
DEVELOPMENT OF A MICRO-FABRICATION PROCESS SIMULATOR FOR

MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS)

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALPER YILDIRIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

DECEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Kemal İDER

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Melik DÖLEN
 Supervisor

Examining Committee Members

Prof. Dr. Bilgin Kaftanoğlu (METU,ME)

Asst. Prof. Dr. Melik Dölen (METU,ME)

Prof. Dr. Metin Akkök (METU,ME)

Asst. Prof. Dr. Buğra Koku (METU,ME)

Prof. Dr. Tayfun Akın (METU,EEE)

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I
have fully cited and referenced all material and results that are not
original to this work.

 Name, Last name : Alper YILDIRIM

 Signature :

 iii

ABSTRACT

DEVELOPMENT OF A MICRO-FABRICATION PROCESS SIMULATOR

FOR MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS)

Yıldırım, Alper

M.S, Department of Mechanical Engineering

 Supervisor: Asst. Prof. Dr. Melik Dölen

December 2005, 140 pages

The aim of this study is to devise a computer simulation tool, which will speed-

up the design of Micro-Electro-Mechanical Systems by providing the results of

the micro-fabrication processes in advance. Anisotropic etching along with

isotropic etching of silicon wafers are to be simulated in this environment.

Similarly, additive processes like doping and material deposition could be

simulated by means of a Cellular Automata based algorithm along with the use

of OpenGL library functions. Equipped with an integrated mask design editor,

complex mask patterns can be created by the software and the results are

displayed by the Cellular Automata cells based on their spatial location and

plane. The resultant etched shapes are in agreement with the experimental results

both qualitatively and quantitatively.

Keywords: Wet Etching, Anisotropic Etching, Doping, Cellular Automata,

Micro-fabrication simulation, Material Deposition, Isotropic Etching, Dry

Etching, Deep Reactive Ion Etching

 iv

ÖZ

MİKRO-ELEKTRO-MEKANİK-SİSTEMLER İÇİN BİR MİKRO-ÜRETİM

SİMÜLATÖRÜNÜN GELİŞTİRİLMESİ

Yıldırım, Alper

Yüksek Lisans, Makine Mühendisliği Bölümü

Tez Yöneticisi: Y. Doç.. Dr. Melik Dölen

Aralık 2005, 140 sayfa

Bu çalışmanın amacı mikro-fabrikasyon proseslerinin sonuçlarını önceden

sağlayarak Mikro-Elektro-Mekanik-Sistemlerinin dizaynını hızlandıracak bir

bilgisayar programı tasarlamaktır. Silikon plakalarının yönbağımlı kazınma ve

yönbağımsız kazınmaları bu ortamda benzetimlenecektir. Benzer olarak,

katkılama ve kaplama gibi ekleme yöntemleri de bir hücresel otomat bazlı

algoritma ile OpenGL kütüphanesi fonksiyonları kullanılarak,

benzetimlenebilecektir. Entegre bir maske dizayn editörüne sahip program ile

kompleks maskeler tasarlanabilir ve sonuçlar uzamsal konumları ve bulundukları

düzlemlere göre hücresel otomat hücreleri olarak ekranda gösterilir. Sonuçta

bulunan kazınmış şekiller deneysel sonuçlarla nicelik ve nitelik bakımından

uzlaşmaktadır.

Anahtar Kelimeler: Islak kazıma, Yönbağımsız Kazıma, Katkılama, Hücresel

Otomat, Mikro-üretim Benzetimlenmesi, Malzeme Kaplama, Yönbağımsız

Kazıma, Kuru Kazıma, Derin tepkin İyon Kazıması

 v

 vi

To My Family

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Asst. Prof. Dr.

Melik DÖLEN for his precious guidance and encouragement throughout the

research. To my family, Mahmut, Birsen, Altuğ and Gökalp Yıldırım, and Arzu

Baysal, I offer special thanks for their precious love and encouragement during

the period of study.

I am indepted to the members of the Department of Mechanical Engineering and

all my friends.

 vii

TABLE OF CONTENTS

PLAGIARISM.. iii
ABSTRACT... iv
ÖZ... v
DEDICATION... vi
ACKNOWLEDGMENTS.. vii
TABLE OF CONTENTS... viii
LIST OF TABLES... xii
LIST OF FIGURES.. xiii
CHAPTERS
 1. INTRODUCTION...…….. 1
 1.1. Organization of Thesis.. 2
 2. REVIEW OF THE STATE OF THE ART.. 4
 2.1. Introduction..…………. 4
 2.2. Micro-fabrication Techniques...…………… 5
 2.2.1. Photolithography..…………….. 5
 2.2.2. Thin Film Deposition and Doping......................……………… 7
 2.2.2.1. Oxidation........…..……………... 7
 2.2.2.2. Chemical Vapor Deposition (CVD)................………….. 7
 2.2.2.3. Physical Vapor Deposition (PVD)..............................….. 8
 2.2.2.4. Doping...……………… 9
 2.2.4. Wet Chemical Etching...……………. 10
 2.2.5. Dry Etching (Plasma Etching)......................................……….. 14
 2.2.6. Micromachining Techniques...............................……………... 15
 2.3. Simulation Programs..…………. 17
 2.3.1. Anisotropic Silicon Etching Program (ASEP)...……………… 17
 2.3.2. SEGS Simulator.......................................…..........…………… 18
 2.3.3. Suzana...….......................…………… 22
 2.3.4. Anisotropic Etch Simulator (AnisE)...................................…... 24
 2.3.5. Anisotropic Crystalline Etching Simulation (ACES)...………. 28
 2.3.6. SIMODE...…......…………… 31
 2.3.7. Commercial Codes..……………. 37

 viii

 2.3.7.1. Memulator..………………….. 37
 2.3.7.2. Athena ...………………….. 38
 2.4. Cellular Automata..…………. 39
 2.5. Closure..…………. 42
 3. WAFER EDITOR...…….. 43
 3.1. Introduction...…………. 43
 3.2. Crystal Orientations..…………. 43
 3.3. Wafer Size Modifications.......…......................................…………... 47
 3.4. Visualization..…………. 50
 3.5. Closure...…………. 51
 4. MASK EDITOR...……... 52
 4.1. Introduction..…………. 52
 4.2. Mask Editor Features..………….. 52
 4.3. Mask Primitives..…………. 53
 4.4. Modifications...…………. 54
 4.5. Transfer of Mask Pattern onto the Wafer.......................……………. 56
 4.6. Visualization...………… 56
 4.6.1. Creating Primitives (Tessellation).......................…………….. 57
 4.6.2. Modifying Primitives (Selection).........................…………….. 59
 4.7. Sample Mask Shapes....................…..................................…………. 60
 4.8 Closure……..………… 65
 5. PROCESS EDITOR..……. 66
 5.1. Introduction..…………. 66
 5.2. Editor Features..………… 66
 5.3. Simulated Processes………………………………………………… 68
 5.3.1. Wet Etching…………...………………………………………. 68
 5.3.2. Dry Etching……..…………………………………………….. 69
 5.3.3. Doping.………………………………………………………. 69
 5.3.4. Additive Processes…………………………………………… 69
 5.4. Virtual Surface Creation……………………………………………. 70
 5.5. Plane of the Cells…………………………………………………… 72
 5.6. Process Application………………………………………………… 73
 5.6.1. Wet Etching Modifications…………………………………… 73
 5.6.2. Dry Etching (Deep Reactive Ion Etch) Modifications………. 74
 5.6.3. Doping Modifications…………………..……………………... 77

 ix

 5.6.4. Additive Process Modifications………………………..……... 78
 5.7. Visualization of data………………………………………………... 79
 5.7.1. Viewing Transformations……………………………………. 81
 5.8. Closure……………………………………………………………… 83
 6. PROGRAM FEATURES…………………………………………………. 84
 6.1. Introduction…………………………………………………………. 84
 6.2. MemsEagle User Interface…………………………………………. 84
 6.3. Wafer Editor……………………………………………………….. 85
 6.4. Mask Editor………………………………………………………… 86
 6.5. Process Editor ……………………………………………………… 88
 6.6. Viewing..……………………………………………………………. 91
 6.7. Taking Measurements………………………………………………. 94
 6.8. Closure……………………………………………………………… 94
 7. VERIFICATION OF SIMULATION RESULTS……………….……….. 95
 7.1. Introduction…………………………………………………………. 95
 7.2. Simulation Results………………………………………………….. 95
 7.2.1. Anisotropic Wet Etching………………………………..…….. 95
 7.2.1.1. Case 1 for wet etching…………………………...……… 96
 7.2.1.2. Case 2 for wet etching……………………………...…… 98
 7.2.1.3. Case 3 of wet etching……………………………...……. 99
 7.2.1.4. Case 4 of Wet Etching………………………………...… 101
 7.2.1.5. Case 5 of Wet Etching………………………………...… 104
 7.2.2.6 Case 6 of Wet Etching……...……………………………. 106
 7.2.2.7. Case 7 of Wet Etching………………...………………… 107
 7.2.1.8. Case 8 of Wet Etching…………………...……………… 109
 7.2.2. Deep Reactive Ion Etching……………………..……………... 114
 7.2.3. Doping.……………………..…………………………………. 116
 7.2.4 Additive Process.………………………..…………………….. 118
 7.3. Etch Rate Verification……………………….……………………… 119
 7.4. Program Performance………………….……………………………. 120
 7.5. Quantitative Analysis on the Simulation Results….……………….. 121
 7.6. Closure……………………………………………………………… 122
 8. CONCLUSION AND FUTUREWORK………………………………….. 123
 8.1. Future work…………………………………………………………. 124
APPENDICES

 x

 APPENDIX A: Etch Rates………………...………………………………… 126
 A.1. KOH Etch Rates……………………………………………………. 126
 A.2. TMAH Etch Rates…………………………………………………. 128
 A.3. EDP Etch Rates…………………………………………………….. 129
 APPENDIX B: OpenGL Functions………………………………………….. 131
 B.1. glBegin – glEnd functions…………………………………………. 131
 B.2. glVertex Function………………………………………………….. 133
 B.3. glLoadName Function……………………………………………… 133
 B.4. glSelectBuffer Function……………………………………………. 133
 B.5. glRenderMode Function…………………………………………… 135
 B.6. gluProject Function………………………………………………… 136
REFERENCES………….………………………………………………………. 138

 xi

LIST OF TABLES

Table Page

2.1: KOH formulations...……….. 12
2.2: Selectivity of TMAH etchants for dielectrics versus (100) Silicon…….. 13
2.3: Common EDP Formulations……………………………………………. 13
3.1: Spatial coordinates of neighboring Silicon atoms for various
crystallographic orientations………………………………………………… 46
5.1: Etch Rates in μm/min…………………………………………………… 69
5.2: VS Class Members……………………………………………………… 70
5.3: Number of Neighbors for Different Planes…………………..………… 73
5.4: Colors Map in MemsEagle………..…………………………………….. 81
7.1: Maximum Depth of the Etched Surfaces ………………...…………….. 121
8.1: Features of the Available Softwares ………………...…………………. 123
A.1: KOH Etch Rates……………………………………………………….. 126
A.2: KOH Etch Rates vs. Composition and Temperature…………………… 127
A.3: TMAH Etching Rates vs. Orientation………………………………….. 128
A.4: TMAH Etch Rates vs. Composition and Temperature…………………. 119
A.5: EDP Etch Rates vs. Composition and Temperature……………………. 130

 xii

LIST OF FIGURES

Figure Page

2.1: Photolithography..…………. 6
2.2: Miller Indices................................…........…………................................. 10
2.3: Anisotropic Wet Etching (100) plane........................….......................…. 11
2.4: Anisotropic Wet Etching (110) plane..................…....….......................... 11
2.5: Convex Corner Undercutting.......................………...………………….. 11
2.6: Plasma & Reactive Ion Etching.......................………………………….. 15
2.7: Surface Micromachining Example.......................………………………. 16
2.8: Bulk & Surface Micromachining......................………………………… 16
2.9: SEGS two-dimensional example.......................………………………… 21
2.10: SEGS three-dimensional example.......................……………………… 21
2.11: Bonding situation of (100), (110) and (111) surface atoms of Suzana... 23
2.12: Schematic Block Diagram of the CAD Architecture for using Suzana.. 24
2.13: Silicon Crystal Structure....................…..……………………………... 25
2.14: AnisE User Interface.........…………………………………………….. 27
2.15: AnisE simulation result......................…………………………………. 27
2.16: Different crystal types used in ACES.......................…………………... 29
2.17: Top views and link set types of the different crystals used in ACES..... 30
2.18: Mask pattern to ACES...................…………………………………….. 31
2.19: Simulation result of ACES......................……………………………… 31
2.20: Simple Etch Trench of SIMODE..............…………………………….. 31
2.21: Mask Design of SIMODE......…………………………………………. 32
2.22: SIMODE Flow Chart...........…………………………………………… 33
2.23: Velocity profile of a SIMODE process..........…………………………. 34
2.24: Sidewall Profiles.......…………………………………………………... 34
2.25: Simulation of one etch step in SIMODE...........……………………….. 35
2.26: Construction of three-dimensional shape.......................………...…….. 36
2.27: ATHENA Framework Architecture.......................…..……………….. 39
2.28: Example of a Starting Pattern.......................…………………………... 40
2.29: Determination of the Neighborhood.......................……………………. 40

 xiii

2.30: First Generation.......................………………………………………… 41
2.31: Second Generation.......................……………………………………… 41
2.32: Example of 1-D CA Pascal Triangle.......................…………………… 42
3.1: Crystal Orientations at different planes.......................………………….. 44
3.2: Top view of various crystal lattices with different crystallographic
orientations.……………………………………………………………... 45
3.3: Wafer editor.......................……………………………………………… 47
3.4: Cells generated by Wafer Editor………………………………………... 49
3.5: Wafer display.......................…………………………………………….. 51
4.1: Mask Editor Interface.......………………………………………………. 53
4.2: Mask Creation using Tessellation.......................……………………... 58
4.3: Co-centric Rings.......................…………………………………………. 60
4.4: Obtuse-Angle Shapes.......................……………………………………. 61
4.5: Rotated Squares.......................………………………………………….. 62
4.6: Misaligned Masks.......................………………………………………... 62
4.7: Paddle.......................……………………………………………………. 63
4.8: 45o Beams......................………………………………………………… 63
4.9: Triangle-Cornered Beams....................…………………………………. 64
4.10: Compensation Fingers...................…………………………………….. 64
4.11: Spur Gear Created by the Mask Editor………………………………… 65
5.1: Process Editor.......................……………………………………………. 67
5.2: Process Selector.......................………………………………………….. 67
5.3: Micro-Fabrication Dialog Boxes.......................………………………… 68
5.4: Virtual Surface Creation Flowchart.......................……………………… 72
5.5: Plane Function Flow.......................……………………………………... 73
5.6: Wet Etching Flowchart...............………………………………………... 75
5.7: Dry Etching Flowchart.......................………………….……………..… 76
5.8: Dry Etch Modification.......................…………………………………… 77
5.9: Enlarged Area.......................……………………………………………. 77
5.10: Additive Process Flowchart.......................……………………………. 79
5.11: Displaying Results…………………………………………………….. 80
5.12: Top View of the etch result……………………………………………. 82
5.13: Etch Result without mask from a different angle……………………… 82
5.14: Etch Result From different angle and scaling…………………………. 83
6.1: MemsEagle Interface……………………………………………………. 85

 xiv

6.2: Wafer Editor…………………………………………………………….. 86
6.3: Mask Editor……………………………………………...……………… 87
6.4: Drawing Mask…………………………………..….…………………… 88
6.5: Process Selection…………………………………...…………………… 89
6.6: Wet Etching Dialog……………………………………..…….………… 90
6.7: Project Editor……………………………………………………………. 90
6.8: Simulation Result……………………………………………………….. 91
6.9: View Menu……………………………………...………………………. 92
6.10: Viewing Doping Concentration……………………………………….. 92
6.11: Distance between two points……………………………………...…… 93
6.12: Output Menu…………………………………………………………… 93
6.13: Viewing doping concentration of a point……………………………… 94
7.1: EDP Etch View…………………………………………………………. 97
7.2: EDP Etch 3-D View…………………………………………………….. 97
7.3: EDP Etch of (100) Silicon Wafer……………………………………….. 98
7.4: Etch profile of <100> wafer flat on…………………………………….. 98
7.5: 3-D Etch profile of <100> wafer flat on <110>………………………… 99
7.6: Co-centered Circular Mask Pattern……………………………………... 100
7.7: MemsEagle Result for Co-centered Circular Mask Pattern…………….. 100
7.8: Experiment Result for Co-centered Circular Mask Pattern …………….. 101
7.9: Mask Pattern of Merging Shapes……………………………………….. 102
7.10: MemsEagle Simulation Result of the mask…………………………… 102
7.11: Experimental Result for the Mask…………………………………….. 103
7.12: Etch Result After 150 minutes………………………………………… 103
7.13: Experiment Result after 150 min……………………………………… 104
7.14: Paddle Mask……………………………………………………...……. 104
7.15: Simulation Result after 100min……………………………………….. 105
7.16: Experiment Result after 100min………………………………………. 105
7.17: Simulation Results after 30min. and 50min…………………………… 106
7.18: Experiment Results after 50min……………………………………….. 107
7.19: MemsEagle Simulation for “Tee”……………………………………... 108
7.20: Experiment Result for “Tee”………………..…………………………. 108
7.21: Misaligned Mask Pattern………………………………………………. 109
7.22: MemsEagle Result after 50min……………………………...………… 110
7.23: Experiment Result after 50min………………………………………… 110

 xv

7.24: MemsEagle Result after 100min………………………………………. 111
7.25: Experiment Result after 100min……………………………………….. 111
7.26: Simulation of the 5o-rotated mask……………………………………... 112
7.27: 3-D View of Simulation Result………………………………………... 112
7.28: Experiment Result of the 5o rotated mask……………………………... 112
7.29: Simulation of the 15o rotated mask……………………………………. 113
7.30: Experiment Result of the 15o rotated mask……………………...…….. 113
7.31: Experiment Result after 200min……………………………………….. 114
7.32: Deep Reactive Ion Etching ARDE Effect……………………………... 115
7.33: Mask Pattern for DRIE………………………………………………… 115
7.34: DRIE Simulation Result (a) top view, (b) front view…………………. 116
7.35: Released Part…………………………………………………………... 117
7.36: Cantilever Beam……………………………………………………….. 118
7.37: Silicon Nitride Deposition……………………………………………... 118
7.38: Silicon Nitride Deposition Top View...………………………………... 119
7.39: Spoke Pattern etched by EDP………………………………………….. 120
7.40: Spoke Pattern etched by KOH…………………………………………. 120

 xvi

CHAPTER 1

INTRODUCTION

Commercial CAD tools for micro electro mechanical systems (MEMS) have

significantly contributed to the growth that the MEMS industry has experienced

over the past two decades by reducing development cycles and enabling the more

rapid release of advanced MEMS products. Unfortunately, the CAD community

serving for MEMS industry has focused primarily on device performance (for

example, mechanical response due to electrostatic loading), with an emphasis on

testing and optimizing the performance in a workstation environment. Device

manufacturability issues have been long neglected and considered secondary

design issues.

Many useful (MEMS) are now being built using silicon etching technologies.

Proposals for MEMS computer aided design (CAD) tools have been made in

recent years. Hence, considerable work has been done to establish the best

architecture for such a system. While significant advancements have been

observed in other parts of CAD systems, there remains a need for an improved

etch simulator. The fundamental problem is how to model the complex

transformation from an initial two-dimensional input mask to the final three-

dimensional output shape, particularly when highly anisotropic etchants are used.

This thesis presents the development of a new process simulation program

named MEMSEAGLE based on Cellular Automata Method. The basic approach

is to divide a wafer of silicon into small cells, where each one is given a few

primitive rules dictating its rate of removal when exposed to an etchant. If these

few simple rules are properly written, then the aggregate behavior of all the cells

will accurately represent the complex geometry of a silicon wafer being etched.

Finite element analysis (FEA), computational fluid dynamics (CFD), and other

 1

methods are all based upon this approach. This technique permits any etchant to

be simulated, by suitable choice of rules for each cell. It also can easily and

accurately model complex interactions between etched shapes, such as when one

etched regions intersects with another, or when an etched shape intersects itself.

When silicon is etched with anisotropic etchants, the resulting shape changes as a

function of time. A number of different approaches exist to accurately predict the

final shape given an initial mask. The robust Cellular Automata model presented

here predicts the three dimensional etched shape as a function of time for any

etchant and arbitrary initial mask shape. The model can simulate very

complicated geometries and has moderate computational complexity.

The software modeled, MemsEagle, simulates not only the etching processes for

bulk micromachining, but also additive processes like doping and deposition.

Thus, equipped with a mask editor, MemsEagle has a significant potential of

becoming an integrated tool for simulation of micro-fabrication processes

including bulk and surface micromachining.

1.1. Organization of Thesis

The organization of the thesis is as follows: Chapter II summarizes the previous

researches done in the field of simulation of micro-fabrication techniques, with

an emphasis on the anisotropic etching. Moreover, micro-machining processes

and Cellular Automata technique is also explained in detail.

The next three chapters describe the three editors utilized in MemsEagle, namely

wafer-, mask-, and process editors. Third chapter explains in the detail the

operating principles of the wafer editor. The algorithms used for substrate

generation and visualization technique for the wafer are included in this part.

Chapter IV concentrates on the capabilities and mechanisms of the integrated

mask editor. Information on the user-friendly editor, and the OpenGL functions

 2

used to implement the mask editor are given. Through a number of samples, the

mask design capabilities of MemsEagle are also demonstrated.

Chapter V is dedicated to the details of the process editor, which lies at the heart

of MemsEagle software. The features of the editor are first explained, as well as

the etching and deposition algorithms used. The screen display features of

MemsEagle are also explained briefly in this part.

Chapter VI is dedicated to a step-by-step explanation of the user-interface of

MemsEagle by making good use of a sample wet etching process. The outputs of

the software is also discussed in this chapter.

The simulation capabilities of MemsEagle are verified in Chapter 7. Through

several sample micro-fabrication processes, simulation results are compared to

the experimental results, utilizing various mask patterns. All four simulation

modes (wet etching, dry etching, doping and additive processes) are studied via

at least one case per each technique.

Finally, Chapter VII discusses the key points of this study along with the work to

be conducted in the near future to improve the designed software.

 3

CHAPTER 2

REVIEW OF THE STATE OF THE ART

2.1. Introduction

The recent growth in the number of MEMS devices fabricated via bulk and

surface micromachining techniques has brought the need for efficient software

design tools. Although there are a number of software packages for simulating

the MEMS devices, the tools for simulating the accompanying manufacturing

processes are very limited.

The major problem in the simulation of bulk micromachining process is to predict

the etch results of silicon due to the anisotropic behavior of etchants used in the

process. Furthermore, the primary method for forming mask shapes that will yield

an arbitrary structure etched on silicon wafer in return is still based on adhoc

techniques. In practice, such approaches leads to the need of manufacturing

several prototypes, which in turn increases the cost as well as development time

of a particular MEMS design.

This chapter discusses the common micro-fabrication techniques. Recent

researches on simulation of these processes and commercial codes are

summarized and information about the possible ways of simulation is given.

Finally, the technique chosen for simulating the silicon wafer behavior, “cellular

automata”, is to be discussed.

 4

2.2. Micro-Fabrication Techniques

The material used for micromachining is mainly silicon. There has been activity

in silicon-based micromachining since the early 1960’s, when the integrated

circuit (IC) technology was developed. The main portion of the researches done

were concentrated on anisotropic single-crystalline silicon etching during the

1960’s and 1970’s. This technology demonstrated simple structures, with initial

commercial products being “pressure transducers” [1]. With the beginning

1980’s, improvements in thin-film deposition and increased understanding of the

micromechanical properties of such films allowed thin-film microstructures to be

formed by selective sacrificial etching. Some integration with metal–oxide–

semiconductor (MOS) electronics was achieved during this period. Toward the

latter half of the 1980’s, researchers had demonstrated micro mechanisms and

electrostatic micro motors based on polycrystalline surface micromachining.

Then, beginning in the 1990’s, a significant increase of government research

capital had made it possible to have fully integrated complex (MEMS) where

sensors, actuators, and control functions are co-fabricated in silicon using

micromachining and IC processing.

2.2.1. Photolithography

The process of printing the given two-dimensional pattern onto a thin film layer

is called Photolithography. The basic photolithographic process includes a

drawing, which defines transparent and opaque areas on a mask. The material

used for the mask is a glass plate (soda lime or quartz glass). The resultant mask

can be obtained by directly writing on the glass plate or can be drawn much

larger and reduced by photolithographic means as illustrated in Fig. 2.1[2].

Ultra violet light is used for transferring the mask pattern so the minimum feature

size is restricted by the wavelength of the light. The steps for transferring the

pattern from the mask to the substrate are [3]:

 5

• Resist Spinning

• Pre-bake (depending on the resist, typically 10 minutes at 90o)

• Illumination in a mask aligner. The mask aligner enables the precise

alignment of the mask pattern to the substrate and the crystal orientation

of the silicon wafer.

• Post-bake (depending on the resist, typically 20 minutes at 120o)

• Development

For aligning the mask, three techniques can be used: contact printing, proximity

printing and projection printing. Proximity printing uses the shadow of the

opaque regions of the mask. In contact printing, because the mask touches the

wafer, there is possibility that the mask be damaged. Projection printing is the

most expensive but best solution. Minimum line width of the mask is close to the

wavelength of the light (whereas in proximity printing for a wavelength of

400nm, the line width should be at least 1μm).

There are two types of photoresist used in mask design. Positive resists become

soluble after illumination whereas the negative ones become insoluble. It is

harder to work with negative photoresists due to competing chemical reaction of

the material with ambient air and poor adhesion.

Figure 2.1: Photolithography [2]

 6

2.2.2. Thin Film Deposition and Doping

The additive processes mainly used in surface fabrication techniques are

discussed and information about recent research was given below. The additive

processes are oxidation, chemical and physical vapor depositions and doping.

2.2.2.1. Oxidation

Silicon Dioxide (SiO2) is usually used as mask material for etching processes.

Another important property of SiO2 is its dielectric behavior. The SiO2 growth

rate is strongly dependent on the temperature [4]. The oxidation process typically

performed in furnaces with temperatures of 900-1150oC. The growth rate of wet

and dry oxidation is different. In wet oxidation process, steam is added to the

oxygen, which considerably increases the growth rate of SiO2.

Dry Oxidation: 22 SiOOSi →+ (2.1)

Wet Oxidation: 222 22 HSiOOHSi +→+ (2.2)

2.2.2.2. Chemical Vapor Deposition (CVD)

Polysilicon, silicon nitride and phosphor silicate glass are deposited using this

technique. Phosphor silicate glass is often used as sacrificial layer in surface

micromachining processes.

A pipe, which contains silicon wafers, is fed with the gas form of the materials to

be deposited at elevated temperatures. There are three types of CVD:

Atmospheric Pressure CVD (APCVD), Low Pressure CVD (LPCVD) and

Plasma Enhanced CVD (PECVD) [5]. In LPCVD, the integration of atoms in the

surface determines the growth rate of the film and it provides better uniformity

and reproducibility. The deposition temperatures are on the levels of 700-900oC.

Residual stress (tension) occurs in films that are deposited in amorphous state

 7

and they resulting structure eventually recrystallize later. However, these stresses

in the films can be relieved by an annealing process.

2.2.2.3. Physical Vapor Deposition (PVD)

In this process, the material to be deposited (with sufficiently high vapor pressure

≈ 10mTorr) is placed in a vacuum chamber and evaporated by using different

techniques like resistive heating. Evaporation, sputtering and ion beam

deposition are the available PVD techniques.

In evaporation, the material to be deposited is heated until it evaporates and the

molecules land on the wafer. The heating can be done by resistive heating, radio

frequency (RF) heating, laser ablation or electron beam heating. Electron beam

(E-Beam) heating has certain advantages like less contamination, a better process

control and more efficient heat transfer. In E-beam heating, high temperatures

can be achieved which makes most materials to be deposited using this method.

Evaporation method does not have good step coverage.

In deposition processes using sputtering, high-energy ions hit the substrate and

sputter material from the target. Usually Argon is used for creating the plasma,

the Ar ions hit the material to be deposited and knock off atoms. The main

advantage of the sputtering method is practically all the materials can be

deposited using this method. In addition, the film obtained is more homogenous.

The ion-beam deposition technique uses an ion beam to bombard the source to

create the atoms to be deposited. Through an arc discharge in a pressure range of

1-100μTorr, with voltages of 500-1000V, the ion beam is generated. This method

could also be used for etching by directing the ion beam to the wafer. The most

important property of this method is, it has good cleanliness and control [2].

 8

2.2.2.4. Doping

Doping is the introduction of impurities into the silicon wafer to alter its

electrical, electrochemical, chemical and mechanical states. The dopants used

can be n-type (Phosphorus (P), Arsenic (As), Antimony (Sb)) or p-type (Boron

(B), Aluminum (Al)). Wet etch rate of the silicon depend on the voltage

difference between the silicon wafer and the etchant solution, and this is directly

dependent on the type and the concentration of the dopant. Boron doping can be

used as an etch stop in etching processes.

In general, diffusion and ion-implantation are used for doping. In diffusion

method, the wafer is placed into the furnaces and a carrier gas is flown through

the furnace. If the source is in solid form, the dopant wafers are also placed into

the furnace next to silicon wafers. The sublimated atoms diffuse into the silicon

wafer. In this process oxide is also formed. The other alternative is to use a liquid

source, which allows the carrier gas passes through. The diffusion process is

carried on in two steps: pre-deposition and drive-in. After a highly doped region

is formed in the pre-deposition step, using this region the impurities are forced

into deeper regions in the drive-in step. The temperatures used in Doping are

800-1200oC. The total impurity dose (Q) is calculated by using (2.1).

11013.1 tDNQ = (2.3)

Dt
x

e
Dt

QtxN 4

2

),(
−

⎥
⎦

⎤
⎢
⎣

⎡
=

π
 (2.4)

where D1 and t1 are the pre-deposition diffusion coefficient and time [6]. Notice

that (2.4) expresses the concentration profile after the drive-in process. If the

wafers are not to be exposed to high temperatures, ion implantation method

could be used for doping. First, impurities are introduced to the wafer using a

high-energy beam of the ions to be implanted. Then, via an annealing process,

the atoms penetrate through the wafer. Shallow junctions, which cannot be

implemented by diffusion process, can be obtained.

 9

2.2.4. Wet Chemical Etching

The oldest micromachining process used is wet chemical etching. Wet etching

processes are divided into two categories: isotropic and anisotropic. In isotropic

etching the etch rate is not dependent on direction and mask orientation. The

most common isotropic silicon etchant is “HNA”, a mixture of HF (Hydrofluoric

acid), HNO3 (Nitric acid), and CH3COOH (Acetic acid). The reaction between

HNA and Silicon is [7]:

OHNOSiFHSiHNOHF gas 2)(623 8423418 ++→++ (2.5)

Doping can be used as an etch stop technique for HNA, because the etch rate of

HNA is nearly 150 times slower in lightly doped (<1017 cm-3 n or p type) regions

then the heavily doped ones.

Etchants erode the silicon wafer at different rates in miscellaneous directions in

anisotropic wet etching. Most anisotropic etchants slow down at the (111) planes.

The dominant planes in anisotropic etching [8] are (100), (110) and (111) as

shown in Fig. 2.2.

Figure 2.2: Miller Indices of various planes

The slowest etch planes are exposed during the etch processes and the etching

tends to stop at these planes, in most cases (111) plane as shown in Figs 2.3. and

2.4. Another important property of anisotropic etching is the termination of

etching at concave corners and undercutting of convex corners in (100) wafers as

shown in Fig. 2.5.

 10

Figure 2.3: Anisotropic Wet Etching (100) plane [4].

Figure 2.4: Anisotropic Wet Etching (110) plane [4]

Figure 2.5: Convex Corner Undercutting [4]

Hydroxides of alkali metals KOH, NaOH, CeOH and RbOH are being used as

orientation dependent etchants in micro-fabrication processes. For such etchants,

the following reactions take place between the silicon wafer and etchant [9]:

 11

−+− +→+ eOHSiOHSi 4)(2 2
2 (2.6)

22 2444 HOHeOH +→+ −− (2.7)

OHOHSiOOHOHSi 2
2
22

2
2 2)(4)(+→+ −−+ (2.8)

2
2
222 2)(22 HOHSiOOHOHSi +→++ −− (2.9)

Different KOH concentrations and temperatures considerably changes the etch

rate. However, the Alkali hydroxide etchants have good selectivity for (100)

plane as seen on Table 2.1. These etchants can also be selective to doping

concentration [11].

Table 2.1: KOH Formulations [10]

Temp Etch Rate (100)/(111) Masking Films Formulation oC (μm/min) Etch Ratio (etch Rate)
KOH (44g)
Water, Isopropanol
(100ml)

85 1.4 400:1 SiO2 (1.4nm/min)
Si3N4 (negligible)

KOH (44g)
Water, Isopropanol
(100ml)

50 1.0 400:1 approx. As above

KOH (44g)
Water, Isopropanol
(100ml)

65 0.25 to 1.0 - SiO2 (1.4nm/min)
Si3N4 (negligible)

Another common etchant used is “Tetra methyl Ammonium Hydroxide”

(TMAH, (CH3)4NOH). It is considerably cheaper, can be modified to avoid

etching aluminum, and may have concentration etch stops [12]. Table 2.2

outlines the lower plane selectivity of TMAH. Hence, the surfaces created by

TMAH are not as smooth as the ones obtained through EDP or alkali hydroxide

etchants.

 12

Table 2.2: Selectivity of TMAH etchants for dielectrics versus (100) Silicon [13]

Dielectric Selectivity 4 wt%
TMAH, 80oC

Selectivity (Si-
doped,13.5g/l), 4 wt%

TMAH, 80oC

Selectivity 20 wt%
TMAH, 95oC

Thermal Silicon
Oxide 5.3x103 34.7x103 5.2x103

Low-Temperature
Oxide (LTO) 1.3x103 4.2x103 2.8x103(360o LTO)

3.4x103(360o LTO)

PECVD Oxide 1.4x103 4.3x103 no value given

LPCVD Silicon
Nitride 24.4x103 49.3x103 38x103

PECVD Silicon
Nitride 9.2x103 18.5x103 3.6x103

Ethylene Diamine Pyrochatechol (EDP) is one of the most common anisotropic

etchant used [13]. The selectivity between (100) and (111) planes are on the

magnitudes of 35, but have greater selectivity to doping concentration. Most

common formulations of EDP are shown on Table 2.3.

Table 2.3: Common EDP Formulations [10]

Temp Etch Rate (100)/(111) Masking Films Formulation oC (μm/min) Etch Ratio (etch Rate)

Ethylene diamine
(750ml) Pyrocatechol
(120g) Water (100ml)

115 0.75 35:1
SiO2 (0.2nm/min)
Si3N4 (0.1nm/min)
Au, Cr, Ag, Cu, Ta

(negligible)

Ethylene diamine
(750ml) Pyrocatechol
(120g) Water (240ml)

115 1.25 35:1
SiO2 (0.2nm/min)
Si3N4 (0.1nm/min)
Au, Cr, Ag, Cu, Ta

(negligible)

The chemical reactions that take place between the silicon wafer and the EDP

are:
−+ +→+ OHNHCHNHOHNHCHNH 322222222)()((2.10)

2
2
62 2)(42 HOHSiOHOHSi +→++ −− (2.11)

 13

[] OHOHCSiOHHCOHSi 2
2

3246246
2
6 6)()(3)(+→+ −− (2.12)

2.2.5. Dry Etching (Plasma Etching)

In plasma etching, ions impinge on the substrate, and neutral particles arrive to

the substrate by diffusion. The etchant gases and the wafers are in a chamber, and

the gases are ionized by RF glow discharge. The etching temperatures are on the

levels of 150oC to 200oC and in some cases room temperature. The main

disadvantage of dry etching is the worse selectivity it has.

The silicon wafer is etched by the etch gas (that involves F) with the following

chemical reactions [14]:
−+− ++→+ eFCFeCF 234 (2.13)

44 SiFFSi →+ (2.14)

There are three common types of dry etching. Plasma etching is an isotropic

chemical etch process. The wafer is grounded in plasma etching.

In reactive ion etching, the wafer is placed on an electrode that is driven by RF

signal. The etching is anisotropic in nature, but anisotropic behavior is not the

result of crystallographic properties but a result of the direction of the ion flux

towards the substrate. The etch process is both chemical and physical. In Deep

Reactive Ion Etch process, because of the special gases that form a polymer on

sidewalls, tall and narrow holes can be drilled onto the wafer.

Ion Beam Etching process is a physical etching process. Argon ions are used to

bombard the wafer surface and the selectivity of the process is very low due to

the physical behavior of the etch mechanism. If a reactive gas is used, the process

is called Reactive Ion Beam Etching, where the etch process is both physical and

chemical in nature.

 14

Figure 2.6: Plasma & Reactive Ion Etching [4]

2.2.6. Micromachining Techniques

There are two main micromachining technology used in the fabrication of

MEMS devices: Bulk Micromachining and Surface Micromachining. There are

also other techniques like LIGA and Electroplating. However, the processes

simulated in MemsEagle are mainly used for bulk micromachining. The additive

processes, which are used frequently in surface micromachining, are just added

to the software to have flexibility for bulk micromachining processes.

Surface Micromachining is characterized by the fabrication of micromechanical

structures from deposited thin films [1]. In such processes, the substrate is used

as a base to build the structure upon it. Although a wide variety of materials

could be utilized in this process, the technology has evolved over the years to use

the silicon dioxide as the sacrificial material and Polysilicon as the structural

material.

 15

Figure 2.7: Surface Micromachining Example [4].

Subtractive processes involving removal of appreciable regions of the substrate

(usually silicon, but possibly glass, organics, metals, etc.) is called Bulk

Micromachining. The purpose of bulk micromachining is to selectively remove

significant amounts of silicon from a substrate. This versatile process is used to

perform a wide variety of tasks:

• to “undercut” moving structures;

• to form membranes on one side of a wafer;

• to make a variety of trenches, holes, or other structures.

Fig. 2.8 shows the difference between surface and bulk micromachining. The

third technology is called LIGA (Lithographie, Galvanoformung, Abformung)

and it is used to expose thick layers by using X-Rays.

Figure 2.8: Bulk & Surface Micromachining [4]

 16

2.3. Simulation Programs

Early works on the area of software simulation tools for MEMS fabrication have

concentrated on simulating the Anisotropic Etching of silicon, for different

etchants and for different silicon crystal orientations. The recent developments in

the computer industry now enable the users enjoy increased computational power

with reduced hardware costs. As a result, simulating relatively complicated etch

processes on personal computers with modest resources has become feasible.

Two techniques are mainly used to simulate the anisotropic etch processes:

Geometric Models and Cellular Automata Models. In geometric models, the

substrate is considered as a continuous entity and the result of the etch process is

found by using geometric rules. The major disadvantage of geometric simulation

models is that they do not efficiently take into account the merging shapes. In

cellular automata method, the substrate is taken as discrete cells of silicon atoms

and the etch process is simulated by taking into account the bonds of an atom

with its neighbors. With this method, complex shapes and merging planes can be

simulated with high accuracy and efficiency. However, the main disadvantage of

this method is the requirement for high computational power, with the

development of faster computers; this is no longer a tiebreaker between the two

competing approaches.

There are a number of software programs reported for the simulation of

manufacturing processes. The simulation principles of these programs are

briefly explained below.

2.3.1. Anisotropic Silicon Etching Program (ASEP)

ASEP (Anisotropic Silicon Etching Program) uses traveling planes to predict the

final shape of the substrate [15]. The planes move in accordance with the pre-

defined etch rates and complex shapes can be simulated. ASEP can simulate the

etching of <100> oriented silicon wafers in aqueous solutions of KOH. ASEP is

 17

based on the concept that a few lattice planes are dominant in the anisotropic

etching of the silicon wafers. In KOH, the most important ones are the <111>

planes, which have the slowest etch rate that determine the concave corners. The

<311> planes that have the fastest etch rates and determine the convex corners.

Whereas the <100> planes have intermediate etch rates. Input from a user

specified mask file is identified as crystal directions. The program decides

whether the inside or the outside of the mask shape will be exposed to etchant

according to the rotation type of the polygon. (CW or CCW). Special problems

occur at the convex corners, where the fast etching planes are revealed [16].

Eight types of corners are described by the code. The program distinguishes the

convex and concave corners by using the determinant formed by the first two

Miller indices of the neighboring planes. The angles are determined by using the

cosine of the angle between the two neighboring planes. When a corner is

overetched, the program issues a warning message.

While the etch process continues, some planes may disappear and new ones

could emerge. The status of each plane is checked by determining the Miller

indices of its left and right neighbors, and by establishing whether or not the

plane lies in front of the intersection of two neighbors, with respect to the etch

opening. ASEP decides on modifying or eliminating the plane after that.

2.3.2. SEGS Simulator

SEGS program is a hybrid, trying to take advantage of both approaches: the

accuracy of cellular automata and the speed of geometric models [17]. The

model represents the shapes as a large number of small segments (or facets), but

they also retain geometrical information. The basic approach is to start with the

polygonal boundary of a vector method, then subdivide each straight-line

segment into many smaller segments. The program gives visual etch results

faster than ordinary cellular automata methods. In SEGS method, first the local

intersections are computed and then the global intersections are processed. The

local calculations commence with taking two nearest neighbors and checking the

 18

relative validity of adjacent line segments. A segment is valid if it lies in the still

un-etched halfplanes of its two neighbors. By eliminating the invalid segments,

the test is carried out for all the segments in the shapes.

By hybridizing the cellular automata and geometric approach thus decoupling the

local and global interaction calculations, each can be optimized individually.

SEGS reads the etch rate data from a file as three-dimensional vectors each with

an etch rate magnitude. The three-dimensional rates are decomposed into two

components:

• r2d:A two-dimensional etch rate in the plane of the wafer surface;

• rz:A lateral etch rate due to depth.

The rate of the plane that moves in the mask surface is r2d. rz is the lateral

distance between the top or mask layer edge of a etch facet and the bottom edge

of a etch facet. The mask data are first read from a file as a set of polygons. Then

the data is divided into an array of N-by-N cells. Each element of array contains

the information of location x, y and the local slope with the calculated local

tangent and normal vectors. [17] calls these elements as directed line segments.

In this technique, at each time step the x, y positions of each segment in the array

are calculated by adding a velocity vector in the direction of the local normal

equal to the etch rate r2d multiplied by the time step. Then each segment is

compared to its neighbor. Using dot products of the local normal, local tangent

and the vectors from segments, the relative location of the segment is determined

[17]. If a segment lies above the half plane defined by the local tangent of

segment then it is un-etched. Otherwise, it is removed from the array. This

process is repeated for all segments in the array. Next, the comparison is done in

the opposite winding direction for all segments. This winding in both directions

is repeated until the length of the polygon list stops to decrease. If the length

drops to zero, then the polygon is etched away.

 19

At each time step, the x, y (spatial) position is converted into a cell location in

the N-by-N grid and he polygon index and list index are then written to the cell

array at this location for each line segment. A global intersection occurs when

two segments are written to the same cell. The intersecting polygon lists are cut

at the intersections and rejoined into a new longer list. The new list is then used

as the input for the next time step.

The two dimensional simulation provides the top or mask layer edge of the etch

facets. The bottom edge is found by using the new list at the end of each time

step and updating the list with rz instead of r2d. The distance between the top and

bottom edges of rz is increased by a depth d for each time step. The new list

generated is then checked for local and global intersections as before.

The simulation time is tens of seconds for various complex shapes on a typical

workstation. Shapes are input via Crystallographic Information File (CIF),

Gridded Data Set (GDSII), or a public domain drawing program (xfig). While

process (etch rate) information is input via text files, and output is available in

several formats including PostScript, and IGES for subsequent 3-D solid

modeling and finite element analysis.

Fig. 2.9 illustrates a two-dimensional example of SEGS simulator result, while

Fig 2.10. shows a three-dimensional example. The contours show the different

etch result of the wafer at different times.

 20

Figure 2.9: SEGS two-dimensional example [17]

Figure 2.10: SEGS three-dimensional example [17]

The SEGS on-line simulator provides a tool to predict etch process, but has some

reported limitations. Because of the polygonization, some input shapes are

approximated like circles. In addition, some output shapes are shifted by on

segment length due to of the discretization. When simulating very complex

shapes, invalid results may be generated. This can occur during grazing

 21

intersections of two separate polygons when the calculation results are small and

subject to round off error. This may also occur when two closely-spaced parallel

lines are simulated, since the calculated dot products are also very small and

susceptible to round-off error.

2.3.3. Suzana

The Suzana program was introduced by [18]. The program uses cellular automata

to find the resultant etch shape. The cells can take two states etched or remained;

and the etch status is decided by using the neighboring cell locations and a

random number. Two different crystal oriented silicon can be simulated.

The etch rates used by Suzana is dependent on temperature T and concentration

c, which can be expressed as:

)/exp()(),()()(0)(kTEcRcTR hklahklhkl −⋅= (2.15)

where k is the Boltzman constant and the activation energy Ea, etch rate R0

depend on the particular crystal plane (hkl). Note that h, k and l are the integers

used to reference a particular crystal plane. Using the etch rates the etch

probabilities Phkl are calculated:

),,()111()110()100(RRRfPhkl = (2.16)

The probabilities are normalized as:

1),,max(111110100 =PPP (2.17)

Taking into account (2.15), (2.16), and (2.17) yields the following rules for a

cell:

1. An etch front cell will be removed if it has:

a. two neighbors and if a random number from the range [0,1] lies in the

interval [0, P100], or

b. three neighbors, of which at least one is located in the etch front, and

if a random number from the range [0,1] lies in the interval [0, P110],

or

 22

c. three neighbors, of which no one is located in the etch front, and if a

random number from the range [0,1] lies in the interval [0, P111].

2. All the cells fulfilling none of the rules 1a, 1b and 1c will be removed.

To explain the equilibrium utilizing the theory of crystal growth [18], the second

nearest atoms should also be included in the model, which is done implicitly in

Suzana.

Figure 2.11: Bonding situation of (100), (110) and (111) surface atoms of

Suzana[18].

 23

Figure 2.12: Schematic Block Diagram of the CAD Architecture for using

Suzana[18]

For visualization, the three dimensional model is translated into a surface model

which is imported to Shader. Shader then calculates the pictures of the simulation

results and exports the data to display on the screen.

2.3.4. Anisotropic Etch Simulator (AnisE)

AnisE has been developed by Intellisense Software [19]. The method used for

simulating the etch process is cellular automata. Figure 2.13 shows the crystal

structure used for modeling the silicon wafer in AnisE.

 24

Figure 2.13: Silicon Crystal Structure [19]

The cellular automata model used in AnisE is based on the following rules [19]:

• The lattice structure of the cells: A silicon atom is represented by a cell in

the model in terms of its lattice configuration. The size of each cell is

approximately 1mm3 depending on the selected resolution of the model.

• The possible states of a cell: There are two possible states for the crystal

atoms, etched or non-etched.

• The effect of neighboring cells: The atom is covalently bonded to four

other atoms. The behavior of each atom depends on the interaction of the

atom with each four neighbor.

Rules to determine the state of the cell are as follows. The conditions of the

neighboring atoms strongly affect the state of the cell. The location of the four

surrounding cells and their states are used for defining the state.

In order to remove the cell, which lies on the <100> plane, two neighboring cells

should be etched as shown on Figure 2.11. That is, in the previous etch step, two

neighboring cells were removed. In order to remove the cell from the crystal

lattice, two covalent bonds that lie below the etch-front plane must be broken.

 25

When considering the etch front for the <110> plane, there are three etch-front

atoms. Three covalent bonds, two of which lie on the etch-front plane, must be

broken to remove any of these cells from the crystal lattice.

For the <111> plane, there is only one etch-front atom. One neighboring cell

must be etched in a previous step to expose this etch-front atom. To remove the

cells that lie on <111> planes three covalent bonds should be broken and all of

them lie under the etch-front plane. This makes the removal of these cells very

slow.

From the above orientations of the cells with respect to the planar etch front, the

probability is calculated whether the cell will be removed. This probability takes

into account the experimental silicon etch rates for the <100>, <110>, and <111>

planes. A higher etch rate for a given plane will increase the probability that the

etch-front atom in that plane will be removed [20].

The model used in AnisE implicitly considers the second order effects resulting

from the second nearest neighbors. Model takes into account the number of

neighboring cells and their location with respect to the etch front. As a result, the

simulation predicts the appearance of higher order etch planes.

There is a simple mask editor embedded inside AnisE but users can import

masks in DXF or GDS II formats. In order start the simulation, the user needs to

enter the etchant type (KOH, TMAH, EDP), etchant temperature, concentration,

wafer orientation (<100> or <110>) and etch time. The result of a simulation

done by AnisE, on which the etch stops and double-sided etching can be clearly

seen is illustrated on Fig 2.15 [21].

 26

Figure 2.14: AnisE User Interface [19]

Figure 2.15: AnisE simulation result [19]

 27

2.3.5. Anisotropic Crystalline Etching Simulation (ACES)

ACES is an anisotropic etch simulator based on cellular automata method. The

software uses a continuous cellular automata method in which each cell can take

non-discrete state variables. A cell can take values between 0 and 1 for

representing its mass corresponding to its extent of removal.

Assuming that the desired etch rate on a particular crystal plane is Es ∈ [0,1], and

the elapsed time of each etch step is T (with the default value being one); the

number of etch steps (NT) that are required to completely remove a cell equals

[22]:

⎥
⎦

⎤
⎢
⎣

⎡
=

TE
MN
S

T (2.18)

If multiplication of Es and T is exactly equal to M or M is a multiple of EsT, then

the effective etch rate Es
’ is equal to the desired etch rate:

s

s

T
s E

T
TE

M
M

TN
ME =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==' (2.19)

Whereas in cases when M is not a multiple of EsT, the value of the effective etch

rate differs from the desired one:

s

s

T
s E

T
TE

M
M

TN
ME ≠

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==' (2.20)

When this situation occurs the neighbors of the cell being etched should also be

exposed to etchant before the next time step. A time compensation factor is used

to achieve this effect. When a cell is removed during an etch-step k, the etching

of the next cell will not begin immediately until the beginning of the next etch-

step k+1. The time balance of the etch-step Tbk will be compensated in the step

for etching of the next cell. Thus, the time of a specific etch-step k, Tk is not

always equal to T; rather, based on the M-value of a cell in step k (Mk) , the

compensation can be computed by the following equations using the initial

conditions Tb0=0 and M=0.

 28

If)(1−+≥ ksk TbTEM , then

1−+= kk TbTT (2.21)

kskk TEMM −=+1 (2.22)

0=kTb (2.23)

otherwise:

s

k
k E

M
T = (2.24)

01 =+kM (2.25)

kk TTTb −= (2.26)

Introducing this time compensation factor equals EsTk and Mk for every step k.

The program also uses dynamic cellular automata algorithm in which only the

cells on the etchant-wafer surface is taken into computations. This is significantly

increasing the speed.

Figure 2.16: Different crystal types used in ACES [23]

 29

Figure 2.17: Top views and link set types of the different crystals used in ACES

[23]

Four different crystal types can be etched in ACES as shown in Fig. 2.16 and

Fig. 2.17. There are two types of cells in the crystal wafer with different link set

types. Cells with different set types are interconnected, in other words the

neighbors of a cell must of opposite link set type. Based on these properties the

rules to initialize the virtual surfaces are developed as:

(E1) A virtual surface is started in a horizontal plane. Active cells’ locations

and link-set types are set based on the orientation of the lattice.

(E2) When an active cell (A1) is to be etched away based on CA rules, its

neighbors will be added to the virtual surface if they are not in the

surface. Positions of neighboring cells are calculated from A1’s position

and its link-set types.

(E3) A newly added active cell’s link-set type is the opposite of that of its

neighbors.

The first two rules are related to the wafer crystal type. The information gathered

by the two-dimensional mask patterns are also used for initializing the etch

surface. The visualization is done by assigning different colors to atoms based on

their orientation or depth. Apart from the deep reactive ion etching and doping,

the software can simulate the anisotropic and isotropic etching.

 30

Figure 2.18: Mask pattern to ACES Figure 2.19: Simulation result of ACES

2.3.6. SIMODE

The program SIMODE is a tool for simulation of the orientation dependent

etching on monocrystalline materials. The software focused on the anisotropic

etch process, based on a graphic data file describing the etch mask. The time

needed for the simulation is reduced by simplifying the three-dimensional

problem of calculating the etch relief. First, only the two relevant contours (upper

and lower edge) are determined in a two-dimensional calculation which describe

the etch relief significantly. Fig 2.20 demonstrates the simple etch trench of

SIMODE.

Figure 2.20: Simple Etch Trench of SIMODE[24]

The program can simulate processes with different temperatures, concentrations

and etchants. The masks are defined with closed polygons. There should be no

intersections within the polygons. In order to make a distinction between

 31

windows (concave polygons) and masked areas (convex polygons), the

revolution of the polygon lines is used as illustrated in Fig. 2.21. A polygon line

with a clockwise revolution (mathematically negative) is a concave polygon;

however, a polygon line with a counter-clockwise revolution (mathematically

positive) is a convex polygon.

Figure 2.21: Mask Design of SIMODE [24]

 32

SIMODE uses geometric rules to simulate the etch processes as shown in Fig

2.22. Based on the etch rates of the several sidewalls, etch rates of the polygon

lines are defined. The etch rate of the polygon lines on the lower etch are

composed of the etch rate of the sidewall and of the etch bottom, respectively as

summarized in Fig. 2.23.

Figure 2.22: SIMODE Flow Chart [24]

 33

Figure 2.23: Velocity profile of a SIMODE process [24]

The sidewalls are described by the polygon line (of mask) and the sidewall angle,

which is based on the etchant used. The sidewall may consist of two planes also

(two-part sidewall) as illustrated in Fig. 2.24. The etch rates of the upper and

lower surfaces; the sidewall angles and the ratio between the planes of the two-

part sidewalls are stored for each etchant within the code.

Figure 2.24: Sidewall Profiles [24]

At each time step, in every corner with angle greater then 3o tangents are

produced with an interval of 3o beginning with the first at the polygon line n up

to the polygon line (n+1). Every tangent represents a possible new sidewall. The

procedure for creating the tangents is different for convex and concave corners.

 34

For concave corners, only the tangents that lie in the masked areas are created

whereas in convex corners the tangents, which are outside the masked areas are

taken into account. After the creation of the tangents they are shifted into the

direction of the masked area according to their etch rates. The new contour is

created using these shifted tangents. The process is summarized in Fig.2.25.

Figure 2.25: Simulation of one etch step in SIMODE [24]

In certain cases due to points of intersection of non-neighboring lines, two or

more polygons can be developed. After the calculation of the upper and lower

edges, the construction of the three-dimensional shape is started. First, two half

shapes are generated for the upper and lower edges. For the construction of the

half shapes, all polygon lines of the upper and lower edge will be transformed

into planes. This is realized by assigning typical etch sidewalls to the polygon

lines corresponding to their angle in the plane. Fig. 2.26 shows the flow chart of

the construction of the three-dimensional shape.

Due to the two-dimensional simplification of the orientation, dependent etching

some basic conditions were kept to get accurate results. The model describing the

etch relief by two-dimensional polygons requires that the etch relief can be

described fully by projection of typical etch sidewalls. Therefore, it has to be

guaranteed that no planes, which do not correspond to the typical sidewalls

produced by this etchant, develop during etching. A basic condition for this is

 35

that the start conditions of the etch process are always flat masked wafers. This

excludes a change of the etching fluid as well as a change of the mask during the

etch process.

On edges where sidewalls enclose an angle greater then the used angle resolution

(3°), planes can occur, which do not appear on unaffected mask edges. As the

distance between the border of the etch relief and the start etch mask is increased,

the more it is possible that such edges appear.

Figure 2.26: Construction of three-dimensional shape [24]

For the three-dimensional projection, there are limits related with the intersection

of the two half shapes. During the etch process; planes from the upper or lower

edge can be separated. Separated planes have a temporary, but at this moment, an

 36

important influence for the development of the three-dimensional etch relief. The

occurrence of this phenomenon can be realized when the calculated lower edge

of the three-dimensional etch relief is not equal to the edges of the two-

dimensional calculation. The value of the resulting error has the same order of

magnitude like this difference.

2.3.7. Commercial Packages

There are also a number of commercial codes for simulation of MEMS devices.

But these codes mainly concentrated on the simulation of the behavior and

properties of the devices created, and few programs on simulation of micro-

fabrication processes can be found in the market.

2.3.7.1. Memulator

Memulator is a software from Coventor for process emulation and virtual

prototyping of MEMS and other semiconductor devices [25]. Memulator is based

on volume element technology and supports mask updates, process changes and

complex semiconductor fabrication processes.

Memulator can simulate the material addition processes: physical vapor

deposition, chemical vapor deposition, conformal deposition, metal lift-off

deposition, epitaxial deposition, snowfall deposition, straight deposition, wafer

bonding and electrochemical deposition. The program can also simulate the

removal processes: reactive ion etching, wet release etching, wet isotropic

etching, wet anisotropic etching, rate dependent etching and chemical

mechanical polishing.

The software is getting the mask inputs in GDSII format. The mask shapes can

be interconnected using the Boolean operations. The program gives three-

dimensional visual outputs and dimensions, besides the results can be exported to

Ansys for further processing.

 37

2.3.7.2. Athena

Athena Process Simulation Framework is the product of Silvaco company [26].

There are seven modules in this framework as shown in Fig. 2.27:

• “SSuprem4” is a two-dimensional process simulator, which includes

diffusion, implantation, oxidation, silicidation and epitaxy.

• “MC Implant” is a physically based 3D ion implantation simulator to

model stopping and ranges in crystalline and amorphous materials. It

accurately predicts implant profiles and damage for all major ion/target

combinations.

• “Elite” is a two-dimensional moving boundary topography simulator for

modeling physical etch, deposition, reflow and CMP planarization

processes.

• “MC Etch/Depo” is an advanced topology simulator. It includes several

Monte Carlo based models for simulation of various etch and deposit

processes, which use a flux of atomic particles.

• “Optolith” is a non-planar 2D lithography simulator that models all

aspects of submicron lithography: imaging, exposure, photoresist bake

and development.

• “SSuprem3” is a one dimensional silicon process simulator used in the

prediction of doping profiles and layer thicknesses.

• “SPDB” is a database manager containing experimental and simulated

doping profiles and process recipes.

 38

Figure 2.27: ATHENA Framework Architecture [26]

2.4. Cellular Automata

Cellular Automation is defined as a system defined at discrete time steps with a

discrete spatial geometry (generally a regular lattice) [27]. In terms of discrete

variables, the state of the system is defined at each point in time. The Cellular

automation is specified in terms of rules that define how the state changes

between time intervals.

The history of the Cellular Automata dates back to 1940’s with Stanislas Ulam.

This mathematician was interested in the evolution of graphic constructions

generated by simple rules. The base of his construction was a two-dimensional

space divided into "cells", a sort of grid. Each of these cells could have two

states: ON or OFF. Starting from a given pattern, the following generation was

 39

determined according to neighborhood rules. For example, if a cell was in

contact with two "ON" cells, it would switch on too; otherwise it would switch

off. By using one of the first computers, he found out that this simple rule

generates complex and graceful shapes.

In 1970 the cellular automata is introduced with “The Game of Life” by John

Horton Conway. The game of life is based on a grid constituted of cells shown in

Fig. 2.28:

Figure 2.28: Example of a Starting Pattern [27]

The universe of the game is rectangle cells of 3 by 5. The cells are numbered 0 to

2 vertically and 0 to 4 horizontally. White cells are the active ones. The adjoin

cells including the diagonals of a cell is its neighbors.

Figure 2.29: Determination of the Neighborhood [27]

Fig.2.29. demonstrates the active cells and the neighbors of the cell 12. There are

three simple rules of the game:

• One inactive cell surrounded by three active cells is become active (born).

• One active cell surrounded by two or three active cells remains active.

• In other cases, the cell dies or remains inactive.

 40

Interpretation of these rules are: a population is needed for birth (3 in this case),

that the cells cannot survive to a too wide isolation and too much population

(more then 3) will kill them.

Figure 2.30: First Generation [27]

Figure 2.31: Second Generation [27]

In this example, three fundamental properties of Cellular Automata is shown

[28]:

• Parallelism: A system is said to be parallel when its constituents evolve

simultaneously and independently. In that case, cells update is performed

independently of each other.

• Locality: The new state of a cell only depends on its actual state and on

the neighborhood.

• Homogeneity: The laws are universal; they are common to the whole

space of cellular automation.

Cellular Automata applications are diverse and numerous. Fundamentally,

Cellular Automation constitutes completely known universes. In a Cellular

Automation, laws are simple and completely known. One can then test and

analyze the global behavior of a simplified universe, for example:

 41

Figure 2.32: Example of 1-D CA Pascal Triangle [27]

• Simulation of gas behavior. A gas is composed of a set of molecules

whose behavior depends on the one of neighboring molecules.

• Study of ferromagnetism according to Ising model : this model (1925)

represents the material as a network in which each node is in a given

magnetic state. This state, in this case one of the two orientations of the

spins of certain electrons, depends on the state of the neighboring nodes.

• Simulation of percolation process.

• Simulation of forest fire propagation.

• In a different field, Cellular Automation can be used as an alternative to

differential equations.

• Conception of massive parallel computers.

• Simulation and study of urban development.

• Simulation of crystallization process.

2.5. Closure

Out of the micromachining techniques described in the chapter, anisotropic

etching is the focus of the past research efforts and commercial programs. Using

geometric or cellular automata techniques, this process is being tried to simulate.

Because of the speed of the computers available in the market, and flexibility of

the mask patterns that can be simulated, cellular automata was chosen to simulate

the micromachining processes.

 42

CHAPTER 3

WAFER EDITOR

3.1. Introduction

First step in describing the process for simulation in MemsEagle is the creation

of the wafer. A wafer editor is designed to create the wafer by entering the

dimensions, crystal orientation, doping concentration and type. The details of the

editor follow.

3.2. Crystal Orientations

The developed software takes into consideration the wafers widely utilized in

MEMS fabrication processes:

1. (100) Wafer flat on (110),

2. (100) Wafer flat on (100),

3. (110) Wafer flat on (100),

4. (111) Wafer flat on (110).

Fig. 3.1 illustrates the crystal lattice and the crystalline structure of common

wafers of various orientations while Fig. 3.2 demonstrates the top view of the

above-mentioned crystal lattices. To represent these wafers with different

crystallographic orientations, a cell containing eighteen Silicon atoms is taken

into consideration.

In CA approach, the atoms are not individually represented. Instead, a generic

cell representing the mechanic behavior of the silicon atom is facilitated for the

sake of convenience. Therefore, in the wafer editor, CA cells having relatively

larger dimensions (on the order of 1μm3 for a silicon crystal lattice) are taken

 43

into account. In this approach, two types of CA cells (Type 1 and 2) are utilized

based on the arrangement of neighboring CA cells. Notice that the difference

between type 1 and type 2 cells arises due to the choice of the origin for the local

coordinate system. (i.e. shift of the origin in the z direction) To model the cell

structure in the code, an array containing the normalized spatial coordinates of

each cell is generated. Table 3.1 tabulates the coordinates of each neighboring

cell for a particular wafer. Note that, the local coordinate systems are illustrated

in Fig. 3.1 as well.

(a) Crystal Lattice

x
y

z

(b) (100) Plane

(c) (110) Plane (d) (111) Plane

Figure 3.1: Crystal Orientations at different planes

x
z

y y
z

x

In wafer editor, the user is expected to enter the wafer dimensions through the

corresponding dialog box as shown in Fig. 3.3. As can be seen, the orientation of

the wafer is set through a set of radio buttons. The last information needed for

creating the silicon wafer is the dopant concentration and type. The dopant type

is selected via the radio button labeled “p/n”. After selecting the type, the dopant

concentration is entered. Notice that the default value for the dopant

concentration is 1x1015cm-3.

 44

Notice that to accommodate wafers with larger dimensions, a scale factor is

applied to the entered dimensions, such that the overall wafer could be efficiently

modeled using the limited resources of an ordinary personal computer.

(processing power and memory capacity) This subject is further discussed in

detail in Section 3.3.

y

x
y

x

(a) (100) Crystal lattice flat on (100). (b) (100) Crystal lattice flat on (110).

(c) (110) Crystal lattice. (d) (111) Crystal lattice.

Figure 3.2: Top view of various crystal lattices with different crystallographic

orientations.

y

x
y

x

 45

Table 3.1: Spatial coordinates of neighboring Silicon atoms for various

crystallographic orientations

Type 1 Type 2

 x[μm] y[μm] z[μm] x[μm] y[μm] z[μm]

1st Neighbor +0.25 +0.25 +0.25 +0.25 +0.25 -0.25

2nd Neighbor +0.25 -0.25 -0.25 +0.25 -0.25 +0.25

3rd Neighbor -0.25 +0.25 -0.25 -0.25 +0.25 +0.25

(100)

Wafer

Flat on

(100) 4th Neighbor -0.25 -0.25 +0.25 -0.25 -0.25 -0.25

1st Neighbor +0.3535 0 +0.25 +0.3535 0 -0.25

2nd Neighbor 0 +0.3535 -0.25 0 +0.3535 +0.25

3rd Neighbor -0.3535 0 +0.25 -0.3535 0 -0.25

(100)

Wafer

Flat on

(110) 4th Neighbor 0 -0.3535 -0.25 0 -0.3535 +0.25

1st Neighbor +0.3535 +0.25 0 -0.3535 -0.25 0

2nd Neighbor -0.3535 +0.25 0 +0.3535 -0.25 0

3rd Neighbor 0 -0.25 -0.3535 0 +0.25 +0.3535

(110)

Wafer

Flat on

(110) 4th Neighbor 0 -0.25 +0.3535 0 +0.25 -0.3535

1st Neighbor +0.3535 +0.204 -0.144 -0.3535 -0.204 +0.144

2nd Neighbor -0.3535 +0.204 -0.144 +0.3535 -0.204 +0.144

3rd Neighbor 0 -0.408 -0.144 0 +0.408 +0.144

(111)

Wafer

Flat on

(110) 4th Neighbor 0 0 +0.432 0 0 -0.432

When the command button “Create” is depressed, the code generates the wafer

with the chosen type using the following algorithm:

• An array of cells are created using the “Virtual Surface” class, on which the

x, y, z location in space, the link type, mass rate, doping concentration,

material type, and neighbor information can be stored. This class is further

elaborated in the process editor.

• An ordinary CA cell has a pre-determined size. For instance, the distance

between the neighboring cells used to model (111) wafer is 0.432μm. Based

on the given wafer dimensions, an array of cells contained within the wafer

are created based on that characteristic dimension of the CA cell.

 46

• With the given wafer orientation, a two dimensional surface is created and

the CA cells on this surface are stored in the VS class.

Except the (110) wafer, all the other wafer types have just one type of CA cell on

the surface, whereas the (110) wafer has both of them. Based on the x and y

locations of the cells, the type of the corresponding CA cell is determined; the

details are further discussed in the section 3.3.

Figure 3.3: Wafer editor

3.3. Wafer Size Modifications

Based on the wafer type selected in the wafer editor, MemsEagle software finds

the coordinates and the number of CA cells to be generated for simulation. The

row and column on which the CA cell lies determines the cell coordinates at the

surface of the silicon substrate. The following scheme summarizes this process

for different crystal orientations, when no scaling is applied.

 47

For (100) wafer flat on (100) direction:

5.0+= ix , wlx ≤≤0 ∧ 12(mod) =j

x(i,j) = (3.1)

ix = , wlx ≤≤0 ∧ 02(mod) =j

 , (,) 0.5y i j j= ⋅ wwy ≤≤0 (3.2)

For (100) wafer flat on (110) direction:

7071.0),(⋅= ijix , wlx ≤≤0 (3.3)

 , 7071.0),(⋅= jjiy wwy ≤≤0 (3.4)

For (110) wafer flat on (100) direction:

3535.0),(⋅= ijix , wlx ≤≤0 (3.5)

25.0+= jy , wwy ≤≤0 ∧ 1 2(mod) =i

y(i,j) = (3.6)

 jy = , wwy ≤≤0 ∧ 1 2(mod) =i

For (111) wafer flat on (110) direction:

 , 3535.0),(⋅= ijix wlx ≤≤0 (3.7)

612.0224.1 +⋅= jy , wwy ≤≤0 ∧ 1 2(mod) =i

y(i,j) = (3.8)

224.1⋅= jy , wwy ≤≤0 ∧ 1 2(mod) =i

Where x, y are the cell coordinates, j is the row number, i is the column number

and lw and ww are the length and width of the wafer respectively. The number of

the surface cells generated is varying for different wafer types. The CA cells

generated using the wafer editor for a substrate size 30x20μm2, were illustrated

by Fig 3.4.

 48

 a) (100) wafer flat on (110) b) (100) wafer flat on (100)

c) (110) wafer flat on (100)

d) (111) wafer flat on (110)
Figure 3.4: Cells generated by Wafer Editor

Although the wafer can be sized by the user arbitrarily, because of the “Cellular

Automata” approach used, the wafer is scaled to reduce the corresponding

computational cost above a pre-determined limit. In order permit the usage of the

software on common personal computers; the maximum operational surface area

of the wafer was restricted by 1500μm2. If the user tries to exceed this limit, the

wafer is scaled down and the etch rates are modified accordingly. The following

sequence summarizes the modifications done:

www Awl =⋅ (3.9)

1, 1500

,
1500

w

w

A

A else

σ

⎧
⎪ ≤⎪⎪= ⎨
⎪
⎪
⎪⎩

 (3.10)

r
ef

EE
σ

= (3.11)

 49

where lw id the length, ww is the width of the wafer, Aw is the wafer upper

surface area, Er is the etch rate for a certain direction, Eef is the effective etch rate

and σ is the scaling factor.

3.4. Visualization

When the x, y and z dimensions of the wafer are entered using the wafer editor,

the borders of the wafer are drawn on the screen. Starting from the origin, the

lines forming the frame are drawn by using the OpenGL functions. For instance

the following OpenGL code draws a line between the points P0(x0,y0,z0) and

P1(x1,y1,z1):

glBegin(GL_LINES);

glvertex3f(x0, y0, z0);

glvertex3f(x1, y1, z1);

glEnd();

The OpenGL automatically manages all the given coordinates with respect to the

current graphic window. Notice that, for switching between window and

OpenGL coordinates, gluproject() and gluunproject() functions are used. The

details about these functions are given in the Appendix B. When the wafer is

created; the upper surface is drawn as a filled rectangle (as a filled mask) to be

used as the base object of the mask editor. Following sequence is employed for

creating polygons (filled) in OpenGL with the given vertices:

glBegin(GL_POLYGON);

glvertex3f(x0, y0, z0);glvertex3f(x1, y1, z1);

glvertex3f(x2, y2, z2);glvertex3f(x3, y3, z3);

glEnd();

 50

Fig. 3.5 illustrates a sample wafer created by the described OpenGL functions.

As shown, the upper surface is a filled polygon whereas only the frames of the

other surfaces have been drawn.

Figure 3.5: Wafer display

3.5. Closure

The wafer editor is designed for entering the information needed for creating the

silicon wafer through which the MEMS device will be machined. The

information entered is stored in the “VS” class created. Through the editor the

size, orientation and dopant type and concentration properties of silicon are

adjusted for a particular wafer suitable for MEMS device fabrication. Based on

the array generated by the wafer editor, a virtual surface, based on the mask

information, is produced at the later stages used by MemsEagle software.

 51

CHAPTER 4

MASK EDITOR

4.1. Introduction

After creating the wafer on which the MEMS device will be built, the masks are

designed using the mask editor. Using the primitives and the modification

options complex shapes can be created, and more then one mask can be designed

for different projects. Fundamental principles of the mask editor are summarized

in this chapter.

4.2. Mask Editor Features

During the generation of the substrate, the wafer was created with a mask

covering the upper surface completely. The mask pattern was generated using

this as a base. The user-interface of the mask editor is illustrated in Fig. 4.1. The

shapes are created using the three primitives: rectangle, circle and polygon, as

shown in Fig. 4.1. These simple objects can later be modified to have complex

shapes that may have holes, obtuse-angle corners or other essential objects of a

typical MEMS design. Note that, the shapes can be drawn as empty or filled

objects.

 Up to 50 masks can be generated for each project, and the masks can be saved or

purged during the course of the design. In order to supply a user-friendly drawing

environment, grid option is enabled. Notice that, the grid size can be adjusted

using the combo box shown in Fig 4.1 and the user has the option to snap onto

the grids or not.

 52

Figure 4.1: Mask Editor Interface

4.3. Mask Primitives

The designed mask editor employs various graphical primitives (objects) to

create relatively complex mask shapes using the combinations of these. In the

mask editor of MemsEagle, there are three primitives used for creating masks:

rectangle, polygon, and circle. For the rectangle primitive, the starting corner

location, length, and width information are needed whereas the center

coordinates and the radius of the circle is the sufficient information for the circle

entity. For creating polygons, coordinates of each vertex are to be entered by the

user.

 In mask editor, two types of shapes can be created: empty and filled. The mask

creation process starts out with a filled rectangle, which apparently covers the

upper surface of the whole wafer. After that, the user can create a complex mask

by adding, purging, and modifying the primitives (either filled or empty) on this

 53

filled base rectangle, using the user-friendly features of the mask editor. The next

section discusses these modifications.

For enabling more control over the shapes drawn, the user may enter the grid

mode by selecting the “grid on” radio button as shown in Fig 4.1. In grid mode,

guide points are drawn on the screen for creating or modifying primitives.

The OpenGL functions used for creating the points are glVertex3f() and

glBegin(GL_POINT). By entering the GL_POINT mode, the code started to

draw points on the locations entered by glVertex3f() until glEnd() function is

called. The distance between the grids can be changed using the combo box.

When the grid mode is on, the mouse clicks on the screens are re-adjusted for the

nearest grid point and the vertex location is stored as such.

4.4. Modifications

The created objects can be moved, rotated, resized or purged using the command

buttons of the mask editor as shown Fig. 4.1. When the polygon, rectangle or

circle buttons clicked, the software generates a new shape and stores it in the

allocated array kept for the mask in the memory. On this array, the locations of

the vertices along with the type of the shape (empty or filled) are stored. For each

mask, a maximum of 50 geometric objects are allowed which hopefully yields a

mask pattern accommodating most features of practical MEMS designs.

The modification on the individual graphical primitives can be carried out via the

corresponding the modification buttons on the dialog box. To accomplish that,

the mask editor employs various OpenGL functions. For instance, a label for

each object is generated using glLoadName() function of OpenGL during

creation phase. Likewise, glSelectBuffer() is utilized to select a certain graphical

 54

primitive via mouse by simply returning the index of these objects previously

labeled.

After that if the program goes into the modification mode, the buffer type is

changed into GL_RENDER by using the command glRenderMode(). The

location of the mouse when the left button is clicked is then checked by the

software and if it intersects with one of the shapes, the return value of the

glRenderMode() function becomes the integer assigned to that shape. Details of

the selection process are further explained in detail in section 4.6.

According to the command button clicked, the following actions are taken to

modify a particular shape:

• Move: The mask type remains the same. The user prompted to select the

shape and the x, y displacements of the shape chosen is entered. The vertices

of the shape are re-located.

• Rotate: The mask type remains the same. The user prompted to select the

shape and the rotation angle along with the rotation center is entered. The

vertices of the shape are re-located. If the rotation point is omitted, the shape

is rotated with respect to the first vertex.

• Delete: The user picks up the shape and the selected primitive is deleted from

the view screen. In addition, the shape number is decreased by one and the

vertex information of that shape is deleted.

• Copy: The vertices and the type of the selected shape are stored in the mask

array. The 0th member of the array is utilized for this action.

• Cut: The information is processed just like the copy operation described

above; the difference lies in the fact that the selected shape is also deleted.

• Paste: The stored shape is drawn on the screen with the first vertex location

re-entered.

 55

After the modification has terminated, the code re-enters into the render mode.

The difference between the selection mode and the render mode is that, in render

mode the shapes entered using the OpenGL functions are displayed on the screen

whereas in selection mode these shapes are used for getting information or

modification indirectly without any modification on the screen.

4.5. Transfer of Mask Pattern onto the Wafer

After the drawing of a mask is finished, the user must click the end button. Then,

the code starts to transfer the mask information onto the wafer.

The main idea behind locating the empty and filled areas lies in the colors used.

The empty areas are yellow colored whereas the filled areas appear blue. By

making use of the wafer type selected, the code already determines the location

of the silicon cells on the surface between the mask and the wafer. For each cell,

the color of the mask should be known.

First, the OpenGL coordinates, which the wafer dimensions and cell locations are

entered, should be mapped onto the window coordinates by the gluProject()

function. The matrices titled modelview, transformation, and viewport, are used

to modify the screen size as well as the various viewing attributes.

By making use of the glReadPixels() function, the color of the mask on the

location of the silicon cells is found. With the information from past processes

and the material type, the surface on which the etching, doping or addition will

occur is determined.

4.6. Visualization

The OpenGL functions and C++ algorithms utilized are described in this section.

The algorithm used for creating and modifying the primitives, and displaying

them on the viewport is summarized.

 56

4.6.1. Creating Primitives (Tessellation)

For creating the rectangle, polygon and circle primitives, the OpenGL function

glvertex3f() can be used, in conjunction with the glBegin() function with

GL_POLYGON argument. However, it is not possible to use GL_POLYGON

argument for creating the polygons with obtuse-angle corners, due to possible

intersection of the lines that make up the polygons created. For creating polygons

with intersecting lines or with holes inside, tessellation functions of OpenGL are

employed. OpenGL can directly display only simple convex polygons. A

polygon is simple if the edges intersect only at vertices, there are no duplicate

vertices, and exactly two edges meet at any vertex. If the user wishes to create

concave polygons, polygons containing holes or polygons with intersecting

edges, those polygons must first be subdivided into simple convex polygons

before they can be displayed. Such subdivision is called tessellation, and

OPENGL provides a collection of routines that perform tessellation. [30] In order

to use tessellation for a polygon the following procedure should be followed in

OpenGL:

1. Create a tessellation object using gluNewTess().

2. Use gluTessCallback() several times to register callback functions to

perform operations during the tessellation. The trickiest case for a

callback function is when the tessellation algorithm detects an

intersection and must call the function registered for the

GLU_TESS_COMBINE callback.

3. Specify tessellation properties using gluTessProperty().

4. Create and render tessellated polygons by specifying the contours of one

or more closed polygons.

5. Delete the tessellation object with gluDeleteTess().

Details of these functions are further discussed in Appendix B. Utilizing the pre-

defined OpenGL functions, viewpolygon() was created for tessellation purposes.

 57

Note that “t” was created using gluTessCallback() function.

GLU_TESS_WINDING_POSITIVE argument was used for determining the

interior of the polygon created, while using the user-defined SetFilling()

function, the interior of the polygon was filled with the color chosen. Notice that,

the vertex coordinate information is entered using the AddVertexArray()

function.

void CmemseagleView::viewpolygon (int i,int j)

{

 CGLTesselator t;

 t.StartDef();

 t.gluTessProperty(GLU_TESS_WINDING_POSITIVE);

 t.SetFilling(TRUE);

 t.AddVertexArray(vertices[i][j]);

 t.EndDef();}

Fig 4.2 demonstrates the display of a mask shape created using OpenGL

tessellation. The color of the filled area can be yellow or blue, with respect to the

type of the shape chosen. The un-masked areas are drawn in yellow.

Figure 4.2: Mask Creation using Tessellation

 58

4.6.2. Modifying Primitives (Selection)

In order to modify the objects drawn on the screen, they should be selected first

using the mouse. Typically, when using OpenGL's selection mechanism, first, the

scene is drawn into the frame buffer and then selection mode is entered and the

scene is refreshed. However, while in selection mode, the contents of the frame

buffer do not change until selection mode is terminated. When selection mode is

finished, OpenGL returns a list of the primitives that intersect the viewing

volume. Note that, each primitive that intersects the viewing volume causes a

selection hit. The list of primitives is actually returned as an array of integers

which stands for the object names and related data “the hit records”. This integer

corresponds to the current contents of the name stack. The name stack is

constructed by loading names onto it as primitives were drawn while in selection

mode. Thus, when the list of names is returned, this information can be used to

determine which primitives might have been selected on the screen by the user.

The steps followed to select an object drawn is listed below:

1. Specify the array to be used for the returned hit records with

glSelectBuffer()

2. Enter selection mode by specifying GL_SELECT with glRenderMode().

3. Initialize the name stack using glInitNames() and glPushName().

4. Define the viewing volume to use for selection. (The masked area)

5. Exit selection mode and process the returned selection data (the hit

records).

In selection mode, a primitive that intersects with the viewing volume invokes a

selection hit. Whenever a name-stack manipulation command is executed or

glRenderMode() is called; OpenGL writes a hit record into the selection array if

there's been a hit since the last time the stack had been manipulated or

glRenderMode() had been invoked. With this process, objects that share the same

name (for example, an object that's composed of more than one primitive) do not

generate multiple hit records. Than, the tessellation objects (the convex polygons

 59

that made up the polygon drawn by the user) are processed as one object, rather

than multiple shapes to be modified.

4.7. Sample Mask Shapes

The creation of the masks that were used to compare the simulation results with

the real cases was displayed below, using different techniques. Desired mask

patterns can be formed by modifying the three primitives (circle, polygon and

rectangle). The mask patterns created were used in SIMODE for the same

verification purposes also.

The mask pattern displayed in Fig 4.3 was created by using the circle primitives.

By creating circles centered in point O(x,y), the pattern was achieved. There are

two filled and two empty circles used during the design. The center of the circle

can be entered through the keyboard or by using the grid mode and left mouse

button. This mask was later etched in KOH and the progress of this process was

discussed in Chapter 7.

O(x,y)

Figure 4.3: Co-centric Rings

The second mask pattern created was used to demonstrate the etch results for

polygons that have obtuse angled vertices. The first shape was created using the

rectangle primitive and then rotated 45o. The easiest way to create the other

 60

shapes was to enter grid mode. After that by entering the vertices using polygon

primitives, the resultant pattern was created.

For the last shape, another way of creation was possible. First using the polygon

primitive, the user could create a triangle, then by rotating and copying this

triangle, the four sides of the shape was set. The hole inside could be filled with a

rectangle and the mask pattern was finished.

Figure 4.4: Obtuse Angled Shapes

This mask pattern was used for showing the effects of merging planes and the

etching of right-angled shapes in wet anisotropic etching. The pattern was

created by using the rectangle primitive, by rotating it 45o and copying it to

different locations the pattern on Fig. 4.5 was achieved.

The pattern demonstrated in Fig. 4.6 was used to show the effects of the mask

misalignments to the resultant etched shape. This pattern can be created in

different ways but the simplest approach was to create the shape and then

rotating it. The shape was created using the polygon primitive and by copying

and rotating the object, the final mask pattern was obtained.

 61

Figure 4.5: Rotated Squares

Figure 4.6: Misaligned Masks

The paddle pattern illustrated in Fig. 4.7 was used to display the compensation of

the shapes surrounded by the etchant. In order to achieve this shape first an outer

empty rectangle was created. Then there are two ways to follow, entering the

grid mode and creating the shape by using a polygon primitive or creating

rectangles and copying them.

The following rotated beam displayed in Fig 4.8 was made up of three rectangle

primitives. First, the two thin rectangles were created by entering the grid mode

and then they were rotated by 45o. The square was added finally and the mask

 62

pattern was obtained. This shape was used to demonstrate the compensation of

the rotated beams by the etchant.

Figure 4.7: Paddle

Figure 4.8: 45o Beams

This mask pattern was used to show the compensation of the triangle-cornered

shapes in the anisotropic wet etching process. In order to obtain this mask, first

the upper or lower half of the pattern was created using the polygon primitive.

Then, by copying and rotating the shape by 180o the final shape was formed.

 63

Figure 4.9: Triangle-Cornered Beams

The next sample (Fig 4.10) was used to simulate the compensation of the fingers

of a mask pattern by the etchant. If this shape is etched by Deep Reactive Ion

Etching or first boron doped and etched, the fingers of a comb drive can be

obtained. The simplest way of creating this pattern was to create the one finger

sample for each width first. The next step was to create the triangles by using the

polygon primitive and copying the fingers upon these triangles.

Figure 4.10: Compensation Fingers

This example illustrated in Fig. 4.11 shows a simple spur gear created by

MemsEagle mask editor. The mask was generated using the circle and polygon

primitives with modification options copy, paste and rotate. Hence, it is possible

to obtain relatively complicated MEMS elements using simple objects of the

editor.

 64

Figure 4.11: Spur Gear Created by the Mask Editor

4.8 Closure

By using the integrated simple mask editor, the user can draw complex shapes

for simulation of the micro-fabrication processes. Up to 50 different masks can

be created for a project, and each one can be associated with different processes.

There was grid option available, which can be turned off and be chosen for

different sizes.

 65

CHAPTER 5

PROCESS EDITOR

5.1. Introduction

After creating the wafer and designing the masks, the next step is the selection of

the processes to be simulated. MemsEagle includes a process editor where the

user selects the process sequences and the associated masks to be used. The

micro machining processes that can be simulated by the program and the

operating principles of the process editor is described in this chapter.

5.2. Editor Features

The process editor employed in MemsEagle is capable of creating the

environment for stand-alone micro-fabrication processes or a complete set of

processes for creating a MEMS device by utilizing the project editor. The micro-

fabrication processes and the mask patterns are added using the “Add” command

button shown in Fig. 5.1. Note that, by utilizing the combo boxes for mask and

process selection the necessary dialog boxes are reached for entering the

fabrication variables. Figures 5.2 and 5.3 illustrate the dialog boxes used for

different micro-fabrication processes simulated.

The processes can later be modified by using the “Choose Process” combo box.

When the project is ready for simulation, by exiting using the “OK” command

button, the user could return to the main MemsEagle interface for starting the

process. Rather than using the project editor, MemsEagle software can simulate

single process by simply entering the “process selector” dialog box. Notice that,

the fabrication processes to be simulated can be modified through this interface.

 66

Figure 5.1: Process Editor

Figure 5.2: Process Selector

 67

Figure 5.3: Micro-Fabrication Dialog Boxes

5.3. Simulated Processes

MemsEagle has mainly concentrated on simulating the etching processes,

especially the anisotropic etching. With the etching processes, additive processes

like doping and oxidation are also included in the package for self-completeness

of MEMS design process.

5.3.1. Wet Etching

Most of the etchants used in wet etching, results in an anisotropic profile for

silicon wafers. Based on the cellular automata approach, MemsEagle simulates

the resultant wafer shape after the micro-fabrication process applied. The etch

rates of the etchants used are given in Table 5.1.

 68

Table 5.1: Etch Rates in μm/min

 Planes

Etchant 100 110 111 311

EDP 0.47 0.28 0.028 0.28

Isotropic (HNA) 1 1 1 1

%30KOH %70 H2O 0.797 1.455 0.005 1.436

%40KOH %60 H2O 0.559 1.294 0.009 1.067

%50KOH %50 H2O 0.539 0.870 0.009 0.746

TMAH %20 0.603 1.114 1.223 0.017

5.3.2. Dry Etching

The only dry-etch process that can be simulated by MemsEagle is “Deep

Reactive Ion Etching”. In each step, one layer of cells is removed from the

surface of the wafer. Notice that, the etch rate was taken as 1μm/min.

5.3.3. Doping

Doping process is simulated with two restrictions, which will be elaborated in

Section 5.5.3. The inputs are the pre-deposition time and diffusion time. For

doping concentration dependent etchants, doping concentration is checked by

MemsEagle. If the concentration is higher than the threshold value (in certain

cases below) the etch stops for that cell. For further information on the etching

rates, the user is encouraged to refer to go to Appendix A.

5.3.4. Additive Processes

Several materials including Polysilicon, silicon dioxide, silicon nitride,

aluminum and gold can be added using the additive process simulation. Only the

un-masked areas are exposed to the additive materials and the thickness of the

deposited material is needed to simulate the process.

 69

It should be noted that as a general design principle, surface micro-machining

has to be applied as the last fabrication process owing to the fact that the

deposited films on the surface degrades a great deal when they are exposed to

common bulk micromachining chemical agents. Therefore, based on this

principle, MemsEagle is designed to deposit directly several stacked patterned

layers over the surface shaped by bulk micromachining. The crystal orientations

of these materials are different from that of the substrate. Hence, they are

indicated by a different color. However, in order to transform the new virtual

surface, these new cells are to be merged with the existing CA cells.

5.4. Virtual Surface Creation

First step in the simulation procedure is, to decide on which CA cells are to be

exposed to the etchant. The mask-wafer interface information is supplied by the

mask editor, whereas the cells under or above this interface should be checked

for determining the cells on the “virtual surface”. In order to store all the

information harvested, a user-defined “VS” class was generated using Visual

C++. The information that can be stored under this class is summarized in Table

5.2.

Table 5.2: VS Class Members

VS(Virtual Surface) Class Type Range Description
Neg [4] int -1,0,1 Neighbor Information
NegVs [4] int 0,1 Neighbors on the etchant-wafer interface
M Float 0..1 State of the cell
Material int 1..6 Material of the cell
Plane int 1..4 Plane on which the cell lies
x Float 0..1500 x location of the cell
y Float 0..1500 y location of the cell
z Float 0..1500 z location of the cell
tc Float 0..1 Time compensation value
dc Float 0..5x105 Doping Concentration
Selection int 0,1 Whether the cell is on the VS or not

 70

As mentioned before, there are four neighbors for each cell. The neighboring cell

information is stored under the “neg[4]” and “neg_vs[4]” variables on VS class.

On these arrays, the three possible states of a neighbor are as follows:

• 1: There is a non-etched neighbor on the predefined location. The locations

of the neighboring cells were given in Table 3.1. This cell lies on the virtual

surface.

• 0: The neighbor cell on this location has been etched in previous steps or out

of wafer range.

• -1: There is a cell on this location but it is not on the virtual surface, in other

words it is not exposed to etchant.

To determine the virtual surface, the software first starts out with the information

supplied by the mask editor. By checking the cells lying on the un-masked areas,

the neighboring cells, which have the state “0”, are sought. These cells simply

represent the holes and cavities formed in previous steps and the neighbors of

these cells should be added to the virtual surface. When there is no more

neighboring cells left with state “0”, the virtual surface creation is finished. This

procedure is repeated before each time step, because there may be holes that are

under the masked areas and not exposed to etchant in previous steps. Some

undercut process may be observed around the perimeter of unmasked areas or

some cavities might be bridged. As a result, consequently those cells will also be

exposed to etchant in the next steps. Fig. 5.4 illustrates the flowchart of this

process. Notice that in the flow chart; M, which is an element of VS class,

denotes the state of a particular CA cell.

 71

Unmasked surface area
coordinates

Scan the surface for the cells
under unmasked areas

M =0

Yes

No

Add the neighbors and the
cell to VS

M=0

Exit

Yes No

Add the cell to VS

Figure 5.4: Virtual Surface Creation Flowchart

5.5. Plane of the Cells

After deciding on which cells should be processed in the next time step, to apply

the etch algorithm, the plane of the cells should be determined. There is a

function called Plane() on VS class, that was created for assessing the plane of

the cells. Simply by finding the number of the neighboring cells and checking

whether they lie on the virtual surface or not; the function finds the plane for

each cell. The flowchart of the Plane() function is given in Fig. 5.5.

 72

Count the number of
neighbors on VS

Return the
“Plane” Value

Compare the values
with Table 5.3.

Count the number of
neighbors of the cell

Figure 5.5: Plane Function Flow

Table 5.3: Number of Neighbors for Different Planes

 <100> <110> <111>

Number of Neighbors 2 3 3

Number of Neighbors lying on the virtual surface - 2 -

Since each cell location and state information are stored in an array, simply

scanning this array yields the information needed by the Plane() function.

5.6. Process Application

After the virtual surface is set and the planes of the cells are found, the cells

undergo certain modifications based on the process selected.

5.6.1. Wet Etching Modifications

Using the etchant information obtained, each cell state is modified according to

the etch rate of the chosen etchant for the plane of the cell. The initial states of

the cells are “1” and when the state value reaches zero, the cell is removed. The

main problem in applying the etch rate occurs if the state of the cell decreases

below zero.

This situation is undesirable since, when the time passed between the state of the

cell reaches zero, the final value of the state (which appears to be negative), is

lost. To facilitate this time, the neighbors of the cell etched, will be exposed to

 73

the etchant for the next step time (1 minute for MemsEagle) plus the lost time

when the state of the etched cell dropped below zero. Note that, a similar

approach entitled “time compensation” was known to be utilized by the

developers of the ACES program.

After the etchant is applied to the cells, if the state of the cell is equal to zero, it is

removed. The neighbors of the cell that do not lie on the virtual surface enter the

etchant-wafer interface. The added cell inherits the conjugate of the type for cell

being removed. (Type 1↔Type 2) The progress of the wet etching is illustrated

in Fig. 5.6 where i refers to the time index and M denotes the state of a particular

cell.

5.6.2. Dry Etching (Deep Reactive Ion Etch) Modifications

Most of the steps of simulation are same as the wet etching for the dry etch

process also. Since, only the cells in the un-masked areas should be removed,

certain checks should be carried out before modifying the state of a cell.

First, during the creation of the mask possible cell locations on the un-masked

areas are stored in an array. This is different then just storing the cell locations on

the mask surface because the x and y locations of the cells under the surface of

the wafer is varying. So all possible x, y locations are stored in the memory for

using in the doping, dry etching and additive processes. Fig. 5.7 illustrates the

generation of the CA cell locations for different wafer types.

The steps used in wet etching are followed till the modification of the state

values. Here, if the cell location does not match any of the locations stored in the

array mentioned, the state value is not modified. Thus, only the cells that are

under the un-masked areas are etched away. Addition of the neighbors is just the

same as wet etching.

 74

Create the new etchant-wafer
interface

i <Time

Yes

Find Plane of the Cell
by Plane()

Apply Etch Rate to the state
value of the cell

M=0

Add neighbor cells to VS, and
calculate the coordinates

No

Yes

No

Search VS for the cells
located under the un-
masked regions

Exit

Figure 5.6: Wet Etching Flowchart

 75

Search VS for the cells located
under the un-masked regions

 Create the new etchant-wafer
interface

Figure 5.7: Dry Etching Flowchart

For example, for the rectangular mask in Fig.5.8, the cell locations are stored

first. Notice that this is a (100) wafer flat on (100) direction. The (x,y)

Add neighbor cells to VS , and
calculate the coordinates

M=0

Yes

Find Plane of the Cell i < Time
by Plane()

No

Apply Etch Rate to the state value
of the cell

Exit

Yes

No

No

Yes

Cell under un-
masked region?

Scan the un-masked areas

 76

coordinates of the surface cells and their neighboring cells are stored in the array

generated. As illustrated in Fig.5.9, for each particular cell, the following cell

locations should also be stored in the array if they are still in the un-masked

areas: P1(x+0.25, y+0.25), P2(x-0.25, y-0.25), P3(x+0.25, y-0.25), P4(x-0.25,

y+0.25), P5(x+0.5, y), P6(x-0.5, y), P7(x, y+0.5), P8(x, y-0.5). By just comparing

the new cells’ x and y coordinates, the software decides whether the new cell

located under the un-masked area and should be etched or not.

Enlarged
Area (0,6) (10,6)

(0,0) (10,0)

Figure 5.8: Dry Etch Modification

P7 P(x,y)
P4 P1

P5P6

P2 P3

Figure 5.9: Enlarged Area

5.6.3. Doping Modifications

Doping is introduction of impurities into the silicon wafer, thus in theory the

silicon cell lattice has to be modified to accommodate the extra atoms diffused to

 77

the silicon crystal. In MemsEagle, doping is simulated by modifying the doping

concentration property associated with a particular cell without ever changing the

cell array.

Another assumption inherently used in the simulation is that: only the unmasked

areas of the wafer are doped. The doping does not continue in the lateral

directions covering the mask portions of the wafer. Within this framework,

doping simulation in MemsEagle is the one used to slow out the etching process.

The “doping concentration” values of each cell is modified during the doping

process. Just as the dry etch process, only the un-masked areas are modified.

Using the drive-in and pre-deposition times entered by the user, the code finds

out the penetration of the impurities using the following expressions.

11013.1 tDNQ = (5.1)

Dt
z

e
Dt
QtzN 4

2

),(
−

⎥⎦
⎤

⎢⎣
⎡=
π

 (5.2)

where Q[cm-2] is the total impurity dose, D1[cm2/s] is pre-deposition coefficient

and t1[s] is pre-deposition time; N(z,t)[cm-3] is the concentration profile,

D[cm2/s] is diffusion coefficient, t[s] is diffusion time and z[μm] is the depth

from the surface. The temperature of the doping process simulated is 1200oC.

When a new cell is added to the virtual surface, its x, y coordinates are checked

and if it matches with the un-masked region used during the doping, the doping

value of the cell is modified during the creation phase.

5.6.4. Additive Process Modifications

Final micro-fabrication step that can be simulated in MemsEagle is the additive

processes. MemsEagle just displays the resultant material layer deposited based

on the number of layers entered by the user.

 78

The steps followed for finding the areas on which the material is to be deposited

are similar to the DRIE process. The software scans the unmasked areas and

finds out the upper-most CA cells on those regions. After that, if the state value

of the cell is not equal to 0, its neighbors located in the upper side of the wafer

are added to the virtual surface. As an example, for wafer type (100) flat on

(110), neighbors 1 and 3 should be added for type 1 cells whereas neighbors 2

and 4 should be added for type 2 cells. Similar to DRIE, the new cells should be

checked whether they are located under the un-masked areas or not. The

flowchart for this process is shown in Fig.5.10.

Search VS for the cells located
under the un-masked regions

Locate the uppermost
cell that M>0

Add Neighbors to the VS

Create the new material-wafer interface

i < time

Yes

No

Exit

Figure 5.10: Additive Process Flowchart

5.7. Visualization of data

After the process is finished the plane, coordinates, state, doping concentration

and material information is stored in “VS_Draw” array. This information is later

used with OpenGL functions for displaying the simulation results. Displaying the

process results are done by drawing the cells on the screen with respect to their

material, plane type or doping concentration. The simple OpenGL sequence:

 79

glBegin(GL_POINT);

glvertex3f(x0, y0, z0);

glEnd();

where (x0, y0, z0) represents the cell location in space is used for drawing the

cells on the screen. Because of the perspective view used, the cells and lines

nearer to the screen are drawn bigger then the ones located deeper into the

screen. Using OpenGL functions the size and shape of the points can be modified

for easy viewing of the surfaces generated by the process. Table 5.4 shows the

color map used for representing different materials, planes and doping

concentrations in MemsEagle. Notice that, a simulation result utilizing the plane

view is illustrated in Fig. 5.11.

Figure 5.11: Displaying Results

 80

Table 5.4: Color Map in MemsEagle

 Type Colors
(100)
(110)
(111)

Pl
an

e
V

ie
w

(311)
Si

SiO2
Si3Ni4

Al
Poly Sİ

M
at

er
ia

l V
ie

w

Gold
>1015
>1016
>1017
>1018 D

op
in

g

>1019

5.7.1. Viewing Transformations

A perspective view is used for displaying the results in MemsEagle. The

OpenGL function gluPerspective(angle, aspect_ratio, znear, zfar)is utilized,

where the first argument is the field of view angle, the third and fourth arguments

are the distance from the viewer to the near clipping plane (always positive) and

the distance from the viewer to the far clipping plane (always positive)

respectively, is used for defining the view. The position of the viewer is set by

the OpenGL function gluLookAt (eyex, eyey, eyez, centerx, centery, centerz,

upx, upy, upz) where eyex, eyey, eyez are the position of the eye point; centerx,

centery, centerz are the position of the reference point and upx, upy, upz are the

direction of the up vector. Figures 5.12 to 5.14 illustrate views of a micro-

fabrication process from different angles, locations and scaling.

There are three viewing transformations used in MemsEagle: move, rotate and

zoom. Moving is done by transforming the objects drawn in the x, y plane by

clicking and dragging the left mouse button. The OpenGL function

glTranslatef(x_value, y_value) is used for moving.

 81

Figure 5.12: Top View of the etch result

Figure 5.13: Etch Result without mask from a different angle

 82

Figure 5.14: Etch Result From different angle and scaling

Take note that, rotation is carried out by the function glRotatef(angle, x, y, z)

where angle is the angle of rotation and x, y, z are defining the direction of the

vector from the origin to be used for rotating the objects around. The zoom

option is done by the help of the function glScalef(x, y, z) where x, y and z are

scale factors along the x, y, and z axes, respectively.

5.8. Closure

Process editor is the heart of the MemsEagle software. All the information

gathered is used for simulation of the micro-fabrication processes through this

editor, and the functions under it. Wet and dry etching processes, doping and

other additive operations can be simulated in an integrated environment. All the

information obtained through process editor is sent to OpenGL function

“OnDraw” for displaying the results.

 83

CHAPTER 6

PROGRAM FEATURES

6.1. Introduction

The mechanics of the wafer creation, mask generation and process simulation

was explained in the previous chapters. This chapter is dedicated to the user-

interface of MemsEagle and how this mechanism are activated using the menu

and dialog controls.

6.2. MemsEagle User Interface

MemsEagle is a menu-driven MFC (Microsoft Foundation Class) software, using

OpenGL functions and dialog bars for simulating micro-fabrication processes

and displaying them. Notice that, the three editors previously discussed can be

accessed through the menu commands in the program. Fig. 6.1 displays the

interface of MemsEagle, and the wafer, mask and simulation menus can be seen

which are used for reaching those editors.

In the preceding sections, the editors are explained using a micro-fabrication

example. Notice that, there is an “Output” menu shown in Fig. 6.1, which was

not mentioned up to now. Through this menu, the distance between two points,

point coordinates; depth and doping concentration of particular points can be

found.

 84

Figure 6.1: MemsEagle Interface

6.3. Wafer Editor

The editor was accessed through the “Wafer” menu and from the “Wafer

Editor...” menu item. Using the editor dialog box, as illustrated in Fig 6.2, the

user can choose, the wafer crystal orientation, doping type and concentration and

the wafer size.

A mentioned earlier, the substrate was generated as a wire frame except the

upper surface. This surface is created as a mask covering the entire area, and

from this upper surface the micro-fabrication processes is to be initiated. A

sample wafer was generated and illustrated in Fig. 6.2.

 85

a)

b)

c)

Figure 6.2: Wafer Editor

6.4. Mask Editor

Mask editor was reached from the mask menu similar to the wafer editor. When

the mask editor is entered, just the upper surface of the substrate is drawn on the

screen. This procedure is illustrated in Fig. 6.3.

 86

Figure 6.3: Mask Editor

In the example, a polygon is initiated in grid mode. As seen in Fig 6.4 the grid

and empty radio buttons are selected. Using the left mouse button alone, the

pattern can be generated easily with the help of the coordinate display. The last

shape was created selecting the full shape button so a masked area created inside

the triangle.

 87

Masked Area

Coordinate
display

Figure 6.4: Drawing Mask

When creation of a particular mask is finished, the grid must be turned-off and

the “end” command button must be clicked. By pressing the “end” button, the

user activates the scanning process, which generates the necessary mask

information for the process editor.

6.5. Process Editor

When the process editor was initialized via the simulation menu, a dialog box is

appears on the screen as illustrated in Fig. 6.5. The user is prompted to select the

micro-fabrication type and the mask number from the combo boxes. As shown in

this example, the user has selected a wet etching process and the corresponding

mask.

 88

Figure 6.5: Process Selection

The next step is the selection of the etchant and the process time. Note that, in

MemsEagle minimum process time is 1 minute. When the selections are

complete, the user must enter the “OK” command button to store the information

in the memory. As shown in Fig. 6.6, the user has chosen KOH with a

concentration of 30% at a constant temperature of 70oC as the etchant, and the

simulation time is selected as 10min.

MemsEagle provides not only a stand-alone process simulation but also projects

composed of a large number of sequential processes. In order to create such a

project, the project editor should be used. As explained in Chapter 5, the micro-

fabrication steps and the masks can be defined using this editor. Hence, the

whole project can be simulated in one-step. The interface used for the project

editor is illustrated in Fig. 6.7. As can be seen, all the relevant information

entered can be seen from a list control provided.

 89

Figure 6.6: Wet Etching Dialog

The result of the simulation process defined is displayed in Fig. 6.8. Once the

results are obtained, the next step should be harvesting the information. This can

be done by using the output menu or by visual inspection with the help of

viewport modifications.

Figure 6.7: Project Editor

 90

Figure 6.8: Simulation Result

6.6. Viewing

As the simulation of the micro-fabrication process is finished, the resulting shape

is displayed on the screen, as the CA cells with colors represents not only

different planes but also materials with different doping concentrations. Through

the view menu, the display options can be entered as illustrated in Fig. 6.9. The

user is able to do the following actions:

• Rotate, zoom, move the object

• Display/hide the un-etched cells

• Show/hide the mask

• Change the coloring scheme for gathering particular information on the

simulation results.

 91

Figure 6.9: View Menu

Different views of the result have already been shown through Figs 6.11 to 6.13.

Here color scheme for the doping concentration is illustrated by Fig. 6.10. Note

that the dark colored areas are the heavily doped regions. (The substrate was

doped before) Now that the visual inspection is done on the results, the next step

should be taking measurements on the simulated design.

Figure 6.10: Viewing Doping Concentration

 92

Figure 6.11: Distance between two points

Figure 6.12: Viewing doping concentration of a point

 93

6.7. Taking Measurements

After the output has been generated; location, depth, doping concentration and

plane information of the generated CA cells can be accessed via the output menu.

In addition, distance between two points can be determined. The selection

algorithm used was the same as for the mask modifications and explained in

detail in Chapter 4. By selecting the desired information and choosing the point

via mouse, the information sought is displayed on the screen as shown in Figures

6.11 to 6.13.

Figure 6.13: Output Menu

6.8. Closure

The user interface of MemsEagle has been explained in detail. The capabilities of

the software and the information that can be accessed through different menus

and dialog boxes have been shown. By making use of a wet etching example, a

simple simulation scheme was elaborated.

 94

CHAPTER 7

VERIFICATION OF SIMULATION RESULTS

7.1. Introduction

To verify the validity for the output of the developed program, the simulated

MEMS fabrication processes have to be compared to those of the real cases.

Hence, the object of this chapter is to study the performance of MemsEagle

through a bunch of real-world cases.

7.2. Simulation Results

To assess the validity of the simulated results given by MemsEagle, four

simulations are conducted. The simulated cases are as follows:

1. Anisotropic wet etching of complex shapes on silicon wafer

2. Deep Reactive Ion Etch of high aspect ratio structures on silicon wafer

3. Creation of complex structures via doping

4. Surface micromachining

Details about these simulations follow:

7.2.1. Anisotropic Wet Etching

In this simulation, the <100> silicon wafer which is flat on <110> plane is used

as the substrate and the etchant selected is 30% KOH at 80oC. Notice that, the

cases to be studied are directly taken from the manual of SIMODE [24]. These

cases are essentially used to confirm the results given by the SIMODE code. By

simply comparing the simulation results to the features of the actual MEMS

structures being fabricated for this purpose. Therefore the masks designed for

SIMODE verification are directly utilized in MemsEagle. The creation of these

 95

masks is also explained in mask editor section. The process results at different

time steps are also shown in the preceding sections. The simulated wet etching

cases are as follows:

1. Etching a rectangular pattern in <100> wafers flat on <100>

2. Etching a rectangular pattern in <100> wafers flat on <110>

3. Etching co-centered rings in <100> wafers flat on <110>

4. Wet etching of diamond shape in <100> wafers flat on <110>

5. Etching of a paddle shape

6. Etching of fingers

7. Etching simulation of a “Tee” shaped pattern

8. Wet etching of complex shapes with various mask (mis)alignment angles

These cases are elaborated sequentially in the following sections.

7.2.1.1. Case 1 for wet etching

In order to test the etching simulation capabilities of MemsEagle for of <100>

wafers flat on <100>, a simple rectangular mask pattern is used first. EDP is

employed as the etchant. After 30 minutes, the resulting shape consisting of

(111) planes starting from the (110) planes, which are inclined by 45o, appears as

expected. Because the etch rate of (111) planes is slower (0.028μm/min)

compared to (100) and (110) planes, where the corresponding etching rates of

these planes are 0.047μm/min and 0.28μm/min [13] respectively, etching tends to

slow down to a near stop at (111) planes. Figure 7.1 confirms this observation. If

the process is continued, the (111) planes will merge at the bottom and a pyramid

whose base is aligned at (110) planes is formed as shown in Fig. 7.2. Similarly,

Fig. 7.3 shows the fabrication of this textbook structure, which in turn verifies

the results of the MemsEagle.

 96

(111) planes Mask borders

Figure 7.1: EDP Etch View

(110) direction

(111) planes

Figure 7.2: EDP Etch 3-D View

 97

(110) direction

(111) planes

Figure 7.3: EDP Etch of (100) Silicon Wafer [31]

7.2.1.2. Case 2 for wet etching

As discussed in the previous case, the etching of (100) wafers stops at lines

parallel to (110) planes. In order show this, and to check the accuracy of the

software for <100> wafers flat on <110>; etching of a rectangular mask pattern

on such a wafer has to be studied. The resultant etch profile in agreement with

the experimental results. Figures 7.4 and 7.5 illustrate the formation of (111)

planes and the termination of etching through (110) directions.

Figure 7.4: Etch profile of <100> wafer flat on <110>

 98

 (110) direction

(111) plane

(100) plane

Figure 7.5: 3-D Etch profile of <100> wafer flat on <110>

The actual shape formed through such a fabrication scheme is very similar to Fig.

7.3 and is well studied in literature [4], [24]. Therefore, these simulation results

will not be discussed any further.

7.2.1.3. Case 3 of wet etching

As a more complex case, co-centered circles are taken into consideration. The

resulting mask, which is shown in Fig 7.6, is created using the mask editor of

MemsEagle. Due to the geometric restrictions imposed by the mask editor, the

circular mask patterns have a stepwise circular pattern correlated with the

resulting resolution of the mask editor. The wafer is exposed to KOH (at 80oC)

for 100 minutes and the resultant shape (only one quadrant) was illustrated in Fig

7.7. Similarly, the actual fabrication result is demonstrated in Fig 7.8. Not

surprisingly, the simulation result and the actual one agree well.

Notice that, the (100) plane formed at region 1 shown in Fig 7.7, has a measured

depth of 105μm whereas the result of the experiment shows 109μm. As expected

(111) planes formed at regions 2 and 3, has an inclination angle of 54.7o. Both

the simulation results and the experimental ones show that the (111) planes

 99

merge each other at right angles, and form the base of a rectangular pyramid as

the fabrication continues.

Figure 7.6: Co-centered Circular Mask Pattern

1

3

2

Figure 7.7: MemsEagle Result for Co-centered Circular Mask Pattern

 100

1

3

2

Figure 7.8: Experiment Result for Co-centered Circular Mask Pattern [24]

7.2.1.4. Case 4 of Wet Etching

The next case concentrates on a much-sophisticated shape, which is an array of

rectangular patterns as shown in Fig.7.9. A <100> wafer is used as the substrate,

which is flat on <110> plane. The etchant was KOH 30% (at 80oC) and the

etching time is set to be 150 minutes. The simulation result and the experiment

result after 100 minutes were displayed in Fig. 7.10 and Fig. 7.11. Since, the pits

formed under the unmasked square shapes have not merged yet, the results are

very similar to those obtained in article 7.2.1.2.

After 150 minutes, these shapes are beginning to merge and a situation, which

creates a difficult problem faced during the simulation of micro-fabrication

processes by the geometric methods discussed in Chapter 2, is observed. As

shown on Fig. 7.12, the simulation result of MemsEagle agrees well with the

experimental result shown in Fig. 7.13.

 101

Figure 7.9: Mask Pattern of Merging Shapes

Figure 7.10: MemsEagle Simulation Result of the mask (Fig. 7.9)

 102

Figure 7.11: Experimental Result for the Mask (Fig. 7.9)[24]

 Merging Regions

Figure 7.12: Etch Result After 150 minutes

 103

Figure 7.13: Experiment Result after 150 min. [24]

7.2.1.5. Case 5 of Wet Etching

The next simulation illustrated focuses on the chemical etching process taking

place under a paddle shaped mask pattern. As displayed in Fig.7.14, a paddle like

mask was generated and etched in 30% KOH at (80oC).

Figure 7.14: Paddle Mask

 104

Fig. 7.15 shows the simulation results for this case. After 100 minutes, the etch

stops, as expected, at regions one, two, three and four while in region five the

mask was undercut until it reaches the (110) directions. The obtuse angled mask

patterns are undercut through these corners in anisotropic silicon etching, this

example illustrates this concept. This property can be used to have released

shapes, using doping or other etch stop techniques. Finally, fig. 7.16 shows the

corresponding experimental results, which are in agreement with those given by

MemsEagle.

2
1

5

4
3

Figure 7.15: Simulation Result after 100min

Figure 7.16: Experiment Result after 100min. [24]

 105

7.2.2.6 Case 6 of Wet Etching

The following simulation illustrates the etching of the fingers of a mask pattern

due to mask-undercut behavior of anisotropic etchants. As shown in Fig. 7.17 the

fingers erode starting from the free tip of the finger. After 50 minutes, all the

fingers were etched away. As can be seen from fig. 7.18, the simulation results

match well with the experimental ones.

Figure 7.17: Simulation Results after 30min. and 50min.

 106

Figure 7.18: Experiment Results after 50min. [24]

Notice that, in this simulation the number of fingers along with the overall

dimensions of the mask is reduced, owing to the fact that the smaller features on

the mask yield huge number of CA cells used in the simulation. Thus, the

simulation time becomes unnecessarily long e.g. one day of computation on a

modest PC. Therefore, the presented simulation case is intended to demonstrate

the behavioral properties of MemsEagle for all practical purposes.

7.2.2.7. Case 7 of Wet Etching

In this case the wet etching of a complex shape referred to as “Tee” is

considered. Fig. 7.19 shows not only the corresponding mask shape but also the

result of the etching process of a <100> wafer, exposed to 30% KOH (at 80oC)

for a duration of 50 minutes. Due to the rectangular mask shapes (which are

aligned to (110) directions), except for the “Tee”, there is no mask-undercut. All

the rectangular patterns are etched to have a pyramidal pit with 54.7o inclination

angle, and etching slows down at (111) planes.

 107

Notice that, having obtuse-angle corners the mask starts to undercut from the

“Tee”. This undercut region (region 1), expands through the directions shown on

the simulation result. Note that, if the wafer were exposed to the etchant for a

sufficient time, the material under the mask would be totally undercut to yield a

pyramidal form.

1

Figure 7.19: MemsEagle Simulation for “Tee”

Notice that, simulation results qualitatively match with those of the experimental

results demonstrated on Fig. 7.20. All indicated observations in the simulation

could be extended to the experiment as well.

Figure 7.20: Experiment Result for “Tee” [24]

 108

7.2.1.8. Case 8 of Wet Etching

Most of the etching problems occurred due to mask misalignments. In order to

visualize the effect of misaligned masks, and to confirm the simulation capability

of MemsEagle for such cases the mask patterns illustrated by Fig. 7.21 are used.

1 3
2

Figure 7.21: Misaligned Mask Pattern [24]

The first shape is created using the mask editor while the second and the third

shapes are rotated by 5o and 15o respectively to mimic the mask misalignment

effects. The same etchant and wafer type are used as with the previous cases. The

results of the simulation after 50 minutes are compared to the experimental

results. Fig. 7.22 illustrates the resultant shape when the first mask was used.

Note that, the maximum depth is measured as 48μm whereas the corresponding

depth in the experiment happens to be 56μm. As expected, for regions one and

two, etching stopped at (111) planes through the (110) directions. Through

regions three and four, because the (111) planes did not end at (110) planes, the

material under the masked areas are undercut. Should the etch continue, these

regions will also merge at (111) planes aligned with (110) directions. The

experimental results generally agree well with the simulation results as displayed

in Fig. 7.23.

 109

2

(111) Planes

1

3

4

Figure 7.22: MemsEagle Result after 50min.

Notice that, there exits a discrepancy of 56-48=8μm in tn.he depth measurement

between the experiment and the simulation. This is due to the fact that, the mask

employs an isometric scaling factor of 10:1 that is a 10μm feature in the

experiment is scaled down to 1μm in MemsEagle. Hence, the dicretization effect

manifests itself as a slight error in depth throughout the simulation.

Figure 7.23: Experiment Result after 50min. [24]

 110

Figure 7.24: MemsEagle Result after 100min.

Figure 7.25: Experiment Result after 100min. [24]

When the etch continues as shown in Fig. 7.24 and 7.25, the third and fourth

regions continued to expand in the directions shown by arrows in Fig 7.24. After

sufficient time elapses, the resultant shape will be a pyramid whose base is a

rectangle.

If the mask pattern were rotated (aka. misaligned) 5o, as illustrated in Fig 7.26,

the regions one and two (refer to Fig.7.22) have also continued to be etched as

they are no longer aligned with (110) direction. As confirmed by the experiment

 111

results (Fig 7.28), the resultant shape would be a pyramid with a larger

rectangular base.

Figure 7.26: Simulation of the 5o-rotated mask

Figure 7.27: 3-D View of Simulation Result

Figure 7.28: Experiment Result of the 5o rotated mask [24]

 112

Finally, the 15o rotated mask pattern is simulated. The result of this rotation

yields also a larger rectangular base. (Fig 7.31) The width and the length of this

rectangle are based on the maximum and minimum vertical and horizontal points

of the mask border as shown in Fig 7.29.

Mask Border

Figure 7.29: Simulation of the 15o rotated mask

Figure 7.30: Experiment Result of the 15o rotated mask [24]

 113

Figure 7.31: Experiment Result after 200min. [24]

The next section explores the performance of MemsEagle on Deep Reactive Ion

Etching (DRIE).

7.2.2. Deep Reactive Ion Etching

The following sample shows the dry etching capabilities of MemsEagle. The

software simulates Deep Reactive Ion Etching by neglecting the effect of the size

of the shape to be etched. When dealing with openings with different sizes, a

difference in etching rate is observed [32]. This effect is called Aspect Ratio

Dependent Etching (ARDE). Fig 7.32 clearly demonstrates the ARDE effect

where the depths of the holes vary with opening size.

 114

Figure 7.32: Deep Reactive Ion Etching ARDE Effect [32]

Using a mask pattern composed of circles with different diameters as illustrated

in Fig 7.33, the Deep Reactive Ion Etch (DRIE) is simulated. Since the ARDE

effect is neglected in the simulation, all holes exactly have the same depth as

demonstrated in Fig 7.34. However, the ARDE effect can be incorporated to

MemsEagle by enhancing the algorithm that will scan dynamically and locate the

neighboring cells on the virtual surface, and could define the holes in which the

CA cells are located. However, enhancing the algorithm this way requires

considerable software development efforts.

Figure 7.33: Mask Pattern for DRIE

 115

a)

b)

Figure 7.34: DRIE Simulation Result (a) top view, (b) front view

7.2.3. Doping

Doping is mostly utilized in MEMS fabrication processes for the purpose of

stopping the etch as well as creating independent machine elements and

structures on the surface through bulk micromachining processes.

In this case, an anisotropic etching is performed on a doped shape which is to be

released at the end of the process, through the use of the dopant as the etch stop.

First, two rectangular masks are created using the mask editor. The first mask,

whose surface area is smaller then the other, was used for doping. The <100>

wafer is doped for a pre-deposition time of 10min and a drive-in time of 30min

while the temperature of the doping process is 1200oC. Thus, a shallow heavily

doped region is to be formed. After this step, the second mask is applied to etch

 116

the substrate by a doping concentration dependant etchant for releasing the

heavily doped region. Fig. 7.35 illustrates the result of the simulation, the wafer

is etched totally around the heavily doped region and that part is released as

expected. Note that, the lateral penetration of the dopant is neglected for all

practical purposes. Only the un-masked areas are doped during the process.

Doped
Region

Figure 7.35: Released Part

As a final example for doping, a cantilever beam which is to be used as a micro-

switch in many MEMS applications is considered. As can be seen in Fig. 7.36

the desired cantilever beam can be formed with the application of two mask

sequentially. One is for the doping and the other one is for etching of the

surrounding of the doped region.

 117

Figure 7.36: Cantilever Beam

7.2.4 Additive Process

In MemsEagle surface micromachining processes can be easily simulated, with

the following reservations:

1. Micromachining is the last application process to be applied on the wafer.

2. The mask shape can be directly transferred to the material layer being

patterned. No dimensional errors are occurred in the lateral directions.

Based on these assumptions MemsEagle directly deposit the patterned mask

shape onto the substrate and the other patterned layers follows the topology of

the preceding ones. Figures. 7.37 and 7.38. show a layer of Silicon Nitride

deposited on the wafer.

Figure 7.37: Silicon Nitride Deposition

 118

Figure 7.38: Silicon Nitride Deposition Top View

7.3. Etch Rate Verification

Calculation of the “Effective Etch Rate” was summarized in this section. Based

upon this information, a spoke pattern was used to verify the etch rates. In order

to convert the etch rates obtained from previous researches, an algorithm is

devised for MemsEagle. As mentioned before, a cell may have a state value

between 0 and 1. In addition, when a cell is etched, its neighbors, which are

0.432μm away, are added to the wafer-etchant interface. Note that, in order to

simulate the processes accurately, the etch rates are divided by this value to have

the “Effective Etch Rate” to be used on the state value of the cell.

The second approach used for determining the etch rates is to calculate the etch

rates for scaled wafers. As mentioned, wafers with surface area above then

1500μm2 are scaled down to have a surface area of 1500μm2. The scale factor

calculated is also used to determine the “Effective Etch Rate”. The etch rates

obtained is divided by this value and the resultant value is applied to the cells.

 119

Since no figures on the etch rates could be directly obtained from the literature,

the verification of the etch rates has to be qualitatively obtained by taking a look

at various a spoke patterns when different etchants (KOH, EDP) are used. As can

be seen from Figures 7.39 and 7.40, the simulated results as well as the

experiment results are in good agreement with each other. Thus, the etching

performance of MemsEagle has been found realistic for the simulation of most

practical MEMS designs.

a) Mask Pattern b) Experiment c) Simulation

Figure 7.39: Spoke Pattern etched by EDP

a) Mask Pattern b) Experiment c) Simulation

Figure 7.40: Spoke Pattern etched by KOH

7.4. Program Performance

In order to simulate sequentially, the etching process for different wafer types

with various etchants, all the information obtained from each process is stored in

 120

the “VS (Virtual Surface)” array created. The number of cells stored could be up

to 150.000 for certain complex shapes. But, even with these sizes of arrays, the

simulation could be carried on most personal computers within reasonable

durations. The computation time for a shape consisting of 60.000 cells and 40

time steps take 25-35 minutes on a common PC (256MB of RAM, 1400Mhz

Processor)

7.5. Quantitative Analysis on the Simulation Results

To asses the accuracy of the simulation results, a quantitative analysis on

geometric errors resulting from various for bulk micromachining processes, is

conducted. To accomplish that, the previous cases where the experimental results

are also available through [24] are taken into consideration. Unfortunately, the

exact geometry of the masks being used for the experimental studies are not

specified. Therefore, in the simulation with MemsEagle, the masks are designed

by taking rough measurements on the resultant shapes formed after the

experimentation. Table 7.1 demonstrates the results for the afore mentioned cases

3 to 8. In this table, the etching conditions including the etchant type,

temperature, process time are given. The columns, experimental and simulation

illustrates the maximum depth of the etch surfaces obtained through

experimentation and simulation.

Table 7.1: Maximum Depth of the Etched Surfaces

Process Etchant
Temp.

[oC] Time[min]
Experimental

[μm] Simulation [μm]
Relative

Error
Case 3 KOH %30 80 100 109 105 3,67%
Case 4 KOH %30 80 100 110 105 4,55%
Case 4 KOH %30 80 150 166 155 6,63%
Case 5 KOH %30 80 100 110 105 4,55%
Case 6 KOH %30 80 50 55 52 5,45%
Case 6 KOH %30 80 100 110 105 4,55%
Case 7 KOH %30 80 50 56 52 7,14%
Case 7 KOH %30 80 100 110 105 4,55%
Case 8 KOH %30 80 50 56 52 7,14%
Case 8 KOH %30 80 100 110 105 4,55%

 121

Notice that the relative error (E%) is defined as:

exp

exp

% 100
d d

E
d
−

= ⋅ (7.1)

where dexp, d refer to the depth values obtained through experiments and

simulations respectively. As can be seen the maximum relative error is about 7%,

despite the inaccuracies introduced by wafer scaling, mask design as well as

uncertainties in the etch rates. Results of MemsEagle are in excellent agreement

with the experimental results, thanks to the realistic simulation properties offered

by the CA method.

7.6. Closure

As the program based on the “Cellular Automata” approach, the die on the wafer

has to be discretized. Due to this feature, using larger size arrays could improve

the accuracy of the results. To test the performance of the device software, a

number of simulations were carried out. The experimental results show that, the

simulation results are in good agreement with the actual cases.

Even though the simulation accuracy is sufficient for the simulation of most

practical MEMS designs, there exists a significant improvement opportunity in

MemsEagle. Higher order planes such as (211) and (411) could also be added to

the etching algorithm and a more-packed silicon lattice can be used to enhance

the simulation accuracy of the program.

 122

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis a software code for simulating micro-machining processes of

silicon wafers that are used in Micro-Electro-Mechanical-Systems (MEMS) have

been developed. The wet and dry etching including anisotropic and isotropic

etching, doping and additive processes could be simulated.

The outputs of the program includes the depth of the resulting shape, 3-D model

of the etch result and the dimensions of the final product. The user can design the

mask by the integrated mask design tool in MemsEagle. Both inside and outside

of the mask shape can be etched, or exposed to the process selected.

Main advantage of MemsEagle is the integrated design environment it provides

to the users. Different from the other codes, there is a mask design tool and

different properties of each cell can be accessed. Besides the anisotropic etching,

MemsEagle can be utilized for simulation of additive processes like doping.

Table 8.1 demonstrates the features of the softwares developed during past

researches and MemsEagle.

Table 8.1: Features of the Available Softwares

Simulation Capability Design Capability
Program

Bulk µ-fab Surf. µ-fab Doping
Mask

Design
Project

Creation Visualization
ASEP Yes No No No Yes Planes
SEGS Yes No No No No Planes

Suzana Yes No No No No 3-D Solid
AnisE Yes No No No Yes Cells
ACES Yes No Yes No Partial Cells

SIMODE Yes No No No Yes Planes
MemsEagle Yes Yes Yes Yes Yes Cells

 123

Notice that in this table the visualization column refers to how the simulation

results are presented. For instance, the word “planes” in this column denotes the

simulation results are displayed as a collection of planes while “cells” indicate

that only the spatial location of various surface elements are shown. Similarly,

“3-D Solid” refers that all results are demonstrated as assembly of 3-dimensional

objects such as cones, cylinders, planes etc. Hence, visual interpretation of such

data is much more convenient if compared to others. As can be seen from the

Table 8.1, MemsEagle integrates many of the unavailable simulation features of

the other softwares. Furthermore, integrated design capability of MemsEagle is

seemingly superior than most of the available freeware packages.

Apart from advanced design features, the simulation capabilities of MemsEagle

(especially for bulk micromachining) have proven to be distinctive. That is, the

outputs of the program are in excellent agreement with the experimental results

presented by various researchers. Furthermore, with the advancements in the

microprocessor technology, most complex MEMS fabrication processes can be

realistically simulated by MemsEagle running on even a modest personal

computer within reasonable time periods.

8.1. Future work

Even tough MemsEagle has a potential to be an integrated design environment,

the development efforts is far from over for this software. The software needs to

have various nice to have features so as to be a complete and user-friendly

environment for MEMS designs. The features to be added on this software are as

follows:

• A mesh generation tool for the resulting shapes has to be developed. By

providing this, the results of MemsEagle can further be processed via

commercial codes like Ansys, Matlab etc.

• Masks designed by other programs like AutoCad, can be imported by

means of modifications in the mask design algorithm.

 124

• The wafer types and etch material database can be extended for detailed

designs.

• In surface micromachining, removal of sacrificial layers has not been

taken into consideration in MemsEagle yet. The CA algorithm has to be

extended to cover the etching of such thin sacrificial layers.

• Higher order planes like (211), (540) can be included in etch algorithm

for more accurate results.

• Etch concentration changes as a function of time in detail for more

accurate results.

• ARDE effect on Deep Reactive Ion Etching should be modeled.

• Lateral penetration of Doping has to be modeled.

• Final achievement for MemsEagle could be implementing other processes

like wafer bonding and having design procedures like MUMPS.

By having a software code like MemsEagle, especially the design time for a

MEMS product will be lower, and accurate results can be obtained without

needing trial-error usage of mask shapes.

 125

APPENDIX A

ETCH RATES

A.1. KOH Etch Rates

The KOH etch rate is strongly effected by the crystallographic orientation of the

Silicon. Table 1 relates silicon orientation-dependent etch rates (µm.min-1) of

KOH to crystal orientation with an etching temperature of 70°C. Table A.1 is

taken directly from [33]. In parentheses are normalized values relative to (110).

Table A.1: KOH Etch Rates

Rates at different KOH Concentration at 70oC Crystallographic
Orientation 30% 40% 50%

(100) 0.797 (0.548) 0.599 (0.463) 0.539 (0.619)
(110) 1.455 (1.000) 1.294 (1.000) 0.870 (1.000)
(210) 1.561 (1.072) 1.233 (0.953) 0.959 (1.103)
(211) 1.319 (0.906) 0.950 (0.734) 0.621 (0.714)
(221) 0.714 (0.491) 0.544 (0.420) 0.322 (0.371)
(310) 1.456 (1.000) 1.088 (0.841) 0.757 (0.871)
(311) 1.436 (0.987) 1.067 (0.824) 0.746 (0.858)
(320) 1.543 (1.060) 1.287 (0.995) 1.013 (1.165)
(331) 1.160 (0.797) 0.800 (0.619) 0.489 (0.563)
(530) 1.556 (1.069) 1.280 (0.989) 1.033 (1.188)
(540) 1.512 (1.039) 1.287 (0.994) 0.914 (1.051)
(111) 0.005 (0.004) 0.009 (0.007) 0.009 (0.010)

Table A.2 relates silicon orientation-dependent etch rates of KOH to percent

composition, temperature, and orientation. This table is taken from [34]. As with

all wet-chemical etching solutions, the dissolution rate is a strong function of

temperature. Significantly faster etch rates at higher temperatures are typical, but

less ideal etch behavior is also common with more aggressive etch rates. Also,

 126

heavy boron doping can significantly harden the silicon and sharply reduce the

etch rate.

Table A.2: KOH Etch Rates vs. Composition and Temperature
Etchant Temperature oC Direction (Plane) Etch Rate [mμ/min]

20 (100) 0,025
40 (100) 0,188
60 (100) 0,45
80 (100) 1,4

20% KOH:80% H2O

 100 (100) 4,1

20 (100) 0,024
40 (100) 0,108
60 (100) 0,41
80 (100) 1,3
100 (100) 3,8
20 (110) 0,035
40 (110) 0,16
60 (110) 0,62
80 (110) 2

30% KOH:70% H2O

 100 (110) 5,8

20 (100) 0,02
40 (100) 0,088
60 (100) 0,33
80 (100) 1,1

40% KOH:60% H2O

 100 (100) 3,1

20 (100) 0,015
40 (100) 0,071
60 (100) 0,28
80 (100) 0,96

20% KOH:80% 4H2O: 1
IPA

 100 (100) 2,9

120 (100) 5,8
120 (110) 11,7

44% KOH: 56% H2O

 120 (111) 0,02

80 (100) 1 23.4%KOH: 63.3%H2O:
13.3% IPA
 80 (110) 0,06

 127

A.2. TMAH Etch Rates

The orientation dependence of the TMAH etch rate is similar to KOH and varies

similarly in accordance to the atomic organization of the crystallographic plane.

Table A.3 [35] relates silicon orientation-dependent etch rates of TMAH

(20.0wt%, 79.8°C) to orientation.

Table A.3: TMAH Etching Rates vs. Orientation

Etching rate ratio Crystallographic
Orientation

 Etching rate
[µm/min] (i j k)/(100) (i j k)/(111)

(100) 0.603 1.000 37
(110) 1.114 1.847 68
(210) 1.154 1.914 70
(211) 1.132 1.877 69
(221) 1.142 1.894 69
(310) 1.184 1.964 72
(311) 1.223 2.028 74
(320) 1.211 2.008 73
(331) 1.099 1.823 67
(530) 1.097 1.819 66
(540) 1.135 1.882 69
(111) 0.017 0.027 1

Similar to KOH, the TMAH etch rate varies exponentially with temperature.

Table A.4 [34] relates silicon orientation-dependent etch rates of TMAH to

percent composition, temperature, and orientation.

 128

Table A.4: TMAH Etch Rates vs. Composition and Temperature

Etchant Temperature oC Direction(Plane)
Etch Rate
[mμ/min]

60 (100) 0,33
70 (100) 0,48
80 (100) 0,87
90 (100) 1,4
60 (110) 0,64
70 (110) 0,74
80 (110) 1,4
90 (110) 1,8
60 (111) 0,026

5% TMAH::95% H2O

 90 (111) 0,034

60 (100) 0,28
70 (100) 0,41
80 (100) 0,72

10% TMAH:90% H2O

 90 (100) 1,2

80 (100) 0,65 2% TMAH:98% H2O
 80 (111) 0,41

80 (100) 0,63 5% TMAH:95% H2O
 80 (111) 0,013

80 (100) 0,57 10% TMAH:90% H2O
 80 (111) 0,014

90 (100) 0,9
90 (110) 1,8

22% TMAH in H2O

 90 (111) 0,018

90 (100) 0,6
90 (110) 0,12

22% TMAH in H2O + 0.5%
surfactant

 90 (111) 0,01

90 (100) 0,6
90 (110) 0,1

22% TMAH in H2O + 1%
surfactant

 90 (111) 0,009

A.3. EDP Etch Rates

Similar to KOH, EDP is often used for fast removal and silicon micromachining.

Table A.5 [13] relates silicon orientation-dependent etch rates in EDP solutions

to Temperature and Orientation.

 129

Table A.5: EDP Etch Rates vs. Composition and Temperature

Etchant Temperature oC Direction(Plane) Etch Rate [mμ/min]
110 (100) 0,47
110 (110) 0,28

500 ml NH2(CH2)2NH2:88g
C6H4(OH)2: 234 ml H20

110 (111) 0,028
500 ml NH2(CH2)2NH2:160g

C6H4(OH)2: 160 ml H20 115 (100) 0,45

500 ml NH2(CH2)2NH2:160g
C6H4(OH)2: 160 ml H20 3.0g

C6H4N2

115 (100) 0,65

50 (100) 0,075
75 (100) 0,22
95 (100) 0,43
105 (100) 0,57

500 ml NH2(CH2)2NH2:80g
C6H4(OH)2: 66 ml H20 3.6g

C6H4N2

110 (100) 0,75

 130

APPENDIX B

OPENGL FUNCTIONS

The OpenGL Functions mentioned in the previous chapters are explained in

detail.

B.1. glBegin – glEnd functions

void glBegin(GLenum mode)

PARAMETERS

mode : Specifies the primitive or primitives that will be created from vertices

presented between glBegin and the subsequent glEnd. Ten symbolic constants

are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP,

GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,

GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

void glEnd(void)

DESCRIPTION

glBegin and glEnd delimit the vertices that define a primitive or a group of like

primitives. glBegin accepts a single argument that specifies which of ten ways

the vertices are interpreted. Taking n as an integer count starting at one, and N as

the total number of vertices specified, the interpretations are as follows:

GL_POINTS: Treats each vertex as a single point. Vertex n defines point n. N

points are drawn.

 131

GL_LINES: Treats each pair of vertices as an independent line segment. Vertices

2n-1 and 2n define line n. N/2 lines are drawn.

GL_LINE_STRIP: Draws a connected group of line segments from the first

vertex to the last. Vertices n and n+1 define line n. N-1 lines drawn.

GL_LINE_LOOP: Draws a connected group of line segments from the first

vertex to the last, then back to the first. Vertices n and n+1 define line n. The last

line, however, is defined by vertices N and 1. N lines are drawn.

GL_TRIANGLES: Treats each triplet of vertices as an independent triangle.

Vertices 3n-2, 3n-1, and 3n define triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP: Draws a connected group of triangles. One triangle is

defined for each vertex presented after the first two vertices. For odd n, vertices

n, n+1, and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define

triangle n. N-2 triangles are drawn.

GL_TRIANGLE_FAN: Draws a connected group of triangles. One triangle is

defined for each vertex presented after the first two vertices. Vertices 1, n+1, and

n+2 define triangle n. N-2 triangles are drawn.

GL_QUADS: Treats each group of four vertices as an independent quadrilateral.

Vertices 4n-3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are

drawn.

GL_QUAD_STRIP: Draws a connected group of quadrilaterals. One

quadrilateral is defined for each pair of vertices presented after the first pair.

Vertices 2n-1, 2n, n+2, and 2n+1 define quadrilateral n. N/2-1 quadrilaterals are

drawn. Note that the order in which vertices are used to construct a quadrilateral

from strip data is different from that used with independent data.

 132

GL_POLYGON: Draws a single, convex polygon. Vertices 1 through N define

this polygon.

B.2. glVertex Function

PARAMETERS

x, y, z, w: Specify x, y, z, and w coordinates of a vertex. Not all parameters are

present in all forms of the command.

DESCRIPTION

glVertex commands are used within glBegin/glEnd pairs to specify point, line,

and polygon vertices. The current color, normal, and texture coordinates are

associated with the vertex when glVertex is called. When only x and y are

specified, z defaults to 0.0 and w defaults to 1.0. When x, y, and z are specified, w

defaults to 1.0.

B.3. glLoadName Function

The name stack is used during selection mode to allow sets of rendering

commands to be uniquely identified. It consists of an ordered set of unsigned

integers. glLoadName causes name to replace the value on the top of the name

stack, which is initially empty. The name stack is always empty while the render

mode is not GL_SELECT. Calls to glLoadName while the render mode is not

GL_SELECT are ignored.

B.4. glSelectBuffer Function

void glSelectBuffer(GLsizei size, GLuint *buffer)

PARAMETERS

size: Specifies the size of buffer.

 133

buffer: Returns the selection data.

glSelectBuffer has two arguments: buffer is a pointer to an array of unsigned

integers, and size indicates the size of the array. buffer returns values from the

name stack when the rendering mode is GL_SELECT. glSelectBuffer must be

issued before selection mode is enabled, and it must not be issued while the

rendering mode is GL_SELECT. Selection is used by a programmer to determine

which primitives are drawn into some region of a window. The region is defined

by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if

a primitive intersects the clipping volume defined by the viewing frustum and the

user-defined clipping planes, this primitive causes a selection hit. (With

polygons, no hit occurs if the polygon is culled.) When a change is made to the

name stack, or when glRenderMode is called, a hit record is copied to buffer if

any hits have occurred since the last such event (name stack change or

glRenderMode call). The hit record consists of the number of names in the name

stack at the time of the event, followed by the minimum and maximum depth

values of all vertices that hit since the previous event, followed by the name

stack contents, bottom name first.

Returned depth values are mapped such that the largest unsigned integer value

corresponds to window coordinate depth 1.0, and zero corresponds to window

coordinate depth 0.0.

An internal index into buffer is reset to zero whenever selection mode is entered.

Each time a hit record is copied into buffer, the index is incremented to point to

the cell just past the end of the block of names - that is, to the next available cell.

If the hit record is larger than the number of remaining locations in buffer, as

much data as can fit is copied, and the overflow flag is set. If the name stack is

empty when a hit record is copied, that record consists of zero followed by the

minimum and maximum depth values.

 134

Selection mode is exited by calling glRenderMode with an argument other than

GL_SELECT. Whenever glRenderMode is called while the render mode is

GL_SELECT, it returns the number of hit records copied to buffer, resets the

overflow flag and the selection buffer pointer, and initializes the name stack to be

empty. If the overflow bit was set when glRenderMode was called, a negative hit

record count is returned.

B.5. glRenderMode Function

GLint glRenderMode(GLenum mode)

mode: Specifies the rasterization mode. Three values are accepted:

GL_RENDER, GL_SELECT, and GL_FEEDBACK. The default value is

GL_RENDER.

glRenderMode sets the rasterization mode. It takes one argument, mode, which

can assume one of three predefined values:

GL_RENDER: Render mode. Primitives are rasterized, producing pixel

fragments, which are written into the frame buffer. This is the normal mode and

also the default mode.

GL_SELECT: Selection mode. No pixel fragments are produced, and no change

to the frame buffer contents is made. Instead, a record of the names of primitives

that would have been drawn if the render mode were GL_RENDER is returned

in a select buffer, which must be created before selection mode is entered.

GL_FEEDBACK: Feedback mode. No pixel fragments are produced, and no

change to the frame buffer contents is made. Instead, the coordinates and

attributes of vertices that would have been drawn had the render mode been

GL_RENDER is returned in a feedback buffer, which must be created before

feedback mode is entered.

 135

The return value of glRenderMode is determined by the render mode at the time

glRenderMode is called, rather than by mode. The values returned for the three

render modes are as follows:

GL_RENDER: 0

GL_SELECT: The number of hit records transferred to the select buffer.

GL_FEEDBACK: The number of values (not vertices) transferred to the

feedback buffer.

B.6. gluProject Function

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble

modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4],

GLdouble *winx, GLdouble *winy, GLdouble *winz)

PARAMETERS

objx, objy, objz: Specify the object coordinates.

modelMatrix: Specifies the current modelview matrix.

projMatrix: Specifies the current projection matrix.

viewport: Specifies the current viewport.

winx, winy, winz: Return the computed window coordinates.

gluProject transforms the specified object coordinates into window coordinates

using modelMatrix, projMatrix, and viewport. The result is stored in winx, winy,

and winz. A return value of GL_TRUE indicates success, and GL_FALSE

indicates failure.

B.6. glReadPixel() Function

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum

format, GLenum type, GLvoid *pixels)

 136

PARAMETERS

x, y: Specify the window coordinates of the first pixel that is read from the frame

buffer. This location is the lower left corner of a rectangular block of pixels.

width, height: Specify the dimensions of the pixel rectangle. width and height of

one correspond to a single pixel.

format: Specifies the format of the pixel data. The following symbolic values are

accepted: GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH

COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,

GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

type: Specifies the data type of the pixel data. Must be one of

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT,

GL_SHORT, GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

Pixels: Returns the pixel data.

glReadPixels returns pixel data from the frame buffer, starting with the pixel

whose lower left corner is at location (x, y), into client memory starting at

location pixels. Several parameters control the processing of the pixel data before

it is placed into client memory. These parameters are set with three commands:

glPixelStore, glPixelTransfer, and glPixelMap. This reference page describes the

effects on glReadPixels of most, but not all of the parameters specified by these

three commands. glReadPixels returns values from each pixel with lower left-

hand corner at (x + i, y + j) for 0 ≤ i<width and 0 ≤ j<height. This pixel is said to

be the ith pixel in the jth row. Pixels are returned in row order from the lowest to

the highest row, left to right in each row.

 137

REFERENCES

1.Bustillo, J.E., Howe, R.T., “Surface Micromachining for Micro-electro-
mechanical Systems”, Proceedings of the IEEE, Vol. 86, No 8, Aug. 1998

2.Najafi, K., “Lecture Notes on Photolithography, Center for Wireless Integrated
MicroSystems”, University of Michigan

3.Madou, Marc J., “Fundamentals of Microfabrication”, CRC Press., Boca
Raton, Fla, 1997

4.Kovacs,G.T.A., “Micromachined Transducers Sourcebook”, McGraw-Hill,
Inc., NewYork, NY, 1998

5.Adams, A.C., “Dielectric and Polysilicon Film Deposition”, McGraw-Hill,
Inc., NewYork, NY, 1983, pp. 93-129

6.Najafi, K., “Lecture Notes on Doping, Center for Wireless Integrated
MicroSystems”, University of Michigan

7.Williams, K.R., and Muller, R.S., “Etch Rates for Micromachining
Processing”, Journal of Microelectromechanical System, vol.5, no. 4, pp. 256-
269, Dec. 1996

8.Bean, K. E., “Anisotropic Etching of Silicon”, IEEE Transactions on Electron
Devices, vol. ED-25, no. 10, pp. 1185-1193, Oct. 1978

9.Siedel, H., “The Mechanism of Anisotropic Silicon Etching and Its Relevance
for Micromachining”, Proceedings of Transducers ’87, Record of the 4th
International Conference on Solid-State Sensors and Actuators, Tokyo, Japan,
pp. 120-125, June 2-5, 1987

10. Petersen, K.E., “Silicon as a Mechanical Material”, Proceedings of IEEE,
vol. 70, pp. 420-457, May 1982

11. Siedel, H., Csepregi, L., Heuberger, A., and Baumgärtel, H., “Anisotropic
Etching of Crystalline Silicon in Alkaline Solutions II: Influence of Dopants”,
Journal of the Electrochemical Society, vol.137, no. 11, pp. 3626-3632, Nov.
1990

12. Tabata, O., “pH-Controlled TMAH Etchants for Silicon Micromachining”,
Proceedings of Transducers ’95/Eurosensors IX, Stockholm, Sweden, 1995, vol.
1, pp. 83-86, June 25-29

 138

http://library.metu.edu.tr/cgi-bin/vtls.web.gateway?searchtype=author&conf=010000++++++++++++++&searcharg=Madou%2c+Marc+J.

13. Finne, R.N., and Klein, D.L., “A Water-Amine Complexing Agent System
for Etching in Silicon”, Journal of Electrochemical Society, vol. 114, no. 9, pp.
965-970, Sept. 1967

14. Jansen, H. de Boer, M., Legtenberg, R., and Elwenspoek, M., “The Black
Silicon Method: A Universal Method for Determining the Parameter Setting of a
Flourine-Based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile
Control”, Journal of Micromechanics and Microengineering, vol.5, no.2, pp.
115-120. , June 1995

15. Buser, R., A., and N. F. de Rooij, “ASEP: A CAD program for Si anisotropic
etching”, Sensors Actuators, vol. 28, 1991, pp. 71–78

16. Buser, R., A., and N. F. de Rooij, “Integration of the ASEP within the
CAEMEMS CAD/CAE framework”

17. Li, G., Hubbard, T. and Antonsson, E. K., “SEGS: On-line WWW web etch
simulator”, IEEE MSM’98, Santa Clara, CA., pp. 420–457, May 1982

18. Buttgenbach, S. and Than, O., “SUZANA: A 3D CAD tool for
anisotropically etched silicon microstructures”, in Proc. European Design Test
Conf., pp. 454–458, 1996

19. Marchetti,J., He, Y., Than, O., and Akkaraju S., “Efficient process
development for bulk silicon etching using cellular automata simulation
techniques,” in SPIE Micromachined Devices Comp. IV Conf., Santa Clara, CA,
pp. 287–295, Sept. 1998

20. IntelliSense Corporation, “AnisE User Manual”, Introductory Tour, Version
2.5, February, 1998.

21. IntelliSense Corporation, “AnisE Internal Examples”, 98AE13, 1998.

22. Zhu, Z. and Liu, C., “Anisotropic crystalline etching Simulation using a
continuous cellular automata algorithm”, J. Computer Modeling Engineering
Sciences, vol. 1, no. 1, pp. 11–19, 2000

23. Zhu, Z. and Liu, C., “Micromachining Process Simulation Using a
Continuous Cellular Automata Method”, Journal of Microelectromechanical
Systems, vol. 9, no. 2, June 2000

24. Gesellschaft für Mikroelektronikanwendung Chemnitz, “SIMODE Reference
Manuel”, Version 3.6, 2001

25. “http://www.coventor.com/memulator/”, last viewed on Nov. 2005

26. Silvaco International, “Athena User Guide”

 139

http://www.coventor.com/memulator/

27. “http://www.rennard.org/alife” last viewed on Nov. 2005

28. “http://www.fourmilab.ch/cellab/” last viewed on Nov. 2005

29. Von Neumann J. et Burks A. ed., “Theory of Self-Reproduction Automata”,
University of Illinois Press, 1966.

30. “OpenGL Programming Guide”, Addison-Wesley Publishing Company, Chp.
11

31. “Report on KOH Process Module, Etch Characteristics and Design Guid”e,
NCSU Nanofabrication Facility, January 25th, 2005

32. Nga P. Pham and Pasqualina M. Sarro, “High-aspect-ratio Bulk
Micromachined Vias Contacts”, ProcSAFE & Prorisc 2004, Veldhoven, pp. 742-
746, Nov. 25-26, 2004

33. Sato, K. et al., “Characterization of orientation-dependent etching properties
of single-crystal silicon: effects of KOH concentration”, Sensors and Actuators A
64, pp. 87-93, 1988

34. Hull, R., “Properties of Crystalline Silicon”, INSPEC, London, 1999

35. Shikida M., Sato K., Tokoro K., Uchikawa D., “Lecture Notes”, Dept. of
Micro Sysytems Engineering, Nagoya University, Japan

 140

	01-title_page.doc
	02-approval_page.doc
	03-Plagiarism.doc
	04-Abstract.doc
	05-Öz.doc
	06-dedication.doc
	07-acknowledgements.doc
	08-TABLE OF CONTENTS.doc
	09-LIST OF TABLES.doc
	010-LIST OF FIGURES.doc
	alper2.pdf
	Chp01-Introduction.doc
	a2-State of the art.doc
	a3-Wafer Editor.doc
	CHAPTER 3

	a4-Mask Editor.doc
	

	a5-Process Editor.doc
	
	
	CHAPTER 5
	PROCESS EDITOR

	a6-Program Features.doc
	
	
	CHAPTER 6
	PROGRAM FEATURES

	a7-Verification of Results.doc
	
	
	CHAPTER 7
	VERIFICATION OF SIMULATION RESULTS

	a8-Conclusions.doc
	ASEP

	APPENDIX A.doc
	A.1. KOH Etch Rates

	APPENDIX B.doc
	B.1. glBegin – glEnd functions
	PARAMETERS
	DESCRIPTION
	B.2. glVertex Function
	PARAMETERS
	DESCRIPTION
	PARAMETERS
	PARAMETERS
	
	PARAMETERS

	REFERENCES.doc

