

A RECOMMENDATION SYSTEM COMBINING
CONTEXT-AWARENESS AND USER PROFILING

IN MOBILE ENVIRONMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN ULUCAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science.

Prof. Dr. İsmet Erkmen

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate,
in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. İsmet Erkmen Prof. Dr. Aydan Erkmen
 Co-Supervisor Supervisor

Examining Committee Members

Assoc. Prof. Dr. Gözde Bozdağı Akar (METU, EE)

Prof. Dr. Aydan Erkmen (METU, EE)

Prof. Dr. İsmet Erkmen (METU, EE)

Assoc. Prof. Dr. Veysi İşler (METU, CENG)

Asst. Prof. Dr. Afşar Saranlı (METU, EE)

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Serkan ULUCAN :

Signature :

iv

ABSTRACT

A RECOMMENDATION SYSTEM COMBINING
CONTEXT-AWARENESS AND USER PROFILING

IN MOBILE ENVIRONMENT

Ulucan, Serkan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Aydan Erkmen

Co-Supervisor: Prof. Dr. İsmet Erkmen

December 2005, 122 pages

Up to now various recommendation systems have been proposed for web based

applications such as e-commerce and information retrieval where a large amount of

product or information is available. Basically, the task of the recommendation systems

in those applications, for example the e-commerce, is to find and recommend the most

relevant items to users/customers. In this domain, the most prominent approaches are

“collaborative filtering” and “content-based filtering”. Sometimes these approaches are

called as “user profiling” as well.

In this work, a context-aware recommendation system is proposed for mobile

environment, which also can be considered as an extension of those recommendation

systems proposed for web-based information retrieval and e-commerce applications. In

the web-based information retrieval and e-commerce applications, for example in an

online book store (e-commerce), the users’ actions are independent of their instant

context (location, time…etc). But as for mobile environment, the users’ actions are

v

strictly dependent on their instant context. These dependencies give raise to need of

filtering items/actions with respect to the users’ instant context.

In this thesis, an approach coupling approaches from two different domains, one is the

“mobile environment” and other is the “web”, is proposed. Hence, it will be possible to

separate whole approach into two phases: “context-aware prediction” and “user

profiling”. In the first phase, combination of two methods called “fuzzy c-means

clustering” and “learning automata” will be used to predict the mobile user’s motions in

context space beforehand. This provides elimination of a large amount of items placed in

the context space. In the second phase, hierarchical fuzzy clustering for users profiling

will be used to determine the best recommendation among the remaining items.

Keywords: Context-Awareness, User Profiling, Learning Automata, Fuzzy C-means

Clustering, Hierarchical Fuzzy Clustering

vi

ÖZ

MOBİL ORTAMDA
KULLANICI PROFİLLEME VE DURUM MUHAKEME TABANLI

AKILLI ÖNERİ SİSTEMİ

Ulucan, Serkan

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Aydan Erkmen

Ortak Tez Yöneticisi: Prof. Dr. İsmet Erkmen

Aralık 2005, 122 sayfa

Şimdiye kadar çok fazla bilginin ve ürünün bulunduğu web tabanlı bilgi edinme ve e-

ticaret gibi uygulamalar için çeşitli yönlendirme sistemleri önerildi. Temel olarak bu

uygulamalardaki, örneğin e-ticarette, yönlendirme işi kullanıcıyla/müşteriyle en çok

ilgili olan nesnelerin bulunması ve önerilmesi işidir. Bu alanda en çok göze çarpan

yaklaşımlar “içerik tabanlı filtreleme” ve “iş birliği ile yapılan filtrelemedir”. Bazen bu

yaklaşımlar “kullanıcı profillerini” çıkarma olarak ta adlandırılır.

Bu çalışmada mobil ortam için, web tabanlı bilgi edinme ve e-ticaret uygulamalarında

kullanılan yönlendirme sistemlerinin genişletilmesi olarak ta düşünülebilecek bir durum

algılayan yönlendirme sistemi önerilmiştir. Web tabanlı bilgi edinme ve e-ticaret

uygulamalarında, örneğin kitap satışı yapılan bir sitede (e-ticaret), kullanıcıların

hareketleri anlık durumlarından (yer, zaman… vs.) bağımsızdır. Fakat mobil ortam için

kullanıcı hareketleri anlık durumlarına sıkı olarak bağımlıdır. Bu bağlılıklar

vii

nesnelerin/hareketlerin, kullanıcıların anlık durumlarına göre filtrelenme gereğini ortaya

çıkarır.

Bu tezde, biri “mobil ortam” diğeri “web” olan iki farklı alandan gelen yaklaşımları

birleştiren bir yaklaşım önerdik. Bu şekilde, bütün yaklaşımı iki faz olarak düşünmek

mümkün: “durum-algılayan tahminleme” ve “kullanıcı profili oluşturma”. İlk fazda

kullanıcı hareketlerinin durum uzayı içinde önceden tahmini için “fuzzy c-means” ve

“learning automaton” olarak adlandırılan iki metodun kombinasyonu kullanılıyor. Bu

durum uzayı içinde yer alan birçok nesnenin filtrelenmesini sağlar. İkinci fazda ise kalan

nesneler arasından en iyi yönlendirmeyi belirlemek için “hierarchical fuzzy clustering”

metodu kullanılacaktır.

Anahtar Kelimeler: Durum Algılama, Kullanıcı Profili Oluşturma, Learning Automaton,

Fuzzy C-means Clustering, Hierarchical Fuzzy Clustering

viii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Prof. Dr. Aydan ERKMEN and Prof. Dr. İsmet

ERKMEN for their supervision, valuable guidance and helpful suggestions.

ix

TABLE OF CONTENTS

PLAGIARISM...iii

ABSTRACT... iv

ÖZ .. vi

ACKNOWLEDGEMENTS ...viii

TABLE OF CONTENTS... ix

LIST OF TABLES .. xii

LIST OF FIGURES ...xiii

CHAPTER

 1. INTRODUCTION ... 1

 1.1 Problem Statement and Motivation.. 1

 1.2 Objective and Goals ... 3

 1.3 Problem Characteristic and Methodology.. 4

 1.3.1 Context Awareness ... 4

 1.3.2 Prediction in Context Space .. 6

 1.3.3 User Profiling and Generation of Recommendation......................... 8

 1.4 Contributions.. 10

 1.5 Organization of the Chapters ... 11

 2. BACKGROUND AND RELATED WORKS ... 12

 2.1 Recommendation Systems ... 12

 2.2 User Profile Representation ... 13

 2.2.1 Ratings-based representations... 13

x

 2.2.2 Content-based representations .. 14

 2.2.3 Knowledge-based profile representation .. 15

 2.3 Knowledge Acquisition.. 17

 2.4 Recommendation Technique.. 18

 2.4.1 Content-Based Filtering .. 18

 2.4.2 Collaborative Filtering .. 20

 2.4.3 Hybrid Filtering... 24

 2.5 Context Awareness... 25

 2.6 Path Prediction ... 29

 3. PROPOSED RECOMMENDATION SYSTEM ... 31

 3.1 Overall Architecture... 31

 3.2 Fuzzy C Means Clustering for Context-Awareness............................... 34

 3.3 Learning Automaton for Prediction in the Context Space 39

 3.4 Unsupervised Fuzzy Divisive Hierarchical Clustering 44

 4. DESIGN AND IMPLEMENTATION... 52

 4.1 Database ... 53

 4.2 Map Design Module and GUI.. 55

 4.3 Manual Simulated Data Generator Module and GUI 56

 4.4 Automatic Simulated Data Generator module and GUI 57

 4.5 FCM ... 57

 4.6 GA and PUA Modules and GUI .. 58

 4.7 Recommendation Module and GUI ... 59

 4.8 UFDHC Module and GUI.. 62

 4.9 Show FCM Result Module and GUI.. 63

 4.10 Design Time Profiles Modules and GUI.. 64

xi

 4.11 Database Access Module .net and Database Access Module Matlab...66

 5. RESULTS AND DISCUSSION .. 67

 5.1 Simulated Data Generator .. 67

 5.2 The Test Results of the Proposed Approach .. 69

 5.2.1 Fuzzy C-Means Clustering.. 69

 5.2.2 Stochastic Learning Automata .. 73

 5.3 Unsupervised Fuzzy Divisive Hierarchical Clustering 82

 5.4 A Demonstrative Complete Run .. 88

 6. CONCLUSION...95

 6.1 Summary and Conclusive Remarks ... 95

 6.2 Future Works.. 98

REFERENCES.. 99

APPENDICES .. 104

A. THE RESULTS OF FCM WITH 21 CLUSTERS ON THE MAP............. 104

xii

LIST OF TABLES

TABLES

5.1 An example of a time profile..68

5.2 Results of the FCM with following setting: “max. number of iteration”=100,

“exponent for membership the matrix U”=2, “number of the clusters”= 7,

“scale of t”=[0,2500x7]…...70

5.3 Results of the FCM with following setting: “max. number of iteration”=100,

exponent for membership the matrix U”=2, “number of the clusters”= 14,

“scale of t”=[0, 2500x7]……..70

5.4 Results of the FCM with following setting: “max. number of

iteration”=100, “exponent for membership the matrix U”=2, “number of

the clusters”= 14, “scale of t”=[0, 3500x7]...71

5.5 Results of the FCM with following setting: “max. number of

iteration”=100, “exponent for membership the matrix U”=2, “number of

the clusters”= 14, “scale of t”=[0, 2000x7]...72

5.6 Results of the FCM with following setting: “max. number of

iteration”=100, “exponent for membership the matrix U”=2, “number of

the clusters”= 21, “scale of t”=[0, 2500x7]...73

xiii

LIST OF FIGURES

FIGURES

2.1 Categorization of filtering technique...18

3.1 Overall Architecture..32

3.2 Structural representation of user action. Coordinate X and Y refer to a point

where action is done..35

3.3 Flow chart of FCM..35

3.4 A cluster example generated by the simulator. On the figure big yellow

point (14 Day: 5 Time:17:48 XY: 1637-440) represents a cluster centre. It

means that actions become denser on those places marked with small

yellow point, in the neighbourhood of cluster centre representing day:

Saturday time: 17:48 XY: 1637-440…………………...............................38

3.5 A cluster example generated by the simulator. On the figure User 1 placed

on a point (Day:5 Time: 21:02 XY:1631-411) with 0,86 membership

degree to cluster14. Small yellow points constitute possible alternatives for

User 1...38

3.6 Structural representation of PUA..41

3.7 Structural representation of GA...42

3.8 Flow chart of PUA and GA...43

3.9 Prediction in the context space..44

3.10 Flow chart of UFDHC...45

4.1 Component diagram..52

4.2 Database diagram..54

4.3 Screen Shot of Map Design Graphical User Interface................................55

4.4 Screen Shot of Manual Simulated Data Generator Graphical User Interface

...56

xiv

4.5 Screen Shot of Automatic Simulated Data Generator Graphical User

Interface...57

4.6 Screen Shot of PUA and GA Graphical User Interface..............................59

4.7 Screen Shot of Recommendation Graphical User Interface1......................60

4.8 Screen Shot of Recommendation Graphical User Interface2......................61

4.9 Screen Shot of UFDHC Graphical User Interface......................................62

4.10 Screen Shot of Show FCM Results Graphical User Interface.....................64

4.11 Screen Shot of Design Time Profile Graphical User Interface...................65

5.1 Precision graphic of the GA in the context space defined by 7 cluster

centres. Each graphic presents the chance of precision of the GA in training

period with different reward weights…..74

5.2 Precision graphic of the GA in the context space defined by 7 cluster

centres. Each graphic presents the chance of precision of the GA in training

period with different penalty weights..75

5.3 Precision graphic of the GA in the context space defined by 14 cluster

centres. Each graphic presents the chance of precision of the GA in training

period with different reward weights..76

5.4 Precision graphic of the GA in the context space defined by 21 cluster

centres. Each graphic presents the chance of precision of the GA in training

period with different reward weights..77

5.5 Precision graphic of the WA with 12x30=360 training sample in the

context space defined by 21 cluster centres..79

5.6 Precision graphic of the WA with 12x30=360 training sample in the

context space defined by 21 cluster centres……..80

5.7 Precision graphic of the WA with 12x70=840 training sample in the

context space defined by 21 cluster centres..81

5.8 Precision graphic of the WA with 12x230=2760 training sample in the

context space defined by 21 cluster centres..81

5.9 The result of the UFDHC with following setting: 0.7σ = , 15N = , 1.2m =

and 0.7t = ...83

xv

5.10 The result of the UFDHC with following setting: 0.7σ = , 15N = ,

1.25m = and 0.7t = ...84

5.11 The result of the UFDHC with following setting: 0.7σ = , 15N = , 1.2m =

and 0.8t = …...85

5.12 The result of the UFDHC with following setting: 0.9σ = , 50N = , 1.1m =

and 0.9t = …...87

5.13 Precision graphic of the GA in the context space defined by 14 cluster

centres..88

5.14 The result of the UFDHC with following setting: 0.7σ = , 15N = ,

1.25m = and 0.7t = ……...89

5.15 The GUI initially presented to the user...90

5.16 The GUI initially presented to the user...90

5.17 The recommendation GUI...91

5.18 The GUI showing the recommendations visually.......................................93

5.19 The recommendation GUI...93

5.20 Precision graphic of the WA with 11x7=77 training sample in the context

space defined by 14 cluster centres...…..94

A.1 Cluster represented with X:1370, Y:1627 on Monday at 11:55................104

A.2 Cluster represented with X:1847, Y:290 on Monday at 13:45..................105

A.3 Cluster represented with X:462, Y:806 on Monday at 14:09....................106

A.4 Cluster represented with X:528, Y:1372 on Monday at 18:35..................107

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

Recommendation as a social process plays an important role in many applications for

consumers, because it is overly expensive for every consumer to learn about all possible

alternatives independently. Depending on the specific application setting, a consumer

might be a buyer (e.g., in online shopping), or an information seeker (e.g., in information

retrieval). In these scenarios, an assistant knowing the interest and goals of the

consumers can help them by providing personalized suggestions. Therefore, these sorts

of assisting consumers give rise to emerging technologies as automated software

applications that act as an assistant, that we will refer from here on as “recommendation

systems”.

Generally, recommendation systems have been used in two domain; e-commerce and

information retrieval. Both of them are web based and interact with user via internet and

personal computers. The e-commerce domain generally refers to the act of conducting

business online that includes buying and selling products with digital cash and via

Electronic Data Interchange. Here the task of the recommendation can be defined as

finding and offering products that the buyer is interested in. Information retrieval (IR) or

document retrieval is the semantic manipulation of the textual information so that it can

be easily found even repeatedly. In other words, it is the process of determining the

relevant documents from a collection of documents, based on a query presented by the

user. The task of the recommendation includes classification, selection and suggestion of

documents to the user in question depending on different user queries or user interests.

2

Digital libraries and search engines on the World Wide Web are prominent examples of

such information retrieval.

The first requirement to develop a recommendation system for a specific domain is

tractability of user behaviour, since recommendation systems use historical data about

the user behaviour to generate their suggestions. Consequently, almost all

recommendation systems generated so far have been based on web technologies, since

the medium is highly suitable to tracking users and there exist various ways of tracking

user behaviours whereby interacting with the user via personal computers. For example,

in Amazon.com, which is a commercial book store, customers/users search for books

through a standard electronic shop web-based interface [43]. As the user shops, by

navigating through the site’s web pages, Amozon.com presents opportunistic

recommendations of books that the user might be interested in. These recommendations

are based on the previous navigation pattern and buying habits of the user. Another one

is Citeseer digital library of which content consist of academic publications [44]. When

the user clicks on hyperlinks to papers then glances at papers’ abstract, the system

presents other papers that the user might be interested in, also gives them a score

representing relevance degree. Above the first example refers to the e-commerce and the

second one refers to the information retrieval. And there exist many others similar to

these ones.

Nowadays, mobile devices allow users to access mobile internet services and run

applications at any time and any place. Advance in wireless network technology and

continuously increasing number of users of mobile terminal makes this a possible

channel for offering personalised services to mobile users and gives space to the rapid

development of the mobile services. As a result, we think about possibility of usage of

the recommendation system which helps the mobile users in their usual activities (such

as shopping, eating, entertainment…etc) in mobile environment.

3

1.2 Objective and Goals

In this thesis work, we propose a recommendation system which helps mobile users in

their usual activities such as shopping, eating, entertainment…etc. in the mobile domain.

The most distinctive features of the recommendation system proposed for the mobile

domain are “context-awareness”, “prediction of user’s motion” and “user profiling”.

Context-awareness means user’s context, which are contextual information such location

and time, is used in generation of recommendation. In the mobile environment, since

user’s context conveys implicit information related to user behaviour, this implicit

information should be exploited through generation of recommendations. Accordingly,

our first aim is to design a method for context-awareness. The second feature of the

recommendation system is prediction of the user’s motion. We consider all users move

in a context space. If it is possible to predict the user’s motion in the context space, the

recommendation system can generate the recommendations previously, thus, the

recommendations become more useful for the user. The second aim of this work is to

design a method which predicts the user’s motion. The third feature of the

recommendation system is user profiling. There exist heterogonous items (actions) in the

mobile domain. Therefore, probably each user will have interest profile on those items.

Since user interest profile is information showing the interest degrees of the user to each

item, such information should be exploited through generation of recommendations also.

Then, the third aim is to design a method which extracts the user profiles. Finally, we

will combine these three methods in a single recommendation system which uses

features of these methods in recommendation.

As for mobile domain, the recommendation system is not popular as in web applications

since tractability of users is a big problem and development cost is very expensive. And

any database is not readily available for our case. In this thesis work, we will develop a

simulator to test the proposed recommendation system. In simulation, synthetic data

produced by simulator will be used. A detailed discussion on usage of simulated or

synthesized dataset is given in [41]. The author in that reference work reports that

4

synthesized data sets may be required in some limited cases, but only as early steps

while gathering data sets or constructing complete systems.

1.3 Problem Characteristic and Methodology

The most distinctive features of the mobile environment are mobility and ubiquity.

These features add two new dimensions on top of similar system in the web domain

which are “location” and “time”. From now on, these two dimensions will be called as

context. Thus, the question is that “How the context can be extracted through in the

filtering process of the recommendation system”. In the literature, authors refer this

problem as “Context Awareness”.

1.3.1 Context Awareness

The term context means that the general condition in which an event or action takes

places. In [1] context is defined as any information (such as location, time, day… etc)

that can be used to characterize the situation of an event.

The ability to reason from context is crucial to human communication. It allows a large

amount of implicit information to be conveyed with a small amount of explicit

description. If the same kind of ability can be provided to software agents, then agents,

even with a small amount of built-in knowledge, can adjust their behaviours according

to the available implicit information in the environment. From the design point of view,

a context-aware software agent is simply a way to model a context aware application

based on the agent approaches. Similar to the traditional context aware application, the

context aware agent is designed to make use of context providing task-relevant

information and services to users.

As seen from works in the literature, the context aware agents have not been used in the

web based recommendation systems. In other words, the web based recommendation

5

agents are not designed to handle context. Following example will clarify this case. On

an online book store, consider a user searching a book and a recommender system helps

the user to make his decision. Here, prominent attributes of context are as follows: he is

searching a book “at home” “at 10:00 pm”. Let the same user search another book on the

same online book store “at work” “at 12:00 am”. In both case there exist two different

contexts. Now the question is that: “does the context have any influence on the user’s

behaviour?” Obviously, the context does not influence the user. Consequently, most of

the recommendation systems designed for the web domain do not take care of the user’s

context. But in the mobile domain (environment) context is a determinative factor on the

users’ action. Consider another user having habits such that he usually goes out at Friday

night and prefers listening live music, and he usually goes to brunch in Sunday

mornings. It is possible to say that he has interests such as live music and brunch, and

any recommendation agent working as the web based recommendation agents can infer

these user’s interests. But, it will not be useful to recommend him a new place

performing live music in Sunday morning and a good place for brunch at Friday night.

This illustrative scenario clarifies the importance of the context awareness for mobile

domain.

In our work, the generated recommendation system is a context-aware process. Each

user is defined by their instant context and moves in the context spaces. Context is

regarded as a three dimensional vector defined by the x and y coordinates of location

and time. The users’ instant contexts have determinative influence on the users when

choosing an action. Namely, it is possible to say that each action has a context profile

which represents points of occurrence in the context space, and the users moving in the

context space always choose an action such that the context profile matches the users’

instant context. For example, the context profile of a museum can be described

semantically as following: “The museum A placed at coordinate X and Y can be visited

at weekday at 8:30am-4:30pm”. This data can be stored manually in database with a

proper format. In a context aware recommendation process such an approach may be

proper. For each user, context profile of proper action set fitting the user’s instant

6

context can be queried from the database, and this set can be used in the

recommendation process. But this approach may have some shortcomings. Firstly, it will

not be practically applicable since computation process becomes a huge burden where

number of actions and users reaches millions in the database. Secondly, it is not

convenient to assign approximate context profile to each action manually, since it is not

known to what extent this approximate data is reliable. Also how this approximate data

will be obtained is a live problem of what this approximation job will be based upon.

To alleviate the shortcomings mentioned above we propose a method based on “Fuzzy

C-Means Clustering”. Fuzzy C-Means (FCM) is a data clustering technique wherein

each data point belongs to a cluster to some degree that is specified by a membership

grade. It provides a method that shows how to group data points that populate some

multidimensional space into a specific number of different clusters, and it allows one

piece of data to belong to two or more clusters. The data derived from the users’ context

based action logs is provided as an input vector set to the FCM. Remember that each

element of input set consists of three dimensional data called x, y and t. The output of

the FCM is cluster centres together with their memberships in the form of a matrix. The

coordinates for each output cluster centre are in the rows of the cluster centres matrix,

each row representing a point (x, y, t) in the context space, and each of them

representing the context profile for all members of that cluster. Furthermore, these

cluster centres refer to action density points in the context space. These FCM results can

be used in recommendation in such way that when a user enters into neighbourhood of a

cluster centre, the actions being members of the cluster will be possible actions to be

recommended.

1.3.2 Prediction in Context Space

In the mobile domain, behaviours of the users are more ordered than user behaviours in

the web domain. What we mean is that generally while surfing on the web the users do

not plan their actions beforehand since instantaneous and random actions do not

7

introduce additional cost in the web domain. But in real world unplanned decision

regarding actions will not satisfy the users’ needs and introduce additional cost.

Consequently, any user does not think about too much before clicking a link to a web

page, but consider attentively where to go for dinner beforehand. So, it will not be useful

to recommend an action related to the users’ instant context. Since the users usually

make their decision about actions previously, as a result it will be difficult to change

their prearranged decisions by recommending some alternatives. From this view point,

prediction according previously planed the users’ movement in the context space also

becomes a critical issue. Or putting this into different words, it will be more useful to

recommend actions related to the users’ next status in the context space or recommend

actions placed in any cluster way before the users move into that cluster.

To predict the users’ movement in the context space, we use a method based on

stochastic learning automata, which is introduced in [36]. They use this approach to

predict the users’ transitions between base stations of a mobile network. A similar

approach is accommodated to our case. A learning automaton can be defined as a

decision maker which operates in a random environment, updating its strategy for

choosing actions on the basis of the environment’s response. The automaton has a finite

number of actions and the response of the environment to each action can be either

favourable or unfavourable. In our system, as a result of FCM processing, the entire

context space is now represented by fixed points called the cluster centres. There, we

can represent movements of any user by transitions between cluster centres, considered

as a finite number of context dependent actions. To this extent, we apply the output of

the FCM to a stochastic learning automaton. The term stochastic emphasizes the

adaptive nature of the automaton. This adaptation is the result of the learning process.

Hence, the learning process can be described as deduction of routines in transition

between the cluster centres. It accepts previous transition of a user as an input and tries

to predict his/her next transition, which is, the user’s next cluster. And obviously, the

actions covered by predicted cluster with highest membership degree constitute possible

recommendations. By selecting an action from recommendation, the user provides a

8

feedback, which is the user’s next cluster, to stochastic learning automaton. According

to feedback coming from the user, it applies penalty or reward process and updates

related probabilities.

1.3.3 User Profiling and Generation of Recommendation

Using FCM and stochastic learning automaton we are at a stage that instant context of a

user has been found, and the next context has been predicted. Now, the remaining

problem is that of recommendation problem by choosing actions that matches the user’s

profile. Here, two factors effect the user’s profile: similarity of the user to other users

and interests of the user. Namely, the remaining problem is to complete the design of

users profiling mechanism.

Pure collaborative filtering algorithms work well where the items are comprised by

single category. For example, in an online movie portal all contents/items consist of

movies, and then obviously, all users of the portal are interested in movie. In other

words, it is assumed that each user of the portal can be respected as an expert on movies

to some extent. Consequently, it is possible to look for direct collaboration between

those users. But as for mobile domain contents/actions have heterogeneous

miscellaneous structure, and they are divided into many ontological categories (like

restaurant, cinema, historical place … etc). Each user may be interested in only one, two

or more categories. In this case, it is improper to establish collaboration between all

users. Rather than establishing direct collaboration, we propose to construct interest

profiles for the users.

The approach proposed in [19] will be adopted to build users’ profiles. The proposed

approach is called as Unsupervised Fuzzy Divisive Hierarchical Clustering (UFDHC).

They apply this method on a web site consisting of many ontological categories. Each

user is represented by the number of access to each category. Access log data are input

to UFDHC. The UFDHC method is a fuzzy divisive hierarchical method, which

9

determines a structure in the data in the form of a binary tree by firstly detecting large

clusters and then splitting them in necessary numbers to generate a final objective

classification. The output of UFDHC is a binary tree of user groups characterized by a

set of common interests and represented by a prototype, which would correspond to the

profile of the users of the group in our case. We therefore use the same approach for

profiling. In our case, action set consists of subsets represented by ontological category.

Similarly, the access logs to each category are stored for each user, and they are used as

input. The output is the binary tree of the users’ profiles (or user clusters) representing

the interest degree to each category in the mobile domain. Each cluster is identified by a

prototype which summarizes the navigation preference of the users strongly belonging to

that cluster, thus identifying the profile of its typical members. We utilize the hierarchy

of clusters in the recommendation process as follows: only the actions relating to a

specific cluster (profile) are recommended to that cluster’s members. Furthermore, the

members of each cluster have similar interest on ontological category, and the

collaboration can be established between the same cluster members.

The recommendations are generated based on two data: next cluster id predicted by

stochastic learning automaton and the user’s profile retrieved from binary tree produced

by UFDHC. Among the categories comprising the user’s profile, three categories are

determined by Roulette Wheel. The higher percentage of contribution degree the

categories have, the more chances to be selected they have. Therefore, the

recommendation set presented to the user consists of those actions, which are included

in one of three categories and are member of the predicted next cluster.

Finally, the problem of designing a recommendation for mobile domain is defined as an

architecture combining context awareness, prediction and user profiling in the

recommendation process.

10

1.4 Contributions

Here, a context-aware recommendation is proposed for mobile domain. The

recommendation problem is divided into three sections: Context-awareness, Prediction

in context space and user profiling. Through this work our contributions are as follows:

• The FCM clustering is proposed for context awareness. By means of the FCM,

the density points (cluster centres) of action occurrences are obtained. These

density points refer to context profiles of the members, which are actions,

belonging to the cluster. Thus, the context-awareness problem is solved in an

intelligent manner.

• To predict users’ movement in context space, we use an approach based on

stochastic learning automata, which is proposed in [36]. They use this approach

to predict the users’ transitions between base stations of a mobile network. This

approach is accommodated to our case. Instead of base station, cluster centres are

produced by FCM, and user’s motions between cluster centres are predicted. In

other words, the problems of context-awareness and prediction in context space

are solved in single architecture by means of combining FCM and stochastic

learning automaton.

• For user profiling, the approach proposed in [19] is used. They apply this method

on a web site consisting of many ontological categories. Each user is represented

by the number of access to each category. Access log data are input to UFDHC.

Similarly, the actions are represented by ontological categories in the mobile

domain. Using the same approach, the interest profiles of the users of the mobile

domain are extracted. The access logs to each category are stored for each

mobile user, and they are used as input to UFDHC. The output is the binary tree

of the users’ profiles (or users’ clusters) representing the interest degree to each

category in the mobile domain.

11

• Finally, two data, the user’s profile data from UFDHC and the predicted point of

the users in the context space from FCN and stochastic learning automaton, are

used to produce recommendations.

1.5 Organization of the Chapters

Previous works on related issues were surveyed and could be grouped into three

categories: recommendation system, context-awareness and path prediction. In

CHAPTER 2 the detailed description of these three categories and prior works related to

them are given.

In CHAPTER 3 our methodology, which is based on FCM, stochastic learning

automaton, UFDHC and generation of recommendation respectively, is introduced in a

detailed manner.

After proposing the method, the design pattern and implementation details of the

simulator are given in CHAPTER 4.

The generation of simulated data is explained and test results with this simulated data

are presented in CHAPTER 5.

Finally, the general inferences drawn from this work and possible future works are

presented in CHAPTER 6. This is the conclusion part of the thesis.

12

CHAPTER 2

BACKGROUND AND RELATED WORKS

2.1 Recommendation Systems

Firstly, let describe what the meaning of recommendation is. It means to present to the

user relevant information that suits the user profile in terms of his/her general interests,

location, current activities and also planed ones for the near feature filtered things to the

user. According to this description, the task of a recommender system is to provide

personalized suggestions about items that the user might find interesting. In other words,

it can be defined as an adaptive function mapping users to items set under specific user

based criteria. It is difficult to give an exact and general definition of recommendation

system because its details vary as much as the application environment varies. Instead of

trying to formulate a general definition, it is better to address the general features of

recommender systems. Up to now, many features have been defined by researchers

worldwide. As a result, their definitions bear somewhat domain specific features. After a

detailed investigation on works [2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21] has been

done so far, we think that following features are common for all the recommendation

systems.

• There exists a user profile representation format, which is a structured

representation of the user’s habits, interests and needs, being particular to that

domain.

• A knowledge acquisition technique must be employed to gather feedback

(positive and negative sample, some times called training samples) from users.

• Every recommendation system uses a technique to mine training samples from

which the system infers the user preferences (machine learning).

13

2.2 User Profile Representation

Roughly, a user profile is a structured representation of the user’s habits, interests and

needs. User profile representation is always domain specific and depends on the filtering

method used for training the system. The profiles are inputs of the filtering method.

Generally speaking, profile representation falls into three classes [2]: rating-based

representation, content-based representation and knowledge-based representation.

Namely, rating based representation usually refers to profiling in collaborative filtering

where it is difficult to differentiate items as to its content, and content-based

representation usually refers to profiling in content-based filtering where items’ content

consist of descriptive attributes.

2.2.1 Ratings-based Representations

When users receive recommendations it is common to elicit feedback on how interesting

the recommendations are to the needs of the user. This type of feedback is called

relevance feedback. Relevance feedback is elicited by offering the user a rating scale for

each recommendation; the choice is commonly either “interesting” and “not interesting”

or a 3 to 5-point scale of interest [4, 8, 10, 11, 12, 13]. The representation of relevance

feedback is thus a set of recommended items and the associated interest values provided

by each user.

Relevance feedback can be acquired implicitly, allowing inference from observed user

behaviour [2]. The problem with implicit feedback is that the assumptions made to allow

inference often introduce errors. For example, a user may read an initially interesting

looking document, only to find it was actually not interesting after all when its details

are known; if all documents that are read are inferred to be interesting this situation

would clearly introduce an error into the relevance feedback acquired.

14

A balance must be made between interrupting the user to acquire high quality explicit

feedback and unobtrusive methods to obtain lower quality implicit feedback. Exactly

how much interruption the users will tolerate will depend upon the specific application

domain.

2.2.2 Content-based Representations

Most content-based analysis is performed on textual documents such as web pages,

newspaper articles or document abstracts. The reason for this is that textual documents

easily break down into individual words, whereas video and audio sources require

sophisticated analysis to decompose into useful sub-components. Almost all content-

based recommender systems work with textual content.

Term-frequency vector representation: The most common abstraction of a textual

document in the machine-learning context is a term-frequency vector. To create a term-

frequency vector the terms within a document are counted and the frequency values

stored in an n-dimensional vector [14, 15, 16]. The number of dimensions of the vector

is the number of unique terms within a document.

Binary class profile representation: The most common profile representation for the

content-based recommender systems is the binary class profile, representing user

interests as a set of positive and negative examples [45]. The positive, or “interesting”,

examples are represented as a collection of term-frequency vectors of documents that the

user has rated as “interesting”. The negative, or “not interesting”, examples are likewise

represented. This binary class representation is very suitable for a great many machine-

learning techniques.

Since relevance feedback is required to obtain the sets of positive and negative

examples, a ratings-based profile is often additionally implemented to create a hybrid

recommender system.

15

Multi-class profile representation using an ontology: The alternative to the binary class

representation is a multi-class representation. Rather than simply having positive and

negative classes, an ontology of classes can be created that map to domain concepts such

as newspaper topics like “sport”. A user’s profile is thus represented in terms of which

classes they are most interested in, abstracting away from the specific examples of

interest [19]. When relevance feedback is acquired, examples of interest are classified

according to the classes within the ontology, and the user’s interest in that class

recorded.

Multi-class classification is considerably more complex than binary class classification.

Having more than two classes reduces the number of examples available for each class,

thus reducing the accuracy of the machine-learning technique employed. In addition,

since classes are shared between users, there will be a loss of information about

individual user interests when compared to a binary representation where each user has

their own set of examples; sharing examples does allow for a larger training set,

however. These factors are the reason why very few recommender systems adopt this

approach.

Most ontology’s are created manually by a knowledge engineer and domain experts.

They thus capture the relevant classes within a domain and relationships between them.

It is possible to create classes automatically using clustering machine-learning

algorithms. Clustering finds similar term frequency vectors and groups them together to

make a class. Classes created by clustering, however, have no domain knowledge

associated with them, making useful inference from them difficult.

2.2.3 Knowledge-based Profile Representation

Knowledge-based profile representations appear in the user modelling literature.

Typically these approaches require questionnaires and interviews with users to acquire

information about their requirements before a profile can be built [22]. Profiles consist

16

of asserted facts about a user in a knowledge-base, from which inferences can be drawn

about user stereotypes and interests. Knowledge-based profiles are often used in the

related fields of agent and intelligent tutoring systems.

The literature proposes the user profile representation in three different classes as we

have just overviewed. However we want to mention about another classification of

profile representation. [3] exists in the literature classifying the profile representation

problem into four topics: static content profiling, dynamic content profiling, static

collaborative profiling, and dynamic collaborative profiling. Static content profiling

refers to the gathering of static information regarding the user usually upon registration.

Typically, systems allow users to enter a simple profile when they first register with the

system. It is static as the registration is done only once. Knowledge based representation

discussed above can be considered as a static profiling. For dynamic content profiling,

the system gathers information based on the dynamic changes in the behaviour of the

user. This means that the system should keep track of the user’s behaviour when

interacting with them. Term frequency vector representation discussed within Content-

Based representation is a dynamic content profiling as well. The concept of static

collaborative profiling refers to explicitly clustering users with similar behaviours

through user’s explicit request. Every time a new user is added into the system, the

system will take a period of time to collect information about the user and to construct

the user’s profile with information that will aid the system in serving the user’s needs.

We can reduce the learning curve of the system by reusing a current user’s profile by

matching the new user’s profile with other current user’s profile. The categories or terms

listed in the user’s profile are matched across other users’ profiles. If the term or

keyword in the user’s profile is found in another user’s profile, the similarity measure

for these two users is increased accordingly. Dynamic collaborative profiling refers to

clustering users with similar behaviour into peer groups based on the user’s profile and

filtering information pertaining to group’s interest.

17

In static collaborative filtering and dynamic collaborative filtering the term ‘profiling’

also contains collaborative filtering. In the literature, sometimes the term profiling

means the output of the collaborative filtering method.

2.3 Knowledge Acquisition

The knowledge acquisition technique is also a domain specific feature. It is determined

by taking into account all users’ behaviours. Knowledge can either be implicitly or

explicitly acquired from the user [2, 14]. Implicit knowledge acquisition is often the

preferred mechanism since it has little or no impact on the user’s normal work activity.

Unobtrusive user monitoring of the user discovers behavioural data about the user’s

normal work activity over a period of time; this data can be used to infer preferences for

frequently occurring items. Heuristics can also be employed to infer facts from existing

data. Implicitly acquired knowledge requires some degree of interpretation to understand

the user’s real goals; this is an inherently error prone process, reducing overall

confidence in any resulting user profiles.

Explicit knowledge acquisition requires the user to interrupt his/her normal work to

provide feedback or conduct some sort of programming of the system. Explicit

knowledge is generally high confidence information, since it is provided by the users

themselves and not acquired from indirect inference. Feedback types include item

relevance, interest and quality. User programming occurs when the user is asked to

create filter rules, either visually or via a programming language, or to tell the system

about groups or categories of items that exist in the domain.

Both implicit and explicit knowledge acquisition have advantages and disadvantages. In

some application [14] they are hybridized to alleviate each others shortcomings.

18

2.4 Recommendation Technique

In the past years, many recommendation techniques have been developed. That can

simply be categorized into two classes: content-based filtering and collaborative

filtering. In addition, the hybrid filtering may be considered as third class [4]. It seems

proper to categorize recommendation techniques as in Figure 2.1.

Figure 2.1 Categorization of filtering techniques.

2.4.1 Content-Based Filtering

Generally, content-based filtering has been applied to information retrieval. Namely, this

technique is an alternative paradigm that has been used mainly in the context of

recommending items such as books, web pages, news, etc. content-based methods make

recommendations by analyzing the description of the items that have been rated by the

user and the description of the items to be recommended. A variety of algorithms have

been proposed for analysing the content of text documents and finding regularities in

this context that can serve as the basis for making recommendations. Many approaches

are specialized versions of classification learners, in which the goal is to learn a function

that predicts which class a document belongs to (i.e., either liked or not liked). Other

algorithms would treat this as a regression problem in which the goal is to learn a

function that predicts a numeric value (i.e., the rating of the document). There are two

important sub problems in designing a content based filtering system. The first is finding

19

a representation of documents. The second is to create a profile that allows for unseen

documents to be recommended [5].

A personalized information filtering method that learns user’s interests by observing his

or her behaviours during the interaction with the system is proposed in [14]. The web

documents are presented with term frequency vectors and users’ profiles consist of

weights each of them represents the interest degree of user to a specific topic. To

construct the users’ profile, they implement reinforcement algorithm. Filtering is viewed

as an interactive process which involves a generate-and-test method, whereby the agent

tries actions, observes the outcomes, and selectively retains those that are the most

effective. Most of the time WAIR chooses the highest-ranked documents, but with

probability ε, it chooses lower-ranked documents too. The rationale behind this policy is

that it combines exploitation and exploration of search behaviour.

A genetic algorithm is used to build user profiles from a collection of documents

previously retrieved by the user [15]. A gene in the chromosome of the genetic

algorithm is defined by a term and a fuzzy number of occurrences of the term in

documents belonging to the class of documents that satisfy the user’s information need.

In this way, the terms that allow the system to discern between good and bad documents

are selected and stored as a part of the user’s profile to be used in future queries to the

system.

Users’ profiles can also be represented as an interest hierarchy. Firstly, the documents

are clustered then each document is assigned to a node in hierarchy [16]. By using

document access patterns of the user, which can also be regarded as user’s access

patterns to nodes, a user interest hierarchy is built. A user might possess interests at

different abstraction levels. The higher-level interests are more general, while the lower-

level ones are more specific.

20

As an improvement on existing content-based filtering, an adaptive algorithm for

learning the changes in user interests is proposed in [21]. They extend the model for the

purpose of information filtering by taking into account the user current interests and

their decay in time. Queries are represented as TF-IDF feature vectors with an additional

temporal dimension (current interest weight) set to a preset positive initial value that

decays in time. This fact implies that some specific user interests could decrease as time

goes on. However, user interest for a category can be maintained/increased if the user is

searching for elements belonging to an already existing category in his profile. The

scheme proposed in this work keeps track of both the user’s Recent and Long-Term

Profiles.

2.4.2 Collaborative Filtering

Note that content based filtering works well where the contents have well defined vector

representation. But in many application areas it is not possible to define appropriate item

descriptors as well as text based items. Collaborative filtering is proposed to alleviate

shortness of the content based filtering where analysis of contents is difficult, that is, it is

not possible to represent the contents by means of well defined descriptor. Thus,

performance of collaborative filtering surpasses that of any content based filtering in

many domains.

Collaborative filtering predicts the utilities of items for a particular user based on the

rating information for the same set of items given by many other users. Two approaches

have been developed for collaborative filtering [6]. The first approach, referred to as

user-based, relies on the fact that each persons belongs in a larger group of similarly

behaving individuals. As a result, items frequently liked by the various members of the

group can be used to form a basis for recommended items. In many research papers

user-based approach is called memory based approach [7, 8, 9]. As to [7] another

description of this approach, nearest neighbour based collaborative filtering algorithms

are categorized as being memory-based. Nearest-neighbour methods use some notation

21

of similarity between the user for whom predictions are being generated and other users

in the database. Because of the simplicity and robustness, the memory based approaches

have been widely used in many real world applications.

Despite its success in many application settings, the memory-based filtering approach

has been reported to have nevertheless several major limitations including the

scalability, sparsity and real-time performance problems. The scalability problem is that

the computational complexity of these methods grows linearly with the growing number

of customers and items, which in typical commercial applications can grow to be several

millions. The use of dimension reduction techniques have been proposed to address this

issue. The sparsity problem occurs when processing or feedback data is sparse and

insufficient for identifying neighbours and it is a major issue limiting the quality of

recommendations. Finally, even though the throughput of algorithms can be increased

by increasing the number of servers running the recommendation algorithm, they can not

decrease the latency of each top-N recommendation, which is critical for near real time

performance. One way of reducing the complexity of the nearest-neighbour

computations is to cluster the users and then to either limit the nearest-neighbour search

among the users that belong to the nearest cluster, or use the cluster centres to derive the

recommendations. These approaches, though they can significantly speed up the

recommendation algorithm, tent to decrease the quality of the recommendations.

In [20], the author proposes an approach to deal with sparsity problem by applying an

associative retrieval framework and related spreading activation algorithms to explore

transitive associations among consumers through their past transactions and feedback.

By exploring the transitive interactions between consumers and items, the consumer–

product interaction matrix is augmented and becomes meaningfully “dense” for

recommendation purposes.

For many memory-based approaches, items are treated with equal importance.

Apparently, this is undesirable because the discrepancies in different items have not

22

been taken into account. To address this problem, a new weighting scheme based on the

leave-one-out (LOO) method is proposed [9]. The work is built upon the intuition that

the rating behaviour of an individual user should be similar to the rating behaviours of

some but not all other users. Therefore, a good weighting scheme for items should bring

users of similar interests closer and meanwhile separate users of different interests

further apart. They formalize this idea into a probabilistic optimization problem, in

which the appropriate weights of items are found by maximizing the likelihood for each

user to be similar to at least one of other users.

Another improvement on memory-based filtering is reported in [17]. The nearest-

neighbour (NN) algorithm fails because the predictions it generates fail to take into

account the quality and quantity of the information used to generate each prediction.

They create a new algorithm based on belief distribution that enabled a system to predict

not only rating values, but also to explicitly represent the uncertainty in each predicted

rating.

The second approach is known as model-based which groups together different users in

the training database into a small number of classes based on their rating patterns. In

order to predict the rating from a user on a particular item, these approaches first

categorize the test user into one of the predefined user classes and use the rating of the

predicted class on the targeted item as the prediction.

Compared to the memory-based approaches, the model-based approaches have an

advantage that only the profiles of models need to be stored. However, the memory-

based approaches are usually much simpler than the model-based approaches and

require little offline computation whereas model-based approaches usually have to spend

many computation cycles on creating model profiles. Furthermore, the model-based

approaches tend to assume that a small number of user classes are sufficient for

modelling the rating patterns of many different users, and thus may lose the diversity of

users. Finally, model-based approaches tend to perform worse than the memory-based

23

approaches when the number of training users is small. This is because ratings by only a

small number of users are usually insufficient to create reliable clusters of users.

Sparsity and cold-start problems exist in both memory-based and model-based

approaches. According to the definition given in [22], the latter means that it is very

difficult to give a recommendation for new products totally without rating or little rating

at the beginning for the recommendation system which use a pure collaborative filtering

approach. To alleviate the cold-start problem, the integration of content-based rating to

collaborative filtering is a remedy.

An adaptive algorithm improves the recommendation quality of a recommendation

system by an optimization algorithm which optimizes the users’ ratings based on two

assumptions [22]. For items rated on a numerical scale, as the number of ratings

increases, the average rating approaches the actual “value” of the item. The good

reviewers are those who consistently predict the average rating of items.

A model-based approach is implemented in [6]. The models are built by analysing

similarities between items and then these models are used to identify the set of items to

be recommended.

 In [12] author describes the collaborative ensemble learning, a novel statistical learning

approach to this task. It at first applies probabilistic support vector machines (SVMs) to

model each individual user’s profile based on given examples, i.e. liked or disliked

paintings. Due to the high complexity of profile modelling, the SVMs can be rather

weak in predicting preferences for new paintings. To overcome this problem, we

combine a society of users’ profiles, represented by their respective SVM models, to

predict a given user’s preferences for painting images.

For typical web sites user, a model-based approach which mines the users’ access

patterns to built users’ profile is proposed in [19]. They assume that the pages of the web

24

site have been prearranged in a number of different categories. Each user is, therefore,

represented by the number of access to each category. Access log data are input to a

slightly modified version of the Unsupervised Fuzzy Divisive Hierarchical Clustering

(UFDHC) method. The UFDHC method is a fuzzy divisive hierarchical method, that is,

it determines a structure in the data in the form of a binary tree by firstly detecting large

clusters and then splitting them as much as it is necessary to generate a final objective

classification. The output of UFDHC is a binary tree of user groups characterized by a

set of common interests and represented by a prototype, which corresponds to the profile

of the users of the group.

2.4.3 Hybrid Filtering

Pure collaborative filtering approaches haves some shortcoming as mentioned above.

Many researches have been done to over come these shortcomings. Hybrid methods that

combines collaborative filtering and content based filtering are one of the approaches

being proposed to alleviate collaborative filtering short coming. The works [10, 11, 4,

12, 13, 8] are examples of hybrid approaches.

In [10] the author suggests that content-based and collaborative filtering can be

combined under a nonparametric hierarchical Bayesian framework.

A hybrid model is implemented for information retrieval as an extension of pure

memory-based approach in [4]. In general item are represented by users rating in

collaborative filtering. But, in this work firstly text based items are represented by key

word and then ratings are assigned to that keyword. Lastly, memory based algorithm is

applied, and the result of memory based methods is an matrix showing that whether a

user thinks another user’s evaluation of any keyword is reliable or not.

In [13] a novel, unified approach that systematically integrates all available training

information such as past user-item ratings as well as attributes of items or users to learn

25

a prediction function is proposed. The key ingredient of this method is the design of a

suitable kernel or similarity function between user-item pairs that allows simultaneous

generalization across the user and item dimensions. Also they propose an on-line

algorithm (JRank) that generalizes perceptron learning.

A recommender system which combines collaborative filtering and content based

filtering is applied as for the Web-based shopping mall [18]. The proposed algorithm is

based on two ideas: agents insert artificial ratings into the system using collected users’

behaviour and taste similarities between users and similarity in features between items

previously rated by the user are both used to recommend items for a user. In this work,

both approaches (content-based and collaborative filtering) are implemented separately.

For each user item pair, two score are produced by content based and collaborative

filtering then combined with a proper weight.

2.5 Context Awareness

In sections 2.1, 2.2, 2.3 and 2.4 we have investigated in detail existing leading

recommendation systems. Note that most of them regard users’ interaction with the

system as a “desktop experience”. But in this thesis our aim is to design a

recommendation system for mobile environment where the users’ interaction is not

restricted to solely live a “desktop experience”. Computation is now packaged in a

variety of devices. Smaller and lighter laptop/notebooks, as powerful as conventional

personal computers, free us from the confines of the single desk. Specialized devices

such as handheld personal organizers are portable enough to be with us all the time.

Wireless technology allows devices to be fully interconnected with the electronic world.

Also advances in software technology and the increasing volume of digital knowledge

offer the opportunity for more sophisticated and user-friendly digital services. Mobile

software agents represent one of recently emerged paradigms related to pervasive

computing that carry a tremendous promise in solving some of the real world problems

26

and enabling “anytime, anywhere, with any device, within any context” access to digital

information and services.

The mobile environment can be considered as a domain consisting of sub domains such

as restaurants, cinemas, concerts…etc. And contents of the mobile environment can be

defined as actions under those sub domains. Because of the high granularity of the

mobile environment, finding a solution to the recommendation problem is not as

standard as for the web domain. Beyond the granularity, other factors make

recommendation problem more complex such as mobility and ubiquity. These factors

cause dynamic changes on the user’s context being strictly determinative on the user’s

behaviour.

The term context covers a large amount of information which is perceived by the mobile

user and affects his/her behaviour in the mobile environment. [23] defines context as

physical and social situation. A more detailed definition of context is given in [25], such

that context is what surrounds, and in mobile and ubiquitous computing the term is

primarily used in reference to the physical world that surrounds the use of a mobile

device. This has also been referred to as physical context, to distinguish it from other

kinds of context in mobile computing, such as conditions in the surrounding systems and

network infrastructure. As to these definitions, the context may consist of information

such that location, time, temperature, brightness… etc. If such contextual information

about a mobile user becomes available, a recommendation system can adapt itself to the

user context and produce more valuable recommendations. In the literature, exploitation

of contextual information by software agent for any purpose is called as “context-

awareness”.

In [24] the term context-awareness is defined as intelligence that enables an application

to discover reason and predict a situation and adapt to it in a dynamically changing

environment. The use of context-awareness in mobile domain is receiving considerable

attention in various fields of research including mobile computing, wearable computing,

27

augmented reality, ubiquitous computing and human-computer interaction. The actual

utility of context-awareness in mobile systems has been demonstrated in a wide range of

application examples. In [25] author classifies utilization of context into three levels. At

the first level, context-sensitive resource and power management are exploited. At the

second level, context-awareness enables both adaptive applications and explicitly

context-based services. At the third level, the use of context facilitates a shift from

explicit to implicit human-computer interaction, towards less visible if not invisible user

interface. The aim of our work covers both second and third level utilization.

Location based services hosted in mobile network are sample of context-aware

application. In [26] all attributes of data about a user is separated into two classes:

predictive attributes and contextual attributes. Predictive attributes refer to personal data

used in web based recommendation system. Contextual attributes refers to user’s current

location, time, weather, current user’s mood … etc. To handle both class of information,

they propose a multilevel probabilistic model (the Bayesian Metanetwork), which is the

extension of traditional Bayesian networks and is also considered as a useful tool to

predict a mobile user’s preferences.

GeoNotes is another location based information system [27]. In this work authors

present general aspects of designing a location based information system for public

spaces. Also they implement proposed architecture in a campus Wireless LAN network.

A context-aware personal assistant which helps users in daily activities is proposed in

[28]. The approach consists of context-awareness and user modelling parts. The first part

implies a persistent database and context management software. The context is modelled

hierarchically and expressed using XML technologies. In the second part, a user

modelling agent which can predict a user’s behaviour is proposed.

A mobile context-based hypermedia retrieval system is proposed for cultural heritage in

[29]. They define context as the user's location in virtual space and the particular mobile

28

device being modelled together with user preferences or profile. The purpose is to

automatically push relevant data from the database server to the client based on this

comprehensive definition of the user's context.

Ubicomp[31] is a context-aware recommendation system for mobile environment. It

extends the collaborative filtering algorithm to handle contextual data as well as

collaborative data.

PILGRIM[33] is a location-based recommendation system. The aim of this work is to

develop a location-aware recommendation system which should be able to produce a

top-k items list for a given user whose location is known with a precision ranging from a

few meters to some hundreds of meters. Recommendation problem is viewed as a N-top

recommendation but they also depend on the user’s location.

In [34], the problem defined as power consumption resulted from communication

overhead for handheld devices. The communication overhead is introduced by user

interaction in information retrieval system. A situation-aware personalized information

retrieval system is proposed to diminish user interaction with the system.

Also multipurpose tools have been developed to facilitate the development of context-

aware applications. CAPpella[30] is a tool that allows users to build context-aware

applications by demonstration. They use supervised learning for adaptation of software

to any context. Any context is defined as a value-attribute pair, and a task is assigned to

each samples. Samples are provided to software as training input. After training, the

software can adapts itself to dynamic context, and implements relevant task.

Sycophant[32] is a context learning calendar application program which learns a

mapping from user-related contextual features to application actions. A computer is

viewed as a stationary robot with simple sensors such as for motion and speech. The aim

29

of this agent is to learn users’ routine by using machine learning techniques. The

proposed approach resembles somewhat to [30].

2.6 Path Prediction

Assume that a context-aware recommendation system producing recommendations in

accordance with the user’s context and interest is developed. Actually, the

recommendations are produced as alternatives to the user’s prearranged behaviour.

“Prearranged behaviour” means that generally actions of user are more prearranged in

real world compared to web applications. In other words, when a user moves from

current location to next location, actions of user in next location has been planed before

hand and instantly suggesting different alternatives to user will be useless since probably

they will not affect the user behaviour. As a result predicting the user’s next location

becomes important. If it is possible to predict the user’s next location in mobile

environment, the related recommendations can be produced beforehand, which also

becomes more valuable.

The problem of prediction of user movement in mobile environment is called as “path

prediction”. The mobile environment which is a plane is represented by constant nodes.

Motions of the mobile users are represented by transitions between these nodes. Firstly

the system is trained with the users’ motion history. After training process, current user’s

node or previous transitions are provided to system as an input, then the system predicts

user’s next node as an output.

Such approaches generally used to solve resource allocation problem in mobile network.

Mobile network is represented by base station, and each based station defines a cell.

Thus, a user’s movement can be represented by transitions between cells on the plane.

Predicting the probabilities that a mobile user will be active in other cells at future

moments poses a significant technical challenge to network resource management in

30

wireless environment. The probability information of users’ next cell can be used to

achieve maximum resource utilization.

In [35] an approach is proposed for prediction of user mobility profile. They propose a

novel adaptive fuzzy logic inference system to estimate and predict the probability

information for wireless communications networks. The estimation is based on

measured pilot signal strengths at the mobile user from a number of nearby base stations,

and the prediction is obtained using the recursive least square algorithm.

Another work on path prediction based on Learning Automaton is presented in [36]. The

learning automaton, based on a properly structured knowledge, assigns probability

values to the neighbourhoods of the currently visited cell. The highest probability

denotes the most likely to be visited cell. Two learning automatons, the global and per-

user, are used. Obviously first one accepts all mobile users’ path histories as training

input, and the other accepts per user’s path histories as training input. The output of two

algorithms is combined with a proper weight for prediction of user’s next cell.

In [37] path prediction is used to improve TCP performance in wireless network.

Proposal is based on stochastic datagram relocation. Traffic destined to the mobile

terminal is tunnelled to and cached into adjacent cells according to the output of a path

prediction algorithm. To reduce the associated overhead, only percentages of inbound

traffic are copied to the cell’s neighbourhood on the basis of estimated probabilities. The

time scheduling for datagram relocation is also taken into account.

We design a method combining approaches from three different field, which are

recommendation systems, context-awareness and path prediction. Our methodology,

which is based on FCM, stochastic learning automaton, UFDHC and generation of

recommendation respectively, is introduced in a detailed manner in Chapter 3.

31

CHAPTER 3

PROPOSED RECOMMENDATION SYSTEM

Through our survey the “web-based recommendation”, “context-awareness” and “path

prediction” were investigated respectively. Context-awareness and prediction in context

spaces are new for the recommendation task. We use in this thesis the Fuzzy C-Means

clustering and Stochastic Learning Automaton to handle context-awareness and

prediction. Also, Unsupervised Fuzzy Divisive Hierarchical Clustering method is used

to construct the users’ interest profile for ontological categories.

3.1 Overall Architecture

Block diagram of overall architecture is represented in Figure 3.1. The overall

architecture is denoted by two main part, which are offline and online parts. The

recommendation system proposed for the mobile domain consists of three sub parts,

which are “context-awareness”, “prediction of user’s motion” and “user profiling”. Each

sub part is represented by “Fuzzy C-means Clustering”, “PUA and GA” and “UFDHC”

in offline part respectively and the output of each part is used in online part. The online

part of the figure represents a live user experience.

Context-awareness means user’s context, which are contextual information such location

and time, is used in generation of recommendation. In other words, items/actions are

filtered through the user’s context, and then only those items/actions matching the user’s

context are recommended. Therefore each item should be defined by a context profile.

Firstly users’ actions have to be separated into subgroups (clusters) according to

closeness of their occurrence in the context space. We achieve this using Fuzzy C-means

32

Figure 3.1 Overall Architecture

33

Clustering (FCM). In Figure 3.1 all users’ actions are input to FCM and cluster centres

and membership degrees are outputs. Actions contained in a cluster are represented by a

single context profile which is the point called cluster centre. The context profile means

that the actions contained in the cluster can occur at any point of that class, which is

close to the cluster centres.

We consider all users move in a context space. If it is possible to predict the user’s

motion, the recommendation system can generate the recommendations previously, thus,

it will be more useful to recommend actions related to the users’ next status in the

context space. The task of the second part called “prediction of user’s motion” is to

predict the user’s motion in the context space. By means of cluster centre, the context

space is represented by fixed points, and then motions of any user are defined as

transitions between clusters. Therefore, we can predict the users’ transitions between

clusters beforehand. We use stochastic learning automaton (LA) for such estimation. To

train LA, we have two alternatives in Figure 3.1: offline and online training. In offline

training, LA (both per user and global automaton) is trained automatically using the

training sample data (this data is produced by synthetic data generator) stored previously

in database. In online training, training samples are provided manually via graphical user

interface on behalf of a selected user. The general training of LA is as follows. The

previous transition, which is represented by the previous cluster id and current cluster id,

of the user is input to LA. Outputs are transition probabilities from current cluster to

other clusters, each of them being candidate next cluster. To predict the next cluster

among all these candidates Roulette Wheel Selection algorithm is used, to select most

probable transition according to their probabilities of the candidates. Selected transition

represents the predicted next cluster. According to feedback received from the user, LA

adapts it self.

There exist heterogonous categories of items/action in the mobile domain. Therefore,

probably each user will have interest profile on those categories. Since user interest

profile is information showing the interest degrees of the user to each category, such

34

information should be exploited through generation of recommendations. To extract the

users’ profiles, we use Unsupervised Fuzzy Divisive Hierarchical Clustering (UFDHC).

In Figure 3.1 users’ access patterns to the categories are input to UFDHC and the output

of UFDHC is binary tree of the clusters. Each cluster is identified by a profile which

summarizes the categorical preferences of the users strongly belonging to the cluster.

The online part of Figure 3.1 represents a live user experience. In the online part the

outputs of FCM, LA and UFDHC are exploited to generate recommendation for the user

placed at the upper right-hand corner of the figure. According to the user’s previous and

current clusters (previous transition), LA predicts the user’s next cluster (next

transition). The recommendations are generated based on two data: next cluster id

predicted by LA and the user’s profile retrieved from binary tree produced by UFDHC.

The user’s profile consists of percentage of contribution degree of each category.

Among the categories comprising the user’s profile, three categories are determined by

Roulette Wheel. The higher percentage of contribution degree the categories have, the

more chances to be selected they have. Therefore, the recommendation set presented to

the user consists of those actions, which are included in one of three categories and

being member of the predicted next cluster. According to response (feedback) received

from the user, the system adapt it self. Firstly, whether the user has moved to predicted

cluster or not is evaluated by LA. If the predicted cluster is true, then the feedback is

treated as positive, otherwise the feedback treated as negative. Secondly, the user’s

access pattern is updated according to action selected by the user, and recommendation

process terminates.

3.2 Fuzzy C Means Clustering for Context-Awareness

We assume that contexts consist of three attributes: x coordinate, y coordinate and time.

These three attribute constitute a context space with three dimensions. Also all actions of

the mobile users are located in the context space. Actions of a mobile user can be

defined as daily activities, for example, going restaurants, shopping centres, cinemas,

35

historical place … etc. Here, we assume that all users are tractable in the context space.

When a user does an action, raw data related to this action is illustrated below.

User 1 went Restaurant 1 at 12:35 on Friday.

User 1 went Cinema 1 at 18:35 on Friday.

User 1 went Bar 1 at 00:35 on Saturday.

User 2 went Shopping Centre 1 at 18:35.

Above we see Restaurant 1, Cinema 1...etc, and each of them refers to occurrence of a

specific action. These raw data is stored in following form (Figure 3.2):

Figure 3.2 Structural representation of user action. Coordinate X and Y refer to a point

where action is done.

Firstly, action histories of all users are retrieved from database as raw data then they are

converted into vector form. Finally, the vector set obtained from conversion is accepted

as training dataset by Fuzzy C-Means (FCM) algorithm. Block diagram of FCM is

represented in Figure 3.3.

Figure 3.3 Flow chart of FCM

36

Clustering is a method for dividing scattered groups of data into several groups. It is

commonly viewed as an instance of unsupervised learning. The grouping of patterns is

then accomplished through the clustering by defining and quantifying similarities

between the individual data points or patterns. The patterns that are similar to the highest

extent are assigned to the same cluster. Clustering analysis is based on partitioning a

collection of data points into a number of subgroups, where the objects inside a cluster

(a subgroup) show a certain degree of closeness or similarity [38].

Fuzzy c-means [39] is a method of clustering which allows one piece of data to belong

to two or more clusters. It is based on minimization of the following objective function:

∑∑
=

−=
N

i

C

j
ji

m
ijm cauJ

1

2
, ∞<≤ m1 (Eq. 3.1)

where m is any real number greater than 1, iju is the degree of membership of ia in the

cluster j , ia is ith of 3-dimensional(x, y and time) action sample, jc is the centre of

the cluster, and * is any norm expressing the similarity between any measured data and

the centre. Fuzzy partitioning is carried out through an iterative optimization of the

objective function shown above, with the update of membership iju and the cluster

centres jc by:

,1

1

1
2

∑
=

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
=

C

k

m

ki

ji

ij

ca

ca
u (Eq. 3.2)

,
.

1

1

∑

∑

=

== N

i

m
ij

N

i
i

m
ij

i

u

au
c (Eq. 3.3)

37

This iteration will stop when () (){ }1max ,ij
k k

ij iju u ε+ <− where ε is a termination

criterion between 0 and 1, whereas k is the iteration steps. This procedure converges to a

local minimum or a saddle point of mJ .

The algorithm is composed of the following steps:

1. Initialize ijU u⎡ ⎤= ⎣ ⎦ matrix,)0(U

2. At k-step: calculate the centres vectors ()k
jC c⎡ ⎤= ⎣ ⎦ with)(kU

3. Update)(kU ,)1(+kU

4. If ε<−+)()1(kk UU then stop; otherwise return to step 2.

The outputs of FCM are the matrices C and U . There exists a row for each ia in U

and each element in ith row represents to membership degree to each cluster. More

semantically, each element of C is a point representing an action density in the context

space and each action ia is a member of each cluster with a membership degree iju .

Figure 3.4, which is generated by our simulator of which details are found in Chapter 4,

shows a cluster and the actions which is a member of this cluster with the highest

membership degree.

Ones the matrices C and U are created, membership degrees to each cluster can be

calculated for any user moving in the context space. Then, for example it is possible to

say that any user is a member of that cluster having highest membership degree in

context space and actions being member of that cluster are possible activities. Hence, in

recommendation process, the recommendation can be produced for only those actions.

In Figure 3.5 a user with highest membership is showed.

38

Figure 3.4 A cluster example generated by the simulator. On the figure big yellow point

(14 Day: 5 Time:17:48 XY: 1637-440) represents a cluster centre. It means that actions

become denser on those places marked with small yellow point, in the neighbourhood of

cluster centre representing day: Saturday time: 17:48 XY: 1637-440.

Figure 3.5 A cluster example generated by the simulator. On the figure User 1 placed on

a point (Day:5 Time: 21:02 XY:1631-411) with 0.86 membership degree to cluster14.

Small yellow points constitute possible alternatives for User 1.

User1 with Membership 0,86.
Day5 Time: 21:02
XY:1631-411

39

Note that it is possible to produce recommendation instantly as mentioned above. But

our aim is to produce recommendation beforehand. If it is possible to predict the user’s

current cluster in the context space way before its occurrence, the produced

recommendations will be more valuable.

3.3 Learning Automaton for Prediction in the Context Space

In section 2.6 a detailed investigation is given on path prediction applications.

Remember that mobile network is represented by cells and a user’s movement is

represented by transitions between cells on the plane. Similarly, the context space is

represented by fixed nodes, that are clusters, and a user’s motion can be represented by

transitions between clusters in the context space. Thus, it is possible to adopt the same

algorithms used in path prediction.

For prediction task “Stochastic Learning Automaton” used in [36] is adopted in our case.

Stochastic Learning Automaton is finite state adaptive systems that interact continuously

in an iterative fashion with the environment. As a result of FCM whole context space is

represented by fixed points called cluster centres, and then movement of any user can be

represented by transitions between cluster centres. The transitions between cluster

centres are considered as a finite number of states mentioned above.

An automaton is a machine or control mechanism designed to automatically follow a

predetermined sequence of operations. The term stochastic emphasizes the adaptive

nature of the automaton we describe here. The automaton described here does not follow

predetermined rules, but adapts to changes in its environment. This adaptation is the

result of the learning process. Learning is defined as any permanent change in behavior

as a result of past experience, and a learning system should therefore have the ability to

improve its behavior with time, toward a final goal. In a purely mathematical context,

the goal of a learning system is the optimization of a functional not known explicitly.

40

The stochastic automaton attempts a solution of the problem without any information on

the optimal action (initially, equal probabilities are attached to all the actions). Initially,

an input is provided to the automaton from the environment. This input triggers Roulette

Wheel Selection, and Roulette Wheel selects one of a finite number of candidate

responses, which are possible transitions, from the automaton. Once transition is

selected, the response from the environment is observed, action probabilities are updated

based on that response, and the procedure is repeated. Through a probabilistic, trial-and-

error response process they learn to choose or adapt to a behaviour which generates the

best response.

The simplest selection scheme is roulette-wheel selection, also called stochastic

sampling with replacement [42]. This is a stochastic algorithm and involves the

following technique. The individuals (candidate transitions) are mapped to contiguous

segments of a line, such that each individual’s segment is equal in size to its probability.

A random number is generated and the individual whose segment spans the random

number is selected. The higher probability the individuals have, the more chances to be

selected they have.

Stochastic Learning Automata are generally considered as robust but not being very

efficient learners. They are relatively easy to implement. Generally, the operation of the

learning automaton is based on a state transition matrix, which contains the one-step

transition probabilities ijP from the current state i to the next state j . Different

approaches have been proposed for the updating of the state transition matrix after the

reception of environment feedback. In this paper we adopt the behaviour of a Linear

Reward-Penalty (LR-P) Scheme. When the automaton selects the right response, the

positive feedback received by the environment causes the respective state transition to

be “rewarded” (i.e., its probability is increased by some pre-arranged step) while the

probabilities of the state transitions that were not selected (remaining transitions from

the same state) are “penalized” (decreased) uniformly to keep the probability sum to 1. If

the proposed response is not appropriate (i.e., a negative feedback was received from

41

environment) a reverse approach is followed; the probability value of the selected

transition is “penalized”, while the remaining transitions are evenly rewarded to balance

the decrease. This behaviour is shown in (Eq. 3.4 and Eq. 3.5):

Transition)(ji → received positive feedback:

)1(ijijij PwPP −+= and jkwPP ikik ≠−=),1((Eq. 3.4)

Transition)(ji → received negative feedback:

)1(ijijij PwPP −′−= and jkwPP ikik ≠′+=),1((Eq. 3.5)

In (Eq. 3.4 and Eq. 3.5), w denotes the rewarding step while w denotes the penalizing

step. Those two values may be equal or different. Upon invocation, the automaton

selects, as candidate future state, the state with the highest probability. After consecutive

interactions with the environment, some state transitions will have probabilities close to

1 while others will have near-zero values (convergence).

Two learning automata are exploited. One called per-user automaton (PUA) uses only

the per-user recorded information and other called global automaton (GA) uses the

information of all users. Structural representation of PUA and GA are shown in Figure

3.6 and Figure 3.7 respectively.

Figure 3.6 Structural representation of PUA.

Whenever a prediction is requested for User ID (User ID is not needed for GA),

Previous Cluster ID and Current Cluster ID, probabilities for each next are provided. If

42

no appropriate state transitions were found then a new entry is fed into the database. If

the automaton decision is correct (positive feedback) then the entry field that contributed

to this decision is rewarded while the probability values of the remaining fields are

reduced (penalized) as discussed.

Figure 3.7 Structural representation of GA.

Two learning automata, the Global (GA) and the Per-User (PUA), operate

simultaneously on top of two itinerary databases which have the layouts shown in Figure

3.6 and Figure 3.7 respectively, for some specific user. The set of entries in Figure 3.7,

show the probabilities for specific cluster crossings (i.e., Previous Cluster - Current

Cluster - Future Cluster), for all users covered by the system.

Block diagram of PUA and GA is presented in Figure 3.8. When a prediction is

requested, for a specific user, both automata (per-user and global) are consulted. The

adopted scheme of combining the outcomes of both automata is termed Weighted

Automaton (WA). The WA practically, combines the per-cell probabilities returned by

the two automata using predefined weights. (Eq. 3.6) shows the calculation performed

by WA. The reward/penalize procedure is applied independently to the PUA and the

GA. Figure 3.9 shows a demo scenario for prediction in the context space.

(, , ,)
. (, ,) (1). (, , ,),

WA previous current next userID
a GA previous current next a PUA previous current next userID

=
+ −

 (Eq. 3.6)

where a is a weight.

43

Figure 3.8 Flow chart of PUA and GA

44

.

Figure 3.9 Prediction in the context space.

Firstly the clusters have been constructed and the context space has been represented by

the clusters. As a second step learning automaton algorithm has run and prediction of

users transition has been obtained. Now the remaining step is to implement a user

profiling method.

3.4 Unsupervised Fuzzy Divisive Hierarchical Clustering for User
Profiling

Throughout Sections 3.1 and 3.2, we have dealt with context-awareness and motion

prediction. Consider a user whose next status (context) has been predicted accurately.

Context-awareness selects the set of actions that fits the user next context. But not all of

actions included in this set satisfy the user’s interest. A subset of actions satisfying the

user interest should be derived from this set through the user profiling. Generally, user

profiling can be defined as learning of user preference or deduction of users’ profiles

from historical data about the users’ behaviours.

Previous Cluster

Current Cluster

Next P1=0

Next P2=0,029

Next P3=0,971

45

The approach proposed in [19] will be adopted to build users’ profiles. The proposed

approach is called as Unsupervised Fuzzy Divisive Hierarchical Clustering (UFDHC). In

that mentioned reference, authors apply this method on a web site consisting of many

ontological categories. Each user is represented by the number of access to each

category. Access log data are input to UFDHC. The output of UFDHC is a binary tree of

user groups characterized by a set of common interests and represented by a prototype,

which corresponds to the profile of the users of the group. We use the same approach for

profiling. Similarly, the access logs to each category are stored for each user, and they

are used as input. The output is the binary tree of the users’ profiles (or user clusters)

representing the interest degree to each category in the mobile domain. Block diagram of

UFDHC is represented in Figure 3.10.

Figure 3.10 Flow chart of UFDHC

Let []kX x= be the vector of N users. Each user represented as a vector

,1 ,,...,k k k Mx x x⎡ ⎤= ⎣ ⎦ in the space Mℜ of the M categories. The coordinates of each vector

correspond to the number of access to each category. In [19], they observe that, in the

web oriented profiling perspective, the behaviour of a user is more accurately described

by the relative orientation of the vector rather than its magnitude. Indeed, two users who

access the same topics with the same relative percentage, though a different number of

times, can be considered as samples of same behavioural profile. This observation leads

them to state that the more similar two users, the higher the value of the cosine of the

angle α formed by the corresponding vectors is. Since the coordinates of ,k jx of each

46

vector kx vary on positive values, the cosine can assume only values in[]0,1 . Thus, they

define dissimilarity (,)c
i jd x x between two users ix and jx as

 (,) 1 cos(),c
i jd x x α= − (Eq. 3.7)

where (,)c
i jd x x is the cosine distance, and

2 2

.
cos() ,

.
k j

k j

x x
x x

α = with
2

. the Euclidean norm, (Eq. 3.8)

is the cosine of angle formed by ix and jx . To speed up the computation, the users’

access pattern vectors are normalized.

The UFDHC method is a fuzzy divisive hierarchical method, that is, it determines a

structure in the data in the form of a binary tree by firstly detecting large clusters and

then splitting them as much as necessary to generate a final objective classification. A

decomposition criterion ensures that only real clusters are included in the hierarchy and

consequently, determines the optimal number of clusters in data.

Let A be a fuzzy cluster over dataset []kX x= and { }1 2,P A A= a binary fuzzy

partition of A . It is assumed that P describes real clusters if the following conditions are

satisfied.

Firstly, there exist at least N users (unlike only 1 in the original version of UFDHC),

with N generally much smaller than the total number of users, with membership degree

to either 1A and 2A higher than a prefixed threshold σ , with 0.5σ> (unlike equal to

0.5 in original version of UFDHC).

47

Secondly, if the polarization degree ()R P is larger than t, where [[0.5,1t∈ is an

appropriate threshold ()kA x , 1()kA x and 2 ()kA x are memberships to fuzzy clusters

A , 1A and 2A , respectively.

1 2max((), ())
()

()

k k
x X

k
x X

A x A x
R P

A x
∈

∈

=
∑

∑
 (Eq. 3.9)

()R P is associated with the presence of cluster structure in the data. The higher

polarization degree, the better the quality of the partition is. The extreme degrees

() 0.5R P = and () 1R P = correspond to no structure in A and complete separation

between the two classes 1A and 2A , respectively.

The value of threshold t is a critical application dependent parameter. The value of t

must be fixed taking into account the degree of fuzziness of the dataset being

considered. High values of t allow us to discover cluster structure in (nearly) crisp

datasets. On the contrary, low values of t allow us to correctly partition (more or less)

fuzzy datasets. In particular, too high value of t may not identify any real cluster

structure with a high fuzziness degree; whereas a too low value of t may produce false

partitions (i.e. not corresponding to a real clusters).

To determine binary partition { }1 2,P A A= of a given set A at each level of hierarchy,

the modified UFDHC algorithm uses generalised version, denoted Generalized Fuzzy C-

Means (GFCM) algorithm, of the well-known Fuzzy C-Means (FCM) proposed by

Bezdek [39]. In GFCM, the constraint

1
() 1

C

ki
i

A x
=

=∑ (Eq. 3.10)

48

where C is number of clusters, imposed by FCM is replaced by

1
() ()

C

k ki
i

A x A x
=

=∑ , with 0 () 1.kA x≤ ≤ (Eq. 3.11)

In order to obtain the fuzzy partition P of fuzzy class A we assume that fuzzy class iA

is represented by a prototype iv , which, in our case, is a point on the hypersphere with

unitary radius in Mℜ . Dissimilarity (,)k iD x v between the point kx and prototype iv is

defined as the squared cosine distance with respect to the fuzzy class iA as follows:

2

2

(,) min((), ()) . (,)

(()) . (,)

m c
k i k k k ki i

m c
k k ki

D x v A x A v d x v

A x d x v

=

=
with [1,)m∈ ∞ . (Eq. 3.12)

The error (,)J P V made in representing the fuzzy partition P by the set 1[,...,]CV v v=

is defined as

1 1

(,) (,),
N C

k i
k i

J P V D x v
= =

=∑∑ (Eq. 3.13)

where N is the optimal number of points. The optimal fuzzy partition of A and its

representation V are obtained as a minimum of criterion function (,)J P V . Therefore, an

iterative method based on minimization of the functions (,)J P ⋅ and (,)J V⋅ is used. To

minimize (,)J P ⋅ , Lagrange multiplier method is applied with the constraint denoted by

(Eq. 3.11), and the following formula is obtained:

2
1

1

()()
(,)
(,)

k
ki

c mC
k i

c
j k j

A xA x
d x v
d x v

−

=

=
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

 (Eq. 3.14)

49

To minimize (,)J V⋅ , Lagrange multiplier method is applied again with the following

constraint,

2
,

1
1

M

i f
f

v
=

=∑ (Eq. 3.15)

and the following formula is obtained:

1
2

1 1

(())

(())

N
m

k kf
k

if
M N

m
k kt

t k

A x x
v

A x x

=

= =

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑ ∑
 (Eq. 3.16)

The iterative process starts with an arbitrary partition of P , then (Eq. 3.15) and (Eq.

3.16) are used iteratively. The process stops when two successive partitions are close

enough. It can be noted that if A X= then GFCM becomes the FCM.

The GFCM algorithm starts from the computation of an arbitrary fuzzy partition

{ }1 2,P A A= of the dataset X . If the partition P does not satisfies the two conditions

1. and 2., the two fuzzy sets 1A and 2A do not describe real clusters. It means that

there is no cluster structure in X and the data, therefore, comprise a single cluster. The

process then ends. Otherwise, a binary partition for each of the two cluster of P is

computed. If the binary partition of a cluster does not represent real sub-clusters then the

cluster is marked to avoid subsequent attempts to split it. When no partition can be

generated, the procedure terminates.

The choice of the value of σ on the membership values and N on the number of users

in first condition, and the choice of threshold t on the polarization degree used in second

condition can not leave the value of fuzzification constant m out of consideration.

Constant m determines the degree of fuzziness of the partition: the closer m is to 1, the

50

crisper the partition is. Indeed, if 1m → , the membership degrees of any pattern to any

cluster tend to be either 0 or 1. On the other hand, if m →∞ the membership degrees of

any pattern to any cluster tent to be equal to1 C , thus producing highest level of

fuzziness. Thus, if the GFCM with m close to 1 is executed, very crisp partition

characterized by a high polarization degree is expected. In such case, to avoid the

generation of too high number of partitions, threshold t and σ , and N can not be

chosen too low.

Once the binary tree is produced, any user represented by kx can be classified using the

following method. The current node, and the left and the right children of current node

are represented as CN, LN and RN, respectively. Let A , lA and rA be the clusters

contained, respectively, in CN, LN and RN.

1. Fix a real value []0.5,1η ∈ . Initialize CN to the root of the binary tree.

2. If there exist the left child node LN and right child node RN of the current node CN,

then compute the membership degrees ()klA x and ()krA x of the user kx to the two

cluster using (Eq. 3.15); otherwise classify user kx as belonging to A and terminate.

3. If ()klA x is larger than η , then assign LN to CN and go to step 2;

4. If ()krA x is larger than η , then assign RN to CN and go to step 2;

5. If neither ()klA x nor ()krA x are larger thanη , then classify user kx as belonging to

A and terminate. If the current node is root, then user kx is judged to be not

classifiable.

Each cluster is identified by a profile which summarizes the ontological preferences of

the users strongly belonging to the cluster. In general, in each profile, only a restricted of

categories has a relevant number of accesses. This set constitutes the fingerprint of the

profile and identifies the interests shared by the members strongly belonging to the

cluster. To highlight the fingerprint, the profile is presented as follows: first, iv is

51

transformed into 2 2
1100 ,...,100i i iMv v v⎡ ⎤= ⋅ ⋅⎢ ⎥⎣ ⎦ . Each component i jv represents the

percentage of contribution of category j on the user preference. Consequently, in

recommendation, the actions included in category with higher contribution are taken into

account.

The implementation medium of the proposed architecture for the recommendation

system will be introduced in Chapter 4.

52

CHAPTER 4

DESIGN AND IMPLEMENTATION

In this chapter, the design and implementation of the approach proposed in Chapter 3 is

introduced with all its practical details. The component diagram of simulator is shown in

Figure 4.1.

Figure 4.1 Component diagram

In Figure 4.1 all modules except FCM and Database Access Matlab 7 modules were

developed with C# .net. FCM and Database Access Matlab 7 modules were developed

53

with Matlab 7.0 Release 14. Two database access modules, which are Database Access

C# .net and Database Access Matlab 7.0, exist. These modules are used by others to

communicate with database. The remaining modules represent the business logic layer

and respective Graphical User Interface (GUI). The details of each component are given

in following sections.

4.1 Database

The simulator works on a database which is a MS SQL Server 2000. All data produced

and used are stored on a single database named USERS_ACTIONS_DB. The diagram of

the database is provided in Figure 4.2. The task of each table is defined as follows.

T_Clustering_Result, T_Cluster_Centers, T_Cluster_Action_Membership and

T_Cluster_Action tables are used by FCM to store the outputs. The T_Clustering_Result

table stores a result id for output set from each run of FCM module. The points

representing the cluster centres are stored in the T_Cluster_Centers table. The

T_Cluster_Action_Membership stores the membership degrees for action histories. The

T_Cluster_Action stores members, which are actions, of each cluster.

T_Users, T_Action_History, T_Action and T_Category tables store data related to

actions and users. All users are stored in the T_Users table. The T_Action_History table

stores action histories of each user. The actions placed on the map are stored in the

T_Action table. All categories defining the actions are stored in the T_Category table.

T_Peruser_Probability and T_Global_Probability tables are used by per user and global

automaton to store per user and global probabilities respectively.

T_Time_Point, T_Time_Profile and T_Time_Point_Profile tables store biases used by

automatic simulated data generator. The details of automatic simulated data generator

are given in section 5.1. The points defined on time dimension are stored in the

54

Figure 4.2 Database diagram

T_Time_Point table. The time profiles defined for each action are stored in the

T_Time_Profiles table. The time points defining each time profile are stored in the

T_Time_Point_Profile table.

T_Users_Category, T_User_Hier_Cluster, T_Hier_Cluster and T_Hier_Clus_Category

tables store input and output of UFDHC. For each user, the T_Users_Category table

55

stores the number of access to each category, which is input to UFDHC. The

T_User_Hier_Cluster table stores the members of each cluster produced by UFDHC.

Each row of the T_Hier_Cluster defines a cluster and its place in the hierarchical tree.

The contribution degree of each category on each cluster profile is stored in

T_Hier_Clus_Category table.

4.2 Map Design Module and GUI

Map design interface, a windows form based user friendly GUI, was developed with C#

.net. GUI adopts a map as a layout. It is the map of the Bosphorus gaining the sides of

Eminönü, Fatih and Beyoğlu of Istanbul. The screen shot of GUI is provided in Figure

4.3.

Figure 4.3 Screen Shot of Map Design Graphical User Interface

56

The functions of GUI are as follows:

• It allows to design of action (places) on map dynamically (It is possible to

rearrange the place located on map by adding and deleting functionalities).

• It allows creating new action categories (also deleting and updating

functionalities are provided).

4.3 Manual Simulated Data Generator Module and GUI

Simulated data generator interface, a windows form based user friendly GUI, was

developed with C# .net. GUI adopts a map as a layout and shows the action designed

with map design interface. The screen shot of GUI is provided in Figure 4.4.

Figure 4.4 Screen Shot of Manual Simulated Data Generator Graphical User Interface

57

The functions of GUI are as follows:

• It allows user to manually produce synthetic data by clicking actions on the map

and stores them into database.

• It allows adding a new simulated user and deleting old users.

• Also GUI of learning automaton train was placed on this GUI.

4.4 Automatic Simulated Data Generator Module and GUI

Automatic simulated data generator interface, a windows form based user friendly GUI,

was developed with C# .net. The screen shot of GUI is provided in Figure 4.5. The

inputs of this module are:

• Variance: determines the size of neighbourhood of time point.

• User count: the number of users selected randomly by generator to produce

simulated data on behalf of them.

Figure 4.5 Screen Shot of Automatic Simulated Data Generator Graphical User

Interface

4.5 FCM

FCM (fuzzy c means) module was developed with Matlab 7.0 Release 14. FCM function

of Fuzzy Logic Toolbox was used. It gets the all users’ action from database, produces C

and U, and then stores them into database. The inputs of this module are:

58

• Data set to be clustered; each row is a sample data point(user action)

• Number of clusters (greater than one)

The outputs of this function are:

• Matrix of final cluster (in section 3.1 it is called C) centres where each row

provides the centre coordinates

• Final fuzzy partition matrix (or membership function matrix, in section 3.1 it is

called U)

• Values of the objective function during iterations

Function uses an additional argument variable, options, to control clustering parameters,

introduce a stopping criterion, and/or set the iteration information display.

• options(1): exponent for the partition matrix U (default: 2.0)

• options(2): maximum number of iterations (default: 100)

• options(3): minimum amount of improvement (default: 1e-5)

• options(4): info display during iteration (default: 1)

4.6 GA and PUA Modules and GUI

GA (Global Automaton) and PUA (Per-User Automaton) modules were developed with

C# .net. They gets cluster centres produced by FCM from database, and assign them to

the users’ actions to construct the user transitions between cluster centres. Then train the

GA and PUA. The screen shot of GUI is provided in Figure 4.6. The inputs of this

module are:

• Penalty weight which determines contribution degree of the negative feedback

received from the user.

59

• Reward weight which determines contribution degree of the positive feedback

received from the user.

• PUA and GA weight which determines contribution degrees of per user

probabilities and global probabilities in prediction.

• Cluster centre set which represents the context space.

Figure 4.6 Screen Shot of PUA and GA Graphical User Interface

The outputs of this function are probability values assigned to each possible transition

between the cluster centres.

4.7 Recommendation Module and GUI

This GUI, a windows form based user friendly GUI, was developed with C# .net. It was

designed to see visually and instantly whether developed modules work correctly. Two

windows forms are presented to user. One (Figure 4.7) allows the user to select a cluster

centre, and the other (Figure 4.8) allows the user to see recommended actions and select

an action related to selected cluster.

On the lower left-hand side of Figure 4.7, we see four labels which represent previous

cluster id, current cluster id, predicted cluster id and selected cluster id respectively. The

60

previous and current cluster id represent the user’s previous transition and the

coordinates of those cluster centres. The predicted cluster id shows the next cluster id

predicted by LA according to the previous and current cluster id. Also, the coordinates

of this cluster id and its transition from the current cluster id to the predicted cluster id

probabilities for PUA and GA are given. The selected cluster id shows the next cluster

selected by the user. Also, the coordinates of this cluster id and its transition

Figure 4.7 Screen Shot of Recommendation Graphical User Interface1

probabilities from the current cluster id to the selected cluster id for PUA and GA are

given.

On the upper left-hand side of Figure 4.7, we see a data grid control called

T_Cluster_Centers Table Entries. It allows the user to select his/her next cluster id,

which is next transition, via clicking on the rows manually. According to his/her

selection, the label showing the selected cluster id changes its status automatically.

61

On the right-hand side of Figure 4.7, we see four labels which represent user profile,

selected categories, profile hierarchy and recommended actions respectively. The user

profile label shows the profile of the cluster, which the user is a member of, which is

produced by UFDHC. Each row of the profile shows the percentage of contribution of

each category on the user preference. The selected categories label represents the

categories selected by Roulette Wheel Selection algorithm according to the percentage

of contribution of each category. The profile hierarchy label represents the user id and

the layer in the hierarchical tree. For example, the root: 0 child 1 defines that this profile

is a child of root cluster. The recommended action label represents the recommended

actions which is included in one of the categories given in selected categories label.

According to the user’s selection in Figure 4.7, the recommendations to the user are

shown graphically in Figure 4.8.

Figure 4.8 Screen Shot of Recommendation Graphical User Interface2

62

The points represent the action included in the selected cluster. But only the green points

are the recommended actions matching the user profile. When the user clicks on one of

the actions defined by the points on the map, that action is implemented by that user.

Thereupon second click on the map, the GUI given in Figure 4.7 is presented to the user

again. The inputs of this module are:

• Penalty weight which determines contribution degree of the negative feedback

received from the user.

• Reward weight which determines contribution degree of the positive feedback

received from the user.

• PUA and GA weight which determines contribution degrees of per user

probabilities and global probabilities in prediction.

• Cluster results which represent the context space.

• Users who run the demo.

4.8 UFDHC Module and GUI

UFDHC module was developed with C# .net. It produces binary tree of the users’

profile. A GUI (Figure 4.9) allows setting the manual inputs.

Figure 4.9 Screen Shot of UFDHC Graphical User Interface

63

The inputs of this module are:

• MS Degree (sigma): a prefixed threshold σ with 0.5σ> restricting the number

of the user included in each cluster of the binary tree produced by UFDHC.

• Power (m): m determines the degree of fuzziness of the binary partition.

• Min Clus Size (N): at least N users have to exist in each cluster.

• Polarization (t): a prefixed threshold with [[0.5,1t∈ . The polarization degree of

each binary partition in the tree have to be larger than binary t .

The output of this module is a binary tree of the profiles.

4.9 Show FCM Result Module and GUI

This GUI, a windows form based user friendly GUI, was developed with C# .net. It

allows the seeing the results of FCM on a map visually. The screen shot of the GUI is

presented in Figure 4.10. The inputs of this module are:

• Results: Cluster result set which represents the context space.

• Centers: Cluster centres of the selected cluster result set.

• Show Cluster option: if this option is checked, the cluster centre selected from

the Centers list box will be shown on the upper left-hand side of the map. If the

user clicks on map upon appearance of the cluster centre, a colour dialog box is

provided. All actions belonging to the cluster centre are highlighted with selected

colour from colour dialog box.

• Show Member option: if this option is checked, according to point’s coordinates

defined by user click on the map and time defined by timer, the membership

degrees of that point to each cluster centre will be listed in Membership to each

cluster list box.

• Timer: defines the time flow while the user is clicking on the map.

64

Figure 4.10 Screen Shot of Show FCM Results Graphical User Interface

4.10 Design Time Profiles Modules and GUI

This GUI, a windows form based user friendly GUI, was developed with C# .net. It

allows the assign biases (designing time profiles) to action for generation of simulated

data. The screen shot of the GUI is presented in Figure 4.11.

The GUI provides four data grid controls, which are T_Time_Point Table Entries,

T_Time_Profile Table Entries, T_Time_Profile_Point Table Entries and T_Action Table

Entries. T_Time_Point Table Entries shows the time points stored in T_Time_Point

table in the database. The Add and Delete buttons given on the left-hand side allow the

user adding and deleting rows.

65

Figure 4.11 Screen Shot of Design Time Profile Graphical User Interface

T_Time_Profile Table Entries shows the time profiles stored in T_Time_Profile table.

The Add button allows the user to define a new profile. The Delete button allows the

user to delete a selected profile.

T_Time_Profile_Point Table Entries shows the points assigned to the time profile from

T_Time_Profile Table Entries data grid, thereupon clicking the Retrieve button. Any

time point from T_Time_Point Table Entries can be assigned to any time profile from

T_Time_Profile Table Entries by clicking Add button. On other hand, a time point

assigned to any time point can be deleted by clicking Delete button.

T_Action Table Entries lists all action stored in T_Action table. The time profiles of

each action can be updated to a selected time profile clicking on Update button.

66

4.11 Database Access Module .net and Database Access Module Matlab 7

Database Access Module .net, a Windows DLL, was developed with C# .net. PUA, GA,

Simulated Data Generator Interface, Map Design Interface and Test Interface use this

DLL for any database operation (update, delete, insert and select). Data Access Module

Matlab 7, consisting of several m-file, was developed with Matlab 7.0 Release 14. FCM

module uses this module for any database operation (update, delete, insert and select).

67

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Simulated Data Generator

To test the proposed recommendation architecture generated in this thesis, we use

simulated data since any real data is not available. A simulated data generator module

was developed to produce the test dataset. Two options are provided to generate data:

one is that the data can be produced manually via clicking on a visual map, and the latter

is that the data can be generated automatically with some predefined biases and

randomness. We direct the reader to play with the demo copy of our architecture,

provided in the enclosed CD.

In the manual process of data generation, a graphical user interface (GUI) is provided.

Figure 4.4 shows screen shot of the GUI. All actions are presented with a point on a map

visually. Also, some controls showing the flow of time through the days are placed on

the GUI. When clicking an action on the map, the action is stored in the database as an

action history row on behalf of the selected user. In this way, simulated data can be

generated one by one according to the user clicking on the map.

Also, it is possible to generate simulated data in an automatic manner. Automatic

generation of simulated data has an advantage that thousands rows of data can be

generated in several minutes. Automatic generation process is based on some

randomness and biases. The biases are used to make the results of FCM and LA more

meaningful. The biases are only defined on the time dimension of the context space as

follows. Remember that the cluster centres, which are results of FCM, define context

profiles for their members. Consider a case that simulated data is generated in a purely

random manner: at randomly selected time, a randomly selected action is implemented

68

by a randomly selected user, and then all action samples will be distributed on the time

dimension randomly. Therefore, the time profile of the cluster centres will be

unreasonable. For example, visiting a historical place can be defined by an unreasonable

context profile like “on Sunday at 02:00 am” or going a bar can be defined by an

unreasonable context profile like “on Monday at 08:00 am”. To remove the possibility

of such unreasonable results, we use some predefined biases, which are predefined

context profile (time profile) on the time dimension for each action. A time profile for an

action consists of points on a one week timeframe, and each point means that this action

can occur in predefined neighbourhood of this point. The size of the neighbourhood is

configured manually, before the generation of simulated data. In Table 5.1, an example

of a time profile assigned to an action is shown.

Table 5.1 An example of a time profile

No Day Hour Minute

1 Monday 12 00

2 Monday 13 20

3 Tuesday 12 00

4 Tuesday 18 15

5 Wednesday 13 20

6 Wednesday 18 15

7 Thursday 16 6

8 Friday 17 52

9 Saturday 15 51

10 Sunday 12 28

The data generator works as follows. It progresses on time points defining the time

profiles for actions, respectively, as the times goes throughout a week. At each point, the

actions defined on that point are query from database, and then a user is selected

randomly from a user subset and assigned to each action. Note that only a subset of users

is used. Before running the generator, the size of this subset is determined. The size of

69

this subset determines the density of action occurrences per user along a week. Namely,

the larger the size of the user subset is, the sparser action occurrences per user in the

dataset are. The users included in this subset are selected randomly from all users set.

The screen shot of automatic simulated data generator is presented in Figure 4.5.

5.2 The Test Results of the Proposed Approach

5.2.1 Fuzzy C-Means Clustering

The details of the FCM have been given in Section 3.1. 21485 rows of dataset have been

produced by automatic simulated data generator, and each row refers to an action

occurring in the context space. Remember that each sample is represented by a three

dimensional vector: x, y and t. The scale of x and y is determined by the width and

height of a map used to place the actions respectively. The map is a 2409x2143 pixel

image representing a particular part of a city, more precisely the Eminönü, Fatih and

Beyoğlu areas of Istanbul. The location of an action placed on this map is represented by

a pair of pixel index (x, y). Thus, the scales of dimensions x and y on the context space

are restricted by [0, 2409] and [0, 2143], respectively. Similarly, the dimension t is

represented with one week and restricted by a scale with [0, 2500x7]. Thus, an

occurrence of any action represented by day, hour and minute corresponds to a point in

the interval [0, 2500x7]. It is expected that when the context space is separated into 7

clusters, each day of week will corresponds to only one cluster centre.

The dataset with 21485 rows is input to data set with following settings: “max. number

of iteration”=100, “exponent for membership the matrix U”=2, “number of the

clusters”= 7. Results are shown in Table 5.2. The FCM assign one cluster to per day. For

weekday, the cluster centres occurs nearly at the same point on each day.

The results of FCM using the same input dataset with “number of the clusters”= 14 are

shown in Table 5.3. Generally, each day is represented by two clusters which are placed

70

different location on X and Y. Also note that, on Monday, Tuesday and Wednesday, t

coordinate of two cluster centres are placed close together.

Table 5.2 Results of the FCM with following setting: “max. number of iteration”=100,

“exponent for membership the matrix U”=2, “number of the clusters”= 7, “scale of

t”=[0, 2500x7].

No X Y Day Hour Minute Number of Members

1 1149 883 Monday 14 57 128
2 1153 837 Tuesday 15 6 112
3 1061 895 Wednesday 15 55 112
4 1080 906 Thursday 16 6 112
5 1118 876 Friday 17 52 112
6 963 1138 Saturday 15 51 116
7 894 1143 Sunday 12 28 66

Table 5.3 Results of the FCM with following setting: “max. number of iteration”=100,

“exponent for membership the matrix U”=2, “number of the clusters”= 14, “scale of

t”=[0, 2500x7].

No X Y Day Hour Minute Number of Members
1 1585 382 Monday 15 32 54
2 801 1304 Monday 14 58 74
3 1576 394 Tuesday 16 18 50
4 744 1264 Tuesday 15 45 62
5 684 1243 Wednesday 17 22 64
6 1607 382 Wednesday 16 21 50
7 1033 940 Thursday 15 45 112
8 1293 1533 Friday 13 47 29
9 553 1079 Friday 17 55 42

10 1598 357 Friday 19 22 47
11 554 998 Saturday 17 23 55
12 1115 1624 Saturday 13 49 40
13 760 1519 Sunday 15 21 46
14 1540 401 Sunday 0 8 43

71

The scale of t is increased to [0, 3500x7]. The results of FCM using the same input

dataset with “number of the clusters”= 14 are shown in Table 5.4. It is inferred that the

cluster centres are placed at separated coordinates on “t” as the scale of “t” becomes

larger. For example, Monday is separated by 4 cluster centre coordinate on “t”, and the x

and y coordinates of the cluster centres becomes closer to each other.

Table 5.4 Results of the FCM with following setting: “max. number of iteration”=100,

“exponent for membership the matrix U”=2, “number of the clusters”= 14, “scale of

t”=[0, 3500x7].

No X Y Day Hour Minute Number of Members
1 507 1178 Monday 17 49 50
2 1497 343 Monday 13 0 35
3 1592 401 Monday 19 9 46
4 1274 1557 Monday 11 50 39
5 743 1252 Tuesday 16 37 63
6 1571 405 Tuesday 17 0 50
7 692 1230 Wednesday 17 38 66
8 1578 408 Wednesday 15 9 58
9 711 1251 Thursday 16 37 62

10 1544 424 Thursday 15 53 51
11 815 1226 Friday 16 58 77
12 1524 458 Friday 21 16 49
13 947 1127 Saturday 16 38 116
14 848 1202 Sunday 14 11 66

The scale of t is decreased to [0, 2000x7]. The results of FCM using the same input

dataset with “number of the clusters”= 14 are shown in Table 5.5. It is inferred that the

cluster centres are placed at separated coordinates on “x and y” as the scale of “t”

becomes more restricted. For example, Monday is separated by 4 cluster centres. But

their coordinates on “t” are closer compared to Table 5.4, and the x and y coordinates of

the cluster centres becomes more distant from each other. Determining which scale of

“t” should be used is a manual process and application dependent. We only observe the

72

results of chances in scale. Since simulated data is used in this test, it is not important to

discuss choosing a proper scale anymore. Similarly, determining the number of cluster is

manual process, and depends on size and properties of the dataset. In our case, the

properties of the dataset can be defined as: number of the action, granularity of the

categories and scope of the context space.

Using the same dataset, the FCM produces another results with the following setting:

“max. number of iteration”=100, “exponent for membership the matrix U”=2, “number

of the clusters”= 21, “scale of t”=[0, 2500x7]. The results are shown in Table 5.6. Also,

some clusters of the results presented in Table 5.6 can be seen visually on the map in

APPENDIX A. It will make the cluster definition clearer.

Table 5.5 Results of the FCM with following setting: “max. number of iteration”=100,

“exponent for membership the matrix U”=2, “number of the clusters”= 14, “scale of

t”=[0, 2000x7].

No X Y Day Hour Minute Number of Members
1 479 1190 Monday 17 44 34
2 1831 322 Monday 17 9 38
3 1066 331 Monday 15 23 27
4 1319 1597 Monday 12 37 36
5 1169 811 Tuesday 17 21 112
6 690 1239 Wednesday 17 11 64
7 1617 377 Wednesday 16 31 49
8 988 1000 Thursday 16 15 112
9 1572 388 Friday 18 40 51

10 742 1257 Friday 16 51 63
11 518 1037 Saturday 17 6 46
12 1526 380 Saturday 23 3 45
13 1127 1635 Saturday 13 35 36
14 759 1564 Sunday 15 1 44

73

Table 5.6 Results of the FCM with following setting: “max. number of iteration”=100,

“exponent for membership the matrix U”=2, “number of the clusters”= 21, “scale of

t”=[0, 2500x7].

No X Y Day Hour Minute Number of Members
1 528 1372 Monday 18 35 42
2 1553 382 Monday 19 5 38
3 462 806 Monday 14 9 29
4 1370 1627 Monday 11 55 35
5 1847 290 Monday 13 45 25
6 473 1131 Tuesday 17 34 40
7 1261 1562 Tuesday 14 16 25
8 1615 310 Tuesday 14 14 39
9 1574 432 Tuesday 22 18 32

10 652 1249 Wednesday 17 44 64
11 1615 373 Wednesday 17 8 50
12 1581 376 Thursday 15 42 50
13 668 1252 Thursday 16 8 63
14 1530 329 Friday 15 48 48
15 512 1144 Friday 18 20 40
16 1313 1606 Friday 14 7 26
17 1558 426 Saturday 1 21 35
18 1115 1636 Saturday 13 59 38
19 536 1050 Saturday 17 49 53
20 1547 404 Sunday 0 45 44
21 758 1546 Sunday 15 23 46

5.2.2 Stochastic Learning Automata

For testing the offline training of LA, the dataset used in testing of FCM has been used.

Only one metric has been used in test. This metric is the “Precision Metric” mentioned

in [41], and defined as follows. Precision is defined as the ration of number of true

prediction to number of prediction, shown in (Eq. 5.1):

Numer Of True PredictionP
Numer Of Prediction

= (Eq. 5.1)

74

Remember that in section 3.2 two learning automaton (LA) called Per LA and Global

LA are mentioned. They are combined with a weight called a , to work together. Also,

there exist weights for penalty and reward, which are represented by w′and w

respectively. The sensitivity of P to these three weights (a , w′and w) will be

discussed through this section.

The GA is trained with transition data where the context space is represented by 7

cluster centres (FCM separates the context space into 7 clusters). Remember that

automatic simulated data generator produces the data consecutively along a week. In the

context space defined by 7 points (cluster centre), each cluster centre corresponds to a

day. If an action occurrence of a user is dense enough, almost all users will tract the

same path between the cluster centres through a week. So, at the end of the training of

the GA, it is expected that the GA will predict the users’ transitions with high precision.

Figure 5.1 Precision graphic of the GA in the context space defined by 7 cluster centres.

Each graphic presents the chance of precision of the GA in training period with different

reward weights.

75

As seen in Figure 5.1, each graphic converges to the high precision value. Note that

when the reward weight is increased from 0.07 to 0.21, we observe a significant

improvement in convergence of the precision. On the other hand, when the reward

weight is increased from 0.21 to 0.35, the improvement is trivial.

The changes in penalty weight do not improve or decline the performance considerably.

The test results with different penalty weight (0.02, 0.05 and 0.1) are shown in Figure

5.2

Figure 5.2 Precision graphic of the GA in the context space defined by 7 cluster centres.

Each graphic presents the chance of precision of the GA in training period with different

penalty weights.

The GA is trained with transition data where the context space is represented by 14

cluster centres. If the number of the cluster centres is increased to 14, it will introduce

new alternative paths through a week, and the paths of the users will become more

different from each other. Since the GA learns the global flow of the users’ motion

76

through a week, the precision of the GA will decrease. The results of the GA where the

context space is defined by 14 cluster centres is shown in Figure 5.3

Figure 5.3 Precision graphic of the GA in the context space defined by 14 cluster

centres. Each graphic presents the chance of precision of the GA in training period with

different reward weights.

In Figure 5.3, three different graphics are shown. They are results of the training of the

GA with different reward weight; 0.07, 0.21 and 0.35, respectively. The figure shows

that when the GA is trained with reward weight 0.07, the graphic does not converge to a

constant value, and more training samples are required. The results with reward weight

0.21 and 0.35 are somewhat similar to each other. Both of them converge to a constant

value. Also, it is observed that there exists a significant decrease in precision compared

to the results of the context space represented by 7 cluster centre (Figure 5.2). This

decrease is due to the increase of the number of the cluster centres from 7 to 14.

77

Similar to the previous case, if the number of the cluster centres is increased to 21, it will

introduce new alternative paths through a week. And the GA is trained with transition

data where the context space is represented by 21 cluster centres. Almost all users will

tract the same path between the cluster centres through a week where the context space

is represented by 7 cluster centres, since each day of week is represented by only cluster.

So, the GA will predict the users’ transitions with high precision. Each day of week will

be represented by more clusters where the context space is represented by 21 cluster

centres. In the second case, since each user has more selection alternative for each day of

week, each user’s path becomes more different compared to others. In other words, the

more clusters the context space is represented by, the more different paths appear

through a one week. Consequently, the precision of the GA will decrease compared to

previous case where action space is represented by 21 cluster centres. The result of the

GA where the context space is defined by 21 cluster centres is shown in Figure 5.4.

Figure 5.4 Precision graphic of the GA in the context space defined by 21 cluster

centres. Each graphic presents the chance of precision of the GA in training period with

different reward weights.

78

In Figure 5.4, three different graphics are shown. They are results of the training of the

GA with different reward weight; 0.07, 0.28 and 0.35, respectively. The figure shows

that when the GA is trained with reward weight 0.07, the graphic does not converge to a

constant value, and more training samples are required. The results with reward weight

0.28 and 0.35 somewhat similar to each other. Both of them converges a constant value.

Also, it is observed that there exists a significant decrease in precision compared to

results of the context space represented by 14 cluster centre (Figure 5.3). This decrease

results from the increase of the number of the cluster centres from 14 to 21.

Above we presented the results of the GA with three different numbers of cluster

centres; 7, 14 and 21 respectively. In the first test with 7 cluster centres, the precision

converge very high value, since almost all users follow the same or similar paths. In

other words, global flow between clusters, which is extracted by the GA, covers almost

all users’ flows. Obviously, this case will not fit the scenario in a real mobile

environment. As the number of the cluster centres representing the context space

increases, namely, the possibility of occurrence of different path increase, the precision

value decreases.

The result shown in Figure 5.4 (21 cluster centres) is the best one fitting a real scenario.

The precision of the GA converges nearly 0.33. To predict user motion with high

precision, two learning automaton work together. The other one is called the PUA. The

PUA learns per user’s flow between the cluster centres. But, to test the PUA, we can not

use simulated data produced automatically since the data produced for per user is

haphazard and do not include any routine. Consequently, the PUA can not extract any

flow from per user data. To test the PUA, a fixed path is determined, and it is assumed

that a chosen user follows this fixed path at the turn of each week in the context space.

Hence, we can observe the results of the PUA.

Remember that the GA and PUA are combined with weight a (Eq. 3.6), and the

resulting automaton called as weighted automaton (WA). Value of a , penalty weight and

79

reward weight is chosen as 0.2, 0.02, and 0.21, respectively. 12 cluster centres are

selected randomly and sorted according to their time. Thus, the path of the user consists

of 12 fixed points. After following this path 30 times, the precision graphic of the

weighted automaton is as follows (Figure 5.5):

Figure 5.5 Precision graphic of the WA with 12x30=360 training sample in the context

space defined by 21 cluster centres.

In Figure 5.5, the precision result is presented with 12x30=360 training sample. Up to

100 training samples, the graphic varies around precision value 0.12, and approximately,

mean value of precision in this interval is 0.12. This behaviour results from the

contribution of the GA. After 100th samples, the precision increases up to 0.44 at 360. It

means that the PUA starts to learn the user’s routine increasingly. Obviously, if the user

continues itinerating on the same path, the precision value will go up to higher values.

The value of a determines the contribution degree of the GA to the WA. In other word,

if the value of a increased, the contribution degree of the GA will become higher. After

80

increasing a from 0.2 to 0.5, the graphic of precision of the weighted automaton is

shown in Figure 5.6. Up to 50 training samples, the graphic varies around precision

value 0.25, and approximately, mean value of precision in this interval is 0.25. It is

observed that the initial precision value has increased and the initial interval has shrunk

compared to Figure 5.5. This increase and shrinking are due to the increase of the

contribution degree of the GA. On other hand, after 50th sample, the learning curve has

decreased compared to Figure 5.5, because of the decrease of the contribution degree of

PUA.

Figure 5.6 Precision graphic of the WA with 12x30=360 training sample in the context

space defined by 21 cluster centres.

After presenting the path 70 times, the graphic of precision of the weighted automaton is

shown in Figure 5.7. Since the itinerary of the user does not change, the precision value

still goes up. Finally, after training with 230x12 samples, the precision value converges

to a constant as presented in Figure 5.8.

81

Figure 5.7 Precision graphic of the WA with 12x70=840 training sample in the context

space defined by 21 cluster centres.

Figure 5.8 Precision graphic of the WA with 12x230=2760 training sample in the

context space defined by 21 cluster centres.

82

Note that a single GA can not predict the user motion with high precision. When the

PUA and the GA are combined, precision value reaches high value. Here, the task of the

GA can be described as an assistant that assist the PUA on initial conditions where

enough training samples are not available yet to train the PUA. It is obvious that in the

real case, the user will not follow the same path permanently. On other hand, per user’s

path includes somewhat randomness and routine, and which refers to per user’s path

profile. The task of PUA is to learn these per users’ path profiles.

5.3 Unsupervised Fuzzy Divisive Hierarchical Clustering

In section 3.3, the details of the UFDHC were given. The result of the UFDHC depends

on four parameter:σ , N , m and t . N is the minimum number of users contained in

any cluster with membership degree to either 1A or 2A higher than a prefixed threshold

σ . m is the fuzzification constant which determines the degree of fuzziness of the

partition. And t is the threshold for the polarization degree. Here, we will test the

sensitivity of the binary tree to these parameters.

The test dataset has been generated automatically by the simulated data generator. The

simulator generator produces simulated action dataset on behalf of randomly selected

users. After that an action from any category is executed by any user, the access count of

that user to that category is increased by one. Any bias is not used, when constructing

the users’ access patterns to categories. So the access patterns of the users can resemble

uniform distribution to some degree. Namely, access patterns of the users may not be

very different from each other. The module has been tested with 1200 users and 11

categories, and results are as follows. At each node in the binary, only the categories

exceeding %10 preference degree are represented.

In Figure 5.9, the results of the UFDHC with setting 0.7σ = , 15N = , 1.2m = and 0.7t =

are represented. Each node represents a fuzzy cluster, and each cluster is identified by a

83

prototype which summarizes the preference of the users strongly belonging to the

cluster, thus identifying the profile of its typical members.

Figure 5.9 The result of the UFDHC with following setting: 0.7σ = , 15N = , 1.2m =

and 0.7t = .

84

The number of users belonging to the cluster and percentages with which the categories

contribute to the user profile are given within each node in Figure 5.9. There exist 1200

users at the top of the hierarchy, where they separate into two branch. 373 users are not

classified as a member of any cluster in the hierarchy since they can not exceed the

threshold σ and N .

Remember that the constant m determines the degree of fuzziness. The closer m is to 1,

the crisper the partition is. Thus, if we execute the UFDHC with m close to 1, we expect

very crisp partitions characterised by a high polarization degree. When m increased to

1.5, the UFDHC can not produce a binary tree, since the polarization degree of any

produced clusters can exceed threshold 0.7t = . For the values of 1.4 1,3m and m= = the

Figure 5.10 The result of the UFDHC with following setting: 0.7σ = , 15N = , 1.25m =

and 0.7t = .

85

result does not change. When 1.25m = , the UFDHC has produced a binary tree as

shown in Figure 5.10. As seen in the figure, some branches of the tree have been

removed, since their polarization degrees could not exceed the threshold.

Figure 5.11 The result of the UFDHC with following setting: 0.7σ = , 15N = , 1.2m =

and 0.8t = .

86

The value of t must be fixed taking into account the degree of fuzziness of the data set

being considered. High values of t allow us to discover cluster structure in crisp

datasets. On the contrary, low values of t allow us to more correctly partition fuzzy

datasets with suitable fuzzy partition. When t is configured as 0.8t = and the

others 0.7σ = , 15N = , 1.2m = , the output of UFDHC is shown in Figure 5.11. Note

that child clusters of the cluster R,r(228) are removed from the tree, since the

partitioning can not exceed the polarization threshold.

If we execute the UFDHC with 1.1m = , we expect very crisp partition characterised by

a high polarization degree. The other parameters are configured as follows: 0.9σ = ,

50N = , 0.9t = . The result of the UFDHC with these settings is presented in Figure

5.12. Despite the parametersσ , N and m are set to quite high value, a binary tree

consisting of 8 cluster has been produced.

In this test, we have only shown the effects of manual inputs t ,σ , N and m on the

resulted binary tree. We have not discussed on which results are better or not. We would

like to point out that the values of these parameters are critical application-dependent

parameters. So depending on the properties of the dataset, the values of them can change

relatively.

87

Figure 5.12 The result of the UFDHC with following setting: 0.9σ = , 50N = , 1.1m =

and 0.9t = .

88

5.4 A Demonstrative Complete Run

In this section, a demonstrative complete run of simulator is given step by step. It will

make the entire scenario clearer. The only one FCM output given in Table 5.3 is used

throughout this section. This FCM output represents the context space with 14 cluster

centres.

Firstly, we have trained the GA. The precision graphic of the training period is given in

Figure 5.13.

Figure 5.13 Precision graphic of the GA in the context space defined by 14 cluster

centres.

Secondly, we have run the UFDHC with following setting: 0.7σ = , 15N = , 1.25m =

and 0.7t = . The output is given in Figure 5.14.

89

Figure 5.14 The result of the UFDHC with following setting: 0.7σ = , 15N = , 1.25m =

and 0.7t = .

Thus, after training of the GA and the UFDHC, the offline training of the

recommendation system have been completed. In the online part of the recommendation

system, the experience of a user will be introduced, using Recommendation Module and

GUI given in the section 4.7 and the outputs produced in the offline part.

Initially, the GUI represented in Figure 5.15 is provided to the user. The Reward

Weight, Penalty Weight and PUA GA Weight have been defined as 0.21, 0.02 and 0.03

respectively. The context space has been grouped into 14 clusters from Cluster Result

list box. Finally, the user identified by a-0 has been selected from Users list box. Upon

clicking on the map, another GUI given in Figure 5.16 is presented to the user. On the

GUI, a data grid shows the cluster centres. From the data grid, we have selected two

90

Figure 5.15 The GUI initially presented to the user.

Figure 5.16 The GUI initially presented to the user.

91

cluster centres, via clicking on Select buttons, then closed the GUI. The selected cluster

centres’ ids are previous cluster id: 1002 and previous cluster id: 1003. The

Recommendation Module assumes that the user has already been in these clusters.

The GUI given in Figure 5.15 appears again. After clicking on the map, the GUI given

in Figure 5.17 is presented to the user.

Figure 5.17 The recommendation GUI.

On the lower left-hand side of Figure 5.17, we see four labels which represent previous

cluster id, current cluster id, predicted cluster id and selected cluster id respectively. The

previous and current cluster id represent the user’s previous transition and the

coordinates of those cluster centres. The predicted cluster id shows the next cluster id

predicted by LA according to the previous and current cluster id, which are 1002 and

1003. The selected cluster id shows the next cluster selected by the user. The

recommendation module assumes that the user will go to selected cluster.

92

On the upper left-hand side of Figure 5.17, we see a data grid control called

T_Cluster_Centers Table Entries. It allows the user to select his/her next cluster id,

which is next transition, via clicking on rows manually. According to his/her selection,

the label showing the selected cluster id changes its status automatically. We have

selected the cluster id 998.

On the right-hand side of Figure 5.17, we see four labels which represent user profile,

selected categories, profile hierarchy and recommended actions respectively. The user

profile label shows the profile of the cluster, which the user is a member of, which is

produced by UFDHC. Each row of the profile shows the percentage of contribution of

each category on the user preference. The selected categories label represents the

categories selected by Roulette Wheel Selection algorithm according to the percentage

of contribution of each category. The profile hierarchy label represents the user id and

the layer in the hierarchical tree. For example, the root: 0 child 2 defines that this profile

is a child of root cluster. The recommended action label represents the recommended

actions which is included in one of the categories given in selected categories label.

After closing the GUI, the recommendations to the user are shown graphically in Figure

5.18. Actually, the figure represents the same GUI in Figure 5.15, but now it represents

the cluster centre 998 and the actions belonging to the cluster 998. The points represent

the action included in the selected cluster. When the user clicks on one of the actions on

the map, that action is implemented by that user. Upon second click on map, the

recommendation GUI appears again as in Figure 5.19. Now the cluster ids 1003 and 998

are defined as previous and current clusters, and a predicted cluster presented to the user

based on these cluster ids. Similar to the previous case, the user profile label shows the

profile of the user, the selected categories label represents the selected categories, and

the recommended action label represents the recommended actions. After selecting a

cluster id and then closing the GUI, the recommendations will be shown on the map

again. And this process goes on repeatedly.

93

Figure 5.18 The GUI showing the recommendations visually.

Figure 5.19 The recommendation GUI.

94

We have followed the path consisting of cluster ids given as follows: 1002, 1003, 998,

1009, 997, 1004, 999, 1008, 1007, 1002 and 1003. After following the same path 7 times

repeatedly, the precision graphic is given in Figure 5.20.

Figure 5.20 Precision graphic of the WA with 11x7=77 training sample in the context

space defined by 14 cluster centres.

Figure 5.20 show that after 50 samples the system, the precision starts increasing. It

means WA starts learning the user behaviour.

95

CHAPTER 6

CONCLUSION

6.1 Summary and Conclusive Remarks

In the scope of this thesis, we try to propose a recommendation system for the mobile

environment. Generally, the recommendation system has been used in web based

applications, and too many recommendation systems have been proposed for

Information Retrieval and E-Commerce (related works are presented in Section 2.1).

Through searching web based recommendation system in the literature, information

related to general definition of recommendation problem for web environment is

gathered. But in our case, the problem definition is somewhat different. Additional

characteristic properties of the mobile environment take the recommendation problem

beyond the web environment. These properties are called as mobility and ubiquity, and

addition definitions resulting from these properties have been presented in details in

Section 1.2. Finally, two new problems have been introduced in addition to pure

recommendation problem (user profiling): “context-awareness” and “motion prediction

in context space”. The works related these concepts have been presented in Section 2.2

and Section 2.3.

A method, which handles “context-awareness” and “motion prediction in context space”

in a combined manner, is proposed. The method combines the two methods called Fuzzy

C-Means (FCM) and Stochastic Learning Automaton (LA). On the other hand, “user

profiling” is handled separately, using a method called Unsupervised Fuzzy Divisive

Hierarchical Clustering (UFDHC) for extracting users’ profiles. The data derived from

the users’ action logs is presented as an input vector set to FCM. The FCM separates the

action set into clusters defined by cluster centres. Each cluster centre represents context

96

profile for its members. Also, by means of cluster centre, the context space is

represented by fixed points, and then motions of any user are defined as transitions

between clusters which are predicted by the Learning Automaton. The UFDHC works

separately. The output of UFDHC is binary tree of the clusters. Each cluster is identified

by a profile which summarizes the ontological preferences of the users strongly

belonging to the cluster. The recommendations are generated based on two data: next

cluster id predicted by LA and the user’s profile retrieved from binary tree produced by

UFDHC. Therefore, the recommendation set presented to the user consists of those

actions fitting the user’s profile while being member of the predicted next cluster. The

details of the methodology have been presented in Chapter 3.

To show how the proposed approach works, a simulator was developed. The

implementation details have been presented in Chapter 4. Basically, the simulator

consists of three main modules: FCM, LA and UFDHC. Each module was tested

separately. All tests are based on simulated data. So a simulated data generator was

developed to produce test data. In generation of the simulated data, some biases are used

to imitate the data expected to occur in real case. The simulated data generator is

explained in details in Section 5.1. The test result of each component is presented

through the Section 5.2, Section 5.3 and Section 5.4.

The context space has been divided into 7, 14 and 21 clusters, respectively. The higher

number of cluster the context space is divided into, the more detailed context profile

each action is represented by. The FCM produce expected and reasonable results which

shows that the module works well with simulated data.

In prediction module two LA (PUA and GA) work collaboratively. The simulated

dataset representing transitions of the users between clusters was produced from the

FCM results. This dataset was used to test the GA. The results show that the GA learns

global transitions in the dataset. To test the PUA, we can not use simulated data

produced automatically, since the data produced for per user is haphazard and do not

97

include any routine. Consequently, the PUA can not extract any flow per user data. To

test the PUA, a fixed path is determined, and it is assumed that a chosen user follows

this fixed path at the turn of each week in the context space. The results show that the

combination of GA and PUA works well in this test.

LA was used for prediction, because of its simplicity. Indeed, generally, LA is not

considered as very efficient learning method. And we think this test is not sufficient to

prove that LA is a proper choice. It should be tested with more realistic data.

The output of UFDHC is a binary tree of user groups characterized by a set of common

interests and represented by a prototype, which corresponds to the profile of the users of

the group. Several binary trees have been produced with different manual settings, and

the effects of the manual settings have been observed. Generally, it is inferred that the

produced clusters have not distinctive profiles. Namely, the profiles resemble each other

to a great extent, since the simulated data generator produces the users’ access pattern

data randomly. And this randomness causes uniform distribution on produced data.

However, the results are sufficient to prove that the UFDHC work well for extraction of

the users’ profiles. Furthermore, the members of each cluster have similar interest on

ontological category, and the collaboration can be established between the same

cluster’s members. Namely, the combination of UFDHC with pure collaborative

filtering methods may produce better result where the contents consist of multiple

categories.

Each component of the recommendation system was verified one by one using simulated

data. Then, the components was integrated for recommendation task and tested with

simulated data. The test results verify that the integrated system works well. But we

don’t think that the integrated system is validated for more realistic cases, since the test

data produced by the data generator is not enough realistic to validate the proposed

architecture.

98

6.2 Future Works

To validate the proposed architecture for real cases, we should test it with a realistic

dataset. The realistic dataset can be obtained directly from real user or produced by more

realistic simulated data generator. Obtaining the dataset from the real users or the design

and development of more realistic data generator remain as future work.

Also, after testing with realistic data, the research on alternative methods for prediction

task, and the research on the combination of UFDHC and pure collaborative filtering

methods remain as future works.

99

REFERENCES

[1] Harry Chen, Sovrin Tolia. Steps Towards Creating a Context-Aware Software Agent
System. HP Laboratories Palo Alto HPL-2001.

[2] Stuart Edward Middleton. Capturing knowledge of user preferences with
recommender systems. A thesis submitted for the degree of doctor of philosophy in the
faculty of engineering and applied science department of electronics and computer
science in university of Southampton. May 2003.

[3] Danny POO, Brain CHNG and Jie-Mein GOH.A Hybrid Approach for User
Profiling. Proceedings of the 36th Hawaii International Conference on System Sciences.
2002 IEEE.

[4] Kaname Funakoshi, Takeshi Ohguro. A content-based collaborative recommender
system with detailed use of evaluations. Fourth International Conference on knowledge-
Based Intelligent Engineering System 2000 IEEE.

[5] Michael J. Pazzani. A Framework for Collaborative, Content-Based and
Demographic Filtering Artificial Intelligence Review Volume 13 , Issue 5-6 Special
issue on data mining on the Internet Pages: 393 – 408, 1999

[6] Mukund Deshpande, George Karypis. Item-based Top-N Recommendation
Algorithms. ACM Transaction on Information Systems, Vol. 22, no. 1, January 2004.

[7] Tong Zhang, Vijay S. Iyengar. Recommender Systems Using Linear Classifiers.
Journal of Machine Learning Research 2 (2002)

[8] HOFMANN, T. Latent Semantic models for collaborative filtering. ACM
Transactions on Information Systems, Vol. 22, No. 1, January 2004.

[9] Rong Jin, Joyce Y. Chai, Luo Si. An Automatic Weighting Scheme for Collaborative
Filtering. SIGIR’04, July 25–29, 2004, Sheffield, South Yorkshire, UK. Copyright 2004
ACM.

[10] Kai Yu, Volker Tresp, Shipeng Yu. A Nonparametric Hierarchical Bayesian
Framework for Information Filtering. SIGIR’04, July 25–29, 2004, Sheffield, South
Yorkshire, UK. Copyright 2004 ACM

100

[11] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, David M. Pennock.
Methods and Metrics for Cold-Start Recommendations. SIGIR’02, August 11-15, 2002,
Tampere, Finland. Copyright 2002 ACM

[12] Kai Yu, Wei-Ying Ma, Volker Tresp, Zhao Xu, Xiaofei He, HongJiang Zhang,
Hans-Peter Kriegel. Knowing a Tree from the Forest: Art Image Retrieval using a
Society of Profiles. MM’03, November 2–8, 2003, Berkeley, California, USA.
Copyright 2003 ACM.

[13] Justin Basilico, Thomas Hofmann. Unifying Collaborative and Content-Based
Filtering. Appearing in Proceedings of the 21 st International Conference on Machine
Learning, Banff. Canada, 2004.

[14] Byoung-Tak Zhang and Young-Woo Seo. Personalized Web-Document Filtering
Using Reinforcement Learning. Applied Artificial Intelligence, 15:665-685, 2001.

[15] Maria J. Martin-Bautista and Maria-Amparo Vila. Building adaptive user profiles
by a genetic fuzzy classifier with feature selection. 0-7803-5877-5/00 IEEE.

[16] By Hyoung R. Kim and Philip K. Chan. Learning Implicit User Interest Hierarchy
for Context in Personalization Proceedings of the 8th international conference on
Intelligent user interfaces, 101 - 108 ACM, 2003

[17] Matthew R. McLaughlin and Jonathan L. Herlocker A Collaborative Filtering
Algorithm and Evaluation Metric that Accurately Model the User Experience SIGIR’04,
July 25–29, 2004, Sheffield, South Yorkshire, UK. Copyright 2004 ACM 1-58113-881-
4/04/0007.

[18] Mira Kwak, Dong-Sub Cho. Collaborative Filtering With Automatic Rating For
Recommendation. 2001 IEEE.

[19] Beatrice Lazzerini, Francesco Marcelloni, Marco Cococcioni. A System Based on
Hierarchical Fuzzy Clustering for Web Users Profiling, IEEE SMC 2003, Washington
D.C., USA, October 2003, pp. 1995-2000.

[20] ZAN HUANG, HSINCHUN CHEN, and DANIEL ZENG. Applying Associative
Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering. ACM
Transactions on Information Systems, Vol. 22, No. 1, January 2004.

[21] Costin Barbu, Marin Simina. Information Filtering Using the Dynamics of the User
Profile. American Association for Artificial Intelligence 2002

101

[22] Qiubang Li and Rajiv Khosla. An Adaptive Algorithm for Improving
Recommendation Quality of E-Recommendation Systems. 2003 IEEE

[23] Thomas P. Moran and Paul Dourish. Introduction to This Special Issue on Context-
Aware Computing. Special Issue of Human-Computer Interaction, Volume 16, 2001

[24] Arkady Zaslavsky. Mobile Agents: Can They Assist with Context Awareness
Proceedings of the 2004 IEEE International Conference on Mobile Data Management
(MDM’04) 0-7695-2070-7/04

[25] Gellersen, H., Schmidt, A., Beigl, M. Multi-Sensor Context-Awareness in Mobile
Devices and Smart Artefacts, Mobile Networks and Applications 7 (2002) 341–351

[26] Vagan Terziyan, Oleksandra Vitko. Bayesian Metanetworks for Modelling User
Preferences in Mobile Environment, KI 2003, 370-384.

[27] Per Persson, Fredrik Espinoza, Petra Fagerberg, Anna Sandin and Rickard Cöster.
GeoNotes: A Location-based Information System for Public Spaces. CHI '03 extended
abstracts on Human factors in computing systems, 828-829, ACM, 2003

[28] Hee Eon Byun and Keith Cheverst. Exploiting User Models and Context-
Awareness to Support Personal Daily Activities. Distributed Multimedia Research
Group, Department of Computing, Lancaster University 2000.

[29] James D. Carswell, Alan Eustace, Keith Gardiner, Eoin Kilfeather, Marco
Neumann. An Environment for Mobile Context-Based Hypermedia Retrieval.
Proceedings of the 13th International Workshop on Database and Expert Systems
Applications (DEXA’02) 1529-4188/02.

[30] Ian Li. a CAPpella: Prototyping Context-Aware Applications by Demonstration.
Summer Undergraduate Program in Engineering Research at Berkeley
http://www.eecs.berkeley.edu/Programs/ugrad/superb/papers2003/Ian%20li.pdf,11-2005

[31] John Canny. Some Techniques for Privacy in Ubicomp and Context-Aware
Applications. Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information, 238-245, 2002

[32] Sushil J Louis, Anil Shankar. Context Learning Can Improve User Interaction.
IEEE International Conference on Information Reuse and Integration (IEEE IRI-2004)

102

[33] Mauro Brunato and Roberto Battiti. PILGRIM:A Location Broker and Mobility-
Aware Recommendation System p. 265, First IEEE International Conference on
Pervasive Computing and Communications (PerCom'03), 2003

[34] Stephen S. Yau, Huan Liu, Dazhi Huang and Yisheng Yao. Situation-Aware
Personalized Information Retrieval for Mobile Internet. Proceedings of the 27th Annual
International Computer Software and Applications Conference (COMPSAC’03) 0730-
3157/03

[35] Xuemin Shen, Jon W. Mark and Jun Ye. User mobility profile prediction: An
adaptive fuzzy inference approach. Wireless Networks 6 (2000) 363–374 J.C. Baltzer
AG, Science Publishers.

[36] M.Kyriakakos, S.Hadjiefthymiades, N.Frangiadakis, L.Merakos. Multi-user Driven
Path Prediction Algorithm for Mobile Computing. Proceedings of the 14th International
Workshop on Database and Expert Systems Applications (DEXA’03) 1529-4188/03
$17.00 © 2003 IEEE

[37] Stathes Hadjiefthymiades, Stamatis Papayiannis, and Lazaros Merakos, University
of Athens. Using Path Prediction to Improve TCP Performance in Wireless/Mobile
Communications. IEEE Communications Magazine August 2002

[38] Pornphan Dulyakarn and Yuttapong Rangsanseri. Fuzzy C-Means Clustering Using
Spatial Information with Application to Remote Sensing. Paper presented at the 22nd
Asian Conference on Remote Sensing, 5-9 November 2001, Singapore. Copyright (c)
2001, Center of Remote Imaging, Sensing and Processing (CRISP), National University
of Singapore; Singapore Institute of Surveyors and Valuers (SISV); Asian Association
on Remote Sensing (AARS).

[39] Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York. 1981.

[40] Unsal, Cem. Intelligent Navigation of Autonomous Vehicles in an Automated
Highway System: Learning Methods and Interacting Vehicles Approach. A thesis
submitted for the degree of doctor of philosophy in the Virginia Polytechnic Institute
and State University, 1998.

[41] J.L. Herlocker, J.A. Konstan, L.G. Terveen and J.T. Rield. Evaluating Collaborative
Filtering Recommender System. ACM Transactions on Information Systems, Vol. 22,
No. 1, Pages 5–53 January 2004.

[42] Baker, J.E. Reducing Bias and Inefficiency in the Selection Algorithm. In [ICGA2],
pp. 14-21, 1987.

103

[43] Amazon.com, Books, www.amazon.com, last date accessed, 20.12.2005

[44] NEC Research Institute, Steve Lawrence, Lee Giles and Kurt Bollacker,
Citeseer.IST Scientific Literature Digital Library, http://citeseer.ist.psu.edu/, last date
accessed, 20.12.2005

[45] S. J. Soltysiak and I. B. Crabtree, Automatic learning of user profiles - towards the
personalisation of agent services. BT Technol J Vol 16 No 3 July 1998

104

APPENDIX A

THE RESULTS OF FCM WITH 21 CLUSTERS ON THE MAP

Figure A.1 Cluster represented with X:1370, Y:1627 on Monday at 11:55

105

Figure A.2 Cluster represented with X:1847, Y:290 on Monday at 13:45

106

Figure A.3 Cluster represented with X:462, Y:806 on Monday at 14:09

107

Figure A.4 Cluster represented with X:528, Y:1372 on Monday at 18:35

	CHAPTER 1
	INTRODUCTION
	1.1 Problem Statement and Motivation
	1.2 Objective and Goals
	1.3 Problem Characteristic and Methodology
	1.3.1 Context Awareness
	1.3.2 Prediction in Context Space
	1.3.3 User Profiling and Generation of Recommendation

	1.4 Contributions
	1.5 Organization of the Chapters
	CHAPTER 2
	BACKGROUND AND RELATED WORKS
	2.1 Recommendation Systems
	2.2 User Profile Representation
	2.2.1 Ratings-based Representations
	2.2.2 Content-based Representations
	2.2.3 Knowledge-based Profile Representation

	2.3 Knowledge Acquisition
	2.4 Recommendation Technique
	2.4.1 Content-Based Filtering
	2.4.2 Collaborative Filtering
	2.4.3 Hybrid Filtering

	2.5 Context Awareness
	2.6 Path Prediction

	CHAPTER 3
	PROPOSED RECOMMENDATION SYSTEM
	3.1 Overall Architecture
	3.2 Fuzzy C Means Clustering for Context-Awareness
	3.3 Learning Automaton for Prediction in the Context Space
	3.4 Unsupervised Fuzzy Divisive Hierarchical Clustering for User Profiling

	CHAPTER 4
	DESIGN AND IMPLEMENTATION
	4.1 Database
	4.2 Map Design Module and GUI
	4.3 Manual Simulated Data Generator Module and GUI
	4.4 Automatic Simulated Data Generator Module and GUI
	4.5 FCM
	4.6 GA and PUA Modules and GUI
	4.7 Recommendation Module and GUI
	4.8 UFDHC Module and GUI
	4.9 Show FCM Result Module and GUI
	4.10 Design Time Profiles Modules and GUI
	4.11 Database Access Module .net and Database Access Module Matlab 7

	CHAPTER 5
	RESULTS AND DISCUSSION
	5.1 Simulated Data Generator
	5.2 The Test Results of the Proposed Approach
	5.2.1 Fuzzy C-Means Clustering
	5.2.2 Stochastic Learning Automata

	5.3 Unsupervised Fuzzy Divisive Hierarchical Clustering
	5.4 A Demonstrative Complete Run

	CHAPTER 6 CONCLUSION
	6.1 Summary and Conclusive Remarks
	6.2 Future Works

