

FUZZY ACTOR-CRITIC LEARNING BASED INTELLIGENT CONTROLLER

FOR HIGH-LEVEL MOTION CONTROL OF SERPENTINE ROBOTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EVR�M ONUR ARI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

NOVEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science

Examining Committee Members

Prof. Dr. Canan ÖZGEN
Director

Prof. Dr. �smet ERKMEN
Head of Department

Prof. Dr. �smet ERKMEN
Supervisor

Prof. Dr. Aydan M. ERKMEN
Co-supervisor

Prof. Dr. Erol KOCAO�LAN (METU,EE)

Prof. Dr. �smet ERKMEN (METU,EE)

Prof. Dr. Aydan ERKMEN (METU,EE)

Prof. Dr. Kemal �DER (METU,ME)

Günay �im�ek, M.Sc. (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Evrim Onur ARI

Signature:

 iv

ABSTRACT

FUZZY-ACTOR CRITIC LEARNING BASED INTELLIGENT CONTROLLER
FOR HIGH-LEVEL MOTION CONTROL OF SERPENTINE ROBOTS

ARI, Evrim Onur

MSc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. �smet ERKMEN

Co-Supervisor: Prof. Dr. Aydan M. ERKMEN

November 2005, 148 pages

In this thesis, an intelligent controller architecture for gait selection of a serpentine

robot intended to be used in search and rescue tasks is designed, developed and

simulated. The architecture is independent of the configuration of the robot and

the robot is allowed to make different kind of movements, similar to grasping.

Moreover, it is applicable to parallel processing in several aspects and it is an

implementation of a controller network on robot segment network. In the

architecture several behaviors are defined for each of the segments. Every

behavior is realized in the form of Fuzzy Actor-Critic Learning agents based on

fuzzy networks and reinforcement learning. Each segment controller determines

the next suitable position in the sensory space acquired using ultrasound sensors, a

genetic algorithm implementation then tries to find the change of the joint angles

to achieve the desired movement in a given amount of time. This allows

optimization on different criteria, during motion. Simulations are performed and

presented to introduce the efficiency of the developed controller architecture.

Moreover a simplified mathematical analysis is performed to gain insight of the

controller dynamics.

 v

Keywords: Serpentine robots, rescue robots, planning in unstructured

environment, reinforcement learning, Fuzzy Actor-Critic Learning (FACL).

 vi

ÖZ

YILANSI ROBOTLARIN ÜST SEV�YE DENET�M� �Ç�N BULANIK
EYLEY�C�-ELE�T�R�C� Ö�RENMEYE DAYALI AKILLI DENETLEÇ

ARI, Evrim Onur

Yüksek Lisans, Elektrik ve Elektronik Mühendisli�i Bölümü

Tez Yöneticisi: Prof. Dr. �smet ERKMEN

Ortak Tez Yöneticisi: Prof. Dr. Aydan M. ERKMEN

Kasım 2005, 148 sayfa

Bu tezde, arama kurtarma çalı�malarında kullanılmak üzere tasarlanan yılansı bir

robotun üst seviye hareket denetimi için akıllı bir kontrol sistemi mimarisi

geli�tirilmi� ve simule edilmi�tir. Geli�tirilen mimari, robotun mekanik yapı

detaylarından ba�ımsızdır ve nesne kavrama gibi farklı hareketlerin

gerçeklenmesine olanak sa�lamaktadır. Buna ek olarak, geli�tirilen mimari bir çok

yönden paralel i�lenmeye uygundur ve kontrol a�ının robotun mekanik segment

a�ı üzerine yerle�tirilmesiyle olu�turulmu�tur. Mimaride robotun her segmenti için

çe�itli davranı�lar tanımlanmı�tır. Her davranı� “Bulanık Mantık” ve

“Kuvvetlendirici Ö�renme” kullanan “Bulanık Eyleyici-Ele�tirici Ö�renmeye

Dayalı Akıllı Denetleç” yapılarıyla gerçeklenmi�tir. Robotun her segment

denetleci, durum uzayında kendisi için en uygun bir sonraki pozisyona karar verir.

Bunun ardından “genetik algoritma” kullanan bir en iyileyici belirli bir zaman

diliminde, robotu eski durumundan yeni durumuna geçirmek için yapılması

gereken segment hareketlerini belirler. Bu sayede, robot hareketinin farklı kriterler

gözetilerek en iyilenebilmesi sa�lanmı�tır. Geli�tirilen mimarinin uygulama

sonuçlarını ve etkinli�ini göstermek amacıyla simülasyonlar yapılmı� ve sonuçları

 vii

tezde sunulmu�tur. Buna ek olarak, denetlecin dinami�i hakkında fikir vermesi

amacıyla, basitle�tirilmi� matematiksel analizler yapılarak çalı�maya eklenmi�tir.

Anahtar Kelimeler: Yılansı robotlar, arama kurtarma robotları, yapılandırılma-

mı� ortamlarda yol planlama, kuvvetlendirici ö�renme, “Bulanık Eyleyici-

Ele�tirici Ö�renme”.

 viii

To Aylin, for her endless love...

 ix

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Aydan M. Erkmen and �smet

Erkmen for their guidance throughout this study.

I particularly thank to my mom and dad for their lifelong support.

I am grateful to my colleagues Günay �im�ek, Murat Ertek, Mehmet Karaka� and

Eray Özçelik for their friendship and morale support.

Finally, I greatly appreciate Seyit Yıldırım and Bülent Bilgin since they allowed

me to use powerful workstations at ASELSAN in order to implement the

computationally heavy simulations, and showed great understanding whenever I

spent my work time on this thesis study.

 x

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT.. iv

ÖZ... vi

ACKNOWLEDGEMENTS......................….. ix

TABLE OF CONTENTS... x

LIST OF TABLES..xiii

LIST OF FIGURES.. xiv

CHAPTER

1. INTRODUCTION……………………………………………………….… 1

1.1. Search and Rescue Robotics – Main Motivation of This Study………1

1.2. Serpentine Robots for SAR Applications……………………………. 3

1.3. Intelligent Control and Learning Techniques…………………………6

1.4. Outline of the Thesis…………………………………………………..6

2. LITERATURE SURVEY………………………………………………….. 7

2.1 Snake-like Robots…………………………………………………….. 7

2.2 Serpentine Motion Gaits……………………………………………...15

2.2.1 Natural Snake Gaits…………………………………………..16

2.2.2 Unnatural Snake Gaits………………………………………..19

2.3 Intelligent Control…………………………………………………… 21

2.3.1 Artificial Neural Networks – Basics of Artificial Learning…. 22

 xi

2.3.2 Learning Control System Examples………………………… 22
2.3.2.1 Reinforcement Learning……………………………. 23

2.3.2.2 Adaptive Network-based Fuzzy Inference System

(ANFIS)…………………………………………….. 27

2.3.2.3 Generalized Approximate Reasoning-based Intelligent

Controller (GARIC)………………………………… 30

2.3.2.4 Fuzzy Actor-Critic Learning (FACL) Controller…... 36

2.3.3 Optimization via Genetic Algorithms……………………….. 48

3. PROPOSED HIGH-LEVEL CONTROLLER ARCHITECTURE………. 52

3.1 The General Snake-like Robot Structure……………………………. 52

3.2 Design Criteria for the High-level Controller……………………….. 53

3.3 The Proposed High-level Controller Architecture…………………... 55

3.3.1 Controller Structures in the Individual Links………………...56

3.3.2 Incorporating the Object Grasping Behavior………………... 58

3.3.3 Dynamic Serpentine Gait Selection…………………………. 60

3.4 Parameters Used for the High Level Controllers…………………..... 62

4. SIMULATIONS AND RESULTS………………………………………...67

4.1 Simulation Environment………………………...…………………... 67

4.2 High-level Controller Training Simulations……………………….... 70

4.2.1 Training of the Head Target Reaching Controller…………... 71

4.2.2 Training of the Link Following Controller…………………...74

4.2.3 Training of the Head Obstacle Avoidance Controller...……...76

4.2.4 Training of the Follower Link Obstacle Avoidance

Controller...…….. 78

4.2.5 Training of the Head Object Grasping Controller.........……...79

 xii

4.2.6 Training of the Follower Link Object Grasping

Controller...…….. 81

4.2.7 Training Simulation Results…………………….........….…...83

4.3 Performance Evaluation Simulations……………………...……….... 87

4.3.1 High-level Controller Performance Evaluation……………....89

4.3.2 Genetic Algorithm Performance Evaluation……………….... 94

4.4 Sensitivity Analysis………………...……………………...………....98

4.4.1 Fuzzy Control Module Sensitivity Analysis………………...100

4.4.2 Reinforcement Learning Module Sensitivity Analysis……...109

5. CONCLUSION….………………………………………………………..125

5.1 Summary and Conclusive Remarks…………………………………125

5.2 Future Work…………………………………………………………126

REFERENCES……………………………………………………………….....128

APPENDIX

PAPER PRESENTED IN IEEE INTERNATIONAL CONFERENCE ON
INTELLIGENT ROBOTS AND SYSTEMS (IROS)-2005 AND PAPER
SUBMITTED TO THE IEEE INTERNATIONAL CONFERENCE ON
ROBOTICS AND AUTOMATION (ICRA)-2006…………...………….....134

 xiii

LIST OF TABLES

Table 3.4.1 – Fuzzy sets used for the input and output variables of the
controllers………………………………………………………………………...64

Table 3.4.2 – High level controller parameters………………………………….. 65

Table 3.4.3 – High level controller parameters used for reward calculations…....66

Table 4.2.1 – Learning speed for different FACL parameters, given for the head
target reaching angle controller…………………………………………………..84

Table 4.2.2. – Learning speed for different FACL parameters, given for the head
target reaching velocity controller………………………………………………. 84

Table 4.2.3 – Learning speed for different FACL parameters, given for the
follower links’ link following controller…………………………………………85

Table 4.2.4 – Learning speed for different FACL parameters, given for the head
obstacle avoidance controller……………………………………………………. 85

Table 4.2.5 – Learning speed for different FACL parameters, given for the
follower link obstacle avoidance controller……………………………………... 85

Table 4.2.6 – Learning speed for different FACL parameters, given for the head
object grasping controller………………………………………………………...86

Table 4.2.7 – Learning speed for different FACL parameters, given for the
follower link object grasping controller…………………………………………. 86

Table 4.3.1 – Success percentages for the maps given in Figure 4.3.3…………..90

Table 4.3.2 – Critical parameters of the genetic algorithm search module………94

Table 4.3.3 – Performance of the genetic algorithm search module for the 6-link
robot……………………………………………………………………………... 95

Table 4.3.4 – Performance of the genetic algorithm search module for the 12-link
robot……………………………………………………………………………... 95

Table 4.4.1 – Table of activated rules, for 100 sample states from the (α,z) state
space for the target reaching head angle controller……………………………..102

 xiv

LIST OF FIGURES

Figure 1.1 – Rescue robots employed in the rescue operation after 9/11…...……. 1

Figure 2.1.1–ACM-R3 developed by Hirose’s team………………………………8

Figure 2.1.2 – A photograph of the 30 DOF snake-like robot developed by
Chirikjian et al.…………………………………………………………………….8

Figure 2.1.3 – Model and photographs of the snake robot developed by Shan et al.
…..…………………………………………………………………………………9

Figure 2.1.4 – Snake robot “Orochi” developed by Ikeda and Takanashi………. 10

Figure 2.1.5 – The robot segment developed y Nilsson…...……………………..10

Figure 2.1.6 – GMD Snake 1 developed by Paap and his coworkers…………… 11

Figure 2.1.7 – Kaa of IS Robotics…………………………………..……………11

Figure 2.1.8 – Odetics’ ATMS can climb and cross over obstacles……………...12

Figure 2.1.9 – Polybot developed by Mark Yim and his coworkers………..……12

Figure 2.110 – Polybot Kamegava et al.’s snake robot…………………………..13

Figure 2.1.11 – The continuum manipulator developed by Gravagne
and Walker ……………….……………………………………………………... 14

Figure 2.1.12 – Milibot train developed by Dr. Khosla’s team at CMU………....14

Figure 2.2.1 – A schematic description of rectilinear motion…….……………... 16

Figure 2.2.2 – A schematic description of lateral undulation motion…...………. 17

Figure 2.2.3 – A schematic description of concertina progression……………… 17

Figure 2.2.4 – A schematic description of earthworm motion…………………...18

Figure 2.2.5 – A schematic description of side-winding motion………………... 18

Figure 2.2.6 – A schematic description of flapping motion……………………...19

Figure 2.2.7 – Schematic description of lateral rolling and wheel motion……….19

 xv

Figure 2.2.8 – Some unnatural snake-like gaits proposed by Kamegawa et. al…20

Figure 2.3.1 – Elements of the standard reinforcement learning problem………. 23

Figure 2.3.2 – Structure of the adaptive multi-layer feed-forward network used for
implementation of a Takagi-Sugeno type fuzzy controller……………………… 27

Figure 2.3.3 – Schematic diagram showing the dynamics of a system with ANFIS
controller architecture…………………………………………………………… 29

Figure 2.3.4 – Schematic diagram showing the GARIC architecture……………31

Figure 2.3.5 – Schematic diagram showing the AEN module……………….….. 32

Figure 2.3.6 – Schematic diagram showing the ASN module………..………..... 34

Figure 2.3.7 – Structure of the fuzzy inference system used in FACL…..……… 38

Figure 2.3.8 – Example of a strong fuzzy partitioning………….……..…………39

Figure 2.3.9 – The FACL architecture………………..…………………………. 41

Figure 2.3.10 – Visualization of accumulating eligibility trace vs. replacing
eligibility trace…………………………………………………………………... 46

Figure 3.1.1 – The representative snake-like robot mechanism…………………. 52

Figure 3.1.2 – Representation of ultra-sound sensor suits of the head segment….53

Figure 3.3.1 – The block diagram of the high-level control architecture……….. 55

Figure 3.3.2 – The block diagram of the high level head link control architecture
for target reaching and obstacle avoidance behaviors…………………………... 56

Figure 3.3.3 – The block diagram of the high level following link control
architecture for target reaching and obstacle avoidance behaviors………………57

Figure 3.3.4 – Visualization of the planar grasping behavior…………………….59

Figure 3.3.5 – Representation of the motion generation via genetic algorithms and
motion matrix...61

Figure 3.3.6 – Block diagram showing the feedback architecture of the system...62

 xvi

Figure 3.4.1 – Parameters of a typical triangular fuzzy set defined for the
inputs.. 63

Figure 4.1.1 – A MATLAB GUI and several M-files codes have been prepared for
the simulations... 68

Figure 4.1.2 – Simulink and its Simmechanics are employed............................... 69

Figure 4.1.3 – A snapshot from the visualization componenent of the simulation
program.. 69

Figure 4.2.1 - Inputs and outputs of the head angle and linear velocity controllers
used for the target reaching behavior…………………………….…………….... 72

Figure 4.2.2 – Two views from the angular speed learning simulations of the head
link………………………………………………………………………………..72

Figure 4.2.3 – The flowchart showing the implementation steps of the FACL
learning for the head link angular speed controller for a single episode………....73

Figure 4.2.4 – Snapshots from the head target reaching behavior learning
simulation………………………………………………………………………... 74

Figure 4.2.5 - Inputs and outputs of the link following controller used for the
target reaching behavior…………………………………………………………. 75

Figure 4.2.6 – Snapshots from a successful episode of link following controller
training…………………………………………………………………………... 75

Figure 4.2.7 – Snapshots from a run of trained head target reaching controller and
replicated link following controllers…………………………………………….. 76

Figure 4.2.8 - Inputs and outputs of the head link obstacle avoidance behavior
controller………………………………………………………………………… 76

Figure 4.2.9 – Snapshots from an unsuccessful episode of head link obstacle
avoidance controller training simulation…………………………………………77

Figure 4.2.10 - Inputs and outputs of the follower link obstacle avoidance behavior
controller………………………………………………………………………… 78

Figure 4.2.11 – Snapshots from a successful episode of follower link obstacle
avoidance controller training simulation…………………………………………79

 xvii

Figure 4.2.12 - Inputs and outputs of the head link object grasping behavior
controller………………………………………………………………………… 79

Figure 4.2.13 – Snapshots from a run of target reaching and obstacle avoidance
behaviors operated simultaneously……………………………………………… 80

Figure 4.2.14 – Snapshots from a successful episode of head link object grasping
controller training.... .…………………………………………………………….81

Figure 4.2.15 – Inputs and outputs of the follower link object grasping
controller………………………………………………………………………… 82

Figure 4.2.17 – After replication of the grasping controller to the other following
links, the robot is able to grasp an object………………………………………... 82

Figure 4.2.18 – Snapshots from a successful episode of follower link object
grasping controller training……………………………………………………… 83

Figure 4.3.1– The structure of the robot links and joints………………………... 87

Figure 4.3.2 – A representation of two links colliding in plane, and the envelope
function representation for the forehand link……………………………………. 88

Figure 4.3.3 – Three maps used for the evaluation of the high level controller….89

Figure 4.3.4 – Graph showing the distance of the head segment’s tip point planar
projection to the center of the object to be grasped during object grasping
behavior…………………………………………………………………………..90

Figure 4.3.5 – Visualizations from a run of the developed high level controller...91

Figure 4.3.6 – Graph showing the angular deviation between the head segment and
the target line (α) versus time during object grasping simulation, until the object
grasping behavior is activated for the head segment……………………………. 92

Figure 4.3.7 – Graph showing the angular deviation between the head and the
following segment versus time step………………………………………………92

Figure 4.3.8 – An example of fitness function versus number of generations for a
single genetic algorithm run during the case shown in Figure 4.3.5……………..96

Figure 4.4.1 - Head Angle Controller learning performance for different parameter
selections of reinforcement learning…………………………………………….. 98

 xviii

Figure 4.4.2 – Schematic diagram showing the relations between the controller
components……………………………………………………………………… 99

Figure 4.4.3 – Input-Output mapping and its gradient plot for the target reaching
head angle fuzzy controller…………………………………………………….. 103

Figure 4.4.4 – The dynamics of value function estimate, i.e. the critic, assuming
that the states are independent inputs to the system...111

Figure 4.4.5 – The dynamics of the actor part and the plant. Assuming that the
temporal difference error estimate is an input to the system............................... 112

 1

CHAPTER 1

INTRODUCTION

1.1 Search and Rescue Robotics – Main Motivation of This Study

Since their first development in the first half of 20th century, robots played a very

important role in the quality of human life. At first, they were mainly utilized in

factories for automation of production and transportation oriented tasks.

Afterwards, as radio frequency science, electronics production techniques, and

artificial intelligence further developed, they found deployment in military, space

and intelligence missions; and now they are starting to enter into our lives more

and more every day. As catastrophic disasters are natural pieces of our lives,

search and rescue (SAR) –in its classical context- has been a field of interest for a

very long time. After a disaster, catastrophic effects make it difficult for people to

investigate certain regions (e.g. under ruins of collapsed buildings) due to several

dangerous factors similar to a risk of fire, structural collapse, probability of

existence of dangerous chemicals in the environment etc. In recent years, usage of

robots in search and rescue (SAR) missions became a popular field of robotics

study; which found its first real application in the SAR mission at World Trade

Center buildings after 9/11 terrorist attack [1]. However, there are still many

engineering problems waiting to be solved, in this field of study.

 Figure 1.1 – Rescue robots employed in the rescue operation after 9/11 are
shown on the left, with robots used in rubble pile are circled. A view from the

camera of one of the robots during SAR operation is on the right. [1]

 2

Recent experiences of natural disasters (earthquakes, tsunami etc.) and man made

catastrophes (terrorism) have put more emphasis to the area of search and rescue

(SAR) and emergency management. Technological progress in construction

techniques are proven to be highly insufficient in their implementation spread, and

the preparedness and the emergency response of governments have shown to be

still highly inadequate in dealing with these devastations. As a result, huge human

losses due to lack of immediate response with efficient technological devices

forced engineering to find better solutions for SAR. As a consequence, autonomy,

high mobility, robustness and reconfigurability for terrain and task adaptation are

critical design issues of rescue robotics requiring dexterous devices equipped with

the ability to learn from prior rescue experience, to adapt to variable types of

usage with a wide enough functionality under different sensing modules and

compliancy to environmental and victim conditions. Although first robots used in

SAR applications were non-autonomous, tele-operated devices; autonomy has

become a focused interest in order to increase the versatility of such robots over.

For example a wireless tele-operated robot was lost during SAR operations after

9/11 [1], and such a situation would have been prevented by use of full autonomy

in robots; at least semi-autonomy would have been a solution. Some aspects of

rescue robotics are [4], [32]

- Detection and identification search of living bodies to prevent workers

from damaging a victim’s limbs during evacuation of rubles.

- Routing and/or clearing of debris in accessing the victim.

- Physical, emotional, or medical stabilization of the survivor by bringing to

him/her automatically administered and telemetered first aid.

- Fortification of the living body for secure retrieval against any falling

debris and possible injuries.

- Transportation of the victim.

 3

1.2 Serpentine Robots for SAR Applications

Motion mechanisms of robots used in SAR applications vary according to some

specific needs such as speed, traction, payload carriage and most importantly

rough terrain adaptation. Most popular mechanism of motion for mobile robots is

differential steering; having two wheels/palettes driven by separate electric

motors. Such mechanisms are relatively efficient, easy to steer and suited for high-

speed driving on a smooth surface. However, they are not effective in rugged

environments such as rough or muddy terrains. Mobile robots with legs are being

actively researched for several reasons, including the fact that legs provide higher

terrain adaptability than wheels. Even higher terrain adaptability may be achieved

by multi-link articulated (also called as “hyper-redundant”, “tentacle-like”,

“spine”, “snake-like”, “elephant trunk”, “tensor-arm” [8]) robots that “crawl” like

snakes [2]. Although snakes are handicapped by having no limbs, capability of a

wide range of body elongation with a highly redundant structure, and different

types of locomotion modes adaptable to different environments make them very

versatile in applications on different terrain characteristics [5], [7]. As given in [3],

when compared to legged robots that can undertake similar locomotion abilities

for SAR, snake like robots are more advantageous in the following capabilities:

Terrainability: Snake-like robots can traverse rough terrain; they can climb steps

whose heights approach its longest linear dimension [9], pass soft or viscous

materials, span grasps, etc. This property makes snake-like robots very

distinguished.

Traction: Snakes can use almost their full body length to apply forces to the

ground for generating traction. Hence, possibility to fall over is very low, in

contrast to wheeled or legged counterparts.

Efficiency: Snake-like locomotion is done under low costs of body support, and no

cost of limb motion, but, with high friction losses, and lateral accelerations of the

 4

body. If effective motion planning is employed, a good compromise between

motion efficiency and task adaptability may be achieved.

Size: Narrow frontal area allows penetration of small cross-sectional areas than

many equivalent legged or wheeled vehicles. A snake-like robot can pass any

passage that its first segment can pass.

Redundancy: Serpentine vehicles consist of many similar segments. The loss of

the function of some of them may be compensated for recovering the functional

efficiency that may be partially lost. This property may only be achieved by

building additional wheels/legs etc. for other types of robots. However redundancy

is an inherent property of snake-like robots. [34],[35].

Sealing: The surface of a serpentine vehicle is small and does not need to be

exposed to the environment in the same way as limbs. All body parts may be

coated with protecting material without difficulty. This provides advantage for

applications in hostile environments.

Although snake robots have some advantages over legged or wheeled robots, there

are also disadvantages of serpentine robots, which may be given as follows [3]:

Payload: Transport of materials is difficult unless an integral platform is used.

This may be considered as a big handicap in SAR applications; however, other

properties of snake-like robots are usually more useful than payload carriage

capability, since first aim in SAR is finding living victims, bringing material to

them is a secondary issue. Moreover, special designs may be considered to

increase payload capability of the robot.

Thermal Control: The long stretched form of snakes makes thermal control a

difficulty for engineers. Hardware that needs cooling or heating must be treated

separately. Hence, additional precautions must be taken for thermal management.

Speed: Robot snakes are slower than their natural counterparts (reaching speeds up

to 3.0 m/s), and also far slower than wheeled vehicles. However, faster robots may

 5

not be able to use this property anyway in rugged environments such as those

found in most SAR applications.

Number of Actuators: Due to high degree of freedom of snake robots, a high

number of actuators are needed for realizing snake-like motion. This property

increases cost of the robot in several designs.

Control Complexity: Due to highly redundant structure of the robot and the non-

linearity of the motion mechanism; controlling the motion of a snake-like robot is

a difficult engineering problem.

Having introduced search and rescue robotics and properties of serpentine robots;

it is not surprising to state that serpentine robots are considered to be very suitable

for SAR applications by SAR experts [1],[4],[36]. However, in order to be used in

such complex missions, several design issues concerning hyper-redundant robots

must be considered and solved. These issues may be stated in two categories. One

is the realization of the hyper-redundant locomotion, which is defined as “the

process of generating net displacements of a hyper-redundant robotic mechanism

via internal mechanism deformations, i.e. without actuation by wheels, tracks, or

legs” [7]. The second one is the problem of path and motion planning with a high-

level controller. Most of the studies on serpentine robots have been concentrated

on the realization of hyper-redundant locomotion; these include designs for joint

mechanisms [33], low-level control architectures for actuators in order to realize

hyper-redundant motion [36],[37],[38], mechanical designs for whole robot,

modeling techniques on hyper-redundant locomotion [7], proposition of new

motion types [5],[17] etc. However, studies on the high-level control offer a good

ground for intelligent control applications. Path planning studies for wheeled

mobile robots are abounding, and adaptation of these methods to snake-like robots

may be equally attempted.

 6

1.3 Intelligent Control and Learning Techniques

The aim of intelligent control is designing control systems that exhibit

characteristics associated with intelligence in human behavior, such as

understanding, learning, reasoning, problem-solving, and so on [6]. When a

human being tries to achieve a certain task, he actually behaves like a controller in

a closed loop control system. What makes human beings perform in learning to

control a system may be summarized in a three-state loop: First they decide on a

control action and apply it, secondly they see the results of their action and

evaluate the resulting situation, and finally they modify their action in a next same

situation if necessary. Several controllers have been designed using this approach.

Such designs have shown great success in solving problems including high

uncertainty and non-linearity. Hence, they are also suitable for application of high-

level control of serpentine robots, an instance of which can be found in this thesis

study.

1.4 Outline of the Thesis

In the first chapter an introduction to the topics included in the thesis, and the mo-

tivation behind this study are given. The second chapter is devoted to a literature

survey, detailed enough to cite the previous work on serpentine robots, and related

low-level and high-level control studies, and intelligent control basics with some

detail in learning fuzzy controller architectures. During the third chapter, the high-

level control architecture proposed for the SAR applications is introduced and

explained in detail. In the fourth chapter, simulation results of the conducted study

and the performed quantitative analysis are presented. In the fifth chapter,

summary, conclusions and the possible future work are given followed by

references and the appendix.

 7

CHAPTER 2

LITERATURE SURVEY

2.1 Snake-like Robots

Snakes do not use any limbs for locomotion, and displace themselves using a

special sequence of body postures, which vary according to environmental

conditions. These sequences of postures, leading to a net displacement of the body

are called “gaits”. Snakes achieve a typical gait by using an average of 200 degree

of freedoms of their articulated body [9]. In snake-like robots, which are inspired

from their biological counterparts, no active artificial limbs; like wheels or legs,

are used. Instead, the robot uses its whole body for generating motion. This is

accomplished in a way similar to natural snakes: Change of the body shape (which

is articulated) and use of the resultant frictional and contact forces in order to

generate a net displacement in space. As stated in the introduction part, such kind

of a motion mechanism has several advantages in SAR applications. For limbless

robots, inspiration from nature has guided the design of motion mechanisms.

Research of snakes’ very versatile motion mechanism was not conducted until

1920s. Petr Miturich, a Russian constructive artist, studied the undulation type of

snake gait and pioneered the work on snake-like locomotion [3]. From late 1960s

on, by the advances in robotics and researchers’ interest in biologically inspired

robots, snake-like robots became an active research area in robotics.

First snake-like robot designs are those of the Japanese pioneer of serpentine robot

research, Shigeo Hirose ([2],[3],[7],[13] etc.). Aim of Hirose was to formulate the

motion of a snake as a combination of moving sinusoidal waves. He realized the

natural serpentine motion on his first robotic snake design called “Active Cord

Mechanism” (ACM) moving at a speed of approximately 40 cm/sec. The entire

 8

length of this device was 2 m., having 20 joints, each consisting of a

servomechanism that can bend left and right laterally. The propulsion motion is

generated by input commands, which impart sinusoidal bending motions to the

head joint servomechanism. He and his coworkers, since then, developed several

mechanisms for snake-like motion and conducted basic research on the

mechanism design and serpentine motion characteristics. Shown in Figure 2.1.1,

the ACM-R3 is one of Hirose’s latest designs [11].

Joel Burdick and Gregory Chirikjian worked on serpentine mechanisms from the

viewpoint of kinematics modeling. They developed the model of so called

“backbone curve” for serpentine robots, which they fit parametrically on the body

of the snake [7], [8], and perform motion planning on this hypothetical curve,

which one-to-one maps to the body of the real robot. They built a snake-like robot

mechanism based on variable geometry trusses (VGTs) (see Figure 2.1.2), made

up of commercially available linear actuator, and demonstrated a couple of

described gaits. Although the shape of the body was not exactly snake-like, the

motions were identical to those of the real snakes. In their later studies they

described several theoretical gaits and demonstrated different approaches on

serpentine motion, like lasso-type grasping.

Figure 2.1.2 – A photograph of the 30 DOF snake-like robot developed by

Chirikjian et al. [39].

Figure 2.1.1 ACM-R3 developed by Hirose’s team.

 9

In early 1990s Shan and Koren worked on a different approach for serpentine

motion planning [10]. In its planning, the robot should not always avoid obstacles;

but should also utilize them for locomotion taking them as fixtures while moving.

The authors only used a kind of concertina motion described in discrete motion

steps of different segments of their robot. They also used solenoids to drive

vertical pins into the ground surface in order to give immobilization at desired

points (see Figure 2.1.3). Such an approach establishes fixed contact points from

which the rest of the mechanism relies upon during motion.

Ikeda and Takanashi developed an active universal joint, a novel form of Hooke’s

joint and implemented it on a seven-segment snake-like robot configuration [12]

(Figure 2.1.4). A small pan-tilt video camera was also deployed at the head of the

mechanism and used by the operator to assist in guiding the snake. Control is

performed manually and the single gait used is similar to that of a rectilinear or

inchworm gait. This class of mechanism has great promise for serpentine robots in

real-world applications. The key advantage in this robot was effective packaging

of the mechanism, the slim design and the modularity of the links.

Martin Nilsson of the Swedish Institute for Computer Science has developed a

novel universal serpentine link, in the form of a roll-pitch-roll joint, as a part of the

Figure 2.1.3 – Model and photographs of the snake robot developed by Shan et

al. [10].

 10

PIRAIA project of the institute (Figure 2.1.5). Multiple links give the mechanism

the ability to subtend some very non-snakelike modes of locomotion that

incorporate a rolling motion. In one instance, the snake ‘hugs’ a tree and, using the

side rolling capability, roll directly up the tree. The joint has another nice feature

such that the cables passing through the joint do not twist if the joint is controlled

properly. The mechanism, despite being relatively complex, can be realized with

standard components. Nilsson’s mechanism is very different from other works and

from natural snakes. The two roll motions at each joint give wheel-like

effectiveness in locomotion, but also complicate internal mechanics. With this

joint design Nilsson achieved experiments on a free climbing gait, which is almost

unique to a serpentine robot. [9]

Karl Paap and his group at GMD (German National Research Center for

Information Technology) in Germany developed a snake-like device to

demonstrate concepts and developments for real-time control [40]. The robot is a

tensor device that uses short sections with cable winding mechanism to affect

curvatures along several segments (Figure 2.1.6). The curvatures are continuous

along those sections, but the joining segments, where the drive mechanisms are

located, do not bend or move. Some very limited locomotion has been shown in

the mechanism and the cable drives have been a design challenge. They also

deployed a pan-tilt camera on the head segment of the robot.

Figure 2.1.5 – The robot segment developed y Nilsson. [9].

Figure 2.1.4 – Snake robot “Orochi” developed by Ikeda and Takanashi.

 11

IS robotics built a small snake-like machine, named as Kaa, for prehensile

grasping and displacement of pipes [45] (Fig. 2.1.7). Being not an effective

locomotion device, the robot was initially designed for moving in and through

networks of pipes and support structures. It is probably the first completely self-

contained snake-like moving robot. Using RC-servos as actuators, the robot

propagates a ripple along the body to generate a straight-line motion on a flat

surface. The movement is limited and the large box in the middle of the robot,

housing power and processor, makes the locomotion problematic.

Coupled mobility devices, sometimes called overland trains, are similar to trains

of vehicles linked together. Although Hirose’s ACM robots resemble a coupled

mobility device, all wheels are passive and the robot skates on wheels by means of

body movements. Others, such as Odetics’ All-Terrain Mobility System (ATMS)

(Fig. 2.1.8) are coupled mobility devices with active couplings designed to

traverse a variety of terrains. In such devices, both link and wheel motions are

explicitly described within a single movement.

Figure 2.1.6 – GMD Snake 1 developed by Paap and his
coworkers [40].

Figure 2.1.7 – Kaa of IS Robotics

 12

Dr. Mark Yim designs prototypes shaping themselves into a wheel to roll over flat

grounds shifting their shape into a spider to tackle uneven surfaces and then

morphing themselves again into a snake shape that slithers through narrow spaces

[35] (Figure 2.1.9). The sensors help the modules read their positions relative to

one another. These prototypes are radio-controlled, with a camera on the leading

segment. There are two big advantages of these robots. First, they are self-

repairing. If one of the identical parts breaks in action, the machine compensates.

Second, since all the parts are identical, they can be mass-produced, and they can

be cost cheaper than hand-built unique robots. Moreover, since they are adaptable,

one robot can perform more than one task.

Figure 2.1.9 – Polybot developed by Mark Yim and his

team.

Figure 2.1.8 – Odetics’ ATMS can climb and cross over obstacles [41].

 13

Munerato and his colleagues at Univ. of Metz (France) introduce a mobile robot,

acting like an earth-worm when both ends are free, or like an elephant trunk, when

one end of the robot is fixed [46]. Two platforms with a special 3 degree-of-

freedom (DOF) joint with 3 linear actuators connect each segment. As linear

actuators, screw-drives and micro motors with gear heads and encoders are used.

This articulation has been realized on a scale 2 model that eliminates mechanical

problems like radial parasitic effort and axial torque. The robot body consists of

20 similar modules, resulting in 60 DOFs to be controlled.

Kamegawa and his coworkers develop and implement a snake-like robot moving

in 3D [15] (See Figure 2.1.10). They propose new mechanical design issues, and

several novel locomotion modes. They also develop a genetic algorithm based

method for transition of the robot configuration between locomotion modes.

Gravagne et. al. design a continuum manipulator inspired from elephant’s trunk

[42], also stating the equations defining the geometry and kinematics of the

structure. Such kind of a mechanism has proven to be highly suitable for

applications including grasping (see Figure 2.1.11).

Figure 2.1.10 – Kamegawa et al’s snake robot.

 14

Dr. Khosla’s team at CMU (Carnegie Mellon University) develops robot modules

named as “Milibot”s and adapts them to serpentine-like structure named as

“Milibot train” [34] (See Figure 2.1.12). The individual modules of the robot are

able to apply torque at the links, making this robot able to climb stairs, about at a

height that is half of the length of the whole train.

Figure 2.1.12 – Milibot train developed by Dr. Khosla’s team at

CMU.

Figure 2.1.11 – The continuum manipulator developed by Gravagne

and Walker [42].

 15

Several other, and similar, examples may be found in the literature. Here we just

stated examples in order to give an idea about the structures and the abilities of

snake-like robots.

2.2 Serpentine Motion Gaits

High degree of freedom makes hyper-redundant robots superior for operation in

highly constrained environments; and many conceivable applications require

hyper-redundant robot to maneuver, via some form of locomotion, within its

environment [5]. Hence, we should redefine the locomotion of hyper-redundant

robots, as given in [5].

Definition: Hyper-redundant locomotion is the process of generating net

displacements of a hyper-redundant robotic mechanism via internal mechanism

deformations; actuation through wheels, tracks, or legs is not necessary.

Definition: A gait is a distinct repetitive cycle of mechanism deformation that

leads to net robot displacement.

Hence, any sequence of mechanical deformations leading to net displacement of

the robot may be defined as being a different gait. Although locomotion of a

snake-like robot is adapted from the natural snake gaits, there are also some

applied types of robotic locomotion where natural snake gaits cannot be observed.

So, the locomotion of a snake-like robot is classified into two types, as natural

snake gaits, and unnatural snake gaits. Extensive definitions and explanations of

the gaits found in Dowling’s Ph.D. thesis [41] will be overviewed shortly in the

coming sub-section.

 16

2.2.1 Natural Snake Gaits

Rectilinear Motion: This type of locomotion is achieved by a wave propagation on

the vertical plane along the length of the body [41]. The advantages of this gait are

medium energy consumption, and minimum friction with the ground. Its main

disadvantage is instability problem that occurs since some parts of the body are

lifted above ground, decreasing the number of ground contact points, hence

friction. (Fig. 2.2.1)

Lateral Undulation: In this type of gait, a wave is propagated on the horizontal

plane [41]. This locomotion provides a sliding motion on the ground , and

slightly lifts some segments with an upward lateral wave. The advantages of this

gait type are that no problem of instability occurs, and the energy consumption is

reduced. Moreover, this gait may be used in robots with heavy bodies. Main

disadvantages of lateral undulation are that rubbing is not negligible that the snake

needs wide space, and can not work on smooth surfaces, and that the motion is

hindered by a great body mass. (Figure 2.2.2)

Figure 2.2.1 – A schematic description of rectilinear motion. [43].

 17

Concertina Progression: In this type of gait, some segments of the robot are

folded and unfolded with a low amplitude vertical wave along the body [41].

There is no problem of instability and higher speeds may be achieved; this gait

even works in narrow spaces. However, there is a considerable amount of energy

consumption, important rubbing and inefficiency. (Fig. 2.2.3)

Earthworm Motion: In earthworm motion, some segments of the body shrunk and

stretch without producing a wave in the horizontal plane [Malachi]. An elongation

/ contraction motion is produced to move the segments. There is no problem of

Figure 2.2.2 – A schematic description of lateral undulation motion. [5].

Figure 2.2.3 – A schematic description of concertina progression. [15].

 18

instability, energy consumption is reduced and rubbing is negligible. However,

elongation and contraction of robot segments lead to difficult mechanical design

issues. (Fig. 2.2.4)

Side-winding: This type of motion is achieved by producing two waves, both in

the horizontal direction and the vertical direction. The waves are out of phase, so

as to produce a net displacement in the direction perpendicular to both of the wave

directions [41]. In side-winding, rubbing is negligible and it may be used on soft

grounds. The energy consumption is in a medium level. This type of gait is not

suitable in narrow locations. (Fig. 2.2.5)

 Figure 2.2.5– A schematic description of side-winding motion. [44].

Figure 2.2.4– A schematic description of earthworm motion. [15].

 19

2.2.2 Unnatural Snake Gaits

Flapping Locomotion: The robot moves perpendicular to its body alignment [41].

In flapping motion vertical and horizontal plane waves are in phase, and the robot

resembles a bird flapping its wings to move forward. The friction becomes

negligible with this type of motion, however the displacement velocity is

relatively slow. (Figure 2.2.6)

Lateral Rolling: The locomotion of the robot is achieved by producing horizontal

and vertical waves, which are in phase [41]. The shape of the body is curled like

the letter ‘U’, then the body rolls giving a net displacement perpendicular to the

alignment of the body. With this type of motion energy consumption is reduced,

and the stability is increased; however the displacement velocity is slow.

Figure 2.2.6 – A schematic description of flapping motion.

Figure 2.2.7– Schematic description of lateral rolling and wheel motion [41].

1 2

3 4

5 6

1 2

3 4
4

5 6

 20

Wheel Motion: Head and tail segments of the body are joined together to form an

ellipsoid. The motion is achieved by changing the link angles in the vertical

direction. (also called “ring mode” in [13]) The resultant motion resembles like a

rolling wheel. In this type of motion the velocity is considerably high, but stability

is a big problem. (Fig. 2.2.7)

Bridge Mode Locomotion: Robot is configured to stand on its two end segments in

a bridge-like shape. Bipedal motion can be implemented in this mode. The basic

movement consists of left-right swaying of the center of gravity in synchronism by

lifting and forwarding one of the supports [13]. (Fig. 2.2.8)

Other types of unnatural snake gaits, like vertical climbing, lean serpentine, sinus-

lifting, lift rolling, pedal wave etc. may be added to the definitions. Actually

number of possible gaits with snake-like robots is infinite.

Several researchers worked on the analysis and implementation of natural and/or

unnatural snake gaits. Hirose formulated the serpentine motion in terms of a

Figure 2.2.8 – Some unnatural snake-like gaits proposed by Kamegawa et. al. [15].

 21

parametric curve he called as the “serpenoid curve”. Saito and his coworkers [2]

developed a method for optimally efficient 2D serpentine motion. Prautsch and

Mita tried to find the best model of snake-like motion in order to minimize the

energy needed for motion [14]. Kamegawa and his coworkers proposed several

types of motion including ring mode, inching mode, bridge mode, twisting mode,

wheeled locomotion mode; they also propsed a genetic algorithm based method to

transform robot shape from one mode configuration to another [15]. Chirikjian

and Burdick implemented planar grasping with a 30 DOF robot [16]. Ma and his

coworkers developed a simulator in order to analyze the creeping motion (usual

serpentine motion) of a snake-like robot in 2D [17]. They modeled the robot and

environmental dynamics; moreover they tried to point out the problem of optimal

creeping motion with respect to the environment. Ma himself by referencing to

biological researches analyzed the snake movement forms starting from the

characteristics of the muscles, and tried to verify the proposed curves for

serpentine motion from biological point of view [18]. Kulali applied the

Generalized Approximate Reasoning Based Intelligent Control Architecture

(GARIC) to high-level snake-like robot control. In her study, he used a 12-link 3D

robot model, she selected some standard gaits and used their linear combination as

a movement form for the robot. Gevher [3] modified a traditional path planning

algorithm in dynamic environments to snake-like robot high-level control. He used

a robot model with 6 links and 10 DOF for demonstration purposes. He also

utilized previously defined gait types for the movement of the robot from one

position to another.

2.3 Intelligent Control

The key power behind the control talent of human beings is “intelligence”. This

concept affected the control engineers starting as the field of “artificial

intelligence” (AI) gained popularity among control community. As the result a

new era in control engineering has born: “intelligent control”. The aim of

 22

intelligent control is designing control systems that exhibit characteristics

associated with intelligence in human behavior, such as understanding, learning,

reasoning, problem-solving…[6]. Such designs have shown great success in

solving problems including high uncertainty and non-linearity. Hence, they are

also suitable for application of high-level control of serpentine robots, for which

we adapted a learning control methodology. Before introducing the intelligent

control techniques inspired in this study, it is necessary to briefly review some

approaches to intelligent control.

2.3.1 Artificial Neural Networks – Basics of Artificial Learning.

 Artificial neural networks (ANN) are the structures imitating human nervous

system. Several artificial neurons are interconnected in this structure mapping

inputs to outputs. What makes ANNs distinct as mappings is the fact that an ANN

can ‘learn’ the function it is desired to implement. Using several techniques

(usually based on incremental optimization algorithms) ‘learning’ of any nonlinear

function can be achieved by selecting a suitable ANN architecture. This is

accomplished by modifying the neuron connection strength values in order to map

certain inputs to previously defined outputs. As the result, neural networks are

used to make generalizations from given input-output pairs, which is the key idea

behind “learning” concept. Applications of ANNs range from image processing to

motor control ([20], [21]). In this thesis, artificial neural networks are not used

directly. However, the adaptive network structure of the fuzzy controller used is

similar to a feed-forward neural network.

2.3.2 Learning Control System Examples

Several controller designs feeding from the generalization capability of neural

networks, uncertainty handling and non-linear mapping capability of fuzzy

 23

inference systems, and learning from interaction capability of reinforcement

learning have been designed and used. In this part of the report, basic theory of

reinforcement learning is given and three important examples of such designs are

reviewed.

2.3.2.1 Reinforcement Learning

Human beings have also the ability to learn most of his/her behaviors through

interaction with the environment. As stated in [22], “when an infant plays, waves

its arms, or looks about, it has no explicit teacher, but it has a direct sensorimotor

interconnection to its environment. Exercising this connection produces wealth of

information about cause and effect, about the consequences of actions, and about

what to do in order to achieve goals”. The feedback taken from environments after

application of a behavior shapes that behavior in future uses. Reinforcement

learning is a computational approach to learn to perform optimally from

interaction. Therefore, it is the first kind of example in the learning control

structures. The study in this field started in the late 1970s, and research is still in

progress.

Agent

State
Perception

Reward Policy

Environment

Action

Figure 2.3.1 – Elements of the standard reinforcement learning problem.

 24

In order to give an informal definition, we may use the one in [22] ‘Reinforcement

learning is learning what to do –how to map situation to actions- so as to

maximize a numerical reward signal’. The learner is not told which actions to take,

but instead must discover those that yield the most reward by trying them. A

formal definition may be made only after a review of Markov decision processes.

A detailed introduction may be found in [22]. Here, only the basics will be given.

A Markovian Decision Process (MDP) is a discrete-time dynamic system defined

by the following:

S: Finite discrete state set;

U: Finite discrete action set;

R: The expected primary reinforcements R: S x U R��

P: Transition probabilities P: S x U x S [0,1].

At each time step t, the agent observes the current state St, and selects an action Ut

from the set of possible actions corresponding to that state: U(St). When action Ut

is triggered in state St, the system state at the next time step, t+1, is S(t+1) with

probability)(
)1(tSS UP

tt +
 . Furthermore, the system emits the reinforcement signal

R(St,S(t+1)), also denoted by rt+1 and called the reward signal. The action choice in

each state is determined by the agent’s policy, which is a mapping from states to

actions, and is denoted by π = [π(S1),π(S2),...,π(S|S|)], where |S| is the cardinality

of state set S. Following policy π, whenever the agent is in state St, it applies

action π(St) (in the case of stationary policies). Each policy has an evaluation

function, called the ‘value function’, Vπ qualifying the corresponding agent’s

policy, with respect to the reward signal. This evaluation function represents the

sum or average of all rewards received during a finite number of time steps

(Finite-horizon Model and Average Reward Model respectively). We consider

here the most general case, in which the value function represents the expected

 25

discounted cumulative rewards received over time when using policy π (Infinite

Horizon Model). This value functions are defined for each state S ∈ S by

Where Eπ is the expected value under the assumption that policy p is always used

and S is the starting state (S0). The discount factor γ (∈[0,1]) is used to weight

rewards with respect to time. When γ = 0, value functions represent solely primary

rewards. Otherwise, they denote the expected discounted return over infinite

number of time steps (infinite horizon discounted reinforcements). To state in

informal way, the value of a state is the expected cumulative reward in the future,

where rewards are weighted less as they are away from the current state in time.

Solving an MDP consists of tuning the agent to use an optimal policy π*, one

corresponding to the optimal value function, denoted V*. A policy π’ is an

improvement over another policy π if with strict

inequality holding for at least one state. A policy is optimal in the sense that no

policy is an improvement over it. Given a complete and accurate model of the

MDP, i.e. (S,U,R,P) structures stated above, dynamic programming techniques

offer efficient tools for off-line learning of agent’s behavior. Value functions of

policies are estimated by successive approximations. Let be the n-step horizon

approximation of the evaluation function , which is defined iteratively by the

equations:

In the case of infinite horizon (infinite step approximation, i.e. the value function

itself), value functions must verify the Bellman Equation, which is

�
�

�
�
�

� == �
∞

=0
0))(,()(

t
tt

t SSSSRESV πγπ
π (2.1)

),()(' SVSV ππ ≥ ∀ S ∈ S

π
nV

πV

))(,()(1 SSRSV ππ = ,∀ S ∈ S

,∀ S ∈ S �
∈

−+=
SS

nSSn SVSPSSRSV
'

)1(')'())(())(,()(ππ πγπ
(2.2)

�
∈

+=
SS

SS SVSPSSRSV
'

')())(())(,()(ππ πγπ (2.3) ,∀ S ∈ S

 26

and the optimal value function is defined by the Bellman Optimality Equation

As seen above, when the MDP model is completely known, the reinforcement

learning problem can be solved iteratively. On the other hand, in almost all real-

world problems, the MDP model is not completely known. In such cases, methods

called Adaptive Dynamic Programming methods are used. They approximate

direct Dynamic Programming techniques and constitute two families. For the

model-based family, a model is approximated via interaction with the system, and

Dynamic Programming are then used directly. For the model-free family, in which

evaluation functions and policies are directly learned during interaction. Actor-

Critic learning (one model chooses actions, another evaluates the selecting

module) and Q-learning (both selection and evaluation are performed in the same

module) belong to the second family and are also called, by analogy with the

control terminology, direct approaches.

An important problem in real-world, concerning the solution of the reinforcement

learning problem is the so called ‘curse of dimensionality’. As in MDP, the

classical Adaptive Dynamic Programming methods deal with discrete input spaces

and the state representation often used is a look-up table in which all the states,

corresponding values etc. are stored. For example, the best known Actor-Critic

Learning method, the Adaptive Heuristic Critic (AHC), is applied in [24] to the

cart-pole balancing problem, in which the four-dimensional continuous state-space

is discretized. Several examples of such problems can be found in [22], and

methods similar to boxing space into discrete regions are used. However, in the

case of a large, continuous state space, this representation is intractable. This

problem is referred to as the curse of dimensionality. Some form of generalization

must be incorporated in the state representation. Indeed, we can expect

neighboring states to have similar function values. Based on this assumption,

various function approximators have been used in conjunction with DP, in spite of

�
	

�
�

 += �

∈SS
SS

U
SVUPUSRSV

'

*
'

*)'()(),(max)(γ (2.4) ,∀ S ∈ S

 27

the loss of the convergence guarantees that can be found in DP theory. The

function approximators often met in Adaptive Dynamic Programming are

Cerebellar Model Articulation Controller (CMAC), artificial neural networks, and

fuzzy inference systems (FIS) [23].

2.3.2.2 Adaptive Network-based Fuzzy Inference System (ANFIS)

The Adaptive Network-based Fuzzy Inference System (ANFIS) architecture is

proposed by Jang in early 1990s [25]. In this architecture, an adaptive multi-layer

feed-forward network is used as a fuzzy logic controller, which can adapt its

adjustable parameters by using a gradient descent algorithm, named Temporal

Back Propagation (TBP). The fuzzy logic controller is embedded into the network

by making each layer of the network an implementation of a Takagi-Sugeno type

(i.e. with linear defuzzification stage) fuzzy logic controller stage.

There are 5 layers in the network, as seen in Figure 2.3.2. The first layer

implements the fuzzification step. Here, every input is mapped to the fuzzy

membership function, and every node corresponds to a different fuzzy set. Any

Figure 2.3.2 – Structure of the adaptive multi-layer feed-forward network used for
implementation of a Takagi-Sugeno type fuzzy controller, shown on a very simple

example with two states, four fuzzy sets, and two fuzzy rules in the rule base.

 28

kind of continuous and partially differentiable membership function can be used.

In the second layer, the fuzzified state values are used to evaluate the activation

strength of each rule in the fuzzy inference rule base. Hence, there are second

layer nodes as there are fuzzy inference system rules. In the third layer, only a

normalization procedure is performed and activation strength of the corresponding

rule is divided to the total activation strength of all the rules. In the fourth layer,

Takagi-Sugeno type defuzzification is performed and every node outputs a control

action, which has a weight proportional to the activation strength of the

corresponding rule. The fifth node only performs a simple summation and

calculates the total control action as the combination of individual control actions

proposed by each of the rules.

In the network, nodes shown with a square has adjustable parameters, while nodes

shown with a circle perform fixed mathematical operations. In the first layer, the

parameters of fuzzy sets are adaptive; and in the fourth layer the defuzzification

line coefficients of each rule are adaptive. Therefore, we can infer that ANFIS is a

proposal for solution of automatic tuning of fuzzy controller parameters, which is

known as a tough problem in fuzzy control community.

Learning (tuning) of fuzzy controller parameters occurs with a mechanism shown

schematically in Figure 2.3.3. At every discrete time step, the states at one step

before and the inputs to the plant determine the next states as given in equation

(2.5) below, for a time-dependent system.

The desired trajectory of states is assumed to be known a priori, and an error

measure is calculated using the difference between the actual trajectory and the

))1(,,()1()1(−= −− kUXfX kkk (2.5)

 29

desired trajectory as given in equation (2.6). A term including the total control

effort is added to this error in order to optimize the control effort versus the state

trajectory cumulative error. In other words, if this term is not added, very good

results may be taken for the error measure, but with an undesirably high control

effort, possibly.

Finally, the adjustable parameters of the network are updated according to the

classical gradient descent rule as in equation (2.7), where an adaptive step size

parameter is used for fast and reliable convergence of parameters.

The gradient in the above equation is found using chain rule, by back-propagating

the error signal through time (this is the reason for the name Temporal Back

Propagation - TBP).

� �
=

−

=

⋅+−=
n

k

n

k
d kUkXkXE

1

1

0

22
)()()(λ (2.6)

α
ηα

∂
∂−=∆ E

(2.7)

Figure 2.3.3 – Schematic diagram showing the dynamics of a system with
ANFIS controller architecture.

 30

Multi-layer feed-forward neural networks are a special case of multi-layer

adaptive networks. Moreover, temporal back propagation is nothing but the usual

back-propagation algorithm, which is slightly modified as network layers are

distributed in time. This architecture was a wise idea in self-tuning controllers and

inspired many researchers. It has found several applications ranging from simple

control tasks to bipedal locomotion. Even there is a built-in ANFIS

implementation in MATLAB software package. Although the ANFIS approach is

very versatile, it is not very suitable for our application. The calculation of error

measure includes the desired trajectory of states, which is not completely known

in a very complex system.

2.3.2.3 Generalized Approximate-Reasoning Based Intelligent Controller

(GARIC)

The ANFIS architecture uses a kind of supervised learning; however in most of

the systems the actual desired outcome of an action, which is a needed input for

the application of this type of learning, is not known directly. Hence, a more

suitable learning method should be employed in such situations. This can be

accomplished by using reinforcement learning techniques to adapt the parameters

of the fuzzy controller in the system. The Generalized Approximate-Reasoning

Based Intelligent Controller (GARIC) architecture is a proposition for such a

solution, designed by Berenji and Khedkar in early 1990s [26]. In this architecture

two different neural networks are employed. One of these networks is used to

evaluate the value function of the current state (i.e., it is the critic) and named as

the Action Evaluation Network (AEN); and the other network is used to calculate

the control action for a given set of state feedbacks (i.e. it is the actor) and named

as the Action Selection Network (ASN). Since both of these networks are made up

of neural networks, they have tunable parameters. These parameters are updated

using a reinforcement signal from the plant (which is expected to be only a binary

error signal, in general), which is a way of indirect learning. Moreover, the

 31

standard back-propagation algorithm of feed-forward neural networks is also

employed. As the result, the Action Evaluation Network learns to be a good

implementer of the state value function, and the Action Selection Network learns

to be a good implementer of the sensorimotor, i.e. state to control action, mapping.

In order to search the state-space, and better perturb the system in order to avoid

local solutions, a Stochastic Action Modifier (SAM) module is also employed,

which changes the action recommended by ASN before applying it to the system.

The schematic diagram showing the general structure of the GARIC architecture is

given in Figure 2.3.4.

A detailed schematic of AEN module is given in Figure 2.3.5. As seen in this

figure, AEN is a usual feed-forward neural network, that implements the state to

value mapping. This mapping is not known initially, as a common part of the rein-

Figure 2.3.4 – Schematic diagram showing the GARIC architecture.

Action Selection
Network (ASN)

-The Actor-

Stochastic
Action Modifier

(SAM)
PLANT

Weight Update
Algorithms

Action Evaluation
Network (AEN)

-The Critic-
v

co
m

bi
ne

F′

r̂

F

X

r

GARIC

 32

forcement learning problem, and AEN is trained on-line in order to improve its

correctness at each time step.

In [26] AEN is proposed as a standard two layer feed-forward neural network.

However, any suitable neural network architecture may be used as an action

evaluator. Going over the network structure proposed in [26], the input layer

consists of the states (and probably bias terms, which are not shown explicitly in

the figure). The hidden layer outputs are calculated using a sigmoid activation

function at each time step as

where, g(x) is the sigmoid function given by

x0

x1

xn

.

.

.

y0

y1

yh

.

.

.

v

A

.

.

.

.

.

.

B

C

.

.

.

Figure 2.3.5 – Schematic diagram showing the AEN module.

(2.8)
�
�
�

�
�
�
�

�
+⋅=+ �

=

n

j
jiji txtagtty

1

)1()()1,(

(2.9) xe
xg −+

=
1

1
)(

 33

The hidden layer outputs are calculated using the current states at time t+1, and the

A coefficients, which are not updated yet. The neuron at the output layer gives the

value function estimate of the current state by combining its inputs as in equation

(2.10) below

using this value estimate an internal reinforcement signal, r̂ , is calculated as

which is a standard update procedure in temporal difference learning, with value

of failure state is defined to be 0, without any calculation. After calculating

internal reinforcement signal, update of B and C vectors are performed using a

standard reward/punishment scheme; whereas update of vector A is performed

using a modified back propagation algorithm. As the result, the coefficients are

updated at each time step, in order to give low values to bad states and high values

to good states in the steady state.

The ASN structure is similar to the adaptive network structure used in ANFIS.

However, this time, the network is defined as a feed-forward neural network. At

layer 1, the inputs are gathered into the controller and fed to the related fuzzy set

membership functions, implemented as neurons of the second layer. In the second

layer, neurons that are similar to a radial basis function implementation are used to

perform the fuzzy set matching of the inputs [26]. A function of three parameters

(similar to a triangular function) is employed.

(2.10) ��
==

+⋅++⋅=+
h

i
iii

n

i
i ttytctxtbttv

11

)1,()()1()()1,(

�
�

�
�

−+++
−+=

),()1,()1(

),()1(
0

ˆ

ttvttvtr

ttvtrr

γ

,if start state

,if failure state

,otherwise
(2.11)

)(,, x
VRVLV SSCµ (2.12)

 34

Here, V represents the fuzzy set and CV, SVL, SVR parameters are used to represent

the center, left spread and right spread values respectively. In layer 3, fuzzy rules

are implemented and strength of each rule is calculated using a softmin operator so

as to implement the conjunction of all the antecedent conditions in a rule, as

follows

Where µi is the degree of match between a fuzzy label occurring as one of the

antecedents of rule r and the corresponding input variable. k is the parameter

controlling the hardness of the softmin operator. After processing of layer 3, all

rules’ firing strengths are determined. In the fourth layer, consequent parts of these

rules are resolved, using a local mean-of-max (LMOM) operation on the

consequent fuzzy sets, and a local defuzzification is performed for each of the

output fuzzy sets. Hence, we may represent the operation of this layer as

x1

x2

R1

R2

R3

R4

Layer-1

Inputs

Layer-2

Antecedents

Layer-3

Rules

Layer-4

Consequents

Layer-5

Outputs

No operation
Match Softmin

Local Mean-of-Max

Weighted sum

F

µ(x) ωr

µ−1(ωr)

Figure 2.3.6 – Schematic diagram showing the ASN module for a controller with 2
state feedbacks, 4 antecedent fuzzy sets, 4 rules and 3 consequent fuzzy sets.

�

�
−

−

==

i

k
i

k
i

rR i

i

e

e
O µ

µµ
ω (2.13)

)(,,
1 xVRVLV SSC

−µ (2.14)

 35

where V represents a specific consequent label and CV, SVL, SVR parameters are

used to represent the center, left spread and right spread values of the fuzzy

membership function of this set. In layer 5, the defuzzified output values of each

output fuzzy set are combined to generate a scalar output. This is accomplished by

getting the firing strengths of the rules from the layer 3, and using these as weights

of a weighted average. As the result, ASN outputs the following value for the

output

This output is not directly applied to the plant. It is modified in the stochastic

action modifier (SAM) first. This is accomplished by choosing the final control

action F′ randomly from a Gaussian random variable, whose mean is F and whose

standard deviation increases with decreasing internal reinforcement. This

operation is performed, in order to be able to conquer the state space evenly, and

escape from states when the internal reinforcement is small.

The adaptive parameters in ASN are the fuzzy set membership function

parameters of layers 2 and 4. Tuning of these parameters is performed using the

relationship between the ASN output and the value function estimate, v, of AEN.

If we represent the tunable parameters of ASN in a vector, p, then ASN represents

a mapping between the states and the control action, tunable over this vector, i.e.

F =Fp(X). The intent of computing F is to maximize v, so that the system ends up

in a good state and avoids failure. Hence, we should maximize v as a function of p.

Hence we may use the classical gradient descent algorithm so as to minimize –v,

which results in the classical back-propagation algorithm of neural networks,

giving the update of vector p, at each time as

�

� −

=

r
r

r
rr

F
ω

ωµω)(1

(2.15)

p
F

F
v

p
v

p
∂
∂⋅

∂
∂=

∂
∂=∆ ηη (2.16)

 36

The gradient of v with respect to F may be calculated using some approximations,

and the gradient of F with respect to p using the chain rule. The details of these

calculations may be found in [26].

In summary GARIC architecture is proposed in order to tune a fuzzy logic

controller using reinforcement learning techniques, in the existence of only a

binary failure feedback from the plant. In this architecture, both the fuzzy logic

controller and the state value function evaluator are embedded into neural

networks. Parameters of these networks are updated at each time step according to

the calculated internal reinforcement. This architecture has found implementations

in several problems. Even, an implementation of this architecture for gait selection

of snake-like robots was studied [19], in which the output of ASN is the vector

joint torques. Although this architecture is successful in several respects, it needs

several modifications in order to perform an effective implementation. Moreover,

this architecture is rather old, and new architectures are continuously being

proposed by several researchers, one of which is explained in detail in the next

sub-section.

2.3.2.4 Fuzzy Actor-Critic Learning (FACL) Controller

Fuzzy Actor Critic Learning (FACL) architecture is proposed by Jouffe in late

1990s. The idea behind it is essentially the same for other similar architectures:

Tuning fuzzy controller parameters using learning techniques. This architecture is

implemented and used as the controllers of various jobs in this thesis; hence it is

explained in detail in the following paragraphs.

The fuzzy controller architecture used in FACL is similar to ones used in other

architectures; however, it has some predefined specifications. First of all, the fuzzy

clustering of the input variables must be strong. Secondly, for the defuzzification

part, output fuzzy sets are all crisp. Thirdly, the input fuzzy sets are assumed to be

 37

known a priori, and only the output parameters are tuned during learning. Finally,

the fuzzy rules are combinations of all input fuzzy sets “AND”ed.

As seen in the structure of the fuzzy inference system used in FACL (see Figure

2.3.7), the controller module uses N rules of the form

where

As usual in the similar structures discussed so far, the input layer is used to gather

input values, from the sensors. These values are fuzzified using the related fuzzy

sets in the second layer. In the third layer, the combination of the input variables is

performed and rule truth values are evaluated. Finally, in the fourth layer, rule

outputs are combined to generate quantitative output values.

In FACL the fuzzy sets for the NI input variables are assumed to be exactly known

a priori. Moreover, since these inputs are states of the system to be controlled, the

fuzzy sets should be describing all useful states without ambiguity. The types of

I I o o Ri: IF S1 is L1 AND ... AND SN is LN THEN Y1 is O1 AND ... AND YN is ON
i i i i i (2.17)

Ri ith rule of the rule base

S input vector

S = S1xS2x…SN universe of discourse for input variables

Lj linguistic term (fuzzy label) of input
variable Sj in rule Ri; its membership

 function is denoted by µL

i

i
j

(Ym)m=1,…,N NO output variables. o

Lj linguistic term of output variable Yj in rule
Ri.

I

 38

fuzzy sets used are trapezoidal and triangular. Moreover, strong fuzzy partitioning

is employed, which means

where NL(n) denoted the number of fuzzy sets used to represent the universe of

discourse of input variable Sn. Such a partitioning implies that there are no more

than two fuzzy sets activated (with µ > 0) for an input value, and any value of an

input activates at least one fuzzy set. Hence the number of activated fuzzy sets for

an input variable is at least one, and at most two. The user must define all the input

fuzzy membership functions accordingly and fix their parameters. Such a

partitioning is shown in Figure 2.3.8. As seen in this figure, the membership

degree of an input value Sn for a label Ln(vl,vr,sl,sr) is defined by the following

expression

.

.

.

.

.

. .

.

.

.

.

.

Figure 2.3.7 – Structure of the fuzzy inference system used in FACL.

Inputs

Input
Membership

Functions

Rule Truth Value
Computations

Output
Calculations

S1

SN
I

L1
1

L
NI

NL(Nı)

R1

RN

Y1

Y
No

,∀ Sn ∈ Sn 1)(
)(

1

=�
=

n

nN

j
L

S
L

j
n

µ (2.18)

 39

For the rules part, all “AND”ed combinations of the input fuzzy variables are

used. Hence, the number of the rules, N, is determined by the number of total

linguistic input variables, NI, and the number of fuzzy sets defined for each input,

NL, as follows

Each of these rules has NO corresponding conclusions, Ni
Nm

i
m O

O ,...,1
,...,1)(=

= . All fuzzy sets

for these outputs are defined as crisp sets. In mathematical terms, we may state

NL(length) = 4

µT(x)

x (m)

1.0

0.0

Ls
short

Lm
moderate

Ll
long

Lv
very
long

x

µl(x) = 0.35

µv(x) = 0.65

mm L
r

L
l vv =

lm L
l

L
r ss =

lL
lv lL

rv

vl L
l

L
r ss =

Figure 2.3.8 – Example of a strong fuzzy partitioning using an example fuzzy variable
“distance”.

�
�
�

�

�
�
�

�

��
�

�
��
�

� −−

��
�

�
��
�

� −−

=

0.1

)(
0.1,0.0max

)(
0.1,0.0max

ˆ
l

nl

r

rn

s
Sv

s
vS

r

,Sn > vr

,Sn < vl

,otherwise

(2.19)

(2.20))(
1

iNN
IN

i
L∏

=

=

(2.21)
�
�

=
0.0

0.1
)(mO

Yi
m

µ , i
mm oY =

, otherwise

 40

After computing the membership function values for all inputs, then we should

find the truth values of the rules. Since we use “AND”ing of all combinations of

input variables, for a given rule Ri the truth value is computed using a T-norm

operation. If we implement the T-norm operation using usual product operation

we get

Hence we compute the truth value of each rule having a non-zero precondition

part, and denote this as the activated rule set A. Note that the maximum number of

rules in A at a given instant is IN2 and the minimum number of activated rules is 1,

due to the strong partitioning used. Given the above rule truth values, the FIS

outputs are calculated by

In other words, the outputs offered by each rule are weighted by rule truth values

and summed up.

As stated before, in FACL learning occurs in only the conclusion part of the FIS.

The number and positions of the input fuzzy labels are assumed to be set a priori.

The learning in FACL is a modified version of Sutton’s Adaptive Heuristic Critic

(AHC) algorithm [24], which is a reinforcement learning method. The learner in

FACL is a fuzzy inference system, whereas it is a look-up table in AHC. In actor-

critic learning there are two basic components, the actor and the critic (similar to

GARIC, and usual in modified AHC algorithms). The critic represents the state

value function and adapts itself at each learning time step. Whereas, the actor

implements the fuzzy inference system described above.

)()(
1

j

N

j
LR SS

i

i
ji ∏

=

= µα (2.22)

(2.23) �
∈

=
AR

i
mRm

i

i
oSSY)()(α , m = 1,...,NO

 41

The state is represented by a vector Φ, which is directly related to the truth values

of the rules, due to the rule generation scheme employed. The critic is modeled by

the state related value vector v. The actor has discrete action sets for each state

(hence for each rule). Each discrete action in such a set has a corresponding

weight that determines the probability of choosing the action in that rule. The

continuous action performed by the actor is then the weighted sum of the actions

elected in the rules describing the current state.

The structure of the FACL controller is given in Figure 2.3.9. The critic calculates

the estimated value of an input state, as a linear combination of the rule strengths,

at time step t, as

r(t)

U2

UN

vN

v1

.

.

.

.

.

.

.

.

.

Inputs
(States)

Rules

Critic
Calculator

Action
Calculator

V(S)

U(t)

S1

S2

Sn

R1

R2

RN

Σ

Σ

v2

U1

w1[1] w1[2] . . . w1[|�1|]

wN[1] wN[2] . . . wN[|�N|]

Figure 2.3.9 – The FACL architecture.

TD Error
Calculator V(S)

Eligibility
traces for w

and v
values

tune

T
tt

AR
R

i
ttt vvSV

ti

i
Φ•=⋅= �

∈

α)((2.24)

 42

Using reinforcement learning approximation, the error calculated at time step t+1

(the difference between the actual value of the optimal state value function and the

estimation at time step t) is, then

However, actual value of this error is not known (otherwise, we would know the

value of V*, estimation of which is the basic problem in reinforcement learning).

On the other hand, this error term may be estimated using the quantities available

at time step t+1. This new error term is called the TD (temporal difference) error

[22] and calculated as

Remembering equation (2.4) given before

and denoting the action satisfying this equation as U*, we get

Hence, we are approximating the term R(S,U*) using rt+1 (instant reward

feedback), and the summation term (delayed rewards) by γ.Vt(St+1). After

calculating , we may use the TD learning rule [22] to tune the vector used for

the value estimate as follows

where β is the critic learning rate.

The actor part is used to code the policies. There are several rules (total number

given by equation (2.20) above) and each rule has discrete action sets, whose

elements are defined as fuzzy sets as in equation (2.21). Each rule Ri uses a weight

)()(*
1 tttt SVSV −=+ε (2.25)

)()(~
111 tttttt SVSVr −⋅+= +++ γε (2.26)

�
	

�
�

 += �

∈SS
SS

U
SVUPUSRSV

'

*
'

*)'()(),(max)(γ ,∀ S ∈ S

(2.27)
�
	

�
�

 += �

∈SS
SS SVUPUSRSV

'

**
'

**)'()(),()(γ ,∀ S ∈ S

ε~

tttt vv Φ⋅⋅+= ++ 11
~εβ (2.28)

 43

vector, entries of which are associated with the elements of the discrete action set

(this is schematically shown in Figure 2.3.9). Every rule in At proposes a local

action from the discrete action set in order to be used as an element of the global

action, and these weights participate in the selection of this action. In each

activated rule a competition between the discrete actions is hold using an ε-greedy

function defined as

where � is the set of discrete actions in the rule being considered. In this ε-greedy

function w(U) term is used for exploitation, η(U) is used for undirected

exploration and ρ(U) is used for directed exploration. Undirected strategies are

related to random walk (similar to SAM in GARIC), and directed strategies

memorize exploration-specific knowledge and tend to explore previously

unexplored states. The exploitation term is the sole term used in steady-state, after

the learning is complete and V* is approximated. With this ε-greedy function, the

resultant global action applied to the system is given by

In words, the global action applied by the actor element is the weighted sum of the

individual discrete actions proposed by the active rules. The weights used are the

activation strengths of the rules. Hence, a global action continuous in the state

space is applied to the system.

For the calculation of the exploratory terms the following method is proposed in

[23].

For the undirected exploratory term, use a vector of random values Ψ each term of

which is associated with a discrete action, and selected from the same exponential

)UUU(w(w)Greedy
U

)()()(maxarg ρηε ++=−
∈�� (2.29)

�
∈

⋅−=
tt

i
AR

R
i
ttt wGreedySU αε)()(���� (2.30)

 44

distribution; then scale this vector so as to normalize with respect to the range of w

values in use by

where sp is referred to as the “noise size”, with respect to the range of qualities,

and sf is the corresponding scaling factor used for normalization.

The directed exploratory term should increase the probability of selecting actions

that have rarely been elected; this is achieved by using

where θ represents a positive factor to weight the directed exploratory term, and

nt(St,U) is the number of previous time steps in which action U is selected. Since,

several rules may use same action, and with different weights; this number is

approximated by

where nt(Ui) is is the number of previous applications, at time step t, of action U in

rule Ri. This term may be calculated recursively, and values may be stored in a

look-up table.

Learning in the actor occurs as an update of the weights of exploitation terms

using the TD error, which is performed as

�
�

�

�
�

�

Ψ
−

=

)max(

)min()(max(

1

wws
s

p

f

, if max(w) = min(w)

, otherwise
(2.31)

Ψ⋅= fsη

),()(USn tte
U

θρ = (2.32)

�
∈

⋅=
ti

i
AR

R
i

ttt UnUSn α)(),((2.33)

(2.34)
iRt

i
t

i
t

i
t

i
t UwUw αε ⋅+= ++ 11

~)()(

 45

Hence, weight of an action participating in a better state is increased by a factor

proportional to the strength of the related rules in the global action.

During the learning process of the parameters v and w, two key concepts are

employed. One of these concepts is the eligibility traces used for solving the

temporal credit assignment problem, and the other one is the meta learning rule,

which is used for adapting learning rates so as to avoid instabilities in learning.

The parameter update formulas given in equations (2.28) and (2.34) correspond to

TD(0) [22]. In this algorithm no delayed rewards are considered, and only the

parameters corresponding to the rules activated at time t are updated. However, the

states visited and the actions taken in the previous time steps are also effective in

ending with the current conditions. Hence they must also be altered according to

their effectiveness in the result, which is determined by the distance in time to the

current time, t. A method for solving this problem is using data structures called

“eligibility traces”. In the eligibility traces for every state, and action an eligibility

value is employed, these values are stored in a vector, say , which is updated by

using the accumulating eligibility trace rule, for the critic, we get:

where the recency factor λ (in [0,1]) is known as the eligibility rate. Hence, the

critic eligibility traces are accumulating traces, which are increased as the related

rule is activated (without any limit), and decreased as time passes.

For the actor eligibility trace, for each of the U values, an eligibility value must be

stored. Let be the trace associated with discrete action Ui of rule Ri at time

step t, we have

tΦ

1

1

0

))1((

0

)()()(−

−

=

−−

=

− Φ⋅⋅+Φ=Φ⋅⋅⋅+Φ=Φ⋅=Φ �� tt

t

n
n

nt
t

t

n
n

nt
t λγγλλγλγ (2.35)

)(ii
t Ue

��

�
�

⋅
Φ+⋅

=
−

−

)(
)(

)(
)1(

'
)1(

'

ii
t

i
t

ii
tii

t Ue

Ue
Ue

λ
λ , if U =Ut

i i

, otherwise
(2.36)

 46

Where λ’ represents the actor recency factor. Similar to the critic recency factor,

as an action participates in the global action, its eligibility trace is increased by a

factor proportional to the activation strength of the related rule.

As a result; the updates for the v and w terms given in equations (2.28) and (2.34)

respectively, are modified as follows

In practical implementation, eligibility traces are stored for only a finite number of

recent states and actions, by using a threshold for the traces; and ignoring the

traces less than this threshold.

As we stated, the second key issue is about the learning rate updating. In order to

prevent oscillations in estimating the value function V, the learning rates are

updated by using four heuristics. First of all every parameter should have its own

Time instants at which
related state is visited.

Accumulating Eligibility
Trace of the state

Replacing Eligibility Trace
of the state

Figure 2.3.10 – Visualization of accumulating eligibility trace vs replacing eligibility
trace [23].

tttt vv Φ⋅⋅+= ++ 11
~εβ

tttt eww ⋅+= ++ 11
~ε (2.37)

 47

learning rate. Secondly, every learning rate should be allowed to vary over time.

Thirdly, when the derivative of a parameter possesses the same sign for several

consecutive time steps, its learning rate should be increased. Finally, when the

parameter sign alternates for several consecutive time steps, its learning rate

should be decreased. In order to implement these heuristics, the delta-bar-delta

rule [27] is employed. In this rule, the change in learning rate at each time step is

given by

Where is the critic learning rate of rule Ri at time step t; is a term

used to integrate the eligibility trace; and represents the

geometric average. Hence, the critic update rule given in equation (2.37) may be

further modified to show that the learning rate is time-dependent

In summary Fuzzy Actor-Critic Learning (FACL) architecture is proposed by

Jouffe in late 1990s; it is a modified form of Sutton’s AHC algorithm; a fuzzy

inference system (FIS) is employed to approximate the value function; linear

combination of discrete actions are used to generate actions which are continuous

in state space; temporal difference (TD(λ)) methods are employed in tuning the

actor and critic parameters; eligibility traces and meta learning rule are used for

solving temporal credit assignment and adaptive learning rate problems. In action

selection a function which is a combination of exploitory, directed exploratory,

and undirected exploratory terms is employed. This architecture is shown to be

more successful than its counterparts, similar to GARIC and ANFIS (see [23]).

Six algorithmic steps for the implementation of FACL is given in [23], and

FACLs are implemented as MATLAB M-files in this thesis work.

�
�

�
�

⋅−=∆
0

i
t

i
t βσ

κ
β

,if 01 >⋅−
i
t

i
t δδ

,if 01 <⋅−
i
t

i
t δδ

,otherwise
(2.38)

i
tβ i

tt
i
t Φ⋅= +1

~εδ
i

t
i
t

i
t 1)1(−+−= δϕδϕδ

ttttt vv Φ⋅⋅+= ++ 11
~εβ (2.39)

 48

2.3.3 Optimization via Genetic Algorithms

An interesting problem in snake-like robot study is the generation of gaits, which

is defined as the sequence of joint motions causing net displacements of the whole

body. In Dowling’s study [41] this is achieved by directly searching the motion

space for a desired displacement of the body. A similar approach based on genetic

algorithms is used in this work. Hence, a basic introduction of this topic is also

given in this part, for the sake of completeness of the report.

“Genetic Algorithms” (GA), first introduced by John Holland of University of

Michigan in the mid 1970s, is a branch of evolutionary computing. This topic is an

inspiration from Darwin’s theory of evolution. Genetic algorithms uses concepts

from the genetics of living creatures, and optimization problems are tried to be

solved using a similar approach. So let’s first introduce some concepts from

biology.

All living organisms consist of cells. In each cell there is the same set of

chromosomes. Chromosomes are strings of DNA and serve as a model for the

whole organism. A chromosome consists of genes, blocks of DNA. Each gene

encodes a particular protein. Basically, it can be said that each gene encodes a

trait, for example color of eyes. Possible settings for a trait (e.g. blue, brown) are

called alleles. Each gene has its own position in the chromosome. This position is

called locus. Complete set of genetic material (all chromosomes) is called genome.

Particular set of genes in genome is called genotype. The genotype is with later

development after birth base for the organism's phenotype, its physical and mental

characteristics, such as eye color, intelligence etc. During reproduction,

recombination (or crossover) first occurs. Genes from parents combine to form a

whole new chromosome. The newly created offspring can then be mutated.

Mutation means that the elements of DNA are a bit changed. This changes are

 49

mainly caused by errors in copying genes from parents. The fitness of an organism

is measured by success of the organism in its life (survival).

If we are solving a problem, we are usually looking for some solution that will be

the best among others. The space of all feasible solutions (the set of solutions

among which the desired solution resides) is called search space (also state

space). Each point in the search space represents one possible solution. Each

possible solution can be "marked" by its value (or fitness) for the problem. With

GA we look for the best solution among a number of possible solutions -

represented by one point in the search space. Looking for a solution is then equal

to looking for some extreme value (minimum or maximum) in the search space.

At times the search space may be well defined, but usually we know only a few

points in the search space. In the process of using GA, the process of finding

solutions generates other points (possible solutions) as evolution proceeds. The

problem is that the search can be very complicated. One may not know where to

look for a solution or where to start. There are many methods one can use for

finding a suitable solution, but these methods do not necessarily provide the best

solution. Some of these methods are hill climbing, tabu search, simulated

annealing and the genetic algorithm. The solutions found by these methods are

often considered as good solutions, because it is not often possible to prove what

the optimum is.

Genetic algorithm begins with a set of solutions (represented by chromosomes)

called (initial) population. Solutions from one population are taken and used to

form a new population. This is motivated by a hope, that the new population will

be better than the old one. Solutions which are then used to form new solutions

(offspring) are selected according to their fitness - the more suitable they are the

more chances they have to reproduce.

This is repeated until some condition (for example number of populations or

improvement of the best solution) is satisfied.

 50

Outline of the Basic Genetic Algorithm can be described with the following steps

[47]

1. [Start] Generate random population of n chromosomes (suitable solutions

for the problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps

until the new population is complete

1. [Selection] Select two parent chromosomes from a population

according to their fitness (the better fitness, the bigger chance to be

selected)

2. [Crossover] With a crossover probability cross over the parents to

form new offspring (children). If no crossover was performed,

offspring is the exact copy of parents.

3. [Mutation] With a mutation probability mutate new offspring at

each locus (position in chromosome).

4. [Accepting] Place new offspring in the new population

4. [Replace] Use new generated population for a further run of the algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in

current population

6. [Loop] Go to step 2.

Since genetic algorithms is not a basic element of this thesis; but rather used

for implementing a lower-level controller for demonstration purposes; details

of it are not given in this study. However, several works concerning this topic

may be found in the artificial intelligence literature.

 51

For a thorough introduction to the topic of genetic algorithms the reader may refer

to [47].

 52

CHAPTER 3

PROPOSED HIGH-LEVEL CONTROLLER ARCHITECTURE

In this part of the thesis the proposed intelligent controller architecture for the

high-level control of snake-like robot motion is explained. In the following

sections, first of all the general snake-like robot structure, considered in the design

phase is given. Then the design criteria for the developed controller architecture

are stated. Finally, the developed controller architecture satisfying the considered

design criteria is explained in detail.

3.1 The General Snake-like Robot Structure

It is worth noting that the proposed high-level controller architecture may be

implemented using any type of snake-like robot. Hence, the mechanical model

used for demonstrative applications of our approach will be given in the

simulations sections of the next chapter. However, in order to be able to describe

our controller, we need to use a representative snake-like robot structure that will

be introduced here. we have a robot structure as in Figure 3.1.1 consisting of

dynamically identical links, with interchangeable extreme links defined as the

“head link” and the “tail link”, and any link in between is referred to as an

“intermediate link”. Although the given figure seems to be planar, the robot is able

to move in 3D space.

Figure 3.1.1 - The representative snake-like robot mechanism.

z
α

Snake-like
robot

Target

Head
Link

Tail
Link

Intermediate
Links

 53

The serpentine robot is assumed to be equipped with proximity sensors detecting

surrounding obstacles on each side of the links; the head link is further equipped

with additional proximity sensors for sensing obstacles in front of the robot. The

sensors are grouped in sensor suits (like [29]), each giving the distance of the

closest obstacle for the side sensors; distance and angular position of the closest

obstacle for the frontal sensors. There are two sensor suits for side sensing and two

sensor suits for frontal sensing, as illustrated in Fig. 3.1.2. Sensor suits 1 and 2 are

present on all segments, while sensor suits 3 and 4 are only present on the head

segment.

Moreover, the robot is assumed to know the location of the target to be reached

implicitly, by measuring α and z variables shown in Figure 3.1.1. This assumption

is necessary for error feedback to the controller and was also present in several

similar studies like [3] and [19].

3.2 Design Criteria for the High-level Controller

As stated in [28], serpentine SAR devices possess the disadvantage of complexity

and uncertainty handling in motion gait planning and control due to high degrees

of freedom. In designing a control system for such a complex structure there are

several issues to be taken into account, and several problems for which solutions

Figure 3.1.2 – Representation of ultra-sound sensor suits of the head segment.
Measurements of sensor suits 1 and 3 are shown as distances d1,d3, and obstacle

sight angle β3. Obstacles are shown as striped rectangles.

1

2

3

4

d1
d3

β3

 54

must be developed. In this study, we focus on task adaptability on variable terrain

by changing the serpentine gaits for target searching despite obstacles, and also

task shapability where snake redundancy is partially distributed to lasso-type

grasping and dragging or lifting tasks; while the remaining portion undergoes

serpentine gaits. Control complexity and uncertainty in gait planning and

execution are overcome by a distributed fuzzy actor critic learning (FACL)

controller architecture, described in detail in section 2.3.2.3 above, that we modify

for our serpentine robot. We couple our controller architecture to an online

optimization technique modified from Dowling’s studies [30] for dynamic gait

configuration changes. Moreover, in order to fully take the advantage of the hyper-

redundant mechanism, we added a lasso-type grasping scheme to the abilities of

our robot, making it superior than wheeled and legged robots in SAR applications.

Following is a summary of criteria that have to be met in the design of the

proposed controller architecture.

i. Dealing with the uncertainties, the non-linearity of the complex

hyper-redundant structure, and the dynamic behavior of the

environment through learning control.

ii. Being segment-modular, such that every link having the same

mechanical structure is controlled individually in the highest

control level, making the whole structure a robot network.

iii. Being control-modular, such that different duties of the controller

are carried out by different processing units rendering the control

architecture, a control network, thus yielding property iv.

iv. Allowing distributed control and parallel processing in the

implementation; such that the computational burden of the complex

 55

algorithms is divided between the controllers of individual links,

overlaying the robot network with the control network.

3.3 The Proposed High-Level Controller Architecture

In order to achieve the aforementioned design criteria, we divide the basic control

aims first into the two classical behaviors of “target reaching” and “obstacle

avoidance” [29]; then, extending them by the “object grasping” behavior for

grasping desired objects during serpentine motion, when necessary. Having three

control objectives for the robot, we further distribute these objectives throughout

the robot network’s individual links as separate controllers. Our approach yields

the general controller architecture block diagram as shown in Fig. 3.3.1.

As the result, we have a segment modular and control modular high-level

architecture, i.e. a robot network overlaid by a control network, where each

segment applies an individual behavior for a given state.

High Level
Robot Control

Head Link
Control

Target
Reaching

Obstacle
Avoidance

Object
Grasping

Intermediate
Link Control

Tail Link
Control

Link
Following

Obstacle
Avoidance

Object
Grasping

Link
Following

Obstacle
Avoidance

Object
Grasping

Figure 3.3.1 - The block diagram of the high-level control architecture.

… …

 56

When target-reaching behavior is active, the head link tries to reach the target; as

if it is an individual robot, and other links try to follow the immediate preceding

link. In the existence of nearby obstacles, a link may switch to obstacle avoidance

behavior individually. Moreover, when object grasping is needed, target-reaching

behavior is temporarily switched to object grasping behavior; such that target

reaching becomes a secondary objective and the robot tries to grasp the desired

object without colliding into surrounding obstacles, until grasping is successfully

completed, or canceled. The implementation of this high level architecture is

realized in our work using Fuzzy Actor Critic Learning (FACL) in the individual

controllers, where uncertainties such as vagueness, imprecision, and interval

valuedness are modeled as fuzzy learning inference with fuzzy rules.

3.3.1 Controller Structures in the Individual Links

As stated before, the control objectives of our robot is distributed between the

links. The head link is the leading part; it decides on its heading velocity and

angular speed at a given time, like an individual robot, which completely defines

its next state. It only uses the local measurements of target position for target

reaching, and sensor suit measurements for the obstacle avoidance behavior. The

block diagram of head controller is shown in Figure 3.3.2.

Head Link
Control

Target
Reaching

Obstacle
Avoidance

Linear Velocity
Controller

Angular Velocity
Controller

Linear Velocity
Controller

Angular Velocity
Controller

Figure 3.3.2 - The block diagram of the high level head link control architecture
for target reaching and obstacle avoidance behaviors.

ωh
vh

 57

The other links (intermediate links and the tail link) are all defined as a single

group of “follower” links. Controllers of these links are identical and trained at

once, which may be further divided into groups for the case of excessive number

of links in order to avoid collisions between the links of the robot. A link

controller controls the connected joint angular velocity, ω(j-1), as shown in Figure

3.3.3.

After processing of each controller, the robot decides on its next states, each state

decided by individual controllers. (The head link controller determines the spatial

positioning of the robot, and the other link controllers determine the internal

mechanism structure, i.e. joint angles).

Each controller of the robot is made of individual FACL controllers. For the head

link, the target reaching behavior controller uses (α,z) as the state feedback. The

obstacle avoidance controller uses the values of dj for j=1,...,4 and the distance

sight angle βj for j=3,4.

For the “follower” links, each behavior controls the joint angular speed between

two consecutive links. For the “link following” behavior, the inputs to the

controller are the current angular speed of the related angle (ω(j-1),which may be

estimated from optical encoder readings on a possible hardware implementation)

Following
Link Control

Link
Following

Obstacle
Avoidance

Angular Velocity
Controller

Angular Velocity
Controller

Figure 3.3.3 - The block diagram of the high level following link control architecture
for target reaching and obstacle avoidance behaviors.

Lj
L(j-1)

θ(j-1),ω(j-1)

 58

and the current value of the related angle (θ(j-1)). For the “obstacle avoidance”

behavior d1 and d2 measurements of the sensor suits and the angular velocity of

the related angle, ω(j-1), are used. The block diagram of these controllers is shown

in Fig. 3.3.3.

3.3.2 Incorporating the Object Grasping Behavior

One of the applications of snake-like robots which may be very useful in SAR

applications is lasso-type grasping [7]. This ability of the robot may be used to

carry parts in ruins of collapsed buildings and to clean the way of the robot.

Moreover, a victim may be grasped and carried, or can be freed of debris pressing

onto him in future applications. As our major contribution, one of our main goals

was to implement a grasping scheme during serpentine locomotion for our snake-

like robot dedicated to SAR applications.

While our robot is moving in an environment, it tries to reach a previously defined

target point, and avoid obstacles on the way. In a SAR application, a camera for

image acquisition is employed and the user can see this image using RF

techniques (or by direct cabling), outside of the robot’s workspace. When an

object to be grasped is seen in the camera, the robot is instructed to grasp the

object by the outside rescue team. After getting the grasping command, the robot

switches from “target reaching” behavior to “object grasping behavior”; while

“obstacle avoidance” behavior is still active. Hence, “object grasping” is an

alternative to “target reaching”. When “object grasping” becomes active, “target

reaching” becomes a secondary objective and is postponed until the object is

grasped successfully or the grasping operation is canceled by the user.

Our “object grasping” behavior implementation consists of three stages. The first

stage is getting closer to the object to be grasped. In this stage, the head link

moves towards the object to be grasped, while the “follower” links still apply the

 59

“link following” behavior. This stage is achieved using the “target reaching”

behavior with target set to the object. When the head link reaches the object

boundary, the second stage is initiated. In this stage, the head link aims at going

around the object, beginning to enwrap the object. For the “follower” links, a link

sensing the object switches from “link following” behavior to “object grasping”

behavior. The aim of the link becomes the same as the head link in the second

stage: going around the object and enwrapping it. In the third stage, the head

finishes going around the object (turning 360 degrees in plane), while the

“follower” links are still going around the object. At this point the object is

surrounded by robot links, the robot decides on switching back to “target

reaching” phase, if it decides that it can carry the object, otherwise more links go

around the object in order to apply higher pulling force (power grasp) to the

object. After successful completion of object grasping, the links around the object

become “inactive” from the control point of view, hence their angles are forced to

be constant, i.e. lasso links stiffen; while the remaining links continue normal

serpentine operation in the “target reaching” behavior instead of “object grasping”

behavior.

Figure 3.3.4 - Visualization of the planar grasping behavior. Different stages are
shown. First the robot is directed towards the object (Stage-1), then head switches
to “object grasping” behavior (Stage-2). When head completes enwrapping, the

following object sensing links continue enwrapping operation, while head switches
to “target reaching” behavior (Stage-2b). Finally, when object becomes to a

position that power grasping is possible, related links are locked and other links
perform “target reaching” behavior.

Locked
links

Stage-2b

Stage-1
Stage-2a Stage-3

Object to be
grasped

 60

Object grasping behavior is also realized with FACL controllers. For the head

link, at the first stage the “target-reaching” controller is used as the target is set to

the object to be grasped. In the second stage, distance to the object (sensed by

obstacle sensors) and the total angular position change of the head (measured from

the α value of Figure 3.1.1) are used as the input to the controller. Outputs are still

the heading and the angular velocities. Similarly, for the “follower” links, first the

“link following” behavior is active, when the object is sensed via obstacle sensors

“object grasping” behavior is switched on. In this behavioral stage, the distance to

the object, controlled angle angular speed and angle value are used as inputs,

while the output is still the angular velocity of the angle between the link and the

preceding link. When head completes a single turn around the obstacle, it switches

back to “target reaching” behavior with target is set to the original position. A

“follower” link which completes the turn also switches back to “link following”

behavior. When the robot decides that the power grasp may be succeeded the

grasping links are locked, and their link angles are fixed, while all the other links

continue in “link following” (“target reaching” for the head link) behavior. A

visualization of this approach is given in Fig. 3.3.4.

3.3.3 Dynamic Serpentine Gait Selection

Up to this point of the thesis, dynamics are somehow ignored, there are several

studies on snake dynamics and implementation of snake-like motion in robotics

such as [2],[31],[17], and [7]. In similar control studies, [3] and [17], previously

memorized gaits are used for motion. However, these approaches are not generic

and their origin comes from trying to mimic the locomotion of real snakes by link

motions. In our study, we use an on-line optimization approach similar to the one

in [30]. A matrix of individual entries corresponding to the link angles at different

time steps is used. This is an N x (t/Ts) matrix, where N is the number of links, t is

the time length of the movement, Ts is the execution time step. A genetic

algorithm implementation is, then, used to evaluate the best matrix, by employing

 61

sinusoidal modal functions, resulting in a best-fit solution to the desired position in

state-space at each time length of the movement. Our approach concerning the

details of the genetic algorithm used during simulationa is given in section 4.3.2.

As the result, the active FACL controllers produce the state of the robot for the

next time, and the genetic algorithm is used to search the necessary angular

movements in time, to achieve the desired position dynamically. With this

approach, we incorporate the environmental conditions into gait programming.

The drawback is that, the friction coefficients must be known (or estimated) in

order to correctly evaluate the resulting motion in space due to changing link

angles. Note also that, low-level control of link actuators are not taken into

account and assumed to be achieved ideally.

After incorporating the dynamic motion generation to the system, our basic

algorithm may be represented as in Figure 3.3.6.

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

.....

.....

.....
..
..

22221

11211

M

M

θθθ
θθθ

Columns are time steps

Rows are corresponding
joint angles of the robot

. . .
All the matrix corresponds to a
motion of links between two
configurations of the robot.

Figure 3.3.5 – Representation of the motion generation via genetic algorithms and
motion matrix [30]. Although a 2D schematic is shown here, if there are angle
entries for 3D motion, then the resultant motion is in space rather than plane.

 62

At this point, it is worth noting that the main focus of this study is the higher level

control architecture, which is used for target reaching, obstacle avoidance and

object grasping purposes. The lower-level genetic algorithm control

implementation is not original to this study and used because it is in coherence

with the genericity of the developed high-level control algorithm.

3.4 Parameters Used for the High Level Controllers

Every high level controller developed in this study is a different form of FACL

controller with different parameters. At this part of the report, we give numerical

values of these parameters that are used in the simulations.

High Level Controller
Each link determines its next state in

2D plane, which are given to the
output.

Lower-level Joint Controller
A Genetic Algorithm implementation is
used to find the steps of 3D motion to
realize the desired planar displacement

of the robot.

SNAKE ROBOT

(PLANT)

Joint angles
in time

States used
in high-level
controllers.

Figure 3.3.6 – Block diagram showing the feedback architecture of the system.

 63

As given in Chapter 2, trapezoidal membership functions are used for the input

fuzzy sets in FACL. We further simplify this assumption by setting triangular

fuzzy sets for the inputs. In Figure 3.4.1 typical parameters of a triangular fuzzy

set is shown. It is also worth noting that the output fuzzy sets are single valued, i.e.

they are crisp. Crisp fuzzy sets may be represented as triangular fuzzy sets with

both spreads set to 0, while the center value is the single point at which the fuzzy

membership takes the value 1. The parameters of the fuzzy sets used in the

controllers are shown in Table 3.4.1

There are also several properties of controllers directly defined by the inputs and

outputs. These are number of rules and the number of action-weights used for that

controller. Moreover, the final values of reinforcement learning parameters such as

eligibility traces’ recency factors (λ), reinforcement learning discount factor (γ)

and value function initial learning rate (β) are all adjusted by trial and error. All

these values are given in Table 3.4.2.

Reward generation mechanism is also specific to a controller. This issue is very

critical, since determining the reward generation mechanism determines exactly

what should the controller “control” and how to do that. This is similar to a

reference set point source for a classical controller. The table showing the reward

generation mechanism for each of the controllers used is given as Table 3.4.3.

µV(x)

x

1

cV sRV sLV Ο

Figure 3.4.1 – Parameters of a typical triangular fuzzy set defined for
the inputs.

 64

VARIABLE FUZZY SET SLV CV SRV

NVS 0 -π π/3

NS π/3 −2π/3 π/3

N π/3 -π/3 π/3

Z π/3 0 π/3

P π/3 π/3 π/3

PB π/3 2π/3 π/3

Object, Joint and Target
Angles (αo,θ,α)

PVB π/3 π 0

S 0 0 0.5

M 0.5 0.5 0.25
Sensory Distances

(d1, d2 ,d3 ,d4)
B 0.25 0.75 �

S 0 0 π/4

M π/4 π/4 π/4 Sensory Angles (β3,β4)
B 0 π/2 π/4

NB 0 −π/4 0

NS 0 −π/8 0

Z 0 0 0

PS 0 π/8 0

Angular speeds of all
links (ω)

PB 0 π/4 0

VN � 2.5 5

N 5 7.5 5

F 5 12.5 5

Head tip o target point
distance (z)

VF 5 17.5 �

NB 0 −2 0

NS 0 −1 0

Z 0 0 0

PS 0 1 0

Directional speed of
head (v)

PB 0 2 0

Table 3.4.1 – Fuzzy sets used for the input and output variables of the

controllers.

 65

The final point that should be noted regarding the high level controllers is the

combination of actions of different controllers which are active at the same time

instant. This is achieved by a linear combination of different actions offered by

different controllers. The weights used in these linear combinations are functions

of the situation. Such situations occur when target reaching and obstacle avoidance

behaviors are active for the same link at the same time instant. The resultant

output of the high level controller is given as

Where kOA = 1- min(di(t)), and kTR = (1-kOA)

There are also parameters κ,σ and ϕ used in FACL structure. These values are set

as follows:

Controller Inputs Outputs Number of
Rules

Number of
Weights

R.L. Parameter
Vector

[γγγγ λλλλ λλλλa ββββ0]
Head T.R. /

Angle
(z, α) ω 4x7 = 28 28x5 = 140 [0.9 0.1 0.1 0.0001]

Head
T.R./Linear

Speed

(z, α) v 4x7 = 28 28x5 = 140 [0.9 0.5 0.1 0.0001]

Head O.A. (d1, d2 ,d3
,d4,β3,β4)

(ω,v) 3x3x3x3x3x3 =
729

729x5x5 =
18225

[0.9 0.5 0.5 0.0001]

Head O.G. (d1, d2 ,d3
,d4,β3,β4, αο)

(ω,v) 3x3x3x3x3x3x7
= 5103

5103x5x5 =
127525

[0.9 0.9 0.9 0.0001]

Follower
Link / T.R.

(θ,ω) ω 7x7 = 49 49x5 = 245 [0.9 0.9 0.5 0.0001]

Follower
Link / O.A.

(d1,d2,ω) ω 3x3x5 = 45 45x5 = 225 [0.9 0.5 0.5 0.0001]

Follower
Link / O.G.

(d1,d2,ω,αο) ω 3x3x5x7 = 315 315x5 =
1575

[0.9 0.9 0.9 0.0001]

Table 3.4.2 – High level controller parameters. T.R.: Target Reaching;
O.A.: Obstacle Avoidance; O.G.: Object Grasping.

OAOATRTROUT YkYkY ×+×=

oβκ ⋅= 01.0
01.0=σ
2.0=ϕ

 66

It should also be noted that a sampling time of 0.1 seconds is used for the high

level simulations, and 0.002 seconds sampling time is used for dynamical

simulations within a sample period.

Controller Parameters Parameter
Values

Success
Condition

Failure
Condition

Reward Function

Head T.R. / Angle - - |α|<π/18 |α|>3π/4 rt = -1 if failure
rt = 1 if success

rt = 0 else

Head T.R./Linear
Speed

k: reward gain
∆z = zt – z(t-1)

k = -0.05 z < 0.5 z > 10 rt = -1 if failure
rt = 1 if success

rt = k x (∆z),else
Head O.A. k = obstacle

avoidance gain
∆di= min(di(t+1)) -
min(di(t)), i=1..4

k = 1-
min(di(t))

- Obstacle hit rt = -10 if failure
rt = k x

(∆di),else

Head O.G. kα = object angle
gain

kd = object
distance gain

∆di= min(di(t+1)) -
min(di(t)), i=1..4
∆αo=αo(t+1)-αο(t)

kα = 0.05
kd = 0.05

αo>35π/36 αo< -π/36
OR

Object Hit
OR

do>0.3

rt = -10 if failure
rt = 10 if success

rt =kd x ∆di +
kα x ∆αo else

Follower Link /
T.R.

k = joint angle
gain

 ∆θj = |θj(t+1)| -
|θj(t)|

k = 0.05 Target
reached with

|θ|<2π/18

|θ|>5π/18 rt = -10 if failure
rt = 10 if success
rt = k x ∆θj else

Follower Link /
O.A.

k = obstacle
avoidance gain

∆di= min(di(t+1)) -
min(di(t)), i=1,2

k = 1-
min(di(t))

- Obstacle hit rt = -10 if failure
rt = k x

(∆di),else

Follower Link /
O.G.

kα = object angle
gain

kd = object
distance gain

∆di= min(di(t+1)) -
min(di(t)), i=1..4
∆αo=αo(t+1)-αο(t)

kα = 0.05
kd = 0.05

αo>35π/36 αo< -π/36
OR

Object Hit
OR

do>0.3

rt = -10 if failure
rt = 10 if success

rt =kd x ∆di +
kα x ∆αo else

Table 3.4.3 – High level controller parameters used for reward

calculations. T.R.: Target Reaching; O.A.: Obstacle Avoidance; O.G.:
Object Grasping.

 67

CHAPTER 4

SIMULATIONS AND RESULTS

4.1 Simulation Environment

For the verification and the evaluation of the developed high-level controller

architecture, a simulation program is developed in the MATLAB environment.

The program consists of different modules. These modules are the graphical user

interface (GUI), the controllers’ source codes (written as M-files), genetic

algorithm module (implemented using Genetic Algorithms Toolbox of

MATLAB), mechanical simulation module (implemented using Simmechanics

blockset of MATLAB-Simulink) and the visualization module. Snapshots from

these modules are shown in Figures 4.1.1, 4.1.2 and 4.1.3.

For easy access to the written source code, the GUI shown in Figure 4.1.1 is

prepared. Within this GUI, the user can perform the following operations:

• Create map with desired x,y and z dimensions,

• Create obstacles at any desired position in the map, with adjustable

dimensions and angular orientation in z axis,

• Create target point at any desired position in the map,

• Create cylindrical object at any point in the map by specifying its radius

and height,

• Create snake robot by specifying segment dimensions, joint dimensions,

number of links, initial position, and initial alignment,

• Change the camera parameters for viewing from different positions,

• Train any FACL controller during specified number of episodes.

 68

• Evaluate the performance of any FACL controller with incorporation of

dynamics as an option,

• Perform sweep training, which runs training of selected controller for

different values of FACL parameters,

• Save and load previously created maps,

Upon selection of each operation, the callback functions of the used button

controls performs batch call to related M-file source code and Simulink

simulations when necessary.

Figure 4.1.1 - A MATLAB GUI and several M-files codes have been prepared for the
simulations.

 69

Figure 4.1.3 - A snapshot from the visualization componenent of the simulation
program.

Figure 4.1.2 - Simulink and its SimMechanics Blockset are employed for performing
the dynamical simulations of the robot and environment interaction.

 70

Simulations performed using these modules consist of two different phases. The

first phase is training of the high-level controllers and the second phase is the

performance evaluation with genetic algorithm and the dynamical model added to

the controllers. Explanation of these phases is given in the following two sub-

chapters.

4.2 High-level Controller Training Simulations

Since the controller architecture developed in this thesis is a modular one, the

learning processes of different controllers are achieved in different simulation

scenarios. The steps for the learning of the high-level controllers may be given in

stages as follows:

1- Training the head’s angular speed controller: At this stage, only the head link

is considered, and it learns aligning through the target to be reached in an

environment without any obstacles.

2- Train the head’s heading speed controller: At this stage, the head link “target

reaching” controller is further trained for reaching the target by controlling its

heading speed. Since the controller has already learnt aligning towards the target

at the first stage; after the second stage, head is able to reach the target point in an

environment without any obstacles.

3- Train the following segments’ link following controller: At this stage, the

following links are trained to follow each other. The link following the head learns

to align with the head; the link after it learns to align with this link and so on.

4- Train the head’s obstacle avoidance controller: After the steps 1 and 2 we have

a head link that can reach a given target by adjusting its angular and heading

speeds. At this stage, the head link’s “obstacle avoidance controller” is trained to

avoid the obstacles, while the target reaching controller trained in steps 1 and 2 is

employed for moving through the target point.

 71

5- Train the following segments’ obstacle avoidance controller: The following

segments are able to follow each other after the training at step 3. At this fifth step,

the “obstacle avoidance controller” of the following links is trained for avoiding

the obstacles, while the link following controller trained in step 3 is used directly.

6- Train the head’s object grasping controller: After step 5 we have a robot which

is able to avoid obstacles while reaching a previously given target point in an

environment with obstacles. Since we also desire to have an object grasping

behavior associated with our robot, we continue with the training of this

controller. At this stage, the head segment is learnt to enwrap around a given

object that is to be grasped by the snake-like robot.

7- Train the following segments’ object grasping controllers: Following segments

learn to follow the head segment in enwrapping the object; the segments must go

around the object without colliding it, but also without going away from the object

so as to enwrap it and apply a pulling force when needed.

It is worth noting that during all these stages of the simulations dynamics are not

taken into account. Genetic algorithm tool is used to incorporate the dynamic

effects into the simulation in the performance evaluation stage.

The detailed explanation of the simulation of these stages is given in the following

paragraphs.

4.2.1 Training of the Head Target Reaching Controller

As stated above, the learning process starts with the target reaching behavior of the

head link. This process is achieved in two successive steps. First of these steps is

the training of the head for aligning through the target point in the environment.

An FACL controller is used for achieving this desired behavior. The inputs to the

controller are the distance between the tip point of the head segment and the target

(z in Figure 3.1.1), and the heading angle error of the head segment; which is

 72

given as the angle α in Figure 3.1.1. Upon getting the current values of these

inputs, the head angle controller outputs an angular speed for the head segment.

Using the sampling time of the simulation and the orientation of the head link at

the previous time step, the new orientation of the head link is found and the

segment is redrawn for the calculation of the new desired angular speed.

The flowchart of the FACL controller learning algorithm for the head target

reaching behavior angle controller is shown in Figure 4.2.3. Actually this

flowchart may be generalized to all FACL controllers by replacing the

input/output variables with the general terms.

Target

Head Link

Figure 4.2.2 – Two views from the angular speed learning simulations of
the head link. On the left a 3D scene is shown with the perspective view,

while on the right a planar scene is shown.

Head Target Reaching
Angle Controller

Target Distance
(z)

Heading Angle
Error (α)

Head Angular
Speed (ωΗ)

Head Target Reaching
Linear Velocity Controller

Head Directional
Speed (vΗ)

Figure 4.2.1 - Inputs and outputs of the head angle and linear velocity
controllers used for the target reaching behavior.

 73

The second step in head target reaching behavior learning is the training of the

head link for adjusting its linear speed in an environment with no obstacles. For

example, when the head link points 180 degrees from the target, its directional

speed should be small. Hence, we give the distance to the target and the heading

angle error as inputs to the controller, and make the directional speed as the output

whose pattern should be learnt for different values of the inputs. After training of

Clear the weight and value eligibility traces, randomly initialize head
segment on the map; not giving rise to instant failure or success.

Get the current α and z values; and calculate the truthness of the rules in
the rule base for the current state (initial state value is assumed to be 0).

For the rules with non-zero truthness values, calculate the local actions
using the ε-greedy policy (described above), calculate the global action.

Find the new head position, after the application of the calculated global action.

Calculate Vt(St+1)

Calculate Vt+1(St+1)

Update v and w values of the controller.

Update eligibility traces and get the reward.

Calculate Temporal Difference Error.

Is there a condition of failure or
success of the episode?

YES NO

START

Figure 4.2.3 – The flowchart showing the implementation steps of the
FACL learning for the head link angular speed controller for a single

episode.

 74

the head for learning its directional speed behavior, this segment is able to reach a

target point in an environment with no obstacles. This is illustrated in Figure 4.2.4.

4.2.2 Training of the Link Following Controller

After making the head link to reach the target, the next step is making the

following links to learn how to follow the link just in front of them. This is

achieved by first making the head following link to learn how to follow the head,

then replicating this trained controller for the other follower links.

For the link following controller, the current value of the controlled joint angle

and the angular speed of the previous link are the inputs. The controller learns to

adjust the angular speed of the previous joint such as to minimize the previous

joint angle. Hence, a positive reward is given as this angle approaches to 0, and a

Figure 4.2.4 – Snapshots from the head target reaching behavior learning simulation. Here, an
episode is finished with success by reaching to the target at the end of the episode.

1 2

3 4

 75

negative reward is given as this angle deflects from zero. The episode ends with a

failure (big negative reward), if angular deflection exceeds a predefined threshold.

In the simulations of the training of the link following controller, previously

trained head link target reaching controller is operated and the link behind the

head is used as the training environment for the controller. After the controller is

trained successfully, it is replicated for the other following links. Snapshots from

the training stage are given in Figure 4.2.6 and the result of replication of the

controller to all follower links is shown in Figure 4.2.7.

Link Following Controller

Previous Joint
Angle (θj)

Previous Link
Angular Speed

(ωjl)

Previous Joint
Angular Speed

(ωj)

Figure 4.2.5 - Inputs and outputs of the link following controller used for
the target reaching behavior.

Figure 4.2.6 – Snapshots from a successful episode of link following
controller training.

1 2

3 4

 76

4.2.3 Training of the Head Obstacle Avoidance Controller

Head Obstacle Avoidance
Controller

Head Link sensor
suit readings

(d1, d2 ,d3
,d4,β3,β4)

Head Angular
Speed (ωΗΟΑ)

Head Directional
Speed (vΗΟΑ)

Figure 4.2.8 - Inputs and outputs of the head link obstacle avoidance
behavior controller.

Figure 4.2.7 – Snapshots from a run of trained head target reaching controller and replicated
link following controllers.

1 2

3 4

 77

After training of the controllers related with the target reaching behavior, obstacle

avoidance behavior training is performed. At the first step of this training, the head

link is taught to avoid obstacles. During the simulations of this stage, the head link

is operated in an environment with obstacles and a target point. While the

previously trained target reaching behavior is run for this link, obstacle avoidance

behavior is activated whenever an obstacle is come across. Outputs of both the

target reaching and the obstacle avoidance sensors are the linear and angular

velocities of the head link, hence a linear combination of these outputs is used to

determine the resultant outputs. The combination weights of different controller

outputs are determined by the obstacle closure measure, which is defined as the

distance to the nearest obstacle. In Figure 4.2.9 an episode of obstacle avoidance

behavior training ending with a failure is shown. After the completion of this

training stage, the head link is able to reach a target point without hitting any

obstacles in the environment.

Figure 4.2.9 – Snapshots from an unsuccessful episode of head link

obstacle avoidance controller training simulation.

1 2

3 4

 78

4.2.4 Training of the Follower Link Obstacle Avoidance Controller

The second stage in making the robot learn to avoid obstacles while reaching to

the target is training of the obstacle avoidance controllers for the follower link.

This is achieved by training the controller for the link following the head, and

replicating this controller for the other follower links.

In training of this controller, the head link is operated in both target reaching and

obstacle avoidance behaviors, while the follower link’s link following behavior is

also active. Similar to the head link, for the follower link the resultant joint

angular speed is determined by a linear combination of the link following and

obstacle avoidance behaviors, and the combination weight of each behavior is

determined by the obstacle closure measure. A successful episode of the training

phase is shown in Figure 4.2.11. After the completion of this stage, replicating the

trained controller for the remaining follower links yields a control structure which

is able to make the robot reach a target without colliding any obstacles. A sample

simulation of the controller with the follower link obstacle avoidance behavior

replicated is shown in Figure 4.2.13.

Follower Link Obstacle
Avoidance Controller

Previous link
angular speed

(ωjl)

Previous joint
angular speed

(ωjΟΑ)

Obstacle sensor
suit readings

(d1, d2)

Figure 4.2.10 - Inputs and outputs of the follower link obstacle avoidance
behavior controller.

 79

4.2.5 Training of the Head Object Grasping Controller

As we stated before, as an indication of extendibility of our control architecture,

we added a grasping scheme to our serpentine robot, and in simulations, we used

grasping of cylindrical objects as a case study. After completion of all other

Head Object
Grasping
Controller

Object Angle
(αo)

Head Link Sensor Suit
Readings

(d1,d2,d3,d4,β3,β4)

Head Angular
Speed (wHOG)

Head
Directional

Speed (vHOG)

Figure 4.2.12 - Inputs and outputs of the head link object grasping
behavior controller.

Figure 4.2.11 – Snapshots from a successful episode of follower link
obstacle avoidance controller training simulation.

1 2

3 4

 80

training stages, the robot should be trained for grasping objects. As a first step the

head link is trained for grasping an object. This is achieved in an environment

without obstacles, with a target and an object. Each episode of training starts when

the head reaches to the object and switches to the object grasping behavior. An

episode ends with failure if head can’t enwrap the object in a given amount of time

steps, or if it collides with the object. Sample snapshots from the simulations of

this training are shown in Figure 4.2.14.

After completion of head object grasping controller training, next step is training

of the following link object grasping controllers.

Figure 4.2.13 – Snapshots from a run of target reaching and obstacle
avoidance behaviors operated simultaneously.

1 2

3

 81

4.2.6 Training of the Follower Link Object Grasping Controller

Similar to the head object grasping controller, these controllers are also trained in

an environment without obstacles. In the training phase, only the link following

the head is used, and the trained controller is replicated in the other links.

Figure 4.2.14 – Snapshots from a successful episode of head link object
grasping controller training.

1 2

3 4

5 6

 82

Again, until reaching to the object to be grasped, the follower link’s link following

controller is active. When the object to be grasped is sensed by the obstacle

sensors, the following link switches to training of the object grasping behavior

(i.e., an episode starts at this time step). The episode ends with a success if the

object angle sweeps all the range from the starting point without colliding with the

object while the distance of the follower link to the object doesn’t exceed an

acceptable limit. A run from a successful episode is shown in Figure 4.2.17.

After the completion of this training stage, the robot is able to move in an

environment with obstacles, and reach a target without colliding any obstacles.

Moreover, it is able to grasp a desired cylindrical object. In other words, training

of the high level controller is completed. The discussion on the performance of the

learning phase is given in the following paragraphs. The parameters of the high-

level controllers used are tabulated in section 3.4 above.

Figure 4.2.15 - Inputs and outputs of the follower link object grasping
controller.

Follower Link
Object Grasping

Controller

Object Angle
(αo)

Follower Link Sensor
Suit Readings (d1,d2,)

Previous Joint
Angular Speed

(wHOG)

Previous link
angular speed

(wj)

Figure 4.2.16 – After replication of the grasping controller to the other
following links, the robot is able to grasp an object.

 83

4.2.7 Training Simulation Results

In order to evaluate the learning performance of the controllers with different

FACL parameter ([γ λ λa β0]) values, we follow a way similar to one in [23]. We

first define the learning speed parameter as the number of training episodes

Figure 4.2.17 – Snapshots from a successful episode of follower link
object grasping controller training.

1 2

3 4

5 6

 84

needed before a 50 successive episodes ending in success. If number of training

episodes needed exceeds 10000, then we claim that the FACL parameters used are

not applicable for correct learning. Note that, since the learning speed is measured

using the number of episodes, ast he number of episodes needed increases the

learning gets slower. Hence, a big number of learning speed means a slower

learning. The obtained values of learning speeds are tabulated in Table 4.2.1 to

Table 4.2.7 for different FACL controllers used.

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A.
[0.5 0.1 0.5 0.0005] N.A.
[0.9 0.1 0.9 0.001] 1562

[0.1 0.5 0.1 0.0001] N.A.
[0.5 0.5 0.5 0.005] 2628
[0.9 0.5 0.9 0.001] 50

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] 321
[0.9 0.9 0.9 0.001] 123

[0.9 0.9 0.9 0.0001] 50

Table 4.2.1 – Learning speed for different FACL parameters, given for the

head target reaching angle controller.

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A.
[0.5 0.1 0.5 0.0005] N.A.
[0.9 0.1 0.9 0.001] 1382

[0.1 0.5 0.1 0.0001] N.A.
[0.5 0.5 0.5 0.005] 3181
[0.9 0.5 0.9 0.001] 123

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] 413
[0.9 0.9 0.9 0.001] 188

[0.9 0.9 0.9 0.0001] 50

Table 4.2.2. – Learning speed for different FACL parameters, given for the

head target reaching velocity controller.

 85

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A.
[0.5 0.1 0.5 0.0005] N.A.
[0.9 0.1 0.9 0.001] 1134

[0.1 0.5 0.1 0.0001] N.A.
[0.5 0.5 0.5 0.005] N.A.
[0.9 0.5 0.9 0.001] 625

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] 1242
[0.9 0.9 0.9 0.001] 321

[0.9 0.9 0.9 0.0001] 163

Table 4.2.3 – Learning speed for different FACL parameters, given for the
follower links’ link following controller.

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A.
[0.5 0.1 0.5 0.0005] N.A.
[0.9 0.1 0.9 0.001] 4387

[0.1 0.5 0.1 0.0001] N.A.
[0.5 0.5 0.5 0.005] N.A.
[0.9 0.5 0.9 0.001] 2114

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] 5318
[0.9 0.9 0.9 0.001] 3154

[0.9 0.9 0.9 0.0001] 1352

Table 4.2.4 – Learning speed for different FACL parameters, given for the

head obstacle avoidance controller.

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A.
[0.5 0.1 0.5 0.0005] N.A.
[0.9 0.1 0.9 0.001] 3118

[0.1 0.5 0.1 0.0001] N.A.
[0.5 0.5 0.5 0.005] N.A.
[0.9 0.5 0.9 0.001] 1755

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] 3741
[0.9 0.9 0.9 0.001] 2188

[0.9 0.9 0.9 0.0001] 998

Table 4.2.5 – Learning speed for different FACL parameters, given for the

follower link obstacle avoidance controller.

 86

We can infer from the above tables that the reinforcement learning discount factor,

γ, should be close to 1 for all of our controllers; and the initial learning rate, β0,

should be in the order of 0.0001 for faster learning. Use of eligibility trace recency

factors , λ and λ’, close to 1 increases the learning speed for all the cases, however

for more complicated controllers (complexity increases in the order: target

reaching, obstacle avoidance, object grasping), their effect is more sensible since

as the state space gets larger, using memory terms gains meaning.

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A
[0.5 0.1 0.5 0.0005] N.A
[0.9 0.1 0.9 0.001] 8622

[0.1 0.5 0.1 0.0001] N.A
[0.5 0.5 0.5 0.005] N.A
[0.9 0.5 0.9 0.001] 7643

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] N.A
[0.9 0.9 0.9 0.001] 6429

[0.9 0.9 0.9 0.0001] 5622

Table 4.2.6 – Learning speed for different FACL parameters, given for the

head object grasping controller.

FACL Parameters vector
[γγγγ λλλλ λλλλa ββββ0]

Number of Episodes
Needed for Learning

[0.1 0.1 0.1 0.0001] N.A.
[0.5 0.1 0.5 0.0005] N.A.
[0.9 0.1 0.9 0.001] 1633

[0.1 0.5 0.1 0.0001] N.A.
[0.5 0.5 0.5 0.005] N.A.
[0.9 0.5 0.9 0.001] 1461

[0.1 0.9 0.1 0.0001] N.A.
[0.5 0.9 0.5 0.0005] N.A.
[0.9 0.9 0.9 0.001] 1294

[0.9 0.9 0.9 0.0001] 963

Table 4.2.7 – Learning speed for different FACL parameters, given for the

follower link object grasping controller.

 87

4.3 Performance Evaluation Simulations

After the completion of the training of the controllers, the next step in the

simulations is the evaluation of the performance of the complete controller

architecture. This is achieved by running robot simulations in different

environmental maps. These maps are arranged according to different criteria such

as complexity of the obstacle placement, and object grasping situation. For the

runs including only target reaching and obstacle avoidance controllers a 6-link

robot simulation is used. For the runs with object grasping included, a 12-link

robot simulation is used.

It is also worth noting that the dynamics is also added to the evaluation

simulations. The genetic algorithm is incorporated as the low-level part of the

algorithm to implement the dynamical control. In the evaluation simulations we

use links that are 50 cm in length and 5 cm in width, with a mass of 1 kg each,

with a corresponding 0.0208 kg.m2 moment of inertia with respect to center of

mass. The Coulomb friction model is used with tangential and normal friction

coefficients of 0.1 and 0.5 respectively. In these simulations, obstacles in the range

of 50 cm from the links were assumed to be sensed (i.e., farther obstacles are not

sensed). Dynamical modeling is not performed by hand-written equations, but

SimMechanics software of MATLAB is used.

… …

z

x

Figure 4.3.1– The structure of the robot links and joints.

 88

The robot structure used in simulations is as shown in Figure 4.3.1: Two

successive links are connected to each other with a 2-DOF joint that’s able to

move in pitch and yaw angles. In the simulations, it is assumed that these angles

are active variables (i.e., in a physical implementation there are actuators able to

change these angles as desired.) and they cause the total motion of the robot.

Genetic algorithm searches for suitable angle functions in time, that cause the

desired displacement, as explained in Chapter 3.

Another point to note for the dynamical simulations is that for the high-level

learning simulations, the controller architecture is on a planar snake robot and for

its grasping the collisions between the grasping links are ignored, which in fact is

unavoidable on a plane. However, for a robot that can move in 3D, precautions

may be taken to avoid such collisions. This is achieved by raising the colliding

link within an acceptable safety margin above the ground. If a head following link

is colliding with its consecutive links, then the immediate consecutive links raise

in a triangular bridge over their predecessor links to allow a passage for that

preceding link. A “height envelope” around the forehand link that prevents

collision in space with its succeeding links is used for this purpose. This idea is

illustrated schematically in Figure 4.3.2.

l

Figure 4.3.2 – A representation of two links colliding in plane, and the
envelope function representation for the forehand link.

Succeeding link
(green) Forehand link(red)

2xl

1.5xl 1.5xl
l

 89

4.3.1 High-level Controller Performance Evaluation

Three different maps are used in the evaluation simulations of the classical target

reaching and obstacle avoidance behaviors. These maps are shown in Figure 4.3.3.

For the first map we may use the term “dense small obstacles”, for the second one

“rare big obstacles” and for the third one “rare long obstacles”. The 6-link robot is

operated in each of these environments for 100 trials. The trials in which the 6-link

robot reaches to the target point without colliding with any obstacles are assumed

to be successful.

The results of the evaluation simulations are given in Table 4.3.1. As shown in

this table, success rates are below 65% for the first two maps and above 80% for

the 3rd map. This is due to the obstacle structure and the lack of training

generalization. In order to improve generalization, the controllers are further

a b

c

Figure 4.3.3 – Three maps used for the evaluation of the high level
controller.

 90

trained in these environments for 100 episodes and the results are shown in the 3rd

column of Table 4.3.1 as the further training (F.T.) success.

MAP INITIAL SUCCESS F.T. SUCCESS

a 60% 94%
b 64% 96%
c 85% 100%

Hence, our controller architecture is able to adapt itself to environments by

performing further training when necessary.

For the performance evaluation of the grasping controller we use a 12-link

serpentine robot simulation in an environment with obstacles, and also with an

object of radius 0.5 m. The expectation of the controller is going through the

object and reaching to the target after grasping it. This task is achieved as shown

in the snapshots given in Figure 4.3.5. The distance of the tip of the robot’s head

link to the center of the object to be grasped is given in Figure 4.3.4. As shown in

this figure, the robot gets closer to the object and when the object is “close

enough” (after time step 121) it starts to enwrap the object, during which the

object to head tip distance is almost constant.

Figure 4.3.4 – Graph showing the distance of the head segment’s tip
point planar projection to the center of the object to be grasped during

object grasping behavior.

Table 4.3.1 – Success percentages for the maps given in Figure 4.3.3.

 91

Another measure that gives insight about the performance may be the α plot

versus time, for the head segment. This is shown in Figure 4.3.6 for the

simulation in Figure 4.3.5. As seen in this figure, the head angle controller first

regulates the angle to 0; near time 60 the first obstacle is come across and the

obstacle avoidance controller dominates, and the regulation is disturbed. A similar

situation is seen near time step 90, where the second obstacle is come across.

Figure 4.3.5 – Visualizations from a run of the developed high level
controller, performing target reaching, obstacle avoidance and

object grasping behaviors. Top views are on the left, 3-D views on
the right.

 92

Performance of the intermediate link controllers may be evaluated using the

alignment error between the head segment and the following segment. A plot of

this measure is given in Figure 4.3.7 for the simulation run given in Figure 4.3.5.

The first negative deviation in the angle results from the fact that the head tries to

align through the target object. The big oscillations result from the obstacles on

Figure 4.3.6 – Graph showing the angular deviation between the head
segment and the target line (α) versus time during object grasping

simulation, until the object grasping behavior is activated for the head
segment.

Figure 4.3.7 – Graph showing the angular deviation between the head
and the following segment versus time step.

 93

the way of the robot. When the head tries to avoid the obstacles angle goes

positive, and when the follower link tries to avoid obstacles angle goes negative.

 94

4.3.2 Genetic Algorithm Performance Evaluation

As explained in Chapter 3.3.3, a genetic algorithm search engine is employed in

order to find the desired joint angle movements for creating a net displacement

close enough to the displacement desired by the high-level controller. A

combination of the average of position error (defined by the absolute sum of the

position errors of 4 non-coplanar points in each robot link) and the energy

consumption (calculated using the integral of torque – angular speed product for

each active joint) is employed as the fitness function. Which may be formulated

mathematically as follows:

In this equation, Ei stands for the position error of ith point, measured in

centimeters. τj (N.m) and ωj (rad/s) stands for torque applied at jth actuator, and

related angles angular speed respectively. The factor of 10 included in front of the

energy some is for making the position error in centimeters comparable to the

energy consumption in Joules. Critical parameters of the genetic algorithm are

shown in Table 4.3.2.

The performance evaluation of the genetic algorithm is performed for the 6-link

and 12-link robots separately. For the 6-link robot, runs from the 3 maps shown in

Figure 4.3.3 are considered. For the 12-link robot, the run shown in Figure 4.3.5 is

considered.

Parameter Value Used
Population Size 20

Crossover Intermediate / Ratio: 0.5
Fitness Function Position Error & Energy Consumption

Mutation Uniform / Rate : 0.05
Elite Count 2

Selection Rule Tournament

Table 4.3.2 – Critical parameters of the genetic algorithm search module.

� � �
=

−

=

⋅⋅⋅+
4

1

2)1(

1

)()(10
Nx

i

xN

j T
jji

s

dtttE ωτ

 95

The results are shown in Table 4.3.3 , for the 6-link robot, and in Table 4.3.4 for

the 12-link robot. The genetic algorithm uses about 6.25 generations at each time

step. For the 12-link robot, however, the average number of generations increases

to 18.37.

In the genetic algorithm implementation, we assume that each of the joint angles

consists of 10 sinusoids in time, and the frequency and amplitude component of

each angle are equal, but the phases of these angles are different in general. Hence,

ith joint angle may be written in time (during a single sample period) as

This means that or a robot having N links, we have 10+10+(N-1)x10x2 parameters

as the input vector of the fitness function (chromosomes) (10 for amplitude, 10 for

frequency coding, (N-1)x10x2 for phase coding, refer to Chapter 3.3.3.). This

means, number of parameters increases as the number of links of the robot

MAP

NUMBER OF

STEPS

AVERAGE
NUMBER OF

GENERATIONS

a

143

6.35

 b

155

6.12

 c

203

6.36

Table 4.3.3 – Performance of the genetic algorithm search module for the 6-link

robot.

Table 4.3.4 – Performance of the genetic algorithm search module for the 12-link
robot.

�
=

+⋅=
10

1

)sin()(
j

ijjji twAt ρθ

Number of steps

Average Number of

Generations

226

18.37

 96

increases. Hence, genetic algorithm may limit the number of segments of the robot

used.

Another point to stress for the high level FACL controllers and lower level genetic

algorithm interaction is the error between the final robot configuration desired by

the FACL controllers and the configuration reached by the genetic algorithm. In

our approach, we use a fitness function which is a linear combination of the

cumulative position error and the total energy consumption. Hence, zeroing of

position error should not be ideal. The high level controller desires a next position,

but genetic algorithm could not exactly reach it; rather it approaches that position.

The cumulative position error (sum of absolute values of errors in position of the 4

vertices of a prismatic link for all robot links) average for the demo map shown in

Figure 4.2.5 is 46.3 cm. Hence for a single vertex, this error is (46.3 / 12)/4 =

0,963 cm.

Figure 4.3.8 – An example of fitness function versus number of
generations for a single genetic algorithm run during the case shown in

Figure 4.3.5.

 97

A standard evaluation for genetic algorithms is the fitness function change in

between generations. This change is shown in Figure 4.3.8 for a single run of

genetic algorithm during the simulation shown in Figure 4.3.5. The fitness

function threshold for stopping is set at 100. In the figure, it is seen that the fitness

function starts from 1143 at generation 1 and drops down to 96.11 at generation 19

when it stops.

 98

4.4 Sensitivity Analysis

In most of the studies in the literature ([20], [23], [24],[26],[29]]), the parameters

of fuzzy logic controllers, neural networks or reinforcement learning algorithms

are chosen by trial and error. We also follow the same way in developing our

controller. However, a simplified mathematical analysis of the sensitivity of

controller outputs to the modifiable parameters may help in gaining insight of how

to select these parameters. In this part of the report, we give the results of the

sensitivity analysis for the head target reaching angle controller, since it is the

simplest controller used.

γ=0.1 λ=0.1 λ’=0.1 β0=1e-4 γ=0.1 λ=0.1 λ’=0.1 β0=1e-5

γ=0.5 λ=0.1 λ’=0.1 β0=1e-5 γ=0.5 λ=0.5 λ’=0.5 β0=1e-4

γ=0.9 λ=0.1 λ’=0.1 β0=1e-5 γ=0.9 λ=0.1 λ’=0.1 β0=1e-4

Figure 4.4.1 - Head Angle Controller learning performance
for different parameter selections of reinforcement learning.

 99

In Figure 4.4.1, the success percentage of head angle controller is plotted with

respect to number of episodes. The reinforcement learning parameters used for

each run is shown on the corresponding figure. This figure demonstrates how

critical the parameters selection is effective in the speed of learning, even in the

ability of learning of the controller.

Before passing to the details of the sensitivity analysis we should give the

simplified architecture of our controller as shown in Figure 4.4.2. Here, it is

evident to see that the controller consists of two components. One of these

components is named as the “Fuzzy Control Module”. The remaining parts are

Fuzzy Rule
Base

Fuzzy
Inference
Engine

Fuzzifier Defuzzifier

FUZZY CONTROL
MODULE

G.A.

PLANT

Value
Function
Estimator

Reinforcement
Learning

Mechanism

Reward
Generation
Mechanism

Learning Rate
Updates

Eligibility
Traces

...

From other
controllers

Joint
angles

Rule
Truthness

Values

v updates

w updates

β updates

e, Φ

Φ

rt+1

V(St)

ε~
γ

REINFORCEMENT
LEARNING MODULE

States

Figure 4.4.2 – Schematic diagram showing the relations between the controller
components.

 100

named as “Reinforcement Learning Module”. In our sensitivity analysis, we

perform the analysis of these two units separately.

4.4.1 Fuzzy Control Module Sensitivity Analysis

For the fuzzy controller sensitivity analysis, we investigate the relation between a

parameter of the fuzzy control module and the output of the fuzzy control module.

The derivatives give us an insight of sensitivity. For the output part of the fuzzy

control module, rewriting equation (2.23) given before

Hence, sensitivity of the output of the fuzzy controller to the activation value of

rule Ri, is measured by using:

The sensitivity of the fuzzy controller output to the discrete action offered by rule

Ri, is measured using:

In equations (4.1) and (4.2), it is seen that the output of the FIS module is sensitive

to the truthness value of a given rule in proportion to the local action offered by

that rule. Similarly, FIS module output is more sensitive to the local action offered

by a rule as the truthness increases.

Remembering the equation giving the activation value of rule Ri (equation (2.22)):

�
∈

=
AR

i
mRm

i

i
oSSY)()(α (2.23) , m = 1,...,NO

i
m

R

m o
S
SY

i

=
∂
∂

)(
)(

α
(4.1)

)(
)(

S
o

SY
iRi

m

m α=
∂

∂
(4.2)

)()(
1

j

N

j
LR SS

i

i
ji ∏

=

= µα (2.22)

 101

The sensitivity of activation of rule Ri to the related jth input fuzzy set membership

function value is

Hence, the sensitivity of rule truthness to an individual input set membership value

in the antecedents of that rule increases as the membership values of the other

antecedent variable fuzzy sets increase.

Remembering the general trapezoidal fuzzy membership function equation

(equation (2.19)):

Hence, a measure of sensitivity of the membership function value to the right

spread, right vertex, left spread and left vertex sensitivities are as follows,

respectively:

)(
)(

)(

,1
k

N

jkk
L

jL

R S
S

S i

i
k

i
j

i ∏
≠=

=
∂
∂

µ
µ
α

(4.3)

�
�
�
�
�

�

��
�
�
�

�

�
�

�

�

�
�

�

� −
−

�
�

�

�

�
�

�

� −
−

=

0.1

)(
0.1,0.0max

)(
0.1,0.0max

)(i
j

i
j

i
j

i
j

i
j L

l

j
L
l

L
r

L
rj

jL
s

Sv

s

vS

Sµ

,Sj >
i
jL

rv

,Sj <
i
jL

lv

,otherwise

(2.19)

�
�
�

�

�
�
�

�

 −

=
∂

∂

0

)(

)(

)(
2

i
j

i
j

i
j

i
j

L
r

L
rj

L
r

jL
s

vS

s

Sµ
, if

i
j

i
j

i
j L

r
L
rj

L
r svSv +<<

, otherwise
(4.4)

, if
i
j

i
j

i
j L

r
L
rj

L
r svSv +<<

, otherwise
�
�
�

�

��
�

�

=
∂

∂

0

1

)(
i
j

i
j

i
j

L
r

L
r

jL
s

v

Sµ (4.5)

 102

From equations (4.4) to (4.7), one can infer that the sensitivity of trapezoidal fuzzy

set membership function value is affected by variables related to “that side” of the

trapezoid. Moreover, the sensitivity to vertex values are inversely proportional

with the spread values. Note also that, when trapezoidal membership function

value is “1” it is not sensitive to differential changes in the parameters of the

trapezoid.

The analysis described above may be performed for any controller and any

parameter of the selected controller. In this study we perform it for the head angle

controller of the target reaching behavior, since this controller has a simple

structure making it suitable for demonstration.

, if
i
j

i
j

i
j L

lj
L
l

L
l vSsv <<−

, otherwise
(4.6)

�
�
�

�

�
�
�

�

 −

=
∂

∂

0

)(

)(

)(
2

i
j

i
j

i
j

i
j

L
l

j
L
l

L
l

jL
s

Sv

s

Sµ

, if
i
j

i
j

i
j L

lj
L
l

L
l vSsv <<−

, otherwise
�
�
�

�

��
�

�

−

=
∂

∂

0

1

)(
i
j

i
j

i
j

L
l

L
l

jL
s

v

Sµ (4.7)

Table 4.4.1 – Table of activated rules, for 100 sample states from the
(α,z) state space for the target reaching head angle controller.

 0 2.22 4.44 6.66 8.88 11.11 13.33 15.55 17.77 20

-ππππ 1 1 [1;2] [1;2] [2;3] [2;3] [3;4] [3;4] 4 4

-7π/9π/9π/9π/9 [1;5] [1;5] [1;2;5;6] [1;2;5;6] [2;3;6;7] [2;3;6;7] [3;4;7;8] [3;4;7;8] [4;8] [4;8]

-5π/3π/3π/3π/3 [5;9] [5;9] [5;6;9;10] [5;6;9;10] [6;7;10;11] [6;7;10;11] [7;8;11;12] [7;8;11;12] [8;12] [8;12]

-3π/93π/93π/93π/9 [5;9] [5;9] [5;6;9;10] [5;6;9;10] [6;7;10;11] [6;7;10;11] [7;8;11;12] [7;8;11;12] [8;12] [8;12]

-π/9π/9π/9π/9 [9;13] [9;13] [9;10;13;14] [9;10;13;14] [10;11;14;15] [10;11;14;15] [11;12;15;16] [11;12;15;16] [12;16] [12;16]

π/9π/9π/9π/9 [13;17] [13;17] [13;14;17;18] [13;14;17;18] [14;15;18;19] [14;15;18;19] [15;16;19;20] [15;16;19;20] [16;20] [16;20]

3π/93π/93π/93π/9 [13;17] [13;17] [13;14;17;18] [13;14;17;18] [14;15;18;19] [14;15;18;19] [15;16;19;20] [15;16;19;20] [16;20] [16;20]

5π/95π/95π/95π/9 [17;21] [17;21] [17;18;21;22] [17;18;21;22] [18;19;22;23] [18;19;22;23] [19;20;23;24] [19;20;23;24] [20;24] [20;24]

7π/97π/97π/97π/9 [21;25] [21;25] [21;22;25;26] [21;22;25;26] [22;23;26;27] [22;23;26;27] [23;24;27;28] [23;24;27;28] [24;28] [24;28]

ππππ 25 25 [25;26] [25;26] [26;27] [26;27] [27;28] [27;28] 28 28

α
z

 103

In Figure 4.4.3, the Input-Output mapping of the fuzzy inference system is plotted

for 100 samples from the (α,z) space. Since the output is the angular velocity of

the head segment, for negative values of α it should be positive to increase α

through 0. Similarly, for positive values of α, it should be negative to decrease α

through 0. Note in Figure 4.4.3 that the output is positive for negative values of α

and negative for positive values of α , and changes in z do not affect the form of

the output severely, as expected. This figure visually represents equation (23).

Figure 4.4.3 – Input-Output mapping and its gradient plot for the target
reaching head angle fuzzy controller.

 104

In Table 4.4.1, the indices of the activated rules are given for the same 100

samples of (α,z) values. This table represents At for 100 different values of St.

For simplified, representative sensitivity analysis, we consider 4 different points in

the (α,z) space:

- For (-7π/9, 2.22): At = {R1,R5}

1Rα = 0.333 , o1 = 0.5236, =1
1L

µ 0.333, =1
2L

µ 1

0
1
1 =L

ls , 1416.3
1
1 −=L

lv , 0472.1
1
1 =L

rs , 1416.3
1
1 −=L

rv

0
1
2 =L

ls , 0
1
2 =L

lv , 5
1
2 =L

rs , 5.2
1
2 =L

rv

5Rα = 0.667 , o5 = 0.2618, =5
1L

µ 0.667, =5
2L

µ 1

0472.1
5
1 =L

ls , 0944.2
5
1 −=L

lv , 0472.1
5
1 =L

rs , 0944.2
5
1 −=L

rv

0
5
2 =L

ls , 0
5
2 =L

lv , 5
5
2 =L

rs , 5.2
5
2 =L

rv

Using these numerical values in equations (4.1) and (4.7), we get:

5236.0
)(

)(

1

=
∂
∂

S
SY

Rα
, 2618.0

)(
)(

5

=
∂
∂

S
SY

Rα

333.0
)(
)(

1 =
∂
∂

So
SY

, 667.0
)(
)(

5 =
∂
∂

So
SY

From above values, it is seen that the output is more sensitive to the truthness

value of rule-1 than rule-5. This is because the action offered by rule-1 is greater

(in value) than the action offered by rule-5. However, note that the output is less

sensitive to the local action offered by rule-1 than the local action offered by rule-

5. Again, this is expected since the truthness value of rule-1 is less than truthness

value of rule-5 for the given state value.

 For the sensitivity of the rule truthness values, we have the following numerical

values:

 105

1
)(

)(

1
1

1 =
∂
∂

S

S

L

R

µ
α

, 333.0
)(

)(

1
2

1 =
∂
∂

S

S

L

R

µ
α

; 1
)(

)(

5
1

5 =
∂
∂

S

S

L

R

µ
α

, 667.0
)(

)(

5
2

5 =
∂
∂

S

S

L

R

µ
α

The sensitivity of the truthness of rule-1 to the membership value of the related

fuzzy set of the α variable is 1. This is since the z fuzzy set used for this rule has

the top of the trapezoid for z = 2.22. Similar comments hold for rule-5 activation

value’s sensitivity to the related fuzzy set membership value of the α variable.

Note that the sensitivities of rule-1 and rule-5 activation values to the z-variable

membership values actually compete. This is due to the strong fuzzy partitioning

used. As the two triangle membership values of the α variable intersect, they

(hence the sensitivity to the value of the z membership function) sum up to 1 at

every intersection point.

For the sensitivities of the four individual fuzzy sets whose values are non-zero for

the given value of states, we have the following numerical values:

6337.0
)(

1
1

1
1 =

∂

∂
L
r

L

s

Sµ
, 9549.0

)(
1
1

1
1 =

∂

∂
L
r

L

v

Sµ
, 0

)(
1
1

1
1 =

∂

∂
L
l

L

s

Sµ
, 0

)(
1
1

1
1 =

∂

∂
L
l

L

v

Sµ

0
)(

1
2

1
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
1
2

1
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
1
2

1
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
1
2

1
2 =

∂

∂
L
l

L

v

Sµ

0
)(

5
1

5
1 =

∂

∂
L
r

L

s

Sµ
, 0

)(
5
1

5
1 =

∂

∂
L
r

L

v

Sµ
, 3183.0

)(
5
1

5
1 =

∂

∂
L
l

L

s

Sµ
, 9549.0

)(
5
1

5
1 −=

∂

∂
L
l

L

v

Sµ

0
)(

5
2

5
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
5
2

5
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
5
2

5
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
5
2

5
2 =

∂

∂
L
l

L

v

Sµ

Note from the above values that the sensitivity of the membership function value

used for the z-variable is 0 to all its parameters. Actually, the same z-fuzzy set is

used for both rule-1 and rule-5 and the given z-value corresponds to the top of the

trapezoid, where its value is insensitive to differential changes in its parameters.

Note also that the membership function value sensitivities are 0 for triangular

membership functions of α-variable for the “other side” variables of the fuzzy set.

Similar comments may be declared for the values evaluated below:

 106

- For (-7π/9, 17.77): At = {R4,R8}

4Rα = 0.333 , o4 = -0.7854, =4
1L

µ 0.333 , =4
2L

µ 1

0
4
1 =L

ls , 1416.3
4
1 −=L

lv , 0472.1
4
1 =L

rs , 1416.3
4
1 −=L

rv

5
4
2 =L

ls , 5.17
4
2 =L

lv , ∞=
4
2L

rs , ∞=
4
2L

rv

8Rα = 0.667 , o8 = 0.7854, =8
1L

µ 0.667, =8
2L

µ 1

0472.1
8
1 =L

ls , 0944.2
8
1 −=L

lv , 0472.1
8
1 =L

rs , 0944.2
8
1 −=L

rv

5
8
2 =L

ls , 5.17
8
2 =L

lv , ∞=
8
2L

rs , ∞=
8
2L

rv

Using these numerical values in equations (4.1) to (4.7), we get:

7854.0
)(

)(

4

−=
∂
∂

S
SY

Rα
, 7854.0

)(
)(

8

=
∂
∂

S
SY

Rα

333.0
)(
)(

4 =
∂
∂

So
SY

, 667.0
)(
)(

8 =
∂
∂

So
SY

1
)(

)(

4
1

4 =
∂
∂

S

S

L

R

µ
α

, 333.0
)(

)(

4
2

4 =
∂
∂

S

S

L

R

µ
α

; 1
)(

)(

8
1

8 =
∂
∂

S

S

L

R

µ
α

, 667.0
)(

)(

8
2

8 =
∂
∂

S

S

L

R

µ
α

6366.0
)(

4
1

4
1 =

∂

∂
L
r

L

s

Sµ
, 9549.0

)(
4
1

4
1 =

∂

∂
L
r

L

v

Sµ
, 0

)(
4
1

4
1 =

∂

∂
L
l

L

s

Sµ
, 0

)(
4
1

4
1 =

∂

∂
L
l

L

v

Sµ

0
)(

4
2

4
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
4
2

4
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
4
2

4
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
4
2

4
2 =

∂

∂
L
l

L

v

Sµ

0
)(

8
1

8
1 =

∂

∂
L
r

L

s

Sµ
, 0

)(
8
1

8
1 =

∂

∂
L
r

L

v

Sµ
, 3183.0

)(
8
1

8
1 =

∂

∂
L
l

L

s

Sµ
, 9549.0

)(
8
1

8
1 −=

∂

∂
L
l

L

v

Sµ

0
)(

8
2

8
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
8
2

8
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
8
2

8
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
8
2

8
2 =

∂

∂
L
l

L

v

Sµ

 107

- For (7π/9, 2.22): At = {R21,R25}

21Rα = 0.667 , o21 = -0.5236, =21
1L

µ 0.667, =21
2L

µ 1

0472.1
21
1 =L

ls , 0944.2
21
1 =L

lv , 0472.1
21
1 =L

rs , 0944.2
21
1 =L

rv

0
21
2 =L

ls , 0
21
2 =L

lv , 5
21
2 =L

rs , 5.2
21
2 =L

rv

25Rα = 0.333 , o25 = -0.2618, =25
1L

µ 0.333, =25
2L

µ 1

0472.1
25
1 =L

ls , 1416.3
25
1 =L

lv , 0
25
1 =L

rs , 1416.3
25
1 =L

rv

0
25
2 =L

ls , 0
25
2 =L

lv , 5
25
2 =L

rs , 5.2
25
2 =L

rv

Using these numerical values in equations (4.1) to (4.7), we get:

5236.0
)(

)(

21

−=
∂
∂

S
SY

Rα
, 2618.0

)(
)(

25

−=
∂
∂

S
SY

Rα

667.0
)(

)(
21 =

∂
∂

So
SY

, 333.0
)(

)(
25 =

∂
∂

So
SY

1
)(

)(

21
1

21 =
∂
∂

S

S

L

R

µ
α

, 667.0
)(

)(

21
2

21 =
∂
∂

S

S

L

R

µ
α

; 1
)(

)(

25
1

25 =
∂
∂

S

S

L

R

µ
α

, 333.0
)(

)(

25
2

25 =
∂
∂

S

S

L

R

µ
α

3183.0
)(

21
1

21
1 =

∂

∂
L
r

L

s

Sµ
, 9549.0

)(
21
1

21
1 =

∂

∂
L
r

L

v

Sµ
, 0

)(
21
1

21
1 =

∂

∂
L
l

L

s

Sµ
, 0

)(
21
1

21
1 =

∂

∂
L
l

L

v

Sµ

0
)(

21
2

21
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
21
2

21
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
21
2

21
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
21
2

21
2 =

∂

∂
L
l

L

v

Sµ

0
)(

25
1

25
1 =

∂

∂
L
r

L

s

Sµ
, 0

)(
25
1

25
1 =

∂

∂
L
r

L

v

Sµ
, 6366.0

)(
25
1

25
1 =

∂

∂
L
l

L

s

Sµ
, 9549.0

)(
25
1

25
1 −=

∂

∂
L
l

L

v

Sµ

0
)(

25
2

25
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
25
2

25
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
25
2

25
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
25
2

25
2 =

∂

∂
L
l

L

v

Sµ

 108

- For (7π/9, 17.77): At = {R24,R28}

24Rα = 0.667 , o24 = -0.7854, =24
1L

µ 0.667, =24
2L

µ 1

0472.1
24
1 =L

ls , 0944.2
24
1 =L

lv , 0472.1
24
1 =L

rs , 0944.2
24
1 =L

rv

5
24
2 =L

ls , 5.17
24
2 =L

lv , ∞=
24
2L

rs , ∞=
24
2L

rv

28Rα = 0.333 , o28 = 0.7854, =28
1L

µ 0.333, =28
2L

µ 1

0472.1
28
1 =L

ls , 1416.3
28
1 =L

lv , 0
28
1 =L

rs , 1416.3
28
1 =L

rv

5
28
2 =L

ls , 5.17
28
2 =L

lv , ∞=
28
2L

rs , ∞=
28
2L

rv

Using these numerical values in equations (4.1) to (4.7), we get:

7854.0
)(

)(

24

−=
∂
∂

S
SY

Rα
, 7854.0

)(
)(

28

=
∂
∂

S
SY

Rα

667.0
)(

)(
24 =

∂
∂

So
SY

, 333.0
)(

)(
28 =

∂
∂

So
SY

1
)(

)(

24
1

24 =
∂
∂

S

S

L

R

µ
α

, 667.0
)(

)(

24
2

24 =
∂
∂

S

S

L

R

µ
α

; 1
)(

)(

28
1

28 =
∂
∂

S

S

L

R

µ
α

, 333.0
)(

)(

28
2

28 =
∂
∂

S

S

L

R

µ
α

3183.0
)(

24
1

24
1 =

∂

∂
L
r

L

s

Sµ
, 9549.0

)(
24
1

24
1 =

∂

∂
L
r

L

v

Sµ
, 0

)(
24
1

24
1 =

∂

∂
L
l

L

s

Sµ
, 0

)(
24
1

24
1 =

∂

∂
L
l

L

v

Sµ

0
)(

24
2

24
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
24
2

24
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
24
2

24
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
24
2

24
2 =

∂

∂
L
l

L

v

Sµ

0
)(

28
1

28
1 =

∂

∂
L
r

L

s

Sµ
, 0

)(
28
1

28
1 =

∂

∂
L
r

L

v

Sµ
, 6366.0

)(
28
1

28
1 =

∂

∂
L
l

L

s

Sµ
, 9549.0

)(
28
1

28
1 −=

∂

∂
L
l

L

v

Sµ

0
)(

28
2

28
2 =

∂

∂
L
r

L

s

Sµ
, 0

)(
28
2

28
2 =

∂

∂
L
r

L

v

Sµ
, 0

)(
28
2

28
2 =

∂

∂
L
l

L

s

Sµ
, 0

)(
28
2

28
2 =

∂

∂
L
l

L

v

Sµ

 109

Similarly, we may calculate the sensitivity measures for different state values, and

for different controllers.

4.4.2 Reinforcement Learning Module Sensitivity Analysis

For the reinforcement learning sensitivity analysis, we may start with the reward

equation, which is dependent on the control aim:

n being a parameter vector. When the reward is fed back to the agent, the first

operation performed is calculating the temporal difference error estimation, as

given in Chapter 2:

where the current and future state value estimates, using the current critic function,

are

the individual value estimates for the rules are updated using

giving

hence, the temporal difference error equation given in (2.26) may be rewritten as

follows:

()nSSfr ttt ,,11 ++ = (4.8)

)()(~
111 tttttt SVSVr −⋅+= +++ γε (2.26)

�
∈

⋅=
ti

i
AR

tR
i
ttt SvSV)()(α (2.24)

)()(11
1

+
∈

+ �
+

⋅= t
AR

R
i
ttt SvSV

ti

i
α (4.9)

��
∈∈

+++ −+=
+ tj

j

ti

i
AR

tR
j

t
AR

tR
i
ttt SvSvr)(.)(..~

1

111 ααγε (4.11)

ttttt vv Φ⋅⋅+= ++ 11
~εβ (2.39)

i
tt

i
t

i
t

i
t vv 111

~
−−− Φ⋅⋅+= εβ (4.10)

 110

The update rule for the eligibility trace is

And for the learning rate, we have

With i

tt
i
t Φ⋅= +1

~εδ and i
t

i
t

i
t 1)1(−+−= δϕδϕδ . We may say the following where

h(.) is the piecewise relation given in (2.38)

All these relations show partial dynamics of the actor and may be represented in a

discrete-time graph as in Figure 4.4.4.

For the actor part of the reinforcement learning module the individual rule-action

weights are updated according to equation (2.37) given in Chapter 2, as follows:

Where et is the eligibility trace (it is a matrix) for the action weights, where for

rule Ri it is calculated as given in equation

We may represent this relation with a function g(.,.) as

Using the weights of individual rule-actions, the resultant output action is

calculated using the epsilon-greedy process described in Chapter 2, and upon

application of this value to the system, the state dynamics determine the next state.

1−Φ⋅⋅+Φ=Φ ttt λγ (2.35)

�
�

�
�

⋅−=∆
0

i
t

i
t βσ

κ
β

,if 01 >⋅−
i
t

i
t δδ

,if 01 <⋅−
i
t

i
t δδ

,otherwise
(2.38)

),,(1 tttt h βδδβ −=∆ (4.12)

tttt eww ⋅+= ++ 11
~ε (2.37)

��

�
�

⋅
Φ+⋅

=
−

−

)(
)(

)(
)1(

'
)1(

'

ii
t

i
t

ii
tii

t Ue
Ue

Ue
λ

λ , if U =Ut
i i

, otherwise
(2.36)

(4.13)),()()1(
i
t

i
t

ii
t egUe Φ= −

 111

Figure 4.4.4 – The dynamics of value function estimate, i.e. the critic, assuming that the
states are independent inputs to the system.

St

z-1 αR(.)

αR(.) Φt .

. Φt-1

γ

+
+

-

r(.,.)

tε~

+ +

z-1

vt

vt-1

X

tΦ
+

+

z-1 γ λ

αR(.) Φt

1−Φ t

X

tε~
1−Φ t

tε~

δt-1
(1-ϕ) + +

 ϕ z-1

1−tδ

2−tδ

X

h(.) ∆βt-1
+ +

βt

z-1 βt-1

βt-1

)(1−Φtdiag

diag(.)

 112

The discrete-time dynamics of the actor part of the reinforcement learning module

is described schematically in Figure 4.4.5. As seen in Figures 4.4.4 and 4.4.5, the

dynamics of the actor and the critic are coupled over the temporal difference error,

ε~ , which is determined by the critic and used as an input in the actor dynamics;

and the state of the system, S, which is indirectly determined by the actor and used

as an input in the critic dynamics.

We can infer from the above equations and graphs that we have a non-linear

discrete-time dynamical system. If the system were linear, we would be able to

find transfer functions (in the z-domain) from any input to any output and make

usual sensitivity analysis using those transfer functions. In our case, however, we

z-1

+ +

X

λ’

tε~ z-1

αR(.) g(.,.) St
Φt et

wt

ε-Greedy(.,.) U-matrix .

αR(.) St

Ut P(U,S)

z-1

St+1

St

wt-1

et-1

Figure 4.4.5 – The dynamics of the actor part and the plant. Assuming that the
temporal difference error estimate is an input to the system.

 113

cannot perform direct sensitivity analysis; instead, we use partial derivatives as

measures of parameter sensitivity.

Starting with the temporal difference error, tε~ :

It is seen in equations (4.14) and (4.15) that the local value estimate of a rule plays

the same role in both current rule activation and past rule activation sensitivity of

the temporal difference error. This is expected, since for policy update the same

value function estimate must be used for both the current state and one past state

(one cannot update without knowing the performance of the current value

estimate). Note also that, the discount factor proportionally increases the

sensitivity of the temporal difference error to the activation of a rule for the current

state (equation (4.15)). Equation (4.16) shows the importance of the reward

function in the temporal difference error estimate, as the sensitivity is directly 1,

regardless of any parameters. The sensitivity of the temporal difference error to

the individual value estimate is a piecewise function, which is dependent on how

i
t

tR

t v
S

i

1)(

~
−⋅=

∂
∂ γ

α
ε

(4.14)

i
t

tR

t v
S

i

1
1)(

~
−

−

−=
∂

∂
α

ε
(4.15)

1
~

=
∂
∂

t

t

r
ε

(4.16)

(4.17) , if 1−∈ ti AR , and ti AR ∉

�
�
�

�

��
�

�

−⋅

−

⋅

=
∂
∂

−

−
−

)()(

)(

)(

~

1

1
1

tRtR

tR

tR

i
t

t

SS

S

S

v

ii

i

i

ααγ

α

αγ

ε

, if ti AR ∈ , and 1−∉ ti AR

, if 1−∈ ti AR , and ti AR ∈

�
∈

− ⋅=
∂
∂

ti

i
AR

tR
i
t

t Sv)(
~

1 α
γ
ε

(4.18)

 114

the related rule is participated in the past and current actions (equation (4.17)). The

sensitivity of the temporal difference error to the reinforcement learning discount

factor is the (total) value estimate of the current state as given in equation (4.18).

For the value function component of rule i, Ri, i
tv we have the following measures:

As given in equation (4.19), the current value estimate is directly dependent on the

one past value estimate; this is because the current estimate is built on the past

estimate. Learning rate sensitivity of the value estimate increases with increasing

temporal difference error and increasing eligibility trace and vice versa (equations

(4.20) to (4.22)). This is since the updates in value function estimates are

performed using multiplication of these 3 values as given in equation (4.10). Note

that eligibility trace entry and the learning rate have always positive values; hence

the current temporal difference error determines the update direction of the value

estimate and the signs of sensitivities given in equations (4.20) and (4.22).

For the eligibility trace entry of value function component of rule-i, Ri , i
tΦ our

sensitivity measure approach gives the following relations:

1
1

=
∂
∂

−
i
t

i
t

v
v (4.19)

i
tti

t

i
tv

1
1

~
−

−

Φ⋅=
∂
∂ ε
β

(4.20)

i
t

i
t

t

i
tv

11~ −− Φ⋅=
∂
∂ β
ε

(4.21)

t
i
ti

t

i
tv εβ ~

1
1

⋅=
Φ∂
∂

−
−

(4.22)

(4.23) λγ ⋅=
Φ∂
Φ∂

−
i
t

i
t

1

 115

The direct relation given in equation (4.26) results from the fact that we are using

accumulating eligibility traces (not replacing ones). In equation (4.23) it is seen

that the sensitivity of the current value of the eligibility trace entry to the one past

eligibility trace entry is proportional to both γ and λ values, since the

multiplication of these two constants are used as the discount factor of the

eligibility trace. Note from equations (4.24) and (4.25) that the sensitivity of

eligibility trace entry to γ increases with λ, and its sensitivity to λ increases with γ.

The sensitivity measures for the δ parameter are given as follows:

The updates to the learning rate are performed by inspecting the change in

temporal difference error. δ is used to incorporate the eligibility trace in the

1=
Φ∂
Φ∂

i
t

i
t (4.26)

ϕ
δ
δ

=
∂
∂

−

−
i

t

i
t

2

1 (4.27)

i
t

t

i
t

1
1)1(~ −

− Φ⋅−=
∂

∂ ϕ
ε

δ
(4.29)

ti
t

i
t εϕδ ~)1(

1

1 ⋅−=
Φ∂

∂

−

− (4.30)

1−Φ⋅=
∂
Φ∂

t

i
t λ

γ
(4.24)

1−Φ⋅=
∂
Φ∂

t

i
t γ

λ
(4.25)

i
tt

i
t

i
t

12
1 ~

−−
− Φ⋅−=

∂
∂ εδ

ϕ
δ

(4.28)

 116

learning rate updates and δ is employed in order to suppress the effect of

instantaneous fluctuations in δ value (i.e., increasing momentum). Hence, these

are ad hoc selected parameters rather than important contributors of the dynamics.

For the dynamics of the value function learning rates’ sensitivity measures, we

have the following equations:

1
1

=
∂
∂

−
i
t

i
t

β
β

(4.31)

1
1

=
∆∂
∂

−
i
t

i
t

β
β

(4.32)

�
�
�

�

��
�

�

−=
∂
∆∂

−

−

0

0

1

1 σ
β
β

i
t

i
t

,if 012 >⋅ −−
i
t

i
t δδ

,if 012 <⋅ −−
i
t

i
t δδ

,otherwise

(4.33)

�
�
�

�

��
�

�

−=
∂
∆∂

−
−

0

0

1
1 i

t

i
t β

σ
β

,if 012 >⋅ −−
i
t

i
t δδ

,if 012 <⋅ −−
i
t

i
t δδ

,otherwise

(4.34)

�
�
�

�

��
�

�

=
∂
∆∂ −

0

0

1

1

κ
β i

t

,if 012 >⋅ −−
i
t

i
t δδ

,if 012 <⋅ −−
i
t

i
t δδ

,otherwise

(4.35)

 117

The equations (4.31) and (4.32) declares that the current value of the critic

learning rate is directly dependent on its past value, and change in it is past value

used for update; which is straightforward to expect. In equations (4.33) to (4.35) it

is seen that the sensitivity of the change in critic learning rate is a piecewise

function of the δδ ⋅ product for all the related parameters. Note also that, when

this product is 0 there is no update in the learning rate. If this product is positive

the update is done using κ parameter; resulting in the direct sensitivity given in

equation (4.35). If the δδ ⋅ product is negative, the update is performed by

decreasing the learning rate by a fraction (determined by σ) of the past value of

the learning rate. Hence in this case, the sensitivity of the learning rate update to σ

is proportional to the past value of the learning rate, and vice versa.

The above partial derivates given in equation (4.14) to equation (4.35) give

measures about the sensitivity of critic’s dynamics to various parameters.

For the actor’s sensitivity analysis, we should first note a few points: First of all

the system dynamics is dependent on which controller we are concerned about and

we are not interested in the sensitivity of the controller to changes in the system.

Moreover, the ε-Greedy action selection algorithm is used for a suitable searching

of the state-space and it is not the concern of the controller at all. Any other

approach in order to search the state space may be incorporated with the

algorithm. Therefore, we will only investigate the sensitivity of the rule-action

weights and the related eligibility trace.

For an individual rule-action weight (action j of rule i):

1
1

=
∂
∂

−
ij
t

ij
t

w
w

(4.36)

ij
t

t

ij
t e

w
1~ −=

∂
∂

ε
(4.37)

 118

Note again the direct sensitivity of the rule-action weight’s current value to its past

value given in equation (4.36), due to usual updates. In equations (4..37) and

(4.38) it is seen that the sensitivity of the rule-action weight to the temporal

difference error is proportional with the eligibility trace entry of that rule-action;

and vice versa. Hence as the eligibility trace entry increases the weight is more

sensitive to the temporal difference error; and as the temporal difference error

increases the weight is more sensitive to the eligibility trace entry.

For the related eligibility trace index, we have:

Sensitivity of the current value of the related eligibility entry to its past value is

measured with the actor recency factor, λ’; whereas its sensitivity to the recency

factor is measured with the past value of the eligibility trace entry (equations

(4.39) and (4.40)). The eligibility trace entry has directly sensitive to the activation

value of the related rule ()(tR
i
t S

i
α=Φ), if the action offered by that rule is the one

corresponding to that eligibility trace entry (equation (4.41)).

tij
t

ij
t

e
w ε~

1

=
∂
∂

−

(4.38)

'

1

λ=
∂
∂

−
ij
t

ij
t

e
e

(4.39)

ij
t

ij
t e

e
1' −=

∂
∂

λ
(4.40)

�
�

�
�

=
Φ∂

∂

0

1

i
t

ij
te (4.41)

, if i
t

ij UU =

, otherwise

 119

Taking the above ideas as a base, and using equations from (4.14) to (4.41) we

perform an instance of the reinforcement learning module sensitivity analysis for

the head target reaching angle controller as follows:

We consider the training of the controller from the beginning and create a target at

position (10,10) in a 20x20 environment. We prefer this symmetry in order to

homogeneously distribute the random initial states in the state space. It is worth to

restate that (see Tables 3.4.1 and 3.4.2 above) we have 7 fuzzy sets for the α

variable, and 4 fuzzy sets for the z variable, resulting in 28 rules. For the actor, we

have the same 5-element action set for each rule, which gives 28x5 = 140

individual rule-action weights. We investigate the controller dynamics in the 40th

episode of the training:

The 40th episode, in our sample simulation, starts with (α,z) = (-0.75088,19.570) at

time step t0 = 0, and finishes with (α,z) = (-0.16311,19.754) at time step tend = 19.

We take the middle portion of this episode end consider the times t-2=8, t-1=9

and t=10. Starting with the temporal difference error, calculated at time step 9,

10
~ε , using equation (2.26), we get:

(αt-1,zt-1) = (-0.36102,19.773), (αt,zt) =(-0.33347,19.770)

At-1 = {R12,R16}

At = {R12,R16}

3448.0)(112
=−tR Sα , 6552.0)(116

=−tR Sα

3184.0)(
12

=tR Sα , 6816.0)(
16

=tR Sα

0385.0~ −=tε

3054.012
1 =−tv , 4945.016

1 =−tv

rt = 0

substituting the above values in the equations (4.14) to (4.18):

 120

2749.0
)(

~

12

=
∂

∂

tR

t

Sα
ε

, 4451.0
)(

~

16

=
∂

∂

tR

t

Sα
ε

3054.0
)(

~

112

−=
∂

∂

−tR

t

Sα
ε

, 4945.0
)(

~

116

−=
∂

∂

−tR

t

Sα
ε

1
~

=
∂
∂

t

t

r
ε

=
∂
∂

−
12

1

~

t

t

v
ε

-0.0582, =
∂
∂

−
16

1

~

t

t

v
ε

-0.0418

=
∂
∂

γ
ε t
~

0.4343

It is seen that the temporal difference error is more sensitive to the changes in the

activation value of rule-16 than those in activation value of rule-12. This arises

from the fact that the current local value estimate of rule-16 is bigger than that of

rule-12. For the sensitivity of the temporal difference error to local value function

estimates of each rule, we see that both rules are activated at time steps t-1 and t.

Hence the 3rd line of the piecewise function given in (4.17) is used for the

calculations. This means that, these sensitivities are affected by the reinforcement

learning discount factor, current value of the rule activation value, and the past

value of the rule activation value. For the sensitivity of the temporal difference

error to the discount factor; we have the value estimate of the current state,

calculated with the value function of one passed time; which is found to be 0.4343

numerically. Hence, for our case temporal difference error is mostly sensitive to

reward, past and current activation values of the rules and γ, Sensitivity of

temporal difference error to the changes in local value function estimates is

smaller by a factor of 10.

 121

Continuing with the local value estimate of each rule: We should first note that, in

the implementation, we use eligibility traces of length 20 for all FACL controllers.

Hence, we have a maximum of 20 value estimates updated in a learning sampling

time. Moreover, in our case, only entries of related rules are non-zero; due to the

small recency factor (0.1) used. First let’s give the necessary variable’s numerical

values:

4135.012
1 =Φ −t , 6854.016

1 =Φ −t

00005823.012
1 =−tβ , 00004874.016

1 =−tβ

Using these values in the equations (4.19) to (4.22), we have the following

numerical results:

112
1

12

=
∂
∂

−t

t

v
v

, 116
1

16

=
∂
∂

−t

t

v
v

0159.012
1

12

−=
∂
∂

−t

tv
β

, 0264.016
1

16

−=
∂
∂

−t

tv
β

5
12

104078.2~
−×=

∂
∂

t

tv
ε

, 5
16

103406.3~
−×=

∂
∂

t

tv
ε

6
12

1

12

102419.2 −

−

×−=
Φ∂
∂

t

tv
, 6

16
1

16

108765.1 −

−

×−=
Φ∂
∂

t

tv

From these equations, it is clear that for our case study, the local value estimates

of rules are mostly sensitive to the related learning rates (apart from the direct

sensitivity to their past values). This explains why the initial learning rate selection

deeply affects the performance of learning as given in tables (4.2.1) to (4.2.7).

 122

For the eligibility trace indices of the activated rules, we have the following

sensitivity measures, which are directly calculated using equations (4.23) to (4.26)

and the given parameter values as:

09.012
1

12

=
Φ∂
Φ∂

−t

t , 09.016
1

16

=
Φ∂
Φ∂

−t

t

04135.0
12

=
∂
Φ∂
γ

t , 06854.0
16

=
∂
Φ∂
γ

t

3721.0
12

=
∂
Φ∂
λ

t , 6169.0
16

=
∂
Φ∂
λ

t

112
1

12

=
Φ∂
Φ∂

−t

t , 116
1

16

=
Φ∂
Φ∂

−t

t

Hence the eligibility traces are mostly sensitive to the eligibility trace recency

factor, which gives insight about the effects of this parameter whenever eligibility

trace usage is an important factor of learning (i.e., the controller duty is

complicated enough).

For the learning rate, and learning rate update values we have:

0164.012
2 −=−tδ , 0238.016

2 −=−tδ

0163.012
1 −=−tδ , 0259.016

1 −=−tδ

0159.012
1 −=−tδ , 0264.016

1 −=−tδ

We can infer from these values that the temporal difference error is negative for a

few recent steps; hence the value function estimate moves in the same direction.

This implies that the learning rates of the critic should be increased.

Using equations (4.27) to (4.35), we have:

2.012
2

12
1 =

∂
∂

−

−

t

t

δ
δ

, 2.016
2

16
1 =

∂
∂

−

−

t

t

δ
δ

4
12

1 108025.4 −− ×−=
∂

∂
ϕ

δ t , 0026.0
16

1 =
∂

∂ −

ϕ
δ t

 123

3308.0~
12

1 =
∂

∂ −

t

t

ε
δ

, 5483.0~
16

1 =
∂

∂ −

t

t

ε
δ

0308.0
12

1

12
1 −=

Φ∂
∂

−

−

t

tδ
, 0308.0

16
1

16
1 −=

Φ∂
∂

−

−

t

tδ

1
12

1

12

=
∂
∂

−t

t

β
β

, 1
16

1

16

=
∂
∂

−t

t

β
β

1
12

1

12

=
∆∂
∂

−t

t

β
β

, 1
16

1

16

=
∆∂
∂

−t

t

β
β

0
12

1

12
1 =

∂
∆∂

−

−

t

t

β
β

, 0
16

1

16
1 =

∂
∆∂

−

−

t

t

β
β

0
12

1 =
∂
∆∂ −

σ
β t , 0

16
1 =

∂
∆∂ −

σ
β t

1
12

1 =
∂

∆∂ −

κ
β t , 1

16
1 =

∂
∆∂ −

κ
β t

Note that the sensitivity of δ to the temporal difference error is greater than its

sensitivity to the eligibility trace entries. Hence, we can get the idea that for this

controller, eligibility trace usage may not increase the performance significantly.

The above findings may be used to gain insight about the dynamics of the critic

part of the FACL for the head target reaching angle controller. Moreover, similar

analysis steps may be repeated for other controllers, possibly with more

computational effort, but basically with the same approach.

For the actor, we continue the analysis using the same simulation made for the

critic analysis, and analyze the actor part. We have 7 possible actions for each of

the rules. We again use an eligibility trace of length 20. Hence, only 20

dominating rule-action pairs exist in the eligibility trace. In our case, since we fix

λ’ to the value of 0.1, and the eligibility trace erasure threshold at 0.00001, erasure

of an eligibility trace index is easy (just in 5-6 steps after, if not repeated). As the

result of this fact, we see that, only two rule/actions have non-zero eligibility trace

 124

entries which are action 7 (ω = π/4) of rule 12, and action 4 (ω = 0) of rule 16. If

we use these values in equations (4.36) to (4.41) with values 4186.07,12
1 =−te ,

6926.04,16
1 =−te :

17,12
1

7,12

=
∂
∂

−t

t

w
w

, 14,16
1

4,16

=
∂
∂

−t

t

w
w

4186.0~
7,12

=
∂

∂

t

tw
ε

, 6926.0~
4,16

=
∂

∂

t

tw
ε

0385.07,12
1

7,12

−=
∂
∂

−t

t

e
w

, 0385.04,16
1

4,16

−=
∂
∂

−t

t

e
w

1.07,12
1

7,12

=
∂
∂

−t

t

e
e

, 1.04,16
1

4,16

=
∂
∂

−t

t

e
e

4186.0
'

7,12

=
∂

∂
λ
te

, 6926.0
'

4,16

=
∂

∂
λ
te

112

7,12

=
Φ∂

∂

t

te
, 112

4,16

=
Φ∂

∂

t

te

Again, note that the sensitivity of action weights to the temporal difference error is

much more dominant than the sensitivity to the eligibility trace entries; which

verifies our idea of using eligibility trace for this simple controller.

 125

CHAPTER 5

CONCLUSION

5.1 Summary and Conclusive Remarks

In this study a high-level controller architecture for complex hyper-redundant

robots is designed, developed and simulated. Since the system worked on is highly

non-linear, and the environment in which the system runs is complex, techniques

dealing with such problems are used. These techniques include fuzzy inference

systems that use reinforcement learning algorithms for tuning their defuzzifier

parameters in the high level, and a genetic algorithm implementation that gives

flexibility of optimizing the motion dynamics with respect to any desired

parameter in the low level. The developed high-level controller architecture

consists of several controllers that learn how to perform a specific control duty

from interaction with the environment. The architecture is modular and it is

suitable for parallel processing implementations. In the lower level, previously

memorized gait types (which may be stated as handicaps of similar studies) are not

used, and motion of robot links are not constrained by human knowledge. In

addition to these, since the designed architecture is based on learning controllers, it

may be extended to perform several tasks other than target reaching and obstacle

avoidance. In order to verify this property, a grasping scheme is designed and

implemented successfully for a 12-link robot.

The only study performed is not just implementation of the algorithm; instead

upon implementation of the developed controller and verification via simulations,

some mathematical analysis is performed on the system in order to gain insight of

how the algorithm works, and which parameters dominate in the performance of

successful learning

 126

5.2 Future Work

Mathworks’ advanced computational environments MATLAB and Simulink are

used in the development and simulation of the controller. This approach gives the

advantage of motivating on the ideas rather than computer programming. The

handicap is that since the MATLAB codes are run in an interpreter, the time

needed for simulation runs are longer than a C or similar compiler based language

implementation. Hence, the MATLAB codes may be converted to a compiler-

based language in a future study.

For the sensitivity analysis performed in this study, since the closed form input-

output relations may not be obtained for most of the cases due to complex

dynamics, simplifications have to be done. The performed analysis may be

extended by using different approaches that avoid these simplifications, possibly

dealing with more complicated mathematics.

As stated before, genetic algorithms technique is used to decide on joint angles to

perform a desired displacement by optimizing a fitness function that includes both

positional error and total energy consumption. It is known that genetic algorithms

work well off-line; but several precautions must be taken in order to make them

work on-line in real-time. Other techniques whose real-time implementations are

easy, but possibly handicapped in other issues, might be used instead of our

approach. It should also be noted that the lower level controller implementation is

not the main focus of this study; hence in order to be able to apply our algorithms

to a physical robot the low level control problem should be solved beforehand,

which may also be focus of a future study.

Another possible future work might be the realization of the developed algorithm

in an embedded control system and application to a physical robot. However, the

developed controller implementations are computationally heavy in both higher-

 127

level learning and lower-level dynamics simulation and genetic algorithm control.

Use of MATLAB further makes the implementations slower on a regular PC,

which works using sequential computation steps. However, in a real-world

implementation, use of parallel processing abilities on the silicon level (devices

similar to FPGAs and DSPs) should speed up the computations and allow a real-

time run with some modifications in the algorithm. In the design phase of the

algorithm, this issue is considered and the controller architecture is suitable to be

computationally distributed to different processors placed on different robot links.

Moreover, the low-level control of joint angle actuators are neglected and assumed

to be ideal during simulations, which might be a problem to be solved using

several possible techniques in a real-world application. Hence, all these issues

should be considered before a real-world application of this study.

 128

REFERENCES

[1] Murphy, Robin R., “Activities of the Rescue Robots at the World Trade Center

from 11-21 September 2001”, IEEE Robotics and Automation Magazine,

September 2004, pp.50-61.

[2] Saito M., Fukaya M., and Iwasaki T., “Serpentine Locomotion with Robotic

Snakes”, IEEE Control Systems Magazine, February 2002, pp. 64-81.

[3] Gevher, M., “Sensor Based On-line Path Planning For Serpentine Robots,”

M.Sc. Thesis, Middle East Technical University, Ankara, Dec. 2001.

[4] Erkmen I., Erkmen A.M., Matsuno F., Chatterjee R., Kamegawa T., “Snake

Robots to the Rescue!”, IEEE Robotics and Automation Magazine, September

2002, pp. 17-25.

[5] Ma S., et. al. “Analysis of Creeping Locomotion of a Snake Robot on a

Slope”, Proc. Of the IEEE International Conference on Robotics and Automation,

2003, pp.2073-2078.

[6] Cai Z., “Intelligent Control: Principles, Techniques and Applications”, World

Scientific, 1997.

[7] Chirikjian G. S., Burdick J.W., “The Kinematics of Hyper-Redundant Robot

Locomotion”, IEEE Transactions on Robotics and Automation”, Vol. 11, No. 6,

December 1995, pp. 781-788.

[8] Chirikjian G. S., Burdick J.W., “A Modal Approach to Hyper-Redundant

Manipulator Kinematics”, IEEE Transactions on Robotics and Automation”, Vol.

b10 No. 3, June 1994, pp. 343-354.

[9] Nilsson M., “Snake Robot Free Climbing”, IEEE Control Systems, February

1998, pp.21-26.

 129

[10] Shan Y., Koren Y., “Design and Motion Planning of a Mechanical Snake”,

IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No. 4, July /

August 1993, pp. 794-805.

[11] Mori M., Hirose S., “Three-Dimensional Serpentine Motion and Lateral

Rolling by Active Cord Mechanism ACM-R3”, Proceesings of the 2002 IEEE /

RSJ International Conference on Intelligent Robots and Systems, Lausanne,

Switzerland, October 2002, pp. 829-834.

[12] NEC Corporation, “Orochi 12 DOF Snake-Like Robot”, Press Release, NEC

Corporation, Melvilee, NY., January 1996, 6 pages

[13] Matsuno F., Suegana K., “Control of Redundant 3D Robot Based on

Kinematic Model”, Proceedings of The 2003 IEEE International Conference on

Robotics & Automation, Taipei, Taiwan, September 14-19 2003, pp. 2061-2066.

[14] Prautsch P., Mita T., “Control and Analysis of the Gait of Snake Robots”,

Proceedings of the 1999 IEEE International Conference on Control Applications,

Kohala Coast-Island of Hawai’i, Hawai’i, USA, August 22-27,1999, pp. 502-507.

[15] Kamegawa T., Matsuno F., Chatterjee R., “Proposition of Twisting Mode of

Locomotion and GA-based Motion Planning for Transition of Locomotion Modes

of 3-Dimensonal Snake-like Robot”, Proceedings of the 2002 IEEE International

Conference on Robotics & Automation, Washington DC, May 2002, pp. 1507-

1512.

[16] Chirikjian G.S., Burdick J.W., “Kinematics of Hyper-Redundant Locomotion

with Applications to Grasping”, 1991 IEEE Conference on Robotics and

Automation, April 1991, pp. 567-574.

[17] Ma S., Li W.J., Wang Y., “A Simulator to Analyze Creeping Locomotion of a

Snake-like Robot”, Proceedings of the 2001 IEEE International Conference on

Robotics & Automation, Seoul, Korea, May 21-26, 2001, pp. 3656-3661.

 130

[18] Ma S., “Analysis of Snake Movement Forms for Realization of Snake-like

Robots”, Proceedings of the 1999 IEEE International Conference on Robotics &

Automation, Detroit, Michigan, May 1999, pp. 3007-3013.

[19] Kulali, G. M., “Intelligent Gait Synthesizer for Serpentine Robots” M.Sc.

Thesis, Middle East Technical University, Ankara, Dec. 2001.

[20] Halici, Ugur, “Introduction to Theory of Neural Networks”, EE-543 Lecture

Notes, Middle East Technical University, Department of Electrical and Electronics

Engineering, 2001.

[21] Haykin, S., “Neural Networks: A Comprehensive Foundation”, McMillan

Inc., 1994.

[22] Sutton R.S., Barto A.G., “Reinforcement Learning: An Introduction”, The

MIT Press, Cambridge, Massachusetts, 1999.

[23] Jouffe L., “Fuzzy Inference System Learning by Reinforcement Methods”,

IEEE Transactions on System, Man and Cybernetics – Part C: Applications and

Reviews, Vol. 28, No. 3, August 1998, pp. 338-355.

 [24] Barto A.G., Sutton R.S., Anderson C.W., “Neuron-like Adaptive Elements

That Can Solve Difficult Learning Control Problems”, IEEE Transactions on

Systems, Man and Cybernetics, Vol. SMC-13, Sept. 1983, pp. 834-846.

[25] Jang J.R., “Self-Learning Fuzzy Controllers Based on Temporal Back

Propagation”, IEEE Transactions on Neural Networks, Vol. 3, No. 5, September

1992, pp. 714-723.

[26] Berenji H.R., Khedkar P., “Learning and Tuning Fuzzy Logic Controllers

Through Reinforcements”, IEEE Transactions on Neural Networks, Vol. 3, No. 5,

September 1992, pp. 724-740.

[27] Jacobs R.A., “Increased Rates of Convergence Through Learning Rate

Adaptation”, Neural Networks, vol. 1, 1988, pp. 295-307.

 131

[28] Ari E.O., Erkmen I., Erkmen A.M., “An FACL Controller Architecture for a

Grasping Snake Robot,” in Proc. of IEEE International Conference on Intelligent

Robots and Systems (IROS), August 2005, pp. 3339-3344.

 [29] Beom, H.R., Cho H.S., “A Sensor-Based Navigation for a Mobile Robot

Using Fuzzy Logic and Reinforcement Learning”, IEEE Transactions on Systems,

Man and Cybernetics, Vol. 25, No. 3, pp. 464-477, March 1995.

[30] Dowling K., “Limbless Locomotion: Learning to Crawl”, in Proceedings of

IEEE International Conference on Robotics and Automation, Detroit, Michigan,

May 1999, pp. 3001-3006.

[31] Liu H., Yan G. and Ding G., “Research on the Locomotion Mechanism of

Snake-like Robots,” in Proceedings of IEEE Int. Symposium on Micro-

mechatronics and Human Science, pp. 183-188, 2001.

[32] Murphy R. R., “Marsupial and Shape-shifting Robots for Urban Search and

Rescue”, IEEE Intelligent Systems, March/April 2000, pp. 14-19.

[33] Shammas E., Wolf A., Brown H.B., Choset H., “New Joint Design for Three-

dimensional Hyper Redundant Robots”, Proceedings of the 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Las Vegas, Nevada,

October 2003, pp. 3594-3599.

 [34] Brown H.B., Weghe J.M.V., Bererton C.A., Khosla P.K., “Milibot Trains for

Enhanced Mobility”, IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 4,

December 2002, pp. 452-461.

[35] Yim M., Zhang Y., Roufas K., Duff D., Eldershaw C., “Connecting and

Disconnecting for Chain Self-Reconfiguration With PolyBot”, IEEE/ASME

Transactions on Mechatronics, Vol. 7, No. 4, December 2002, pp. 442-451.

[36] Wolf A., Brown H.B., Casciola R., Costa A., Schwerin M., Shamas E.,

Choset H., “A Mobile Hyper Redundant Mechanism for Search and Rescue

Tasks”, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Las Vegas, Nevada, October 2003, pp. 2889-2895

 132

[37] Ma S., Ohmameuda Y., Inoue K., Li B., “Control of a 3-Dimensional Snake-

like Robot”, Proceedings of the 2003 IEEE International Conference on Robotics

and Automation, Taipei, Taiwan, September 14-19, 2003, pp. 2067-2072.

[38] Matsuno F., Suegana K., “Control of Redundant 3D Snake Robot based on

Kinematic Model”, Proceedings of the 2003 IEEE International Conference on

Robotics and Automation, Taipei, Taiwan, September 14-19, 2003, pp. 2061-

2066.

[39] Chirikjian G.S., Burdick J.W., “Kinematically Optimal Hyper-Redundant

Manipulator Configurations”, IEEE Transactions on Robotics and Automation,

Vol. 11, No. 6, December 1995, pp. 794-806.

[40] Linnemann R., Paap K.L., Klaassen B., Vollmer J., “Motion Control of a

Snakelike Robot”, 1999 IEEE International Conference on Robotics and

Automation.

[41] Dowling K., “Limbless Locomotion: Learning to Crawl with a Snake Robot”,

Ph.D. dissertation, Carnegie Mellon University, Pittsburgh, PA, 1997.

[42] Gravagne I.A., Walker I.D., “Manipulability, Force, and Compliance

Analysis for Planar Continuum Manipulators”, IEEE Transactions on Robotics

and Automation, Vol. 18, No. 3, June 2002.

[43] Liu H., Yan G., Ding G., “Research on the Locomotion Mechanism of Snake-

like Robot”, IEEE International Symposium on Micromechatronics and Human

Science, 2001, pp. 183-188.

[44] Burdick J.W., Radford J., “A “Sidewinding” Locomotion Gait for Hyper-

Redundant Robots”, IEEE 1993, pp. 101-106.

[45] Desai R., Rosenberg C.J., Jones J.L., “Kaa: An Autonomous Serpentine

Robot Utilizes Behavior Control”, International Conference on Intelligent Robots

and Systems, IROS’95, Pittsburgh, PA, V.3 pp. 250-255, August 1995.

[46] Malachi D., Munerato F., “Snake-like Mobile Micro Robot Based on 3 DOF

Parallel Mechanism”, PKM’99, Milan, November 1999.

 133

[47] Goldberg, D. E., “Genetic Algorithms in Search, Optimization and Machine

Learning”, Addison-Wesley Publishing, 1989.

 134

APPENDIX

PAPER PRESENTED IN IEEE INTERNATIONAL CONFERENCE ON
INTELLIGENT ROBOTS AND SYSTEMS (IROS)-2005 AND PAPER
SUBMITTED TO THE IEEE INTERNATIONAL CONFERENCE ON

ROBOTICS AND AUTOMATION (ICRA)-2006

Throughout this thesis study, two papers were submitted to international

conferences. The paper related to the first steps of the study, i.e. the control of the

planar robot, is submitted to the IROS-2005 conference, it was accepted and

published. Near to the end of the study, a paper describing the final controller

architecture that is focused on the grasping behavior is submitted to the ICRA-

2006 conference. In this part of the thesis, these papers are given for the

completeness of the work and for making these papers easy to reach for readers of

the thesis.

 135

 136

 137

 138

 139

 140

 141

 142

 143

 144

 145

 146

 147

 148

