
GENETIC ALGORITHM FOR PERSONNEL ASSIGNMENT PROBLEM
WITH MULTIPLE OBJECTIVES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

YILMAZ ARSLANOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JANUARY 2006



Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope 
and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. İsmail Hakkı Toroslu
Supervisor

Examining Committee Members

Prof. Dr. Faruk Polat (METU, CENG)

Assoc. Prof. Dr. İsmail Hakkı Toroslu (METU, CENG)

Prof. Dr. Nur Evin Özdemirel (METU, IE)

Assoc. Prof. Dr. Göktürk Üçoluk (METU, CENG)

Dr. Onur Tolga Şehitoğlu (METU, CENG)



iii

I hereby declare that all information in this document has been obtained and presented in 

accordance with academic rules and ethical conduct. I also declare that, as required by these 

rules and conduct, I have fully cited and referenced all material and results that are not 

original to this work.

Name, Last name: Yılmaz Arslanoğlu
                                                           

Signature:



iv

ABSTRACT

GENETIC ALGORITHM FOR PERSONNEL ASSIGNMENT PROBLEM 
WITH MULTIPLE OBJECTIVES

ARSLANOĞLU, Yılmaz

MS, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İsmail Hakkı Toroslu

January 2006, 68 pages

This thesis introduces a multi-objective variation of the personnel assignment problem, by 

including additional hierarchical and team constraints, which put restrictions on possible matchings 

of the bipartite graph. Besides maximization of summation of  weights that are assigned to the 

edges of the graph, these additional constraints are also treated as objectives which are subject to 

minimization. In this work, different genetic algorithm approaches to multi-objective optimization 

are considered to solve the problem. Weighted Sum – a classical approach, VEGA - a non-elitist 

multi-objective evolutionary algorithm, and SPEA – a popular elitist multi-objective evolutionary 

algorithm, are considered as means of solution to the problem, and their performances are 

compared with respect to a number of multi-objective optimization criteria. 

Keywords: Personnel Assignment Problem, Multi-Objective Optimization, Genetic Algorithms
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ÖZ

ÇOKLU KRİTERLİ PERSONEL ATAMA PROBLEMİ İÇİN 
GENETİK ALGORİTMA

ARSLANOĞLU, Yılmaz

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Hakkı Toroslu

Ocak 2006, 68 sayfa

Bu tez, personel atama problemine iki taraflı grafikte gerçekleştirilebilecek olası eşleştirmelere 

sınırlandırma getiren hiyerarşi ve takım kısıtlandırmaları ekleyerek, çoklu-kriterli bir türevini ileri 

sürmektedir. Grafiğin kenarlarına atanmış ağırlıkların toplamının ençoklanması kriterinin yanında,  

bu ek kısıtlamalar da enazlanması gereken kriterler olarak değerlendirilmektedir. Bu çalışmada, 

problemi çözmek için değişik çoklu-kriter genetik algoritma yaklaşımları gözönüne alınmaktadır. 

Klasik yaklaşım olan Ağırlıklandırılmış Toplam, seçkinci olmayan bir evrimsel algoritma olan 

VEGA ve popüler bir seçkinci evrimsel algoritma olan SPEA probleme çözüm yöntemleri olarak 

düşünülmüş, başarımları birtakım çoklu-kriter değerlendirme ölçütleri bakımından mukayese 

edilmiştir.   

Anahtar Kelimeler: Personel Atama Problemi, Çoklu Kriter Eniyileme, Genetik Algoritma
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CHAPTER 1

INTRODUCTION

Genetic Algorithm (GA) is a popular and successful means of solving optimization problems. In 

this work, a genetic algorithm solution is sought for the personnel assignment problem with 

hierarchical ordering and team constraints, which is a multi-objective extension of the personnel 

assignment problem.

Personnel assignment problem with hierarchical ordering and team constraints is a real life 

problem, which appears in personnel assignment of large hierarchical organizations, such as 

military. In such hierarchical organizations, the personnel to be assigned form a level graph 

reflecting the rank structures of personnel, and the positions to be filled form a forest, where each 

tree in the forest represents a set of hierarchically related positions. The matching should satisfy the 

hierarchical ordering constraints represented on two partitions, which means a person assigned to a 

superior position should have a higher rank. Also, the nodes of both partitions can form mutually 

exclusive sets, where all members of a set in the personnel partition are expected to be matched 

with members from the same set in the positions partition. On the personnel partition, these sets 

may represent families or teams that must be assigned together to the positions at the same location, 

and, on the positions partition, these sets may represent the locations of the positions. Finally, the 

weights on the edges connecting the personnel set to the positions set represent the expected 

performance of personnel on jobs.

Personnel assignment problem with hierarchical ordering and team constraints is a multi-objective 

optimization problem. Besides the objective of maximizing the sum of weights assigned to the 

edges of the bipartite graph, the hierarchical ordering and team constraints can also be treated as 

objectives which are subject to minimization. In order to solve this multi-objective optimization 

problem, three methods, each of which represent a different multi-objective evolutionary algorithm 

approach are employed. Weighted Sum is a classical approach, which combines the multiple 

objectives into a single one. VEGA, on the other hand, represents a non-elitist multi-objective 

evolutionary algorithm, which returns a set of trade-off solutions, instead of a single one. Finally, 
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SPEA is an elitist multi-objective evolutionary algorithm, which keeps track of and regularly 

updates a set of non-dominated solutions that have been encountered throughout the evolution 

process.

 In the second chapter, the personnel assignment problem and its variations are explained. In 

chapter 3, working principles of genetic algorithms are explained in detail. Since the assignment 

problem is permutation based, special crossover techniques for permutation based chromosomes are 

also introduced in this chapter. Multi-objective optimization concepts are introduced in the fourth 

chapter. In the fifth chapter, the aspects of the personnel assignment problem as a GA problem are 

considered, and the three approaches, namely, Weighted Sum, VEGA and SPEA are explained in 

detail. Finally, in chapter 6, a detailed analysis of performances of these methods are presented, 

with respect to a number of multi-objective optimization criteria, and afterwards, the conclusion of 

this thesis work is asserted in chapter 7.
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CHAPTER 2

PERSONNEL ASSIGNMENT PROBLEM

In personnel assignment problem, the possible ways of assigning a set of personnel to available 

positions from a set with the same cardinality are sought, while taking also into account  the 

weights each personnel is given with respect to each position. The weight value of a <personnel, 

position> tuple may keep information about the eligibility or the desire of the personnel for the 

position in subject, the resulting profit that would be gained, or something else, according to the 

nature of the problem.

                  

Figure-1 Bipartite Graph – Personnel and Positions
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The problem can be illustrated as in Figure-1. As it can be seen from this figure, there are two 

mutually exclusive sets, one with the personnel to be assigned, and the other with positions, as their 

elements. Moreover, each personnel from the first set is connected to each position in the second set 

with an edge, which has a corresponding weight value. A sample weight assignment to edges can 

be seen in Table-1.

Table-1 A Possible Weight Distribution on Edges

1 2 3 4 5 6 7

a 0 6 2 4 6 6 1

b 2 1 0 2 0 6 2

c 1 4 7 3 1 3 0

d 7 0 0 2 5 0 2

e 5 1 2 6 4 0 2

f 2 4 0 1 7 5 0

g 3 1 2 3 5 5 6

In this problem, the aim is to match each person from the personnel set with one of the elements 

from the positions set in such a way that, the sum of the weights of the corresponding edges 

resulting from this assignment will be the maximum available. Obviously, this problem is a 

bipartite graph matching, with weights on edges. In the literature, this is also known as the standard 

assignment problem, or perfect maximum weighted bipartite graph matching, which is a well 

known problem in graph theory. [Mehlhorn & Näher 1999]

2.1 Standard Assignment Problem

A graph G(V, E) is a data structure, which can be represented by a set of vertices V and a set of 

edges E, which connect any two vertices in V. 

A matching M in a graph G = (V, E) is a subset of E such that, no two edges in E share a common 

vertex from V.

A matching M is called perfect, if it covers all vertices in V. That is, in order M to be perfect, for 

each vertex v in V, there should be an edge in M which covers v as one of its ending nodes.
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A graph is called bipartite if and only if its vertex set V can be divided into two disjoint sets X and 

Y such that no two vertices from the same set are connected by an edge in E. Figure-1 constitutes 

an example to a bipartite graph.

A maximum weighted matching M in a graph G = (V, E) along with a weight function w: E  R is 

a matching where summing up w(e) values for all e  M will result in the maximum possible sum, 

when applied over all possible subsets of E that represents a proper instance of matching.

From these definitions, perfect maximum weighted bipartite graph matching can be automatically 

defined. A perfect maximum weighted bipartite graph matching M in bipartite graph G = (V = (X, 

Y), E) is a subset of E such that: 

 no two edges in M share a common vertex

 all of the vertices from X and Y are covered by an edge in M

 the edges in M start from and end with vertices from distinct sets

 the cardinalities of X and Y are equal.

According to this definition, the standard assignment problem automatically constitutes an instance 

of perfect maximum weighted bipartite graph matching. It can be represented according to this 

formalization:

 X is the set of personnel

 Y is the set of positions

 E is the set of edges that connect each personnel to each position

 Weight table (given in Table-1) is the weight function w:E  R

 Finally, M is the <personnel, position> assignments, which is expected to maximize the 

“profit”.

In the literature of graph theory, there exists a number of ways to solve the perfect weighted 

bipartite graph matching problem in polynomial time. The most classical algorithm is due to 

Edmonds [Edmonds 1965], which solves the problem in O(V3) time. This algorithm is based on the 

Hungarian method [Kuhn 1955, Munkres 1957]. More sophisticated and efficient algorithms can 

also be found in the literature. [Galil 1986]
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2.2 Assignment Problem with Hierarchical Ordering Constraint

In the standard version of the assignment problem, there are no restrictions on possible matchings 

of the bipartite graph. That is, any vertex from X can be matched with a vertex in Y without any 

restriction. The only objective is to maximize the weights on edges. However, personnel 

assignment problem is a real-life problem encountered in hierarchical organizations such as 

military. In such a real-life problem, it is natural to expect constraints on possible matchings. For 

example, as a military organization, the Turkish Armed Forces assign thousands of personnel to 

vacant positions every year, and want to utilize the personnel to a maximum extent by assigning the 

right person to the right job, while taking into consideration the hierarchy constraint. [Dinc & 

Oguztuzun 1998, Cimen 2001]

According to this variation of the assignment problem, there is a hierarchy among the elements of 

both the set of personnel and the set of positions.

Figure-2 Level Graph - Hierarchy Levels Among Personnel

The hierarchy among the personnel of military is obvious: as it can be seen from the level graph in 

Figure-2, there are some levels in military organizations, where every person can be a member of 

exactly one of the levels (ranks) in the level graph, and a member of an upper level dominates all 

members in lower levels.

The set of positions also has a hierarchical structure among its elements (Figure-3). Intuitionally, 

this may be interpreted as a hierarchy in the case of a general manager, managers and their sub-

workers.

a
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Figure-3 Hierarchy Among Positions

However, in the case of positional hierarchy, as opposite to personnel hierarchy, there does not 

exist the notion of levels. Instead, the hierarchical structure is represented as a tree, where a 

position only dominates the positions that could be reached by following its branches. Since, 

obviously, there may be irrelevant positions which do not originate from the same single root, we 

may have a number of trees (a forest) instead of a single tree structure.

 A person A dominates the person B (A > B) if and only if the rank of A is higher than the 

rank of B.

 A person A is equivalent to the person B (A = B) if and only if they share the same level.

 A position Q dominates the position R (Q > R), if and only if, following the branches, the 

node that represents the position R on the positional hierarchy tree could be reached, 

starting from the node that represents the position Q on the tree.

According to these definitions, the concept of hierarchical violation may be introduced as follows:

The number of hierarchical violations in matching M is the number of edge pairs <e1, e2>  in M, 

where the starting vertex (position) v1 of e1 dominates the starting vertex v2 of  e2 (v1 > v2), but the 

ending vertex (person) y1 of e1 does not dominate or is dominated by the ending vertex y2 of  e2 (y2

> y1 or y2 = y1). That is, a general cannot be assigned to a position that is supposed to serve a 

position occupied by a private.      

Along with the bipartite graph and weights, having also the personnel ranks and positional 

hierarchy structure in hand, this version of the assignment problem is known as the Assignment 

Problem with Hierarchical Ordering Constraint, APHOC, due to Toroslu [Toroslu 2003]. In this 

natural variation of the standard assignment problem, the objective remains the same: finding a 

perfect matching on the bipartite graph that maximizes the weights. The actual distinction in this 

version is introduced by the single constraint of minimizing the number of hierarchical violations. 

32

1

4 5

7
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In his work, Toroslu proves the NP-completeness of this variation of the problem and proposes an 

efficient approximation algorithm.

2.3 Assignment Problem with Hierarchical Ordering and Team Constraints 

In real life, when a person is assigned to a position, he / she must relocate to the city in which the 

position is located. Sometimes, there may be married couples in the personnel set. Therefore, in the 

assignment task, it also becomes necessary to assign such couples to positions that are located in the 

same city.

In this extension of the problem, while trying to maximize the weights, this new constraint along 

with the hierarchical ordering constraint also needs to be taken into account. This new version of 

the problem is called Assignment Problem with Hierarchical Ordering and Team Constraints. The 

new constraint is called the team constraint, because, the concept of couples is generalized to 

teams, in order to add more challenge to the problem.

According to this new version of the personnel assignment problem, there must be additional 

location information for positions. Moreover, there is a number of teams, each of which has a 

number of members greater than two. All members of a team must be assigned to positions such 

that they will be able to live in the same location.

 In this thesis work, a genetic algorithm solution is sought for the Assignment Problem with 

Hierarchical Ordering and Team Constraints.

2.4 Constraints and Objectives 

In an optimization problem, generally a set of constraints accompanies the problem, which restricts 

the whole search space of decision variables to a subset of it. If a solution that is found does not fall 

into this restricted region, such a solution is called infeasible and is not accepted as a solution. This 

kind of constraints that affect the acceptability of a solution are called hard constraints. However, 

there may also be a number of constraints that should be respected, but which will not affect the 

acceptability of the solution. Such constraints are called soft constraints.  

In the assignment problem with hierarchical ordering and team constraints, these constraints are 

stated as follows:
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 The solution should not lead to hierarchical violations

 The solution should not lead to team violations

There is also a single objective function:

 The solution should maximize the weight total

However, if these constraints are treated as hard constraints, in most of the problem instances, the 

search space will be tiny or almost an empty set, which will lead to infeasibility. For this reason, the 

problem is redefined as follows:

 The solution should maximize the weight total

 The solution should minimize hierarchical violations

 The solution should minimize team violations

According to this scheme, the constraints are also treated as objectives, which are subject to 

minimization.
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CHAPTER 3

GENETIC ALGORITHMS

The main idea in the Evolution Theory of Charles R. Darwin is the survival of the fittest, which is 

also known as natural selection [Darwin 1859]. According to this theory, in a population of living 

things, fitter generally have a better chance to stay alive. Therefore, they, and their offspring who 

inherit their genetic content partially or completely from their parents, have a higher probability to 

go into next generations, and thus have a higher chance to transfer their genetic material to 

individuals which will appear in successor generations. Genetic Algorithms, which is also known as 

Evolutionary Algorithms, is a well known and widely accepted local search algorithm, which tries 

to simulate this theory. [Holland 1975]

3.1 Basic Concepts

GeneticAlgorithm (Integer populationSize,
Probability reproductionProbability,
Probability mutationProbability)

begin
create Population p of populationSize

and populate it with randomly generated individuals;

while stopping condition not met do
begin

evaluate the fitness of individuals in population p;

// start new generation

create an empty Population temp of populationSize;

// populate new generation

while capacity of temp is not full do
begin

assign Boolean doReproduction randomly,
according to reproductionProbability; 

if doReproduction is TRUE then
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begin
select an individual from p
and assign it to Individual firstParent;

select an individual from p
and assign it to Individual secondParent;

reproduce firstParent, secondParent
and get Individual newIndividual;

end
else

select an individual from p
and assign it to 
Individual newIndividual;

assign Boolean doMutation randomly,
according to mutationProbability;

if doMutation is TRUE then
mutate newIndividual;

insert newIndividual to population temp;
end;

discard population p;
set p as temp;

end; 
end;

Figure-4 Basic Outline of Genetic Algorithms

A genetic algorithm explores a number of potential solutions in parallel. It initially creates a 

population. A population is a set of individuals, each of which has its own genetic content: 

chromosome.  In genetic algorithms, this genetic content, which is represented as a string over a 

finite alphabet, corresponds to a potential solution instance to the problem, and is coded according 

to a problem-specific coding scheme.  In the initial population creation process, the genetic contents 

of individuals, that is, chromosomes, are generally produced in a randomized fashion in order to 

assure diversity in the initial population. Afterwards, in a loop of evolution, individuals and their 

offspring are transferred to new generations, taking into consideration the quality of their 

chromosomes, which is called fitness. Fitness is the objective function which takes an individual as 

an argument, evaluates its eligibility as a solution to that problem by examining its genetic content 

(chromosome), and assigns a fitness value to the individual as a result. The better fitness value 

gives to an individual a better chance to be selected for survival or reproduction.

An individual that exists in the current generation may be selected directly, or it may be matched 

with another individual and the resulting offspring may be transferred to the next generation. 
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Reproduction probability is the parameter that determines what percentage of the new generation

will be composed of the individuals directly transferred from the previous generation, and what 

percentage will be composed of newly produced offspring.

A genetic algorithm should stop the simulation of the evolution process at some point. It may be 

terminated after exceeding a predetermined time threshold, producing a predetermined number of 

generations or reaching a desired fitness threshold. However, a genetic algorithm is generally 

terminated when it converges. Convergence occurs when most of the individuals in a population 

have very similar genetic content. In some situations, this may happen very rapidly so that it 

becomes impossible to reach to the optimal solution. This problem, which is called premature 

convergence, is similar to the problem of getting stuck on a local maximum that is encountered in 

local search methods. In order to overcome the problem of premature convergence, another natural 

mechanism which is observed in evolution can be employed: mutation. 

During the transfer of genetic contents from parents to offspring, something may go wrong, and 

random changes may occur in chromosome. Such changes may also occur when an individual is 

exposed to extreme conditions such as radiation. As a result, the fitness value of the individual may 

degrade considerably. However, this helps to keep diversity in population and such changes may 

lead to very good results in the next generations. 

In genetic algorithms, the concept of mutation is employed by introducing a mutation probability

parameter. Before inserting an individual to the next generation, random changes on its 

chromosome is performed according to this probability.

The effect of mutation can be visualized in the following way:

Figure-5 The Effect of Mutation
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Assume that there is a ball and a box with the given shape in Figure-5. The aim is to make the ball 

go to the deepest location (global minimum) of this box. However, there is only a hole on the top of 

the box to let the ball in, and the actual shape of the surface inside cannot be seen. If the ball is let 

from the hole, it can go to a local minimum and stop there. If the box is shaken, the ball can 

dislocate from the local minimum and can have a chance to find its way to the global minimum. But 

if the box is shaken too hard, the ball can dislodge from the global minimum, if it was already 

located there. 

In a similar way, in order to prevent premature convergence, mutation can be employed (shaking 

the box), but it must be done rarely enough, so that the population can finally converge to a 

solution.

3.2 Chromosome Representation in GA

In genetic algorithms, each individual that is a member of the population represents a potential 

solution to the problem. This solution information is coded in the associated chromosome of that 

individual. A chromosome is a string of gene positions, where each gene position holds an allele 

value that constitutes a part of the solution to the problem. Allele value at a gene position represents 

an element from a finite alphabet. This alphabet depends on the nature of the problem. There is a 

number of possible chromosome representations, due to a vast variety of problem types. However, 

there are two representation types which are most commonly used: binary representation and 

permutation representation.  

3.2.1 Binary representation

The most common chromosome representation used in genetic algorithms is the binary 

representation. In this representation, the finite alphabet domain which each allele at each gene 

position takes its value from is the set {0, 1}. If the chromosome length is fixed (which is generally 

true), each chromosome will be a string of {0, 1}n, where n represents the chromosome length.

1 0 1 1 0

Figure-6 Binary Chromosome Representation
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The chromosome given in Figure-6 may hide a completely different information, depending on the 

problem. If the problem is concerned with finding the maximum value of the function f(x): {0, 31} 

  R, then the chromosome given in Figure-6 would be representing the decimal value of 22.   

3.2.2 Permutation Representation

In the Travelling Salesman Problem (TSP), there are a number of cities, where each pair of cities 

has a corresponding distance [Lawler et al. 1985]. The aim is to visit all the cities such that the 

total distance travelled will be minimum. Obviously, a solution, and therefore a chromosome which 

represents that solution to the TSP, can be given as an order, that is, a permutation, of the cities.

4 1 3 5 2

Figure-7 Permutation-Based Chromosome Representation

The chromosome given in Figure-7 represents a solution such that the cities should be visited in this 

order: fourth, first, third, fifth and second.

3.3 Selection Mechanism

To mate the individuals for reproduction to create new offspring, or to transfer a part of the existing 

population to the next generation, we need a mechanism to select individuals. It is possible to 

perform the task of selection completely in a randomized fashion, which is called uniform selection. 

This selection mechanism will eventually cause the algorithm reach the global maximum. However, 

according to this scheme, convergence of the population will almost be impossible, and termination 

will take a considerably long time.

The main advantage of genetic algorithms comes from being able to calculate the eligibility of 

individuals as a potential solution to the problem, producing better generations at each time  by 

making use of these fitness values, and thus converging to an optimal solution in the search space. 

For this reason, most selection mechanisms make use of the fitness values of individuals. Some of 

the most preferred selection schemes are the elitist selection, roulette wheel selection and 

tournament selection.  
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3.3.1 Elitist Selection

Elitism is a general concept and there exists a number of ways to employ elitism in genetic 

algorithms [Deb 2001]. One of the ways to realize this is to favor the top individuals and to ignore 

the remaining ones. According to this selection scheme, individuals in the population are sorted 

according to their fitness values. The best n individuals are included in the selection process and the 

remainings are discarded. The selection among the best n individuals is realized just as in the way it 

is done in uniform selection. That is, each individual that belongs to top n has a probability of (1 / 

n) of being selected. The pseudocode given in Figure-8 illustrates the mechanism:

ElitistSelection (Population p, Integer n) : returns an Individual
begin

sort population p according to fitness values 
of individuals in descending order;

assign Integer i a random number from the range [0, n-1];

return the ith individual of population p;   
end;

Figure-8 Elitist Selection

This selection method is widely used for its contributions in the speed of convergence, because of 

obvious reasons. However, it should be used carefully, in order not to encounter premature 

convergence. 

    

3.3.2 Roulette Wheel Selection

Consider a roulette wheel with a number of slices on it, each of which has an associated width 

(Figure-9).
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Figure-9 Roulette Wheel

If a ball is put on this wheel and the wheel is rotated, the ball will finally stop on one of the slices, 

most probably on one of the widest ones. However, all slices have a chance, with a probability that 

is proportional to its width. Roulette wheel selection attempts to simulate this behaviour. The 

pseudocode given in Figure-10 illustrates this mechanism:
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RouletteWheel (Population p) : returns an Individual
Begin

// first of all, calculate the sum of fitness values of all
// individuals, if it is not known beforehand

initialize Real fitnessSum as 0.0;

for all Individual ind of population p, increase
fitnessSum with the fitness value of ind;

// randomly assign a value to determine 
// how much the wheel will turn

assign Real threshold a random turn amount by
fitnessSum * (a random real number from range [0.0, 1.0]);

// find the partition where the ball on the wheel will stop

initialize Real cumulative as 0.0;

for each Individual ind of population p do
begin 

increase cumulative by the fitness value of ind;

if cumulative >= threshold then
return ind; 

else
continue with other individuals in p;

end; 
end;

Figure-10 Roulette Wheel Selection

Obviously, this selection mechanism cannot be used directly with a genetic algorithm where 

negative fitness values are allowed. In order to employ roulette wheel selection in such situation, a 

transformation over the fitness values can be applied.

The basic advantage of roulette wheel selection is in the way that it discards none of the individuals 

in the population and gives a chance to all of them to be selected. Therefore, diversity in the 

population is preserved. That is, the individuals other than the best ones also have the chance to 

transfer their genetic content to next generations, some of which may be hiding very valuable 

alleles. If it were not so, none of the gamblers would put their money into danger by selecting a 

slice on the wheel other than the widest one.
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3.3.3 Tournament Selection

In tournament selection technique, n individuals are selected randomly from the population and the 

one with the highest fitness value is returned. The parameter n represents the tournament size. The 

pseudocode given in Figure-11 illustrates this selection technique:

TournamentSelection (Population p, Integer tournamentSize) : 

returns an Individual
begin

// select an individual randomly as the current winner

assign Integer i a random number in the range
[0, (size of p) - 1];

initially set Individual winner as the ith individual
of population p; 

// at each remaining tournament step, select an individual 
// randomly. If it is better, update the the winner

initialize Integer tournamentStep as 1;

while tournamentStep < tournamentSize do
begin

assign Integer i a random number in the range
[0, (size of p) - 1];

if fitness value of the ith individual of population
p is better than fitness of the current winner then

change winner as the ith individual of p;

increment tournamentStep by 1;
end;

return winner;
end;

Figure-11 Tournament Selection

In the pseudocode given in Figure-11, an individual can be compared with itself, although this may 

sound weird in a real tournament. However, among all randomness in GA processes, this situation 

can simply be ignored.
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Again, as in the case of roulette wheel selection, tournament selection also gives a chance to all 

individuals to be selected and thus it preserves diversity, although keeping diversity may degrade 

the convergence speed. However, diversity may be favored up to some extent because of its 

obvious advantages.

3.4 Reproduction Mechanism

As it can also be seen in the pseudocode of the main body of a genetic algorithm given in Figure-4, 

newly produced offspring constitute a part of the new generation, according to the given 

ReproductionProbability parameter. According to this probability, two parents are selected at each 

time and their chromosomes are blended and assigned to the new offspring. This blending process 

is performed according to a Reproduction Mechanism, which is called crossover in biology. 

In the nature, although it may be much more complicated, crossover basically occurs as follows: 

Chromosomes of both parents are randomly divided from the same gene positions into a number of 

segments and the corresponding segments are exchanged and copied to the chromosome of the 

newly created offspring. Therefore, the offspring inherit traits from both parents.

In genetic algorithms, using binary string representation, the crossover process can be visualised as 

follows: 

                  

Figure-12 One-Point Crossover

1 0 1 1 0 1

0 0 0 1 1 0

1 0 1 1 1 0

0 0 0 1 0 1

parent1

parent2

segment1 segment2

offspring1

offspring2
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This crossover technique is called one-point crossover, because the chromosomes are divided into 

two segments at a single gene position. Variations of this technique such as two-point (can also be 

generalized to n-point) also exist in the literature.

   

3.4.1 Permutation Based Crossover Techniques

If  classical crossover techniques are applied on a permutation-based chromosome,

Figure-13  One-Point Crossover on a Permutation-Based Chromosome

invalid offspring may result, as illustrated in Figure-13. Such crossover techniques cannot preserve 

permutations. For this purpose, special techniques for permutation-based chromosomes are 

deployed, which ensure that, when applied on two permutation-based chromosomes, the

chromosomes of the resulting offspring are also valid permutations. Beyond problem-specific 

special crossover methods, Partially Mapped Crossover (PMX), Ordered Crossover (OX) and 

Cycle Crossover(CX) are the most popular generic permutation-based crossover techniques used in 

genetic algorithms. [Goldberg & Linge 1985, Davis 1985, Oliver et al. 1987]

3.4.1.1 Partially Mapped Crossover (PMX)

The main purpose of a crossover operator is to create offspring that inherit traits from both parents. 

Partially Mapped Crossover (PMX) tries to obey this rule as much as it can, and it basically works 

like traditional crossover techniques like one-point crossover, while repairing damages instantly, 

that may occur on the permutation structure during the crossover process.

3 2 1 5 4 6

5 4 2 1 6 3

5 4 2 5 4 6

3 2 1 1 6 3

parent1

parent2

offspring1

offspring2
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On these two parent chromosomes, the allele values at the first three gene positions will be 

swapped. 

Starting from the first gene position, values are swapped:

and the damage, emphasised with underlines, is repaired in a straightforward way:

The allele values in the second and the third gene positions are swapped and the damages are 

repaired in a similar way:

swap allele values at the second gene positions:

3 2 1 5 4 6

5 4 2 1 6 3

5 2 1 5 4 6

3 4 2 1 6 3

5 2 1 3 4 6

3 4 2 1 6 5

5 4 1 3 4 6

3 2 2 1 6 5

parent1

parent2

offspring1

offspring2

offspring1

offspring2

offspring1

offspring2
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repair:

swap allele values at the third gene positions:

repair:

PMX tries to inherit traits from both parents as much as possible, but it cannot escape from 

introducing new traits that exist in the genetic content of none of the parents.

3.4.1.2 Order Crossover (OX)

In some permutation-based problems like TSP, relative order of allele values may be more 

important than absolute allele values at gene positions. Besides keeping traits from parents, Order 

Crossover (OX) takes also this aspect into account while performing the crossover operation. The 

following example illustrates how OX works:

5 4 1 3 2 6

3 2 4 1 6 5

5 4 4 3 2 6

3 2 1 1 6 5

5 1 4 3 2 6

3 2 1 4 6 5

3 2 1 5 4 6

5 4 2 1 6 3

offspring1

offspring2

offspring1

offspring2

offspring1

offspring2

parent1

parent2
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Firsly, selected segments are exchanged:

Then, empty gene positions of the first offspring are filled with the remaining possible values (1, 3, 

6) 

using the relative order in the first parent: 

the first offspring is: 

Similarly, empty gene positions of the second offspring are filled with the remaining possible 

values (4, 5, 6) using the relative order in the second parent: 

the second offspring is: 

As in the case of PMX, OX may also introduce traits that come from none of the parents (as it can 

be seen in offspring1, shown with a different font in boldface), but it preserves some of the relative 

orderings from either parent.

5 4 2

3 2 1

3 2 1 5 4 6

5 4 2 3 1 6

5 4 2 1 6 3

3 2 1 5 4 6

offspring1

offspring2

parent1

offspring1

parent2

offspring2
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3.4.1.3 Cycle Crossover (CX)

In both PMX and OX, it is possible to introduce traits that exist in none of the parents. Cycle 

Crossover (CX) is designed to guarantee that each allele value at each gene position of the offspring 

chromosomes comes from one of the parents.

As opposite to PMX and OX, the chromosomes are not splitted to form segment(s) to swap. Just 

starting from the first gene position from the first parent, the following procedure is applied till the 

end:

For the first offspring, the allele value at the first gene position of the first parent is copied:

The second offspring has a single chance for its first gene position, and that is the allele value at the 

first gene position of parent2. Because, otherwise an additional trait will be introduced:

Since the allele value 8 for the second offspring is fixed, this value should be kept intact in the first 

offspring, according to the rule.

Similarly, the allele value 3 in offspring2 should be kept at the same gene position:

  

This continues in the same way and the first cycle (when the allele value that was first started with 

is reached) is completed:

6 3 10 2 1 4 7 9 8 5

8 1 2 10 6 9 4 7 3 5

6

8

6 8

8 3

6 3 1 8

parent1

parent2

offspring1

offspring2

offspring1

offspring2

offspring1
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The second cycle starts with with the first allele value that has not yet been considered in parent2 

(at each cycle the parent to start with should change). The same applies in the rest of the cycle:

The third cycle starts with the first untouched allele value of parent1:

Finally, the last cycle starts with the second parent:

As it can be seen from the resulting offspring, each allele value at each position comes from one of 

the parents.

8 1 6 3

6 3 2 1 8

8 1 10 6 3

6 3 2 10 1 8

8 1 10 2 6 3

6 3 2 10 1 4 8

8 1 10 2 6 9 3

6 3 2 10 1 4 9 8

8 1 10 2 6 9 7 3

6 3 2 10 1 4 7 9 8

8 1 10 2 6 9 4 7 3

6 3 2 10 1 4 7 9 8 5

8 1 10 2 6 9 4 7 3 5

offspring1

offspring1

offspring1

offspring1

offspring1

offspring1

offspring2

offspring2

offspring2

offspring2

offspring2

offspring2

offspring2
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3.5 Mutation Mechanism

In order to abstain from getting stuck onto a local maximum, population diversity is required to be 

kept up to some extent. In genetic algorithms, this is achieved by the help of a mutation mechanism,  

which causes some sudden changes on the traits of individuals, although generally rarely, according 

to a predefined mutation probability parameter. 

In binary chromosome representation, such changes can be done by inverting the allele value of a 

random gene position from 0 to 1 (and vice versa). In permutation-based representation, this can be 

achieved by swapping the allele values at two randomly chosen gene positions.
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CHAPTER 4

MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

In a multi-objective (or multi-criteria) optimization problem, there are more than one objective 

function to be taken into consideration. Besides the existence of multiple objective functions, there 

may also be some constraints, which put restrictions on the search space.

Here is a formalization of multi-objective optimization problem:

optimize fi(x) for all i = 1, 2, ..., I

with gj(x)  0 for all j = 1, 2, ..., J

and hk(x) = 0 for all k = 1, 2, ..., K.

In this formalization, x represents the solution vector (a point in the search space) that holds the 

decision variables, the function set f represents the objective functions subject to optimization, the 

function set g contains the inequality constraints and finally the function set h contains the equality 

constraints.

  

In the single-criterion case, generally there exists a global maximum, and the aim of a search 

algorithm is to reach to that peak point. However, in the existence of multiple objectives, this is 

generally not the case. As in almost all real life problems, the objective functions which are 

expected to be optimized are generally in conflict, that is, it is impossible to find out such a single 

point which will cover optimal values with respect to all objective functions. 

The following example illustrates the situation (the example is from the book of Kalyanmoy Deb) 

[Deb 2001]:
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Figure-14  Buying a Car – Cost vs Comfort

Assume that there is a need to buy a car. As it is the case that everybody would like to select the 

one that is cheap and as comfortable as possible, one would like to maximize the comfort and 

minimize the cost of the car. However, if some trivial exceptions are ignored, it is generally not 

possible to find such a car that is both very cheap and comfortable. As it can be seen in Figure-14, 

since a preference must be done between A and B, one has to sacrifice one of the objectives, 

depending on subjective preferences. If A is chosen, the cost is minimized, but there is a loss in 

comfort, however in choice B, there is a gain in comfort but this time more money should be paid.     

As the given example suggests, it would be possible to find out points that would represent the 

optimal value regarding each objective independently. However, it would generally not be possible 

to find an optimal solution vector which will favor all objectives. That is, in multi-objective 

optimization problems, there is actually no “optimal” solution. Instead, there is a set of possible 

trade-off solutions, among which the end user is expected to make a selection according to personal 

preferences. Therefore, there is a need for redefinition of the concept of optimality for the case of 

multiple objectives: Pareto Optimality. Before that, the concept of dominance should be

introduced:

4.1 Dominance

A solution vector x is said to dominate the solution vector y when:

 i{1, 2, ..., I} such that fi(x)  fi(y) and

  i{1, 2, ..., I} such that fi(x) > fi(y).

B

A

comfort

cost
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That is, x dominates y when it is as good as y regarding each objective, and there is at least one 

objective with respect to which x is better than y.

4.2 Pareto Optimality

A solution vector x  X is Pareto-Optimal, if there is no solution vector in the search space X that 

dominates x. 

Such pareto-optimal solutions form the Pareto-optimal Set. A sample pareto-optimal set of a 

problem with two objective functions subject to minimization is illustrated in Figure-15:

Figure-15  Pareto-Optimal Front

The curve shown in Figure-15 is called the Pareto-Optimal Front, which holds the elements of the 

pareto-optimal set. The points that fall onto the inside region of this curve form the attainable set, 

elements of which represent sub-optimal solutions, which  are dominated by some solutions on the 

search space. However, the points on the pareto-optimal front can be dominated by none of the 

solutions in the search space, and thus it is not possible to enhance one of the objectives on this 

curve without sacrificing the other.

Figure-16 illustrates possible pareto-optimal fronts for problems with two objectives, with respect 

to their optimization configurations regarding minimization or maximization:

Objective-1

Objective-2

Pareto-Optimal front
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Figure-16  Example Pareto-Optimal Fronts for a 2-Objective Problem

Clearly, the aim of a solution mechanism for a multi-objective optimization problem should be 

finding as large of a trade-off solution set as possible, whose elements are scattered close to or just 

on the pareto-optimal front. That is, in order to be able to present to the end user a diverse set of 

possible non-dominated trade-off solutions, they need to be chosen on the pareto-optimal front, or 

at least close to it. Figure-17 illustrates an ideal set of trade-off solutions in this respect:

Objective-1 (minimization)

Objective-2 (minimization)

Objective-1 (maximization)

Objective-2 (minimization)

Objective-2 (maximization)

Objective-1 (minimization)

Objective-2 (maximization)

Objective-1 (maximization)
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Figure-17 Ideal Distribution of Trade-Off Solutions
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CHAPTER 5

PERSONNEL ASSIGNMENT AS A GA PROBLEM

5.1 Chromosome Representation

The core of the assignment problem with hierarchical ordering and team constraints is matching a 

set of personnel to a set of positions, where the cardinality of these two sets are equal. Since each 

personnel can be assigned to exactly one position, a potential solution can be represented as an 

ordering of personnel (an ordering of positions is also possible):

Figure-18 Chromosome Representation of Personnel Assignment Problem

This chromosome holds the following information: person with id 8 is assigned to the first position, 

person with id 1 is assigned to the second position, and so on. 

From this perspective, it seems best to use a pure permutation representation because of the nature 

of the problem and the simplicity of the representation, although some other permutation 

representation methods that allow traditional crossover and mutation techniques exist in the 

literature. [Ucoluk 2002]

5.2 Weighted Sum – A Classical Approach 

The pioneering approach to solve a multi-objective optimization problem is the intuitive idea of 

collecting all objectives into a single one. There is a set of classical methods, which aggregate the 

8 1 10 2 6 9 4 7 3 5
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objective functions and try to find a single solution that represents the optimal of this single 

function. The most popular method that falls into this category is the Weighted Sum, which still 

presents a powerful means of solving multi-objective optimization problems. [Liu et al. 1998, 

Jakob et al. 1992, Gen et al. 1995, Rubenstein-Montano & Malaga 2002]

In this weighted approach, a single objective function from all objective functions is built, by giving 

each of them a weight, according to its importance. Each objective function is multiplied with its 

corresponding weight, and they are summed up to obtain the fitness value that is to be assigned to 

the individual.

Figure-19 Weighted Fitness

 Some objectives may be subject to minimization and some others to maximization. In 

order to get around this complicacy, the duality principle is used, which states that 

maximization of an objective is equivalent to minimization of its negated form [Rao 

1984]. In Figure-19, the overall objective function is preferred to be maximized. 

Therefore, the objective functions that are subject to minimization are negated.

 The magnitude of values of individual objective functions may differ considerably. For 

example, in a problem instance, the weight total may be expressed in thousands, whereas 

the number of team violations may be expressed in tens and the number of hierarchical 

violations in hundreds. Therefore, in order to abstain from biasing the solution towards an 

individual objective, these values should be normalized. In Figure-19, this is achieved by 

dividing the actual objective value to previously calculated maximum values, in order to 

get values on a scale of [0,1].

 The weight values that are assigned to individual objective functions should sum up to 1. 

That is, if 50 % importance is given to the minimization of hierarchical violations, and 30 

Fitness = 

–   teamWeight * (teamViolations / maximumPossibleTeamViolations)
–  hierarchyWeight *( hierarchyViolations / maximumPossibleHierarchyViolations)
+ weightTotalWeight * ( weightTotal / maximumPossibleWeightTotal)
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% of importance is assigned to the maximization of weight total, the associated weight 

value of team violation minimization automatically becomes 20 %.

5.2.1 Advantages

 From a practical point of view, a user expects a single solution, instead of a set of solutions 

which has to be examined further. With this respect, this method is intuitive and easy to 

use.

 Since this method combines all objective functions into a single one, its implementation is 

straightforward using the basic genetic algorithm template.

 Since weight values can be assigned to individual objectives according to their importance, 

this method can serve as a genetic algorithm solution not only to the personnel assignment 

problem with hierarchical ordering and team constraints, but also to a collection of 

personnel assignment problems. That is, having this method in hand, the previous versions 

of the problem, namely, the standard assignment problem and the assignment problem 

with hierarcical ordering constraints, and also similar variations can be solved, using 

appropriate weight values.

5.2.2 Disadvantages

 Appropriate weight values are required to be known and set beforehand.

 Weighted Sum returns a single solution, instead of a set of trade-off solutions. In order to 

find out some other trade-off solutions, the algorithm needs to be run using different 

weight configurations.

 This method does not guarantee to reach all possible solutions on the pareto-optimal front, 

if the function that determines the pareto-optimal front of the problem is non-convex. [Deb 

2001]

A function is convex, if and only if any two points on its curve can be connected with a line that 

falls completely inside the graph (Figure-20):
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Figure-20 Convex and Non-Convex Functions

Figure-21 sketches the pareto-optimal solutions of a small sample problem with 8 personnels and 

positions (chromosome length is equal to 8) on a three dimensional objective space. As it can be 

seen from this figure, the pareto-optimal solutions are scattered in a randomized fashion and 

therefore does not represent a smooth surface, which inherently leads to the conclusion that the 

pareto-optimal front is non-convex. This means that, Weighted Sum does not ensure that all pareto-

optimal solutions in the pareto-optimal set are reachable. That is, even if  all possible weight 

configurations are tried, some pareto-optimal solutions may not be reached.

Figure-21 Pareto-Optimal Front of a Small Problem
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5.3 Evolutionary Algoritms for Multi-Objective Optimization Problems

The main drawback of Weighted Sum is that, in each run, it can only find a single solution, instead 

of a set of trade-off solutions. There is also a need for setting an appropriate weight configuration 

beforehand. Furthermore, even run a number of times with different weight configurations, 

obtaining solutions from the entire pareto-optimal front is not guaranteed. In order to walk around 

such disadvantages, a number of algorithms are devised, which are called Multi-Objective 

Evolutionary Algorithms. This class of algorithms primarily takes advantage of the population-

based mechanism of evolutionary algorithms. Instead of finding a single solution based on a single 

combined fitness function, they return a set of trade-off solutions. Furthermore, the user does not 

have to emphasize some objectives beforehand by using the weight values. Instead, the task of 

making a preference depending upon subjective criteria is deferred to the end of simulation.

5.3.1 Vector Evaluated Genetic Algorithm (VEGA) 

The first algorithm that is proposed in order to abolish the drawbacks introduced by classical 

approaches is the Vector Evaluated Genetic Algoritm, VEGA, which was introduced by Schaffer 

[Schaffer 1985]. It is the simplest among a number of multi-objective evolutionary algorithms 

[Coello 1999, Fonseca & Fleming 1995], because it can easily be adapted on the basic genetic 

algorithm template given in Figure-4 by only minor changes. At each generation, it divides the 

population into a number of equally sized sub-populations, each of which is associated with one of 

the objectives. Each individual in each sub-population is assigned a fitness value based on the 

corresponding objective function of that sub-population. Afterwards, a mating pool that has a size 

of the original population is created and is filled by applying the selection mechanism on each sub-

population, where selection operation is restricted to individuals of that sub-population. Finally, 

crossover and mutation mechanisms are employed as usual, and the new population is generated. 

Figure-22 illustrates this scheme, applied on personnel assignment problem:
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Figure-22 Basic Outline of VEGA

5.3.1.1 The Pseudocode

// generate the mating pool by selecting individuals depending 
// on each objective function in turn

create an empty Population matingPool
of capacity populationSize;

initialize Objective currentObjective as HIERARCHY_VIOL;

initialize Integer i as 0;

while i < populationSize do
begin

select Individual ind from population p depending
on currentObjective;

insert individual ind to matingPool; 

if currentObjective is HIERARCHY_VIOL then
set currentObjective as TEAM_VIOL;

else if currentObjective is TEAM_VIOL then
set currentObjective as WEIGHT_SUM;

else
set currentObjective as HIERARCHY_VIOL;

increment i by 1;
end;
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// populate new generation

create an empty Population temp of populationSize

while capacity of temp is not full do
begin

assign Boolean doReproduction randomly,
according to reproductionProbability; 

if doReproduction is TRUE then
begin

select an individual from matingPool
and assign it to Individual firstParent;

select an individual from matingPool
and assign it to Individual secondParent;

reproduce firstParent, secondParent
and get Individual newIndividual;

end
else

select an individual from matingPool
and assign it to 
Individual newIndividual;

assign Boolean doMutation randomly,
according to mutationProbability;

if doMutation is TRUE then
mutate newIndividual;

insert newIndividual to population temp;
end;

discard population p;
discard matingPool;
set p as temp;

Figure-23 Pseudocode of VEGA

As it can be seen from Figure-23, VEGA can easily be adapted on the basic genetic algorithm 

template by only doing a number of minor changes. Although it is the pioneering work in the field 

of multi-objective evolutionary algorithms, its main idea is used in some applications. [Ritzel et al. 

1994, Surry et al. 1995, Fourman 1985, Kursawe 1992]

5.3.2 Strength Pareto Evolutionary Algorithm (SPEA)

One of the most reputable multi-objective evolutionary algorithm methods, which is also proven in 

[Zitzler et al. 2000] to perform better among a number of well known techniques is the Strength 
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Pareto Evolutionary Algorithm (SPEA) [Zitzler & Thiele 1998]. It falls into the category Elitist 

Multi-Objective Evolutionary Algorithms, because it introduces elitism by keeping track of and 

favoring a set of non-dominated (elite) solutions, which have been encountered throughout the 

evolution process. It achieves this task by introducing an additional external population P’, which 

can contain up to a predefined number of non-dominated individuals, whereas the actual population 

P contains the ordinary individuals, as in the case of traditional GA approach. The elements of the 

external population P’ are checked and updated regularly throughout the algorithm by inserting 

newly encountered non-dominated individuals and removing previously non-dominated individuals 

which are now dominated by some of newly generated ones. When the number of residents of P’ 

exceeds a predefined value, it is shrunk according to a clustering algorithm, which at the same time 

tries to respect the second purpose of multi-objective optimization: preserving diversity. The 

members of P’ are assigned strength values depending on the number of individuals from P that 

they dominate, and the members of P are assigned fitness values according to the number of 

individuals from P’ that dominate them. After the assignment of fitness values, P and P’ are 

considered as a single population, and usual GA operators are applied on this combined population. 

The SPEA is given in a step by step format in the following lines:

STEP 1: Generate an initial population P and create an empty external non-dominated set P’

STEP 2: Copy non-dominated members of P into P’, and at the same time, remove dominated 

members of P’.

STEP 3: If the size of P’ exceeds a predefined size, prune it by using the clustering technique. The 

clustering technique partitions m elements group into n groups of relatively homogenous elements 

where n<m. The clustering technique in SPEA is as follows:

Initialization Phase: Construct cluster set C where each cluster contains one element of P’.

Iteration Phase: If the number of clusters is greater than n, calculate distances of all possible pairs 

of clusters where the distance of two clusters is defined as the average distance (such as Euclidian 

distance) between all pairs of individuals of the two clusters. Then, combine the two clusters with 

minimal distance, and, repeat this step.

Final Phase: If the number of clusters is equal to n, construct the new non-dominated set P’ by 

selecting a representative individual from each cluster. The representative of a cluster is a member 

of the cluster, called as the centroid, with minimal average distance to all other members in the 

cluster.

STEP 4: Calculate the fitness of the individuals in P and P’ as follows:

Phase 1 (P’): The fitness (also called as strength) of each member i of P’ is defined as the ratio of 

the number of members in P dominated by i over the size of P plus 1 (the denominator is 1 plus the 

size of P, because, in SPEA fitness values are subject to minimization, and fitness values of elite 
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individuals should be less than 1, since fitness values of ordinary individuals will be guaranteed to 

be greater than one).

Phase 2 (P): The fitness of each member i of P is defined as the summations of the strengths of the 

members of P’ that dominate i plus 1 (1 is added to the total, because the fitness values of ordinary 

individuals are desired to be greater than the strength of non-dominated individuals).

STEP 5: Select individuals from P+P’ (multi-set union) in order to apply genetic operators by 

using the binary tournament. Then, apply crossover and mutation operators on this set as usual. If 

the maximum number of generations is not reached continue from STEP 2.

Notice that, unlike classical GA techniques, in SPEA smaller fitness values represent better 

solutions. Also, in SPEA the ratio of ¼ between P’ and P is shown to be successful [Zitzler et al. 

2000].
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5.3.2.1 The Pseudocode

// find non-dominated individuals of current population

set Population temp as the non-dominated 
individuals of population p;

// append it to the actual non-dominated set

append temp to nonDominatedSet;

// now, some of the individuals in nonDominatedSet may have  
// been dominated. Remove them if there exists such solutions.

set nonDominatedSet as the 
non-dominated set of itself; 

if size of  nonDominatedSet > 
predefined nonDominatedSetSize then

cluseter nonDominatedSet to nonDominatedSetSize;

// assign non-dominated fitness values

for each Individual ind in nonDominatedSet do
begin

initialize Integer count as 0;

for each Individual ind2 of population p do
if ind dominates ind2 then

increment count by 1;

set fitness of ind as (count / (populationSize + 1));
end;

// assign normal population fitness values

for each Individual ind in population p do
begin

initialize Real sum as 1.0;

for each Individual ind2 of nonDominatedSet do
if ind2 dominates ind then

increment sum by fitness of ind2;

set fitness of ind as sum;
end;

// finally, combine P and P’ for performing usual GA 
operations

append nonDominatedSet to p;

Figure-24 Pseudocode of SPEA
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CHAPTER 6 

ANALYSIS

6.1 Performance Comparison of Weighted Sum, VEGA and SPEA

Weighted Sum, VEGA and SPEA were tried on a problem with the following characteristics:

Table-2 Problem Parameters

Parameter Value
CHROMOSOME LENGTH 100
MAX. WEIGHT TOTAL 9900
MAX. HIERARCHICAL VIOL. 408
MAX. TEAM VIOL. 214

As the crossover technique, Cycle Crossover (CX) was used, since it can transfer the genetic 

content of parents to the maximum extent. As the selection technique, binary tournament 

(tournament selection with tournament size 2) was preferred. In the original work of VEGA 

[Schaffer 1985], roulette wheel selection is emphasized. However, in the tests performed, VEGA 

with roulette wheel led to a worse result. Therefore, using tournament with VEGA instead of 

roulette wheel when making such a performance analysis would not lead to an unfair result.   

The GA parameters used for solution are as follows:
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Table-3 GA Solution Parameters

Parameter Value
CROSSOVER RATE 0.8
MUTATION RATE 0.1
POPULATION SIZE 100
EXTERNAL POPULATION SIZE
(FOR SPEA)

25

NUMBER OF GENERATIONS 200
SELECTION METHOD TOURNAMENT WITH SIZE 2
CROSSOVER METHOD CYCLE CROSSOVER (CX)

These parameters are determined referring to mainly [Zitzler et al. 2000] and some other similar 

works.

Since Weighted Sum returns a single solution in a single run, it was tried on the same problem with 

16 different weight configurations to obtain different trade-off solutions. Furthermore, the resulting 

non-dominated sets of VEGA and SPEA were clustered to size 16, using the clustering technique 

described in section 5.3.2, in order to have an equal set of solutions for all these three methods. 

Since clustering removes solutions that are close to existing ones, this will not have a direct affect 

on the results of the performance comparison.

6.1.1 Numerical Results

Table-4, Table-5, and Table-6 demonstrate the numerical results of Weighted Sum, SPEA and 

VEGA, respectively.
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Table-4 Weighted-Sum Numerical Results

USED WEIGHT CONFIGURATION SOLUTION

HIERARCHICAL 
WEIGHT %

TEAM WEIGHT 
%

WEIGHT 
TOTAL 
WEIGHT %

HIERARCHICAL 
VIOLATIONS

TEAM 
VIOLATIONS

WEIGHT 
TOTAL

33.3 33.3 33.3 80 29 6507
50 25 25 66 32 6698
25 50 25 68 15 6107
25 25 50 87 70 7855
10 45 45 131 21 7267
45 10 45 52 132 7677
45 45 10 59 44 5688
40 30 30 67 53 7012
30 40 30 100 15 6526
30 30 40 79 55 7031
30 35 35 101 22 6840
35 30 35 88 36 6624
35 35 30 76 10 6765
100 0 0 39 175 5075
0 100 0 324 9 4693
0 0 100 254 175 8589

Table-5 SPEA Numerical Results

HIERARCHICAL 
VIOLATIONS

TEAM 
VIOLATIONS

WEIGHT 
TOTAL

68 94 6932
136 72 6930
77 136 7477

103 104 7449
165 145 7632
232 68 7054
169 99 7460
166 87 7289
82 89 7219

252 94 7379
95 121 7512
68 112 7133
86 99 7342

113 124 7629
77 127 7395

188 123 7705
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Table-6 VEGA Numerical Results

HIERARCHICAL 
VIOLATIONS

TEAM 
VIOLATIONS

WEIGHT 
TOTAL

79 110 6424
78 114 6774
77 119 6762
76 112 6661
72 117 6498
73 112 6508
78 113 6757
98 117 6865
77 119 6762
77 119 6762
80 109 6649
77 119 6762
77 119 6762
77 119 6762
70 120 6675
77 112 6734

6.1.2 Multi-Objective Success Criteria

6.1.2.1 Average Euclidian Distance to the Utopian Objective Vector

Utopian Objective Vector is a non-existent solution, which is strictly better than any of the solutions 

in the search space. That is, for each objective, its corresponding value is better than that of the best 

solution that could be found in the search space with respect to this objective.

In personnel assignment problem, the utopian objective vector can be represented as follows:

Table-7 Utopian Objective Values

HIERARCHICAL VIOL. TEAM VIOL. WEIGHT TOTAL
0 0 MAXIMUM WEIGHT TOTAL

One of the two main purposes of multi-objective optimization algorithms is to find non-dominated 

solutions as close to the pareto-optimal front as possible.
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Figure-25 Utopian Objective Vector

Intuitionally, the average distance of the resulting non-dominated solutions to the utopian objective 

vector will reveal their closeness to the pareto-optimal front, as Figure-25 illustrates. However, this 

may not hold on non-convex pareto-optimal fronts when comparing individual solutions:

                                 

Figure-26 Distance Comparison on Non-Convex Pareto-Optimal Front

As it can be seen from Figure-26, although solution1 is further away from the utopian objective 

vector when compared to solution2, they are both on the pareto-optimal front and thus have the 

same acceptability as a solution.

However, since sets of solutions are compared instead of individual ones, the average distance of 

their elements can be compared. If solutions are well distributed, a fair comparison can be expected. 

Making use of this idea, the individual distances of solutions found by Weighted Sum, VEGA and 

SPEA are calculated, and these distance values are plotted on a radar chart (Figure-27):

utopian objective vector

solution1

solution2
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WEIGHTED SUM
SPEA
VEGA
UTOPIAN OBJECTIVE VECTOR

Figure-27 Average Euclidian Distance to the Utopian Objective Vector

In the radar chart given in Figure-27, the dot in the center represents the utopian objective vector. 

Each solution found by the three methods is plotted on this chart according to its euclidean distance 

from this vector. There are 48 such solutions on this chart. A set of 16 solutions represents the ones 

that are found by Weighted Sum, each of which is obtained by using a different weight 

configuration (these weight configurations are listed in Table-4). Another group of 16 solutions is 

the clustered set  of 25 non-dominated solutions of SPEA (recall that non-dominated set size was 

chosen as 25). Finally, the remaining set of 16 solutions is obtained by clustering the non-

dominated solutions of the final population of VEGA. 
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From this figure, it can be concluded that Weighted Sum returns the closest results to the pareto-

optimal front. SPEA and VEGA result in similar distance averages. However, VEGA forms a 

uniform circle, which means that the set of solutions it returned are similar, not diverse. This can 

also be confirmed from Table-6. Again from Figure-27, it can be seen that SPEA returns a more 

diverse set of results than VEGA. However, by using Weighted Sum, such diversity can easily be 

obtained by arranging the weight values accordingly. Extreme values of Weighted Sum on this 

figure are such examples (the three solutions in the upper left corner), obtained by giving extreme 

weight configurations (last three rows in Table-4), which care only about a single objective and 

ignore the others.

6.1.2.2 Set Coverage Metric

Another metric which gives a clue about the closeness to the pareto-optimal front is the set 

coverage metric, which is proposed by Zitzler [Zitzler 1999]. Given two solution sets A and B, it 

simply counts the number of solutions in set B which are dominated by at least one of the solutions 

in set A, and returns the ratio by dividing this value by the cardinality of B.

coverage(A, B) = 

Figure-28 Coverage Metric

According to the coverage metric calculation given in Figure-28 and using the results given in 

Table-4, Table-5, and Table-6, the following coverage values are calculated:

     

Figure-29 Calculated Coverage Values

cardinality(b  B |  a  A : a dominates b)

cardinality(B)

coverage(WEIGHTED_SUM, SPEA) = 12 / 16
coverage(WEIGHTED_SUM, VEGA) = 16 / 16

coverage(SPEA, WEIGHTED_SUM) = 0
coverage(SPEA, VEGA) = 16 / 16

coverage(VEGA, WEIGHTED_SUM) = 0
coverage(VEGA, SPEA) = 0
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According to these coverage values, Weighted Sum performs the best, then comes SPEA, and 

finally comes VEGA.

6.1.2.3 Illustrative Representation

When there are two objectives, non-dominated solutions can easily be illustrated on a two-

dimensional coordinate system. However, when three or more objectives are involved, a need for 

different illustration techniques emerges. There are a number of techniques proposed to illustrate 

non-dominated solutions of a problem with more than 2 objectives. They can be found in [Meisel 

1973, Cleveland 1994]. However, the most popular, easiest and the most illustrative one is the 

Value Path Method [Geoffrion et al. 1972].

In value path method, there are n vertical axes, each of which represent the associated scale of one 

of the objectives. On these vertical axes, each non-dominated solution’s corresponding objective 

value is marked and these marked points of the solution are combined with straight lines, 

constituting a path for that solution. 

The following value path graph illustrates the solutions obtained (from Table-4, Table-5, and Table-

6):
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Figure-30 Value Path Representation of Results

When applying this illustration technique, the objective values were normalized by simply dividing 

them to their corresponding maximum values. Moreover, the objective values were rearranged in 

such a way that in Figure-30, a path which completely lies above another represents a better 

solution, regardless of whether the individual objectives are subject to minimization or 

maximization.

From the value path graph given in Figure-30, it can be concluded that Weighted Sum solutions 

dominate SPEA and VEGA solutions. Moreover, SPEA solutions dominate VEGA solutions. It is 

also possible to see that VEGA converged to a narrow region and does not present a diverse set of 
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solutions. SPEA is better than VEGA in diversity. However, obviously, Weighted Sum finds both a 

dominating and a diverse set of solutions.

6.1.3 Comments on Performance Comparison

Figure-21 illustrates the pareto-optimal front of a problem with chromosome length 8. This means 

that, the search space consists of 8! = 40320 discrete states. However, the pareto-optimal front 

consists of only 12 states, which is incredibly small compared to the whole search space. This value 

will get larger as the problem size increases, however, it would still be a small number of points 

concentrated close to the utopian objective vector, but non-uniformly distributed, because of the 

nature of the problem. In such a situation, it seems to be more logical to concentrate on this region 

and find at least one point that is close to one of these pareto-optimal solutions. Weighted Sum 

simply tries to do this. When such a single point can be found, it would most probably dominate the 

solutions that are found by a multi-objective evolutionary algorithm, which can also be inferred 

from Figure-29 and Figure-30.

Furthermore, the pareto-optimal front is non-uniformly distributed and highly non-convex. Because 

of non-uniformly distributed discrete points, it does not represent a smooth surface and it can be 

considered highly disconnected. All these characteristics of the personnel assignment problem 

constitutes major drawbacks which multi-objective evolutionary algorithms suffer from [Deb 

2001].    

         

6.2 Parameter Configuration of Weighted Sum

Since the analysis results reveal that Weighted Sum performs better than the other two, it would be 

better to concentrate on Weighted Sum to improve its performance. This can be best realized by 

configuring the problem solution parameters. These parameters may include the followings:

 population size

 maximum number of generations (for stopping condition)

 crossover rate

 mutation rate

Along with these parameters, there is also a need to employ a selection and a reproduction 

(crossover) mechanism. All these parameter values and  preferred selection and reproduction 

mechanisms form a solution configuration.
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In order to find out the best solution configuration, Weighted Sum was used to solve three different 

problems, each with a chromosome length of 100 (cardinality of the position and the personnel set 

is 100), using 1650 different solution configurations, each of which is a combination of the 

parameter values and crossover and selection techniques, given in Table-8:
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Table-8 Problem Solution Configurations

Parameter CROSSOVER
RATE

MUTATION
RATE

CROSSOVER
METHOD

SELECTION
METHOD

0.000
0.2

0.002

ELITISM
20 %

0.004
ELITISM
40 %

0.4

0.006

PMX

ELITISM
50 %

0.008
ELITISM
60 %

0.5

0.010
ELITISM
80 %

0.020

CX

ROULETTE
WHEEL

0.6

0.040
TOURNAMENT

2 %

0.060
TOURNAMENT

4 %

0.080 TOURNAMENT
6 %

Values

0.8

0.100

OX

TOURNAMENT
8 %

 in Table-8, ELITISM X % means that selection is done among the top X % individuals.

 in Table-8, TOURNAMENT X % means that tournament size is the X % of the population 

size.
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A population of size 100 was used and the algorithms were run 200 generations, regardless of 

checking whether convergence occured or not. After obtaining the results, the best 50 solution 

configurations among the 1650 were considered, and the occurences of each parameter value and 

crossover and selection technique in this top 50 solution configuration set were counted. The same 

thing was done for each of the three problems solved, and average of these occurrences were 

calculated.

6.2.1 Crossover Method

CROSSOVER METHOD

CX
34%

PMX
33%

OX
33%

  
Figure-31 Success of Crossover Methods on Weighted Sum

As it can be seen from Figure-31, each crossover technique has almost the same effect. This 

situation results from the sensitivity of the problem to changes on permutation based chromosomes. 

Even a single swap of allele values may lead to a very high number of hierarchical violations or 

result in a perfect solution. Moreover, positive changes in one objective may affect other objectives 

negatively. Because of the nature of the problem and the chromosome structure, none of these 

permutation-based crossover methods can outperform the other. Some attempts to propose 

problem-specific crossover method did not turn out to be successful.



55

6.2.2 Selection Method

SELECTION METHOD

TOURN. 4
14%

ELIT. 20
19%

ELIT. 40
7%

TOURN. 6
25%

TOURN. 8
32%

Figure-32 Success of Selection Methods on Weighted Sum

From the results Figure-32 illustrates, it can be concluded that, the concept of elitism has a drastical 

effect on the results. According to this figure, tournament selection with tournament size 8 performs 

the best and outperforms the elitism selection with a top 20 % selection range. However, it actually 

corresponds to an elitism selection with a top 12.5 % selection range. It is followed by tournament 

selection with size 6, which corresponds to an elitism selection with rougly top 16.5 % selection 

range. Then comes elitism selection with top 20 % selection range. It is followed by a tournament 

with size 4 (elitism 25 %) and finally comes elitism with top 40 % selection range. These results 

obviously show that elitism is favored to a great extent. Upon these results, further tests were done 

with elitism, and even much better results were obtained, when much more smaller top selection 

ranges were used.
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6.2.3 Crossover Rate

CROSSOVER RATE

0.2
5%

0.4
18%

0.5
19%

0.6
25%

0.8
33%

Figure-33 Success of Different Crossover Rates on Weighted Sum
  

From Figure-33, it can be concluded that the higher the crossover rate is, the better the results 

obtained. This means that, it would be better if newer offspring are produced instead of transferring 

the existing individuals to the next generation. In further tests where larger crossover rates were 

used, even better solutions were obtained.
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6.2.4 Mutation  Rate

MUTATION RATE

0.080
35%

0.100
59%

0.060
6%

Figure-34 Success of Different Mutation Rates on Weighted Sum

Figure-34 shows that higher mutation rates lead to better results. In further tests, even higher 

mutation rates such as 100 % were applied and much better results were obtained. 

Actually, Figure-32, Figure-33 and Figure-34 lead to a very consistent conclusion:

Selection is exploitation, while crossover and mutation is exploration [Eiben & Schippers 1998]. 

When there is too much exploitation, it may lead to premature convergence. However, in the 

existence of excessive exploration, this time, the algorithm cannot concentrate on a solution. 

Therefore, a genetic algorithm should find a trade-off between these two concepts. By elitism 

selection, the favorable treats of the good individuals are exploited. However, because of the 

specific structure of the landscape of the problem (Figure-35), an excessive exploration needs to be 

done, instead of allowing early convergence. Only by producing newer offspring and applying high 

rates of mutation, it would be possible to check a wide range of states on this landscape.
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Figure-35 illustrates a part of the landscape of a small problem. This sample problem has 8 

positions and 8 personnel to be assigned. The graphic is obtained by enumerating all possible 

permutations (8! = 40320) by a recursive permutation generation algorithm, calculating their 

respective weighted fitness values and taking the part that covers the first 200 permutations of the 

whole search space:

Figure-35 Part of Landscape of a Small Problem

As it can be seen from Figure-35, exploration of such a landscape would be very difficult. If an 

early convergence is allowed, the probability of getting stuck on a local maximum is very high, 

because of the highly cluttered nature of the landscape. However, in order to reach the global 

maximum, exploration should be done as much as possible, by using very high crossover and 
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mutation rates. When such landscapes are encountered, it must be usual for a genetic algorithm to 

have an inclination towards random search, while still making use of its inherent advantages.

6.2.5 Improving Performance of Weighted Sum

According to the parameter configuration analysis, it was realized that the exploration-exploitation 

trade-off requires high elitism and high mutation and crossover rates. Therefore, the following 

parameter values and selection and crossover techniques are determined to be used on the problem:

Table-9 Improved Parameter Configuration for Weighted Sum

Parameter Value
CROSSOVER RATE 1.0
MUTATION RATE 1.0
SELECTION METHOD TOURNAMENT 20 (ELITISM 5 %)
CROSSOVER METHOD CYCLE CROSSOVER (CX)

Again, population size is taken 100 and the algorithm is run 200 generations. According to this 

improved parameter configuration, the results demonstrated in Table-10 are obtained:

Table-10 Numerical Results of Weighted Sum with Improved Parameter Configuration

USED WEIGHT CONFIGURATION SOLUTION

HIERARCHICAL 
WEIGHT %

TEAM 
WEIGHT %

WEIGHT 
TOTAL 
WEIGHT %

HIERARCHICAL 
VIOLATIONS

TEAM 
VIOLATIONS

WEIGHT 
TOTAL

33.3 33.3 33.3 48 0 8283
50 25 25 37 0 7857
25 50 25 58 0 8350
25 25 50 67 0 8567
10 45 45 79 0 8715
45 10 45 42 34 8562
45 45 10 38 0 7498
40 30 30 44 4 8084
30 40 30 47 0 8267
30 30 40 60 0 8444
30 35 35 46 4 8436
35 30 35 50 0 8269
35 35 30 54 0 8299
100 0 0 30 167 4917
0 100 0 240 0 4769
0 0 100 231 183 9399
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If these values are compared with the results of the previous configuration (Table-4), incredibly 

better results are obtained, as Figure-36 illustrates:

Old Configuration Utopian Objective Vector New Configuration

Figure-36 Euclidian Distance with Improved Parameter Configuration

6.3 Weighted-VEGA

In Weighted Sum, the crossover and mutation are directly applied to the current population. 

However, in VEGA, a mating pool is created explicitly before crossover and mutation. The mating 

pool concept that is found in VEGA was implemented in the same way by selecting individuals 

according to each objective in turn and inserting them into the mating pool. By doing this, it was 

expected to keep also the other objectives in control when assigning extreme weight configurations 

that will concentrate on a single objective but ignore the others. After applying this scheme, 
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considerably better results were obtained, not only in extreme weight configurations, but also in the 

others that care about all objectives:

Table-11 Numerical Results of Weighted-VEGA

USED WEIGHT CONFIGURATION SOLUTION

HIERARCHICAL 
WEIGHT %

TEAM 
WEIGHT %

WEIGHT 
TOTAL 
WEIGHT %

HIERARCHICAL 
VIOLATIONS

TEAM 
VIOLATIONS

WEIGHT 
TOTAL

33.3 33.3 33.3 46 0 8513
50 25 25 35 0 8007
25 50 25 48 0 8652
25 25 50 57 0 8719
10 45 45 68 0 8744
45 10 45 43 8 8678
45 45 10 37 0 7800
40 30 30 42 0 8343
30 40 30 42 0 8379
30 30 40 51 0 8529
30 35 35 53 4 8466
35 30 35 52 0 8419
35 35 30 47 0 8468
100 0 0 31 137 6568
0 100 0 156 0 5928
0 0 100 266 172 9474
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Utopian Objective Vector Weighted Sum Weighted-VEGA

Figure-37 Euclidian Distance of Weighted-VEGA Results

As Figure-37 illustrates, by populating the mating pool with individuals by selecting them using 

each objective in turn, as it is also the case in VEGA, considerably better overall results can be 

obtained. When populating the mating pool, again elitism was preferred. Thus, elitism is being 

applied in two steps: once in populating the mating pool, and once in selecting the individuals for 

crossover. There is no doubt that elitism has an important contribution in the success of Weighted 

Sum.



63

CHAPTER 7

CONCLUSION

In this work, three different multi-objective optimization techniques, each of which represent a 

different class of multi-objective evolutionary algorithms  are employed on multi-objective 

personnel assignment problem. According to the outcome of this analysis, the classical weighted 

sum method outperformed the other two in both diversity of solutions and closeness of solutions to 

the pareto-optimal front. Although SPEA is shown to be more successful in a set of problems in 

[Zitzler et al. 2000], it did not turn out to be the same in this thesis work. The main reason for this 

may be the specific landscape of the problem. As it can also be seen from Figure-35, the landscape 

of multi-objective personnel assignment problem is highly cluttered. Moreover, its pareto-optimal 

front, which is highly non-convex, consists of a narrow set of solutions, which are dispersed non-

uniformly and discontinuously (Figure-21). Under these extreme circumstances, multi-objective 

evolutionary algorithms may not be expected to return good results. On the contrary, it would be 

more logical to concentrate on a single solution close to the utopian objective vector, instead of 

trying to find out a set of non-dominated solutions. According to the results obtained in this work, 

Weighted Sum returns such a solution at each run, which generally dominates a considerable 

number of solutions that are found by the other methods.

Because of the extreme landscape conditions, Weighted Sum favors high mutation and crossover 

rates, in order to widely explore the landscape. However, it also tries to set a balance between 

exploration and exploitation by favoring the best solutions, making use of the elitism concept. 

Employing a parameter configuration in this direction, incredibly good results can be obtained, 

compared to the common GA parameter configurations.

When the concept of creation of the mating pool that is employed in VEGA by selecting individuals 

according to each objective in turn is adapted to Weighted Sum, even better results can be obtained. 

This is because, by introducing this scheme, two steps of elitism is introduced. Moreover, extreme 

weight configurations which favor a single objective and ignore others could be better controlled by 

this extension of Weighted Sum.   
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