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ABSTRACT 

 

 

OPTIMUM DESIGN OF PIN-JOINTED 3D DOME 

STRUCTURES USING GLOBAL 

OPTIMIZATION TECHNIQUES 

 

 

Saraç, Yavuz 

M.Sc., Department of Civil Engineering 

6XSHUYLVRU��$VVW��3URI��'U��2÷X]KDQ�+DVDQoHEL 
 

November 2005, 204 pages 

 

 

Difficult gradient calculations, converging to a local optimum without exploring the 

design space adequately, too much dependency on the starting solution, lacking 

capabilities to treat discrete and mixed design variables are the main drawbacks of 

conventional optimization techniques. So evolutionary optimization methods 

received significant interest amongst researchers in the optimization area. Genetic 

algorithms (GAs) and simulated annealing (SA) are the main representatives of 

evolutionary optimization methods. These techniques emerged as powerful and 

modern strategies to efficiently deal with the difficulties encountered in 

conventional techniques, and therefore rightly attracted a substantial interest and 



 v 

popularity. The underlying concepts of these techniques and thus their algorithmic 

models have been devised by establishing between the optimization task and events 

occurring in nature. While, Darwin’s survival of the fittest theory is mimicked by 

GAs, annealing process of physical systems are employed to SA.  

 

On the other hand, dome structures are among the most preferred types of structures 

for large unobstructed areas. Domes have been of a special interest in the sense that 

they enclose a maximum amount of space with a minimum surface. This feature 

provides economy in terms of consumption of constructional materials. So merging 

these two concepts make it possible to obtain optimum designs of dome structures.  

 

This thesis is concerned with the use of GAs and SA in optimum structural design 

of dome structures, which range from some relatively simple problems to the 

problems of increased complexity. In this thesis, firstly both techniques are 

investigated in terms of their practicality and applicability to the problems of 

interest. Then numerous test problems taken from real life conditions are studied for 

comparing the success of the proposed GA and SA techniques with other discrete 

and continuous optimization methods. The results are discussed in detail to reach 

certain recommendations contributing to a more efficient use of the techniques in 

optimum structural design of pin-jointed 3-D dome structures. 

 

 

Keywords: Optimization, Structural Optimization, Evolutionary Algorithms, 

Genetic Algorithms, Simulated Annealing, Dome Structures, Pin-Jointed Structures, 
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=RU�W�UHY�KHVDSODPDODUÕ��WDVDUÕP�N�PHVLQL�\HWHUOL�GHUHFHGH�DUDúWÕUPDNVÕ]ÕQ�ORNDO�ELU�
RSWLPXPD�\DNÕQVDPD��EDúODQJÕo�o|]�P�QH�ID]ODVÕ\OD�ED÷ÕPOÕOÕN�YH�D\UÕN�YH�NDUPD�
WDVDUÕP�GH÷LúNHQOHULQL�HOH�DODELOPH�\HWHQH÷LQGHQ�\RNVXQOXN�NODVLN��NRQYDQVL\RQHO��
RSWLPL]DV\RQ� WHNQLNOHULQLQ� EDúOÕFD� \HWersizlikleridir. Bu nedenle evrimsel 

RSWLPL]DV\RQ� PHWRWODUÕ�� RSWLPL]DV\RQ� DODQÕQGDNL� DUDúWÕUPDFÕODU� DUDVÕQGD� ND\GD�
GH÷HU� ELU� LOJL� oHNPLúWLU�� *HQHWLN� DOJRULWPDODU� YH� WDYODPD� VLP�ODV\RQX� HYULPVHO�
RSWLPL]DV\RQ� PHWRWODUÕQÕQ� EDúOÕFD� WHPVLOFLOHULQGHQGLU�� %X� WHNQikler klasik 

RSWLPL]DV\RQ��WHNQLNOHULQGH�NDUúÕODúÕODQ�]RUOXNODUÕQ��VWHVLQGHQ�JHOHELOHFHN�J�oO��YH�
PRGHUQ� VWUDWHMLOHU� RODUDN� RUWD\D� oÕNPÕú� YH� |QHPOL� LOJL� J|UP�ú� YH� SRS�ODULWH�
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ND]DQPÕúWÕU�� %X� WHNQLNOHULQ� WHPHOLQGH� \DWDQ� NDYUDPODU� YH� GROD\ÕVÕ\OD� RQODUÕQ�
algorLWPLN� PRGHOOHUL�� RSWLPL]DV\RQ� LOH� GR÷DGD� \HU� DODQ� ROD\ODU� DUDVÕQGDNL�
EHQ]HUOLNOHULQ�VDSWDQPDVÕ\OD�NXUXOPXúWXU��*HQHWLN�DOJRULWPDODU�'DUZLQ¶LQ�HQ�J�oO��
RODQÕQ�\DúDPDVÕ�SUHQVLELQL�NRS\DODUNHQ��IL]LNVHO�VLVWHPOHULQ�WDYODPD�LúOHPL�WDYODPD�
simülasyonunca uyarlaQPÕúWÕU� 
 

gWH� \DQGDQ�� NXEEH� \DSÕODUÕ� HQJHOVL]� JHQLú� DoÕNOÕNOÕ� DODQODU� LoLQ� \DSÕODQ� \DSÕ�
VLVWHPOHUL�LoLQGH�HQ�oRN�WHUFLK�HGLOHQOHUGHQGLU��.XEEHOHUH��PLQLPXP�\�]H\�DODQÕ�LOH�
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ELUOHúWLULOPHVL� NXEEH� VLVWHPOHULQ� RSWLPXP� o|]�POHULQLQ� �UHWLOPHVLQL� RODQDNOÕ�
NÕOPDNWDGÕU�� 
 

%X� WH]�� JHQHWLN� DOJRULWPDODU� YH� WDYODPD� VLP�ODV\RQX� WHNQLNOHULQLQ��RSWLPXP�\DSÕ�
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Dome Structures  

 

Structural systems, which enable the designers to cover large spans, have always 

been popular during the history. Beginning with the worship places in the early 

times, sports stadia, assembly halls, exhibition centres, swimming pools, shopping 

centers and industrial buildings have been the typical examples of structures with 

large unobstructed areas nowadays. Dome structures are the most preferred type of 

large spanned structures. Domes have been of a special interest in the sense that 

they enclose a maximum amount of space with a minimum surface. This feature 

provides economy in terms of consumption of constructional materials.  

 

The development of domes has been closely associated with the development of 

available materials. Although, stone was the only structural material to use in the 

ancient times, brickwork gradually replaced the stone masonry. Later, timber was 

used in the Middle Ages for the same purpose. But the great improvements in dome 

structures commenced with the development of the steel industry beginning in the 

19th century. This enabled the engineers to design large spanned and multi-storey 

structures using steel. Nowadays it is very common to use steel in order to enclose 

large spans such as 200 m length. 
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1. 2 Structural Optimization  

 

Traditionally, the design process has been achieved through intuition, experience 

and repeated trials. The advances in computer methods and computer technology 

led to development of new techniques aiming to find better solutions. Then finding 

the best systems has become the designer’s main goal in addition to fulfilling the 

design criteria. These all made improvements on optimization techniques.  

 

In classical approach of structural optimization, the derivations of objective 

functions and constraints with respect to design variables are calculated. This 

approach is referred to as gradient-based search. Because of the facts that it is very 

hard to calculate the derivative of objective functions explicitly, and that some 

functions may not be continuous, some new techniques that do not depend on the 

derivatives are developed. 

 

The most popular global optimization techniques, which have emerged in the 

second half of twentieth century, are evolutionary algorithms, tabu search, neural 

networks and simulated annealing. Genetic Algorithms represent one of the 

mainstreams of evolutionary algorithms, and are well-known optimization 

techniques. In this thesis, two powerful optimization techniques, Genetic 

Algorithms and Simulated Annealing, will be presented as modern optimization 

tools.  

 

1. 3 Evolutionary Algorithms 

 

Evolutionary Algorithms (EAs) are computer-based problem solving systems. They 

use computational models of evolution mechanisms in their design and 

implementation. The idea behind evolutionary algorithms is to imitate the natural 

evolution to solve optimization problems. A relationship between evolution of the 

nature and optimization of design is established in order to find the optimum. The 
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main representatives of evolutionary algorithms are genetic algorithms (GAs), 

evolution strategies (ESs) and evolutionary programming (EP).  

 

The main concept of natural evolution is the theory of Darwin’s survival of the 

fittest. This theory implies that the members that are strong and capable of adapting 

themselves to natural habitat survive, while the weaker ones die out. So the better 

individuals are evolved throughout generations. This leads to a more superior 

generation with respect to the former one.  

 

Evolutionary Algorithms simulate the evolution of individual structures via 

processes of selection, mutation and recombination. EAs maintain a population of 

structures that evolve according to genetic operators. The capabilities of EAs for 

exploitation of the design space are due to these genetic operators. In this regard, 

selection operator focuses to exploit the available information, whereas 

recombination and mutation provide general heuristics for exploration. 

 

1. 4 Genetic Algorithms 

 

Genetic Algorithms are the most well-known representatives of evolutionary 

algorithms. they were first introduced by Holland in 1975. In GAs, a population 

with a fixed number of individuals is created. After evaluating the fitness scores of 

individuals, highly fit members are allowed to survive and poor individuals with 

low fitness scores are discarded. Good individuals go through some genetic 

operators such as selection, crossover and mutation to produce next generation. 

Aforementioned process is repeated in the same way for a fixed number of 

generations or until a predefined convergence criterion is achieved. 

 

1. 5 Simulated Annealing 

 

Another powerful optimization technique, which has emerged in the second half of 

twentieth century, is simulated annealing. In this method, fitness scores in GAs are 
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replaced by energy levels. An energy is defined such that it represents how good the 

solution is. The goal is to find the best solution by minimizing the energy. This 

method makes use of the annealing process of a thermodynamical system. In 

annealing process, the temperature of a thermodynamical system initially at a high 

energy level is dropped to a level at which the system reaches its minimum energy. 

In this technique, unlike genetic algorithms, only two states (current and candidate 

state) are evaluated instead of a fixed number population. If the candidate state 

gives a lower energy level, then it is accepted as current state. But if the candidate 

state gives a higher energy level, it is not thrown away at once. A test called 

Metropolis test is performed whether the candidate state is accepted or not. This test 

depends on the temperature and difference between the energy levels of the two 

states. The procedure outlined above is repeated a certain number of times at this 

temperature. Then the temperature is cooled down and the whole procedure is 

repeated again. When the temperature is dropped to a value around zero, it is hoped 

that the system has its minimum energy level.  

 

This method has a certain advantage over classical hill-climbing techniques. The 

main advantage is due to the Metropolis test which accepts the poorer designs with 

a certain probability. This test gives the technique an exploration capability. The 

main concepts of Metropolis test are outlined below: 

 

(i)  At early stages of the procedure, a more explorative search is used. Poorer 

designs are accepted in the beginning. As the temperature drops, the technique 

becomes greedy and only downhill moves are accepted.   

 

(ii) The difference between energy levels of current and candidate states affects 

the acceptance probability. If the difference is low, a higher acceptance probability 

assigned to the candidate design, even though it is not promising. Occasional 

acceptance of uphill moves avoids getting stuck in local optima. This property 

makes the simulated annealing technique more powerful over other classical 

optimization techniques. 
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1. 6 Aim and Scope of the Thesis 

 

This thesis intends to give a general knowledge about modern optimization 

techniques, such as Genetic Algorithms and Simulated Annealing, and to implement 

these techniques in optimum design of steel braced domes. A step-by-step 

presentation is followed in the thesis. First general information about GAs, SA and 

braced dome structures are given. The design of such systems is then implemented 

by using these modern optimization techniques.  

 

The main topics covered in the thesis are explained briefly in the following: 

 

Chapter 2 gives comprehensive information about dome structures. First a brief 

history of these structures is overviewed, in which space structures are given a 

special emphasis since braced dome structures are the sub-groups of space 

structures. The examples of braced dome structures in Turkey and in the world are 

shown, and the general types of these structures are explained in this chapter. The 

main components of the braced dome structures are introduced. 

 

Chapter 3 is devoted to analysis and design of braced domes. The general linear and 

non-linear analysis is discussed and the instability phenomenon of these structures 

are explained. The loads which act these structures are introduced briefly. 

 

Chapter 4 presents loads acting on dome structures. The design code ASCE 7-98 

Minimum Design Loads for Buildings and Other Structures is presented. Since, the 

most critical loads are snow and wind loads for dome structures, a special emphasis 

is given to these types of loads.  

 

Chapter 5 gives a general description of optimization techniques and their 

advantages over classical design methods. Modern stochastic optimization 

techniques are given special emphasis. General frameworks of these techniques are 

introduced and a comparison between modern and classical optimization techniques 
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is conducted. Since the following chapters make detailed explanations about GAs 

and SA, this chapter is intended to play an introductory role to these optimization 

techniques. 

 

Chapter 6 gives a detailed overview of GAs as an optimization technique. After the 

brief history of GAs, the basic principles of this technique are explained. The main 

terminology of GAs is presented. The genetic operators used in GAs such as 

selection, crossover and mutation are made clear. Penalty function approach which 

is used in constrained optimization problems is introduced. At the end of the 

chapter, the formulation of size optimum design problem of space structures is 

given. 

 

Chapter 7 focuses on SA, another powerful optimization technique. First the 

physical meaning of annealing in thermodynamics is represented. Then the 

adaptation of this process to optimization problems is introduced. The general 

terminology of SA is defined while the algorithm is explained step by step. The 

mathematical test problem, which is solved in Chapter 6 is solved again by using 

SA technique. Each step of the procedure is explained as performed with GAs 

technique. The results obtained from both methods are compared, in order to 

emphasize the merits of the techniques. 

 

Chapter 8 is devoted to test problems in structural steel design of dome structures. 

These test problems are also important to show the efficiency of the techniques. 

Seven test problems of different dome structures are solved by using two 

optimization techniques (GAs and SA). The first three problems are of one-layer 

domes which have the same span length. Real load conditions are implemented to 

these problems according to ASCE 7-98. Two domes with same geometry but 

different configuration (second and third test problems) are used in order to make a 

comparison of the results. Following problem is taken from the literature. The result 

found in this work is compared to the one found in the related article. The last three 
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problems are used in order to investigate the effects of rise-to-span ratio and double 

layer.  

 

Chapter 9 makes a conclusion of the thesis by emphasizing the results and drawing 

attention to some critical points in optimum structural design. Some 

recommendations for the further work are underlined in this chapter.  
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CHAPTER 2 

 

 

DOME STRUCTURES 

 

 

 

2.1 Space Structures  

 

Large spans have always fascinated people since unobstructed closed places have 

been demanded for many purposes. In the early periods of the history, stone was the 

only material to use. Then brickwork gradually replaced the stone masonry. 

Primitive type of concrete was also used extensively by the Romans. Timber was 

another principal roofing material used in the Middle Ages. At last, the introduction 

of iron in the 19th century opened up an exciting new era for structural engineers 

and architects. They were quick to realize the potential and advantages of relatively 

high strength and comparatively light weight (Makowski, 1984). 

 

Several types of buildings have been used to enclose large spans, such as barrel 

vaults, domes, arches, etc. But apparently the dome providing an easy and economic 

method of roofing large areas and impressive beauty is the most fascinating one for 

the designers since the earliest times. 

 

Before introducing domes, it will be more convenient to define the term “space 

structure”. It is important to note that pin-connected braced domes which will be 

investigated in this thesis are all space structures.  
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The term “space structure” refers to a structural system that involves three 

dimensions. In practice, the term “space structure” is simply used to refer to a 

number of families of structures that include grids, barrel vaults, domes, towers, 

cable nets, membrane systems, foldable assemblies and tensegrity forms. Space 

structures cover an enormous range of shapes and are constructed using different 

materials such as steel, aluminium, timber, concrete, fibre reinforced composites, 

glass, or a combination of these. Space structures may be divided into three 

categories, namely; 

 

“Lattice space structures” that consist of discrete, normally elongated elements,  

“Continuous space structures” that consist of components such as slabs, shells, 

membranes,  

“Biform space structures” that consist of a combination of discrete and 

continuous parts.  

 

In this thesis, the term “space structure” will be used to refer to “lattice space 

structure” only. 

 

There are numerous examples of space structures around. These structures are built 

for sports stadia, gymnasiums, cultural centres, auditoriums, shopping malls, 

railway stations, aircraft hangars, leisure centres, transmission towers, radio 

telescopes, supernal structures (that is, structures for outer space) and many other 

purposes. An example of space structure (double-layer grid) is shown in Figure 2.1.  
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Fig. 2.1. A Space Structure (Double-Layer Grid) 

 

 

The term “spatial structure” is also used instead of “space structure”. The two 

terms are considered to be synonymous. 

 

The advantages of space structures are listed below: 

(i)  They are three dimensional structures which can withstand loads from any 

 direction. 

(ii) They are hyperstatic, and buckling of some compression members does not 

 cause the whole system to collapse as has been demonstrated by mathematical 

 models and experiments. 

(iii) Their rigidity minimizes deflections. 

(iv) Their composition allows factory pre-fabrication in modular elements, which 

 are easily transported. Fabrication precision ensures ease of assembly and 

 erection. 

(v)  They allow a wide choice of support positions owing to modular construction. 

(vi)  For double layer space structures, the space between the two layers may be 

used to install electricity, electrical and thermal piping, etc. 



 11 

(vii)  Installation is carried out by bolting and can be done regardless of the 

atmospheric conditions. 

(viii) They provide aesthetic qualities. 

 

Aforementioned structures such as grids (double layer grids, biform grids), towers, 

cable nets, membrane systems, foldable assemblies and tensegrity forms which are 

the general kinds of space structures will not be discussed here in order not to 

digress. However barrel vaults will shortly be introduced, due to their strong 

analogies with domes.  

 

2.1.1 Barrel Vaults 

 

A “barrel vault” is obtained by “arching” a grid along one direction. The result is a 

cylindrical form that may involve one, two or more layers of elements. Barrel vaults 

are also called “cylindrical vaults”. In history of construction, cylindrical vault 

appears as an evolution of arch. The use of metal has enabled its construction to be 

carried out with factory-prefabricated elements which may be assembled on site. A 

typical example of barrel vault is shown in Figure 2.2. 

 

 

 

Fig. 2.2. Barrel Vault Structure 
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Some examples of barrel vault configurations are shown in Figure 2.3. A barrel 

vault with a diagonal pattern referred to as a “lamella barrel vault”, the barrel vault 

which has a three-way pattern, double layer barrel vaults, hyperboloidal lamella 

barrel vault, ellipsoidal lamella barrel vault, compound barrel vault consists of two 

or more barrel vaults that are connected together along their sides are shown in 

Figure 2.3, respectively. 

 

 

 

 

Fig. 2.3. Examples of Barrel Vault Configurations 

 

 

Barrel vaults have been proved to be suitable for roofs of halls, railway stations and 

sports facilities (e.g. in-door tennis courts). 

 

As seen from Figure 2.4, a regular barrel vault has three dimensions which are 

width (span), length and rise. So the ratios of length-to-width and rise-to-span are 

important for defining a barrel vault. 

 

 (a) Lamella (diagonal)  (b) Three-way barrel  (c) Two-way on two-way  (d) Lamella (diagonal) 
  barrel vault     vault     double layer barrel vault  truss barrel vault 

  (e) Hyperboloidal   (f) Ellipsoidal lamella   (g) Compound three-way barrel vault  
   lamella barrel vault   barrel vault      
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       Fig. 2.4. Dimensions of Barrel Vault 

 

 

Maximum efficiency may be attained for shapes with rectangular surfaces and a 

length-to-width ratio between 1 and 2. The rise-to-span ratio is more important for 

barrel vault and dome structures. A further description of rise-to-span ratio for 

domes will be given in the following chapters. For barrel vaults, the optimum shape 

(rise-to-span ratio) is in the region of 0,15 to 0,20. 

 

Economical spans for single layer vaults are about 20 m. Spans may be increased by 

inserting diagonal elements. They reach 60 m for double layer systems, in some 

cases even more. Appropriate weights for double layer systems vary between 0,13 

and 0,25 kN/m² depending on the intended shape, support conditions and the 

geometry of the sheets (for a uniform load of between 0,75 and l,50 kN/m²). 

 

2.1.2 Domes 

 

A “dome” is a structural system that consists of one or more layers of elements that 

are arched in all directions. The surface of a dome may be a part of a single surface 

such as a sphere or a paraboloid, or it may consist of a patchwork of different 

surfaces. 
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Domes are of special interest to engineers and architects as they enclose a 

maximum amount of space with a minimum surface and have proved to be very 

economic in the consumption of constructional materials. Domes are also 

exceptionally suitable for covering sports stadia, assembly halls, exhibition centres, 

swimming pools and industrial buildings in which large unobstructed areas are 

essential and where minimum interference from internal supports is required. The 

provision of unobstructed sight-lines for large numbers of people is the primary 

requirement in sports halls and can easily be satisfied through the adoption of a 

domic shape. In the last 25 years construction with steel sections has largely 

replaced reinforced concrete. This fact has encouraged record spans of more than 

200 m. 

 

Braced steel dome structures have been widely used all over the world during last 

three decades. Some examples of braced steel domes in the world are shown in 

Figure 2.5 through 2.9.  

 

 

    

Fig.2.5. Nagoya Dome, Japan 
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Fig.2.6. The Bloudel Conservatory, Queen Elizabeth Park, Vancouver/Canada 

 

 

    

Fig.2.7. Astrodome (Steel Lamella Dome), Houston/USA 

 

 

   

Fig.2.8. Tokyo Dome "Big Egg", Japan 
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Fig.2.9. Ontario Place, Toronto/Canada 

 

 

In Turkey, these types of structures are not used as commonly as in the world. 

Besides, steel structures with space grid systems are preferred mostly. The 

photographs of some sample works built in Turkey are presented in Figure 2.10 

through 2.14. These are smaller structures as compared to those in the world. Dome 

structures in Turkey have span lengths generally shorter than 40-50 m. 

 

 

 

 

 

 

 

 

 

 

Fig.2.10. Roller Skating Track, Ankara Fig. 2.11. Cafe Building, Istanbul 
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Fig.2.12. Terzi Baba Mosque, Erzincan 

 

 

 
 
 
    

 

 

 

 

     Fig.2.13. Bird Cage, Gaziantep     Fig.2.14. Water Fowl Cage, Bursa 

 

 

2.2 Types of Braced Domes 

 

Braced domes which have been built within the last years can be mainly classified 

in five groups: 

 

(i)  Ribbed domes, 

(ii) Schwedler domes, 

(iii) Lamella domes, 

(iv) Two- and three-way (also four-way) grid domes, 

(v)  Geodesic domes. 
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The commonly used basic single layer dome configurations are shown in Figure 

2.15. There are also other types of domes which resemble the formers ones with 

slight differences. These are network domes, plate-type domes, Zimmermann 

domes, Kiewitt domes and diamatic domes. 

 

 

Fig. 2.15. Examples of Single Layer Domes 

 

 

Braced domes are generally made up of steel, but sometimes aluminium and glass-

fibre reinforced plastics can be used. Especially, aluminium is preferred due to the 

light weight, high corrosion resistance and ease of fabrication.  

 

Domes are constructed as single layer or double layer. Single layer systems permit 

smaller spans of about 40 m while double layer systems can enclose more than 200 

m span lengths. Double layer domes are exceptionally rigid and are used for very 

large spans. 

         (a)Ribbed Dome   (b)Trimmed Ribbed Dome  (c)Schwedler Dome  (d)Trimmed Schwedler 

         (e)Lamella Dome  (f)Trimmed Lamella Dome  (g)Diamatic Dome     (h)Diamatic Dome 

(i)Three-way Grid Dome   (j)Four-way Grid Dome  (k)Geodesic Dome      (l)Geodesic Dome 
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These systems can be designed as rigidly-jointed system or pin-connected system. 

Since perfect pin connection is not possible, semi-rigid connected systems are also 

used nowadays. The analysis and connection details of these systems will be 

introduced in detail in the following chapters. Now we further look into the types of 

the braced domes and their structural behaviours. 

 

2.2.1 Ribbed Domes 

 

Ribbed dome consists of a number of intersecting “ribs” and “rings”. A “rib” is a 

group of elements that lie along a meridianal line and a “ring” is a group of 

elements that constitute a horizontal polygon. Ribs can be radial trussed or solid. 

They generally interconnect at the crown and a tension ring at the foundation stiffen 

the ribs. A ribbed dome will not be structurally stable unless it is designed as 

rigidly-jointed system, since it does not have diagonal elements.  

 

2.2.2 Schwedler Domes 

 

J.W.Schwedler, a German engineer, who introduced this type of dome in 1863, built 

numerous braced domes during his lifetime. A Schwedler dome, one of the most 

popular types of braced dome, consists of meridional ribs connected together to a 

number of horizontal polygonal rings. To stiffen the resulting structure so that it 

will be able to resist unsymmetric loads, each trapezium formed by intersecting 

meridional ribs with horizontal rings is subdivided into two triangles by introducing 

a diagonal member. 

 

Many attempts have been made in the past to simplify the analysis of Schewedler 

domes, but it is only during the last decade that precise methods of analysis using 

computers have finally been applied to find the actual stress distribution in these 

structures.  
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2.2.3 Lamella Domes 

 

The lamella system was invented in Europe in 1906 by Mr.Zollinger, a German city 

architect. The lamella dome consists of a large number of similar units, called 

lamellas, arranged in a diamond or rhombus pattern. Each lamella unit has a length 

which is twice the length of the side of a diamond. Roof covering or purlins used to 

triangulate the diamond complete the stability requirement of the surface of the 

dome. A lamella dome has a diagonal pattern and may involve one or more rings. 

 

The great popularity of lamella domes is due to their exceptionally good behaviour 

under excessive wind loadings, as well as in fire and seismic disturbances.  

 

2.2.4 Two- and- Three-Way Grid Domes 

 

A grid dome is obtained by projecting a plane grid pattern onto a curved surface. 

Grid domes are normally rather shallow with their rise to span ratios being smaller 

than the other types of domes.  

 

The intersection of three-way grid dome members form a triangular space lattice. A 

modified type of three-way grid is four-way grid dome which has denser pattern.  

 

2.2.5 Geodesic Domes 

 

Richard Buckminster Fuller, the inventor of geodesic domes, has made a 

phenomenal impact on architects since 1954. Nature – said Buckminster Fuller- 

always builds the most economic structures. He claimed that geodesic domes based 

on mathematical principles embodying force distributions similar to those found in 

atoms, molecules and crystals will be the lightest, strongest and cheapest 

constructions ever made.  
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A geodesic dome configuration is obtained by mapping patterns on the faces of a 

polyhedron and projecting the resulting configuration onto a curved surface. In 

Figure 2.15.(k), geodesic dome is obtained by mapping a triangulated pattern on 

five neighbouring faces of an icosahedron (20-faced regular polyhedron) and 

projecting the result onto a sphere which is concentric with the icosahedron. The 

geodesic dome of Figure 2.15.(l) is obtained in a similar manner with the initial 

pattern chosen such that the resulting dome has a honeycomb appearance. 

 

The truth of the matter is that geodesic domes are simply another type of 

triangulated dome in which the elements forming the skeleton of the structure are 

curved and lying on the great circles of a true sphere. 

 

Five regular polyhedra (tetrahedron, cube, octahedron, dodecahedron, icosahedron) 

and fifteen semi-regular polyhedra (i.e. truncated tetrahedron, truncated cube, 

truncated octahedron, truncated dodecahedron, truncated icosahedron, semi-regular 

prism, rhombicuboctahudron, semi-regular prismoid, cuboctahedron, 

icosidodecahedron, snub-cube, snub-dodecahedron, rhombicosidodecahedron, 

truncated cuboctahedron, truncated icosidodecahedron) can be used in the design 

form of geodesic domes. 

 

2.3 Load-Carrying Characteristics of Braced Domes 

 

A different classification of dome structures can be made according to the types of 

load-carrying styles. These are; 

(i)  Frame or skeleton-type single-layer domes, 

(ii) Truss-type domes and double-layer domes (used for covering large spans), 

(iii) Stressed skin type domes, 

(iv) Formed surface type domes (in which thin steel, aluminium or other sheets are 

bent and interconnected along their edges to form the main skeleton system of 

the dome, resembles the shell structures) 
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Since single-layer domes are introduced previously, the other types will be 

discussed in the following. 

 

2.3.1 Double-Layer Domes 

 

For domes built from light material (such as aluminium) and having clear spans 

over 60 m., the arrangement of the bars of the framework in a single layer no longer 

provides the necessary rigidity. Experiences show that, in such a case, especially 

when the structure is under the action of unsymmetrical loading, such as snow 

loads, the dome may fail, not on account of high stresses exceeding the maximum 

strength of the material, but instead due to insufficient elastic stability of the 

compression bars. Introducing light materials to the dome design, such as 

aluminium, results in a great reduction in the dead weight of the structure, on the 

other hand this can lead to slender members susceptible to elastic instability. 

 

Experiences show that this difficulty can be overcome by the use of double-layer 

braced domes. Outer and inner surfaces of double-layer domes are interconnected 

with bracing elements. Two surfaces (outer and inner) can be identical or different 

depending on the design. The famous structure of US Pavilion for Expo 67, 

Montreal, Canada was three-quarter sphere designed as a double-layer grid. The 

dome was 61 m high and has a diameter of 76 m. The photographes of this structure 

are presented in Figure 2.16. 
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Fig.2.16. US Pavilion Building for Expo 67 (Double-Layer Grid Dome) 

 

 

2.3.2 Stressed-Skin Geodesic Domes 

 

In the design of domes, it is usually assumed that the covering does not contribute 

to the overall stiffness of the structure. But one kind of dome is produced by 

combining both frame and skin into a single structural element. This type is called 

stressed-skin geodesic dome. Basic unit is a panel (for example diamond shape) of 

aluminium sheet, with an aluminium strut stretching across its surface. In this way, 

skin’s structural strength is taken advantage. Such a structure was produced first by 

Kaiser Aluminium firm, in 1957. The advantages claimed by Kaiser Aluminium for 

their first aluminium dome over the conventionally designed buildings included 

lower cost, remarkable speed of erection and remarkable structural strength. 

However, the practical experience showed that the sealing of the joints can become 

an extremely difficult problem. Pictures of stressed-skin geodesic domes are shown 

in Figure 2.17. 
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Fig.2.17. The Inside View and Support Detail of Stressed-Skin Geodesic Dome 

 

 

2.4 Components of the Braced Domes 

 

This thesis is concentrated on investigating the design and optimization of pin-

connected truss type dome structures. These structures are modeled as 3-D truss 

which consists of 1-D steel bars. Generally, steel bars having circular cross-

sectional area (tubular sections) are used as truss elements, because of their large 

and uniform radius of gyration. The details of analysis and design of these systems 

will be given more thoroughly in the following chapters.  

 

The pin-connected dome structures mainly consist of three structural parts; bars, 

truss joints (nodes) and bolts. 

 

Bars consist of circular pipes with conical tips welded at both ends. These conical 

tips can transmit both tensile and compressive forces. The bars and cones are 

manufactured of St-37 and St-52 quality steel. 
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Truss joints (nodes) are manufactured in the form of spheres or half-spheres by 

hot-forcing technique. Spheres have bolt holes all threaded. The bar elements can be 

screwed into these holes at the site. These elements are produced from St-52 or St-

60 quality steel. 

 

Bolts with their heads inside the conical tips are free to rotate. A hexagonal member 

very similar to a nut is placed between the conical tip and the sphere node. These 

nut-like members which contain pin holes are doweled to the bolts and help to fix 

the bolts to the spheres. The connection, node, member end and support details are 

presented in Figure 2.18 through 2.22. 

 

 

Fig.2.18. Node Detail 

 

 

 

 

Fig.2.19. Member End Details 
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Fig.2.20. Support Details of Dome Structures (taken from Technical 

Specification of USKON) 

 

 

Fig.2.21. Support Details of Dome Structures (taken from Technical 

Specification of USKON) 
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Fig.2.22. Connection Details of Dome Structures (taken from Technical 

Specification of USKON) 
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CHAPTER 3 

 

 

ANALYSIS AND DESIGN OF BRACED DOMES 

 

 

 

3.1 Types of Analysis  

 

Before engineering structure is analysed, it is represented by an idealized 

mathematical model whose behaviour is sufficiently close to that of the original 

engineering structure. The idealizations available for braced dome structures fall 

into two distinct groups: the equivalent shell methods and the discrete structure 

methods. 

 

The equivalent shell methods make use of orthotropic shell theory. The orthotropic 

shell stiffnesses which occur in the theory are replaced by equivalent shell 

stiffnesses. So this method is a coarse approximation, which was used widely before 

the availability of powerful computers. The equivalent shell methods are best used 

in the early design stages and for structures which are too large to be analyzed as 

discrete structures.  

 

In the second group of methods, the analyst tackles the discrete structure directly. 

Within this group it is still necessary to select one of the several possible 

idealizations. The principal choice is between a space truss analysis (joints assumed 

pinned) and a space frame analysis (joints assumed continuous). There are also 

various non-linear effects which can and sometimes must be considered. The 
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discrete structure methods lead to a large set of simultaneous equations which can 

only be solved with the help of a computer. 

 

3.1.1 Braced Dome Behaviour 

 

Before an engineer design or analyze a structure, he should have a sound qualitative 

understanding of how the structure will behave. A shell dome resists loads with a 

force system acting in the surface of the shell. Typically, there will be a principal 

compressive force acting vertically in the surface of the dome and a lesser 

horizontal force (usually tensile) acting around the dome. 

 

The way a braced dome works depends on the configuration of the members. 

Braced domes which are fully triangulated will have a high stiffness in all directions 

in the surface of the dome. These configurations are also kinematically stable (no 

mechanism) when idealized as a space truss. Accordingly, the forces in a fully 

triangulated dome will be principally axial and will have direction and magnitude 

similar to those in a shell dome. As recall from the figures of domes built in Turkey, 

they are all single-layer triangulated truss type (assumed as pin-connected joints) 

structures due to the instability (mechanism) concern. 

 

Dome with a single layer must be triangulated as shown in Fig.3.1.(a) in order to be 

stable. A dome which is not fully triangulated is kinematically unstable when 

idealized as a truss and may also have widely different stiffnesses in different 

directions in the surface of the dome. The dome shown in Figure 3.1.(b) can only 

support loads by developing bending moments in the members and joints. The 

dome shown in Figure 3.1.(c) will require continuous joints or structural cladding to 

give the dome stability and to resist non-axisymmetric loading. 
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3.2.2 The Instability Phenomenon 

 

General buckling, local buckling (involving the snap-through buckling which will 

be discussed later) and individual member buckling are the types of instability that 

must be checked in the design. An important point that should be kept in mind is 

that one should be careful in using single layer domes unless the jointing system 

provides sufficient rigidity for the connections and that the elements are designed 

for resisting bending and shear in addition to the axial forces. Otherwise, the 

structures will be susceptible to snap-through buckling. This comment also applies 

to the case of single layer barrel vaults. 

 

Critical buckling load is the maximum load which a member can support before it 

becomes unstable. Buckling is a form of failure which is often thought to be 

anathema within the plastic theorems and plastic design. 

 

Buckling and its analysis can be divided into two parts as linear (eigenvalue) 

buckling analysis and non-linear buckling analysis.  

 

Linear (eigenvalue) buckling analysis predicts the theoratical buckling strength 

(bifurcation point) of an ideal linear elastic structure. An eigenvalue buckling 

analysis of a column will match the classical Euler solution. 

 

 

Fig.3.1.Arrangement of Bracing 
  (a)            (b)            (c) 

Fig.3.1. Arrrangements of Bracing 
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Non-linear buckling analysis is usually the more accurate approach and is 

recommended for design or evaluation of actual structure. This technique employs a 

non-linear static analysis with gradually increasing loads to seek the load level at 

which your structure becomes unstable. To summarize, one major characteristic of 

non-linear buckling, as opposed to eigenvalue buckling, is that non-linear buckling 

phenomenon includes a region of instability in the post-buckling region, whereas 

eigenvalue buckling only involves linear, pre-buckling behaviour up to the 

bifurcation (critical loading) point. This behaviour is shown graphically in Figure 

3.2.  

 

Fig.3.2. Non-linear vs. Eigenvalue Buckling Behaviour 

 

 

An elastic structure with non-linear unstiffening characteristics may lose its stability 

in one of two ways. First, the unstiffening associated with the initial mode of 

deformation may, by gradual reduction, reach the stage where the stiffness is lost 

completely. It is then said that the load-deflection equilibrium path of the structure 

has reached a "limit point' and a dynamic jump occurs to a highly deformed 

configuration. This process is referred to as snap through or snap buckling and is 

typical of the symmetric deformation of shallow arches and domes (Fig.3.3. and 
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3.4). Snap through buckling of steel arches (or domes) occurs when the combination 

of axial load and moment at a point causes the arch (or dome) to reverse curvature 

locally. Eventually, the curvature may mean that the thrust generates enough 

moment to remove the stiffness of the section all together, at this point, the arch (or 

dome) sags through and comes to rest as a tension structure, if its supports can 

sustain it (Fig.3.3). Snap through results in total failure. Moment redistribution 

cannot then occur. It is vitally important that snap through is not allowed to 

develop. The severity of the snap through under controlled or dead loading depends 

upon the degree of non-linearity or contortion of the equilibrium path in the load-

deflection space. This is governed by the rise-to-span ratio of arches or domes and 

is well understood. A very shallow dome (arch) may show no snap through 

characteristic at all; the load-deflection equilibrium path would be non-linear but 

stable throughout. This, however, is not a practical dome (arch) geometry. As the 

rise-to-span ratio is increased, the non-linearity of the response increases and the 

equilibrium path is characterized by a limit point. The severity of the instability 

increases as the rise-to-span ratio increases.  

 

The second way in which a non-linear unstiffening structure such as a dome may 

lose its stability is by a sudden buckling into a mode of deformation which is quite 

distinct from the initial unstiffening mode. For uniformly loaded domes, this means 

the abrupt adoption of a rotationally unsymmetric mode with associated loss of 

stability before the limit point on the equilibrium path of the symmetric mode is 

reached. For a geometrically symmetric structure under symmetric loading, this 

event occurs at a distinct critical point or “bifurcation point” on the non-linear 

initial load path (Fig.3.2). A second equilibrium path, which is unstable and 

represents the unsymmetric buckling mode, intersects the initial load path at this 

point and the initial load path itself becomes unstable. In the terminology of the 

general theory of elastic stability, the post-buckling characteristic of the 

unsymmetric buckling mode is “unstable symmetric”. 
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Fig.3.3. “Snap-Through” Buckling 

 

 

Fig.3.4. “Snap-Through” Buckling 

 

 

3.2 Analysis 

 

The analysis of a structure is an integral part of the design process applied to that 

structure. Analysis can be divided into linear and non-linear analysis. A simple 

linear elastic analysis in association with suitable permissible stresses can check for 

all types of local member (or joint) failure. These include yield, member buckling, 

fracture, fatigue and sliding at joints. The first yield load is also a lower bound on 

the shakedown load. However, to check for instability effects involving more than 

one member or geometry change and also to exploit any post first yield strength that 

might be available in the structure, the designer must include non-linear effects in 

Unsymmetrical Action 
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the analysis. Non-linear effects can be divided into member effects such as plastic 

yielding and geometric effects. 

 

Methods of non-linear analysis can be divided into three approaches. The first is the 

plastic mechanism approach, which is not really applicable to braced domes. The 

second is the stability approach, which involves the location of bifurcation points in 

a perfect structure. This approach can accommodate geometric but not member non-

linearities. The third is the incremental approach. In this approach, the load is 

applied in small increments. At each increment, the stiffness of the structure is re-

calculated to accommodate changes in member stiffness, structure geometry, indeed 

all relevant non-linear phenomena. The structure is normally given assumed initial 

deformations and locked-in stresses to give a more representative analysis. 

 

Member non-linearities are accommodated by assuming a stress-dependent member 

stiffness. The easiest to program is the elastic-perfectly plastic case, where the 

member stiffness simply changes to zero. An improvement is the non-linear elastic 

case, which can model the falling force in a buckled member. Further sophistication 

can be obtained by modeling elasto-plastic flow using a yield criteria and flow rule 

containing the member stress resultants. Finally, the member can be subdivided into 

layers.  

 

Geometric non-linearities can be critical in braced domes; in particular, with 

shallow or unevenly loaded domes, it may be essential to check for snap-through 

buckling.  

 

For many braced domes a space truss idealization will be sufficient. A space truss 

analysis can incorporate both member and geometric non-linearity. A full space-

frame analysis is only required for structures which have a significant bending 

action, such as non-triangulated domes, domes with continuous curved members 

and possibly some very shallow single-layer domes. 
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Linear structural analysis, as the name implies, deals with the analysis of structures 

which behave linearly. Virtually no structural systems behave in a truly linear 

fashion, but most practical systems behave almost linearly within the range of 

loadings for which they are designed. In the analysis of a linear system, the 

equations of equilibrium are set up in terms of the undisplaced shape of the 

structure and solved to evaluate the displacements. Most techniques for non-linear 

analysis consist of a series of linear analyses, each iteration resulting in successively 

closer approximations to the solution of the system. The first iteration is generally 

the same as the basic linear analysis with subsequent iterations taking into account 

non-linearities such as geometric effects and the effect of axial forces on bending 

moments. After the first iteration, the equilibrium equations are generally set up in 

terms of the displaced shape of the structure calculated by the previous iteration. 

From this it can be seen that linear analysis is simpler than non-linear analysis and 

that a knowledge of linear analysis is an essential prerequisite for an understanding 

of non-linear analysis.  

 

Although, discussed formerly, it is worth emphasizing the differences between 

linear and non-linear analyses of domes once again. The load-displacement 

relationships for a typical simple shallow single-layer braced dome are shown in 

Figure 3.5. This shows that a linear analysis will not predict such phenomena as 

local or global snap through of the structure, suggesting that a linear analysis is 

unsuitable for such structures as the results are a first approximation of 

indeterminate accuracy. This is true to a large extent, but a linear analysis is still 

useful as a guide for sizing members. 

 

 

 

 

 

 

 



 36 

 

 

 

 

Fig. 3.5. Load-Displacement Relationship 

 

 

Linear structural analysis may be safely used in the majority of structural analysis 

problems to predict structural behaviour. However, there are certain classes of 

problems which are inherently non-linear and for which linear analyses should be 

used with caution if at all. The displacements of structural systems which display 

non-linear stiffening behaviour, such as some cable structures, will be 

overestimated by linear analyses, whereas the displacements of structural systems 

displaying non-linear unstiffening behaviour will be underestimated by linear 

analysis. The latter cases are potentially more dangerous, since safe-load values 

predicted by linear analysis may in reality lead to excessive displacements and 

instability. However, for structures which behave in a non-linear manner, there is 

  
 

  Stable equilibrium   - - - - Unstable equilibrium   

 OL   - load-displacement relationship for linear analysis  
OASC   - load-displacement relationship for structure  
   A   -    snap-through occurs and stability is lost  
   B   - dome is now inverted and regains stability 
 D1    - displacement due to load W1 as predicted by linear analysis  
 D2    - actual displacement occurring due to W1 
    (non-linear analysis would predict this value) 
 D3  - displacement due to load W2 as predicted by linear analysis  
 D4  - actual displacement occurring due to W 
    (non-linear analysis would either predict this value or  
     indicate instability at point A) 

 
 

      O     D1 D3   D2     displacement                       B                      D4 

 
W2 

 
W1 

 
 
 
 

Load 

A 

C 
L 
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generally a range of load and displacement values for which a linear analysis will 

approximate the behaviour sufficiently accurately. The problem facing the designer 

is the determination of this range, having already decided that the structure is 

potentially non-linear. If this range is found to be too restrictive, a nonlinear 

analysis will be required. By its very nature, a non-linear analysis will be more 

expensive than a linear one and so the decision to opt for the former will be an 

important one for the designer. The problem seems to be, therefore, whether a non-

linear analysis is required and, if so, whether analytical techniques are available and 

suitable for the structure under consideration. 

 

3.2.1 Linear Elastic Analysis 

 

Stiffness method is used commonly as linear elastic analysis. The stiffness method 

allows us to analyze a structure which is an arbitrary assembly of simple structural 

members. This method is sometimes referred to as the displacement method or 

stiffness matrix method. In this method of analysis, equations of equilibrium are set 

up in terms of the nodal displacements as unknowns. These equations are solved to 

evaluate the nodal displacements and from the displacements, member forces are 

calculated using the force-displacement relationships for each element. 

 

The analysis requires a large amount of linear algebraic manipulation and the most 

suitable branch of mathematics for representing such manipulations is matrix 

algebra. In addition to being ideally suited to computer implementation, matrix 

algebra allows the basic concepts to stand out, allowing the fundamental principles 

to be easily and readily appreciated. 

  

Undeformed geometry can be used in a structure undergoing small displacements. 

The behaviour of such a structural system is described by Hooke’s law, which has 

the general form 

 

 P=kx          (3.1) 
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The fundamental equation used in matrix structural analysis, which is analogous to 

the basic expression of Hooke’s law, is; 

 

 xKP .=         (3.2) 

 

where  

K   : Stiffness matrix of the structure,  

x   :  Displacement vector of the structure,  

P   : Appended force vector of the structure.  

 

The basic difference is that simultaneous linear equations are dealt in the structural 

analysis. The force vector P  contains all of the forces that act at the structural 

coordinates. Displacement vector, x, contains the displacements at each of the 

structural coordinates.  

 

The stiffness matrix, K  is analogous to the spring constant, k in Hooke’s law. 

Stiffness can be defined as the force required to cause a unit deformation in an 

elastic material. The stiffness matrix can be divided into element stiffness matrix 

and structural stiffness matrix. So two different coordinate systems are defined for 

these stiffness matrices. These are local (element) coordinate system and global 

(structure) coordinate system. The local coordinate system is a relative coordinate 

system which differs for each member. The direction of the longitudinal element is 

chosen as x-axis. The global coordinate system is associated with the entire 

structure. The local and global coordinate axes for a 2-D structural element are 

shown in Fig.3.6 

 

 

 

 

 

 



 39 

 

 

 

 

 

 

 

Fig.3.6. Local and Global Coordinate Axes of A 2-D Element 

 

 

So the stiffness matrix which is formed by using the local coordinate system is 

called local (member or element) stiffness matrix or stiffness matrix in local 

coordinates. The stiffness matrix which is formed by assembling the local stiffness 

matrices in global coordinates is called global stiffness matrix or stiffness matrix in 

global coordinates. The global structural coordinates are used to define the 

displacements and forces acting on the entire structure. The local coordinate 

systems do not have to be oriented in the same direction as global coordinates.  

 

The equation (3.2) can be written for a 3-D truss member in local coordinates; 

 

 xkp .=         (3.3) 
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where 

ui , vi ,wi :  displacements at node i for an element in the x, y, and z directions,  

    respectively. 

x (global) 

x' (local) 

y 

y' 
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uj , vj ,wj :  displacements at node j for an element in the x, y, and z directions,  

    respectively. 

 

Now, the stiffness matrix with respect to local coordinates ( k ) must be converted to 

stiffness matrix with respect to global coordinates ( K ). The transformation 

equation of stiffness matrix from local to global coordinates is given below: 

 

 TkTK T ..=       (3.5) 

where 

K   :  Global stiffness matrix, 

k   : Local stiffness matrix, 

T   : Transformation matrix (from local to global coordinates) between the two-

   axis system (shown below for axial truss members). 

 

 

 

                            

                            

                            

                            

                            

                            

        

 Fig.3.7. Transformation of Forces From Local to Global Coordinates 

 

 

The global stiffness matrix for a 3-D truss member with respect to global coordinates is 

found as: 
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where CX, CY, CZ are direction cosines with respect to axes x, y and z respectively. 
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After developing the stiffness matrices for each member of the entire structure in 

terms of global coordinates, these matrices can be assembled to form the global 

stiffness matrix for the entire structure. Total stiffness at a coordinate is the sum of 

the stiffness contributed to that coordinate by each element attached to that 

coordinate. A scheme shown as in Fig.3.8 is employed in order to develop the 

global stiffness matrix from the local (element) stiffness matrices. 
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Fig.3.8. Combining Element Stiffness to Form the Global Stiffness Matrix 
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The solution of linear structure problems involves finding the solution to a set of 

simultaneous linear equations of the form shown above.  

 

General procedure of solution consists of the following steps: 

(i)  Forming local and global stiffness matrices, 

(ii) Decomposing stiffness matrices (by Choleski method or Gauss-Jordan 

 elimination), 

(iii) Forming load vector, 

(iv) Solving system and evaluating displacements, 

(v)  Evaluating member forces and reaction with the help of detected 

 displacements, 

 

Of course the preceding steps can be performed by a computer software in a short 

time. The general flowchart of stiffness method is presented in Fig.3.9. 
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Fig.3.9. Flowchart of Stiffness Method 
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3.2.2 Non-linear Analysis  

 

Non-linear structural analysis comprises a series of linear analyses and involves 

iteration.  

 

The non-linear problem may be expressed as 

 
 PxK =.            (3.11)       

where the matrix K has elements which are functions of x. The non-constant term of 

K are due to a change in geometry of the structure, and/or the non-linearity of the 

stress-strain curve for the structure material. 

 

The classical method of solution is the Newton-Raphson iterative method, which 

attempts to converge the solution at each time step along the force deflection curve 

and can be expressed in the form 

 

 ( ) nnnn eKxx .1
)1(

−
+ +=        (3.12) 

where the residual en is given by 

 
 nnn xKpe −=          (3.13) 

and in which Kn represents K evaluated at x = xn. 

 

The inverse of Kn is not usually determined in practice but equation (3.11) is 

arranged in the form; 

 
 nnnn exxK =−+ )( )1(         (3.14) 

and this linear system is solved for a particular xn to determine the next iteration 

x(n+1). The process is repeated until the residual en is sufficiently small. 

 

The Newton-Raphson method increments the load a finite amount at each substep 

and keeps that load fixed throughout the equilibrium iterations. Because of this, it 

cannot converge if the tangent stiffness (the slope of the force-deflection curve at 
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any point) is zero. See Figure 3.10. To avoid this problem, one should use the arc-

length method for solving nonlinear post-buckling. To handle zero and negative 

tangent stiffnesses, the arc-length multiplies the incremental load by a load factor, �, 

where �� is between -1 and 1. This addition introduces an extra unknown, altering 

the equilibrium equation slightly. To deal with this, the arc-length method imposes 

another constraint, stating that 

    22. λ+∆= nxl     (3.15) 

throughout a given time step, where is l the arc-length radius. The arc-length 

method therefore allows the load and displacement to vary throughout the time step 

as shown in Figure 3.11. 

 

   

 Fig.3.10. Newton-Raphson Method    Fig.3.11. Arc-Length Method 

 

 

3.3 Design Loads 

 

The practical design of any large dome requires that at least three different loading 

systems should be fully analysed: 

(i)  Dead load and snow over the whole dome. 

(ii) Dead load and unsymmetric snow load. It is usual to allow for the possibility 

 of a build up of snow on one side of the dome. 

(iii) Dead load and wind. 
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3.3.1 Wind Loads 

 

The determination of wind distribution on domic surfaces is still based on some 

very approximate assumptions. Experimental work, based on wind-tunnel tests, 

usually provides more reliable information. The researches show that the intensity 

of wind distribution varies greatly, depending mainly on rise-to-span ratios, and that 

the adjacent buildings have an important influence upon the distribution. Entrances, 

surface conditions, vents, etc., all have an effect on the flow conditions and pressure 

distribution. Designers of large-span domes should consider that the use of the usual 

wind-distribution formulas can be applied only to preliminary analysis; the final 

design should be based on wind-tunnel tests. Although it is thought that applying an 

equivalent vertical load to replace the wind load is a conservative procedure, the 

more detailed analysis based on the wind-tunnel tests shows that the pressure on the 

windward side combined with suction on the leeward side can frequently lead to 

much more unfavourable load conditions. Several researchers show that the 

approximate methods of analysis applied to unsymmetrical loading acting on a 

dome could produce a completely erroneous stress pattern. 

 

Some tests carried out on large models and also, in one or two cases, on actual 

structures, show that the rigidity of the joints is a major influence upon the stress 

distribution and should be considered in the analysis.  

 

The research results indicate that it is very difficult to obtain a reliable relationship 

between wind-tunnel tests and actual pressure distributions on real structures as the 

turbulence level, velocity profile in the wind tunnel and dimensional compatibility 

between model and prototype govern the model results. Also Reynolds number and 

its relation to boundary layer thickness are important. The tests reveal that an 

increase in turbulence leads to greater values of Cp (pressure coefficient). This 

influence grows as the span-to-rise ratio increases. The suctions diminish with 

increasing Reynolds number. 
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In short, it can be concluded that surface pressures depend on mainly Reynolds 

number, turbulence intensity and length scale, boundary layer immersion and 

surface roughness. 

 

Dragone (1979) confirms that the wind pressure distribution on hemispherical 

domes has been found to have a small amount of positive pressure at the front of the 

dome and a large region of negative pressure at the back of the structure. As a 

consequence of that, the lift force in a particular region could be more critical than 

the total drag force of the structure. 

 

For a dome immersed in a smooth and rough thick boundary layer of tunnel-test, 

where the height of the dome is less than half that of the boundary layer, different 

pressure distributions are obtained. With increasing boundary layer thickness the 

following observations can be made: 

 

(i)  The base pressure (between approximately 120° and 180°) remain fairly 

 constant  at approximately - 0.15. 

(ii) The maximum suction force is markedly reduced. 

(iii) The maximum positive pressure is markedly reduced. 

(iv) A greater portion of the front part of the dome is affected by the boundary 

 layer. 

 

Despite the fact that the wind distribution coefficients are greatly varying in 

different codes and wind-tunnel tests depending on the factors mentioned above, 

two pressure distribution charts are given in Figure 3.12 and 3.13 in order to show a 

wind distribution profile on domic structures. 
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Fig.3.12. Pressure Distribution on Circular Domes Rising Directly from the 
Ground: Plan Views (quoted from Wind Loading Handbook (Newberry and 

Eaton,1974)) 
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Fig.3.13. Pressure Distribution on Circular Domes Mounted on Cylindrical 
Bases: Plan Views (quoted from Wind Loading Handbook (Newberry and 

Eaton,1974)) 
 

 

In wind-tunnel tests, it is essential to simulate the velocity profile and turbulence of 

the natural wind and the Reynolds number effects associated with curved structures.  
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3.3.2 Snow Loads 

 

The present state of analysis has reached a point where, with the use of computers, 

the linear elastic behaviour of these structures can be predicted with a very high 

degree of accuracy. However, single-layer domes of large span, especially under 

unsymmetric loads, do not behave linearly or fully elastically. 

 

The collapse of some dome structures in the past (especially the collapse of the 

exhibition centre hall in Bucharest, Romania, in 1963, due to excessive snow load) 

have initiated new researches and studies and have led to further progress made in 

the design of domes. One of the most important factors which must be bear in mind 

is the influence of climatic loads.  

 

Excessive snow accumulation on some part of a dome can cause the failure of the 

structure. In order to prevent this negativity, a uniform distribution of snow load 

must be applied not only over the entire dome surface (balanced case), but also over 

one half of the surface (unbalanced case). 

 

3.3.3 Live Load, Dead Load 

 

For dome structures, live load corresponds to the weight of the men climbing on the 

roof for various purposes, such as cleaning the roof, periodical care, etc. In load 

combinations, the effect of live load is not considered together with snow and wind 

loads due to fact that a structure is very less likely to be exposed to all these loads 

simultaneously. 

 

Dead loads are the weight of the members, joints, cladding, purlins and other 

permanent elements (including service loads such as lighting equipment, ventilation 

system elements, catwalk, suspended ceiling, etc.). Dead load is taken as a 

uniformly distributed load acting on the surface. 
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3.3.4 Earthquake Loads 

 

Since the braced domes are very light structures as compared to the reinforced 

concrete structures, in many cases earthquake loads will not be critical as compared 

to wind and snow loads. Despite this fact, they are taken into account with respect 

to earthquake zone specified in the codes. 

 

3.3.5 Temperature Changes 

 

Since the elements of braced domes are made of metal, the temperature changes 

may create additional loads on the members and joints. Therefore, it is 

recommended that the effect due to temperature change be included in the analysis 

of domes. 

 

As stated before, the most important loads for domic structures are wind and snow 

loads. These loads will be examined more thoroughly in Chapter 4. 
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CHAPTER 4 

 

 

LOADS ACTING ON DOME STRUCTURES 

 

 

 

4.1 Introduction 

 

Loads are forces or other actions that result from the weight of construction 

materials, occupants, environmental effects, differential movement and dimensional 

deficits. The most well-known loads can be classified as: dead load, earthquake 

load, load due to fluids, flood load, load due to lateral earth pressure, load due to 

ground water pressure, live load, rain load, snow load and wind load. Among these 

loads, wind and snow loads are more critical for dome structures. In this chapter, 

wind and snow loads according to ASCE 7-98 Minimum Design Loads for 

Buildings and Other Structures are to be examined. 

 

4.2 ASCE 7-98  

 

4.2.1 Load Combinations 

 

According ASCE 7-98, combining nominal loads using allowable stress design are 

listed below: 
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(i)  D 

(ii) D + L + F + H + T + ( Lr or S or R ) 

(iii) D + ( W or 0.7 E ) + L + ( Lr or S or R ) 

(iv) 0.6 D + W + H 

(v)  0.6 D + 0.7 E + H 

 

where 

D : dead load, 

E : earthquake load, 

F : load due to fluids with well-defined pressures and maximum heights, 

H : load due to lateral earth pressure, ground water pressure, or pressure of bulk 

 materials, 

L : live load, 

Lr : roof live load, 

R : rain load, 

S : snow load, 

T : self-restraining force, 

W : wind load. 

 

4.2.2. Wind Loads 

 

In ASCE 7-98, for application of wind load, the load-carrying systems of buildings 

and other structures are grouped into two parts. These are as follows; 

 

(i)  Main wind force resisting system,  

(ii) Components and cladding. 

 

Main wind-force resisting system is an assemblage of structural elements assigned 

to provide support and stability for the overall structure. The system generally 

receives wind loading from more than one surface. 
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Components and cladding are elements of the building envelope that do not qualify 

as part of the main-force resisting system.  

 

In addition, buildings are divided into two groups as rigid buildings and flexible 

buildings. Buildings and other structures which have fundamental natural frequency 

greater than or equal to 1 Hz. are called rigid and those with a fundamental natural 

frequency less than 1 Hz. are called flexible.  

 

For application of wind loads, three different methods are recommended in ASCE 

7-98. These are listed below: 

 

(i)  Method-1, simplified procedure, 

(ii) Method-2, analytical procedure, 

(iii) Method-3, wind tunnel procedure, 

 

4.2.2.1. Method-1, Simplified Procedure 

 

This method is used for buildings that satisfy all the following conditions; 

(i)  The building is a simple diaphragm building which is defined as a fully or 

partially enclosed building in which wind loads are transmitted through floor 

and roof diaphragms to the vertical main wind force resisting system, 

(ii) The building has roof slopes less than 10Û� 
(iii) The mean roof height of the building is less than or equal to 30 ft. (9 m.), 

(iv) The building is a regular shaped building or structure, which has no 

 unusual geometrical irregularity in spatial form, 

(v) The building is not classified as a flexible building which has a fundamental 

 natural frequency less than 1 Hz, 

(vi) The building structure has no expansion joints or separations, 

(vii) The building is not subject to the topographic effects such as wind speed- up 

 over hills, ridges and escarpments, constituting abrupt changes in the general 

 topography, 
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As seen from the conditions listed above, this method is applied to simple, low-rise 

and regular buildings, which have two stories at most. The design procedure is 

outlined below: 

 

(i) The basic wind speed, V is determined according to the regions specified in 

Fig.6.1 of ASCE 7-98. The basic wind speed varies from 85 mph (38 m/s) to 

150 mph (67 m/s) for the USA in the given map of the code. 

 

(ii) The importance factor, I is determined according to Table 6.1 of ASCE 7-

98. The buildings are divided into four categories. While category I includes 

the buildings or other structures that represent a low hazard to human life in 

the event of failure, such as agricultural facilities, storage facilities, etc., 

category IV contains essential facilities including hospitals, communication 

centers, power generating stations, water storage facilities, etc. The chart of 

importance factors is reproduced below: 

 

 

Table 4.1. The Importance Factors (Quoted from Table 6.1 of ASCE 7-98) 

Category 

Non-hurricane prone regions and 

hurricane prone regions with V= 85-100 

mph. 

Hurricane prone regions 

with V > 100 mph. 

I 0.87 0.77 

II 1.00 1.00 

III 1.15 1.15 

IV 1.15 1.15 

 

 

(iii) An exposure category is determined according to the definitions given below. 

 

Exposure A. Large city centers with at least 50% of the buildings having a height 

in excess of 70 ft (21.3 m). Use of this exposure category shall be limited to those 
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areas for which terrain representative of Exposure A prevails in the upwind direc-

tion for a distance of at least 1/2 mi (0.8 km) or 10 times the height of the building 

or other structure, whichever is greater. Possible channeling effects or increased 

velocity pressures due to the building or structure being located in the wake of 

adjacent buildings shall be taken into account. 

 

Exposure B. Urban and suburban areas, wooded areas, or other terrain with 

numerous closely spaced obstructions having the size of single-family dwellings or 

larger. Use of this exposure category shall be limited to those areas for which 

terrain representative of Exposure B prevails in the upwind direction for a distance 

of at least 1,500 ft (460 m) or 10 times the height of the building or other structure, 

whichever is greater. 

 

Exposure C. Open terrain with scattered obstructions having heights generally less 

than 30 ft (9.1 m). This category includes flat open country, grasslands and 

shorelines in hurricane prone regions. 

 

Exposure D. Flat, unobstructed areas exposed to wind flowing over open water 

(excluding shorelines in hurricane prone regions) for a distance of at least 1 mi 

(1.61 km). Exposure D extends inland from the shoreline a distance of 1,500 ft (460 

m) or 10 times the height of the building or structure, whichever greater. 

 

(iv) An enclosure classification is determined such as enclosed, partially 

 enclosed or open. 

(v)  The design wind loads for the main wind force resisting system is 

 determined from the Table 4.2. 
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Table 4.2. Design Wind Pressure (Quoted from Table 6.2 of ASCE 7-98) 

Basic Wind Speed V (MPH) 
Location 

Building 

Classification 85 90 100 110 120 130 140 150 160 170 

Enclosed -14 -16 -20 -24 -29 -33 -39 -45 -51 -57 

Roof Partially 

Enclosed 
-19 -21 -26 -31 -37 -44 -51 -58 -66 -74 

Wall 

Enclosed or 

Partially 

Enclosed 

12 14 17 20 24 29 33 38 43 49 

 

 

(vi) The design wind load for component and cladding elements is determined 

 from Table 6.3 of ASCE 7-98. 

 

4.2.2.2 Method-2, Analytical Procedure 

 

This method is used for buildings or other structures, that satisfy all of the following 

conditions: 

 

(i)  The building is a regular shaped building or structure. 

(ii) The building or other structure does not have response characteristics  making 

it subject to across wind loading, vortex shedding, instability due to galloping 

or flutter; or does not have a site location for which  channeling effects or 

buffeting in the wake of upwind obstructions warrant special consideration. 

 

The design procedure is summarized below: 

 

(i)  The basic wind speed, V and wind directionality factor, Kd are determined. 

The basic wind speed, V is determined according to the map given (Table 6.1 
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of ASCE 7-98) in ASCE 7-98. Wind directionality factor, Kd is taken from the 

Table 4.3 

 

 

Table 4.3. Wind Directionality Factor (Quoted from Table 6.6 of ASCE 7-98) 

Structure Type Directionality Factor Kd  

Buildings 

 Main Wind Force Resisting System 

 Components and Cladding 

 

0.85 

0.85 

Arched Roofs   0.85 

Chimneys, Tanks and Similar 

Structures 

 Square 

 Hexagonal 

 Round 

 

0.90 

0.95 

0.95 

Solid Signs 0.85 

Open Signs and Lattice Framework 0.85 

Trussed Towers 

 Triangular, square, rectangular 

 All other cross sections 

 

0.85 

0.95 

 

 

(ii) Importance factor, I is determined as explained in Method-1. 

(iii) Exposure category is determined as explained in Method-1. Velocity 

pressure exposure coefficient Kz or Kh is determined according to Table 6.5 

given in ASCE 7-98. These coefficients vary with respect to height above 

ground level and exposure category. 

(iv) A topographic factor Kzt , is determined as; 

  2
321 )1( KKKK zt +=     (4.1) 

  where K1, K2 and K3 are given in Fig.6.2 presented in ASCE 7-98. 
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(v)  A gust effect factor G (for rigid structures) or Gf (for flexible or dynamically 

 sensitive structures) is determined in two different ways for rigid and flexible 

 structures. But it is stated to take gust effect factor as 0.85 for rigid structures 

 in ASCE 7- 98. 

(vi) Enclosure classification is determined such as enclosed, partially enclosed 

 or open. 

(vii) Internal pressure coefficient, GCpi and external pressure coefficients, Cp 

 for main wind force resisting systems) or GCpf (for components and 

 cladding)  are determined according to Fig.6.3 through Fig.6.8 presented 

 in ASCE 7-98. 

(viii) Velocity pressure, qz is found using the formula  

   IVKKKq dztzz

200256.0=   (lb/ft²)   (4.2) 

[in SI   IVKKKq dztzz

2613.0=    (N/m²)]   (4.3) 

where 

qz : velocity pressure, evaluated at height z, 

Kz : velocity pressure exposure coefficient, 

Kzt: topographic factor, 

Kd : wind directionality factor, 

V : basic wind speed, 

I : importance factor, 

qh is the velocity pressure calculated using equation above at mean roof height h. 

(ix) Design wind load P or F is calculated. P is the design wind pressure for 

 enclosed and partially enclosed buildings. The formulation used for various 

 cases are listed in Table 4.4. 

 

 

 

 

 

 

 



 61 

 

Table 4.4. Design Wind Load Formulation 

Formula Case 

)( piip GCqqGCp −=  (lb/ft²)(N/m²) 
Design wind pressures for main force resisting 

system for rigid buildings of all heights 

)]()[( pipf GCGCqhp −=  (lb/ft²)( N/m²) 
Design wind pressures for main force resisting 

system for low-rise buildings. 

)( piipf GCqCqGp −=  (lb/ft²)( N/m²) 
Design wind pressures for main force resisting 

system for flexible buildings. 

)]()[( pip GCGCqhp −=  (lb/ft²)( N/m²) 

Design wind pressures on components and 

cladding for low-rise buildings (with h���� IW�
(18.3 m.) 

)]()( piip GCqGCqp −=  (lb/ft²)( N/m²) 
Design wind pressures on components and 

cladding for buildings with h > 60 ft. (18.3 m.) 

 

 

where 

q = qz for windward walls evaluated at height z above the ground, 

q = qh for leeward walls, side walls, and roofs, evaluated at height h, 

qi  = qh for windward walls, side walls, leeward walls, and roofs of enclosed 

 buildings and for negative internal pressure evaluation in partially enclosed 

 buildings;  

qi  = qz for positive internal pressure evaluation in partially enclosed buildings 

where height z is defined as the level of the highest opening in the building 

that could affect the positive internal pressure. For buildings sited in wind 

borne debris regions, glazing in the lower 60 ft (18.3 m) that is not impact 

resistant or protected with an impact resistant covering, the glazing shall be 

treated as an opening. For positive internal pressure evaluation, qi may conser-

vatively be evaluated at height h (qi, = qh);  

G   : gust effect factor,  

Cp   : external pressure coefficient,  
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(GCpi ) : internal pressure coefficient, 

qh    : velocity pressure evaluated at mean roof height h using exposure, 

(GCpf ) : external pressure coefficient, 

Design wind loads on open buildings are determined from the equation below : 

  ffz AGCqF =   (lb) (N)    (4.4) 

where 

qz : velocity pressure evaluated at height z of the centroid of area Af using 

 exposure, 

G : gust effect factor, 

Cf : net force coefficients, 

Af : projected area normal to the wind except where Cf is specified for the  actual 

 surface area. 

 

4.2.2.3 Method-3, Wind Tunnel Procedure 

 

Wind tunnels date back to the 1870's. Scientists realized it didn't matter if an object 

was stationary (not moving) and air was blown over the object or if the object was 

moving through the air. The resultant forces over the object would be the same. The 

idea of blowing air over an object and determining the forces led to the invention of 

the wind tunnel.  

 

A wind tunnel is generally sort of a duct or pipe shape and air is either blown or 

pulled out of the tunnel. Typically in about the middle of the tunnel is what is called 

the "test section". This is where the model object to be tested is placed. 

 

According to ASCE 7-98, wind tunnel testing is performed in lieu of methods 1 and 

2 for any building or structure. Wind-tunnel tests are recommended when the 

building or other structure satisfies one or more of the following conditions: 

 

(i) Building has a shape which differs from a uniform rectangular prism or 

 “box-like” shape, 
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 (ii)  Building is flexible with fundamental natural frequencies normally below  

 1 Hz., 

(iii) Building is subject to buffeting by the wake of upwind buildings or other 

 structures, 

(iv) Building is subject to accelerated flow caused by channeling or local 

 topographic features. 

 

Tests for determination of mean and fluctuating forces and pressures are required to 

meet the following conditions: 

 

(i) The natural atmospheric boundary layer is modeled to account for the 

 variation of wind speed with height, 

(ii)  The relevant macro length and micro length scales of longitudinal 

 component of  atmospheric turbulence are modeled to approximately  the 

same scale as that used to  model the building or structure. 

(iii)  The modeled building or other structure and surrounding structures and 

 topography are geometrically similar to their full-scale counterparts,  except   

low-rise buildings. 

(iv) The projected area of the modeled building or other structure and 

surroundings is less than 8 % of the test section cross-sectional area unless 

correction is made for blockage. 

(v)  The longitudinal pressure gradient in the wind tunnel test section is accounted 

 for. 

(vi) Reynolds number effects on pressures and forces are minimized. 

(vii)  Response characteristics of the wind tunnel instrumentation are consistent 

with the required measurements. 

 

Boundary-layer wind tunnels capable of developing flows typically have test-

section dimensions in the following ranges; width of 6-12 ft (2-4 m), height of 6-10 

ft. (2-3 m) and length of 50-100 ft. (15-30 m). Maximum wind speeds can be either 

obtained from an open-circuit or closed-circuit type. 
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Three basic types of wind-tunnel test models are commonly used. These are 

designated as follows: 

 

(i)  Rigid pressure model (PM), 

(ii) Rigid high-frequency base balance model (H-FBBM), 

(iii) Aeroelastic model (AM). 

 

PM provides local peak pressures for design of elements such as cladding and mean 

pressures for the determination of overall mean loads. The H-FBBM measures 

overall fluctuating loads for the determination of dynamic responses. When motion 

of a building or structure influences the wind loading, the AM is employed for 

direct measurement of overall loads, deflections and accelerations. 

 

Wind tunnel tests frequently measure wind loads which are significantly lower than 

required by analytical method due to the shape of the building, shielding in excess 

of that implied by exposure categories and necessary conservatism in enveloping 

load coefficients. Additional wind tunnel testing without specific nearby building 

(or with additional buildings if they might cause measured loads through channeling 

or buffeting) is an effective method for determining the influence of adjacent 

buildings. 

 

Forces and pressures determined by wind tunnel testing shall be limited to not less 

than 80 % of the design forces and pressures which would be obtained from 

analytical method for the structure unless specific testing is performed to show that 

it is the aerodynamic coefficient of the building itself, rather than shielding from 

nearby structures, that is responsible for the lower values. 

 

The design pressures for components and cladding on walls or roofs shall be 

selected as the greater of the wind tunnel test results or 80 % of the pressure 

obtained for zone 4 for walls and zone 1 for roofs as determined from analytical 
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method, unless the criterion specified above. An example of wind tunnel test is 

shown in Figure 4.1. 

 

 

 

Fig.4.1. Wind Tunnel Test (The 1:500 Model of the Four Times Square 

Tower in the Center of New York ) 

 

 

4.2.3 Snow Loads 

 

In ASCE 7-98, snow loads are divided into three groups as ground snow loads, flat-

roof snow loads and sloped-roof snow loads. 

 

Ground snow load determination is based on an extreme value statistical analysis of 

data available in the vicinity of the site using a value with a 2 % annual probability 

of being exceeded (50 year mean recurrence interval). Ground snow loads are taken 

from Fig.7.1 presented in ASCE 7-98. The loads vary from zero for Hawaii to 100 

psf (4.79 kN/m²) for northern regions of the USA.  

 

Snow is a variable load. It may cover an entire roof or only some parts of it. On the 

other hand, it may slide off one roof onto a lower one. While snow may blow off 

one side of a sloped roof, it may also crust over and remain in position even during 
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very heavy winds. Therefore, snow loads depend on many factors such as 

geographic location, the pitch of the roof, sheltering and the shape of the roof. 

 

For roofs with slope equal to or less than 5º the snow load is determined using the 

following equation: 

  gtef IPCCP 7.0=        (4.5) 

where 

Pf : snow load in pounds per square foot, 

Ce : exposure factor (the values are found from table 4.5 according to exposure 

 category) 

Ct : thermal factor (taken from table 4.6) 

I : importance factor, 

Pg : ground snow loads, 

 

 

Table 4.5. Exposure Factor (Quoted from Table 7.2 of ASCE 7-98) 

Exposure of Roof 
Terrain Category 

Fully Exposed Partially Exposed Sheltered 

A N/A 1.1 1.3 

B 0.9 1.0 1.2 

C 0.9 1.0 1.1 

D 0.8 0.9 1.0 

Above the treeline in windswept 

mountainous areas 
0.7 0.8 N/A 

In Alaska, in areas where trees 

don not exist within a 2-mile (3-

km) radius of the site. 

0.7 0.8 N/A 
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Table 4.6. Thermal Factor (Quoted from Table 7.3 of ASCE 7-98) 

Thermal Condition Ct 

All structures except as indicated below 1.0 

Structures kept just above freezing and others with cold, ventilated 

roofs in which the thermal resistance between the ventilated space and 

the heated space exceeds 25 ºF.h.ft²/Btu (4.4 K.m²/W) 

1.1 

Unheated structures and structures intentionally kept below freezing. 1.2 

Continuously heated greenhouses with a roof having a thermal 

resistance (R-value) less than 2.0ºF.h.ft²/Btu (0.4 K.m².W) 
0.85 

 

 

Snow loads acting on a sloping surface is assumed to act on the horizontal 

projections of that surface. The sloped-roof snow load, Ps is obtained by 

multiplying the flat-roof snow load, pf by the roof slope factor, Cs; 

  fss pCP =      (4.6) 

where 

Cs : roof slope factor (determined from Fig.7.2 given in ASCE 7-98 for warm and 

 cold roofs), 

 

In ASCE 7-98, the roofs are divided into two groups such as warm and cold roofs. 

Different thermal factors (Ct) are used for these roof types according to Table 4.6. 

 

In ASCE 7-98, partial loading and unbalanced roof snow loads due to wind are 

considered for different roof types such as hip and gable roofs, curved roofs, 

sawtooth roofs, barrel vault roofs. The accumulation of snow on one half of the roof 

due to the wind pressure is considered by taking account of unbalanced snow load 

case in ASCE 7-98. Illustrative questions in which this effect is taken account are 

solved in Chapter 8. A more thoroughly explanation is made in this chapter.  
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CHAPTER 5 

 

 

OPTIMIZATION TECHNIQUES 

 

 

 

5.1 Structural Optimization 

 

Structural optimization can be defined as designing a structure at the lowest cost, 

while fulfilling the design requirements at the same time. That is to say, it is to find 

a reasonable structure with the best objective, while meeting the predefined need 

(Tang et al. 2005). Usually, the aim is to minimize the weight of the structure (thus 

the material and cost of the structure) subjected to various loadings under certain 

design constraints. Design constraints are the limitations which must be obeyed for 

the safety of the structure such as stresses, displacements, stability, etc. 

 

Abundance of different search and optimization techniques are used in optimum 

structural design applications. These techniques can be categorized as shown in 

Fig.5.1 (Langdon and Qureshi). 
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Fig. 5.1. Search Techniques 

 

 

Enumerative techniques, in principle, search every possible point. They search 

one point at a time, so the number of possible points may be too large for direct 

search.  

 

Calculus based techniques look for the maxima or minima using the derivative of 

continuous multi-dimensional function. These techniques are also called gradient-

based search techniques. Calculus based techniques are sub-divided into two groups 

such as direct and indirect methods. Indirect methods use the fact that derivative of 

the function is zero at the extrema. Direct calculus based techniques such as 

Newton use the gradient/function values to estimate the location of nearby extrema. 

These techniques are known as hill climbing techniques. They estimate a point 

around maximum and move to that point, then they make a new estimate and move 

to it. This process goes on until they reach the top of the hill. The calculus-based 

techniques have definite disadvantages such as requirement of a continuous design 

space, danger of entrapment in local optima closest to the starting solution, 

difficulty to find the derivative of the complex structural optimization problems. 

Search Techniques 

Enumerative Calculus Based Stochastic 

Dynamic 
Programming 

Direct Indirect 
Simulated 
Annealing 

Evolutionary 
Algorithms 

Evolution 
Strategies 

Genetic 
Algorithms 

Newton Evolutionary 
Programming



 70 

Stochastic search techniques use information from the search so far to guide the 

probabilistic choice of the next points to try. They are able to solve very complex 

problems which cannot be solved by enumerative and calculus based techniques 

(Langdon and Qureshi). 

 

Simulated annealing (SA) which is a well-known member of stochastic search 

techniques searches for minimum energy states using an analogy based upon the 

physical annealing process. In this method, the minimum energy level is to be 

formed by heating the system to a high temperature and then cooling slowly. The 

objective function is analogous to the energy level of the physical system. In 

chapter 7, simulated annealing technique will be discussed in detail. 

 

Evolution algorithms are based upon Darwin’s Natural Selection (survival of the 

fittest) theory of evolution, where a population is progressively improved by 

selectively discarding the worse individuals and breeding new children from the 

better ones.  

 

In Evolutionary Strategies (ES) points in the search space are represented by a 

vector of real values. Each new point is created by adding random noise to the 

current one. If the new point is better than the former one search proceeds from this 

new point, if not the older point is retained. Historically Evolutionary Strategies 

search only one point at a time but recently they use a population of points like 

Genetic Algorithms (GAs) (Langdon and Qureshi).  

 

Genetic Algorithms (GAs) represent points in the search space by a vector of 

discrete bit values. Each new child is produced by combining parts of the bit vector 

from each parent. Genetic operators such as selection, crossover and mutation are 

used to produce new individuals. This is analogous to the way which chromosomes 

of DNA (which contains the inherited genetic material) are passed to children in 

natural systems. Genetic Algorithms are also to be discussed in detail in Chapter 6 

of the thesis.  
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Some other classifications of optimization techniques are also made in the literature 

(Camp et al. 1998, Tzan and Pantelides, 1996). 

 

5.2 Stochastic Search Techniques 

 

Since the main subject of this thesis is stochastic search techniques, more 

information is to be given on these techniques. Stochastic search techniques use 

probabilistic transition rules to guide their search. But the use of probability does 

not suggest that these methods are simple random search like tossing a coin. They 

use random choice as a tool to guide a search toward regions of search space with 

likely improvements (Goldberg, 1989).  

 

5.2.1 Evolutionary Algorithms 

 

The toughness of solving many design optimization problems by conventional 

optimization techniques led the researchers to improve new techniques. 

Evolutionary algorithms, which simulate the natural evolution processes of living 

organisms are the most promising ones. An evolutionary algorithm (also EA, 

Evolutionary Computation, Artificial Evolution) is an algorithm using evolutionary 

techniques inspired by mechanisms from biological evolution such as natural 

selection, mutation and recombination to find an optimal configuration for a 

specific system within specific constraints.  

 

Evolutionary Algorithms include: 

 

(i)  Genetic Programming and Genetic Algorithms which use the gene 

 transmission and mutation mechanism as an optimization technique,  

(ii) Evolutionary Programming (EP), which allows one to parameterize computer 

 programs to find optimal solutions according to a goal function, 
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(iii) Evolutionary Strategies (ESs), which work with vectors of real numbers as 

representations of optimization problems; mutation and adaptation of mutation 

rates are important working mechanisms there. 

 

The source of imitation for these three techniques depend on the evolution process 

as their names imply (evolutionary algorithms), but there are several major 

differences between their working mechanism of operators (Back, 1996). These 

differences will be explained in the forthcoming sub-chapters. 

 

As stated before, Evolutionary algorithms inspire the natural processes of Darwin’s 

theory: survival of the fittest. A global optimum is sought in a population of 

individuals. The average quality of the population is evolved to higher levels with 

the help of the operators; recombination, mutation and selection. These operators 

will be examined in Chapter 6. The quality of the individuals in the population is 

measured with respect to their fitness values (Ulusoy, 2002). 

 

Darwin’s survival of the fittest theory states that the members of species, which are 

stronger and capable of adapting themselves to the natural habitat survive, while the 

weaker ones die out. These stronger and more adaptive members of the population 

propagate to generate the next population so better populations are evolved 

throughout the successive generations. 

 

In structural optimization problems, evolutionary algorithms have certain 

advantages over the conventional techniques. These advantages can be listed as 

follows: 

 

(i)  Evolutionary algorithms need not take derivatives of the objective functions 

and constraints. 

(ii) A  population of candidate solutions is used to explore the design space. 

(iii) Discrete and non-continuous problems can be handled easily. 
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(iv) Several near optimum solutions can be obtained yielding alternative designs 

to the engineer. 

 

Besides the advantages; EAs have some minor drawbacks. The performance of the 

technique depends mostly on choosing appropriate values of parameters. But it is 

difficult to choose appropriate values unless the preliminary knowledge is available 

for the characteristics of the optimization problem. Second drawback is that finding 

the global optimum cannot be ensured with evolutionary algorithms. Third 

drawback is the computationally experiences of obtaining a good optimum solution 

for complex problems (Ulusoy, 2002). 

 

EA techniques require a stochastic and iterative process, which tries to improve a 

population over a pre-selected number of generations. For this purpose firstly an 

initial pRSXODWLRQ� FRPSRVHG� RI� �� QXPEHU� RI� SDUHQW� GHVLJQV� LV� XVXDOO\� FUHDWHG� DW�
random. The population size is kept steady in each generation. Then, the process is 

continued by assigning a fitness score to each parent in association with the 

objective function of the problem. These two steps are the same for all EA 

techniques. Back and Hoeffmeister (1991) and Back et al (1993) gave extensive 

comparison between these evolutionary algorithms. 

 

A humorous illustration, which is quoted from Sarle (1993), is given below to give 

a better understanding about the optimization techniques, conventional hill-

climbing, simulated annealing and genetic algorithms: 

 

Notice that in all hill-climbing methods, the kangaroo can hope at best to find the top of a mountain close 

to where he starts. There is no guarantee that this mountain will be Everest, or even a very high mountain. 

In simulated annealing, the kangaroo is drunk and hops around randomly for a long time. However, he 

gradually sobers up and tends to hop up hill. In genetic algorithm, there are a lot of kangaroos that are 

parachuted into Himalayas (if the pilot didn’t get lost) at random places. These kangaroos do not know that 

they are supposed to be looking for the top of Mt.Everest. However, every few years, you shoot the 

kangaroos at low altitudes and hope the ones that are left will be fruitful and multiply. 
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5.2.1.1 Evolutionary Strategies 

 

Evolution strategies were developed by Rechenberg (1965, 1973) and Schwefel 

(1981) in Germany. They are similar to Genetic Algorithms, but originally did not 

use crossover operator. ES have very complex mutation and replacement functions. 

Mutation is the main operator while recombination is the secondary in ES. In this 

technique, selection is a deterministic operator. In ES, real variables are used. 

 

5.2.1.2 Evolutionary Programming 

 

Evolutionary programming (EP) was originally developed by Fogel et al (1966) and 

refined by Fogel (1991). It is possibly the first genetic approach to artificial 

intelligence. This technique does not use crossover operator. Mutation is the main 

operator in EP. Recombination is even omitted in this technique. Probabilistic 

selection schemes are used in EP. Like ES, real variables are used in EP. 

 

5.2.1.3 Genetic Algorithms 

 

Genetic Algorithms were first introduced by Holland (1975) and further developed 

by De Jong (1975). Unlike ES and EP, recombination is the main variation in GAs. 

Probabilistic selection schemes and binary coding in representation are used in 

GAs. Genetic Algorithms are discussed in detail in Chapter 6. 

 

5.2.2 Simulated Annealing 

 

Simulated annealing is another stochastic optimization technique. In this technique, 

a natural event, annealing process of a thermodynamical system is used as a source 

of inspiration. In this process, a solid initially at a high energy level is cooled down 

gradually to reach its minimum energy and thus to regain proper crystal structure 

with perfect lattices. 
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The similarity between annealing and optimization was first introduced by 

Kirkpatrick et al (1983) and Cerny (1985). These scientists observed the 

correspondence between minimizing the energy level of a thermodynamical system 

and lowering the objective function of a optimization problem. As a result of this 

analogy, simulated annealing is named to this method. 

 

A further investigation of this technique will be given in Chapter 7. 
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CHAPTER 6 

 

 

GENETIC ALGORITHMS 

 

 

 

6.1 Introduction 

 

Genetic algorithm was first pioneered by Holland in 1975. It has emerged as a 

robust, practical and reliable search technique (Azid et al, 2002). Genetic algorithm 

uses a directed random search approach to locate the optimum solution. It is a 

numerical multipoint search technique that can be used to find progressively better 

solutions for a problem by an extensive search of the design space.  

 

Genetic algorithms are adaptive heuristic search algorithm based on the 

evolutionary ideas of natural selection and genetics. As such they represent an 

intelligent exploitation of a random search used to solve optimization problems. 

Although randomized, GAs are by no means random, instead they exploit historical 

information to direct the search into the regions of better performance within the 

search space. The basic techniques of the GAs are designed to simulate processes in 

natural systems necessary for evolution, especially those follow the principles first 

laid down by Charles Darwin of "survival of the fittest".  

 

GA is implemented such that first a population which has a constant number of � 

individuals is created randomly. Each individual in the population is called a 

chromosome, representing a possible solution to an optimization problem at hand. 
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In GAs, individuals (designs) are represented by finite length strings. Usually, 

binary strings are used for this purpose. In each iteration, referred to as a generation, 

a new set of individuals is created using three operators known as selection 

(reproduction), crossover and mutation. The same process is repeated over a fixed 

number of generations or until a stopping criteria is satisfied. 

  

As noted, the GA operators are applied to a population of individuals (designs) 

rather than a single point. This enables GA to explore the search space 

simultaneously from many different points and find an optimum by a more global 

search strategy instead of a localized gradient search or hill-climbing approach 

(Yang and Soh, 1997). 

 

The GA approach has demonstrated certain aspects of intelligence characterized by 

human beings. That is, it exploits “best” inheritance accumulated during the 

evolution in a way that efficiently trades off the need to explore new regions of the 

search space with the need to focus on a high-performance region of that space 

(Yang and Soh, 1997). 

 

6.2 Fundamentals of GAs 

 

As explained before, the main principle of GAs extend to Darwin’s survival of the 

fittest theory. The theory emulates the natural process of evolution to find the 

optimum. It assumes that individuals with certain characteristics are more able to 

survive and pass their characteristics to their offspring. The mixing of good parental 

genetic materials causes a better generation which is characterized by term 

“evolution”. The successive generations, which are more adaptive to their 

environmental conditions tend to evolve of more appropriate individuals. GAs use 

similar tactic inspired from this law of nature. 

 

Genetic algorithms operate on a population of individuals encoded as strings using 

the binary alphabet. The term individual and design are used synonymously in GAs. 
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In each iteration, referred to as a generation, a new set of individuals that represent 

possible solutions is created through application of genetic operators as to be 

discussed in the following sections. 

 

Genetic algorithms are different from other search techniques in many aspects, 

which are listed below: 

 

(i)  They work with encoding of variables, 

(ii) They search via a set of points (population of designs), 

(iii) They only require objective (fitness) function values. They do not need 

 continuity and existence of derivatives, 

(iv) They do not know when they find the optimum. So they must be told when to 

 stop (Sait and Youssef, 1999). 

 

As Goldberg (1989) expresses, while randomized, genetic algorithms are no simple 

random walk. They efficiently exploit historical information to speculate on new 

search points with expected improved performance. This is not decision making at 

the toss of a coin.  

 

In many engineering applications, the variables must be selected from a list of 

integer or discrete values for practical reasons. For example, structural members 

must be selected from available section lists, member thicknesses must be selected 

from the commercially available ones, the number of bolts for a connection must be 

integer, etc. (Huang and Arora, 1997). GAs are capable of handling discrete 

variable optimization, which is very suitable for the design selection from an 

available list. The lack that is caused from rounding up the solution to nearest 

discrete values in traditional optimization techniques is eliminated in GAs. 
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6.3 GA Terminology 

 

Basic terminology that is used in GAs is explained below. A further description will 

be given in the following sections: 

Gene              :  A subsection of a chromosome which usually encodes the value 

 of a single variable. 

Chromosome : One encoded string of variables which represents the individual.  

Individual  : A single member of a population. 

Population     :  A group of individuals which may interact by using genetic 

 operators. 

Fitness           :  A value assigned to an individual which shows how well the 

 individual is. 

Generation    :  An iteration of the algorithm and creation of a new population by 

 means of genetic operators. 

Parent            :  An individual which takes part in recombination (crossover) to  

 generate new individuals. 

Offspring  :  An individual generated by recombination (crossover). 

Recombination :  The creation of a new individual from two parents. 

 

6.4 Flowchart of GAs 

 

A flowchart representation of this algorithm is given in Fig.6.1. 
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Fig.6.1. The Flowchart of Genetic Algorithm 

 

 

The first step in GAs is creation of an initial population. This population is used as 

the starting solutions of the optimization process. The typical formulation of an 

initial population is done by initializing the binary codings randomly. So it is 

Create a population 
at random 

t = 0 

Evaluate the fitnesses 
of the strings 

Apply selection 

Apply crossover 
 

t<T 

t=t+1 

Y N 
STOP 

START 

Apply mutation 
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obvious that the initial population consists of individuals which are poorly 

infeasible or feasible but very far from the optimum (Kaveh and Kalatjari, 2004). 

 

Then the initial population is evaluated by calculating the objective functions of all 

the individuals. If the problem is a constrained one, then a penalty function is 

defined to account for violation of constraints. The penalty function is combined 

with the objective function to yield a new (modified) objective function, changing 

the constrained optimization problem to an unconstrained optimization one (Kaveh 

and Kalatjari, 2004). Each individual is assigned a single numerical fitness, which 

indicates the goodness of the individual. The individuals with high fitness scores are 

preferred more in order to improve the population. But, selection of highly fit 

individuals to the next generations causes the reduction in the genetic diversity for 

the child individuals. This can result in a premature convergence of the algorithm 

due to the lack of exploration. The lack of genetic diversity leads the generations to 

create the same result. But this result is not the global optimum and named as 

premature convergence. 

 

In order to prevent the premature convergence, the fitness scaling is carried out to 

narrow the range of fitness scores of the population to avoid the dominance of 

highly fit individuals during the selection operator. After scaling the fitness values, 

a series of genetic operators are used to create the child population. As mentioned 

above, selection is the first genetic operator. With respect to the scaled fitness 

values of individuals in the population, individuals with higher fitness values are 

preferred while the poor ones are eliminated. The selected individuals are then 

transferred to the intermediate population, where they also produce their other 

copies to take places of those eliminated ones, in order to keep the population size    

( � ) constant. The second operator is crossover operator, which creates the child 

population by an exchange of genetic characteristics between randomly paired 

individuals of the intermediate population. The third operator is mutation operator. 

It is occasionally applied on the genes of child individuals after crossover, randomly 

changing a gene 1 to 0 or 0 to 1. Mutation is a random walk through the string 



 82 

space. Although mutation operator plays a secondary role in GAs, it is an insurance 

policy against premature loss of important notion. 

 

After using all three operators, the child individuals are taken to be the parents of 

the next generation. The process of creating a new population from the previous one 

is called a single generation in GA terminology. The newly created population has 

individuals whose average fitness is better than the previous population. The 

process outlined above is iterated in the same way for a fixed number of 

generations. After successive generations, it is hoped to find an optimum solution. 

The implementation of GAs and genetic operators will be discussed in detail in the 

following sections. 

 

6.5 Coding  

 

In Genetic Algorithms, solutions are represented in binary code as strings of 0 and 

1, traditionally. Several other alternative representations are also used in the 

literature. These representations are real coding (real number representation), 

integer and Gray coding. The best representation is an ongoing research area. In this 

thesis, the binary coding representation will be concentrated. 

 

In traditional representation, binary alphabet consisting of ‘1’ or ‘0’ is used. A 

coded variable is referred to a substring in GA terminology, where each single bit 

position is called a gene. If there are nd number of design variables in all, then nd 

such strings are added to create a string for representing a potential design. For 

example, two individuals which consist of four substrings each, where lx = 6 and l = 

24 are shown below: 

 

 Substring 1 Substring 2 Substring 3 Substring 4 
Individual 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 
Individual 2 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 

 

 
lx = 6 

l = 24 
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The length ( lx ) of a substring used to code a design variable is determined in 

different ways for discrete and continuous optimization problems. In a discrete 

design, a set of finite number of design values is used. So it is necessary to 

designate each design value with a different combination scheme of lx genes. As a 

rule, the lx is chosen such that the number of possible gene combination schemes 

created with it should exceed the number of design values in the set. To visualize 

this fact, an example is given below: 

 

If a design set composed of 10 values is used for a discrete design, substring length 

of lx will be 4. The following 16 possible gene combination schemes are created: 

(0,0,0,0) , (0,0,0,1) , (0,0,1,0) , (0,1,0,0) , (1,0,0,1) , (1,0,1,0) , (1,0,1,0) , (1,1,0,0) , 

(0,1,0,1) , (0,0,1,1) , (0,1,1,1) , (0,1,1,0) , (1,1,1,0) , (1,0,1,1) , (1,1,0,1) , (1,1,1,1). 

 

In general, the maximum gene combination capacity of a substring length of lx is 

calculated with the formula xl2 . For example lx = 4 , 6 ,11, a maximum number of 

discrete values is 16, 64, 2048 respectively. 

 

For a continuous design variable, the logic given above is the same with a minor 

difference. This difference is the inclusion of the desired level of precision to the 

GLVFXVVLRQ�� 7KH� GLVWDQFH� �ûxj) between any two neighbour grid points in the 

continuous design will be as in the equation below: 

 
12 −

−
=∆

xl

jj

j

uv
x           (6.1) 

where 

vj : upper bound for the variable, 

uj : lower bound for the variable, 

lx : substring length, 

 

Encoding decision variables into binary strings is the first step of solution. The 

length of the string depends on the required precision. Gen and Cheng (1997) 

proposed: 
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 1210)(2 1 −≤−<− xx lp

jj

l
xuv    (6.2) 

p : required precision (places after the decimal point) 

Example: 

Maximize )20sin()4sin(5.21),( 221121 xxxxxxf ππ ++=  

   1.120.3 1 ≤≤− x  

   8.51.4 2 ≤≤ x  

Suppose that the precision is set to 4 places after the decimal point. The required 

bits for variables 1x  and 2x  is calculated as follows: 

(12.1-(-3.0)) x 10,000=151,000 

217 < 151,000 < 218        m1=18 

(5.8-4.1) x 10,000=17,000 

214 < 17,000 ���15  m2=15 

m = m1 + m2 =18 + 15 = 33 

The total length of a chromosome is 33 bits. 

 

For example, for a continuous variable xij
(t) such that uj = 1.0 ��xij

(t) ��vj = 7.0, in 

case lx = 6 is chosen, ¨[j will be approximately 0.10 but the accuracy can be 

improved by increasing the lx e.g. for lx = 20, ¨[j will be approximately 0.000006. 

In short, the lx can be chosen as any value to provide enough resolution to a 

continuous design variable depending on the desired level of precision. 

 

Random design generation can be created by using one random number to make 

decision (between 0 and 1) for each of the m digits in a genetic string. But this is 

computationally expensive way, so Huang and Arora (1997) propose the following 

procedure to produce a 30 digit genetic string: 

 

(i)  Generate two double precision numbers, 

(ii) Assuming these two numbers are; 0.876541328301236 and 

 0.168309254654984, then a string of “876541328301236168309254654984” 

 is created. 
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(iii) The first 30 digits of the above string are converted to; 

“111100001000001011001010110110” in which “0” is converted from any 

value between 0 and 4, and “1” from any value between 5 and 9. 

 

6.6 Decoding 

 

The binary substrings are transformed to real or integer valued quantities in order to 

evaluate the quantity of an individual. The decoding process is explained below: 

 

The variation limits of the variable is defined. For a continuous variable, they are 

lower (uj) and upper (vj) bounds. For a discrete variable, a design set is prepared by 

indexing and sorting the possible values in order of their increasing values. So the 

variation limits of discrete design will be the index number of the first and last 

discrete value in the set. These lower and upper bound indexes are indicated by the 

same symbols (uj and vj) for a unified notation. 

 

The binary coding of the variable is assigned to an integer value (Vb) between 0 and 

2lx –1, by using the formula below for conversion of base two numbers to base ten 

numbers. For example, for a substring (1,1,0,0,0,1,0), the Vb will be equal to  

1.26 + 1.25 + 0.24 + 0.23 + 0.22 + 1.21+ 0.20 = 98 

 ∑
−

=
−=

1

0

2.
x

l

k

k

klxb aV         (6.3) 

 

The decoded value of the variable (Vd) is obtained by associating the substrings 

{ } xl0 and {} xl1 to the upper and lower bounds uj and vj , respectively and mapping the 

other substrings linearly in between those two values, using the following decoding 

function, +→ΩΩ INx
t

ij )(: )(  or IR. 
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+==Ω    (6.4) 
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In the equation above, for the substrings { }xl0 and {} xl1 , the Vb will be equal to 0 and 

2lx –1 respectively. Their corresponding decoded values (Vb ) will be uj and vj . For 

a discrete variable, if the product of mapping appears to be a real number, it is 

rounded to a nearest integer. 

 

Example: Assume that the design set includes 75 discrete values. In this case, the 

lower and upper bound indexes will be uj =1 and vj =75. Therefore, a substring 

length of lx = 7 with 27 = 128 possible gene combinations will be adequate to 

designate each of them. For a chosen two substrings: 

xi1
(t)= (1,1,1,1,0,0,0) xi2

(t)= (0,0,1,1,1,0,0) 

Using equation (6.4) the Vb values are calculated as 

Vb1=26 + 25 + 24 + 0.23 =120 

Vb2=24 + 23 + 22 =28 

7KH� GHFRGLQJ� IXQFWLRQ� ��� ZLOO� WKHQ� \LHOG� URXQGHG� YDOXHV� RI�
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indicating that xi1
(t) and xi2

(t) represent the 71st and 17th discrete values in the design 

set respectively. 

 

6.7 Fitness Evaluation 

 

The objective function values of all the individuals in a population are calculated 

and a single numerical fitness value is given to each individual according to how 

good a solution in overall population. The terms fitness and objective functions are 

distinct expressions which should not be confused. Both of them express the quality 

of an individual, but their utilizations in GAs are different. The objective function 

measures the performance of an individual in terms of satisfying the chosen goal. 

The fitness function defines the fitness of an individual as a solution for the required 

problem. The fitness of an individual is dependent and defined with respect to 

whole population (Hasançebi, 2001).  
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6.8 Population Size 

 

The two key parameters are the number of generations and the population size. If 

the population is too small, there will not be sufficient diversity to find the optimal 

solution, the genetic algorithm may converge to a local minimum. If the population 

size is too large, the genetic algorithm may waste computational resource, which 

means that the waiting time for an improvement is very long (Osyczka, 2002). 

 

The most common sizes of population vary from 50 individuals to 500 individuals 

but greater populations can also be used seldomly. 

 

6.9 Objective Function 

 

The solutions which satisfy the constraints must be compared with respect to a 

criterion, in order to find the global optimum. This criterion is called objective 

function. The most commonly used objective function in engineering is the 

minimization of volume or mass. 

 

Objective functions can be very different in different disciplines. Some examples of 

objective functions stated in Nash and Sofer (1996) are running a business to 

maximize the profit or minimize the loss, designing a bridge to minimize weight or 

maximize strength, selecting a flight plan to minimize time or fuel use, etc. 

 

For unconstrained optimization problems, the objective function is capable to assess 

how good a solution of an individual provides. However, in most cases, a practical 

optimization problem has a number of constraints (Hasançebi, 2001). The inclusion 

of constraints introduces infeasible regions to the design space. Quite a large 

number of methods have been developed to handle constraints (Kim&Myung, 1996, 

Michalewics, 1995, Myung&Kim, 1996, Orvosh&Davis 1995). These methods can 

be classified as follows: 
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(i)  Rejecting strategy, 

(ii) Repairing strategy, 

(iii) Modifying genetic operator strategy, 

(iv) Penalty function strategy (Osyczka, 2002). 

 

The last strategy, Penalty Function Strategy, has a universal character and thus it 

is the most often used strategy. This methodology penalizes individuals violating 

constraints, and thus a lower chance is given to these individuals for surviving. In 

this way, the search is carried towards feasible regions of the design space. In this 

strategy, the penalty function is integrated into original objective function to yield a 

newly defined one. A constrained problem is transferred into an unconstrained 

problem by associating a penalty with all constant violations; 

 )()()( )()()( t

i

t

i

t

ic xPenaltyxWxW +=      (6.5) 

where 

)( )(t

ic
xW   : Modified objective function, 

)( )(t

ixPenalty  : Penalty function, 

 

For minimization problems, the penalty is equal to zero in case of no violation, 

otherwise it is a positive value, which is directly proportional to the intensity of 

violation. 

 

Although constraints handling is not a basic component of a GA, it has a profound 

effect on its selection operator. An improper penalty can direct the search to 

infeasible regions of the design space. In the literature, many penalty functions have 

been proposed.  

 

Constraints can be classified as equality and inequality relations. For minimization 

of )( )(t

ixW  subject to constraints )( )(t

ik xg , we transform the constrained objective 

function to the unconstrained form (modified objective function). 
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Minimize ∑
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where 

)( )(t

ixPenalty  : Penalty function, 

r0     : Penalty coefficient 

 

Hasançebi (2001) proposed a new penalty function to enhance the efficiency of 

GAs in terms of convergence reliability and to reduce considerably the effect of 

choice of the parameter set for achieving an efficient search.  
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where 

K   : Constant multiplier coefficient 

c and p  : Self-adaptive parameters, which have a capability to adjust themselves 

 automatically during the search to guide the optimization process. 

 

6.10 Fitness Function 

 

The equation  

 )()()( )()()( t

i

t

i

t

ic xPenaltyxWxW +=       (6.8) 

yields the lowest modified objective function value for the best individual and the 

highest value for the worst individual. In order to arrange the individuals according 

to their scores (highest score is allocated to the best and the worst is a non-negative 

lowest value), a fitness function +→ΦΦ IRxW
t

i ))((: )(  is introduced to 

appropriately transform them to positive real values in consideration of the above 

two criteria.  
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Many fitness functions have been proposed in the literature. A wide range of 

functions from linear transformations to complicated methods working on the basis 

of some population measures are proposed. For example, Goldberg (1989) proposed 

the following one for the minimization problem: 

 [ ] )()()()( )(

minmax

)( t

icc

t

i xWWWx −+=Φ    (6.9) 

where 

max)( cW  : Absolute modified objective function value of best individual at t-th 

generation, 

min)( cW  : Absolute modified objective function value of worst individual at t-th 

generation, 

 

According to the relationship given by (6.9), the individual with the least value of 

the modified objective function has the highest fitness (Kaveh and Abdietehrani, 

2004). 

 

It is possible to use inverse transformations if the modified objective function 

values of all individuals yield positive valued quantities. The one which is proposed 

by Shestra and Ghaboursi(1998) is shown below: 

 
)(

)(
)(

)(
max)(

t

i

ct

i
xW

W
x =Φ            (6.10) 

 

6.11 Fitness Scaling Function 

 

Since initial population is created randomly, at the early generations a genetic 

diversity between the individuals of a population is noticed. So an extensive 

exploration of the design space is achieved. This can be advantageous, but the fact 

that selection mechanism of GA depends on the proportion of their relative 

fitnesses, causes the domination of highly fit individuals to the population. By the 

result of this, the crossover operator produces almost genetically identical child 

individuals and thus exploration capacity of the algorithm reduces. This results in 



 91 

the stagnation of the search process in a local optimum, which is referred to a 

premature convergence in GA terminology. The most used approaches to avoid this 

problem are fitness ranking, fitness windowing and fitness scaling (Beasley et al 

1993) 

 

All these methods try to regulate the distribution of reproductive trials to maintain a 

sufficient genetic diversity in the population. 

 

Fitness ranking method sorts the individuals in order of their fitness scores and then 

allocates reproductive trials deterministically according to this rank (Baker,1985, 

Davis, 1989) 

 

Fitness scaling method performs the same task by narrowing the range of fitness 

values of individuals to gather around the average population fitness. In this method 

the individuals whose fitnesses are below and above the average population, fitness 

are scaled up and scaled down respectively. The fitness scaling function proposed 

by Goldberg (1989) is shown below: 

 ave

ave

avec

ave

ave

ct

i

t

i

CC
xx Φ

Φ−Φ

Φ−Φ
+








Φ

Φ−Φ

−
Φ=Φ

)(

)(

)(

)1(
)()(

max

max

max

)()(
    (6.11) 

where 

maxΦ  : Maximum fitness emerged in the population, 

aveΦ   : Average fitness emerged in the population, 

Cc   : Real  valued scaling factor (typically 2.0). 

 

This transformation sets the ratio of maximum scaled fitness to average scaled 

fitness to Cc, and thus to enable the Cc number of reproductive trials of the best 

individual in the intermediate population during selection. However in case Cc is 

greater than 
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where 
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minΦ   : Minimum fitness emerged in the population, 

 

Equation (6.12) may lead to negative scaled fitness values for some of the worst 

individual. In order to prevent this situation, Shestra and Ghaboussi (1998) 

employed a restriction on the Cc, such that for any generation if ).( ccc CCC δ−> , 

then the Cc is replaced with cc CC .δ−  where cC.δ is a small number (e.g. 0.1) 

which has been introduced to factor in the effect of numerical rounding off. 

 

The fitness scaling function given in Eq.(6.12) results minΦ = 30 , aveΦ = 40 and 

maxΦ = 60 after scaling with Cc=1.5 for the values minΦ = 20, aveΦ = 40, maxΦ = 80. 

 

6.12 Selection 

 

Selection is an operator where an old string is copied into the new population 

according to the string’s fitness which is defined according to the cost function 

value. Selection operator is implemented in terms of the magnitude of fitness. In 

some resources, the term “reproduction” is used in place of selection. These two 

terms are used synonymously, but in this text “selection” is preferred. Since the 

number of individuals of the population through all generations is the same, 

selection mechanism rejects less fitted individuals. Individuals with high fitness 

have higher probability of surviving and ones with low fitness tend to be extinct 

(Tang et al. 2005). The major types of selections are tournament selection, ranking 

selection and proportionate selection (spinning or roulette wheel selection). 

 

In tournament selection, the population is divided into subgroups and the best 

individual from subgroup is chosen for the next generation. Subgroups may contain 

2, 3 or more individuals but the most popular tournament selection is the so called 

binary tournament in which two individuals chosen at random are compared and 

better one passes to the next generation (Osyczka, 2002). This process is repeated � 

number of times. 
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Ranking selection proposes to give ranks to the individuals. The population is 

sorted from the best to the worst chromosomes and the selection probability of each 

chromosome depends on the given rank but not its fitness. Linear ranking and 

exponential ranking methods are used in order to achieve this task (Osyczka 2002). 

 

In proportionate selection, also called roulette wheel selection, the number of 

reproductive trials allocated to individuals is calculated in proportion to their 

relative scaled fitness scores. The selection probability of an individual, Ps(xi
(t)

) is 

defined by  
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where 

aveΦ  : Average scaled fitness of the population 

 ave
t

i

t

is

t

i xxpx ΦΦ== /)()(.).( )()()( µµ     (6.15) 

which is rounded to a nearest integer. 

).( )(t

ixµ  : Number of reproductive trials of individual. 

 

If the proportionate selection scheme is used together with the fitness scaling 

function (6.11), the number of reproductive trials allocated to the fittest individual 

will exactly be Cc (Hasançebi, 2001). 

 

The most widely used selection type approach is roulette wheel selection. As stated 

above, the individuals are assumed to distribute on a simulated roulette wheel with 

respect to their scaled fitness values. The fitter individuals have more chance to be 

selected. The roulette is spinned � number of times to select and reproduce the 

individuals in the intermediate population.  
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The other selection types which are not commonly used are steady-state selection, 

reedy over selection. 

 

6.13 Crossover 

 

Crossover is the main genetic operator. It operates on two chromosomes at a time 

and generates offspring by combining some features of both chromosomes. First the 

parents are selected and randomly mated constituting ��� number of pairs. Two new 

child individuals are produced from a pair.  

 

The simplest crossover type, the single point crossover (one-point crossover) 

chooses a random cutoff point and the portions after the cuts are swapped to form 

two child individuals (Hasançebi, 2001). One-point crossover is illustrated in the 

example below. 

 

Example: A prespecified probability (pc), which is also called crossover rate is 

determined. This is taken in the range of [0, 1.0]. For each pair of individuals, a 

uniform random number (r) is selected in the range of [0, 1] and if this is smaller 

than crossover rate ( r ��pc ) then crossover is performed, otherwise crossover is 

skipped. In this case, the child individuals duplicate their parents straightaway. This 

procedure carries a few parents to the next population and prevents to restrict the 

life span of parents to one generation only. 

 

 Parent 1  1 1 1 1 1 1 0 0 1 1 0     offspring 1  1 1 1 1 1 1 0 0 0 1 1 

 Parent 2  1 0 0 1 0 1 0 0 0 1 1     offspring 2  1 0 0 1 0 1 0 0 1 1 0 

 

One-point Crossover 

 

The other crossover approaches are two-point, multi-point, variable to variable, 

uniform crossover. 

Crossover site 
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Two point crossover is applied by selecting two random positions in a chromosome 

and swapping the two corresponding parts of the parents. Good results are obtained 

in large populations. 

 

In uniform crossover, a pattern (or template) is created randomly. If the gene of the 

pattern is 1, the same gene of the child 1 is taken from parent 1. The same 

procedure is done inversely for child 2. Two-point crossover and uniform crossover 

are presented below 

 

 Parent 1     1 0 0 0 1 0  

 Parent 2   1 1 0 1 0 1 

 Pattern   1 0 1 0 1 0  

Offspring 1  1 1 0 1 1 1   if pattern(i)=1 then offspring1[i]=parent1 [i] else 

offspring1[i]=parent2(i)  

 Offspring 2  1 0 0 0 0 0   if pattern(i)=1 then offspring2[i]=parent2 [i] else 

offspring2[i]=parent2(i) 

 

Uniform Crossover 

 

 Parent 1  1 1 0 0 1 0 0 1 1 1 1 0   offspring 1  1 1 0 0 0 1 1 0 0 1 1 0  

 Parent 2  1 0 0 0 0 1 1 0 0 0 0 1   offspring 2  1 0 0 0 1 0 0 1 1 0 0 1 

 

Two-point Crossover 

 

Hasançebi (2001) proposed two newly developed crossover approaches named 

mixed crossover implementation and direct variable exchange. 

 

The mixed crossover approach uses a combination of single, 2-point and 3-point 

crossovers for selected proportions of generations for a fixed generation number. In 

the direct design variable exchange approach, each design variable is directly and 
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separately exchanged between paired individuals according to an empirical 

probability function. 

 

There are some experimental observations suggesting that two-point and uniform 

crossover exhibit better behaviour than other operators, but there is no theoretical 

proof as to which one is the best.  

 

6.14 Mutation 

 

Mutation is an operator, which produces spontaneous random changes in various 

chromosomes and it introduces some extra variability into the population in order to 

avoid local minima. It also prevents the population from genetic similarity. 

Although it is a secondary GA operator, it can play an important role in the search. 

It can be an explorative operator by moving the search into regions of the solution 

space it may never reached (Pezeshk et al. 2000).  

 

Mutation rate ( pm ) is kept less than 0.01 and typically is between 0.001 and 0.005. 

High mutation rate can cause the loss of information obtained so far, and damage on 

genetic structures of child individuals. 

 

It controls the rate at which new genes are introduced into the population. If the 

mutation rate is too low, many genes that might be useful are never tried out. On the 

other hand, if the mutation rate is too high, there will be much random perturbation 

and the offspring will lose their resemblance to the parents. This means that the 

genetic algorithm will lose its ability to learn from the history of the search 

(Osyczka, 2002). 
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6.15 Elitist Strategy 

 

This strategy is not a genetic operator, but it increases the productiveness of GAs. 

De Jong (1975) proposed to preserve the best individuals generated up to time t. In 

other words, elitist strategy depends on the basis of survival of the best feasible 

individual obtained so far. At the end of each generation, the best feasible 

individuals of the parent and child populations are determined with respect to their 

objective function values and feasibilities. For the constrained problems; best 

feasible individuals must be satisfied 0)( )( =t

ixPenalty  

.min)()( )()( →= t

i

t

ic xWxW  

 

The feasible best of the parent population replaces the worst individual of the child 

population. By this way, the best feasible individual is kept on alive until a new but 

better one emerges. The most valuable search experience is prevented to be lost and 

it leads to a non-increasing curve of the best feasible individual during successive 

generations (Hasançebi, 2001). 

 

In some resources, this strategy is presented as “leader of the population”. At each 

generation the member having the lowest cost function value (for minimization 

problems) among the entire population is defined as the “leader” of the population. 

This value is transferred to the next generation automatically. It is safe-guarded 

from extinction due to genetic operators. On benefit of using a leader is that the best 

cost function value of the population can never increase from one iteration to 

another, and some of the best “genes” can always survive (Huang and Arora, 1997). 

 

6.16 Constraint Handling in GAs 

 

GAs are used to solve unconstrained optimization problem, but generally, 

optimization problems are subject to constraints. The integration of constraints into 

GAs is accomplished by the use of penalty functions. The solutions which are out of 

the feasible domain are penalized using a penalty coefficient. In other words, a 
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constrained optimization problem is transformed to an unconstrained problem by 

associating penalty with all constraint violations. 

 

6.17 Penalty Function Approach  

 

The most widely used constraint handling method is penalty function approach. As 

previously discussed, the constrained problem is transformed into an unconstrained 

one by defining a new objective function. This technique is also commonly used in 

conventional optimization. In conventional optimization, the penalty technique is 

used to generate a sequence of infeasible points whose limit is an optimum solution 

to the original problem. In GAs this technique is used to keep a certain amount of 

infeasible solutions in each generation so as to enforce genetic search towards an 

optimal solution. In other words, infeasible solutions are not rejected (Gen and 

Cheng, 1997). But adding a penalty term to the fitness of an infeasible point causes 

that its fitness never attains that of a feasible point (Cheng and Li, 1997). 

 

Many researchers believe that penalty functions should be harsh, so that the GA will 

avoid the forbidden spaces. However, the foundation of GA research states that a 

GA optimizes by combining partial information from the population. Therefore, 

infeasible solutions may provide some useful information. If the penalty is too 

large, the design process may converge too quickly, not allowing the GA to exploit 

various combinations of strings. If the penalty is too small, the convergence process 

may be too slow and computational costs could be high (Pezeshk et al 2000). 

 

For maximization problems, penalty function results values less than zero to reduce 

the modified objective function. For minimization problems, the inverse is done. So 

the penalized solutions are maximized with respect to degree of violation. 

 

In general, penalty functions can be classified into two classes: constant penalty and 

variable penalty. 
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The constant penalty approach is less effective for the complex problems and 

variable penalty approach is a much more promising strategy (Gen and Cheng, 

1997). 

 

In general, the variable penalty approach contains two components: 

(i)  Variable penalty ratio, 

(ii) Penalty amount for the violation of constraints 

 

The variable penalty ratio can be adjusted according to: 

(i)  The degree of violation of constraints, 

(ii) The iteration number of genetic algorithms. 

 

The degree of violation of constraints approach increases the penalty pressure as the 

violation becomes severe which leads to the class of static penalty. Second 

approach (the iteration number of genetic algorithms) increases the penalty pressure 

along with the growing of evolutionary process, which loads to the class of dynamic 

penalty. 

 

Essentially, penalty is a function of the distance from feasible area. Some penalty 

function methods used in GAs for solving non-linear programming are introduced 

below: 

  

6.17.1 Homaifar, Qi and Lai’s Method 

 

=)( )(t
ixPenalty

  0      if xi
(t) is feasible 

        ∑ )(. )(2 t

iii xgr   otherwise 

 

)()()(

,......2,1:0)(

)(min

)()()(

)(

)(

t

i

t

i

t

ic

t

ii

t

i

xPenaltyxWxW

mixg

xW

+=

≥     (6.16) 



 100 

The penalty function is constructed with two components  

 

(i)  variable penalty factor  

(ii) penalty for the violation of constraints. 

where 

ri : a variable penalty coefficient for the i-th constraint. 

 

6.17.2 Joines and Houck’s Method 

 

Joines and Houck proposed the following penalty function model; 

∑
=

=
m

i

t

ik

t

i xgtrxPenalty
1

)(

0

)( )().()( βα     (6.17) 

where 

)(t

ix    : i-th individual of the population at t-th generation, 

)( )(t

ik xg  : k-th constraint amongst a total number of m constraints (zero in case 

     of no violation), 

α).( 0 tr   : Parameters used to adjust the scale of penalty value, 

0r    : Penalty coefficient, 

βα ,    : Parameters used to adjust the scale of penalty value. 

For βα ,,0r the values 0.5, 2 and 2 are recommended respectively. 

 

6.17.3 Hasançebi Method 

 

Hasançebi (2001) modified the Joines and Houck’s penalty function as shown 

below: 

 ∑= ]).([).()( )(2
0

)(
kxgtrxPenalty

t

ik

t

i      (6.18) 

k : Constraint multiplier parameter, 
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Such a modification is thought to be necessary since the normalized constraints are 

used in optimization problems in order to distribute equal and fair penalty for 

violation of constraints. The penalty given to individuals in Joines and Houck’s 

method becomes very small due to normalized constraints. Hasançebi (2001) 

suggested the value of 10 for k parameter. In this way, it was observed that the 

penalty function combines the two requirements of exploration and exploitation in a 

balanced manner. 

 

6.18 Formulation of Size Optimum Design Problem of Truss Structures 

 

A general discrete sizing structural optimization problem is mathematically defined 

as follows: 

 

 Find a vector of cross-sectional areas, 
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where 

A  : A vector of cross-sectional areas, 

S  : Available list, 

W(A) : Objective function (weight of the structure), 
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!i  : Unit weight of i-th member, 

Li  : Length of i-th member, 

As  : Cross-sectional area of i-th member, 

Nm : Total number of structural members, 

Nj  : Total number of nodes, 

gi(A) : Stress constraint of i-th member, 

hi(A) : Stability constraint of i-th member, 

ui,k(A): Displacement constraint at the j-th node in the k-th direction, 

1i  : Stress in the i-th member, 

1i
a
  : Allowable stress in the i-th member, 

Hi  : Slenderness ratio in the i-th member, 

Hi
a : Allowable slenderness ratio in the i-th member, 

Uj,k : Displacement at the j-th node in the k-th direction, 

Uj,k
a : Allowable displacement at the j-th node in the k-th direction, 

 

It is stated before that the most preferred technique to handle constraints in GA 

optimization problems is penalizing strategy. In this technique, a modified objective 

function is defined by adding the penalty function into the original objective 

function. But the general approach is to use normalized constraints in order to 

provide an equal and fair penalty distribution for different types of constraint 

violations. So the constraints defined above are rearranged as below (Hasançebi, 

2001): 
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CHAPTER 7 

 

 

SIMULATED ANNEALING 

 

 

 

7.1 Introduction 

 

Simulated annealing is a combinatorial optimization technique. The idea for 

simulated annealing method comes from thermodynamics and metallurgy. When 

the metal is cooled very slowly, it tends to solidify in a structure of minimum 

energy. Annealing is the physical process of heating up a solid and then cooling it 

down slowly until it crystallizes. The atoms in the material have high energies at 

high temperatures and have more freedom to arrange techniques. As the 

temperature is reduced, the atomic energies decrease. A crystal with regular 

structure is obtained at the state where the system has minimum energy (Pham and 

Karaboga, 2000). 

 

So the analogy between physical state of atoms and optimization problem is 

established. In this method, the aim is to bring a physical system to a state of 

minimum energy level by rearranging its atomic configuration. If the cooling is 

carried out very quickly, rapid widespread irregularities and defects are formed in 

the (quenching) crystal structure. The system does not reach the minimum energy 

level. In order to make the system attain minimum energy, it has to be cooled down 

slowly. 
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“The Metropolis Algorithm”, a paper by Metropolis et al (1953), was published to 

simulate the cooling of material in a heat bath. He used the principles of statistical 

mechanics, Boltzman distribution and transition probability. In 1983 Kirkpatrick et 

al used the Metropolis algorithm to search for the best among feasible solutions of 

an optimization problem. 

 

Although it is very simple to implement, it can be quite powerful. This technique 

has been used on a wide range of problems like traveling salesman problem, 

scheduling, storage optimization, circuit design problems, structural optimization, 

etc. 

 

The implementation of simulated annealing is similar to traditional techniques; only 

one design point is generated at a time. It sometimes gives better ability to locate 

global optimum as compared to the GAs. 

 

The most popular advantage of simulated annealing is the prevention of entrapment 

in a local optimum. It also has an enhanced capability to employ a very exploitative 

search in appropriate design regions. On the other hand, it is easier to be 

computerized as compared to other techniques (including GAs). Although it 

requires more evolutions on objective function, it is faster than GAs. 

 

Some other features of simulated annealing are as follows: 

 

(i) The quality of the final solution does not depend on the initial guesses, but 

worse starting designs increase the computational effort. 

(ii) Similar to GAs, the convergence or transition characteristics are not affected 

by the continuity and differentiability of the functions, due to discrete nature 

of the function and constraint evaluations. 

(iii) The convergence is also not effected by the convexity of the feasible space. 

(iv) It is not necessary that the design variables are negative. 
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(v)  The method can be adapted to solve mixed-integer, discrete or continuous 

 problems. 

(vi) For constrained problems, an equivalent unconstrained function can be 

formulated as in the case of GAs (Rao, 1996). 

 

7.2 Simulated Annealing Process 

 

Metropolis and his colleagues introduced a simple algorithm that was mimicked 

from annealing process in thermodynamics. Their proposed algorithm is based on 

Monte Carlo techniques which are explained below: 

 

Assume a current state Si of the solid with energy Ei. A new state with subsequent 

state Sj and energy Ej is generated by applying a perturbation mechanism. This 

perturbation causes to form a new energy state of the solid. This perturbation is 

done by randomly selecting a particle and displacing it by some random amount. 

 

If the energy of the new state is lower than the energy of the current state 

)0( ≤−=∆ ij EEE  then the displacement is accepted and the current state becomes 

the new state. If the energy of new state is higher )0( >−=∆ ij EEE  then the state 

Sj accepted with a certain probability. This is given by: 

 

 Prob
)

.
(

)( tK

E

eaccept

∆
−

=         (7.1) 

 

where 

K : Boltzman constant, 

t : Current temperature,  

û(: Difference of energy levels, Ej-Ei 

 

Boltzman constant is sometimes used as constant number but generally it is taken as 

average difference of energy levels, ¨(ave. 
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This procedure is repeated a large number of times at the same temperature, in order 

to bring the system to thermal equilibrium. The acceptance criterion defined above 

is known as the Metropolis step and the procedure is known as the Metropolis 

algorithm. At high temperatures, the acceptance probability converges to 1 for all 

energy states according to equation (7.1). As seen from the equation, the probability 

of accepting a worse move is a function of both the temperature of the system and 

the change in the cost function. When the temperature drops, the probability of 

accepting a worse move is decreased. If the temperature drops to a value around 0, 

only better moves are accepted which effectively makes simulated annealing act 

like hill climbing. 

 

30 years after the idea of Metropolis was introduced, a correspondence between 

annealing and optimization was established by Kirkpatrick et al (1983) and Cerny 

(1985) independently. They found the similarities listed below between these two 

different phenomena (Hasançebi, 2001): 

 

(i)  The solutions in optimization are identical to the states in the physical system, 

(ii) Cost or objective function of an optimization problem is analogous to the 

 energy level of a state, 

(iii) The current and candidate states are equivalent to the current and 

neighborhood  solutions in an optimization problem, 

(iv) The temperature is a control parameter of optimization process, 

(v)  The globally and locally minimum energy states correspond to global and 

 local  optimum respectively. 

 

7.3 The Algorithm 

 

The basic idea of the method is to generate a random point and evaluate the 

problem functions. If the trial point is infeasible, it is rejected and a new trial point 

close to the first one is generated. If this point is feasible and the cost function is 

smaller than the current best record, then the point is accepted as the best value. If 
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the trial point is feasible but the cost function is higher than the best value, it is not 

rejected immediately. A test called Metropolis test is executed. A random number is 

generated. If this number is smaller than the number found by Metropolis test, this 

value is accepted as the best value even though it is not actually. If the randomly 

generated number is higher than the number of Metropolis test, it is rejected. During 

the algorithm, a temperature parameter is used. Then this temperature is reduced 

slowly (called cooling schedule). Since the Metropolis test depends on this 

temperature value, the acceptance probability decreases to zero as the temperature is 

reduced. This means that the algorithm is likely to accept worse designs in the 

initial stages. But in the final stages, the worse designs are almost always rejected. 

So this strategy avoids getting trapped at a local optimum (Huang and Arora, 1997).  

 

The main steps of SA are listed below: 

 

(i)  Start with an initial solution and call it current solution. 

(ii) Generate a neighboring solution. 

(iii) If the new solution gives better objective cost, accept it and replace the 

 current solution by the new one. 

(iv) Otherwise, accept it with a certain probability. 

(v)  In the beginning, worse solutions are quite likely to be accepted. 

(vi) The chance of worse solutions being accepted reduces as the algorithm goes. 

 Towards the end, worse solutions are less likely to be accepted. 

 

In designing the cooling schedule, initial temperature, temperature reduction rule, 

number of iterations at each temperature and a stopping criterion must be specified.  

 

7.4 Advantages of Simulated Annealing Over a Local Search Algorithm 

 

SA handles only one possible solution at each time. So it is different from GAs 

which execute the individuals of a population. But SA is similar to local search 

algorithm to some extent. SA and local search algorithm both start with a randomly 
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created solution. The next trial (candidate solution) is generated in the close 

neighborhood of the current solution. The objective function values are calculated 

and compared for two possible solutions. If the candidate solution gives a better 

value of objective function then this solution is replaced to the current solution 

without any investigation. The procedure explained above is approximately the 

same with the local search algorithm. But the main difference starts from this point. 

If the candidate solution has a worse objective function value, this value is not 

rejected at first. On the contrary local search algorithm allows only downhill moves, 

so rejects the poorer solution. In SA, the candidate solution with a worse objective 

function value is tested by Metropolis test. In this test, the probability of accepting a 

poor candidate solution is given by tKW
eP

./∆−= where K is the Boltzman parameter. 

The generated random number ( r ) in the range [0,1] is compared with probability 

of acceptance. If the generated random number is lower (or equal to) than the 

acceptance probability (P � r), this poor design is accepted. Otherwise ( r > P ) it is 

rejected. 

 

At early stages of the optimization process, the acceptance probability is high due to 

the high value of the temperature. This leads uphill moves and prevents getting 

stuck in local optima. As the temperature drops (cooling) the acceptance probability 

is lowered. At very low temperatures the algorithm becomes greedy which allows 

only downhill moves for minimization problems. 

 

The main deficiencies of the method are the unknown rate at which the target level 

is to be reduced, and the uncertainty in the total number of trials and in the number 

of trials after which the target level needs to be reduced (Huang and Arora, 1997). 
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7.5 Stages of the Procedure 

 

7.5.1 Cooling Procedure 

 

Annealing (cooling) procedure of a simulated annealing algorithm consists of four 

components. These are listed below: 

 

(i)  Starting temperature, 

(ii) Final temperature, 

(iii) Temperature decrement, 

(iv) Iterations at each temperature. 

 

These components will be discussed below in detail. 

 

7.5.2 Starting Temperature 

 

The starting temperature must be hot enough to allow a move to almost any 

neighborhood state. If this is not done then the ending solution will be the same or 

very close to the starting solution. 

 

On the other hand, if the starting temperature is too high then the search can move 

to any neighborhood and thus transform the search into a random search. 

 

There is no specific method for finding a suitable starting temperature for a whole 

range of problems. Some different methods are offered for various cases in 

literature. One of the methods which is used widely is explained below: 

 

Assume P
s as acceptance probability of candidate design at the start, then the 

acceptance probability: 

 
s

tK

E
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∆
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==         (7.2) 
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which is known as Metropolis test (explained before). 

 

For the first poor candidates at the starting temperature, the Boltzman parameter 

will be equal to aveE∆ .K is the running average of E∆ . 

 EKtt s ∆==        (7.3) 

 

Substituting eq.(7.3) into eq.(7.4) leads to 
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        (7.4) 

 

So the starting temperature depends on the starting acceptance probability, 

according to eq.(7.4). If larger values of starting acceptance probability are selected, 

the starting temperature will be high. It is generally chosen in the range of            

[0.5 , 0.9]. For value of Ps=0.5, ts will be 1.44, and for Ps=0.90, ts = 19.49. 

 

Rayward- Smith (1996) suggested to start with a very high temperature and cool it 

rapidly until about 60 % of most solutions are being accepted. This forms the real 

starting temperature and it can now be cooled more slowly. A similar idea, 

suggested by Dowsland (1995) is to heat the system rapidly until a certain 

proportion of worse solutions are accepted and then slow cooling can start. This can 

be seen to be similar to how physical annealing works in that the material is heated 

until it is liquid and then cooling begins. 

 

7.5.3 Final Temperature 

 

The method used in deriving the starting temperature can be repeated to get the final 

temperature. Again the formulation is used as below: 
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The formula depends on the final acceptance probability. In this way, the final 

acceptance probability is equated to small values and it is found a value around 0. 

For example, Pf=1X10-6 leads a final temperature of tf=0.072. 

 

7.5.4 Temperature Decrement 

 

When we decide the initial and final temperatures, the next step is to find the 

decrement of the temperature. For general optimization problems, temperature is an 

arbitrary parameter with the same units as the cost function. The way in which we 

decrease the temperature is critical to the success of the algorithm. SA theory states 

that enough iteration should be allowed at each temperature so that the system 

stabilizes at that temperature. Unfortunately, theory also states that the number of 

iterations at each temperature to achieve this might be exponential to the problem 

size which is impractical.  

 

So there are some proposals to select the temperature increment. One way to 

decrease the temperature is a simple linear method. 

 
)()1( . cc

tft =+
         (7.6) 

where 

)1( +c
t  : Temperature of next cooling cycle, 

)(c
t   : Temperature of previous cycle, 

f   : A factor less than 1. 

 

By the experience, f is used between 0.8 and 0.99 with better results being found in 

the higher end of the range. The higher the value of f, the longer it will take to 

decrease the temperature to the stopping criterion. 

 

Assume that the total of Nc cooling cycles is preceded. This means that the 

temperature is reduced Nc-1 times throughout the process. So the equation is found; 

 1−= cNsf ftt         (7.7) 
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So substituting 
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From this equation, it is seen that temperature decrement is very sensitive to the 

number of cooling cycles. A small value of cooling factor obtained with low values 

for Nc can cause a rapid cooling schedule (quenching phenomenon in actual 

annealing analogue). On the contrary, a large value of Nc will give better result with 

careful annealing. But this can cause a heavy computational effort. 

 

Balling (1991) and Bennage and Dhingra (1995) proposed that Nc= 200 and 300 are 

appropriate values for a careful annealing, preventing a premature solution. 

 

Huang and Arora (1997) propose the following temperature reducing scheme; ts= 

max (10000, TCOST), if K= 0; and tK= 0.9 tK-1, if K �� ��� ZKHUH� ts and tK are, 

respectively, the initial (starting) temperature and the temperature at the K-th 

iteration (an iteration here implies a design search process in which the temperature 

remains unchanged), K is the iteration number, and TCOST is the approximated 

value of the cost function which is estimated by the minimum cost of 10 randomly 

generated feasible points.  

 

7.6 Candidate Design 

 

In SA, only one point is generated at a time and the next point is generated within a 

certain neighbourhood of the current point. Thus, although SA randomly generates 

design points without the need for function or gradient information, it is not a pure 

random search within the entire design space. At early stage, a new point can be 

located far away from the current point to speed up the search process and to avoid 

getting trapped at a local minimum point. After the temperature decreases, the new 
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point is usually created nearby in order to focus on the local area (Huang and Arora, 

1997).  

 

In the original Metropolis algorithm, a candidate state is formed by changing the 

position of a single atom at random by a slight amount. This stage is stated as 

perturbation in SA. Since a severe perturbation may not result a neighboring 

solution, only a single variable of the current solution is randomly altered. 

 

This is done for a selected variable as follows: First, it is decided a perturbation 

value. This value is chosen at random in an interval, which comprises the former 

and latter /�discrete neighbor values in the design set. If we name the current design 

set as V
c, the set of possible discrete values that the variable can assume in the 

candidate design will be in the interval, 

 

 [ ]δδ ++−−∈ cccca VVVVV ,......,1,1,.....,     (7.9) 

 

The candidate is formed by taking the new value of this variable and retaining the 

values of others same as in the current design. 

  

The value of / is under discussion. Balling (1991) has used a value of /=2 in a 

discrete optimization problem consisting of 81 and 46 discrete values. Bennage and 

Dhingra have used 6 and 9 for two design sets of 30 and 42 discrete values, 

respectively. Quinn and Izzuddin (1998) claim that the optimum design improves in 

case of / is taken as half of the total number of discrete values in the design set. 

 

Huang and Arora (1997) proposed the following method to generate a new design 

point: 

 

 

 

 



 115 

Let z be a random number uniformly distributed in 0 and 1. 

 

(i) For continuous variables; 
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where  

)(a

ix  : The new (candidate) design for the i-th variable, 

)(c

ix  : The current design for the i-th variable, 

iLx  : The lower bound for the i-th variable, 

iUx  : The upper bound for the i-th variable, 

α   : Step size calculated as ))9.0(2.0,01.0max( 1−= Kα , where K is the iteration 

number. 

 

(ii) For discrete variables; 

If the current design point has the m-th discrete value for the i-th variable (i.e. 

))(
im

c

i dx = , then the new value for the i-th variable becomes ij

a

i dx =)(
, where 

j=min (qi, m+J), if z ������RU�j=max (1, m-J), if z > 0.50. The integer J is calculated 

as J= max (1, INT (0.2 (0.9)K-1
 qi)), where INT (x) denotes the integer part of x, and 

qi is the number of discrete values for the i-th variable. 

 

7.7 Iteration of Inner Loop 

 

Another decision we have to make is how many iterations we have to make at each 

temperature. The success of SA algorithm depends on the attainment of thermal 

equilibrium at different temperatures during the cooling cycles. This thermal 

equilibrium is constituted with the iteration number. While a high number of 

iterations result in a very high degree of computational burden, a low number of 

iterations may not be sufficient to bring the system to the thermal equilibrium. 

Bennage and Dhingra (1995) noticed that the algorithm might easily avoid local 
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optima and reach thermal equilibrium under the influence of high values of 

acceptance probabilities in the early stages of optimization. However, especially 

towards the latest stages design transitions are quite restricted and escaping from 

local optima is only possible through an extensive neighborhood sampling. So the 

iteration number is kept low at the start, and it is increased gradually as cooling 

proceeds. 

 

 

The formula proposed for iteration number is shown below: 

 
















−
−

−+=
sf

f
sff

tt

tt
IIIroundI )(         (7.12) 

where 

sI   : Iteration number of the inner loop at the starting temperature, 

fI   : Iteration number of the inner loop at the final temperature, 

st   : Starting temperature, 

f
t   : Final temperature, 

sI  =1 and ]6,3[∈fI  are recommended. 

 

Using these values the iteration number I of the inner loop at a particular 

temperature (t) is calculated as in eq.(7.13). 

 

Another method, first suggested by Lundy (1986) is to do only one iteration at each 

temperature, but to decrease the temperature very slowly. The formula used is;  

 ).1/( ttt β+=            (7.13) 

where 

β   : Suitably small number, 

t   : Temperature. 
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7.8 Constraint Handling 

 

SA is an unconstrained optimization technique, similar to GAs. In order to solve a 

constraint optimization problem, two approaches are proposed. Balling (1991) 

proposed to disregard the infeasible designs automatically and to carry out only in 

the feasible regions of design space. Second approach as Bennage and Dhingra 

(1995) proposed is the use of a penalty function introducing to unconstrained 

objective function to define a modified (constrained) objective function. In this 

method, the search is not restricted to the feasible regions, but infeasible solutions 

are penalized. Penalty function method has superiorities over the first approach. 

These are listed below: 

 

(i)  If the starting solution is far away from the optimum, using both feasible and 

infeasible regions makes the algorithm reach the optimum much faster. 

(ii) Diverting the search process temporarily to infeasible regions avoids getting 

trapped in a local optimum. 

(iii) For the case where the optimum is located very close to infeasible regions, 

approaching to the optimum from the infeasible regions is possible and 

sometimes more advantageous.  
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CHAPTER 8 

 

 

NUMERICAL EXAMPLES 

 

 

 

In this chapter, seven numerical examples are studied using genetic algorithm and 

simulated annealing techniques. Practical design load cases are used in the first 

three problems according to “ASCE 7-98 Minimum Design Loads for Buildings 

and Other Structures”. In fact, the use of five basic load combinations is stipulated 

in ASCE 7-98 for Allowable Stress Design (ASD), as follows: 

 

 1. D               (8.1) 

 2. D + L + F + H + T + (Lr or S or R)    (8.2) 

 3. D + (W or 0.7 E) + L + (Lr or S or R)   (8.3) 

 4. 0.6 D + W + H          (8.4) 

5. 0.6 D + 0.7 E + H         (8.5) 

 

where 

D : Dead load 

E : Earthquake load 

F : Load due to fluids with well-defined pressures and maximum heights 

H : Load due to lateral earth pressure, ground water pressure, or pressure of bulk 

  materials 

L : Live load 

Lr : Roof live load 
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R : Rain load 

S : Snow load 

T : Self-straining force 

W : Wind load 

 

The forth test problem is taken from the literature for comparison purposes. Finally, 

in the last three examples, the effect of rise-to-span ratio on the optimum design is 

investigated, in addition to double layer domes. 

 

8.1 354-Bar Dome (Height of 4.34 m.) 

 

The design of an auditorium building with a capacity of 500 people, which is 

assumed to locate in Nebraska will be achieved. It is circular in plan view. It has a 

diameter of 40 m. The building consists of two parts; the main part which is 

reinforced concrete, and the roof part which is a pin-connected type steel dome with 

354 members and 127 joints. The total height of the building is 14.34 m., and the 

height of the steel dome is only 4.34 m. The plan and side views of the building are 

shown in Figures 8.1 and 8.2. The top view, side view and 3-dimensional view of 

the steel dome are presented in Fig.8.3 through 8.5. 

 

 

 

 

 

    

 

 

  Fig.8.1. Top View (354-Bar)      Fig.8.2. Side View (354-Bar) 
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As highlighted in the preceding chapters, two important loads for dome structures 

are wind and snow loads. Therefore, here these two loads will be calculated 

according to the design code, ASCE 7-98.  

 

Fig.8.3. Top View of 354-Bar Dome (Given Member Numbers) 

 

 

Fig.8.4. Side View of 354-Bar Dome 

4.
34

 m
. 

40 m. 
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Fig.8.5. 3-D View of 354-Bar Dome 

 

 

8.1.1 Wind Load (Analytical Procedure) 

 

The design procedure explained in part 6.5.3. of ASCE 7-98 is followed.  

 

Basic Wind Speed V for Nebraska is taken from Figure 6.1 of ASCE 7-98. 

 V= 40 m/s  (90 mph) 

 

Wind Directionality Factor Kd is taken from Table 6.6 of ASCE 7-98. 

 Kd = 0.85   (for arched roofs) 

 

Importance Factor I for the building is determined as 1.15 from Table 6.1 of 

ASCE 7-98. 

 I = 1.15  (for building category III) 
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Exposure Category is assumed as C from the definitions given in part 6.5.6 of  

ASCE 7-98. 

 

Velocity Pressure Exposure Coefficient Kz is taken from Table 6-5 of ASCE 7-98. 

The mean height of the roof is 12.17 m. (40 feet).  

 Kz = 1.04  (for exposure C and 40 ft height) 

 

Topographic Factor Kzt is calculated from 2
321 )1( KKKK zt += where K1 , K2 , K3 

are taken from Fig.6.2 of ASCE 7-98. 

It is assumed that there are a 2-D ridge with H/Lh= 0.30, 3-D escarpment with x/Lh 

= 1.00 and 2-D ridge with z/Lh = 0.40 in the general topology, where 

H : Height of the hill or escarpment relative to the upwind terrain , in meter, 

Lh : Distance upwind of crest to where the difference in the ground elevation is 

 half the height of the hill or escarpment, in meter, 

K1 : Factor to account for shape of topographic feature and maximum speed-up 

 effect, 

K2 : Factor to account for reduction in speed-up with distance upwind or 

 downwind of  crest, 

K3: Factor to account for reduction in speed-up with height above local terrain, 

x : Distance (upwind or downwind) from the crest to the building site, in meter, 

z : Height above local ground level, in meter, 

 K1 = 0.43,  K2 = 0.33,   K3 = 0.30  (from Fig.6.2 of ASCE 7-98) 

 2)30.033.043.01( xxK zt += =1.087 

 

Gust Effect Factor G is found as 0.85 directly by assuming the structure as rigid. 

 G = 0.85 

 

Enclosure Classification is assumed as enclosed, since all lateral and upper parts 

of the building are closed and subjected to wind pressure directly. 

 

Velocity Pressure is calculated by using the equation given in ASCE 7-98. 
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IVKKKq dztzz

2...613.0=  (N/m²)  (8.6) (Eq. 6-13 of ASCE 7-98) 

 15.1)40(85.0087.104.1613.0 2 xxxxxq z =  

 qz = 1084 N/m²  

 

Internal Pressure Coefficients GCpi are found as +0.18 and –0.18 for enclosed 

buildings from Table 6.7 of ASCE 7-98. Two signed values (positive and negative) 

are used according to the code. Plus and minus signs signify pressures acting 

towards and away from the internal surfaces. 

 

External Pressure Coefficients Cp are found from Table 6.8 of ASCE 7-98. The 

dome is assumed to be separated into three parts, such as windward quarter, center 

half and leeward quarter. Three different external pressure coefficients for these 

three parts of the dome are calculated with respect to rise-to-span ratio. The rise-to-

ratio, r is 4.34/40=0.10 for the building considered above.  

 Cp = - 0.9           (for windward quarter) 

 Cp = -0.7 - r  = -0.7 - 0.1= - 0.8  (for center half)  

 Cp = - 0.5           (for leeward quarter) 

 

Main Force Resisting Systems 

Design wind pressure is calculated as follows: 

 )( piip GCqqGCp −=   (N/m²)   (8.7)  (Eq.6-15 of ASCE 7-98) 

where 

q  = qh for roofs, evaluated at height h, 

qi  = qh for roofs of enclosed buildings, 

G  : Gust effect factor, 

Cp  : External pressure coefficient from Fig.6-3 or Table 6-8 of ASCE 7-98, 

(GCpi): Internal pressure coefficient from Table 6-7 of ASCE 7-98. 

 

For windward quarter  

 

 p = 1084 x 0.85 x (-0.90)- 1084 x (±0.18) =  

- 1024 N/m² 
 
 
- 634 N/m² 
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For center half 

                   

 p = 1084 x 0.85 x (-0.80)- 1084 x (±0.18) =  

 

For leeward quarter  

 

 p = 1084 x 0.85 x (-0.50)- 1084 x (±0.18) =  

 

 

Notice that all the forces is negative, meaning that they act away from the surface 

(suction). This is due to the low height of the dome. According to Table 6-8 of 

ASCE 7-98, the domes which have rise-to-span ratios larger than 0.2 have positive 

wind pressure while the ones which have rise-to-span ratios less than 0.2 have 

negative wind pressures. These results are compatible with the wind tunnel test 

results presented in Fig.3.12 and 3.13. 

 

8.1.2 Snow Loads 

 

The equation given in ASCE 7-98 for snow load calculations is given below; 

 gtef pICCp ....7.0=    (8.8) (Eq.7-1 of ASCE 7-98) 

where 

pf  : The snow load on a roof with a slope equal to or less than 5°, 

Ce  : Exposure factor, determined from Table 7-2 of ASCE 7-98, 

Ct  : Thermal factor, determined from Table 7-3 of ASCE 7-98, 

I  : Importance factor, determined from Table 7-4 of ASCE 7-98, 

pg  : Ground snow load, determined from Fig.7-1 and Table 7-1 of ASCE 7-98. 

 Ce = 0.9    (for exposure category C and fully exposed roof) 

 Ct = 1.0    (for structures except as indicated in Table 7.3) 

 I = 1.10  (for building category III) 

 pg = 25 lb/ft²  (1.1975 kN/m²) (for Nebraska) 

 1975.110.10.190.07.0 xxxxp f = =0.830 kN/m²  

- 932 N/m² 
 
 
- 542 N/m² 
 

- 656 N/m² 
 
 
- 266 N/m² 
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Tangent of vertical angle from eaves to crown= 4.34 / 20= 0.217  Angle=12.2Û 
Since the vertical angle exceeds 10Û�� WKH�PLQLPXP�DOORZDEOH� YDOXHV�RI�pf do not 

apply. Using pf=0.830 kN/m² and formulation for sloped-roof load yields; 

 fss pCp =    (8.9) (Eq.7-2 of ASCE 7-98) 

where 

ps  : The sloped-roof snow load, 

Cs  : Roof slope factor, 

pf  : The snow load on a roof with a slope equal to or less than 5°. 

 

 

 

                   By geometry, the slope  

                   at the eaves is 24.5Û� 
 

Fig.8.6. Side View of The Dome (354-Bar) 

 

 

From Fig.7.2a of ASCE 7-98, Cs = 1.0 until slope exceeds 30Û��WRWDO�OHQJWK�RI�WKH�
roof in this problem). 

 Cs  = 1.0  (from Fig.7-2 and Fig.7-3 of ASCE 7-98 for a roof slope of 24.5°) 

 ps = 0.830 kN/m²  (balanced load) 

 

Unbalanced Snow Load (from Fig.7-3 of ASCE 7-98) 

Since the vertical angle from the eaves to the crown is greater than 10Û�DQG�OHVV�WKDQ�
60Û�� WKH� XQEDODQFHG� VQRZ� ORDGV� PXVW� EH� FRQVLGHUHG�� 7KH� XQEDODQFHG� ORDGV� DUH�
calculated according to the formulation for case 1 (slope at eaves < 30°) given in 

Fig.7-3 of ASCE 7-98. 

Unbalanced load at crown; 

 = 0.5 * pf = 0.5 * 0.830 = 0.415 kN/m² 

Unbalanced load at eaves; 

 = 2 * pf = 2 * 0.830 = 1.660 kN/m² 

4,34 m. 

20 m. 

24.5Û 
Tangent line 
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                   Fig.8.7. Unbalanced Snow Load (354-Bar) 

 

 

8.1.3 Dead Load 

 

Sandwich type aluminium cladding is used. The dead load of this cladding 

(including frame elements to be used for girts) is taken as 200 N/m². 

 

8.1.4 Roof Live Load 

 

Roof live load can be taken as 900 N/m² to take into account the weight of the men 

climbing on the roof. But this load is compensated by snow load since roof live load 

and snow load cannot be acted at the same time. 

 

8.1.5 Combined Loaded Case 

 

Six load cases are considered as shown below; 

1. D + S (balanced) 

2. D + S (unbalanced) 

3. D + W (taken internal pressure coefficient as positive) + S (balanced) 

4. D + W (taken internal pressure coefficient as negative) + S (balanced) 

5. D + W (taken internal pressure coefficient as positive) + S (unbalanced) 

6. D + W (taken internal pressure coefficient as negative) + S (unbalanced) 

 

These load cases are shown schematically in Fig.8.8 through Fig.8.11. Note that 

these figures are not to scale. 

WIND 0.415 kN/m² 1.660 kN/m² 

Eaves       Crown       Eaves 
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    Fig.8.8 Load Case 1 of 354-Bar Dome (h=4.34 m) 

 

 

 

 

 

 

 

 

 

    Fig.8.9 Load Case 2 of 354-Bar Dome (h=4.34 m) 

 

 

 

 

 

 

 

 

 

 

    Fig.8.10 Load Case 3-4 of 354-Bar Dome (h=4.34 m) 
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Fig.8.11 Load Case 5-6 of 354-Bar Dome (h=4.34 m) 

 

As stated before, according to ASCE 7-98 the dome is divided into three pieces 

such as windward quarter, center half and leeward quarter, as shown in Fig.8.12. 

Hence, the loads acting on these pieces are calculated separately. 

 

 

 

Fig.8.12. Pieces of 354-Bar Dome (h=4.34 m) 

  10 m        20 m        10 m  

 1  2  3 

Dead Load 
 
Snow Load 
(Unbalanced) 
 
 
Wind Load 

10 m.        20 m.     10 m. 

4.
34

m
. 

-0.200 kN/m² 

-1.660 kN/m² 
-0.415 kN/m² 

0.973 kN/m² (Load Case 5) 

0.603 kN/m² (Load Case 6) 

0.932 kN/m² (Load Case 5) 
0.542 kN/m² (Load Case 6) 0.623 kN/m² (Load Case 5) 

0.253 kN/m² (Load Case 6) 



 129 

 

 

 

 

 

 

 

 

8.1.6 Load Combinations 

 

It is assumed that dead and snow loads act on the projected area, while wind load 

acts on the curved surface area. 

 

Load Case 1  (Dead Load + Balanced Snow) 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  ( ) (Dead + Snow Load) 

Load Case 2 (Dead Load + Unbalanced Snow) 

 For Left Half 

 -0.200 kN/m2  (      )  (Dead Load) 

 For Right Half 

 -0.200 kN/m2  (Dead Load) 

 -1.0375 kN/m2 (Average Unbalanced Snow Load) 

 -1.238 kN/m2  (  ) (Dead + Snow Load) 

Load Case 3 (Dead Load + Balanced Snow + Wind Load with Positive Internal 

Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (  )  (Dead + Snow Load) 

  0.973 kN/m2 (  ) (Wind Load)  (1.024 x Cos 18.10°) 

          Number of Total Joints  :127 
  Whole Structure   Number of Total Members  :354 
          Total Area (Curved)   :1301 m2 
          Projected Area         :1257 m² 

Piece 1        Piece 2       Piece 3 
 
Number of Joints:27   Number of Joints :73   Number of Joints:27 
Curved Area    :254.4 m2  Curved Area  :792.2 m2 Curved Area    :254.4 m2 
Projected Area:245.85 m2 Projected Area  :765.41 m2 Projected Area   :245.85 m2 
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 –0.318 kN/m2  (        )  (Lateral Load Due to Wind) (1.024 x Sin 18.10°)  

 For Center Half 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )   (Dead + Snow Load) 

  0.932 kN/m2  (       )   (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )    (Dead + Snow Load) 

  0.623 kN/m2  (       )    (Wind Load)  (0.656 x Cos 18.10°) 

  0.204 kN/m2  (        )   (Lateral Load Due to Wind)   (0.656 x Sin 18.10°) 

Load Case 4 (Dead Load + Balanced Snow + Wind Load with Negative 

Internal Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.603 kN/m2  (       )     (Wind Load)  (0.634 x Cos 18.10°) 

 –0.197 kN/m2  (         )  (Lateral Load Due to Wind) (0.634 x Sin 18.10°) 

 For Center Half 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.542 kN/m2  (        )    (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.253 kN/m2  (       )    (Wind Load)  (0.266 x Cos 18.10°) 

  0.083 kN/m2  (        )  (Lateral Load Due to Wind) (0.266 x Sin 18.10°) 
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Load Case 5 (Dead Load + Unbalanced Snow + Wind Load with Positive 

Internal Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

  0  kN/m2  (Snow Load) 

 -0.200 kN/m2  (    )    (Dead + Snow Load) 

  0.973 kN/m2  (       )   (Wind Load)  (1.024 x Cos 18.10°) 

     –0.318 kN/m2  (        )  (Lateral Load Due to Wind)  (1.024 x Sin 18.10°) 

 For Center Half (Left Part) 

 -0.200 kN/m2  (Dead Load) 

  0   kN/m2  (Snow Load) 

 -0.200 kN/m2  (    )    (Dead + Snow Load) 

  0.932 kN/m2  (    )   (Wind Load)   

 For Center Half (Right Part) 

 -0.200 kN/m2  (Dead Load) 

 -0.726 kN/m2  (Average Unbalanced Snow Load) 

 -0.926 kN/m2  (    )    (Dead + Snow Load) 

  0.932 kN/m2  (    )  (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -1.348 kN/m2  (Average Unbalanced Snow Load) 

 -1.548 kN/m2  (     )   (Dead + Snow Load) 

  0.623 kN/m2  (  ) (Wind Load)  (0.656 x Cos 18.10°) 

  0.204 kN/m2  (        )   (Lateral Load Due to Wind)  (0.656 x Sin 18.10°) 

Load Case 6 (Dead Load + Unbalanced Snow + Wind Load with Negative 

Internal Pressure Coefficient)) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

  0  kN/m2  (Snow Load) 

 -0.200 kN/m2  (     )   (Dead + Snow Load) 

  0.603 kN/m2  (     ) (Wind Load)  (0.634 x Cos 18.10°) 
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 –0.197 kN/m2  (        )   (Lateral Load Due to Wind)  (0.634 x Sin 18.10°) 

 For Center Half (Left Part) 

 -0.200 kN/m2  (Dead Load) 

  0   kN/m2  (Snow Load) 

 -0.200 kN/m2  (     )   (Dead + Snow Load) 

  0.542 kN/m2  (  ) (Wind Load)   

 For Center Half (Right Part) 

 -0.200 kN/m2  (Dead Load) 

 -0.726 kN/m2  (Average Unbalanced Snow Load) 

 -0.926 kN/m2  (     )   (Dead + Snow Load) 

   0.542 kN/m2 (  ) (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -1.348 kN/m2  (Average Unbalanced Snow Load) 

 -1.548 kN/m2  (     )   (Dead + Snow Load) 

  0.253 kN/m2 (     )   (Wind Load)  (0.266 x Cos 18.10°) 

  0.083 kN/m2  (        )   (Lateral Load Due to Wind)   (0.266 x Sin 18.10°) 

 

8.1.7 Loads Acting On Joints 

 

Load Case 1 (D + SBalanced) 

(-1.030 kN/m2 * 1257 m²)/(127 joints)=-10.195 kN/joint= -2.291 kip/joint (    ) 

Load Case 2 (D + SUnbalanced) 

For Left Half 

(-0.200 kN/m2 * 1257 m²/2 )/ (127 joints/2)= -1.980 kN/joint= -0.445 kip/joint (    ) 

For Right Half 

(-1.238 kN/m2 * 1257 m²/2 )/ (127 joints/2)= -12.253 kN/joint= -2.754 kip/joint (  ) 

Load Case 3 (D + SBalanced + WPositive Internal Pressure Coefficient) 

For Windward Quarter 

(-1.030 kN/m2 *245.85 m² +0.973 kN/m2 * 254.40 m²)/(27 joints)=-0.211 kN/joint= 

-0.047 kip/joint (    ) 
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Lateral Load  

(–0.318 kN/m2 * 254.4 m² )/ (27 joints)= -2.996 kN/joint= -0.673 kip/joint (       ) 

For Center Half 

(-1.030 kN/m2 * 765.41 m²+ 0.932 kN/m2 * 792.2 m²)/(73 joints)= -0.686 kN/joint= 

-0.154 kip/joint (    ) 

For Leeward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.623 kN/m2 * 254.4 m²)/(27 joints)= -3.509 kN/joint= 

-0.789 kip/joint (    ) 

Lateral Load  

(0.204 kN/m2 * 254.4 m² )/ (27 joints)= 1.922 kN/joint= 0.432 kip/joint (       ) 

Load Case 4 (D + SBalanced + WNegative Internal Pressure Coefficient) 

For Windward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.603 kN/m2 * 254.4 m²)/(27 joints)= -3.697 kN/joint= 

-0.831 kip/joint (    ) 

Lateral Load  

(–0.197 kN/m2 * 254.4 m² )/ (27 joints)= -1.856 kN/joint= -0.417 kip/joint (       ) 

For Center Half 

(-1.030 kN/m2 * 765.41 m²+ 0.542 kN/m2 * 792.2 m²)/(73 joints)= -4.918 kN/joint= 

-1.106 kip/joint (    ) 

For Leeward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.253 kN/m2 * 254.4 m²)/(27 joints)= -6.995 kN/joint= 

-1.573 kip/joint (    ) 

Lateral Load  

(0.083 kN/m2 * 254.4 m² )/ (27 joints)= 0.782 kN/joint= 0.176 kip/joint (       ) 

Load Case 5 (D + SUnbalanced + WPositive Internal Pressure Coefficient) 

For Windward Quarter 

(-0.200 kN/m2 * 245.85 m²+ 0.973 kN/m2 * 254.4 m²)/ (27 joints)= 7.347 kN/joint= 

1.652 kip/joint (    ) 

Lateral Load  

(–0.318 kN/m2 * 254.4 m² )/ (27 joints)= -2.996 kN/joint= -0.674 kip/joint (       ) 
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For Center Half (Left Part) 

(-0.200 kN/m2 * (765.41 m²/2 ) + 0.542 kN/m2 * (792.2 m²/2)) / (73/2 joints) = 

3.785 kN/joint = 0.851 kip/joint (    ) 

For Center Half (Right Part) 

(-0.926 kN/m2 * (765.41 m²/2 )+0.932 kN/m2 * (792.2 m²/2))/ (73/2 joints))=    

0.405 kN/joint= 0.091 kip/joint (    ) 

For Leeward Quarter 

(-1.548 kN/m2 * 245.85 m²+ 0.623 kN/m2 * 254.4 m²)/(27 joints)= -8.225 kN/joint= 

-1.850 kip/joint (    ) 

Lateral Load  

(0.204 kN/m2 * 254.4 m² )/ (27 joints)= 1.922 kN/joint= 0.432 kip/joint (       ) 

Load Case 6 (D + SUnbalanced + WNegative Internal Pressure Coefficient) 

For Windward Quarter 

(-0.200 kN/m2 * 245.85 m²+ 0.603 kN/m2 * 254.4 m²)/ (27 joints)= 3.860 kN/joint= 

0.868 kip/joint (    ) 

Lateral Load  

(–0.197 kN/m2 * 254.4 m² )/ (27 joints)= -1.856 kN/joint= -0.417 kip/joint (       ) 

For Center Half (Left Part) 

(-0.200 kN/m2 * (765.41 m²/2 )+0.542 kN/m2 * (792.2 m²/2))/ (73/2 joints)=    

3.785 kN/joint= 0.851 kip/joint (    ) 

For Center Half (Right Part) 

(-0.926 kN/m2 * (765.41 m²/2 )+0.542 kN/m2 * (792.2 m²/2))/ (73/2 joints)=             

-3.827 kN/joint= -0.860 kip/joint (    ) 

For Leeward Quarter 

(-1.548 kN/m2 * 245.85 m² +0.253 kN/m2 * 254.4 m²)/(27 joint)= -11.712 kN/joint= 

-2.633 kip/joint (    ) 

Lateral Load  

(0.083 kN/m2 * 254.4 m² )/ (27 joint)= 0.782 kN/joint= 0.176 kip/joint (       ) 
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8.1.8 Results 

 

American circular hollow pipes are used in the design. As stated before, two 

different softwares (SSTOGA and SSTOSA) which utilize two techniques (Genetic 

Algorithms and Simulated Annealing) are made use of in the analysis. Since these 

techniques are probabilistic, the programs are run three times in order to ensure the 

reliability of the results. The result which is tabulated in Table 8.1 was located by 

both programs. Four different ready sections (P2+1/2, P3, P3+1/2,P4) are used in 

the design. 

 

 

Table 8.1. Result of 354-Bar Dome 

Member 
Type 

Number of Members  
(From Fig.8.3) 

Ready Section 
Cross 

Sectional Area 
(in²) 

A1 1:24 P3 2.23 
A2 25,27,29,….,67,69,71 P3 2.23 
A3 26,28,30,….,68,70,72 P4 3.17 
A4 73:96 P4 3.17 
A5 97,99,101,…..,139,141,143 P3 2.23 
A6 98,100,102,….,140,142,144 P3+1/2 2.68 
A7 145:168 P3+1/2 2.68 
A8 169,171,173,….,211,213,215 P3 2.23 
A9 170,172,174,….,212,214,216 P3+1/2 2.68 
A10 217:240 P3+1/2 2.68 

A11 
241,244,247,250,253,256, 
259,262,265,268,271,274 

P2+1/2 1.70 

A12 
242 ,245,248,251,254,257, 
260,263,266,269,272,275 

P2+1/2 1.70 

A13 
243 ,246,249,252,255,258, 
261,264,267,270,273,276 

P2+1/2 1.70 

A14 277:288 P3 2.23 
A15 289,291,293,…..,307,309,311 P3 2.23 
A16 290,292,294,…...,308,310,312 P3 2.23 
A17 313:324 P2+1/2 1.70 
A18 325,328,331,334,337,340 P2+1/2 1.70 
A19 326,329,332,335,338,341 P2+1/2 1.70 
A20 327,330,333,336,339,342 P2+1/2 1.70 
A21 343:348 P2+1/2 1.70 
A22 349:354 P2+1/2 1.70 

 Total Volume  132208.06 in² 

 Total Weight  37471.47 lb 
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As seen from the Table 8.1, the optimum design is 37471 lb. The graphs of 

evolution towards to optimum design for both softwares (SSTOGA using Genetic 

Algorithm and SSTOSA using Simulated Annealing) are presented graphically in 

Fig.8.13.  

 

In SSTOGA, 1000 generations each having 100 structural analyses are performed. 

This means that the software uses totally 100,000 structural analyses to converge 

the optimum solution (blue line).  

 

In SSTOSA, 30,279 structural analyses in 300 cooling cycles are performed in order 

to find the optimum design (red line). This is fewer as compared to the number of 

the SSTOGA software. So this effects the CPU time. While SSTOSA performs 

30,279 structural analyses to converge the optimum solution in about 4 hours (with 

a computer of AMD 1700 and 128 Mb RAM), SSTOGA converges the same 

optimum design by performing 100,000 structural analyses in about 20 hours. This 

shows that CPU times are very distinctive where SSTOSA converges very earlier 

than SSTOGA.  
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8.2 354-Bar Dome (Height of 8.28 m.) 

 

The same structure of first dome is assumed to design for a height of 8.28 m. The 

other design considerations (diameter, number of joints, number of members) are 

same as the first one. The total height of the building is 18.28 m. in this problem. 

The plan and side views of the building are shown in Figures 8.14 and 8.15. The 

side view of the steel dome, distinct from the first test problem, is presented in 

Fig.8.16. 

 

 

 

 

 

    

 

 

  Fig.8.14. Top View (354-Bar)     Fig.8.15. Side View (354-Bar) 

 

 

 

Fig.8.16. Side View of 354-Bar Dome   
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8.2.1. Wind Load (Analytical Procedure) 

 

The design procedure explained in part 6.5.3. of ASCE 7-98 is followed.  

 

Basic Wind Speed V for Nebraska is taken from Figure 6.1 of ASCE 7-98. 

 V= 40 m/s  (90 mph) 

 

Wind Directionality Factor Kd is taken from Table 6.6 of ASCE 7-98. 

 Kd = 0.85   (for arched roofs) 

 

Importance Factor I for the building is determined as 1.15 from Table 6.1 of 

ASCE 7-98. 

 I = 1.15  (for building category III) 

 

Exposure Category is assumed as C from the definitions given in part 6.5.6. of  

ASCE 7-98. 

 

Velocity Pressure Exposure Coefficient Kz is taken from Table 6-5 of ASCE 7-98. 

The mean height of the roof is 14.14 m. (46.4 feet).  

 Kz = 1.07  (for exposure C and 46 ft height) 

 

Topographic Factor Kzt is calculated from 2
321 )1( KKKK zt += where K1 , K2 , K3 

are taken from Fig.6.2 of ASCE 7-98. 

It is assumed that there are a 2-D ridge with H/Lh= 0.30, 3-D escarpment with x/Lh 

= 1.00 and 2-D ridge with z/Lh = 0.40 in the general topology, where 

H : Height of the hill or escarpment relative to the upwind terrain , in meter, 

Lh : Distance upwind of crest to where the difference in the ground elevation is 

 half the height of the hill or escarpment, in meter, 

K1 : Factor to account for shape of topographic feature and maximum speed-up 

 effect, 
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K2 : Factor to account for reduction in speed-up with distance upwind or 

 downwind of crest, 

K3 : Factor to account for reduction in speed-up with height above local terrain, 

x : Distance (upwind or downwind) from the crest to the building site, in meter, 

z : Height above local ground level, in meter, 

 K1 = 0.43,  K2 = 0.33,   K3 = 0.30  (from Fig.6.2 of ASCE 7-98) 

 2)30.033.043.01( xxK zt += =1.087 

 

Gust Effect Factor G is found as 0.85 directly by assuming the structure as rigid. 

 G = 0.85 

 

Enclosure Classification is assumed as enclosed, since the all lateral and upper 

parts of the building are closed and subjected to wind pressure directly. 

 

Velocity Pressure is calculated by using the equation below; 

IVKKKq dztzz

2...613.0=  (N/m²)  (8.10) (Eq. 6-13 of ASCE 7-98) 

 15.1)40(85.0087.107.1613.0 2 xxxxxq z =  

 qz = 1115 N/m² = 111,5 kg/m² 

 

Internal Pressure Coefficients GCpi are found as +0.18 and –0.18 for enclosed 

buildings from Table 6.7 of ASCE 7-98. As stated before, ASCE 7-98 advices to 

use two values which are positive and negative. 

 

External Pressure Coefficients Cp are found from Table 6.8 of ASCE 7-98. The 

dome is assumed to be separated into three parts, such as windward quarter, center 

half and leeward quarter. Three different external pressure coefficients for these 

three parts of the dome are with respect to rise-to-span ratio. The rise-to-ratio, r is 

8.28/40=0.207 for the building considered above.  

 Cp = 1.5 r –0.3 = 1.5 * 0.207 – 0.3 =0.0105 (for windward quarter) 

 Cp = -0.7 - r  = -0.7 - 0.207= - 0.907    (for center half)  

 Cp = - 0.5              (for leeward quarter) 



 140 

Main Force Resisting Systems 

 )( piip GCqqGCp −=   (N/m²)   (8.11) 

where 

q  = qh for roofs, evaluated at height h, 

qi  = qh for roofs of enclosed buildings, 

G  : Gust effect factor, 

Cp  : External pressure coefficient from Fig.6-3 or Table 6-8 of ASCE 7-98, 

(GCpi): Internal pressure coefficient from Table 6-7 of ASCE 7-98. 

 

For windward quarter  

 

 p = 1115 x 0.85 x (0.0105)- 1115 x (±0.18) =  

 

For center half 

                   

 p = 1115 x 0.85 x (-0.907)- 1115 x (±0.18) =  

 

For leeward quarter  

 

 p = 1115 x 0.85 x (-0.50)- 1115 x (±0.18)     =  

 

In this case, a positive pressure is detected acting on the windward quarter. Wind 

effects create negative pressure (suction) on the other parts of the dome. This is also 

compatible with the results presented in Fig.3.12 and 3.13.  

 

8.2.2. Snow Loads 

 

The same equation as in the first problem is used; 

 gtef pICCp ....7.0=    (8.12) (Eq.7-1 of ASCE 7-98) 

where 

pf  : The snow load on a roof with a slope equal to or less than 5°, 

211 N/m² 
 
 
- 191 N/m² 
 

- 1060 N/m² 
 
 
- 659 N/m² 
 

- 674 N/m² 
 
 
- 273 N/m² 
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Ce  : Exposure factor, determined from Table 7-2 of ASCE 7-98, 

Ct  : Thermal factor, determined from Table 7-3 of ASCE 7-98, 

I  : Importance factor, determined from Table 7-4 of ASCE 7-98, 

pg  : Ground snow load, determined from Fig.7-1 and Table 7-1 of ASCE 7-98. 

 Ce = 0.9   (for exposure category C and fully exposed roof) 

 Ct = 1.0    (for structures except as indicated in Table 7.3) 

 I = 1.10  (for building category III) 

 pg = 25 lb/ft²  (1.1975 kN/m²) (for Nebraska) 

 1975.110.10.19.07.0 xxxxp f = =0.830 kN/m²  

 

Tangent of vertical angle from eaves to crown= 8.28 / 20= 0.217  Angle=24.4Û 
Since the vertical angle exceeds 10Û�� WKH�PLQLPXP�DOORZDEOH� YDOXHV�RI�pf do not 

apply. Use pf=0.830 kN/m² 

 

 fss pCp =    (8.13) (Eq.7-2 of ASCE 7-98) 

where 

ps  : The sloped-roof snow load, 

Cs  : Roof slope factor, 

pf  : The snow load on a roof with a slope equal to or less than 5°. 

 

 

 

 

                    By geometry, the slope 

                    at the eaves is 45Û� 
 

Fig.8.17. Side View of The Dome (354-Bar) 

 

 

 

 

8,28 m. 

20 m. 

45Û 
Tangent line 
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From Fig.7.2a of ASCE 7-98, Cs = 1.0 until slope exceeds 30Û� ZKLFK� LV� �E\�
geometry) 14.15 m. from the centerline. In this area ps =1 * 0.830 = 0.830 kN/m² is 

found. At the eaves, where the slope is 45Û��IRU�Cs = 0.65, ps = 0.65 * 0.830 = 0.540 

kN/m² is obtained. 

 

 Cs  = 1.0  (from Fig.7-2 and Fig.7-3 of ASCE 7-98 for a roof slope of 12°) 

 

Unbalanced Snow Load (from Fig.7-3 of ASCE 7-98) 

Since the vertical angle from the eaves to the crown is greater than 10Û�DQG�OHVV�WKDQ�
60Û��WKH�XQEDODQFHG�Vnow loads must be considered. The same procedure explained 

in the first problem is repeated. 

 

Unbalanced load at crown; 

 = 0.5 * pf = 0.5 * 0.830 = 0.415 kN/m² 

Unbalanced load at 30-degree point 

 = 2 * pf Cs/Ce= 2 * 0.830 * 1.0 / 0.9 =1.844 kN/m² 

Unbalanced load at eaves; 

 = 2 * pf = 2 * 0.830 = 1.660 kN/m² 

 

 

 

 

 

 

 

Fig.8.18. Unbalanced Snow Load (354-Bar) 
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8.2.3. Dead Load 

 

Sandwich type aluminium cladding is used. The dead load of this cladding 

(including frame elements to be used for girts) is taken as 200 N/m². 

 

8.2.4. Roof Live Load 

 

Roof live load can be taken as 900 N/m² to take into account the weight of the men 

climbing on the roof for various purposes such as cleaning. But this load is 

compensated by snow load since roof live load and snow load cannot be acted at the 

same time. 

 

8.2.5. Combined Loaded Case 

 

The six load cases are considered as shown below; 

1. D + S (balanced) 

2. D + S (unbalanced) 

3. D + W (taken internal pressure coefficient as positive) + S (balanced) 

4. D + W (taken internal pressure coefficient as negative) + S (balanced) 

5. D + W (taken internal pressure coefficient as positive) + S (unbalanced) 

6. D + W (taken internal pressure coefficient as negative) + S (unbalanced) 

These load cases are shown schematically in Fig.8.19 through Fig.8.24. 
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  Fig.8.19. Load Case 1 of 354-Bar Dome (h=8.28 m.) 

 

 

 

 

 

 

 

 

   Fig.8.20. Load Case 2 of 354-Bar Dome (h=8.28 m.) 

 

 

 

 

 

 

 

 

 

                          

 

   Fig.8.21. Load Case 3 of 354-Bar Dome (h=8.28 m.) 
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    Fig.8.22. Load Case 4 of 354-Bar Dome (h=8.28 m.) 

 

 

 

 

 

 

 

 

 

    Fig.8.23. Load Case 5 of 354-Bar Dome (h=8.28 m.) 

 

 

 

 

 

 

 

 

             

    Fig.8.24. Load Case 1 of 354-Bar Dome (h=8.28 m.) 
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Since the rise-to-span ratio is not low as compared to the one in example 1, the 

wind loads acting on the windward quarter is positive (compression) and the loads 

which act the other parts of the dome is negative (suction). 

 

 

 

 

Fig.8.25. Pieces of 354- Bar Dome (h=8.28 m) 
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8.2.6 Load Combinations 

 

Load Case 1  (Dead Load + Balanced Snow) 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (  ) (Dead + Snow Load) 

Load Case 2 (Dead Load + Unbalanced Snow) 

 For Left Half 

 -0.200 kN/m2  (      )  (Dead Load) 

 For Right Half 

 -0.200 kN/m2  (Dead Load) 

 -1.130 kN/m2 (Average Unbalanced Snow Load) 

 -1.330 kN/m2  (  ) (Dead + Snow Load) 

Load Case 3 (Dead Load + Balanced Snow + Wind Load with Positive Internal 

Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (  )  (Dead + Snow Load) 

  -0.179 kN/m2 (  ) (Wind Load)  (-0.211 x Cos 32.02°) 

  0.112 kN/m2  (        )  (Lateral Load Due to Wind) (0.211 x Sin 32.02°)  

 For Center Half 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )   (Dead + Snow Load) 

 1.060 kN/m2  (       )   (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )    (Dead + Snow Load) 

  0.572 kN/m2  (       )    (Wind Load)  (0.674 x Cos 32.02°) 
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 0.357 kN/m2  (         )   (Lateral Load Due to Wind)   (0.674 x Sin 32.02°) 

Load Case 4 (Dead Load + Balanced Snow + Wind Load with Negative 

Internal Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.162 kN/m2  (       )     (Wind Load)  (0.191 x Cos 32.02°) 

 –0.101 kN/m2  (         )  (Lateral Load Due to Wind) (0.191 x Sin 32.02°) 

 For Center Half 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.659 kN/m2  (        )    (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.231 kN/m2  (       )    (Wind Load)  (0.273 x Cos 32.02°) 

  0.145 kN/m2  (         )  (Lateral Load Due to Wind) (0.273 x Sin 32.02°) 

Load Case 5 (Dead Load + Unbalanced Snow + Wind Load with Positive 

Internal Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

  0  kN/m2  (Snow Load) 

 -0.200 kN/m2  (    )    (Dead + Snow Load) 

  -0.179 kN/m2  (      )   (Wind Load)  (-0.211 x Cos 32.02°) 

       0.112 kN/m2  (        )  (Lateral Load Due to Wind)  (0.211 x Sin 32.02°) 

 For Center Half (Left Part) 

 -0.200 kN/m2  (Dead Load) 

  0   kN/m2  (Snow Load) 



 149 

 -0.200 kN/m2  (    )    (Dead + Snow Load) 

  1.060 kN/m2  (    )   (Wind Load)   

 For Center Half (Right Part) 

 -0.200 kN/m2  (Dead Load) 

 -0.726 kN/m2  (Average Unbalanced Snow Load) 

 -0.926 kN/m2  (    )    (Dead + Snow Load) 

  1.060 kN/m2  (    )  (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -1.348 kN/m2  (Average Unbalanced Snow Load) 

 -1.548 kN/m2  (     )   (Dead + Snow Load) 

  0.571 kN/m2  (  ) (Wind Load)  (0.674 x Cos 32.02°) 

  0.357 kN/m2  (         )  (Lateral Load Due to Wind)  (0.674 x Sin 32.02°) 

Load Case 6 (Dead Load + Unbalanced Snow + Wind Load with Negative 

Internal Pressure Coefficient)) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

  0  kN/m2  (Snow Load) 

 -0.200 kN/m2  (     )   (Dead + Snow Load) 

  0.162 kN/m2  (     ) (Wind Load)  (0.191 x Cos 32.02°) 

 –0.101 kN/m2  (        )   (Lateral Load Due to Wind)  (0.191 x Sin 32.02°) 

 For Center Half (Left Part) 

 -0.200 kN/m2  (Dead Load) 

  0   kN/m2  (Snow Load) 

 -0.200 kN/m2  (     )   (Dead + Snow Load) 

  0.659 kN/m2  (  ) (Wind Load)   

 For Center Half (Right Part) 

 -0.200 kN/m2  (Dead Load) 

 -0.726 kN/m2  (Average Unbalanced Snow Load) 

 -0.926 kN/m2  (     )   (Dead + Snow Load) 

  0.659 kN/m2  (  ) (Wind Load)   



 150 

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -1.348 kN/m2  (Average Unbalanced Snow Load) 

 -1.548 kN/m2  (     )   (Dead + Snow Load) 

  0.231 kN/m2 (  ) (Wind Load)  (0.273 x Cos 32.02°) 

  0.083 kN/m2  (          )  (Lateral Load Due to Wind)   (0.266 x Sin 18.10°) 

 

8.2.7 Loads Acting On Joints 

 

Load Case 1 (D + SBalanced) 

(-1.030 kN/m2 * 1257 m²)/(127 joints)=-10.195 kN/joint= -2.291 kip/joint (    ) 

Load Case 2 (D + SUnbalanced) 

For Left Half 

(-0.200 kN/m2 * 1257 m²/2 )/ (127 joints/2)= -1.980 kN/joint= -0.445 kip/joint (    ) 

For Right Half 

(-1.330 kN/m2 * 1257 m²/2 )/ (127 joints/2)= -13.164 kN/joint= -2.959 kip/joint (  ) 

Load Case 3 (D + SBalanced + WPositive Internal Pressure Coefficient) 

For Windward Quarter 

(-1.030 kN/m2 * 245.85 m² + (-0.179 kN/m2 )*303 m²)/(27 joints)=-11.388 kN/joint 

= -2.560 kip/joint (    ) 

Lateral Load  

(0.112 kN/m2 * 303 m² )/ (27 joints)= 1.257 kN/joint= 0.283 kip/joint (       ) 

For Center Half 

(-1.030 kN/m2 * 765.41 m²+ 1.060 kN/m2 * 861.4 m²)/(73 joints)= 1.708 kN/joint= 

0.384 kip/joint (    ) 

For Leeward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.572 kN/m2 * 303 m²)/(27 joints)= -2.960 kN/joint=   

-0.665 kip/joint (    ) 

Lateral Load  

(0.357 kN/m2 * 303 m² )/ (27 joints)= 4.006 kN/joint= 0.901 kip/joint (       ) 
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Load Case 4 (D + SBalanced + WNegative Internal Pressure Coefficient) 

For Windward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.162 kN/m2 * 303 m²)/(27 joints)= -7.561 kN/joint=   

-1.700 kip/joint (    ) 

Lateral Load  

(–0.101 kN/m2 * 303 m² )/ (27 joints)= -1.133 kN/joint= -0.255 kip/joint (       ) 

For Center Half 

(-1.030 kN/m2 * 765.41 m²+ 0.659 kN/m2 * 861.4 m²)/(73 joints)= -3.023 kN/joint= 

-0.679 kip/joint (    ) 

For Leeward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.231 kN/m2 * 303 m²)/(27 joints)= -6.786 kN/joint=   

-1.526 kip/joint (    ) 

Lateral Load  

(0.145 kN/m2 * 303 m² )/ (27 joints)= 1.627 kN/joint= 0.366 kip/joint (       ) 

Load Case 5 (D + SUnbalanced + WPositive Internal Pressure Coefficient) 

For Windward Quarter 

(-0.200 kN/m2 * 245.85 m²+(-0.179 kN/m2 )*303 m²)/ (27 joints)= -3.830 kN/joint= 

-0.861 kip/joint (    ) 

Lateral Load  

(–0.112 kN/m2 * 303 m² )/ (27 joints)= -1.257 kN/joint= -0.283 kip/joint (       ) 

For Center Half (Left Part) 

(-0.200 kN/m2 * (765.41 m²/2 )+1.060 kN/m2 * (861.40 m²/2))/ (73/2 joints)=    

10.411 kN/joint= 2.341 kip/joint (    ) 

For Center Half (Right Part) 

(-0.926 kN/m2 * (765.41 m²/2 )+1.060 kN/m2 * (861.4 m²/2))/ (73/2 joints))=    

2.799 kN/joint= 0.629 kip/joint (    ) 

For Leeward Quarter 

(-1.548 kN/m2 * 245.85 m²+ 0.571 kN/m2 * 303 m²)/(27 joints)= -7.688 kN/joint=   

-1.728 kip/joint (    ) 

Lateral Load  

(0.357 kN/m2 * 303 m² )/ (27 joints)= 4.006 kN/joint= 0.901 kip/joint (       ) 
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Load Case 6 (D + SUnbalanced + WNegative Internal Pressure Coefficient) 

For Windward Quarter 

(-0.200 kN/m2 * 245.85 m²+ 0.162 kN/m2 * 303 m²)/ (27 joints)= -0.003 kN/joint=  

-0.0007 kip/joint (    ) 

Lateral Load  

(–0.101 kN/m2 * 303 m² )/ (27 joints)= -1.133 kN/joint= -0.255 kip/joint (       ) 

For Center Half (Left Part) 

(-0.200 kN/m2 * (765.41 m²/2 )+0.659 kN/m2 * (861.4 m²/2))/ (73/2 joints)=    

5.679 kN/joint= 1.277 kip/joint (    ) 

For Center Half (Right Part) 

(-0.926 kN/m2 * (765.41 m²/2 )+0.659 kN/m2 * (861.4 m²/2))/ (73/2 joints)=             

-1.933 kN/joint= -0.435 kip/joint (    ) 

For Leeward Quarter 

(-1.548 kN/m2 * 245.85 m² +0.231 kN/m2 * 303 m²)/(27 joint)= -11.503 kN/joint=   

-2.586 kip/joint (    ) 

Lateral Load  

(0.145 kN/m2 * 303 m² )/ (27 joint)= 1.627 kN/joint= 0.366 kip/joint (       ) 

 

8.2.8 Results 

 

American circular hollow pipes are used in the design. As stated before, two 

different softwares (SSTOGA and SSTOSA) which utilize two techniques (Genetic 

Algorithms and Simulated Annealing) are made use of in the analysis. Each 

program is run three times as in problem 1. The design result which is tabulated in 

Table 8.2 was found by running both programs three times. Four different ready 

sections (P2+1/2, P3, P3+1/2, EP3 ) are used in this design. 
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Table 8.2. Result of 354-Bar Dome 

Member 
Type 

Number of Members (From Fig.8.3) 
Ready 
Section 

Cross 
Sectional 
Area (in²) 

A1 1:24 P3 2.23 
A2 25,27,29,….,67,69,71 EP3 3.02 
A3 26,28,30,….,68,70,72 P3+1/2 2.68 
A4 73:96 P3 2.23 
A5 97,99,101,…..,139,141,143 P3 2.23 
A6 98,100,102,….,140,142,144 P3 2.23 
A7 145:168 P3 2.23 
A8 169,171,173,….,211,213,215 P3 2.23 
A9 170,172,174,….,212,214,216 P3 2.23 
A10 217:240 P3 2.23 
A11 241,244,247,250,253,256,259,262,265,268,271,274 P3 2.23 
A12 242 ,245,248,251,254,257,260,263,266,269,272,275 P3 2.23 
A13 243 ,246,249,252,255,258,261,264,267,270,273,276 P3 2.23 
A14 277:288 P2+1/2 1.70 
A15 289,291,293,…..,307,309,311 P3 2.23 
A16 290,292,294,…...,308,310,312 P3 2.23 
A17 313:324 P2+1/2 1.70 
A18 325,328,331,334,337,340 P3 2.23 
A19 326,329,332,335,338,341 P2+1/2 1.70 
A20 327,330,333,336,339,342 P2+1/2 1.70 
A21 343:348 P2+1/2 1.70 
A22 349:354 P2+1/2 1.70 

 Total Volume  127957 in² 

 Total Weight   36247 lb 
 

 

As seen from the Table 8.2, the optimum design is 36247 lb. The graphs of 

evolution to optimum design for both techniques (SSTOGA using Genetic 

Algorithm and SSTOSA using Simulated Annealing) are presented in Fig.8.26. 

 

In SSTOGA, 1000 generations each having 100 structural analyses are performed. 

This software uses totally 100,000 structural analyses to converge the optimum 

solution as seen from the graph (blue line).  
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In SSTOSA, 30,259 structural analyses in 300 cooling cycles are performed in order 

to find the optimum design, as seen from the graph (red line). This is fewer as 

compared to the number of the SSTOGA software. So this effects the CPU time. 

While SSTOSA performs 30,259 structural analyses to converge the optimum 

solution in about 4 hours (with a computer of AMD 1700 and 128 Mb RAM), 

SSTOGA converges the same optimum design by performing 100,000 structural 

analyses in about 21 hours. This shows that CPU times are very distinctive where 

SSTOSA converges very earlier than SSTOGA.  
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Fig.8.26. Graph of Number of Structural Analysis vs. Feasible Best Design of 

354-Bar Dome (h=8.28 m) Using SSTOGA and SSTOSA. 
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8.3 756-Bar Dome 

 

The roof of the same auditorium building with a capacity of 500 people which is 

located in Nebraska, is assumed to made up of 756-bar dome. It is circular in plan 

view, too. It has the same diameter of 40 m. Again, the building consists of two 

parts, the main part which is reinforced concrete, and the roof part which is pin-

connected steel dome with 756 members and 271 joints. The total height of the 

building is 18.28 m. in this problem and the height of the steel dome is 8.28 m. as in 

the second problem. The plan and side views of the building are shown in Figures 

8.27 and 8.28. The top view, side view and 3-dimensional view of the steel dome 

are presented in Fig.8.29 through 8.31. 

 

 

 

 

 

    

 

 

  Fig.8.27. Top View (756-Bar)     Fig.8.28. Side View (756-Bar) 
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Fig.8.29. Top View of 756-Bar Dome 

 

Fig.8.30. Side View of 756-Bar Dome   
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Fig.8.31. 3-D View of 756-Bar Dome 

 

 

8.3.1. Wind Load (Analytical Procedure) 

 

Since the dimensions of the dome is the same as the second problem, the design 

procedure explained in 8.2.1 is achieved again. 

For windward quarter  

 

 p = 1115 x 0.85 x (0.0105)- 1115 x (±0.18) =  

For center half 

                   

 p = 1115 x 0.85 x (-0.907)- 1115 x (±0.18) =  

 

For leeward quarter  

 

 p = 1115 x 0.85 x (-0.50)- 1115 x (±0.18)     =  

 

211 N/m² 
 
 
- 191 N/m² 
 - 1060 N/m² 
 
 
- 659 N/m² 
 

- 674 N/m² 
 
 
- 273 N/m² 
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8.3.2. Snow Loads 

 

Since the same design procedure outlined in 8.2.2 is done, the same design snow 

loads for the balanced and unbalanced cases are found as stated in 8.2.2. 

Unbalanced load at crown; 

 = 0.5 * pf = 0.5 * 0.830 = 0.415 kN/m² 

Unbalanced load at 30-degree point 

 = 2 * pf Cs/Ce= 2 * 0.830 * 1.0 / 0.9 =1.844 kN/m² 

Unbalanced load at eaves; 

 = 2 * pf = 2 * 0.830 = 1.660 kN/m² 

 

8.3.3. Dead Load 

 

Sandwich type aluminium cladding is used. The dead load of this cladding 

(including frame elements to be used for girts) is taken as 200 N/m². 

 

8.3.4. Roof Live Load 

 

Roof live load can be taken as 900 N/m² to take into account the weight of the men 

climbing on the roof for various purposes. But this load is compensated by snow 

load since roof live load and snow load cannot be acted at the same time. 

 

8.3.5. Combined Loaded Case 

 

The six load cases are considered as shown below; 

1. D + S (balanced) 

2. D + S (unbalanced) 

3. D + W (taken internal pressure coefficient as positive) + S (balanced) 

4. D + W (taken internal pressure coefficient as negative) + S (balanced) 

5. D + W (taken internal pressure coefficient as positive) + S (unbalanced) 

6. D + W (taken internal pressure coefficient as negative) + S (unbalanced) 
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These load cases are shown schematically in Fig.8.19 through Fig.8.24. 

 

 

 

 

Fig.8.32. Pieces of 756-Bar Dome  

 

 

 

 

 

 

 

 

 

 

 

 

        Number of Total Joints  :271 
 Whole Structure  Number of Total Members  :756 
        Total Area       :1467.4 m2 
        Projected Area     :1257 m² 

Piece 1        Piece 2         Piece 3 
 
Number of Joints :60  Number of Joints :151   Number of Joints :60 
Total Area   :303 m2 Total Area   :861.4 m2  Total Area   :303 m2 

Projected Area :245.85 m² Projected Area: :765.41 m²  Projected Area: 245.85 m²
  

 10 m.      20 m.       10 m. 

 1  2  3 
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8.3.6 Load Combinations 

 

Load Case 1  (Dead Load + Balanced Snow) 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (  ) (Dead + Snow Load) 

Load Case 2 (Dead Load + Unbalanced Snow) 

 For Left Half 

 -0.200 kN/m2  (      )  (Dead Load) 

 For Right Half 

 -0.200 kN/m2  (Dead Load) 

 -1.130 kN/m2 (Average Unbalanced Snow Load) 

 -1.330 kN/m2  (  ) (Dead + Snow Load) 

Load Case 3 (Dead Load + Balanced Snow + Wind Load with Positive Internal 

Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (  )  (Dead + Snow Load) 

  -0.179 kN/m2 (  ) (Wind Load)  (-0.211 x Cos 32.02°) 

  0.112 kN/m2  (        )  (Lateral Load Due to Wind) (0.211 x Sin 32.02°)  

 For Center Half 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )   (Dead + Snow Load) 

 1.060 kN/m2  (       )   (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )    (Dead + Snow Load) 

  0.572 kN/m2  (       )    (Wind Load)  (0.674 x Cos 32.02°) 
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 0.357 kN/m2  (         )   (Lateral Load Due to Wind)   (0.674 x Sin 32.02°) 

Load Case 4 (Dead Load + Balanced Snow + Wind Load with Negative 

Internal Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.162 kN/m2  (       )     (Wind Load)  (0.191 x Cos 32.02°) 

 –0.101 kN/m2  (         )  (Lateral Load Due to Wind) (0.191 x Sin 32.02°) 

 For Center Half 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.659 kN/m2  (        )    (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -0.830 kN/m2  (Snow Load) 

 -1.030 kN/m2  (    )     (Dead + Snow Load) 

  0.231 kN/m2  (       )    (Wind Load)  (0.273 x Cos 32.02°) 

  0.145 kN/m2  (         )  (Lateral Load Due to Wind) (0.273 x Sin 32.02°) 

Load Case 5 (Dead Load + Unbalanced Snow + Wind Load with Positive 

Internal Pressure Coefficient) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

  0  kN/m2  (Snow Load) 

 -0.200 kN/m2  (    )    (Dead + Snow Load) 

  -0.179 kN/m2  (      )   (Wind Load)  (-0.211 x Cos 32.02°) 

       0.112 kN/m2  (        )  (Lateral Load Due to Wind)  (0.211 x Sin 32.02°) 

 For Center Half (Left Part) 

 -0.200 kN/m2  (Dead Load) 

  0   kN/m2  (Snow Load) 
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 -0.200 kN/m2  (    )    (Dead + Snow Load) 

  1.060 kN/m2  (    )   (Wind Load)   

 For Center Half (Right Part) 

 -0.200 kN/m2  (Dead Load) 

 -0.726 kN/m2  (Average Unbalanced Snow Load) 

 -0.926 kN/m2  (    )    (Dead + Snow Load) 

  1.060 kN/m2  (    )  (Wind Load)   

 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -1.348 kN/m2  (Average Unbalanced Snow Load) 

 -1.548 kN/m2  (     )   (Dead + Snow Load) 

  0.571 kN/m2  (  ) (Wind Load)  (0.674 x Cos 32.02°) 

  0.357 kN/m2  (         )  (Lateral Load Due to Wind)  (0.674 x Sin 32.02°) 

Load Case 6 (Dead Load + Unbalanced Snow + Wind Load with Negative 

Internal Pressure Coefficient)) 

 For Windward Quarter 

 -0.200 kN/m2  (Dead Load) 

  0  kN/m2  (Snow Load) 

 -0.200 kN/m2  (     )   (Dead + Snow Load) 

  0.162 kN/m2  (     ) (Wind Load)  (0.191 x Cos 32.02°) 

 –0.101 kN/m2  (        )   (Lateral Load Due to Wind)  (0.191 x Sin 32.02°) 

 For Center Half (Left Part) 

 -0.200 kN/m2  (Dead Load) 

  0   kN/m2  (Snow Load) 

 -0.200 kN/m2  (     )   (Dead + Snow Load) 

  0.659 kN/m2  (  ) (Wind Load)   

 For Center Half (Right Part) 

 -0.200 kN/m2  (Dead Load) 

 -0.726 kN/m2  (Average Unbalanced Snow Load) 

 -0.926 kN/m2  (     )   (Dead + Snow Load) 

  0.659 kN/m2  (  ) (Wind Load)   
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 For Leeward Quarter 

 -0.200 kN/m2  (Dead Load) 

 -1.348 kN/m2  (Average Unbalanced Snow Load) 

 -1.548 kN/m2  (     )   (Dead + Snow Load) 

  0.231 kN/m2 (  ) (Wind Load)  (0.273 x Cos 32.02°) 

  0.083 kN/m2  (          )  (Lateral Load Due to Wind)   (0.266 x Sin 18.10°) 

 

8.3.7 Loads Acting On Joints 

 

Load Case 1 (D + SBalanced) 

(-1.030 kN/m2 * 1257 m²)/(271 joints)=-4.778 kN/joint= -1.074 kip/joint (    ) 

Load Case 2 (D + SUnbalanced) 

For Left Half 

(-0.200 kN/m2 * 1257 m²/2 )/ (271 joints/2)= -0.928 kN/joint= -0.209 kip/joint (    ) 

For Right Half 

(-1.330 kN/m2 * 1257 m²/2 )/ (271 joints/2)= -6.169 kN/joint= -1.387 kip/joint (  ) 

Load Case 3 (D + SBalanced + WPositive Internal Pressure Coefficient) 

For Windward Quarter 

(-1.030 kN/m2 * 245.85 m² + (-0.179 kN/m2 )*303 m²)/(60 joints)=-5.124 kN/joint= 

-1.152 kip/joint (    ) 

Lateral Load  

(0.112 kN/m2 * 303 m² )/ (60 joints)= 0.566 kN/joint= 0.127 kip/joint (       ) 

For Center Half 

(-1.030 kN/m2 * 765.41 m²+1.060 kN/m2* 861.4 m²)/(151 joints)= 0.826 kN/joint = 

0.186 kip/joint (    ) 

For Leeward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.572 kN/m2 * 303 m²)/(60 joints)= -1.332 kN/joint=   

-0.299 kip/joint (    ) 

Lateral Load  

(0.357 kN/m2 * 303 m² )/ (60 joints)= 1.803 kN/joint= 0.405 kip/joint (       ) 
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Load Case 4 (D + SBalanced + WNegative Internal Pressure Coefficient) 

For Windward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.162 kN/m2 * 303 m²)/(60 joints)= -3.402 kN/joint=   

-0.765 kip/joint (    ) 

Lateral Load  

(–0.101 kN/m2 * 303 m² )/ (60 joints)= -0.510 kN/joint= -0.115 kip/joint (       ) 

For Center Half 

(-1.030 kN/m2 *765.41 m²+0.659 kN/m2 * 861.4 m²)/(151 joints)= -1.462 kN/joint= 

-0.329 kip/joint (    ) 

For Leeward Quarter 

(-1.030 kN/m2 * 245.85 m²+ 0.231 kN/m2 * 303 m²)/(60 joints)= -3.054 kN/joint=   

-0.687 kip/joint (    ) 

Lateral Load  

(0.145 kN/m2 * 303 m² )/ (60 joints)= 0.732 kN/joint= 0.165 kip/joint (       ) 

Load Case 5 (D + SUnbalanced + WPositive Internal Pressure Coefficient) 

For Windward Quarter 

(-0.200 kN/m2 * 245.85 m²+(-0.179 kN/m2 )*303 m²)/ (60 joints)= -1.723 kN/joint= 

-0.387 kip/joint (    ) 

Lateral Load  

(–0.112 kN/m2 * 303 m² )/ (60 joints)= -0.566 kN/joint= -0.127 kip/joint (       ) 

For Center Half (Left Part) 

(-0.200 kN/m2 * (765.41 m²/2 )+1.060 kN/m2 * (861.40 m²/2))/ (151/2 joints)=    

5.033 kN/joint= 1.132 kip/joint (    ) 

For Center Half (Right Part) 

(-0.926 kN/m2 * (765.41 m²/2 )+1.060 kN/m2 * (861.4 m²/2))/ (151/2 joints))=    

1.353 kN/joint= 0.304 kip/joint (    ) 

For Leeward Quarter 

(-1.548 kN/m2 * 245.85 m²+ 0.571 kN/m2 * 303 m²)/(60 joints)= -3.459 kN/joint=   

-0.778 kip/joint (    ) 

Lateral Load  

(0.357 kN/m2 * 303 m² )/ (60 joints)= 1.803 kN/joint= 0.405 kip/joint (       ) 
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Load Case 6 (D + SUnbalanced + WNegative Internal Pressure Coefficient) 

For Windward Quarter 

(-0.200 kN/m2 * 245.85 m²+ 0.162 kN/m2 * 303 m²)/ (60 joints)= -0.001 kN/joint=  

-0.0003 kip/joint (    ) 

Lateral Load  

(–0.101 kN/m2 * 303 m² )/ (60 joints)= -0.510 kN/joint= -0.115 kip/joint (       ) 

For Center Half (Left Part) 

(-0.200 kN/m2 * (765.41 m²/2 )+0.659 kN/m2 * (861.4 m²/2))/ (151/2 joints)=    

2.746 kN/joint= 0.617 kip/joint (    ) 

For Center Half (Right Part) 

(-0.926 kN/m2 * (765.41 m²/2 )+0.659 kN/m2 * (861.4 m²/2))/ (151/2 joints)=             

-0.934 kN/joint= -0.210 kip/joint (    ) 

For Leeward Quarter 

(-1.548 kN/m2 * 245.85 m² +0.231 kN/m2 * 303 m²)/(60 joint)= -5.176 kN/joint=    

-1.164 kip/joint (    ) 

Lateral Load  

(0.145 kN/m2 * 303 m² )/ (60 joint)= 0.732 kN/joint= 0.164 kip/joint (       ) 

 

8.3.8 Results 

 

American circular hollow pipes are used in the design. As stated before, two 

different softwares (SSTOGA and SSTOSA) which utilize two techniques (Genetic 

Algorithms and Simulated Annealing) are made use of in the analysis. Each 

program is run three times as in problem 1. The design result which is tabulated in 

Table 8.3 was found by running both programs three times. Four different ready 

sections (P1+1/4, P2, P2+1/2, EP2) are used in this design. 
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Table 8.3. Result of 756-Bar Dome 

Member Type 
Number of Members (From 

Fig.8.13) 
Ready Section 

Cross 
Sectional 
Area (in²) 

A1 1:54 P1+1/4 0.67 
A2 55:156 P2+1/2 1.70 
A3 157:204 P2 1.07 
A4 205:294 EP2 1.48 
A5 295:336 P2 1.07 
A6 337:414 EP2 1.48 
A7 415:450 P2 1.07 
A8 451:516 EP2 1.48 
A9 517:546 P2 1.07 
A10 547:600 EP2 1.48 
A11 601:624 P2 1.07 
A12 625:666 EP2 1.48 
A13 667:684 P2 1.07 
A14 685:714 P2 1.07 
A15 715:726 P2+1/2 1.70 
A16 727:744 EP2 1.48 
A17 745:750 P2+1/2 1.70 
A18 751:756 P2 1.07 

 Total Volume  107826.26 in² 

 Total Weight   30487 lb 

 

 

As seen from the Table 8.3, the optimum design is 30487 lb. The graphs of 

evolution to optimum design for both techniques (SSTOGA using Genetic 

Algorithm and SSTOSA using Simulated Annealing) are presented in Fig.8.33. 

 

In SSTOGA, 1000 generations each having 100 structural analyses are performed. 

This software uses totally 100,000 structural analyses to converge the optimum 

solution as seen from the graph (blue line).  

 

In SSTOSA, 31694 structural analyses in 300 cooling cycles are performed in order 

to find the optimum design, as seen from the graph (red line). This is fewer as 

compared to the number of the SSTOGA software. So this effects the CPU time. 
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While SSTOSA performs 31694 structural analyses to converge the optimum 

solution in about 26 hours (with a computer of AMD 1700 and 128 Mb RAM), 

SSTOGA converges the same optimum design by performing 100,000 structural 

analyses in about 73 hours (more than 3 days). This shows that CPU times are very 

distinctive where SSTOSA converges very earlier than SSTOGA.  
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Fig.8.33. Graph of Number of Structural Analysis vs. Feasible Best Design of 

756-Bar Dome Using SSTOGA and SSTOSA. 

 

8.4 444-Bar Dome 

 

The dome structure which has 444 elements and 121 nodes is presented below. This 

example is taken from literature. It was solved by Lamberti and Papapalettere in 

2003. The top, side and 3-D views of the structure are presented in Fig. 8.34 

through Fig.8.36 respectively.  
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8.34. Top View of 444-Bar Dome 

 

 

8.35. Side View of 444-Bar Dome 
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Fig.8.36. 3-D View of 444-Bar Dome 

 

The structure has nine repeating modules each of which is comprised of 48 

elements and a group of 12 elements on the top of these modules. The height of the 

structure is 20 m. and the radius at the ground level ( z=0 ) is 10 m. The bars are 

grouped into 28 groups, 27 of them from nine repeating modules (vertical, 

horizontal and diagonal bars) and the one from the outermost module. The 

download vertical loads are assumed to apply to the structure; 100,000 lbf 

(45,359.24 kgf) at node 1 and 10,000 lbf (4535.924 kgf) at each other free node. 

The structure is restrained by 12 joints in the bottom layer. The continuous cross-

sectional areas are used in this design. The lower bound of the cross-sectional areas 

is 0.1 in². The allowable tensile stress is 10,000 psi (7.031 kgf/mm²), the stress limit 

in compression is Euler buckling load. The displacements of the free nodes must be 

less than 0.25 in. (0.635 cm). 

 

The same design conditions stated in the related article are used in order to make a 

comparison between results. As stated above, real load conditions and code-based 
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design are not used. Besides, predetermined point loads and stress check for tensile 

and compression members are made use of.  

 

8.4.1 Results  

 

Since the continuous cross-sections are used, different results are obtained for each 

trial. The results are tabulated for both SA and GAs techniques in Table 8.4.  

 

 

Table 8.4. Results of 444-Bar Dome 

Technique Trial No Best Design(lb) Best Design(kg) 
SA 1 20425.79 9264.97 
SA 2 20403.23 9254.74 
SA 3 20449.30 9275.64 
SA 4 20419.12 9261.95 
SA 5 20375.33 9242.09 
SA 6 20424.07 9264.19 
GA 1 22068.68 10010.18 
GA 2 21913.01 9939.57 
GA 3 21717.17 9850.74 
GA 4 22093.23 10021.31 
GA 5 21609.39 9801.85 

 

 

The comparison of the results of the current work and the works from literature is 

shown in Table 8.5. 

 

 

Table 8.5. Comparison of the Results 

Technique Used Related Article Weight (kg) 
Sequential Linear Programming 

(LESLP) 
Lamberti and Pappalettere, 

2003 
9202.308 

Sequential Linear Programming 
(Yu Chen’s Technique) 

Yu Chen, 1998 9202.308 

Sequential Linear Programming 
(Commercial Optimizer DOT) 

Vanderplaats, 1995 9308.650 

Simulated Annealing (SSTOSA) Current Work 9242.09 
Genetic Algorithms (SSTOGA) Current Work 9801.85 
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As seen from Table 8.5, SSTOSA converges better than SSTOGA. This is due to 

deflection criteria. In this problem (apart from the first three problems) deflection is 

very critical (0.635 cm.), so stress and displacement criteria must be fulfilled 

together. This prevents GAs converge better. But the value found by SSTOSA in 

the current work is very near the one found by Lamberti and Pappalettere, 2003 

 

8.5 208-Bar Dome 

 

208-bar dome structure presented below is used to find the optimum rise-to-span 

ratio of dome structures. The rise-to-span ratios are increased gradually starting 

from 0.10 to 0.50 in order to find the value which gives the lowest weight. The 

same loading and design conditions are applied to all consecutive trials. Top, side 

and 3-D views of 208-bar dome is shown in Fig.8.37 through Fig.8.39. Member 

numbers of one half of the dome are given in Fig.8.40. 

 

 

 

8.37. Top View of 208-Bar Dome 
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8.38. Side View of 208-Bar Dome 

 

 

 

8.39. 3-D View of 208-Bar Dome 
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Fig.8.40. Half View of 208-Bar Dome (Given Member Numbers ) 

 

 

The load of 1 kip is assumed to effect at each free joint (joints from 17 to 80). 

Allowable Stress Design (ASD) of American Steel Standard is used in the design 

process and a displacement constraint is considered as L/360. The diameter is 

assumed to be 20 m. (787.40 in.) and the height is changed from 2 m. (78.74 in.) to 

10 m. (393.70 in.). Nine consecutive trials are solved for the rise-to-span ratios, 

0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50. 

 

8.5.1. Results 

 

The results obtained from utilizing the problems for different rise-to-span ratios are 

tabulated in Table 8.6. Each problem is solved for three times in order to be sure 

that global optimum results are found. As seen from the results, 0.20 is the optimum 

rise-to-span ratio for this problem. 
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Table 8.6. Results of 208-Bar Dome For Different Rise-to-Span Ratios 

Rise-to-Span Ratio Optimum Design (Minimum Weight) lb 

0.10 6601.31 

0.15 6111.38 

0.20 5980.33 

0.25 5990.97 

0.30 6368.58 

0.35 6463.08 

0.40 6744.29 

0.45 7593.95 

0.50 8638.69 

 

 

The results are presented graphically in Fig.8.41. 
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Fig.8.41. Rise-to-Span Ratio vs. Weight Graph (208-Bar) 
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8.6 354-Bar Dome 

 

The dome structure which is presented in part 8.1 of this study, is used for the 

search of optimum rise-to-span ratio. This 354-bar dome is solved for different rise-

to-span ratios varying from 0.10 to 0.50. The top, side and 3-D views of this 

structure are presented in Fig.8.3 through Fig.8.5. The same loading and design 

conditions are considered as stated for 208-bar dome.  

 

8.6.1. Results 

 

The results obtained from utilizing the problem for different rise-to-span ratios are 

tabulated in Table 8.7. Each problem is solved for three times in order to be sure 

that global optimum results are found. As seen from the results, 0.25 is found as the 

optimum rise-to-span ratio for this time. 

 

 

Table 8.7. Results of 354-Bar Dome For Different Rise-to-Span Ratios 

Rise-to-Span Ratio 
Optimum Design (Minimum Weight) 

lb 

0.10 28753.65 

0.15 26602.90 

0.20 26549.76 

0.25 25903.64 

0.30 26377.71 

0.35 27976.20 

0.40 28608.76 

0.45 28891.85 

0.50 32208.19 
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The results are presented graphically in Fig.8.42. It can be concluded that, for a 

single layer dome which has a circular base area, the optimum rise-to-span ratio is 

between 0.20 and 0.25. 
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Fig.8.42 Rise-to-Span Ratio vs. Weight Graph (354-Bar) 

 

 

8.7 560-Bar Dome 

 

In the preceding chapters, it was mentioned that double layer domes are used in 

order to enclose larger spans more than 200 m span lengths and they are 

exceptionally rigid. In this problem, the 208-bar dome problem is assumed to have 

double layer. So, the effect of double-layer will be tried to investigate through this 

problem. A double layer dome which has a diameter of 20 m. and a height of 10 m. 

is investigated. The top, side and 3-D views of 560-bar dome are presented in 

Fig.8.43 through Fig.8.45. The load of 1 kip is assumed to effect at each free joint 

(joints from 17 to 80) and ASD-ASCE is used in the design process. 
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     8.43. Top View of 560-Bar Dome 

 

 

 

8.44. Side View of 560-Bar Dome 
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8.45. 3-D View of 560-Bar Dome 

 

 

8.7.1 Results  

 

A single layer dome (208-bar dome) which has the same dimensions with 560-bar 

dome is used in order to make a comparison. The results of single layer dome 

designed by using ASD-ASCE is presented in Table 8.8. The results of 560-bar 

double layer dome is shown in Table 8.9. 

 

As seen from the tables, while eight different ready sections (EP1, EP1+1/2, P1/2, 

P1, P1+1/4, P1+1/2, P2, P2+1/2, P3) are used in the design of 208-bar dome, nine 

different ready section (EP1+1/4, P1/2, P1, P1+1/4, P1+1/2, P2, P2+1/2, P3, 

P3+1/2) are selected in the design of 560-bar dome.  

 

 

 



 179 

Table 8.8. Result of 208-Bar Dome (Member numbers are given in Fig.8.40) 

Member Type No of Members Ready Section 
Cross Sectional 

Area (in²) 
A1 1:16 P2+1/2 1.70 
A2 17:48 P3 2.23 
A3 49:64 P1+1/4 0.67 
A4 65,67,....,93,95 P2+1/2 1.70 
A5 66,68,.....94,96 P3 2.23 
A6 97:112 P1 0.49 
A7 113:144 P2+1/2 1.70 
A8 145:160 P1/2 0.25 
A9 161,163,......189,191 EP1+1/2 1.07 
A10 162,164,.....190,192 P1+1/2 0.80 
A11 193:208 EP1 0.64 

 Total Volume  44378.57 in² 
 Total Weight   12579.42 lb 

 

Table 8.9. Result of 560-Bar Dome 

Member Type No of Members 
Ready 
Section 

Cross Sectional 
Area (in²) 

A1 1:16 P1+1/4 0.67 
A2 17,19,....,45,47 P2 1.07 
A3 18,20,.....46,48 P3 2.23 
A4 49:64 P1+1/4 0.67 
A5 65:96 P2 1.07 
A6 97:112 P1 0.49 
A7 113,115,....141,143 P2 1.07 
A8 114,116,....142,144 P1+1/2 0.80 
A9 145:160 P1/2 0.25 
A10 161:192 P1+1/2 0.80 
A11 193:208 P1/2 0.25 
A12 209:224 P1+1/4 0.67 
A13 225,227,......253,255 P3+1/2 2.68 
A14 226,228,......254,256 P2 1.07 
A15 257:272 P1+1/4 0.67 
A16 273:304 P2 1.07 
A17 305:320 P1 0.49 
A18 321:352 P2+1/2 1.70 
A19 353:368 P1/2 0.25 
A20 369:400 P1+1/2 0.80 
A21 401:416 EP1+1/4 0.88 
A22 417:496 P1/2 0.25 
A23 497:528 P2 1.07 
A24 529:560 P1+1/2 0.80 

 Total Volume  72203.30 in² 
 Total Weight   20487.98 lb 
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While the number of members are almost tripled, the weight is increased just about 

60 %. If the member end forces are investigated, it can be seen that the member end 

forces of double layer dome are almost one third of the ones of single layer dome. 

This shows that double layer domes must be preferred for very large spans or they 

can be used for the cases where the deflection limits are critical. The member forces 

of members 1 to 208 (elements of single layer dome and corresponding elements of 

inner layer of double-layer dome) are presented in Fig. 8.46 graphically in order to 

compare the forces. It can be noticed that the loads of the double-layer dome are 

very low as compared to the ones of single-layer dome. This shows the high rigidity 

of the double-layer domes.  
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Fig.8.46 Comparison of Member Forces of Single and Double-Layer Domes 
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8.8 Discussion of the Results 

 

In this chapter, seven design problems are investigated. The first three problems are 

assumed to be in real life case and the diameter of these three structures are kept 

constant in order to make a comparison. The detailed results are presented in the 

related parts, but a general schema is shown in Table 8.10 to compare the results.  

 

 

Table 8.10 Comparison of the Results of Problems 8.1, 8.2, 8.3. 

Type of 
Problem  

No of 
Joints 

No of 
Members 

Height 
of the 
Dome 

Minimum 
Weight 

Total 
Length of 

the 
Members  

Average 
Length 
of the 

Members 

Average 
Weight of  

the 
Members 

 A B C D E E/B D/E 
354-Bar 
Dome 

127 354 4.34 m. 16997 kg. 1386 m. 3.92 m. 
12.263 
kg/m. 

354-Bar 
Dome 

127 354 8.28 m. 16442 kg. 1441 m. 4.07 m. 
11.410     
kg/m. 

756-Bar 
Dome 

271 756 8.28 m. 13829 kg. 2029 m. 2.68 m. 6.816 kg/m. 

 

 

As seen from the table above, the most economical design is the third one. At a first 

glance, this result may seem to be surprising since total length of the members in 

the third dome is the highest one. The reason leading to this result lies in the 

buckling strength of the members. That is, since the average length of the members 

is the lowest in the third dome, it turns out that buckling is less critical for the third 

dome. The fact that buckling is less critical for the third dome leads to selection of 

lighter cross-sections for the members, resulting in more economical design.  

 

When the first and second domes are compared, it is seen that the second dome 

offers a more economical design, although the overall length of whole members is 

higher. This is because the rise-to-span ratio in the second dome, which is 0.2 

allows the structure to exhibit a more efficient arch action which increases the 

strength against compression. This is also observed in test problems 5 and 6. 
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Although the third design leads to the least weight of the structure, its only 

shortcoming is the use of a high number of joints, which might be critical as far as 

cost optimization is concerned, rather than weight optimization. 

 

The forth problem is taken from the literature and point loads are assumed to act as 

stated in the corresponding articles. The results found in the current work are 

approximately the same as compared the ones presented in the related articles. It 

concludes that softwares SSTOSA and SSTOGA can be used in the optimum design 

with confidence. 

 

Fifth and sixth problems show that the optimum rise-to-span ratio for domes which 

have circular base area is between 0.20 and 0.25. The domes with rise-to-span ratios 

larger or smaller than these values do not result in economical solutions. As stated 

in the previous chapters, very shallow or deep domes are subjected to more severe 

loads and susceptible design problems such as snap-through buckling, local 

buckling.  

 

Seventh problem is aimed to find the effect of double-layer. The results of this 

problem prove that double layer domes must be used in case of very large spans or 

for the cases where the deflection is critical. One other result obtained from the 

investigation of number forces in double layer domes show that these structures are 

very rigid as compared to the single layer domes. 
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CHAPTER 9 
 

 

SUMMARY AND CONCLUSIONS 
 
 

 

9.1 Overview of the Thesis 

 

The use of two modern optimization techniques (GAs and SA) in the optimum 

structural design applications of pin-jointed 3-D dome structures has been explored 

in this thesis. These techniques have been investigated in terms of their 

applicability, efficiency and success to the problems of dome structures. Two 

practical software packages (e.g. SSTOGA and SSTOSA) developed by Hasançebi 

(2001) have been used in the design process meeting requirements imposed by real 

life applications. A practical optimum design of domes is emphasized such that 

various loads (wind, snow etc.) acting on these structures are considered according 

to provisions of design codes.  

 

Both techniques (GAs and SA) have been applied separately to the test problems in 

order to identify the differences in the search characteristics of the techniques, as 

well as their efficiencies. The emphasis is not only laid on the two global 

optimization techniques, but also the dome structures are extensively discussed. The 

various types of domes have been identified from the real life applications and 

literature survey. After getting a sound knowledge about two global optimization 

techniques and domes, the weight optimization of these structures have been studied 

considering various aspects of designs, such as shape, connection, form and 

dimension.  
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After this brief overview of the thesis, a more comprehensive discussion is 

presented in the following section to summarize and conclude the chapters. 

 

9.2 Summary of the Thesis 

 

In chapter 2, introductory information about dome structures is presented in order to 

clarify the attributes of these structures both from a theoratical and practical points 

of view. The types of dome structures which have been used widely in the world are 

discussed. The examples of domes constructed in Turkey and in the world are 

presented. Various components and details of the dome structures are also explained 

briefly in this chapter.  

 

Chapter 3 covers the analysis aspect of dome structures. Although chapter 2 gives 

general information about this type structures, chapter 3 focuses on the issue of 

analysis (both linear and non-linear). The stiffness method (displacement method) is 

introduced as linear analysis tool in detail. The stiffness and transformation matrices 

are presented for 3-D truss type elements. The loads that act on these structures are 

briefly mentioned in this chapter since a separate chapter is devoted for design 

loads. Wind tunnel tests and test results obtained from wind tunnel tests are also 

presented in order to give a sound knowledge about the real load conditions. 

 

Chapter 4 is devoted to design loads according to ASCE 7-98 “Minimum Design 

Loads for Buildings and Other Structures”. The wind and snow loads are 

highlighted since these two loads are the most critical loads for dome structures as 

experienced from the past tragic events (collapses of dome structures in the past). 

The design code of ASCE 7-98 is explained in detail in order to improve the 

understanding of the real load conditions such as wind and snow loads. The load 

conditions presented in this chapter are also utilized in the design of test problems 

discussed in chapter 8. The design loads, especially wind and snow loads are 

described in step-by-step manner. 
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Chapter 5 gives a brief outline of optimization techniques. A classification of 

optimization techniques is performed and the descriptions of classical and modern 

techniques are given briefly. Stochastic search techniques (global optimization 

techniques) are given a particular emphasis because GAs and SA belong to this 

specific category of optimization techniques. Extensive information about GAs and 

SA is avoided in this chapter, since they are broadly discussed in chapters 6 and 7.  

 

In chapter 6, detailed information on genetic algorithms is presented in order to 

clarify the working principles of the technique, both from theoratical and practical 

points of view. Following a general algorithmic outline of a GA, the components of 

this algorithm are explicated, referring to some alternative approaches adopted to 

implement them. It is worthwhile to mention that the relative effectiveness of such 

approaches is still an ongoing research area due to a lack of theoretically supported 

concrete findings. The main steps of GAs and genetic operators used in the 

technique are explained in detail. Then the formulation of size optimum design 

problem of truss structures and constraint handling in GAs are presented in order to 

give the necessary background for the design process. 

 

A comprehensive discussion on the simulated annealing technique is presented in 

chapter 7, clarifying the powerful parallelisms between its algorithmic realization 

and thermodynamical background. It has been emphasized that the robustness of SA 

primarily lies in its ability to effectively combine useful characteristics of both the 

global and random search strategies. It is worthwhile to mention that there are 

plenty of different algorithmic versions of SA in the literature. The SA algorithm 

discussed in chapter 7 rests on the use of Boltzman parameter, and thus exhibits 

certain superiorities in comparison to other versions. This is, in fact, closely related 

to the functionality and usefulness of Boltzman parameter during the optimization 

process. Because, apart from (i) enabling a fruitful implementation of the algorithm 

irrespective of problem type; and (ii) storing the search experience to govern the 

acceptance criteria of next candidates, this parameter contributes to the formation of 

an appropriate annealing schedule. However, in some other versions this task is 
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carried out by assigning arbitrary values to the annealing schedule parameters, and 

due to a lack of normalization of objective function values, a lot of trials has to be 

performed to determine the most efficient annealing schedule for a particular 

problem. Thus, it can be concluded that the use of Boltzman parameter in annealing 

algorithm is not a trivial task and should be favored to create an efficiently working 

algorithm.  

 

Chapter 8 reports numerical experiments concerning the applications of GAs and 

SA to weight optimum design of dome structures. Seven test problems are solved 

here using both techniques, making use of real load conditions. Two different 

computer softwares prepared by Hasançebi (2001) were used; SSTOGA (Size, 

Shape and Topology Using Genetic Algorithms) and SSTOSA (Size, Shape and 

Topology Using Simulated Annealing). The first problem is 354-bar dome structure 

which is designed to be used as the roof of an auditorium building. Two techniques 

yielded the same result. In order to achieve a comparability of the techniques, the 

evolution of the best design during the course of optimization process was 

graphically presented for both of the techniques. The second test problem is similar 

to the first one, except the height of the dome is increased to 8.28 m. Third test 

problem has the same dimensions with the second dome, yet its topological 

configuration is different such that it has 756 bars and 271 joints. Real load 

conditions according to ASCE 7-98 “Minimum Design Loads for Buildings and 

Other Structures” were applied to all these three problems. Next, a problem taken 

from the literature was studied and the results found were compared in order to 

explore the efficiency of the algorithms. The last three problems were used to 

investigate the effect of rise-to-span ratio and double layer to the optimum design. 

A further discussion about the results is presented in the end of the chapter so as to 

give practical tips to the designers.  
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9.3 Conclusion 

 

In the light of the experience gained through the test problems, it can be said that 

both optimization techniques (SA and GAs) generally converge the same optimum 

solution for the problems where design space is not heavily dominated by 

displacement constrains (test problems 1-3). However, SA finds the solution much 

faster (with a less number of structural analyses) than GAs.  

 

The optimum rise-to-span ratio for domes was found to be between 0.20 and 0.25. 

This ratio has a significant influence on the optimum design of domes. Especially, 

for problems where shape optimization is not involved, it is recommended that the 

rise-to-span ratio of the domes be chosen between 0.20 and 0.25 for an effective 

design of the structures. As depicted from the graphs in Chapter 8, the domes 

having rise-to-span ratios above and below this range give rise to non-optimum 

solutions. 

 

Another significant criterion governing the design of domes is the requirement of 

fully triangulation of the geometry. Since these types of structures have a high 

stiffness in all directions and are kinematically stable, triangulation must be used in 

the design of domes unless making rigid connection designs. For pin-connected 

dome design, the dome area must be formed from the triangular parts. Otherwise 

stability problem can be encountered. 

 

Although the double layer dome used in the test problem 7 didn’t produce any less 

weight than a single layer dome, it is a well-known fact that they should be used for 

larger spans (especially more than 100 m.) and for the cases where deflection 

criterion is critical. Since these structures have a higher rigidity, they can be used 

for the design of unobstructed large spans. The load analysis of the member forces 

in chapter 8 shows that when a single layer dome is replaced with a double layer 

dome, the member end forces can be decreased to one third and sometimes one 

fourth of their initial values. Because of this reason, in the design of the large spans, 
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double-layer design is preferred. There are numerous examples of double-layer 

domes which cover the spans more than 200 m. in the world. 

 

The numerical examples discussed in the thesis indicate that as far as the load 

analysis of domes is concerned, snow load plus dead load should be considered. 

When calculating snow load, its symmetrical distribution over the entire dome 

should be considered together with its unsymmetrical distribution accumulated on 

one half of the dome. For some members, other load combinations such as DL + 

WL + SL are also observed to be critical. 

 

Since the most of the dome structures are symmetrical, grouping of the members is 

essential for a practical design process. Besides, grouping of the symmetric 

members reduces the CPU time during the optimization process, especially when 

SA is employed.  

 

In Turkey, dome structures are not used as commonly as in the world. As stated 

before, dome structures enclose a maximum amount of space with a minimum 

surface, so they are the most economical structures for the need of unobstructed 

closed places. For this reason, especially in USA, large unobstructed spans such as 

sports stadia, swimming pools, baseball pitches, gymnasiums, etc. are enclosed by 

using pin-connected or rigid type dome structures. From this standpoint, it is hoped 

that this thesis plays an encouraging role about the common use of this type 

structures in Turkey. 

 

9.4 Recommendations for Future Works 

 

Although genetic algorithm is very powerful technique, it leads to a massive 

computational effort, reducing the speed of the algorithm as compared to traditional 

optimization techniques. This discussion also holds for the simulated annealing, 

where the optimum is located via a high number of candidate sampling. Especially, 

the most time-consuming part of a structural optimization algorithm is the structural 
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analysis phase required to obtain the structural response of designs. There are 

several ways to avoid such an intensive computational task, and thus to enhance the 

efficiency of the solution algorithm in terms of computing time. One way is to make 

use of the natural parallelism inherent in these algorithms through an 

implementation in parallel computing environment. For instance, in GAs it is 

possible to divide a design population into a number of n sub-populations on a 

computer system of n-processors, such that each processor is held responsible for 

evolving its own sub-population. By this time, the computational effort may be 

reduced proportion to the number of processors used. A second and more efficient 

approach is to use the other artificial intelligence techniques, such as neural network 

or genetic programming, to provide computationally inexpensive estimates of 

structural response quantities. This is accomplished by establishing a functional 

relation between a set of input and output data.  

 

This thesis conducted a research on the use of GAs and SA techniques in the 

optimum design of pin-jointed 3-D dome structures. The testing of other 

evolutionary algorithm techniques; evolutionary strategies (ESs) and evolutionary 

programming (EP), in some mathematical optimization problems indicates a strong 

evidence of their robustness and superiorities over GAs. Thus, it is essential to 

investigate the efficiency and effectiveness of ESs and EP in optimum structural 

design. However, this requires the development of their more powerful discrete 

versions, which will allow them to maintain their enhanced search capabilities in 

searching the design spaces of discrete optimization problems.  

 

Rigidly jointed dome structures are also used widely in the world. Especially ribbed 

domes and geodesic domes can be analyzed by using the same techniques (GAs and 

SA) in the future works. Moreover, Eurocode 3 (code for steel structures in 

European Community) can be included to the design process for more realistic and 

economic designs.  
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