PIPELINED DESIGN APPROACH TO MICROPROCESSOR
ARCHITECTURES
A PARTIAL IMPLEMENTATION: MIPS™ PIPELINED
ARCHITECTURE ON FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUZAFFER CAN ALTINIGNELI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan OZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof. Dr. Ismet ERKMEN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Examining Committee Members

Assist. Prof. Dr. Ciineyt BAZLAMACCI

Prof. Dr. Hasan GURAN

Dr. Ece (GURAN) SCHMIDT

Assist. Prof. Dr. Ilkay ULUSOY

M.S. Eng. Murat SANSAL

il

Prof. Dr. Hasan GURAN
Supervisor

(METU, EE)

(METU, EE)

(METU, EE)

(METU, EE)

(ASELSAN)

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: Muzaffer Can ALTINIGNELI

Signature

il

ABSTRACT

PIPELINED DESIGN APPROACH TO MICROPROCESSOR
ARCHITECTURES
A PARTIAL IMPLEMENTATION: MIPS™ PIPELINED ARCHITECTURE ON
FPGA

ALTINIGNELI, Muzaffer Can
M.S, Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Hasan GURAN

September 2005, 120 Pages

This thesis demonstrate how pipelining in a RISC processor is achieved
by implementing a subset of MIPS R2000 instructions on FPGA.
Pipelining, which is one of the primary concepts to speed up a
microprocessor is emphasized throughout this thesis. Pipelining is
fundamentally invisible for high level programming language user and
this work reveals the internals of microprocessor pipelining and the
potential problems encountered while implementing pipelining. The
comparative and quantitative flow of this thesis allows to understand
why pipelining is preferred instead of other possible implementation
schemes. The methodology for programmable logic development and
the capabilities of programmable logic devices are also given as
background information. This thesis can be the starting point and
reference for programmers who are willing to get familiar with

microprocessors and pipelining.

Keywords: Microprocessor, MIPS, Pipelining, FPGA

v

0z

MIKRO ISLEMCILERDE PIPELINED DIZAYN YAKLASIMI
MIPS™ PIPELINED ISLEMCI MIMARISININ FPGA UZERINDE KISMI
BIR UYGULAMASI

ALTINIGNELI, Muzaffer Can
YUksek Lisans, Elektrik Elektronik Mihendisligi
Tez Yéneticisi: Prof. Dr. Hasan GURAN

Eylal 2005, 120 Sayfa

Bu calismada, RISC islemcilerde “Pipelining” konusu, FPGA (zerinde
MIPS R2000 komut setinin bir kismi tamamlanarak aciklanmistir.
Calisma boyunca, Mikro islemcilerin hizlarinin arttirlmasi konusunda
temel bir unsur olan “Pipelining” konusu Uzerinde durulmustur. Temel
olarak “Pipelining” islevi, ylksek seviyede programlama yapan Kisilere
gbrinmezdir. Bu calisma “Pipelining” islevinin ayrintilarini ve bu iglev
gerceklestiriirken kargilasilan problemleri ortaya koymaktadir.
“Pipelining” disindaki diger tasarim yaklagimlarinin neden uygulanamaz
olduklari, bu tezin karsilastirmali ve nicel akisi sayesinde anlasilabilir.
Donanim tasariminda temel alinan metodolojiler ve donanimlarin
kabiliyetleri hakkinda tez boyunca bir alt yapr olusturulmaya da
calisiimistir. Bu tez, Mikro islemciler ve “Pipelining” islevi ile tanisiklik
kazanmak isteyen programcilar i¢in bir baslangi¢c ve referans noktasi
olabilir.

Anahtar Kelimeler: Mikro islemci, MIPS, Pipeline, FPGA

To My Generous Family

vi

ACKNOWLEDGMENTS

| owe much gratitude to my Advisor, Professor Dr. Hasan Guran, for
inspiring me to carry out this thesis. His criticism and suggestions bring
this work to this point and | am always aware during our work that this

thesis is first of all for my benefit.

Everyone working at ASELSAN deserve my thanks, especially Erdinc
Atilgan, Kemal Burak Codur and Murat Sansal. They guided me to right
technical people, supported me technically and mentally during my
work. This thesis ended up with an implementation because ASELSAN
gave the hardware support without waiting any outcome despite it is a

commercial organization.

| also owe lots to my father, mother and sister. They interested in all of
my needs while | was embedded to my work. | also grasp the idea of
being a family in addition to fundamentals of pipelining in micro-

processors at the end of this work.

vii

TABLE OF CONTENTS

PLAGIARISM..... et e e e e e e e i
ABSTRACT ... iv
TP v
ACKNOWLEDGMENTS ...t vii
TABLE OF CONTENTS ...t viii
LISTOF TABLESt Xi
LIST OF FIGURES ...ttt Xii
LIST OF ABBREVIATIONS ...t Xiv
CHAPTER
1. INTRODUGCTION ...ttt e e e e e e 1
2. BACKGROUND AND MOTIVATIONouiiiiieeeeeeeeceeeee e 4
2.1. Programmable LOgiC DeSignuuuuuueeieiriiiiiiiiiiiiiiiiiiiiiiiiiinennnens 4
2.1.1. History of Programmable LOQICcoooiiiiiiiiieiiiiiiie, 5
2.1.1.1. Simple Programmable Logic Device (SPLD) 5
2.1.1.1.1. Programmable Logic Array (PLA)......cccccomiiiinnnnn. 5
2.1.1.1.2. Programmable Array Logic (PAL)........ccoevvreeerernnen. 6
2.1.1.2. Complex Programmable Logic Device (CPLD).............. 7
2.1.1.3. Field Programmable Logic Gate Array (FPGA).............. 8
2.1.2. Basic Design ProCess........oooouuuiiiiiiiiiiiiiiiieeeee e 9
2.2. Integrated Software Environment (ISE™)coooiiiiiiieennnnn. 10
2.3, VIEXTM FPGAttt a e e e 13
2.3.1. Function Generation Capabilities of CLB...........cccccceeennnees 14
2.3.2. Distributed (Shallow) Memory Usage of CLB 15
2.3.3. Shift Register Configuration of CLB............ccccvveeeeeeiiinnnnns 15
2.3.4. Arithmetic Capabilities of CLB ... 15
2.4. PCIl Host Software: In-Circuit Debugging of the Architecture 16
3. RELATED RESEARCHoutiiiiiiee et 19
3.1. MIPS R2000 Instruction Set Architecture (ISA).......ccccovveeeeeen.n. 19
3.2. MIPS Instructions and MIPS Assembly Language...........ccc....... 20
3.2.1. MIPS Instruction Format..........ccccoceeiiieiiiiiiiieeeee e 21
3.2.2. MIPS Addressing MOdEsSuuueeieiieeiiiiiiiieeeeee e 22
3.2.3. MIPS Instruction Decodingcc.uuveeerieeeiiiiiiiiiiieeeee e 23
3.3. Survey of Instruction Set Architecture Implementation Scheme 24
3.3.1. Single Cycle Implementation Schemeccccoeeeeeeeennnnnn. 25
3.3.2. Multi Cycle Implementation Scheme............cccccceeiiiiinnnnis 27
3.3.3. Pipelined Implementation Scheme ..o, 29
3.3.4. Quantitative Comparison of Implementation Schemes...... 31

viii

3.4. Problems and Solutions in Pipelined Architectures................... 33

3.4.1. Structural Hazards........ccooeeeeieiieeeeeceeceeeeeeceeeeee e 33
3.4.2. Brach Hazards.......ccoooooiiiiee e 34
TSI D r- W o F= <= [0 35
3.4.4. Exception Hazardccooooooiiiiiiiieeeeeee e 37
4. IMPLEMENTATION OF MIPS PIPELINED ARCHITECTURE......... 38
4.1. Internal Structure of the Processor..........cccccveeeeiiiiiiciiiiieeeee. 42
4.1.1. Instruction Fetch Unit........ccooooiiiiiiiiiieeeeeeeeeeeeeeeeee 42
4.1.1.1. Input/Output Signals of Instruction Fetch Unit.............. 43
4.1.1.2. Function of Instruction Fetch Unit...............coooeeeeeee. 45
4.1.2. Instruction Decode Unitcccoooieiiiiiiiieee 45
4.1.2.1. Input/Output Signals of Instruction Decode Unit........... 46
4.1.2.2. Function of Instruction Decode Unit..........ccoceeeeieeennn. 49
4.1.3. Forwarding and Hazard Detection Unit............ccccccceiiiinnnes 49
4.1.3.1. Input/Output Signals of Forwarding and Hazard
Detection UNitoeeiiieiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeee e eeeennnnnnes 49
4.1.3.2. Function of Forwarding and Hazard Detection Unit...... 52
4.1.4. Control UNit.. . 52
4.1.4.1. Input/Output Signals of Control Unit...........ccccvveeeenen.n. 52
4.1.4.2. Function of Control Unit ... 55
4.1.5. EXECULE UNIt ..eee 55
4.1.5.1. Input/Output Signals of Execute Unitcccceeeeeeen. 56
4.1.5.2. Function of Execute Unit..........ccccoooiiiiii, 57
4.1.6. Data Memory Unit........ccoooiiiie e 57
4.1.6.1. Input/Output Signals of Data Memory Unit................... 57
4.1.6.2. Function of Data Memory Unitccccccooniiiiiiiinnnnenn. 58
4.1.7. Exception Detection Unitccooeeieiiiiiiiiieeeen 58
4.1.7.1. Input/Output Signals of Exception Detection Unit......... 59
4.1.7.2. Function of Exception Detection Unit............ccceeeeee. 60
4.1.8. Register Blocks between Stages of Processor................... 60
4.2. External Structure of the Processorccccvveeeeeeiiiiiiciiiiieeeee. 61
4.2.1. External Monitoring of the Processor...........cccccceeeeiiiinnnnns 62
4.2.2. External Manipulation of the Processor..........cccooeeeiiiieennnn. 63
5. VERIFICATION OF MIPS PIPELINED ARCHITECTURE 67
5.1. Verification of Correct Operation of Instructions.............ccc....... 67
5.2. Verification of Hazard Detection and Handling...............ccccc...... 77
5.3. Verification of Exception Handling..............euueeveviiiiiiiieiiiiiiiiiennns 83
6. CONCLUSIONS AND FUTURE WORKccooiiieeieeeeeeeeeeeeeeeeeeeee, 91
REFERENGESttt 93
APPENDICIES
A. IMPLEMENTED SUBSET OF MIPS R2000 ISA ..., 96
B. MIPS MONITOR SOFTWARE ... 105

X

C. FLOW DIAGRAMS ARCHITECTURE ELEMENTSccccoeciies 112

Instruction Fetch Unit Flow Diagram ..o, 112
Instruction Decode Unit Flow Diagram........ccoooeeeeiiiiiiiiiiieeeeeeeeee, 113
Forwarding and Hazard Detection Unit Flow Diagram 114
Instruction Execute Unit Flow Diagramcoooeeeiiiiiiiiiiiiieieeeeeeee 115
Instruction Execute Unit Flow Diagram (continued) 116
Data Memory Unit Flow Diagramccooooeiieiiiiiiieeeeceeeeeeeeeeeeee 117
Exception Detection Unit Flow Diagram.........cccooooiiiiiiiiiiiiiiinnnnns 117
Register Block Unit Flow Diagram.......coooooeeiiiiiiiiiiiieeeeeeeeeeeeeeee 118
D. LAYOUT OF BOARD ...t 119
E. RESOURCES IN THIS THESIScoiiiiieeeeee e 120

LIST OF TABLES

TABLE

3.1: Calculation of CPI for Multi Cycle Implementation Scheme 32
3.2: Instruction Time Calculation for Implementation Schemes............ 33
4.1: Forwarding Mechanism for Register Bank Primary Port 50
4.2: Forwarding Mechanism for Register Bank Secondary Port............ 50
4.3: ID_Control Signal Fieldsc.ccoeieieiieieieceeeeeeeeeee e 53
4.4: EX_Control ALUOp Signal Values...........cccecveivieieinieieieieieeeieine 53
4.5: Base Addresses of Processor’s Internal Signals..........c.cccceveuenee. 63
5.1: Verification of Correct Instruction Operation...........cccccccevvevveerennenee. 68
5.2: Timing Diagram for Instruction Operation Verification..................... 70
5.3: Verification of Hazard Detection and Handlingccccceverennee. 77
5.4: Timing Diagram for Handling Hazard Verificationcccc......... 79
5.5: Verification of Exception Handling “ADDU” and “ADD” 83
5.6: Timing Diagram for Exception Handling of ADDU and ADD 84
5.7: Verification of Exception Handling “SUBU” and “SUB".................... 85
5.8: Timing Diagram for Exception Handling of SUBU and SUB........... 86
5.9: Verification of Exception Handling “ADDIU” and “ADDI"................. 87

5.10: Timing Diagram for Exception Handling of ADDIU and ADDI....... 88
5.11: Verification of Exception Handling Undefined Instructions............ 89
5.12: Timing Diagram for Undefined Instruction Exception Handling ... 90

A.1:

MIPS REQISIEIS ...ttt 104

X1

LIST OF FIGURES

FIGURE

2.1 PLA ArChit@CUIe ... 6
2.2: PAL ArChiteCUIe ... 7
2.3: CPLD ArChiteCtUIeooveeeeiiieteeeeeeeee e 8
2.4 FPGA ArChiteCIUIEoveeieeiieteeee e 8
2.5: Basic Design Flow in FPGAS, ©XiliNXc.cccoovveieieieieieieiesieseeee 9
2.6: MIPS Project Properties WindOWc.ccoeoieinieieineieeeeieeeeienen 11
2.7: MIPS Project Source File Listing........ccccoeoveieinieieieieeeeeeeee 12
2.8: Virtex Architecture Overview ©XilinXccoeveeeieeeierieieieeeeeee 14
2.9: Function Generator Configuration of CLB..........ccccoeoveieiiiiciee 14
2.10: Carry Logic Diagram ©XiliNX.........cccceverierieiniirieieinieieeeresieeeeeienen 15
2.11: Multiplier Implementation ©XilinX...........cccoceeivierieienerieieeeieeeenen 16
2.12: MIPS Monitor SOftWare...........cccooeieiiieeieeeeee e 18
3.1: MIPS Instruction FOrmat..........ccccooeieiiinieieieceeeeeeeee e 21
3.2: Immediate Addressing MOdecceieierenieiecceeee e 22
3.3: Register Addressing MOdeooveveieiiiiieeceeeeeeeee e 22
3.4: Base Addressing Mode...........ccooveieieieiiieceeeeeeeeeeee e 22
3.5: PC Relative Addressing MOdEe..........cccooevveieieiinieieirieieeeieieeeie e 23
3.6: Pseudo Direct Addressing Mode..........cccooeveriiieieieieieeeeee, 23
3.7: MIPS Opcode Map and Frequency of Instructions........................... 24
3.8: Single Cycle Implementation Scheme ©[COD98]..........c.cceevennee. 26
3.9: Multi Cycle Implementation Scheme ©[COD98]..........c.ccoevevrrennee 28
3.10: State Flow Diagram of Multi Cycle Scheme Control Unit.............. 29
3.11: Pipelined Implementation Scheme ©[COD98]...........cccccevverrenennee. 30
3.12: Simultaneously Executing Instructions in Pipeline......................... 31
3.13: Single and Multi Cycle Instruction Sequence.............cccccceveevennnee. 32
3.14: Data Hazard Solution by Forwarding...........cccecvevveeeievievienececenee, 36
3.15: Data Hazard Solution by Stalling and Forwardingccc......... 36
3.16: Forwarding of the Most Recent Data...........cccooovvieieieneniee 37
4.1: Internal Structure of the Pipelined Processor.........cccccocevevveeiennenee. 40
4.2: External Structure of the Pipelined Processorccccoevevveevennnnee. 41
4.3: Input/Output Signals of Instruction Fetch Unit.................cccccoeen 44
4.4: Input/Output Signals of Instruction Decode Unit..............cccoccvuniee. 48
4.5: Input/Output Signals of Forwarding and Hazard Detection Unit 51
4.6: Input/Output Signals of Control Unit...........ccoeevieiiiieieiieeeee 55
4.7: Input/Output Signals of Execute Unit..........cccooovveieiniieiiiieieee 56
4.8: Input/Output Signals of Data Memory Unit..........c.cccovevevieniinennenee. 58
4.9: Input/Output Signals of Exception Detection Unit...........c.cccovenene. 60

Xii

4.10: Input/Output Signals of Reg Unit........cccooeiiiiiiieee 62

4.11: Input/Output Signals of Reg_Wr Unit........cccooveieineiiiieeee 64
4.12: StateCAD Diagram of Wait_Sm Unit...........ccooeoieiniieiinieieee 65
4.13: Input/Output Signals of Reg_Prg Unit..........cocoeveieiiiiiiieee 66
B.1: Main Screen of MIPS Monitor Software.............ccccceeveieveveneeneene 106
B.2: Main Functions of MIPS Monitor Software...........cccccceevvveievenennne. 107
B.3: PCI Device Selection Dialog.........ccceevevevieieinieieieerieeeeeeeeevene 108
B.4: PCI Device Selection Dialog..........ccceevevieviiviinieieieieieieeieseeene 109
B.5: Unresolved Hazards VIEeW...........ccooieieiereniniceeeeeee e 110
B.6: Overflow Exception Detection View.........cccceeeveeirenecieenieieieeee. 111
B.7: Undefined Instruction Exception Detection View...........ccccccueu.... 111
C.1: Instruction Fetch Unit Flow Diagram..........ccccoecveeieieievienienecieenene 112
C.2: Instruction Decode Unit Flow Diagramccccevevevieeneneeeerenene. 113
C.3: Forwarding and Hazard Detection Unit Flow Diagram.................. 114
C.4: Instruction Execute Unit Flow Diagram...........ccccceevvevievieneneneeneenene 115
C.5: Instruction Execute Unit (continued) Flow Diagram 116
C.6: Data Memory Unit Flow Diagram..........cccccecvviviecininenieieeieeeeene 117
C.7: Exception Detection Unit Flow Diagram..........cccccecoevvevieveveneerenene 117
C.8: Register Block Unit Flow Diagram..........cccccoeveieieievienieneseseeenene 118
(D A =\ Vo 11 o) = o Y= {0 FS SRR 119

Xiii

ALU
API
ASIC
BRAM
CISC
CLB
CLK
CPI
CPLD
DLL
EX
FF
FPGA
GCC
GPR
HDL
ID

IF
IoB
ISA
ISE
LUT
MEM
MIPS
MUX
NOP
PAL
PC
PCB
PLA
PROM
RISC
SoRC
SPLD
VHDL
WB
XST

LIST OF ABBREVIATIONS

Arithmetic Logic Unit

Application Interface

Application Specific Integrated Circuit
Block Random Access Memory
Complex Instruction Set Computer
Configurable Logic Block

CLocK

Clock cycle Per Instruction

Complex Programmable Logic Device
Delay Locked Loop

Execute (stage)

Flip Flop

Field Programmable Gate Array

Gnu C Compiler

General Purpose Register

Hardware Description Language
Instruction Decode (stage)

Instruction Fetch (stage)

Input Output Block

Instruction Set Architecture
Integrated Software Environment
Look Up Table

Memory (stage)

Microprocessor without Interlocked Pipeline Stages
MUItiplXer

No Operation (instruction)
Programmable Array Logic

Program Counter

Printed Circuit Board

Programmable Logic Array
Programmable Read Only Memory
Reduced Instruction Set Computer
System on Re-programmable Chip
Simple Programmable Logic Device
Very high speed integrated HW Description Language
Write Back (stage)

Xilinx Synthesis Technology

Xiv

CHAPTER 1

INTRODUCTION

Faster execution of computer programs was the one of the most
challenging concerns of engineers in the past and also will be much
more challenging in the future. Increased demands of the industry for
real time applications yield the presence of faster and deterministic
processor architectures in years in the market.

Developers have always been under the effect of their era’s restrictions
while determining their architectural approach. This was the reason why
Complex Instruction Set based computers (CISC) came before the
much simpler counter parts, the Reduced Instruction Set (RISC) based
computers. Developers constructed first more challenging CISC
because of memory restrictions and little compiler support.
Developments in memory technology in parallel with compiler
enhancements resulted in emergence of RISC based computers. They
are much simpler to build, much simpler to understand; hence open for
improvements and maintenance.

The number of high level programming language compilers developed
and specialized for RISC architectures grew rapidly. High level
programming became more popular over years and programmers kept
away from low level error prone long lasting assembly programming.
Another reason for choosing high level programming is that different
vendors proposed different architectures; hence it was not feasible to

learn the architecture specific assembly code. Pipelining is one way of

increasing the processor’s performance. It was proposed for RISC
based computers mainly because of their regularity. Pipelining
accompanied with improved compiler support gave superior
performance and further improvements made by scaling these
architectures.

The primary goal of this thesis is to grasp the idea behind pipelining by
partially developing RISC architecture, specifically Microprocessor
without Interlocked Pipeline Stages (MIPS), because of its simplicity
and rich documentation.

Understanding the pipelining is important because pipelining is
transparent to high level programmer. Programmers are aware of
Program Counter (PC), register bank and memory when they debug
their programs, but they can not observe the internal register blocks
used for pipelining. Programmers can not understand why the assembly
code generated by different compiler vendors is different for the same
high level software without knowing the internals of pipelining even they
know the compiler well.

The secondary goal of this thesis is to understand the problems faced in
pipelining, because it is the first step that comes before the superscalar
speculative architectures. To go one step further, problems in pipelining
must be solved.

The last goal of this thesis is to get familiarity with hardware design
process cycle and grasp internals of programmable logic design
especially for Field Programmable Gate Arrays (FPGAs). FPGAs
promise parallelism which is the key concept for speed. FPGAs are
reprogrammable and are becoming more popular in the market. They
replace to application specific integrated circuit (ASIC) and discrete
processors and they are also called as system on reprogrammable
chip (SoRC).

This thesis is organized as follows: Chapter 2 serves to provide
necessary background for development environment, programmable
logic design and FPGAs. Chapter 3 describes the different
implementation schemes for the same instruction set and clarifies why
pipelining is the best quantitatively. It also describes the problems
encountered in pipelining and solution proposals. Chapter 4 gives the
details of particular subset of MIPS implementation. Chapter 5 is
devoted for formal verification of the partially implemented architecture
by using in circuit debugging at runtime via specially developed
software, MIPS Monitor. Chapter 6 gives the conclusions and makes
remarks for further future work. The appendices presents the
implemented instruction set assembly codes, instruction descriptions
and some screen shots to demonstrate the usage of MIPS Monitor

software.

CHAPTER 2

BACKGROUND AND MOTIVATION

This chapter serves for the following purposes:
(1) providing the necessary background for understanding the rest of
thesis,
(2) motivations behind the usage of software and hardware
development environments in thesis,
(3) internals of platform FPGA which was preferred as design

solution,

Readers, who are quite familiar with these concepts, can skip this

chapter and start reading Chapter 3 first.

2.1. Programmable Logic Design

Since late 1970s, programmable logic circuits are greatly enhanced and
dominated the electronics market. Developers had a tendency to use
reprogrammable devices (simple and complex programmable logic
devices), instead of application specific integrated circuits (ASIC) to
develop large and interoperable systems because of their following
characteristics [XDRM99]:

e Low cost per gate.

e Reduces Risk; engineers can make design changes in

minutes.

Faster Testing and Manufacturing.

Ease in Verification.

Ability participating in Hardware-Software Co-Design.

Versatile support for Input/Output Standards.

2.1.1. History of Programmable Logic

By the late 1970s, standard logic components were exclusively used as
standard building blocks of logic circuits. These components (e.g.,
74XX series TTL parts) were located on printed circuit boards (PCBs)
and any change in logic resulted corresponding revision in PCB layout.
The side effects encountered, when some part of design changed, was
able to be avoided by replacing these components with programmable
logic devices (PLDs). Given that the design in PLDs was flexible, no
rewiring on PCBs was required. In addition, less board area and power
was consumed by PLDs. PLDs can be divided in two sets as simple
and complex PLD.

2.1.1.1. Simple Programmable Logic Device (SPLD)

These devices are mainly used for address decoding [Barr99].

2.1.1.1.1. Programmable Logic Array (PLA)

Ron Cline from Signetics™ put forward the idea of two programmable
planes on 1975 [XPMO04]. Any combinatorial logic can be expressed in
the form of two level logics: as product of sums or sum of products. For
that reason, by using PLA, any combinational logic can be
implemented, if number of inputs and outputs are enough for required

implementation. Despite the architecture is very flexible, because of

high fuse count, propagation delay is higher than PAL. Unwanted

connections (fuse) are blown after programming.

A A A A o S A
%%GHGI%PDXXXP
%DXXXP
B o RO

AvY

Figure 2.1: PLA Architecture

2.1.1.1.2. Programmable Array Logic (PAL)

John Birkner from MMI proposed a second alternative for the PLA array
on 1978. Instead of one programmable planes, the OR array was fixed
after fabrication [XPM04]. PALs are more constrained than PLAs, but,
because of fewer connections, they have lower propagation delay.

JOUC

Figure 2.2: PAL Architecture
2.1.1.2. Complex Programmable Logic Device (CPLD)

Macrocells were obtained by extending PLDs with additional flip flops
(FFs). CPLDs were simply combinations of these macrocells with
programmable interconnects, switch matrix (SM). SM within CPLD may
or may not be fully connected unlike the programmable interconnect
within PLD. In other words, some of theoretically possible connections
between PLDs may not actually be supported within a given CPLD.
Therefore 100% utilization of macrocells is very difficult to achieve.
Some designs will not fit a given CPLD, even though there are sufficient
logic gates and FFs.

CPLDs can also be used as address decoders like PLDs, but more
often as high performance control logic and finite state machines.
Traditionally, CPLDs have been chosen over FPGAs, whenever high
performance logic is required [Barr99].

PLDH PLD
SM

PLD= PLD

Figure 2.3: CPLD Architecture

2.1.1.3. Field Programmable Logic Gate Array (FPGA)

In 1985, a company called Xilinx™ introduced FPGAs, composed of
configurable logic blocks (CLBs), which are surrounded by
programmable interconnects and comprise function generators or look
up tables (LUTs) and flip flops (FFs). FPGAs can be one time
programmable similar to PLD or SRAM based (or reprogrammable).
[XPMO04] [TRENZ01] [BZEID]

[10B] [10B] [10B]

()] =
8| (CLBSH#=CLBS#=CLBSHECLB) |
1 1 1
SM| SM| SM|
LT LT LT
()] =
3| CLBSH#=CLBS#=CLBSH=CLB) |
{anal {anal {anal
{SM| ISM| ISM}
| I | I | I
()] =]
3| CLBSH#=CLBS#=CLB=H=CLB] |
{anal {anal {anal
m bt
CLBEHECLBEHSCLBEHECLB

[10B] [10B] [10B]
Figure 2.4: FPGA Architecture

2.1.2. Basic Design Process

Design entry or design specification can be in the form of schematic
capture or hardware description language (HDL). In schematic form,
after determining the capture tool and the manufacturer’'s library,
designer can connect the gates from library with wires and then
generates netlist, which is the textual description of the circuit.
Schematic capture is not feasible for large designs because it is not
scalable, not reusable, strongly vendor dependent and hard to maintain.
In HDL design entry, the design is entered in high level description
language emphasizing design’s function or behavior and then
synthesized by the vendor independent tool and netlist is generated.
The design is more maintainable, scalable and reusable than schematic

design entry.

Design Design Verification
Entry '.
l Behavioral
Simulation
Design "
Synthesis
Functional
Simulation
Design Static Timing
Implementation Analysis
L Back Timing
l Annotation Simulation
Xilinx Device In-Circuit
Programming Verification

Figure 2.5: Basic Design Flow in FPGAs, ©Xilinx

In design implementation, the first step is translation of low level and
generic netlist file into device specific resources. After translation step,
mapping step checks the design according to device specific rules, add
further logic or make replications to meet the timing requirements using
device resources. At last, in place and route step, already allocated
resources are distributed along FPGA taking into account the physical
constraints and routing resources. At this point physical layout is
determined and timing information for design entities and interconnects
(Back Annotation) is available. After routing, the device is ready to be
programmed.

In device programming stage, the SRAM based FPGA’s configuration,
which is volatile after power on and also defining the logic and
interconnect, is programmed to a Programmable Read Only Memory
(PROM) device with part name xc18v02.

Design verification is a parallel process to design development. Design
entry in either schematic or HDL form can be simulated behaviorally,
while it can be tested based on the code syntax. After synthesis phase,
generated netlist format can be simulated functionally by providing test
vectors and tested by checking the desired output vector. Timing
simulation comes after the place and route phase using back

annotation.

2.2. Integrated Software Environment (ISE™)

Integrated Software Environment is the environment provided by
Xilinx™ for Design Entry, Design Synthesis, Design Implementation,
Design Verification and Device Programming phases (described in
2.1.2) of design development [XISE03]. MIPS project was created in
ISE with the project properties given in Figure 2.6.

10

Project Properties @

Project Properties l

Property Hame | Value |
Device Family [wirtes:
Device w300
Package bigd 532
Speed Grade -5

| I

Top-Lewvel Module Type Zchematic
=ynthesiz Toal ®ET (WHDL MW erilog)
Simulator hodelzim
Generated Simulation Language WHDL

k. | Cancel Help

Figure 2.6: MIPS Project Properties Window

Top-Level module for Design Entry is selected as Schematic Capture
for visualization purposes. All other sub-modules are coded in hardware
description language VHDL [CDVHDL] [Perry02]. XST (Xilinx Synthesis
Technology) tool was used to synthesize netlist from VHDL code.
Modelsim® simulator was selected for post-place and route simulation
purposes.

11

Project Workspace 3]

Sources in Project: |
--[B HMIPs
@ mips_t.do
[2) impactus.cmd
[Z] waIT_SM.DIA
-1+ £ »cv300-5bgd32
- @ debug [debug. sch)
U] debug.uct
@ or_block-behavioral [or_black.vhd)
poi_ 9030
@ reg-behavioral [reg.vhd)
@ reg_wir-behavioral [reg_wr.vhd]
@ top_level [top_level zch)
@ testbench-behavioral [DUT . vhd)
@ top_level uck
@ contral_urnit-behavioral [control_unit. vhd)
+ @ decode_unit-behavioral [decode_unit. vhd)
@ ex_men-behavioral [ex_mem.vhd)
@ e_unit-behavioral [ex_unit. vhd]
@ exception_dtct_unit-behavioral [exception_dtct_unit.vhd]
@ friend_hzrd-behavioral [frad_hzrd. vhd)
@ id_ex-behavioral [id_ex. vhd)
@ if_id-behaviaral [if_id.vhd]
= @ if_urit-behawvioral [it_unit.vhd)
@ inztruction_memony-behavioral [Instruction_Memony. whd)
= @ mem_unit-behavioral [mem_unit.whd)
@ data_memory-behavioral [[ata_Memory. vhd)
@ mem_wb-behavioral [mem_wb.vhd)
=1 [W] wait_sm-behavior [aAIT_SM.vhd)
@ shell_wait_sm-behawvior (A1 T_SM.vhd]
- @ req_prg-behavioral [reg_prg.whd)
reg_pra_test [req_pra_testtbw)
@ raminfr-zyn [program_storage. vhd)

4| »

B2 hodule Wiew ‘ 8 Snapshot Wiew |E Library Wigw J

Figure 2.7: MIPS Project Source File Listing

MIPS project comprise source files describing the architecture of
entities which are listed in (Figure 2.7) for the following purposes;
e Design Entry (e.qg. file extensions *.vhd and *.sch)
e Physical and Timing user constraints files for Design
Implementation (e.g. file extension *.ucf)
e Test Bench files for Post-Place and Route Simulation (e.g. file

extensions *.vhd)

12

2.3.

Post-Place and Route simulation macro file which compiles the
design and Test Bench files, invokes the simulator, loads signals
to view windows and runs the simulation for specified time
duration. (e.g. file extension *.do)

State Machine editor file (e.g. file extension *.dia)

Impactus command file for device programming (e.g. file

extension *.cmd)

Virtex™ FPGA

MIPS project is implemented on an xcv300-5bg432 Virtex FPGA device

with the following properties and layout (Figure 2.8): [XDS003-2]
[SYNP99] [XCNSTR] [Brown96]

32x48 CLB Array provide functional elements for constructing
logic connected by global routing matrix or switch matrix (Figure
2.4),

VersaRing™ forms the interface between Input Output Blocks
(IOBs) and CLBs,

16 Block Rams (BRAMSs) each 4096x1 totally 65536x1 bits,

4 Delay-Locked Loops (DLLs) that eliminate the skew between
the clock input pad and internal clock input pins throughout the
device,

Ball grid 432 package having 316 1/O pins reserved for users
with speed grade -5 which yields system performance up to 200
MHz.

13

DLL

I0Bs

VersaRing

10Bs
VersaRing

BRAMs

CLBs

SWvHa
Buryesey
S80I

VersaRing

DLL

I0Bs

DLL

Figure 2.8: Virtex Architecture Overview ©Xilinx

vao_b.aps

2.3.1. Function Generation Capabilities of CLB

Each CLB comprises 4 function generator (LUTs) distributed into two
slices. Each slice contains 2 function generators and additional logic
that combines the outputs of LUTs and generates 5 (MUXF5) and 6
(MUXF6) input functions (Figure 2.9). Each slice can generate any
functions of 5 inputs up to some functions of 9 inputs; hence any CLB

can generate any functions of 6 inputs up to some functions of 19

inputs.

CLB

SLICE
LUT
LUT

MUXFS
SLICE
LUT
LUT

MUXF5

MUXF&

Figure 2.9: Function Generator Configuration of CLB

14

2.3.2. Distributed (Shallow) Memory Usage of CLB

Each LUT in a Slice can be configured as 16x1 bit synchronous RAM
and two LUTs in a Slice can be configured as 16x2 bit or 16x1 bit dual
port or 32x1 bit synchronous RAM.

2.3.3. Shift Register Configuration of CLB

Each LUT in a slice can be configured as dynamically addressable16 bit
shift register.

2.3.4. Arithmetic Capabilities of CLB

Each LUT in a slice has a dedicated XORCY gate for single bit sum to
form a full adder and dedicated carry path (Figure 2.10) which is using
also dedicated routing resources along vertically adjacent CLBs
[XAPP215]. By introducing the additional XORCY gate, 2 inputs of LUT
left as spare and these inputs can be used to implement additional logic
thereby increasing cell functionality. [TW04] [KCHAP93] [DFMULT]

Function CouT
Generator
—] MUXCY
0 1
XORCY
=
IZIH x215_03 042000

Figure 2.10: Carry Logic Diagram ©Xilinx

15

Multiplication in FPGA is performed by shifting and adding the partial
products in parallel fashion. There exists 2 input AND gate per LUT to
implement 1 bit multiplier [XAPP215] and this pattern repeats
throughout the multiplier. In case of operands (partial products) are not
equal to each other Cyy signal is propagated (Figure 2.11). Additional
AND gate is essential to kill or generate Cour signal produced when the
propagation of Cy signal is stopped (when both operands equal)
[HPCC].

Function
Generator CouT
Am
Br+1 MUXCY
Am+1 —— D
Bn —
Ll o—
™ XORCY
p / CIN
.".II i ,

o
Basic Adder structure
with dedicated fast carry.

Dedicated Multiplier
MULT_AND Gate

Figure 2.11: Multiplier Inplementation ©Xilinx

2.4. PCI Host Software: In-Circuit Debugging of the Architecture

The “MIPS Monitor” (Figure 2.12) software which is running on PC was
developed to debug the architecture after generated configuration was
programmed into the target PROM or a new program is ready to be
programmed while Virtex FPGA was running [PLXSDKO1].

“MIPS Monitor” uses PCI Application Interface (API) provided by PLX
Technology™ to read the FPGA’s internal data and program memory,

pipeline stage’s inputs/outputs, pipeline register states and current PC.

16

It also enables the user to observe stalls and exceptions. It reflects
information read by using PCI API to its graphical user interface, hence
to user.
“MIPS Monitor” uses PCI API provided by PLX Technology™ to write
the control signals to Virtex FPGA which resets the architecture or
increment the PC by one thereby enabling single step operation.
“MIPS Monitor” graphical user interface enables the user by providing
the following functionalities:
e Selecting the proper PCI 9030 device which is on the same
board FPGA placed,
e Viewing the program which was already assembled and
programmed to PROM,
e Viewing, loading and verifying a new program to local block
instruction memory of FPGA.
e Inserting break points and running the architecture in single step
or in free mode by using the graphical user interface of “MIPS

Monitor”.

17

MIPS MOHITOR

WIHDOWS DRIVER

| PixmosTaPl |

I PCIBUS COMBMUHICATION

PCIl Bus

1

PLX %030 PCI CHIP
PROM

Figure 2.12: MIPS Monitor Software

The layout of the board used during this thesis is given in APPENDIX D,
Layout of Board.

18

CHAPTER 3

RELATED RESEARCH

3.1. MIPS R2000 Instruction Set Architecture (ISA)

MIPS R2000 was first produced in 1988 by MIPS Computer Systems
and was one of the RISC processors designed at that time. MIPS
stands for Microprocessor without Interlocked Pipeline Stages and as
its name implies, by eliminating pipeline interlocks between stages,
instruction conflicts are resolved. Next generations are: R2010, also
includes floating point co-processor, R3000 with cache control and
lastly R4000 a 64 bit version of architecture. MIPS 32- and 64-bit
architectures are used in networking and consumer device markets,
such as in car navigation systems, digital television and cameras, video
game controllers, switches and routers.

Primary metric to compare performance of Architectures is execution

time of a program and it is presented in the following equation [COD98]:

Seconds Instruction Count Clock Cycles Seconds

X X
Program Program Instruction Clock Cycle

The multiplication factors on the right hand side of the equation do not
determine performance individually, but have an affect. Selected ISA
affects the instruction count. ISA Implementation scheme which will be
described in section 3.3 affects clock cycles per instruction (CPI). The

organization and technology of the architecture affects the clock rate.

19

These factors also depend on each other in inversely proportional
relationship, making one better makes the other worse. For example
making instructions complex reduces the instruction count but may
decrease the clock rate. Good performance can be obtained by, first
choosing ISA then determining the implementation scheme and last
determining the technology.

MIPS (Microprocessor without interlocked Pipeline Stages) R2000 ISA
has RISC based architecture obeying four design principles [COD98]
[JGRAYO00];

e Smaller is faster, MIPS have 32 general purpose register each
32 bits length. MIPS instructions operate only on registers.
Registers are smaller hence faster than external memory.

e Simplicity favors regularity, MIPS’s instructions have the same
size each 32 bits length and the same number of operands,
hence decoding and pipelining are simpler compared to
variable length instructions present in CISC ISA.

e Good design demand good compromises, MIPS sticks to small
number of instruction types and addressing modes.

e Make common case fast (corollary of Amdahl's law),
implementing commonly used instructions in fast way makes

the whole architecture faster.

3.2. MIPS Instructions and MIPS Assembly Language

MIPS instructions can be grouped as Arithmetic, Transfer, Branch,
Immediate and Jump instructions.
Arithmetic instructions operates on registers and requires three

operands, two for source one for destination. The arithmetic or logical

20

operation takes place on two source operands and result is written back
into destination register.

Transfer instructions are used for loading data from memory to registers
or storing data from registers to memory. Transfer instructions require
two operands. One register content is used as base address and the
immediate field in the instruction as the offset from base, the other
register is used either destination address of the value to be loaded or
the source address of the value to be stored.

Branch instructions operate on two register operands, evaluate the
condition and according the result continue execution or take the
branch by modifying the PC.

Immediate instructions use the immediate field as an operand.

Jump instructions are use the immediate field to jump unconditionally by
modifying the PC.

The detailed descriptions, functionalities and assembly language
formats of MIPS R2000 instructions implemented and verified in this
thesis are presented in APPENDIX A, Implemented Subset of MIPS
R2000 ISA.

3.2.1. MIPS Instruction Format

General instruction format is given in Figure 3.1.

Field size | G bits 5 bits 5 bits 5 bits 5 bits 6 bits Comment

R-format Op Rs Rt Rd Shamt Funct Arithmetic instruction format
I-format Op Rs Rt Address / Immediate Branch, imm. format
J-format Op Target address Jump instruction format

Figure 3.1: MIPS Instruction Format

The Op field is the opcode of the instruction and used as the primary
key in instruction decoding. Rs, Rt and Rd fields specify the address of

21

register in operation. ShAmt field specify the shift amount in operation.
Funct field selects the specific variant of the operation in opcode field.

3.2.2. MIPS Addressing Modes

Immediate addressing (Figure 3.2) means the operand is constant

within the instruction itself;

op rs rt Immediate

Figure 3.2: Immediate Addressing Mode

Register addressing (Figure 3.3) means where all operands are

registers;

| op | rs | it | rc | ‘ Iunc1| Registers
' ,I Registars

Figure 3.3: Register Addressing Mode

Base addressing (Figure 3.4) means where the operand is in memory
whose address is calculated by adding base address in a register with
an offset in immediate field. Addressing of memory is implemented as

word (4 bytes) aligned.

‘ op | rs | rt | Address | Memory
|

‘ Register | é— Word

I)

Figure 3.4: Base Addressing Mode

22

PC relative addressing (Figure 3.5) means that the instruction memory
will be addressed by adding the present PC and the constant in the

instruction.

| op | rs | rt | Address | Memory
|

PC (l) * Word

I t

Figure 3.5: PC Relative Addressing Mode

Pseudo direct addressing (Figure 3.6) means the Address field in the
instruction is concatenated with the program counter and the instruction

memory than addressed.

Memory

‘ op | Adldress |

| PC | (b—- Word

I f

Figure 3.6: Pseudo Direct Addressing Mode

3.2.3. MIPS Instruction Decoding

MIPS R2000 instructions implemented and verified in this thesis were
chosen according their frequency of usage in two totally different
programs spice and gnu C compiler (gcc). These values were
calculated from pixie which is an instruction measurement tool
[COD98].

MIPS core instructions (all presented in Figure 3.7) cover 95% for gcc
and 45% for spice. MIPS core instructions dominate gcc and integer
plus floating point core instructions dominate spice. Instructions that did

23

not cover in this thesis constitute the remaining part 5% for gcc and
55% for spice. 49% of spice can be covered by simply adding a floating
point arithmetic core to architecture, which results in 5% for gcc and 6%
for spice as uncovered.

Instructions are decoded and control signals are generated based on
Figure 3.7. Related procedures will be described in detail in 0.

G126 2]
Opeit:se) | Meme | goc | spice Tuc(5h | Mame | Goc | Spice
00
k » } IFTI] =] 5 %
[EI]
Dl =r] =05% IS
02
B I] ir % %
5013 el T% ik AT i
04 heq 25 K-S T it
NE hre i %
- 12 mflo
Ox08 Ell::aliil bﬂ; =0.5%] P i[8]
=0 ad 17 T%
E‘"' o — 0x19]
T, 5 T =05
EI'I - ;_ 20 Bod | *U5% | *05% |
) S 7 0.5 .
021 addu 0% |
Ox0C andl i3 T%
- 022 sUb
=00 arl NP zubu | =0.5% T%
0x0E xarl 24 and T% =0.5%
Te0F Tui 2% % 55 o
23 B ik T
17 x0r
Ux2d Y 12% e
17 nor
T, =k ks 0%
N7 5] =ftu T% 5%

Figure 3.7: MIPS Opcode Map and Frequency of Instructions

3.3. Survey of Instruction Set Architectures Implementation
Schemes

The path which is followed by instructions and data and controlled by
signals generated by control unit called data path. Each type of

24

instruction follows different path trough architecture because the
operands on which instruction operates differ.

Data path is formed by state and combinational logic elements. These
elements are combined in different organizations and different
implantation schemes emerge.

Building architecture requires some sequential decompose and re-unite
iterations. It is necessary to decompose in order to understand, and it is
necessary to re-unit in order to build. There exists a contradiction,
because it is necessary to decompose in order to reunite. This
contradiction was used as a methodology and followed throughout the
survey of implementation schemes. Big picture is given first. Then it is
decomposed and fully understood.

3.3.1. Single Cycle Implementation Scheme

In this scheme (Figure 3.8) single instruction starts on clock edge and
ends on the next clock edge. The clock rate is determined by the
slowest instruction; in spite there exists faster instructions in ISA. Hence
this scheme is impractical to implement but useful to understand. Each
instruction irrespective of its instruction format is fetched from memory;
the next PC is calculated by adding 4 byte offset to present PC and
decoded according to its bit field based on Figure 3.1. The operation on
registers is determined by the ALUOp control signal which depends on
the Funct field of the instruction and determined in decode stage.

25

o

Adder

Sum —
Write 4 __‘/ @ Sum|——{1

PCPBrc

xXc=

PC Read
address

Memory

Instruction
| Branch D_
MemWrite

RegDst |RegWr|te ALUSrc MemRead
I
1(20-16) Read doies | —> Zerg i
ALU

address
Data

I — register 2
Om Write 2 0 result .+ Memory
I d M u Write
1(15-11) 1 register dFaTaa 2 u —'{% address
i 1x MemData—>

xXc

Write
data Registers| Write

data
32 r
1(5-0) ALUOp

Figure 3.8: Single Cycle Implementation Scheme ©[COD98]

Multiplexers can be used to divide the architecture into smaller pieces.
The presence of a multiplexer before an input element means that that
element is used by as many different instruction types as the number of
inputs of the multiplexer. The select signal, namely the instruction type
determines the path of the data throughout the architecture for the
present clock cycle. For instance, the multiplexer with control signal
ALUSrc determines either ALU is used for address calculation for data
memory load/store or arithmetic operation on register operands. In
either case ALU can be used only by one instruction type in the same
clock, hence some hardware duplications exist in the architecture for
other calculations such as the adder for next program counter, despite
the ALU can be used for this purpose. This is another fact which proves

that this implementation scheme is impractical to implement and its

26

problems will be solved in multi cycle implementation scheme which will
be described in section 3.3.2.

Similarly, the multiplexer with control signal MemtoReg determines
which data will be written to the register bank either the result calculated
by ALU or the data loaded from data memory.

The multiplexer with control signal RegDst differentiate R-type and |-
type instructions because the destination register address field is
different for these types. For R-type instructions, the destination
address is specified in Rd field whereas in I|-type instructions the
destination address is specified in Rt field (Figure 3.1).

The multiplexer with control signal PCSrc determines the next PC. The
next PC is PC+4 bytes for all instruction types except from conditional
branch. For branch instructions (Branch control signal is asserted) if the
condition is satisfied (e.g. for “branch on equal” instruction, when the
operands are the same, their difference will be zero. Hence the ALU’s

zero output set to ‘1’) the next PC is calculated according to Figure 3.5.

3.3.2. Multi Cycle Implementation Scheme

In this scheme (Figure 3.9) instructions are executed in multi clock
cycles. Register Blocks are added between functional units to hold the
temporal values for using on a later clock cycle. Clock rate is
determined by the slowest functional unit and functional units can be
used more than once per instruction (e.g. single ALU is used instead of
an ALU and two adders Figure 3.8) as long as access to this unit occurs
on different clock cycles. Single memory unit is used instead of
separate instruction and data memories and multiplexer with control

signal lorD determines data or instruction access.

27

PCSource
TargetWrite |

| oM
Target 1u
32
PcWrite
MemRead
MemWrite RegDst
lorD | IRWrite MemtoReg |RegWrit¥
pcL . [25-21]| [Read
'l\,n Egdar%ss Instructi206n = re%éilster 1 Read
1x Memory [31-26]| " 11120-16] F{e:;u:lt 2data1
Writ i — register
address Instruzcgoon_‘ LOM Write Read ALUSel
MemDat [25-0] 1)!: register yar 2
Write Instruction p—> Writ
[data register [15-:]3! 0 dartlaeRegisters 4=
M
u
1x 32
I[15-0] m
16 [sign Shift
@ left 2

Figure 3.9: Multi Cycle Implementation Scheme ©[COD98]

Jump instruction is also shown in the scheme. The multiplexer with
control signal PCSource selects next program counter calculated based
on Figure 3.6 when unconditional jump instruction was fetched from
memory. A more complex control logic compared to single cycle
implementation scheme is needed and the state flow diagram of control
unit is given in Figure 3.10.

28

Instruction
Decode

Address
omputatiop

Load Store

Figure 3.10: State Flow Diagram of Multi Cycle Scheme Control Unit
3.3.3. Pipelined Implementation Scheme

In this scheme (Figure 3.11), there exists single clock cycle between
subsequent instructions like single cycle implementation scheme.

Clock rate is as high as multi cycle implementation scheme and is
determined by the slowest functional unit similar to multi cycle
implementation scheme. There exist register blocks between functional
units, which are responsible for storing the information for the next clock
cycle.

The difference between multi cycle scheme and pipelined scheme is
that the instruction does not wait for the previous instruction until the
end of write back stage and directly fetched from instruction memory
while the previous instruction is being decoded.

The same control signals which are valid for single and multi cycle
schemes are also valid for pipelined scheme, but in contrast to multi
cycle implementation scheme, special control unit implementation (flow
diagram was given in Figure 3.10) is not necessary for generation of
these control signals. Sequencing is inherently present in this scheme

29

and control signals generated in decode stage go with the instruction
throughout the pipeline and are wasted up until the last stage.

Instruction Instr. Decode éExecuTe (EX) Memory Werite
Fetch (IF) i Reg. Fetch (ID;i Addr. Calc i (MEM) : Back
: — : e (WB)
Next PC Next SEQPC |WE[INext SEQPC, we |
: MEN PEN _.@
4 EX >|Zero?|H i

'
Q1/41

Waw/Xx3
aM/Waw

;*’ B

|

WB Data

/o

Figure 3.11: Pipelined Implementation Scheme ©[COD98]

Pipelining does not improve or speed up the functional units in the
architecture, instead increases the throughput by decreasing the time
between instructions. There exist as much instructions as the number of
stages in the pipeline simultaneously, e.g. while the fifth instruction is
being fetched (IF) from memory, in the same time, first instruction is in
write back (WB) stage following five clock cycles its IF stage (Figure
3.12).

30

CLK1 | CLK2 | CLK3 | CLK4 | CLK5
Instruction 1 IF ID EX | MEM | WB
Instruction 2 IF ID EX MEM
Instruction 3 IF ID EX
Instruction 4 IF ID
Instruction 5 IF

Figure 3.12: Simultaneously Executing Instructions in Pipeline

3.3.4. Quantitative Comparison of Implementation Schemes

Primary metric to compare performance of Architectures is execution
time of a program as stated in section 3.1. Pipelined implementation
scheme has the best features of other implementation schemes, low
clock cycle per instruction like single cycle scheme which is optimally
equal to 1 disregarding pipeline hazards described in section 3.4 and
high clock rate like multi cycle implementation scheme; therefore it is
expected to give the best performance. It will be a good practice to
demonstrate the relative performances by giving a realistic example.
MIPS instructions has the frequency of usage as stated in Figure 3.7 in
gcc program and number of clock cycles as stated in Figure 3.10 which
also summarized in Table 1.

CPI can be calculated by using this table adding the weighted sums of

instructions in gcc program.

CPI 5x0.23+4x0.13+3x0.19+3x0.02+4x0.43

4.02

31

Table 3.1: Calculation of CPI for Multi Cycle Implementation Scheme

Instruction Type Frequency Number of Clock
Cycles
LOAD 23% 5
STORE 13% 4
BRANCH 19% 3
JUMP 2% 3
ALU 43% 4

The clock rate or clock cycle period is determined by the slowest stage

in the pipeline. For second per instruction calculation, clock period shall

be multiplied with CPI (equation given in section 3.1). Optimal speedup

is obtained from pipelining by using balanced stages in pipeline. Say

that each stage is balanced and takes T sec/clock cycle.

IF ID EX | MEM | WB
T T T T T
— M
~ . IF ID EX | MEM | WB
5T T T T T T

Figure 3.13: Single and Multi Cycle Instruction Sequence

For single cycle implementation scheme, single cycle clock period takes

5T seconds. For multi cycle implementation scheme, single cycle period

takes T seconds similar to pipelined implementation scheme. Hence,

the instruction times given in Table 3.2 were obtained. According to this

table, it can be seen that, pipelined implementation is nearly 5 times

faster than the other implementation schemes.

32

Table 3.2: Instruction Time Calculation for Implementation Schemes

Implementation Seconds/Instruction (CPI x sec/clock)
Scheme
Single Cycle 1 x5T=5T
Multi Cycle 4.02xT=4.02T
Pipelined 1xT=T

3.4. Problems and Solutions in Pipelined Architectures

As stated in section 3.3.4, optimal performance and speedup can be
obtained from pipelining by balancing the stages and full speed usage
of the pipeline without stalls. In reality this can be not possible always.
Even perfect balance between pipeline stages can not be adequate
alone.
There may be existent restrictions;

e Dependencies between instructions,

e Some hardware restrictions to support pipelining,

e Branches can not be determined until Execute (EX) stage and

following instructions can be fetched uselessly.

Detailed explanation how these cases are handled given in the

following sections.

3.4.1. Structural Hazards

Structural hazards emerged because the underlying hardware does not
support special instruction combinations which are simultaneously
present in the pipeline. For example, the instructions 1 and 4 presented
in Figure 3.12 access the memory in the same clock cycle, CLK4. If the

instruction memory and the data memory are not separated physically,

33

this architecture can not support this special combination. In clock cycle
CLKS5, both Instruction Decode (ID) and Write Back (WB) stages access
the register bank, but in this case the hardware clash is avoided by
using forwarding mechanism which will be described in the section
3.4.8.

3.4.2. Brach Hazards

Branch hazards emerged because three instructions, following the
branch instruction, are already in the pipeline in any case until branch
condition is evaluated or unconditional jump address determined
(according to Figure 3.11). In case of branches are taken, these fetched
instructions must be discarded and the goal of using pipeline in its full
speed one instruction per clock cycle can not be achieved. Three clock
cycles are wasted effectively in case of taken branch; assuming branch
is not taken always.

In this thesis, the decision making and address calculation mechanism
moved to ID stage to reduce the wasted time to one clock cycle. The
assumption which is called delayed branch mechanism, “braches are
always not taken” is followed. In this case, the following instruction is
always fetched. In case of taken branch, one slot is left as discarded
and useless. If the decision is left to compiler as in case in high level
programming, compilers usually fill this slot with useful instructions
which are independent from the branch condition. If useful instruction
can not be found, this slot is filled with well known No Operation (NOP)
instruction which does not change the internal state of microprocessor.
A NOP instruction is added manually after every branch in this thesis,
because programming is done in assembly and compiler support is not

34

present. There exists no special implementation in this thesis which
detects this hazard and flushes the fetched instruction.

One delay slot can be easily filled with NOP or with useful instruction,
but as the pipeline gets bigger, filling slots with useful instructions gets
also harder. There exists other mechanism proposed in the literature to
solve this problem. Dynamic prediction mechanism with additional
hardware is one of them, which depends on the past statistics collected
for that branch point. The decision is made based on this statistics

which is changing in time with conditions.

3.4.3. Data Hazards

Data hazards emerged because an instruction which depends on the
previous instruction is in the pipeline and previous instruction did not
finish its work, for example does not write back the calculated result to
destination register. In this type of hazard, the solution is not left to
compilers entirely like the branch hazard described in 3.4.2 and tried be
solved with hardware if possible. The hazard will appear when the
destination register of the previous instruction in either EX, MEM or WB
stage is the same as the one of the source registers of the current
instruction which is in the ID stage. In Figure 26, data hazard is
resolved by forwarding data from EX, MEM and WB stages of the first
instruction to ID stages of following instructions which has a without
waiting to complete first instruction to WB its destination register R1.

35

add R1,R2,R3
sub R4,R1,R2
xor R6,R7,R1
add R8,R1,R1

CLK1 | CLK2 | CLK3 | CLK4 | CLK5

IF ID EX MEM WB
® ®

IF ¥ ID EX | MEM

IF r 1D EX

IF v ID

IF

sw R9, 100(R1)

Figure 3.14: Data Hazard Solution by Forwarding

The data hazard must be resolved in ID stage before register bank

access and branch decision. A NOP instruction is inserted into the

instruction sequence, if hazard can not be solved and time is gained for

resolution by using forwarding in the next clock cycles. In Figure 3.15,

hazard can not be solved by just using forwarding, because the result

for destination register R2 will be not available until memory access.

Therefore, pipeline is stalled for one clock cycle and data hazard is

resolved in the next clock cycle by forwarding data from Data Memory

(MEM) stage of previous instruction to ID stage of the current

instruction.
CLK1 | CLK2 | CLK3 | CLK4 | CLK5 | CLK6
lw R2,100(R1) IF ID EX ’I\/IEM WB
and R4,R2,R5 STALL| IF |vID EX MEM
or R8,R2,R6 IF ID EX

Figure 3.15: Data Hazard Solution by Stalling and Forwarding

Some extra precautions must be taken into account while using

forwarding mechanism. In Figure 3.16, the result obtained in clock cycle

CLK4 from the addition of second instruction is forwarded from EX

36

stage instead of the result obtained in clock cycle CLK3 from

stage, because it is more recent.

add R1,R1,R2
add R1,R1,R3
add R1,R1,R4

MEM

CLK1 | CLK2 | CLK3 | CLK4 | CLK5
IF ID ?EX MEM | WB
IF v ID ?EX MEM

IF |YIDv| EX

Figure 3.16: Forwarding of the Most Recent Data

3.4.4. Exception Hazard

Hardware shall prevent completion of instructions which are following

the instruction which cause exception and let all prior instructions to

complete. Internal register blocks shall be flushed to prevent them to
effect Register Bank and Data Memory. Program Counter shall be

equated to special address like Branch or Jump instruction case. This

address is generally called as interrupt or exception vector.

37

CHAPTER 4

IMPLEMENTATION OF MIPS PIPELINED
ARCHITECTURE

This chapter describes the internal structure of the processor and the

auxiliary structures to monitor and manipulate the internal registers of

the processor. Internal structures of the processor are constituted by

combining the following primary units and their subunits. (Figure 4.1:

Internal Structure of the Pipelined Processor)

Instruction Fetch Unit (IF_Unit)

o Instruction Memory (256x32bit block memory)
Instruction Decode Unit (ID_Unit)

o Register Bank (dual port 32x32bit block memory)
Forwarding and Hazard detection Unit (FORWD_HZRD Unit)
Control Unit (CONTROL_Unit)

Execute Unit (EXECUTE_Unit)

Data Memory Unit (256x32bit block memory)

Exception Detection Unit (EXCEPTION_DTCT_UNIT)

Four register blocks responsible for storing information between
clock cycles and located between Units;

o Instruction Fetch - Instruction Decode (IF_ID Unit)

o Instruction Decode - Execute (ID_EX Unit)

Execute - Data Memory (EX_MEM Unit)
o Data Memory — Instruction Decode (MEM_WB Unit)

O

38

Auxiliary structures of the processor are constituted by combining the

following units. Units and their interconnections are presented in Figure

4.2.

Clock Delay Locked Loop to eliminate the skew between clock
input pad and the internal clock input pins (CLKDLL Unit)
Interface between the processor and the PCI Bridge (pci_9030
Unit)

External reset of the processor (reg_wr Unit)

External programming of the Instruction Memory (reg_prg Unit)
External single step execution of processor (wait_sm Unit)
External reading of internal state of register blocks (reg Units)

Processor itself (top_level Unit)

39

LGS G RETIEE ENEIN | I i TOR=ab=s_amy

{Oh=at=d raw }

WEW_UNT

_Rean_DanE1

=T JINTETD
L GHEERIERTETE,

BT N]

Aikiess 31

|
5
Gl
[
N

EXECUTE UNT

G

e B

TR

T TER]

Figure 4.1: Internal Structure of the Pipelined Processor

40

= = =

it ot Tt ot ot
1 | 1

Tp_kl

Trogrre prrowroerr oo

wall_tm

] El Al El A3 AF] o 1111

CLEDLL

g prg

1] [

E

R _BLOCE

I

Figure 4.2: External Structure of the Pipelined Processor

41

4.1. Internal Structure of the Processor

In this section the primary building blocks are described in detail by
stating their functions and input/output signals (in figures, inputs are
placed on the left and outputs are placed on the right). General signals
which are common for majority of building blocks are described here.
Remaining signals are described in related building block sections.
Every signal is described once that means the same input signal of
various blocks is also an output signal of single block; therefore there
will be a cross reference (links can be followed by CTRL + Click in this
document) input signal definition section of each block to output signal
definition section of source block of the signal in which the same signal
is described in detail to avoid redefinition. During definition of signal
levels, "set” means logic level 1 and reset means logic level 0.

CLK (1 bit) and RESET (1 bit): Internal clock (20 MHz) and internal
reset signals. These signals are active high signals.

Reqister Dest (5 bit): This signal is transferred across all pipelines for

instructions which will write to Register Bank in WB stage.

4.1.1. Instruction Fetch Unit

The design of the Instruction Fetch Unit is realized by using HDL
Design entry method. Instruction Fetch Unit includes the subunit
Instruction Memory (256x32bit block memory) from which instructions
are fetched in every clock cycle except when an unresolved (load/store)
hazard exists in the pipeline which ends up with pipeline stall. The
hardware flow diagram of this building block is given in APPENDIX C,
Figure C.1: Instruction Fetch Unit Flow Diagram.

42

4.1.1.1. Input/Output Signals of Instruction Fetch Unit

The connections of Instruction Fetch Unit with other units can be seen
in Figure 4.1: Internal Structure of the Pipelined Processor. Al
Input/Output signals can be seen in Figure 4.3: Input/Output Signals of
Instruction Fetch Unit.

Output signals are as the following;

Current PC (8 bit): Signal goes to auxiliary structures to monitor the

present state of the Program Counter.
Incremented PC (32 bit): Signal goes to Instruction Decode Unit and

forwarded until WB stage for jal instruction, because this instruction
writes the return address into Register Bank address 31 for later usage
in return from subroutine (by using jr instruction). This signal is also
used in instruction decode stage to calculate the branch and jump
address.

Instruction (32 bit): Signal which is fetched from instruction memory

goes to Instruction Decode and Control Units. Instruction is parsed into
fields according to Figure 3.1 in Instruction Decode unit and control
signals are generated in Control Unit. These signals are passed to
internal register blocks for further evaluation of the parsed fields in the
following clock cycles after decode stage.

Wait Stages (1 bit): Signal is OR’ed with pci_wait signal and goes to all

internal registers between building blocks. If this signal is set that
means, memory access (instruction memory, data memory and
Register Bank access requires one clock cycle) is taking place and all
processor stages are stopped during this signal is set which
corresponds to one clock cycle period. Program Counter is also not
updated during this signal is set.

43

— 1 Branch_Address<31:0> Current_PC<7:0> ——
— 1 Exception_Address<31:0>
— IF_CONTROL<2:0>
— Program_Data<31:0>
Incremented_PC<31:0> ———
— CLK
— Equal
— Exception
Instruction<31:0> ——
— pci_wait
— Program_WE
— RESET

Wait_Stages ——
— 1 Unresolved -

Figure 4.3: Input/Output Signals of Instruction Fetch Unit

Input Signals are as the following;
Exception (1 bit): Exception Detection Unit output signal.

Exception Address (32 bit): Exception Detection Unit output signal.

Branch Addr (32 bit): Instruction Decode Unit output signal.
Equal (1 bit): Instruction Decode Unit output signal.
IF_Control (3 bit): Control Unit output signal.

Program Data (31 bit) and Program WE (1 bit): Signals are fed from

external sources and used when in external programming mode. These
signals are useless in normal operating mode of the processor.

Pci wait (1 bit): Signal comes from external source and used as single

step execution trigger. Program Counter is updated during the clock
rising edges if and only if this signal is not set.
Unresolved (1 bit): Forwarding and Hazard detection Unit output signal.

44

4.1.1.2. Function of Instruction Fetch Unit

The primary function of Instruction Fetch Unit is to fetch instructions
from Instruction memory and send it to Control and Decode Units for
processing. If Wait_Stages or Pci_wait or Unresolved signal is set,
current program counter retains its value, hence the same instruction is
fetched from memory on the next clock cycle. If a branch or jump
instruction is in decode stage inspecting the IF_CONTROL signal, next
program counter is determined according to evaluation of Equal and
Branch_Address signals. During instruction memory access,
Wait_Stages signal is set and processor is stopped for one clock cycle.
On the next clock cycle, Wait_Stages signal will be in reset state and
processor is allowed to run, hence during operation of processor
Wait_Stages signal toggles. This halves the processor’s effective clock
speed from 20 MHz to 10 MHz. If RESET signal is set, Program
Counter is set to byte address 16 after overflow exception vector. In
case of an exception PC is set to proper exception vector. If
Program_WE signal is set, Instruction memory enters in external
programming mode and on every clock cycle Program_Data signal is

written to Instruction Memory sequentially.

4.1.2. Instruction Decode Unit

The design of the Instruction Decode Unit is realized by using HDL
Design entry method. Instruction Decode unit includes the subunit
Register Bank (dual port 32x32bit block memory) from which operands
on which operations take place are fetched and to which operation
results or loaded data from data memory are stored in every clock
cycle. The hardware flow diagram of this building block is given in
APPENDIX C, Figure C.2: Instruction Decode Unit Flow Diagram.

45

4.1.2.1. Input/Output Signals of Instruction Decode Unit

The connections of Instruction Decode Unit with other units can be seen
in Figure 4.1: Internal Structure of the Pipelined Processor. Al
Input/Output signals can be seen in Figure 4.4: Input/Output Signals of

Instruction Decode Unit.

Output signals are as the following;
ALU PORTA (32 bit): Signal goes to ALU port A for evaluation

according to instruction present in EX stage. This signal can come from

the other stages by forwarding or represents shift amount for sll and srl
instructions.
ALU PORTB (32 bit): Signal goes to ALU port B for evaluation

according to instruction present in EX stage. This signal can come from

the other stages by forwarding or represents Incremented Program
Counter for jal instruction or zero or sign extended immediate field
according to control signal. For memory store operation sw, this signal
represents the data which will be stored to data memory and directly
forwarded to MEM stage.

Avlb Stage (2 bit): Signal goes to Forwarding and Hazard detection

Unit and is used to determine if unresolved data hazard which ends up
with pipeline stall is present. If the result of the instruction in EX stage
will be available in MEM stage (Iw instruction’s Avlb_Stage is equal to
MEM) and the destination of the instruction is the same as the one of
the source operands of the instruction present in ID stage then pipeline
is stalled for one clock cycle and data hazard is resolved using

forwarding mechanism.

46

Branch Addr (32 bit): Signal goes to Instruction Fetch Unit and used to

determine the value of next program counter if a conditional or
unconditional branch instruction is present in instruction decode stage.
Imm_Sign Extended (32 bit): Signal goes to Execute Unit and used to

calculate the destination register address for sw instruction. The base
address is carried to Execute Unit via Port A like lw instruction, but the
offset can not be carried via Port B. Port B represents the data which
will be stored in data memory for this instruction hence this signal was
needed to be transferred.

Reqister Dest (5 bit): General signal which represents the destination

register which will be used in WB stage.
rs (5 bit), rt (5 bit), Unresolved A (32 bit) and Unresolved B (32 bit):
Signals go to Forwarding and Hazard detection Unit. Rs and Rt

represent the source addresses of operand registers and are compared
with instruction’s destination register address in either EX, MEM or WB
stages. Forwarding Unit will determine the data hazard is present. If no
hazard is detected, the Unresolved A and Unresolved B which
represent the values in register Bank addresses Rs and Rt will be
forwarded to ALU ports.

EN RD (1 bit) and EN WR (1 bit): Signals go to auxiliary structures to
monitor the present state of the read and write enable pins of Register

Bank They were used during development and currently not used.
Equal (1 bit): Signal goes to Instruction Fetch Unit and if set that means
operands on which conditional branch instruction was applied are

equal, if not set, inequality condition is true.

47

— DataA<31:0=> ALU_PortA<31:0> —

= O —
— 'DataB<31:0> ALU_PortB<31:0
Avlib_Stage<1:0> ——
—— ID_Control<10:0>
Branch_Addr=31:0= | —

— Incremented_PC<31:0>
Imm,

Sign_Extended=31:0> ——
— Instruction<31:0=> Reg_Dest<4:0> [——

=400 —
— lyrite_Data<31:0> rs=4:0
rt<4:0> ———
— Write_Register<=4:0>
Unresolved_A~<31:0> [——

CLK Unresolved_B<=31:0> ——
— | Reg_Wvrite EN_RD ——
| EN_WWR ———

— Wait_MEM
Equal ———

Figure 4.4: Input/Output Signals of Instruction Decode Unit

Input signals are as the following;
DataA (32 bit) and DataB (32 bit): Forwarding and Hazard detection
Unit output signals. (ResvDataA and ResvDataB)

ID_Control (11 bit): Control Unit output signal.

Incremented PC (32 bit): Instruction Fetch Unit output signal.

Instruction (32 bit): Instruction Fetch Unit output signal.
Write Data (32 bit), Write Reqister (5 bit) and Reqg Write (1 bit): These
signals are WB stage signals and Write_Register determines the

address of the Register Bank in which the Write_Data will be written if
Reg_Write signal is set and Write_Register (destination address) is not
equal to 0, because the register address 0 is named as $zero register
and it is not allowed writing to this address.

Wait MEM (1 bit): Signal is generated by OR’ing the output signal

Wait_Stages of Instruction Fetch Unit and the external one step execute

48

trigger signal Pci_wait. If this signal is set, the EN_WR signal is set and
if this signal is reset EN_RD signal is set, hence the Register Bank is

written first and after that it is read.

4.1.2.2. Function of Instruction Decode Unit

The functions of Instruction Decode Unit are;

e Preparing the Register Bank addresses and register contents to
determine final resolved values on which the instruction in ID
stage will operate in following stages,

e Access the Register Bank for writing and reading,

e Make the evaluation of conditional branch and determine the
final branch and jump address and fed it to Instruction Fetch
Unit.

4.1.3. Forwarding and Hazard Detection Unit

The design of the Forwarding and Hazard Detection Unit is realized by
using HDL Design entry method. The hardware flow diagram of this
building block is given in APPENDIX C, Figure C.3: Forwarding and

Hazard Detection Unit Flow Diagram.

4.1.3.1. Input/Output Signals of Forwarding and Hazard Detection
Unit

The connections of Forwarding and Hazard Detection Unit with other
units can be seen in Figure 4.1: Internal Structure of the Pipelined
Processor. All Input/Output signals can be seen in Figure 4.5:
Input/Output Signals of Forwarding and Hazard Detection Unit.

Output signals are as the following;

49

ResvDataA (32 bit) and ResvDataB (32 bit): Signals go to the DataA
and DataB inputs of Instruction Decode Unit and then forwarded to ALU

ports taking into account the control signals. The final values of these
signals are determined by using the input signals and VHDL code is

given below;

Table 4.1: Forwarding Mechanism for Register Bank Primary Port

ResvDataA <= ID_Value when ((ID_RegWrite = '1") and (ID_RegDst = Rs) and (ID_RegDst /= "00000"))
else EX_Value when ((EX_RegWrite ='1") and (EX_RegDst = Rs) and (EX_RegDst /= "00000"))

else WB_Value when ((WB_RegWrite = '1') and (WB_RegDst = Rs) and (WB_RegDst /= "00000"))

else Unresolved_A;

Table 4.2: Forwarding Mechanism for Register Bank Secondary Port

ResvDataB <= ID_Value when ((ID_RegWrite = '1') and (ID_RegDst = Rt) and (ID_RegDst /= "00000"))
else EX_Value when ((EX_RegWrite = '1") and (EX_RegDst = Rt) and (EX_RegDst /= "00000"))

else WB_Value when ((WB_RegWrite = '1') and (WB_RegDst = Rt) and (WB_RegDst /= "00000"))

else Unresolved B;

Unresolved (1 bit): Signal goes to Instruction Fetch Unit and like the

pci_wait signal, Program Counter is updated during the clock rising
edges if and only if this signal is not set. When this signal is set that
means an unresolved (load/store) hazard exists in the pipeline which
ends up with pipeline stall. Program Counter and also IF_ID are not
updated during to stall because it is desired to not to lose instruction
fetched and decoded during stall. NOP instruction is inserted in ID_EX

stage when this signal is set.

50

Ex_ AN LBE=1 0= ResvDatas<<321 0=

Ex Reglst=a 0>

Ex__wWalue=31:0=

1D AN LB 0>

1D Reglbst=4 0>

1D “Walue=31:0=

Rs=4:0>=

Rt="4 0= RaesvDataB<31:0>=

Lnresoblved__AA<31:0>

Unresolved_BE<31:0>

WwE_ Reglhst=4 0=

WWE__Walle=321 0>

Ex_ Reavwwrite

1D Regwwrite

WWBE_ReogwWwrite Lnresalsaed

Figure 4.5: Input/Output Signals of Forwarding and Hazard Detection Unit

Input signals are as the following;

ID _AVLB (2 bit), ID RegDst (5 bit), ID Value (32 bit), ID RegWrite (1

bit): These signals come from ID_EX register block which is located
between ID and EX stages. These values are written by the instruction
which is currently in EX stage and these values are used to determine
the ResvDataA and ResvDataB. ID_AVLB and ID_RegDst are used to

determine the value of Unresolved.

EX AVLB (2 bit), EX RegDst (5 bit), EX Value (32 bit), EX RegWrite

(1_bit): These signals come from EX_MEM register block which is
located between EX and MEM stages. These values are written by the

instruction which is currently in MEM stage and these values are used

51

to determine the ResvDataA and ResvDataB. EX_AVLB is not used for
any purpose.

WB RegDst (5 bit), WB Value (32 bit) and WB RegWrite (1 bit): These
signals come from MEM_WB register block which is located between

MEM and WB stages. These values are written by the instruction which
is currently in WB stage and these values are used to determine the
ResvDataA and ResvDataB.

Rs (5 bit), Rt (5 bit), Unresolved A (32 bit) and Unresolved B (32 bit):
Instruction Decode Unit output signals.

4.1.3.2. Function of Forwarding and Hazard Detection Unit

The function of Forwarding and Hazard Detection Unit is to determine
data hazards and if possible solving this hazards either by forwarding or
stalling the pipeline.

4.1.4. Control Unit

The design of the Control Unit is realized by using HDL Design entry
method. The hardware flow diagram of this building block is not given in
APPENDIX C, because the outputs of this block goes to other blocks as
input and all of this signals are defined in destination unit’'s flow
diagrams.

4.1.4.1. Input/Output Signals of Control Unit

The connections of Control Unit with other units can be seen in Figure
4.1: Internal Structure of the Pipelined Processor. All Input/Output
signals can be seen in Figure 4.6: Input/Output Signals of Control Unit.
Output signals are as the following;

52

IF_Control (3 bit): Signal goes to Instruction Fetch Unit and first bit
(MSB), if set means beq instruction is present in decode stage, second

bit, if set means bne instruction is present in decode stage and third bit
(LSB), if set means either j, jal or jr instruction is present in decode

stage.
ID Control (11 bit): Signal goes to Instruction decode unit and the

control word bits are set according to instructions present in ID stage.
The resulting signals describe the operands, destination register and
effect the branch address calculation. The dependency between ID
Control word, the instruction present in ID and the effected outputs are

given in Table 4.3.

Table 4.3: ID_Control Signal Fields

10 9 8 7 6|5 4 | 3 2 ‘ 1 0
beq, | jal jr | Not Iw 00XX-> ALUA, ALUB are registers values, Reg_Dest> Rd Not
bne Used | o/w 1X0X-> ALUA = 0, Reg_Dest> Rd Used

Not 1X1X-> ALUA = Shift Amount, Reg_Dest-> Rd

Used For the following instructions if word start with 01,
Reg_Dest-> Rt else Reg_Dest> Rd

X1X0-> ALUB = Zero Extended Immediate
X1X1-> ALUB = Sign Extended Immediate

EX Control (5 bit): Signal goes to ID_EX register block and consumed

in EX stage. Signal identifies ALU operation applied to inputs at ALU
ports and also called ALUOp signal. The numeric and literal ALUOp

values are given in Table 4.4.

Table 4.4: EX_Control ALUOp Signal Values

Literal Numeric
ALUOp ALUOp Comment

ALU_ADD | 00000 | rd <= rs+rt, signed, overflow exception generated

ALU_ADDU 100001 | rd <= rs+rt, unsigned, overflow exception NOT generated
ALU_AND 100010 | rd <=rs AND rt

ALU_EMPTY | 00011 | ALU RESULT <= TRUE

ALU_MFHI" 100100 | ALU internal multiplication register to general purpose register

53

Literal

Numeric

ALUOp ALUOp Comment
(GPR), rd <=HiI

ALU_MFLO | 00101 | ALU internal multiplication register to GPR, rd <= LO

ALUMTHI" 100110 | GPR to ALU internal multiplication Register, Hl <=rs

ALU_MTLO 100111 | GPR to ALU internal multiplication Register, LO <=rs

ALU_MULT 101000 | HILO <=rs * it, signed (not implemented)

ALU_MULTU | 01001 | HILO <= rs * rt, unsigned

ALUNOR 101010 | rd <=rs NOR rt

ALU_OR 01011 | rd<=rs OR 1t

ALU_SLL 101100 | rd <= (rt << shift amount)

ALU_SLT 101101 | rd <= (rs < 1), signed

ALU_SLTU 101110 | rd <= (rs < rt), unsigned

ALU_SRL 101111 | rd <= (rt >> sa)

ALU_SUB 110000 | rd <= rs-rt, signed, overflow exception generated

ALU_SUBU 10001 | rd <= rs-rt, unsigned, overflow exception NOT generated

ALUXOR 110010 | rd <=rs XOR rt

ALU_DATAB | 10011 | ALU_RESULT <= OperandB

ALU_BEQ if (op1 == op2) then branch, 18-bit signed offset added to PC,
10100 | +-128KBytes

ALU_BNE if (op1 != 0p2) then branch, 18-bit signed offset added to PC,
10101 | +-128KBytes

ALU_LUI 10110 | rt <= (immediate<<16)

ALU_SW 10111 | MEM[$rs + signed(Immediate)] <= rt

ALU_EXPT Undefined Instruction in Decode stage, Exception will be
11000 | generated

MEM Control (2 bit): Signal goes to ID_EX register block and

consumed in MEM stage. First bit (MSB) if set indicates a memory read

operation will take place (e.g. for Iw instruction) in MEM stage, second

bit (LSB) if set indicates a memory write operation will take place (e.g.

for sw instruction) in MEM stage.

WB Control (1 bit): Signal goes to ID_EX register block and consumed

in WB stage. Signal is also called RegWrite and indicates a register

write operation will take place in WB stage.

54

— Instruction<31:0> EX_Control<4.0> ——

ID_Control<10:0> ——

IF_Control<2:0> ———

MEM_Control<1.0> ———

WB_Control ————

Figure 4.6: Input/Output Signals of Control Unit

Input signals are as the following;
Instruction (32 bit): Instruction Fetch Unit output signal.

4.1.4.2. Function of Control Unit

The function of Control Unit is to determine control signal values of an
instruction which is in decode stage. These control signals move with
the instruction throughout the pipeline and are wasted up until the last
WB stage.

4.1.5. Execute Unit

The design of the Execute Unit is realized by using HDL Design entry
method. The hardware flow diagrams of this building block are given in
APPENDIX C, Figure C.4: Instruction Execute Unit Flow Diagram and
Figure C.5: Instruction Execute Unit (continued) Flow Diagram.

55

4.1.5.1. Input/Output Signals of Execute Unit

The connections of Execute Unit with other units can be seen in Figure
4.1: Internal Structure of the Pipelined Processor. All Input/Output
signals can be seen in Figure 4.7: Input/Output Signals of Execute Unit.
Output signals are as the following;

Result (32 bit): Signal goes to Data Memory Unit and if result contains

the memory address for load/store instructions, signal will be wasted in
MEM stage, else if this result represents a register write operation
signal will be wasted in WB stage.

OverFlow (1 bit): Signal goes to Exception Detection Unit and indicates

that there is an arithmetic overflow occurred in signed operation.

Undefined (1 bit): Signal goes to Exception detection Unit and indicates

that there was an undefined instruction (an instruction which is not
defined in APPENDIX A, Implemented Subset of MIPS R2000 ISA) in
ID stage in previous clock cycle.

ALU_ OP<=4:0=>= Result<31:0=>
ALU_Src__A<=31:0=>
ALU_Src_B<31:0>

OverFlowvw
Sign__Extend <31 :0=>

CLK

RESET Undefined

Figure 4.7: Input/Output Signals of Execute Unit

Input signals are as the following;
ALU OP (5 bit): Control Unit output signal (EX_Control).

56

ALU Src A (32 bit): Instruction Decode Unit output signal
(ALU_PORTA).

ALU Src B (32 bit): Instruction Decode Unit output signal
(ALU_PORTB).

Sign Extend (32 bit): Instruction Decode Unit output signal

(Imm_Sign_Extended).

4.1.5.2. Function of Execute Unit

The function of Execute Unit is to realize the arithmetic and logical
operations (Table 4.4) and generate overflow, undefined exception and
result signals accordingly and to calculate memory addresses for data

memory access operations.

4.1.6. Data Memory Unit

The design of the Data Memory Unit is realized by using HDL Design
entry method. Data Memory Unit includes the subunit Data Memory
(256x32bit block memory) from which data is retrieved with Iw
instruction and to which data is stored with sw instruction in every clock
cycle. The hardware flow diagram of this building block is given in
APPENDIX C, Figure C.6: Data Memory Unit Flow Diagram.

4.1.6.1. Input/Output Signals of Data Memory Unit

The connections of Data Memory Unit with other units can be seen in
Figure 4.1: Internal Structure of the Pipelined Processor. All
Input/Output signals can be seen in Figure 4.8: Input/Output Signals of
Data Memory Unit.

Output signals are as the following;

57

Read Data (32 bit): Signal goes to WB stage. Signal includes either the

result of ALU operation obtained in EX stage in case MEM_Control
signal does not indicate a memory read operation or the content of the
data memory at Address signal in case MEM_Control signal indicates a

memory read operation.

— Address<31:0>Read_Data<31:0> ———

MEM_Control<1:0>

— Write_Data<31:0>

— CLK

Figure 4.8: Input/Output Signals of Data Memory Unit

Input signals are as the following;

Address (32 bit): Execute Unit output signal (Result).
MEM_Control (2 bit): Control Unit output signal.

Write Data (32 bit): Decode Unit output signal (ALU_PORTB).

4.1.6.2. Function of Data Memory Unit

The function of Memory Unit is to realize data memory access
operations either read or write according to control signal MEM_Control.
Data fetched from data memory is forwarded WB stage via Read_Data

signal.

4.1.7. Exception Detection Unit

The design of the Exception Detection Unit is realized by using HDL
Design entry method. The hardware flow diagram of this building block

58

is given in APPENDIX C, Figure C.7: Exception Detection Unit Flow
Diagram.

4.1.7.1. Input/Output Signals of Exception Detection Unit

The connections of Exception Detection Unit with other units can be
seen in Figure 4.1: Internal Structure of the Pipelined Processor. All
Input/Output signals can be seen in Figure 4.9: Input/Output Signals of
Exception Detection Unit.

Output signals are as the following;

Exception (1 bit): Signal goes to Instruction Fetch Unit and to flush pin

of internal register block s IF_ID, ID_EX and EX_MEM. Internal register
blocks flush their contents when this signal is set. The internal register
block MEM_WB will not be flushed, because exception did occur after
the instructions which are currently (while exception occurred) in MEM
and WB stage. It is allowed these instructions to complete. Instruction
Fetch Unit uses this signal to determine next program counter. This
signal has precedence over Branch instructions.

Exception Address (32 bit): Signal goes to Instruction Fetch Unit and is

used an equated to Next Program Counter, when Exception signal is
set. Byte address 0 in Instruction Memory is reserved for undefined
instruction exception and there is an infinite loop located at this position.
Byte address 8 is reserved for overflow exception and there is another
infinite loop at this position. These 4 word address region can not be
programmed by the user and can be thought as the exception handling

routines.

59

— OverFlow Exception_Address<31:.0> ———

Undefined Exception ———

Figure 4.9: Input/Output Signals of Exception Detection Unit

Input signals are as the following;
OverFlow (1 bit): Execute Unit output signal.

Undefined (1 bit): Execute Unit output signal.

4.1.7.2. Function of Exception Detection Unit

The function of Exception Detection Unit is to set Exception signal in
case either OverFlow or Undefined signal is set in EX stage. The
exception address vectors are located at byte address 0 for undefined

instruction and 8 for overflow exception in arithmetic instruction.

4.1.8. Register Blocks between Stages of Processor

Register Blocks are simply blocks which retain information for one clock
cycle period and no arithmetic processing takes place on data. Starting
with current clock edge, processing also starts and must end on next
clock edge, because register blocks will be overwritten. These elements
are placed between:

e [nstruction Fetch - Instruction Decode (IF_ID Unit)

e [nstruction Decode - Execute (ID_EX Unit)

e Execute - Data Memory (EX_MEM Unit)

e Data Memory — Instruction Decode (MEM_WB Unit)
The hardware flow diagram of this building block is given in APPENDIX
C, Figure C.8: Register Block Unit Flow Diagram.

60

Input signals are as the following in general;
Unresolved (1 bit): Forwarding and Hazard Detection Unit output

signal.
Wait Stages (1 bit): Instruction Fetch Unit output signal.

Exception (1 bit): Exception Detection Unit output signal.

4.2. External Structure of the Processor

In this section auxiliary structures are described in detail by stating their
functions and input/output signals (in figures, inputs are placed on the
left and outputs are placed on the right). Auxiliary structures are
implemented to reveal the internal state of the processor by monitoring
register blocks, which are placed between building blocks. In addition,
auxiliary structures enable the user to manipulate the processor, e.g.
user can reset the processor, execute the program on instruction
memory for single step and program instruction memory of the
processor externally.

Host monitor software (MIPS Monitor software described in section 2.4)
writes to PCIl and reads from PCI local addresses by using PIxApi
library. PIxApi runs on host platform accessing to PCl bus which
operates with 33 MHz and 32 bits wide. Pci_9030 interface monitors
read and write transactions on PCI Bus initiated by MIPS Monitor
software staying on local side which operates with 40 MHz local bus
clock and 32 bits wide. The procedure how Pci_9030 interface detects
transactions is described in [PLXSDKO02]. Hence external structures of
processor operate at 40 MHz while processor is operating at 20 MHz.
This can be achieved by using CLKDLL Unit. CLKDLL Unit minimizes
the clock skew between the input pad from which clock enters to FPGA
and distributed clock across the FPGA. CLKDLL can also change the

61

phase or the frequency of the clock by multiplying or dividing it by a
constant. The clock frequency is divided by two to obtain the 20 MHz in

the clock pins of the processor [XLBR04].

4.2.1. External Monitoring of the Processor

Reg Unit is developed for this purpose. MIPS Monitor software sends a
PCI read request from a specified local address. Reg Unit (Figure 4.10)
takes the local address from addr (26 bit) signal and compares it with
the baddr (26 bit) signal. If they are equal and the rd signal is set, dout
(32 bit) is forwarded to pci 9030 interface and then PCI bus. MIPS
software reflects this information to the user via its graphical user
interface.

addr<=25:0> dout=31:0>

baddr=25:0>

— din<31:0>

— clk

— rd

— rst

Figure 4.10: Input/Output Signals of Reg Unit

Base addresses from 1 to 10 (total 40 bytes) is reserved for monitoring
of internal signals of the processor. The stage names attached to signal
names represents the stage from which the signal is monitored (e.g.
EX_Reg_Dst signal represents the destination register of the instruction
which is currently in EX stage, similarly MEM_Reg_Dst represents the
destination of the instruction in MEM stage and WB_Reg_Dst
represents the destination of the instruction in WB stage). Base

62

addresses their corresponding processor register blocks are given
Table 4.5:

Table 4.5: Base Addresses of Processor’s Internal Signals

Base Internal Signals that can be Presented by MIPS Monitor Software
Address
1 EX_OVFL, EX_Reg_Dst(5 bit), MEM_Reg_Dst(5 bit), WB_Reg_Dst(5 bit), ID_Incr_PC(8 bit),
curr_pc(8 bit)
2 ID_Instruction (32 bit)
3 EX_ALUA (32 bit)
4 EX_ALUB (32 bit)
5 EX_ALU_RES (32 bit)
6 MEM_ADDR (32 bit)
7 MEM_WRITE_DATA (32 bit)
8 MEM_READ_DATA (32 bit)
9 WB_REG_WR_DATA (32 bit)
10 EN_RD, EN_WR, MEM_WAIT, ID_Unresolved, EX_AVLB(1:0)

4.2.2. External Manipulation of the Processor

Reg_Wr, Reg_Prg and Wait_Sm Units are developed to manipulate the

state of the processor. MIPS Monitor software sends a PCI write

request and data to a specified local address. According to data, next

action will be determined.

63

— addr<=25:0> dout —

— baddr<25:0>

din<=31:0>

— clk

— rst

— W

Figure 4.11: Input/Output Signals of Reg_Wr Unit

Reg_Wr Unit (Figure 4.11) which is developed to enable of external
reset of the processor takes the local address from addr (26 bit) signal
and compares it with the baddr (26 bit) signal. If they are equal and the
wr signal is set and the din (32 bit) is equal to 2 then dout which is

connected to reset pin of the processor is set.

64

addr[25:0]
din[31:0]

no_waitl

wait_int <="1";

no_wait3

wait_int <="1";

no_wait4

wait_int <="1";

rst

pci_wait

(wr='1")

and

(addr="00000000000000000000000000")

and

4in="00000000000000000000000000000001")

Figure 4.12: StateCAD Diagram of Wait_Sm Unit

65

Wait_Sm Unit (Figure 4.12) is developed to enable the processor for
single step operation. The Input/Output signals are quite similar to
Reg_wr Unit. The only difference is, instead of dout output, pci_wait
signal is outputted from Wait_Sm Unit. The design of the Wait_Sm is
realized by using state machine entry method StateCAD tool provided
by Xilinx ISE. If addr signal is base address (base address 0 is reserved
for single cycle operation), signal wr is set and din equals to 1, then
pci_wait output stays reset during four clock cycles and processor is
enabled to operate during this interval. Since processor operate at half
frequency of external world, this duration corresponds to two processor

clock cycles. Processor access memory and pipeline advances one

step within this time.

— addr<25:0> dout<31:0> ——
— baddr<25:0>
— din<=31:0>
— clk

— clk2

—| rst

— | W'r doutEnb ————

Figure 4.13: Input/Output Signals of Reg_Prg Unit

Reg_Prg Unit (Figure 4.13) which is developed for external
programming and includes a program memory (256x32 bits). Reg_Prg
takes the local address from addr (26 bit) signal and compares it with
the baddr (26 bit) signal (Base address 11 is reserved for external
programming). If they are equal and the wr signal is set and the din (32
bit) is not equal to X"FFFF_FFFF” then din is written at each clk edge
(clk connected of external clock operating at 40 MHz) to internal
memory. When din is equals to X"FFFF_FFFF”, writing sequence to
internal memory is finished and another writing sequence from Reg_Prg
Unit memory to instruction memory of processor is started. This process
is managed by clk2 signal (operating at 20 MHz) which is also the clock
of the processor. Since both clock are the same, different clock
domains problem is solved. It was foreseen as the fastest way during

design.

66

CHAPTER 5

VERIFICATION OF MIPS PIPELINED
ARCHITECTURE

The operation of the architecture is verified with MIPS Monitor software
with following the steps:

e Verification of correct operation of instructions,

e Verification of proper hazard detection and solution,

e Verification of proper exception detection and handling.
The details of how the use of MIPS Monitor software is described in
APPENDIX B, MIPS Monitor Software and the operation is described in
section 2.4. The mnemonic names and the corresponding numeric
values of MIPS registers are given at the end of in APPENDIX A,
Implemented Subset of MIPS R2000 ISA in Table A.1.

5.1. Verification of Correct Operation of Instructions

Instructions described in APPENDIX A, Implemented Subset of MIPS
R2000 ISA are tested and the procedure of testing and the observed
results are stated in this section.

The test program given in Table 5.1 is written and then downloaded to
processor to demonstrate that all instructions are tested. A requirement
number (as R#) is given in the comment section of the code and the
clock cycle in which the requirement is fulfilled is pointed out in the first
column of Table 5.2.

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.2.

67

Table 5.1: Verification of Correct Instruction Operation

B

#

TEST_1

#

Created by Can Altinigneli

To demonstrate the instructions defined in APPENDIX A correctly implemented
T T

UNDEFINED:

beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:

beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:

#ADD, ADDI and ADDU are verified

addi $s0, $zero, 0x6 # $s0 shall = x6, DestAdr:16, R1

addi $s1, $zero, 0x4 # $s1 shall = x4, DestAdr:17, R2

add $s2, $s0, $s1 # $s2 shall = xA, DestAdr:18, R3
addu $s2, $s0, $s1 # $s2 shall = xA, DestAdr:18, R4

#ADDIU, SUB and SUBU are verified

addiu $s0, $zero, Ox2 # $s0 shall = x2, DestAdr:16, R5
addiu $s7, $zero, 0x4 # $s1 shall = x4, DestAdr:17, R6
sub $s2, $s0, $s1 # $s2 shall = xFFFF_FFFE, DestAdr:18, R7
subu $s2, $s1, $s0 # $s2 shall = x2, DestAdr:18, R8

#OR, ORI, AND, ANDI, XOR, XORI, NOR, SRL, SLL, LUI are verified

ori $t0, $zero, OXFFFF # $t0 shall = x0O000FFFF, DestAdr:8 , R9

lui $t1, OXFFFF # $t1 shall = xFFFF0000, DestAdr:9, R10

or $t2, $to,$t1 # $t2 shall = xFFFF_FFFF, DestAdr:10, R11
and $t2, $to,$t1 # $t2 shall = x0000_0000, DestAdr:10, R12
xor $t2, $t0,$t1 # $t2 shall = xFFFF_FFFF, DestAdr:10, R13
nor $t2, $to,$t1 # $t2 shall = x0000_0000, DestAdr:10, R14
andi $t0,$t0, 0x0000 # $t0 shall = x0000_0000, DestAdr:8, R15
srl $t1,$t1,16 # $t1 shall = x0000_FFFF, DestAdr:9, R16
sl $t1,$t1,16 # $t1 shall = xFFFF_0000, DestAdr:9, R17
xori $t1,8t1,0xFFFF # $t1 shall = xFFFF_FFFF, DestAdr:9, R18

#SLT, SLTI, BEQ, BNE, NOP are verified
LOOP_3TIMES:

68

subi $s0, $s0, 1

slti $t0, $s0, 0x0

beq $to, $zero, LOOP_3TIMES
nop

slt $t1, $s0, $zero

bne $t1, $zero, JUMP_POINT
nop

$s0 shall = x1, DestAdr:16, R19
$t0 shall = x1, if $s0 negative, signed comparison, R20

#after 3 iterations exit from loop
#s0 shall = xFFFF_FFFF, therefore $t1 shall = x1, R21

#SLTIU, SLTU, MULTU, MFHI, MFLO, MTHI, MTLO, SW, LW, JR, J, JAL are verified

MULTIPLY:

addi $s0, $zero, -1
addi $s1, $zero, -2
multu $s0, $s1

mfhi $to
mflo $t1
mthi $zero

mtlo $zero

mfhi $s0

mflo $s1

addi $s1, $s1, 0x4
sw $t0, 0($s0)
sw $t1, 0($s1)
jr $ra

nop

JUMP_POINT:

jal MULTIPLY

nop

Iw $t2, 0($s0)
Iw $t3, 0($s1)

sltiu $to, $t2, 1
bne $t0, $zero, START

sltu $to, $t2, $zero
bne $t0, $zero, START
nop

j START

nop

Eternity:

beq $zero, $zero, Eternity
nop

$s0 shall = xFFFF_FFFF, DestAdr:16, R22
$s1 shall = xFFFF_FFFE, DestAdr:17, R23
Hl shall = xFFFF_FFFD, LO shall = x2

$t0 shall = xFFFF_FFFD, DestAdr:8, R24
$t1 shall = x2, DestAdr:9, R25

$s0 shall = 0, DestAdr:16, R26

$s1 shall = 0, DestAdr:17, R27

$s1 shall = 4, DestAdr:17, R28

MEMI[0] shall store xFFFF_FFFD, R29
MEM[4] shall store x2, R30

Jump after jal instruction, R31

MEM[0]-->$t2 shall = xFFFF_FFFD, DestAdr:10, R32
MEM[1]-->$t3 shall = x2, DestAdr:11, R33

$t0 shall = 0,because $t2 > 1, R34

shall not jump to START, R35

$t0 shall = 0,because $t2 > 0, R36
shall not jump to START, R37

shall jump to START, R38

69

kit 7 [

7 A 7 [

7 7 7 0

20K 7 AT AN

[i 0K
0s$ jd=!
15$'05¢ '£5% nppe 7 '0037§ '05$ Nippe F'0I8Zg |54 nippe |54 '05¢ 754 gns '184 784 nons !
it 7 21 ¥x 7 8 7 it I 7 [A:S 7 [A:S 7 0 BTx 7 FO00L |2 BEx
15§ £y
15§ 05§ '75¢ pRe 15§ 08¢ 754 nppe 7 '01azg ‘0S¢ nippe ‘048z |53 nippe ‘054 '75¢ ans g
i 7 LK X 7 7 7 X I 7 Wi 7 |23 7) T 7 200001 72 X
t'0IazE Y
0487 ") 5§ npe 15§ ‘05§ ‘75§ ppe 15§ 05§ 75§ nppe ¢ '04a7g "0sg nippe | 5§ nippe g
8% 7 154 7 7 |8 7 7 I 7 Wi 7 i 7 8% 0cx LZ0BI L 20X 0Ex
7 '043zg [
g'04azg "0y Ippe e R 15§ 05§ ‘73§ ppe 15§ 054 72§ nppe ‘05§ nippe 4
- 7 - 9% 7 8% 7 9% 0 7 i 7 i 7 0% a1 7 0z06L |20 21X
15§
- 9043z 03§ ppe b '04aZg | 5§ Ippe | 5§'05¢ 73§ ppe ‘05§ 753 nppe E
- 7 : - 7 : 7 : 0 7 8% 7 8% 7 0% BlX 7 FO00L 10T BlLX
15$
- - § '0uaz§ 'psg ippe ‘04874 "} 5§ Ippe ‘05§ ‘75§ ppe @
- 7 - - 7 - 7 - - 7 - 7 i} 7 i fFlx 7 500001008X L
4
- - - g '0J3z$ '0sg Jope ‘oezgisgippe | |
a“im i afed | apH i a~im i PPy 1AQ i soy i g Ny i Y NIY | od 4oyl i sy od 4n)
gM HLSNI NI HLSNI X3 "LSNI QI dLSNI 4 HLSNI (#a)
39V.1S am 39V.1S WAW 3OV.IS X3 39Y.ls dl 39YLS di A12

uonesyLIaA uonelsado uonongsuj o) weibeiq Huiun] :Z'c ajqel

70

0x 7 BX

ttaaaav; 000044 i HH0000x

i 00004 i HH0000x

BGX i HHATBEX

] 01X 85X Gl
004 03 e 91 13§ "1 s 91 '1u$1gs 1-"13$ 13§ 1o L-'0s$'0sgope | 81
0x i X 0X i 0x i 0x] i HH0000X i 00004 i 0lx X ?Sqmggx ik g
13§ ‘o ‘Tagaou 0 '04 03¢ Ipue 91 13§ 1g s 911§ ugs 1= 13§ 11 Hox il
B i ¥ 0x i 00004 i 0¥] i 0% i 0¥ i HH0000X 8% :Do%agx 05X £l
113 01§ 71 40x 11$ 03¢ "23$ 4ou 0 ‘04 03§ Ipue gl '11$ UG ps gl 1318 0s]!
0¥ i X HHA i 00004 i B] i 0% i 00004 i H0000X DX i 000080 LEX ol zly
11$'0§ 21§ pue 1§ 01§ "71g 40X 1% "0Ig "2ig 4ou 009 "0 Ipue 911318 g s 5
B i X 0x i 00004 i 0%] i B i 00004 i H0000x B i LZ0SE010% B =
13$ "0 ‘TG 40 13§03 73§ pue 13§ "0 '23g 4o 13§ ‘g '7ag Jou 0'0% ‘03§ 1ue trl
Sgtti B Ty i 00004 i B] i 0% i 000044 i HH0000X Pl i 870560 10X i oLy
GEGSE LGN 118 ' 'Zig 40 L1600 ‘738 pue VI 016 71 4o 1§ D1 '23pdou | £l
Eggi ax SDE%; H0000X i 00004] i B i 00004 i HH0000X 0 i FZOGE0 10X 1] B
|-'043zg ‘Mg uo 52559 11§ IN| 113 '01g 'Tg 4o 11§ 01§ ‘71§ pue 1§ Mg 740X | Tl
Zx i 2% tt%ge; 000X i H0000x] i 00004 i H0000x i 0% DEX i 5Z05R010% JEX B
0sg'1s$ 'zsg nons |- '0J82¢ " Mg uo GESGY 1IN 1§ '0g "7Ig o g '0IgTigpue |)
CITHTg i ¥ X i X i X] i H0000x i HH0000X i ¥ BEX i HHR0DEX BEx Ly
158 08¢ ‘g ans s '15¢ '7sg nons |- '04EZ4 (g Lo GEGSH LI I 13§ 00 '23g 40 0l
2 i 11X CITHIT i 2 i AU] i X i X i 7 PEX i HHB0REX PEX 0
I 04374 " | S§ Nippe 1S '0s$ 2= ans 0s$ 18§ 7§ nons |- '0437¢ " (g Lo GEGGH LI N B
Zx i 01X X i £ i £] i U i £ i X 0Ex i EZOROEZOX 0EX oy
£ ‘0437 '0S§ nippe I ‘0432 | 5§ nippe 15§ '0S$ T8¢ gns 0§ 15§ 8¢ nons |-'0437¢ (g Lo 8
a’im ?-m#_ apy i a’im AppY AQ i say i aniy i ¥ niy od oy i 43suj od_4ng
M dLSNI W3IN HLSNI X3 HLSNI QI dLsNI dI4LSNI ()
JOV.S am JOV.S WaW 39V.s X3 Jov.s al JOV.S dI M12

(panunuo?) uonesuaA uonelado uonongsuy| o) welbelg bujwi] :z ¢ ajqel

71

0 7 3

| o |

| o |

28X 7 AL TEX

0¥ I 0¥ 0% 08X
0'0s$ ‘g WS £-'0N$ ‘nuazg bag dou }-'05¢ ‘0§ Ippe 0'nsg'mems | 17
0¥ i 0X 0¥ i IS i I 0¥ i 0¥ i 0¥ i 0¥ AaX i 00000000 AGX
1-'05§ '05 Ippe 005§ ‘g s £-'0ng 'uazg b dou |-'05¢ ‘05§ ope | &7
0¥ i I 0% i HHIHX i IS 0 i 0% i 0% i 0% FaX i PE00LX FaX
dou |-'0S$ 05§ Inpe IR £-'0ig '04azg bag dou 52
0¥ i X 0% i IS i IS 0 i 0% i Ty i 1X 03X ?ngimx 03X
£
£-'Mg ‘0iazg bag tou |-'0s$ ‘05§ Inpe 003§ 'mg me -'lgoEIghag | pE
0¥ i B 0¥ i IS i IS 0 i 0¥ i 0% i 0% 05X i WLZTX 08X
005§ ‘g s £-'0ig '04azg hag dou |-'Ds$ ‘0§ Ippe 0'0sg ' mems | €2
1X i 01X 0 i 0x i 0x 0 i 0 i 0x i 0x Bax ?%Dggx BGX Bl
1-'05$ '0S§ Ippe 0'0s$ ' s £-'0i¢ ‘04azg bag dou |-'0s$ ‘05§ ke | 77
Ty i BX 1X i HIX i 1X i i 0x i 0x i 1X b i PAIB00LX X BlH
I~ 138 "11¢ Mo |- 0S¢ 05§ Inpe 005 '] e £-'03$ 'uazg bag tou 4
SSEL BX Ty i HH0000X i I 0 i 1X i B i X 09X i 000080¥ZX 09X
£ L1
91 '13$ " 1g s 1-"13§ '13g Mo |-'Ds$ ‘D¢ Ippe 0'05$ ‘i WS -'¢ 'z ban | o7
Eggi BX Sgtti HH0000X i 00004 | 0 i X i HH0000X i 00004MX 08X i W01 22X 28X g1
9113 g e gl 'ag1Ig1s 1~ 133 " 11§ Lax |- 053 05§ npe 0'0s¢ ‘0§ s Bl
a~m ?-?m apy i am i ppy ;oi soy i g niy i v niy on_.sz; asu| 0d"un)
gM dLSNI INIW HLSNI X3 dLSNI (o[BI 4 4LSNI ()
JOV.S am 39V1S WaW 39V1S X3 3ovis al 39V1S 4l %12

(panunuo2) uonealyLsA uonelado uonongsuj oy wesbelq Buluny :z'¢ ajqel

72

14 7 O

O 7 Ox 7 14

7 0gx

gkl 7 00000000X

0 0ex 0% b
|-
G| '0437§"}1¢ aug tou alogxn el tou 'DIAI$ 0 pPe | 56
1¥ i B 0¥ i LX i 0¥ 0¥ i 0% 0% 0x 08X i a1000030x% 09X 1z
08z 0 11E s G| '0JAZ¢ | 1g AUy dou aiooxn el dou e
0¥ i 0¥ LX i 0% i 1¥ 0 i 0% i LX 0x X i 00000000 oo
dou 0UBZg 'sg 3G IS G| '04AZ$" | 1§ Aug dou @l ooxq fef EE
0¥ i I 0¥ i 0% i 0¥ 0 i LX i 0% T 04X i 4000B0FLX 04X
£- Mg '04azg hag dou 0JBzg '0sg 11§ G| '0JAZg " |3§ aun dou 7E
1% i BX 0 i IX i 0x 0x i 0x i 0x 0x 20X i Y ZaPI0Z0X 08X
gl 0z
0'0s% "0 s E-'Mg '0iazg bag dou 0az§ '0sg 13§ Us '0J3z§ " 1% aug LE
TR i i 1X i 0x i 1% 0 i 0x i LX 0% BX i 0% BYx
Em_mw Loy
|-'05§ '03¢ Inpe 0'0%¢ ‘0§ = £-'01$ 'nuazg bag tou '05¢ 11§ s if3
0% i 0% TR i Ty i TR 0 i LX i 0x TR X i Bia00|x b
tou 1-'05% '0¢ Inpe 0'0s¢ ‘09§ 0= £-'01$ '0uazg bag dou B2
0x i I 0 i 0x i 0 0 i I i I i 0 08 i 00008 097X 09
E
£- ' '0iazg bag dou |-'05§ '0s§ Inpe 0'0s¢ ‘T s -'i ‘wszgbay | Az
aim [agFed| apy i aim i ppy EhYe] i sy i aniv i Y niv 0d doy] i lisu| od~n)
gM HLSNI W3 HLSNI X3 HLSNI ai"dLSNI 4 ¥LSNI (#ra)
JoV.1S am 39V.S WIW 39Y.S X3 39viS I 39V.1S 4l w12

(panunuo?) uoneayLdA uonelado uonangsuy 10} welbeig bulwi] :zZ-¢ ajgel

73

IS 7 IS

0 7 01 08x 7 0

IS 7 Z188x 7

DB 7 FO00LEEEX

0% DBX
U3z opuu 0S§ I | 5§ oy 18§ 135 Ippe fns$n 'mg ms S
0¥ i 0¥ 0% i E1X i 0% i i 0¥ i 01 08x i 0% Bx i 71880000X BEX
DJ3Z§ I 043z opu 05 Iy | 5§ oyl F'1S$ISEIPPE | bb
¥ i Bi¥ 0% i LX i 0% i i 0¥ i E1X i 0% s i 01080000x X 57y
:& o Emm% LI Emm% o Dm% ILJLL _‘m% o EF
P i BX X i 71 8rx i X 0 i X i L1X i 0 0Rx i EL000000X 0 7
O3 Il 11§ Oy I3Z L I3z opul 05 Iy 3
X i X PULIX i 0L0Fx i PUHI 0 i X i zl 8 i 0 28X i | L000000x 28K
15§ 08¢ mynu g 1L 13 o Az 1 04324 opu L
UK i L1X 0x i UM i 0x 0 i PUHIX i 01 0Fx i 0 BEX i Z1LaF0000x BAX £y
- '0J874 | 3¢ Ippe 15§ 08¢ MmNy g 13§ 43z I il
B i 01X | BUHX i UM i U 0 i X i AU i TR BAX 0LO0F0000X FEX 4=
|- '0J8z3 034 Ippe g-'0zg | 3¢ ppe 15§ 08 Ny O I 13 oL BE
X i X B i T I 0 i AU AU i 0 08X BLOOLLZOX 08X
dou |-'0J3z§ ‘05§ Ippe Z-'0J3zg | 3§ ppe 153 "05$ nynw g BE
0gx i X 0x i 0 i 0x 0 i B i B i 0 QL i 3L 0TX DX
aLom=n el dou |- '043Z$ 0S¢ IppE £~ '043Z$ | 5% IppE 15§ '0S$ Mynuu LE
X i X 08x i 0gx i 08x 0 i X i X i 0 BIX i HU0L 07X BIX
7
daou aLonen el tou |- '0IAZ¢ 05§ Ippe ‘0Iazg |54 Ippe gE
a~Im ?-m@m apry i aim i dppY ;oi say i aniv i ¥ niv on_.sz; Jysul od~uny
M d1SNI NI YLSNI X3 d1SNI alI"d.1SNI 4 HLSNI ()
3oV.iSTam 39v1S WaW 39V1s X3 Jovis dl JoVIS dI %19

(panunuo3) uonealLiaA uonelado uonangsu Joj weibeig Bulw] :Z°¢ ajqel

74

P 7 W

X 7 0x 7

7 Lx

O 7 EPHBOYLX

o4 POX e
{ns$I0 "7 M (15430 £33 M |71 "mg s G- '043Z$ 01§ Aug dou 5
0x i 0 P i X i 0x i i 7 i 0x i o 00X i L 0008FOEX 0o
1)
dou (05430 73§ My {15430 "E35 ™y | ‘21 "0 s -'oazgnIgeug | gg
0% i X X i X i 0 i i 0x i 0% i 0x 28X i 00009Z238K 28x
dou dau (=430 733 My {15430 "33 A | 735 "0 nijs Z5
0% i X X i X i 0x i i 0x i 0% i 0x BEX 0000%038K X
eag dou dou fns$)0 733 {15430 "E15 My 15
i 0x X i B i 0x i i 0x i 0x i 0x FHX i 00000000 bHX
{1540 "3 ms eag Al dou dou {05430 733 My 05
§=t7]
0x 0x ¥ T X i 0x BX 08X 9 00000000 08 e
{0S$)0 'mg ms {1540 " 13§ ms eag Al dou dou Btz
Br
XX LLX X P 0x i 2 X o8 B¥X 80000350 Y% ey
t'15¢ " 15$ ppe {0540 'mag s {15400 "11g ms Bag 4l dou ik
0x LLX ¥ i X o4 i i 0x i P i 0x X i 0000BZ3X Pox 1y
15§ oy 184 "15$ Ippe {0540 '03g ms {154)0 " 13§ ms B Al b
0x OLx 0 i 71 8ax 0x i i 7 i X i X 0¥ i 0000803%X 0¥ 97
05§ I 15§ oy 18§ 15§ Ippe {0540 '03g ws {154)0 13§ ms i
am |aFed | apd i a~im i ippy LYe) i say i aniy i ¥ Ny Od oy i lysuj 2d"uny
M HLSNI N3N HLSNI X3 HLSNI al_dLSNI dI"dLSNI (i)
JoViS am 39V1S WAW 39V1S X3 39v1S dl 39V1S dI ¥10

(panupuo?) uopeslLdA uonesado uonongsuy| 1oj welbeq bulwi] 7' ajgel

75

0 7 XK

[|

20K _ 000000003

0¥ X ax X 0Lx
g ged
Bt~ '049ZE ‘01§ BUg dou FO00X0 [dou ‘Az Nsg IPRE | 09
0x i ax 0% i 0% i X 0¥ i 0¥ _ 0¥ i 0¥ 80x _ #0000080X BOX ged
0Jaz§ ‘71 ‘01 s Bt~ '043Z§ 03§ AUy dou #000x0 [dou e
0¥ i 0¥ 0% i 0% i 0¥ 0¥ i 0¥ _ 0¥ i 0¥ POX _ 00000000 PO Led
dau 04az§ ‘71§ 109G s 8- '04aZ¢ 03¢ AU dou #0000 [as
0x _ X 0x _ 0x _ X i _ X _ 0x _ [Ty 00X _ OPLE0FLX 0ax
G- '0JAZE 11§ aug dou 0azg '7Ig 1ag nys Bt~ '0JaZ§ 11§ Aug dou /G
0x _ ax 0% _ 0% _ X i _ 0¥ _ 0¥ _ 0¥ DO _ 8Z0t0F 10X DO e
g as
| 73 "0ig njs Gf- 04375 01§ aug dou IS 71§ 1A NS - '0J37§ "I 3ug
X _ gx 0% _ L¥ _ X i _ 0¥ _ 0¥ _ 0¥ 80X _ 00000000 BOX GEd
D._m_H% ey
{1560 "E1g My | 'Z3$ "0 nojs Si-'04AZS 01§ 3Ug dou TAG NG s 55
a_m _ afsd | apy _ a_im _ PPy EL.Ye] _ say _ a_niv _ ¥ Ny od 4yl _ asu| 0d_4no
SM_dLSNI NI HLSNI X3 dLSNI al"dL1SNI 4I"HLSNI ()
3oY.lS am 39VY1S WA 39V1S X3 Jovisal 39Y1S 4| M10

(panunuod) uonesyLaA uonelado uonsnnsuj Joj weibeiq bujwl :Z'c ajqel

76

5.2. \Verification of Hazard Detection and Handling

The test program given in Table 5.3 is downloaded to processor to
demonstrate that Data Hazards are resolved using the feedback paths
between stages. The pipeline is halted in case of the presence of an
unresolved hazard. A requirement number (as R#) is given in the
comment section of the code and the clock cycle in which the
requirement is fulfilled is pointed out in the first column of Table 5.4.

Table 5.3: Verification of Hazard Detection and Handling

A

#

TEST_2

#

Created by Can Altinigneli

To demonstrate data hazards are correctly handled
R

UNDEFINED:

beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:

add $a0, $zero,$zero # $a0 shall = 0, DestAdr:x4, R1
addi $t1, $zero, 5 # $t1 shall = 5, DestAdr:x9, R2
addi $t0, $zero, 1 # $t0 shall = 1, DestAdr:x8, R3
nop

nop

nop

Feedback path exists between ID and EX, MEM, WB stages. Most recent
result is written to destination register. The code snippet below shows

that there is no need to wait until to WB stage of an instruction and

architecture correctly handles up-to-dateness problem, R4

add $:0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x2
add $t0, $to0, $t0 # $t0 = $t0 + $t0, $t0 shall = x4
add $:0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x8
add $:0, $t0, $t0 # $t0 = $t0 + $t0, $t0 shall = x16
nop

nop

nop

Feedback path exists between ID and EX stages.Data Hazard resolved, R5

subi $t0, $t0, 1 # $t0 = $t0 - 1, $t0 shall = xF
subi $t0, $t0, 3 # $t0 = $t0 - 3, $t0 shall = xC
nop
nop
nop

77

Feedback path exists between ID and MEM stages.Data Hazard resolved, R6
subi $t0, $t0, 1 # $t0 = $t0 - 1, $t0 shall = xB

nop

subi $t0, $t0, 3 # $t0 = $t0 - 3, $t0 shall = x8

nop

nop

nop

Feedback path exists between ID and WB stages.Data Hazard resolved, R7
subi $t0, $t0, 2 # $t0 = $t0 - 3, $t0 shall = x5
nop

nop

subi $t0, $t0, 4 # $t0 = $t0 - 5, $t0 shall = x2
nop

nop

nop

sw $t0, 0($a0) # MEM[O0] shall store x2

nop

nop

Although feedback path exists between ID and EX stages,

Data Hazard can not be resolved by this path. A NOP instruction

is inserted between "add" and "lw" instructions and hazard is resolved

by feedback path between ID and MEM stages on the next clock cycle, R8

Iw $t0, 0($a0) # MEM[0]-->$t0 = x2, DestAdr:8

add $:2, $to0, $t1 # $t2 = $t0 + $t1, $t2 shall = x7, DestAdr:10, R9
Eternity:

beq $zero, $zero, Eternity # Infinite Loop

nop

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.4.

78

8% _ 8%

0kx _ 8% _ 0kx

ax_ax_

0Fx _ 00000000X

0% OF¥
03% '03% '0I% PpE 03% ' 033 034 Ppe dou dou dou zl
8 _ By By _ 8 _ By i _ oLx _ By _ By 28X _ 00000000X 28X
01§ ‘01 03§ PRE 01$ '09$ "0 npe 01§ '01$ '03§ PRE dou dou !
7 _ Bx 2t _ 7 _ 2t 0 _ Bx _ 2t _ 2t BEX _ 0z0FB0 10X BEX
01§ 015 03§ pRe 01§ '0i$ ‘01§ Ppe 04$ ‘03§ 03§ PRe 04 ‘034 03§ PRe dou ol
0% _ 0% [_ LX _ [0 _ 17 _ [_ [FEX _ 0Z0FB0 10X FEX
dou 0i$ '01$ ‘01§ npe 043 ‘035 03§ PRe 03§ '035 03§ pRe 04 ‘035 03§ PRe f
0% _ 0% 0% _ 0% _ 0% 0 _ (4 _ LX _ LX 0Ex _ 0z0FB0 10X 0Ex
dou dou 03% '03% '03% pRE 03% '03% '01% PRE 03$ '03% '03% PRE g
0% _ 0% 0% _ 0% _ 0% 0 _ 0% _ 0% _ 0% 2K _ 020FB0L0X 2K
dou dou dou 01$ 'm% '01$ bpe 04 034 '03% PRE i
B _ By 0% _ 0% _ 0% 0 _ 0% _ 0% _ 0% gex _ 00000000X gTx £
| '0J324 015 Ihpe dou dou dou 03% '03% '0I% PpE g
g _ B B _ B _ i _ 0y _ 0y _ 0y FTX _ 00000000X FTx 7o
G '0l1azg ' 11 npe | '0J3Z% 01 Inpe dou dou dou [
ox _ X G _ G _ G 0 _ B _ B _ ox 0zx _ 00000000X 0ZX (B2
03z _D._m_wm _Dmm [pe G _D._m_wm ! 11 Inpe | _D._m_wm _Em Ippe dou dou i
- _ - 0% _ 0% _ 0% 0 _ Gx _ Gx _ 0% LK _ | 000800TX LK
- 0J3Z§ '04aZg ‘0RG pRE G '0J37§ '13% Inpe | 04325 015 Ippe dou E
. _ . . _ . _ 0 _ 0¥ _ 0¥ _ 0¥ BLX _ SO00600ZX BLX
- - 0Jazg 'ouazd '0eg ppe G '04aZ$ 135 IPpE | '048zZ% 01 IPRE 4
. _ . . _ . _ . _ . _ . _ . FLX _ 0Z0Z0000X FLX
- - - azE '0ezE '0e ppE G '0JazE ' 11% Inpe L
aim _ q Bsy apy _ aim _ ippy 1AQ _ say _ a niv _ ¥ Ny 2d 4oy| _ Asu] 9d 4ny
M HLSNI SN YLSNI X3 dLSNI al"dLsNI 4 uLSNI (#y)
39V.LS am 39V1s Waw 39VLS X3 Jsvisal 39V1S 4l 12

uoneaula prezed Huypuey o) weibeig buiwil ¥'s ajqel

79

BX B ox 0x 0x] 0X 0 ox 04X 00000000% 0
E- % ' 01 Ippe dou dou cou 7-'04 '015 lnpe #Z

0X _ 0X BX _ P _ 8 0 _ 0X _ 0X _ 0X 29 _ 00000000 9%
dou £-'01% ' 0% IPpe dou dou dou ot

ax _ B oX _ 0X _ 0X] _ Bx _ P _ gx 8O _ 00000000% BOX
1-'03% '03% IPpE dou £-'03% '03% IPpE cou dou iz
0x _ 0X gx _ L _ ax] _ 0X _ 0X _ ox Fax _ PB0LEX Fox 94
dou 1-'03% '03% Ippe dou E-'03% '01% Ippe dou 14

0x _ 0x 0X _ 0x _ 0x] _ ax _ BTN, _ X 09x% _ 00000000 09X
dou dou |- 01 03§ Ippe dou £-'01§ '01f Ippe 0z

0¥ _ 0X 1) _ 0¥ _ 0¥] _ 0¥ _ 0X _ 0¥ 25K _ snlzx 56X
dou dou dou |- 0% 0% Ippe dou Bl

¥ _ B 0% _ 0% _ 0¥ 0 _ 0% _ 0x _ I Box _ 00000000% BoX
£-'03% '03% Ippe dou dou cou |- '03% '01% IPpe gl

¥ _ BX okt _ P _ X] _ 0X _ 0X _ ox PGS _ 00000000% FoX
1-'03% '03% Ippe - '03% '03% lppe dou cou dou Ll

0x _ 0x ¥ _ JITIITY _ I] _ X _ P _ I oS _ 00000000 Ogx
dou L- 0403 Ippe £- 3% 03 Inpe dou dou 9l
0X _ 0X oX _ 0X _ 0X] _ ¥ _ RTINS, _ 01X P _ pB0LEH DX =t
dou dou |- '03% '03% IPPE E- 0% '01% IRRE dou =

0X _ 0X oX _ 0X _ 0X 0 _ 0X _ 0X _ oX BrX _ solzy BiX
dou dou dou L- ' 03 Ippe £-'01% 035 Inpe i
oLy _ B ox _ 0x _ 0x] _ 0X _ 0 _ ox X _ 00000000% i i
014 '03% '03$ PpE dou dou dou L- 00 03 Ippe £l

aam _ a Bay a Py _ aam _ Appy 10 _ say _ g Ny _ v niv od daul _ 35Ul 0d Adng
M HLSNI WSINULSNI X3 HLSNI al ¥1SNI EIRIE] (#y)
JOV.LS am 39V.1S WA 39V1s X3 Jovis al 3OV.LS dI 10

(penunuosjuonesyusp prezeH bulpueH o) weibeiqg bulwl ¢ a|qeL

80

0x 0x 0 X 0% 0 0x 0x 0x 0 0206601 0% 0w
dou dou (0E$I0 03) LI '01$ ‘71§ ppE |- '0uaz§ '04szg bag 9g
0¥ _ 0x 0 _ 0¥ _ 0¥ 0 _ 0% _ 0x _ 0¥ 26 _ 00008808x 06X
(0e$)0 'mig s dou dou (De$)0 "0 M 11§ 015 2% ppe e
0x _ 0x X _ ZX _ 0x 0 _ 0x _ 0x _ 0x BEX _ 00000000% B6X
dou (DE$I0 015 s dou dou (Oe$)0 "03g Ml v
0¥ _ 0x I _ o _ 0¥ 0 _ 0x _ [_ 0x a2 _ 00000000% [
dou dou (DE$ID ‘01 ms dou dou ce
0x _ 0x 0x _ ox _ 0x 0 _ 0x _ 0x _ 0x 06X _ 00008EDWX 06X
dou dou dou (oeg)n ‘015 ms dou Ze
[_ ax 0x _ ox _ 0x 0 _ 0x _ 0x _ 0x 28X _ 00000000 08X
- '03% ' 01 IPpE dou dou dou (DE$I0 'mg Ms LE
0¥ _ 0x [_ T _ Z¥ 0 _ 0% _ 0x _ 0¥ gex _ 00000000% 28X
dou - 01 ' 01% Inpe dou dou dou ne
0x _ 0x X _ ox _ 0x 0 _ ZX _ T _ 9x X _ 00000000% FEX
dou dou - '01% ‘0% Ippe dou dou 67
R _ ax I _ o _ 0¥ 0 _ 0x _ 0x _ 0x 08 _ a0LEX 08X 1
Z-'03% 03 lppe dou dou - '03% ' 01 lPpE dou ge
0x _ 0x 9x _ EXT, _ 9x 0 _ 0x _ 0x _ 0x 24K _ 00000000% DX
dou 7-'03% '03% Ippe dou dou - '03% '01F IPpE iz
0x _ 0x 0x _ ox _ 0x 0 _ 9x _ UK _ Bx 8K _ 00000000 BiX
dou dou 7-'01% ‘Mm% ppe dou dou az
0¥ _ 0x 0 _ 0¥ _ 0¥ 0 _ 0x _ 0x _ 0x i _ AUB0LTH i
dou dou dou Z-'01% ' 01% npe dou c7
am _ a Bay apy _ am _ 1ppY 1A0 _ say _ g niv _ v niv 0d Jouj _ Hsul 0d 4np
SM ULSNI N3N YLSNI X3 ULSNI al_dLsNI 41 MLSNI (#u)
39V.LS am 3ov1s Waw 39v.Ls X3 3ovisal 39v1s dI 19

(panunuosjuonesyap piezeH bulpueH 1oj weibeig Buiwil -6 ajqel

81

X i ¥y

Dxiaxiax

qqx_

0% 0001y ik i
115 'M$ '21% ppe |- 04824 '0azg hag dou |- '018Z§ '0lazg hag dou o

0% _ 0 X _ oX _ L _ 0y _ 0 _ 0% By _ 00000000 0w
dou 115 '01% 1% ppe |- '0lazg 'olazg bag dou |- '048z4 '0lazg hag 7=

¥ _ 8y 0 _ 0 _ 0 _ LY _ g _ ¥ i _ Auoo0Lx ik
(0e$)0 ' 03§ Ml dou 13§ 03§ 235 ppe |- '0Jazg "0lazg hag dou BE
0 _ 0 7 _ 0 _ 0% _ 0 _ 1 _ 0 0w _ 0Z0GE0 10X ' g
dou (0E$I0 "0 Ml dou 13§04 '71% Ppe |- '0Jaz4 '0dazg hag e

a m i a Bay apry i a m i ippv inQ i say i g niv i v nv 2d 4oy _ nsu| 2d 4np

M ¥LSNI W3 YLSNI X3 ¥LSNI al ¥1sNI 41 YLSNI (#u)
3ovis am 39V.Ls WA 39ovlis X3 3avisal 3ovis 4l M12

(panunuos)uonesyuap piezeH bulpueH Jo) weibeig bulwil s ajqel

82

5.3. Verification of Exception Handling

First, the test program given in Table 5.5 is downloaded to processor to
demonstrate that “ADDU” and “ADD” instructions generate exceptions
according to definitions in APPENDIX A, Implemented Subset of MIPS
R2000 ISA.

A requirement number (as R#) is given in the comment section of the
code and the clock cycle in which the requirement is fulfilled is pointed
out in the first column of Table 5.6.

Table 5.5: Verification of Exception Handling “ADDU” and “ADD”

HHHHHHHE

#

#TEST_3

#

Created by Can Altinigneli

To demonstrate ADDU and ADD instructions generate overflow exceptions according to APPENDIX A.
HHHHHHE

UNDEFINED:

beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR

nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:

add $t0, $zero,$zero # $t0shall=0

lui $t0, 0x8000 # $t0 shall = x8000_0000, DestAdr:8, R1

addu $t1, $to, $t0 # $t1 shall = x0000_0000, DestAdr:9, No Exception shall be
generated, R2

add $t0, $to, $t0 # $t0 shall = x0000_0000, DestAdr:8, Exception shall be
generated,

and pipeline register blocks IF_ID, ID_EX and EX_MEM are
flushed, R3
Eternity:
beq $zero, $zero, Eternity
nop

Results of operations and contents of stages are read by using MIPS
Monitor software and results are tabulated in Table 5.6.

83

113 7 19 7 X

IS 7 113 7 13

K4 IE4 X 000 b X
001 ' 13 ppe |- 048z} 'miazg hag dou |- '0iazg 'oiazg hag i !
1N £t IF4 i IE4 i 0 0 i 124 i IE4 i 0 124 00000000 14 £

|- '0iazg 74
O (06 " 114 nippe O ‘006 " 14 ppe |- '0iaz§ ‘iz hag oy '0iazg biag 3
£

ooo0ooog | e I8 00000008 0 | 124 00000008 | 00000008 141 Hoan L FZX 4
BOLZE Tig I U8 00 " 11§ nppe O ‘006 " 1ig ppe |- 'mazg ‘iazg hag oy 5
Ik4 g% | (00000008X i 000 i 00000008k | 0 i 124 i 00000008 i 00000008 0zx (76301 0% 0zx

|- '0azg 74
0I8z§ 'azg g ppe paLzE mg I 00 05 " 11§ nppe 005 '8 " 114 ppe ‘niazg bag i
- - IF4 i IE4 i 0 0 i 00000008 i K i 0 QUX |Z8ra0L 0% 21X
o
- wazg ‘0874 'Oig ppe Ba/2c 0§ In 04 044 135 nppe W igpRe | €
: i : : i - i - 0 i 124 i 14 i 134 By 0008B00ER Bl
W
- - wiaz§ 'nazg ' Oig ppe B9/ Mg I g pgnppe | 7
- i - - i - i - - i - i . i - plX i 0200000 Flx
- : : wazg 'nazg ' ppe pesze g | |
am i (fay ary i am i 1Py 10 i say i gnv i VNI | 2d by i B 2d 1n)
M YLSNI NIW HISNI X3 ULSNI QI HISNI A HISHL | (@)
19V1S M 19Y1S WIW 19v15 X3 19vIs 19¥1S41 | WD

aay pue NAQY Jo BuljpueH uoljdaax3 Joj wieBei BulwilL :9' a|deL

84

After verifying “ADDU” and “ADD” instructions exception handling
mechanism, the test program given in Table 5.7 is downloaded to processor
to demonstrate that “SUBU” and “SUB” instructions generate exceptions
according to definitions in APPENDIX A, Implemented Subset of MIPS
R2000 ISA.

A requirement number (as R#) is given in the comment section of the code
and the clock cycle in which the requirement is fulfilled is pointed out in the
first column Table 5.8.

Table 5.7: Verification of Exception Handling “SUBU” and “SUB”

HHHHHHHHE

#

#TEST_4

#

Created by Can Altinigneli

To demonstrate ADDU and ADD instructions generate overflow exceptions according to APPENDIX A.
HHHHHHHE A

UNDEFINED:

beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR
nop

OVERFLOW:

beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:

add $t0, $zero, $zero # $t0 shall = 0

lui $t0, 0x8000 # $t0 shall = x8000_0000, DestAdr:8
addi $t1, $zero, 1 # $t1 shall = 1, DestAdr:9

subu $t2, $t0, $t1 # No Exception shall be generated, R1
sub $t2, $to, $t1 # Exception shall be generated, R2
Eternity:

beq $zero, $zero, Eternity

nop

Results of operations and contents of stages are read by using MIPS Monitor
software and results are tabulated in Table 5.8.

85

0x 7 19 7 19

19 7 14 7 X

0% 0% X wonny 2%
L0 g gns |- '0i8zg 'nazg bag dou |- '048z4 '0a8zg haq dou g
Wi 2 igd 0x 0 0 0 0% [0 0000000 0x By 7
1§ 06 716 nans 1§ 06 716 ans |- 'n4azg '04azg bag tou |-'nazg ‘wazg beg | g
1 £ 2% X TS TR 1 00000008 Bz wuonnix BTX 7
| '0iazg ' 11§ Ippe 1§ 06 716 nans 1§ '(0% 71§ qns |- 'nazg ‘0lazg bag dou g
Dgggmi B L i ¥ i ¥ i TR i 1% i 00000008 rTx 2205601 0¥ i3 14
B9/7E "0 1Ny | '08z4 ' |34 ppe 11§ '006 ‘726 nans L1 '0nd 74 ans |-'mazg ‘niszgbag | G
0% i o 00000008 i Q008X i 00000008x 1 i 1 i X 0z £Z05A010X 0zZx
Dia2§ '04azg ‘g ppe B9/7¢ ' In| | 'mazg ' |1g ippe 11§ (05 714 nans 1§ 08 "71g ans i
- - X 0¥ 0¥ 00000008 | 000g: X 2 \000RO0Z: X
- 087§ ' mazg (g ppe B9/76 'O In) | 'mazg ' |1g Ippe 1§ 006 716 nans 3
: i : : i : i : 0% i 0% i 0x Bl 0008800 EX Bl
- - 032§ ' 0azg g ppe B9/7C ' In| | 'mazg 3§ 1ppe Z
: i : : i : i : : i : i : X i 0Z0F000K FLY
- - - 032§ ' 0iazg (g ppe B9./76 "0 Inj |
am i [bay apry i am i 1ppy say i anv i v N 2d 1yl i nsu) 2d un)
AM HISNI WIW YISNI X3 YISNI a1 YISNI 41 YISNI ()
19VIS am 39V1S WIW 19VIS X3 19VIS aI 39v1S 4l AN}

8ns Pue NENS Jo Bulpue uolydeox Joj wedbelq BuiwiL :g'g a|qeL

86

Lastly, to verify “ADDIU” and “ADDI” instructions exception handling
mechanism, the test program given in Table 5.9 is downloaded to
processor. A requirement number (as R#) is given in the comment
section of the code and the clock cycle in which the requirement is
fulfilled is pointed out in the first column in Table 5.10.

Table 5.9: Verification of Exception Handling “ADDIU” and “ADDI”

AR

#

TEST_5

#

Created by Can Altinigneli

To demonstrate ADDIU and ADDI instructions generate overflow exceptions according to APPENDIX A.
AR

UNDEFINED:

beq $zero, $zero, UNDEFINED # UNDEFINED EXCEPTION VECTOR

nop

OVERFLOW:
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR
nop

START:

add $t0, $zero,$zero # $t0 shall =0

addiu $t0, $t0, OXFFFF # $t0 shall = xFFFF_FFFF, DestAdr:8
addiu $t0, $t0, 1 # No Exception shall be generated, R1
lui $t0, 0x8000 # $t0 shall = x8000_0000, DestAdr:8
addi $to, $to, -1 # Exception shall be generated, R2

Eternity:
beq $zero, $zero, Eternity
nop

Results of operations and contents of stages are read by using MIPS

Monitor software and results are tabulated in Table 5.10.

87

I8 IE4 IE4 0 IE4 I IE4 IS I3 014 HH000 1% 0}
|- 'K Ippe |- 'miazd 'mazg hag dou |- '0iazg 'uiazg hag dou]
00000008 B IE4 0 IE4 I IE4 IS I3 I8 00000000 B
BO.7E g In| |- 036 004 Ippe |- ‘0874 'z bag tou |-'nazg ‘niezgbag | g
I8 i g | 00000008y i 008K i 00000008 | L i i i I i 00000008 Bzy i HH000 1% BTx
| 'O 'Ch4 Mippe 89/7E ' In| LT 'CHg ppe |- 'ni8zg '0iazg bag dou g
Iy i B 0% X i 0% i i 00000008 | 0008k i 24 ¥EX i WHB0LTX ¥TX
GESSS 'OH% g nippe |08 '0hg nippe B9/7E OV In| "D ‘(0 ppe |-'nazg ‘nezgbag | g
I8 i B I i JITY i Iy 0 i IE4 ¥ i I 02X i 000BB00EY 0zX 14
04824 ‘0824 (g ppe GEG5T D46 'O nippe | 'O 'Ohg Mippe B9/7E "0 In| -0 ‘(0 ppe i
- - IE4 0 IE4 I JIY I I3 21X \000B0SZY QL
- 0azg 'niazg (g ppe GES59 (46 ' nippe | 'O 'Ohg nippe 89/ "0 In| £
- - - - - I IE4 IS I3 By HHR0SZ BlX
- - uiazg '0/azg '[4g ppe GE559 % 036 nippe | 'O 'Ohg mippe Z
- - - - - - - - - Fly 07 0r0000% 71X
- - - 0iazg 'AZG S PRE | SESSO DM I nippe | |
am [bay am i am i ppy 1A) say i gnw i VW | 2d By nsuf 2d un)
M YISNI WAW Y1SNI X3 Y1SNI (RTE] A1 41SNI (24
19V1S am 19V1S WIW 19V1S X3 19V1S QI 19VIS 4l 1D

|aqy pue NIaay o Bulipuey uoldaax3 Joj wesBeiq BuiwiL :04'G 8|qeL

88

To verify undefined instruction exception handling, the machine code of

the program given in Table 5.9 is modified as given in Table 5.11,

hence an undefined instruction is generated. Processor will raise an

undefined exception while the modified instruction is in EX stage and

this result can be observed by inspecting Table 5.12.

Table 5.11: Verification of Exception Handling Undefined Instructions

[0x000000]
[0x000004]
[0x000008]
[0x00000C]
[0x000010]
[0x000014]
[0x000018]
[0x00001C]
[0x000020]
[0x000024]
[0x000028]

0x1000FFFF
0x00000000
0x1000FFFF
0x00000000
0x00004020
0x2508FFFF
0x25080001-> changed as 0xFF080001
0x3C088000
0x2108FFFF
0x1000FFFF
0x00000000

beq $zero, $zero, -1
nop

beq $zero, $zero, -1
nop

add $t0, $zero, $zero
addiu $t0, $t0, 65535
addiu $t0, $tO, 1

lui $t0, 32768

addi $t0, $t0, -1

beq $zero, $zero, -1
nop

89

I | O If | 0 I I I b o i
|00 008 nippe B9/76 ‘g |04 04§ ppe |-'uiazg 08z bag oy g
Hi oo O I |0 0 I} I I 0 I}
GEG50 (08 '8 nippe |0 '(04 nippe 89,7 "0 |- (0% 08§ inpe |-'uiazg ‘iz bag ;
I O | X | | MM |0 O | B | X 0Zx | D00GBOOEX 114}
g ‘iz (g ppe GEG50 (06 (0% nippe |0 4 nippe 09.7C ' |- 00§ 01§ e i
: : I I 1 T QI | 10008044X 20
: iazg 'uiazg ' g ape GE559 ‘0I5 04§ nippe |0 4 nippe 89,76 "0 E
: : : : : I I I I Bl BA0eTy Bl
azg ‘iz g ppe GE559 'CHS ' 0Hg nippe |00 'CHg nppe Z
: : : : : : : : : pl¥ | (Z0v0000X Pl
: : : azg '0iszg (g ppe GEG50 (0% '8 nippe |
0 M Gfey | Py | G | WPy | MO | S | g TV | WO | Od Y st 24 1m)
AM HLSNI WIW HLSNI X3 HLSHI Q1 HLSNI AL HISNI (4
19VIS am 39V1S WIN 19Y1S X3 39YIS 01 39¥15 41 11

Buiipuen uondaax3 uoranisu| paupun Joj weaBeig Buiwi] :7)'G 9(geL

90

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Pipelining, basic way of obtaining faster processor, was inspected in
detail throughout this thesis and the basic principles were applied by
implementing a pipelined processor on a real hardware (FPGA).

It was aimed to clarify why pipelining is preferred instead of other
possible implementation schemes by comparing them quantitatively and
after that it was concluded that the best performance can be obtained

by applying Pipelined Implementation Scheme.

Different solution proposals were stated for problems faced while
implementing pipelining. It became clearer that the main point causing
problems was the dependencies between instructions. These
dependencies degrades the instruction throughput and CPl can be
greater than one which is optimal solution and this problem was
resolved by constituting forwarding (bypass) lines between stages.
Structural deficiencies are overcame by using separate Instruction and
Data Memory. The Control (Branch) hazards caused by conditional or
unconditional branches are overcame by making the decision in ID
stage instead of EX in the expense of using extra hardware. It is tried to
be explained how exceptions shall be handled in a pipelined
architecture. After all of these statements and giving implementation
details, architecture was verified with test programs and results were
tabulated.

91

There exist unimplemented instructions in MIPS R2000 ISA, because
the first goal of this thesis is to reveal the internals of pipelining and not
to implement a complete processor. The most frequently instructions
were chosen and implemented. A custom exception handing
mechanism was implemented instead of implementing a complete co-

processor for similar reasons.

There are many directions in which the work described in this thesis can
be extended. There can be a research in the future which can propose
a method to measure the orthogonality of ISA which is the primary
metric for the effectiveness of pipelining. The processor can be
extended to completely cover all instructions in MIPS R2000 ISA.
Dynamic prediction mechanism can be used to branch decision instead
of simple delayed branch approach. As a further step, processor can be
upgraded by adding a floating point co-processor and virtual memory
support to implement R3000 ISA. A more overwhelming work is to
operate with 64 bit instructions and converge to R4000 ISA architecture
which is commercially available today.

Another direction to extend this research is to inspect the effects of
using longer pipelines, fetching longer instructions like in R4000 from
memory and implementing sequencing and some handling mechanisms

for all of these circumstances.

92

[Barr99]

[Brown96]

[BZEID]

[CDVHDL]

[COD98]

[DFMULT]

[Perry02]

[HPCC]

REFERENCES

Barr Michael, “Programmable Logic: What is it to Ya?”
Embedded System Programming, pages 74-84, June 99

Stephen Brown, Jonathan Rose, “FPGA and CPLD
Architectures: A Tutoral”, IEEE Design and Test for
Computers, 1996

Bob Zeidman, Introduction to CPLD and FPGA Design

Volnei A. Pedroni, “Circuit Design with VHDL”, MIT Press
2004

David A. Patterson and John L. Hennessy “Computer

Organization and Design”, Chapters 3-6, 1998

J. Senthil Kumar, G. Lakshminarayanan, B.
Venkataramani, G. Siriram, M.S. Jambunathan, “Design
and Implementation of FPGA based Fast Multipliers with
Optimum Placement and Routing using Structure

Organizer”

Douglas L. Perrry, “VHDL Programming by Example”,
2002

Scott Hauck, Mathew M. Hosler, Thomas W. Fry, “High
Performance Carry Chains for FPGAs”

93

[JGRAYO00]

Jan Gray, “Building a RISC System on FPGA”, Circuit
Cellar The Magazine for Computer Applications, March
2000

[KCHAP93] Ken Chapman, “Fast Integer Multipliers, Engineering

Design Magazine’s Design Ideas Column, March 1993

[PLXSDKO01] PLX SDK User’s Manual section 4, March 2001

[PLXSDK02] PLX PCI 9030 Data Book, v14, Page 2.7, 2002

[SYNP99]

[TRENZO1]

[TWO04]

[XAPP215]

[XCNSTR]

“Synthesis for 1 Milion Gate FPGAs: Synplicity Support for
Xilinx Virtex Series”, Synplicity Inc. 1999

Trenz Electronic, “Introduction to FPGA Technology”,
November 2001

R.H. Turner, R.F. Woods, “High Efficient Limited Range
Multipliers for LUT Based FPGA Architectures”, |IEEE
Transactions on very large scale integrated systems, vol
12, No:10, October 2004

Xilinx ~ Application Note, Design Tips for HDL
Implementation of Arithmetic Functions, June 2000

Xilinx 5.xi Constraints, Understanding Timing and
Placement Constraints

94

[XDRM99] Xilinx Design Reuse Methodology for ASIC and FPGA
Designers, System on Chip Design reuse Solutions, An
Addendum to Reuse Methodology Manual for SoC
Design, pages 1-27, October 99

[XDS003-2] Xilinx Data Sheet for Virtex™ 2.5V FPGA, pages 5-24,
December 2002

[XISEOQZ] Xilinx ISE Quick Start Tutorial, pages 12-17, June 2003

[XLBR04] Xilinx Libraries Guide, V6.3i, pages 321-323

[XPMO04] Karen Parnell, Nick Mehta, Xilinx Programmable Logic
Design Quick Start Hand Book, pages 1-20, April 2004

95

APPENDIX A

IMPLEMENTED SUBSET OF MIPS R2000 ISA

1615 110 65 o

H 2628 2120 1615 1]

SPECIAL

0
oocnau‘ = ‘ n ‘ ¢ ‘Jucnn‘mcnao

ADD ‘

mmediate

ADDH
po1000

Format : ADD rd, rs, it

Fonction : To add 32-bit integers. If an overflow occurs, then trap.

Description *rd & rs+ 1t

The 32-bit word value in GPR i is added %o the 32-bit value in GPR rs to
produce a 32-bit result. If the addition results in 32-bit 2°s complement arith-
metic overflow, the destination register is not modified and an Integer
Owerflow exception occurs. If the addition does not overflow, the 32-bit result
is placed into GPR rd.

Restrictions : None

Exceptions : Integer Cverflow

Notes : ADDU performs the same arithmetic operation but does not trap on
averflow.

Format : ADDI 1, rs, immediate

Fonction : To add a constant to a 32-bit integer. If overlow occurs, then
trap.

Description : it € rs + immediate

The 18-bit signed immediate is added 1o the 32-bit value in GPR rs 1o pro-
duce 3 32-bit result. If the addition results in 32-bit 2's complement arithme-
tic overflow, the destination register is not modified and an Integer Overflow
exception occurs. If the addition does not overflow, the 32-bit result is pla-
ced into GPR

Restrictions : None

Exceptions : Integer Overflow

Notes : ADDIU performs the same arithmetic operation but does not trap on
overflow.

ADDIU Add Immediate Unsigned Waord ADDU Add Unsigned Word
3 b] 2120 16 15 1] H 2625 2120 16 15 1112 65 o
ADDIU . SPECIAL D ADDU
‘omna-‘ = ‘ n ‘ L i ‘ cnaocc‘ = ‘ n ‘ L ‘ccnao‘maam‘

Format - ADDIU rt, rs, immeadiate

Fonction : To add a constant to & 32-bit integer

Description -t & rs + immediate

The 18-bit signed immediate is added to the 32-bit value in GPR rs and the
32-bit arithmetic result is placed into GPR rt. Mo Integer Cverflow exception
ocours under any circumstances.

Restrictions : Mone

Exceptions : None

Notes : Mone

96

Format : ADDU rd, rs, 1t

Fonction : To add 22-bit integers

Description : rd ¢ rs + 1t

The 32-bit word value in GPR 1t is added to the 32-bit value in GPR rs and
the 32-bit arithmetic result is placed into GPR rd. No Integer Cwverflow
exception ooours under any circumstances.

Rastrictions : None

Exceptions : Mons

Notes : None

AND And

ANDI

And Immediate

H Fi] 240 1615 1110 83] H 625 Fal 1615 1]
SPECIAL = i d 0 AND ANDI = i mmediate
gooooo ooooo j100100 001100 ’

Format - AND rd, rs, it

Fonction : To do a bitwis logical AND

Description rd & rs AND rt

The contents of GPR rs are combined with the contents of GPR tin a bit-
wise logical AND operation. The result is placed inta GPR rd.

Restrictions : None

Exceptions : None

Notes : Mone

ENE Branch an Mot Equa

3 25 2120 16 15 o
BNE

‘ 000101 ‘ = ‘ " ‘ L |

Format : BME rs, rt, offset
Fonetion : To compare GPRs then do a PC-relative conditional branch

Description : if rs = rz then branch

An 18-bit signed offset {the 18-bit offsat field shifted left 2 bits) is added 1o
the address of the instruction following the branch (not the branch itself). in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs and GPR it are not equal, branch to the effective tangst
address after the instruction in the delay slot is executed.

Restrictions : None

Exceptions : Mons

Motes : With the 18-bit signed instruction offset, the conditional branch
range is £ 128 KBytes. Use jump (J) or jump register (JR) instructions to
branch to addresses ouiside this range.

97

Format : ANDI 1, rs, immediate

Fonetion : To do a bitwise logical AMD with a constant

Description : it & rs AND immediate

The 18-bit immadiate is zero-extended to the left and combined with the
contents of GPR rs in a bitwise logical AND operation. The result is placed
into GPR .

Restrictions : Nong

Exceptions : Nonz

Notes : Mone

BEQ Branch on Equal

3 M5 2120 1615 o
BEQ R

|E|E|C1:IE| rs | rt | offset

Formiat : BEQ rs, rt, offset

Fonction : To compare GPRs then do a PC-relative conditional branch

Description : if rs = rt then branch

An 15-bit signed offset (the 18-bit offset fizld shifted |=ft 2 bits) is added to
the address of the instruction following the branch (not the branch itself), in
the branch delay slot, to form a PC-relative effective target address. If the
contents of GPR rs and GPR rtare equal, branch to the effective target add-

ress afier the instruction in the delay slot is executed.

Restrictions : None

Exceptions : None

Notes : With the 15-bit signed instruction offset. the conditional branch
range is ¢ 128 Kbytes. Use jump (J} or jump register (JR) instructions to
branch to addresses outside this rangs.

J Jump JAL Jump And Link

31 %6 25 0 M 2625 o
v instr_index AL nstr_index

oooo1o - oooD11 -

Format - J targst

Fonction : To branch within the current 258 MB-aligned region

Description -

This is a PC-region branch (not PC-relative); the effective targe: address is
in the “current” 258 MB-aligned regicn. The low 28 bits of the target address
iz the instr_index field shifted left 2 bits. The remaining upper bits are the
coresponding bits of the address of the instruction in the delay slot (not the
branch itself).

Restrictions : Mons

Exceptions : None

Notes : Forming the branch target address by catenating PC and index bits
rather than adding a signed offset to the PC is an advantage if all program
code addresses fit into a 256 MB region aligned on a 258 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an
action not allowed by a signed relative offset.

JR Jump Register
N 26 25 2120 65 o
SPECIAL o JR

coooooD = ooocoOOOOOODOOODOD cD1000

Format : JR rs
Fonetion : To execute a branch to an instruction address

n & registar

Description : PC & r=

Jump to the effective target address in GPR rs.
Restrictions : Mone
Exceptions - Mons

Motes : Mone

98

Format : JAL targe:

Fonetion : To execute a procadure call within the current 2568 MEB-aligned
region

Description :

Place the retum address link in GPR 31. The retumn link is the address of the
second instruction following the branch, at which location execution conti-
nues after a procedure call. This is 3 PC-region branch (not PC-relati
effective farget address is in the “current” 288 MB-aligned region. The low
28 bits of the target address is the instr_index field shifted left 2 bits. The
remaining upper bits are the comesponding bits of the address of the instruc-
tion in the delay slot (not the branch itself).

Restrictions : None

Exceptions : Mons

Motes : Forming the branch target address by catenating PC and index bits
rather than adding a signed offset o the PC iz an advaniage if all program
code addresses fit into a 258 MB region aligned on a 258 MB boundary. It
allows a branch from amywhers in the region to anywhere in the region, an
action not allowed by a signed relative offsst.

LUl Load Upper Immediate Lw Load Ward
k) i) 1nao 16 15 o H H2 212 16 15 1}
LUl] . . L)
001114 | ooooo mt immediate 100011 bass it offsst

Format : LUI rt, immediate

Fonction : To lead a constant into the upper half of 3 word

Description - it & immediate || EI-E

The 18-bit immediate is shifted left 18 bits and concatenated with 18 bits of
low-order zeros. The 32-bit result is placad into GPR .

Restrictions : Mone
Exceptions : None

Notes : Nons

Mave From HI register

Faormat : LW . offset{bass)

Faonetion : To load 3 word from memory as a signed value

Description : it ¢ memanylbase+ofser]

The contents of the 32-bit word at the memary location specified by the ali-
gned effective address are feiched, sign-extended to the GFR register
length if necessary, and placed in GPR rt. The 18-bit signed offset is added
ta the contents of GPR base to form the efiective address.

Restrictions : None

Exeeptions : Mone

Notes : None

MFLO

Move From LO register

El 615 110 65 0 H 625 1615 11 65 1]
SPECIAL a d 0 MFHI SPECIAL 0 o 0 MFLO
gooooo pooooocooo ooooD (ot1oo00 opooooo| oooooOOOOOD 00000 (010010

Format : MFHI rd Format : MFLO rd

Fonetion : To copy the special purpose HI register to a GPR

Description - rd & HI

The contents of special register Hl are loaded into GPR rd.

Restrictions : Mone

Exceptions : None

Motes : None

99

Fonction : To copy the special purpose LO register to a GFR

Description : rd « LO

The contents of special register LD are loaded into GPR rd.

Restrictions : None

Exceptions - Mone

Motes : None

MTHI bove To HI register
H 26 25 220 65 [
SPECIAL s 0 MTHI
nooono 0oo000D0OD00D0D0 610001

Format : MTHI rs

: To copy a GPR to the special purpose HI register

Description : Hl s

The contents of GPR rs are loaded into special register HI.

Restrictions. : None

Exceptions : Nons

MTLO Morve To LO register
n ¥ 338 is]
SPECIAL © [i] LG
Qooono Gogoo00ac000acn o10011

Format : MTLO 13

Fanetion : To copy a GPR 10 the special purpess LD reghtes

Desoription : Hl & rs
The contents of GFF s are laaded inla spesial register LD,

Restrictions : Mone

Exceplions - Mons

Hotes - Nons
Motes : None
MULTU Multiply Unsigned Word NOR Mat Or
El 26 25 21 16 15 BE5 L] H 26 25 2120 16 15 110 6% o
SPECIAL it 0 MULTU SPECIAL " - 0 NOR
oooooo ooooooOOOOO 011001 gooooo ooo00 (100111

Format : MULTU rs, rt

Fonction : To multiply 32-bit unsigned integers

Description - (L0, Hlj € rsx

The 32-bit word value in GPR rt is multiplied by the 32-bit valus in GPR rs,
treating both operands as unsigned values, to produce a 84-bit result. The
low-order 32-bit word of the result is placed inte special register LO, and the
high-order 32-bit word is placed into special register HI. Mo arithmetic
exception ooours under any circumstances.

Restrictions : None

Exceptions : None

Motes : None

100

Format : NOR rd, rs, it

Fonetion : To do a bitwise logical NOT OR

Description : rd & rs NOR 1t

The contents of GPR rs are combined with the contents of GPR rtin a bit-
wise logical MOR operation. The result is placed intc GPR rd.

Restrictions : None

Exceptions : Nong

Notes : Mone

OR Qr ORI Cr Immediate

El i -] 2120 1615 110 65 0 H 2625 Pl 1615 0
SUECIL s it rd L i i s it mmediate
gooooo 0ooo0O0 [100101 on1101 ’
Format: OR rd, rs, 1 Format : ORI, rs, immadiate
Fonction : To do a bitwise logical OR Fonction : To do a bitwise logical OR with a constant
Description - rd + rs OR nt Description : i & rs OR immediate
The contents of GPR rs are combined with the contents of GPR rtin a bit- The 18-bit immediate is zero-extended to the left and combined with the
wise logical OR operation. The result is plased into GPR rd. contents of GPR rs in a bitwise logical OR operation. The result is placed
into GPR rt.

Restrictions : None
Restrictions : None

Exceptions : None
Exceptions - MNons

Notes : Nonz
Motes : None
SLL Shift Word Left Logical
31 25 25 2120 16 15 11 10 65 o
SPECIAL 0 - = s SLL
oooo00 | cOOODD poocooo

Format : SLL rd, . 53
Fonction : To lefi-shift a word by a fixed number of bits

Description - rd « rt << =a

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting
zeros into the emptied bits; the word result is placed in GPR rd. The bit-shift
amount is specified by sa.

Restrictions : Mone
Exceptions : None

Notes @ SLL r0. r, 0, sxpressed as MOP, is the assembly idiom used to
denote no operation.

101

SLT

Set On Less Than

SLTI

32t on Less Than Immediate

¥ i Ha 1615 110 65 0

H 625 22 16 15 1]

SPECIAL ST

0
aoooo

oooooo 101010

SLTI

001010 mmediaie

Format - SL7rd, rs, 1t

Fanction : To record the result of a less-than comparison

Description < rd € (rs <)

Compare the contents of GPR rs and GPR 1 as signed integers and record
the Boolean result of the comparisen in GPR rd. If GPR rs is less than GPR
i, the result is 1 (true); otherwise, it is O (false). The arithmetic comparison
does not cause an Integer Cwerflow exception.

Restrictions : Mone

Exceptions : None

Format : SLTI . rs, immediate

Fonetion : To record the resul of a less-than comparison with 3 constant

Description : it & (rs < immediate)

Compare the contents of GPR rs and the 18-bit signed immediate as signed
integars and record the Boolzan result of the comparison in GPR . f GPR
15 i5 l2ss than immediate, the resultis 1 (true); otherwise, it is 0 (false). The
arithmetic comparison does not cause an Integer Overflow exception.

Restrictions : Mone

Exceptions : None

Motes : Mene Motes : Mone
SLTIU Set on Less Than Immediate Unsigned SLTU Set on Less Than Unsigned
3 625 nm 16 18 0 A /25 Fil 16 15 110 65 0
SLTIU . . SPECIAL 0 SLTU
na-cn‘ = ‘ n ‘ It cnaocc‘ ‘ " ‘ L ‘ccnao‘mmn‘

Format - ELTIU i, rs, immediate

Fonetion : To record the result of an unsigned less-than comparison with a
constant

Description : rt € (rs < immediate)

Compare the contents of GPR rs and the sign-extended 18-bit immediate as
unsigned integers and record the Boolean result of the comparison in GFR
rt. If GPR rs iz less than immediate, the result is 1 (true); otherwise, itis 0
(false). The arithmetic comparison does not cause an Integer Overflow
exception.

Restrictions : MNone

Excaptions : None

Notes : Nene

102

Format : S_LTU od, rs, 1t

Fonection : To record the result of an unsigned less-than comparizan

Description : rd (rs < i)

Compare the contents of GPR rs and GPR i as unsigned integers and
record the Boolean result of the comparisen in GPR rd. If GPR rs is less than
GPR i, the result is 1 jtrue); otherwise, it is 0 {false). The arithmetic compa-
rison does not cause an Integer Overflow exception.

Restrictions : None

Exceptions : Mone

Notes : None

SRL

Shift Word Right Logical

a1 26 25 21 20 16 15 1110 ES o
SPECIAL o "t rd ca SRL
oooDODOD ([DOODOD oooo10

Format - SRL rd. ri. sa

Fonction : To execute a logical right-shi®t of a word by a fieed number of bits

Description : rd « rt »> sa

The contents of the low-order 22-bit word of GPR rt are shifted right, inser-
ting zeros into the emptied bits: the word result is placed in GPR rd. The bit-

shift amount is specified by sa.
Restrictions : Mones
MNone

Exceptions :

Notes - None

SUB Substract Word SuUBU Substract Unsigned Word
El i} 1615 11 65 L] H 26 25 2120 1615 110 65 o
SPECIAL e t d o 5uB SPECIAL i -] SUBU
0ooooo 0ooo0 |100010 opoooo 00000 [100011

Format - SUB rd, rs, it

Fonction : To subtract 32-bit integers. If overflow occurs, then frap

Description - rd rs -t

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR
rs to produce a 32-bit result. If the subtraction results in 32-bit 2's comple-
ment arithmetic overflow, then the destination register is not medified and an
Integer Overflow exception occurs. If it does not overflow, the 22-bit resultis
placed into GPR rd.

Restrictions : Mone

Exceptions : Intager Overflow

Notes : SUBU performs the same arithmetic operation but does not trap on
averflow.

103

Format : SUSU rd, rs, it

Fonction : To subfract unsignad 32-bit integers

Description : rd & rs -1t

The 32-bit word value in GFR rtis subtracted from the 32-bit value in GPR
rs and the 32-bit arithmetic result is and placed into GPR rd. Mo integer over-
flow exception occurs under any circumstances.

Restrictions : None

Exceptions - Mons

MNotes : None

sSwW Store Word

| base | rt | offset

Format - SW rt, offset{base)

Fonction : To store a word 10 memory

Description - memory[base+offsat] +

The least-significant 32-bit word of register rt is stored in memory at the
location specified by the aligned effective address. The 15-bit signed offset
is added to the contents of GPR base to form the effeciive address.

Restrictions - Mons

Exceptions : Mone

Notes : None

XOR Exclusive Or
XORI Exglusive Or Immediate
3 26 28 2120 1615 110 65]
SPECIAL *OR 3 6 25 2120 1615 110 65]
|cn:0cc| = | " | - |ccn:0|10c113| XOR!))
001110 s r immediate

Format : XOR rd. rs. rt

Format - XCRI i, rs, immediate
Fonction : To do a bitwise logical Exclusive OR

Fonction : To do a bitwise logical Exclusive OR with a constant
Description : rd rs XOR rt

LTombine the contents of GPR rs and GPR it in a bitwise logical Exclusive

IR operation and place the result into GPR rd. Description - rt « rs XOR immediats

Combine the contents of GFR rs and the 15-bit zero-extended immediate in
Restrictions : Mone a bitwise logical Exclusive OR operation and place the result inte GPR .
Exceptions - Mons Restrictions : None

Motes : Mone .
Exceptions : None

Notes : None

Table A.1: MIPS Registers

Name Register number Usage

$zero 0 the constant value 0

$at 1 reserved for the assembler

$vO-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries

$s0-$s7 16-23 saved

$t8—$t9 24-25 more temporaries

$kO—$k1 26-27 reserved for the operating system (OS)
$ap 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

104

APPENDIX B

MIPS MONITOR SOFTWARE

MIPS Monitor Software is written to monitor internal state of the
processor, to externally stimulate the processor and to verify
correctness of its operation. MIPS Monitor Software is written in C++
and developed in Microsoft™ Visual C++ Environment. Document-View
architecture is used during is development. This Appendix is prepared

to serve as a user manual of MIPS Monitor Software.

The main screen of MIPS Monitor software is given below:

105

L MpS
File Edit Function bYiew Help

D&l 8|7

X

Stages of

el
=
=1

FSS0R

Frocessor

Rl ¢ £ vz, \‘k
ET Lo
URR PO= E,‘K;E(:ZUTE_UNIT:‘ T NENNIT .
REG DST= REG_DST=
EX_AVLB=
Program Memory Cunent Status
Humber of Clock Cycles Passed: 0
This region is reserved for the e
program that has been already
downloaded to the processor
internal program memory. Current
Status of
Programs can not exceed 256 Processor
instructions.

Figure B.1: Main Screen of MIPS Monitor Software

The main functions of MIPS Monitor software

Function menu. These functions can be summarized as:

is collected under

Emulator Input: This option is used to run with real hardware or to test

the graphical interface with simulator without hardware. This interface

was used during development while the hardware was not present and

“Simulator” option was disabled after development. “PCIDevice” option

must be chosen before starting the MIPS Monitor software for proper

operation. After that, the “PCl Device Selection Dialog” (Figure B.3) will

106

appear and user can select the bridge on which interface transactions
will occur.

File>Emulator (F7): A “File Open Dialog” will appear after selecting this
option. The selected program will be loaded Program Memory section

of main screen, but this program is not downloaded to processor.

Emulator Input 1 v Sinulator

Fle->Emulator (F7) PCI Device:
Insert Break Paint (F9)
— PROCESSOR

Single Step (F5)
Run (F8)
Reset (F10)

Load & Verify

! I i I Lod CDECODE UNT)
* T

L Equat

POy 3] N " W
: A g A - WM Eartral(1)
LU S, BELTL T S
strucs iR) J aismae T Addressa10)
- atatar)) o iE iy
s ok ‘ g . N = s Exenda) | : w.um.a_nmuv‘nz
Rl ¢'s :
o 1 T3 8
-
AT LI =T f I
b E = CLK
‘
URR_PC= EXECUTE-UNIT- | ©° CMERIUNIT
REG D3T= REG_D3T=
EX_AVLB=
Pragram Memory Curent Status

Wurmber of Clock Cyeles Passed: 01

Unresolved Hazard Detected: -

Exception Detected:

Figure B.2: Main Functions of MIPS Monitor Software

107

X

PCI Device Selection Dialog

Buz Mumber Slot Murmber “Yendar D Device D Chip Type
@ avesi] o % ks 5030 5030
" Device 2 _ = — — —
" Device 3 _ _ — = —
" Device 4 _ _ _ — —

Figure B.3: PCI Device Selection Dialog

Insert Break Point (F9): This option enables the user to insert break

points to stop the processor at a desired point while running or before
Run (F8) option is selected. A red diamond will appear to indicate the
point where the processor will stop its operation.

Single Step (F5): This option enables the user to trigger the processor

for single step running. It is stated in Table 4.5 which fields of the IF, ID,
EX, MEM and WB stages can be observed by using the MIPS Monitor

software.

108

Fle Edt Function Yew Help

A= ElR

Instructions Present in Pipeline Stages

0

addiu $s0, $zero, 2

.

addu $s2, §s0, §s1

A/

add 952, 950, §51

g L

Moa_SHages
CAHTROLZOr =

Branch_adrecx2 .0

SEIATEN

X

addi §s1, $zero, 4

L i oy

TURR_PC= 0000020

addi 530, 5zero, 6

eremesta e e ’ pAE
instution(st0) ALU_Sro, BE1D;
It e QORBETI802Y, B 5 it v
snng ety - F g 10x00000004 ;. o0y 0x0
- A‘-umn Sign_Extendgat 0}
5 Tl - 5ot !
AR g
g | g
I [
Arunip [t

EXECUTE WUNIT

REG DST= 0x12
EX_AVLB= 0x2

0x00000004 -0x00000004

\irka_ozagn)

MER_UNIT

REG_DST= 0x11

010

Program Memary

0:000000]101000FFFFI# beq $zera, $zero, -11
0:000004]i0+000000001% rop|
0:000008]101000FF FFI# beq $zera, $zero, -11
0:00000C)0x 00000000} nopl
000001 0]i0%201000061# addi $50, $zer0, 61
000001 4]i0x201100041# addi 41, $zer0, 41
000001 8]10+021130200# add $2, $s0, $311
addu $52, 0, $:

001 000414 addiu $s1, $zero, 41
i 0 e 30, 451
0:00002C]I0x 023030231 subu $5: 5
0:000030]10%3408FF FFI# o $10, $; |
0:000034]10x3COSFFFFIE Lui $t1, 65535]
0:000038]10+010350251% or $12, $0, $111
0:00003C]I0x01 0950241 and $12, $10, $11
000004 0]10+010350261# wor $t2, $10, $t11
0:000044]10+010350271# nor $12, $t0, $t11
0:000048]10%310800001# andi $10, $0, 01
0:00004CI0x00034C024# sl $H1, 11 161
0:0000500+00034C000 1 41, $t1, 161
0:000054]10%3323FFFFI# wori $11, 421, 11

0+000058]10x221 0F FFF It addi $s0, 30, -11
0+00005C]I0-240800001# shi #RD, $s0, 0)
0+000060]101008FFFDI# beq $zero, $10, -31
0+000064]10000000008 ropl
0+0000B8]10x0200482A1H# slt 11, $a1, $zerol
0+0000BCI0X1 403000F 1# bre $t1, $zero, 15]
0+000070]10+000000001 ropl

0+000074 10201 OFFFFI addi $s10, $zero, 1]
0+000078]10x201 1FFFE [# addi $31, $zero, 21
0+00007CI0021 10013 multu 350, $s11
0+000080 100000401 D1 mii $01
0+000084]10%0000481 218 milo 311
00000111 mthi $zera]

0-0000B 0]I0<000000001 ropl
0-00008 4]10<BE 0400001 v 32, O[30
[0-0000B 8]10<BE 2B0000KE v 33, D11
0-0000BC]I02D 4500011 skiu HRD, $12, 11
0-0000C0]I0x1408FFD3H# bre $10, $2ero, -451
0-0000C4]10x000000001 ropl
0-0000C8]I0x01 40402814 sltu $10, 312, $eerol
{000CC]I0x1 4DBFFDOH bne $t0, $zero, 481

000D

ol
O0000D4)0B00000AYE | D0004)
00000

nop]
0-00000C]I0x1 000FFFFIH beq $asro, $2era, 11

+0000EC A0 $a
0-000030)0-0000801 Ot ik 3
0+0000340-0000881 24t wilo 311
0+00003810x2231 00041 adci $51, 31, 4
400DDSCI0HAE OS0000 svv $10, D%
290000 s §t1, Df$]
i ral

nop|
DXO00AC]0A0C00001 D o 040010

Program stopped

at Break Point.

Curent Status

MNurnber of Clock Cycles Passed: 4

Urresolved Hazard Detected:

Excaption Detected

4 clocks
passed and
no hazard and
exception

Figure B.4: PCI Device Selection Dialog

Run (F8): This option when selected runs the processor up to a Break
Point is encountered.

Reset (F10): This option when selected resets the processor externally.

Load & Verify: A “File Open Dialog” will appear after selecting this

option. The selected program will be loaded Program Memory section
of main screen and also this program is downloaded to processor.

MIPS Monitor Software can notify the programmer about the presence
of unresolved hazard in the pipeline by drawing a dashed box around
the IF and ID stages and stating the status in “Current Status” section of

109

Main Screen. Programmer can expect a nop instruction insertion into

EX stage in the next clock cycle (Figure B.5).

File Edi Function Yiew Help

b dE & %

OCESSO

b} $zero, $zero, -1 add $12, 510, §t1 Iw $t0, 0[$a0) nop

-

// // N : CLK
nop EXECUTE. UNIT T WERZUNIT
REG DST= 0x08 REG_DST= 0x00

EX_AVLE= 0x1

wor - X0

Sign. Etenciz vy matin)

| B —

N\,
Program Memnk Cunsnt Status

[0<000000]J0+1QOFFFFIH beq $2e1o, $zero, 11 [OX0U00SB]I0<21 OBFFFF I ddi 910, 80, -11
[04000004]/0+00000000}# ncpl [0<00005C]+000000001% ropl
(0000008101 0D0FFFFI# beq $zer0, $zem. -11 00000601021 DBFFFDIE addi $t0. $0. -31 Humber of Clock Cycles Passed: 36
[0400000C]I0+00000000I ropl 04000064]10+000000001 nopl
0400001 DHD00020201H add 32D, Szete, Szercl [140D0BE]I0O00D0000I nopl
0400001 410200300051 addi 11 3zero0. 51 00000EC)ID-000000001% nopt Urestiedlieebepmes i
0400001 EJI0H200B0001 1 addi $0, $zero, 11 04000070021 DBFFFEI ack) $10, $10, 21
000001 CJI0400000000 nopl 04000074)100000000014 nopl
[0-000020]1000000001H ncpt 0-00007B]I00000000014 nepl Euception Detected: -
(040000 24]/0+00000000# ncpl (0<00007C0210BFFFC sd 10, 310, -41
ackd 10, 90, 9101 nopl
[0<00D02C]I0<07 0402014 acid 310, $. 3101 [04000084]10+000000001 ncpl U I d
[04000030]/04T1 08402015 2dd $0. 0. $101 [04000088]10+00000000 nepl nresolve
[04000034]/041 0840201 2dd $10, 0. $101 0400008C]I014CBBODD0NH s $10. O[$a0) .
10-00003B]10000000001H ropd 0+000030}13+00000000 ol H aza rd IS
10-00003C]0+C0000000I nopl 0+000034]13+000000001H nopl
(0000040]1000000001H ncpt [0,Q0009BI0ECEE000N b 10, D(SaN
(0000044]10Z10BFFFFIH add $0, §10, 11 0,00009C)MI09502004 acd $12, 310, §11
[0<000048]j0+210BFFFD sddi $0, $10,-31 0000040110 DODEF FF 1§ beg $2210, Szero, p resen
[0-00004C|0+00000000} ropl 0+0000A4 104000000001 opl
[04000050]/0+00000000}# ncpl
[04000054]1040000000015 rcpd

Figure B.5: Unresolved Hazards View

MIPS Monitor software also has the ability to inform the programmer
about the presence and sort of the exception in the pipeline. This
information is presented in “Current Status” section of Main Screen.

The Overflow Exception is detected and reflected to Programmer as in
Figure B.6.

110

File Edt Function Yiew Help

DA & %
OCESSOH
=
beq $zero, Szero, -1 nop beq $zero, Szero, -1 add St1. $10. 5t0
FE
g |
3 H "
0x0 e
Lo 5 T : I ko oabacst i
woonr T &
o g TOLK
CURR_PC= 0x000008 addu $t1, 810, 5t0 EXECUTEUNIT FAERA_ONIT
REG DST= 0x00 REG_DST= 0x00
EX_AVLB= 0x3
059
Frogram Memory Current Status

16 beq Szero, $zer0. 11
(0-D00004] 000000000 ot

(1-D0005) 01 DDDFFFFI bea $zero, $eero, 11 Nurber of Clock Cpeles Passed: £
(0-00000C 000000000 nopt

01 3

0400001 4)10<3COBB0008 ki $10, 327681 Wit (ol Dttt
000001 510401 054821 1 adch $11, $40, $:01
(000001 CI0KO OB4B201E 2dd 311, 310, SO0
0-D00020)0+1 D0DFFFFI beq $zero, Seero, 11

Overflow
Exception did
occur.

Erception Detected: Dverflow

Figure B.6: Overflow Exception Detection View

The Undefined Instruction is detected and reflected to Programmer as
in Figure B.7.

Ele Edit Funcion dew Helo
O - =24

=

beq Szere, $zero, -1 addi S, Stu, -1 Iui St 3268 addiu StU, StU, 1

L i Cartreicriny

0x0 aore3 s 3 X
FT T
LK hocuk
SURR,_PC= 0000099 addiu $10, $t0, 65535 EMECUTE. UNIT BN LINIT
RCG DST= 0x00 RCG_DST= 0x00
EX_aviB- 0x3
st
008
Program Memory Curent Status
beq Fzero, $zero, 11 Numles of Cluck Cyules Passed. 5
URULLLLL oy
adkd U, $zero, Szerol
hehertigtiiet Unresolved | azard Datacted
i St S, 11
UL UILGLUSEULUER 1ot SR, 352/561
UULDUZU U2 Uk F+ R acch $10, U, 11 Bt Btz Unbeitzd]
(04000024101 O0OFFFF % beq $2ero, $2ero. 11
0+000028]10-00000D00F nopl

Undefined Instruction
Exception did occur.

Figure B.7: Undefined Instruction Exception Detection View

111

APPENDIX C

FLOW DIAGRAMS ARCHITECTURE ELEMENTS

Instruction Fetch Unit Flow Diagram

COMBINATION AT,

Mext_PC =
Exception_Address

((IF_Comwl[2d] = “17) AND (Equal =177
O

(Mot Equal) AND (IF_Comtzol[1]= “17]) EUE
OF

(IF_Contol[0]= <17

Hext PC =
Branch_Address

MNext PC = Currert PC + 4
Inecremented PC = Cuarrent PC + 4

CLOCEED
Hormal Instraction Memony &ocess Exrternal nstaction Memory
Instraction = Progranmming Mode
Instraction Mermecerl Carrert P Instroction Memecrr(Currert PCY =
Program Data

RISIN G_EDGE(CLE) =

Carrent PO =10
TRUE

Wait Stages = ‘07

Poi_wrait = ‘0° 4AND
Wait_Stages = ‘07 AND
Unresolved = “0° AHD
(RISING_EDGE (CLK) =
TEUE)

TEUE
TEUE

TOEELE
Wait_Stages

Current PO =
Wext PC

Figure C.1: Instruction Fetch Unit Flow Diagram

112

Instruction Decode Unit Flow Diagram
COMBINATIOMAL

ID_Coraral[4] = “0°

ALTT_Port_& = Dataly
Drata & Comning From
ALT_Port_& = “0° Hamard Dretection and
Forararding Thait

IT'_Clomirol[2] = “0°

TEUE

FALS ID'_Controly] = <1°

LLTT Port B =
Buranerded PO
(jal Fetmactice)

FALSE ID'_Cortrol[F] = 07

OLTT_Port B = DataB

Duta B Coming From

Hamard Detection and
Foparardinge Thait

ID'_Comirol[1] = “0°

[_Cordrol[?] = 17

Reg_Dest =31
(jal Fetnactioe)

[[_Cordrol[4] = <07
ASHD
II_Cordrol[3] = <1°

FALSE

Equal = *0° | | Equal = *17

Bron_ Sizn Extervded = Reg Dest =Ft
Sign Erterded_Brrom

if (diwrTh_Staze = MEMthen
Istruction =*br

ID_Control[10] = <1°

[CLOCKED]
Fe,Ft = Decoded Somce Register D_cm;ﬂlrfl[ﬂl = Sign Shifted P Added
Bddress Brurediate
Thwesolred_& = Feg_Bank (Fs)
Thiresolred B = Fez_ Bk (Ft) Eravh Sddr=
Branch_oddr= Pzendo Drirect
if (Feg_Wiite =>171then Drata & Address (Figure 1)
Feg_Barl: (RTite_Fegister) = (jr Bstoaction])
Wirite_Data

* Please refer to Table 5 for detaled description of Instruction Decode Stage
Control Signals

Figure C.2: Instruction Decode Unit Flow Diagram

113

Forwarding and Hazard Detection Unit Flow Diagram

COMEINATIONAL

((ID_RegWrite ='1" AND
(ID_RegDst = Rs) AND
(ID_RezDist f= 00000

((EX_RegWrite ='1" AND

(EX_FegDist = Bs) AND
[FesvDatad =D Vahe

((WE_FezWite ='1) AND
(WE_RezDst = Fs) 4D
(WE_RezDst /= "00000")

ResvDatad =EX_Vahie

ResvDatad = WE_Vahie

ResvDiatad = Twesolwed_4

((ID_RegWrite ='1" AND
(ID_RezDst = Rt) AHD
(1D_RezDist f= 00000

((EX_RegWrite ='1" AND

(EX_FezDst = Ef) AND
[FesvDataBi = ID_Vahie

((WE_FezWite ='1) AND
(WE_RezDst =) AND
(WE_RezDst /= "00000")

ResvDatab = EX_Vahie

ResvDatabi = WE_Vahie

ResvDiatab = Thuesoled B

((ID_AVLE = MEM)
AND
((ID_Reglist= Rs) OF
(ID_RegDst = R

Uesabred = 1°

Uesabred = 107

* Please refer to Table 4 for VHDL Code Implementation for the flow diagram
given above.

Figure C.3: Forwarding and Hazard Detection Unit Flow Diagram

114

Instruction Execute Unit Flow Diagram

COMEBINATIONAL

AL Fesult Sizred and

ALTT_Resilt Theigned FALZE ALU_DOP =ALTT_ADD
are 33 bit irdernal cigpals

ALTT Fesult_Signed =
Sign Extended(ALTT Src_ &
((ALTT_OF = ALT_SUE) O RUE Sizn Extended/ALU_Src_E)

(ALTT_OF = ALTT SLTH

ALTT Result_Signed =
Sign Extended(AL11_Src_d) -
ALTT_Reeult_Signed = 0 Sign ExtendediALTT_Src_E)

ALT_OF =4LT_&D DT

ALTT Eemlbt Theigted =
Zero Extendedl 8 LTT_Src _OH
([(ALTT_OF = ALTT_STUETN OR REUE Tero Extend ed(A LTT_Src_ED

(ALTT_OF = ALTT_SLTTY

LI Femlt Theigned =
One Exteride 04T, TT_Sre_ &) -
Fero Extend edl S LTT 5 _E)

ALTT_Fesilt Thisigned = 0

ALT_OF = ALTT_ADL) AHD
(ALTT_Src 13 = ALT Src B30
AND (ALT Sre_A31) /=
ALTT Fesul Signedi317)
0R

((ALTT_OF = ALU_SUE)
LMD AL Sre_iz1y /=
ALTT Src_B(317 AND

(ALTT_Sre_dyE 1) /=

ALU_OF = ALT_SW

Store_Address = Store_Address =
Thudefited = 07 | | Thudefied = *1° “0° ALTT_Sre_ 0+
Sigr,_Extend

* Please refer to Table 6 for detailed description of EX stage Control Signals
ALU QP

Figure C.4: Instruction Execute Unit Flow Diagram

115

Instruction Execute Unit Flow Diagram (continued)

COMEINATIONAL

HiLo_fternal and FALSE ALT_OP = ALTT_MULTIT TRIE

HiLo_Chamerit ate G4 bit
sighals

HiLo_Rternal =
e igned(AL TT Src_ 40

ALU_OF = ALT MTHI smsizned(ALT_Src_E)

HiLo_Riterrial = ALTT_Src_f corvcat evbe d
with HiLo_Ciment Least Significiat 32 bits

AL 0P = ALTT_MTLO

HiLo_Bterral = “0° HiLo_Biterral = Hilo_Cumerd Blost Significiat 32 bits
cotc aterated with SLTT Src_ &

Remlt = ALTT Remilt Sizped(3] deomto 0) when ALTT_ATD OF ALT_SUE,

ALY Reaalt Theigned(31 dowto 0) when ALTT_ADDTT OFR ALT_SUET,

ALTT Sre_ & AWD ALTT_Src B when ALTT AHD,

HiLo_Chamerd (63 dovwto 32) when ALTT WMEFHI,

HiLo_Chamerd (31 derartn 0) when ALTT MEFLO,

ALTT Sre_ & mor ALTT_Src B when ALTT_HOR,

ALTT Sre & or KLTT S B when ALTT_0OE,

chift left(ALTT_Sre B, ALTT Src_ &) when ALTT_SLL,

31 hit 07 concatane with ALTT Remlt Sigped31) when ALTT_SLT,

31 hit 07 concatane with (ot (ALTT_Feslt Theizned 32000 when ALTT_SLTTT,

chift_right! ALTT_Src B, ALTT Smc_4) when ALTT_SEL,

ALTT fre & MOR ALT_Soc_ B when ALTT_MOR,

ALTT 5 B when LT _DATAR,

ALTT Zre_E (15 dovmdo 0) corcatenated sarith 16 hit0” when ALTT_LTIT,

Store_fddress wber, ALTT SV,

n when ALTT MTLO OF ALT_MTHI OR
OF AL MULTT OR ALTT_EEQ OF|
ALY EHE

CLOCEED

TRUE

HiLo_Chament = “0°

(RISING_EDGE (CLE) = TRUE) AND
((ALT_OF = ALT_MULT) OF
{ALU_0P = ALT MULTIN OF

(ALU_OF = LT MTHI) OR (ALU_OF

= ALTT MTLOY)

HiLo_Chamerit =
Hil.o_Trterral

Figure C.5: Instruction Execute Unit (continued) Flow Diagram

116

Data Memory Unit Flow Diagram

CLOCEED

F4L3E MEM _Contel[0]= 17 FUUE
(s instraction)

Memory Wrie_Ernable = 10° Memory Write_Enable = *1°

Datablermord Address) ="Write_Data

MEM_Cowhol[1]=1° FIE
(b imstruction |

F4LSE

Fead_Drats = Address

Fead_Data = Dat abemor ddress)
(Address = Result of ALIT)

Figure C.6: Data Memory Unit Flow Diagram

Exception Detection Unit Flow Diagram

COMEINATIONAT

Exceptom_fddress =0

Escception_Address = 8 |
Excepton_fddress =0

Figure C.7: Exception Detection Unit Flow Diagram

117

Register Block Unit Flow Diagram

CLOCEED

RESET 4Ll FEEGISTERS

(RISING_EDGECLE) = TRUE)
AND
{Exzception= ‘17

Wat_Stages = 07 AND
Unesobred = 07 AND
(RISING_EDGE (CLE) =
TEIE]

Presert_Sate = Mext_State

RESET ALL

FEGISTERS

Figure C.8: Register Block Unit Flow Diagram

118

APPENDIX D

LAYOUT OF BOARD

.

H
|
m

i

601

LLLPYA!

H ass[

m L]
ol
ILI‘H

ik
™
o [

5l

BRIDGE I
il@a BEE

FPGA
KNI

PCI

D51 H
ol

il

EE
k]

s b

L

e L L=

]
B2
(o] &
(=]
{8

012
t
o

o]
L o
iy
(v
2] 0D
TEI
X

-

Figure D.1: Layout of Board

119

APPENDIX E

RESOURCES IN THIS THESIS

A soft copy of this thesis, in addition to all of the source codes of
hardware and software mentioned about in this thesis are collected and
presented in the CD attached to back cover.

120

