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ABSTRACT 
 
 

PIPELINED DESIGN APPROACH TO MICROPROCESSOR 
ARCHITECTURES  

A PARTIAL IMPLEMENTATION: MIPS™ PIPELINED ARCHITECTURE ON 
FPGA  

 
 

ALTINİĞNELİ, Muzaffer Can 

M.S, Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Hasan GÜRAN 

 

September 2005, 120 Pages 
 
 
This thesis demonstrate how pipelining in a RISC processor is achieved 

by implementing a subset of MIPS R2000 instructions on FPGA. 

Pipelining, which is one of the primary concepts to speed up a 

microprocessor is emphasized throughout this thesis. Pipelining is 

fundamentally invisible for high level programming language user and 

this work reveals the internals of microprocessor pipelining and the 

potential problems encountered while implementing pipelining. The 

comparative and quantitative flow of this thesis allows to understand 

why pipelining is preferred instead of other possible implementation 

schemes. The methodology for programmable logic development and 

the capabilities of programmable logic devices are also given as 

background information. This thesis can be the starting point and 

reference for programmers who are willing to get familiar with 

microprocessors and pipelining.                

 
 
Keywords: Microprocessor, MIPS, Pipelining, FPGA 
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ÖZ 
 
 

MİKRO İŞLEMCİLERDE PIPELINED DİZAYN YAKLAŞIMI 
MIPS™ PIPELINED İŞLEMCİ MİMARİSİNİN FPGA ÜZERİNDE KISMI 

BİR UYGULAMASI  
 

 
ALTINİĞNELİ, Muzaffer Can 

Yüksek Lisans, Elektrik Elektronik Mühendisliği  

Tez Yöneticisi: Prof. Dr. Hasan GÜRAN 

 

Eylül 2005, 120 Sayfa 
 

 
Bu çalışmada, RISC işlemcilerde “Pipelining” konusu, FPGA üzerinde 

MIPS R2000 komut setinin bir kısmı tamamlanarak açıklanmıştır. 

Çalışma boyunca, Mikro İşlemcilerin hızlarının arttırılması konusunda 

temel bir unsur olan “Pipelining” konusu üzerinde durulmuştur. Temel 

olarak “Pipelining” işlevi, yüksek seviyede programlama yapan kişilere 

görünmezdir. Bu çalışma “Pipelining” işlevinin ayrıntılarını ve bu işlev 

gerçekleştirilirken karşılaşılan problemleri ortaya koymaktadır. 

“Pipelining” dışındaki diğer tasarım yaklaşımlarının neden uygulanamaz 

oldukları, bu tezin karşılaştırmalı ve nicel akışı sayesinde anlaşılabilir. 

Donanım tasarımında temel alınan metodolojiler ve donanımların 

kabiliyetleri hakkında tez boyunca bir alt yapı oluşturulmaya da 

çalışılmıştır. Bu tez, Mikro İşlemciler ve “Pipelining” işlevi ile tanışıklık 

kazanmak isteyen programcılar için bir başlangıç ve referans noktası 

olabilir.             

 
 
 
Anahtar Kelimeler: Mikro İşlemci, MIPS, Pipeline, FPGA 
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CHAPTER 1 

 

INTRODUCTION 
 
 
 

Faster execution of computer programs was the one of the most 

challenging concerns of engineers in the past and also will be much 

more challenging in the future. Increased demands of the industry for 

real time applications yield the presence of faster and deterministic 

processor architectures in years in the market.  

Developers have always been under the effect of their era’s restrictions 

while determining their architectural approach. This was the reason why 

Complex Instruction Set based computers (CISC) came before the 

much simpler counter parts, the Reduced Instruction Set (RISC) based 

computers. Developers constructed first more challenging CISC 

because of memory restrictions and little compiler support. 

Developments in memory technology in parallel with compiler 

enhancements resulted in emergence of RISC based computers. They 

are much simpler to build, much simpler to understand; hence open for 

improvements and maintenance. 

The number of high level programming language compilers developed 

and specialized for RISC architectures grew rapidly. High level 

programming became more popular over years and programmers kept 

away from low level error prone long lasting assembly programming. 

Another reason for choosing high level programming is that different 

vendors proposed different architectures; hence it was not feasible to 

learn the architecture specific assembly code. Pipelining is one way of 



 2 

increasing the processor’s performance. It was proposed for RISC 

based computers mainly because of their regularity.   Pipelining 

accompanied with improved compiler support gave superior 

performance and further improvements made by scaling these 

architectures.  

The primary goal of this thesis is to grasp the idea behind pipelining by 

partially developing RISC architecture, specifically Microprocessor 

without Interlocked Pipeline Stages (MIPS), because of its simplicity 

and rich documentation.  

Understanding the pipelining is important because pipelining is 

transparent to high level programmer. Programmers are aware of 

Program Counter (PC), register bank and memory when they debug 

their programs, but they can not observe the internal register blocks 

used for pipelining. Programmers can not understand why the assembly 

code generated by different compiler vendors is different for the same 

high level software without knowing the internals of pipelining even they 

know the compiler well. 

The secondary goal of this thesis is to understand the problems faced in 

pipelining, because it is the first step that comes before the superscalar 

speculative architectures. To go one step further, problems in pipelining 

must be solved. 

The last goal of this thesis is to get familiarity with hardware design 

process cycle and grasp internals of programmable logic design 

especially for Field Programmable Gate Arrays (FPGAs). FPGAs 

promise parallelism which is the key concept for speed. FPGAs are 

reprogrammable and are becoming more popular in the market. They 

replace to application specific integrated circuit (ASIC) and discrete 

processors and they are also  called as system on reprogrammable 

chip (SoRC). 
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This thesis is organized as follows: Chapter 2 serves to provide 

necessary background for development environment, programmable 

logic design and FPGAs. Chapter 3 describes the different 

implementation schemes for the same instruction set and clarifies why 

pipelining is the best quantitatively. It also describes the problems 

encountered in pipelining and solution proposals. Chapter 4 gives the 

details of particular subset of MIPS implementation. Chapter 5 is 

devoted for formal verification of the partially implemented architecture 

by using in circuit debugging at runtime via specially developed 

software, MIPS Monitor. Chapter 6 gives the conclusions and makes 

remarks for further future work. The appendices presents the 

implemented instruction set assembly codes, instruction descriptions 

and some screen shots to demonstrate the usage of MIPS Monitor 

software. 
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CHAPTER 2 

 

BACKGROUND AND MOTIVATION 
 
 

 

This chapter serves for the following purposes: 

(1) providing the necessary background for understanding the rest of 

thesis, 

(2) motivations behind the usage of software and hardware 

development environments in thesis, 

(3) internals of platform FPGA which was preferred as design 

solution, 

 

Readers, who are quite familiar with these concepts, can skip this 

chapter and start reading Chapter 3 first. 

   

2.1. Programmable Logic Design 
 

Since late 1970s, programmable logic circuits are greatly enhanced and 

dominated the electronics market. Developers had a tendency to use 

reprogrammable devices (simple and complex programmable logic 

devices), instead of application specific integrated circuits (ASIC) to 

develop large and interoperable systems because of their following 

characteristics [XDRM99]: 

• Low cost per gate. 

• Reduces Risk; engineers can make design changes in 

minutes. 
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• Faster Testing and Manufacturing. 

• Ease in Verification. 

• Ability participating in Hardware-Software Co-Design. 

• Versatile support for Input/Output Standards.  

 

2.1.1. History of Programmable Logic 
 

By the late 1970s, standard logic components were exclusively used as 

standard building blocks of logic circuits.  These components (e.g., 

74XX series TTL parts) were located on printed circuit boards (PCBs) 

and any change in logic resulted corresponding revision in PCB layout. 

The side effects encountered, when some part of design changed, was 

able to be avoided by replacing these components with programmable 

logic devices (PLDs). Given that the design in PLDs was flexible, no 

rewiring on PCBs was required. In addition, less board area and power 

was consumed by PLDs. PLDs can be divided in two sets as simple 

and complex PLD.    

 

2.1.1.1. Simple Programmable Logic Device (SPLD) 
 

These devices are mainly used for address decoding [Barr99]. 

   

2.1.1.1.1. Programmable Logic Array (PLA) 
 

Ron Cline from Signetics™ put forward the idea of two programmable 

planes on 1975 [XPM04]. Any combinatorial logic can be expressed in 

the form of two level logics: as product of sums or sum of products. For 

that reason, by using PLA, any combinational logic can be 

implemented, if number of inputs and outputs are enough for required 

implementation. Despite the architecture is very flexible, because of 
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high fuse count, propagation delay is higher than PAL.  Unwanted 

connections (fuse) are blown after programming. 

   

 

Figure 2.1: PLA Architecture 

 
 
2.1.1.1.2. Programmable Array Logic (PAL) 
 

John Birkner from MMI proposed a second alternative for the PLA array 

on 1978. Instead of one programmable planes, the OR array was fixed 

after fabrication [XPM04]. PALs are more constrained than PLAs, but, 

because of fewer connections, they have lower propagation delay.            
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Figure 2.2: PAL Architecture 

 
2.1.1.2. Complex Programmable Logic Device (CPLD) 
 

Macrocells were obtained by extending PLDs with additional flip flops 

(FFs). CPLDs were simply combinations of these macrocells with 

programmable interconnects, switch matrix (SM). SM within CPLD may 

or may not be fully connected unlike the programmable interconnect 

within PLD. In other words, some of theoretically possible connections 

between PLDs may not actually be supported within a given CPLD. 

Therefore 100% utilization of macrocells is very difficult to achieve. 

Some designs will not fit a given CPLD, even though there are sufficient 

logic gates and FFs.  

CPLDs can also be used as address decoders like PLDs, but more 

often as high performance control logic and finite state machines. 

Traditionally, CPLDs have been chosen over FPGAs, whenever high 

performance logic is required [Barr99].   
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Figure 2.3: CPLD Architecture 

 

2.1.1.3. Field Programmable Logic Gate Array (FPGA) 
 

In 1985, a company called Xilinx™ introduced FPGAs, composed of 

configurable logic blocks (CLBs), which are surrounded by 

programmable interconnects and  comprise function generators or look 

up tables (LUTs) and flip flops (FFs). FPGAs can be one time 

programmable similar to PLD or SRAM based (or reprogrammable). 

[XPM04] [TRENZ01] [BZEID]  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: FPGA Architecture 
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2.1.2. Basic Design Process 
 

Design entry or design specification can be in the form of schematic 

capture or hardware description language (HDL). In schematic form, 

after determining the capture tool and the manufacturer’s library, 

designer can connect the gates from library with wires and then 

generates netlist, which is the textual description of the circuit. 

Schematic capture is not feasible for large designs because it is not 

scalable, not reusable, strongly vendor dependent and hard to maintain. 

In HDL design entry, the design is entered in high level description 

language emphasizing design’s function or behavior and then 

synthesized by the vendor independent tool and netlist is generated. 

The design is more maintainable, scalable and reusable than schematic 

design entry. 

 

 

Figure 2.5: Basic Design Flow in FPGAs, ©Xilinx 
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In design implementation, the first step is translation of low level and 

generic netlist file into device specific resources. After translation step, 

mapping step checks the design according to device specific rules, add 

further logic or make replications to meet the timing requirements using 

device resources. At last, in place and route step, already allocated 

resources are distributed along FPGA taking into account the physical 

constraints and routing resources. At this point physical layout is 

determined and timing information for design entities and interconnects 

(Back Annotation) is available. After routing, the device is ready to be 

programmed. 

In device programming stage, the SRAM based FPGA’s configuration, 

which is volatile after power on and also defining the logic and 

interconnect, is programmed to a Programmable Read Only Memory 

(PROM) device with part name xc18v02. 

Design verification is a parallel process to design development. Design 

entry in either schematic or HDL form can be simulated behaviorally, 

while it can be tested based on the code syntax. After synthesis phase, 

generated netlist format can be simulated functionally by providing test 

vectors and tested by checking the desired output vector. Timing 

simulation comes after the place and route phase using back 

annotation.       

      

2.2. Integrated Software Environment (ISE™) 
 

Integrated Software Environment is the environment provided by 

Xilinx™ for Design Entry, Design Synthesis, Design Implementation, 

Design Verification and Device Programming phases (described in 

2.1.2) of design development [XISE03]. MIPS project was created in 

ISE with the project properties given in Figure 2.6. 
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Figure 2.6: MIPS Project Properties Window 

 

Top-Level module for Design Entry is selected as Schematic Capture 

for visualization purposes. All other sub-modules are coded in hardware 

description language VHDL [CDVHDL] [Perry02]. XST (Xilinx Synthesis 

Technology) tool was used to synthesize netlist from VHDL code. 

Modelsim® simulator was selected for post-place and route simulation 

purposes. 
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Figure 2.7: MIPS Project Source File Listing     

 

MIPS project comprise source files describing the architecture of 

entities which are listed in (Figure 2.7) for the following purposes;  

• Design Entry (e.g. file extensions *.vhd and *.sch ) 

• Physical and Timing user constraints files for Design 

Implementation (e.g. file extension *.ucf) 

• Test Bench files for Post-Place and Route Simulation (e.g. file 

extensions *.vhd) 
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• Post-Place and Route simulation macro file which compiles the 

design and Test Bench files, invokes the simulator, loads signals 

to view windows and runs the simulation for specified time 

duration. (e.g. file extension *.do) 

• State Machine editor file (e.g. file extension *.dia) 

• Impactus command file for device programming (e.g. file 

extension *.cmd)     

 
2.3. Virtex™ FPGA 
 

MIPS project is implemented on an xcv300-5bg432 Virtex FPGA device 

with the following properties and layout (Figure 2.8): [XDS003-2] 

[SYNP99] [XCNSTR] [Brown96] 

• 32x48 CLB Array provide functional elements for constructing 

logic connected by global routing matrix or switch matrix (Figure 

2.4), 

• VersaRing™ forms the interface between Input Output Blocks 

(IOBs) and CLBs, 

• 16 Block Rams (BRAMs) each 4096x1 totally 65536x1 bits, 

• 4 Delay-Locked Loops (DLLs) that eliminate the skew between 

the clock input pad and internal clock input pins throughout the 

device,  

• Ball grid 432 package having 316 I/O pins reserved for users 

with speed grade -5 which yields system performance up to 200 

MHz.      
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Figure 2.8: Virtex Architecture Overview ©Xilinx 

 
2.3.1. Function Generation Capabilities of CLB 
 

Each CLB comprises 4 function generator (LUTs) distributed into two 

slices. Each slice contains 2 function generators and additional logic 

that combines the outputs of LUTs and generates 5 (MUXF5) and 6 

(MUXF6) input functions (Figure 2.9). Each slice can generate any 

functions of 5 inputs up to some functions of 9 inputs; hence any CLB 

can generate any functions of 6 inputs up to some functions of 19 

inputs.     

 

Figure 2.9: Function Generator Configuration of CLB 
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2.3.2. Distributed (Shallow) Memory Usage of CLB  
 

Each LUT in a Slice can be configured as 16x1 bit synchronous RAM 

and two LUTs in a Slice can be configured as 16x2 bit or 16x1 bit dual 

port or 32x1 bit synchronous RAM.  

 

2.3.3. Shift Register Configuration of CLB 
 

Each LUT in a slice can be configured as dynamically addressable16 bit 

shift register.  

 

2.3.4. Arithmetic Capabilities of CLB 
 

Each LUT in a slice has a dedicated XORCY gate for single bit sum to 

form a full adder and dedicated carry path (Figure 2.10) which is using 

also dedicated routing resources along vertically adjacent CLBs 

[XAPP215]. By introducing the additional XORCY gate, 2 inputs of LUT 

left as spare and these inputs can be used to implement additional logic 

thereby increasing cell functionality. [TW04] [KCHAP93] [DFMULT]  

 

Figure 2.10: Carry Logic Diagram ©Xilinx      
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Multiplication in FPGA is performed by shifting and adding the partial 

products in parallel fashion. There exists 2 input AND gate per LUT to 

implement 1 bit multiplier [XAPP215] and this pattern repeats 

throughout the multiplier. In case of operands (partial products) are not 

equal to each other CIN signal is propagated (Figure 2.11). Additional 

AND gate is essential to kill or generate COUT signal produced when the 

propagation of CIN signal is stopped (when both operands equal) 

[HPCC].  

 

Figure 2.11: Multiplier Implementation ©Xilinx 

      

2.4. PCI Host Software: In-Circuit Debugging of the Architecture 
 

The “MIPS Monitor” (Figure 2.12) software which is running on PC was 

developed to debug the architecture after generated configuration was 

programmed into the target PROM or a new program is ready to be 

programmed while Virtex FPGA was running [PLXSDK01].  

“MIPS Monitor” uses PCI Application Interface (API) provided by PLX 

Technology™ to read the FPGA’s internal data and program memory, 

pipeline stage’s inputs/outputs, pipeline register states and current PC. 
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It also enables the user to observe stalls and exceptions. It reflects 

information read by using PCI API to its graphical user interface, hence 

to user. 

“MIPS Monitor” uses PCI API provided by PLX Technology™ to write 

the control signals to Virtex FPGA which resets the architecture or 

increment the PC by one thereby enabling single step operation. 

“MIPS Monitor” graphical user interface enables the user by providing 

the following functionalities:  

• Selecting the proper PCI 9030 device which is on the same 

board FPGA placed,  

• Viewing the program which was already assembled and 

programmed to PROM,  

• Viewing, loading and verifying a new program to local block 

instruction memory of FPGA.  

• Inserting break points and running the architecture in single step 

or in free mode by using the graphical user interface of “MIPS 

Monitor”.  
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Figure 2.12: MIPS Monitor Software 

 

The layout of the board used during this thesis is given in APPENDIX D, 

Layout of Board.   
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CHAPTER 3 

 

RELATED RESEARCH 
 
 
 

3.1. MIPS R2000 Instruction Set Architecture (ISA) 
 

MIPS R2000 was first produced in 1988 by MIPS Computer Systems 

and was one of the RISC processors designed at that time. MIPS 

stands for Microprocessor without Interlocked Pipeline Stages and as 

its name implies, by eliminating pipeline interlocks between stages, 

instruction conflicts are resolved. Next generations are: R2010, also 

includes floating point co-processor, R3000 with cache control and 

lastly R4000 a 64 bit version of architecture. MIPS 32- and 64-bit 

architectures are used in networking and consumer device markets, 

such as in car navigation systems, digital television and cameras, video 

game controllers, switches and routers.     

Primary metric to compare performance of Architectures is execution 

time of a program and it is presented in the following equation [COD98]: 

 

Seconds Instruction Count Clock Cycles Seconds 

Program 
= 

Program 
x 

Instruction 
x 

Clock Cycle 

 

The multiplication factors on the right hand side of the equation do not 

determine performance individually, but have an affect. Selected ISA 

affects the instruction count. ISA Implementation scheme which will be 

described in section 3.3 affects clock cycles per instruction (CPI). The 

organization and technology of the architecture affects the clock rate. 
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These factors also depend on each other in inversely proportional 

relationship, making one better makes the other worse. For example 

making instructions complex reduces the instruction count but may 

decrease the clock rate. Good performance can be obtained by, first 

choosing ISA then determining the implementation scheme and last 

determining the technology.     

MIPS (Microprocessor without interlocked Pipeline Stages) R2000 ISA 

has RISC based architecture obeying four design principles [COD98] 

[JGRAY00]; 

• Smaller is faster, MIPS have 32 general purpose register each 

32 bits length. MIPS instructions operate only on registers. 

Registers are smaller hence faster than external memory. 

• Simplicity favors regularity, MIPS’s instructions have the same 

size each 32 bits length and the same number of operands, 

hence decoding and pipelining are simpler compared to 

variable length instructions present in CISC ISA. 

• Good design demand good compromises, MIPS sticks to small 

number of instruction types and addressing modes.  

• Make common case fast (corollary of Amdahl’s law), 

implementing commonly used instructions in fast way makes 

the whole architecture faster.  

 

3.2. MIPS Instructions and MIPS Assembly Language 
 

MIPS instructions can be grouped as Arithmetic, Transfer, Branch, 

Immediate and Jump instructions.  

Arithmetic instructions operates on registers and requires three 

operands, two for source one for destination. The arithmetic or logical 
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operation takes place on two source operands and result is written back 

into destination register.   

Transfer instructions are used for loading data from memory to registers 

or storing data from registers to memory. Transfer instructions require 

two operands. One register content is used as base address and the 

immediate field in the instruction as the offset from base, the other 

register is used either destination address of the value to be loaded or 

the source address of the value to be stored. 

Branch instructions operate on two register operands, evaluate the 

condition and according the result continue execution or take the 

branch by modifying the PC. 

Immediate instructions use the immediate field as an operand. 

Jump instructions are use the immediate field to jump unconditionally by 

modifying the PC.    

The detailed descriptions, functionalities and assembly language 

formats of MIPS R2000 instructions implemented and verified in this 

thesis are presented in APPENDIX A, Implemented Subset of MIPS 

R2000 ISA.   

 

3.2.1. MIPS Instruction Format  
 

General instruction format is given in Figure 3.1.  

 

Figure 3.1: MIPS Instruction Format 

 
The Op field is the opcode of the instruction and used as the primary 

key in instruction decoding. Rs, Rt and Rd fields specify the address of 



 22 

register in operation. ShAmt field specify the shift amount in operation. 

Funct field selects the specific variant of the operation in opcode field. 

 

3.2.2. MIPS Addressing Modes    
 

Immediate addressing (Figure 3.2) means the operand is constant 

within the instruction itself; 

 

 

Figure 3.2: Immediate Addressing Mode 

 
Register addressing (Figure 3.3) means where all operands are 

registers; 

 

Figure 3.3: Register Addressing Mode 

 
Base addressing (Figure 3.4) means where the operand is in memory 

whose address is calculated by adding base address in a register with 

an offset in immediate field. Addressing of memory is implemented as 

word (4 bytes) aligned.   

 

Figure 3.4: Base Addressing Mode  
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PC relative addressing (Figure 3.5) means that the instruction memory 

will be addressed by adding the present PC and the constant in the 

instruction. 

 

Figure 3.5: PC Relative Addressing Mode 

 
Pseudo direct addressing (Figure 3.6) means the Address field in the 

instruction is concatenated with the program counter and the instruction 

memory than addressed.  

 

 

Figure 3.6: Pseudo Direct Addressing Mode 

 
 
3.2.3. MIPS Instruction Decoding   
 

MIPS R2000 instructions implemented and verified in this thesis were 

chosen according their frequency of usage in two totally different 

programs spice and gnu C compiler (gcc). These values were 

calculated from pixie which is an instruction measurement tool 

[COD98].  

MIPS core instructions (all presented in Figure 3.7) cover 95% for gcc 

and 45% for spice. MIPS core instructions dominate gcc and integer 

plus floating point core instructions dominate spice. Instructions that did 
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not cover in this thesis constitute the remaining part 5% for gcc and 

55% for spice. 49% of spice can be covered by simply adding a floating 

point arithmetic core to architecture, which results in 5% for gcc and 6% 

for spice as uncovered. 

Instructions are decoded and control signals are generated based on 

Figure 3.7. Related procedures will be described in detail in 0.     

 

 

Figure 3.7: MIPS Opcode Map and Frequency of Instructions  

 

3.3. Survey of Instruction Set Architectures Implementation 
Schemes 

 

The path which is followed by instructions and data and controlled by 

signals generated by control unit called data path. Each type of 
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instruction follows different path trough architecture because the 

operands on which instruction operates differ.  

Data path is formed by state and combinational logic elements. These 

elements are combined in different organizations and different 

implantation schemes emerge.  

Building architecture requires some sequential decompose and re-unite 

iterations. It is necessary to decompose in order to understand, and it is 

necessary to re-unit in order to build. There exists a contradiction, 

because it is necessary to decompose in order to reunite. This 

contradiction was used as a methodology and followed throughout the 

survey of implementation schemes. Big picture is given first. Then it is 

decomposed and fully understood.     

 

3.3.1. Single Cycle Implementation Scheme 
 

In this scheme (Figure 3.8) single instruction starts on clock edge and 

ends on the next clock edge. The clock rate is determined by the 

slowest instruction; in spite there exists faster instructions in ISA. Hence 

this scheme is impractical to implement but useful to understand. Each 

instruction irrespective of its instruction format is fetched from memory; 

the next PC is calculated by adding 4 byte offset to present PC and 

decoded according to its bit field based on Figure 3.1. The operation on 

registers is determined by the ALUOp control signal which depends on 

the Funct field of the instruction and determined in decode stage.   
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Figure 3.8: Single Cycle Implementation Scheme ©[COD98]  

 

Multiplexers can be used to divide the architecture into smaller pieces. 

The presence of a multiplexer before an input element means that that 

element is used by as many different instruction types as the number of 

inputs of the multiplexer. The select signal, namely the instruction type 

determines the path of the data throughout the architecture for the 

present clock cycle. For instance, the multiplexer with control signal 

ALUSrc determines either ALU is used for address calculation for data 

memory load/store or arithmetic operation on register operands. In 

either case ALU can be used only by one instruction type in the same 

clock, hence some hardware duplications exist in the architecture for 

other calculations such as the adder for next program counter, despite 

the ALU can be used for this purpose. This is another fact which proves 

that this implementation scheme is impractical to implement and its 
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problems will be solved in multi cycle implementation scheme which will 

be described in section 3.3.2.  

Similarly, the multiplexer with control signal MemtoReg determines 

which data will be written to the register bank either the result calculated 

by ALU or the data loaded from data memory.  

The multiplexer with control signal RegDst differentiate R-type and I-

type instructions because the destination register address field is 

different for these types. For R-type instructions, the destination 

address is specified in Rd field whereas in I-type instructions the 

destination address is specified in Rt field (Figure 3.1). 

The multiplexer with control signal PCSrc determines the next PC. The 

next PC is PC+4 bytes for all instruction types except from conditional 

branch. For branch instructions (Branch control signal is asserted) if the 

condition is satisfied (e.g. for “branch on equal” instruction, when the 

operands are the same, their difference will be zero. Hence the ALU’s 

zero output set to ‘1’) the next PC is calculated according to Figure 3.5.            

 

3.3.2. Multi Cycle Implementation Scheme 
 

In this scheme (Figure 3.9) instructions are executed in multi clock 

cycles. Register Blocks are added between functional units to hold the 

temporal values for using on a later clock cycle. Clock rate is 

determined by the slowest functional unit and functional units can be 

used more than once per instruction (e.g. single ALU is used instead of 

an ALU and two adders Figure 3.8) as long as access to this unit occurs 

on different clock cycles. Single memory unit is used instead of 

separate instruction and data memories and multiplexer with control 

signal IorD determines data or instruction access.  
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Figure 3.9:  Multi Cycle Implementation Scheme ©[COD98] 

 

Jump instruction is also shown in the scheme. The multiplexer with 

control signal PCSource selects next program counter calculated based 

on Figure 3.6  when unconditional jump instruction was fetched from 

memory. A more complex control logic compared to single cycle 

implementation scheme is needed and the state flow diagram of control 

unit is given in Figure 3.10.   
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Figure 3.10: State Flow Diagram of Multi Cycle Scheme Control Unit  

 
3.3.3. Pipelined Implementation Scheme 
 

In this scheme (Figure 3.11), there exists single clock cycle between 

subsequent instructions like single cycle implementation scheme.  

Clock rate is as high as multi cycle implementation scheme and is 

determined by the slowest functional unit similar to multi cycle 

implementation scheme. There exist register blocks between functional 

units, which are responsible for storing the information for the next clock 

cycle.  

The difference between multi cycle scheme and pipelined scheme is 

that the instruction does not wait for the previous instruction until the 

end of write back stage and directly fetched from instruction memory 

while the previous instruction is being decoded.  

The same control signals which are valid for single and multi cycle 

schemes are also valid for pipelined scheme, but in contrast to multi 

cycle implementation scheme, special control unit implementation (flow 

diagram was given in Figure 3.10) is not necessary for generation of 

these control signals. Sequencing is inherently present in this scheme 
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and control signals generated in decode stage go with the instruction 

throughout the pipeline and are wasted up until the last stage.  
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Figure 3.11: Pipelined Implementation Scheme ©[COD98] 

 

Pipelining does not improve or speed up the functional units in the 

architecture, instead increases the throughput by decreasing the time 

between instructions. There exist as much instructions as the number of 

stages in the pipeline simultaneously, e.g. while the fifth instruction is 

being fetched (IF) from memory, in the same time, first instruction is in 

write back (WB) stage following five clock cycles its IF stage (Figure 

3.12).   

 

 

 

 



 31 

 CLK1 CLK2 CLK3 CLK4 CLK5 

Instruction 1 IF ID EX MEM WB 

Instruction 2  IF ID EX MEM 

Instruction 3   IF ID EX 

Instruction 4    IF ID 

Instruction 5     IF 

Figure 3.12: Simultaneously Executing Instructions in Pipeline 

 

3.3.4. Quantitative Comparison of  Implementation Schemes  

 

Primary metric to compare performance of Architectures is execution 

time of a program as stated in section 3.1. Pipelined implementation 

scheme has the best features of other implementation schemes, low 

clock cycle per instruction like single cycle scheme which is optimally 

equal to 1 disregarding pipeline hazards described in section 3.4 and 

high clock rate like multi cycle implementation scheme; therefore it is 

expected to give the best performance. It will be a good practice to 

demonstrate the relative performances by giving a realistic example. 

MIPS instructions has the frequency of usage as stated in Figure 3.7 in 

gcc program and number of clock cycles as stated in Figure 3.10 which 

also summarized in Table 1. 

CPI can be calculated by using this table adding the weighted sums of 

instructions in gcc program. 

  

CPI  = 5 x 0.23 + 4 x 0.13 + 3 x 0.19 + 3 x 0.02 + 4 x 0.43 

 = 4.02 
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Table 3.1: Calculation of CPI for Multi Cycle Implementation Scheme  

Instruction Type Frequency Number of Clock 

Cycles 

LOAD 23% 5 

STORE 13% 4 

BRANCH 19% 3 

JUMP 2% 3 

ALU 43% 4 

 

The clock rate or clock cycle period is determined by the slowest stage 

in the pipeline. For second per instruction calculation, clock period shall 

be multiplied with CPI (equation given in section 3.1). Optimal speedup 

is obtained from pipelining by using balanced stages in pipeline. Say 

that each stage is balanced and takes T sec/clock cycle. 

 

IF ID EX MEM WB      

T T T T T      

     IF ID EX MEM WB 

  5T   T T T T T 

Figure 3.13: Single and Multi Cycle Instruction Sequence 

 

For single cycle implementation scheme, single cycle clock period takes 

5T seconds. For multi cycle implementation scheme, single cycle period 

takes T seconds similar to pipelined implementation scheme. Hence, 

the instruction times given in Table 3.2 were obtained. According to this 

table, it can be seen that, pipelined implementation is nearly 5 times 

faster than the other implementation schemes.   
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  Table 3.2: Instruction Time Calculation for Implementation Schemes  

Implementation 

Scheme 

Seconds/Instruction (CPI x sec/clock) 

Single Cycle 1 x 5T = 5T 

Multi Cycle 4.02 x T = 4.02T 

Pipelined  1 x T = T 

              

3.4. Problems and Solutions in Pipelined Architectures 
 

As stated in section 3.3.4, optimal performance and speedup can be 

obtained from pipelining by balancing the stages and full speed usage 

of the pipeline without stalls. In reality this can be not possible always. 

Even perfect balance between pipeline stages can not be adequate 

alone.  

There may be existent restrictions;  

• Dependencies between instructions,  

• Some hardware restrictions to support pipelining,  

• Branches can not be determined until Execute (EX) stage and 

following instructions can be fetched uselessly. 

Detailed explanation how these cases are handled given in the 

following sections.  

    

3.4.1. Structural Hazards 
 

Structural hazards emerged because the underlying hardware does not 

support special instruction combinations which are simultaneously 

present in the pipeline. For example, the instructions 1 and 4 presented 

in Figure 3.12 access the memory in the same clock cycle, CLK4. If the 

instruction memory and the data memory are not separated physically, 
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this architecture can not support this special combination. In clock cycle 

CLK5, both Instruction Decode (ID) and Write Back (WB) stages access 

the register bank, but in this case the hardware clash is avoided by 

using forwarding mechanism which will be described in the section 

3.4.3.       

   

3.4.2. Brach Hazards 
 

 Branch hazards emerged because three instructions, following the 

branch instruction, are already in the pipeline in any case until branch 

condition is evaluated or unconditional jump address determined 

(according to Figure 3.11). In case of branches are taken, these fetched 

instructions must be discarded and the goal of using pipeline in its full 

speed one instruction per clock cycle can not be achieved. Three clock 

cycles are wasted effectively in case of taken branch; assuming branch 

is not taken always.  

In this thesis, the decision making and address calculation mechanism 

moved to ID stage to reduce the wasted time to one clock cycle. The 

assumption which is called delayed branch mechanism, “braches are 

always not taken” is followed. In this case, the following instruction is 

always fetched. In case of taken branch, one slot is left as discarded 

and useless. If the decision is left to compiler as in case in high level 

programming, compilers usually fill this slot with useful instructions 

which are independent from the branch condition. If useful instruction 

can not be found, this slot is filled with well known No Operation (NOP) 

instruction which does not change the internal state of microprocessor. 

A NOP instruction is added manually after every branch in this thesis, 

because programming is done in assembly and compiler support is not 
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present. There exists no special implementation in this thesis which 

detects this hazard and flushes the fetched instruction. 

One delay slot can be easily filled with NOP or with useful instruction, 

but as the pipeline gets bigger, filling slots with useful instructions gets 

also harder. There exists other mechanism proposed in the literature to 

solve this problem. Dynamic prediction mechanism with additional 

hardware is one of them, which depends on the past statistics collected 

for that branch point. The decision is made based on this statistics 

which is changing in time with conditions.                  

 

3.4.3. Data Hazards 
 

Data hazards emerged because an instruction which depends on the 

previous instruction is in the pipeline and previous instruction did not 

finish its work, for example does not write back the calculated result to 

destination register. In this type of hazard, the solution is not left to 

compilers entirely like the branch hazard described in 3.4.2 and tried be 

solved with hardware if possible. The hazard will appear when the 

destination register of the previous instruction in either EX, MEM or WB 

stage is the same as the one of the source registers of the current 

instruction which is in the ID stage. In Figure 26, data hazard is 

resolved by forwarding data from EX, MEM and WB stages of the first 

instruction to ID stages of following instructions which has a without 

waiting to complete first instruction to WB its destination register R1.  
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Figure 3.14: Data Hazard Solution by Forwarding 

 

The data hazard must be resolved in ID stage before register bank 

access and branch decision. A NOP instruction is inserted into the 

instruction sequence, if hazard can not be solved and time is gained for 

resolution by using forwarding in the next clock cycles. In Figure 3.15, 

hazard can not be solved by just using forwarding, because the result 

for destination register R2 will be not available until memory access. 

Therefore, pipeline is stalled for one clock cycle and data hazard is 

resolved in the next clock cycle by forwarding data from Data Memory 

(MEM) stage of previous instruction to ID stage of the current 

instruction.  

 CLK1 CLK2 CLK3 CLK4 CLK5 CLK6 

lw R2,100(R1) IF ID EX MEM WB  

and R4,R2,R5  STALL IF ID EX MEM 

or R8,R2,R6     IF ID EX 

Figure 3.15: Data Hazard Solution by Stalling and Forwarding 

 

Some extra precautions must be taken into account while using 

forwarding mechanism. In Figure 3.16, the result obtained in clock cycle 

CLK4 from the addition of second instruction is forwarded from EX 

 CLK1 CLK2 CLK3 CLK4 CLK5 

add R1,R2,R3  IF ID EX MEM WB 

sub R4,R1,R2   IF ID EX MEM 

xor R6,R7,R1   IF ID EX 

add R8,R1,R1    IF ID 

sw R9, 100(R1)     IF 
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stage instead of the result obtained in clock cycle CLK3 from MEM 

stage, because it is more recent.    

 

 CLK1 CLK2 CLK3 CLK4 CLK5 

add R1,R1,R2 IF ID EX MEM WB 

add R1,R1,R3  IF ID EX MEM 

add R1,R1,R4   IF ID EX 

Figure 3.16: Forwarding of the Most Recent Data 

 
3.4.4. Exception Hazard  
 
Hardware shall prevent completion of instructions which are following 

the instruction which cause exception and let all prior instructions to 

complete. Internal register blocks shall be flushed to prevent them to 

effect Register Bank and Data Memory. Program Counter shall be 

equated to special address like Branch or Jump instruction case. This 

address is generally called as interrupt or exception vector.  
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CHAPTER 4 

 

IMPLEMENTATION OF MIPS PIPELINED 
ARCHITECTURE 

 
 
 

This chapter describes the internal structure of the processor and the 

auxiliary structures to monitor and manipulate the internal registers of 

the processor. Internal structures of the processor are constituted by 

combining the following primary units and their subunits. (Figure 4.1: 

Internal Structure of the Pipelined Processor)  

• Instruction Fetch Unit (IF_Unit) 

o Instruction Memory (256x32bit block memory) 

• Instruction Decode Unit (ID_Unit) 

o Register Bank (dual port 32x32bit block memory) 

• Forwarding and Hazard detection Unit (FORWD_HZRD Unit) 

• Control Unit (CONTROL_Unit) 

• Execute Unit (EXECUTE_Unit) 

• Data Memory Unit (256x32bit block memory) 

• Exception Detection Unit (EXCEPTION_DTCT_UNIT) 

• Four register blocks responsible for storing information between 

clock cycles and located between Units; 

o Instruction Fetch - Instruction Decode (IF_ID Unit) 

o Instruction Decode - Execute (ID_EX Unit)  

o Execute - Data Memory (EX_MEM Unit) 

o Data Memory – Instruction Decode (MEM_WB Unit) 
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Auxiliary structures of the processor are constituted by combining the 

following units. Units and their interconnections are presented in Figure 

4.2. 

• Clock Delay Locked Loop to eliminate the skew between clock 

input pad and the internal clock input pins (CLKDLL Unit) 

• Interface between the processor and the PCI Bridge (pci_9030 

Unit) 

• External reset of the processor (reg_wr Unit) 

• External programming of the Instruction Memory (reg_prg Unit) 

• External single step execution of processor (wait_sm Unit) 

• External reading of internal state of register blocks (reg Units) 

• Processor itself (top_level Unit) 
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Figure 4.1: Internal Structure of the Pipelined Processor
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Figure 4.2: External Structure of the Pipelined Processor 
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4.1. Internal Structure of the Processor 
 

In this section the primary building blocks are described in detail by 

stating their functions and input/output signals (in figures, inputs are 

placed on the left and outputs are placed on the right). General signals 

which are common for majority of building blocks are described here. 

Remaining signals are described in related building block sections. 

Every signal is described once that means the same input signal of 

various blocks is also an output signal of single block; therefore there 

will be a cross reference (links can be followed by CTRL + Click in this 

document) input signal definition section of each block to output signal 

definition section of source block of the signal in which the same signal 

is described in detail to avoid redefinition. During definition of signal 

levels, ”set” means logic level 1 and reset means logic level 0.  

CLK (1 bit) and RESET (1 bit): Internal clock (20 MHz) and internal 

reset signals. These signals are active high signals. 

Register_Dest (5 bit): This signal is transferred across all pipelines for 

instructions which will write to Register Bank in WB stage.   

 

4.1.1. Instruction Fetch Unit 
 

The design of the Instruction Fetch Unit is realized by using HDL 

Design entry method. Instruction Fetch Unit includes the subunit 

Instruction Memory (256x32bit block memory) from which instructions 

are fetched in every clock cycle except when an unresolved (load/store) 

hazard exists in the pipeline which ends up with pipeline stall. The 

hardware flow diagram of this building block is given in APPENDIX C, 

Figure C.1: Instruction Fetch Unit Flow Diagram. 
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4.1.1.1.  Input/Output Signals of Instruction Fetch Unit 
 
The connections of Instruction Fetch Unit with other units can be seen 

in Figure 4.1: Internal Structure of the Pipelined Processor.  All 

Input/Output signals can be seen in Figure 4.3: Input/Output Signals of 

Instruction Fetch Unit.  

Output signals are as the following; 

Current_PC (8 bit): Signal goes to auxiliary structures to monitor the 

present state of the Program Counter. 

Incremented_PC (32 bit): Signal goes to Instruction Decode Unit and 

forwarded until WB stage for jal instruction, because this instruction 

writes the return address into Register Bank address 31 for later usage 

in return from subroutine (by using jr instruction). This signal is also 

used in instruction decode stage to calculate the branch and jump 

address. 

Instruction (32 bit): Signal which is fetched from instruction memory 

goes to Instruction Decode and Control Units. Instruction is parsed into 

fields according to Figure 3.1 in Instruction Decode unit and control 

signals are generated in Control Unit. These signals are  passed to 

internal register blocks for further evaluation of the parsed fields in the 

following clock cycles after decode stage. 

Wait_Stages (1 bit): Signal is OR’ed with pci_wait signal and goes to all 

internal registers between building blocks. If this signal is set that 

means, memory access (instruction memory, data memory and 

Register Bank access requires one clock cycle) is taking place and all 

processor stages are stopped during this signal is set which 

corresponds to one clock cycle period. Program Counter is also not 

updated during this signal is set. 
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Figure 4.3: Input/Output Signals of Instruction Fetch Unit 

       

Input Signals are as the following; 

Exception (1 bit): Exception Detection Unit output signal.  

Exception_Address (32 bit): Exception Detection Unit output signal. 

Branch_Addr (32 bit): Instruction Decode Unit output signal. 

Equal (1 bit): Instruction Decode Unit output signal. 

IF_Control (3 bit): Control Unit output signal. 

Program_Data (31 bit) and Program_WE (1 bit): Signals are fed from 

external sources and used when in external programming mode. These 

signals are useless in normal operating mode of the processor. 

Pci_wait (1 bit): Signal comes from external source and used as single 

step execution trigger. Program Counter is updated during the clock 

rising edges if and only if this signal is not set. 

Unresolved (1 bit): Forwarding and Hazard detection Unit output signal.  
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4.1.1.2.  Function of Instruction Fetch Unit        
 

The primary function of Instruction Fetch Unit is to fetch instructions 

from Instruction memory and send it to Control and Decode Units for 

processing. If Wait_Stages or Pci_wait or Unresolved signal is set, 

current program counter retains its value, hence the same instruction is 

fetched from memory on the next clock cycle. If a branch or jump 

instruction is in decode stage inspecting the IF_CONTROL signal, next 

program counter is determined according to evaluation of Equal and 

Branch_Address signals. During instruction memory access, 

Wait_Stages signal is set and processor is stopped for one clock cycle. 

On the next clock cycle, Wait_Stages signal will be in reset state and 

processor is allowed to run, hence during operation of processor 

Wait_Stages signal toggles. This halves the processor’s effective clock 

speed from 20 MHz to 10 MHz. If RESET signal is set, Program 

Counter is set to byte address 16 after overflow exception vector. In 

case of an exception PC is set to proper exception vector. If 

Program_WE signal is set, Instruction memory enters in external 

programming mode and on every clock cycle Program_Data signal is 

written to Instruction Memory sequentially.  

 

4.1.2. Instruction Decode Unit       
 

The design of the Instruction Decode Unit is realized by using HDL 

Design entry method. Instruction Decode unit includes the subunit 

Register Bank (dual port 32x32bit block memory) from which operands 

on which operations take place are fetched and to which operation 

results or loaded data from data memory are stored  in every clock 

cycle. The hardware flow diagram of this building block is given in 

APPENDIX C, Figure C.2: Instruction Decode Unit Flow Diagram.  
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4.1.2.1. Input/Output Signals of Instruction Decode Unit 
 

The connections of Instruction Decode Unit with other units can be seen 

in Figure 4.1: Internal Structure of the Pipelined Processor.  All 

Input/Output signals can be seen in Figure 4.4: Input/Output Signals of 

Instruction Decode Unit. 

 

Output signals are as the following; 

ALU_PORTA (32 bit): Signal goes to ALU port A for evaluation 

according to instruction present in EX stage. This signal can come from 

the other stages by forwarding or represents shift amount for sll and srl 

instructions. 

ALU_PORTB (32 bit): Signal goes to ALU port B for evaluation 

according to instruction present in EX stage. This signal can come from 

the other stages by forwarding or represents Incremented Program 

Counter for jal instruction or zero or sign extended immediate field 

according to control signal. For memory store operation sw, this signal 

represents the data which will be stored to data memory and directly 

forwarded to MEM stage. 

Avlb_Stage (2 bit): Signal goes to Forwarding and Hazard detection 

Unit and is used to determine if unresolved data hazard which ends up 

with pipeline stall is present. If the result of the instruction in EX stage 

will be available in MEM stage (lw instruction’s Avlb_Stage is equal to 

MEM) and the destination of the instruction is the same as the one of 

the source operands of the instruction present in ID stage then pipeline 

is stalled for one clock cycle and data hazard is resolved using 

forwarding mechanism. 
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Branch_Addr (32 bit): Signal goes to Instruction Fetch Unit and used to 

determine the value of next program counter if a conditional or 

unconditional branch instruction is present in instruction decode stage. 

Imm_Sign_Extended (32 bit): Signal goes to Execute Unit and used to 

calculate the destination register address for sw instruction. The base 

address is carried to Execute Unit via Port A like lw instruction, but the 

offset can not be carried via Port B. Port B represents the data which 

will be stored in data memory for this instruction hence this signal was 

needed to be transferred. 

Register_Dest (5 bit): General signal which represents the destination 

register which will be used in WB stage. 

rs (5 bit), rt (5 bit), Unresolved_A (32 bit) and Unresolved_B (32 bit): 

Signals go to Forwarding and Hazard detection Unit. Rs and Rt 

represent the source addresses of operand registers and are compared 

with instruction’s destination register address in either EX, MEM or WB 

stages. Forwarding Unit will determine the data hazard is present. If no 

hazard is detected, the Unresolved_A and Unresolved_B which 

represent the values in register Bank addresses Rs and Rt will be 

forwarded to ALU ports. 

EN_RD (1 bit) and EN_WR (1 bit): Signals go to auxiliary structures to 

monitor the present state of the read and write enable pins of Register 

Bank They were used during development and currently not used. 

Equal (1 bit): Signal goes to Instruction Fetch Unit and if set that means 

operands on which conditional branch instruction was applied are 

equal, if not set, inequality condition is true.    



 48 

 

Figure 4.4: Input/Output Signals of Instruction Decode Unit  

 

Input signals are as the following;  

DataA (32 bit) and DataB (32 bit): Forwarding and Hazard detection 

Unit output signals. (ResvDataA and ResvDataB) 

ID_Control (11 bit): Control Unit output signal. 

Incremented_PC (32 bit): Instruction Fetch Unit output signal. 

Instruction (32 bit): Instruction Fetch Unit output signal. 

Write_Data (32 bit), Write_Register (5 bit) and Reg_Write (1 bit): These 

signals are WB stage signals and Write_Register determines the 

address of the Register Bank in which the Write_Data will be written if 

Reg_Write signal is set and Write_Register (destination address) is not 

equal to 0, because the register address 0 is named as $zero register 

and it is not allowed writing to this address. 

Wait_MEM (1 bit): Signal is generated by OR’ing the output signal 

Wait_Stages of Instruction Fetch Unit and the external one step execute 
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trigger signal Pci_wait. If this signal is set, the EN_WR signal is set and 

if this signal is reset EN_RD signal is set, hence the Register Bank is 

written first and after that it is read.                

 

4.1.2.2. Function of Instruction Decode Unit 
 

The functions of Instruction Decode Unit are; 

• Preparing the Register Bank addresses and register contents to 

determine final resolved values on which the instruction in ID 

stage will operate in following stages, 

• Access the Register Bank for writing and reading, 

• Make the evaluation of conditional branch and determine the 

final branch and jump address and fed it to Instruction Fetch 

Unit.   

 

4.1.3. Forwarding and Hazard Detection Unit 
 

The design of the Forwarding and Hazard Detection Unit is realized by 

using HDL Design entry method. The hardware flow diagram of this 

building block is given in APPENDIX C, Figure C.3: Forwarding and 

Hazard Detection Unit Flow Diagram. 

 

4.1.3.1. Input/Output Signals of Forwarding and Hazard Detection 
Unit 

 

The connections of Forwarding and Hazard Detection Unit with other 

units can be seen in Figure 4.1: Internal Structure of the Pipelined 

Processor. All Input/Output signals can be seen in Figure 4.5: 

Input/Output Signals of Forwarding and Hazard Detection Unit. 

Output signals are as the following; 



 50 

ResvDataA (32 bit) and ResvDataB (32 bit): Signals go to the DataA 

and DataB inputs of Instruction Decode Unit and then forwarded to ALU 

ports taking into account the control signals. The final values of these 

signals are determined by using the input signals and VHDL code is 

given below; 

 

Table 4.1: Forwarding Mechanism for Register Bank Primary Port 

ResvDataA <= ID_Value when ((ID_RegWrite = '1') and (ID_RegDst = Rs) and (ID_RegDst /= "00000")) 

else EX_Value when ((EX_RegWrite = '1') and (EX_RegDst = Rs) and (EX_RegDst /= "00000"))  

else WB_Value when ((WB_RegWrite = '1') and (WB_RegDst = Rs)  and (WB_RegDst /= "00000"))  

else Unresolved_A; 

 
 

Table 4.2: Forwarding Mechanism for Register Bank Secondary Port 

 

ResvDataB <= ID_Value when ((ID_RegWrite = '1') and (ID_RegDst = Rt) and (ID_RegDst /= "00000"))  

else EX_Value when ((EX_RegWrite = '1') and (EX_RegDst = Rt) and (EX_RegDst /= "00000"))  

else WB_Value when ((WB_RegWrite = '1') and (WB_RegDst = Rt) and (WB_RegDst /= "00000")) 

else  Unresolved_B;   

 

Unresolved (1 bit): Signal goes to Instruction Fetch Unit and like the 

pci_wait signal, Program Counter is updated during the clock rising 

edges if and only if this signal is not set. When this signal is set that 

means an unresolved (load/store) hazard exists in the pipeline which 

ends up with pipeline stall. Program Counter and also IF_ID are not 

updated during to stall because it is desired to not to lose instruction 

fetched and decoded during stall. NOP instruction is inserted in ID_EX 

stage when this signal is set.  
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Figure 4.5: Input/Output Signals of Forwarding and Hazard Detection Unit 

 

Input signals are as the following; 

ID_AVLB (2 bit), ID_RegDst (5 bit), ID_Value (32 bit), ID_RegWrite (1 

bit): These signals come from ID_EX register block which is located 

between ID and EX stages. These values are written by the instruction 

which is currently in EX stage and these values are used to determine 

the ResvDataA and ResvDataB. ID_AVLB and ID_RegDst are used to 

determine the value of Unresolved.  

EX_AVLB (2 bit), EX_RegDst (5 bit), EX_Value (32 bit), EX_RegWrite 

(1 bit): These signals come from EX_MEM register block which is 

located between EX and MEM stages. These values are written by the 

instruction which is currently in MEM stage and these values are used 
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to determine the ResvDataA and ResvDataB.  EX_AVLB is not used for 

any purpose. 

WB_RegDst (5 bit), WB_Value (32 bit) and WB_RegWrite (1 bit): These 

signals come from MEM_WB register block which is located between 

MEM and WB stages. These values are written by the instruction which 

is currently in WB stage and these values are used to determine the 

ResvDataA and ResvDataB. 

Rs (5 bit), Rt (5 bit), Unresolved_A (32 bit) and Unresolved_B (32 bit): 

Instruction Decode Unit output signals. 

 

4.1.3.2. Function of Forwarding and Hazard Detection Unit 
 
The function of Forwarding and Hazard Detection Unit is to determine 

data hazards and if possible solving this hazards either by forwarding or 

stalling the pipeline.     

 

4.1.4. Control Unit 
 

The design of the Control Unit is realized by using HDL Design entry 

method. The hardware flow diagram of this building block is not given in 

APPENDIX C, because the outputs of this block goes to other blocks as 

input and all of this signals are defined in destination unit’s flow 

diagrams.   

 

4.1.4.1. Input/Output Signals of Control Unit 
 

The connections of Control Unit with other units can be seen in Figure 

4.1: Internal Structure of the Pipelined Processor. All Input/Output 

signals can be seen in Figure 4.6: Input/Output Signals of Control Unit. 

Output signals are as the following; 
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IF_Control (3 bit): Signal goes to Instruction Fetch Unit and first bit 

(MSB), if set means beq instruction is present in decode stage, second 

bit, if set means bne instruction is present in decode stage and third bit 

(LSB), if set means either j, jal or jr instruction is present in decode 

stage. 

ID_Control (11 bit): Signal goes to Instruction decode unit and the 

control word bits are set according to instructions present in ID stage. 

The resulting signals describe the operands, destination register and 

effect the branch address calculation. The dependency between ID 

Control word, the instruction present in ID and the effected outputs are 

given in Table 4.3.   

 

 Table 4.3: ID_Control Signal Fields 

10 9 8 7 6 5 4 3 2 1 0 

beq,

bne 

jal jr Not 

Used 

lw 

o/w 

Not 

Used 

00XX� ALUA, ALUB are registers values, Reg_Dest� Rd  

1X0X� ALUA = 0, Reg_Dest� Rd  

1X1X� ALUA = Shift Amount, Reg_Dest� Rd 

For the following instructions if word start with 01, 

Reg_Dest� Rt else Reg_Dest� Rd   

X1X0� ALUB = Zero Extended Immediate 

X1X1� ALUB = Sign Extended Immediate 

Not 

Used 

   

EX_Control (5 bit): Signal goes to ID_EX register block and consumed 

in EX stage. Signal identifies ALU operation applied to inputs at ALU 

ports and also called ALUOp signal. The numeric and literal ALUOp 

values are given in Table 4.4.  

 Table 4.4: EX_Control ALUOp Signal Values 

Literal 
ALUOp 

Numeric 
ALUOp Comment 

 ALU_ADD 00000  rd <= rs+rt, signed, overflow exception generated  
 ALU_ADDU 00001  rd <= rs+rt, unsigned, overflow exception NOT generated  
 ALU_AND 00010  rd <= rs AND rt 
 ALU_EMPTY 00011  ALU_RESULT <= TRUE 
 ALU_MFHI 00100  ALU internal multiplication register to general purpose register 
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Literal 
ALUOp 

Numeric 
ALUOp Comment 

(GPR),  rd <= HI 
 ALU_MFLO 00101  ALU internal multiplication register to GPR,  rd <= LO 
 ALU_MTHI 00110  GPR to ALU internal multiplication Register,  HI <= rs 
 ALU_MTLO 00111  GPR to ALU internal multiplication Register,  LO <= rs 
 ALU_MULT 01000  HILO <= rs * rt, signed (not implemented) 
 ALU_MULTU 01001  HILO <= rs * rt, unsigned 
 ALU_NOR 01010   rd <= rs NOR rt 
 ALU_OR 01011  rd <= rs OR rt 
 ALU_SLL 01100  rd <= (rt << shift amount) 
 ALU_SLT 01101  rd <= (rs < rt), signed  
 ALU_SLTU 01110   rd <= (rs < rt), unsigned 
 ALU_SRL 01111  rd <= (rt >> sa) 
 ALU_SUB 10000  rd <= rs-rt, signed, overflow exception generated 
 ALU_SUBU 10001  rd <= rs-rt, unsigned, overflow exception NOT generated 
 ALU_XOR 10010  rd <= rs XOR rt 
 ALU_DATAB 10011  ALU_RESULT <= OperandB 
 ALU_BEQ 

10100 
 if (op1 == op2) then branch, 18-bit signed offset added to PC, 
+-128KBytes    

 ALU_BNE 

10101 
 if (op1 != op2) then branch, 18-bit signed offset added to PC, 
+-128KBytes 

 ALU_LUI 10110  rt <= (immediate<<16) 
 ALU_SW 10111  MEM[$rs + signed(Immediate)] <= rt    
ALU_EXPT 

11000 
Undefined Instruction in Decode stage, Exception will be 
generated 

 

MEM_Control (2 bit): Signal goes to ID_EX register block and 

consumed in MEM stage. First bit (MSB) if set indicates a memory read 

operation will take place (e.g. for lw instruction) in MEM stage, second 

bit (LSB) if set indicates a memory write operation will take place (e.g. 

for sw instruction) in MEM stage. 

WB_Control (1 bit): Signal goes to ID_EX register block and consumed 

in WB stage. Signal is also called RegWrite and indicates a register 

write operation will take place in WB stage.     
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Figure 4.6: Input/Output Signals of Control Unit 

 

Input signals are as the following; 

Instruction (32 bit): Instruction Fetch Unit output signal. 

 

4.1.4.2. Function of Control Unit 
 
The function of Control Unit is to determine control signal values of an 

instruction which is in decode stage. These control signals move with 

the instruction throughout the pipeline and are wasted up until the last 

WB stage. 

 

4.1.5. Execute Unit 
 

The design of the Execute Unit is realized by using HDL Design entry 

method. The hardware flow diagrams of this building block are given in 

APPENDIX C, Figure C.4: Instruction Execute Unit Flow Diagram and 

Figure C.5: Instruction Execute Unit (continued) Flow Diagram. 
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4.1.5.1. Input/Output Signals of Execute Unit 
 

The connections of Execute Unit with other units can be seen in Figure 

4.1: Internal Structure of the Pipelined Processor. All Input/Output 

signals can be seen in Figure 4.7: Input/Output Signals of Execute Unit. 

Output signals are as the following; 

Result (32 bit): Signal goes to Data Memory Unit and if result contains 

the memory address for load/store instructions, signal will be wasted in 

MEM stage, else if this result represents a register write operation 

signal will be wasted in WB stage. 

OverFlow (1 bit): Signal goes to Exception Detection Unit and indicates 

that there is an arithmetic overflow occurred in signed operation.  

Undefined (1 bit): Signal goes to Exception detection Unit and indicates 

that there was an undefined instruction (an instruction which is not 

defined in APPENDIX A, Implemented Subset of MIPS R2000 ISA) in 

ID stage in previous clock cycle.  

 

 

Figure 4.7: Input/Output Signals of Execute Unit 

 

Input signals are as the following; 

ALU_OP (5 bit): Control Unit output signal (EX_Control). 
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ALU_Src_A (32 bit): Instruction Decode Unit output signal 

(ALU_PORTA). 

ALU_Src_B (32 bit): Instruction Decode Unit output signal 

(ALU_PORTB). 

Sign_Extend (32 bit): Instruction Decode Unit output signal 

(Imm_Sign_Extended). 

 

4.1.5.2. Function of Execute Unit 
 

The function of Execute Unit is to realize the arithmetic and logical 

operations (Table 4.4) and generate overflow, undefined exception and 

result signals accordingly and to calculate memory addresses for data 

memory access operations. 

 

4.1.6. Data Memory Unit 
 

The design of the Data Memory Unit is realized by using HDL Design 

entry method. Data Memory Unit includes the subunit Data Memory 

(256x32bit block memory) from which data is retrieved with lw 

instruction and to which data is stored with sw instruction in every clock 

cycle. The hardware flow diagram of this building block is given in 

APPENDIX C, Figure C.6: Data Memory Unit Flow Diagram. 

 

4.1.6.1. Input/Output Signals of Data Memory Unit 
 

The connections of Data Memory Unit with other units can be seen in 

Figure 4.1: Internal Structure of the Pipelined Processor. All 

Input/Output signals can be seen in Figure 4.8: Input/Output Signals of 

Data Memory Unit. 

Output signals are as the following; 
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Read_Data (32 bit): Signal goes to WB stage. Signal includes either the 

result of ALU operation obtained in EX stage in case MEM_Control 

signal does not indicate a memory read operation or the content of the 

data memory at Address signal in case MEM_Control signal indicates a 

memory read operation. 

 

Figure 4.8: Input/Output Signals of Data Memory Unit 

 

Input signals are as the following; 

Address (32 bit): Execute Unit output signal (Result). 

MEM_Control (2 bit): Control Unit output signal. 

Write_Data (32 bit): Decode Unit output signal (ALU_PORTB). 

 

4.1.6.2. Function of Data Memory Unit 
 

The function of Memory Unit is to realize data memory access 

operations either read or write according to control signal MEM_Control. 

Data fetched from data memory is forwarded WB stage via Read_Data 

signal.  

 

4.1.7. Exception Detection Unit 
 

The design of the Exception Detection Unit is realized by using HDL 

Design entry method. The hardware flow diagram of this building block 
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is given in  APPENDIX C, Figure C.7: Exception Detection Unit Flow 

Diagram. 

 

4.1.7.1. Input/Output Signals of Exception Detection Unit 
 

The connections of Exception Detection Unit with other units can be 

seen in Figure 4.1: Internal Structure of the Pipelined Processor.  All 

Input/Output signals can be seen in Figure 4.9: Input/Output Signals of 

Exception Detection Unit. 

Output signals are as the following; 

Exception (1 bit): Signal goes to Instruction Fetch Unit and to flush pin 

of internal register block s IF_ID, ID_EX and EX_MEM. Internal register 

blocks flush their contents when this signal is set. The internal register 

block MEM_WB will not be flushed, because exception did occur after 

the instructions which are currently (while exception occurred) in MEM 

and WB stage. It is allowed these instructions to complete. Instruction 

Fetch Unit uses this signal to determine next program counter. This 

signal has precedence over Branch instructions. 

Exception_Address (32 bit): Signal goes to Instruction Fetch Unit and is 

used an equated to Next Program Counter, when Exception signal is 

set. Byte address 0 in Instruction Memory is reserved for undefined 

instruction exception and there is an infinite loop located at this position. 

Byte address 8 is reserved for overflow exception and there is another 

infinite loop at this position. These 4 word address region can not be 

programmed by the user and can be thought as the exception handling 

routines.  
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Figure 4.9: Input/Output Signals of Exception Detection Unit 

 

Input signals are as the following; 

OverFlow (1 bit): Execute Unit output signal. 

Undefined (1 bit): Execute Unit output signal.  

 

4.1.7.2. Function of Exception Detection Unit 
 

The function of Exception Detection Unit is to set Exception signal in 

case either OverFlow or Undefined signal is set in EX stage. The 

exception address vectors are located at byte address 0 for undefined 

instruction and 8 for overflow exception in arithmetic instruction.  

 

4.1.8. Register Blocks between Stages of Processor  
 

Register Blocks are simply blocks which retain information for one clock 

cycle period and no arithmetic processing takes place on data. Starting 

with current clock edge, processing also starts and must end on next 

clock edge, because register blocks will be overwritten. These elements 

are placed between: 

• Instruction Fetch - Instruction Decode (IF_ID Unit) 

• Instruction Decode - Execute (ID_EX Unit)  

• Execute - Data Memory (EX_MEM Unit) 

• Data Memory – Instruction Decode (MEM_WB Unit) 

The hardware flow diagram of this building block is given in APPENDIX 

C, Figure C.8: Register Block Unit Flow Diagram. 
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Input signals are as the following in general; 

Unresolved (1 bit):  Forwarding and Hazard Detection Unit output 

signal. 

Wait_Stages (1 bit): Instruction Fetch Unit output signal. 

Exception (1 bit): Exception Detection Unit output signal.  

 

4.2. External Structure of the Processor 
 

In this section auxiliary structures are described in detail by stating their 

functions and input/output signals (in figures, inputs are placed on the 

left and outputs are placed on the right). Auxiliary structures are 

implemented to reveal the internal state of the processor by monitoring 

register blocks, which are placed between building blocks. In addition, 

auxiliary structures enable the user to manipulate the processor, e.g. 

user can reset the processor, execute the program on instruction 

memory for single step and program instruction memory of the 

processor externally.  

Host monitor software (MIPS Monitor software described in section 2.4) 

writes to PCI and reads from PCI local addresses by using PlxApi 

library. PlxApi runs on host platform accessing to PCI bus which 

operates with 33 MHz and 32 bits wide. Pci_9030 interface monitors 

read and write transactions on PCI Bus initiated by MIPS Monitor 

software staying on local side which operates with 40 MHz local bus 

clock and 32 bits wide. The procedure how Pci_9030 interface detects 

transactions is described in [PLXSDK02]. Hence external structures of 

processor operate at 40 MHz while processor is operating at 20 MHz. 

This can be achieved by using CLKDLL Unit. CLKDLL Unit minimizes 

the clock skew between the input pad from which clock enters to FPGA 

and distributed clock across the FPGA. CLKDLL can also change the 



 62 

phase or the frequency of the clock by multiplying or dividing it by a 

constant. The clock frequency is divided by two to obtain the 20 MHz in 

the clock pins of the processor [XLBR04].             

 

4.2.1. External Monitoring of the Processor      
  

Reg Unit is developed for this purpose. MIPS Monitor software sends a 

PCI read request from a specified local address. Reg Unit (Figure 4.10) 

takes the local address from addr (26 bit) signal and compares it with 

the baddr (26 bit) signal. If they are equal and the rd signal is set, dout 

(32 bit) is forwarded to pci_9030 interface and then PCI bus. MIPS 

software reflects this information to the user via its graphical user 

interface.   

 

 

Figure 4.10: Input/Output Signals of Reg Unit  

 

Base addresses from 1 to 10 (total 40 bytes) is reserved for monitoring 

of internal signals of the processor. The stage names attached to signal 

names represents the stage from which the signal is monitored (e.g. 

EX_Reg_Dst signal represents the destination register of the instruction 

which is currently in EX stage, similarly MEM_Reg_Dst represents the 

destination of the instruction in MEM stage and WB_Reg_Dst 

represents the destination of the instruction in WB stage). Base 
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addresses their corresponding processor register blocks are given 

Table 4.5: 

Table 4.5: Base Addresses of Processor’s Internal Signals  

Base 

Address 

Internal Signals that can be Presented by MIPS Monitor Software 

1 EX_OVFL, EX_Reg_Dst(5 bit), MEM_Reg_Dst(5 bit), WB_Reg_Dst(5 bit), ID_Incr_PC(8 bit), 

curr_pc(8 bit) 

2 ID_Instruction (32 bit) 

3 EX_ALUA (32 bit) 

4 EX_ALUB  (32 bit) 

5 EX_ALU_RES  (32 bit) 

6 MEM_ADDR (32 bit) 

7 MEM_WRITE_DATA  (32 bit) 

8 MEM_READ_DATA  (32 bit) 

9 WB_REG_WR_DATA  (32 bit) 

10 EN_RD, EN_WR, MEM_WAIT, ID_Unresolved, EX_AVLB(1:0) 

 

 

4.2.2. External Manipulation of the Processor 
 

Reg_Wr, Reg_Prg and Wait_Sm Units are developed to manipulate the 

state of the processor. MIPS Monitor software sends a PCI write 

request and data to a specified local address. According to data, next 

action will be determined.  
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Figure 4.11: Input/Output Signals of Reg_Wr Unit  

 

Reg_Wr Unit (Figure 4.11) which is developed to enable of external 

reset of the processor takes the local address from addr (26 bit) signal 

and compares it with the baddr (26 bit) signal. If they are equal and the 

wr signal is set and the din (32 bit) is equal to 2 then dout which is 

connected to reset pin of the processor is set. 
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(wr='1')
and

(addr="00000000000000000000000000")
and

(din="00000000000000000000000000000001")

rst

wait_int

rst

pci_wait

din[31:0]

addr[25:0]

idle_s

no_wait1

wait_int <= '1';

no_wait2

wait_int <= '1';

idle_s

no_wait3

wait_int <= '1';

no_wait4

wait_int <= '1';

 

Figure 4.12: StateCAD Diagram of Wait_Sm Unit  

 

Wait_Sm Unit (Figure 4.12) is developed to enable the processor for 

single step operation. The Input/Output signals are quite similar to 

Reg_wr Unit. The only difference is, instead of dout output, pci_wait 

signal is outputted from Wait_Sm Unit. The design of the Wait_Sm is 

realized by using state machine entry method StateCAD tool provided 

by Xilinx ISE. If addr signal is base address (base address 0 is reserved 

for single cycle operation), signal wr is set and din equals to 1, then 

pci_wait output stays reset during four clock cycles and processor is 

enabled to operate during this interval. Since processor operate at half 

frequency of external world, this duration corresponds to two processor 
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clock cycles. Processor access memory and pipeline advances one 

step within this time.  

       

 

Figure 4.13: Input/Output Signals of Reg_Prg Unit 

 

Reg_Prg Unit (Figure 4.13) which is developed for external 

programming and includes a program memory (256x32 bits). Reg_Prg 

takes the local address from addr (26 bit) signal and compares it with 

the baddr (26 bit) signal (Base address 11 is reserved for external 

programming). If they are equal and the wr signal is set and the din (32 

bit) is not equal to X”FFFF_FFFF” then din is written at each clk edge 

(clk connected of external clock operating at 40 MHz) to internal 

memory. When din is equals to X”FFFF_FFFF”, writing sequence to 

internal memory is finished and another writing sequence from Reg_Prg 

Unit memory to instruction memory of processor is started. This process 

is managed by clk2 signal (operating at 20 MHz) which is also the clock 

of the processor. Since both clock are the same, different clock 

domains problem is solved. It was foreseen as the fastest way during 

design.
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CHAPTER 5 

 

VERIFICATION OF MIPS PIPELINED 
ARCHITECTURE 

 
 

The operation of the architecture is verified with MIPS Monitor software 

with following the steps: 

• Verification of correct operation of instructions, 

• Verification of proper hazard detection and solution, 

• Verification of proper exception detection and handling. 

The details of how the use of MIPS Monitor software is described in 

APPENDIX B, MIPS Monitor Software and the operation is described in 

section 2.4. The mnemonic names and the corresponding numeric 

values of MIPS registers are given at the end of in APPENDIX A, 

Implemented Subset of MIPS R2000 ISA in Table A.1. 
 

5.1. Verification of Correct Operation of Instructions 
 

Instructions described in APPENDIX A, Implemented Subset of MIPS 

R2000 ISA are tested and the procedure of testing and the observed 

results are stated in this section. 

The test program given in Table 5.1 is written and then downloaded to 

processor to demonstrate that all instructions are tested. A requirement 

number (as R#) is given in the comment section of the code and the 

clock cycle in which the requirement is fulfilled is pointed out in the first 

column of Table 5.2.  

Results of operations and contents of stages are read by using MIPS 

Monitor software and results are tabulated in Table 5.2.   



 68 

Table 5.1: Verification of Correct Instruction Operation 

################################################ 

# 

# TEST_1 

#  

# Created by Can Altıniğneli 

# To demonstrate the instructions defined in APPENDIX A correctly implemented 

################################################ 

UNDEFINED:  

beq $zero, $zero, UNDEFINED  # UNDEFINED EXCEPTION VECTOR  

nop 

 

OVERFLOW:  

beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR 

nop 

 

START: 

#ADD, ADDI and ADDU are verified 

addi $s0, $zero, 0x6  # $s0 shall = x6, DestAdr:16, R1 

addi $s1, $zero, 0x4  # $s1 shall = x4, DestAdr:17, R2 

add $s2, $s0, $s1  # $s2 shall = xA, DestAdr:18, R3 

addu  $s2, $s0, $s1  # $s2 shall = xA, DestAdr:18, R4 

 

#ADDIU, SUB and SUBU are verified 

addiu $s0, $zero, 0x2  # $s0 shall = x2, DestAdr:16, R5 

addiu $s1, $zero, 0x4  # $s1 shall = x4, DestAdr:17, R6 

sub $s2, $s0, $s1  # $s2 shall = xFFFF_FFFE, DestAdr:18, R7 

subu  $s2, $s1, $s0  # $s2 shall = x2, DestAdr:18, R8 

 

#OR, ORI, AND, ANDI, XOR, XORI, NOR, SRL, SLL, LUI are verified 

ori $t0, $zero, 0xFFFF  # $t0 shall = x0000FFFF, DestAdr:8 , R9 

lui $t1, 0xFFFF  # $t1 shall = xFFFF0000, DestAdr:9, R10 

or $t2, $t0,$t1  # $t2 shall = xFFFF_FFFF, DestAdr:10,  R11 

and   $t2, $t0,$t1  # $t2 shall = x0000_0000, DestAdr:10,  R12 

xor $t2, $t0,$t1  # $t2 shall = xFFFF_FFFF, DestAdr:10, R13 

nor $t2, $t0,$t1  # $t2 shall = x0000_0000, DestAdr:10, R14 

andi  $t0,$t0, 0x0000  # $t0 shall = x0000_0000, DestAdr:8, R15 

srl   $t1,$t1,16  # $t1 shall = x0000_FFFF, DestAdr:9, R16 

sll   $t1,$t1,16  # $t1 shall = xFFFF_0000, DestAdr:9, R17 

xori  $t1,$t1,0xFFFF  # $t1 shall = xFFFF_FFFF, DestAdr:9, R18 

 

#SLT, SLTI, BEQ, BNE, NOP are verified  

LOOP_3TIMES: 



 69 

subi  $s0, $s0, 1  # $s0 shall = x1, DestAdr:16, R19 

slti   $t0, $s0, 0x0  # $t0 shall = x1, if $s0 negative, signed comparison, R20 

beq  $t0, $zero, LOOP_3TIMES 

nop    #after 3 iterations exit from loop 

slt  $t1, $s0, $zero   #s0 shall = xFFFF_FFFF, therefore $t1 shall = x1, R21 

bne  $t1, $zero, JUMP_POINT 

nop 

 

#SLTIU, SLTU, MULTU, MFHI, MFLO, MTHI, MTLO, SW, LW, JR, J, JAL  are verified  

MULTIPLY: 

addi $s0, $zero, -1  # $s0 shall = xFFFF_FFFF, DestAdr:16, R22 

addi $s1, $zero, -2  # $s1 shall = xFFFF_FFFE, DestAdr:17, R23 

multu $s0, $s1   # HI shall  = xFFFF_FFFD, LO shall = x2 

mfhi  $t0   # $t0 shall = xFFFF_FFFD, DestAdr:8, R24 

mflo  $t1   # $t1 shall = x2, DestAdr:9, R25 

mthi  $zero 

mtlo $zero    

mfhi  $s0   # $s0 shall = 0, DestAdr:16, R26 

mflo  $s1    # $s1 shall = 0, DestAdr:17, R27 

addi $s1, $s1, 0x4  # $s1 shall = 4, DestAdr:17, R28 

sw $t0, 0($s0)  # MEM[0] shall store xFFFF_FFFD, R29 

sw $t1, 0($s1)  # MEM[4] shall store x2, R30 

jr $ra   # Jump after jal instruction, R31 

nop 

JUMP_POINT: 

jal MULTIPLY 

nop 

lw $t2, 0($s0)  # MEM[0]-->$t2 shall = xFFFF_FFFD, DestAdr:10, R32 

lw  $t3, 0($s1)   # MEM[1]-->$t3 shall = x2, DestAdr:11, R33 

sltiu  $t0, $t2, 1  # $t0 shall = 0,because $t2 > 1, R34 

bne $t0, $zero, START  # shall not jump to START, R35 

nop 

sltu $t0, $t2, $zero  # $t0 shall = 0,because $t2 > 0, R36 

bne $t0, $zero, START  # shall not jump to START, R37 

nop 

j START    # shall jump to START, R38 

nop 

Eternity:  

beq $zero, $zero, Eternity 

nop 
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Table 5.2: Timing Diagram for Instruction Operation Verification 
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5.2. Verification of Hazard Detection and Handling 
 

The test program given in Table 5.3 is downloaded to processor to 

demonstrate that Data Hazards are resolved using the feedback paths 

between stages. The pipeline is halted in case of the presence of an 

unresolved hazard. A requirement number (as R#) is given in the 

comment section of the code and the clock cycle in which the 

requirement is fulfilled is pointed out in the first column of Table 5.4. 

 

Table 5.3: Verification of Hazard Detection and Handling 

################################################ 
# 
# TEST_2 
# 
# Created by Can Altıniğneli 
# To demonstrate data hazards are correctly handled 
################################################ 
UNDEFINED:  
beq $zero, $zero, UNDEFINED  # UNDEFINED EXCEPTION VECTOR  
nop 
 
OVERFLOW:  
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR 
nop 
 
START: 
add  $a0, $zero,$zero    # $a0 shall = 0, DestAdr:x4, R1 
addi $t1, $zero, 5    # $t1 shall = 5, DestAdr:x9, R2 
addi $t0, $zero, 1    # $t0 shall = 1, DestAdr:x8, R3 
nop 
nop 
nop 
 
# Feedback path exists between ID and EX, MEM, WB stages. Most recent 
# result is written to destination register. The code snippet below shows 
# that there is no need to wait until to WB stage of an instruction and  
# architecture correctly handles up-to-dateness problem, R4     
add $t0, $t0, $t0    # $t0 = $t0 + $t0, $t0 shall = x2  
add $t0, $t0, $t0    # $t0 = $t0 + $t0, $t0 shall = x4 
add $t0, $t0, $t0    # $t0 = $t0 + $t0, $t0 shall = x8 
add $t0, $t0, $t0    # $t0 = $t0 + $t0, $t0 shall = x16 
nop 
nop 
nop 
 
 
# Feedback path exists between ID and EX stages.Data Hazard resolved, R5 
subi $t0, $t0, 1    # $t0 = $t0 - 1, $t0 shall = xF 
subi $t0, $t0, 3    # $t0 = $t0 - 3, $t0 shall = xC 
nop 
nop 
nop 
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# Feedback path exists between ID and MEM stages.Data Hazard resolved, R6 
subi $t0, $t0, 1    # $t0 = $t0 - 1, $t0 shall = xB 
nop 
subi $t0, $t0, 3    # $t0 = $t0 - 3, $t0 shall = x8 
nop 
nop 
nop 
 
 
# Feedback path exists between ID and WB stages.Data Hazard resolved, R7 
subi $t0, $t0, 2    # $t0 = $t0 - 3, $t0 shall = x5 
nop 
nop 
subi $t0, $t0, 4    # $t0 = $t0 - 5, $t0 shall = x2 
nop 
nop 
nop 
sw $t0, 0($a0)   # MEM[0] shall store x2 
nop 
nop 
 
# Although feedback path exists between ID and EX stages, 
# Data Hazard can not be resolved by this path. A NOP instruction 
# is inserted between "add" and "lw" instructions and hazard is resolved 
# by feedback path between ID and MEM stages on the next clock cycle, R8    
lw $t0, 0($a0)   # MEM[0]-->$t0 = x2, DestAdr:8 
add $t2, $t0, $t1   # $t2 = $t0 + $t1, $t2 shall = x7, DestAdr:10, R9  
    
Eternity: 
beq $zero, $zero, Eternity  # Infinite Loop 
nop 

      

 

Results of operations and contents of stages are read by using MIPS 

Monitor software and results are tabulated in Table 5.4. 
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Table 5.4: Timing Diagram for Handling Hazard Verification  
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5.3. Verification of Exception Handling  
  

First, the test program given in Table 5.5 is downloaded to processor to 

demonstrate that “ADDU” and “ADD” instructions generate exceptions 

according to definitions in APPENDIX A, Implemented Subset of MIPS 

R2000 ISA.  

A requirement number (as R#) is given in the comment section of the 

code and the clock cycle in which the requirement is fulfilled is pointed 

out in the first column of Table 5.6. 

 

Table 5.5: Verification of Exception Handling “ADDU” and “ADD”  

################################################ 
# 
# TEST_3 
# 
# Created by Can Altıniğneli 
# To demonstrate ADDU and ADD instructions generate overflow exceptions according to APPENDIX A.  
################################################ 
UNDEFINED:  
beq $zero, $zero, UNDEFINED  # UNDEFINED EXCEPTION VECTOR  
nop 
 
OVERFLOW:  
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR 
nop 
 
START: 
add    $t0, $zero,$zero    # $t0 shall = 0 
lui      $t0, 0x8000   # $t0 shall = x8000_0000,  DestAdr:8, R1 
addu  $t1, $t0, $t0   # $t1 shall = x0000_0000,  DestAdr:9, No Exception shall be 
generated, R2 
add    $t0, $t0, $t0   # $t0 shall = x0000_0000,  DestAdr:8, Exception shall be 
generated,  
                                                               # and pipeline register blocks IF_ID, ID_EX and EX_MEM are 
flushed, R3  
Eternity:  
beq $zero, $zero, Eternity 
nop 

 

Results of operations and contents of stages are read by using MIPS 

Monitor software and results are tabulated in Table 5.6.  
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Table 5.6: Timing Diagram for Exception Handling of ADDU and ADD 
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After verifying “ADDU” and “ADD” instructions exception handling 

mechanism, the test program given in Table 5.7 is downloaded to processor 

to demonstrate that “SUBU” and “SUB” instructions generate exceptions 

according to definitions in APPENDIX A, Implemented Subset of MIPS 

R2000 ISA.  

A requirement number (as R#) is given in the comment section of the code 

and the clock cycle in which the requirement is fulfilled is pointed out in the 

first column Table 5.8. 

 

Table 5.7: Verification of Exception Handling “SUBU” and “SUB”  

################################################ 
# 
# TEST_4 
# 
# Created by Can Altıniğneli 
# To demonstrate ADDU and ADD instructions generate overflow exceptions according to APPENDIX A. 
################################################ 
UNDEFINED:  
beq $zero, $zero, UNDEFINED  # UNDEFINED EXCEPTION VECTOR  
nop 
 
OVERFLOW:  
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR 
nop 
 
START: 
add    $t0, $zero, $zero    # $t0 shall = 0 
lui      $t0, 0x8000   # $t0 shall = x8000_0000,  DestAdr:8 
addi  $t1, $zero, 1   # $t1 shall = 1,  DestAdr:9 
subu $t2, $t0, $t1    # No Exception shall be generated, R1   
sub   $t2, $t0, $t1   # Exception shall be generated, R2 
  
Eternity:  
beq $zero, $zero, Eternity 

nop 

 

Results of operations and contents of stages are read by using MIPS Monitor 

software and results are tabulated in Table 5.8. 
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Table 5.8: Timing Diagram for Exception Handling of ADDU and ADD  
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Lastly, to verify “ADDIU” and “ADDI” instructions exception handling 

mechanism, the test program given in Table 5.9 is downloaded to 

processor. A requirement number (as R#) is given in the comment 

section of the code and the clock cycle in which the requirement is 

fulfilled is pointed out in the first column in Table 5.10. 

Table 5.9: Verification of Exception Handling “ADDIU” and “ADDI”   

################################################ 
# 
# TEST_5 
# 
# Created by Can Altıniğneli 
# To demonstrate ADDIU and ADDI instructions generate overflow exceptions according to APPENDIX A. 
################################################ 
UNDEFINED:  
beq $zero, $zero, UNDEFINED  # UNDEFINED EXCEPTION VECTOR  
nop 
 
OVERFLOW:  
beq $zero, $zero, OVERFLOW # OVERFLOW EXCEPTION VECTOR 
nop 
 
START: 
add     $t0, $zero,$zero    # $t0 shall = 0 
addiu  $t0, $t0, 0xFFFF  # $t0 shall = xFFFF_FFFF,  DestAdr:8 
addiu  $t0, $t0, 1   # No Exception shall be generated, R1  
lui       $t0, 0x8000   # $t0 shall = x8000_0000,  DestAdr:8 
addi    $t0, $t0, -1   # Exception shall be generated, R2  
 
Eternity:  
beq $zero, $zero, Eternity 
nop 

 

Results of operations and contents of stages are read by using MIPS 

Monitor software and results are tabulated in Table 5.10. 

 

 
 
 
 
 
 
 
 
 



 88 

Table 5.10: Timing Diagram for Exception Handling of ADDIU and ADDI  
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To verify undefined instruction exception handling, the machine code of 

the program given in Table 5.9 is modified as given in Table 5.11, 

hence an undefined instruction is generated. Processor will raise an 

undefined exception while the modified instruction is in EX stage and 

this result can be observed by inspecting Table 5.12. 

 

Table 5.11: Verification of Exception Handling Undefined Instructions  

[0x000000] 0x1000FFFF    # beq $zero, $zero, -1 
[0x000004] 0x00000000    # nop 
[0x000008] 0x1000FFFF    # beq $zero, $zero, -1 
[0x00000C] 0x00000000    # nop 
[0x000010] 0x00004020    # add $t0, $zero, $zero 
[0x000014] 0x2508FFFF    # addiu $t0, $t0, 65535 
[0x000018] 0x25080001� changed as 0xFF080001 # addiu $t0, $t0, 1 
[0x00001C] 0x3C088000    # lui $t0, 32768 
[0x000020] 0x2108FFFF    # addi $t0, $t0, -1 
[0x000024] 0x1000FFFF    # beq $zero, $zero, -1 
[0x000028] 0x00000000    # nop 
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Table 5.12: Timing Diagram for Undefined Instruction Exception Handling  
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 
 
 
 

Pipelining, basic way of obtaining faster processor, was inspected in 

detail throughout this thesis and the basic principles were applied by 

implementing a pipelined processor on a real hardware (FPGA).   

 

It was aimed to clarify why pipelining is preferred instead of other 

possible implementation schemes by comparing them quantitatively and 

after that it was concluded that the best performance can be obtained 

by applying Pipelined Implementation Scheme.   

 

Different solution proposals were stated for problems faced while 

implementing pipelining. It became clearer that  the main point causing 

problems was the dependencies between instructions. These 

dependencies degrades the instruction throughput and CPI can be 

greater than one which is optimal solution and this problem was 

resolved by constituting forwarding (bypass) lines between stages. 

Structural deficiencies are overcame by using separate Instruction and 

Data Memory. The Control (Branch) hazards caused by conditional or 

unconditional branches are overcame by making the decision in ID 

stage instead of EX in the expense of using extra hardware. It is tried to 

be explained how exceptions shall be handled in a pipelined 

architecture. After all of these statements and giving implementation 

details, architecture was verified with test programs and results were 

tabulated.   
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There exist unimplemented instructions in MIPS R2000 ISA, because 

the first goal of this thesis is to reveal the internals of pipelining and not 

to implement a complete processor. The most frequently instructions 

were chosen and implemented. A custom exception handing 

mechanism was implemented instead of implementing  a complete co-

processor for similar reasons. 

 

There are many directions in which the work described in this thesis can 

be extended. There can be a research in the future which can propose 

a method to measure the orthogonality of ISA which is the primary 

metric for the effectiveness of pipelining. The processor can be 

extended to completely cover all instructions in MIPS R2000 ISA. 

Dynamic prediction mechanism can be used to branch decision instead 

of simple delayed branch approach. As a further step, processor can be 

upgraded by adding a floating point co-processor and virtual memory 

support to implement R3000 ISA. A more overwhelming work is to 

operate with 64 bit instructions and converge to R4000 ISA architecture 

which is commercially available today. 

 

Another direction to extend this research is to inspect the effects of 

using longer pipelines, fetching longer instructions like in R4000 from 

memory and implementing sequencing and some handling mechanisms 

for all of these circumstances.        
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APPENDIX A 

 

IMPLEMENTED SUBSET OF MIPS R2000 ISA 
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Table A.1: MIPS Registers 

Name Register number Usage 

$zero 0 the constant value 0 

$at 1 reserved for the assembler 

$v0–$v1 2–3 values for results and expression evaluation 

$a0–$a3 4–7 arguments 

$t0–$t7 8–15 temporaries 

$s0–$s7 16–23 saved 

$t8–$t9 24–25 more temporaries 

$k0–$k1 26–27 reserved for the operating system (OS) 

$gp 28 global pointer 

$sp 29 stack pointer 

$fp 30 frame pointer 

$ra 31 return address 
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APPENDIX B 

  

MIPS MONITOR SOFTWARE 
 
 

MIPS Monitor Software is written to monitor internal state of the 

processor, to externally stimulate the processor and to verify 

correctness of its operation. MIPS Monitor Software is written in C++ 

and developed in Microsoft™ Visual C++ Environment. Document-View 

architecture is used during is development. This Appendix is prepared 

to serve as a user manual of MIPS Monitor Software. 

 

The main screen of MIPS Monitor software is given below: 
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  Figure B.1: Main Screen of MIPS Monitor Software 

 

The main functions of MIPS Monitor software is collected under 

Function menu. These functions can be summarized as: 

Emulator Input: This option is used to run with real hardware or to test 

the graphical interface with simulator without hardware. This interface 

was used during development while the hardware was not present and 

“Simulator” option was disabled after development. “PCIDevice” option 

must be chosen before starting the MIPS Monitor software for proper 

operation. After that, the “PCI Device Selection Dialog” (Figure B.3) will 

Stages of 
Processor 

This region is reserved for the 
program that has been already 
downloaded to the processor 
internal program memory. 
 
Programs can not exceed 256 
instructions. 
  

Current 
Status of 

Processor 
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appear and user can select the bridge on which interface transactions 

will occur. 

File�Emulator (F7): A “File Open Dialog” will appear after selecting this 

option. The selected program will be loaded Program Memory section 

of main screen, but this program is not downloaded to processor.    

 

 

Figure B.2: Main Functions of MIPS Monitor Software 
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Figure B.3: PCI Device Selection Dialog 

 

Insert Break Point (F9): This option enables the user to insert break 

points to stop the processor at a desired point while running or before 

Run (F8) option is selected. A red diamond will appear to indicate the 

point where the processor will stop its operation. 

Single Step (F5): This option enables the user to trigger the processor 

for single step running. It is stated in Table 4.5 which fields of the IF, ID, 

EX, MEM and WB stages can be observed by using the MIPS Monitor 

software. 

 



 109 

 

Figure B.4: PCI Device Selection Dialog 

 

Run (F8): This option when selected runs the processor up to a Break 

Point is encountered. 

Reset (F10): This option when selected resets the processor externally. 

Load & Verify: A “File Open Dialog” will appear after selecting this 

option. The selected program will be loaded Program Memory section 

of main screen and also this program is downloaded to processor. 

MIPS Monitor Software can notify the programmer about the presence 

of unresolved hazard in the pipeline by drawing a dashed box around 

the IF and ID stages and stating the status in “Current Status” section of 

Instructions Present in Pipeline Stages 

Program stopped 
at Break Point. 

4 clocks 
passed and 

no hazard and 
exception 
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Main Screen. Programmer can expect a nop instruction insertion into 

EX stage in the next clock cycle (Figure B.5).   

    

 

Figure B.5: Unresolved Hazards View 

 

MIPS Monitor software also has the ability to inform the programmer 

about the presence and sort of the exception in the pipeline. This 

information is presented in “Current Status” section of Main Screen. 

The Overflow Exception is detected and reflected to Programmer as in 

Figure B.6.  

Unresolved 
Hazard is 
present 
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Figure B.6: Overflow Exception Detection View 

 

The Undefined Instruction is detected and reflected to Programmer as 

in Figure B.7.  

 

 

Figure B.7: Undefined Instruction Exception Detection View 

Overflow 
Exception did 

occur. 

Undefined Instruction 
Exception did occur. 
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APPENDIX C 

 

FLOW DIAGRAMS ARCHITECTURE ELEMENTS 
 
 
 
Instruction Fetch Unit Flow Diagram 

 
Figure C.1: Instruction Fetch Unit Flow Diagram 
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Instruction Decode Unit Flow Diagram 

 
Figure C.2: Instruction Decode Unit Flow Diagram 
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Forwarding and Hazard Detection Unit Flow Diagram 

 
Figure C.3: Forwarding and Hazard Detection Unit Flow Diagram 
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Instruction Execute Unit Flow Diagram 

 
Figure C.4: Instruction Execute Unit Flow Diagram 
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Instruction Execute Unit Flow Diagram (continued) 

 
Figure C.5: Instruction Execute Unit (continued) Flow Diagram 
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Data Memory Unit Flow Diagram 

 
Figure C.6: Data Memory Unit Flow Diagram 

 
Exception Detection Unit Flow Diagram 

 
Figure C.7: Exception Detection Unit Flow Diagram 
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Register Block Unit Flow Diagram 

 
Figure C.8: Register Block Unit Flow Diagram 
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APPENDIX D 

 

LAYOUT OF BOARD 
 
 

 
Figure D.1: Layout of Board 
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APPENDIX E 

 

RESOURCES IN THIS THESIS 
 
 
 
A soft copy of this thesis, in addition to all of the source codes of 

hardware and software mentioned about in this thesis are collected and 

presented in the CD attached to back cover. 

 
 
 
 


