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ABSTRACT 
 
 

DEVELOPMENT OF A MICRO-FABRICATION PROCESS SIMULATOR 

FOR MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS) 

 
 
 

Yıldırım, Alper 

M.S, Department of Mechanical Engineering 

      Supervisor: Asst. Prof. Dr. Melik Dölen 

 

December 2005, 140 pages 

 

 
 
 
The aim of this study is to devise a computer simulation tool, which will speed-

up the design of Micro-Electro-Mechanical Systems by providing the results of 

the micro-fabrication processes in advance. Anisotropic etching along with 

isotropic etching of silicon wafers are to be simulated in this environment. 

Similarly, additive processes like doping and material deposition could be 

simulated by means of a Cellular Automata based algorithm along with the use 

of OpenGL library functions. Equipped with an integrated mask design editor, 

complex mask patterns can be created by the software and the results are 

displayed by the Cellular Automata cells based on their spatial location and 

plane. The resultant etched shapes are in agreement with the experimental results 

both qualitatively and quantitatively.  

 

Keywords: Wet Etching, Anisotropic Etching, Doping, Cellular Automata, 

Micro-fabrication simulation, Material Deposition, Isotropic Etching, Dry 

Etching, Deep Reactive Ion Etching 
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ÖZ 

 

MİKRO-ELEKTRO-MEKANİK-SİSTEMLER İÇİN BİR MİKRO-ÜRETİM 

SİMÜLATÖRÜNÜN GELİŞTİRİLMESİ 

 

 

Yıldırım, Alper 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç.. Dr. Melik Dölen 

 

Aralık 2005, 140 sayfa 

 

 

Bu çalışmanın amacı mikro-fabrikasyon proseslerinin sonuçlarını önceden 

sağlayarak Mikro-Elektro-Mekanik-Sistemlerinin dizaynını hızlandıracak bir 

bilgisayar programı tasarlamaktır. Silikon plakalarının yönbağımlı kazınma ve 

yönbağımsız kazınmaları bu ortamda benzetimlenecektir.  Benzer olarak, 

katkılama ve kaplama gibi ekleme yöntemleri de bir hücresel otomat bazlı 

algoritma ile OpenGL kütüphanesi fonksiyonları kullanılarak, 

benzetimlenebilecektir. Entegre bir maske dizayn editörüne sahip program ile 

kompleks maskeler tasarlanabilir ve sonuçlar uzamsal konumları ve bulundukları 

düzlemlere göre hücresel otomat hücreleri olarak ekranda gösterilir. Sonuçta 

bulunan kazınmış şekiller deneysel sonuçlarla nicelik ve nitelik bakımından 

uzlaşmaktadır. 

 

Anahtar Kelimeler: Islak kazıma, Yönbağımsız Kazıma, Katkılama, Hücresel 

Otomat, Mikro-üretim Benzetimlenmesi, Malzeme Kaplama, Yönbağımsız 

Kazıma, Kuru Kazıma, Derin tepkin İyon Kazıması 
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CHAPTER 1 

 

INTRODUCTION 

 

Commercial CAD tools for micro electro mechanical systems (MEMS) have 

significantly contributed to the growth that the MEMS industry has experienced 

over the past two decades by reducing development cycles and enabling the more 

rapid release of advanced MEMS products. Unfortunately, the CAD community 

serving for MEMS industry has focused primarily on device performance (for 

example, mechanical response due to electrostatic loading), with an emphasis on 

testing and optimizing the performance in a workstation environment. Device 

manufacturability issues have been long neglected and considered secondary 

design issues. 

 

Many useful (MEMS) are now being built using silicon etching technologies. 

Proposals for MEMS computer aided design (CAD) tools have been made in 

recent years. Hence, considerable work has been done to establish the best 

architecture for such a system. While significant advancements have been 

observed in other parts of CAD systems, there remains a need for an improved 

etch simulator. The fundamental problem is how to model the complex 

transformation from an initial two-dimensional input mask to the final three-

dimensional output shape, particularly when highly anisotropic etchants are used. 

 

This thesis presents the development of a new process simulation program 

named MEMSEAGLE based on Cellular Automata Method. The basic approach 

is to divide a wafer of silicon into small cells, where each one is given a few 

primitive rules dictating its rate of removal when exposed to an etchant. If these 

few simple rules are properly written, then the aggregate behavior of all the cells 

will accurately represent the complex geometry of a silicon wafer being etched. 

Finite element analysis (FEA), computational fluid dynamics (CFD), and other 
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methods are all based upon this approach. This technique permits any etchant to 

be simulated, by suitable choice of rules for each cell. It also can easily and 

accurately model complex interactions between etched shapes, such as when one 

etched regions intersects with another, or when an etched shape intersects itself. 

 

When silicon is etched with anisotropic etchants, the resulting shape changes as a 

function of time. A number of different approaches exist to accurately predict the 

final shape given an initial mask. The robust Cellular Automata model presented 

here predicts the three dimensional etched shape as a function of time for any 

etchant and arbitrary initial mask shape. The model can simulate very 

complicated geometries and has moderate computational complexity.  

 

The software modeled, MemsEagle, simulates not only the etching processes for 

bulk micromachining, but also additive processes like doping and deposition. 

Thus, equipped with a mask editor, MemsEagle has a significant potential of 

becoming an integrated tool for simulation of micro-fabrication processes 

including bulk and surface micromachining.  

 

1.1. Organization of Thesis 

 

The organization of the thesis is as follows: Chapter II summarizes the previous 

researches done in the field of simulation of micro-fabrication techniques, with 

an emphasis on the anisotropic etching. Moreover, micro-machining processes 

and Cellular Automata technique is also explained in detail.  

 

The next three chapters describe the three editors utilized in MemsEagle, namely 

wafer-, mask-, and process editors. Third chapter explains in the detail the 

operating principles of the wafer editor. The algorithms used for substrate 

generation and visualization technique for the wafer are included in this part.  

 

Chapter IV concentrates on the capabilities and mechanisms of the integrated 

mask editor. Information on the user-friendly editor, and the OpenGL functions 
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used to implement the mask editor are given. Through a number of samples, the 

mask design capabilities of MemsEagle are also demonstrated. 

 

Chapter V is dedicated to the details of the process editor, which lies at the heart 

of MemsEagle software. The features of the editor are first explained, as well as 

the etching and deposition algorithms used. The screen display features of 

MemsEagle are also explained briefly in this part.  

 

Chapter VI is dedicated to a step-by-step explanation of the user-interface of 

MemsEagle by making good use of a sample wet etching process. The outputs of 

the software is also discussed in this chapter. 

 

The simulation capabilities of MemsEagle are verified in Chapter 7. Through 

several sample micro-fabrication processes, simulation results are compared to 

the experimental results, utilizing various mask patterns. All four simulation 

modes (wet etching, dry etching, doping and additive processes) are studied via 

at least one case per each technique. 

 

Finally, Chapter VII discusses the key points of this study along with the work to 

be conducted in the near future to improve the designed software. 
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CHAPTER 2 

 

REVIEW OF THE STATE OF THE ART 

 
2.1. Introduction 

 

The recent growth in the number of MEMS devices fabricated via bulk and 

surface micromachining techniques has brought the need for efficient software 

design tools. Although there are a number of software packages for simulating 

the MEMS devices, the tools for simulating the accompanying manufacturing 

processes are very limited.  

 

The major problem in the simulation of bulk micromachining process is to predict 

the etch results of silicon due to the anisotropic behavior of etchants used in the 

process. Furthermore, the primary method for forming mask shapes that will yield 

an arbitrary structure etched on silicon wafer in return is still based on adhoc 

techniques. In practice, such approaches leads to the need of manufacturing 

several prototypes, which in turn increases the cost as well as development time 

of a particular MEMS design.  

 

This chapter discusses the common micro-fabrication techniques. Recent 

researches on simulation of these processes and commercial codes are 

summarized and information about the possible ways of simulation is given. 

Finally, the technique chosen for simulating the silicon wafer behavior, “cellular 

automata”, is to be discussed. 
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2.2. Micro-Fabrication Techniques 

 

The material used for micromachining is mainly silicon. There has been activity 

in silicon-based micromachining since the early 1960’s, when the integrated 

circuit (IC) technology was developed. The main portion of the researches done 

were concentrated on anisotropic single-crystalline silicon etching during the 

1960’s and 1970’s. This technology demonstrated simple structures, with initial 

commercial products being “pressure transducers” [1]. With the beginning 

1980’s, improvements in thin-film deposition and increased understanding of the 

micromechanical properties of such films allowed thin-film microstructures to be 

formed by selective sacrificial etching. Some integration with metal–oxide–

semiconductor (MOS) electronics was achieved during this period. Toward the 

latter half of the 1980’s, researchers had demonstrated micro mechanisms and 

electrostatic micro motors based on polycrystalline surface micromachining. 

Then, beginning in the 1990’s, a significant increase of government research 

capital had made it possible to have fully integrated complex (MEMS) where 

sensors, actuators, and control functions are co-fabricated in silicon using 

micromachining and IC processing.  

 

2.2.1. Photolithography 

 

The process of printing the given two-dimensional pattern onto a thin film layer 

is called Photolithography.  The basic photolithographic process includes a 

drawing, which defines transparent and opaque areas on a mask. The material 

used for the mask is a glass plate (soda lime or quartz glass). The resultant mask 

can be obtained by directly writing on the glass plate or can be drawn much 

larger and reduced by photolithographic means as illustrated in Fig. 2.1[2].  

 

Ultra violet light is used for transferring the mask pattern so the minimum feature 

size is restricted by the wavelength of the light. The steps for transferring the 

pattern from the mask to the substrate are [3]: 
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• Resist Spinning 

• Pre-bake (depending on the resist, typically 10 minutes at 90o) 

• Illumination in a mask aligner. The mask aligner enables the precise 

alignment of the mask pattern to the substrate and the crystal orientation 

of the silicon wafer. 

• Post-bake (depending on the resist, typically 20 minutes at 120o) 

• Development 

For aligning the mask, three techniques can be used: contact printing, proximity 

printing and projection printing. Proximity printing uses the shadow of the 

opaque regions of the mask.   In contact printing, because the mask touches the 

wafer, there is possibility that the mask be damaged.  Projection printing is the 

most expensive but best solution. Minimum line width of the mask is close to the 

wavelength of the light (whereas in proximity printing for a wavelength of 

400nm, the line width should be at least 1μm). 

 

There are two types of photoresist used in mask design. Positive resists become 

soluble after illumination whereas the negative ones become insoluble. It is 

harder to work with negative photoresists due to competing chemical reaction of 

the material with ambient air and poor adhesion. 

 

 
Figure 2.1: Photolithography [2] 
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2.2.2. Thin Film Deposition and Doping 

 

The additive processes mainly used in surface fabrication techniques are 

discussed and information about recent research was given below. The additive 

processes are oxidation, chemical and physical vapor depositions and doping. 

 

2.2.2.1. Oxidation 

 

Silicon Dioxide (SiO2) is usually used as mask material for etching processes. 

Another important property of SiO2 is its dielectric behavior. The SiO2 growth 

rate is strongly dependent on the temperature [4]. The oxidation process typically 

performed in furnaces with temperatures of 900-1150oC. The growth rate of wet 

and dry oxidation is different. In wet oxidation process, steam is added to the 

oxygen, which considerably increases the growth rate of SiO2. 

 

Dry Oxidation:   22 SiOOSi →+        (2.1) 

Wet Oxidation:   222 22 HSiOOHSi +→+       (2.2) 

 

2.2.2.2. Chemical Vapor Deposition (CVD) 

 

Polysilicon, silicon nitride and phosphor silicate glass are deposited using this 

technique. Phosphor silicate glass is often used as sacrificial layer in surface 

micromachining processes. 

 

A pipe, which contains silicon wafers, is fed with the gas form of the materials to 

be deposited at elevated temperatures. There are three types of CVD: 

Atmospheric Pressure CVD (APCVD), Low Pressure CVD (LPCVD) and 

Plasma Enhanced CVD (PECVD) [5]. In LPCVD, the integration of atoms in the 

surface determines the growth rate of the film and it provides better uniformity 

and reproducibility. The deposition temperatures are on the levels of 700-900oC.  

Residual stress (tension) occurs in films that are deposited in amorphous state 
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and they resulting structure eventually recrystallize later. However, these stresses 

in the films can be relieved by an annealing process. 

 

2.2.2.3. Physical Vapor Deposition (PVD) 

 

In this process, the material to be deposited (with sufficiently high vapor pressure 

≈ 10mTorr) is placed in a vacuum chamber and evaporated by using different 

techniques like resistive heating. Evaporation, sputtering and ion beam 

deposition are the available PVD techniques. 

 

In evaporation, the material to be deposited is heated until it evaporates and the 

molecules land on the wafer. The heating can be done by resistive heating, radio 

frequency (RF) heating, laser ablation or electron beam heating. Electron beam 

(E-Beam) heating has certain advantages like less contamination, a better process 

control and more efficient heat transfer. In E-beam heating, high temperatures 

can be achieved which makes most materials to be deposited using this method. 

Evaporation method does not have good step coverage. 

 

In deposition processes using sputtering, high-energy ions hit the substrate and 

sputter material from the target. Usually Argon is used for creating the plasma, 

the Ar ions hit the material to be deposited and knock off atoms. The main 

advantage of the sputtering method is practically all the materials can be 

deposited using this method. In addition, the film obtained is more homogenous.  

 

The ion-beam deposition technique uses an ion beam to bombard the source to 

create the atoms to be deposited. Through an arc discharge in a pressure range of 

1-100μTorr, with voltages of 500-1000V, the ion beam is generated. This method 

could also be used for etching by directing the ion beam to the wafer. The most 

important property of this method is, it has good cleanliness and control [2]. 
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2.2.2.4. Doping 

 

Doping is the introduction of impurities into the silicon wafer to alter its 

electrical, electrochemical, chemical and mechanical states. The dopants used 

can be n-type (Phosphorus (P), Arsenic (As), Antimony (Sb)) or p-type (Boron 

(B), Aluminum (Al)). Wet etch rate of the silicon depend on the voltage 

difference between the silicon wafer and the etchant solution, and this is directly 

dependent on the type and the concentration of the dopant. Boron doping can be 

used as an etch stop in etching processes. 

 

In general, diffusion and ion-implantation are used for doping. In diffusion 

method, the wafer is placed into the furnaces and a carrier gas is flown through 

the furnace. If the source is in solid form, the dopant wafers are also placed into 

the furnace next to silicon wafers. The sublimated atoms diffuse into the silicon 

wafer. In this process oxide is also formed. The other alternative is to use a liquid 

source, which allows the carrier gas passes through. The diffusion process is 

carried on in two steps: pre-deposition and drive-in. After a highly doped region 

is formed in the pre-deposition step, using this region the impurities are forced 

into deeper regions in the drive-in step. The temperatures used in Doping are 

800-1200oC. The total impurity dose (Q) is calculated by using (2.1).  

11013.1 tDNQ =      (2.3) 

Dt
x

e
Dt

QtxN 4

2

),(
−

⎥
⎦

⎤
⎢
⎣

⎡
=

π
    (2.4) 

where D1 and t1 are the pre-deposition diffusion coefficient and time [6]. Notice 

that (2.4) expresses the concentration profile after the drive-in process. If the 

wafers are not to be exposed to high temperatures, ion implantation method 

could be used for doping. First, impurities are introduced to the wafer using a 

high-energy beam of the ions to be implanted. Then, via an annealing process, 

the atoms penetrate through the wafer. Shallow junctions, which cannot be 

implemented by diffusion process, can be obtained.  
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2.2.4. Wet Chemical Etching 

 

The oldest micromachining process used is wet chemical etching. Wet etching 

processes are divided into two categories: isotropic and anisotropic. In isotropic 

etching the etch rate is not dependent on direction and mask orientation. The 

most common isotropic silicon etchant is “HNA”, a mixture of HF (Hydrofluoric 

acid), HNO3 (Nitric acid), and CH3COOH (Acetic acid). The reaction between 

HNA and Silicon is [7]: 

 

OHNOSiFHSiHNOHF gas 2)(623 8423418 ++→++   (2.5) 

 

Doping can be used as an etch stop technique for HNA, because the etch rate of 

HNA is nearly 150 times slower in lightly doped (<1017 cm-3 n or p type) regions 

then the heavily doped ones. 

 

Etchants erode the silicon wafer at different rates in miscellaneous directions in 

anisotropic wet etching. Most anisotropic etchants slow down at the (111) planes. 

The dominant planes in anisotropic etching [8] are (100), (110) and (111) as 

shown in Fig. 2.2. 

 
Figure 2.2: Miller Indices of various planes 

 

The slowest etch planes are exposed during the etch processes and the etching 

tends to stop at these planes, in most cases (111) plane as shown in Figs 2.3. and 

2.4. Another important property of anisotropic etching is the termination of 

etching at concave corners and undercutting of convex corners in (100) wafers as 

shown in Fig. 2.5. 
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Figure 2.3: Anisotropic Wet Etching (100) plane [4]. 

 
Figure 2.4: Anisotropic Wet Etching (110) plane [4] 

 
Figure 2.5: Convex Corner Undercutting [4] 

 

Hydroxides of alkali metals KOH, NaOH, CeOH and RbOH are being used as 

orientation dependent etchants in micro-fabrication processes. For such etchants, 

the following reactions take place between the silicon wafer and etchant [9]: 
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−+− +→+ eOHSiOHSi 4)(2 2
2     (2.6) 

22 2444 HOHeOH +→+ −−    (2.7) 

OHOHSiOOHOHSi 2
2
22

2
2 2)(4)( +→+ −−+    (2.8) 

2
2
222 2)(22 HOHSiOOHOHSi +→++ −−     (2.9) 

 

Different KOH concentrations and temperatures considerably changes the etch 

rate. However, the Alkali hydroxide etchants have good selectivity for (100) 

plane as seen on Table 2.1. These etchants can also be selective to doping 

concentration [11]. 

Table 2.1: KOH Formulations [10] 

Temp Etch Rate (100)/(111) Masking Films Formulation oC (μm/min) Etch Ratio (etch Rate) 
KOH (44g) 
Water, Isopropanol 
(100ml) 

85 1.4 400:1 SiO2 (1.4nm/min)  
Si3N4 (negligible)

KOH (44g) 
Water, Isopropanol 
(100ml) 

50 1.0 400:1 approx. As above 

KOH (44g) 
Water, Isopropanol 
(100ml) 

65 0.25 to 1.0 - SiO2 (1.4nm/min)  
Si3N4 (negligible)

 

Another common etchant used is “Tetra methyl Ammonium Hydroxide” 

(TMAH, (CH3)4NOH). It is considerably cheaper, can be modified to avoid 

etching aluminum, and may have concentration etch stops [12]. Table 2.2 

outlines the lower plane selectivity of TMAH. Hence, the surfaces created by 

TMAH are not as smooth as the ones obtained through EDP or alkali hydroxide 

etchants. 
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Table 2.2: Selectivity of TMAH etchants for dielectrics versus (100) Silicon [13] 

Dielectric Selectivity 4 wt% 
TMAH, 80oC 

Selectivity (Si-
doped,13.5g/l), 4 wt% 

TMAH, 80oC 

Selectivity 20 wt% 
TMAH, 95oC 

Thermal Silicon 
Oxide 5.3x103 34.7x103 5.2x103

Low-Temperature 
Oxide (LTO) 1.3x103 4.2x103 2.8x103(360o LTO) 

3.4x103(360o LTO) 

PECVD Oxide 1.4x103 4.3x103 no value given 

LPCVD Silicon 
Nitride 24.4x103 49.3x103 38x103

PECVD Silicon 
Nitride 9.2x103 18.5x103 3.6x103

 

Ethylene Diamine Pyrochatechol (EDP) is one of the most common anisotropic 

etchant used [13]. The selectivity between (100) and (111) planes are on the 

magnitudes of 35, but have greater selectivity to doping concentration. Most 

common formulations of EDP are shown on Table 2.3. 

 

Table 2.3: Common EDP Formulations [10] 

Temp Etch Rate (100)/(111) Masking Films Formulation oC (μm/min) Etch Ratio (etch Rate) 

Ethylene diamine 
(750ml) Pyrocatechol 
(120g) Water (100ml) 

115 0.75 35:1 
SiO2 (0.2nm/min)    
Si3N4 (0.1nm/min)     
Au, Cr, Ag, Cu, Ta 

(negligible) 

Ethylene diamine 
(750ml) Pyrocatechol 
(120g) Water (240ml) 

115 1.25 35:1 
SiO2 (0.2nm/min)    
Si3N4 (0.1nm/min)     
Au, Cr, Ag, Cu, Ta 

(negligible) 

 

The chemical reactions that take place between the silicon wafer and the EDP 

are: 
−+ +→+ OHNHCHNHOHNHCHNH 322222222 )()(   (2.10) 

2
2
62 2)(42 HOHSiOHOHSi +→++ −−    (2.11) 
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[ ] OHOHCSiOHHCOHSi 2
2

3246246
2
6 6)()(3)( +→+ −−   (2.12) 

 

2.2.5. Dry Etching (Plasma Etching) 

 

In plasma etching, ions impinge on the substrate, and neutral particles arrive to 

the substrate by diffusion. The etchant gases and the wafers are in a chamber, and 

the gases are ionized by RF glow discharge. The etching temperatures are on the 

levels of 150oC to 200oC and in some cases room temperature. The main 

disadvantage of dry etching is the worse selectivity it has. 

 

The silicon wafer is etched by the etch gas (that involves F) with the following 

chemical reactions [14]: 
−+− ++→+ eFCFeCF 234     (2.13) 

44 SiFFSi →+     (2.14) 

 

There are three common types of dry etching. Plasma etching is an isotropic 

chemical etch process. The wafer is grounded in plasma etching. 

 

In reactive ion etching, the wafer is placed on an electrode that is driven by RF 

signal. The etching is anisotropic in nature, but anisotropic behavior is not the 

result of crystallographic properties but a result of the direction of the ion flux 

towards the substrate. The etch process is both chemical and physical. In Deep 

Reactive Ion Etch process, because of the special gases that form a polymer on 

sidewalls, tall and narrow holes can be drilled onto the wafer. 

 

Ion Beam Etching process is a physical etching process. Argon ions are used to 

bombard the wafer surface and the selectivity of the process is very low due to 

the physical behavior of the etch mechanism. If a reactive gas is used, the process 

is called Reactive Ion Beam Etching, where the etch process is both physical and 

chemical in nature. 
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Figure 2.6: Plasma & Reactive Ion Etching [4] 

 

2.2.6. Micromachining Techniques 

 

There are two main micromachining technology used in the fabrication of 

MEMS devices: Bulk Micromachining and Surface Micromachining. There are 

also other techniques like LIGA and Electroplating. However, the processes 

simulated in MemsEagle are mainly used for bulk micromachining. The additive 

processes, which are used frequently in surface micromachining, are just added 

to the software to have flexibility for bulk micromachining processes. 

 

Surface Micromachining is characterized by the fabrication of micromechanical 

structures from deposited thin films [1]. In such processes, the substrate is used 

as a base to build the structure upon it. Although a wide variety of materials 

could be utilized in this process, the technology has evolved over the years to use 

the silicon dioxide as the sacrificial material and Polysilicon as the structural 

material.  
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Figure 2.7: Surface Micromachining Example [4]. 

 

Subtractive processes involving removal of appreciable regions of the substrate 

(usually silicon, but possibly glass, organics, metals, etc.) is called Bulk 

Micromachining. The purpose of bulk micromachining is to selectively remove 

significant amounts of silicon from a substrate. This versatile process is used to 

perform a wide variety of tasks:  

• to “undercut” moving structures; 

• to form membranes on one side of a wafer;  

• to make a variety of trenches, holes, or other structures. 

Fig. 2.8 shows the difference between surface and bulk micromachining. The 

third technology is called LIGA (Lithographie, Galvanoformung, Abformung) 

and it is used to expose thick layers by using X-Rays. 

 

 
Figure 2.8: Bulk & Surface Micromachining [4] 

 

 

 16



2.3. Simulation Programs 

 

Early works on the area of software simulation tools for MEMS fabrication have 

concentrated on simulating the Anisotropic Etching of silicon, for different 

etchants and for different silicon crystal orientations. The recent developments in 

the computer industry now enable the users enjoy increased computational power 

with reduced hardware costs. As a result, simulating relatively complicated etch 

processes on personal computers with modest resources has become feasible.  

 

Two techniques are mainly used to simulate the anisotropic etch processes: 

Geometric Models and Cellular Automata Models. In geometric models, the 

substrate is considered as a continuous entity and the result of the etch process is 

found by using geometric rules. The major disadvantage of geometric simulation 

models is that they do not efficiently take into account the merging shapes. In 

cellular automata method, the substrate is taken as discrete cells of silicon atoms 

and the etch process is simulated by taking into account the bonds of an atom 

with its neighbors. With this method, complex shapes and merging planes can be 

simulated with high accuracy and efficiency. However, the main disadvantage of 

this method is the requirement for high computational power, with the 

development of faster computers; this is no longer a tiebreaker between the two 

competing approaches.  

 

There are a number of software programs reported for the simulation of 

manufacturing processes.  The simulation principles of these programs are 

briefly explained below. 

 

2.3.1. Anisotropic Silicon Etching Program (ASEP) 

 

ASEP (Anisotropic Silicon Etching Program) uses traveling planes to predict the 

final shape of the substrate [15]. The planes move in accordance with the pre-

defined etch rates and complex shapes can be simulated. ASEP can simulate the 

etching of <100> oriented silicon wafers in aqueous solutions of KOH. ASEP is 
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based on the concept that a few lattice planes are dominant in the anisotropic 

etching of the silicon wafers. In KOH, the most important ones are the <111> 

planes, which have the slowest etch rate that determine the concave corners. The 

<311> planes that have the fastest etch rates and determine the convex corners. 

Whereas the <100> planes have intermediate etch rates. Input from a user 

specified mask file is identified as crystal directions. The program decides 

whether the inside or the outside of the mask shape will be exposed to etchant 

according to the rotation type of the polygon. (CW or CCW). Special problems 

occur at the convex corners, where the fast etching planes are revealed [16]. 

Eight types of corners are described by the code. The program distinguishes the 

convex and concave corners by using the determinant formed by the first two 

Miller indices of the neighboring planes. The angles are determined by using the 

cosine of the angle between the two neighboring planes. When a corner is 

overetched, the program issues a warning message.  

 

While the etch process continues, some planes may disappear and new ones 

could emerge. The status of each plane is checked by determining the Miller 

indices of its left and right neighbors, and by establishing whether or not the 

plane lies in front of the intersection of two neighbors, with respect to the etch 

opening. ASEP decides on modifying or eliminating the plane after that. 

 

2.3.2. SEGS Simulator 

 

SEGS program is a hybrid, trying to take advantage of both approaches: the 

accuracy of cellular automata and the speed of geometric models [17]. The 

model represents the shapes as a large number of small segments (or facets), but 

they also retain geometrical information. The basic approach is to start with the 

polygonal boundary of a vector method, then subdivide each straight-line 

segment into many smaller segments. The program gives visual etch results 

faster than ordinary cellular automata methods. In SEGS method, first the local 

intersections are computed and then the global intersections are processed.  The 

local calculations commence with taking two nearest neighbors and checking the 
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relative validity of adjacent line segments. A segment is valid if it lies in the still 

un-etched halfplanes of its two neighbors. By eliminating the invalid segments, 

the test is carried out for all the segments in the shapes. 

 

By hybridizing the cellular automata and geometric approach thus decoupling the 

local and global interaction calculations, each can be optimized individually.  

 

SEGS reads the etch rate data from a file as three-dimensional vectors each with 

an etch rate magnitude. The three-dimensional rates are decomposed into two 

components:  

• r2d:A two-dimensional etch rate in the plane of the wafer surface; 

• rz:A lateral etch rate due to depth.  

The rate of the plane that moves in the mask surface is r2d. rz is the lateral 

distance between the top or mask layer edge of a etch facet and the bottom edge 

of a etch facet. The mask data are first read from a file as a set of polygons. Then 

the data is divided into an array of N-by-N cells. Each element of array contains 

the information of location x, y and the local slope with the calculated local 

tangent and normal vectors. [17] calls these elements as directed line segments.  

 

In this technique, at each time step the x, y positions of each segment in the array 

are calculated by adding a velocity vector in the direction of the local normal 

equal to the etch rate r2d multiplied by the time step. Then each segment is 

compared to its neighbor. Using dot products of the local normal, local tangent 

and the vectors from segments, the relative location of the segment is determined 

[17]. If a segment lies above the half plane defined by the local tangent of 

segment then it is un-etched. Otherwise, it is removed from the array. This 

process is repeated for all segments in the array. Next, the comparison is done in 

the opposite winding direction for all segments. This winding in both directions 

is repeated until the length of the polygon list stops to decrease. If the length 

drops to zero, then the polygon is etched away.  
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At each time step, the x, y (spatial) position is converted into a cell location in 

the N-by-N grid and he polygon index and list index are then written to the cell 

array at this location for each line segment. A global intersection occurs when 

two segments are written to the same cell. The intersecting polygon lists are cut 

at the intersections and rejoined into a new longer list. The new list is then used 

as the input for the next time step. 

 

The two dimensional simulation provides the top or mask layer edge of the etch 

facets. The bottom edge is found by using the new list at the end of each time 

step and updating the list with rz instead of r2d. The distance between the top and 

bottom edges of rz is increased by a depth d for each time step. The new list 

generated is then checked for local and global intersections as before.  

 

The simulation time is tens of seconds for various complex shapes on a typical 

workstation. Shapes are input via Crystallographic Information File (CIF), 

Gridded Data Set (GDSII), or a public domain drawing program (xfig). While 

process (etch rate) information is input via text files, and output is available in 

several formats including PostScript, and IGES for subsequent 3-D solid 

modeling and finite element analysis. 

 

Fig. 2.9 illustrates a two-dimensional example of SEGS simulator result, while 

Fig 2.10. shows a three-dimensional example. The contours show the different 

etch result of the wafer at different times. 
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Figure 2.9: SEGS two-dimensional example [17] 

 

 
 

Figure 2.10: SEGS three-dimensional example [17] 

 

The SEGS on-line simulator provides a tool to predict etch process, but has some 

reported limitations. Because of the polygonization, some input shapes are 

approximated like circles. In addition, some output shapes are shifted by on 

segment length due to of the discretization. When simulating very complex 

shapes, invalid results may be generated. This can occur during grazing 
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intersections of two separate polygons when the calculation results are small and 

subject to round off error. This may also occur when two closely-spaced parallel 

lines are simulated, since the calculated dot products are also very small and 

susceptible to round-off error. 

 

2.3.3. Suzana 

 

The Suzana program was introduced by [18]. The program uses cellular automata 

to find the resultant etch shape. The cells can take two states etched or remained; 

and the etch status is decided by using the neighboring cell locations and a 

random number.  Two different crystal oriented silicon can be simulated.  

 

The etch rates used by Suzana is dependent on temperature T and concentration 

c, which can be expressed as: 

                           )/exp()(),( )()(0)( kTEcRcTR hklahklhkl −⋅=                              (2.15) 

where k is the Boltzman constant and the activation energy Ea, etch rate R0 

depend on the particular crystal plane (hkl). Note that h, k and l are the integers 

used to reference a particular crystal plane. Using the etch rates the etch 

probabilities Phkl are calculated: 

),,( )111()110()100( RRRfPhkl =     (2.16) 

The probabilities are normalized as:  

1),,max( 111110100 =PPP     (2.17) 

Taking into account (2.15), (2.16), and (2.17) yields the following rules for a 

cell:  

 

1. An etch front cell will be removed if it has: 

a. two neighbors and if a random number from the range [0,1] lies in the 

interval [0, P100 ], or 

b. three neighbors, of which at least one is located in the etch front, and 

if a random number from the range [0,1] lies in the interval [0, P110 ], 

or 
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c. three neighbors, of which no one is located in the etch front, and if a 

random number from the range [0,1] lies in the interval [0, P111 ]. 

2. All the cells fulfilling none of the rules 1a, 1b and 1c will be removed. 

 

To explain the equilibrium utilizing the theory of crystal growth [18], the second 

nearest atoms should also be included in the model, which is done implicitly in 

Suzana. 

 
Figure 2.11: Bonding situation of (100), (110) and (111) surface atoms of 

Suzana[18]. 
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Figure 2.12: Schematic Block Diagram of the CAD Architecture for using 

Suzana[18] 

 

For visualization, the three dimensional model is translated into a surface model 

which is imported to Shader. Shader then calculates the pictures of the simulation 

results and exports the data to display on the screen. 

 

2.3.4. Anisotropic Etch Simulator (AnisE) 

 

AnisE has been developed by Intellisense Software [19]. The method used for 

simulating the etch process is cellular automata. Figure 2.13 shows the crystal 

structure used for modeling the silicon wafer in AnisE. 
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Figure 2.13: Silicon Crystal Structure [19] 

 

The cellular automata model used in AnisE is based on the following rules [19]: 

 

• The lattice structure of the cells: A silicon atom is represented by a cell in 

the model in terms of its lattice configuration. The size of each cell is 

approximately 1mm3 depending on the selected resolution of the model. 

• The possible states of a cell: There are two possible states for the crystal 

atoms, etched or non-etched. 

• The effect of neighboring cells: The atom is covalently bonded to four 

other atoms. The behavior of each atom depends on the interaction of the 

atom with each four neighbor.  

 

Rules to determine the state of the cell are as follows. The conditions of the 

neighboring atoms strongly affect the state of the cell. The location of the four 

surrounding cells and their states are used for defining the state. 

 

In order to remove the cell, which lies on the <100> plane, two neighboring cells 

should be etched as shown on Figure 2.11. That is, in the previous etch step, two 

neighboring cells were removed. In order to remove the cell from the crystal 

lattice, two covalent bonds that lie below the etch-front plane must be broken. 
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When considering the etch front for the <110> plane, there are three etch-front 

atoms. Three covalent bonds, two of which lie on the etch-front plane, must be 

broken to remove any of these cells from the crystal lattice. 

 

For the <111> plane, there is only one etch-front atom. One neighboring cell 

must be etched in a previous step to expose this etch-front atom. To remove the 

cells that lie on <111> planes three covalent bonds should be broken and all of 

them lie under the etch-front plane. This makes the removal of these cells very 

slow. 

 

From the above orientations of the cells with respect to the planar etch front, the 

probability is calculated whether the cell will be removed. This probability takes 

into account the experimental silicon etch rates for the <100>, <110>, and <111> 

planes. A higher etch rate for a given plane will increase the probability that the 

etch-front atom in that plane will be removed [20]. 

 

The model used in AnisE implicitly considers the second order effects resulting 

from the second nearest neighbors. Model takes into account the number of 

neighboring cells and their location with respect to the etch front. As a result, the 

simulation predicts the appearance of higher order etch planes. 

 

There is a simple mask editor embedded inside AnisE but users can import 

masks in DXF or GDS II formats. In order start the simulation, the user needs to 

enter the etchant type (KOH, TMAH, EDP), etchant temperature, concentration, 

wafer orientation (<100> or <110>) and etch time. The result of a simulation 

done by AnisE, on which the etch stops and double-sided etching can be clearly 

seen is illustrated on Fig 2.15 [21]. 

 

 26



 
Figure 2.14: AnisE User Interface [19] 

 

 

 
Figure 2.15: AnisE simulation result [19] 
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2.3.5. Anisotropic Crystalline Etching Simulation (ACES) 

 

ACES is an anisotropic etch simulator based on cellular automata method. The 

software uses a continuous cellular automata method in which each cell can take 

non-discrete state variables. A cell can take values between 0 and 1 for 

representing its mass corresponding to its extent of removal.  

 

Assuming that the desired etch rate on a particular crystal plane is Es ∈ [0,1], and 

the elapsed time of each etch step is T (with the default value being one); the 

number of etch steps (NT) that are required to completely remove a cell equals 

[22]:   
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If multiplication of Es and T is exactly equal to M or M is a multiple of EsT, then 

the effective etch rate Es
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Whereas in cases when M is not a multiple of EsT, the value of the effective etch 

rate differs from the desired one: 
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When this situation occurs the neighbors of the cell being etched should also be 

exposed to etchant before the next time step. A time compensation factor is used 

to achieve this effect. When a cell is removed during an etch-step k, the etching 

of the next cell will not begin immediately until the beginning of the next etch-

step k+1. The time balance of the etch-step Tbk will be compensated in the step 

for etching of the next cell. Thus, the time of a specific etch-step k, Tk is not 

always equal to T; rather, based on the M-value of a cell in step k (Mk) , the 

compensation can be computed by the following equations using the initial 

conditions Tb0=0 and M=0. 
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If )( 1−+≥ ksk TbTEM , then  

1−+= kk TbTT      (2.21) 

kskk TEMM −=+1     (2.22) 

0=kTb      (2.23) 

otherwise: 
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T =      (2.24) 

01 =+kM      (2.25) 

kk TTTb −=      (2.26) 

Introducing this time compensation factor equals EsTk and Mk for every step k. 

The program also uses dynamic cellular automata algorithm in which only the 

cells on the etchant-wafer surface is taken into computations. This is significantly 

increasing the speed. 

 
Figure 2.16: Different crystal types used in ACES [23] 
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Figure 2.17: Top views and link set types of the different crystals used in ACES 

[23] 

 

Four different crystal types can be etched in ACES as shown in Fig. 2.16 and 

Fig. 2.17. There are two types of cells in the crystal wafer with different link set 

types. Cells with different set types are interconnected, in other words the 

neighbors of a cell must of opposite link set type. Based on these properties the 

rules to initialize the virtual surfaces are developed as:  

(E1) A virtual surface is started in a horizontal plane. Active cells’ locations 

and link-set types are set based on the orientation of the lattice. 

(E2) When an active cell (A1) is to be etched away based on CA rules, its 

neighbors will be added to the virtual surface if they are not in the 

surface. Positions of neighboring cells are calculated from A1’s position 

and its link-set types. 

(E3) A newly added active cell’s link-set type is the opposite of that of its 

neighbors. 

The first two rules are related to the wafer crystal type. The information gathered 

by the two-dimensional mask patterns are also used for initializing the etch 

surface. The visualization is done by assigning different colors to atoms based on 

their orientation or depth. Apart from the deep reactive ion etching and doping, 

the software can simulate the anisotropic and isotropic etching. 
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Figure 2.18: Mask pattern to ACES Figure 2.19: Simulation result of ACES 

 

2.3.6. SIMODE 

 

The program SIMODE is a tool for simulation of the orientation dependent 

etching on monocrystalline materials. The software focused on the anisotropic 

etch process, based on a graphic data file describing the etch mask. The time 

needed for the simulation is reduced by simplifying the three-dimensional 

problem of calculating the etch relief. First, only the two relevant contours (upper 

and lower edge) are determined in a two-dimensional calculation which describe 

the etch relief significantly. Fig 2.20 demonstrates the simple etch trench of 

SIMODE. 

 

 
Figure 2.20: Simple Etch Trench of SIMODE[24] 

The program can simulate processes with different temperatures, concentrations 

and etchants. The masks are defined with closed polygons. There should be no 

intersections within the polygons. In order to make a distinction between 
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windows (concave polygons) and masked areas (convex polygons), the 

revolution of the polygon lines is used as illustrated in Fig. 2.21. A polygon line 

with a clockwise revolution (mathematically negative) is a concave polygon; 

however, a polygon line with a counter-clockwise revolution (mathematically 

positive) is a convex polygon. 

 

 

 
Figure 2.21: Mask Design of SIMODE [24] 
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SIMODE uses geometric rules to simulate the etch processes as shown in Fig 

2.22. Based on the etch rates of the several sidewalls, etch rates of the polygon 

lines are defined. The etch rate of the polygon lines on the lower etch are 

composed of the etch rate of the sidewall and of the etch bottom, respectively as 

summarized in Fig. 2.23.  

 

 
Figure 2.22: SIMODE Flow Chart [24] 
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Figure 2.23: Velocity profile of a SIMODE process [24] 

 

The sidewalls are described by the polygon line (of mask) and the sidewall angle, 

which is based on the etchant used. The sidewall may consist of two planes also 

(two-part sidewall) as illustrated in Fig. 2.24. The etch rates of the upper and 

lower surfaces; the sidewall angles and the ratio between the planes of the two-

part sidewalls are stored for each etchant within the code. 

 
Figure 2.24: Sidewall Profiles [24] 

At each time step, in every corner with angle greater then 3o tangents are 

produced with an interval of 3o beginning with the first at the polygon line n up 

to the polygon line (n+1). Every tangent represents a possible new sidewall. The 

procedure for creating the tangents is different for convex and concave corners. 
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For concave corners, only the tangents that lie in the masked areas are created 

whereas in convex corners the tangents, which are outside the masked areas are 

taken into account. After the creation of the tangents they are shifted into the 

direction of the masked area according to their etch rates. The new contour is 

created using these shifted tangents. The process is summarized in Fig.2.25. 

 

 
Figure 2.25: Simulation of one etch step in SIMODE [24] 

 

In certain cases due to points of intersection of non-neighboring lines, two or 

more polygons can be developed. After the calculation of the upper and lower 

edges, the construction of the three-dimensional shape is started. First, two half 

shapes are generated for the upper and lower edges. For the construction of the 

half shapes, all polygon lines of the upper and lower edge will be transformed 

into planes. This is realized by assigning typical etch sidewalls to the polygon 

lines corresponding to their angle in the plane. Fig. 2.26 shows the flow chart of 

the construction of the three-dimensional shape. 

 

Due to the two-dimensional simplification of the orientation, dependent etching 

some basic conditions were kept to get accurate results. The model describing the 

etch relief by two-dimensional polygons requires that the etch relief can be 

described fully by projection of typical etch sidewalls. Therefore, it has to be 

guaranteed that no planes, which do not correspond to the typical sidewalls 

produced by this etchant, develop during etching. A basic condition for this is 
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that the start conditions of the etch process are always flat masked wafers. This 

excludes a change of the etching fluid as well as a change of the mask during the 

etch process. 

 

On edges where sidewalls enclose an angle greater then the used angle resolution 

(3°), planes can occur, which do not appear on unaffected mask edges. As the 

distance between the border of the etch relief and the start etch mask is increased, 

the more it is possible that such edges appear. 

 
Figure 2.26: Construction of three-dimensional shape [24] 

 

For the three-dimensional projection, there are limits related with the intersection 

of the two half shapes. During the etch process; planes from the upper or lower 

edge can be separated. Separated planes have a temporary, but at this moment, an 
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important influence for the development of the three-dimensional etch relief. The 

occurrence of this phenomenon can be realized when the calculated lower edge 

of the three-dimensional etch relief is not equal to the edges of the two-

dimensional calculation. The value of the resulting error has the same order of 

magnitude like this difference. 

 

2.3.7. Commercial Packages 

 

There are also a number of commercial codes for simulation of MEMS devices. 

But these codes mainly concentrated on the simulation of the behavior and 

properties of the devices created, and few programs on simulation of micro-

fabrication processes can be found in the market.  

 

2.3.7.1. Memulator 

 

Memulator is a software from Coventor for process emulation and virtual 

prototyping of MEMS and other semiconductor devices [25]. Memulator is based 

on volume element technology and supports mask updates, process changes and 

complex semiconductor fabrication processes. 

 

Memulator can simulate the material addition processes: physical vapor 

deposition, chemical vapor deposition, conformal deposition, metal lift-off 

deposition, epitaxial deposition, snowfall deposition, straight deposition, wafer 

bonding and electrochemical deposition. The program can also simulate the 

removal processes: reactive ion etching, wet release etching, wet isotropic 

etching, wet anisotropic etching, rate dependent etching and chemical 

mechanical polishing. 

 

The software is getting the mask inputs in GDSII format. The mask shapes can 

be interconnected using the Boolean operations. The program gives three-

dimensional visual outputs and dimensions, besides the results can be exported to 

Ansys for further processing. 
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2.3.7.2. Athena  

 

Athena Process Simulation Framework is the product of Silvaco company [26]. 

There are seven modules in this framework as shown in Fig. 2.27:  

 

• “SSuprem4” is a two-dimensional process simulator, which includes 

diffusion, implantation, oxidation, silicidation and epitaxy.  

• “MC Implant” is a physically based 3D ion implantation simulator to 

model stopping and ranges in crystalline and amorphous materials. It 

accurately predicts implant profiles and damage for all major ion/target 

combinations.  

• “Elite” is a two-dimensional moving boundary topography simulator for 

modeling physical etch, deposition, reflow and CMP planarization 

processes.  

• “MC Etch/Depo” is an advanced topology simulator. It includes several 

Monte Carlo based models for simulation of various etch and deposit 

processes, which use a flux of atomic particles.  

• “Optolith” is a non-planar 2D lithography simulator that models all 

aspects of submicron lithography: imaging, exposure, photoresist bake 

and development.  

• “SSuprem3” is a one dimensional silicon process simulator used in the 

prediction of doping profiles and layer thicknesses.  

• “SPDB” is a database manager containing experimental and simulated 

doping profiles and process recipes.  

 38



 
Figure 2.27: ATHENA Framework Architecture [26] 

 

2.4. Cellular Automata 

 

Cellular Automation is defined as a system defined at discrete time steps with a 

discrete spatial geometry (generally a regular lattice) [27]. In terms of discrete 

variables, the state of the system is defined at each point in time. The Cellular 

automation is specified in terms of rules that define how the state changes 

between time intervals. 

 

The history of the Cellular Automata dates back to 1940’s with Stanislas Ulam. 

This mathematician was interested in the evolution of graphic constructions 

generated by simple rules. The base of his construction was a two-dimensional 

space divided into "cells", a sort of grid. Each of these cells could have two 

states: ON or OFF. Starting from a given pattern, the following generation was 
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determined according to neighborhood rules. For example, if a cell was in 

contact with two "ON" cells, it would switch on too; otherwise it would switch 

off. By using one of the first computers, he found out that this simple rule 

generates complex and graceful shapes.  

 

In 1970 the cellular automata is introduced with “The Game of Life” by John 

Horton Conway. The game of life is based on a grid constituted of cells shown in 

Fig. 2.28: 

 
Figure 2.28: Example of a Starting Pattern [27] 

 

The universe of the game is rectangle cells of 3 by 5. The cells are numbered 0 to 

2 vertically and 0 to 4 horizontally. White cells are the active ones. The adjoin 

cells including the diagonals of a cell is its neighbors.  

 
Figure 2.29: Determination of the Neighborhood [27] 

Fig.2.29. demonstrates the active cells and the neighbors of the cell 12. There are 

three simple rules of the game:  

• One inactive cell surrounded by three active cells is become active (born). 

• One active cell surrounded by two or three active cells remains active. 

• In other cases, the cell dies or remains inactive. 
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Interpretation of these rules are: a population is needed for birth (3 in this case), 

that the cells cannot survive to a too wide isolation and too much population 

(more then 3) will kill them. 

 
Figure 2.30: First Generation [27] 

 
Figure 2.31: Second Generation [27] 

In this example, three fundamental properties of Cellular Automata is shown 

[28]: 

• Parallelism: A system is said to be parallel when its constituents evolve 

simultaneously and independently. In that case, cells update is performed 

independently of each other.  

• Locality: The new state of a cell only depends on its actual state and on 

the neighborhood. 

• Homogeneity: The laws are universal; they are common to the whole 

space of cellular automation. 

Cellular Automata applications are diverse and numerous. Fundamentally, 

Cellular Automation constitutes completely known universes. In a Cellular 

Automation, laws are simple and completely known. One can then test and 

analyze the global behavior of a simplified universe, for example: 
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Figure 2.32: Example of 1-D CA Pascal Triangle [27] 

• Simulation of gas behavior. A gas is composed of a set of molecules 

whose behavior depends on the one of neighboring molecules. 

• Study of ferromagnetism according to Ising model : this model (1925) 

represents the material as a network in which each node is in a given 

magnetic state. This state, in this case one of the two orientations of the 

spins of certain electrons, depends on the state of the neighboring nodes. 

• Simulation of percolation process. 

• Simulation of forest fire propagation. 

• In a different field, Cellular Automation can be used as an alternative to 

differential equations. 

• Conception of massive parallel computers. 

• Simulation and study of urban development. 

• Simulation of crystallization process. 

 

2.5. Closure 

 

Out of the micromachining techniques described in the chapter, anisotropic 

etching is the focus of the past research efforts and commercial programs. Using 

geometric or cellular automata techniques, this process is being tried to simulate. 

Because of the speed of the computers available in the market, and flexibility of 

the mask patterns that can be simulated, cellular automata was chosen to simulate 

the micromachining processes. 
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CHAPTER 3 

 

WAFER EDITOR 

 

3.1. Introduction 

 

First step in describing the process for simulation in MemsEagle is the creation 

of the wafer. A wafer editor is designed to create the wafer by entering the 

dimensions, crystal orientation, doping concentration and type. The details of the 

editor follow. 

 

3.2. Crystal Orientations 

 

The developed software takes into consideration the wafers widely utilized in 

MEMS fabrication processes:  

1. (100) Wafer flat on (110), 

2. (100) Wafer flat on (100), 

3. (110) Wafer flat on (100),  

4. (111) Wafer flat on (110).  

Fig. 3.1 illustrates the crystal lattice and the crystalline structure of common 

wafers of various orientations while Fig. 3.2 demonstrates the top view of the 

above-mentioned crystal lattices. To represent these wafers with different 

crystallographic orientations, a cell containing eighteen Silicon atoms is taken 

into consideration. 

 

In CA approach, the atoms are not individually represented. Instead, a generic 

cell representing the mechanic behavior of the silicon atom is facilitated for the 

sake of convenience. Therefore, in the wafer editor, CA cells having relatively 

larger dimensions (on the order of 1μm3 for a silicon crystal lattice) are taken 
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into account. In this approach, two types of CA cells (Type 1 and 2) are utilized 

based on the arrangement of neighboring CA cells.  Notice that the difference 

between type 1 and type 2 cells arises due to the choice of the origin for the local 

coordinate system. (i.e. shift of the origin in the z direction) To model the cell 

structure in the code, an array containing the normalized spatial coordinates of 

each cell is generated.  Table 3.1 tabulates the coordinates of each neighboring 

cell for a particular wafer. Note that, the local coordinate systems are illustrated 

in Fig. 3.1 as well. 

 

 

 

 

(a) Crystal Lattice 

x 
y 

z 

(b) (100) Plane 

 

 

 

 

(c) (110) Plane (d) (111) Plane 

Figure 3.1: Crystal Orientations at different planes 
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z 

y y 
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In wafer editor, the user is expected to enter the wafer dimensions through the 

corresponding dialog box as shown in Fig. 3.3. As can be seen, the orientation of 

the wafer is set through a set of radio buttons. The last information needed for 

creating the silicon wafer is the dopant concentration and type. The dopant type 

is selected via the radio button labeled “p/n”. After selecting the type, the dopant 

concentration is entered. Notice that the default value for the dopant 

concentration is 1x1015cm-3.  
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Notice that to accommodate wafers with larger dimensions, a scale factor is 

applied to the entered dimensions, such that the overall wafer could be efficiently 

modeled using the limited resources of an ordinary personal computer. 

(processing power and memory capacity) This subject is further discussed in 

detail in Section 3.3.  

 

y 

x 
y 

x 

(a) (100) Crystal lattice flat on (100). (b) (100) Crystal lattice flat on (110). 

(c) (110) Crystal lattice. (d) (111) Crystal lattice. 

Figure 3.2: Top view of various crystal lattices with different crystallographic 

orientations. 
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Table 3.1: Spatial coordinates of neighboring Silicon atoms for various 

crystallographic orientations 

Type 1 Type 2 

  x[μm] y[μm] z[μm] x[μm] y[μm] z[μm] 

1st Neighbor  +0.25 +0.25 +0.25 +0.25 +0.25 -0.25 

2nd Neighbor +0.25 -0.25 -0.25 +0.25 -0.25 +0.25 

3rd Neighbor -0.25 +0.25 -0.25 -0.25 +0.25 +0.25 

(100) 

Wafer 

Flat on 

(100) 4th Neighbor -0.25 -0.25 +0.25 -0.25 -0.25 -0.25 

1st Neighbor  +0.3535 0 +0.25 +0.3535 0 -0.25 

2nd Neighbor 0 +0.3535 -0.25 0 +0.3535 +0.25 

3rd Neighbor -0.3535 0 +0.25 -0.3535 0 -0.25 

(100) 

Wafer 

Flat on 

(110) 4th Neighbor 0 -0.3535 -0.25 0 -0.3535 +0.25 

1st Neighbor  +0.3535 +0.25 0 -0.3535 -0.25 0 

2nd Neighbor -0.3535 +0.25 0 +0.3535 -0.25 0 

3rd Neighbor 0 -0.25 -0.3535 0 +0.25 +0.3535 

(110) 

Wafer 

Flat on 

(110) 4th Neighbor 0 -0.25 +0.3535 0 +0.25 -0.3535 

1st Neighbor  +0.3535 +0.204 -0.144 -0.3535 -0.204 +0.144 

2nd Neighbor -0.3535 +0.204 -0.144 +0.3535 -0.204 +0.144 

3rd Neighbor 0 -0.408 -0.144 0 +0.408 +0.144 

(111) 

Wafer 

Flat on 

(110) 4th Neighbor 0 0 +0.432 0 0 -0.432 

 

When the command button “Create” is depressed, the code generates the wafer 

with the chosen type using the following algorithm: 

• An array of cells are created using the “Virtual Surface” class, on which the 

x, y, z location in space, the link type, mass rate, doping concentration, 

material type, and neighbor information can be stored.  This class is further 

elaborated in the process editor.  

• An ordinary CA cell has a pre-determined size. For instance, the distance 

between the neighboring cells used to model (111) wafer is 0.432μm. Based 

on the given wafer dimensions, an array of cells contained within the wafer 

are created based on that characteristic dimension of the CA cell.  
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• With the given wafer orientation, a two dimensional surface is created and 

the CA cells on this surface are stored in the VS class. 

Except the (110) wafer, all the other wafer types have just one type of CA cell on 

the surface, whereas the (110) wafer has both of them. Based on the x and y 

locations of the cells, the type of the corresponding CA cell is determined; the 

details are further discussed in the section 3.3.  

 

 
Figure 3.3: Wafer editor  

 

3.3. Wafer Size Modifications 

 

Based on the wafer type selected in the wafer editor, MemsEagle software finds 

the coordinates and the number of CA cells to be generated for simulation. The 

row and column on which the CA cell lies determines the cell coordinates at the 

surface of the silicon substrate. The following scheme summarizes this process 

for different crystal orientations, when no scaling is applied.  
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For (100) wafer flat on (100) direction: 

5.0+= ix  ,   wlx ≤≤0   ∧   12(mod) =j

x(i,j) =                             (3.1) 

ix = ,   wlx ≤≤0   ∧  02(mod) =j  

                                                                   

 ,   ( , ) 0.5y i j j= ⋅ wwy ≤≤0                              (3.2)                              

For (100) wafer flat on (110) direction: 

7071.0),( ⋅= ijix ,   wlx ≤≤0                                     (3.3)  

 ,   7071.0),( ⋅= jjiy wwy ≤≤0                                     (3.4)                          

For (110) wafer flat on (100) direction:  

3535.0),( ⋅= ijix ,   wlx ≤≤0                                              (3.5)

    

25.0+= jy  ,   wwy ≤≤0   ∧  1                                           2(mod) =i

y(i,j) =                                     (3.6) 

                                                jy =  ,   wwy ≤≤0   ∧  1                                                     2(mod) =i

 

For (111) wafer flat on (110) direction:  

  ,   3535.0),( ⋅= ijix wlx ≤≤0                                           (3.7) 

     

612.0224.1 +⋅= jy  ,   wwy ≤≤0   ∧  1                                    2(mod) =i

y(i,j) =                                                    (3.8) 

224.1⋅= jy  ,   wwy ≤≤0   ∧  1                                                 2(mod) =i

 

Where x, y are the cell coordinates, j is the row number, i is the column number 

and lw and ww are the length and width of the wafer respectively. The number of 

the surface cells generated is varying for different wafer types.  The CA cells 

generated using the wafer editor for a substrate size 30x20μm2, were illustrated 

by Fig 3.4. 
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        a) (100) wafer flat on (110) b) (100) wafer flat on (100) 

 
c) (110) wafer flat on (100)  

d) (111) wafer flat on (110) 
Figure 3.4: Cells generated by  Wafer Editor 

 

Although the wafer can be sized by the user arbitrarily, because of the “Cellular 

Automata” approach used, the wafer is scaled to reduce the corresponding 

computational cost above a pre-determined limit. In order permit the usage of the 

software on common personal computers; the maximum operational surface area 

of the wafer was restricted by 1500μm2. If the user tries to exceed this limit, the 

wafer is scaled down and the etch rates are modified accordingly. The following 

sequence summarizes the modifications done: 

 

www Awl =⋅      (3.9) 

 

1, 1500

,
1500

w

w

A

A else

σ

⎧
⎪ ≤⎪⎪= ⎨
⎪
⎪
⎪⎩

   (3.10) 

 

r
ef

EE
σ

=      (3.11) 
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where lw id the length, ww is the width of the wafer, Aw is the wafer upper 

surface area, Er is the etch rate for a certain direction, Eef is the effective etch rate 

and σ is the scaling factor. 

 

3.4. Visualization 

 

When the x, y and z dimensions of the wafer are entered using the wafer editor, 

the borders of the wafer are drawn on the screen. Starting from the origin, the 

lines forming the frame are drawn by using the OpenGL functions. For instance 

the following OpenGL code draws a line between the points P0(x0,y0,z0) and 

P1(x1,y1,z1): 

 

glBegin(GL_LINES); 

glvertex3f(x0, y0, z0); 

glvertex3f(x1, y1, z1); 

glEnd(); 

 

The OpenGL automatically manages all the given coordinates with respect to the 

current graphic window. Notice that, for switching between window and 

OpenGL coordinates, gluproject() and gluunproject() functions are used. The 

details about these functions are given in the Appendix B. When the wafer is 

created; the upper surface is drawn as a filled rectangle (as a filled mask) to be 

used as the base object of the mask editor. Following sequence is employed for 

creating polygons (filled) in OpenGL with the given vertices: 

 

glBegin(GL_POLYGON); 

glvertex3f(x0, y0, z0);glvertex3f(x1, y1, z1); 

glvertex3f(x2, y2, z2);glvertex3f(x3, y3, z3); 

glEnd(); 
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Fig. 3.5 illustrates a sample wafer created by the described OpenGL functions. 

As shown, the upper surface is a filled polygon whereas only the frames of the 

other surfaces have been drawn. 

 
Figure 3.5: Wafer display 

 

3.5. Closure 

 

The wafer editor is designed for entering the information needed for creating the 

silicon wafer through which the MEMS device will be machined.  The 

information entered is stored in the “VS” class created. Through the editor the 

size, orientation and dopant type and concentration properties of silicon are 

adjusted for a particular wafer suitable for MEMS device fabrication. Based on 

the array generated by the wafer editor, a virtual surface, based on the mask 

information, is produced at the later stages used by MemsEagle software.  
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CHAPTER 4 

 

MASK EDITOR 

 

4.1. Introduction 

 

After creating the wafer on which the MEMS device will be built, the masks are 

designed using the mask editor. Using the primitives and the modification 

options complex shapes can be created, and more then one mask can be designed 

for different projects. Fundamental principles of the mask editor are summarized 

in this chapter. 

 

4.2. Mask Editor Features 

 

During the generation of the substrate, the wafer was created with a mask 

covering the upper surface completely. The mask pattern was generated using 

this as a base. The user-interface of the mask editor is illustrated in Fig. 4.1. The 

shapes are created using the three primitives: rectangle, circle and polygon, as 

shown in Fig. 4.1. These simple objects can later be modified to have complex 

shapes that may have holes, obtuse-angle corners or other essential objects of a 

typical MEMS design. Note that, the shapes can be drawn as empty or filled 

objects. 

 

 Up to 50 masks can be generated for each project, and the masks can be saved or 

purged during the course of the design. In order to supply a user-friendly drawing 

environment, grid option is enabled. Notice that, the grid size can be adjusted 

using the combo box shown in Fig 4.1 and the user has the option to snap onto 

the grids or not. 
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Figure 4.1: Mask Editor Interface 

 

 

4.3. Mask Primitives 

 

The designed mask editor employs various graphical primitives (objects) to 

create relatively complex mask shapes using the combinations of these. In the 

mask editor of MemsEagle, there are three primitives used for creating masks: 

rectangle, polygon, and circle. For the rectangle primitive, the starting corner 

location, length, and width information are needed whereas the center 

coordinates and the radius of the circle is the sufficient information for the circle 

entity. For creating polygons, coordinates of each vertex are to be entered by the 

user.  

 

 In mask editor, two types of shapes can be created: empty and filled. The mask 

creation process starts out with a filled rectangle, which apparently covers the 

upper surface of the whole wafer. After that, the user can create a complex mask 

by adding, purging, and modifying the primitives (either filled or empty) on this 
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filled base rectangle, using the user-friendly features of the mask editor. The next 

section discusses these modifications. 

 

For enabling more control over the shapes drawn, the user may enter the grid 

mode by selecting the “grid on” radio button as shown in Fig 4.1. In grid mode, 

guide points are drawn on the screen for creating or modifying primitives. 

 

The OpenGL functions used for creating the points are glVertex3f() and 

glBegin(GL_POINT). By entering the GL_POINT mode, the code started to 

draw points on the locations entered by glVertex3f() until glEnd() function is 

called. The distance between the grids can be changed using the combo box. 

 

When the grid mode is on, the mouse clicks on the screens are re-adjusted for the 

nearest grid point and the vertex location is stored as such.  

 

 

 

4.4. Modifications 

 

The created objects can be moved, rotated, resized or purged using the command 

buttons of the mask editor as shown Fig. 4.1. When the polygon, rectangle or 

circle buttons clicked, the software generates a new shape and stores it in the 

allocated array kept for the mask in the memory. On this array, the locations of 

the vertices along with the type of the shape (empty or filled) are stored. For each 

mask, a maximum of 50 geometric objects are allowed which hopefully yields a 

mask pattern accommodating most features of practical MEMS designs.  

 

The modification on the individual graphical primitives can be carried out via the 

corresponding the modification buttons on the dialog box. To accomplish that, 

the mask editor employs various OpenGL functions. For instance, a label for 

each object is generated using glLoadName() function of OpenGL during 

creation phase. Likewise, glSelectBuffer() is utilized to select a certain graphical 
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primitive via mouse by simply returning the index of these objects previously 

labeled.  

 

After that if the program goes into the modification mode, the buffer type is 

changed into GL_RENDER by using the command glRenderMode(). The 

location of the mouse when the left button is clicked is then checked by the 

software and if it intersects with one of the shapes, the return value of the 

glRenderMode() function becomes the integer assigned to that shape. Details of 

the selection process are further explained in detail in section 4.6. 

 

According to the command button clicked, the following actions are taken to 

modify a particular shape: 

 

• Move: The mask type remains the same. The user prompted to select the 

shape and the x, y displacements of the shape chosen is entered. The vertices 

of the shape are re-located. 

• Rotate:  The mask type remains the same. The user prompted to select the 

shape and the rotation angle along with the rotation center is entered. The 

vertices of the shape are re-located. If the rotation point is omitted, the shape 

is rotated with respect to the first vertex. 

• Delete: The user picks up the shape and the selected primitive is deleted from 

the view screen. In addition, the shape number is decreased by one and the 

vertex information of that shape is deleted. 

• Copy: The vertices and the type of the selected shape are stored in the mask 

array. The 0th member of the array is utilized for this action. 

• Cut: The information is processed just like the copy operation described 

above; the difference lies in the fact that the selected shape is also deleted.  

• Paste: The stored shape is drawn on the screen with the first vertex location 

re-entered. 
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After the modification has terminated, the code re-enters into the render mode. 

The difference between the selection mode and the render mode is that, in render 

mode the shapes entered using the OpenGL functions are displayed on the screen 

whereas in selection mode these shapes are used for getting information or 

modification indirectly without any modification on the screen. 

 

4.5. Transfer of Mask Pattern onto the Wafer 

 

After the drawing of a mask is finished, the user must click the end button. Then, 

the code starts to transfer the mask information onto the wafer.  

 

The main idea behind locating the empty and filled areas lies in the colors used. 

The empty areas are yellow colored whereas the filled areas appear blue. By 

making use of the wafer type selected, the code already determines the location 

of the silicon cells on the surface between the mask and the wafer. For each cell, 

the color of the mask should be known.  

 

First, the OpenGL coordinates, which the wafer dimensions and cell locations are 

entered, should be mapped onto the window coordinates by the gluProject() 

function. The matrices titled modelview, transformation, and viewport, are used 

to modify the screen size as well as the various viewing attributes. 

 

By making use of the glReadPixels() function, the color of the mask on the 

location of the silicon cells is found. With the information from past processes 

and the material type, the surface on which the etching, doping or addition will 

occur is determined.  

 

4.6. Visualization 

 

The OpenGL functions and C++ algorithms utilized are described in this section. 

The algorithm used for creating and modifying the primitives, and displaying 

them on the viewport is summarized. 
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4.6.1. Creating Primitives (Tessellation) 

 

For creating the rectangle, polygon and circle primitives, the OpenGL function 

glvertex3f() can be used, in conjunction with the glBegin() function with  

GL_POLYGON argument. However, it is not possible to use GL_POLYGON 

argument for creating the polygons with obtuse-angle corners, due to possible 

intersection of the lines that make up the polygons created. For creating polygons 

with intersecting lines or with holes inside, tessellation functions of OpenGL are 

employed. OpenGL can directly display only simple convex polygons. A 

polygon is simple if the edges intersect only at vertices, there are no duplicate 

vertices, and exactly two edges meet at any vertex. If the user wishes to create 

concave polygons, polygons containing holes or polygons with intersecting 

edges, those polygons must first be subdivided into simple convex polygons 

before they can be displayed. Such subdivision is called tessellation, and 

OPENGL provides a collection of routines that perform tessellation. [30] In order 

to use tessellation for a polygon the following procedure should be followed in 

OpenGL:  

 

1. Create a tessellation object using gluNewTess(). 

2. Use gluTessCallback() several times to register callback functions to 

perform operations during the tessellation. The trickiest case for a 

callback function is when the tessellation algorithm detects an 

intersection and must call the function registered for the 

GLU_TESS_COMBINE callback. 

3. Specify tessellation properties using gluTessProperty(). 

4. Create and render tessellated polygons by specifying the contours of one 

or more closed polygons. 

5. Delete the tessellation object with gluDeleteTess(). 

 

Details of these functions are further discussed in Appendix B. Utilizing the pre-

defined OpenGL functions, viewpolygon() was created for tessellation purposes. 
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Note that “t” was created using gluTessCallback() function. 

GLU_TESS_WINDING_POSITIVE argument was used for determining the 

interior of the polygon created, while using the user-defined SetFilling() 

function, the interior of the polygon was filled with the color chosen. Notice that, 

the vertex coordinate information is entered using the AddVertexArray() 

function. 

 

void CmemseagleView::viewpolygon (int i,int j) 

{ 

 CGLTesselator t; 

 t.StartDef(); 

 

 t.gluTessProperty(GLU_TESS_WINDING_POSITIVE); 

  t.SetFilling(TRUE); 

  t.AddVertexArray(vertices[i][j]);  

 t.EndDef();} 

Fig 4.2 demonstrates the display of a mask shape created using OpenGL 

tessellation. The color of the filled area can be yellow or blue, with respect to the 

type of the shape chosen. The un-masked areas are drawn in yellow. 

 

 
Figure 4.2: Mask Creation using Tessellation 
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4.6.2. Modifying Primitives (Selection) 

In order to modify the objects drawn on the screen, they should be selected first 

using the mouse. Typically, when using OpenGL's selection mechanism, first, the 

scene is drawn into the frame buffer and then selection mode is entered and the 

scene is refreshed. However, while in selection mode, the contents of the frame 

buffer do not change until selection mode is terminated. When selection mode is 

finished, OpenGL returns a list of the primitives that intersect the viewing 

volume. Note that, each primitive that intersects the viewing volume causes a 

selection hit. The list of primitives is actually returned as an array of integers 

which stands for the object names and related data “the hit records”. This integer 

corresponds to the current contents of the name stack. The name stack is 

constructed by loading names onto it as primitives were drawn while in selection 

mode. Thus, when the list of names is returned, this information can be used to 

determine which primitives might have been selected on the screen by the user. 

The steps followed to select an object drawn is listed below: 

1. Specify the array to be used for the returned hit records with 

glSelectBuffer() 

2. Enter selection mode by specifying GL_SELECT with glRenderMode(). 

3. Initialize the name stack using glInitNames() and glPushName(). 

4. Define the viewing volume to use for selection. (The masked area)  

5. Exit selection mode and process the returned selection data (the hit 

records).  

In selection mode, a primitive that intersects with the viewing volume invokes a 

selection hit. Whenever a name-stack manipulation command is executed or 

glRenderMode() is called; OpenGL writes a hit record into the selection array if 

there's been a hit since the last time the stack had been manipulated or 

glRenderMode() had been invoked. With this process, objects that share the same 

name (for example, an object that's composed of more than one primitive) do not 

generate multiple hit records. Than, the tessellation objects (the convex polygons 
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that made up the polygon drawn by the user) are processed as one object, rather 

than multiple shapes to be modified. 

4.7. Sample Mask Shapes 

 

The creation of the masks that were used to compare the simulation results with 

the real cases was displayed below, using different techniques. Desired mask 

patterns can be formed by modifying the three primitives (circle, polygon and 

rectangle). The mask patterns created were used in SIMODE for the same 

verification purposes also. 

 

The mask pattern displayed in Fig 4.3 was created by using the circle primitives. 

By creating circles centered in point O(x,y), the pattern was achieved. There are 

two filled and two empty circles used during the design. The center of the circle 

can be entered through the keyboard or by using the grid mode and left mouse 

button. This mask was later etched in KOH and the progress of this process was 

discussed in Chapter 7.  

 

O(x,y) 

Figure 4.3: Co-centric Rings 

 

The second mask pattern created was used to demonstrate the etch results for 

polygons that have obtuse angled vertices. The first shape was created using the 

rectangle primitive and then rotated 45o. The easiest way to create the other 
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shapes was to enter grid mode. After that by entering the vertices using polygon 

primitives, the resultant pattern was created.  

 

For the last shape, another way of creation was possible. First using the polygon 

primitive, the user could create a triangle, then by rotating and copying this 

triangle, the four sides of the shape was set. The hole inside could be filled with a 

rectangle and the mask pattern was finished. 

 
Figure 4.4: Obtuse Angled Shapes 

 

This mask pattern was used for showing the effects of merging planes and the 

etching of right-angled shapes in wet anisotropic etching. The pattern was 

created by using the rectangle primitive, by rotating it 45o and copying it to 

different locations the pattern on Fig. 4.5 was achieved.  

 

The pattern demonstrated in Fig. 4.6 was used to show the effects of the mask 

misalignments to the resultant etched shape. This pattern can be created in 

different ways but the simplest approach was to create the shape and then 

rotating it. The shape was created using the polygon primitive and by copying 

and rotating the object, the final mask pattern was obtained. 
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Figure 4.5: Rotated Squares 

 

 
Figure 4.6: Misaligned Masks 

 

The paddle pattern illustrated in Fig. 4.7 was used to display the compensation of 

the shapes surrounded by the etchant. In order to achieve this shape first an outer 

empty rectangle was created. Then there are two ways to follow, entering the 

grid mode and creating the shape by using a polygon primitive or creating 

rectangles and copying them.  

 

The following rotated beam displayed in Fig 4.8 was made up of three rectangle 

primitives. First, the two thin rectangles were created by entering the grid mode 

and then they were rotated by 45o. The square was added finally and the mask 
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pattern was obtained.  This shape was used to demonstrate the compensation of 

the rotated beams by the etchant. 

 

 
Figure 4.7: Paddle 

 

 
Figure 4.8: 45o Beams 

 

This mask pattern was used to show the compensation of the triangle-cornered 

shapes in the anisotropic wet etching process. In order to obtain this mask, first 

the upper or lower half of the pattern was created using the polygon primitive. 

Then, by copying and rotating the shape by 180o the final shape was formed. 
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Figure 4.9: Triangle-Cornered Beams 

 

The next sample (Fig 4.10) was used to simulate the compensation of the fingers 

of a mask pattern by the etchant. If this shape is etched by Deep Reactive Ion 

Etching or first boron doped and etched, the fingers of a comb drive can be 

obtained. The simplest way of creating this pattern was to create the one finger 

sample for each width first. The next step was to create the triangles by using the 

polygon primitive and copying the fingers upon these triangles. 

 

 
Figure 4.10: Compensation Fingers 

 

This example illustrated in Fig. 4.11 shows a simple spur gear created by 

MemsEagle mask editor. The mask was generated using the circle and polygon 

primitives with modification options copy, paste and rotate. Hence, it is possible 

to obtain relatively complicated MEMS elements using simple objects of the 

editor. 
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Figure 4.11: Spur Gear Created by the Mask Editor 

 

4.8 Closure  

 

By using the integrated simple mask editor, the user can draw complex shapes 

for simulation of the micro-fabrication processes. Up to 50 different masks can 

be created for a project, and each one can be associated with different processes. 

There was grid option available, which can be turned off and be chosen for 

different sizes. 
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CHAPTER 5 

 

PROCESS EDITOR 

 

5.1. Introduction 

 

After creating the wafer and designing the masks, the next step is the selection of 

the processes to be simulated. MemsEagle includes a process editor where the 

user selects the process sequences and the associated masks to be used. The 

micro machining processes that can be simulated by the program and the 

operating principles of the process editor is described in this chapter. 

 

5.2. Editor Features 

 

The process editor employed in MemsEagle is capable of creating the 

environment for stand-alone micro-fabrication processes or a complete set of 

processes for creating a MEMS device by utilizing the project editor. The micro-

fabrication processes and the mask patterns are added using the “Add” command 

button shown in Fig. 5.1. Note that, by utilizing the combo boxes for mask and 

process selection the necessary dialog boxes are reached for entering the 

fabrication variables. Figures 5.2 and 5.3 illustrate the dialog boxes used for 

different micro-fabrication processes simulated. 

 

The processes can later be modified by using the “Choose Process” combo box. 

When the project is ready for simulation, by exiting using the “OK” command 

button, the user could return to the main MemsEagle interface for starting the 

process. Rather than using the project editor, MemsEagle software can simulate 

single process by simply entering the “process selector” dialog box. Notice that, 

the fabrication processes to be simulated can be modified through this interface. 
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Figure 5.1: Process Editor 

 

 
Figure 5.2: Process Selector 
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Figure 5.3: Micro-Fabrication Dialog Boxes 

 

5.3. Simulated Processes 

 

MemsEagle has mainly concentrated on simulating the etching processes, 

especially the anisotropic etching. With the etching processes, additive processes 

like doping and oxidation are also included in the package for self-completeness 

of MEMS design process. 

 

5.3.1. Wet Etching 

 

Most of the etchants used in wet etching, results in an anisotropic profile for 

silicon wafers. Based on the cellular automata approach, MemsEagle simulates 

the resultant wafer shape after the micro-fabrication process applied. The etch 

rates of the etchants used are given in Table 5.1.  
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Table 5.1: Etch Rates in μm/min 

 Planes 

Etchant 100 110 111 311 

EDP 0.47 0.28 0.028 0.28 

Isotropic (HNA) 1 1 1 1 

%30KOH %70 H2O 0.797 1.455 0.005 1.436 

%40KOH %60 H2O 0.559 1.294 0.009 1.067 

%50KOH %50 H2O 0.539 0.870 0.009 0.746 

TMAH %20 0.603 1.114 1.223 0.017 

 

5.3.2. Dry Etching 

 

The only dry-etch process that can be simulated by MemsEagle is “Deep 

Reactive Ion Etching”. In each step, one layer of cells is removed from the 

surface of the wafer. Notice that, the etch rate was taken as 1μm/min. 

 

5.3.3. Doping  

 

Doping process is simulated with two restrictions, which will be elaborated in 

Section 5.5.3. The inputs are the pre-deposition time and diffusion time. For 

doping concentration dependent etchants, doping concentration is checked by 

MemsEagle. If the concentration is higher than the threshold value (in certain 

cases below) the etch stops for that cell. For further information on the etching 

rates, the user is encouraged to refer to go to Appendix A. 

 

5.3.4. Additive Processes 

 

Several materials including Polysilicon, silicon dioxide, silicon nitride, 

aluminum and gold can be added using the additive process simulation. Only the 

un-masked areas are exposed to the additive materials and the thickness of the 

deposited material is needed to simulate the process.  
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It should be noted that as a general design principle, surface micro-machining 

has to be applied as the last fabrication process owing to the fact that the 

deposited films on the surface degrades a great deal when they are exposed to 

common bulk micromachining chemical agents. Therefore, based on this 

principle, MemsEagle is designed to deposit directly several stacked patterned 

layers over the surface shaped by bulk micromachining. The crystal orientations 

of these materials are different from that of the substrate. Hence, they are 

indicated by a different color. However, in order to transform the new virtual 

surface, these new cells are to be merged with the existing CA cells. 

 

5.4. Virtual Surface Creation 

 

First step in the simulation procedure is, to decide on which CA cells are to be 

exposed to the etchant. The mask-wafer interface information is supplied by the 

mask editor, whereas the cells under or above this interface should be checked 

for determining the cells on the “virtual surface”. In order to store all the 

information harvested, a user-defined “VS” class was generated using Visual 

C++. The information that can be stored under this class is summarized in Table 

5.2.  

Table 5.2: VS Class Members 

VS(Virtual Surface) Class Type Range Description 
Neg [4] int -1,0,1 Neighbor Information 
NegVs [4] int 0,1 Neighbors on the etchant-wafer interface 
M Float 0..1 State of the cell 
Material int 1..6 Material of the cell 
Plane int 1..4 Plane on which the cell lies 
x Float 0..1500 x location of the cell 
y Float 0..1500 y location of the cell 
z Float 0..1500 z location of the cell 
tc Float 0..1 Time compensation value 
dc Float 0..5x105 Doping Concentration 
Selection int 0,1 Whether the cell is on the VS or not 
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As mentioned before, there are four neighbors for each cell. The neighboring cell 

information is stored under the “neg[4]” and “neg_vs[4]” variables on VS class. 

On these arrays, the three possible states of a neighbor are as follows: 

• 1: There is a non-etched neighbor on the predefined location. The locations 

of the neighboring cells were given in Table 3.1. This cell lies on the virtual 

surface. 

• 0:  The neighbor cell on this location has been etched in previous steps or out 

of wafer range. 

• -1: There is a cell on this location but it is not on the virtual surface, in other 

words it is not exposed to etchant. 

 

To determine the virtual surface, the software first starts out with the information 

supplied by the mask editor. By checking the cells lying on the un-masked areas, 

the neighboring cells, which have the state “0”, are sought. These cells simply 

represent the holes and cavities formed in previous steps and the neighbors of 

these cells should be added to the virtual surface. When there is no more 

neighboring cells left with state “0”, the virtual surface creation is finished. This 

procedure is repeated before each time step, because there may be holes that are 

under the masked areas and not exposed to etchant in previous steps. Some 

undercut process may be observed around the perimeter of unmasked areas or 

some cavities might be bridged. As a result, consequently those cells will also be 

exposed to etchant in the next steps.  Fig. 5.4 illustrates the flowchart of this 

process. Notice that in the flow chart; M, which is an element of VS class, 

denotes the state of a particular CA cell.  
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Figure 5.4: Virtual Surface Creation Flowchart 

 

5.5. Plane of the Cells 

 

After deciding on which cells should be processed in the next time step, to apply 

the etch algorithm, the plane of the cells should be determined. There is a 

function called Plane() on VS class, that was created for assessing the plane of 

the cells. Simply by finding the number of the neighboring cells and checking 

whether they lie on the virtual surface or not; the function finds the plane for 

each cell. The flowchart of the Plane() function is given in Fig. 5.5. 
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Figure 5.5: Plane Function Flow 

 

Table 5.3: Number of Neighbors for Different Planes 

  <100> <110> <111> 

Number of Neighbors 2 3 3 

Number of Neighbors lying on the virtual surface - 2 - 

 

Since each cell location and state information are stored in an array, simply 

scanning this array yields the information needed by the Plane() function. 

 

5.6. Process Application 

 

After the virtual surface is set and the planes of the cells are found, the cells 

undergo certain modifications based on the process selected.  

 

5.6.1. Wet Etching Modifications 

 

Using the etchant information obtained, each cell state is modified according to 

the etch rate of the chosen etchant for the plane of the cell. The initial states of 

the cells are “1” and when the state value reaches zero, the cell is removed. The 

main problem in applying the etch rate occurs if the state of the cell decreases 

below zero. 

 

This situation is undesirable since, when the time passed between the state of the 

cell reaches zero, the final value of the state (which appears to be negative), is 

lost. To facilitate this time, the neighbors of the cell etched, will be exposed to 
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the etchant for the next step time (1 minute for MemsEagle) plus the lost time 

when the state of the etched cell dropped below zero. Note that, a similar 

approach entitled “time compensation” was known to be utilized by the 

developers of the ACES program.  

 

After the etchant is applied to the cells, if the state of the cell is equal to zero, it is 

removed. The neighbors of the cell that do not lie on the virtual surface enter the 

etchant-wafer interface. The added cell inherits the conjugate of the type for cell 

being removed. (Type 1↔Type 2) The progress of the wet etching is illustrated 

in Fig. 5.6 where i refers to the time index and M denotes the state of a particular 

cell. 

 

5.6.2. Dry Etching (Deep Reactive Ion Etch) Modifications 

 

Most of the steps of simulation are same as the wet etching for the dry etch 

process also. Since, only the cells in the un-masked areas should be removed, 

certain checks should be carried out before modifying the state of a cell. 

 

First, during the creation of the mask possible cell locations on the un-masked 

areas are stored in an array. This is different then just storing the cell locations on 

the mask surface because the x and y locations of the cells under the surface of 

the wafer is varying. So all possible x, y locations are stored in the memory for 

using in the doping, dry etching and additive processes. Fig. 5.7 illustrates the 

generation of the CA cell locations for different wafer types. 

 

The steps used in wet etching are followed till the modification of the state 

values. Here, if the cell location does not match any of the locations stored in the 

array mentioned, the state value is not modified. Thus, only the cells that are 

under the un-masked areas are etched away. Addition of the neighbors is just the 

same as wet etching.  
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Figure 5.6: Wet Etching Flowchart 
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Figure 5.7: Dry Etching Flowchart 

 

For example, for the rectangular mask in Fig.5.8, the cell locations are stored 
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coordinates of the surface cells and their neighboring cells are stored in the array 

generated. As illustrated in Fig.5.9, for each particular cell, the following cell 

locations should also be stored in the array if they are still in the un-masked 

areas: P1(x+0.25, y+0.25), P2(x-0.25, y-0.25), P3(x+0.25, y-0.25), P4(x-0.25, 

y+0.25), P5(x+0.5, y), P6(x-0.5, y), P7(x, y+0.5), P8(x, y-0.5). By just comparing 

the new cells’ x and y coordinates, the software decides whether the new cell 

located under the un-masked area and should be etched or not. 
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Figure 5.8: Dry Etch Modification 
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Figure 5.9: Enlarged Area 

 

5.6.3. Doping Modifications 

 

Doping is introduction of impurities into the silicon wafer, thus in theory the 

silicon cell lattice has to be modified to accommodate the extra atoms diffused to 
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the silicon crystal. In MemsEagle, doping is simulated by modifying the doping 

concentration property associated with a particular cell without ever changing the 

cell array.  

 

Another assumption inherently used in the simulation is that: only the unmasked 

areas of the wafer are doped. The doping does not continue in the lateral 

directions covering the mask portions of the wafer. Within this framework, 

doping simulation in MemsEagle is the one used to slow out the etching process. 

  

The “doping concentration” values of each cell is modified during the doping 

process. Just as the dry etch process, only the un-masked areas are modified. 

Using the drive-in and pre-deposition times entered by the user, the code finds 

out the penetration of the impurities using the following expressions. 
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where Q[cm-2] is the total impurity dose, D1[cm2/s] is pre-deposition coefficient 

and t1[s] is pre-deposition time; N(z,t)[cm-3] is the concentration profile, 

D[cm2/s]  is diffusion coefficient, t[s]  is diffusion time and z[μm] is the depth 

from the surface. The temperature of the doping process simulated is 1200oC.  

 

When a new cell is added to the virtual surface, its x, y coordinates are checked 

and if it matches with the un-masked region used during the doping, the doping 

value of the cell is modified during the creation phase.  

 

5.6.4. Additive Process Modifications 

 

Final micro-fabrication step that can be simulated in MemsEagle is the additive 

processes. MemsEagle just displays the resultant material layer deposited based 

on the number of layers entered by the user.   
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The steps followed for finding the areas on which the material is to be deposited 

are similar to the DRIE process. The software scans the unmasked areas and 

finds out the upper-most CA cells on those regions. After that, if the state value 

of the cell is not equal to 0, its neighbors located in the upper side of the wafer 

are added to the virtual surface. As an example, for wafer type (100) flat on 

(110), neighbors 1 and 3 should be added for type 1 cells whereas neighbors 2 

and 4 should be added for type 2 cells.  Similar to DRIE, the new cells should be 

checked whether they are located under the un-masked areas or not. The 

flowchart for this process is shown in Fig.5.10. 
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Figure 5.10: Additive Process Flowchart 

 

5.7. Visualization of data 

 

After the process is finished the plane, coordinates, state, doping concentration 

and material information is stored in “VS_Draw” array. This information is later 

used with OpenGL functions for displaying the simulation results. Displaying the 

process results are done by drawing the cells on the screen with respect to their 

material, plane type or doping concentration. The simple OpenGL sequence: 
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glBegin(GL_POINT); 

glvertex3f(x0, y0, z0); 

glEnd(); 

 

where (x0, y0, z0) represents the cell location in space is used for drawing the 

cells on the screen. Because of the perspective view used, the cells and lines 

nearer to the screen are drawn bigger then the ones located deeper into the 

screen. Using OpenGL functions the size and shape of the points can be modified 

for easy viewing of the surfaces generated by the process. Table 5.4 shows the 

color map used for representing different materials, planes and doping 

concentrations in MemsEagle. Notice that, a simulation result utilizing the plane 

view is illustrated in Fig. 5.11. 

 

 
Figure 5.11: Displaying Results 
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Table 5.4: Color Map in MemsEagle 

  Type Colors 
(100)   
(110)   
(111)   
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Al   
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w
 

Gold   
>1015   
>1016   
>1017   
>1018   D
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g 

>1019   
 

5.7.1. Viewing Transformations 

 

A perspective view is used for displaying the results in MemsEagle. The 

OpenGL function gluPerspective(angle, aspect_ratio, znear, zfar)is utilized, 

where the first argument is the field of view angle, the third and fourth arguments 

are the distance from the viewer to the near clipping plane (always positive) and 

the distance from the viewer to the far clipping plane (always positive) 

respectively, is used for defining the view. The position of the viewer is set by 

the OpenGL function gluLookAt (eyex, eyey, eyez, centerx, centery, centerz, 

upx, upy, upz) where eyex, eyey, eyez are the position of the eye point; centerx, 

centery, centerz are the position of the reference point and upx, upy, upz are the 

direction of the up vector. Figures 5.12 to 5.14 illustrate views of a micro-

fabrication process from different angles, locations and scaling. 

 

There are three viewing transformations used in MemsEagle: move, rotate and 

zoom. Moving is done by transforming the objects drawn in the x, y plane by 

clicking and dragging the left mouse button. The OpenGL function 

glTranslatef(x_value, y_value) is used for moving.  
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Figure 5.12: Top View of the etch result 

 

 
Figure 5.13: Etch Result without mask from a different angle 
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Figure 5.14: Etch Result From different angle and scaling 

 

Take note that, rotation is carried out by the function glRotatef(angle, x, y, z) 

where angle is the angle of rotation and x, y, z are defining the direction of the 

vector from the origin to be used for rotating the objects around. The zoom 

option is done by the help of the function glScalef(x, y, z) where x, y and z are 

scale factors along the x, y, and z axes, respectively.  

 

5.8. Closure 

 

Process editor is the heart of the MemsEagle software. All the information 

gathered is used for simulation of the micro-fabrication processes through this 

editor, and the functions under it.  Wet and dry etching processes, doping and 

other additive operations can be simulated in an integrated environment. All the 

information obtained through process editor is sent to OpenGL function 

“OnDraw” for displaying the results.  
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CHAPTER 6 

 

PROGRAM FEATURES 

 

6.1. Introduction 

 

The mechanics of the wafer creation, mask generation and process simulation 

was explained in the previous chapters. This chapter is dedicated to the user-

interface of MemsEagle and how this mechanism are activated using the menu 

and dialog controls.  

 

6.2. MemsEagle User Interface 

 

MemsEagle is a menu-driven MFC (Microsoft Foundation Class) software, using 

OpenGL functions and dialog bars for simulating micro-fabrication processes 

and displaying them. Notice that, the three editors previously discussed can be 

accessed through the menu commands in the program. Fig. 6.1 displays the 

interface of MemsEagle, and the wafer, mask and simulation menus can be seen 

which are used for reaching those editors.  

 

In the preceding sections, the editors are explained using a micro-fabrication 

example. Notice that, there is an “Output” menu shown in Fig. 6.1, which was 

not mentioned up to now. Through this menu, the distance between two points, 

point coordinates; depth and doping concentration of particular points can be 

found.  
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Figure 6.1: MemsEagle Interface 

 

6.3. Wafer Editor 

 

The editor was accessed through the “Wafer” menu and from the “Wafer 

Editor...” menu item. Using the editor dialog box, as illustrated in Fig 6.2, the 

user can choose, the wafer crystal orientation, doping type and concentration and 

the wafer size. 

 

A mentioned earlier, the substrate was generated as a wire frame except the 

upper surface. This surface is created as a mask covering the entire area, and 

from this upper surface the micro-fabrication processes is to be initiated. A 

sample wafer was generated and illustrated in Fig. 6.2. 
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a)  

b)  

c)  

 

Figure 6.2: Wafer Editor 

 

6.4. Mask Editor 

 

Mask editor was reached from the mask menu similar to the wafer editor. When 

the mask editor is entered, just the upper surface of the substrate is drawn on the 

screen. This procedure is illustrated in Fig. 6.3. 
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Figure 6.3: Mask Editor 

 

In the example, a polygon is initiated in grid mode. As seen in Fig 6.4 the grid 

and empty radio buttons are selected. Using the left mouse button alone, the 

pattern can be generated easily with the help of the coordinate display. The last 

shape was created selecting the full shape button so a masked area created inside 

the triangle. 
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Masked Area 

Coordinate 
display 

 
Figure 6.4: Drawing Mask 

 

When creation of a particular mask is finished, the grid must be turned-off and 

the “end” command button must be clicked. By pressing the “end” button, the 

user activates the scanning process, which generates the necessary mask 

information for the process editor. 

 

6.5. Process Editor  

 

When the process editor was initialized via the simulation menu, a dialog box is 

appears on the screen as illustrated in Fig. 6.5. The user is prompted to select the 

micro-fabrication type and the mask number from the combo boxes. As shown in 

this example, the user has selected a wet etching process and the corresponding 

mask. 
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Figure 6.5: Process Selection 

 

The next step is the selection of the etchant and the process time. Note that, in 

MemsEagle minimum process time is 1 minute.  When the selections are 

complete, the user must enter the “OK” command button to store the information 

in the memory. As shown in Fig. 6.6, the user has chosen KOH with a 

concentration of 30% at a constant temperature of 70oC as the etchant, and the 

simulation time is selected as 10min.   

 

MemsEagle provides not only a stand-alone process simulation but also projects 

composed of a large number of sequential processes. In order to create such a 

project, the project editor should be used. As explained in Chapter 5, the micro-

fabrication steps and the masks can be defined using this editor. Hence, the 

whole project can be simulated in one-step. The interface used for the project 

editor is illustrated in Fig. 6.7. As can be seen, all the relevant information 

entered can be seen from a list control provided. 
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Figure 6.6: Wet Etching Dialog 

 

The result of the simulation process defined is displayed in Fig. 6.8. Once the 

results are obtained, the next step should be harvesting the information. This can 

be done by using the output menu or by visual inspection with the help of 

viewport modifications. 

 

 
Figure 6.7: Project Editor 
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Figure 6.8: Simulation Result 

 

6.6. Viewing  

 

As the simulation of the micro-fabrication process is finished, the resulting shape 

is displayed on the screen, as the CA cells with colors represents not only 

different planes but also materials with different doping concentrations. Through 

the view menu, the display options can be entered as illustrated in Fig. 6.9. The 

user is able to do the following actions: 

• Rotate, zoom, move the object  

• Display/hide the un-etched cells 

• Show/hide the mask 

• Change the coloring scheme for gathering particular information on the 

simulation results. 
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Figure 6.9: View Menu 

 

Different views of the result have already been shown through Figs 6.11 to 6.13. 

Here color scheme for the doping concentration is illustrated by Fig. 6.10. Note 

that the dark colored areas are the heavily doped regions. (The substrate was 

doped before)  Now that the visual inspection is done on the results, the next step 

should be taking measurements on the simulated design. 

 
Figure 6.10: Viewing Doping Concentration  
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Figure 6.11: Distance between two points 

 

 
Figure 6.12: Viewing doping concentration of a point 
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6.7. Taking Measurements 

 

After the output has been generated; location, depth, doping concentration and 

plane information of the generated CA cells can be accessed via the output menu. 

In addition, distance between two points can be determined. The selection 

algorithm used was the same as for the mask modifications and explained in 

detail in Chapter 4. By selecting the desired information and choosing the point 

via mouse, the information sought is displayed on the screen as shown in Figures 

6.11 to 6.13. 

 

 
Figure 6.13: Output Menu 

6.8. Closure 

 

The user interface of MemsEagle has been explained in detail. The capabilities of 

the software and the information that can be accessed through different menus 

and dialog boxes have been shown. By making use of a wet etching example, a 

simple simulation scheme was elaborated. 

 

 94



 

 

CHAPTER 7 

 

VERIFICATION OF SIMULATION RESULTS 

 

7.1. Introduction 

 

To verify the validity for the output of the developed program, the simulated 

MEMS fabrication processes have to be compared to those of the real cases. 

Hence, the object of this chapter is to study the performance of MemsEagle 

through a bunch of real-world cases.  

 

7.2. Simulation Results 

 

To assess the validity of the simulated results given by MemsEagle, four 

simulations are conducted. The simulated cases are as follows: 

1. Anisotropic wet etching of complex shapes on silicon wafer  

2. Deep Reactive Ion Etch of high aspect ratio structures on silicon wafer 

3. Creation of complex structures via doping 

4. Surface micromachining 

Details about these simulations follow: 

 

7.2.1. Anisotropic Wet Etching  

 

In this simulation, the <100> silicon wafer which is flat on <110> plane is used 

as the substrate and the etchant selected is 30% KOH at 80oC. Notice that, the 

cases to be studied are directly taken from the manual of SIMODE [24]. These 

cases are essentially used to confirm the results given by the SIMODE code.  By 

simply comparing the simulation results to the features of the actual MEMS 

structures being fabricated for this purpose. Therefore the masks designed for 

SIMODE verification are directly utilized in MemsEagle. The creation of these 
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masks is also explained in mask editor section. The process results at different 

time steps are also shown in the preceding sections. The simulated wet etching 

cases are as follows: 

1. Etching a rectangular pattern in <100> wafers flat on <100> 

2. Etching a rectangular pattern in <100> wafers flat on <110> 

3. Etching co-centered rings in <100> wafers flat on <110> 

4. Wet etching of diamond shape in <100> wafers flat on <110> 

5. Etching of a paddle shape 

6. Etching of fingers 

7. Etching simulation of a “Tee” shaped pattern 

8. Wet etching of complex shapes with various mask (mis)alignment angles 

These cases are elaborated sequentially in the following sections. 

 

7.2.1.1. Case 1 for wet etching 

 

In order to test the etching simulation capabilities of MemsEagle for of <100> 

wafers flat on <100>, a simple rectangular mask pattern is used first. EDP is 

employed as the etchant. After 30 minutes, the resulting shape consisting of 

(111) planes starting from the (110) planes, which are inclined by 45o, appears as 

expected. Because the etch rate of (111) planes is slower (0.028μm/min) 

compared to (100) and (110) planes, where the corresponding etching rates of 

these planes are 0.047μm/min and 0.28μm/min [13] respectively, etching tends to 

slow down to a near stop at (111) planes. Figure 7.1 confirms this observation. If 

the process is continued, the (111) planes will merge at the bottom and a pyramid 

whose base is aligned at (110) planes is formed as shown in Fig. 7.2. Similarly, 

Fig. 7.3 shows the fabrication of this textbook structure, which in turn verifies 

the results of the MemsEagle. 
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(111) planes Mask borders 

Figure 7.1: EDP Etch View 

 

 

 

 

(110) direction 

(111) planes 

Figure 7.2: EDP Etch 3-D View 
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(110) direction 

(111) planes 

Figure 7.3: EDP Etch of (100) Silicon Wafer [31] 

 

7.2.1.2. Case 2 for wet etching 

 

As discussed in the previous case, the etching of (100) wafers stops at lines 

parallel to (110) planes. In order show this, and to check the accuracy of the 

software for <100> wafers flat on <110>; etching of a rectangular mask pattern 

on such a wafer has to be studied. The resultant etch profile in agreement with 

the experimental results. Figures 7.4 and 7.5 illustrate the formation of (111) 

planes and the termination of etching through (110) directions. 

 

 
Figure 7.4: Etch profile of <100> wafer flat on <110> 
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 (110) direction 

(111) plane 

(100) plane

 

Figure 7.5: 3-D Etch profile of <100> wafer flat on <110> 

 

The actual shape formed through such a fabrication scheme is very similar to Fig. 

7.3 and is well studied in literature [4], [24]. Therefore, these simulation results 

will not be discussed any further. 

 

7.2.1.3. Case 3 of wet etching 

 

As a more complex case, co-centered circles are taken into consideration. The 

resulting mask, which is shown in Fig 7.6, is created using the mask editor of 

MemsEagle.  Due to the geometric restrictions imposed by the mask editor, the 

circular mask patterns have a stepwise circular pattern correlated with the 

resulting resolution of the mask editor. The wafer is exposed to KOH (at 80oC) 

for 100 minutes and the resultant shape (only one quadrant) was illustrated in Fig 

7.7. Similarly, the actual fabrication result is demonstrated in Fig 7.8. Not 

surprisingly, the simulation result and the actual one agree well. 

 

Notice that, the (100) plane formed at region 1 shown in Fig 7.7, has a measured 

depth of 105μm whereas the result of the experiment shows 109μm. As expected 

(111) planes formed at regions 2 and 3, has an inclination angle of 54.7o. Both 

the simulation results and the experimental ones show that the (111) planes 
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merge each other at right angles, and form the base of a rectangular pyramid as 

the fabrication continues. 

 

 
Figure 7.6: Co-centered Circular Mask Pattern 

 

1

3 

2 

Figure 7.7: MemsEagle Result for Co-centered Circular Mask Pattern 

 

 

 

 100



 

1

3

2

 

Figure 7.8: Experiment Result for Co-centered Circular Mask Pattern [24] 

 

7.2.1.4. Case 4 of Wet Etching 

 

The next case concentrates on a much-sophisticated shape, which is an array of 

rectangular patterns as shown in Fig.7.9. A <100> wafer is used as the substrate, 

which is flat on <110> plane. The etchant was KOH 30% (at 80oC) and the 

etching time is set to be 150 minutes. The simulation result and the experiment 

result after 100 minutes were displayed in Fig. 7.10 and Fig. 7.11.  Since, the pits 

formed under the unmasked square shapes have not merged yet, the results are 

very similar to those obtained in article 7.2.1.2. 

 

After 150 minutes, these shapes are beginning to merge and a situation, which 

creates a difficult problem faced during the simulation of micro-fabrication 

processes by the geometric methods discussed in Chapter 2, is observed. As 

shown on Fig. 7.12, the simulation result of MemsEagle agrees well with the 

experimental result shown in Fig. 7.13.  
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Figure 7.9: Mask Pattern of Merging Shapes 

 

 
Figure 7.10: MemsEagle Simulation Result of the mask (Fig. 7.9) 
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Figure 7.11: Experimental Result for the Mask (Fig. 7.9)[24] 

 

 

 Merging Regions 

 

Figure 7.12: Etch Result After 150 minutes 
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Figure 7.13: Experiment Result after 150 min. [24] 

 

7.2.1.5. Case 5 of Wet Etching 

 

The next simulation illustrated focuses on the chemical etching process taking 

place under a paddle shaped mask pattern. As displayed in Fig.7.14, a paddle like 

mask was generated and etched in 30% KOH at (80oC). 

 

 
Figure 7.14: Paddle Mask 
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Fig. 7.15 shows the simulation results for this case. After 100 minutes, the etch 

stops, as expected, at regions one, two, three and four while in region five the 

mask was undercut until it reaches the (110) directions. The obtuse angled mask 

patterns are undercut through these corners in anisotropic silicon etching, this 

example illustrates this concept. This property can be used to have released 

shapes, using doping or other etch stop techniques. Finally, fig. 7.16 shows the 

corresponding experimental results, which are in agreement with those given by 

MemsEagle. 

 

 

2
1

5

4
3

Figure 7.15: Simulation Result after 100min 

 
Figure 7.16: Experiment Result after 100min. [24] 
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7.2.2.6 Case 6 of Wet Etching 

 

The following simulation illustrates the etching of the fingers of a mask pattern 

due to mask-undercut behavior of anisotropic etchants. As shown in Fig. 7.17 the 

fingers erode starting from the free tip of the finger. After 50 minutes, all the 

fingers were etched away. As can be seen from fig. 7.18, the simulation results 

match well with the experimental ones.  

 

 
Figure 7.17: Simulation Results after 30min. and 50min. 
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Figure 7.18: Experiment Results after 50min. [24] 

 

Notice that, in this simulation the number of fingers along with the overall 

dimensions of the mask is reduced, owing to the fact that the smaller features on 

the mask yield huge number of CA cells used in the simulation. Thus, the 

simulation time becomes unnecessarily long e.g. one day of computation on a 

modest PC. Therefore, the presented simulation case is intended to demonstrate 

the behavioral properties of MemsEagle for all practical purposes. 

 

7.2.2.7. Case 7 of Wet Etching 

 

In this case the wet etching of a complex shape referred to as “Tee” is 

considered. Fig. 7.19 shows not only the corresponding mask shape but also the 

result of the etching process of a <100> wafer, exposed to 30% KOH (at 80oC) 

for a duration of 50 minutes. Due to the rectangular mask shapes (which are 

aligned to (110) directions), except for the “Tee”, there is no mask-undercut. All 

the rectangular patterns are etched to have a pyramidal pit with 54.7o inclination 

angle, and etching slows down at (111) planes.  

 

 107



Notice that, having obtuse-angle corners the mask starts to undercut from the 

“Tee”. This undercut region (region 1), expands through the directions shown on 

the simulation result. Note that, if the wafer were exposed to the etchant for a 

sufficient time, the material under the mask would be totally undercut to yield a 

pyramidal form. 

 

 

1

Figure 7.19: MemsEagle Simulation for “Tee” 

 

Notice that, simulation results qualitatively match with those of the experimental 

results demonstrated on Fig. 7.20. All indicated observations in the simulation 

could be extended to the experiment as well. 

 
Figure 7.20: Experiment Result for “Tee” [24] 
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7.2.1.8. Case 8 of Wet Etching 

 

Most of the etching problems occurred due to mask misalignments. In order to 

visualize the effect of misaligned masks, and to confirm the simulation capability 

of MemsEagle for such cases the mask patterns illustrated by Fig. 7.21 are used. 

 

1 3 
2

Figure 7.21: Misaligned Mask Pattern [24] 

 

The first shape is created using the mask editor while the second and the third 

shapes are rotated by 5o and 15o respectively to mimic the mask misalignment 

effects. The same etchant and wafer type are used as with the previous cases. The 

results of the simulation after 50 minutes are compared to the experimental 

results. Fig. 7.22 illustrates the resultant shape when the first mask was used. 

Note that, the maximum depth is measured as 48μm whereas the corresponding 

depth in the experiment happens to be 56μm. As expected, for regions one and 

two, etching stopped at (111) planes through the (110) directions. Through 

regions three and four, because the (111) planes did not end at (110) planes, the 

material under the masked areas are undercut. Should the etch continue, these 

regions will also merge at (111) planes aligned with (110) directions. The 

experimental results generally agree well with the simulation results as displayed 

in Fig. 7.23. 
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1

3
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Figure 7.22: MemsEagle Result after 50min. 

 

Notice that, there exits a discrepancy of 56-48=8μm in tn.he depth measurement 

between the experiment and the simulation. This is due to the fact that, the mask 

employs an isometric scaling factor of 10:1 that is a 10μm feature in the 

experiment is scaled down to 1μm in MemsEagle. Hence, the dicretization effect 

manifests itself as a slight error in depth throughout the simulation. 

 

 
Figure 7.23: Experiment Result after 50min. [24] 
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Figure 7.24: MemsEagle Result after 100min. 

 
Figure 7.25: Experiment Result after 100min. [24] 

 

When the etch continues as shown in Fig. 7.24 and 7.25, the third and fourth 

regions continued to expand in the directions shown by arrows in Fig 7.24. After 

sufficient time elapses, the resultant shape will be a pyramid whose base is a 

rectangle. 

 

If the mask pattern were rotated (aka. misaligned) 5o, as illustrated in Fig 7.26, 

the regions one and two (refer to Fig.7.22) have also continued to be etched as 

they are no longer aligned with (110) direction. As confirmed by the experiment 
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results (Fig 7.28), the resultant shape would be a pyramid with a larger 

rectangular base.  

 

 
Figure 7.26: Simulation of the 5o-rotated mask 

 
Figure 7.27: 3-D View of Simulation Result 

 
Figure 7.28: Experiment Result of the 5o rotated mask [24] 
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Finally, the 15o rotated mask pattern is simulated. The result of this rotation 

yields also a larger rectangular base. (Fig 7.31) The width and the length of this 

rectangle are based on the maximum and minimum vertical and horizontal points 

of the mask border as shown in Fig 7.29. 

 

 

Mask Border

Figure 7.29: Simulation of the 15o rotated mask 

 
Figure 7.30: Experiment Result of the 15o rotated mask [24] 
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Figure 7.31: Experiment Result after 200min. [24] 

 

The next section explores the performance of MemsEagle on Deep Reactive Ion 

Etching (DRIE).  

 

7.2.2. Deep Reactive Ion Etching 

 

The following sample shows the dry etching capabilities of MemsEagle. The 

software simulates Deep Reactive Ion Etching by neglecting the effect of the size 

of the shape to be etched.  When dealing with openings with different sizes, a 

difference in etching rate is observed [32]. This effect is called Aspect Ratio 

Dependent Etching (ARDE). Fig 7.32 clearly demonstrates the ARDE effect 

where the depths of the holes vary with opening size. 
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Figure 7.32: Deep Reactive Ion Etching ARDE Effect [32] 

 

Using a mask pattern composed of circles with different diameters as illustrated 

in Fig 7.33, the Deep Reactive Ion Etch (DRIE) is simulated. Since the ARDE 

effect is neglected in the simulation, all holes exactly have the same depth as 

demonstrated in Fig 7.34. However, the ARDE effect can be incorporated to 

MemsEagle by enhancing the algorithm that will scan dynamically and locate the 

neighboring cells on the virtual surface, and could define the holes in which the 

CA cells are located. However, enhancing the algorithm this way requires 

considerable software development efforts. 

 
Figure 7.33: Mask Pattern for DRIE 
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a) 

b)

Figure 7.34: DRIE Simulation Result (a) top view, (b) front view 

 

7.2.3. Doping  

 

Doping is mostly utilized in MEMS fabrication processes for the purpose of 

stopping the etch as well as creating independent machine elements and 

structures on the surface through bulk micromachining processes. 

 

In this case, an anisotropic etching is performed on a doped shape which is to be 

released at the end of the process, through the use of the dopant as the etch stop. 

First, two rectangular masks are created using the mask editor. The first mask, 

whose surface area is smaller then the other, was used for doping. The <100> 

wafer is doped for a pre-deposition time of 10min and a drive-in time of 30min 

while the temperature of the doping process is 1200oC. Thus, a shallow heavily 

doped region is to be formed. After this step, the second mask is applied to etch 
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the substrate by a doping concentration dependant etchant for releasing the 

heavily doped region. Fig. 7.35 illustrates the result of the simulation, the wafer 

is etched totally around the heavily doped region and that part is released as 

expected. Note that, the lateral penetration of the dopant is neglected for all 

practical purposes. Only the un-masked areas are doped during the process.  

 

 

Doped 
Region 

Figure 7.35: Released Part 

 

As a final example for doping, a cantilever beam which is to be used as a micro-

switch in many MEMS applications is considered. As can be seen in Fig. 7.36 

the desired cantilever beam can be formed with the application of two mask 

sequentially. One is for the doping and the other one is for etching of the 

surrounding of the doped region. 
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Figure 7.36: Cantilever Beam  

 

7.2.4 Additive Process  

 

In MemsEagle surface micromachining processes can be easily simulated, with 

the following reservations: 

1. Micromachining is the last application process to be applied on the wafer.  

2. The mask shape can be directly transferred to the material layer being 

patterned. No dimensional errors are occurred in the lateral directions. 

Based on these assumptions MemsEagle directly deposit the patterned mask 

shape onto the substrate and the other patterned layers follows the topology of 

the preceding ones. Figures. 7.37 and 7.38. show a layer of Silicon Nitride 

deposited on the wafer.  

 
Figure 7.37: Silicon Nitride Deposition 
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Figure 7.38: Silicon Nitride Deposition Top View 

 

7.3. Etch Rate Verification 

 

Calculation of the “Effective Etch Rate” was summarized in this section. Based 

upon this information, a spoke pattern was used to verify the etch rates. In order 

to convert the etch rates obtained from previous researches, an algorithm is 

devised for MemsEagle. As mentioned before, a cell may have a state value 

between 0 and 1. In addition, when a cell is etched, its neighbors, which are 

0.432μm away, are added to the wafer-etchant interface. Note that, in order to 

simulate the processes accurately, the etch rates are divided by this value to have 

the “Effective Etch Rate” to be used on the state value of the cell. 

 

The second approach used for determining the etch rates is to calculate the etch 

rates for scaled wafers. As mentioned, wafers with surface area above then 

1500μm2 are scaled down to have a surface area of 1500μm2. The scale factor 

calculated is also used to determine the “Effective Etch Rate”. The etch rates 

obtained is divided by this value and the resultant value is applied to the cells. 
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Since no figures on the etch rates could be directly obtained from the literature, 

the verification of the etch rates has to be qualitatively obtained by taking a look 

at various a spoke patterns when different etchants (KOH, EDP) are used. As can 

be seen from Figures 7.39 and 7.40, the simulated results as well as the 

experiment results are in good agreement with each other. Thus, the etching 

performance of MemsEagle has been found realistic for the simulation of most 

practical MEMS designs. 

 

 

a) Mask Pattern b) Experiment c) Simulation 

Figure 7.39: Spoke Pattern etched by EDP 

 

a) Mask Pattern b) Experiment c) Simulation 

Figure 7.40: Spoke Pattern etched by KOH 

 

7.4. Program Performance 

 

In order to simulate sequentially, the etching process for different wafer types 

with various etchants, all the information obtained from each process is stored in 
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the “VS (Virtual Surface)” array created. The number of cells stored could be up 

to 150.000 for certain complex shapes. But, even with these sizes of arrays, the 

simulation could be carried on most personal computers within reasonable 

durations. The computation time for a shape consisting of 60.000 cells and 40 

time steps take 25-35 minutes on a common PC (256MB of RAM, 1400Mhz 

Processor) 

 

7.5. Quantitative Analysis on the Simulation Results 

 

To asses the accuracy of the simulation results, a quantitative analysis on 

geometric errors resulting from various for bulk micromachining processes, is 

conducted. To accomplish that, the previous cases where the experimental results 

are also available through [24] are taken into consideration. Unfortunately, the 

exact geometry of the masks being used for the experimental studies are not 

specified. Therefore, in the simulation with MemsEagle, the masks are designed 

by taking rough measurements on the resultant shapes formed after the 

experimentation. Table 7.1 demonstrates the results for the afore mentioned cases 

3 to 8. In this table, the etching conditions including the etchant type, 

temperature, process time are given. The columns, experimental and simulation 

illustrates the maximum depth of the etch surfaces obtained through 

experimentation and simulation.  

 

Table 7.1: Maximum Depth of the Etched Surfaces 

Process Etchant 
Temp. 

[oC] Time[min]
Experimental 

[μm] Simulation [μm] 
Relative 

Error 
Case 3 KOH %30 80 100 109 105 3,67% 
Case 4 KOH %30 80 100 110 105 4,55% 
Case 4 KOH %30 80 150 166 155 6,63% 
Case 5 KOH %30 80 100 110 105 4,55% 
Case 6 KOH %30 80 50 55 52 5,45% 
Case 6 KOH %30 80 100 110 105 4,55% 
Case 7 KOH %30 80 50 56 52 7,14% 
Case 7 KOH %30 80 100 110 105 4,55% 
Case 8 KOH %30 80 50 56 52 7,14% 
Case 8 KOH %30 80 100 110 105 4,55% 
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Notice that the relative error (E%) is defined as: 

 

exp

exp

% 100
d d

E
d
−

= ⋅                                             (7.1) 

 

where dexp, d refer to the depth values obtained through experiments and 

simulations respectively. As can be seen the maximum relative error is about 7%, 

despite the inaccuracies introduced by wafer scaling, mask design as well as 

uncertainties in the etch rates. Results of MemsEagle are in excellent agreement 

with the experimental results, thanks to the realistic simulation properties offered 

by the CA method. 

 

7.6. Closure 

 

As the program based on the “Cellular Automata” approach, the die on the wafer 

has to be discretized. Due to this feature, using larger size arrays could improve 

the accuracy of the results. To test the performance of the device software, a 

number of simulations were carried out. The experimental results show that, the 

simulation results are in good agreement with the actual cases. 

 

Even though the simulation accuracy is sufficient for the simulation of most 

practical MEMS designs, there exists a significant improvement opportunity in 

MemsEagle. Higher order planes such as (211) and (411) could also be added to 

the etching algorithm and a more-packed silicon lattice can be used to enhance 

the simulation accuracy of the program. 
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CHAPTER 8 

 

CONCLUSION AND FUTURE WORK 

 

In this thesis a software code for simulating micro-machining processes of 

silicon wafers that are used in Micro-Electro-Mechanical-Systems (MEMS) have 

been developed. The wet and dry etching including anisotropic and isotropic 

etching, doping and additive processes could be simulated. 

 

The outputs of the program includes the depth of the resulting shape, 3-D model 

of the etch result and the dimensions of the final product. The user can design the 

mask by the integrated mask design tool in MemsEagle. Both inside and outside 

of the mask shape can be etched, or exposed to the process selected. 

 

Main advantage of MemsEagle is the integrated design environment it provides 

to the users. Different from the other codes, there is a mask design tool and 

different properties of each cell can be accessed. Besides the anisotropic etching, 

MemsEagle can be utilized for simulation of additive processes like doping. 

Table 8.1 demonstrates the features of the softwares developed during past 

researches and MemsEagle. 

 

Table 8.1: Features of the Available Softwares 

Simulation Capability Design Capability 
Program 

Bulk µ-fab Surf. µ-fab Doping
Mask 

Design
Project 

Creation Visualization 
ASEP Yes No No No Yes Planes 
SEGS Yes No No No No Planes 

Suzana Yes No No No No 3-D Solid 
AnisE Yes No No No Yes Cells 
ACES Yes No Yes No Partial Cells 

SIMODE Yes No No No Yes Planes 
MemsEagle Yes Yes Yes Yes Yes Cells 
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Notice that in this table the visualization column refers to how the simulation 

results are presented. For instance, the word “planes” in this column denotes the 

simulation results are displayed as a collection of planes while “cells” indicate 

that only the spatial location of various surface elements are shown. Similarly, 

“3-D Solid” refers that all results are demonstrated as assembly of 3-dimensional 

objects such as cones, cylinders, planes etc. Hence, visual interpretation of such 

data is much more convenient if compared to others. As can be seen from the 

Table 8.1, MemsEagle integrates many of the unavailable simulation features of 

the other softwares. Furthermore, integrated design capability of MemsEagle is 

seemingly superior than most of the available freeware packages. 

 

Apart from advanced design features, the simulation capabilities of MemsEagle 

(especially for bulk micromachining) have proven to be distinctive. That is, the 

outputs of the program are in excellent agreement with the experimental results 

presented by various researchers. Furthermore, with the advancements in the 

microprocessor technology, most complex MEMS fabrication processes can be 

realistically simulated by MemsEagle running on even a modest personal 

computer within reasonable time periods. 

 

8.1. Future work 

 

Even tough MemsEagle has a potential to be an integrated design environment, 

the development efforts is far from over for this software. The software needs to 

have various nice to have features so as to be a complete and user-friendly 

environment for MEMS designs. The features to be added on this software are as 

follows:  

• A mesh generation tool for the resulting shapes has to be developed. By 

providing this, the results of MemsEagle can further be processed via 

commercial codes like Ansys, Matlab etc. 

• Masks designed by other programs like AutoCad, can be imported by 

means of modifications in the mask design algorithm.  
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• The wafer types and etch material database can be extended for detailed 

designs. 

• In surface micromachining, removal of sacrificial layers has not been 

taken into consideration in MemsEagle yet. The CA algorithm has to be 

extended to cover the etching of such thin sacrificial layers. 

• Higher order planes like (211), (540) can be included in etch algorithm 

for more accurate results. 

• Etch concentration changes as a function of time in detail for more 

accurate results. 

• ARDE effect on Deep Reactive Ion Etching should be modeled. 

• Lateral penetration of Doping has to be modeled. 

• Final achievement for MemsEagle could be implementing other processes 

like wafer bonding and having design procedures like MUMPS. 

 

By having a software code like MemsEagle, especially the design time for a 

MEMS product will be lower, and accurate results can be obtained without 

needing trial-error usage of mask shapes. 
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APPENDIX A 

 

ETCH RATES 

 

 

A.1. KOH Etch Rates 

 
The KOH etch rate is strongly effected by the crystallographic orientation of the 

Silicon. Table 1 relates silicon orientation-dependent etch rates (µm.min-1) of 

KOH to crystal orientation with an etching temperature of 70°C. Table A.1 is 

taken directly from [33]. In parentheses are normalized values relative to (110). 

 

Table A.1: KOH Etch Rates 

Rates at different KOH Concentration at 70oC Crystallographic 
Orientation 30% 40% 50% 

(100) 0.797 (0.548) 0.599 (0.463) 0.539 (0.619) 
(110) 1.455 (1.000) 1.294 (1.000) 0.870 (1.000) 
(210) 1.561 (1.072) 1.233 (0.953) 0.959 (1.103) 
(211) 1.319 (0.906) 0.950 (0.734) 0.621 (0.714) 
(221) 0.714 (0.491) 0.544 (0.420) 0.322 (0.371) 
(310) 1.456 (1.000) 1.088 (0.841) 0.757 (0.871) 
(311) 1.436 (0.987) 1.067 (0.824) 0.746 (0.858) 
(320) 1.543 (1.060) 1.287 (0.995) 1.013 (1.165) 
(331) 1.160 (0.797) 0.800 (0.619) 0.489 (0.563) 
(530) 1.556 (1.069) 1.280 (0.989) 1.033 (1.188) 
(540) 1.512 (1.039) 1.287 (0.994) 0.914 (1.051) 
(111) 0.005 (0.004) 0.009 (0.007) 0.009 (0.010) 

 

Table A.2 relates silicon orientation-dependent etch rates of KOH to percent 

composition, temperature, and orientation. This table is taken from [34]. As with 

all wet-chemical etching solutions, the dissolution rate is a strong function of 

temperature. Significantly faster etch rates at higher temperatures are typical, but 

less ideal etch behavior is also common with more aggressive etch rates. Also, 
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heavy boron doping can significantly harden the silicon and sharply reduce the 

etch rate. 

 

Table A.2: KOH Etch Rates vs. Composition and Temperature 
Etchant Temperature oC Direction (Plane) Etch Rate [mμ/min] 

20 (100) 0,025 
40 (100) 0,188 
60 (100) 0,45 
80 (100) 1,4 

20% KOH:80% H2O 
  
  
  100 (100) 4,1 

20 (100) 0,024 
40 (100) 0,108 
60 (100) 0,41 
80 (100) 1,3 
100 (100) 3,8 
20 (110) 0,035 
40 (110) 0,16 
60 (110) 0,62 
80 (110) 2 

30% KOH:70% H2O 
  
  
  
  
  
  
  100 (110) 5,8 

20 (100) 0,02 
40 (100) 0,088 
60 (100) 0,33 
80 (100) 1,1 

40% KOH:60% H2O 
  
  
   100 (100) 3,1 

20 (100) 0,015 
40 (100) 0,071 
60 (100) 0,28 
80 (100) 0,96 

20% KOH:80% 4H2O: 1 
IPA 
  
  
  100 (100) 2,9 

120 (100) 5,8 
120 (110) 11,7 

44% KOH: 56% H2O 
  
  120 (111) 0,02 

80 (100) 1 23.4%KOH: 63.3%H2O: 
13.3% IPA 
  80 (110) 0,06 
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A.2. TMAH Etch Rates 

 

The orientation dependence of the TMAH etch rate is similar to KOH and varies 

similarly in accordance to the atomic organization of the crystallographic plane. 

Table A.3 [35] relates silicon orientation-dependent etch rates of TMAH 

(20.0wt%, 79.8°C) to orientation.  

 

Table A.3: TMAH Etching Rates vs. Orientation 
 

Etching rate ratio Crystallographic 
Orientation 

 Etching rate 
[µm/min]  (i j k)/(100) (i j k)/(111) 

(100) 0.603 1.000 37 
(110) 1.114 1.847 68 
(210) 1.154 1.914 70 
(211) 1.132 1.877 69 
(221) 1.142 1.894 69 
(310) 1.184 1.964 72 
(311) 1.223 2.028 74 
(320) 1.211 2.008 73 
(331) 1.099 1.823 67 
(530) 1.097 1.819 66 
(540) 1.135 1.882 69 
(111) 0.017 0.027 1 

         

Similar to KOH, the TMAH etch rate varies exponentially with temperature. 

Table A.4 [34] relates silicon orientation-dependent etch rates of TMAH to 

percent composition, temperature, and orientation.  
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Table A.4: TMAH Etch Rates vs. Composition and Temperature 

 

Etchant Temperature oC Direction(Plane)
Etch Rate 
[mμ/min] 

60 (100) 0,33 
70 (100) 0,48 
80 (100) 0,87 
90 (100) 1,4 
60 (110) 0,64 
70 (110) 0,74 
80 (110) 1,4 
90 (110) 1,8 
60 (111) 0,026 

5% TMAH::95% H2O 
  
  
  
   
  
  
  90 (111) 0,034 

60 (100) 0,28 
70 (100) 0,41 
80 (100) 0,72 

10% TMAH:90% H2O 
  
   90 (100) 1,2 

80 (100) 0,65 2% TMAH:98% H2O 
  80 (111) 0,41 

80 (100) 0,63 5% TMAH:95% H2O 
  80 (111) 0,013 

80 (100) 0,57 10% TMAH:90% H2O 
  80 (111) 0,014 

90 (100) 0,9 
90 (110) 1,8 

22% TMAH in H2O 
  
  90 (111) 0,018 

90 (100) 0,6 
90 (110) 0,12 

22% TMAH in H2O + 0.5% 
surfactant 
  
  90 (111) 0,01 

90 (100) 0,6 
90 (110) 0,1 

22% TMAH in H2O + 1% 
surfactant 
  
  90 (111) 0,009 

 

A.3. EDP Etch Rates 

 

Similar to KOH, EDP is often used for fast removal and silicon micromachining. 

Table A.5 [13] relates silicon orientation-dependent etch rates in EDP solutions 

to Temperature and Orientation. 
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Table A.5: EDP Etch Rates vs. Composition and Temperature 

Etchant Temperature oC Direction(Plane) Etch Rate [mμ/min]
110 (100) 0,47 
110 (110) 0,28 

500 ml NH2(CH2)2NH2:88g   
C6H4(OH)2: 234 ml H20 

110 (111) 0,028 
500 ml NH2(CH2)2NH2:160g 

C6H4(OH)2: 160 ml H20 115 (100) 0,45 

500 ml NH2(CH2)2NH2:160g 
C6H4(OH)2: 160 ml H20 3.0g 

C6H4N2

115 (100) 0,65 

50 (100) 0,075 
75 (100) 0,22 
95 (100) 0,43 
105 (100) 0,57 

500 ml NH2(CH2)2NH2:80g 
C6H4(OH)2: 66 ml H20 3.6g 

C6H4N2

110 (100) 0,75 
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APPENDIX B 

 

OPENGL FUNCTIONS 

 

The OpenGL Functions mentioned in the previous chapters are explained in 

detail.  

B.1. glBegin – glEnd functions 

void glBegin( GLenum mode )  

PARAMETERS 

mode : Specifies the primitive or primitives that will be created from vertices 

presented between glBegin and the subsequent glEnd. Ten symbolic constants 

are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, 

GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, 

GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.  

 

void glEnd( void )  

DESCRIPTION 

glBegin and glEnd delimit the vertices that define a primitive or a group of like 

primitives. glBegin accepts a single argument that specifies which of ten ways 

the vertices are interpreted. Taking n as an integer count starting at one, and N as 

the total number of vertices specified, the interpretations are as follows:  

 

GL_POINTS: Treats each vertex as a single point. Vertex n defines point n. N 

points are drawn.  

 131



GL_LINES: Treats each pair of vertices as an independent line segment. Vertices 

2n-1 and 2n define line n. N/2 lines are drawn.  

 

GL_LINE_STRIP: Draws a connected group of line segments from the first 

vertex to the last. Vertices n and n+1 define line n. N-1 lines drawn.  

 

GL_LINE_LOOP: Draws a connected group of line segments from the first 

vertex to the last, then back to the first. Vertices n and n+1 define line n. The last 

line, however, is defined by vertices N and 1. N lines are drawn.  

 

GL_TRIANGLES: Treats each triplet of vertices as an independent triangle. 

Vertices 3n-2, 3n-1, and 3n define triangle n. N/3 triangles are drawn.  

 

GL_TRIANGLE_STRIP: Draws a connected group of triangles. One triangle is 

defined for each vertex presented after the first two vertices. For odd n, vertices 

n, n+1, and n+2 define triangle n. For even n, vertices n+1, n, and n+2 define 

triangle n. N-2 triangles are drawn.  

 

GL_TRIANGLE_FAN: Draws a connected group of triangles. One triangle is 

defined for each vertex presented after the first two vertices. Vertices 1, n+1, and 

n+2 define triangle n. N-2 triangles are drawn.  

 

GL_QUADS: Treats each group of four vertices as an independent quadrilateral. 

Vertices 4n-3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are 

drawn.  

 

GL_QUAD_STRIP: Draws a connected group of quadrilaterals. One 

quadrilateral is defined for each pair of vertices presented after the first pair. 

Vertices 2n-1, 2n, n+2, and 2n+1 define quadrilateral n. N/2-1 quadrilaterals are 

drawn. Note that the order in which vertices are used to construct a quadrilateral 

from strip data is different from that used with independent data.  
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GL_POLYGON: Draws a single, convex polygon. Vertices 1 through N define 

this polygon. 

 

B.2. glVertex Function 

PARAMETERS 

x, y, z, w: Specify x, y, z, and w coordinates of a vertex. Not all parameters are 

present in all forms of the command.  

DESCRIPTION 

glVertex commands are used within glBegin/glEnd pairs to specify point, line, 

and polygon vertices. The current color, normal, and texture coordinates are 

associated with the vertex when glVertex is called. When only x and y are 

specified, z defaults to 0.0 and w defaults to 1.0. When x, y, and z are specified, w 

defaults to 1.0.  

 

B.3. glLoadName Function 

The name stack is used during selection mode to allow sets of rendering 

commands to be uniquely identified. It consists of an ordered set of unsigned 

integers. glLoadName causes name to replace the value on the top of the name 

stack, which is initially empty. The name stack is always empty while the render 

mode is not GL_SELECT. Calls to glLoadName while the render mode is not 

GL_SELECT are ignored.  

B.4. glSelectBuffer Function 

void glSelectBuffer( GLsizei size, GLuint *buffer )  

PARAMETERS 

size: Specifies the size of buffer.  
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buffer: Returns the selection data.  

glSelectBuffer has two arguments: buffer is a pointer to an array of unsigned 

integers, and size indicates the size of the array. buffer returns values from the 

name stack when the rendering mode is GL_SELECT. glSelectBuffer must be 

issued before selection mode is enabled, and it must not be issued while the 

rendering mode is GL_SELECT. Selection is used by a programmer to determine 

which primitives are drawn into some region of a window. The region is defined 

by the current modelview and perspective matrices.  

In selection mode, no pixel fragments are produced from rasterization. Instead, if 

a primitive intersects the clipping volume defined by the viewing frustum and the 

user-defined clipping planes, this primitive causes a selection hit. (With 

polygons, no hit occurs if the polygon is culled.) When a change is made to the 

name stack, or when glRenderMode is called, a hit record is copied to buffer if 

any hits have occurred since the last such event (name stack change or 

glRenderMode call). The hit record consists of the number of names in the name 

stack at the time of the event, followed by the minimum and maximum depth 

values of all vertices that hit since the previous event, followed by the name 

stack contents, bottom name first.  

Returned depth values are mapped such that the largest unsigned integer value 

corresponds to window coordinate depth 1.0, and zero corresponds to window 

coordinate depth 0.0.  

An internal index into buffer is reset to zero whenever selection mode is entered. 

Each time a hit record is copied into buffer, the index is incremented to point to 

the cell just past the end of the block of names - that is, to the next available cell. 

If the hit record is larger than the number of remaining locations in buffer, as 

much data as can fit is copied, and the overflow flag is set. If the name stack is 

empty when a hit record is copied, that record consists of zero followed by the 

minimum and maximum depth values.  
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Selection mode is exited by calling glRenderMode with an argument other than 

GL_SELECT. Whenever glRenderMode is called while the render mode is 

GL_SELECT, it returns the number of hit records copied to buffer, resets the 

overflow flag and the selection buffer pointer, and initializes the name stack to be 

empty. If the overflow bit was set when glRenderMode was called, a negative hit 

record count is returned.  

B.5. glRenderMode Function 

 

GLint glRenderMode( GLenum mode ) 

mode: Specifies the rasterization mode. Three values are accepted: 

GL_RENDER, GL_SELECT, and GL_FEEDBACK. The default value is 

GL_RENDER.  

 

glRenderMode sets the rasterization mode. It takes one argument, mode, which 

can assume one of three predefined values:  

 

GL_RENDER: Render mode. Primitives are rasterized, producing pixel 

fragments, which are written into the frame buffer. This is the normal mode and 

also the default mode.  

 

GL_SELECT: Selection mode. No pixel fragments are produced, and no change 

to the frame buffer contents is made. Instead, a record of the names of primitives 

that would have been drawn if the render mode were GL_RENDER is returned 

in a select buffer, which must be created before selection mode is entered.  

 

GL_FEEDBACK: Feedback mode. No pixel fragments are produced, and no 

change to the frame buffer contents is made. Instead, the coordinates and 

attributes of vertices that would have been drawn had the render mode been 

GL_RENDER is returned in a feedback buffer, which must be created before 

feedback mode is entered.  

 

 135



The return value of glRenderMode is determined by the render mode at the time 

glRenderMode is called, rather than by mode. The values returned for the three 

render modes are as follows:  

GL_RENDER: 0 

GL_SELECT: The number of hit records transferred to the select buffer.  

GL_FEEDBACK: The number of values (not vertices) transferred to the 

feedback buffer.  

 

B.6. gluProject Function 

int gluProject( GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble 

modelMatrix[16], const GLdouble projMatrix[16], const GLint viewport[4], 

GLdouble *winx, GLdouble *winy, GLdouble *winz )  

PARAMETERS 

objx, objy, objz: Specify the object coordinates.  

modelMatrix: Specifies the current modelview matrix.  

projMatrix: Specifies the current projection matrix. 

viewport: Specifies the current viewport. 

winx, winy, winz: Return the computed window coordinates.  

gluProject transforms the specified object coordinates into window coordinates 

using modelMatrix, projMatrix, and viewport. The result is stored in winx, winy, 

and winz. A return value of GL_TRUE indicates success, and GL_FALSE 

indicates failure.  

 

B.6. glReadPixel() Function 

void glReadPixels( GLint x, GLint y, GLsizei width, GLsizei height, GLenum 

format, GLenum type, GLvoid *pixels )  

 

 136



PARAMETERS 

x, y: Specify the window coordinates of the first pixel that is read from the frame 

buffer. This location is the lower left corner of a rectangular block of pixels.  

width, height: Specify the dimensions of the pixel rectangle. width and height of 

one correspond to a single pixel.  

format: Specifies the format of the pixel data. The following symbolic values are 

accepted: GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH 

COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, 

GL_RGBA, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.  

type: Specifies the data type of the pixel data. Must be one of 

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, 

GL_SHORT, GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.  

Pixels: Returns the pixel data.  

 

glReadPixels returns pixel data from the frame buffer, starting with the pixel 

whose lower left corner is at location (x, y), into client memory starting at 

location pixels. Several parameters control the processing of the pixel data before 

it is placed into client memory. These parameters are set with three commands: 

glPixelStore, glPixelTransfer, and glPixelMap. This reference page describes the 

effects on glReadPixels of most, but not all of the parameters specified by these 

three commands. glReadPixels returns values from each pixel with lower left-

hand corner at (x + i, y + j) for 0 ≤ i<width and 0 ≤ j<height. This pixel is said to 

be the ith pixel in the jth row. Pixels are returned in row order from the lowest to 

the highest row, left to right in each row.  
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