
SOFTWARE SUBCONTRACTING SUCCESS:

A CASE STUDY ON THE RELATIONSHIP BETWEEN PROJECT SUCCESS AND PROCESS
METRICS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

KEREM YÜCETÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

NOVEMBER 2005

Approval of the Graduate School of Informatics

Assoc. Prof. Dr. Nazife Baykal
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Assoc. Prof. Dr. Onur Demirörs
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Semih Bilgen
Supervisor

Examining Committee Members

Assoc. Prof. Dr. Onur Demirörs (METU, II) _____________________

Prof. Dr. Semih Bilgen (METU, EEE) _____________________

Levent Alkışlar (MSc.) (Aselsan Inc.) _____________________

Dr. Çiğdem Gencel (METU, II) _____________________

Dr. Altan Koçyiğit (METU, II) _____________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Surname: Kerem Yücetürk

Signature:

iv

ABSTRACT

SOFTWARE SUBCONTRACTING SUCCESS:
A CASE STUDY ON THE RELATIONSHIP BETWEEN PROJECT SUCCESS

AND PROCESS METRICS

Yücetürk, Kerem

MSc., Department of Information Systems

Supervisor: Prof. Dr. Semih Bilgen

November 2005, 69 pages

While software subcontracting is a common business transaction in the information

technology field, metrics specifically aimed at effectiveness of software

subcontracting arrangements are not commonly available. This thesis makes a

review of the literature and derives such metrics from fields of software quality,

COTS acquisition and IS success. A case study is performed on software

subcontracting projects of a Turkish defense contractor, and the project metrics are

compared according to their success. The results suggest that metrics regarding the

requirements are good indicators for subcontracting success and that larger projects

may enjoy more success compared to smaller ones.

Keywords: Software Subcontracting, Software Quality Metrics, Software Project

Success, Software Subcontracting Case Study

v

ÖZ

YAZILIM ALTYÜKLENİCİ İLİŞKİLERİNDE BAŞARININ METRİKLERLE
İLİŞKİSİ KONUSUNDA ÖRNEK OLAY İNCELEMESİ

Yücetürk, Kerem

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Kasım 2005, 69 sayfa

Bilişim Teknolojileri alanında yazılım altyükenici kullanımı yaygın bir uygulama

olmasına rağmen, bu alanda etkinliği saptamaya yarayacak ölçütlerin neler

olabileceği konusunda bilgi yaygın olarak bulunmamaktadır. Bu tezde literatürdeki

yazılım kalitesi, hazır yazılım edinme ve bilişim sistemlerinde başarı alanları

incelenerek, bu alanlardan yazılım altyüklenici etkinliğini belirleyecek ölçütler

çıkarılmaya çalışılmıştır. Türkiye savunma sanayiindeki bir firmanın yazılım

altyüklenici vakaları incelenerek sözkonusu projeler arasında başarılı olma

durumlarına göre bir karşılaştırma yapılmıştır. Yapılan çalışma yazılım gereksinimi

ölçütlerinin altyüklenicilere yaptırılan işlerin başarısını yansıtmada uygun

olabileceğini ve büyük projelerin küçük projelere göre daha başarılı olabildiğini

göstermiştir.

vi

Anahtar Kelimeler: Yazılım Altyüklenici Yönetimi, Yazılım Kalite Ölçütleri,

Yazılım Projelerinde Başarı, Yazılım Altyüklenicisi Vaka Çalışması

vii

ACKNOWLEDGMENTS

I would like to thank Prof. Dr. Semih Bilgen, for being an impeccable guide,

presenting me with possibilities, teaching me the right way to do things,

encouraging me while I was writing this thesis. I cannot imagine writing a thesis

without his guidance.

I am grateful to Aselsan, for enabling me to pursue a master’s degree while working

and allowing me to use company data for my thesis.

My colleagues at Aselsan, who helped to answer numerous questions, went over the

numbers and documents for me, made time for discussing projects have been most

helpful. Without them, this thesis would not be possible. Thank you.

My family supported me throughout the research and the writing as they have done

for all my life. I thank them for always being there and wanting the best for me.

Thank you to Gamze, for the moral support throughout the months I’ve been

writing. Without her support and care, I wouldn’t have been able to complete this

thesis.

viii

TABLE OF CONTENTS

PLAGIARISM.. iii
ABSTRACT ..iv
ÖZ...v
ACKNOWLEDGMENTS..vii
TABLE OF CONTENTS ... viii
LIST OF TABLES ..ix
LIST OF FIGURES..x
LIST OF ABBREVIATIONS AND ACRONYMS..xi
CHAPTER

1 INTRODUCTION ...1
1.1 Thesis Objective and Scope..3
1.2 Thesis Outline...5

2 LITERATURE SURVEY ...6
2.1 Software Quality – ISO 9126 ...6
2.2 COTS Acquisition / Selection ..8
2.3 Subcontractor Selection..10
2.4 Software Production Process..11
2.5 Information Systems Success Models ..14

3 NATURE OF THE CASE STUDY ..17
3.1 Case Study Methodology ...17
3.2 Subcontracting Metrics...20
3.3 Software Project Success Indicators...29
3.4 Investigation of YMM Subcontracting Projects...33

3.4.1 Research Method..33
3.4.2 Findings ..34
3.4.3 Suggested Metrics Applied to YMM Subcontracting Projects40

4 DISCUSSION OF FINDINGS ...45
5 CONCLUSION ..58
REFERENCES ...66

ix

LIST OF TABLES

Table 1 – List of Interviews ...33
Table 2 - Metrics Applied to Selected Aselsan Subcontracting Projects40
Table 3 - Relationship between Metrics and Success Indicator49

x

LIST OF FIGURES

Figure 1 – Percentage of Satisfied Requirements...50
Figure 2 – Percentage of Incorrectly Implemented Requirements.............................50
Figure 3 – Percentage of Unsatisfied Requirements ..51
Figure 4 – Number of Requirement Changes / Number of Requirements51
Figure 5 – Number of Function Declarations...52
Figure 6 – Thousand Lines of Source Code ...53
Figure 7 – Number of Software Interfaces ...53
Figure 8 – Number of Requirements ..54
Figure 9 – Number of Windows...55
Figure 10 – Number of Reviewed Documents / Number of Documents55

xi

LIST OF ABBREVIATIONS AND ACRONYMS

AQAP: Allied Quality Assurance Publications

CAPM: Contractor Acquisition and Performance Monitoring Process for

Software Contracts

COTS: Component Off The Shelf

DNA: Data Not Available

IEEE: Institute of Electrical and Electronics Engineers

IS: Information System

ISO: International Organization for Standardization

IT: Information Technology

KSLOC: Thousand Source Lines of Code

MASS: Method for Assessing Software Subcontractors

MST: Microwave and System Technologies (Turkish, Mikrodalga ve

Sistem Teknolojileri)

NASA: National Aeronautics and Space Administration

NATO: North Atlantic Treaty Organization

SA-CMM: Capability Maturity Model for Software Acquisition

SLOC: Source Lines of Code

SW-CMM: Software Capability Maturity Model

RFP: Request For Proposals

xii

UKSMA: United Kingdom Software Metrics Association

YMM: Software Engineering Department (Turkish, Yazılım Mühendisliği

Müdürlüğü)

1

CHAPTER 1

INTRODUCTION

Commercial software development is a complex task that requires skilled

developers and time. Companies short of capable developers or lacking expertise in

certain development areas turn to other software companies for providing the

development services. Software subcontracting is undertaking of the whole or parts

of a software development project by a company under the guidance of the prime

contractor for the software.

Software subcontracting involves complex relations between the prime contractor

and the subcontractor. The requirements of the software have to be clearly

communicated to the subcontractor. Any confusion on what is required in the

resulting product may result in an unsatisfactory outcome for both the prime

contractor and the subcontractor.

According to the necessities of the tasks in subcontracting agreement, a price has to

be paid by the prime contractor, or the customer. A contract is drawn up, involving

legal conditions that protect the participants in case of conflicts among the parties.

2

The development phase of a software subcontracting arrangement may require

involvement of the customer about design, interfaces with other software, detailed

requirement analysis. This is usually described as the contract management phase

for subcontracting agreements. During this phase, the customer has to be involved

to some extent to check if the product is shaping according to the needs defined by

the customer.

Once the development efforts are over, there is usually a maintenance period in

software subcontracting projects. During this phase the subcontractor pledges to fix

any problems observed during the use of the software by the end user and make

minor additions when necessary.

For each of the subcontractor selection, contract management and maintenance

phases of software subcontracting, involvement and close cooperation of

stakeholders is recommended by the major software acquisition models in the

literature. For example, Software Acquisition Capability Maturity Model, states

involvement of the management of the acquiring organization necessary to achieve

higher levels of maturity (SEI, 2002). The acquirer has to be involved with the

subcontractor to manage requirements, track subcontractor performance and

evaluate the resulting product. This study, however, investigates the possibility of

controlling subcontracting activities through metrics, without necessarily looking

into the relatively long term undertaking of improvement of software subcontracting

processes.

3

Measuring software development processes and the resulting software products

becomes increasingly common in the software industry to gain insight into the

effectiveness of processes and costs of the development efforts. Through analysis of

the collected metrics, the status of projects can be tracked quantitatively, the

development processes can be improved and estimations for future projects can be

based on solid data. The importance of metrics and measurement of processes for

software development is also underlined in the Capability Maturity Model of

Software Engineering Institute (Paulk et al., 1993) and ISO 15504 (1998), the major

frameworks for assessment of software processes.

Metrics can also be used in the software subcontracting arrangements to estimate

the resources required for a development project and to track the progress of a

development project. Through use of metrics in software subcontracting

arrangements, outcomes of development efforts can be better controlled.

1.1 Thesis Objective and Scope

The objective of this study is to explore organizations’ possibility of controlling

software subcontracting effectiveness through use of metrics. In order to examine

this, a literature survey was conducted about the factors that determine software to

be effective. The metrics pertaining to these factors were collected.

4

The author of this thesis works for Aselsan Inc, a major defense contractor in

Turkey. In order to obtain data about actual software subcontracting cases, some of

the software subcontracting cases from the two Software Engineering Departments

(YMM) of Aselsan’s MST division were examined and their metrics collected.

YMM is the acronym in Turkish for Software Engineering Department and will be

used throughout the text.

Three software subcontracting agreements were examined involving a total of

fifteen software development projects. The data was collected by examining

existing metrics and documents as well as conducting interviews with YMM

personnel working on the projects. However, exact data for only four of the fifteen

projects were available, thus comparison was only possible among these four

projects.

Success indicators for software subcontracting were established through a survey of

the literature on the subject and interviews with Software Project Team Leaders in

YMM. The metrics and success indicators about the cases under study were

collected and relationships between metrics and success indicators were sought.

The aim of this thesis was not to arrive at a solid theory about a software

subcontracting framework using metrics, but to look for relations between the

metrics and success indicators that could lead to formulation of research questions

for further exploration on the subject.

5

As noted above, rather than an extensive undertaking towards improvement of the

whole subcontracting process, the scope of this study has been restricted to the

investigation of whether it is at all possible to control via objective measurements,

the level of success achievable in subcontracting arrangements.

1.2 Thesis Outline

The thesis is organized into five chapters. The second chapter presents a literature

survey on the subject of software subcontracting, software quality, subcontractor

selection and information system success models.

The third chapter describes the case study methodology used in this thesis. It then

presents the suggested metrics for controlling software subcontracting effectiveness.

Success indicators, quantitative values that allow for a comparison of the software

subcontracting success of different projects are specified. Finally, the application of

the metrics to YMM subcontracting projects is presented, along with further

contextual data about the projects obtained through interviews.

The fourth chapter examines the results and looks for relationships between the

metrics and the success indicators. The fifth chapter presents the conclusion of the

thesis along with limitations of the work and suggestions for further study.

6

CHAPTER 2

LITERATURE SURVEY

The aim of this thesis is to investigate the relations between software subcontracting

effectiveness and subcontracting process metrics. This presents a challenge, as it

was not possible for this author to find a single work in the literature that focuses on

providing metrics for software subcontracting. There is, however, work in the

literature about software quality, subcontractor selection processes of firms and

information system success models. Metrics for software subcontracting can be

derived using this work from the fields of information systems and computer

science.

Below, these well established research areas are briefly reviewed from the

viewpoint of determining metrics relevant to software subcontracting success.

2.1 Software Quality – ISO 9126

ISO 9126 is a standard established by the International Organization for

Standardization regarding software quality. It defines three technical reports: one

7

for Internal Metrics, one for External Metrics and finally one for “Quality in Use”

Metrics. Internal metrics consist of metrics regarding the software itself such as

code complexity value for functions. External metrics are metrics that are derived

from the behavior of the software such as conformance to requirements or number

of defects. Quality in use metrics try to capture the effects of using the software in a

specific context (ISO, 2003). The standard suggests metrics that can be used to

measure software quality, depending on the circumstances of a given software

product. The standard states that the metrics that are suggested by the standard can

be modified to suit individual project or organizational requirements for software

quality. The standard also states that, the intended users of the standard include

“developers, acquirers and independent evaluators” for “software product

evaluation”.

The internal metrics technical document (ISO 9126-3) states metrics that can be

applied to “request for proposal, requirements definition, design specification or

source code”. These can be collected while the project is in progress and can be

used to track the project status and quality of intermediate products. They also

provide a prediction for the quality of the final product.

The external metrics technical document (ISO 9126-2) presents metrics that try to

measure the quality of the software as part of the system that it operates in. These

metrics can only be evaluated once a product is complete and in testing stage or in

actual operation. The measurements for these metrics take place in the environment

where the software is specified to operate.

8

The quality in use metrics technical document (ISO 9126-4) aims to capture the

quality of the software through how much it achieves its goals in terms of

“effectiveness, productivity, safety, and satisfaction in a specified context of use”.

2.2 COTS Acquisition / Selection

Acquisition of COTS software can be regarded as somewhat similar to software

subcontracting as in both cases software development efforts take place outside the

acquiring company. Subcontracted software is more customizable from the

acquiring company’s perspective; therefore including metrics regarding

conformance to the system and user requirements of subcontracted software also

seem appropriate to measure its effectiveness. Still there are some metrics that can

be borrowed from measuring COTS effectiveness for evaluation of software

subcontracting.

Torchiano et al. (2002) claim that the set of characteristics or attributes they have

compiled together to select COTS software have similarities with ISO 9126. They

use ISO 9126 in a master’s course they devise for classifying COTS software, but

state that their study is also valuable in an industrial setting. They also suggest some

further metrics for COTS software evaluation where they claim ISO 9126 falls

short.

9

According to Torchiano (2002), well defined requirements lead to a very strict

selection process for COTS, while vague and/or undefined requirements allow an

easier selection process, as the requirements can be shaped according to the COTS

product that is chosen. In this aspect, COTS selection and software subcontracting

differ, as in software subcontracting the best results are achieved through well

documented and stable requirements.

75% of the attributes that are used to classify and characterize COTS software

products by Torchiano are qualitative. The authors argue that, “Instead of

decomposing the [qualitative attributes] into atomic attributes, [it was] preferred to

keep them as they were and to ask for qualitative values [as these] are more

valuable in the educational context where the attributes were defined.”

Torchiano et al. (2002) do not include internal characteristics that depend on source

code for their evaluation of COTS products. They also include some other attributes

such as maturity in marketplace, market share, software requirements, hardware

requirements, product support, license type, acquisition cost, and other “domain

specific” attributes.

Bertoa et al. (2002) have also defined a set of evaluation metrics for COTS

components that are based on the ISO 9126 model. The authors claim that deriving

a set of metrics is necessary because the international standards (they specifically

name the IEEE and ISO standards) are “too general for dealing with the specific

characteristics of software components.” They provide 30 metrics to be used for

10

assessing COTS software. The metrics are designed to give clues about the

suitability, interoperability, compliance, compatibility, maturity, learnability,

understandability, operability, complexity, changeability, testability.

2.3 Subcontractor Selection

In this section, commonly accepted or recommended practices for software

subcontractor selection are reviewed.

According to Assman and Punter (2004), there are three phases for software

subcontracting: looking for subcontractors (selection), contract management,

completion of contract (maintenance). So for selection of metrics for evaluating

software subcontracting, different types of metrics for each of the phases could be

used. Assman and Punter assess only the first phase (subcontractor selection) of

subcontracting in their paper. They compare the existing standards and their

associated guidelines for subcontractor selection and present their own

methodology MASS: Method for Assessing Software Subcontractors. They

compare SW-CMM, SA-CMM, ISO 9000, ISO 15504, Bootstrap, EuroMethod,

IEEE Recommended Practice for Software Acquisition, and the Software Program

Managers Network Model and define a method based on the best features of these

standards.

11

2.4 Software Production Process

Software engineering has traditionally focused on a wide spectrum of software

metrics. In this section, the literature on software production process metrics shall

be reviewed from the standpoint of the current study.

Regarding the process of producing the software, Hyatt and Rosenberg (1996)

describe the metrics that are used for software quality at NASA Goddard Space

Flight Center. They identify the risks to the successful completion of a software

project in the correctness, reliability, maintainability, reusability, schedule areas and

identify metrics to measure whether the occurrence of a risk is imminent.

In accordance with ISO 9126, Hyatt and Rosenberg derive four goals to guide the

metrics that they collect. These are Requirements Quality, Product Quality,

Implementation Effectiveness and Testing Effectiveness. The metrics collected with

these goals in mind are applicable even in the early phases of software projects,

which is critical for NASA to identify potential problems early.

The requirements quality category of Hyatt and Rosenberg (1996) compiles metrics

such as “number of weak phrases”, “number of optional phrases”, the ratio of

changes to total number of requirements, number of untraceable requirements.

Through these metrics, they decide on the ambiguity, completeness,

understandability, volatility and traceability of requirements.

12

Product (or code) quality metrics includes complexity of the code, size of code,

correlation of complexity and size, comment percentage. Through these metrics,

they are able to understand the structure/architecture, maintainability, reusability

and internal and external documentation attributes regarding product quality.

Implementation effectiveness metrics are about the management side of the project

with metrics for the staff hours spent, and planned vs. actual task completions.

Finally, Hyatt and Rosenberg’s (1996) testing effectiveness metrics have to do with

the correctness of the resulting product, with number of errors and their criticality,

time of finding the errors, time of fixing the errors, and the location of the errors.

According to the Contractor Acquisition and Performance Monitoring Process for

Software Contracts (CAPM) of Software Engineering Process Office of United

States Navy (2000), there are four goals of software subcontracting which are

derived from SW-CMM:

1. Selection of the subcontractor

2. Agreement upon the “software standards, procedures, and product

requirements” between the acquirer and the subcontractor.

3. Maintenance of technical and administrative communication throughout the

duration of the contract.

4. Tracking of subcontractor’s performance against requirements and using the

data to reduce risk.

13

CAPM (2000) dictates that appropriate preparation needs to be performed by the

acquirer in order to succeed in the subcontracting management operations. These

include documentation, making the necessary resources available, and training the

personnel with the necessary skills. Therefore any measurement of software

subcontracting process effectiveness should also include metrics determining the

preparation level of the acquiring party.

Li and Smidts (2003), have conducted a survey among experts in the software

engineering field to find best software reliability indicators. They asked a panel of

experts to rank 30 of 78 software engineering measures selected from an earlier

study by Lawrance et al. (1998). Rankings of measures for Requirement, Design,

Implementation and Testing phases of software development were identified using

statistical methods.

For the requirements phase, “Fault Density”, “Requirement Specification Change

Requests” and “Error Distribution” were found to be top indicators for reliability of

the software resulting from the requirements. In the design phase, the top indicators

were: “Design defect density”, “Fault density” and “Cyclomatic complexity”. For

the implementation phase, “Code defect density”, “Design defect density” and

“Cyclomatic complexity” were identified as indicators. Finally, for the testing

phase, “Failure rate”, “Code defect density” and “Mean time to failure” were

described as top reliability indicators.

14

Reliability of software can be seen as a source of software quality. Since

development phases are carried out by the subcontractor in software subcontracting,

in order to ensure the resulting software has satisfactory quality, the acquirer of the

software could use the indicators described by Li and Smidts (2003) as metrics

during the contract management phase.

2.5 Information Systems Success Models

Since software lies at the core of information systems, it is appropriate to look at

software subcontracting from an IS success point of view. Looking at models for IS

success in the literature, there are product based and process based models. Of

these, the product based models seem appropriate for evaluating the effectiveness of

subcontracted software as the result of a subcontracting agreement is usually a piece

of software product. On the other hand, the development process of subcontracted

software involves an intricate set of relations among the developers in the

subcontracting company, and another set of relations with their clients in the

acquiring organization. Therefore, the process based models also have a

contribution to make for evaluating software subcontracting effectiveness.

The main issue in which information systems success differs from subcontracting

effectiveness is that, IS success tries to measure how an entire software based

system has made business processes of an organization more effective, while

software subcontracting is usually only limited to effective selection of

subcontractors for a software product and effective management of the contract

15

during product development and maintenance. Using this perspective,

subcontracting could be considered as a subset of the activities that end up creating

an IS system.

According to Drury and Farhoomand’s IS success model (1998), an IS system’s

characteristics are formed by its storage, cost, processing and communication

parameters. These characteristics, in turn determine user requirements, quality

attributes, and outcomes or results such as the reduction in paperwork or increase in

efficiency caused by the implementation of the IS system. The requirements, quality

attributes and the outcomes determine the success or failure of an IS system.

The most cited work about IS success in literature belongs to DeLone and McLean.

Their landmark paper (DeLone and McLean, 1992) described the information

system success as being a product of system quality and information quality which

in turn determine the use and user satisfaction of the IS, which in turn lead to

individual impact for the user and further to organizational impact for the

organization deploying the information system. In their 2003 update to the 1992

paper, the authors also factor in service quality alongside information and system

quality (DeLone and McLean, 2003). They also combine the impact to the user and

the organization under net benefits, using this term to encompass the benefits of an

IS system that may be further reaching than the original recipients of IS benefits.

Myers, Kappelman and Prybutok (1997), state similar IS success dimensions to

DeLone and McLean (1992), and present measures for assessing the IS success with

16

the aim of providing a comprehensive IS assessment system. In order to arrive at

the measures, the authors have scanned the literature for measures that have been

suggested and combined the results to arrive at a comprehensive assessment model.

Seddon (1997) disagrees with DeLone and McLean’s model regarding IS use

(1992). He states that while IS use is a prerequisite of IS success, it is not a factor.

Seddon maintains that the user satisfaction from an IS system leads to expectations

about the net benefits of IS use and later to IS use, therefore it is a consequence of

IS success.

Considering these IS success parameters through a software subcontracting point of

view, metrics that pertain to the requirements of a software, as well as metrics

derived from quality attributes and usability attributes, as discussed earlier in

section 2.1, can be used to determine the effectiveness of a software that is at the

heart of an IS system.

17

CHAPTER 3

NATURE OF THE CASE STUDY

3.1 Case Study Methodology

The aim of this thesis was to understand how software subcontracting was being

implemented in YMM, and investigating the relation between subcontracting

success and a set of metrics related to the subcontract process. If such relations were

thoroughly and consistently established, they could be used for enabling better

management of the contracts. The metrics were derived from the literature, and their

applicability was examined through a case study of the current subcontracting

arrangements in YMM.

In order to understand the nature of software subcontracting arrangements in YMM,

a qualitative case study approach was employed. Although the presence of metrics

may suggest quantitative research methods, quantitative research requires large

sample sizes. (Benbasat et al., 1987) When trying to solve real world problems,

such a sampling is usually not possible. The sample size used in this study involved

three contracts involving fifteen software development subprojects. Although

18

fifteen is a fairly large number, metrics for only four software development

subprojects was found to be available. Due to this reduced sample size, the use of

qualitative research methods was preferred. Furthermore, the main aim of this study

is to formulate a hypothesis about the relationship between software subcontracting

success and the metrics related to the outsourcing process. As such, qualitative

research is considered to be a viable approach.

Kaplan et al. (1988) point out that it is usually necessary to combine qualitative and

quantitative methods to understand the context-specific and context-independent

aspects of a situation. Quantifiable measures of a situation, while valuable, are

almost never possible to obtain as social systems involve numerous “uncontrolled –

and unidentified – variables”. Trying to obtain objective and testable results may

come at the cost of being unable to gain a deeper understanding of the phenomenon.

According to Benbasat (Benbasat et al., 1987), “a case study examines a

phenomenon in its natural setting” while using different sources of information

without any manipulation or control of the environment. He also states that “case

studies are more suitable for exploration, classification and hypothesis

development” and that the results derived from the case study may depend on the

investigator.

Similarly, Perry et al. (2004) state that “case studies are well suited to “how” and

“why” questions in settings where the researcher does not have control over

variables and there is a focus on contemporary events”.

19

The case study described in this thesis matches the four criteria for case studies

defined by Benbasat et al. (1987):

a. software subcontracting practices in YMM are examined in their natural

setting

b. the study focuses on contemporary subcontracting arrangements

c. there is no control or manipulation of the subcontracting activities

d. there is no established theoretical base for software subcontract

management using metrics

Therefore, it may be concluded that the choice of a case study was appropriate for

the subject of software subcontracting control framework using metrics.

According to Benbasat et al. (1987), in the information systems field, the

practitioners are usually ahead of the research. Therefore, in order to understand the

IS field, the researchers must study the innovations fashioned by the practitioners.

The unit of analysis for this case study is the subcontracting projects in Aselsan’s

MST division’s YMM departments. The projects for the case study were chosen

due to their recentness and having a large body of data in the form of defect reports

and documentation. Also, it was possible to conduct interviews with the YMM

personnel involved in the subcontracting activities due to the currency of the

subcontracting activities. As described below in section 3.4.1, the major methods of

data collection applied in this study were interviews with selected YMM personnel

and investigation of available documentation.

20

The case study results will hopefully be valuable due to the insight they provide

about the context and details of the software subcontracting agreements of a

company that develops and acquires outsourced software in the Turkish defense

industry. It must be stressed here that the thesis is a case study of the software

subcontracting activities in YMM. It does not aim to test a theory about software

subcontracting. The main objective is to investigate software subcontracting

phenomena, and question the possibility of connections among the measured

metrics and the subcontract contexts with the success of the given subcontracting

arrangements.

3.2 Subcontracting Metrics

In this section, metrics relevant to the software development subcontracting within

the context of YMM shall be determined.

This thesis aims to perform a case study through evaluating subcontracting

arrangements of the two software engineering departments of Microwave and

System Technologies (MST) division of Aselsan Inc. While the nature of

subcontracting projects changes in each case, essentially the software products are

developed by a subcontractor, which are then accepted by Aselsan as prime-

contractor and delivered to Aselsan’s customer. The changes requested after

delivery by the customer are performed by either Aselsan or the subcontractor,

according to the details of the subcontracting agreement.

21

The two software engineering departments had 136 personnel working at the time

of writing of this thesis. The software development processes of the two

departments are based on ISO 12207 Software Life Cycle Processes standard (ISO,

1995). There is also a measurement framework that is being introduced that is based

on the ISO 15939 Software Measurement Process standard (ISO, 2002). The

departments have been certified with the AQAP-150 standard of NATO (1997).

There is work underway to obtain AQAP-160 certification (NATO, 2001).

There are three main reasons for Aselsan to engage in subcontracting arrangements:

a) The unavailability of personnel. When a project is very large, or the

YMM personnel are already tied up in other development projects,

Aselsan seeks subcontracting arrangements that will lead to alleviate

the lack of manpower to undertake a project.

b) The unavailability of certain expertise to use in a project that calls

for it. In order to satisfy the requirements of a project that requires

knowledge in a field that is unfamiliar, subcontracting arrangements

that result in both the required product and accumulation of

knowledge are made.

c) The terms of a contract may dictate cooperation with other firms as

subcontractors.

22

Apart from these three factors, the mission statement of Aselsan states that it will

help foster the defense industry in Turkey through the use of subcontractors for

defense projects.

In order to evaluate the subcontracting arrangements that Aselsan has made with its

subcontractors, some metrics selected according to the criteria described later in this

section are required. Below are a summary of metrics that are to be used in the

study:

General Information about a subcontracting project:

• Project Duration

• Is source code to be turned over to Aselsan?

• The phase (if any) that the project was taken over by Aselsan.

Metrics that can be computed during the selection phase of a project:

• Number of subcontractors short-listed

• Number of responses to RFPs

• Estimated size of project (KSLOC, number of software, hardware, user

interfaces)

• Rating of the subcontractor prior to contract (by Aselsan)

Metrics that can be computed during the contract management phase of a project on

regular intervals:

23

• Size (SLOC, number of function declarations, function points, number of

requirements, document page counts)

• Effort (person hours)

o By Subcontractor

o By Aselsan

• Conformance to requirements (number of requirements, number of

requirements that were satisfied, number of incorrectly implemented

requirements, number of unsatisfied requirements, number of changes to the

requirements since the initial version)

• Quality

o Number of Change Requests

o Number of Accepted Change Requests

o Ratio of Number of Document Reviews to Number of Documents

(including versions of the documents)

o Fault Density (number of errors per KSLOC)

o Cyclomatic Complexity

• Budget (dollars)

Metrics that can be computed after the completion of a project:

• Return on investment (as percentage of investment)

• Conformance to project plan / schedule (as percentage of planned duration)

• Conformance to budget (percentage of initial contract value)

• Conformance to requirements (number of requirements, number of

requirements that were satisfied, number of incorrectly implemented

24

requirements, number of unsatisfied requirements, number of changes to the

requirements since the initial version)

• Conformance to contract (percentage of clauses that were satisfied,

percentage of clauses partially satisfied)

• Rating of the subcontractor after the contract (by Aselsan)

• Size of project (number of software, hardware, user interfaces, SLOC,

number of function declarations, function points, number of requirements,

document page counts)

• Quality

o Number of Change Requests

o Number of Accepted Change Requests

o Ratio of Number of Document Reviews to Number of Documents

(including versions of the documents)

o Fault Density (number of errors per KSLOC)

o Cyclomatic Complexity

• Cost of repair/change

o For the subcontractor in terms of person hours + dollars

o For Aselsan in terms of person hours + dollars

o Change cycle efficiency (time to correct an error/ make a change)

o Modification Complexity (time spent per correction / change)

o Change Success Ratio (#errors occurring due to previous correction /

changes)

25

It is the aim of this thesis to look for any relationship between the “success” of a

project and the metrics that were collected. What is considered a successful

subcontracting project is decided through use of some success indicators. These

indicators for project success shall be defined in section 3.3.

The metrics that have been suggested here were brought together under the

following rationale: The metrics required to properly gauge the effectiveness of a

subcontracting agreement consisted of some external software quality metrics for

the software resulting from the subcontracting arrangement (as defined by ISO

9126-2 Technical Report, 2003), and the metrics specific to subcontracting such as

duration of contract, subcontractor evaluation rating at the beginning of contract,

subcontractor evaluation rating at the end of contract and other contract parameters.

For the metrics to be of use, care should be taken to make the data collected

objective. For instance, measurements regarding requirements should be based on

requirement specification documents of similar detail level in order for

measurements from different projects to be comparable. Furthermore, the

measurement activities should adhere to a well understood procedure based on

standards, such as the ISO 15939 (2002) in order to make the measurement

activities uniform and ensure the objectivity of data collected. The quality of the

metric data will depend on the quality of the measurement process that is used to

collect the data.

26

The “conformance to requirements” metrics along with “number of errors” and

“number of changes” proposed for this case study, cover the requirement and

quality aspects of IS system effectiveness presented by Drury and Farhoomand

(1998) and other IS success models presented in section 2.5.

The metrics regarding “conformance to requirements” follow from the “suitability

metrics” defined by the ISO 9126-2 external software quality metrics report. They

aim to determine the stability and the correct implementation of functional

requirements for a piece of software.

The metrics regarding “cost of change” are extracted from the “changeability

metrics”, again defined by the ISO 9126-2 external software quality metrics report.

These metrics aim to determine how easy it is to modify a piece of software once an

error has been discovered or some requirement change dictates that a part of the

software should be changed.

Some other external quality attributes defined by ISO 9126 such as “usability

metrics” which include “learnability, understandability and operability”, are not

mentioned directly in the proposed metrics. These metrics would have to involve

direct evaluation of the users of the subcontracted software. These attributes are

tried to be captured through inclusion of “number of change requests”, for both

improvements of existing features and new feature requests.

27

As was mentioned in Chapter 2, according to ISO-9126, the internal quality

attributes defined by ISO-9126 can be used to determine the product quality at the

intermediate stages of the development of a software product. They can also be seen

as indicators for the quality attributes of the resulting piece of software. In the

Aselsan case study, metrics regarding project size and unit test results of functions,

functional implementation completeness, functional compliance with requirements,

could be collected by the subcontractor at pre-determined intervals to assess the

status of the project. These metrics are derived from the “suitability” and

“functional compliance” metrics of ISO 9126-3.

Of the internal quality attributes defined by ISO 9126-3, “maintainability” metrics

are also considered for the purposes of this case study, as most of the subcontracted

software projects are taken over by Aselsan at some point or other during their life

cycle. These metrics include measurements about usage of a log, presence of

diagnostic functions, record of changes in the source code, number of detected

adverse impacts after modifications and presence of test functions.

The ISO 9126-4, “quality in use” metrics have to be evaluated in the actual

environment of the software with the real users of the system. This occurs after the

installation of the system at the site of operations. Although the metrics that could

be collected through tests that would be performed “on site”, would probably be

beneficial, the collection of these metrics is not practical for the purposes of this

study due to the fact that the systems are installed at armed forces facilities

28

dispersed throughout the country. Therefore, the quality in use metrics are not

included in this case study.

The metric of subcontractor evaluation was based on Torchiano’s use of maturity in

marketplace and market share metrics for selection of COTS software (Torchiano et

al., 2002). The metric for the type of subcontracting arrangement was also derived

from Torchiano’s licensing type metric for selection of COTS software.

As was mentioned in Chapter 2, there are three phases of software subcontracting.

These phases are:

1. Looking for subcontractors (selection),

2. Contract Management,

3. Completion of Contract (maintenance).

For these three phases, it would make sense that there are different and overlapping

metrics regarding each phase. Therefore, the metrics that have been proposed in this

thesis were grouped accordingly.

During the contract management phase, the quality of the system is tried to be

measured through use some of the software reliability indicators by Li and Smidts

(2003). These are: Requirement Specification Change Requests, Fault Density

(number of errors per KSLOC), Cyclomatic Complexity and Code Defect Density.

29

The metrics collected regarding the subcontracting projects cover only the periods

of time during which the project was developed with the subcontractor. If a project

was taken over by Aselsan at any point during the project lifecycle, it moves outside

the scope of this study. If a project is taken over by Aselsan, this is indicated along

with the phase of project in which the takeover occurred by a metric in the table

given.

3.3 Software Project Success Indicators

Project success indicators are tools to assess whether a project is considered to be a

success. The suggested success indicators for the subcontracting projects in YMM

are:

• the ratio of actual development time to estimated development time

• the ratio of actual cost to estimated cost

• rework requests per KSLOC

• Boolean variable whether the project has been approved by the customer

These project success indicators were obtained through interviews with the

Software Project Team Leaders in YMM.

Similar project success indicators are also found in the literature. The “Extreme

Chaos” article, the successor to the well-known “Chaos Report” by The Standish

Group (2001), showed that 23% of IT projects are cancelled while 49% run over

30

budget. The study divided projects into three categories: Successful, Challenged and

Failed. Projects that were “completed on-time and on-budget, with all features and

functions as initially specified” were considered successful. Projects that were

“completed and operational but over-budget, over the time estimate, and offers

fewer features and functions than originally specified” were considered as

challenged while cancelled projects were classified as failed. The Standish Group,

points to “lack of skilled project management and executive support” as the reason

for the failure of most projects. Similarly, the Gartner Institute survey of 2000

shows, that 40% of IT projects fail (Journal of Accountancy, February 2001, p. 24).

The report found the primary cause to be ineffectual management and

recommended additional training for project leaders.

The “Extreme Chaos” report also states that most of the “successful” projects were

over-estimated, meaning more than the required resources have been allocated to

them. This suggests better use of metrics should be made for estimating the sizes of

projects and allocating resources appropriately.

Karadağ (2003) and Aykol (2003), claim that the failure rates of IT projects

revealed by the research conducted by the Standish Group and the Gartner Institute

in IT project success is due to the inadequate project management. Karadağ states

that despite this fact, very few firms in Turkey make use of the project management

methodologies that have been used in the world since 1960s. He states that Türkiye

Bilişim Derneği (a major non governmental organization in the Turkish IT sector)

has made the promotion of project management methodologies for IT projects a top

31

priority to decrease the failure rates. Aykol claims that the use of risk management

strategies is vital for a project’s success.

The use of metrics to track the performance of subcontracting projects helps the

project management to better control a project and reduces risks. Therefore the use

of metrics can be considered as a measure to ensure project success.

Erener (2003), indicates that there are numerous factors determining whether a

software project is successful or not. The author states that success is a function of

timetable, budget and software quality. While meeting the project milestones and

staying within budget seem obvious success indicators, the quality aspect of

software is more complex. According to the author, software quality has two

dimensions; one is conformance to requirements, while the other is the ratio of

number of defects to the size of code. He also states that not all defects or errors are

of equal severity, and gives the error levels of “Show stopper”, “Critical”,

“Important, and “Cosmetic” as a classification schema for errors that a software

product exhibits. He states that acceptance criteria for software projects must

include defect/size ratios for these different classes of errors.

UKSMA (2000) also uses 4 levels for defect classification, but attaches different

labels to the categories. Levels “Critical”, “Major”, “Minor” and “Cosmetic” are

used as different classes to indicate the extent to which a defect affects the success

of a software system. It also provides examples from other sources in industry

32

which yield similar classification schemes. There are numerous other sources in the

literature that classify defects found in software into different severity classes.

The results from the interviews among YMM personnel are mostly consistent with

these findings from literature as they all stress project completion on schedule and

within budget. The approach of the Chaos Report stresses the presence of all

initially specified functionality as a success indicator, while interviews at Aselsan

stressed the ratio of rework requests with project source code size as an indicator,

which was also stated by Erener (2003).

The classification of defects into different severity levels is important, as a software

product with five “cosmetic” defects, should not be evaluated as of inferior quality

when compared to a product with one “show stopper” error. In the suggested

metrics for YMM projects, the errors are classified as major and minor errors.

While this gives a better idea compared to having no defect classification, a

classification scheme with finer granularity should be applied if it better suits

organizational goals. As will be seen in section 3.4.3, for most of the current

projects, even the major/minor difference of defects is not available.

While using the ratio of actual development time to estimated development time

and the ratio of actual cost to estimated cost success indicators, it is important to

keep the scope of the project under study in perspective. If the scope of a project

were to be broadened to include some features that were not initially in the

requirements, changes to the development time and cost actualizations should be

33

expected, and the success indicators should be evaluated accordingly. It was

observed that none of the projects studied within the scope of this work have

undergone such changes of scope.

3.4 Investigation of YMM Subcontracting Projects

3.4.1 Research Method

Interviews were conducted with several employees of Aselsan working in various

departments related with the software subcontracting projects to gain insight about

the nature of the subcontracting arrangements. Among the interviewed personnel

were the members of the software project teams and their Software Project Team

Leaders that were responsible for the software that was delivered to the customer as

a result of the development efforts by the subcontractor, and quality assurance

personnel that were present for the review of the documents and the acceptance

tests. The list of interviews conducted is given in Table 1.

Table 1 – List of Interviews

Interviewed Aselsan Personnel

Project 1 Software Project Team Leader

Project 1 Software Developer (Author)

Project 2 Quality Assurance Team Member

Project 2 Software Project Team Leader

Project 2 Software Developer

Project 2 Subcontractor Project Team Leader

Project 3 Software Project Team Leader

Project 3 Software Developer

34

Apart from the interviews, MST Documentation Center was used for accessing

project documents such as software requirement specification documents and

software version specification documents for obtaining the values for the metrics.

Additionally, with the help of personnel working for the project, other documents

from the project directories on the MST intranet regarding the state of projects were

examined.

3.4.2 Findings

Project 1 involved a single software development project which performed database

access, geographic information access and mapping functionalities. The contract for

Project 1 was signed in 2002. Although Project 1’s duration was stated as two years

in Table 2, the actual development of version 1.0 took about six months. The

remainder of the first year saw three minor releases (resulting in version 1.03),

containing mostly bug fixes and small usability enhancements. At this point,

Aselsan asked for some additional enhancements that the subcontractor deemed

outside the scope of the existing contract. The subcontractor’s price for the

additional enhancements in question was found to be too costly by Aselsan, at

which point it was decided to take over the maintenance of the project. Therefore,

although there was still another year to go for the maintenance period of the original

contract between the subcontractor and Aselsan to expire, Aselsan decided to make

the modifications itself since the source code for most of the project was turned

over as per the conditions on the contract. The author of this thesis was involved in

the meetings with the subcontractor and the development efforts after the project

was taken over by Aselsan.

35

Not all of the requested changes could be performed, as some of the proposed

changes required modifications to the libraries that the subcontractor had provided

without the source code, in accordance with the contract. Further modifications

were made and enhancements were added after the initial wave of enhancements.

Some enhancements were made by Aselsan even after the guarantee period of the

contract had expired. The most current version of the software is 1.17. The size of

the code has increased about 40%. Some further changes are also being considered.

The Software Project Team Leader from Aselsan, who was extensively involved

with the subcontracting arrangements for Project 1, classifies the project as a

success. She states that the project was delivered to the customer with all of the

initial requirements satisfied within six months of signing of the contract. She also

states that had there been more time available, it would probably be possible to

better analyze the project requirements and specify the features that caused the

conflict between the subcontractor and Aselsan in the original contract, thus

resulting in a more satisfactory subcontracting arrangement.

Project 2, is comprised of 11 smaller software projects, all being undertaken by the

same subcontractor. The project involved creation of a training simulator that

simulated the parts of a military system that Aselsan built. Unfortunately, since all

the different pieces of software function as a whole, separate metrics were not

collected about each piece of software. The measures given in Table 2 are the sum

for all 11 pieces of software that were developed by the subcontractor. It is very

36

difficult to break down the total number into figures for different pieces of software,

as data was not collected using this information as a classification criterion.

Another peculiarity with Project 2 is that the number of defects is very large

compared to other projects. This is almost certainly due to the fact that the number

includes not only the error reports and change requests submitted by Aselsan as was

the case for the other projects in the study, but also the number of error reports and

change requests resulting from the subcontractor for internal use. Again, there is no

way to separate the number of defects / change requests originating from Aselsan or

the customer due to the way the data was collected and stored.

An interview with the quality assurance team regarding the ratings for the

subcontractors showed that, although an evaluation scheme for potential and

existing subcontractors was being used, it was not up to date. This “database” was

updated “as necessary”; usually, but not always, when a new subcontracting project

was being started. Therefore, for Project 2, the rating for the subcontractor is

available at the onset of the project, while the rating at the end of the project is not.

An interview with the Software Project Team Leader of the subcontractor of Project

2 was conducted in order to obtain more concrete figures regarding the individual

development projects so that they could be used in comparison with data from the

other projects. The interview, however, yielded no further data about individual

projects, as the subcontractor did not keep data about defect reports for each

software development project. The interview also confirmed that no distinction

37

could be made between the defects or change requests submitted by Aselsan, and

the defects or change requests submitted by the subcontractor employees for

internal use.

Project 3 was also made of 13 software development projects, including some

developed by Aselsan. For this case study, only three of the subcontracted projects

were taken into consideration. The subprojects were chosen due to their having a

more thoroughly compiled set of metrics among the other subprojects in Project 3.

These are named as Project 3.1, 3.2 and 3.3 respectively.

Project 3.1 had no user interface, and worked “behind the scenes” performing some

key communication tasks. Project 3.2 performed some training simulation tasks for

the other parts of Project 3. Project 3.3 performed some backup and restore

operations as well as providing some conversion functionality for data received on

its interfaces.

For Project 3, the subcontractors were determined by the customer at the onset of

the contract with Aselsan designated as the prime contractor. Therefore, there was

no subcontractor selection process. The project was described as being difficult to

manage, as the division of labor among subcontractors was not satisfactory. For

instance, the geographical information systems were implemented by more than one

subcontractor, each using different technologies indicating a lack of coordination

among the subcontractors. Due to these factors and general dissatisfaction with

most of the subcontractors and the software that they delivered, the project

38

management decided not to subcontract any components of the project for the

second phase of the Project 3.

The Software Project Team Leader for Project 3 stated that although all of the

subprojects appeared to have been delivered on-time and on-budget, there were

serious deficiencies with some software which had to be resolved by Aselsan

personnel before the customer accepted the software formally.

Project 3.1 was described as a well developed project with minimal number of

problems. The Software Project Team Leader for Project 3 states that while there

were a small number of errors discovered for this project, this may be due to the

fact that the developers of the software checked the software themselves using the

log files resulting from the use of the software, and fixed some of the bugs before

they became a problem for the rest of the system. The engineers working the project

at Aselsan had no complaints about this piece of software, but due to the general

decision of not subcontracting any of the components of the project for the second

phase, Project 3.1 was taken over by Aselsan.

The engineers working on the Aselsan side for Project 3.2 stated that the software

performed a lot of functions that didn’t appear in the requirements. This and the fact

that the software had a user interface that included a lot of errors are responsible for

the high number of change requests for this software.

39

It was also noted during the interviews that, some of the subcontracting firms

involved required that all change requests and bug reports be submitted formally,

while others didn’t bother with any formalities of documenting the change requests.

Therefore, the number of change requests and errors should be evaluated bearing

this fact in mind.

In the subsection below, the relationship between project metrics and success

indicators is presented in a tabular form.

40

3.4.3 Suggested Metrics Applied to YMM Subcontracting

Projects

The table below provides a comparison of the suggested metrics and the software

project indicators described in sections 3.2 and 3.3 for the subcontracting projects of

YMM. Other subcontracting projects of YMM had no metrics collected that could

be used in this study.

The fields that are marked with DNA denote that data is not available for that

metric.

Table 2 - Metrics Applied to Selected Aselsan Subcontracting Projects

Phase Metric Class Metric Project

1

Project

2*

Project

3.1

Project

3.2

Project

3.3

Project
Duration

2 years 3 Years 3 years 3 years 3 years

Is source code
to be turned
over to
Aselsan?

Yes Yes Yes Yes Yes

P
ro
je
ct
 I
n
fo
rm
a
ti
o
n

The phase (if
any) that the
project was
taken over by
Aselsan.

Mainte
nance

None Phase 2 Phase 2 Phase 2

Actual
Development
Time /
Estimated
Development
Time

1 1.64 1 1 1

S
u
cc
es
s
In
d
ic
a
to
rs

Actual Cost /
Estimated
Cost

1 1 1 1 1

41

Table 2 - Metrics Applied to Selected Aselsan Subcontracting Projects – Continued

Phase Metric Class Metric Project

1

Project

2*

Project

3.1

Project

3.2

Project

3.3

Rework
Requests /
KSLOC

17 /
120
= 0.14

1277 /
250
= 5.11
**

9 / 101
= 0.09

125 /
30
= 4.17

23 / 31
= 0.74

Boolean
variable
whether the
project has
been approved
by the
customer

Yes Yes Yes Yes Yes

Number of
subcontractors
short-listed

2 5 Not
Applica
ble
(****)

Not
Applica
ble
(****)

Not
Applica
ble
(****)

Number of
responses to
RFPs

2 5 Not
Applica
ble

Not
Applica
ble

Not
Applica
ble

M
et
ri
cs
 t
h
a
t
ca
n
 b
e
co
m
p
u
te
d
 d
u
ri
n
g
 t
h
e

se
le
ct
io
n
 p
h
a
se
 o
f
a
 p
ro
je
ct

 Rating for the
subcontractor

DNA 83 /
100 =
0.83

DNA DNA DNA

42

Table 2 - Metrics Applied to Selected Aselsan Subcontracting Projects – Continued

Phase Metric Class Metric Project

1

Project

2*

Project

3.1

Project

3.2

Project

3.3

Conformance
to project plan
/ schedule (as
percentage of
planned
duration)

100 164 100 100 100

Conformance
to budget
(percentage of
initial contract
value)

100 DNA 100 100 100

the number of
requirements
that were
satisfied /
number of
requirements

151 /
151
= 1

DNA 71 / 73
= 0.97

80 / 89
= 0.90

147 /
165
= 0.89

number of
incorrectly
implemented
requirements /
number of
requirements

0 / 151
= 0

DNA 0 / 73
= 0

5 / 89
= 0.06

2 / 165
= 0.01

Number of
unsatisfied
requirements /
number of
requirements

0 / 151
= 0

DNA 2 / 73
= 0.03

4 / 89
= 0.04

16 /
165
= 0.10

Conformance
to
requirements

number of
changes to the
requirements
since the
initial version
/ number of
requirements

68 /
151
= 0.45

DNA 5 / 73
= 0.07

17 / 89
= 0.19

19 /
165
= 0.12

M
et
ri
cs
 t
h
a
t
ca
n
 b
e
co
m
p
u
te
d
 a
ft
er
 t
h
e
co
m
p
le
ti
o
n
 o
f
a
 p
ro
je
ct

Conformance
to contract

percentage of
clauses that
were satisfied

100 DNA 100 100 100

43

Table 2 - Metrics Applied to Selected Aselsan Subcontracting Projects – Continued

Phase Metric Class Metric Project

1

Project

2*

Project

3.1

Project

3.2

Project

3.3

 percentage of
clauses
partially
satisfied

0 DNA 0 0 0

 Rating for the
subcontractor

DNA DNA DNA DNA DNA

SLOC 120K 250K 101K 30K 31K

number of
function
declarations

2350 DNA 2612 479 691

number of
software
interfaces

2 DNA 2 4 7

Number of
hardware
interfaces

0 DNA 0 0 0

Number of
user interfaces
(windows)

99 DNA 0 60 0

Number of
requirements

151 990 73 89 165

Size of
project

Total
document
page count

1411 DNA DNA DNA DNA

major errors
per KSLOC

16 /
120

260 /
250

9 / 101 125 /
31

20 / 30 Number of
errors (***)

Minor errors
per KSLOC

DNA 508 /
250

DNA DNA DNA

Quality Number of
change
requests

17 446 9 125 23

44

Table 2 - Metrics Applied to Selected Aselsan Subcontracting Projects – Continued

Phase Metric Class Metric Project

1

Project

2*

Project

3.1

Project

3.2

Project

3.3

 Number of
Document
Reviews /
Number of
Documents
(including all
versions of the
documents)

2 / 29
= 0.07

DNA 14 / 20
= 0.70

15 / 19
= 0.79

17 / 23
= 0.74

* 11 individual software products

** Figure includes rework requests for all subprojects and internal rework requests

of the subcontractor.

*** Major/Minor Error Data was unavailable for some of the projects.

**** Subcontractors dictated by the customer

45

CHAPTER 4

DISCUSSION OF FINDINGS

This study examines three subcontracting cases involving fifteen software

development projects that have been carried out in YMM during the past few years.

The outcomes and success indicators of the three cases differ as Project 2 moves

into phase 2 with the subcontracting company, Project 1 has been taken over by

Aselsan during the maintenance phase due to the cost of development of new

features, and Project 3 has been taken over by Aselsan due to dissatisfaction with

the performance of the subcontractors.

The aim of this thesis was to investigate, via a case study, software subcontracting

success factors. A relationship was sought between the metrics that have been

suggested in section 3.2, and the project success indicators given in section 3.3. The

metrics described in section 3.2 were classified in four categories: general metrics

for the entire project, metrics for the selection phase of the project, metrics for the

contract management phase of the project, and lastly metrics that can be computed

after the completion of the project. The data collected for this case study does not

46

include data regarding the contract management phase of projects, as no data was

available for this phase.

In addition to the metrics collected, to gain insight about the context of the

subcontracting arrangements, interviews with YMM personnel were conducted and

the specifics of the subcontracting deals were recorded.

The success indicators described in section 3.3 were based on findings from the

literature and views of the Software Project Team Leaders in YMM. These were

found to be: the ratio of estimated vs. realized project schedule, the ratio of

estimated vs. realized project cost, the number of rework requests per KSLOC, and

the Boolean variable of whether the project was approved by the customer.

Of the three subcontracting arrangements, Project 1 concerned a single software

development project, Project 2 had 11 software development subprojects, and

Project 3 had 13 software development subprojects. Project 2 was undertaken by a

single subcontractor and data about the individual projects is not available.

Therefore a comparison of metrics of Project 2 subprojects and other subprojects

was not possible. Project 3 was built by several subcontractors, including some

parts built by Aselsan. Only three of the subcontracted subprojects were chosen due

to the completeness of their data.

After the examination of Projects 1, 2 and 3 in this case study, the following

relations among the metrics and success indicators have been suggested:

47

Of the four success indicators, only “change requests per thousand lines of code”

showed difference among different projects. Except for Project 2, the ratios actual

development time to estimated development time, actual cost to estimated cost and

the approval of the project by the customer were identical for all projects.

Therefore, the only meaningful comparison among the success indicators for the

projects is among the figures for the rework requests.

Due to the nature of subcontracting processes in Aselsan, the cost of a

subcontracting project is usually fixed by the contract. If there are any unexpected

costs, they are born by the subcontractor. Therefore, it is to some extent expected

that all of the subprojects cost exactly as much as they were estimated to cost.

Although the amount paid to the subcontractor for a project doesn’t change, the

amount of money and effort expended by Aselsan could be considered as a cost of

the subcontracting project. These costs occur due to the fact that although a project

is subcontracted, since Aselsan remains the prime contractor, it is still responsible

for the success of the project. It may usually be the case that the subcontracted

software has interfaces with some other software being developed by Aselsan and

the integration of the subcontracted subprojects into the larger project requires time,

money and effort by Aselsan. Unfortunately, there is currently no way to measure

the estimates and the actual costs of the time, money and effort incurred by Aselsan

for subcontracting projects. For large projects, however, these costs probably

remain a fraction of the value of the subcontract, and not affect the overall cost very

much.

48

As for the “conformance to schedule” and “acceptance by the customer” success

indicators; usually most of the projects are delivered on time and are accepted by

the customers. But in order to make the project delivery deadline, some features

may be taken out, the written code may be less thoroughly tested, and some of the

features may not exactly work as intended. The customer is usually placated

through the promise of service releases to remove errors, and addition of the

originally intended functionality. Again, since the delivery time and the required

features are stated in the contract that Aselsan makes with the subcontractor; the

subcontractor has to bear the costs of correcting the errors and adding the missing

functionality. But after the project deadline has passed, the time and effort spent by

the subcontractor for an “accepted” project is usually not as much as the time and

effort spent before the deadline. Therefore, the only viable indicator for project

success becomes the ratio of the number of defects to the software size.

Project 2 was turned down by the customer during its initial acceptance tests. This

caused a difference between the estimated duration of the project and the actual

duration of the project. Interestingly, the second acceptance tests almost a year later,

(a delay of 64%) were successful and it is the only subcontracting agreement in this

case study that is still continuing. The fact that the subcontract still continues into

another phase of project, may indicate that the subcontracting relation was a

success.

49

The metrics that differed from each other are given in the table below along with

their relation to the success indicator defect ratio. Figures 1 through 10 represent

graphically the values of the metrics against the indicator.

Table 3 - Relationship between Metrics and Success Indicator

Metric: Success Indicator:

Rework Requests /

KSLOC

(lower is better)

Figure

Percentage of Requirements that were

satisfied

Positive Relation

(i.e. Success Increases with

higher percentages)

1

Percentage of Requirements that were

incorrectly implemented

Negative Relation 2

Percentage of unsatisfied requirements Inconclusive 3

Ratio of changes to requirements to

number of requirements

Inconclusive 4

Program Size (KSLOC, number of

function declarations)

Inconclusive 5, 6

Number of software interfaces Inconclusive 7

Number of User interfaces (windows) Inconclusive 8

Number of errors / KSLOC Negative Relation -

Number of requirements Inconclusive 9

Number of Document Reviews / Number

of Documents

Inconclusive 10

It appears from Table 3 that the metrics regarding the state of requirements for a

project have an effect on the project success outcome. (Figures 1, 2, 3) Especially,

the percentage of incorrectly implemented requirements shows an almost linear

50

relation to the defect ratio. This suggests that properly defined requirements should

be sought by subcontracting project management. The state of requirements could

be a good indicator to watch during the contract management phase to gain

understanding about the future success of the project.

p1

0.14
p3.1

0.09

p3.2

4.17

0.74

0

1

2

3

4

5

88 90 92 94 96 98 100

% Requirements Satisfied

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 1 – Percentage of Satisfied Requirements

p3.2

4.17

p1

0.14

p3.1

0.09
p3.3

0.74
0

1

2

3

4

5

0 2 4 6 8

% Requirements Incorrectly Implemented

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 2 – Percentage of Incorrectly Implemented Requirements

51

p1

0.14
p3.1

0.09

p3.2

4.17

p3.3

0.74
0

1

2

3

4

5

0 2 4 6 8 10 12

% Requirements Unsatisfied

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 3 – Percentage of Unsatisfied Requirements

The ratio of changes to requirements to number of requirements does not present a

clue about the probable success of a project. Project 1, one of the more “successful”

projects, has the highest amount of changes to requirements after its initial set of

requirements. (Figure 4)

p1

0.14
p3.1

0.09

p3.2

4.17

p3.3

0.74
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

Number of Requirement Changes / Number of

Requirements

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 4 – Number of Requirement Changes / Number of Requirements

52

The data shows that larger projects (Project 1 with 120K lines of code and Project

3.1 with 101K lines of code), have lower rework requests per thousand lines of code

ratios (0.14 and 0.09 respectively), while smaller projects have higher values for

this success indicator. (Figure 6) A similar trend is apparent in the number of

function declarations that the source code contains. (Figure 5) This may suggest

that, although a project is larger, and requires greater effort to accomplish, it doesn’t

necessarily have to be “less successful” compared to simpler (or smaller) projects.

While this may be due to higher importance attached to the contract by the

subcontractor, and hence, a higher level of quality achievement, this point definitely

deserves further study.

p1

0.14
p3.1

0.09

p3.2

4.17

p3.3

0.74
0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000

Number of Function Declarations

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 5 – Number of Function Declarations

53

p1

0.14
p3.1

0.09

p3.2

4.17

p3.3

0.74
0

1

2

3

4

5

0 50 100 150

Thousand Lines of Source Code

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 6 – Thousand Lines of Source Code

While number of software interfaces does not point to a clear relationship to project

success, two most “successful” projects also have the lowest number of software

interfaces. (Figure 7)

p3.2

4.17

p3.3

0.74
p1

0.14

p3.1

0.09
0

1

2

3

4

5

0 2 4 6 8

Number of Software Interfaces

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 7 – Number of Software Interfaces

Number of requirements, which can also be seen as a measure of project

complexity, fails to give an obvious indication about the success of a project.

54

Project 3.2, with the highest defect ratio has lower number of requirements

compared to more “successful” Projects 1 and 3.3. (Figure 8)

p1

0.14
p3.1

0.09

p3.2

4.17

p3.3

0.74
0

1

2

3

4

5

0 50 100 150 200

Number of Requirements

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 8 – Number of Requirements

It is notable that of the four software products considered, the presence of a user

interface does not directly affect project success. This may appear surprising as the

user interface color schemes, placement of user interface elements and the

workflow of different windows are usually susceptible to change. Project 1 has 99

windows, while Project 3.2 has 60. However, the number of rework requests per

thousand lines of code for Project 3.2 (4.17) is much higher compared to Project 1

(0.14). Project 3.3, which lacks a user interface, has a higher rework requests per

thousand lines of code ratio (0.74) than Project 1, and therefore appears “less

successful”. (Figure 8)

55

p1

0.14

p3.2

4.17

p3.1

0.09

p3.3

0.74

0

1

2

3

4

5

0 20 40 60 80 100 120

Number of Windows

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 9 – Number of Windows

p1

0.14

p3.2

4.17

p3.1

0.09

p3.3

0.74

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

Number of Reviewed Documents / Number of

Documents

D
e
fe
c
t
R
a
ti
o
 (
1
/s
u
c
c
e
s
s
)

Figure 10 – Number of Reviewed Documents / Number of Documents

The ratio of number of documents that were reviewed to number of documents

received from a subcontractor presents no discernible relationship to the project

success. (Figure 10)

One row in Table 3 shows that the number of errors per thousand lines of code has a

negative relationship with the project success ratio. This can not be considered an

56

indicator, as for most of the projects it is the same thing as the number of change

requests per thousand lines of code success indicator.

Project 3.2 has a relatively high defect ratio compared to the other projects in the

case study, and therefore appears less successful. As was described in section 3.4.2,

the requirements of this subproject didn’t accurately reflect the functionality that the

software performed, and that the requirement specification for Project 3.2 was

inadequate. Since requirements are a prerequisite for design and implementation of

software, it is safe to assume that inadequately specified requirements may lead to a

lot of rework requests. Many examples from the literature consider conformance to

requirements as an indicator of quality, which was also the reason for conformance

to requirements metrics to be collected in this case study. Therefore high value of

the rework requests per thousand lines of code success indicator for Project 3.2 may

be attributed to the mentioned inadequacy of proper requirement analysis.

A quick look at the Table 2 presented in section 3.4.3 shows that it contains not as

many metrics as were suggested in section 3.2. This is due to the fact that some of

metrics for the three projects are not available. This is especially noticeable in the

estimates for an upcoming project during the subcontractor selection phase, the

metrics during the development phase, and the metrics regarding the costs of

changes. Although YMM is trying to incorporate the measurement of its business

processes into the process of developing software, this still is a relatively new

effort. Even when measurement is performed for a project, measurement efforts are

usually limited to the projects or project parts that are being developed at YMM.

57

Therefore the subcontracted projects do not currently participate in the

measurement process. The metrics in Table 2 are derived from the rework requests,

defect management tools and any existing documents regarding the subcontracted

software projects.

58

CHAPTER 5

CONCLUSION

Before presenting the conclusions derived from this study, it must be noted that this

thesis is based on a case study, and does not aim to make any generalizations about

the metrics to be used to ensure the success of any given subcontracting

arrangement. It only uses the data from three subcontracts involving fifteen

software development projects in YMM. The data used in the study covers only a

part of the proposed metrics as YMM has not incorporated the collection of such

metrics to its subcontract management procedures. The thesis aims to investigate

the possibility of better controlling subcontracting arrangements in light of the

existing data and experience captured through interviews with YMM personnel.

The unavailability of a complete set of data for the proposed metrics undermines the

certainty of the relations that are suggested. Especially the lack of individual project

data for Project 2, along with the fact that it was not possible to isolate the number

of change requests submitted by Aselsan was not available, limits the credibility of

the relations found using four software development projects (Projects 1, 3.1, 3.2,

and 3.3).

59

The unavailability of metrics during the development phases of the projects used in

the study is an important limitation. As described in Chapter 1, close relations with

the subcontractors should be sought for better management of the contract through

collection of metrics during the contract management phase. This will enable the

management to gain understanding about the course that a subcontracting

agreement is taking and make any required adjustments to the subcontracting

processes.

It must also be noted that, while the same metrics for all projects have been

compiled, the projects were different in nature, and were developed by different

subcontractors. For example, Project 1 had 6 months for requirements elicitation,

design, coding, testing, and delivery to the customer. On the other hand, the

software developed for Project 3 had development durations of 3 years. There was,

however, the challenge of communicating the needs of the different subprojects to

different subcontractors to create a system that used all of the software. Therefore it

must be noted that the results and success of a subcontracting agreement may

depend on the context that it was formed in.

The selection method of the subcontractors was different for the projects as well.

Project 3 had its subcontractors dictated to Aselsan by its customer, while for the

other projects, Aselsan chose the subcontractors. It may be worth investigating the

selection method for the subcontractors as an issue affecting the success of

subcontracting agreements.

60

The data collected in the study to compare the success rates of different projects can

be deemed as objective, as the data is based on quantifiable results and YMM

procedures ascertain the adherence of products and documents submitted by a

subcontractor to a certain level of standard and uniformity.

The relationship observed between the metrics and the success indicators may

warrant an investigation of YMM’s integration of a metrics based control

framework into its subcontracting arrangements. In order to effectively use the

metrics suggested in section 3.2, a framework for the measurement of the metrics

could be constructed, and incorporated into the management processes of future

software subcontracting projects. As indicated by Eralp (2004), measurements

should be consistent with organizational goals if they are to succeed. Therefore the

list of metrics suggested in this study could be considered as a starting point that

investigates whether collection of metrics could be beneficial to the organization

regarding software subcontracting activities.

The following is a list of possible hypotheses that may be derived from the

discussion in Chapter 4:

1. There seems to be a positive relationship between the requirements and the

success of a subcontract. A greater number of correctly implemented

requirements indicate a more successful project, while high number of

incorrectly implemented requirements indicates a less successful project.

61

2. Larger projects have less number of change requests per thousand lines of

code, and are considered to be more successful. This may be attributable to

greater importance attached to larger projects by the subcontractors. In turn,

it may be assumed that smaller projects may not always get the time, effort

and care that the large projects get and thus become less successful.

3. While size defined by code or number of function declarations favors larger

projects, the more successful projects are the ones that have less number of

interfaces to other software.

4. It may be healthier for a subcontracting arrangement to reject a product with

missing features rather than accepting with assurances of updates during the

maintenance period for the missing features, in order to keep the

subcontractor fully committed to the project.

Further research may focus on creating a framework for following the

subcontracting metrics in order to control the effectiveness of a software

subcontracting arrangement. To start such an investigation for integrating the

collection of metrics into subcontract management processes, the metrics given in

section 3.2 can be taken as a basis. Priority could be given to the metrics presented

in Table 3 that appear to point to a relationship with the success of a subcontracting

project. For example, tracking the state of requirements could be a good indicator

for the future success of a project.

In order to further investigate the relation of metrics to success indicators, a panel of

project managers could consider the metrics suggested here to evaluate whether

62

they are appropriate for the company’s organizational goals, adding other metrics or

removing the existing metrics. The panel would convene periodically to assess and

fine tune the metrics to be collected and over time arrive at a stable framework for

effective software subcontract management.

It must be underlined that suggested metrics include metrics for the selection and

contract management phases of the subcontracting projects. It would seem wise that

for the metrics to be of any use to YMM and other organizations on subcontracting

agreements, the metrics collected during the selection and contract management

phases should be kept under watch, and if any values appear to indicate a problem,

adjustments should be made to the subcontracting process. Therefore, the metrics

can be used not just for “post-mortem” analysis of how well the subcontracting

arrangement has worked out, after the duration of the contract has expired; but

actively during the contract management.

The compilation of the metrics and success indicators for subcontracting projects

would, in time, lead to the compilation of a subcontracting database, which could be

used for comparing and contrasting the active subcontracting agreements with the

successful and unsuccessful examples from the past. The compilation of historical

data may invite use of statistical methods for effectiveness analysis of the

subcontracting arrangements as well, which is beyond the scope of this study.

63

The selection phase metrics may indicate to management whether the bids for a

proposed contract are adequate, whether the bidders will be up to performing the

task and thus lead the decisions for awarding the contract.

The contract management phase metrics may indicate whether the project of a

certain size is developing at the rate it should be. If there is a tendency to miss the

deadlines, the subcontractor can be contacted to discover what the problem is,

whether it can be solved or maybe if another subcontractor should be sought for the

project.

The metrics that are collected after the completion of a project will provide a basis

for evaluation of the subcontractor for future projects and also become a historical

fact that can be used for estimation purposes in projects of similar attributes.

As is stated in section 3.2, the effectiveness of the data used in such a framework

depends on how the data is collected. In order for the metrics to be effective, a

measurement process should be established and adhered to. Standards such as the

ISO 15939 Software Measurement Process (2002) could be used to create a

measurement procedure in the organization that will collect data about the metrics.

Further research can look into the relationship that requirement specification has

with software subcontracting arrangements. Establishment of criteria for ensuring

that the requirements of software were well-understood by the subcontractor could

64

enable the subcontracting relations to be more successful from both the customer’s

and the subcontractor’s perspective.

Another interesting point to investigate may be the relationship among the size and

complexity of software and its success. It seems intuitive that larger and more

complex software will also be harder to implement and therefore may require

greater effort from the subcontractor. However, smaller projects, while requiring

less effort, may suffer from inadequate attention of the subcontractor and become

failures. This dynamic between size, complexity and the importance attributed to

software may offer insight into subcontracting and software development in

general.

As stated in this study, the “success” of an effective subcontract management

arrangement depends on contractual success (such as completing the project on time

and within budget) as well as the software quality of the resulting software product.

While adherence to stated contract parameters plays an important role in business

transactions; the success of the information system that the subcontracted software

product becomes a part of is dependent on the quality of the software product itself.

Therefore, the quality of the resulting software product has an effect on the IS

success.

The usefulness of information systems is dependent on the process through which

the information system is built. Therefore defining the requirements of an

information system properly and correctly, communicating the parameters of the

65

envisioned system to those who build the system, and validating the resulting

system are essential to IS success.

When software subcontracting is considered, it is noticeable that it involves both

communication of the envisioned system to those who build the system and

validation of the resulting software product. Therefore, software subcontracting

plays an important part in the process of creating a successful information system,

and the process can be more manageable and predictable through use of a metrics

based control framework.

66

REFERENCES

Assmann, D. & Punter, T. (2004). Towards partnership in software subcontracting.
Computers In Industry 54 (2), 137-150.

Aykol, M. M. (2003). BT Projeleri Neden Başarısız Olur?. TBD Dergi, November
2003. Available: http://dergi.tbd.org.tr/yazarlar/17112003/meric_aykol.htm

Benbasat, I., Goldstein, D. K., Mead, M. (1987). The Case Research Strategy in
Studies of Information Systems. MIS Quarterly. 369-386.

Bertoa, M.F. & Vallecillo, A. (2002). Quality Attributes for COTS Components.
Proceedings of the 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE 2002). Malaga, Spain, June 2002.

DeLone, W. H. & McLean, E. R. (1992). Information systems success: The quest
for the dependent variable. Information Systems Research, 3(1). 60-95.

DeLone, W. H., McLean, E. R. (2003). The DeLone and McLean Model of
Information systems success: A Ten-Year Update. Journal of Information Systems,
Spring, Vol.19. 9-30.

Drury, D.H., Farhoomand, A.F. (1998). A Hierarchical Structural Model Of
Information Systems Success. INFOR, Vol.36, No.1/2, February-May 1998, 25-40.

Eralp, Ö. (2004). Design and Implementation of a Software Development Process
Measurement System. (unpublished). Master Thesis submitted to the Graduate
School of Natural and Applied Sciences of Middle East Technical University,
supervised by Prof. Dr. Semih Bilgen.

67

Erener, Ö. (2003). Yazılım Projelerinde Başarı. BTinsan, September 2003.
Available: http://www.btinsan.com/1114-03.asp (Turkish)

Hyatt, L. E. & Rosenberg L. H. (1996). A Software Quality Model and Metrics for
Identifying Project Risks and Assessing Software Quality. Software Product
Assurance Workshop, 19–21 March, ESTEC, Noordwijk, The Netherlands, 1996.

ISO. (1995). Information technology — Software life cycle processes ISO/IEC
12207:1995. Geneve, Switzerland: International Standards Organization.

ISO. (1998). Information technology — Software process assessment ISO/IEC TR
15504:1998. Geneve, Switzerland: International Standards Organization.

ISO. (2002). Information technology — Software Engineering — Software
Measurement Process ISO/IEC 15939:2002. Geneve, Switzerland: International
Standards Organization.

ISO. (2003). Software engineering — Product quality — Part 2: External metrics
ISO/IEC TR 9126-2:2003(E). Geneve, Switzerland: International Standards
Organization.

ISO. (2003). Software engineering — Product quality — Part 3: Internal metrics
ISO/IEC TR 9126-3:2003(E). Geneve, Switzerland: International Standards
Organization.

ISO. (2003). Software engineering — Product quality — Part 4: Quality in use
metrics ISO/IEC TR 9126-4:2003(E). Geneve, Switzerland: International Standards
Organization.

Journal of Accountancy (2001). Research shows high failure rate on IT projects.
Journal of Accountancy, February 2001. 24.

Kaplan, B. & Dennis, D. (1988). Combining Qualitative and Quantitative Methods
in Information Systems Research: A Case Study. MIS Quarterly. 571-583.

Karadağ, L. (2003). Bilişim Toplumunda Proje Yönetiminin Stratejik Önemi ve
Bilişim Projeleri Yönetimi Çalışma Grubu. TBD Dergi, November 2003. Available:
http://dergi.tbd.org.tr/yazarlar/03112003/levent_karadag.htm.

68

Li, M. Smidts, C.S. (2003). Ranking Of Software Engineering Measures Based On
Expert Opinion. IEEE Transactions on Software Engineering, vol. 29, no. 9,
September 2003.

Myers, B. L., Kappelman, L.A., Prybutok, V. R. (1997). A Comprehensive Model
for Assessing the Quality and Productivity of the Information Systems Function:
Toward a Contingency Theory for Information Systems Assessment. Information
Resources Management Journal, Winter, 1997.

NATO. (1997). NATO Quality Assurance Requirements for Software
Development, AQAP-150, Edition 2. North Atlantic Treaty Organization.

NATO. (2001). NATO Integrated Quality Requirements for Software throughout
the Life Cycle, AQAP-160, Edition 1. North Atlantic Treaty Organization.

Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C. (1993). Capability Maturity
Model for Software, Version 1.1. Software Engineering Institute, CMU/SEI-93-TR-
24, DTIC Number ADA263403, February 1993.

Perry, D.E., Sim, S.E., Easterbrook, S. M. (2004). Case Studies for Software
Engineers. Proceedings of the 26th International Conference on Software
Engineering (ICSE’04), 2004.

Seddon, P.B. (1997). A Respecification and Extension of the DeLone and McLean
Model of IS Success. Information Systems Research (8:3), September 1997. 240-
253.

Software Engineering Institute. (2002). Software Acquisition Capability Maturity
Model, Version 1.03. CMU/SEI-2002-TR-010, March 2002.

Software Engineering Process Office. (2000). Contractor Acquisition and
Performance Monitoring Process For Software Contracts. Software Engineering
Process Office, D12 Space and Naval Warfare Systems Center.

The Standish Group. (2001). Extreme Chaos. Available:
http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf

69

Torchiano, M., Jaccheri, L., Sørensen, C. F., Wang, A. I. (2002). COTS Products
Characterization. 14th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE'02), Ischia, Italy, July 15-19.

United Kingdom Software Metrics Association (UKSMA) (October 2000) Quality
Standards Defect Measurement Manual, Release 1.a.

