

PIPELINED DESIGN APPROACH TO MICROPROCESSOR

ARCHITECTURES
A PARTIAL IMPLEMENTATION: MIPS™ PIPELINED

ARCHITECTURE ON FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUZAFFER CAN ALTINİĞNELİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2005

 ii

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Prof. Dr. İsmet ERKMEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Hasan GÜRAN
 Supervisor

Examining Committee Members

Assist. Prof. Dr. Cüneyt BAZLAMAÇCI (METU, EE)

Prof. Dr. Hasan GÜRAN (METU, EE)

Dr. Ece (GÜRAN) SCHMIDT (METU, EE)

Assist. Prof. Dr. İlkay ULUSOY (METU, EE)

M.S. Eng. Murat ŞANSAL (ASELSAN)

 iii

PLAGIARISM

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

 Name, Last Name: Muzaffer Can ALTINİĞNELİ

Signature :

 iv

ABSTRACT

PIPELINED DESIGN APPROACH TO MICROPROCESSOR
ARCHITECTURES

A PARTIAL IMPLEMENTATION: MIPS™ PIPELINED ARCHITECTURE ON
FPGA

ALTINİĞNELİ, Muzaffer Can

M.S, Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Hasan GÜRAN

September 2005, 120 Pages

This thesis demonstrate how pipelining in a RISC processor is achieved

by implementing a subset of MIPS R2000 instructions on FPGA.

Pipelining, which is one of the primary concepts to speed up a

microprocessor is emphasized throughout this thesis. Pipelining is

fundamentally invisible for high level programming language user and

this work reveals the internals of microprocessor pipelining and the

potential problems encountered while implementing pipelining. The

comparative and quantitative flow of this thesis allows to understand

why pipelining is preferred instead of other possible implementation

schemes. The methodology for programmable logic development and

the capabilities of programmable logic devices are also given as

background information. This thesis can be the starting point and

reference for programmers who are willing to get familiar with

microprocessors and pipelining.

Keywords: Microprocessor, MIPS, Pipelining, FPGA

 v

ÖZ

MİKRO İŞLEMCİLERDE PIPELINED DİZAYN YAKLAŞIMI
MIPS™ PIPELINED İŞLEMCİ MİMARİSİNİN FPGA ÜZERİNDE KISMI

BİR UYGULAMASI

ALTINİĞNELİ, Muzaffer Can

Yüksek Lisans, Elektrik Elektronik Mühendisliği

Tez Yöneticisi: Prof. Dr. Hasan GÜRAN

Eylül 2005, 120 Sayfa

Bu çalışmada, RISC işlemcilerde “Pipelining” konusu, FPGA üzerinde

MIPS R2000 komut setinin bir kısmı tamamlanarak açıklanmıştır.

Çalışma boyunca, Mikro İşlemcilerin hızlarının arttırılması konusunda

temel bir unsur olan “Pipelining” konusu üzerinde durulmuştur. Temel

olarak “Pipelining” işlevi, yüksek seviyede programlama yapan kişilere

görünmezdir. Bu çalışma “Pipelining” işlevinin ayrıntılarını ve bu işlev

gerçekleştirilirken karşılaşılan problemleri ortaya koymaktadır.

“Pipelining” dışındaki diğer tasarım yaklaşımlarının neden uygulanamaz

oldukları, bu tezin karşılaştırmalı ve nicel akışı sayesinde anlaşılabilir.

Donanım tasarımında temel alınan metodolojiler ve donanımların

kabiliyetleri hakkında tez boyunca bir alt yapı oluşturulmaya da

çalışılmıştır. Bu tez, Mikro İşlemciler ve “Pipelining” işlevi ile tanışıklık

kazanmak isteyen programcılar için bir başlangıç ve referans noktası

olabilir.

Anahtar Kelimeler: Mikro İşlemci, MIPS, Pipeline, FPGA

 vi

To My Generous Family

 vii

ACKNOWLEDGMENTS

I owe much gratitude to my Advisor, Professor Dr. Hasan Güran, for

inspiring me to carry out this thesis. His criticism and suggestions bring

this work to this point and I am always aware during our work that this

thesis is first of all for my benefit.

Everyone working at ASELSAN deserve my thanks, especially Erdinç

Atılgan, Kemal Burak Codur and Murat Şansal. They guided me to right

technical people, supported me technically and mentally during my

work. This thesis ended up with an implementation because ASELSAN

gave the hardware support without waiting any outcome despite it is a

commercial organization.

I also owe lots to my father, mother and sister. They interested in all of

my needs while I was embedded to my work. I also grasp the idea of

being a family in addition to fundamentals of pipelining in micro-

processors at the end of this work.

 viii

TABLE OF CONTENTS

PLAGIARISM.. i
ABSTRACT..iv
ÖZ.. v
ACKNOWLEDGMENTS ...vii
TABLE OF CONTENTS... viii
LIST OF TABLES ..xi
LIST OF FIGURES ...xii
LIST OF ABBREVIATIONS ...xiv
CHAPTER

1. INTRODUCTION ... 1
2. BACKGROUND AND MOTIVATION ... 4

2.1. Programmable Logic Design ... 4
2.1.1. History of Programmable Logic .. 5

2.1.1.1. Simple Programmable Logic Device (SPLD) 5
2.1.1.1.1. Programmable Logic Array (PLA)........................... 5
2.1.1.1.2. Programmable Array Logic (PAL)........................... 6

2.1.1.2. Complex Programmable Logic Device (CPLD) 7
2.1.1.3. Field Programmable Logic Gate Array (FPGA).............. 8

2.1.2. Basic Design Process... 9
2.2. Integrated Software Environment (ISE™) 10
2.3. Virtex™ FPGA... 13

2.3.1. Function Generation Capabilities of CLB............................ 14
2.3.2. Distributed (Shallow) Memory Usage of CLB 15
2.3.3. Shift Register Configuration of CLB.................................... 15
2.3.4. Arithmetic Capabilities of CLB .. 15

2.4. PCI Host Software: In-Circuit Debugging of the Architecture 16
3. RELATED RESEARCH ... 19

3.1. MIPS R2000 Instruction Set Architecture (ISA)......................... 19
3.2. MIPS Instructions and MIPS Assembly Language 20

3.2.1. MIPS Instruction Format ... 21
3.2.2. MIPS Addressing Modes .. 22
3.2.3. MIPS Instruction Decoding ... 23

3.3. Survey of Instruction Set Architecture Implementation Scheme 24
3.3.1. Single Cycle Implementation Scheme 25
3.3.2. Multi Cycle Implementation Scheme................................... 27
3.3.3. Pipelined Implementation Scheme 29
3.3.4. Quantitative Comparison of Implementation Schemes...... 31

 ix

3.4. Problems and Solutions in Pipelined Architectures 33
3.4.1. Structural Hazards.. 33
3.4.2. Brach Hazards.. 34
3.4.3. Data Hazards.. 35
3.4.4. Exception Hazard ... 37

4. IMPLEMENTATION OF MIPS PIPELINED ARCHITECTURE......... 38
4.1. Internal Structure of the Processor.. 42

4.1.1. Instruction Fetch Unit.. 42
4.1.1.1. Input/Output Signals of Instruction Fetch Unit 43
4.1.1.2. Function of Instruction Fetch Unit................................. 45

4.1.2. Instruction Decode Unit .. 45
4.1.2.1. Input/Output Signals of Instruction Decode Unit........... 46
4.1.2.2. Function of Instruction Decode Unit 49

4.1.3. Forwarding and Hazard Detection Unit............................... 49
4.1.3.1. Input/Output Signals of Forwarding and Hazard
Detection Unit ... 49
4.1.3.2. Function of Forwarding and Hazard Detection Unit...... 52

4.1.4. Control Unit... 52
4.1.4.1. Input/Output Signals of Control Unit............................. 52
4.1.4.2. Function of Control Unit ... 55

4.1.5. Execute Unit ... 55
4.1.5.1. Input/Output Signals of Execute Unit 56
4.1.5.2. Function of Execute Unit .. 57

4.1.6. Data Memory Unit... 57
4.1.6.1. Input/Output Signals of Data Memory Unit 57
4.1.6.2. Function of Data Memory Unit 58

4.1.7. Exception Detection Unit .. 58
4.1.7.1. Input/Output Signals of Exception Detection Unit......... 59
4.1.7.2. Function of Exception Detection Unit 60

4.1.8. Register Blocks between Stages of Processor 60
4.2. External Structure of the Processor .. 61

4.2.1. External Monitoring of the Processor.................................. 62
4.2.2. External Manipulation of the Processor 63

5. VERIFICATION OF MIPS PIPELINED ARCHITECTURE 67
5.1. Verification of Correct Operation of Instructions........................ 67
5.2. Verification of Hazard Detection and Handling.......................... 77
5.3. Verification of Exception Handling... 83

6. CONCLUSIONS AND FUTURE WORK .. 91
REFERENCES .. 93
APPENDICIES

A. IMPLEMENTED SUBSET OF MIPS R2000 ISA 96
B. MIPS MONITOR SOFTWARE .. 105

 x

C. FLOW DIAGRAMS ARCHITECTURE ELEMENTS 112
Instruction Fetch Unit Flow Diagram .. 112
Instruction Decode Unit Flow Diagram... 113
Forwarding and Hazard Detection Unit Flow Diagram 114
Instruction Execute Unit Flow Diagram .. 115
Instruction Execute Unit Flow Diagram (continued) 116
Data Memory Unit Flow Diagram ... 117
Exception Detection Unit Flow Diagram... 117
Register Block Unit Flow Diagram.. 118

D. LAYOUT OF BOARD .. 119
E. RESOURCES IN THIS THESIS.. 120

 xi

LIST OF TABLES

TABLE

3.1: Calculation of CPI for Multi Cycle Implementation Scheme 32
3.2: Instruction Time Calculation for Implementation Schemes............. 33
4.1: Forwarding Mechanism for Register Bank Primary Port 50
4.2: Forwarding Mechanism for Register Bank Secondary Port 50
4.3: ID_Control Signal Fields ... 53
4.4: EX_Control ALUOp Signal Values .. 53
4.5: Base Addresses of Processor’s Internal Signals 63
5.1: Verification of Correct Instruction Operation...................................... 68
5.2: Timing Diagram for Instruction Operation Verification 70
5.3: Verification of Hazard Detection and Handling 77
5.4: Timing Diagram for Handling Hazard Verification 79
5.5: Verification of Exception Handling “ADDU” and “ADD” 83
5.6: Timing Diagram for Exception Handling of ADDU and ADD 84
5.7: Verification of Exception Handling “SUBU” and “SUB”.................... 85
5.8: Timing Diagram for Exception Handling of SUBU and SUB........... 86
5.9: Verification of Exception Handling “ADDIU” and “ADDI” 87
5.10: Timing Diagram for Exception Handling of ADDIU and ADDI 88
5.11: Verification of Exception Handling Undefined Instructions 89
5.12: Timing Diagram for Undefined Instruction Exception Handling ... 90
A.1: MIPS Registers .. 104

 xii

LIST OF FIGURES

FIGURE

2.1: PLA Architecture .. 6
2.2: PAL Architecture .. 7
2.3: CPLD Architecture ... 8
2.4: FPGA Architecture ... 8
2.5: Basic Design Flow in FPGAs, ©Xilinx .. 9
2.6: MIPS Project Properties Window .. 11
2.7: MIPS Project Source File Listing... 12
2.8: Virtex Architecture Overview ©Xilinx .. 14
2.9: Function Generator Configuration of CLB.. 14
2.10: Carry Logic Diagram ©Xilinx.. 15
2.11: Multiplier Implementation ©Xilinx .. 16
2.12: MIPS Monitor Software ... 18
3.1: MIPS Instruction Format ... 21
3.2: Immediate Addressing Mode ... 22
3.3: Register Addressing Mode ... 22
3.4: Base Addressing Mode ... 22
3.5: PC Relative Addressing Mode ... 23
3.6: Pseudo Direct Addressing Mode... 23
3.7: MIPS Opcode Map and Frequency of Instructions........................... 24
3.8: Single Cycle Implementation Scheme ©[COD98] 26
3.9: Multi Cycle Implementation Scheme ©[COD98].............................. 28
3.10: State Flow Diagram of Multi Cycle Scheme Control Unit.............. 29
3.11: Pipelined Implementation Scheme ©[COD98]................................ 30
3.12: Simultaneously Executing Instructions in Pipeline 31
3.13: Single and Multi Cycle Instruction Sequence.................................. 32
3.14: Data Hazard Solution by Forwarding.. 36
3.15: Data Hazard Solution by Stalling and Forwarding 36
3.16: Forwarding of the Most Recent Data.. 37
4.1: Internal Structure of the Pipelined Processor.................................... 40
4.2: External Structure of the Pipelined Processor 41
4.3: Input/Output Signals of Instruction Fetch Unit................................... 44
4.4: Input/Output Signals of Instruction Decode Unit............................... 48
4.5: Input/Output Signals of Forwarding and Hazard Detection Unit 51
4.6: Input/Output Signals of Control Unit ... 55
4.7: Input/Output Signals of Execute Unit.. 56
4.8: Input/Output Signals of Data Memory Unit .. 58
4.9: Input/Output Signals of Exception Detection Unit............................. 60

 xiii

4.10: Input/Output Signals of Reg Unit... 62
4.11: Input/Output Signals of Reg_Wr Unit ... 64
4.12: StateCAD Diagram of Wait_Sm Unit .. 65
4.13: Input/Output Signals of Reg_Prg Unit .. 66
B.1: Main Screen of MIPS Monitor Software... 106
B.2: Main Functions of MIPS Monitor Software 107
B.3: PCI Device Selection Dialog.. 108
B.4: PCI Device Selection Dialog.. 109
B.5: Unresolved Hazards View.. 110
B.6: Overflow Exception Detection View.. 111
B.7: Undefined Instruction Exception Detection View............................ 111
C.1: Instruction Fetch Unit Flow Diagram .. 112
C.2: Instruction Decode Unit Flow Diagram .. 113
C.3: Forwarding and Hazard Detection Unit Flow Diagram.................. 114
C.4: Instruction Execute Unit Flow Diagram.. 115
C.5: Instruction Execute Unit (continued) Flow Diagram 116
C.6: Data Memory Unit Flow Diagram.. 117
C.7: Exception Detection Unit Flow Diagram .. 117
C.8: Register Block Unit Flow Diagram.. 118
D.1: Layout of Board...119

 xiv

LIST OF ABBREVIATIONS

ALU Arithmetic Logic Unit
API Application Interface
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CISC Complex Instruction Set Computer
CLB Configurable Logic Block
CLK CLocK
CPI Clock cycle Per Instruction
CPLD Complex Programmable Logic Device
DLL Delay Locked Loop
EX Execute (stage)
FF Flip Flop
FPGA Field Programmable Gate Array
GCC Gnu C Compiler
GPR General Purpose Register
HDL Hardware Description Language
ID Instruction Decode (stage)
IF Instruction Fetch (stage)
IOB Input Output Block
ISA Instruction Set Architecture
ISE Integrated Software Environment
LUT Look Up Table
MEM Memory (stage)
MIPS Microprocessor without Interlocked Pipeline Stages
MUX MUltiplXer
NOP No Operation (instruction)
PAL Programmable Array Logic
PC Program Counter
PCB Printed Circuit Board
PLA Programmable Logic Array
PROM Programmable Read Only Memory
RISC Reduced Instruction Set Computer
SoRC System on Re-programmable Chip
SPLD Simple Programmable Logic Device
VHDL Very high speed integrated HW Description Language
WB Write Back (stage)
XST Xilinx Synthesis Technology

 1

CHAPTER 1

INTRODUCTION

Faster execution of computer programs was the one of the most

challenging concerns of engineers in the past and also will be much

more challenging in the future. Increased demands of the industry for

real time applications yield the presence of faster and deterministic

processor architectures in years in the market.

Developers have always been under the effect of their era’s restrictions

while determining their architectural approach. This was the reason why

Complex Instruction Set based computers (CISC) came before the

much simpler counter parts, the Reduced Instruction Set (RISC) based

computers. Developers constructed first more challenging CISC

because of memory restrictions and little compiler support.

Developments in memory technology in parallel with compiler

enhancements resulted in emergence of RISC based computers. They

are much simpler to build, much simpler to understand; hence open for

improvements and maintenance.

The number of high level programming language compilers developed

and specialized for RISC architectures grew rapidly. High level

programming became more popular over years and programmers kept

away from low level error prone long lasting assembly programming.

Another reason for choosing high level programming is that different

vendors proposed different architectures; hence it was not feasible to

learn the architecture specific assembly code. Pipelining is one way of

 2

increasing the processor’s performance. It was proposed for RISC

based computers mainly because of their regularity. Pipelining

accompanied with improved compiler support gave superior

performance and further improvements made by scaling these

architectures.

The primary goal of this thesis is to grasp the idea behind pipelining by

partially developing RISC architecture, specifically Microprocessor

without Interlocked Pipeline Stages (MIPS), because of its simplicity

and rich documentation.

Understanding the pipelining is important because pipelining is

transparent to high level programmer. Programmers are aware of

Program Counter (PC), register bank and memory when they debug

their programs, but they can not observe the internal register blocks

used for pipelining. Programmers can not understand why the assembly

code generated by different compiler vendors is different for the same

high level software without knowing the internals of pipelining even they

know the compiler well.

The secondary goal of this thesis is to understand the problems faced in

pipelining, because it is the first step that comes before the superscalar

speculative architectures. To go one step further, problems in pipelining

must be solved.

The last goal of this thesis is to get familiarity with hardware design

process cycle and grasp internals of programmable logic design

especially for Field Programmable Gate Arrays (FPGAs). FPGAs

promise parallelism which is the key concept for speed. FPGAs are

reprogrammable and are becoming more popular in the market. They

replace to application specific integrated circuit (ASIC) and discrete

processors and they are also called as system on reprogrammable

chip (SoRC).

 3

This thesis is organized as follows: Chapter 2 serves to provide

necessary background for development environment, programmable

logic design and FPGAs. Chapter 3 describes the different

implementation schemes for the same instruction set and clarifies why

pipelining is the best quantitatively. It also describes the problems

encountered in pipelining and solution proposals. Chapter 4 gives the

details of particular subset of MIPS implementation. Chapter 5 is

devoted for formal verification of the partially implemented architecture

by using in circuit debugging at runtime via specially developed

software, MIPS Monitor. Chapter 6 gives the conclusions and makes

remarks for further future work. The appendices presents the

implemented instruction set assembly codes, instruction descriptions

and some screen shots to demonstrate the usage of MIPS Monitor

software.

 4

CHAPTER 2

BACKGROUND AND MOTIVATION

This chapter serves for the following purposes:

(1) providing the necessary background for understanding the rest of

thesis,

(2) motivations behind the usage of software and hardware

development environments in thesis,

(3) internals of platform FPGA which was preferred as design

solution,

Readers, who are quite familiar with these concepts, can skip this

chapter and start reading Chapter 3 first.

2.1. Programmable Logic Design

Since late 1970s, programmable logic circuits are greatly enhanced and

dominated the electronics market. Developers had a tendency to use

reprogrammable devices (simple and complex programmable logic

devices), instead of application specific integrated circuits (ASIC) to

develop large and interoperable systems because of their following

characteristics [XDRM99]:

• Low cost per gate.

• Reduces Risk; engineers can make design changes in

minutes.

 5

• Faster Testing and Manufacturing.

• Ease in Verification.

• Ability participating in Hardware-Software Co-Design.

• Versatile support for Input/Output Standards.

2.1.1. History of Programmable Logic

By the late 1970s, standard logic components were exclusively used as

standard building blocks of logic circuits. These components (e.g.,

74XX series TTL parts) were located on printed circuit boards (PCBs)

and any change in logic resulted corresponding revision in PCB layout.

The side effects encountered, when some part of design changed, was

able to be avoided by replacing these components with programmable

logic devices (PLDs). Given that the design in PLDs was flexible, no

rewiring on PCBs was required. In addition, less board area and power

was consumed by PLDs. PLDs can be divided in two sets as simple

and complex PLD.

2.1.1.1. Simple Programmable Logic Device (SPLD)

These devices are mainly used for address decoding [Barr99].

2.1.1.1.1. Programmable Logic Array (PLA)

Ron Cline from Signetics™ put forward the idea of two programmable

planes on 1975 [XPM04]. Any combinatorial logic can be expressed in

the form of two level logics: as product of sums or sum of products. For

that reason, by using PLA, any combinational logic can be

implemented, if number of inputs and outputs are enough for required

implementation. Despite the architecture is very flexible, because of

 6

high fuse count, propagation delay is higher than PAL. Unwanted

connections (fuse) are blown after programming.

Figure 2.1: PLA Architecture

2.1.1.1.2. Programmable Array Logic (PAL)

John Birkner from MMI proposed a second alternative for the PLA array

on 1978. Instead of one programmable planes, the OR array was fixed

after fabrication [XPM04]. PALs are more constrained than PLAs, but,

because of fewer connections, they have lower propagation delay.

 7

Figure 2.2: PAL Architecture

2.1.1.2. Complex Programmable Logic Device (CPLD)

Macrocells were obtained by extending PLDs with additional flip flops

(FFs). CPLDs were simply combinations of these macrocells with

programmable interconnects, switch matrix (SM). SM within CPLD may

or may not be fully connected unlike the programmable interconnect

within PLD. In other words, some of theoretically possible connections

between PLDs may not actually be supported within a given CPLD.

Therefore 100% utilization of macrocells is very difficult to achieve.

Some designs will not fit a given CPLD, even though there are sufficient

logic gates and FFs.

CPLDs can also be used as address decoders like PLDs, but more

often as high performance control logic and finite state machines.

Traditionally, CPLDs have been chosen over FPGAs, whenever high

performance logic is required [Barr99].

 8

Figure 2.3: CPLD Architecture

2.1.1.3. Field Programmable Logic Gate Array (FPGA)

In 1985, a company called Xilinx™ introduced FPGAs, composed of

configurable logic blocks (CLBs), which are surrounded by

programmable interconnects and comprise function generators or look

up tables (LUTs) and flip flops (FFs). FPGAs can be one time

programmable similar to PLD or SRAM based (or reprogrammable).

[XPM04] [TRENZ01] [BZEID]

Figure 2.4: FPGA Architecture

CLB CLB

CLB CLB

SM SM

SM SM

CLB CLB

CLB CLB

SM

SM

CLB CLB

CLB CLB

SM SM

CLB CLB

CLB CLB

SM

IOB IOB IOB IOBIOB IOB IOB IOB

IOB IOB IOB IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

PLD PLD

SM

PLD PLD

 9

2.1.2. Basic Design Process

Design entry or design specification can be in the form of schematic

capture or hardware description language (HDL). In schematic form,

after determining the capture tool and the manufacturer’s library,

designer can connect the gates from library with wires and then

generates netlist, which is the textual description of the circuit.

Schematic capture is not feasible for large designs because it is not

scalable, not reusable, strongly vendor dependent and hard to maintain.

In HDL design entry, the design is entered in high level description

language emphasizing design’s function or behavior and then

synthesized by the vendor independent tool and netlist is generated.

The design is more maintainable, scalable and reusable than schematic

design entry.

Figure 2.5: Basic Design Flow in FPGAs, ©Xilinx

 10

In design implementation, the first step is translation of low level and

generic netlist file into device specific resources. After translation step,

mapping step checks the design according to device specific rules, add

further logic or make replications to meet the timing requirements using

device resources. At last, in place and route step, already allocated

resources are distributed along FPGA taking into account the physical

constraints and routing resources. At this point physical layout is

determined and timing information for design entities and interconnects

(Back Annotation) is available. After routing, the device is ready to be

programmed.

In device programming stage, the SRAM based FPGA’s configuration,

which is volatile after power on and also defining the logic and

interconnect, is programmed to a Programmable Read Only Memory

(PROM) device with part name xc18v02.

Design verification is a parallel process to design development. Design

entry in either schematic or HDL form can be simulated behaviorally,

while it can be tested based on the code syntax. After synthesis phase,

generated netlist format can be simulated functionally by providing test

vectors and tested by checking the desired output vector. Timing

simulation comes after the place and route phase using back

annotation.

2.2. Integrated Software Environment (ISE™)

Integrated Software Environment is the environment provided by

Xilinx™ for Design Entry, Design Synthesis, Design Implementation,

Design Verification and Device Programming phases (described in

2.1.2) of design development [XISE03]. MIPS project was created in

ISE with the project properties given in Figure 2.6.

 11

Figure 2.6: MIPS Project Properties Window

Top-Level module for Design Entry is selected as Schematic Capture

for visualization purposes. All other sub-modules are coded in hardware

description language VHDL [CDVHDL] [Perry02]. XST (Xilinx Synthesis

Technology) tool was used to synthesize netlist from VHDL code.

Modelsim® simulator was selected for post-place and route simulation

purposes.

 12

Figure 2.7: MIPS Project Source File Listing

MIPS project comprise source files describing the architecture of

entities which are listed in (Figure 2.7) for the following purposes;

• Design Entry (e.g. file extensions *.vhd and *.sch)

• Physical and Timing user constraints files for Design

Implementation (e.g. file extension *.ucf)

• Test Bench files for Post-Place and Route Simulation (e.g. file

extensions *.vhd)

 13

• Post-Place and Route simulation macro file which compiles the

design and Test Bench files, invokes the simulator, loads signals

to view windows and runs the simulation for specified time

duration. (e.g. file extension *.do)

• State Machine editor file (e.g. file extension *.dia)

• Impactus command file for device programming (e.g. file

extension *.cmd)

2.3. Virtex™ FPGA

MIPS project is implemented on an xcv300-5bg432 Virtex FPGA device

with the following properties and layout (Figure 2.8): [XDS003-2]

[SYNP99] [XCNSTR] [Brown96]

• 32x48 CLB Array provide functional elements for constructing

logic connected by global routing matrix or switch matrix (Figure

2.4),

• VersaRing™ forms the interface between Input Output Blocks

(IOBs) and CLBs,

• 16 Block Rams (BRAMs) each 4096x1 totally 65536x1 bits,

• 4 Delay-Locked Loops (DLLs) that eliminate the skew between

the clock input pad and internal clock input pins throughout the

device,

• Ball grid 432 package having 316 I/O pins reserved for users

with speed grade -5 which yields system performance up to 200

MHz.

 14

Figure 2.8: Virtex Architecture Overview ©Xilinx

2.3.1. Function Generation Capabilities of CLB

Each CLB comprises 4 function generator (LUTs) distributed into two

slices. Each slice contains 2 function generators and additional logic

that combines the outputs of LUTs and generates 5 (MUXF5) and 6

(MUXF6) input functions (Figure 2.9). Each slice can generate any

functions of 5 inputs up to some functions of 9 inputs; hence any CLB

can generate any functions of 6 inputs up to some functions of 19

inputs.

Figure 2.9: Function Generator Configuration of CLB

 15

2.3.2. Distributed (Shallow) Memory Usage of CLB

Each LUT in a Slice can be configured as 16x1 bit synchronous RAM

and two LUTs in a Slice can be configured as 16x2 bit or 16x1 bit dual

port or 32x1 bit synchronous RAM.

2.3.3. Shift Register Configuration of CLB

Each LUT in a slice can be configured as dynamically addressable16 bit

shift register.

2.3.4. Arithmetic Capabilities of CLB

Each LUT in a slice has a dedicated XORCY gate for single bit sum to

form a full adder and dedicated carry path (Figure 2.10) which is using

also dedicated routing resources along vertically adjacent CLBs

[XAPP215]. By introducing the additional XORCY gate, 2 inputs of LUT

left as spare and these inputs can be used to implement additional logic

thereby increasing cell functionality. [TW04] [KCHAP93] [DFMULT]

Figure 2.10: Carry Logic Diagram ©Xilinx

 16

Multiplication in FPGA is performed by shifting and adding the partial

products in parallel fashion. There exists 2 input AND gate per LUT to

implement 1 bit multiplier [XAPP215] and this pattern repeats

throughout the multiplier. In case of operands (partial products) are not

equal to each other CIN signal is propagated (Figure 2.11). Additional

AND gate is essential to kill or generate COUT signal produced when the

propagation of CIN signal is stopped (when both operands equal)

[HPCC].

Figure 2.11: Multiplier Implementation ©Xilinx

2.4. PCI Host Software: In-Circuit Debugging of the Architecture

The “MIPS Monitor” (Figure 2.12) software which is running on PC was

developed to debug the architecture after generated configuration was

programmed into the target PROM or a new program is ready to be

programmed while Virtex FPGA was running [PLXSDK01].

“MIPS Monitor” uses PCI Application Interface (API) provided by PLX

Technology™ to read the FPGA’s internal data and program memory,

pipeline stage’s inputs/outputs, pipeline register states and current PC.

 17

It also enables the user to observe stalls and exceptions. It reflects

information read by using PCI API to its graphical user interface, hence

to user.

“MIPS Monitor” uses PCI API provided by PLX Technology™ to write

the control signals to Virtex FPGA which resets the architecture or

increment the PC by one thereby enabling single step operation.

“MIPS Monitor” graphical user interface enables the user by providing

the following functionalities:

• Selecting the proper PCI 9030 device which is on the same

board FPGA placed,

• Viewing the program which was already assembled and

programmed to PROM,

• Viewing, loading and verifying a new program to local block

instruction memory of FPGA.

• Inserting break points and running the architecture in single step

or in free mode by using the graphical user interface of “MIPS

Monitor”.

 18

Figure 2.12: MIPS Monitor Software

The layout of the board used during this thesis is given in APPENDIX D,

Layout of Board.

 19

CHAPTER 3

RELATED RESEARCH

3.1. MIPS R2000 Instruction Set Architecture (ISA)

MIPS R2000 was first produced in 1988 by MIPS Computer Systems

and was one of the RISC processors designed at that time. MIPS

stands for Microprocessor without Interlocked Pipeline Stages and as

its name implies, by eliminating pipeline interlocks between stages,

instruction conflicts are resolved. Next generations are: R2010, also

includes floating point co-processor, R3000 with cache control and

lastly R4000 a 64 bit version of architecture. MIPS 32- and 64-bit

architectures are used in networking and consumer device markets,

such as in car navigation systems, digital television and cameras, video

game controllers, switches and routers.

Primary metric to compare performance of Architectures is execution

time of a program and it is presented in the following equation [COD98]:

Seconds Instruction Count Clock Cycles Seconds

Program
=

Program
x

Instruction
x

Clock Cycle

The multiplication factors on the right hand side of the equation do not

determine performance individually, but have an affect. Selected ISA

affects the instruction count. ISA Implementation scheme which will be

described in section 3.3 affects clock cycles per instruction (CPI). The

organization and technology of the architecture affects the clock rate.

 20

These factors also depend on each other in inversely proportional

relationship, making one better makes the other worse. For example

making instructions complex reduces the instruction count but may

decrease the clock rate. Good performance can be obtained by, first

choosing ISA then determining the implementation scheme and last

determining the technology.

MIPS (Microprocessor without interlocked Pipeline Stages) R2000 ISA

has RISC based architecture obeying four design principles [COD98]

[JGRAY00];

• Smaller is faster, MIPS have 32 general purpose register each

32 bits length. MIPS instructions operate only on registers.

Registers are smaller hence faster than external memory.

• Simplicity favors regularity, MIPS’s instructions have the same

size each 32 bits length and the same number of operands,

hence decoding and pipelining are simpler compared to

variable length instructions present in CISC ISA.

• Good design demand good compromises, MIPS sticks to small

number of instruction types and addressing modes.

• Make common case fast (corollary of Amdahl’s law),

implementing commonly used instructions in fast way makes

the whole architecture faster.

3.2. MIPS Instructions and MIPS Assembly Language

MIPS instructions can be grouped as Arithmetic, Transfer, Branch,

Immediate and Jump instructions.

Arithmetic instructions operates on registers and requires three

operands, two for source one for destination. The arithmetic or logical

 21

operation takes place on two source operands and result is written back

into destination register.

Transfer instructions are used for loading data from memory to registers

or storing data from registers to memory. Transfer instructions require

two operands. One register content is used as base address and the

immediate field in the instruction as the offset from base, the other

register is used either destination address of the value to be loaded or

the source address of the value to be stored.

Branch instructions operate on two register operands, evaluate the

condition and according the result continue execution or take the

branch by modifying the PC.

Immediate instructions use the immediate field as an operand.

Jump instructions are use the immediate field to jump unconditionally by

modifying the PC.

The detailed descriptions, functionalities and assembly language

formats of MIPS R2000 instructions implemented and verified in this

thesis are presented in APPENDIX A, Implemented Subset of MIPS

R2000 ISA.

3.2.1. MIPS Instruction Format

General instruction format is given in Figure 3.1.

Figure 3.1: MIPS Instruction Format

The Op field is the opcode of the instruction and used as the primary

key in instruction decoding. Rs, Rt and Rd fields specify the address of

 22

register in operation. ShAmt field specify the shift amount in operation.

Funct field selects the specific variant of the operation in opcode field.

3.2.2. MIPS Addressing Modes

Immediate addressing (Figure 3.2) means the operand is constant

within the instruction itself;

Figure 3.2: Immediate Addressing Mode

Register addressing (Figure 3.3) means where all operands are

registers;

Figure 3.3: Register Addressing Mode

Base addressing (Figure 3.4) means where the operand is in memory

whose address is calculated by adding base address in a register with

an offset in immediate field. Addressing of memory is implemented as

word (4 bytes) aligned.

Figure 3.4: Base Addressing Mode

 23

PC relative addressing (Figure 3.5) means that the instruction memory

will be addressed by adding the present PC and the constant in the

instruction.

Figure 3.5: PC Relative Addressing Mode

Pseudo direct addressing (Figure 3.6) means the Address field in the

instruction is concatenated with the program counter and the instruction

memory than addressed.

Figure 3.6: Pseudo Direct Addressing Mode

3.2.3. MIPS Instruction Decoding

MIPS R2000 instructions implemented and verified in this thesis were

chosen according their frequency of usage in two totally different

programs spice and gnu C compiler (gcc). These values were

calculated from pixie which is an instruction measurement tool

[COD98].

MIPS core instructions (all presented in Figure 3.7) cover 95% for gcc

and 45% for spice. MIPS core instructions dominate gcc and integer

plus floating point core instructions dominate spice. Instructions that did

 24

not cover in this thesis constitute the remaining part 5% for gcc and

55% for spice. 49% of spice can be covered by simply adding a floating

point arithmetic core to architecture, which results in 5% for gcc and 6%

for spice as uncovered.

Instructions are decoded and control signals are generated based on

Figure 3.7. Related procedures will be described in detail in 0.

Figure 3.7: MIPS Opcode Map and Frequency of Instructions

3.3. Survey of Instruction Set Architectures Implementation
Schemes

The path which is followed by instructions and data and controlled by

signals generated by control unit called data path. Each type of

 25

instruction follows different path trough architecture because the

operands on which instruction operates differ.

Data path is formed by state and combinational logic elements. These

elements are combined in different organizations and different

implantation schemes emerge.

Building architecture requires some sequential decompose and re-unite

iterations. It is necessary to decompose in order to understand, and it is

necessary to re-unit in order to build. There exists a contradiction,

because it is necessary to decompose in order to reunite. This

contradiction was used as a methodology and followed throughout the

survey of implementation schemes. Big picture is given first. Then it is

decomposed and fully understood.

3.3.1. Single Cycle Implementation Scheme

In this scheme (Figure 3.8) single instruction starts on clock edge and

ends on the next clock edge. The clock rate is determined by the

slowest instruction; in spite there exists faster instructions in ISA. Hence

this scheme is impractical to implement but useful to understand. Each

instruction irrespective of its instruction format is fetched from memory;

the next PC is calculated by adding 4 byte offset to present PC and

decoded according to its bit field based on Figure 3.1. The operation on

registers is determined by the ALUOp control signal which depends on

the Funct field of the instruction and determined in decode stage.

 26

Read
register 1
Read
register 2
Write
register
Write
data

Read
data 1

Read
data 2

Registers

32

3232

32

Read
address

Write
address

Write
data

MemData

Data
Memory

MemWriteMemRead

1616 3232

ALU
result

Zero

ALU

RegWrite

0

1

M
u
x

M
u
x

0

1

I(25-21)

I(20-16)

I(15-11)

ALUSrc

MemtoReg

Read
address

Instruction

Memory

Sum

Adder

PC

Write 4
Sum

Adder

Shift
left 2

0

1

M
u
x

PCSrc

M
u
x

0

1

RegDst

Sign
ext.

ALU
control

ALUOp

Branch

I(5-0)

Figure 3.8: Single Cycle Implementation Scheme ©[COD98]

Multiplexers can be used to divide the architecture into smaller pieces.

The presence of a multiplexer before an input element means that that

element is used by as many different instruction types as the number of

inputs of the multiplexer. The select signal, namely the instruction type

determines the path of the data throughout the architecture for the

present clock cycle. For instance, the multiplexer with control signal

ALUSrc determines either ALU is used for address calculation for data

memory load/store or arithmetic operation on register operands. In

either case ALU can be used only by one instruction type in the same

clock, hence some hardware duplications exist in the architecture for

other calculations such as the adder for next program counter, despite

the ALU can be used for this purpose. This is another fact which proves

that this implementation scheme is impractical to implement and its

 27

problems will be solved in multi cycle implementation scheme which will

be described in section 3.3.2.

Similarly, the multiplexer with control signal MemtoReg determines

which data will be written to the register bank either the result calculated

by ALU or the data loaded from data memory.

The multiplexer with control signal RegDst differentiate R-type and I-

type instructions because the destination register address field is

different for these types. For R-type instructions, the destination

address is specified in Rd field whereas in I-type instructions the

destination address is specified in Rt field (Figure 3.1).

The multiplexer with control signal PCSrc determines the next PC. The

next PC is PC+4 bytes for all instruction types except from conditional

branch. For branch instructions (Branch control signal is asserted) if the

condition is satisfied (e.g. for “branch on equal” instruction, when the

operands are the same, their difference will be zero. Hence the ALU’s

zero output set to ‘1’) the next PC is calculated according to Figure 3.5.

3.3.2. Multi Cycle Implementation Scheme

In this scheme (Figure 3.9) instructions are executed in multi clock

cycles. Register Blocks are added between functional units to hold the

temporal values for using on a later clock cycle. Clock rate is

determined by the slowest functional unit and functional units can be

used more than once per instruction (e.g. single ALU is used instead of

an ALU and two adders Figure 3.8) as long as access to this unit occurs

on different clock cycles. Single memory unit is used instead of

separate instruction and data memories and multiplexer with control

signal IorD determines data or instruction access.

 28

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0
1
2
3

M
u
x

0
1
2
3

0
1
2

M
u
x

0
1
2

M
u
x

PC

Sign
ext.

Shift
left 2

Conc/
Shift
left 2

Read
address

Write
address

Write
data

MemData

Instruction
[31-26]

Instruction
[25-0]

Instruction
register

Memory

Read
register 1
Read
register 2
Write
register
Write
data

Read
data 1

Read
data 2

Registers 4

32

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

0

1

M
u
x

0

1

M
u
x

ALU
result

Zero

ALU

Target

1616

3232

TargetWrite

PCSource

ALU
control

IorD
MemWrite

MemRead

IRWrite MemtoReg

ALUSelB

RegDst

RegWrite ALUSelA

ALUOp

I[25-21]

I[20-16]

I[15-0]

[15-11]

44

2626

3232

PcWrite

Figure 3.9: Multi Cycle Implementation Scheme ©[COD98]

Jump instruction is also shown in the scheme. The multiplexer with

control signal PCSource selects next program counter calculated based

on Figure 3.6 when unconditional jump instruction was fetched from

memory. A more complex control logic compared to single cycle

implementation scheme is needed and the state flow diagram of control

unit is given in Figure 3.10.

 29

Instruction
Fetch

Instruction
Decode

Address
Computation

Execution
Jump

Completion
Branch

Completion

Memory
Read

Memory
Write

R-Type
Completion

Write
Back

Load + Store R-type Branch Jump

Load Store

Figure 3.10: State Flow Diagram of Multi Cycle Scheme Control Unit

3.3.3. Pipelined Implementation Scheme

In this scheme (Figure 3.11), there exists single clock cycle between

subsequent instructions like single cycle implementation scheme.

Clock rate is as high as multi cycle implementation scheme and is

determined by the slowest functional unit similar to multi cycle

implementation scheme. There exist register blocks between functional

units, which are responsible for storing the information for the next clock

cycle.

The difference between multi cycle scheme and pipelined scheme is

that the instruction does not wait for the previous instruction until the

end of write back stage and directly fetched from instruction memory

while the previous instruction is being decoded.

The same control signals which are valid for single and multi cycle

schemes are also valid for pipelined scheme, but in contrast to multi

cycle implementation scheme, special control unit implementation (flow

diagram was given in Figure 3.10) is not necessary for generation of

these control signals. Sequencing is inherently present in this scheme

 30

and control signals generated in decode stage go with the instruction

throughout the pipeline and are wasted up until the last stage.

Memory
(MEM)

Write
Back
(WB)

Instruction
Fetch (IF)

Instr. Decode
Reg. Fetch (ID)

Execute (EX)
Addr. Calc

A
L
U

A
L
U

A
L
U

M
e
m
ory

R
e
g F

ile

M
U
X

M
U
X

D
ata

M
e
m
ory

M
U
X

Sign
Extend

Zero?

I
F
/I
D

I
D
/E
X

M
E
M
/W

B

E
X
/M

E
M

I
F
/I
D

I
F
/I
D

I
D
/E
X

I
D
/E
X

M
E
M
/W

B
M
E
M
/W

B

E
X
/M

E
M

E
X
/M

E
M

4

A
d
d
e
r

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD

W
B
 D

at
a

Next PC

A
d
d
re

ss
A
d
d
re

ss

RS1

RS2

Imm

M
U
X

WB

MEM

EX

WB

MEM

WB

Figure 3.11: Pipelined Implementation Scheme ©[COD98]

Pipelining does not improve or speed up the functional units in the

architecture, instead increases the throughput by decreasing the time

between instructions. There exist as much instructions as the number of

stages in the pipeline simultaneously, e.g. while the fifth instruction is

being fetched (IF) from memory, in the same time, first instruction is in

write back (WB) stage following five clock cycles its IF stage (Figure

3.12).

 31

 CLK1 CLK2 CLK3 CLK4 CLK5

Instruction 1 IF ID EX MEM WB

Instruction 2 IF ID EX MEM

Instruction 3 IF ID EX

Instruction 4 IF ID

Instruction 5 IF

Figure 3.12: Simultaneously Executing Instructions in Pipeline

3.3.4. Quantitative Comparison of Implementation Schemes

Primary metric to compare performance of Architectures is execution

time of a program as stated in section 3.1. Pipelined implementation

scheme has the best features of other implementation schemes, low

clock cycle per instruction like single cycle scheme which is optimally

equal to 1 disregarding pipeline hazards described in section 3.4 and

high clock rate like multi cycle implementation scheme; therefore it is

expected to give the best performance. It will be a good practice to

demonstrate the relative performances by giving a realistic example.

MIPS instructions has the frequency of usage as stated in Figure 3.7 in

gcc program and number of clock cycles as stated in Figure 3.10 which

also summarized in Table 1.

CPI can be calculated by using this table adding the weighted sums of

instructions in gcc program.

CPI = 5 x 0.23 + 4 x 0.13 + 3 x 0.19 + 3 x 0.02 + 4 x 0.43

 = 4.02

 32

Table 3.1: Calculation of CPI for Multi Cycle Implementation Scheme

Instruction Type Frequency Number of Clock

Cycles

LOAD 23% 5

STORE 13% 4

BRANCH 19% 3

JUMP 2% 3

ALU 43% 4

The clock rate or clock cycle period is determined by the slowest stage

in the pipeline. For second per instruction calculation, clock period shall

be multiplied with CPI (equation given in section 3.1). Optimal speedup

is obtained from pipelining by using balanced stages in pipeline. Say

that each stage is balanced and takes T sec/clock cycle.

IF ID EX MEM WB

T T T T T

 IF ID EX MEM WB

 5T T T T T T

Figure 3.13: Single and Multi Cycle Instruction Sequence

For single cycle implementation scheme, single cycle clock period takes

5T seconds. For multi cycle implementation scheme, single cycle period

takes T seconds similar to pipelined implementation scheme. Hence,

the instruction times given in Table 3.2 were obtained. According to this

table, it can be seen that, pipelined implementation is nearly 5 times

faster than the other implementation schemes.

 33

 Table 3.2: Instruction Time Calculation for Implementation Schemes

Implementation

Scheme

Seconds/Instruction (CPI x sec/clock)

Single Cycle 1 x 5T = 5T

Multi Cycle 4.02 x T = 4.02T

Pipelined 1 x T = T

3.4. Problems and Solutions in Pipelined Architectures

As stated in section 3.3.4, optimal performance and speedup can be

obtained from pipelining by balancing the stages and full speed usage

of the pipeline without stalls. In reality this can be not possible always.

Even perfect balance between pipeline stages can not be adequate

alone.

There may be existent restrictions;

• Dependencies between instructions,

• Some hardware restrictions to support pipelining,

• Branches can not be determined until Execute (EX) stage and

following instructions can be fetched uselessly.

Detailed explanation how these cases are handled given in the

following sections.

3.4.1. Structural Hazards

Structural hazards emerged because the underlying hardware does not

support special instruction combinations which are simultaneously

present in the pipeline. For example, the instructions 1 and 4 presented

in Figure 3.12 access the memory in the same clock cycle, CLK4. If the

instruction memory and the data memory are not separated physically,

 34

this architecture can not support this special combination. In clock cycle

CLK5, both Instruction Decode (ID) and Write Back (WB) stages access

the register bank, but in this case the hardware clash is avoided by

using forwarding mechanism which will be described in the section

3.4.3.

3.4.2. Brach Hazards

 Branch hazards emerged because three instructions, following the

branch instruction, are already in the pipeline in any case until branch

condition is evaluated or unconditional jump address determined

(according to Figure 3.11). In case of branches are taken, these fetched

instructions must be discarded and the goal of using pipeline in its full

speed one instruction per clock cycle can not be achieved. Three clock

cycles are wasted effectively in case of taken branch; assuming branch

is not taken always.

In this thesis, the decision making and address calculation mechanism

moved to ID stage to reduce the wasted time to one clock cycle. The

assumption which is called delayed branch mechanism, “braches are

always not taken” is followed. In this case, the following instruction is

always fetched. In case of taken branch, one slot is left as discarded

and useless. If the decision is left to compiler as in case in high level

programming, compilers usually fill this slot with useful instructions

which are independent from the branch condition. If useful instruction

can not be found, this slot is filled with well known No Operation (NOP)

instruction which does not change the internal state of microprocessor.

A NOP instruction is added manually after every branch in this thesis,

because programming is done in assembly and compiler support is not

 35

present. There exists no special implementation in this thesis which

detects this hazard and flushes the fetched instruction.

One delay slot can be easily filled with NOP or with useful instruction,

but as the pipeline gets bigger, filling slots with useful instructions gets

also harder. There exists other mechanism proposed in the literature to

solve this problem. Dynamic prediction mechanism with additional

hardware is one of them, which depends on the past statistics collected

for that branch point. The decision is made based on this statistics

which is changing in time with conditions.

3.4.3. Data Hazards

Data hazards emerged because an instruction which depends on the

previous instruction is in the pipeline and previous instruction did not

finish its work, for example does not write back the calculated result to

destination register. In this type of hazard, the solution is not left to

compilers entirely like the branch hazard described in 3.4.2 and tried be

solved with hardware if possible. The hazard will appear when the

destination register of the previous instruction in either EX, MEM or WB

stage is the same as the one of the source registers of the current

instruction which is in the ID stage. In Figure 26, data hazard is

resolved by forwarding data from EX, MEM and WB stages of the first

instruction to ID stages of following instructions which has a without

waiting to complete first instruction to WB its destination register R1.

 36

Figure 3.14: Data Hazard Solution by Forwarding

The data hazard must be resolved in ID stage before register bank

access and branch decision. A NOP instruction is inserted into the

instruction sequence, if hazard can not be solved and time is gained for

resolution by using forwarding in the next clock cycles. In Figure 3.15,

hazard can not be solved by just using forwarding, because the result

for destination register R2 will be not available until memory access.

Therefore, pipeline is stalled for one clock cycle and data hazard is

resolved in the next clock cycle by forwarding data from Data Memory

(MEM) stage of previous instruction to ID stage of the current

instruction.

 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6

lw R2,100(R1) IF ID EX MEM WB

and R4,R2,R5 STALL IF ID EX MEM

or R8,R2,R6 IF ID EX

Figure 3.15: Data Hazard Solution by Stalling and Forwarding

Some extra precautions must be taken into account while using

forwarding mechanism. In Figure 3.16, the result obtained in clock cycle

CLK4 from the addition of second instruction is forwarded from EX

 CLK1 CLK2 CLK3 CLK4 CLK5

add R1,R2,R3 IF ID EX MEM WB

sub R4,R1,R2 IF ID EX MEM

xor R6,R7,R1 IF ID EX

add R8,R1,R1 IF ID

sw R9, 100(R1) IF

 37

stage instead of the result obtained in clock cycle CLK3 from MEM

stage, because it is more recent.

 CLK1 CLK2 CLK3 CLK4 CLK5

add R1,R1,R2 IF ID EX MEM WB

add R1,R1,R3 IF ID EX MEM

add R1,R1,R4 IF ID EX

Figure 3.16: Forwarding of the Most Recent Data

3.4.4. Exception Hazard

Hardware shall prevent completion of instructions which are following

the instruction which cause exception and let all prior instructions to

complete. Internal register blocks shall be flushed to prevent them to

effect Register Bank and Data Memory. Program Counter shall be

equated to special address like Branch or Jump instruction case. This

address is generally called as interrupt or exception vector.

 38

CHAPTER 4

IMPLEMENTATION OF MIPS PIPELINED
ARCHITECTURE

This chapter describes the internal structure of the processor and the

auxiliary structures to monitor and manipulate the internal registers of

the processor. Internal structures of the processor are constituted by

combining the following primary units and their subunits. (Figure 4.1:

Internal Structure of the Pipelined Processor)

• Instruction Fetch Unit (IF_Unit)

o Instruction Memory (256x32bit block memory)

• Instruction Decode Unit (ID_Unit)

o Register Bank (dual port 32x32bit block memory)

• Forwarding and Hazard detection Unit (FORWD_HZRD Unit)

• Control Unit (CONTROL_Unit)

• Execute Unit (EXECUTE_Unit)

• Data Memory Unit (256x32bit block memory)

• Exception Detection Unit (EXCEPTION_DTCT_UNIT)

• Four register blocks responsible for storing information between

clock cycles and located between Units;

o Instruction Fetch - Instruction Decode (IF_ID Unit)

o Instruction Decode - Execute (ID_EX Unit)

o Execute - Data Memory (EX_MEM Unit)

o Data Memory – Instruction Decode (MEM_WB Unit)

 39

Auxiliary structures of the processor are constituted by combining the

following units. Units and their interconnections are presented in Figure

4.2.

• Clock Delay Locked Loop to eliminate the skew between clock

input pad and the internal clock input pins (CLKDLL Unit)

• Interface between the processor and the PCI Bridge (pci_9030

Unit)

• External reset of the processor (reg_wr Unit)

• External programming of the Instruction Memory (reg_prg Unit)

• External single step execution of processor (wait_sm Unit)

• External reading of internal state of register blocks (reg Units)

• Processor itself (top_level Unit)

 40

Figure 4.1: Internal Structure of the Pipelined Processor

 41

Figure 4.2: External Structure of the Pipelined Processor

 42

4.1. Internal Structure of the Processor

In this section the primary building blocks are described in detail by

stating their functions and input/output signals (in figures, inputs are

placed on the left and outputs are placed on the right). General signals

which are common for majority of building blocks are described here.

Remaining signals are described in related building block sections.

Every signal is described once that means the same input signal of

various blocks is also an output signal of single block; therefore there

will be a cross reference (links can be followed by CTRL + Click in this

document) input signal definition section of each block to output signal

definition section of source block of the signal in which the same signal

is described in detail to avoid redefinition. During definition of signal

levels, ”set” means logic level 1 and reset means logic level 0.

CLK (1 bit) and RESET (1 bit): Internal clock (20 MHz) and internal

reset signals. These signals are active high signals.

Register_Dest (5 bit): This signal is transferred across all pipelines for

instructions which will write to Register Bank in WB stage.

4.1.1. Instruction Fetch Unit

The design of the Instruction Fetch Unit is realized by using HDL

Design entry method. Instruction Fetch Unit includes the subunit

Instruction Memory (256x32bit block memory) from which instructions

are fetched in every clock cycle except when an unresolved (load/store)

hazard exists in the pipeline which ends up with pipeline stall. The

hardware flow diagram of this building block is given in APPENDIX C,

Figure C.1: Instruction Fetch Unit Flow Diagram.

 43

4.1.1.1. Input/Output Signals of Instruction Fetch Unit

The connections of Instruction Fetch Unit with other units can be seen

in Figure 4.1: Internal Structure of the Pipelined Processor. All

Input/Output signals can be seen in Figure 4.3: Input/Output Signals of

Instruction Fetch Unit.

Output signals are as the following;

Current_PC (8 bit): Signal goes to auxiliary structures to monitor the

present state of the Program Counter.

Incremented_PC (32 bit): Signal goes to Instruction Decode Unit and

forwarded until WB stage for jal instruction, because this instruction

writes the return address into Register Bank address 31 for later usage

in return from subroutine (by using jr instruction). This signal is also

used in instruction decode stage to calculate the branch and jump

address.

Instruction (32 bit): Signal which is fetched from instruction memory

goes to Instruction Decode and Control Units. Instruction is parsed into

fields according to Figure 3.1 in Instruction Decode unit and control

signals are generated in Control Unit. These signals are passed to

internal register blocks for further evaluation of the parsed fields in the

following clock cycles after decode stage.

Wait_Stages (1 bit): Signal is OR’ed with pci_wait signal and goes to all

internal registers between building blocks. If this signal is set that

means, memory access (instruction memory, data memory and

Register Bank access requires one clock cycle) is taking place and all

processor stages are stopped during this signal is set which

corresponds to one clock cycle period. Program Counter is also not

updated during this signal is set.

 44

Figure 4.3: Input/Output Signals of Instruction Fetch Unit

Input Signals are as the following;

Exception (1 bit): Exception Detection Unit output signal.

Exception_Address (32 bit): Exception Detection Unit output signal.

Branch_Addr (32 bit): Instruction Decode Unit output signal.

Equal (1 bit): Instruction Decode Unit output signal.

IF_Control (3 bit): Control Unit output signal.

Program_Data (31 bit) and Program_WE (1 bit): Signals are fed from

external sources and used when in external programming mode. These

signals are useless in normal operating mode of the processor.

Pci_wait (1 bit): Signal comes from external source and used as single

step execution trigger. Program Counter is updated during the clock

rising edges if and only if this signal is not set.

Unresolved (1 bit): Forwarding and Hazard detection Unit output signal.

 45

4.1.1.2. Function of Instruction Fetch Unit

The primary function of Instruction Fetch Unit is to fetch instructions

from Instruction memory and send it to Control and Decode Units for

processing. If Wait_Stages or Pci_wait or Unresolved signal is set,

current program counter retains its value, hence the same instruction is

fetched from memory on the next clock cycle. If a branch or jump

instruction is in decode stage inspecting the IF_CONTROL signal, next

program counter is determined according to evaluation of Equal and

Branch_Address signals. During instruction memory access,

Wait_Stages signal is set and processor is stopped for one clock cycle.

On the next clock cycle, Wait_Stages signal will be in reset state and

processor is allowed to run, hence during operation of processor

Wait_Stages signal toggles. This halves the processor’s effective clock

speed from 20 MHz to 10 MHz. If RESET signal is set, Program

Counter is set to byte address 16 after overflow exception vector. In

case of an exception PC is set to proper exception vector. If

Program_WE signal is set, Instruction memory enters in external

programming mode and on every clock cycle Program_Data signal is

written to Instruction Memory sequentially.

4.1.2. Instruction Decode Unit

The design of the Instruction Decode Unit is realized by using HDL

Design entry method. Instruction Decode unit includes the subunit

Register Bank (dual port 32x32bit block memory) from which operands

on which operations take place are fetched and to which operation

results or loaded data from data memory are stored in every clock

cycle. The hardware flow diagram of this building block is given in

APPENDIX C, Figure C.2: Instruction Decode Unit Flow Diagram.

 46

4.1.2.1. Input/Output Signals of Instruction Decode Unit

The connections of Instruction Decode Unit with other units can be seen

in Figure 4.1: Internal Structure of the Pipelined Processor. All

Input/Output signals can be seen in Figure 4.4: Input/Output Signals of

Instruction Decode Unit.

Output signals are as the following;

ALU_PORTA (32 bit): Signal goes to ALU port A for evaluation

according to instruction present in EX stage. This signal can come from

the other stages by forwarding or represents shift amount for sll and srl

instructions.

ALU_PORTB (32 bit): Signal goes to ALU port B for evaluation

according to instruction present in EX stage. This signal can come from

the other stages by forwarding or represents Incremented Program

Counter for jal instruction or zero or sign extended immediate field

according to control signal. For memory store operation sw, this signal

represents the data which will be stored to data memory and directly

forwarded to MEM stage.

Avlb_Stage (2 bit): Signal goes to Forwarding and Hazard detection

Unit and is used to determine if unresolved data hazard which ends up

with pipeline stall is present. If the result of the instruction in EX stage

will be available in MEM stage (lw instruction’s Avlb_Stage is equal to

MEM) and the destination of the instruction is the same as the one of

the source operands of the instruction present in ID stage then pipeline

is stalled for one clock cycle and data hazard is resolved using

forwarding mechanism.

 47

Branch_Addr (32 bit): Signal goes to Instruction Fetch Unit and used to

determine the value of next program counter if a conditional or

unconditional branch instruction is present in instruction decode stage.

Imm_Sign_Extended (32 bit): Signal goes to Execute Unit and used to

calculate the destination register address for sw instruction. The base

address is carried to Execute Unit via Port A like lw instruction, but the

offset can not be carried via Port B. Port B represents the data which

will be stored in data memory for this instruction hence this signal was

needed to be transferred.

Register_Dest (5 bit): General signal which represents the destination

register which will be used in WB stage.

rs (5 bit), rt (5 bit), Unresolved_A (32 bit) and Unresolved_B (32 bit):

Signals go to Forwarding and Hazard detection Unit. Rs and Rt

represent the source addresses of operand registers and are compared

with instruction’s destination register address in either EX, MEM or WB

stages. Forwarding Unit will determine the data hazard is present. If no

hazard is detected, the Unresolved_A and Unresolved_B which

represent the values in register Bank addresses Rs and Rt will be

forwarded to ALU ports.

EN_RD (1 bit) and EN_WR (1 bit): Signals go to auxiliary structures to

monitor the present state of the read and write enable pins of Register

Bank They were used during development and currently not used.

Equal (1 bit): Signal goes to Instruction Fetch Unit and if set that means

operands on which conditional branch instruction was applied are

equal, if not set, inequality condition is true.

 48

Figure 4.4: Input/Output Signals of Instruction Decode Unit

Input signals are as the following;

DataA (32 bit) and DataB (32 bit): Forwarding and Hazard detection

Unit output signals. (ResvDataA and ResvDataB)

ID_Control (11 bit): Control Unit output signal.

Incremented_PC (32 bit): Instruction Fetch Unit output signal.

Instruction (32 bit): Instruction Fetch Unit output signal.

Write_Data (32 bit), Write_Register (5 bit) and Reg_Write (1 bit): These

signals are WB stage signals and Write_Register determines the

address of the Register Bank in which the Write_Data will be written if

Reg_Write signal is set and Write_Register (destination address) is not

equal to 0, because the register address 0 is named as $zero register

and it is not allowed writing to this address.

Wait_MEM (1 bit): Signal is generated by OR’ing the output signal

Wait_Stages of Instruction Fetch Unit and the external one step execute

 49

trigger signal Pci_wait. If this signal is set, the EN_WR signal is set and

if this signal is reset EN_RD signal is set, hence the Register Bank is

written first and after that it is read.

4.1.2.2. Function of Instruction Decode Unit

The functions of Instruction Decode Unit are;

• Preparing the Register Bank addresses and register contents to

determine final resolved values on which the instruction in ID

stage will operate in following stages,

• Access the Register Bank for writing and reading,

• Make the evaluation of conditional branch and determine the

final branch and jump address and fed it to Instruction Fetch

Unit.

4.1.3. Forwarding and Hazard Detection Unit

The design of the Forwarding and Hazard Detection Unit is realized by

using HDL Design entry method. The hardware flow diagram of this

building block is given in APPENDIX C, Figure C.3: Forwarding and

Hazard Detection Unit Flow Diagram.

4.1.3.1. Input/Output Signals of Forwarding and Hazard Detection
Unit

The connections of Forwarding and Hazard Detection Unit with other

units can be seen in Figure 4.1: Internal Structure of the Pipelined

Processor. All Input/Output signals can be seen in Figure 4.5:

Input/Output Signals of Forwarding and Hazard Detection Unit.

Output signals are as the following;

 50

ResvDataA (32 bit) and ResvDataB (32 bit): Signals go to the DataA

and DataB inputs of Instruction Decode Unit and then forwarded to ALU

ports taking into account the control signals. The final values of these

signals are determined by using the input signals and VHDL code is

given below;

Table 4.1: Forwarding Mechanism for Register Bank Primary Port

ResvDataA <= ID_Value when ((ID_RegWrite = '1') and (ID_RegDst = Rs) and (ID_RegDst /= "00000"))

else EX_Value when ((EX_RegWrite = '1') and (EX_RegDst = Rs) and (EX_RegDst /= "00000"))

else WB_Value when ((WB_RegWrite = '1') and (WB_RegDst = Rs) and (WB_RegDst /= "00000"))

else Unresolved_A;

Table 4.2: Forwarding Mechanism for Register Bank Secondary Port

ResvDataB <= ID_Value when ((ID_RegWrite = '1') and (ID_RegDst = Rt) and (ID_RegDst /= "00000"))

else EX_Value when ((EX_RegWrite = '1') and (EX_RegDst = Rt) and (EX_RegDst /= "00000"))

else WB_Value when ((WB_RegWrite = '1') and (WB_RegDst = Rt) and (WB_RegDst /= "00000"))

else Unresolved_B;

Unresolved (1 bit): Signal goes to Instruction Fetch Unit and like the

pci_wait signal, Program Counter is updated during the clock rising

edges if and only if this signal is not set. When this signal is set that

means an unresolved (load/store) hazard exists in the pipeline which

ends up with pipeline stall. Program Counter and also IF_ID are not

updated during to stall because it is desired to not to lose instruction

fetched and decoded during stall. NOP instruction is inserted in ID_EX

stage when this signal is set.

 51

Figure 4.5: Input/Output Signals of Forwarding and Hazard Detection Unit

Input signals are as the following;

ID_AVLB (2 bit), ID_RegDst (5 bit), ID_Value (32 bit), ID_RegWrite (1

bit): These signals come from ID_EX register block which is located

between ID and EX stages. These values are written by the instruction

which is currently in EX stage and these values are used to determine

the ResvDataA and ResvDataB. ID_AVLB and ID_RegDst are used to

determine the value of Unresolved.

EX_AVLB (2 bit), EX_RegDst (5 bit), EX_Value (32 bit), EX_RegWrite

(1 bit): These signals come from EX_MEM register block which is

located between EX and MEM stages. These values are written by the

instruction which is currently in MEM stage and these values are used

 52

to determine the ResvDataA and ResvDataB. EX_AVLB is not used for

any purpose.

WB_RegDst (5 bit), WB_Value (32 bit) and WB_RegWrite (1 bit): These

signals come from MEM_WB register block which is located between

MEM and WB stages. These values are written by the instruction which

is currently in WB stage and these values are used to determine the

ResvDataA and ResvDataB.

Rs (5 bit), Rt (5 bit), Unresolved_A (32 bit) and Unresolved_B (32 bit):

Instruction Decode Unit output signals.

4.1.3.2. Function of Forwarding and Hazard Detection Unit

The function of Forwarding and Hazard Detection Unit is to determine

data hazards and if possible solving this hazards either by forwarding or

stalling the pipeline.

4.1.4. Control Unit

The design of the Control Unit is realized by using HDL Design entry

method. The hardware flow diagram of this building block is not given in

APPENDIX C, because the outputs of this block goes to other blocks as

input and all of this signals are defined in destination unit’s flow

diagrams.

4.1.4.1. Input/Output Signals of Control Unit

The connections of Control Unit with other units can be seen in Figure

4.1: Internal Structure of the Pipelined Processor. All Input/Output

signals can be seen in Figure 4.6: Input/Output Signals of Control Unit.

Output signals are as the following;

 53

IF_Control (3 bit): Signal goes to Instruction Fetch Unit and first bit

(MSB), if set means beq instruction is present in decode stage, second

bit, if set means bne instruction is present in decode stage and third bit

(LSB), if set means either j, jal or jr instruction is present in decode

stage.

ID_Control (11 bit): Signal goes to Instruction decode unit and the

control word bits are set according to instructions present in ID stage.

The resulting signals describe the operands, destination register and

effect the branch address calculation. The dependency between ID

Control word, the instruction present in ID and the effected outputs are

given in Table 4.3.

 Table 4.3: ID_Control Signal Fields

10 9 8 7 6 5 4 3 2 1 0

beq,

bne

jal jr Not

Used

lw

o/w

Not

Used

00XX� ALUA, ALUB are registers values, Reg_Dest� Rd

1X0X� ALUA = 0, Reg_Dest� Rd

1X1X� ALUA = Shift Amount, Reg_Dest� Rd

For the following instructions if word start with 01,

Reg_Dest� Rt else Reg_Dest� Rd

X1X0� ALUB = Zero Extended Immediate

X1X1� ALUB = Sign Extended Immediate

Not

Used

EX_Control (5 bit): Signal goes to ID_EX register block and consumed

in EX stage. Signal identifies ALU operation applied to inputs at ALU

ports and also called ALUOp signal. The numeric and literal ALUOp

values are given in Table 4.4.

 Table 4.4: EX_Control ALUOp Signal Values

Literal
ALUOp

Numeric
ALUOp Comment

 ALU_ADD 00000 rd <= rs+rt, signed, overflow exception generated
 ALU_ADDU 00001 rd <= rs+rt, unsigned, overflow exception NOT generated
 ALU_AND 00010 rd <= rs AND rt
 ALU_EMPTY 00011 ALU_RESULT <= TRUE
 ALU_MFHI 00100 ALU internal multiplication register to general purpose register

 54

Literal
ALUOp

Numeric
ALUOp Comment

(GPR), rd <= HI
 ALU_MFLO 00101 ALU internal multiplication register to GPR, rd <= LO
 ALU_MTHI 00110 GPR to ALU internal multiplication Register, HI <= rs
 ALU_MTLO 00111 GPR to ALU internal multiplication Register, LO <= rs
 ALU_MULT 01000 HILO <= rs * rt, signed (not implemented)
 ALU_MULTU 01001 HILO <= rs * rt, unsigned
 ALU_NOR 01010 rd <= rs NOR rt
 ALU_OR 01011 rd <= rs OR rt
 ALU_SLL 01100 rd <= (rt << shift amount)
 ALU_SLT 01101 rd <= (rs < rt), signed
 ALU_SLTU 01110 rd <= (rs < rt), unsigned
 ALU_SRL 01111 rd <= (rt >> sa)
 ALU_SUB 10000 rd <= rs-rt, signed, overflow exception generated
 ALU_SUBU 10001 rd <= rs-rt, unsigned, overflow exception NOT generated
 ALU_XOR 10010 rd <= rs XOR rt
 ALU_DATAB 10011 ALU_RESULT <= OperandB
 ALU_BEQ

10100
 if (op1 == op2) then branch, 18-bit signed offset added to PC,
+-128KBytes

 ALU_BNE

10101
 if (op1 != op2) then branch, 18-bit signed offset added to PC,
+-128KBytes

 ALU_LUI 10110 rt <= (immediate<<16)
 ALU_SW 10111 MEM[$rs + signed(Immediate)] <= rt
ALU_EXPT

11000
Undefined Instruction in Decode stage, Exception will be
generated

MEM_Control (2 bit): Signal goes to ID_EX register block and

consumed in MEM stage. First bit (MSB) if set indicates a memory read

operation will take place (e.g. for lw instruction) in MEM stage, second

bit (LSB) if set indicates a memory write operation will take place (e.g.

for sw instruction) in MEM stage.

WB_Control (1 bit): Signal goes to ID_EX register block and consumed

in WB stage. Signal is also called RegWrite and indicates a register

write operation will take place in WB stage.

 55

Figure 4.6: Input/Output Signals of Control Unit

Input signals are as the following;

Instruction (32 bit): Instruction Fetch Unit output signal.

4.1.4.2. Function of Control Unit

The function of Control Unit is to determine control signal values of an

instruction which is in decode stage. These control signals move with

the instruction throughout the pipeline and are wasted up until the last

WB stage.

4.1.5. Execute Unit

The design of the Execute Unit is realized by using HDL Design entry

method. The hardware flow diagrams of this building block are given in

APPENDIX C, Figure C.4: Instruction Execute Unit Flow Diagram and

Figure C.5: Instruction Execute Unit (continued) Flow Diagram.

 56

4.1.5.1. Input/Output Signals of Execute Unit

The connections of Execute Unit with other units can be seen in Figure

4.1: Internal Structure of the Pipelined Processor. All Input/Output

signals can be seen in Figure 4.7: Input/Output Signals of Execute Unit.

Output signals are as the following;

Result (32 bit): Signal goes to Data Memory Unit and if result contains

the memory address for load/store instructions, signal will be wasted in

MEM stage, else if this result represents a register write operation

signal will be wasted in WB stage.

OverFlow (1 bit): Signal goes to Exception Detection Unit and indicates

that there is an arithmetic overflow occurred in signed operation.

Undefined (1 bit): Signal goes to Exception detection Unit and indicates

that there was an undefined instruction (an instruction which is not

defined in APPENDIX A, Implemented Subset of MIPS R2000 ISA) in

ID stage in previous clock cycle.

Figure 4.7: Input/Output Signals of Execute Unit

Input signals are as the following;

ALU_OP (5 bit): Control Unit output signal (EX_Control).

 57

ALU_Src_A (32 bit): Instruction Decode Unit output signal

(ALU_PORTA).

ALU_Src_B (32 bit): Instruction Decode Unit output signal

(ALU_PORTB).

Sign_Extend (32 bit): Instruction Decode Unit output signal

(Imm_Sign_Extended).

4.1.5.2. Function of Execute Unit

The function of Execute Unit is to realize the arithmetic and logical

operations (Table 4.4) and generate overflow, undefined exception and

result signals accordingly and to calculate memory addresses for data

memory access operations.

4.1.6. Data Memory Unit

The design of the Data Memory Unit is realized by using HDL Design

entry method. Data Memory Unit includes the subunit Data Memory

(256x32bit block memory) from which data is retrieved with lw

instruction and to which data is stored with sw instruction in every clock

cycle. The hardware flow diagram of this building block is given in

APPENDIX C, Figure C.6: Data Memory Unit Flow Diagram.

4.1.6.1. Input/Output Signals of Data Memory Unit

The connections of Data Memory Unit with other units can be seen in

Figure 4.1: Internal Structure of the Pipelined Processor. All

Input/Output signals can be seen in Figure 4.8: Input/Output Signals of

Data Memory Unit.

Output signals are as the following;

 58

Read_Data (32 bit): Signal goes to WB stage. Signal includes either the

result of ALU operation obtained in EX stage in case MEM_Control

signal does not indicate a memory read operation or the content of the

data memory at Address signal in case MEM_Control signal indicates a

memory read operation.

Figure 4.8: Input/Output Signals of Data Memory Unit

Input signals are as the following;

Address (32 bit): Execute Unit output signal (Result).

MEM_Control (2 bit): Control Unit output signal.

Write_Data (32 bit): Decode Unit output signal (ALU_PORTB).

4.1.6.2. Function of Data Memory Unit

The function of Memory Unit is to realize data memory access

operations either read or write according to control signal MEM_Control.

Data fetched from data memory is forwarded WB stage via Read_Data

signal.

4.1.7. Exception Detection Unit

The design of the Exception Detection Unit is realized by using HDL

Design entry method. The hardware flow diagram of this building block

 59

is given in APPENDIX C, Figure C.7: Exception Detection Unit Flow

Diagram.

4.1.7.1. Input/Output Signals of Exception Detection Unit

The connections of Exception Detection Unit with other units can be

seen in Figure 4.1: Internal Structure of the Pipelined Processor. All

Input/Output signals can be seen in Figure 4.9: Input/Output Signals of

Exception Detection Unit.

Output signals are as the following;

Exception (1 bit): Signal goes to Instruction Fetch Unit and to flush pin

of internal register block s IF_ID, ID_EX and EX_MEM. Internal register

blocks flush their contents when this signal is set. The internal register

block MEM_WB will not be flushed, because exception did occur after

the instructions which are currently (while exception occurred) in MEM

and WB stage. It is allowed these instructions to complete. Instruction

Fetch Unit uses this signal to determine next program counter. This

signal has precedence over Branch instructions.

Exception_Address (32 bit): Signal goes to Instruction Fetch Unit and is

used an equated to Next Program Counter, when Exception signal is

set. Byte address 0 in Instruction Memory is reserved for undefined

instruction exception and there is an infinite loop located at this position.

Byte address 8 is reserved for overflow exception and there is another

infinite loop at this position. These 4 word address region can not be

programmed by the user and can be thought as the exception handling

routines.

 60

Figure 4.9: Input/Output Signals of Exception Detection Unit

Input signals are as the following;

OverFlow (1 bit): Execute Unit output signal.

Undefined (1 bit): Execute Unit output signal.

4.1.7.2. Function of Exception Detection Unit

The function of Exception Detection Unit is to set Exception signal in

case either OverFlow or Undefined signal is set in EX stage. The

exception address vectors are located at byte address 0 for undefined

instruction and 8 for overflow exception in arithmetic instruction.

4.1.8. Register Blocks between Stages of Processor

Register Blocks are simply blocks which retain information for one clock

cycle period and no arithmetic processing takes place on data. Starting

with current clock edge, processing also starts and must end on next

clock edge, because register blocks will be overwritten. These elements

are placed between:

• Instruction Fetch - Instruction Decode (IF_ID Unit)

• Instruction Decode - Execute (ID_EX Unit)

• Execute - Data Memory (EX_MEM Unit)

• Data Memory – Instruction Decode (MEM_WB Unit)

The hardware flow diagram of this building block is given in APPENDIX

C, Figure C.8: Register Block Unit Flow Diagram.

 61

Input signals are as the following in general;

Unresolved (1 bit): Forwarding and Hazard Detection Unit output

signal.

Wait_Stages (1 bit): Instruction Fetch Unit output signal.

Exception (1 bit): Exception Detection Unit output signal.

4.2. External Structure of the Processor

In this section auxiliary structures are described in detail by stating their

functions and input/output signals (in figures, inputs are placed on the

left and outputs are placed on the right). Auxiliary structures are

implemented to reveal the internal state of the processor by monitoring

register blocks, which are placed between building blocks. In addition,

auxiliary structures enable the user to manipulate the processor, e.g.

user can reset the processor, execute the program on instruction

memory for single step and program instruction memory of the

processor externally.

Host monitor software (MIPS Monitor software described in section 2.4)

writes to PCI and reads from PCI local addresses by using PlxApi

library. PlxApi runs on host platform accessing to PCI bus which

operates with 33 MHz and 32 bits wide. Pci_9030 interface monitors

read and write transactions on PCI Bus initiated by MIPS Monitor

software staying on local side which operates with 40 MHz local bus

clock and 32 bits wide. The procedure how Pci_9030 interface detects

transactions is described in [PLXSDK02]. Hence external structures of

processor operate at 40 MHz while processor is operating at 20 MHz.

This can be achieved by using CLKDLL Unit. CLKDLL Unit minimizes

the clock skew between the input pad from which clock enters to FPGA

and distributed clock across the FPGA. CLKDLL can also change the

 62

phase or the frequency of the clock by multiplying or dividing it by a

constant. The clock frequency is divided by two to obtain the 20 MHz in

the clock pins of the processor [XLBR04].

4.2.1. External Monitoring of the Processor

Reg Unit is developed for this purpose. MIPS Monitor software sends a

PCI read request from a specified local address. Reg Unit (Figure 4.10)

takes the local address from addr (26 bit) signal and compares it with

the baddr (26 bit) signal. If they are equal and the rd signal is set, dout

(32 bit) is forwarded to pci_9030 interface and then PCI bus. MIPS

software reflects this information to the user via its graphical user

interface.

Figure 4.10: Input/Output Signals of Reg Unit

Base addresses from 1 to 10 (total 40 bytes) is reserved for monitoring

of internal signals of the processor. The stage names attached to signal

names represents the stage from which the signal is monitored (e.g.

EX_Reg_Dst signal represents the destination register of the instruction

which is currently in EX stage, similarly MEM_Reg_Dst represents the

destination of the instruction in MEM stage and WB_Reg_Dst

represents the destination of the instruction in WB stage). Base

 63

addresses their corresponding processor register blocks are given

Table 4.5:

Table 4.5: Base Addresses of Processor’s Internal Signals

Base

Address

Internal Signals that can be Presented by MIPS Monitor Software

1 EX_OVFL, EX_Reg_Dst(5 bit), MEM_Reg_Dst(5 bit), WB_Reg_Dst(5 bit), ID_Incr_PC(8 bit),

curr_pc(8 bit)

2 ID_Instruction (32 bit)

3 EX_ALUA (32 bit)

4 EX_ALUB (32 bit)

5 EX_ALU_RES (32 bit)

6 MEM_ADDR (32 bit)

7 MEM_WRITE_DATA (32 bit)

8 MEM_READ_DATA (32 bit)

9 WB_REG_WR_DATA (32 bit)

10 EN_RD, EN_WR, MEM_WAIT, ID_Unresolved, EX_AVLB(1:0)

4.2.2. External Manipulation of the Processor

Reg_Wr, Reg_Prg and Wait_Sm Units are developed to manipulate the

state of the processor. MIPS Monitor software sends a PCI write

request and data to a specified local address. According to data, next

action will be determined.

 64

Figure 4.11: Input/Output Signals of Reg_Wr Unit

Reg_Wr Unit (Figure 4.11) which is developed to enable of external

reset of the processor takes the local address from addr (26 bit) signal

and compares it with the baddr (26 bit) signal. If they are equal and the

wr signal is set and the din (32 bit) is equal to 2 then dout which is

connected to reset pin of the processor is set.

 65

(wr='1')
and

(addr="00000000000000000000000000")
and

(din="00000000000000000000000000000001")

rst

wait_int

rst

pci_wait

din[31:0]

addr[25:0]

idle_s

no_wait1

wait_int <= '1';

no_wait2

wait_int <= '1';

idle_s

no_wait3

wait_int <= '1';

no_wait4

wait_int <= '1';

Figure 4.12: StateCAD Diagram of Wait_Sm Unit

Wait_Sm Unit (Figure 4.12) is developed to enable the processor for

single step operation. The Input/Output signals are quite similar to

Reg_wr Unit. The only difference is, instead of dout output, pci_wait

signal is outputted from Wait_Sm Unit. The design of the Wait_Sm is

realized by using state machine entry method StateCAD tool provided

by Xilinx ISE. If addr signal is base address (base address 0 is reserved

for single cycle operation), signal wr is set and din equals to 1, then

pci_wait output stays reset during four clock cycles and processor is

enabled to operate during this interval. Since processor operate at half

frequency of external world, this duration corresponds to two processor

 66

clock cycles. Processor access memory and pipeline advances one

step within this time.

Figure 4.13: Input/Output Signals of Reg_Prg Unit

Reg_Prg Unit (Figure 4.13) which is developed for external

programming and includes a program memory (256x32 bits). Reg_Prg

takes the local address from addr (26 bit) signal and compares it with

the baddr (26 bit) signal (Base address 11 is reserved for external

programming). If they are equal and the wr signal is set and the din (32

bit) is not equal to X”FFFF_FFFF” then din is written at each clk edge

(clk connected of external clock operating at 40 MHz) to internal

memory. When din is equals to X”FFFF_FFFF”, writing sequence to

internal memory is finished and another writing sequence from Reg_Prg

Unit memory to instruction memory of processor is started. This process

is managed by clk2 signal (operating at 20 MHz) which is also the clock

of the processor. Since both clock are the same, different clock

domains problem is solved. It was foreseen as the fastest way during

design.

 67

CHAPTER 5

VERIFICATION OF MIPS PIPELINED
ARCHITECTURE

The operation of the architecture is verified with MIPS Monitor software

with following the steps:

• Verification of correct operation of instructions,

• Verification of proper hazard detection and solution,

• Verification of proper exception detection and handling.

The details of how the use of MIPS Monitor software is described in

APPENDIX B, MIPS Monitor Software and the operation is described in

section 2.4. The mnemonic names and the corresponding numeric

values of MIPS registers are given at the end of in APPENDIX A,

Implemented Subset of MIPS R2000 ISA in Table A.1.

5.1. Verification of Correct Operation of Instructions

Instructions described in APPENDIX A, Implemented Subset of MIPS

R2000 ISA are tested and the procedure of testing and the observed

results are stated in this section.

The test program given in Table 5.1 is written and then downloaded to

processor to demonstrate that all instructions are tested. A requirement

number (as R#) is given in the comment section of the code and the

clock cycle in which the requirement is fulfilled is pointed out in the first

column of Table 5.2.

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.2.

 68

Table 5.1: Verification of Correct Instruction Operation

TEST_1

Created by Can Altıniğneli

To demonstrate the instructions defined in APPENDIX A correctly implemented

UNDEFINED:

beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR

nop

OVERFLOW:

beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR

nop

START:

#ADD, ADDI and ADDU are verified

addi $s0, $zero, 0x6 # $s0 shall = x6, DestAdr:16, R1

addi $s1, $zero, 0x4 # $s1 shall = x4, DestAdr:17, R2

add $s2, $s0, $s1 # $s2 shall = xA, DestAdr:18, R3

addu $s2, $s0, $s1 # $s2 shall = xA, DestAdr:18, R4

#ADDIU, SUB and SUBU are verified

addiu $s0, $zero, 0x2 # $s0 shall = x2, DestAdr:16, R5

addiu $s1, $zero, 0x4 # $s1 shall = x4, DestAdr:17, R6

sub $s2, $s0, $s1 # $s2 shall = xFFFF_FFFE, DestAdr:18, R7

subu $s2, $s1, $s0 # $s2 shall = x2, DestAdr:18, R8

#OR, ORI, AND, ANDI, XOR, XORI, NOR, SRL, SLL, LUI are verified

ori $t0, $zero, 0xFFFF # $t0 shall = x0000FFFF, DestAdr:8 , R9

lui $t1, 0xFFFF # $t1 shall = xFFFF0000, DestAdr:9, R10

or $t2, $t0,$t1 # $t2 shall = xFFFF_FFFF, DestAdr:10, R11

and $t2, $t0,$t1 # $t2 shall = x0000_0000, DestAdr:10, R12

xor $t2, $t0,$t1 # $t2 shall = xFFFF_FFFF, DestAdr:10, R13

nor $t2, $t0,$t1 # $t2 shall = x0000_0000, DestAdr:10, R14

andi $t0,$t0, 0x0000 # $t0 shall = x0000_0000, DestAdr:8, R15

srl $t1,$t1,16 # $t1 shall = x0000_FFFF, DestAdr:9, R16

sll $t1,$t1,16 # $t1 shall = xFFFF_0000, DestAdr:9, R17

xori $t1,$t1,0xFFFF # $t1 shall = xFFFF_FFFF, DestAdr:9, R18

#SLT, SLTI, BEQ, BNE, NOP are verified

LOOP_3TIMES:

 69

subi $s0, $s0, 1 # $s0 shall = x1, DestAdr:16, R19

slti $t0, $s0, 0x0 # $t0 shall = x1, if $s0 negative, signed comparison, R20

beq $t0, $zero, LOOP_3TIMES

nop #after 3 iterations exit from loop

slt $t1, $s0, $zero #s0 shall = xFFFF_FFFF, therefore $t1 shall = x1, R21

bne $t1, $zero, JUMP_POINT

nop

#SLTIU, SLTU, MULTU, MFHI, MFLO, MTHI, MTLO, SW, LW, JR, J, JAL are verified

MULTIPLY:

addi $s0, $zero, -1 # $s0 shall = xFFFF_FFFF, DestAdr:16, R22

addi $s1, $zero, -2 # $s1 shall = xFFFF_FFFE, DestAdr:17, R23

multu $s0, $s1 # HI shall = xFFFF_FFFD, LO shall = x2

mfhi $t0 # $t0 shall = xFFFF_FFFD, DestAdr:8, R24

mflo $t1 # $t1 shall = x2, DestAdr:9, R25

mthi $zero

mtlo $zero

mfhi $s0 # $s0 shall = 0, DestAdr:16, R26

mflo $s1 # $s1 shall = 0, DestAdr:17, R27

addi $s1, $s1, 0x4 # $s1 shall = 4, DestAdr:17, R28

sw $t0, 0($s0) # MEM[0] shall store xFFFF_FFFD, R29

sw $t1, 0($s1) # MEM[4] shall store x2, R30

jr $ra # Jump after jal instruction, R31

nop

JUMP_POINT:

jal MULTIPLY

nop

lw $t2, 0($s0) # MEM[0]-->$t2 shall = xFFFF_FFFD, DestAdr:10, R32

lw $t3, 0($s1) # MEM[1]-->$t3 shall = x2, DestAdr:11, R33

sltiu $t0, $t2, 1 # $t0 shall = 0,because $t2 > 1, R34

bne $t0, $zero, START # shall not jump to START, R35

nop

sltu $t0, $t2, $zero # $t0 shall = 0,because $t2 > 0, R36

bne $t0, $zero, START # shall not jump to START, R37

nop

j START # shall jump to START, R38

nop

Eternity:

beq $zero, $zero, Eternity

nop

 70

Table 5.2: Timing Diagram for Instruction Operation Verification

 71

 72

 73

 74

 75

 76

 77

5.2. Verification of Hazard Detection and Handling

The test program given in Table 5.3 is downloaded to processor to

demonstrate that Data Hazards are resolved using the feedback paths

between stages. The pipeline is halted in case of the presence of an

unresolved hazard. A requirement number (as R#) is given in the

comment section of the code and the clock cycle in which the

requirement is fulfilled is pointed out in the first column of Table 5.4.

Table 5.3: Verification of Hazard Detection and Handling

TEST_2

Created by Can Altıniğneli
To demonstrate data hazards are correctly handled

UNDEFINED:
beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:
add $a0, $zero,$zero # $a0 shall = 0, DestAdr:x4, R1
addi $t1, $zero, 5 # $t1 shall = 5, DestAdr:x9, R2
addi $t0, $zero, 1 # $t0 shall = 1, DestAdr:x8, R3
nop
nop
nop

Feedback path exists between ID and EX, MEM, WB stages. Most recent
result is written to destination register. The code snippet below shows
that there is no need to wait until to WB stage of an instruction and
architecture correctly handles up-to-dateness problem, R4
add $t0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x2
add $t0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x4
add $t0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x8
add $t0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x16
nop
nop
nop

Feedback path exists between ID and EX stages.Data Hazard resolved, R5
subi $t0, $t0, 1 # $t0 = $t0 - 1, $t0 shall = xF
subi $t0, $t0, 3 # $t0 = $t0 - 3, $t0 shall = xC
nop
nop
nop

 78

Feedback path exists between ID and MEM stages.Data Hazard resolved, R6
subi $t0, $t0, 1 # $t0 = $t0 - 1, $t0 shall = xB
nop
subi $t0, $t0, 3 # $t0 = $t0 - 3, $t0 shall = x8
nop
nop
nop

Feedback path exists between ID and WB stages.Data Hazard resolved, R7
subi $t0, $t0, 2 # $t0 = $t0 - 3, $t0 shall = x5
nop
nop
subi $t0, $t0, 4 # $t0 = $t0 - 5, $t0 shall = x2
nop
nop
nop
sw $t0, 0($a0) # MEM[0] shall store x2
nop
nop

Although feedback path exists between ID and EX stages,
Data Hazard can not be resolved by this path. A NOP instruction
is inserted between "add" and "lw" instructions and hazard is resolved
by feedback path between ID and MEM stages on the next clock cycle, R8
lw $t0, 0($a0) # MEM[0]-->$t0 = x2, DestAdr:8
add $t2, $t0, $t1 # $t2 = $t0 + $t1, $t2 shall = x7, DestAdr:10, R9

Eternity:
beq $zero, $zero, Eternity # Infinite Loop
nop

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.4.

 79

Table 5.4: Timing Diagram for Handling Hazard Verification

 80

 81

 82

 83

5.3. Verification of Exception Handling

First, the test program given in Table 5.5 is downloaded to processor to

demonstrate that “ADDU” and “ADD” instructions generate exceptions

according to definitions in APPENDIX A, Implemented Subset of MIPS

R2000 ISA.

A requirement number (as R#) is given in the comment section of the

code and the clock cycle in which the requirement is fulfilled is pointed

out in the first column of Table 5.6.

Table 5.5: Verification of Exception Handling “ADDU” and “ADD”

TEST_3

Created by Can Altıniğneli
To demonstrate ADDU and ADD instructions generate overflow exceptions according to APPENDIX A.

UNDEFINED:
beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:
add $t0, $zero,$zero # $t0 shall = 0
lui $t0, 0x8000 # $t0 shall = x8000_0000, DestAdr:8, R1
addu $t1, $t0, $t0 # $t1 shall = x0000_0000, DestAdr:9, No Exception shall be
generated, R2
add $t0, $t0, $t0 # $t0 shall = x0000_0000, DestAdr:8, Exception shall be
generated,
 # and pipeline register blocks IF_ID, ID_EX and EX_MEM are
flushed, R3
Eternity:
beq $zero, $zero, Eternity
nop

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.6.

 84

Table 5.6: Timing Diagram for Exception Handling of ADDU and ADD

 85

After verifying “ADDU” and “ADD” instructions exception handling

mechanism, the test program given in Table 5.7 is downloaded to processor

to demonstrate that “SUBU” and “SUB” instructions generate exceptions

according to definitions in APPENDIX A, Implemented Subset of MIPS

R2000 ISA.

A requirement number (as R#) is given in the comment section of the code

and the clock cycle in which the requirement is fulfilled is pointed out in the

first column Table 5.8.

Table 5.7: Verification of Exception Handling “SUBU” and “SUB”

TEST_4

Created by Can Altıniğneli
To demonstrate ADDU and ADD instructions generate overflow exceptions according to APPENDIX A.

UNDEFINED:
beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:
add $t0, $zero, $zero # $t0 shall = 0
lui $t0, 0x8000 # $t0 shall = x8000_0000, DestAdr:8
addi $t1, $zero, 1 # $t1 shall = 1, DestAdr:9
subu $t2, $t0, $t1 # No Exception shall be generated, R1
sub $t2, $t0, $t1 # Exception shall be generated, R2

Eternity:
beq $zero, $zero, Eternity

nop

Results of operations and contents of stages are read by using MIPS Monitor

software and results are tabulated in Table 5.8.

 86

Table 5.8: Timing Diagram for Exception Handling of ADDU and ADD

 87

Lastly, to verify “ADDIU” and “ADDI” instructions exception handling

mechanism, the test program given in Table 5.9 is downloaded to

processor. A requirement number (as R#) is given in the comment

section of the code and the clock cycle in which the requirement is

fulfilled is pointed out in the first column in Table 5.10.

Table 5.9: Verification of Exception Handling “ADDIU” and “ADDI”

TEST_5

Created by Can Altıniğneli
To demonstrate ADDIU and ADDI instructions generate overflow exceptions according to APPENDIX A.

UNDEFINED:
beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:
add $t0, $zero,$zero # $t0 shall = 0
addiu $t0, $t0, 0xFFFF # $t0 shall = xFFFF_FFFF, DestAdr:8
addiu $t0, $t0, 1 # No Exception shall be generated, R1
lui $t0, 0x8000 # $t0 shall = x8000_0000, DestAdr:8
addi $t0, $t0, -1 # Exception shall be generated, R2

Eternity:
beq $zero, $zero, Eternity
nop

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.10.

 88

Table 5.10: Timing Diagram for Exception Handling of ADDIU and ADDI

 89

To verify undefined instruction exception handling, the machine code of

the program given in Table 5.9 is modified as given in Table 5.11,

hence an undefined instruction is generated. Processor will raise an

undefined exception while the modified instruction is in EX stage and

this result can be observed by inspecting Table 5.12.

Table 5.11: Verification of Exception Handling Undefined Instructions

[0x000000] 0x1000FFFF # beq $zero, $zero, -1
[0x000004] 0x00000000 # nop
[0x000008] 0x1000FFFF # beq $zero, $zero, -1
[0x00000C] 0x00000000 # nop
[0x000010] 0x00004020 # add $t0, $zero, $zero
[0x000014] 0x2508FFFF # addiu $t0, $t0, 65535
[0x000018] 0x25080001� changed as 0xFF080001 # addiu $t0, $t0, 1
[0x00001C] 0x3C088000 # lui $t0, 32768
[0x000020] 0x2108FFFF # addi $t0, $t0, -1
[0x000024] 0x1000FFFF # beq $zero, $zero, -1
[0x000028] 0x00000000 # nop

 90

Table 5.12: Timing Diagram for Undefined Instruction Exception Handling

 91

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Pipelining, basic way of obtaining faster processor, was inspected in

detail throughout this thesis and the basic principles were applied by

implementing a pipelined processor on a real hardware (FPGA).

It was aimed to clarify why pipelining is preferred instead of other

possible implementation schemes by comparing them quantitatively and

after that it was concluded that the best performance can be obtained

by applying Pipelined Implementation Scheme.

Different solution proposals were stated for problems faced while

implementing pipelining. It became clearer that the main point causing

problems was the dependencies between instructions. These

dependencies degrades the instruction throughput and CPI can be

greater than one which is optimal solution and this problem was

resolved by constituting forwarding (bypass) lines between stages.

Structural deficiencies are overcame by using separate Instruction and

Data Memory. The Control (Branch) hazards caused by conditional or

unconditional branches are overcame by making the decision in ID

stage instead of EX in the expense of using extra hardware. It is tried to

be explained how exceptions shall be handled in a pipelined

architecture. After all of these statements and giving implementation

details, architecture was verified with test programs and results were

tabulated.

 92

There exist unimplemented instructions in MIPS R2000 ISA, because

the first goal of this thesis is to reveal the internals of pipelining and not

to implement a complete processor. The most frequently instructions

were chosen and implemented. A custom exception handing

mechanism was implemented instead of implementing a complete co-

processor for similar reasons.

There are many directions in which the work described in this thesis can

be extended. There can be a research in the future which can propose

a method to measure the orthogonality of ISA which is the primary

metric for the effectiveness of pipelining. The processor can be

extended to completely cover all instructions in MIPS R2000 ISA.

Dynamic prediction mechanism can be used to branch decision instead

of simple delayed branch approach. As a further step, processor can be

upgraded by adding a floating point co-processor and virtual memory

support to implement R3000 ISA. A more overwhelming work is to

operate with 64 bit instructions and converge to R4000 ISA architecture

which is commercially available today.

Another direction to extend this research is to inspect the effects of

using longer pipelines, fetching longer instructions like in R4000 from

memory and implementing sequencing and some handling mechanisms

for all of these circumstances.

 93

REFERENCES

[Barr99] Barr Michael, “Programmable Logic: What is it to Ya?”

Embedded System Programming, pages 74-84, June 99

[Brown96] Stephen Brown, Jonathan Rose, “FPGA and CPLD

Architectures: A Tutoral”, IEEE Design and Test for

Computers, 1996

[BZEID] Bob Zeidman, Introduction to CPLD and FPGA Design

[CDVHDL] Volnei A. Pedroni, “Circuit Design with VHDL”, MIT Press

2004

[COD98] David A. Patterson and John L. Hennessy “Computer

Organization and Design”, Chapters 3-6, 1998

[DFMULT] J. Senthil Kumar, G. Lakshminarayanan, B.

Venkataramani, G. Siriram, M.S. Jambunathan, “Design

and Implementation of FPGA based Fast Multipliers with

Optimum Placement and Routing using Structure

Organizer”

[Perry02] Douglas L. Perrry, “VHDL Programming by Example”,

2002

[HPCC] Scott Hauck, Mathew M. Hosler, Thomas W. Fry, “High

Performance Carry Chains for FPGAs”

 94

[JGRAY00] Jan Gray, “Building a RISC System on FPGA”, Circuit

Cellar The Magazine for Computer Applications, March

2000

[KCHAP93] Ken Chapman, “Fast Integer Multipliers, Engineering

Design Magazine’s Design Ideas Column, March 1993

[PLXSDK01] PLX SDK User’s Manual section 4, March 2001

[PLXSDK02] PLX PCI 9030 Data Book, v14, Page 2.7, 2002

[SYNP99] “Synthesis for 1 Milion Gate FPGAs: Synplicity Support for

Xilinx Virtex Series”, Synplicity Inc. 1999

[TRENZ01] Trenz Electronic, “Introduction to FPGA Technology”,

November 2001

[TW04] R.H. Turner, R.F. Woods, “High Efficient Limited Range

Multipliers for LUT Based FPGA Architectures”, IEEE

Transactions on very large scale integrated systems, vol

12, No:10, October 2004

[XAPP215] Xilinx Application Note, Design Tips for HDL

Implementation of Arithmetic Functions, June 2000

[XCNSTR] Xilinx 5.xi Constraints, Understanding Timing and

Placement Constraints

 95

[XDRM99] Xilinx Design Reuse Methodology for ASIC and FPGA

Designers, System on Chip Design reuse Solutions, An

Addendum to Reuse Methodology Manual for SoC

Design, pages 1-27, October 99

[XDS003-2] Xilinx Data Sheet for Virtex™ 2.5V FPGA, pages 5-24,

December 2002

[XISE03] Xilinx ISE Quick Start Tutorial, pages 12-17, June 2003

[XLBR04] Xilinx Libraries Guide, V6.3i, pages 321-323

[XPM04] Karen Parnell, Nick Mehta, Xilinx Programmable Logic

Design Quick Start Hand Book, pages 1-20, April 2004

 96

APPENDIX A

IMPLEMENTED SUBSET OF MIPS R2000 ISA

 97

 98

 99

 100

 101

 102

 103

 104

Table A.1: MIPS Registers

Name Register number Usage

$zero 0 the constant value 0

$at 1 reserved for the assembler

$v0–$v1 2–3 values for results and expression evaluation

$a0–$a3 4–7 arguments

$t0–$t7 8–15 temporaries

$s0–$s7 16–23 saved

$t8–$t9 24–25 more temporaries

$k0–$k1 26–27 reserved for the operating system (OS)

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

 105

APPENDIX B

MIPS MONITOR SOFTWARE

MIPS Monitor Software is written to monitor internal state of the

processor, to externally stimulate the processor and to verify

correctness of its operation. MIPS Monitor Software is written in C++

and developed in Microsoft™ Visual C++ Environment. Document-View

architecture is used during is development. This Appendix is prepared

to serve as a user manual of MIPS Monitor Software.

The main screen of MIPS Monitor software is given below:

 106

 Figure B.1: Main Screen of MIPS Monitor Software

The main functions of MIPS Monitor software is collected under

Function menu. These functions can be summarized as:

Emulator Input: This option is used to run with real hardware or to test

the graphical interface with simulator without hardware. This interface

was used during development while the hardware was not present and

“Simulator” option was disabled after development. “PCIDevice” option

must be chosen before starting the MIPS Monitor software for proper

operation. After that, the “PCI Device Selection Dialog” (Figure B.3) will

Stages of
Processor

This region is reserved for the
program that has been already
downloaded to the processor
internal program memory.

Programs can not exceed 256
instructions.

Current
Status of

Processor

 107

appear and user can select the bridge on which interface transactions

will occur.

File�Emulator (F7): A “File Open Dialog” will appear after selecting this

option. The selected program will be loaded Program Memory section

of main screen, but this program is not downloaded to processor.

Figure B.2: Main Functions of MIPS Monitor Software

 108

Figure B.3: PCI Device Selection Dialog

Insert Break Point (F9): This option enables the user to insert break

points to stop the processor at a desired point while running or before

Run (F8) option is selected. A red diamond will appear to indicate the

point where the processor will stop its operation.

Single Step (F5): This option enables the user to trigger the processor

for single step running. It is stated in Table 4.5 which fields of the IF, ID,

EX, MEM and WB stages can be observed by using the MIPS Monitor

software.

 109

Figure B.4: PCI Device Selection Dialog

Run (F8): This option when selected runs the processor up to a Break

Point is encountered.

Reset (F10): This option when selected resets the processor externally.

Load & Verify: A “File Open Dialog” will appear after selecting this

option. The selected program will be loaded Program Memory section

of main screen and also this program is downloaded to processor.

MIPS Monitor Software can notify the programmer about the presence

of unresolved hazard in the pipeline by drawing a dashed box around

the IF and ID stages and stating the status in “Current Status” section of

Instructions Present in Pipeline Stages

Program stopped
at Break Point.

4 clocks
passed and

no hazard and
exception

 110

Main Screen. Programmer can expect a nop instruction insertion into

EX stage in the next clock cycle (Figure B.5).

Figure B.5: Unresolved Hazards View

MIPS Monitor software also has the ability to inform the programmer

about the presence and sort of the exception in the pipeline. This

information is presented in “Current Status” section of Main Screen.

The Overflow Exception is detected and reflected to Programmer as in

Figure B.6.

Unresolved
Hazard is
present

 111

Figure B.6: Overflow Exception Detection View

The Undefined Instruction is detected and reflected to Programmer as

in Figure B.7.

Figure B.7: Undefined Instruction Exception Detection View

Overflow
Exception did

occur.

Undefined Instruction
Exception did occur.

 112

APPENDIX C

FLOW DIAGRAMS ARCHITECTURE ELEMENTS

Instruction Fetch Unit Flow Diagram

Figure C.1: Instruction Fetch Unit Flow Diagram

 113

Instruction Decode Unit Flow Diagram

Figure C.2: Instruction Decode Unit Flow Diagram

 114

Forwarding and Hazard Detection Unit Flow Diagram

Figure C.3: Forwarding and Hazard Detection Unit Flow Diagram

 115

Instruction Execute Unit Flow Diagram

Figure C.4: Instruction Execute Unit Flow Diagram

 116

Instruction Execute Unit Flow Diagram (continued)

Figure C.5: Instruction Execute Unit (continued) Flow Diagram

 117

Data Memory Unit Flow Diagram

Figure C.6: Data Memory Unit Flow Diagram

Exception Detection Unit Flow Diagram

Figure C.7: Exception Detection Unit Flow Diagram

 118

Register Block Unit Flow Diagram

Figure C.8: Register Block Unit Flow Diagram

 119

APPENDIX D

LAYOUT OF BOARD

Figure D.1: Layout of Board

 120

APPENDIX E

RESOURCES IN THIS THESIS

A soft copy of this thesis, in addition to all of the source codes of

hardware and software mentioned about in this thesis are collected and

presented in the CD attached to back cover.

