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ABSTRACT 

TEXTURED MOTION ANALYSIS 

 

Öztekin, Kaan 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc.Prof.Dr. Gözde Bozdağı Akar 
 

December 2005, 89 pages 
 

 Textured motion - generally known as dynamic or temporal texture - is 

a popular research area for synthesis, segmentation and recognition. 

Dynamic texture is a spatially repetitive, time-varying visual pattern that 

forms an image sequence with certain temporal stationarity. In dynamic 

texture, the notion of self-similarity central to conventional image texture is 

extended to the spatiotemporal domain. Dynamic textures are typically 

videos of processes, such as waves, smoke, fire, a flag blowing in the wind, a 

moving escalator, or a walking crowd. Creation of synthetic frames is a key 

issue especially for movie screen industry to enrich their scenes from a white 

screen into a shining reality. In robotics world, for example an autonomous 

vehicle must decide what is traversable terrain (e.g. grass) and what is not 

(e.g. water). This problem can be addressed by classifying portions of the 

image into a number of categories, for instance grass, dirt, bushes or water. If 

these parts are identifiable, then segmentation and recognition of these 

textures results with an efficient path planning for the autonomous vehicle. 

In this thesis, we aimed to characterize these textured motions like 

mentioned above. We tried to implement several known techniques and 

compared the results. 

 

Keywords: Dynamic Texture, Temporal Texture, Texture Motion, 

Texture Recognition, Texture Classification 
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ÖZ 

DOKULU HAREKET ÇÖZÜMLEMESİ 

 

Öztekin, Kaan 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç.Dr. Gözde Bozdağı Akar 
 

Aralık 2005, 89 sayfa 
 

 Dokulu Hareket – genellikle bilinen tanımı ile dinamik veya zamansal 

doku - sentezleme, bölümleme ve tanıma alanlarında popüler bir araştırma 

alanıdır. Dinamik doku, bir örüntü dizisini belirli zamansal durağanlıkla 

oluşturan, uzaysal boyutta tekrar eden, zamanla değişen bir görsel desendir. 

Dinamik dokuda geleneksel örüntü dokusunun merkezinde yer alan öz 

benzerlik fikri uzay-zaman boyutuna genişletilmiştir. Dinamik dokular, 

dalgalar, duman, ateş, rüzgarda sallanan bir bayrak, hareket eden bir yürüyen 

merdiven ve yürüyen bir topluluk gibi tipik video süreçleridir. Yapay 

sahnelerin oluşturulması, özellikle beyaz perde endüstrisinde sahnelerinin 

beyaz bir perdeden parıldayan bir gerçekliğe zenginleştirilmesi için, çok 

önemli bir noktadır. Robot Bilim dünyasında, örneğin özerk hareket eden bir 

araç, üzerinden geçebileceği bir arazi (çim v.b.) ile geçemeyeceği bir araziyi 

(su v.b.) ayırt edebilmelidir. Bu problem örüntünün birkaç parçadan oluşan 

kategorilere, mesela çim, toprak, çalılar ve su gibi, sınıflandırılmasını 

adreslemektedir. Eğer bu parçalar teşhis edilebilirse, o zaman bu dokuların 

bölümlenmesi ve tanınması ile özerk hareket eden araç için etkili bir yol 

planlaması yapılabilir. Bu tezde, yukarıda bahsedilen bu dokulu hareketi 

nitelendirmeyi amaçladık. Bunun için bilinen çeşitli teknikleri uygulayarak 

birbirleri ile kıyasladık. 

 

Anahtar Kelimeler: Hareketli Doku, Dinamik Doku, Doku Tanıma, 

Doku Sınıflama 
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CHAPTER 1 

INTRODUCTION 

In robotics, robot vision is the most popular and growing research area 

with many of problems remaining unsolved. Completely automated designs 

are the ones that we aimed to reach for realizing specialized purposes. For 

example, one can design a machine for garden arrangement. The machine 

will cut out the grasses, give water to the flowers or trim the bushes. Another 

complicated example, one can need a fully autonomous vehicle which only 

needs world coordinates to travel around to collect information for some 

purposes. A machine like this has to handle a huge task compared with the 

garden arrangement machine. However the tasks between these machines 

are so different, each of them must know the right and the wrong. The garden 

arrangement machine has to distinguish flowers from grasses for not cutting 

them out instead of giving them water. And the autonomous vehicle has to 

distinguish road from river for travelling on the proper surface. Once we have 

a chance to divide and characterize the world into identifiable portions of 

images then working with machines like these are not so far beyond now. 

The problem is to segment a frame into meaningful portions of images, 

but it must be learned before what are to be segmented which is the subject 

that we are interested. It is obvious that the data will be consist of continuous 

frames of images. So, our segmentation problem is not stationary. The focus 

of segmentation lies under defining the motions within the frames. Of course 

the world is full of motion that can not be defined with tens or hundreds or 

thousands of known motions. Here the motions subject for our thesis are the 

textured motions. In literature the subject is mentioned as textured motion 

[32], temporal texture [37] and dynamic textures [1]. We prefer using 

dynamic textures in this thesis. 

What is a dynamic texture? How can we distinguish dynamic textures? 

A person walking or swimming, or the spinning wheels of a machine, are 
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defined as examples of activities in [8, 29, 42, 43], because these kind of 

motions are temporally periodic but spatially restricted. What else for 

motions such as opening a door, lifting a briefcase, or throwing a ball? This 

class of motions are motion events which are single motions that do not 

repeat spatially or temporally [9, 37]. Then what is dynamic texture? Wavy 

water, rising smoke, falling snow, flock of birds flying, river waves, crowd of 

people walking, a moving escalator, burning fire, etc. are some samples for 

dynamic textures. 

Dynamic textures rised research areas especially on synthesis and 

recognition. Synthesis of dynamic textures is so useful for real like generation 

of synthetic frames as it can be observed in many Hollywood productions. 

For example, a war scene can be produced with only a few hundred people 

which can be presented as a war of two country each having thousands of 

soldiers in the field. However the synthesis works are well studied that they 

are in use for real life needs, the recognition of dynamic textures is a new and 

highly challenging problem, and there exist a growing research on this area. 

1.1 Motivation 

From an applications point of view, the major motivation for working 

on dynamic textures is the advent of large video databases. There are a huge 

amount of video in digital form. It is important to search and handle these 

databases while modeling or recognizing the dynamic textures. In recent 

years, with the increasing processing power of computers, growing of 

memory and storage capacities, it is now simpler than ever to compute these 

tasks. This growing up of computational technology also made researchers to 

boom their interests on these subjects. 

In this thesis, our main goal is to compare the well-known dynamic 

texture classification techniques that have confirmed their success in 

literature. It can be concluded that it is possible to collect these dynamic 

texture classification techniques in three groups : ones use spatial 

information, ones use temporal information and finally ones use both spatial 
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and temporal information. When we had investigated the literature we saw 

that the ones using both spatial and temporal information have better 

recognition rates. These techniques which use both spatial and temporal 

information can also be collected into two groups; by the way that the 

solution is seeked: stochastic or deterministic. 

In this thesis, a comparison of stochastic and deterministic techniques 

is aimed. Before comparison, we have given a detailed analysis of the subject. 

During our analysis, we have dealed with defining regularities of textures 

with deterministic methods, synthesis of dynamic textures with stochastic 

methods and finally classification of dynamic textures with both stochastic 

and deterministic methods. 

We have aimed to compare two methods one using stochastic 

techniques referring to [1, 2, 3] and one using deterministic techniques 

referring to [4, 5, 6, 7, 23]. 

1.2 Outline of the Thesis 

In chapter 2, a brief literature survey on dynamic textures is given. 

In chapter 3, some of the basics that we have used in our study can be found.  

In chapter 4, a detailed explanation of stochastic method is presented. 

In chapter 5, a detailed explanation of deterministic method is presented. 

In chapter 6, implementation is explained, clues of calculations are given and 

results are shown. 

And finally, chapter 7 concludes this thesis. 
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CHAPTER 2 

LITERATURE SURVEY 

In this chapter, a literature survey is presented on textures and dynamic 

textures. 

2.1 Texture 

In computer vision, texture definitions appeared relatively a long time 

ago, nearly when the new era on computations give rise with the evolution of 

computers. In literature, we can find some good definitions for texture. Here 

are some definitions for texture : 

“The term texture generally refers to repetition of basic texture 

elements called texels. The texel contains several pixels, whose placement 

could be periodic, quasi-periodic or random. Natural textures are generally 

random, whereas artificial textures are often deterministic or periodic. 

Texture may be coarse, fine, smooth, granulated, rippled, regular, 

irregular, or linear.” [62]. 

“Textured regions are spatially extended patterns based on the more or 

less accurate repetition of some unit cell (texton or subpattern).” [63]. 

“Textures are homogeneous patterns or spatial arrangements of pixels 

that regional intensity or color alone does not sufficiently describe. As such, 

textures have statistical properties, structural properties, or both. They may 

consist of the structured and/or random placement of elements, but also 

may be without fundamental subunits.” [64]. 

“A Texture is a signal that exhibit the following property. Using any 

window of size larger than some critical size, the “information content” 

exhibited in the window is invariant to the window’s position within the 

given sample.” [35]. 



 5

As we can easily observe, life is full of textures. Roads, trees, clouds, 

water, rivers, etc. are all textures that we can come accross everyday. A cell of 

any living organism, blood, bones, iris of eye, etc. are also textures. By 

growing usage of computers in our life in recent decades, many research 

groups interested with textures. Researchers dealed with detecting, 

comparing, tracking, segmenting, synthesizing, classifying problems of 

texture for different purposes. While some of them tried to catch change of 

texture and investigate the results for solving a disease, some of them tried to 

expand a texture from a sample of it for creating synthetic textures. 

Interested readers on synthesis of textures are refered to [44, 45, 46, 47, 48, 

49, 50, 51, 52]. 

2.2 Dynamic Texture 

In simple words, dynamic texture is a video which consists of texture 

images. A flock of bird flying, a river flowing, a fire burning, a water boiling, a 

tree waving with the blowing wind, etc. are all examples of dynamic textures.  

While textures are being investigated by research groups for a long time, 

studies on dynamic textures are relatively novel. With increasing 

computation power in recent years, researchers boom their interest on 

dynamic textures. Researchs on dynamic textures intensify especially on 

segmentation, synthesis and recognition subjects. 

2.3 Previous Work 

Dynamic texture synthesis is being studied especially in the field of 

computer graphics. Synthesis of texture movie arouse interest of industry 

working on special effects for motion pictures and television, computer-

generated animation, computer games and computer art. Synthesis allows 

creation of synthetic textures in any size, long and behavior. Some good 

examples on dynamic texture synthesis can be investigated in papers [1] and 

[32]. 
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As we focused on dynamic texture recognition, we see that the first 

occurence of subject in literature dates back to early nineties with the 

published paper [8]. In these first studies as explained in [13], visual motion 

is categorised into three classes : activities, motion events and temporal 

textures. Activities, such as walking or digging, are defined as motion 

patterns that are periodic in time and localized in space. Motion events, like 

opening a door, do not show temporal or spatial periodicity. Finally, temporal 

textures exhibit statistical regularity but have indeterminate spatial and 

temporal extent. When we investigate studies on recent years, as stated in 

[13], the existing approaches to temporal texture recognition can be classified 

into one of the following groups: methods based on optic flow [4, 7, 24, 29, 

65, 66, 67, 68, 69, 70], methods computing geometric properties in the 

spatiotemporal domain [25, 71], methods based on local spatiotemporal 

filtering [72], methods using global spatiotemporal transforms [73] and, 

finally, model-based methods that use estimated model parameters as 

features [19, 30, 45, 74, 75, 76]. Methods based on optic flow are currently the 

most popular because optic flow estimation is a computationally efficient and 

natural way to characterize the local dynamics of a temporal texture. It helps 

reduce dynamic texture analysis to analysis of a sequence of instantaneous 

motion patterns viewed as static textures. When necessary, image texture 

features can be added to the motion features, to form a complete feature set 

for motion and appearance-based recognition. 

A good example for model-based methods is described in [1], and other 

good example for dynamic texture recognition depending on optical flow and 

texture features is described in [4], which are also pioneered the studies 

explained in this thesis. Details on these studies are given in chapter 4 and 

chapter 5 of this thesis. 
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CHAPTER 3 

BASICS 

In this chapter, brief information on some of the basics concerning to 

our work are given. 

3.1 Principal Components Analysis 

Information in this section is given referring to [58]. 

In statistics, principal components analysis (PCA) is a technique that 

can be used to simplify a dataset; more formally it is a linear transformation 

that chooses a new coordinate system for the data set such that the greatest 

variance by any projection of the data set comes to lie on the first axis (then 

called the first principal component), the second greatest variance on the 

second axis, and so on. PCA can be used for reducing dimensionality in a 

dataset while retaining those characteristics of the dataset that contribute 

most to its variance by eliminating the later principal components (by a more 

or less heuristic decision). These characteristics may be the “most 

important”, but this is not necessarily the case, depending on the application. 

PCA is also called the Karhunen-Loève transform or the Hotelling 

transform. PCA has the speciality of being the optimal linear transformation 

for keeping the subspace that has largest variance. However this comes at the 

price of greater computational requirement, e.g. if compared to the discrete 

cosine transform. Unlike other linear transforms, the PCA does not have a 

fixed set of basis vectors. Its basis vectors depend on the data set. 

Assuming zero empirical mean (the empirical mean of the distribution 

has been subtracted away from the data set), the principal component 1w  of a 

dataset x  can be defined as: 

( ){ }2

1
1 maxarg xwEw T

w =

=     (3.1) 
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With the first 1−k  components, the thk  component can be found by 

subtracting the first 1−k  principal components from x : 

∑
−

=
− −=

1

1
1ˆ

k

i

T
iik xwwxx      (3.2) 

and by substituting this as the new dataset to find a principal component in 

( ){ }2
1

1

ˆargmax −
=

= k
T

w
k xwEw     (3.3) 

A simpler way to calculate the components iw  uses the empirical 

covariance matrix of x , the measurement vector. By finding the eigenvalues 

and eigenvectors of the covariance matrix, we find that the eigenvectors with 

the largest eigenvalues correspond to the dimensions that have the strongest 

correlation in the dataset. The original measurements are finally projected 

onto the reduced vector space. Note that the eigenvectors X  are actually the 

columns of the matrix V , where 'ULVX =  is the singular value 

decomposition of X . 

PCA is a popular technique in pattern recognition. PCA optimally 

minimizes reconstruction error under the 2L  norm. 

3.1.1 Algorithm Details 

Following is a detailed description of PCA using the covariance method. 

Suppose you have n  data vectors nxx K1  each length d , written as 

)( 1 d
mmm xxx K= , and you want to project your data into a k  dimensional 

subspace. 

3.1.1.1 Find the basis vectors 

1. Organize your data into column vectors, so you end up with a dxn  

matrix, D .  

2. Find the empirical mean along each dimension, so you end up with a 

1dx  empirical mean vector, M .  
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3. Subtract the empirical mean vector M  from each column of the data 

matrix D . Store mean-subtracted data dxn  matrix in S .  

4. Find the empirical covariance dxd  matrix C  of S . TSSC = .  

5. Compute and sort by decreasing eigenvalue, the eigenvectors V  of C .  

6. Save the mean vector M . Save the first k  columns of V  as P . P  will 

have dimension dxk , dk ≤≤1 . 

3.1.1.2 Observation 

After computing the matrix C  with elements ∑
=

=
n

m

j
m

i
mji xxC

1
, , we can 

extract from the diagonal 2))(1( i
ii nC σ−= , and compute the correlation 

matrix R  with )/( ji
ijij CR σσ= . The matrix R  is symmetric (like the 

covariance matrix), its values are between -1 and 1, and the diagonal contains 

n  times the value 1. When the different dimensions of the input data have 

different measuring units, by using the matrix C  we are computing linear 

combinations of data of different scales; thus using the normalized matrix R  

makes more sense. 

In that case steps 5 and 6 become: 

5. Compute and sort by decreasing eigenvalue, the eigenvectors V  of R . 

6. Save the mean vector M  and )( 1 dσσσ K= . Save the first k  columns 

of V  as P . P  will have dimension dxk , dk ≤≤1 . 

3.1.2 Projecting New Data 

Suppose you have a 1dx  data vector D . Then the 1kx  projected vector is 

)( MDPv T −= . 

If the correlation matrix R  has been used instead of the covariance 

matrix C , the elements of the input vector should be normalized: 

1))(( −−= iiii MDZ σ . Then the projected vector is ZPv T= . 
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3.1.3 Derivation of PCA using the Covariance Method 

Let X  be a d  dimensional random vector expressed as column vector. 

Without loss of generality, assume X  has zero empirical mean. We want to 

find a dxd  orthonormal projection matrix P  such that XPY T=  with the 

constraint that )cov(Y  is a diagonal matrix and TPP =−1 .  

By substitution, and matrix algebra, we obtain: 

[ ]
[ ]
[ ]

[ ]
PXP
PXXEP
PXXPE
XPXPE

YYEY

T

TT

TT

TTT

T

)cov(

))((
))((

)cov(

=
=
=
=
=

 . We now have: 
PX
PXPPYP T

)cov(
)cov()cov(

=
=

. 

Rewrite P  as 1dx  column vectors, so [ ]dPPPP ,,, 21 L=  and )cov(Y  as: 

















dλ

λ

L

MOM

L

0

01

. Substituting into equation above, we obtain: 

[ ] [ ]ddd PXPXPXPPP )cov(,,)cov(,)cov(,,, 212211 KK =λλλ . Notice that in 

iii PXP )cov(=λ , iP  is an eigenvector of X ’s covariance matrix. Therefore, by 

finding the eigenvectors of X ’s covariance matrix, we find a projection 

matrix P  that satisfies the original constraints. 

3.2 Singular Value Decomposition 

Information in this section is given referring to [58]. 

In linear algebra singular value decomposition (SVD) is an important 

factorization of a rectangular real or complex matrix, with several 

applications in signal processing and statistics. This matrix decomposition is 

analogous to the diagonalization of symmetric or Hermitian square matrices 

using a basis of eigenvectors given by the spectral theorem. 
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3.2.1 Statement of the Theorem 

Suppose M  is an mxn  matrix whose entries come from the field K , 

which is either the field of real numbers or the field of complex numbers. 

Then there exists a factorization of the form 

*VUM Σ=      (3.4) 

where U  is an mxm  unitary matrix over K , the matrix Σ  is mxn  with non-

negative numbers on the diagonal and zeros off the diagonal, and *V  denotes 

the conjugate transpose of V , an nxn  unitary matrix over K . Such a 

factorization is called a singular-value decomposition of M . 

• The matrix U  describes the rows of M  with respect to the base 

vectors associated with the singular values. 

• The matrix V  describes the columns of M  with respect to the base 

vectors associated with the singular values. 

• The matrix Σ  contains the singular values. 

One commonly insists that the values ji,Σ  be ordered in non-increasing 

fashion. In this case, the diagonal matrix Σ  is uniquely determined by M  

(though the matrices U and V are not). 

3.2.2 Singular Values, Singular Vectors, Relation to the SVD 

A non-negative real number σ  is a singular value for M  if there exist 

non-zero vectors u  in mK  and v  in nK  such that uMv σ=  and vuM σ=* . The 

vectors u  and v  are called right-singular and left-singular vectors for σ , 

respectively. 

In any singular value decomposition *VUM Σ=  the diagonal entries of 

Σ  are necessarily equal to the singular values of M . The columns of U  and 

V  are left and right, respectively, singular vectors for the corresponding 

singular values. Note that the singular vectors are not uniquely determined 
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by a given singular value, and likewise the matrices U  and V  are not 

uniquely determined by the matrix M . 

One can show that the non-zero singular values for M  are precisely the 

square roots of the non-zero eigenvalues of the positive semi-definite matrix 

*MM , and these are precisely the square roots of the non-zero eigenvalues of 

MM * . Furthermore, the columns of U  are eigenvectors of *MM  and the 

columns of V  are eigenvectors of MM * . 

3.2.3 Geometric Meaning 

Because U  and V  are unitary, we know that the columns muu ,,1 K  of U  

yield an orthonormal basis of mK  and the columns nvv ,,1 K  of V  yield an 

orthonormal basis of nK  (with respect to the standard scalar products on 

these spaces). 

The linear transformation mn KKT →:  that takes a vector x  to Mx  has 

a particularly simple description with respect to these orthonormal bases: we 

have iii uvT σ=)( , for ),min(,,1 nmi K= , where iσ  is the thi  diagonal entry of 

Σ , and 0)( =ivT  for ),min( nmi > . 

The geometric content of the SVD theorem can thus be summarized as 

follows: for every linear map mn KKT →:  one can find orthonormal bases of 

nK  and mK  such that T  maps the thi  basis vector of nK  to a non-negative 

multiple of the thi  basis vector of mK , and sends the left-over basis vectors to 

zero. With respect to these bases, the map T  is therefore represented by a 

diagonal matrix with non-negative real diagonal entries. 

3.2.4 Applications of the SVD 

The singular value decomposition is used for computing the 

pseudoinverse of a matrix. Indeed, the pseudoinverse of the matrix M  with 

singular value decomposition *VUM Σ=  is 
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*UVM ++ Σ=       (3.5) 

where +Σ  is the transpose of Σ  with every non-zero entry replaced by its 

reciprocal. The pseudoinverse is needed to solve linear least squares 

problems. 

The SVD is also applied extensively to the study of linear inverse 

problems, and is useful in the analysis or regularization methods such as that 

of Tikhonov. It is widely used in statistics where it is related to principal 

component analysis, and in signal processing and pattern recognition. It is 

also used in output-only modal analysis, where the non-scaled mode shapes 

can be determined from the singular vectors. 

3.3 Eigenvalues 

Information in this section is given referring to [58]. 

In mathematics, an eigenvector of a transformation is a vector whose 

direction is unchanged by that transformation. The factor by which the 

magnitude is scaled is called the eigenvalue of that vector. A pictorial 

example is provided in Figure-3.1. Often, a transformation is completely 

described by its eigenvalues and eigenvectors. An eigenspace is a set of 

eigenvectors with the same eigenvalue. 

 

Figure 3-1: A pictorial example for eigenvalues, eigenvectors and 

eigenspace. 
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In this shear transformation of the Mona Lisa, shown in Figure-3.1, the 

picture was deformed in such a way that its central vertical axis was not 

modified. (Note: The corners have been cropped on the right hand picture.) 

The blue vector, from her chest to her shoulder, has changed direction, but 

the red one, from her chest to her chin, is unchanged. The red vector is thus 

an eigenvector of the transformation and the blue vector is not. Since the red 

vector was neither stretched nor compressed, its eigenvalue is 1. All vectors 

along the same vertical line are also eigenvectors, with the same eigenvalue. 

They form the eigenspace for this eigenvalue. 

For an example; as the Earth rotates, every arrow pointing outward 

from the center of the Earth also rotates, except those arrows that lie on the 

axis of rotation. Consider the transformation of the Earth after one hour of 

rotation: An arrow from the center of the Earth to the Geographic South Pole 

would be an eigenvector of this transformation, but an arrow from the center 

of the Earth to anywhere on the equator would not be an eigenvector. Since 

the arrow pointing at the pole is not stretched by the rotation of the Earth, its 

eigenvalue is 1. 

3.3.1 Computing Eigenvalues of Matrices 

Suppose that we want to compute the eigenvalues of a given matrix. If 

the matrix is small, we can compute them symbolically using the 

characteristic polynomial. However, this is often impossible for larger 

matrices, in which case we must use a numerical method. 

An important tool for describing eigenvalues of square matrices is the 

characteristic polynomial: saying that λ  is an eigenvalue of A  is equivalent 

to stating that the system of linear equations 0)( =− vIA λ  (where I  is the 

identity matrix) has a non-zero solution v  (an eigenvector), and so it is 

equivalent to the determinant: 0)det( =− IA λ . 
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The function )det()( IAp λλ −=  is a polynomial in λ  since determinants 

are defined as sums of products. This is the characteristic polynomial of A : 

the eigenvalues of a matrix are the zeros of its characteristic polynomial. 

All the eigenvalues of a matrix A  can be computed by solving the 

equation 0)( =λAp . If A  is an nxn  matrix, then Ap  has degree n  and A  can 

therefore have at most n  eigenvalues. Conversely, the fundamental theorem 

of algebra says that this equation has exactly n  roots (zeros), counted with 

multiplicity. All real polynomials of odd degree have a real number as a root, 

so for odd n , every real matrix has at least one real eigenvalue. In the case of 

a real matrix, for even and odd n , the non-real eigenvalues come in conjugate 

pairs. 

Once the eigenvalues λ  are known, the eigenvectors can then be found 

by solving: 0)( =− vIA λ . 

3.4 Optical Flow 

Information in this section is given referring to [61]. 

Motion estimation is an important part of any video processing system. 

All the motion estimation algorithms are based on temporal changes in image 

intensities (more generally color). In fact, the observed 2D motions based on 

intensity changes may not be the same as the actual 2D motions. To be more 

precise, the velocity of observed or apparent 2D motion vectors are referred 

to as optical flow. Optical flow can be caused not only by object motions, but 

also camera movements or illumination condition changes. 

3.4.1 2D Motion vs. Optical Flow 

The human eye perceives motion by identifying corresponding points at 

different times. The correspondence is usually determined by assuming that 

the color or brightness of a point does not change after the motion. It is 

interesting to note that the observed 2D motion can be different from the 

actual projected 2D motion under certain circumstances. Figure-3.2 
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illustrates two special cases. In the first example, a sphere with a uniform at 

surface is rotating under a constant ambient light. Because every point on the 

sphere reflects the same color, the eye cannot observe any change in the color 

pattern of the imaged sphere and thus considers the sphere as being 

stationary. In the second example, the sphere is stationary, but is illuminated 

by a point light source that is rotating around the sphere. The motion of the 

light source causes the movement of the reflecting light spot on the sphere, 

which in turn can make the eye believe the sphere is rotating. The observed 

or apparent 2D motion is referred to as optical flow in computer vision 

literature. 

 

Figure 3-2: The optical flow is not always the same as the true motion 

field. In (a), a sphere is rotating under a constant ambient illumination, but 

the observed image does not change. In (b), a point light source is rotating 

around a stationary sphere, causing the highlight point on the sphere to 

rotate. 

The above examples reveal that the optical flow may not be the same as 

the true 2D motion. When only image color information is available, the best 

one can hope to estimate accurately is the optical flow. However, in the 

remaining part of this section, we will use the term 2D motion or simply 

motion to describe optical flow. The readers should bear in mind that 

sometimes it may be different from the true 2D motion. 

(a) (b) 
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3.4.2 Optical Flow Equation and Ambiguity in Motion Estimation 

Consider a video sequence whose luminance variation is represented by 

),,( tyxψ . Suppose an imaged point ),( yx  at time t  is moved to 

),( yx dydx ++  at time tdt + . Under the constant intensity assumption, the 

images of the same object point at different times have the same luminance 

value. Therefore, 

),,(),,( tyxdtdydx tyx ψψ =+++     (3.6) 

Using Taylor's expansion, when tyx ddd ,,  are small, we have 

tyxtyx d
t

d
y

d
x

tyxdtdydx
∂
∂

+
∂
∂

+
∂
∂

+=+++
ψψψψψ ),,(),,(   (3.7) 

Combining equations (3.6) and (3.7) yields 

0=
∂
∂

+
∂
∂

+
∂
∂

tyx d
t

d
y

d
x

ψψψ
    (3.8) 

The above equation is written in terms of the motion vector ),( yx dd . 

Dividing both sides by td  yields 

0=
∂
∂

+
∂
∂

+
∂
∂

tyx yx
ψυψυψ

 or 0=
∂
∂

+∇
t

T ψνψ   (3.9) 

where ),( yx υυ  represents the velocity vector, 
T

yx 







∂
∂

∂
∂

=∇
ψψψ ,  is the spatial 

gradient vector of ),,( tyxψ . In arriving at the above equation, we have 

assumed that td  is small, so that txx dd /=υ , tyy dd /=υ . The above equation 

is commonly known as the optical flow equation. 
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Figure 3-3: Decomposition of motion ν  into normal )( nneυ  and tangent 

)( tt eυ  components. Given ψ∇  and 
t∂

∂ψ
, any motion vector on the tangent 

line satisfies the optical flow equation. 

As shown in Figure-3.3, the flow vector ν  at any point x  can be 

decomposed into two orthogonal components as 

ttnn ee υυν +=     (3.10) 

where ne  is the direction vector of the image gradient ψ∇  , to be called the 

normal direction, and te  is orthogonal to ne , to be called the tangent 

direction. The optical flow equation in equation (3.9) can be written as 

0=
∂
∂

+∇
tn
ψψυ     (3.11) 

where ψ∇  is the magnitude of the gradient vector. Three consequences 

from equation (3.9) or (3.11) are : 

1. At any pixel x , one cannot determine the motion vector ν  based on 

ψ∇  and 
t∂

∂ψ
 alone. There is only one equation for two unknowns 

( xυ  and yυ , or nυ  and tυ ). In fact, the underdetermined component 
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is tυ . To solve both unknowns, one needs to impose additional 

constraints. The most common constraint is that the flow vectors 

should vary smoothly spatially, so that one can make use of the 

intensity variation over a small neighborhood surrounding x  to 

estimate the motion at x . 

 

Figure 3-4: The aperture problem in motion estimation : To estimate the 

motion at 1x  using aperture 1, it is impossible to determine whether the 

motion is upward or perpendicular to the edge, because there is only one 

spatial gradient direction in this aperture. On the other hand, the motion at 

2x  can be determined accurately, because the image has gradient in two 

different directions in aperture 2. 

2. Given ψ∇  and 
t∂

∂ψ
, the projection of the motion vector along the 

normal direction is fixed, with ψψυ ∇
∂
∂

−= /
tn , whereas the 

projection onto the tangent direction, tυ , is undetermined. Any value 

of tυ  would satisfy the optical flow equation. In Figure-3.3, this 

means that any point on the tangent line will satisfy the optical flow 

equation. This ambiguity in estimating the motion vector is known 

as the aperture problem. The word “aperture” here refers to the 

small window over which to apply the constant intensity 

assumption. The motion can be estimated uniquely only if the 
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aperture contains at least two different gradient directions, as 

illustrated in Figure-3.4. 

3. In regions with constant brightness so that 0=∇ψ , the flow vector 

is indeterminate. This is because there is no perceived brightness 

changes when the underlying surface has a flat pattern. The 

estimation of motion is reliable only in regions with brightness 

variation, i.e., regions with edges or non-flat textures. 

3.5 Horn-Schunk Method 

Horn-Schunk [6] method is one of the best computation techniques for 

estimating motion vectors. Details of this method will be introduced in this 

section. 

Let ),,( tyxI  be image brightness at point ),( yx  at time t  and 
x
II x ∂
∂

= , 

y
II y ∂
∂

= , 
t
II t ∂
∂

= , 
t

x

d
d

u = , 
t

y

d
d

v = . As described in section 3.4, we know that 

0=++ tyx IvIuI . With these definitions step by step explanation of the 

method : 

1. Define an energy function and minimize, 

fIvIuIyxE tyx λ+++= 2)(),( , where 2222
yxyx vvuuf +++=  (3.12) 

2. Differentiate with respect to unknowns u  and v , 

u
fIvIuII

u
E

tyxx ∂
∂

+++=
∂
∂ )(2 , where )(2 yyxx uu

y
u

ux
u

uu
f

+=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

  (3.13) 

v
fIvIuII

v
E

tyxy ∂
∂

+++=
∂
∂ )(2 , where )(2 yyxx vv

y
v

vx
v

vv
f

+=
∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂

  (3.14) 

In equations above, )( yyxx uu +  and )( yyxx vv +  are the laplacians of u  and 

v , respectively. Thus, we have 
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0)( 2 =∆+++ uIvIuII tyxx     (3.15) 

0)( 2 =∆+++ vIvIuII tyxy     (3.16) 

Laplacian controls smoothness of optical flow. A particular choice can 

be avguuu −=∆2 , avgvvv −=∆2 . With rearranging equations, we have : 

0)( 2 =−+++ avgtxyxx uIIIvIIu λλ
   (3.17) 

0)( 2 =−+++ avgtyyxy vIIIuIIv λλ    (3.18) 

We have two equations ((3.17) and (3.18)) and two unknowns. Writing 

v  in terms of u  and plugging it in other equation, we obtain : 












++

++
−=

λ22
yx

tavgyavgx
xavg II

IvIuI
Iuu    (3.19) 












++

++
−=

λ22
yx

tavgyavgx
yavg II

IvIuI
Ivv    (3.20) 

3. Now, iteratively compute u  and v , assuming that initially u  and v  

are 0. Compute avgu  and avgv  in a neighborhood. 

3.5.1 Estimation Hints 

In this section, hints on estimating tyx III ,,  and vu,  are given which are 

needed while computing optical flow. 

++−+++−+= ),,1(),1,1(),,(),1,((),,( kjiIkjiIkjiIkjiIkjiI x    

  4/))1,,1()1,1,1()1,,()1,1,( ++−+++++−++ kjiIkjiIkjiIkjiI ,     (3.21) 

++−+++−+= ),1,(),1,1(),,(),,1((),,( kjiIkjiIkjiIkjiIkjiI y    

  4/))1,1,()1,1,1()1,,()1,,1( ++−+++++−++ kjiIkjiIkjiIkjiI ,     (3.22) 

++−+++−+= ),,1()1,,1(),,()1,,((),,( kjiIkjiIkjiIkjiIkjiI t    

  4/)),1,1()1,1,1(),1,()1,1,( kjiIkjiIkjiIkjiI ++−+++++−++ .    (3.23) 
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Figure 3-5: Index references for pixels of consecutive frames of a video 

defined on a cubic presentation, i for rows, j for columns and k for frames. 

4/))1,()1,(),1(),1((),( ++−+++−= jiujiujiujiujiu   (3.24) 

4/))1,()1,(),1(),1((),( ++−+++−= jivjivjivjivjiv   (3.25) 

While computing, special cases at edges and corners must be taken into 

account for equations (3.21) to (3.25). 

i 

i + 1 

j j + 1 
k 

k + 1 
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CHAPTER 4 

STOCHASTIC APPROACH 

In this chapter, the stochastic solution to dynamic texture classification 

problem is defined. The solution depends on the paper by Doretto [1]. This 

paper is selected for pioneering our work because of its reported success on 

dynamic texture classification. Other reasons for our selection are proposed 

method’s ability on synthesis, compression and its flexibility on editing 

dynamic textures. However all of these attributes are realizable thanks to 

modeling, we will be concantrate on proposed method’s approach to 

classification.  Interested readers can also refer to papers [2, 3, 11, 12, 17, 18, 

19, 20, 30, 31, 36] and books [54, 55, 56] for constituting the best knowledge 

about the subject. 

4.1 Modeling 

In [77], Zhu describes texture as a realization from a stationary 

stochastic process with spatially invariant statistics. This definition captures 

the intuitive notion of texture. For a sequence of images (time-varying 

texture), individual images are clearly not independent realizations from a 

stationary distribution, for there is a temporal coherence intrinsic in the 

process that needs to be captured. Therefore, individual images can be 

modeled as realizations of the output of a dynamical system driven by an 

independent and identically distributed (IID) process. 

4.1.1 A State-Space Model 

In modeling of a dynamic texture, we will start with the capturing 

process. In a real application it is obvious that the sequence of images must 

be captured by an imaging device. While this capturization it is clearly known 

that the final image is a noisy version of the original image where the noise is 

inferred from the physics of the imaging device. In Figure-4.1 this 
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phenomenon is represented. Let )()()( twtity +=  is the measured frame at 

time t, where )(ti  is the original image and )(tw  is the noise which is an IID 

drawn from a known distribution. The measured sequence will be WIY += , 

in matrix notation, which will be named as the space model of the dynamic 

texture. In [1], this phenomenon is aimed to be modeled so that the dynamic 

textures can be represented in words of parameters. The target modeling is 

aimed to be able to capture both spatial and temporal aspects of the textures. 

The model is aimed to be applicable for recognition tasks, such as identifying 

a given video sequence as belonging to the wavy or to a motionless water 

class. It is also aimed to be suitable for segmentation tasks, in other words, 

for partitioning a video sequence into homogeneous regions. 

 

Figure 4-1: Space model of a dynamic texture 

For making the definitions and equations more comprehensible, it is 

declared here that the capital letters WIY ,,  will be used for representing 

m = r x c 

r 

c 

ζ 

= 
Y 

y(t) 

Y 
= 

I W 
+ 

measured 

sequence 

original image 

sequence 

measured 

noise 
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sequences in matrix notation, while small letters wiy ,,  representing single 

frames. 

Following the capturing process we have an image sequence, WIY += . 

In Figure-4.1, it is emphasized that the measured sequence Y  is the noisy 

version of original image sequence, dynamic texture, I  which is aimed to be 

modeled. Dynamic textures are modeled as auto-regressive moving average 

processes (ARMA) as described in [1]. The model forms (linear) dynamic 

textures with combination of spatial filters and state components. Let, there 

exists a set of n  spatial filters nm K1,: =ℜ→ℜ αφα , ))(()( txti φ= , where )(⋅φ  

indicates the combination of the output of the n  filters }{ αφ  respectively 

applied to each of the n  state components, )(tx . As the model is aimed to 

associate a dynamic texture to an ARMA process, AR (auto-regressive) and 

MA (moving average) coefficients are chosen with order 1, without loss of 

generality. So, we have )()()1( tBvtAxtx +=+  with vntv ℜ∈)(  an unknown IID 

realization, initial condition 0)0( xx =  and vnxnnxn BA ℜ∈ℜ∈ , , AR and MA 

coefficients defining the ARMA process, respectively. Therefore, a linear 

dynamic texture is associated to an ARMA process with unknown input 

distribution 





+=
+=+

)())(()(
)()()1(

twtxty
tBvtAxtx

φ
    (4.1) 

with 0)0( xx = , )(tv : an IID realization unknown, )(tw : an IID realization 

given, such that ))(()( txti φ= . 

As stated in [1] equation (4.1) is the ARMA model for representing 

dynamic textures. Following the definition of dynamic textures as an ARMA 

model, the choice of filters is so important that the filters will be the part of 

the learning process for a given dynamic texture and will supply a 

dimensionality reduction. So that the filters are chosen as a decomposition of 

the image in the simple (linear) form 
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∑
=

===
n

i
ii tCxtxtxti

1
)()())(()( &θφ    (4.2) 

where [ ] mxn
nC ℜ∈= θθ ,,1 K  and }{ iθ  can be an orthonormal basis of 2L , a set 

of principal components, or a wavelet filter bank. In our implementations, 

}{ iθ  is selected as a set of principal components. In equation (4.2), notice 

that, C  represents the spatial filters and )(tx  represents the state 

components. This decomposition is represented in Figure-4.2. 

 

Figure 4-2: Decomposition of )(ti  with n  filters (see equation 4.2) 

 

Figure 4-3: State transitions of an ARMA model 

+ 1/A x 

B 

v 

= 

n 

C i(t)  
nx1 

x(t) 

. 
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As described in [55], and shown in Figure-4.3, a stationary process )(tx  

can be represented as )()()( tvqRtx =  where )(tv  is white noise. Here )(qR  is a 

rational (transfer) function. 

a

a

b

b
n

n

n
n

qaqaqA
qbqbqB

qA
qBqR

−−

−−

+++=
+++=

=

L

L
1

1

1
1

1)(
1)(

)(
)()(

   (4.3) 

where q  and 1−q  are forward and backward shift operators. So that we may 

write 

)()1()()()1()( 11 bnan ntvbtvbtvntxatxatx
ba

−++−+=−++−+ LL  (4.4) 

for equation (4.3). Such a representation of a stochastic process is known as 

an ARMA model. If 0=bn , we have an auto-regressive (AR) model : 

)()()1()( 1 tvntxatxatx ana
=−++−+ L    (4.5) 

and if 0=an , we have a moving average (MA) model : 

)()1()()( 1 bn ntvbtvbtvtx
b

−++−+= L    (4.6) 

The proposed method in [1] uses 1=an  and 1=bn , so in our case we 

have : 

)1()()1()( 11 −+=−+ tvbtvtxatx     (4.7) 

These relation is also represented in equation (4.8). 
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Equation (4.8) defines the state equation for ARMA model. Under 

above definitions the parts of an ARMA model is also represented in Figure-

4.5. In Figure-4.5, we see that the source of the stochastical approach lies on 

moving average (MA) part, in other words the dependency of states to 

randomness creates undetermined results, while the auto-regression (AR) 

part of the structure make model dependent to past occurrences. So, we have 

a model which decides on the latest samples depending to its previous 

samples and updates the new ones under terms of randomness. 

 

Figure 4-4: Construction of an ARMA model : regression and randomness 

As we summarize, when we extend the equation (4.1) to image 

sequences, dynamic textures, we have a state-space model which can define 

the stochastical phenomenon of a dynamic texture. The equation (4.9) 

represents what we say the dynamic texture can be represented as a state-

space model referring to [1] : 





+=
+=
WCXY
BVAXX

    (4.9) 

4.1.2 Learning Phase : A Closed-Form Solution 

When we examine the equation (4.9), we can see that the model defines 

a dynamic texture with only three parameters : A, B and C. So, the learning 

x(t+1) = A . x(t) + B . v(t) 

AR MA 

ARMA Model 

randomness regression 
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problem is a maximum likelihood learning similar to expectation 

maximization : 

Given { } Yyy =)(,),1( τK , find 

)(logmaxarg)(ˆ,ˆ,ˆ,ˆ
,,,

YpqCBA
qCBA

=⋅    (4.10) 

subject to equation (4.1) and qtv
IID
~)( . 

While Y is observable, solution is defined in [1] as follows : 

Let [ ] ττ τ mxyyY ℜ∈= )(,),1( K&  with n>τ , and similarly for 

[ ] ττ τ nxxxX ℜ∈= )(,),1( K& , and [ ] ττ τ mxwwW ℜ∈= )(,),1( K&  and notice that 

ICCCWCXY Tmxn =ℜ∈+= ;;τττ    (4.11) 

Now let T
sVUY Σ=τ ; mxnU ℜ∈ ; IUU T = ;  xn

sV
τℜ∈ , IVV s

T
s =  be the 

singular value decomposition (SVD) with ),,( 1 ndiag σσ K=Σ , and }{ iσ  be the 

singular values, and consider the problem of finding the best estimate of C  in 

the sense of Frobenius: 
FXC

WXC τ
ττ

,
minarg)(ˆ,ˆ =  subject to equation (4.11). 

It follows immediately from the fixed rank approximation property of the 

SVD that the unique solution is given by 

UC =ˆ , T
sVX Σ=)(ˆ τ     (4.12) 

Â  can be determined uniquely, again in the sense of Frobenius, by 

solving the following linear problem: 
FA AXXA 1

0minargˆ −−= ττ , where 

[ ] ττ τ nxxxX ℜ∈−=− )1(,),0(1
0 K&  which is trivially done in closed-form using the 

state estimated from equation (4.12) 

1
0

ˆ −= ττ XXA      (4.13) 

Following solution after equation (4.13) we get : 

1
0

ˆ)(ˆˆ −−= τττ XAXVB     (4.14) 
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And now let T
vvv VUVB Σ=)(ˆˆ τ ; vnxn

vU ℜ∈ ; IUU v
T
v = ;  τxn

v
vV ℜ∈ , 

IVV v
T
v =  be the singular value decomposition (SVD). It follows, as stated 

above, from the fixed rank approximation property of the SVD that the 

unique solution is given by 

vvUB Σ=ˆ , T
vVV =)(ˆ τ     (4.15) 

where [ ] ττ τ xnvvvV ℜ∈= )(,),1( K&  and vnxnB ℜ∈ . 

State-space relations of a dynamic texture in terms of matrices as an 

ARMA model is presented in equation (4.16) and the solution matrices of the 

system after SVD is given in equation (4.17). 
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The solutions given above are all part of a system identification 

problem. Interested readers can study related parts of the books [54, 55, 56] 

for a better understanding of the solutions. 

4.1.3 Clues Under Solution 

What have we done by solving the problem using SVD ? 

As explained in [12], there is a direct relation between principal 

component analysis (PCA) and SVD in the case where principal components 

are calculated from the covariance matrix. The eigenvalues of PCA are 

equivalent to 2
iσ  of SVD, which are proportional to the variances of the 

principal components. So, as the right singular vectors of SVD are the same 

as the principal components, taking T
sVX Σ=)(ˆ τ as also presented in equation 

(4.17), we take n  biggest eigenvectors and corresponding eigenvectors for 

state representation. This yields, reduced dimension representation of the 

dynamic texture, plus showing trend of data in terms of reduced new 

dimensions. This property of the model also yields an advantage for using the 

model for synthesis and compression needs. Interested readers about PCA 

mxτ 

Y 

mxτ 

U 

τxτ 

Σ 

. = 

τxτ 

VT 
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mxn nxn 

. = 

nxτ 
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C X 

(4.17) 
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and SVD can find the subject in chapter 3 of this thesis or can refer to [11, 12, 

54, 58]. 

4.2 Classification 

The classification of dynamic textures which has modeled as an ARMA 

model as described in previous sections is a problem of calculating the 

distances between the parameters A , B  and C , whom they constitute and 

describe the dynamic texture, between two models, 1M  and 2M . The solution 

is given in [1] referring to [2] and [3]. In [2], a notion of principal angles and 

their corresponding principal directions between two linear autoregressive 

moving average (ARMA) models is defined and their relation to the metric for 

ARMA models defined by Martin [3] is shown. 

4.2.1 Subspace Angles and Martin Distance Between Models 

Let mxpRA∈  and mxpRB∈  be two matrices with full column rank. The 

principal angles 



∈

2
,0 πθ k  between )(Arange  and )(Brange  are defined as 

22

max)cos(
ByAx

ByAx TT

Ry
Rx

k

q

p

∈
∈

=θ , for ),min(,,2,1 qpk K=  

Subspace angles are the largest of these angles. A closed form solution is 

presented in [2]. Notice that, in our case, we seek subspace angles between 

models 1M  and 2M . 

For the sake of simplicity, assuming that we have AR models, that we 

will deal only with parameters A  and C . However this assumption is done, 

in [2] it is also shown that the resulting equality holds for ARMA models. So, 

currently assuming we have AR models, the models will be represented as 

),( 111 CAM =&  and ),( 222 CAM =& . And the observability matrix for models will 

be [ ]LL& T
i

nT
i

T
i

T
i

T
ii CACACMO )()( =∞ . 
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The subspace angles between 1M  and 2M  is defined as the principal 

angles between the ranges of their infinite observability matrices: 

[ ] [ ])()( 2121 MOMOMM ∞∞= <<    (4.18) 

In [3], the distance between stable AR models 1M  and 2M  is defined as: 

∑
∞

=

−=
0

2
2121 )()(),(

n
ncncnMMd    (4.19) 

where )(1 nc  and )(2 nc  are cepstrum coefficients of 1M  and 2M , respectively. 

(The cepstrum of a discrete-time process is the inverse Fourier transform of 

the logarithm of the power spectrum of the discrete-time process.) 

As presented in [2], Martin [3] subsequently shows that for stable AR 

models 1M  with order 1n  and poles iα  and 2M  with order 2n  and poles iβ  

the following equality holds 
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  (4.20) 

This equality basically follows from an expression that relates the 

cepstrum coefficients of an AR model to its poles, which can be found in [20]. 

Observe that if 1M  and 2M  are two first order stable AR models, their 

distance equals 

θβα
αβ

222

2
2

21 cos
1ln

)1)(1(
)1(ln),( =
−−

−
=MMd , where θ  is the subspace angle 

between models 1M  and 2M . For thn  order models, the distance is defined as: 

 ∏
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=
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2
2
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1ln),(
θ

    (4.21) 

The proof can be found in [2]. 
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Finally, the Martin distance between two models of order n  is defined 

as : 

∏

∏

−−

−
= n

ji
jiji

n

ji
ji

m MMd

,

,

2

2
21

)1)(1(

1
ln),(

ββαα

βα
   (4.22) 

where α , β  are the poles and α , β  means complex conjugates of poles of 

1M  and 2M , respectively. 

In [2], it is declared that the equation (4.22) is also valid for ARMA 

models. 

The poles of an ARMA model is the eigenvalues of A  which is the state 

transition matrix (see equation (4.3) and books [55, 56] for details). 

In our implementation, equation (4.22) is used for calculating distances 

between models. 
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CHAPTER 5 

DETERMINISTIC APPROACH 

In this chapter, the deterministic solution to dynamic texture 

classification problem is defined. The solution depends on the paper by Peteri 

[4]. This paper is selected because of its reported success and also being one 

of the latest works on dynamic texture classification in literature. However 

we focused on classification of dynamic textures, we have also worked on 

texture regularity measuring which is one of the main feature extraction 

mechanisms of the deterministic method. Interested readers can also refer to 

papers [5, 6, 7, 14, 15, 16, 23, 26, 27, 28] for constituting the best knowledge 

about the subject. 

This method aims to extract spatial and temporal features of a dynamic 

texture using a texture regularity measure and normal flow. Texture 

regularity is calculated referring to [5] and normal flow is calculated referring 

to [6]. 

5.1 Normal Flow 

As stated in [4], normal flow contains both temporal and structural 

information of dynamic textures : temporal information is related to moving 

edges, while spatial information is linked to the edge gradient vectors. So, it is 

suitable for dynamic textures. The method is also fast for computing. 

However, the weakness lies on its sensitivity to noise. This aspect of method 

is improved by smoothing the image or applying a threshold on spatial 

gradients. Features using normal flow information is obtained from motion 

vectors of each individual pixel which are calculated via the well known 

optical flow calculation methods. Features that are used for classification are 

explained in section 5.4 of this chapter. For more information about optical 

flow, interested readers can find the subject in chapter 3 of this thesis or can 

refer to [5, 26, 27]. 
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5.2 Texture Regularity 

In recent years, this subject is under investigation by different research 

groups. The work done by Chetverikov in [5] is the most succesful one that I 

have found in literature. The terms of success for texture regularity depends 

on qualitative evaluation. We have used the method proposed in [4] referring 

to [5] and [23]. We have also add an improvement to the method. The results 

that we had obtained are better than the proposed method in [5]. The 

comparison of our results with the ones in [5] are shown in chapter 6. You 

can also find our results with entire Brodatz album which became the 

standart evaluation database about these subject. 

5.2.1 Regularity Measure 

 

Figure 5-1: Normalized autocorrelation of texture image 

Regularity measure depends on seeking similarities and measuring 

periodicity of these similarities in a texture image. For this purpose, the 

autocorrelation of the original texture image is calculated via the FFT using 

the well-known relation between the correlation function and the Fourier 

transform. Autocorrelation is then normalized by spreading the results 

between minimum and maximum gray levels. The result of this process 

emphasizes the similarities in texture image. For detecting periodicity of 

these similarities, gray level differences are calculated in normalized 
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autocorrelation of the original texture image. This is done by surveying in 

image with vectors whose distances range from dd ∆=  to maxd  and angles 

range from αα ∆=  to π2 , where d∆  is the increment size of distances and 

α∆  is the increment size of angles. Gray level differences are calculated 

simply using the pixel differences of which the vector is showing at its 

starting and finishing points. While we search the vector in image using the 

pixels at its start point, the finishing point must be calculated using four 

pixels neighboring almost the finishing point that the vector points. In simple 

words, calculate a four pixel interpolated image and take difference image in 

range of the vector. See Figure-5.2 for details. 

 

Figure 5-2 : Calculation hints for gray level differences 
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Using the gray level difference image, the gray level difference 

histogram is calculated. Then, the polar grid is calculated using the histogram 

weighted mean of the gray level difference image. 

For all ),( ji dα  ; 

∑
=

=
max

0max

),;(1),(
k

k
dkkH

k
jimean α     (5.1) 

where ),(),( yxnmk ρρ −= , αcosdnx += , αsindmy −= , maxk : number of 

gray levels – 1, ),;( dkH α : histogram of gray level difference image, αα ∆= .ii , 

djd j ∆= . , απα ∆= /2N , 1/max +∆= ddNd . αN  and dN  are two basic 

parameters of this calculation. It is assumed that maxd  is greater than at least 

two periods of the pattern. Our parameter selections and results are shown in 

chapter 6. 

The mean function calculated for the polar grid is then normalized with 

its maximum, so ),( jipolρ  is obtained where it ranges now 0 to 1. Finally, the 

inverse of ),( jipolρ  is calculated which is given as 

),(1),( jijiM polpol ρ−=     (5.2) 

where 1),(0 ≤≤ jiM pol  is called the polar interaction map. A row of the polar 

interaction map is called the contrast function. Regularity is the result of 

interpretation of this function. Notice that, rows of contrast function are the 

increasing angles iα  and the columns of the contrast function are the 

increasing displacements jd . The plot of iα  according to jd  gives us the 

contrast curve. A regular texture has a contrast curve with deep and periodic 

minima. See Figure-5.3 for visual explanation of the measure. 
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Figure 5-3 : Contrast curves and their relation between regularity 

Using contrast curves the regularity measure is calculated step by step 

as follows as stated in [4] : 

1. The contrast function is median filtered with a size of three. This 

filtering smoothes the function : )3),(()( dFmediandF i= . 

2. Find extrema of )(dF . 

3. Select two lowest minimums : ),(),,( 2211 FdFd , 21 dd < . 

4. Take the lowest minimum of )(dFi , amF  : get rid of filtered value, use 

the original minimum which is at a ± two point vicinity of 

)),(min( 21 FFd . 

5. amFREG −= 1int  

6. Calculate periodicity in terms of distances : 
2

12 2
1

d
dd

REGpos
−

−=  

7. p
posREGREGiREG ).()( int=  : where p  is a parameter, selected as 2. 

8. ))((max iREGMAXREG
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=                 (5.3) 
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At step 6, also consider a special case which the third minimum is 

occurred between two lowest minimums. If special case is detected then 

calculate also 
2

12 31
d
ddREGpos

−
−= . Use the maximum of these two values. 

See Figure-5.4 for details. 

 

Figure 5-4 : Special case for posREG  

5.2.2 Improvements for Regularity Measure 

During our evaluations we see that the method proposed in [4], as 

explained in section 5.2.1, has some weaknesses while interpreting the 

contrast curves for textural images. In their latest work in [23], they have also 

proposed a new method for intREG . The new method calculates intREG  as 

follows : 

• Calculate the differences between each maximums and minimums. 

Select the largest amplitude minmax FF − . Then, 
max

min
int 1

F
FREG −= . 

However, this addition solves the previous weakness, it is not exactly 

enough for a true determination of texture regularity. The positional 

evaluation of the curve also has weaknesses and we have proposed some new 

calculations for solving these. 
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5.2.2.1 Improvement 1 : positional award 

When contrast curves of textural images are investigated it can be 

noticed that most of time the positional distribution of periodicities can not 

be well represented with two lowest minimums. In case of these, a very 

regular image has also score bad results, in other words, it is punished 

unfairly. But, this weakness of the method can be removed by taking a third 

minimum. Looking periodicity between three minimums arise better results. 

However, this improvement is only take in considered if all three lowest 

minimums are sorted in ascending order in terms of d . So, this calculation 

will be an award for differentiating regular images. Figure-5.5 shows details. 

 

Figure 5-5 : New proposed positional regularity measure 

Our proposed method calculates positional award as : 
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where 1331 ddd −=  and 1221 ddd −= . Then the method uses : 

),max( pospospos AWARDREGREG =     (5.5) 
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5.2.2.2 Improvement 2 : value regularity 

The contrast curve in Figure-5.5 is a good example for high regularity. 

In regular textures, the contrast curve also has periodicity through F . Our 

improvement method adds this property to regularity measure. Figure-5.6 

shows details of proposed method. 

 

Figure 5-6 : New proposed value regularity measure 

Our proposed method calculates value regularity as : 
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−=     (5.6) 

where 1331 vvv −=  and 1221 vvv −= . If there exists only two minimums then 

the calculation is : 
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The new calculated measure valREG  effects the total regularity measure 

as follows : 
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where 2=p . However this additional measure reduces the resulting 

regularity score of textures even it is high regular, we use an additional 

decision criteria based on the idea that : “If a texture has regular 

characteristic, then it must score high in all of the three regularity measures”. 

So, a threshold is applied and the final regularity becomes : 

If (all regularity measures, ( intREG , posREG , valREG )  > t ) then 1=p , 

where t  is a threshold of our decision criteria which is selected empirically as 

8,0=t . 

5.3 Features 

Deterministic approach to dynamic texture classification proposed in 

[4], selects the features according to normal flow and texture regularity as 

follows. 

1. Divergence : Average divergence effect over the whole image 

sequence (dynamic texture) which shows the aim of normal flow 

field to scaling. 

2. Curl : Average curl effect over the whole image sequence (dynamic 

texture) which shows the aim of normal flow field to rotation. 

3. Peakness : It is defined as the average flow magnitude divided by 

its standard deviation. 

4. Orientation : This is the orientation homogeneity of the normal 

flow field : [ ]1,0∈=
∑
∑

Ω∈

Ω∈

i
i
N

i
i
N

υ

υ
φ  where i

Nυ  is the normal flow vector at 

i  and Ω  is the set of points with non-zero normal flow vectors. φ  

reflects the flow homogeneity of the dynamic texture compared to its 

mean orientation. A detailed description of its meaning can be found 

in [7]. 
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5. Mean of regularity : Texture regularity of each image is calculated 

using equation (5.3), which we called )(tMAXREG . The mean of 

)(tMAXREG  gives the temporal regularity of the dynamic texture. 

6. Variance of regularity : The variance of temporal regularity. 

The first four features depends on the normal flow field, while the last 

two are obtained from texture regularity. 

5.4 Classification 

The classification of the dynamic textures is simply done by calculating 

the weighted distances between the sample set and the classes which consist 

of sets. In this classification, all features except the fourth, orientation, 

feature have weights equal to 1. Orientation feature is weighted with 3. 

∑
=

−=
6

1

)()(),(
i

c
i

s
ii FFwcsD     (5.9) 

The sample set s  is classified as belonging to the nearest class n  : 

),(),( csDnsD <  for all nc ≠ . 
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CHAPTER 6 

IMPLEMENTATION & RESULTS 

In this chapter, details of implementation and results are shown on 

subjects: 

1. Construction of database 

2. Texture regularity measuring depending on deterministic approach 

3. Dynamic texture classification via both approaches 

4. Dynamic texture synthesis depending on stochastic approach 

The word database, here, is used for collection of dynamic textures or 

textures according to the case. Notice that, the constructed database which is 

explained in section 6.2 is simply a library of dynamic textures which we have 

created from a known database in literature. 

6.1 Programming 

All of our works except database manipulations are implemented using 

Matlab, version 7. Database manipulation is realized via C++. Borland C++ 

Builder, version 6 is used for design and compilation of the C++ code. 

Dynamic texture classification code is programmed with a graphical user 

interface of Matlab which supplies a very interactive and flexible usage. A 

view of our program is presented in Figure-6.16 and Figure-6.17 which are 

located at the end of this chapter. 

6.2 Database 

Dynamic texture database used in this thesis is downloaded from : 

http://vismod.media.mit.edu/pub/szummer/temporal-texture/raw/ 

The MIT Temporal Texture database consists of 32 different dynamic 

textures. Files are in raw format each having its own description file. 
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Dynamic texture files contain image texture sequences ranging from 70 

frames to 150 frames. Frame resolutions vary from (90 x 150) to (256 x 256) 

totaly at 7 different sizes. Also, description files are not in same readable 

format. 

Under this circumstances, a database manipulation, to use for 

implementation, is needed. For this purpose, a program is designed to 

achieve a proper database. First of all, description files are re-organized to 

include information of width, height and number of total frames. For easy to 

use, all data files are named as “data.ris” and description files as “desc.txt”. 

 

Figure 6-1: Six frames of light boiling water and the belonging sub-

sampled frames with a window of size (48 x 48) are shown up and down, 

respectively. 

A new database is created using the MIT Temporal Texture database, 

say it the database is enlarged and organized. The most significant window, 

i.e.  flickering fire, boiling water, etc., at size (48 x 48) is focused on the image 
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sequences and 60 frames of each are sampled. By this method, the database 

is enlarged to a database having 384 different dynamic textures. See Figure-

6.1 and Figure-6.2. 

 

Figure 6-2: Six frames of flickering fire and the belonging sub-sampled 

frames with a window of size (48 x 48) are shown up and down, 

respectively. 

6.3 Texture Regularity 

Measuring the regularity of a texture is under investigation by different 

research groups. However it is possible to evaluate most of the results of the 

proposed methods of these research groups, the terms of success depends on 

qualitative evaluations. Because of this situation, Brodatz’s album of textures 

became a standart evalution database for this subject. The Brodatz texture 

database can be downloadable at web address : 

http://www.ux.his.no/~tranden/brodatz.html 
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The results of our method, which has improvements to the proposed 

methods in [4], [5] and [23] as described in sections 5.2.2.1 and 5.2.2.2 of this 

thesis, on Brodatz texture database are shown in this section. We have also 

compared our results with the ones given in [5]. The textures belong to this 

comparison can also be downloadable at web address : 

http://visual.ipan.sztaki.hu/regulweb/node5.html 

 

Figure 6-3: a) original image. b) normalized autocorrelation of a. c) polar 

interaction map of b. d) contrast curve of the angle which has biggest score 

in c. e) polar plot of scores of all angles in c. 

The steps of measuring texture regularity, advantages and drawbacks of 

our method will be discussed on following figures starting from Figure-6.3. In 

a 
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figures starting from Figure-6.3 to Figure-6.7 except Figure-6.5, an original 

texture image, the normalized autocorrelation of the image, belonging polar 

interaction map, contrast curve at where the biggest score occurred and the 

polar plot of all scores at all angles are shown. 

 

Figure 6-4: a) original image. b) normalized autocorrelation of a. c) polar 

interaction map of b. d) contrast curve of the angle which has biggest score 

in c. e) polar plot of scores of all angles in c. 

A very regular texture is shown in Figure-6.3 which has a texture 

regularity score of 0,99174. The calculation of polar interaction map from 

normalized autocorrelation of the original image depends on three basic 

parameters which are maximum size of, increment step size of and angular 

increment step size of the displacement vector that we look up the gray level 
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differences in the normalized autocorrelation of the original image by 

referencing this vector. We have chosen these parameters as follows: half of 

the image’s longest axis as maximum size of the vector, 1 for increment step 

size and 5° for angular increment step size of the vector. 

The texture in Figure-6.4 has a texture regularity score of 0,70345. The 

score means that the texture is regular. Regularity score of a texture can 

change from 0 to 1 where 0 means random texture and 1 means a very regular 

texture. As the details on calculations of the texture regularity are given in 

chapter 5 of this thesis, some of the drawbacks of these calculations will be 

exposed here. Notice that regularity score is nothing else than interpreting 

the contrast curves. As proposed in [5], the curves are median filtered with a 

size of three. Then, the interpretation is done on these filtered curves. But as 

it can be seen in Figure-6.4, the maximum score occurs at angle 210° whereas 

we expect it should be on angles 90° and 270°. Polar interaction map shows 

that nothing wrong with the data calculated. As we examine the normal and 

filtered plots at angle 90°, we can understand where the wrong is. These plots 

are shown in Figure-6.5. 

 

Figure 6-5: a) contrast curve at 90° of c in previous figure. b) median 

filtered contrast curve of a. 

a b 
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In Figure-6.5, we can see that the minimums and maximums are 

corrupted too much and the final scoring of texture at this angle drops down 

sharply. This situation occurs on texture images where the regular patterns 

are too close to each other. An example of this can be seen also in Figure-6.6. 

 

Figure 6-6: a) original image. b) normalized autocorrelation of a. c) polar 

interaction map of b. d) contrast curve of the angle which has biggest score 

in c. e) polar plot of scores of all angles in c. 

In Figure-6.6, texture regularity score shows 0,75753 whereas it must be 

expected as almost 1. So far here we have examined some regular textures. A 

texture which has random regularity and its plots are shown in Figure-6.7. 

a 

b 

c 

d 

e 
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Figure 6-7: a) original image. b) normalized autocorrelation of a. c) polar 

interaction map of b. d) contrast curve of the angle which has biggest score 

in c. e) polar plot of scores of all angles in c. 

Before giving our regularity measure results on Brodatz texture 

database, a comparison of the results given in [5] and ours is shown in Table-

6.1. 

The Brodatz texture database has texture images with size 640x640 in 

pixels. Because of computation speed, this database is sub-sampled and the 

sizes are dropped down to 160x160 in pixels. Texture regularity measuring is 

then calculated on these sub-sampled images. However the database has 

more than hundred images, all of the results are shown in Table-6.2. 

a 

b 

c 

d 

e 
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Table 6-1: Comparison of results; rows 1: given in [5], rows 2: ours. 

    

0.00 0.07 0.11 0.18 

0,072695 0,29117 0,22543 0,32623 

    

0.22 0.25 0.29 0.32 

0,37577 0,5199 0,79676 0,90523 

    

0.36 0.39 0.5 0.54 

0,81625 0,28317 0,92301 0,14813 

    

0.58 0.61 0.71 0.75 

0,060503 0,4899 0,7894 0,88071 

    

0.82 0.87 0.95 1.00 

0,6668 0,001617 0,91249 0,93393 
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Table 6-2: Regularity results we have obtained on Brodatz texture database. 

    

0 0 0 0 

    

0 0 0 0 

    

6,71E-06 9,54E-06 3,74E-05 6,21E-05 

    

9,78E-05 0,000293 0,00030418 0,000689 

    

0,00075406 0,0013747 0,0014088 0,001831 
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Table 6-2 (continued) 

    

0,002181 0,0028494 0,012652 0,018372 

    

0,019923 0,021419 0,024523 0,029034 

    

0,030041 0,033109 0,035272 0,038315 

    

0,043165 0,043599 0,043816 0,058781 

    

0,074304 0,07729 0,089946 0,090257 
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Table 6-2 (continued) 

    

0,090403 0,09415 0,10572 0,1103 

    

0,11418 0,12586 0,12599 0,13374 

    

0,14324 0,15241 0,15311 0,15893 

    

0,15965 0,16745 0,17718 0,18152 

    

0,19683 0,19953 0,21049 0,21498 
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Table 6-2 (continued) 

    

0,21612 0,2219 0,23084 0,2323 

    

0,23728 0,25387 0,26957 0,27164 

    

0,28344 0,30761 0,31476 0,34097 

    

0,3713 0,38033 0,38151 0,46421 

    

0,47999 0,62065 0,64512 0,6896 
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Table 6-2 (continued) 

    

0,70345 0,72017 0,73409 0,73795 

    

0,75637 0,75672 0,75753 0,77216 

    

0,78162 0,79331 0,79443 0,81717 

    

0,8177 0,81809 0,83796 0,83822 

    

0,8508 0,86825 0,8829 0,88886 
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Table 6-2 (continued) 

    

0,89037 0,89179 0,89264 0,90086 

    

0,91836 0,92099 0,92449 0,92785 

   

 

0,9413 0,9618 0,99174  

Evaluating the results given in Table-6.1 and Table-6.2, it is obvious 

that, talking with obtained results, our proposed measure successfully 

differentiates textures according to its regularities similar to human quality 

perception. While qualitative evaluation, it is also perceived that some of the 

results are wrong without controversial. However, the true classification rate 

can be evaluated as having success more than 90%, the reasons of these faults 

have to be declared. For determining reliable texture regularity measure the 

calculated contrast function has to catch more than two periods of the 

pattern. In case of missing periods, resulting measure is not reliable. For 

example, on last row, 2nd column of Table-6.1 and 9th row, 1st column of 

Table-6.2 has occurrences like this. Examining the results, it can be noticed 

that some measure scores for regular textures is less than expected. This drop 

in regularity score is because of median filtering the contrast function. In 
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Figure-6.5, an example of this situation is presented and it can be seen clearly 

how the expected result can be affected. 

During classification in deterministic method, two of six features are 

determined from texture regularity, but these are not enough alone for true 

classification. We could not yet find opportunity for observing how much fine 

tuning on texture regularity affect classification results; because of required 

calculation times are too long. However we do expect that whereas this 

measure produces relatively similar results, fine tuning has minor affect on 

classification. 

6.4 Dynamic Texture Classification 

In this section, the results of comparison between two dynamic texture 

classification approaches are presented, where stochastic approach is 

explained in chapter 4 and deterministic approach is explained in chapter 5 

of this thesis. 

The database, constructed as explained in section 6.2, has 384 dynamic 

textures, each consists of 60 frames of 48x48 images. In other words, we 

have video sequences at size 48x48x60. We call each of these as a set. These 

sets are grouped in 32 classes and 13 categories as given in Table-6.3. 

The sets are divided into two groups and named as : test sets and 

training sets each having 192 sets. The classifications are realized on these 

sets. 

Stochastic and deterministic methods are different from each other 

while classifying sets. Stochastic method compares sets with sets, while 

deterministic method compares sets with classes. This distinction on 

classification methodology produces an advantage for deterministic method. 
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Table 6-3: Sets, Classes and Categories in Database. 

Categories Classes Sets in Class Sets in Category 

boil-heavy 12 

boil-heavy 2 12 

boil-light 12 

boil-light 2 12 

boil-light 3 12 

boil-side 8 

Boiling water 

boil-side 2 12 

80 

Escalator  escalator 12 12 

fire 20 
 Fire 

fire 2 16 
36 

flags 16 
 Flags 

flags 2 8 
24 

 Fountain fountain 8 8 

 Laundry laundry 12 12 

plastic 12 

plastic 2 12  Plastic 

plastic 3 12 

36 

river 16 

river 2 16 

river-far 12 
 River 

river-far 2 12 

56 

 Shower shower 8 8 

smoke 12 

smoke 2 8 
20 

steam 12 

steam 2 8 

Haze 

steam 3 12 

32 

stripes 12 
 Stripes 

stripes 2 8 
20 

 Toilet toilet 12 12 

trees 16 
 Trees 

trees 2 12 
28 
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Table-6.4 and Table-6.5 shows the classification results of methods on 

boiling water category. Results of classifications are presented as confusion 

matrices where rows are showing test sets and columns are showing how 

many times the test set is classified in training sets as its closest neighbor. 

Table 6-4: Confusion matrix of deterministic method on boiling water 

category. 

  bo
il-

he
av

y 

bo
il-

he
av

y 
2 

bo
il-

lig
ht

 

bo
il-

lig
ht

 2
 

bo
il-

lig
ht

 3
 

bo
il-

si
de

 

bo
il-

si
de

 2
 

boil-heavy 4 2 0 0 0 0 0 
boil-heavy 2 0 6 0 0 0 0 0 
boil-light 0 0 6 0 0 0 0 
boil-light 2 0 0 2 4 0 0 0 
boil-light 3 0 0 0 0 6 0 0 
boil-side 2 0 0 0 0 2 0 
boil-side 2 0 0 0 0 0 3 3 

Table 6-5: Confusion matrix of stochastic method on boiling water category. 

  bo
il-

he
av

y 

bo
il-

he
av

y 
2 

bo
il-

lig
ht

 

bo
il-

lig
ht

 2
 

bo
il-

lig
ht

 3
 

bo
il-

si
de

 

bo
il-

si
de

 2
 

boil-heavy 2 2 0 0 0 0 2 
boil-heavy 2 2 3 0 0 0 1 0 
boil-light 0 0 1 3 2 0 0 
boil-light 2 0 0 2 3 1 0 0 
boil-light 3 0 0 1 2 3 0 0 
boil-side 0 2 0 0 0 2 0 
boil-side 2 1 2 0 0 1 0 2 

When we examined the results in Table-6.4 and Table-6.5, it is clear 

that deterministic method produces better results. Notice that deterministic 

method classify sets by looking at distances between the features of the test 

set and the mean of the features of the sets in classes, while stochastic 

method classify sets by looking at distances between models of sets. However 

a classification within a category is not required in most of applications, it 

gives us information about behaviors of classification methods. 
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Table 6-6: Confusion matrix of deterministic method on boiling water and 

river categories. 

  bo
il-

he
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bo
il-
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y 
2 

bo
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bo
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bo
il-
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 3
 

bo
il-
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bo
il-
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 2
 

riv
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riv
er

 2
 

riv
er

-fa
r 

riv
er

-fa
r 2

 

boil-heavy 4 2 0 0 0 0 0 0 0 0 0 
boil-heavy 2 0 6 0 0 0 0 0 0 0 0 0 
boil-light 0 0 6 0 0 0 0 0 0 0 0 
boil-light 2 0 0 2 4 0 0 0 0 0 0 0 
boil-light 3 0 0 0 0 6 0 0 0 0 0 0 
boil-side 2 0 0 0 0 2 0 0 0 0 0 
boil-side 2 0 0 0 0 0 3 3 0 0 0 0 
river 0 0 0 0 0 0 0 8 0 0 0 
river 2 0 0 0 0 0 0 0 1 4 0 3 
river-far 0 0 0 0 0 0 0 0 0 6 0 
river-far 2 1 0 0 0 0 0 0 0 3 0 2 

Table 6-7: Confusion matrix of stochastic method on boiling water and river 

categories. 

  bo
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bo
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2 
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bo
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bo
il-
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 3
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il-
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bo
il-
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 2
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er

 2
 

riv
er

-fa
r 
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-fa
r 2

 
boil-heavy 2 2 0 0 0 0 2 0 0 0 0 
boil-heavy 2 2 3 0 0 0 1 0 0 0 0 0 
boil-light 0 0 1 3 2 0 0 0 0 0 0 
boil-light 2 0 0 2 3 1 0 0 0 0 0 0 
boil-light 3 0 0 1 2 3 0 0 0 0 0 0 
boil-side 0 2 0 0 0 2 0 0 0 0 0 
boil-side 2 1 2 0 0 1 0 2 0 0 0 0 
river 0 0 0 0 0 0 0 2 6 0 0 
river 2 0 0 0 0 0 0 0 3 5 0 0 
river-far 0 0 0 0 0 0 0 0 3 3 0 
river-far 2 0 0 0 0 0 0 0 0 2 3 1 

Table-6.6 and Table-6.7 shows the classification results when the sets 

are extended with river category. We have seen previously that deterministic 

method was successful than the stochastic method on classifying sets 

between classes within a category. Extending our tests on two categories 

shows us that stochastic method is now successful than deterministic method 

on classifying sets between categories. As it is observed in Table-6.6 a river-
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far 2 sequence is named once as boil-heavy sequence with deterministic 

method, whereas there is no miss out of category with stochastic method as it 

can be seen in Table-6.7. 

Table 6-8: Confusion matrix of deterministic method on some mixed 

classes. 

  bo
il-

he
av

y 

bo
il-

lig
ht

 

es
ca

la
to

r 

fir
e 

fla
gs

 

la
un

dr
y 

pl
as

tic
 

riv
er
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t 
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boil-heavy 2 0 0 1 0 0 0 0 3 0 
boil-light 0 6 0 0 0 0 0 0 0 0 
escalator 0 0 6 0 0 0 0 0 0 0 
fire 0 0 0 7 2 0 0 0 0 1 
flags 0 1 0 0 3 4 0 0 0 0 
laundry 0 0 0 0 0 6 0 0 0 0 
plastic 0 0 0 0 0 0 5 0 0 1 
river 0 0 0 0 0 0 0 8 0 0 
toilet 0 0 0 1 0 0 0 0 5 0 
trees 0 1 0 0 0 0 2 0 1 4 

Table 6-9: Confusion matrix of stochastic method on some mixed classes. 

  bo
il-

he
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il-

lig
ht
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r 
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e 

fla
gs
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y 
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boil-heavy 4 0 0 0 0 2 0 0 0 
boil-light 0 6 0 0 0 0 0 0 0 
escalator 0 0 6 0 0 0 0 0 0 
fire 0 0 0 10 0 0 0 0 0 
flags 2 0 0 0 3 3 0 0 0 
laundry 1 0 0 0 0 5 0 0 0 
plastic 0 0 0 0 0 0 3 0 3 
river 0 0 0 0 0 0 0 8 0 
toilet 0 0 0 0 6 0 0 0 0 
trees 0 0 0 0 0 0 1 0 7 

What happen when we use a mix set of classes each showing different 

characteristics from each other? In Table-6.8 and Table-6.9 the results of a 

test like this are shown. At first glance it attracts an attention on that boil-

heavy and boil-light sequences are in same category, but they show different 

characteristics that we can also categorize them in a different category. 
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Examine Table-6.4 and Table-6.5 and see that two methods can successfully 

differentiate these sub-categories from each other. In Table-6.8 and Table-

6.9 we start to see that both methods play different behaviors depending on 

characteristics of sets. Both methods have reached to a %100 percent true 

classification in 4 different classes. When we examine the results deeply, we 

can say that stochastic method succeeds more than deterministic method on 

case of a test which has sample sets from different categories, except a %100 

of miss-classification on toilet sequence. Notice that, the reason of this miss-

classification is that the characteristic of toilet sequence is very similar to 

flags sequence in terms of models which the stochastic method calculates 

distances using these models. 

The results of mixed sets of classes, when we add other sets of classes of 

the categories used previously, are shown in Table-6.10 and Table-6.11. In 

escalator sequence, we see that both methods have classified it with no 

misses. This is because of that the escalator has totally different 

characteristics than the other categories, or in other words, it can be said that 

the features and models of methods can fully represent the characteristic of 

this dynamic texture. In both results we also see that both methods have truly 

classified most of the categories, where they have also missed some of the 

sets. For example, deterministic method is having problems while classifying 

sets from flags and laundry categories and stochastic method is having 

problems while classifying sets from flags, toilet, plastic and trees categories. 

In case of miss-classifying the plastic and trees categories with each other, it 

can be comprehensible for stochastic method that these categories show very 

similar characteristics; both of them are stationary processes. 



 66

Table 6-10: Confusion matrix of deterministic method on some mixed 

classes. 

 

Finally, in Table-6.12 and Table-6.13 the results of the classification of 

all sets in database are shown. In these results, other than we have stated 

before, we can easily observe that both methods have problems on specific 

sets. Deterministic method is having a lot of problems with sets from flags 

and stripes categories, while it has also some problems with sets from 

fountain, laundry and trees categories. Stochastic method is having a lot of 

problems with sets from flags, fountain, shower, stripes and toilet categories, 

while it has also some problems with plastic and trees categories. Both 
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methods are successful on classifying the sets from remaining categories, 

while they have also miss-classifications in terms of classifying as classes.  

Table 6-11: Confusion matrix of stochastic method on some mixed classes. 

 

When we have to evaluate methods on classifying all sets in database, it 

can be said that the deterministic method is more successful than the 

stochastic method. The results also show that both methods have a good 

discrimination power on dynamic textures. However the classification results 

give a lot of detailed information about these methods classification 

successes, their success must also be calculated as true recognition rates. 
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Figure 6-8: a) A true classification, b) A semi-true classification, c) A miss-

classification, using deterministic method on sets shown in Table-6.13. 

 

Figure 6-9: a) A true classification, b) A semi-true classification, c) A miss-

classification, using stochastic method on sets shown in Table-6.14. 

Test Set 
Closest Neighbors 

1st 2nd 3rd 

a 

b 

c 

Test Set 
Closest Neighbors 

1st 2nd 3rd 

a 

b 

c 
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Table 6-12: Confusion matrix of deterministic method on all classes. 

 

For calculating the recognition rates, firstly, the terms of true 

classification has to be defined. We have defined four kinds of true 

classification as: 

1. If the class of the 1st closest neighbor of the classified sets  is same as 

the class of the test set, 

2. If the category of the 1st closest neighbor of the classified sets  is same 

as the category of the test set, 
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3. If the class of one of the 2 closest neighbors of the classified sets  is 

same as the class of the test set, 

4. If the category of one of the 2 closest neighbors of the classified sets  is 

same as the category of the test set. 

The recognition rates are measured, as described above, for the given 

sets in tables and shown in following tables. The true classification 

definitions are named as rating method in tables. 

By defining four different rating methods we aimed to clarify the 

capabilities of classification methods. It will be meaningful to watch the score 

of 2nd rating method, which calculates rating according to category. Think of 

a real application that you have to distinguish river from road or fire from 

smoke. It is obvious that the application needs classifying of textures 

according to categories. 1st rating is calculated for catching sensitivity of the 

methods. 3rd and 4th ratings are calculated for interrogating if the method has 

ability to truly classify the missed sets on its 2nd closest neighbors. In a real 

application one can search for two occurrences in closest neighbors and 

create a decision of taking the first two times occurred sets in closest 

neighbors as the result of classification. As we emphasize the 2nd result as the 

main score, it is shaded in tables except in Table-6.14. In Table-6.14, there is 

only one category and in that classification it is aimed to expose the 

sensitivity of the method within category classification. 
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Table 6-13: Confusion matrix of stochastic method on all classes. 

 



 72

Table 6-14: Recognition rates of both methods under test sets given in 

Table-6.4 and Table-6.5. 

Recognition Rates 
Rating Method 

Stochastic Method Deterministic Method 

1 % 40 % 78 

2 % 100 % 100 

3 % 60 % 95 

4 % 100 % 100 

Table 6-15: Recognition rates of both methods under test sets given in 

Table-6.6 and Table-6.7. 

Recognition Rates 
Rating Method 

Stochastic Method Deterministic Method 

1 % 40 % 75 

2 % 100 % 99 

3 % 65 % 94 

4 % 100 % 99 

Table 6-16: Recognition rates of both methods under test sets given in 

Table-6.8 and Table-6.9. 

Recognition Rates 
Rating Method 

Stochastic Method Deterministic Method 

1 % 74 % 74 

2 % 74 % 74 

3 % 84 % 83 

4 % 84 % 83 
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Table 6-17: Recognition rates of both methods under test sets given in 

Table-6.10 and Table-6.11. 

Recognition Rates 
Rating Method 

Stochastic Method Deterministic Method 

1 % 48 % 64 

2 % 78 % 78 

3 % 64 % 79 

4 % 86 % 90 

Table 6-18: Recognition rates of both methods under test sets given in 

Table-6.12 and Table-6.13. 

Recognition Rates 
Rating Method 

Stochastic Method Deterministic Method 

1 % 37 % 60 

2 % 65 % 75 

3 % 53 % 77 

4 % 78 % 89 

6.5 Computational Complexity 

A Pentium-IV, 3.0 GHz CPU having 512 MB memory which are placed 

on a motherboard with a state of the art dual-RAM technology computer is 

used in simulating our studies. As we have stated before, the database 

consists of 384 dynamic textures. A first step before classification, the model 

parameters of dynamic textures in stochastic method and features of dynamic 

textures in deterministic method must be calculated. Calculating model 

parameters for all dynamic textures in database take approximately 8 

minutes, while calculating features for all dynamic textures in database take 

approximately 40 hours. Once the model parameters and features are 
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calculated the classifications finish in seconds, where classification with 

deterministic method is faster because of its simplicity. 

6.6 Dynamic Texture Synthesis 

However synthesizing dynamic textures is out of scope of this thesis, the 

power of the stochastic method described in chapter 4 of this thesis must be 

shown. Remember that a dynamic  texture can be represented, in other words 

modeled, with only three parameters A , B  and C  as given with equations 

(4.1) and (4.9). Using these model parameters it is possible to synthesize 

“infinite length” texture sequences from a typically “short” input sequence by 

just drawing IID samples )(tv  from a Gaussian distribution. Some of the 

results are shown in Figure-6.10, Figure-6.11, Figure-6.12, Figure-6.13, 

Figure-6.14 and Figure-6.15. 

        

        

        

        
        

Figure 6-10: a) 16 frames of light boiling water sequence and b) 

synthesized frames. 

a 

b 
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Figure 6-11: a) 16 frames of fire sequence and b) synthesized frames. 

        

        

        

        
        

Figure 6-12: a) 16 frames of river sequence and b) synthesized frames. 

a 

b 

a 

b 
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Figure 6-13: a) 16 frames of escalator sequence and b) synthesized frames. 

        

        

        

        
        

Figure 6-14: a) 16 frames of toilet sequence and b) synthesized frames. 

a 

b 

a 

b 
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Figure 6-15: a) 16 frames of plastic sequence and b) synthesized frames. 

 

Figure 6-16: A view of our dynamic texture classification program when 

the results presented in Figure-6.8 (a) and in Table-6.18 are calculated. 

a 

b 
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Figure 6-17: A view of our dynamic texture classification program when 

the results presented in Figure-6.9 (a) and in Table-6.18 are calculated. 
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CHAPTER 7 

SUMMARY & CONCLUSIONS 

In this thesis, the dynamic textures are studied in detail. Our aim is to 

analyse and characterize these dynamic textures using several techniques. 

For this purpose, two successful methods in literature are selected. One 

approaches the subject using stochastic techniques and the other approaches 

using deterministic techniques. 

In stochastic approach, modeling dynamic textures is defined as a 

system identification problem. Dynamic textures are represented as ARMA 

models and the model parameters are calculated as a result of learning phase. 

It is shown that dynamic textures can be represented with only three model 

parameters. It is also shown that using these model parameters it is possible 

to synthesize “infinite length” texture sequences from a typically “short” input 

sequence by just drawing IID samples from a gaussian distribution. However, 

it is not aimed in this thesis, some results of synthesing dynamic textures are 

shown. The classification of dynamic textures using model parameters is 

explained and realized. 

In deterministic approach, the spatial and temporal features of dynamic 

textures are calculated using normal flow and texture regularity. It can be 

said that it is possible to extract accurate features that can be used for 

classification of dynamic textures. 

Comparison of dynamic texture classification and recognition is realized 

between two approaches. Generally, it is concluded that two approaches have 

strong ability to describe and classify dynamic textures. However, both 

methods have dealed with problems on some of the sets. These problems 

arise because the methods could not fully achieved describing those sets in 

terms of models and features. We have also observed that taking out these 

sets from test sets recognition rates increased sharply. Evaluating both 

methods with achieved scores on recognition rates, both methods scored 



 80

similar results until including all sets into test. With full test on database, 

deterministic method achieved better results. However these results also can 

be classified as successful, they are not as good as reported scores in 

corresponding works in literature. When we deeply analyse, the reasons for 

these differences can be explained as follows. In stochastic approach, for 

achieving better results, method needs learning model parameters from 

longer sequences because the only features used are determined by models. 

In our study, we have created our database with 60 frames long and in terms 

of longer sequences this number is not yet enough. In deterministic 

approach, for achieving better results, method calculates features from 

optical flow and texture regularity. No matter on features obtained by optical 

flow, however some may be on texture regularity. So we have studied on 

improving the proposed method in literature, we have mixed up and with 

time constraints within we could not optimized our improvements on this 

measure. We believe that it is possible to increase successity of this method 

one step further. 

Finally, we have also improved the texture regularity measure which is 

one of the feature extraction methods of deterministic approach. Drawbacks 

of proposed methods are stated and possible improvements to proposed 

methods in literature are defined and realized. The results are compared with 

the proposed methods. The results on the well known texture database are 

given. Calculated texture regularities which are given for this database show 

that our method is successful on classifying textures. However achieved 

success on qualitative evaluation, some faults are also reported which are 

caused by terms of calculation drawbacks which can be easily solved. It is 

shown that texture regularity measuring is nothing than interpreting the 

contrast curves. While we have studied on subject we have discovered and 

proposed improvements, but we believe that we could not yet optimized these 

innovations. 

As a result of our analysis on dynamic texture classification, it has to be 

stated here that temporal information is more important than the spatial 
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information. This is easily observable when both methods in this study and 

methods in literature are examined in detail. For realizing a successive 

dynamic texture classification, a method has to handle and focus on temporal 

properties. This does not mean that spatial information is redundant and can 

be ignored, contrary to this, spatial properties must be well defined for 

dynamic textures and additionally variation of these spatial properties must 

be defined between frames. This aspect of spatial information addresses the 

importance of relation between frames which are also a property of temporal 

domain. 

As a future work, by the help of this thesis, more accurate calculations 

for texture regularities can be defined. Also, the classification powers of two 

methods discussed in this thesis can be combined. 
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