0,1}p → Rp×p is a matrix-valued function (state transition

matrix), b. : {0,1}p → Rp is a vector-valued function (state transition vector) whose

elements are determined by the state of the system. Finally, i denotes the ith element
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of the corresponding vector, and thri is the threshold of the corresponding variable.

Equation (4.4.1) defines a system with p variables, where only one threshold is

defined for each variable. So, the state space of the system has 2p subspaces (i.e.,

states) and within each subspace the governing piecewise linear difference equations

might vary.

For any complex nonlinear dynamical system satisfying the conditions that

• the state space can be partitioned into a finite number of subspaces and the

governing equations of each subspace can be analytically computable,

• in a finite time, the number of the switchings are finite,

can be represented by switching difference equations which is based on piecewise

linear equations (describing the evolution of the systems continuous variables) and

Boolean functions (representing evolution of the system states) [46].

4.5 Why Piecewise Linear Formulation for Gene

Regulatory Dynamics

As it was mentioned in Section 4.2.2, gene regulatory interactions are high-dimen-

sional and nonlinear in structure. Also we know that in biology it is common to

imagine that genes are switched “on” or “off”.

Genomic regulation can be treated as a multistationary system which may exhibit

more than one possible stable state and can perform a transition from one stable

state to another. The state of a gene can be represented by a Boolean vector.

If the expression level of the concerned gene is over its threshold then it is on,

otherwise it is off. Such a logical regulation over the system state makes it possible

to partition system into tractable subspaces which provides to investigate the overall
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system easily [1]. In Section 3.3, it was pointed out that in the close vicinity of

the stationary steady states, linear equations are proper tools for representing the

system evolution. A stationary steady state is based on the property that the mean,

variance and the autocorrelation structure do not change over time, while time goes

to infinity [3]. In the selected tractable subspaces, logical states of the genes and

their production rates are constant. Hence, piecewise linear equations can be used

to describe the concentrations of gene products, such as mRNA and proteins in that

tractable subspaces. Such an approach provides a detailed understanding of the

dynamical behavior exhibited by regulatory mechanisms.

As a conclusion: Piecewise linear models provide a coarse-grained description of

genetic regulatory networks, well-adapted to state of the art measurement techniques

in genomics [20, 35, 51].

4.6 Piecewise Linear Equation Model of Gene Reg-

ulatory Dynamics

In our model, E(n) ∈ Rp, E(n + 1) ∈ Rp represent the mRNA concentrations at

nth, (n + 1)th time samples and s(n) ∈ {0, 1}p is a Boolean vector representing the

states of the genes (0 or 1) for the nth sample.

The time evolution of a gene regulatory dynamics is represented as follows:

E(n + 1) = Ms(n)E(n) + bs(n) (4.6.1)

s(n) = FB(Q(E1(n− 1), E2(n− 1), ..., Ep(n− 1)))

Qi(E(n)) =

 1

0

if

if

Ei(n) ≥ thri

Ei(n) < thri

where i is the ith gene or the corresponding mRNA concentration.
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Here, M. : {0, 1}p → Rp×p is a matrix-valued function (state transition matrix) and

b. : {0, 1}p → Rp is a vector-valued function (state transition vector) whose elements

can take different values depending on the state of the system (i.e., depending on

the state vector s). Furthermore, thri is the corresponding threshold for each gene.

Finally, Q : Rp → {0, 1}p is a quantized expression level vector which assigns 0 or 1

value to a gene in order to check if corresponding gene passed its threshold or not.

According to the study of Jacob and Monod [42], gene activation or inhibition is con-

trolled by protein concentration. From DNA microarray measurements only mRNA

concentrations are available. Therefore, in the formulation a single sampling time

difference is used for representing the synthesis of proteins from the corresponding

mRNA.

In the formulation FB : {0, 1}p → {0, 1}p is a Boolean function of the quantized

expression level vector Q(E(n)).

A time at which the state of any gene is changed is called a switching time. In the

model, switchings are controlled by activation or inhibition of a gene. Activation

or inhibition is controlled by whether the level of any transcription factor is crossing

its threshold value. Between the switching times, the logical states of the genes

and also the difference equations governing their concentrations are constant. Each

concentration changes according to the formulation E(n+1) = MsmE(n)+bsm with

the state of sm, where sm ∈ {0, 1}p. The production rates can change at a switching

time, which causes the dynamics of the system to be controlled by another transition

matrix and vector according to the new state of the system.
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chapter 5

NETWORK INFERENCE

5.1 Inference of Gene Networks

As it is mentioned in Section 4.1, the regulatory network inference problem is based

on determining the structure of the dynamics, threshold values of each gene, tran-

sition matrices and vectors that correspond to the states of the unknown system

behaving according to equation (4.6.1) from gene expression data of DNA microar-

ray measurements. The solution of this inference problem is the main aim of this

thesis.

For the inference of the network structure, our approach is based on the following

observation. While the concentration of the genes are evolving in time, if the change

of the concentration of one of the genes is reversed, then it is deduced that the

concentration of one of the other genes has passed its threshold in that instant.

Therefore, it can be inferred that genej (passing its threshold) regulates genei [48].

So we can concluded that genej regulates genei if in one of the concentration time

series

(i) there is a switching time at which j is the only gene for which there occurs a

switching in its logical state;

(ii) at that switching time, the production rate of genei changes, i.e., when its

expression level is rising, it starts to fall, or vice versa.
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To estimate the model parameters and switching times of each state, the least squares

method is used. For the detection of threshold values an approach based on mean

and standard deviations is applied to the data vectors detected at switching times.

Our approach will be clarified in the following sections.

5.2 Parameter Estimation

5.2.1 Least Squares Method

A multidimensional data corresponding to a multistate system comes up with gene

regulatory interactions (see Section 4.5). Suppose a system with p variables and

its gene expression level vectors E(n), n = 1, 2, ..., h, is given by DNA microarray

experiments and suppose that these vectors corresponds to one state of the system,

i.e., s(1) = s(2) = ... = s(h) = sm.

The problem of finding the equation system of the best approximation to the h

experimental data in the least squares sense [8, 40, 64] requires that values of

M = [mij]i=1,2,...,p
j=1,2,...,p

∈ Rp×p and b = [bi]i=1,2,...,p be found to minimize

[M̂, b̂] = arg min
M,b

h−1∑
n=1

(E(n + 1)− (bsm + MsmE(n)))2. (5.2.1)

That is, to measure how well the model (equation (4.6.1)) fits to the data, the least

squares method is used which minimizes the sum of the squares of the differences

between the E-values on the approximating discrete trajectory and the given E-

values. Hence, constants M = [mij]i=1,2,...,p
j=1,2,...,p

∈ Rp×p and b = [bi]i=1,2,...,p ∈ Rp must
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be found that minimize the least squares error [8]

Err1 =
h−1∑
n=1

(E1,n+1 − {b1 + m11E1,n + m12E2,n + ... + m1pEp,n})2 (5.2.2)

Err2 =
h−1∑
n=1

(E2,n+1 − {b2 + m21E1,n + m22E2,n + ... + m2pEp,n})2

...

Errp =
h−1∑
n=1

(Ep,n+1 − {bp + mp1E1,n + mp2E2,n + ... + mppEp,n})2

where Ei,n i=1,2,...,p
n=1,2,...,h

represents the ith variable of the nth time sample.

As a minimization problem, a least squares problem can be treated using methods

of multivariate calculus. The derivative of each row of equation (5.2.2) is calculated

according to its parameters and then equated to zero [29]. For the first row of

equation (5.2.2)

dErr1

db1

= −2
h−1∑
n=1

(E1,n+1 − {b1 + m11E1,n + m12E2,n + ... + m1pEp,n}) = 0 (5.2.3)

dErr1

dm11

= −2
h−1∑
n=1

(E1,n+1 − {b1 + m11E1,n + m12E2,n + ... + m1pEp,n})E1,n = 0

...

dErr1

dm1p

= −2
h−1∑
n=1

(E1,n+1 − {b1 + m11E1,n + m12E2,n + ... + m1pEp,n})Ep,n = 0
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is obtained. Equation (5.2.3) can be written in the following form:

h−1∑
n=1

1
h−1∑
n=1

E1,n ...
h−1∑
n=1

Ep,n

h−1∑
n=1

E1,n

h−1∑
n=1

(E1,n)2 ...
h−1∑
n=1

E1,nEp,n

... ... ... ...
h−1∑
n=1

Ep,n

h−1∑
n=1

E1,nEp,n ...
h−1∑
n=1

(Ep,n)2




b1

m11

...

m1p

 =



h−1∑
n=1

E1,n+1

h−1∑
n=1

E1,n+1E1,n

...
h−1∑
n=1

E1,n+1Ep,n


(5.2.4)

When the same procedure is applied to Err2, Err3, ..., Errp, then the general form

h−1∑
n=1

1
h−1∑
n=1

E1,n ...
h−1∑
n=1

Ep,n

h−1∑
n=1

E1,n

h−1∑
n=1

(E1,n)2 ...
h−1∑
n=1

E1,nEp,n

... ... ... ...
h−1∑
n=1

Ep,n

h−1∑
n=1

E1,nEp,n ...
h−1∑
n=1

(Ep,n)2




bj

mj1

...

mjp

 =



h−1∑
n=1

Ej,n+1

h−1∑
n=1

Ej,n+1E1,n

...
h−1∑
n=1

Ej,n+1Ep,n


(5.2.5)

is obtained where j represents the jth variable.

In equation (5.2.5), the quadratic left-hand side matrix of type (p+1)× (p+1) may

briefly be denoted as K such that

K :=



h−1∑
n=1

1
h−1∑
n=1

E1,n ...
h−1∑
n=1

Ep,n

h−1∑
n=1

E1,n

h−1∑
n=1

(E1,n)2 ...
h−1∑
n=1

E1,nEp,n

... ... ... ...
h−1∑
n=1

Ep,n

h−1∑
n=1

E1,nEp,n ...
h−1∑
n=1

(Ep,n)2


(p+1)×(p+1)

,

and the right-hand side vectors can be collected in one matrix of type (p + 1) × p,
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called F :

F :=



h−1∑
n=1

E1,n+1

h−1∑
n=1

E2,n+1 ...
h−1∑
n=1

Ep,n+1

h−1∑
n=1

E1,n+1E1,n

h−1∑
n=1

E2,n+1E1,n ...
h−1∑
n=1

Ep,n+1E1,n

... ... ... ...
h−1∑
n=1

E1,n+1Ep,n

h−1∑
n=1

E2,n+1Ep,n ...
h−1∑
n=1

Ep,n+1Ep,n


(p+1)×p

where each column of F stand for the right-hand side of equation (5.2.5). In the

same manner, each row of b and M can be collected in the columns of matrix u of

type (p + 1)× p, where

u :=


b1 b2 ... bp

m11 m21 ... mp1

... ... ... ...

m1p m2p ... mpp


(p+1)×p

.

Then, the systems takes the form

Ku = F

where K ∈ R(p+1)×(p+1), F ∈ R(p+1)×p and u ∈ R(p+1)×p. This form stands for

the system of normal equations for the solution of least squares problem equation

(5.2.1).

A sufficient condition that u is a minimum is that the Hessian matrix of second

partial derivatives of equation (5.2.2) is positive definite which implies in turn that,

K is positive definite [29].

A Matlab function leastsquares.m (Appendix B) is developed for dealing with this

problem where Matlab’s backslash operator, \, is used to solve the obtained system of

normal equations, Ku = F . The description of the Matlab command ”\” (backslash
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operator) is given in Appendix A.

In references [18] and [48], the authors assumed that the production rate of any gene

within a state depends only on its own concentration. This assumption decrease

the number of independently adjustable parameters in the optimization problem

(equation (5.2.1)) which is preferable when the number of observations are limited.

In this case, at a particular state, the concentration levels of the other genes are

assumed to have no effect on the production rate of the gene in consideration. This

implies that the off-diagonal terms of the matrix M are set to zero.

In this case, equation (5.2.2) takes the form of

Err1 =
h−1∑
n=1

(E1,n+1 − {b1 + m11E1,n})2

Err2 =
h−1∑
n=1

(E2,n+1 − {b2 + m22E2,n})2

...

Errp =
h−1∑
n=1

(Ep,n+1 − {bp + mppEp,n})2.

When the same procedure (the derivative of Errii=1,2,...,p
according to its parameters

is calculated and then equated to zero) is followed as in the full matrix case, the

normal equations


h−1∑
n=1

1
h−1∑
n=1

Ej,n

h−1∑
n=1

Ej,n

h−1∑
n=1

(Ej,n)2


 bj

mjj

 =


h−1∑
n=1

Ej,n+1

h−1∑
n=1

Ej,n+1Ej,n


are obtained, where j = 1, 2, ..., p. A Matlab function lstsqr.m (Appendix E) is

developed to deal with this problem, and its working procedure is similar to least-

squares.m. lstsqr.m can run with multi-dimensional data; the parameters M and b

are its outputs.
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It is critical to realize that at least 3 data vectors are needed for the estimation of

M and b uniquely in lstsqr.m. This can be generalized as follows: For the prediction

of parameters of each state of a system uniquely, at least 3 data vectors are required

corresponding to that state.

In one state of the system with p variables,

E(n + 1) =


b1

b2

...

bp

+


m11 0 ... 0

0 m22 ... 0

... ... ... ...

0 0 ... mpp

E(n),

we have 2p unknowns which are m11, m22, ...,mpp, b1, b2, ..., bp. So we need 2p linearly

independent equations for finding the unknown parameters. Each matrix operation

has p equations in itself. For the given first 2 data vectors E(1), E(2) we have p

equations defined as:

E1,2 = b1 + m11E1,1 (5.2.6)

E2,2 = b2 + m22E2,1

...

Ep,2 = bp + mppEp,1.

So we need 1 more matrix operation to conclude the equation number to 2p. By

using the data vectors E(2), E(3), we have p more equations:

E1,3 = b1 + m11E1,2 (5.2.7)

E2,3 = b2 + m22E2,2

...

Ep,3 = bp + mppEp,2.
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The solution of equations (5.2.6)-(5.2.7) allows us to find the unknowns of the system

uniquely.

Hence, it can actually be concluded that for any multistate system, at least 3 data

vectors of the corresponding state are required for the implementation of the Matlab

function lstsqr.m.

In practice, the system of normal equations has two main drawbacks, loss of infor-

mation and a condition squaring effect [29]. However, during this study this method

proved itself applicable. Nevertheless other numerical methods for least squares

problems could have been applied for the solution [27, 29].

5.3 Detection of Switching Times

In this part, multistate system is considered. According to the given data corre-

sponding to more than one state, a Matlab function hybd.m (Appendix D) takes

the data and a vector of general error terms (GET) of the variables as input. In

the function, the provided data are partitioned into subdata by using lstsqr.m as a

subfunction. The flow diagram of the function is as follows:

Step 1: Select first 3 data vectors and estimate the state transition matrix M and

the state transition vector b by using lstsqr.m. Then, calculate the next data vector

by using the transition matrix M and the transition vector b and compare this value

with the original data at that time.

Step 2: If the difference between these two vectors is smaller than GET, then

continue with the next data vector and repeat the operations defined in Step 1 until

the difference is greater than GET.

Step 3: When the difference is greater than GET, conclude that the state transi-

tion boundary is reached. If this occurs at the nth time sample, identify the state
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transition matrix and the state transition vector according to the data vectors de-

fined for that state. Take the nth time sample as the beginning of the new state

and repeat Step 1, Step 2, Step 3 until all the data are partitioned. At the end of

these iterations available data are partitioned into subdata which correspond to one

state of the system. The state transition matrices and state transition vectors that

represent each partitioned data is also available.

Step 4: This step includes grouping the same states. The comparison criteria

are according to the first determinants of the transition matrices of the partitioned

data sets. If the determinants are found to be the same, then the eigenvalues of

the matrices are compared. If the eigenvalues are also the same, finally, the state

transition vectors of the corresponding matrices are compared. If the state transition

vectors are found to be the same, then it is concluded that compared data sets belong

to the same state.

Step 5: State transition matrices and state transition vectors of each detected state

are decided by taking the mean of the transition matrices and transition vectors of

the data sets that represents the same state. Finally, all possible state transition

matrices and state transition vectors are inferred, however, it is still not known

which state of the system these matrices and vectors represent. This remains to be

a black box until the detection of the thresholds of the variables.

5.4 Threshold Detection

Correct decision of the system states is important for the inference of the system

dynamics which depends on the detection of threshold values of each variable cor-

rectly.

A Matlab function tresholds.m (Appendix C) detects the thresholds of the variables

defined in equation (4.6.1) by taking the data vectors corresponds to the switching
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times using hybd.m as a subfunction. The flow diagram of tresholds.m is as follows:

Step 1: Group the data vectors of switching times according to their states.

Step 2: According to the assumptions discussed in Section 4.6, if a gene is regulated

by an another gene, then only the row of the transition matrix or transition vector

corresponding to that gene changes in the next state. Using this assumption, detect

the regulated variable and assign a zero value to that variable in the vectors which

were obtained in Step 1.

Step 3: Each row represents the values of the variables at switching times. It is

assumed that1 only one variable cross its threshold at the switching time. Under

those circumstances it can be concluded that the value of the variable passing its

threshold is going to be approximately the same in each group. To detect this

variable, the means and standard deviations of each row of the groups are calculated.

The Matlab routines mean and std are used for the calculation of mean and standard

deviations of each group.

Step 4: We would like to select the variables that have the least deviation from

the mean. In tresholds.m, a reasonable deviation percentage from the mean is asked

to the user. If the standard deviation of the variable in a group is smaller than

its mean times the deviation percentage and if it is unique in this group, then it is

concluded that this variable has passed its threshold. The mean of the row of this

group is assigned as the threshold of that variable. In the case where the defined

deviation percentage is very low for the selection of the thresholds, the predefined

percentage is multiplied by 2 in each repetition of the procedure.

Step 5: If more than one variable is found in Step 4 then repeat Step 4 for other

groups until a unique variable is found.

1In fact there are multiple number of genes performing highly correlated patterns. In most of
the analysis works, those highly correlated genes are clustered and represented by a single variable.
This clustering work can be seen as a part of preprocessing work in a real world application and
in inference work decorrelated data can be assumed.
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Step 6: Once a threshold value for a variable is found then, there is no need to

use the data vectors which share the same row with that variable. So assign zero to

these row for each group. Under the assumption that only one variable can pass its

threshold at a switching time, assign zero to the all columns of the corresponding

group.

Step 7: Repeat Step 4, Step 5 and Step 6 until all the group elements are zero.

Step 8: After all thresholds are decided, assign the value 0 or 1 to the data vec-

tor according to the detected threshold levels. In the created matrix each column

represents the state of the system corresponding to each data vector.

5.5 Numerical Example

In this section, a numerical example is given for a well understanding of the proce-

dure followed in Section 5.3 and Section 5.4.

A multistationary system of 3 different genes and their expression levels at 740 time

points are given in Table 5.1.

First of all, the given data are partitioned into subdata sets according to the steps

defined in Section 5.3 by using least squares method. The general error term (GET)

is defined to be as avdata× (5.10−5), where avdata is the average of all data in the

system.

At the end of Step 3 we will have

MV =


0.99 0 0

0 0.99 0

0 0 0.99

0.99 0 0

0 0.99 0

0 0 0.99

... ... ...

.. ... ...

... ... ...

0.99 0 0

0 0.99 0

0 0 0.99


3×42

,
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Table 5.1: Expression levels of the genes gene1, gene2, gene3 for 740 time samples.

gene1 gene2 gene3
sample1-E(1) 2.0000 2.0000 2.0000
sample2-E(2) 1.9950 2.0200 2.0700

... ... ... ...
sample86-E(86) 1.7128 3.1488 6.0209
sample87-E(87) 1.7107 3.2373 6.0507
sample88-E(88) 1.7086 3.3250 6.0802

... ... ... ..
sample166-E(166) 1.5943 8.0785 7.6201

... ... ... ...
sample695-E(695) 2.3442 5.7050 6.0493
sample696-E(696) 2.3358 5.7680 6.0788

... ... ... ...
sample740-E(740) 2.0371 7.9952 7.1228

bV =


0.0150 0.0150 ... 0.0150

0.0400 0.1200 ... 0.1200

0.0900 0.0900 ... 0.0900


3×14

,

states =

 1 86 ... 694

85 165 ... 740


2×14

,

sV end =


1.7128 1.5952 ... 2.0371

3.1488 8.0389 ... 7.9952

6.0209 7.6668 ... 7.1228


3×14

,

where MV is a general matrix that consists of the state transition matrices. We

have 3 genes, so each (3×3)- submatrix of MV identifies the state transition matrices

where some of these matrices represent the same states of the system. In the same

way, each column of bV identifies the state transition vectors, where some of these

vectors represent the same states of the system. As a result, each (3×3)-submatrix
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and the columns of bV corresponding to that submatrix represent one state of the

system. Each column of states matrix stands for the state intervals and each column

of sV end represents the data vector where the state transition boundary is reached.

We need to group state transition matrices and state transition vectors which denote

the same states, according to the comparison criteria defined in Step 4. So we will

have

T =



1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0


6×14

,

where each row of T represents one state of the system and each column stands for

the column of the states matrix. If the state intervals were found to be the same,

then they are denoted by 1 otherwise they are denoted by 0. So it is obvious that

intervals {1-85, 364-421, 638-693}, {86-165, 422-469, 694-739}, {166-209, 470-502},
{210-276, 503-558}, {277-328, 559-605}, {329-363, 606-637} are represented by the

same transition matrix and transition vector. We need state transition matrices and

state transition vectors identifying each set. After Step 5 we have

mv =


0.99 0 0

0 0.99 0

0 0 0.99

0.99 0 0

0 0.99 0

0 0 0.99

... ... ...

.. ... ...

... ... ...

0.99 0 0

0 0.99 0

0 0 0.99


3×18

,

bv =


0.0150 0.0150 0.0150 0.0450 0.0450 0.0150

0.0400 0.1200 0.1200 0.1200 0.0400 0.0400

0.0900 0.0900 0.0300 0.0300 0.0300 0.0300


3×6

.

Here, each (3×3)-submatrix of mv and corresponding column of bv characterizes

one state. But it is still not known which states they represent. We need to follow
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the steps defined in Section 5.4 for clarifying these states; this implies detection of

threshold values of the variables.

Since we know which intervals represent the same states (i.e., {1-85, 364-421, 638-

693}, {86-165, 422-469, 694-739}, {166-209, 470-502}, {210-276, 503-558}, {277-328,

559-605}, {329-363, 606-637}) we can group the data vectors at the state transition

boundaries in these intervals.

Table 5.2: Grouped data vectors that correspond to switching times. Each group
represents one state of the system.

E(85) 1.7149 3.1402 5.9908
E(421) 2.3375 5.5764 5.9763
E(693) 2.3613 5.6580 5.9894

... ... ... ...
E(637) 3.0122 6.9106 3.7751

According to Step 2, from the comparison of state transition vectors following each

other, we have:



1st group︷ ︸︸ ︷
0 0 0

0.08 0.08 0.08

0 0 0

2nd group︷ ︸︸ ︷
0 0

0 0

0.06 0.06

3rd group︷ ︸︸ ︷
0.03 0.03

0 0

0 0

4th group︷ ︸︸ ︷
0 0

0.08 0.08

0 0

5th group︷ ︸︸ ︷
0.03 0.03

0 0

0 0

6th group︷ ︸︸ ︷
0 0

0 0

0.06 0.06


.

Each row represents gene1, gene2, gene3, respectively. From that matrix we can

conclude that for the first and fourth groups gene2 is regulated (passed its threshold),

for the second and sixth groups gene3 is regulated, for the third and fifth groups

gene1 is regulated. Possible regulators for the first and fourth group are gene1 and

gene3, for the second and sixth group gene1 and gene2 and, finally, for the third and

fifth groups possible regulators are gene2 and gene3.

Now, we consider which gene is the regulator of the predefined groups. For this aim
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we will follow the Steps 3-7. The deviation percentage is taken as 0.002. So we got

the following thresholds of the variables:

tresholds =


2.9857

7.9919

5.9855

 .

At Step 8, with the help of the thresholds, the system states and their orders are

found as:

systemstates =


0 0 0 0 1 1

0 0 1 1 1 0

0 1 1 0 0 0

 ,

sequence = [1 2 3 4 5 6 1 2 3 4 5 6 1 2 3] .

Each column of systemstates characterizes the possible system states, and in the

sequence array each element represents the corresponding column number of sys-

temstates matrix. So it can be concluded that the data which is dealt with defines a

system with a periodic attractor of 1→ 2→ 3→ 4 →5→ 6 →1. System states, their

transition matrices and transition vectors are given in Table 5.3.
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Table 5.3: System states, their transition matrices and transition vectors.

states M b

000

 0.99 0 0
0 0.99 0
0 0 0.99

  0.015
0.04
0.09



001

 0.99 0 0
0 0.99 0
0 0 0.99

  0.015
0.12
0.09



011

 0.99 0 0
0 0.99 0
0 0 0.99

  0.015
0.12
0.03



010

 0.99 0 0
0 0.99 0
0 0 0.99

  0.045
0.012
0.03



110

 0.99 0 0
0 0.99 0
0 0 0.99

  0.045
0.04
0.03



100

 0.99 0 0
0 0.99 0
0 0 0.99

  0.015
0.04
0.03


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chapter 6

VALIDATION

6.1 Data Requirements of the Inference Algorithm

Multistationary nature of the genomic regulation has already been discussed . It

is obvious that any information about a state which system has not exhibited can

not be extracted. To be able to extract some predictive information, the observed

system should experience a variety of different states and conditions. Not only

for this particular algorithm, but almost for any inferential modeling procedure

observations should fulfill some requirements. In this part those requirements of

the observations for this model are discussed. Those requirements are analogous to

the ”under which variety of conditions should experiments or observations shall be

done” problem of applied (nature) sciences.

As described in Section 3.2, the series of state transitions are called trajectories. The

repetitive parts of the trajectories are called attractors and they can be one or more

states long.

To find a unique solution for the threshold values of the genes, the trajectories of

the system must be passed through at least twice with different entry values (until

all the threshold values of the genes are defined).

There are at least two cases that the inference algorithm fails since the above con-

dition does not hold. Firstly, if the system has an attractor of more than one state

long (periodic attractor), then once the periodic attractor is reached, each system
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state will be entered with the same concentration levels. Therefore, for a system

of n genes n − 1 regulators can be defined where their corresponding concentra-

tions can be assigned as their threshold values. This prevents us from detecting the

correct regulator for that switching time and, hence, its threshold value. Secondly,

if the system has a single attractor, then, even though each system state can be

visited once before the attractor state has been visited, the system will be trapped,

preventing the above condition to hold. Thus, for a system of n genes only one con-

centration vector is detected at the switching times for each system states, and it is

not sufficient to guess the threshold values of the genes from only one concentration

vector.

On the other hand, when the above condition is satisfied so that each state has been

visited more than once with different entry values, all the genes accept that the

regulator will have as many different values as the number of visits to that state.

This enables us to uniquely identify the regulator and its threshold value.

6.2 Validation of the Model

Once a mathematical model has been proposed, the evolution of the system can be

simulated by solving the proposed model equations with suitable initial conditions.

Then, the obtained results are compared to the behavior of the real system, and if

the comparisons are satisfactory, the model can be regarded as a valid one, otherwise

it is revised or rejected [6].

In the case where experimental data are not available, valid simulated data can be

used instead. However, validation of the model strongly depends on the validity of

the simulated data.

In order to determine the validity of the model, it has to be satisfied that the

analyzed data and the calculated data are close to each other. Therefore, it can be
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claimed that the mathematical model is valid if

‖cd− ad‖ ≤ ε ‖ad‖ ,

where cd is the calculated data vector, ad is the analyzed data vector and ε is the

maximum admissible gap related to the size of the analyzed data [6]. Additionally,
‖cd−ad‖
‖ad‖ represents the relative error.

The selection of the norm should be based on the kind of approximation needed

by the model. In this study, averaged Euclidean norm is used for an average error

prediction

‖cd− ad‖ =

(
m∑

i=1

((cd(i)− ad(i))2)

) 1
2

/m, (6.2.1)

where m is the number of samples and i represents the ith entry of the data vector

[6, 28].

6.3 Analysis of a Network with 6 Genes

For the validation of the model and the inference algorithm, an artificial data is

used. The data are generated using an algorithm that is developed by Hakanoğlu

and Öktem which is available in [63].

A system of 6 variables with a periodic attractor is generated where the system

states are chosen as:

000000→ 100000→ 110000→ 110100→ 110110→ 111110

↑ ↓

000001 ← 000011 ← 001011 ← 001111← 101111 ← 111111.

The system has 1000 time samples (see Figure 6.1), where the threshold values and
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the initial values are taken as

threshold = [3 5 7 9 4 6],

y0 = [2 2 18 2 18 18],

for each variable.

Figure 6.1: Expression data for 6 genes.
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The phase space projections of the system are represented in Figure 6.2 where the red

lines indicate the trajectories and the corresponding axes represent the expression

levels. Additionally, the threshold values of each variable are plotted with dashed

lines.

From the generated 1000 data, 590 are used for inference of the system parameters

and the rest is used for comparison with the extrapolation results. The advantage of

choosing a system with a periodic attractor is that the system cycles through each

of its states enable a complete inference of the system states.

The inference algorithm is applied to the artificial data of 590 samples where GET

(General error term) and deviation percentage are chosen as 10−4 and 0.002, respec-

tively. The system states, corresponding state parameters and threshold values are

found as:

M001011 = M000011 = M000001 = M000000 = M100000 = M110000 =

M110100 = M110110 = M111110 = M111111 = M101111 = M001111

=



0.97 0 0 0 0 0

0 0.97 0 0 0 0

0 0 0.97 0 0 0

0 0 0 0.97 0 0

0 0 0 0 0.97 0

0 0 0 0 0 0.97


,

b001011 =



0.0450

0.0750

0.1050

0.1350

0.1800

0.2700


, b000011 =



0.0450

0.0750

0.1050

0.1350

0.0600

0.2700


, b000001 =



0.0450

0.0750

0.1050

0.1350

0.0600

0.0900


,
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Figure 6.2: Phase space projections of the 6 genes network of Fig. 6.1.
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b000000 =



0.1350

0.0750

0.1050

0.1350

0.0600

0.0900


, b100000 =



0.1350

0.2250

0.1050

0.1350

0.0600

0.0900


, b110000 =



0.1350

0.2250

0.1050

0.4050

0.0600

0.0900


,

b110100 =



0.1350

0.2250

0.1050

0.4050

0.1800

0.0900


, b110110 =



0.1350

0.2250

0.3150

0.4050

0.1800

0.0900


, b111110 =



0.1350

0.2250

0.3150

0.4050

0.1800

0.2700


,

b111111 =



0.1350

0.0750

0.3150

0.4050

0.1800

0.2700


, b101111 =



0.0450

0.0750

0.3150

0.4050

0.1800

0.2700


, b001111 =



0.0450

0.0750

0.3150

0.1350

0.1800

0.2700


,

threshold = [2.9696 4.9498 7.0749 8.9262 4.0306 6.0559]T .

When the data are regenerated with the calculated system parameters and with the

same initial values Figure 6.3 is obtained. In this figure, the solid lines represent the

original data and the dashed ones represent the predictions.

The curves at the bottom of the graph represent the errors |cdj(i)− adj(i)| , where

i = 1, 2, ..., 1000 represents the time samples, j = 1, 2, ..., 6 represents the variables,

cd is the calculated data vector and ad is the analyzed data vector. The average
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Figure 6.3: Original vs. predicted expression data and prediction errors.

error terms of each variable are calculated according to equation (6.2.1) as

averageerror =



0.0019

0.0029

0.0047

0.0066

0.0029

0.0043


.

The calculated system parameters are sufficient to construct the network structure.

From the parameters it is possible to get variable interactions as follows. During

a state change, one of the variables undergoes a variation in behaviour resulting in

different coefficients in its state equation. Simultaneously, another variable crosses

its threshold which reflects itself in the Boolean array designating the system states.
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Depending on the behaviour of the regulated variable it is inferred that the regulator

either activates it or represses it, where activation means an increase in the rate of

concentration and repression means a decrease in the rate. Based on this criterion

the network structure is inferred as in Figure 6.4.

Figure 6.4: The network diagram of 6 genes. Activation indicated by→ , repression
by a.

In this figure, each variable has two regulators where one cause an increase and the

other cause a decrease in its expression level.

In case of noisy data, it is difficult to determine the switching times. Even if they are

detected, it is not possible to determine the system parameters, hence, the network

structure. The reason is that very small fluctuations in the data cause significant

differences in the state transition matrix and the state transition vector; thus it is

not possible to find a unique representation for each state.
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chapter 7

DISCUSSION, CONCLUSION

AND OUTLOOK

Most aspects of everyday’s life are nonlinear. Whenever parts of a dynamical sys-

tem interfere, or cooperate, or compete, there are nonlinear interactions going on,

and most nonlinear systems are impossible to solve analytically [55]. Modeling of

the regulatory mechanisms underlying dynamical systems can be approached under

two different perspectives. When the detailed analysis of the system of interest is

available, the first principle models generally lead to exact models of that system.

Nevertheless, most of the time sufficient information to build first principle models

is not available. In that case, the estimation of the underlying dynamics has to be

carried out using the available empirical observations on the system which leads us

to the inferential modeling approach.

The most critical challenge to realize is that each problem has its own characteristics

and must be considered accordingly. Therefore, the selection of the application area

is as fundamentally important as selecting the appropriate model for investigating

the system dynamics.

In this study, a gene regulatory dynamics is selected as the application area. Genes

control cellular processes by initiating protein synthesis through mRNA transcrip-

tion. In order that a gene is transcribed into mRNA, it is necessary for a spe-

cific protein (transcription factors) to attach to the appropriate region of the DNA.

Therefore, transcription factors are synthesized from mRNA transcription and these
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transcription factors are used to start the mRNA transcription. Hence, this cycle

defines a dynamical system involving highly nonlinear feedback mechanisms.

During the study, three main popular modeling approaches of gene networks are

investigated, namely Boolean networks, differential equation models and piecewise

linear equation models. It is possible to represent the complex behavior of the regu-

latory mechanisms underlying gene networks with Boolean networks. However, this

type of networks is Boolean, as the name suggests, and synchronous. Due to these

properties, the Boolean network approach has serious limitations in representing real

systems. Linear differential equation models performed around a steady state yield

good predictions. However, due to the nonlinear behavior of gene regulatory inter-

actions, these models are also insufficient in supporting the dynamical variability of

systems.

On the other hand, piecewise linear equation models, combine the capabilities of

Boolean network and linear differential equation model approaches. Since genomic

regulation can be treated as a multi-stationary system which may exhibit more

than one possible stable states and can perform a transition from one stable state

to another, the states are approximated by the Boolean network approach and the

behavior in each stable state is approximated by linear differential equations. Conse-

quently, piecewise linear equation models seem to provide a more realistic approach

and it is well adopted to explain the gene regulatory mechanism.

After the above considerations, a piecewise linear formulation is selected to be used

for the modeling of gene regulatory networks in this study. The formulation is de-

scribed by a state transition matrix and a state transition vector with a Boolean

function indicating the switching conditions. For the estimation of the model pa-

rameters and system states an inference algorithm is developed and the data require-

ments of the inference algorithm are emphasized. For the unique inference of the

parameters M and b in each state, at least 3 data vectors are needed. Additionally,

to find a unique solution for the threshold values of the genes, the trajectories of

59



the system must be passed through at least twice with different entry values. This

shows that knowledge on the data plays a critical role for the inference of the gene

networks. As a validation the algorithm is tested over an artificial 6 gene network

and the network connections of each variable are clarified.

The developed algorithm, however, is based on a number of simplifying assumptions.

The data with noise and time delays and, additionally, some special cases of the

trajectory of the data make the network analysis difficult or impossible with the

methods outlined in the thesis.

The main assumption of equation (4.6.1) is that the state transition matrices are

diagonal. This means, the production rate of any gene within a state depends only

on its own concentration. However, in reality there might exist other genes which

have an effect on the production rate of the considered gene. This issue needs to be

addressed before applying the inference algorithm to a real gene expression data.

Furthermore, from a biological point of view, the time delay in gene regulation

arises from the actual delays characterizing the various underlying processes such

as transcription, translation and transport [67]. Insertion of the time delays to

the model will therefore make the model more realistic. Gene expression monitoring

technology can not simultaneously measure the concentrations of all chemical species

related to gene expression (mRNAs, proteins, small molecules, etc.). Hence, many

methods being proposed for the network inference omit the influence of unobserved

factors [48].

Different types of networks can also be explained using switching equations like for

instance, the traffic networks. Traffic can be modeled around a junction with traffic

lights. If the traffic light for the ith road is green, then a normal freeway traffic

exists, whereas, if it is red then an accumulation mode comes into consideration.

The state of one road has a direct effect on the state of neighboring roads and an

indirect effect on the states of the other roads. Thus, it is a system which comprises

discrete (traffic lights) and continuous variables (flow and density) regulating each
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other where the states of the traffic lights can be explained by Boolean functions

and the flow on the roads can be explained by differential equations.
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APPENDIX A

Linear Equations

The fundamental tool for solving a linear system of equations in Matlab is the

backslash operator, \. It handles three types of linear system Ax = b, where the

matrix A and the vector b are given. The three possible shapes for A lead to square,

overdetermined and underdetermined systems [30].

A.1 Square Systems

If A is an n-by-n nonsingular matrix then A\b is the solution x to Ax = b, computed

by LU factorization with partial pivoting [30].

For solving a linear system of the form Ax = b, matrix factorization can be used. The

factorization is particularly useful when it has the form A = LU , where L is lower

triangular and U is upper triangular. If A has been factored into the triangular form

A = LU , then x can be solved by using a two step process. First y = Ux is formed

and then Ly = b is solved for y. Not every matrix can be factorized in this way, but

when row interchanges are incorporated, the factorization always exists [29]. Since

L is triangular determining y from this equation requires O(n2) operations. Once y

is known, the upper triangular system Ux = y requires additional O(n2) operations

to determine the solution x [8].

A.2 Overdetermined System

If A has dimension m-by-n with m > n then Ax = b is an overdetermined system

that means, there are more equations than unknowns. In general, there is no x

satisfying the system. Matlab’s A\b gives a least squares solution to the system,

that is it minimizes the Euclidean norm of the residual r = b−Ax over all vectors

x. If A has full rank n, there is a unique least squares solution. If A has rank k
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less than n then A\b is a basic solution one with at most k nonzero elements (k is

determined and x computed, using the QR factorization with column pivoting) [30].

A QR factorization of an m-by-n matrix A is a factorization A = QR, where Q is

m-by-m unitary and R is m-by-n upper triangular [29].

A QR factorization with column pivoting has the form AP = QR where P is a

permutation matrix. The permutation strategy that is used produces a factor R

whose diagonal elements are nonincreasing: |r11| ≥ |r22| ≥ ... ≥ |rnn| [29]. Column

pivoting is particularly appropriate when A is suspected of being rank deficient, as

it helps to reveal near rank deficiency [30].

A.3 Underdetermined System

If A has m-by-n dimension with m < n then, Ax = b is an underdetermined system

that means, there are fewer equations than unknowns. The system has either no

solution or infinitely many.

71



APPENDIX B

leastsquares.m

% (C) Didem AKÇAY (December, 2005)

function [M,b,LMS] = leastsquares(data)

% Least squares method for multidimensional data

% Data vector, say vector ”y”

% satisfies y(m+1) = M * y(m) + b property

% m is the time sample

%

% leastsquares(data) finds M, b that best defines the above property

% for the given data

%

%

[n,m]=size(data);

datanew=[ones(1,m);data];

for i=1:n+1

for j=1:n+1

K(i,j)=0;

for k=1:m-1

K(i,j)=K(i,j)+datanew(i,k).*datanew(j,k);

end

end

for l=1:n

F(i,l)=0;

for k=1:m-1
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F(i,l)=F(i,l)+datanew(l+1,k+1).*datanew(i,k);

end

end

end

for i=1:n

p(:,i)=K\F(:,i);

end

u=p’;

M=u(:,2:n+1);

b=u(:,1);
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APPENDIX C

tresholds.m

% (C) Didem AKÇAY (December, 2005)

function [mv,bv,states,sequence,treshtresh]=tresholds(data,dp,GET)

%

% detection of the threshold values of the variables

% dp represents the deviation percentage from the mean

% GET represents the general error term

%

[temp22,temp,T,mv,bv]=hybrid(data,GET);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% detection of the regulated variable

nT=size(T);nTmain=nT;

tempnew=temp22;

[nend,mend]=size(tempnew);

for i=1:nend

for j=1:mend

if tempnew(i,j)<=10ˆ-4

tempnew(i,j)=1;

else

tempnew(i,j)=0;

end

end

end
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tempend=temp.*tempnew; % possible variables and their values that can pass thresh-

old

tdene=cumsum(sum(T(:,1:nTmain(2)-1)’)); % cumulative sum of the repetitive states

%

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tcum=tdene;

tempwork=tempend;

i=0;

error=dp;

treshtresh=zeros(size(tempwork,1),1);

Tcum;

while (max(max(tempwork))>0) && (error < 100)

% iterations are done until all the elements of

% tempwork is going to be zero

% maximum error rate defined for that

% iterations are 100

error=error*2;

% at each iteration error rate is inreased

% work includes the goups

if (i==0)

work=tempwork(:,1:(Tcum(i+1)));

else

work=tempwork(:,(Tcum(i)+1):(Tcum(i+1)));

end

%

% mean and standart deviation of each group is calculated
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for p=1:size(work,1)

workstd(p)=(std(work(p,:)));

workmean(p)=(mean(work(p,:)));

end

workstd=workstd’;

workmean=workmean’;

mincount=0;

variables=[];

% For each variable of the same group if their standart deviation is

% smaller than their mean*errorrate

% and also this is true for only one variable in the group

for variable=1:size(tempwork,1)

if ( (workstd(variable)<workmean(variable)*error) && (workmean(variable)˜=0)

)

mincount=mincount+1; % counts the elements of variables vector

variables=[variables;variable]; % collect them in a vector

end

end

%

% then the mean of the values corresponding to that

% variable can be defined as a threshold for that variable

if (mincount==1)

treshtresh(variables)=workmean(variables);

% closer values for the threshold value in tempwork corresponding

% to that variable

% delete the closer values

% sharing the same row with that variable
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for column=1:size(tempwork,2)

if (abs(treshtresh(variables)-tempwork(variables,column))...

<workmean(variables)*error)

tempwork(:,column)=0;

end

end

tempwork(variables,:)=0;

end

% operations are done since all the threshold values are calculated

i=mod(i+1,size(Tcum,2));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% System states and their order

[states,sequence]=syssts(data,treshtresh);
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APPENDIX D

hybrid.m

% (C) Didem AKÇAY (December, 2005)

function [temp22,temp,T,mv,bv]=hybrid(data,GET)

%

% GET is a vector of general error term

% Dimension of GET must be same with the variable number

%

[n,m]=size(data);

%

% decision of the error limit

% evaluated as the average of the data

% times GET

avdata = sum(data’)/m;

erlim = avdata.*(GET);

erlim = erlim’;

s=1; p=0;

% MV holds state matrices

% bV holds state vectors

% sV holds vectors where state change occurs

% sv holds switching times where state change occurs

MV=[]; bV=[]; sV=[data(:,1)]; sv=[1];sve=[];sVend=[];

while p < m-2

p = p+1;

if (p >= s+2) % lstsqrs.m method needs 3 data to run
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[M,b] = lstsqrs(data(:,s:p));

ytrial=hybridsupport ( data(:,s), s, p+1, M, b);

yreal=data(:,p+1);

y=abs(yreal-ytrial)>=erlim;

if sum(y)˜=0

MV = [MV,M]; bV = [bV,b];

s=p;

sV = [sV,data(:,s)]; sVend=[sVend,data(:,s-1)];

sv = [sv,s];sve=[sve,s-1];

end

end

if p==m-2

[M,b] = lstsqrs(data(:,s:p+2));

sve=[sve,m];MV = [MV,M]; bV = [bV,b]; sVend=[sVend,data(:,m)];

end

end

states=[sv;sve];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% decide which states are same according to M and b

% and collect them in a matrix T

%

%

[n1,m1]=size(MV);

h=m1/n1;T=zeros(h,h);

for i=1:h

T(i,i)=1;

for j=i+1:h
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a=MV(:,((i-1)*n1)+1:i*n1);

b=MV(:,(j-1)*n1+1:j*n1);

if (abs(det(a)-det(b))<=10ˆ-5)

if (abs(eig(a)-eig(b))<=10ˆ-5)

if sum(abs(bV(:,i)-bV(:,j))<=10ˆ-4*ones(n,1))==n

T(i,j)=1;T(j,i)=1;

end

end

end

end

end

TT=T;

%

% Elimination of the same rows of T

c=[];

for i=1:h-1

for j=i+1:h

if sum(T(i,:)==T(j,:))==h

c=[c,j];

end

end

end

if isempty(c)==1

T=TT;

else

k=size(c);

c=sort(c);
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d=c(1);

for i=1:k(:,2)

if d(length(d))˜=c(i)

d=[d c(i)];

end

end

for i=length(d):-1:1

T(d(i),:)=[];

end

end

nT=size(T);nTmain=nT;

nT=nT(1);

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% collect the difference of switching matrices in temp1

% collect the difference of switching vectors in temp2

% collect the transition vectors in temp3

%

temp11=[];temp22=[];temp=[];mv=[];bv=[];

for i=1:nT

temp1=[]; temp2=[];temp3=[];mv2=[];bv2=[];

for j=1:h-1

if T(i,j)==1

if temp2

% collection of state switching values of same states

temp3=[temp3,data(:,states(2,j))];

% collection of state difference matrices of same states
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temp1=[temp1,abs(MV(:,(j-1)*n+1:j*n)-MV(:,j*n+1:(j+1)*n))];

% collection of state difference vectors of same states

temp2=[temp2,abs(bV(:,j)-bV(:,j+1))];

mv2=(mv2+MV(:,(j-1)*n+1:j*n))./2;

bv2=(bv2+bV(:,j))./2;

else

temp3=data(:,states(2,j));

temp1=abs(MV(:,(j-1)*n+1:j*n)-MV(:,j*n+1:(j+1)*n));

temp2=abs(bV(:,j)-bV(:,j+1));

mv2=MV(:,(j-1)*n+1:j*n);

bv2=bV(:,j);

end

end

end

temp11=[temp11,temp1];% collection of state switching values of different states

temp22=[temp22,temp2]; % collection of state difference matrices of different

states

temp=[temp temp3]; % collection of state difference vectors of different states

mv=[mv mv2];

bv=[bv bv2];

end
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APPENDIX E

lstsqrs.m

% (C) Didem AKÇAY (December, 2005)

function [M,b]=lstsqrs(data)

% Least squares method for multidimensional data

% Data vector, say vector ”y”

% satisfies y(m+1) = M * y(m) + b property

% m is the time sample

%

% lstsqrs(data) finds M, b that best defines the above property

% for the given data

% M is supposed to be a diagonal matrix

%

[n,m]=size(data);

datanew=[ones(1,m);data];

datanew1=datanew;datanew2=datanew;

P=[];

m1=m;

m2=m;

while m1>=2

for i=1:2

for j=1:2

K(i,j)=0;

for k=1:m-1

K(i,j)=K(i,j)+datanew1(i,k).*datanew1(j,k);
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end

end

end

P=[P K];

datanew1(2,:)=[];

[m1 n1]=size(datanew1);

end

while m2>=2

for i=1:n

for j=1:2

F(i,j)=0;

for k=1:m-1

F(i,j)=F(i,j)+datanew2(2,k+1).*datanew2(j,k);

end

end

datanew2(2,:)=[];

[m2 n2]=size(datanew2);

end

end

F=F’;

[ne me]=size(P); h=me/ne;c=[];

for j=1:h

d=P(:,j*ne-1:j*ne+ne-2)\F(:,j);

c=[c,d];

end

M=diag(c(2,:));

b=c(1,:);b=b’;
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APPENDIX F

syssts.m

% (C) Didem AKÇAY (December, 2005)

function [states,sequence]=syssts(data,threshold)

%

%syssts.m finds system states according to threshold values

%

[n,m]=size(data);

for i=1:n;

for j=1:m

if data(i,j)>=threshold(i)

sts(i,j)=1;

else

sts(i,j)=0;

end

end

end

states=[];

for i=1:m

fnd=0;

for j=1:size(states,2)

if sum(sts(:,i)==states(:,j))==n

fnd=1;

end

end
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if fnd==0

states=[states,sts(:,i)];

end

end

sequence=[];

for i=1:m

for j=1:size(states,2)

if sum(sts(:,i)==states(:,j))==n

if size(sequence)==0

sequence=[sequence,j];

end

if sequence(size(sequence,2))˜=j

sequence=[sequence,j];

end

end

end

end
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APPENDIX G

hybridsupport.m

% (C) Didem AKÇAY (December, 2005)

function [y final]=hybridsupport (y initial, initial sample number, final sample number,

M, b)

%

% hybridsupport.m finds proceeding time samples

% according to the predefined function parameters

y last=y initial;

for current step=initial sample number+1:final sample number

y new=M*y last+b;

y last=y new;

end

y final=y new;
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