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ABSTRACT

MODELING PHONEME DURATIONS AND
FUNDAMENTAL FREQUENCY CONTOURSIN
TURKISH SPEECH

Oztiirk, Ozlem
Ph.D., Department of Electrical and Electroni cs Engineering
Supervisor: Assoc. Prof. Dr. Tolga Ciloglu

October 2005, 202 pages

The term prosody refers to characteristics of speech such as intonation, timing,
loudness, and other acoustical properties imposed by physical, intentional and emotional
state of the speaker. Phone durations and fundamental frequency contours are considered
as two of the most prominent aspects of prosody. Modeing phone durations and
fundamentd frequency contours in Turkish speech are studied in this thesis.

Various methods exist for building prosody modes. State-of-the-art is dominated by
corpus-based methods. This study introduces corpus-based approaches using
classification and regression trees to discover the relaionships between prosodic
attributes and phone durations or fundamental frequency contours. In this context, a

speech corpus, designed to have specific phonetic and prosodi c content has been recorded
and annotated.

A set of prosodic attributes are compiled. The eements of the set are determined
based on linguistic studies and literature surveys. The relevances of prosodic attributes
areinvestigated by statistical measures such as mutual information and information gain.

Fundamental frequency contour and phone duration modeling are handled as

independent problems. Phone durations are predicted by using regression trees where the



set of prosodic attributes is formed by forward selection. Quantization of phone durations
is studied to improve prediction quality. A two-stage duration prediction process is
proposed for handling specific ranges of phone duration values. Scaling and shifting of

predi cted durations are proposed to minimize mean squared error.

Fundamental frequency contour modeling is studied under two different frameworks.
One of them generates a codebook of syllable-fundamentd -frequency-contours by vector
quantization. The codewords are used to predict sentence fundamenta frequency
contours. Pitch accent prediction by two different dustering of codewords into accented
and not-accented subsets is also considered in this framework. Based on the experience,
the other approach is initiated. An agorithm has been developed to identify syllables
having perceptual prominence or pitch accents. The slope of fundamental frequency
contours are then predicted for the syllables identified as accented. Pitch contours of
sentences are predicted using the duration information and estimated slope values.

Performance of the phone duration and fundamental frequency contour modds are
eva uated quantitatively using statistical measures such as mean absol ute error, root mean
squared error, correlation and by kappa coefficents, and by correct dassification ratein
case of discrete symbol prediction.

Keywords: Duration modeing, fundamental frequency contour modding, speech
database, prosody, intonation, dassification and regression trees.



Oz

TURKGE KONUSMADA SESBIRIM SURELERININ
VE TEMEL FREKANSEGRILERININ
M ODELLENMESI

Oztiirk, Ozlem
Doktora, Elektrik Elektronik Muhendisligi Boltmi
Tez Yoneticisi: Dog. Dr. TolgaCiloglu

Ekim 2005, 202 sayfa

Ezgi, konusmanin siire, vurgu, genlik ve diger akustik ¢zelliklerinden olusan,
konusmacinin fiziksd ve duygusal durumuna bagli olarak degisiklikler gosteren
nitelikleridir. Sesbirim slreleri ve perde egrileri, ezginin en 6nemli bilegenlerinden ikisi
olarak kabul edilmektedir. Bu tezde, seshirim siireleri ve perde egrileri Tirkce konusma
icin modellenmistir.

Bircok ezgi modelleme yontemi bulunmaktadir. Y apilan son ¢alismalarda ¢ogunlukla
derlem-tabanli yontemler kullanilmaktadir. Bu calisma, ezgi 6znitelikleri ile perde egrisi
ve seshirim sirderi arasindaki iliskiyi meydana ¢ikarmak icin siniflandirma ve baglanim
(dassification and regression) agaclan  kullanarak derlem-tabanli  calismalari
icermektedir. Bu cercevede, istenilen ezgisd ve seshirimse icerikte bir derlem
kaydedilmis veisaretlenmistir.

Dilbilimse cdismalar ve yazin arastirmaart dogrultusunda ezgi Ozniteikleri
derlenmistir. Karsilikli bilgi (mutual information) ve bilgi kazanci (information gain) gibi

istatistiksel dlciitler kullanilarak, ezgi 6zniteliklerinin ezgi ile olan ilgileri belirlenmistir.

Perde egrisi ve sesbirim siiresi modelleme calismalarl bagimsiz problemler olarak ele

alinmigtir. Sesbirim stireleri baglanim agaclari kullanilarak ileri segme (forward se ection)

Vi



yontemi ile olusturulmus ezgi 6zniteliklerinden dngdrilmisttir. Sesbirim stireleri bagarimi
artirmak icin nicemlenmigtir. Sire araliklarinin ayri ayrn deainabilmesi icin iki asamali
siire modelleme yontemi 6ne slril mistir. Ortalama karesd hatanin dislrdlmesi icin

Ongortilen stireer lizerinde 6lgekleme ve 6td eme yapilmistir.

Perde egrisi moddleme iki ayri cati dtinda inceenmistir. Birinde hece perde egril exi
icin vektor nicemleme kullanilarak kod defteri olusturulmustur. Hece kodlari tiimce
perdesi 6ngdrimiinde kullanilmistir. Ayrica, iki farkli siniflandirma yontemi kullanilarak
hece kodlarinin vurgulu ve vurgusuz dt kimeleri belirlenmis; bu bilgi kullanilarak perde
vurgusu 6ngoriil mistr. Bu bolimde e de edilen deneyimler diger yaklasimicin baglangic
olmustur. Algisal énemi olan ya da perde vurgusu aan hecelerin belirlenmesi icin bir
algoritma gelistirilmistir. Perde vurgusu adan hecelerin perde egimleri dngdril mistdr.
Sire ve egim 6ngorileri kullanilarak tiimce perdeleri ede edil mistir.

Seshirim sUreleri  ve perde egris modeleme basarimlari  nicd  olarak
degerlendirilmistir. Sayisal degerlendirmeler mutlak hata, etkin hata ve ilinti gibi
istatistiksel  Olcltlerle gerceklestirilmistir.  Ayrik isaret kestirimlerinde ise kappa
katsayilari ve dogru kestirim oranlari kullaniimistir.

Anahtar Kelimeler: Ezgi, entonasyon, sire moddleme, perde egrisi modelleme,
derlem, siniflandirma ve baglanim agaclari.
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CHAPTER 1

INTRODUCTION

The term prosody refers to characteristics of speech such as intonation, timing, stress,
loudness, and other acoustical properties imposed by articulaory, emotional, mental, and
intentional states of the speaker. The most prominent components of prosody are
considered as phoneme duration and pitch contour. This study started with the am of
predicting phoneme durations and pitch contour of a Turkish sentence given its written
form. The resultant phoneme durations and pitch contour are expected to resembl e natural
speech. From a practical point of view, such information are needed in Text-to-Speech
(TTS) synthesis systems. Text-to-Speech synthesis is used in many areas such as
information retrieval systems; language education, and reading machines for visualy
impaired [Fortinea 1999; Kenney 1998; Lemmetty 1999].Without appropriate prosody
models, synthetic speech is perceived as monotonous, boring and less intelligible [Ross
1995].“It has been shown that poor prosody is worse than no prosody (Benoit 1990)”
[Monaghan 1997].

TTS systems can be divided into two major subsystems (Figure 1-1) Natura language
processing (NLP) subsystem and 2) Signa processing subsystem The NLP module
performs the task of converting input text into a linguistic representation including
phonetic and prosodic information. The DSP module generates output speech waveform
using information provided by NLP subsystem [Dutoit 1997; Lemmetty 1999].

The NLP subsystem can be further divided into two parts (Figure 1-2): Text-to-
phonetic conversion module is responsible for the transformation of text into
corresponding phonetic units that specify sounds to be produced. Text-to-prosodic
parameter conversion module performs the generation of prosodic parameters,
fundamentd freguency, duration and intensity in general, which specify how these sounds
are to be produced [Dutoit 1997, Huang et. al. 1997, Lemmetty 1999].



SPEECH

Figure 1-1: Functiona block diagram of a general TTS synthesizer
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Figure 1-2: Block Diagram of NLP subsystem.

The fundamental problem encountered in speech synthesis systems is the poor
generation of prosody for unrestricted text [Sun 2002; Huang et. al. 1997]. Every spoken
language has its own prasody. However, the prosody of an utterance is not unique. A
sentence may have a number of perceptualy acceptable but significantly different (in a
mathematical sense) prosody patterns while carrying the same semantic information. Any
spoken utterance is produced with a particular sound pattern shaped by its prosody.
Prosody is a means of conveying information. It plays an important role in human speech
communication. In natural speech, prosody of an utterance may depend on semantics,
context, syntax of the statement, intended audience, and emotional or physical state of the
speaker. Today, prosody modeling constitutes one of the main arenas of speech research
[Aglero et. a 2004; Fujisaki and Nagashima 1969; Sun 2002; Taylor 1992; Taylor and
Isard 1992].



The dements of prosody commonly derived from speech are;

» Intonation; variations in pitch which gives speech its mel ody.
»  Timing; variationsin phoneme duration, speaking rate (tempo) and pausing.
»  Loudness pattern.

»  Stress, perceived in terms of pitch, loudness and duration

All these ingredients are present in varying amounts in every spoken utterance.
Specific mixtures of these d ements orient the listener in interpreting the utterance. When
we speak we do not only produce a sequence of speech sounds but also impose stress and
intonation patterns to convey a meaning. For example, in Turkish, words having identical
orthographies can bear different meanings that can only be differentiated by their
semarntic context and prosody: the only difference between the noun yazma' (a kind of
scarf) and the verb yaz' ma (do not write) is that of prosodic variation due to lexical stress
placement.

Recently, a number of speech studies on Turkish have come out. Automatic Speech
Recognition [Bayer 2005; Blyuk et. al. 2005; Carki et. al. 2000; Cilingir 2003; Comez
2003; Orkan 2005; Salor et. al. 20023, 2002b; Yapane 2000; Yilmaz 1999], Language
Modedling [Bayer 2005; Ciloglu 2004, Ciloglu et. al. 2004; Sahin, 2003], Voice
Transformation [Salor 2004; Arslan 1997, 1999; Tirk and Arslan 2002, 2004], and Text-
to-Speech [Abdullahmese 1998; Fidan 2002; Oskay 2000, 2001; Ozge, 2003; Vural and
Oflazer 2004] are some of them. There is no study which covers a comprehensive
prosody modeling in Turkish. Existing studies either handle a part of the modeing
process or they do not rey on detailed linguistic analysis [Abdullahmese 1998; Fidan
2002; Oskay 2000, 2001; Ozge, 2003].

Various methods exist for building prosody models [Aglero 2004; Batusek 2002;
Black and Hunt 1996; Chen et. al. 1996; Dusterhoff 2003; Pierrehumbert 2000; Lee and
Oh 19993, 1999b, 2001; Mixdorff 2000, 2001; Riedi 1998; Sakura et. al. 2003; Shih and
Kochanski 2002; Sun 2002; Taylor 1992, 1995, 2002; Vegnaduzzo 2003]. Those used at
the initial stages of prosody modeling are generally known as rule-based approaches.
Rule-based heuristic systems such as Klatt's duration modding system [Klatt, 1987]
combine linguistic expert knowledge and manua analysis of quite limited amount of text
and ther recordings. They are often unsatisfactory and case-dependent. Hence, they
exhibit less flexibility against, for example, personality and spesking style. State-of-the-



art is dominated by corpus-based approaches. They have appeared due to the increasing
computationa power and availability of large corpora. Corpus-based (data-driven)
modeling utilizes large text and speech corporato discover rules as a function of prosodic
attributes. Prosodic attributes, defined on text, are linguistic features (phonetic context,
number of words in sentence, number of syllablesin word, etc.) that are considered to be
affecting prosody. Corpus-based modeling invol ves machine learning techniques such as
Artificial Neural Networks (ANN), and Classification and Regression Trees (CART) to
reved the reation between prosody and prosodic attributes. They can be adapted to new
speaking styles by providing new data. This study concentrates on corpus-based modeling
and uses machine learning techniques to develop mode's of phoneme duration and pitch
contour for Turkish.

Each modding method mentioned above has its advantages and disadvantages. Neura
networks are very popular machine learning agorithms. They are known for their ability
to generdize according to the similarity of ther inputs. With sufficient data, neural
networks can approximate any nonlinear function. However, the trained model is not
human readable which is a disadvantage if one needs to understand the conceptual
relationship between inputs and outputs [Campbe | 2000; Chen &t. al. 1996; Taylor 1995;
Witten and Frank 1999].

A decision tree is a predictive modd that can be viewed as a tree It is a popular
nonparametric supervised learning method. In decision trees, each branch of the tree
represents a choice and the leaves of the tree represent decisions. Decision trees provide
interpretability. They can aso be applied to any data and requires |ess parameter tuning
[Aglero et. al. 2004; Black and Taylor 1997; Breiman et. al. 1984; Batusek 2002; Witten
and Frank 1999]. Within the framework of this dissertation, decision tree learning is
incorporated for phoneme duration and pitch contour modeling.

State-of-the-art TTS systems use prerecorded acoustic units, such as phones,
diphones, or polyphones, to perform synthesis [Bulyko and Ostendorf 2002; Chen et. al.
1996; Violaro and Boeffard 1998]. To improve the naturalness of synthetic speech,
continuous speech databases composed of multiple representations of these units are
developed. In general, language can be considered as the set of al possible combinations
of these units. However, it isnot practical to record all combinations.



Success of prosody modeling is mainly related to chosen corpus used for training. |f
the speech corpus is rich enough to represent the prosodic and contextua variety of the
language, higher performance can be achieved in modeing [lida and Campbell 2001;
Campione and Veronis 1998a]. Hence, speech corpora design is one of the key issues to
improve the naturalness and intelligibility of synthetic speech.

A speech database can be built randomly or by means of optimizing the units
acoustically or with respect to their textua properties. Random sdections may not be
adequate to provide sufficent variability for prosody research. To develop appropriate
prosody modeds, we aso need a speech database of sufficient phonetic and prosodic
coverage. Phonetic coverage can be obtained by supplying sufficient representatives of
each unit [lida and Campbell 2001]. Prosodic coverage is achieved by considering
various types of syntactic constituents with sufficient representatives. Within the scope of
this thesis, a phonetically and prosodically rich speech database is devel oped.

General assumption for intonation modeling is that it can be successfully handled only
by fundamenta frequency, thus, the ultimate goal is to develop a model to generate
fundamentd frequency contours. Various intonation models have been proposed in the
past. They are contrasted by different viewpoints [Monaghan 1992; Veronis et. al. 1998;
Taylor and Isard 1992]: the systems may be phonological or phonetic; pitch contours can
be produced by parametric or nonparametric methods; or the systems may use level tones
or pitch movements. These viewpoints can be summarized in a more compact form as
shownin Figure 1-3.

Phonological modds employ a set of discrete symbols to represent the pitch contour
[Dusterhoff 2000; Frid 2001; Jilka et. al. 1999; Taylor 1992; Veronis et. al. 1998]. The
most influentia one is Pierrehumbert’s model later evolved into a standard (Tones and
Breaks Indices, ToBI) for transcribing American English. As stated in Silverman €. al.
(1992), ToBI is the most widely used system for the symbolic transcription of intonation
at present. It provides a four level transcription system to the researchers, which obeys the
genera outline proposed by Beckman and Pierrehumbert [Pierrehumbert 2000]. In
Beckman and Pierrehumbert, six different pitch accents (H*, L*, L+H*, L*+H, H+L*,
H*+L) and two leves of intonational phrasing (intermediate and full intonational phrase)
were proposed [Pierrehumbert 2000]. Pitch accents are mainly aligned with accented
syllables. A boundary tone is associated to each intonational phrase boundary. The
symbol L- (H-) describes a low (high) tone a an intermediate phrase boundary. The



symbols L-L%, L-H%, H-L% and H-H% are used to represent full intonationa phrase

boundaries.
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Figure 1-3: Classification of intonation modds.

Another example of phonological models is the Instituut voor Perceptie Onderzoek’s
(IPO) perceptual model which relies on identifying perceptually rdevant pitch
movements and approximating them with straight lines. The main point of the gpproachis
to simplify the FO curve and preserve the same melodical impression to the listener
[Monaghan 1992; Veronis et. al. 1998].

Parametric models that belong to the broader class of phonetic modes use a set of
continuous parameters to describe intonation patterns [Campione and Veronis 1998a,
1998b, 1988c; Hirst et. al. 1994; Syrdal et. al. 1998; Mohler 1998, 1999; Conkie and
Mohler 1998]. A well known parametric modd is the Fujisaki’s superpositiona model.
The actud FO contour is obtained by the superposition of basdine FO, phrase and accent
components on a logarithmic scale. A second-order, criticaly damped linear filter in
response to an impulse function called phrase command generates the phrase component.
Accent component is generated by another second-order, criticaly damped linear filter in
response to a step function called accent command. Basicaly, filters used in accent and
phrase component generation differ in the effective length of their impulse responses
[Fujisaki and Hirose 1984; Fujisaki and Nagashima 1969; Fujisaki 2003; Mixdorff 2000,
2001; Mixdorff and Jokish 2001; Sakurai et. al. 2003].



The Tilt intonation modeling proposed by Taylor can be considered both as
phonol ogica and phonetic because continuous tilt parameters are computed only at event
locations and non-event parts of the pitch contour are generated by linear interpolation.
Pitch accents and boundary tones are defined as events. Events have rise-fall patterns.
Each event is represented by three tilt parameters. duration, amplitude and tilt [Taylor
1992; Taylor and Isard 1992; Taylor 2000]. Duration is the sum of the rise and fall
durations. Amplitude is the sum of the magnitudes of the rise and fall amplitudes. Thetilt
parameter is a dimensionless number which expresses the overal shape of the event
[Taylor 2000, Taylor 1998].

Nonparametric approaches use FO vaues themselves. Samples from the pitch contour
are taken to develop intonation models. Examples of nonparametric methods are rare.
Black and Hunt used a linear regression based method to predict FO target values for the
start, mid-vowel, and end of every syllable [Black and Hunt, 1996]. In his approach,
Traber (1991, 1992) utilized neura networks to identify the regular relations among
German sentences. Traber predicted eight FO vaues per syllable by recurrent neura
networks [Kdler and Werner, 1997].

Main trend in intonation modeling studies is towards the utilization of intermediate
representation such as ToBI [The Ohio State University Department of Linguistics 1999],
tilt, etc. described above [Campione and V eronis 1998; Conkie and Mohler 1998; Mohler
1998; 1999; Pierrehumbert 1983, 2000; Ross 1995; Taylor 1992, 1995, 1998, 2000;
Sakural et. al. 2003]. A great deal of the studies involve labding of pitch accents and
intonational phrases introduced by Pierrehumbert [Black and Hunt 1996; Jilka et. al.,
1999; Pierrehumbert 2000; Taylor 2000; Sun 2002a, 2002b]. Pitch contours are annotated
with respect to those pitch accents and boundary tones by expert labelers considering
language specific constraints [Bulyko and Ostendorf 2002]. Phonetic transcription of the
speech signals is also provided. Phonetic transcriptions together with abstract l1abels for
the pitch contours constitute prosodically |abel ed speech databases.

Boston University Radio Speech Corpus, speaker F2B is widdy used among
researchers studying English intonation [Clark 2003; Dusterhoff et. al. 1999; Jilka et. al.
1999; Ross 1995; Sun 2002a; Taylor 1998]. The database consists of about 40 minutes of
speech read doud by a femae professiona announcer. It is also labeled using ToBI
transcription [The Ohio State University Department of Linguistics 1999] system. The
total number of syllables in the database is 14377. The database is also labeled with



phoneme, syllable, and word boundaries, part-of-speech tags and includes lexical stress
markings. It is aso labeled with intonation labels based on the Tilt intonation model.
[Dusterhoff et. al. 1999]

For pitch contour modeling in Turkish, we do not have a prosodicaly |abel ed speech
database. Consequently, we do not have labels that identify accent status of the syllables
in the database. Besides, there is no concrete definition of pitch accent for Turkish as for
other languages such as English, German, or etc. The only source is the pitch contours of
the sentences. Hence, for pitch contour modeling in Turkish, labels are derived from the
pitch contours themselves.

Two methods are proposed for pitch contour modeling in Turkish. One method
invol ves a nonparametri ¢ approach whereas the other can be considered as a phonologica
approach; both incorporate syllable units. Y et, both of the proposals yidd a mathematical
accent definition.Using proposed methods, syllables are associated to “pitch accents’.
Pitch accents are associated to syllables having sudden pitch excursions. This choice of
pitch accent assignment is motivated by perceptua listening tests as a result of which
prominence is decided to be perceived on sharp rises.

Decision trees are used to map the relation between intonational (prosodic) attributes
and accent status of the syllables. Performance of accent classification is evauated by
correct/incorrect classifi cation rates, kappa coefficient and confusion matrix. For accented
syllables, regression trees are incorporated to predict the gradient of the syllable pitch
contours. The performance of gradient estimation is evaluated by objective measures such
as corrdation coefficient, mean absolute error, and root mean squared error. Syllable
pitch contours are reconstructed using syllable duration information and gradient
estimates. Overdl pitch contour is reconstructed by concatenating individual syllable
pitch contours.

Timing or duraion plays as much important role as intonation in the
encoding/decoding of speech by the speaker/listener. Duration can be defined as the time
taken to utter an acoustic unit such as phoneme, syllable, etc. Duration modeling studies
mainly concentrate on phoneme duration [Batusek 2002; Cordoba et. al. 1999; Cordoba
et. al. 2002; Febrer et. al. 1998; Klatt 1987; Krishna et. al. 2004; Krishna and Murthy
2004; Lee and Oh 1999a 1999b, 2001; Mébius and van Santen 1996; Riedi 1998;
Venditti and van Santen 1998] however there are studies aso on syllable duration



[Campbell 2000; Chen et. al. 2003; Lee et. al. 1989; Sreenivasa and Y egnanarayana
2004]. Durationa patterns are part of the prosody and contain important cues for
understanding the spoken text [Riedi 1998]. As stated by Campbell, variationsin duration
provide assistance for the listener to extract the meaning [Campbell 2000].

As a rule-based approach, Klatt used the notion of intrinsic duration introduced by
Peterson and Lehiste (1960) [Campbdl 2000; Klatt 1987]. Intrinsic duration is the
average duration of the syllable nucleus. His modd assumes that each phonetic segment
type has an inherent duration that can be modified by a set of rules, but phonemes cannot
be compressed shorter than a certain minimum duration [Klatt 1987]. Riley (1990, 1992)
used a 1500 hand-labeled speech database from a single male speaker for segmenta
duration prediction using CART trees [Campbdl 2000]. van Santen states that
classification trees require huge amount of training data to cover dl possible feature space
and proposed the sum-of-products models reference. Sum-of-products model find
phoneme durations by a summation of functions of attributes (van Santen 1992, 1993,
1994) [van Santen 1997, Venditti and van Santen 1998, Mdbius and van Santen 1996].
Campbell (1992) utilized neural networks for predicting syllable timing [ Cambpe | 2000].
He used a categorical factor analysis to find out the factors that influence the syllable
duration.

For phoneme duration modeling, a collection of atributes are derived from the
database such as phoneme identity, left/right context, lexica stress, Part-of-Speech
(POS), and etc. The selection of these features is guided by those for other languages in
literature and the suggestions of Turkish linguists Prof. Dr. idla Ergeng, Prof. Dr. Engin
Sezer, and Assoc. Dr. Engin Uzun. Relevance of attributes affecting phoneme duration in
Turkish are determined by means of statistical analyses. Using regression trees durational
attributes are mapped to phoneme durations. The performance of the mapping is
eva uated by objective measures such as corrd aion coefficient (CC), mean absol ute error
(MAE), and root mean squared error (RMSE). In order to increase phoneme duration
prediction performance, modifications on attribute values are proposed. Error
minimization in the least squares sense is applied to the resulting predictions in order to
further improve RM SE between predicted and actua phoneme durations. Performance of
decision trees on predicting discretized segmenta duration is evaluated.



1.1 Goalsand Outlineof the Thesis
In the work presented here, our primary goal is to build pitch contour and phoneme
duration models for Turkish using classification and regression trees. A prosodically and
phonetically rich speech corpus has been built as part of this study. Relevant prosodic
attributes appropriate for pitch contour and phoneme duration modeling are identified

The outline of the thesis is as follows: First chapter introduces a brief definition of
prosody and its components. Objectives and motivations are discussed in this chapter.

Focusing on the most influencing research, an overview of different approaches to
intonation and duration modeling is given in Chapter 2. Intonation modeling studies are
discussed under two broad categories. Phonological and phonetic modeing approaches.
WédI-known intonation and duration modd s are introduced.

Chapter 3 introduces the produced text and speech databases. The text database is
designed to provide phonetic and prosodic balance. A set-covering a gorithm is used to
sdect sentences from a larger set to guarantee phonetic coverage. The phonetically
balanced set is modified syntactically to attain prosodic coverage. Designed text is
recorded by a native female speaker in a soundproof booth. SAMPA transcriptions of

speech files are provided.

Chapter 4 introduces durationa attributes used for phoneme duration modéeling.
Attributes used for phoneme duration modeling involves phoneme (segment) identity,
preceding/following phoneme identities, lexical stress, and positiona features for

segments, syllables, and words.

Phoneme duration modeling studies are presented and their results are discussed in
Chapter 5. Forward selection method is used to optimize durational attributes.
Performances of the models are quantitative y analyzed. To improve performance several
modifications; duration quantization, modification of atribute values, outlier analyses,

and mean square error correction, are proposed.

Chapter 6 presents the attributes used in pitch contour modeling. The attributes are
associated to syllable units while the ones discussed in Chapter 5 belong to phonemes.

Pitch contour modeling studies are presented in Chapter 7. Two different methods are
proposed for pitch contour modeding. One method can be associated to phonetic modeling
described in Chapter 1. The other method can be viewed as a phonological model since it
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captures the prominence of syllables. Both aim at identifying syllable pitch contours with
a limited set of symbols. The symbols used in the former method involved a large
codebook that resulted in lower prediction performance. However, the latter uses only
binary leves for syllable prominence. Slope values used to reconstruct overdl pitch
contour of a given sentence are predicted for prominent syllables.

Chapter 8 comprises final conclusions and future directions.

11



CHAPTER 2

PROSODY MODELING

This chapter reviews intonation and duration modeling studiesin the literature.

2.1 Intonation Modeling

General assumption for intonation modding is that it can be successfully generated
with fundamental frequency only, thus, the ultimate god is to develop a model that
generates the fundamental frequency contour of the original utterance. Various intonation
models have been have been proposed since 1960’s. They are contrasted by different
point of views: Phonological versus phonetic models; linear or superpositional models; or
models involving level tones or pitch movements. Linear models interpret FO contour as a
linear sequence of phonologically distinctive units (tones or pitch accents), which are
local in nature. Superpositional models interpret FO contour as a complicated pattern of
components that are superimposed on each other.

2.1.1 Phonological M odels

The goa of a phonological model is to study the organization and underlying structure
of intonation [Sun 2002a; Taylor 1992; Dusterhoff 2000; Clark 2003; Monaghan 1992b;
Ross 1995]. Intonation patterns are described by a set of adbstract descriptions which are
regarded as the primitive entities in representing intonation. Generally, the symbol
inventory is developed by means of phonetic anaysis of FO curves either from a
production perspective or from a perception perspective [Clark 2003; Dusterhoff 2000;
Monaghan 1992b; Ross 1995; Sun 2002a; Taylor 1992; Vegnaduzzo 2003].

2.1.1.1 Autosegmental-Metrical (AM) Approach
The most influentia work on intonational phonology is the Autosegmental-Metrical
(AM) approach which constitutes the basics of American School. Pike (1945) and
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Bolinger (1965) were the first who paid more attention to intonation in the American
School which was dominated by the notion of phoneme. Pike used four phonemically
distinct leves (L, LM, HM, and H) whereas Bolinger used FO changes to decompose
mel odi es [Goldsmith 1999; Grice et. al. 2000; Pierrehumbert, 2000; Pirker et. al. 1997].
With the development of Autosegmental analysis (Goldsmith, 1976) and metrical
phonology (Liberman, 1975), American phonologica community shifted considerably to
intonation studies. Autosegmenta analysis involves breaking down phonological systems
into parald interacting systems of tones and syllables. In 1975, Liberman proposed
metrical phonology as a complementary system to autosegmental analysis. He argued that
there were not two (accented and unaccented) but three functiondly distinct roles in
which a High/L ow contrast arises in English intonation. Liberman called the tone playing
the third role a “boundary tone, and indicated by a % adjacent to the tone [Goldsmith
1999; Pierrehumbert 2000].

Pierrehumbert in her dissertation (1980) studied English intonation using the
autosegmental-metrical framework. She used the term “pitch accent” developed by
Bolinger (Bolinger 1958, 1965) for the tone associated with the accented syllable.
Pierrehumbert’s intonation modd used two basic tone levels (H and L). She proposed
bitona pitch targets which are phonologicaly located a metricaly prominent syllables.
She also distinguished pitch accents from boundary tones. Pierrehumbert (1980) proposed
seven pitch accents which were then reduced to six by Beckman and Pierrehumbert
(1986). The six pitch accents include H*, L*, L+H*, L*+H, H+L*, H*+L. In Beckman
and Pierrehumbert (1986), there were two levels of intonational phrasing: intermediate
phrase and intonational phrase which were also associated to boundary tones (L or H)
[Pierrehumber 2000; Pirker et. al. 1997]. A full grammar of passible patterns is givenin
Figure 2-1.

During reconstruction of pitch contours, each tonal e ement is mapped onto FO targets
which were then interpolated to produce intonation contour referans var mi?. The FO
targets depend on the speaker’s choice of pitch range.

Pierrehumbert also employed the concept of downstep for successive high tones
occurring in aternating (H L H L H...) patterns [Pierrehumbert 2000]. Downstep
involves the lowering of succeeding Hs. Besides, she used an upstep rule which applies
only to intonation phrase boundary tones following an H tone.

13



Figure 2-1: The grammar of English intonation patterns according to Beckman and
Pierrehumbert (1986) [Pierrehumbert, 2000].

The studies of Beckman and Pierrehumbert (1986) and Pierrehumbert (1980) then
evolved into a standard for transcribing American English. Tone and Breaks Indices
(ToBl) is the most widdy used intonation transcription system at present [Pierrehumbert
2000; Pirker et. al. 1997; Silverman et al. 1992].

“ToBl is a framework for developing community-wide conventions for transcribing the
intonation and prosodic structure of spoken utterances in a language variety. A ToBI
framework system for a language variety is grounded in careful research on the
intonation system and the relationship between intonation and the prosodic structures of

the language.” [The Ohio State University Department of Linguistics 1999].
ToBI provides a four leve transcription system to the researchers:
1) Orthographi c/phonetic transcription of the words,

2) Tone tier that follows the general outline of Beckman and Pierrehumbert (1986)
[Pierrehumbert 2000]

3) Break indices tier for indicating the strength of connection between words ranging
from 0 (no boundary) to 4 (a maximal, full y-marked intonati on boundary) and

4) Miscellaneous tier for any comments.

The prosodic features of ToBI include four intonation features: pitch accent, phrase
accent, boundary tone and break index. Pitch and phrase accents and boundary tones are
depicted in the tonetier while break indices tier show corresponding break indices.

14



Pitch accent is the intonational prominence that makes a particular word or syllable
implicit in a stream of speech. It corresponds to the local maximum or minimum of the
fundamentd freguency taking the values H*, L*, L*+H, L+H*, H+!H.

H* is an apparent tone target on the accented syllable in the upper part of the
speaker’s pitch range for the phrase.

L* is an apparent tone target on the accented syllable in the lowest part of the

speaker’s pitch range.

L*+H is a low tone target on the accented syllable followed by a sharp rise to a
peak in the upper part of the speaker’s pitch range.

L+H* is a high peak target on the accented syllable preceded by ardatively sharp
rise from avalley in the lowest part of the speaker’s pitch range.

H+!H* isaclear step down onto the accented syllable from a high pitch but can not
be accounted as a high pitch itself.

Phrase accent is the pitch leve, which extends the last accent in an intermediate
phrase, namely nuclear accent, to the end of the intermediate phrase. It can be @ther L- or
H-.

Boundary tone is the tone type at the end of each intonational phrase. It can be either
L% or H%.

Break index indicates the degree of the perce ved juncture between adjacent words. It
can take values ranging from 0 to 4 [The Ohio State University Department of Linguistics

1999]. An example annotation is givenin Figure 2-2.

American-English-ToBI is adapted to many other languages such as German, Korean,
Japanese, Mandarin, Greek, and etc. Oskay studied ToBI labding scheme on Turkish
[Oskay 2002]. In her thesis, she associates pitch accents and phrasa tones to words
assuming that pitch accents always occur on the lexically stressed syllabl e of words. Her
tone inventory is not as rich as Pierrehumbert’s though she obtained quite satisfactory

results.
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Figure 2-2: TOBI annotation of the Sentence “I need flour and sugar and butter and oh |
don’t know”.

2.1.1.2 The I PO (I ntituut voor Perceptie Onderzoek) Approach

The IPO approach, developed at Institute of Perception Research at Eindhoven, is
probably the best-known perceptual model of intonation ('t Hart et al., 1990) [Koutny et.
al. 2000; Sun 2002a; Campione et. al. 1997; Vegnaduzo 2003]. Although it is counted as
a phonological model, it is phonetic in nature. It was origindly developed for Dutch and
later for English intonation (de Pijper 1983) [Clark, 2003]. The main point of the IPO
approach is that only perceptualy relevant pitch movements are important to intonation
and natura FO contours can be smplified by means of stylization [Sun 2002a).
Stylization is the process of reducing the amount of information that the fundamental
frequency possess while keeping perceptualy equivdent [Campione et. al., 1997; Hirst
et. al, 2000].

In late 70s, De Pijper (1979) introduced the concept of daose-copy stylization. The
stylized contours are generated by means of straight line segments in log-domain. There
is no limit in the number of straight line segments used; however, in order to maintain
simplification, their quantity is restricted to the smallest possible value with which the
perceptual equivalence can be obtained. A close copy is obtained when subjects are
unable to distinguish the synthesized version from the origina [Campione et. al. 1997,
Hirgt et. al. 2000; Vegnaduzzo 2003].
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The IPO modd inventory is composed of pitch movements rather than pitch levels.
These movements occur between three levels of pitch making eight distinct movements
which occur as steep and or? Shalow shalow, steep’in kargiti degil rises and falls
between any two levds of the pitch range. Each movement can be aigned with a syllable
in three ways according to its location: early, middle or late. So, the total number of
elements in the inventory of IPO modd is 24 movements in total [Campione et. al. 1997,
Clark 2003; d'Imperio 2000; Vegnaduzzo 2003].

Figure 2-3 contains a representation of the IPO method applied to the sentence
‘maaria will worry anyone'. The figure shows original, close copy, and stylized FO
contours of the utterance. Close copy and stylized FO contours are gpproximations to
origina FO contour. According to the IPO model, the three FO contours should be
perceptually equivalent and acceptable by listeners. The figure is presented to
illustrate the data reduction process used in the IPO mode [Campione et. al. 1997].

The stylization approach proposed for Dutch intonation by Cohen and ‘t Hart is
applied to other languages such as English, German, Russian, French and Indonesian
[Campione et. al. 1997; Hirst et. al. 2000].

Figure 2-3: IPO data reduction method as applied to the sonorous utterance, “Malaria will
worry anyone.” Original (top), dose copy (middle), and stylized FO contour (bottom) of
the utterance.

2.1. 1.3 INTSINT (INternational Transcription System for INTonation)
INTSINT proposed by Hirst and Di Cristo. (1998) is used for coding the intonation

pattern of an utterance [Campione et. al. 1997; Campione and Veronis 1998a, 1998b,

1998c; Hirst et. al. 2000; Hirst et. al. 1994; Veronis et. al. 1998]. They use the proposed
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system for transcribing the intonation patterns of several languages. Pitch patterns are
represented as a sequence of discrete tonal symbols (Top, Mid, Bottom, Higher, Same,
L ower, Upstepped, Downstepped). The pitch patterns are coded either as absolute tones
(T, M, and B) or relativetones (H, S, L, U, and D). Absolute (global) tones are assumed
to refer to the speaker’s overdl pitch range whereas relative (local) tones refer only to the
value of the preceding tone. Relative tones can be further split into two categories: non-
iterative (H, S, and L) and iterative (U and D) tones. Iterative raising or lowering uses a
smaller FO interval than non-iterative raising or lowering. There is no corresponding
iterative tone for S tones. Figure 2-4 shows the abstract symbols used in the INTSINT
labeling system [Campione et. al. 1997; Campione and Veronis 1998a, 1998b, 1998c;
Hirst et. al. 2000; Hirgt et. al. 1994; Louw and Barnard 2004; Veronis et. al. 1998].

Figure 2-4: INTSINT labelling scheme.

The INTSINT codes for a given speech signal is computed as follows:
1) Code highest and lowest target FO valuesas T and B, respectivey.

2) Code first target point or any target point that follows a silent pause as M (unless
already coded as T or B).

3) Code dl other target points with relative tones. Assign an S tone to the targets which
are below a predetermined threshold value, otherwise code as H, L, U, or D
depending on the targets configuration with respect to its preceding and following
target points.

4) Compute the statistical value of each category for each target point. Assign mean
values for absolute tones and handle relative tones by a linear regression on the

preceding target.
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5) Toimprove statistical model, recodetarget pointsH andL as T, U, B, or.
6) Repeat 4 and 5 until no more recoding.

Figure 2-5 contains INTSINT representation of the sentence ‘ 6zgiire beni bekl emesini
sbylemedin mi’ (didn’t you tell 6zgir to wait for me). The figure also shows the sound
waveform, original pitch contour, original and predicted pitch values of the corresponding
tones.
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Figure 2-5: Sound waveform, (upper panel), origind pitch contour (mid pandl), and
INTSINT codes of the sentence ‘ 6zgure beni bekl emesini sdylemedin mi’ [Auran 2005].

2.1.2 Phonetic Models

Phonetic models use a set of waveform e ements and related parameters to describe
intonation patterns of an FO contour [Dusterhoff . al. 1999; Dusterhoff 2000; Fujisaki
and Nagashima 1969; Fujisaki and Hirose 1984; Fujisaki 2003; Lee and Oh 2001;
Mixdorf 2000, 2001; Mixdorf and Jokish 2001; Méhler and Conkie 1998; Mdhler 1999;
Ross 1995; Sakurai et. a 2003; Sun 2002a, 2002b; Taylor 1992, 1995, 1998, 2000;
Taylor and Isard 1992; V egnaduzzo 2003; Wright and Taylor 1997]. The ultimate goa of
phonetic models is to reconstruct the FO contour given modd parameters. However, for
functionality, a phonetic model has to be convenient for linking model parameters and
linguistic entities. In fact, the challenge of phonetic models lies in the mapping of
linguistic cues to model parameters [Sun 2002a, 2002b;; Ross 1995;].

Depending on their representation of FO contours, phonetic models are mainly

examined under two categories. parametric versus nonparametric. The former approach
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transforms the original FO va ues into some predictable parametric forms while the latter
uses the FO values themselves [Black and Hunt 1996; Dusterhoff 2000; Sun 2002a;
Vegnaduzzo 2003].

2.1.2.1 Parametric M ethods

2.1.2.1.1 Fujisaki’ s Superpositional Mode

Fujisaki and Nagashima [Fujisski and Nagashima 1969] presented a modd that
generates pitch contours from a set of binary steps corresponding to phrase and accent
commands. The modd was further improved by Fujisaki and Hirose (1984) to the well-
known superpositional model. The later assumes that the actua FO curve can be
expressed by superimposing phrase and accent components in log-domain as given by the
equations (2-1) — (2-3). A second-order, critically damped linear filter, phrase command
filter, generates the phrase component in response to an impulse, and the accent
component is generated by another second-order, criticaly damped linear filter, accent
command filter, in response to a step function [Fujisaki and Nagashima 1969; Fujisaki
and Hirose 1984; Fujisaki 2003; Mixdorff 2000, 2001; Mixdorf and Jokish 2001].

InFoft)=InFb +Z|: Ap, Gplt - Ty, )+ ZJ: ra, lGalt -, )-Galt -5, (2-1)
=1 =
_ a’t exp(— m), fort =0, .
Gl {0, fort <0, (2
Galt) = {min[l— 1+ A)exp(-A),y], fort=0, 2:3)
0, fort <O0.

where Gp(t) represents the impulse response function of the phrase control mechanism
and Ga(t) represents the step response function of the accent control mechanism. The
symbols in the aove equations indicate

Fb : basdline value of fundamental frequency,

| : number of phrase commands,

J : number of accent commands,

Ap; : magnitude of theith phrase command,
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Ag; : amplitude of the jth accent command,

Toi : timing of theith phrase command,

Ty : onset of the jth accent command,

T, : end of thejth accent command,

a : naurd frequency of the phrase contral filter,
£ : naturd frequency of the accent contradl filter,

vy : relative ceiling level of accent components.

Parameters o and f are assumed to be constant at least within an utterance, while the
parameter y istypically set to 0:9.

A block diagram of Fujisaki’s superpaositional modd is given in Figure 2-6.
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Figure 2-6: A command-response model for FO contour generation of Japanese utterances
[Fujisaki and Nagashima 1969; Fujisaki and Hirose 1984; Fujisaki 2003].

Two examples of Analysis-by-Synthesis of FO contours using Fujisaki's
superpositional mode is givenin Figure 2-7.

A S et .
[Hs] Aol yamanauenoen [Hz] TN ma:nkio
i aninoswa anl !
[ ik

barzami bu-mniga.

25 A ¢
TINE [3]

TR [

Figure 2-7: Examples of Analysis-by-Synthesis of FO contours utterances [Fujisaki and
Nagashi ma 1969; Fujisaki and Hirose 1984; Fujisaki 2003].
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2.1.21.2 Tilt Model

In his studies, Taylor [Dusterhoff et. al. 1999; Dusterhoff 2000; Taylor 1992, 1995,
1998, 2000; Taylor and Isard 1992; Wright and Taylor 1997] presentes
Rise/Fall/Connection (RFC) model, which analyzes an FO curve as a sequence of three
elements: rise, fall and connection (RFC) [Taylor 1992]. The rise and fdl are parabolic
while the connection element is linear. The basic unit of investigation is the intonational
event, which is either a pitch accent or a phrase boundary. Each event is characterized by
the amplitudes and durations of the rises and falls. Hence, four parametes, rise
amplitude, rise duration, fal amplitude and fal duration, are used to represent events.
Taylor, subsequently, introduces the Tilt intonational model where the three Tilt
parameters, namdy duration, amplitude and tilt are obtained by transforming the four
RFC parameters. Duration is the sum of the rise and fall durations. Amplitude is the sum
of the magnitudes of rise and fall amplitudes. The tilt parameter is a dimensionless
number taking values between [-1, 1]. Tilt parameter expresses the overal shape of the
event [Taylor 2000]. A pure rise (fall) takes a value of 1 (-1) while arise-fal (fal-rise)
pattern whaose rise and fall magnitudes are equal values takes a value of 0. Tilt parameters
are computed as follows:

P 21

o |Aise|+|AfaII| (4
D...—-D

it = 2rise” Dial (2-5)
D+ Dy

tilt = %tiltamp +%ti|tdur (2-6)
Abvent = |AISE| +|Afall| (2-7)
Devent :|Drise|+|Dfa||| (2'8)
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Graphica representations of Tilt parameters are given in Figure 2-8. Figure 2-9
depicts a schematic representation of FO contour and corresponding Tilt parameters

associated to the syllable nucle.

Peak Fosition

Riss Ezll
Starting EQ Armplitude R Amplitude
End of event
Start of event
| |
Duration
Figure 2-8: Tilt parameters [Dusterhoff 2000]
S
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Figure 2-9: Schematic representation of FO, intonational event stream (circled events) and
segment stream in the Tilt model. Events, labelled a for pitch accent and b for boundary
are associated to syllable nuclel of syllable stream [Taylor, 2000].

2.1.2.1.3 MOMEL (MOdéisation de MELodi€)

MOMEL was originaly proposed by Hirst (1980, 1983, 1987, and 1992) and
automated by Hirst and Espessser (1993). MOMEL represents the fundamental frequency
as a sequence of target points (relevant local variations of FO curve) in frequency and
time pairs, <FO, t>. For interpolation, MOMEL uses a quadratic spline function resulting
in a continuous, smooth curve. Quadratic splines provide a simpler codification. In order

to maintain the continuity of the resulting curve, interpolation is performed over the
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unvoiced segments [Campione et. al. 1997; Campione and Veronis 1998a, 1998b, 1998c;
Hirst et. al. 1994; Hirst et. al. 2000].

The modd has been used for the analysis of FO contours of other languages including
English, French, Spanish, Italian, and Arabic [Campione et. al. 1997; Campione and
Veronis 1998a, 1998b; Hirst et. al. 2000].
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Figure 2-10: Estimation of candidate target point (grey lines) and final targets (white
squares). The grey lines connect the centre of the moving window to the extremum of the
parabola estimated for that window [Campione et. al, 2000].

2.1.2.1.4 Parametric representation of I ntonation Events (PAIntE)
Mohler and Conkie (1998) describe an intonation event using two sigmoids with a

fixed time delay given by the foll owing equation:

f(x)=d- l - v (29
1+exp(-gy(b=x)+)) 1+exp(-ay(x=b)+y)

where a; and a, represent the steepness of sigmoids, ¢; and ¢, model the amplitude of
sigmoids, b stands for the alignment of the function and d corresponds to the function’s
peak. The syllable length is defined as unity. PAIntE model function and parameters are
givenin Figure 2-11.

This moded emphasizes intonation events like Tilt model does. FO contours’

parameterization is applied to the accented syllable as an anchor point. The
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approximation is performed within a three syllable window around the syllable carrying
accent.

Mohler and Conkie (1998) introduced Vector Quantization (VQ) of PalntE
parameters. They use codebooks of different size. They argue that:

1) intonation can be described by a number of distinct shapes,
2) reducing data can improve machine learning performance;

3) VQ dlows predicting al six parameters together rather than individualy [Mohler
and Conkie 1998; Mohler 1998, 1999; Sun 20024].
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Figure 2-11: The PalntE model function is the sum of arising and afalling sigmoid with
afixed time dday. Timeaxisisin syllable units [M&hler and Conkie 1998].

2.1.2.2 Non-Parametric Models

Non-parametric methods use FO values themseves to generate intonation based on
avalable linguistic information [Sun 2002a]. Non-parametric methods use samples of
smoothed and interpolated FO contours usually associated to syllable units. Traber (1992)
uses Recurrent Neural Networks (RNN) to predict a number of pitch vaues per syllable
[Buhmann et. al. 2000]. Based on Traber (1992), Buhmann €. al. incorporates RNNs to
predict 5 FO vaues per syllable for 6 languages [Buhmann et. al. 2000]. Lee and Oh
predictes 10 FO va ues va ues per syllable using a CART tree to generate an FO contour
for a given sentence [Lee and Oh 2001]. Ross and Ostendorf (1999) develop a dynamical
system model to predict normalized FO valuesin asyllable. They also use regression trees
to predict dynamic range of the FO contours [Ross 1995; Ross and Ostendorf 1999].
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2.2 Duration Modeling

Generally three prosody components are modeled: Intonation, duration and intensity
[Batusek 2002]. Duration plays as much important role as intonation in the
encoding/decoding of speech by the speaker/listener. The durational patterns are part of
the prosody and contain important cues for understanding the spoken text [Riedi 1998].
Variaions in duration provide assistance for the listener to understand the meaning
[Campbell 2000]. Different representationa factors specify and modify severa aspects of
speech during speech production [Klatt 1987]. Historically, duration prediction models
can be split into two as rule-based and cor pus-based-duration modes.

One of the most salient rule-based duration modds has been proposed by Kilatt
[Mébius and Santen 1996]. Klatt's work on duration modeling has pioneered the
development of severa duration modds. Klatt's immediate antecedents are Peterson and
Lehiste (1960) and Barnwell (1971). Klatt use the notion of intrinsic duration introduced
by Peterson and L ehiste (1960) [Campbell 2000]. They define intrinsic duration as “the
average duration of syllable nucleus measured from minimal pairs differing in the voicing
of the find consonant”. Peterson and Lehiste carry on a comparative study on the
durations of read 1263 single words in a sentence and report specificaly that the syllable
nucle tend to be shortened when followed by a voiceess consonant. Barnwell (1971)

presents an algorithm to model vowe duration as a function of [Campbell 2000]:
the word-level stress of the parent syllable,
the structural location of the parent word,
the number of syllablesin the parent word,
the proximity of any word or syllablejuncture.

Dennis Klatt summarizes Barnwdl’s work (1971) and proposes a set of rules to model
duration. Both Klatt and Barnwdl (1971) use a context-rdated percentage change
following Peterson and Lehiste's (1960) findings. Klatt's model evolves into its final
form in 1987 (Klatt 1987). The model assumes that each phonetic segment type has an
inherent duration that is specified as one of its distinctive properties, each rule assigns a
percent increase or decrease in the duration of the segment but segments cannot be
shortened less than a certain minimum duration (Klatt 1987). The mode is summarized
as:

26



DUR = MINDUR + (INHDUR-MINDUR) x PRCNT / 100 (2-10)

where INHDUR is the inherent duration of a segment in ms, MINDUR is the minimum
duration of a segment if stressed and twice that if unstressed, and PRCNT is the percent
shortening determined by applying Klatt's e even rules.

Many other rule systems have been devel oped for different languages. However, these
systems were devel oped when sufficient speech data and computationa power to anayze
the data did not exist. Recently, with the availability of large speech corpora and
advances in computational power, a general interest in corpus-based methods has arised
[M@bius and Santen 1996]. Corpus-based statistical models employ natura speech data.
Generdly, model parameters are trained over the data to optimize some criteria [Kenney
1998; L emmetty1999].

Application of Classification and Regression Trees (CART) [Breiman et. al. 1984] to
segmental  duration prediction appears in the context of Corpus-Based statistical
modeling. The input is formed by attribute-value pairs in CART modeling. Successive
splitting of data into two sub-trees, in which the variance of newly formed subsets is
minimal with respect to dependent variable, forms aregression tree. For each node of the
tree, observed average duration of the associated subset of the corpus is listed. Riley
(1990, 1992) uses a 1500-sentence hand-labeled speech database from a single mae
speaker for segmental duration prediction using CART [Campbell 2000]. Lee and Oh
proposed 10 features to predict segmental duration from a set of 400 sentences using
CART trees [Lee and Oh 1999].

One of the great advantages of CART is that the algorithm has the validation of the
model. CART builds a very complex tree and then pruns it back to an optimal tree based
on the results of cross validation or test set vdidation. The tree is pruned back based on
the performance of the various pruned versions of the tree on the test set data. The most
complex tree rarely fares the best on the hed aside data as it has been over fitted to the
traning data. By using cross validation the tree that is most likely to do well on new,
unseen data can be chosen.

CART agorithm is relatively robust with respect to missing data [Breman et. al.
1984]. If the value is missing for a particular predictor in a particular record, that record
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will not be used in making the determination of the optimad split when the tree is being
built. In effect CART utilizes as much information as it has on hand in order to make the
decision for picking the best possible split.

Van Santen (1992) summarizes different approaches employed in duration modeing

for synthesis applications. He identifies four principle classes:
Sequentia rule systems such as Klatt's model (1987);
equation systems,
look-up tables,

binary classification trees referring to Riley’ studies (1992) [Campbe | 2000; van
Santen et. al. 1997].

He gtates that lookup tables and classification trees require huge amount of training
data to cover al possible feature space and proposes the sum-of-products models (1992,
1993,1994) [Santen 1997, Venditti and Santen 1998, M6bius and Santen 1996]. Sum-of-
products model combines scales of attribute values by forming sums and products.
According to this modd, segment duration is given by

DUR(f) =3 [ S.(f) (2-11)

iar o,

where § ; isthe function representing the influence of factorsi, j and fi isthei™ dement

of descriptor vector f [Batusek 2002; Mdbius and van Santen 1996; van Santen 1997
Venditti and van Santen 1998].

Neura networks constitute another method for prosody modeling. Campbell (1992)
utilizes neural networks for predicting syllable timing “to account for the interaction
between higher and lower level of timing control” [Cambpell 2000]. He employs a
categorical factor analysis to find out the factors that influence the syllable duration. A
three-layer back-propagation neural network is used to predict syllable durations as afirst
approximation. In the second stage, a top-down accommodation process determines the
durations of each segment in syllable where syllable duration is partitioned among
phonemes of the syllable according to their intrinsic duration.
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In their work, Rao and Y egnanarayana use a four layer feedforward neural network
traned with standard backpropagation algorithm for predicting syllable durations of
Indian languages. Riedi applied a neura network to duration modeing in German and
obtained very good results [Riedi, 1995]. Cordoba et. al. uses phoneme as the base unit in
their modd involving neural networks [Cordobaet. al. 2002].

Ostendorf and Roukos propose the stochastic segment modd, the recognition
algorithm, and an iterative training algorithm for estimating segment modds from
continuous speech [Ostendorf and Roukos, 1986].

2.3 Resear ch on Turkish Prosody

Prosodic anal ysis experienced a considerable boost about 20 years ago, and there have
been an increasing number of publications on prosodic research for the last two decades
[van Santen et. al. 1997]. However, Turkish has been left amost untouched. The only
attempt to model Turkish prosody is Oskay's in her masters' thesis [Oskay 2002]. In her
studies, she adapts ToBI [Black and Hunt 1996; Pierrehumbert 2000] for Turkish and
models word-eved labes via machine learning. She uses a database of 400 sentences
recorded by herself. The sentences are sel ected from the Turkish Treebank Corpus [Metu-
Sabanci Turkish Treebank Corpus 2005; Nart, Oflazer and Say 2003]. Treebank provides
the morphasyntactic information of the sentences. In her thesis, Oskay performs word,
syllable and phoneme level transcriptions of speech waveforms automatically and
incorporates modified ToBI labels (H and L tones) to the transcription. She uses an
inductive learning scheme, RIPPER [Cohen 1996] developed at AT&T to predict word-
level ToBI labdls.

Abdullahmese devised a fundamental frequency contour synthesis system relying on a
sentence database and utilizing the syntactic structure of sentences based on word
categories and stress information [ Abdullahmese 2001].

In his thesis, Ozge argues that prosody is the sole structural determinant of
information structure and proposes a tune-based account for the structura realization of
information structure in Turkish [Ozge 2003].
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CHAPTER 3

TEXT AND SPEECH CORPORA DEVELOPMENT

Speech corpus design is one of the key issues to improve the naturalness of synthetic
speech. A language can be considered as the set of al possible combinations of speech
units. However, it is not possible to have dl combinations in a database. A speech
database can be built randomly or by means of optimizing the units acoustically or with
respect to their textud properties. For our purposes, random selections may not be
adequate to provide sufficient variability. Thus, it is amed to construct an optimal
continuous speech database consisting most frequent units with more than one
representation.

Recent studies about prosody modeling use speech corpora of limited size. In their
research about Korean prosody modeling, Lee and Oh used 400- and 500-sentence
databases, 60% of which are used for modeling and remaining for testing [Lee and Oh
1999, 2001]. For modding Spanish duration, Cordoba et. al. employe 732 phrases
[Cordoba 2002]. In their studies on automatic classification of intonational phrase
boundaries, Wang and Hirschberg uses 298 utterances from the 774 sentences in the
DARPA collected Air Travel Information Service (ATIS) database [Wang and
Hirschberg 1992]. Black and Hunt test their regression-based FO contour modding on
Boston University FM Radio Corpus (Speaker f2b) (include 14778 syllables) [Black and
Hunt 1996]. Dusterhoff, Black and Taylor uses 3 different databases. Boston University
Radio News Corpus (Speaker f2b), 450 TIMIT sentences (10% of which are questions),
and an instructiona text database consisting 43 excerpts of text describing a museum
exhibition [Dusterhoff et. al. 1999]. For duration modeling in German, Mobius and van
Santen employ Kid Corpus of Read Speech which indudes 23490 phonemes [M&bius
and van Santen 1996]. Venditti and van Santen perform an optimization over 34000-
sentence database and obtaines 197 sentences covering their feature space. They use this
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197 sentence to model Japanese duration [Venditti and van Santen 1998]. In Sakura,
Hirose and Minematsu, 486 sentences are used to generate FO contours [Sakura €. al.
2003]. For experimental purpases, Agliero, Wimmer and Bonafonte use a Spanish corpus
of 500 sentences for the joint extraction and prediction of Fujisaki’s parameters [Agliero
et. al.2004]. In avery recent work on Hindi duration modeling a corpus of 250 sentences
is utilized [Krishna et. al.2004]. Thelist may not be complete, however, it points out the
importance of speech corpus in prosody modeling.

Construction of a speech database requires three stages. creation of a text corpus,
recording and annotation. In the following sections each step involved in text and speech

corpora development is introduced.

3.1 Text Corpus
Text design by random sd ection of sentences from various topics is one of the most
frequently used techniques for speech corpora design. However, corpus formation is a
long and difficult task and therefore some means of optimization are necessary.
Especialy for building open domain applications, optimization becomes a must since

recording every possible speech event is practically impossible.

The coverage concept is very appropriate in formulating the problem and searching for
solutions. The aim can be stated as optimal design of a text corpus, which has highest
coverage for a target synthesis domain. Coverage of a domain can be defined via the
concept of unit. Units in this research are determined to comprise phonemes and sentence

types to account for phonetic and prosodic variety.

As a prosodic corpus, it has to be representative of the prosodic variations of the
language. The corpus may also be available for synthesis research thus another point isto
provide phonetic balance. Along with the specifications, a two-step approach is taken. In
the first stage, phonetic coverageis provided and in the second one, the resulting database
is forced to present prosodic variations by means of adding new sentences or changing
the types of the sentences obtained after the first stage.

Our initial text database is a collection of sentences sdected from various resources
such as grammar books [Adal1 1979; Aksan 1995; Atabay et. al. 1981; Hatiboglu 1972;
Kornfilt 1997], newspapers and TREEBANK project [Metu-Sabanci Turkish Treebank
Corpus 2005; Nart, Oflazer and Say 2003]. A first selection has been performed on
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newspaper and TREEBANK text to remove very long and short sentences. The resulting
text together with the sentences taken from the grammar books' constitutes the main
source text (5802 sentences) used in this study. There are 43867 words 16708 of which
are distinct. Phonetic transcription of the text database has been performed using Turkish
SAMPA conventions [Well 2003]. The total number of occurrences for 42 SAMPA
charactersis 305341. The sentence lengths in terms of word counts of the source text are

givenin Figure 3-1.

Sentence Histogram in terms of word numbers
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Figure 3-1: Sentence histogram of the original database in terms of word numbers.

Since large databases require much time and effort for building speech corpora, it is
needed to condense the text database to a convenient size. Daabase reduction is

presented in the following sections.

3.1.1 First Step: Phonetic Coverage
One of the constraints on the resulting database is to have phonetic variety and
phonetic balance. There exist rare phonemes in Turkish such as Z in aZan (agent) and w
in tawuk (chicken). When random sdection is considered to reduce database size, the
probability of the coverage of the sentences containing rare phonemes becomes very low.
Since phonetic balance is desired, a greedy-like approach to cover the rarest phonemesin

the sourcetext is followed.

! sentences from grammar books do not need a filtering in length since they are already in desired
form.
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A set of sentences (approximately 650) including rarest phonemes is sdected from the
source text database (5802 sentences). Since there is no other constraint on the selection
process it is expected to maintain the origina distribution in some manner. Resulting
phoneme distributions reveal that selecting the sentences with rarest phonemes result in a
text having nonrare phoneme distribution almaost the same as that of the original one,
yielding phonetic balance.

Diphone coverage is another important issue. The origina source text has a total
number of 1130 distinct diphones consi sting approximately 64.1% of all-possible diphone
combinations (41 SAMPA + pause = 42; 42*42-1 = 1763 diphones). The diphone
coverage of the origind database seems to be very low; however some combinations are
not encountered. The total number of diphone occurrences is 299539. Resulting database
has 949 digtinct diphones, which is approximately 84% of the origina diphone set, with
36280 occurrences.

With the help of a simple greedy approach, the dimension of our origina database is
reduced from 5802 sentences to 675 sentences (approximately 88.4% reduction ratio) and
achieved full phonetic coverage and partial diphone coverage.

3.1.2 Second Step: Prosodic Coverage
Sentence types and phonemes are taken as units to be covered in the database. To
provide phonetic coverage, 675 sentences are chosen from the text database consisting
5802 sentences using a greedy-like approach. For prosodic coverage, it is amed to cover
sufficient representations of each sentence type in Turkish. Following section introduces

sentence types encountered in Turkish.

3.1.2.1 Turkish Sentence Types

Broadly, Turkish sentences can be investigaed under three categories that can be
further split into subcategories [Adall 1979; Aksan 1995; Atabay et. al. 1981; Demircan
2001; Hatiboglu 1972; Kornfilt 1997]:

Depending on Syntactic Constituents
Smple Sentence

Simple sentences are composed of only one judgment with one verb. Since they are
simple in structure, their prosodic variations are also simple. In most of the sentences,

preverba word carries sentence focus. However this is not so when different types are
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considered: Question enclitics affect preceding word; question words constitute focus of
the sentences, and etc. Some examples of simple clauses are given below (wordsinitalic

indicate verbs of the sentences):

Ahmet annesini ziyaret etti (Ahmet visited his mother) (Figure 3-2)
Kim televizyon seyretti (Who watched television?)
Hasan kitabl okumadi (Hasan didn’t read the book)

Compound Sentence

Sentences consisting more then one verb are known to be compound sentences. Each
sub-sentence can be viewed as an intonation group. They have a complex prosodic
structure. Compound sentence examples are given below (intonation groups are enclosed
within /’s):

Hasan nereye gitmisse/ orada kaldi (Hasan stayed wherever he went) (Figure 3-3)

Bir adam /ki cocuklarini sevmez/ yalniz yasamalidir (A man who does not love his
children must live a one)

Complex Sentence (Clauses)

Complex sentences are composed of a main clause and one or more nominal,
adjectiva or adverbia clauses. In most of the cases, prosodically, complex sentences can
be handled as simple sentences. However, as given in the examples below, they may
show complex prosodic structures.

Y arin benimle sinemaya gelmeni istiyorum (I want you to come to the movie with
me tomorrow) (Figure 3-4)
Ahmet /cok calisarak/ hedefine ulasti (Ahmet attained his goal by working alaot)

/Midirin tatile ¢itkmasindan sonra/ ofis kapandi (After the director went on
vacation, the officeis closed)

Coordinate Sentence

Coordinate sentences are composed of more than one simple, compound, or compl ex
sentences that are related to each other in terms of meaning. Although there are complete
simple sentences, the meaning of coordination requires different intonational patterns
(continuation rise). Examples are given as follows:

Hasan ise gitti, Ali evine dondi, ben de parkta kaldim (Hasan went to work, Ali
returned home, and | stayed in the park)

Hasan arabay yikadi ve evi siiplirdil (Hasan washed the car and swept the house)
(Figure 3-5)
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Hasan istakozu pisirdi, Ali de baligl (Hasan cooked the lobster and Ali cooked the
fish)
Reported Speech
Although reported speech sentences can be thought as compound sentences, we
investigate them as another type to emphasize the difference in their pronunciation.
Below arethe examples:
Komsular /yarin seyahate ¢ikacagiz/ dediler (The neighbors said: We will go on a
trip) (Figure 3-6)

Ahmet /sinemaya gidecegim/ diye mirildandi (Ahmet muttered ‘I will go the
movi €)

Depending on Verbal Compaosition
Verb-Final Sentence

Turkishis astandard Subject-Object-Verb (SOV) order language. However, variations
to this structure exist, i.e. OSV, SVO, OVS, VSO, and VOS depending on the focus of
the sentence. The word to be focused comes to preverba location in general. Among
these various compositions, SOV and OSV structures are known to be verb-final

sentences Sentences given in previous subsecti on are examples of verb-final sentences.
Non-Verb Final Sentence

Sentences in SVO, OVS, VSO, and VOS are named to be non verb-final sentences. In
genera, non verb-final sentences are used in conversations. They are mostly encountered
in poems and daily communication like e-mails and messages. They are used to express

emphasisin forma writing. Exampl e of a non verb-final sentenceis given be ow:

Hasan bugiin yedi istakozu (Hasan ate the | obster today) (Figure 3-7)
Depending on Semantics
Affirmative Sentence

They are the sentences carrying positive sense. All of the previous examples are in

affirmative form. Some exampl es are given below:

Ahmet annesini ziyaret etti (Ahmet visited his mother) (Figure 3-2)

Hasan ise gitti, Ali evine dondi, ben de parkta kaldim (Hasan went to work, Ali
returned home, and | stayed in the park)
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Negative Sentence

Negation in sentences is either marked by negation enclitics (-me, -ma) or by the word
‘degil (not)’. When used, the meaning of the sentence should be sensed in the opposite
manner. Examples are as follows:

Hasan istakozu bugiin yemedi (Hasan did not eat the lobster today) (Figure 3-8)
Hasan kitabl okumadi (Hasan didn’t read the book)
Interrogative Sentence

These are question forms. The questions can be formed using question enclitics (-mi, -
mi, and variants) or question words like kim (who), ne (what), nerede (where), and etc.
Verb-final sentences are turned into question sentences by placing the question enclitic
before the subject under suspect or using the question words instead of the subject itsdf.
Examples are

Hasan bugiin istakoz mu yedi (did Hasan eat | obster today) (Figur e 3-8)
Ahmet neyi 6grencil ere satti (Ahmet sold what to the students)

il ' o

Figure 3-2: Example of an affirmative, simple, and verb-fina sentence: “Ahmet annesini
Ziyaret etti”. Speech waveform (upper) corresponding FO contour (middle) and word
segmentation (bottom). The pitch contour declines throughout the utterance.
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Figure 3-3: Example of an affirmative, compound, and verb-find sentence; “Hasan
nereye gitmisse orada kd di”. There are two intonational phrases: Second intonationa
phrase starts at the word ‘ orada .

AR R AR AL AA
VYV VY

v TN % i

1 Fartn | Themiraler | :::::: 5 | grhmani | VVVVVVV - | ......

Figure 3-4: Example of an affirmative, complex, verb-final sentence “Yarin benimle
sinemaya gel meni istiyorum”.

1 hasam | arshagl | Tkadl | - | A | rrrrrrrrr | ......

Figure 3-5: Example for an affirmative, coordination, and verb-final sentence; “Hasan
arabay! yikadi ve evi stiplrdi”.
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- KorSular arin seyahate Clxacaciz dsdiler hovara

Figure 3-6: Example for an affirmative, reported, verb-final sentence: “Komsular yarin
seyahate ¢ikacagiz dediler”.

hgﬂn| istaknzn | ot | ......

Figure 3-7: Examples for affirmative, ssimple, non verb-final and affirmative, simple,
verb-final sentences: “Hasan buglin yedi istakozu” and “Hasan bugln istakozu yedi”.

Figure 3-8: Examples for negative, simple, verb-final and affirmative, simple, question
forms. “Hasan istakozu bugiin yemedi” and “Hasan bugtin istakoz mu yedi”.

Each sentence in the 675-sentence reduced database is annotated with respect to their
sentence structures. Although this reduced subset contains amost all sentence structures,
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there are not sufficient representatives for non verb-final, compound and coordination,
reported speech sentences as wdl as interrogative sentences. However, non verb-fina
constructions are frequently used in daly life, informa written materials as well as
literature especidly in poetry and theatrical texts [Adal1 1979; Aksan 1995; Atabay et. al.
1981; Demircan 2001; Hatiboglu 1972; Kornfilt 1997]. Hence, it is necessary to increase
the size of non verb-fina sentences in our database. They have been increased to
acccount for the 29.4% of the overall database).

Reported speech sentences are another frequently used pattern existing in daily life,
informal and news texts, and literature [Add1 1979; Aksan 1995; Atabay et. al. 1981;
Demircan 2001; Hatiboglu 1972; Kornfilt 1997]. Their original size should aso be
increased, however not to repeat words indicating reported speech such as ‘dedi (said)’,
we avoid increasing the number of such sentences to a comparable leve as that of other
types (10% of the overall database).

Mostly by adding new sentences, the number of compound and coordination sentences
is increased to a comparable level (14% and 20% respectively). Sentences are made
interrogative by appropriate question words and morphemes.

While sdecting sentences and/or converting them into an appropriate form, special
careis taken to ensure easily pronounceabl e sentences. Sentences seemed to be nonsense
or hard to pronounce are deleted during prosodic coverage.

Some of the previous 675 sentences have undergone small perturbations or de etions
to provide balance between sentence structures. The remaining 335 sentences are selected
either from the origina database or from other resources to fulfill the sentence type
balance. The total number of changed sentences in the resulting database to provide
prosodic baanceis 555 (55.5%).

The original database has been enlarged to 5903 sentences with 311542 segments and
the fina reduced database is composed of 1000 sentences (16.9% of the original
database) with a total of 54892 segments (17.6% of the origina segment size). The tota
number of distinct diphones in the expanded and the resulting text are 1116 and 991,
respectively. The resulting database covers approximatdy 89% of the diphones of the
expanded database. The total number of diphone instances for expanded and the resulting
database are 305639, and 53892 (approximately 18%), respectively.

39



Sentence distribution of the resultant database is given in Figure 3-9. Approximately
30% of the database is composed of non verb-final sentences, while 70% is of verb-fina
sentences as desired. The Reported Speech sentences are alowed to reach a threshold
value of 10% which seemed to be a good resolution. Among the sentence types, the
complex sentence number is above the average, around 34%. This is an expected result
since our origind database sentences are composed mostly of complex sentences. It
should be mentioned that in written Turkish most of the grammatical forms observed are
verb-final, simple/complex affirmative sentences.

Sentence Type Distribution of the Resultant Database
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Figure 3-9: Sentence type distribution of the resultant database.

3.2 Speech Corpus
Last step in building METU Prosodic Speech Corpus is the recording process.
Sdected prompts are recorded in a soundproof booth located at METU's speech lab
(Figure 3-10). The speaker uses a Sennheiser microphone with a ME102 modular mini-
microphone capsule.

Selected sentences have been recorded usng EMU Speech Tools [Cassidy and
Harrington 1996]. EMU is a collection of software tools for the creation, manipulation
and analysis of speech databases.

After recording, speech waveforms are examined perceptualy. It has been noted that
the speaker made natural deviations: i.e. pronounce words such as yapmayacagim as
yapmicam or degil as di:l, etc. These are carefully examined and the speech database is
then rebuilt considering these modifications.
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3.2.1 Labeling
Resulting speech database is designed to serve as a research materia for prosodic
modeling; hence it is necessary to provide a basic annotation scheme aong with the
speech corpus. Many researchers employ phonemes as segments in duration modeling
whereas more complex units such as syllables or words are used in FO contour modeling.

Phoneme boundari es can be used to obtain syllable or word boundaries.

Automatic phonetic labeling of speech corpus is performed using HTK Speech
Recognition Tool [University of Cambridge 2005] developed for building and
manipul ating Hidden Markov models. 70% of the labels are then manually corrected and
used in phoneme duration and pitch contour modeling studies.

Figure 3-10: Soundproof booth.
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CHAPTER 4

IDENTIFICATION OF DURATIONAL ATTRIBUTES

In natural speech, two similar speech sounds rardy have exactly the same durations
due to many factors [Campbell 2000]. The influences of these factors on durationa
characteristics of speech have been investigated from the very beginning of prosody
research. Selecting incomplete or inappropriate set of attributes results in an erroneous
prediction of duration. Therefore, determination of attributes that have greater influence

on speech timing isacrucia step in duration modeling process.

Various durational attributes have been used in the literature for modeling purposes.
Campbel (1992) used number-of-phones-in-the-syllable, nature-of-syllabic-peak,
position-in-tone-group, type-of-foot, stress and word-class to predict syllable timing
[Campbell 2000]. Shih and Ao utilize segment-identity, tone-identity, previous/next-
segment-identity, previous/next-tone-identity, degree-of-discourse-prominence, number-
of-preceding-syllables-in-the-wor d/phrase/utterance,  number-of-following-syllables-in-
the-word/phrase/utterance, syllable-type for modding Mandarin duration [van Santen et.
al. 1997]. van Santen (1994) use phone-identity, surrounding-phones-identity, pitch-
accent, syllabic-stress, within-syllable/word/utterance-position [Cordoba et. al. 1999,
2002]. Venditti and van Santen employ current/preceding/following-phone-identities,
left/right-prosodic-context, accent-status, syllable-structure and special-mor pheme-status
for Japanese duration modeing [Venditti and van Santen 1998]. Segment-identity,
segment-type, word-class, position-of-phrase-in-utterance, phrase-length-in-number-of-
words, position-of-word-in-phrase, word-length-in-number-of-syllables, position-of-
syllable-in-word, stress, segment-position-in-syllable, segmental-context, segmental-
context-type are used by Mobius and van Santen for modeling German duration [M6bius
and van Santen 1996]. For modeling Catalan duration, Febrer et. al. utilize vowel-identity,
stress, sentence-position, post-vocalic-phone-class and manner-of-articulation [Febrer et.
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al. 1998]. For duration modeling in Spanish, phone-identity, contextual-phones, stress,
stress-in-the-syllable, syllable-beginning-with-vocal, diphthong, phone-in-a-function-
word, phrase-type, positioning-phrase and number-of-units-in-the phrase are employed
[Cordoba et. al. 1999]. Attributes used to predict Hindi duration are as follows: segment-
identity, segment-features, previous/next-segment-features, parent-syllable-structure,
position-in-parent-syllable, parent-syllable-initial/final, parent-syllable-position-type,
number -of-syllables-in-parent-word, position-of-parent-syllable, parent-syllable-break-
information, phrase-length-in-number-of-words, position-of-phrase-in-utterance, and
number-of-phrases-in-utterance [Krishna et. al. 2004]. For the prediction of Czech
duration, current/previous/next-phone-identities, syllable/word/phrase-lengths-in-phones,
phone-position-in-syllables-from-beginning/end, phone-position-in-word-from-beginning/
end and word-position-in-phrase are utilized [Batusek 2002]. Lee and Oh use
morphologica and syntactic features as well as positiond attributes for predicting Korean
duration [Lee and Oh 1999].

We have been in contact with linguists Prof. Dr. ida ERGENC and Assoc. Prof. Dr.
Engin UZUN from Ankara University, Prof. Dr. Giines MUFTUOGLU from Middle East
Technical University and Assoc. Prof. Dr. Engin SEZER from Bilkent University. They
state that the most influencing attribute for segmenta duration in Turkish is the phonetic
context, i.e. the phonetic identity of preceding and following segments, and especialy
that the next segment has a higher impact on segmenta duration. Ancther influencing
attribute for consonant duration is the position of consonant in parent syllable. All three
agreed on the fact that contrary to other languages like English or Spanish, Turkish
segment durations are not significantly affected by stress. Sezer mentions that long
vowels do not gppear in open syllables (syllables ending with short vowels). He aso
states that segments occurring in the last syllable of aword are longer in duration if there

is aclear word boundary.

Regarding the attributes sel ected in previous research on other languages and remarks
by Turkish researchers, we select a set of attributes for modeling Turkish duration. Each
phone in the database is assigned a feature vector describing the phone and the values of
its attributes. The attributes and their values used in this study are presented next.
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4.1 Performance Measures

We employ severa statistica measures for the quantitative analysis of the durational
attributes used in this study. Let us assume that durations in an n-dimensional databaseis
represented by the vector x=[X;, X, ..., X,]. Then, the expressons of Mean, Standard
Deviation (SD) and Coefficient of Variation (CV) for the corresponding x vector are
given by (4-1) through (4-3). In order to reved duration-segment relations, we mainly
rdy on CV which is a dimensionless measure. CV is a suitable measure that describes the
degree of spread around the mean of the data.

Mean(x) = %Zn: X, (4-1)
1 n ) 1/2
D(x) = (— > (Xi - mean(x)) ] (4-2)
n-1i=1
ovix =2 (4-3)
Mean(x)

4.2 Durational Attributes

Attributes used in phoneme duration modeling are presented in the foll owinf sections.

4.2.1 Phone | dentity

Phone identity (Phn) is known to be the most influencing attribute on speech timing as
duration is directly related to the characteristics of the phone and its closest neighbors.
We use SAMPA convention [Wells 2003] to identify phones in our database. No
alophonic variations are used for the vowels and the consonant ‘r’ but allophones of ‘g,
‘K, ‘n’, and ‘I’ are used. Long vowds are separated from their short counterparts as well.
The total number of symbols used is 43 including silence. The lists of symbols and their
frequency in the speech corpus are given in Table 4-1.

4.2.2 Manner of Articulation
Although manner of articulation for consonants and backness/frontedness for vowels
are added as influencing attributes, the featureis not used for modeling purposes. I nstead,
we use this feature to reveal the relationship between segments and their durations. The
values of the feature are; { Affricate, Fricative, Nasal, Liquid, Semivowe, Plosive, Back,
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Front, and Silence}. Table 4-2 shows the phone coverage of each feature value Table
4-3 demonstrates the duration distribution of phones with respect to their manner of
articulations. As the table reveds, maximum deviation is seen on the duration of the

consonant ‘r’ with aCV ratio of 0.797 while the |east is observed on thevowd ‘e’.

Table 4-1: Frequencies of the phones in the speech corpus

Phone Frequency Phone Frequency
a 5790 m 2228
a 268 n 3627
b 1292 N 156
c 1007 0 1521
d 2142 o: 31

dz 731 2 493
e 4451 2: 1
e 94 p 436
f 235 r 3570
g 163 S 1503
G 685 S 747
g 546 silence 2000
h 459 t 1761
1 2415 tS 547
1 42 u 1980
i 4378 u: 84
i 141 % 391
i 1931 w 178
k 1389 y 972
I 1656 y: 14
5 1705 z 757

Z 133

Table 4-2: Phone clusters with respect to their manner of arti culation property

Manner of Articulations | Phones

Affricate tS, dZ

Fricative f,v,w,s52S,7 h G
Nasal m, n, N

Liquid [,5r

Semivowsl i

Plosive p,bt,dcg,kg
Back al,oua,l;,o,u
Front ei,2y€e,i, 2,y
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Table 4-3: Mean, standard deviation (SD) and standard deviation over mean (CV) for the
segments in the database with respect to their manner of articulations (MOA) in
decreasing CV ratio.

Segment gle;)n/;\egi Mean SD CV | Frequency
r Liquid 43.253 |34.493 |0.797 2450
1 Back 51.890 |29.328 | 0.565 1730
z Fricative 70.385 |38.231 |0.543 512
i Front 57.414 |30.672 |0.534 3031
y: Front 84.300 |44.659 | 0.530 10
u Back 55442 |25.11 |0.453 1356
G Fricative 34.698 |15.311 | 0.441 470
g Plosive 55.598 | 23.558 | 0.424 112
h Fricative 53.073 | 22.475 |0.423 330
y Front 58.492 |24.046 | 0.411 693
I Liquid 41.635 |16.148 |0.388 1152
n Nasa 52.968 |20.524 |0.387 2522
b Plosive 48.244 | 17.809 | 0.369 902
i Semivowd |40.582 |14.83 |0.365 1349
k Plosive 79.642 |28.736 | 0.361 948
5 Liquid 38.535 |13.861 | 0.360 1154
c Plosive 80.040 | 28.399 | 0.355 696
a Back 82.300 |29.027 |0.353 4028
e Front 79.768 |27.59 |0.346 3114
v Fricative 45.822 |15.464 |0.337 264
gj Plosive 52.419 |17.586 |0.335 372
o Back 113.250 | 37.629 | 0.332 16
d Plosive 47.706 |15.848 |0.332 1647
u: Back 89.574 |29.498 | 0.329 61
t Plosive 72472 |23.382 |0.323 1214
m Nasa 54.174 |17.372 |0.321 1594
w Fricative 40.133 |12.874 |0.321 120
S Fricative 101.423 | 32.363 | 0.319 523
0 Back 82.013 | 25.869 | 0.315 1090
K Front 87.451 |26.913 | 0.308 102
2 Front 87.266 |25.99 |0.298 353
dz Affricate 50.225 |14.986 |0.298 520
f Fricative 81.830 |23.937 |0.293 171
N Nasa 54.874 |14.931 |0.272 111
p Plosive 76.919 |20.27 |0.264 307
1 Back 90.407 |23.352 | 0.258 27
tS Affricate 86.013 | 22.175 | 0.258 387
Z Fricative 67.022 |15.32 |0.229 91
S Fricative 99.217 |22.349 | 0.225 1069
a Back 133.888 | 26.924 | 0.201 187
e Front 119.191 | 23.802 | 0.200 68
2: Front 63.000 |0 0.000 1
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4.2.3Voicing
Since the phone and its characteristics play an important role on the duration
mechanism of speech, we consider the effects of voicing of the phones on duration by
considering voicing property of the segments. Table 4-4 reveals the mean durations of
the segments’ manner of articulation with respect to their voicing property. According to
the table, the differences between voiced and voicel ess consonants are very significant, in
the order of 30-40 ms; voicdess segments are longer in duration then their voiced

counterparts.

Table 4-4: Mean, SD and CV for the MOA of the segments with respect to their voicing
in decreasing CV rétio.

Nslezﬁgr]:t \/S(:gcrlr?;(t)f Mean |SD CV | Frequency
liquid voiced 41.716 | 26.947 | 0.646 | 4756
fricative |voiced 51.721 | 30.129 | 0.583 | 1457
front vowsl 69.41 |31.159 |0.449 (7372
back vowsl 73.055 | 32.652 | 0.447 | 8495
semivowe | voiced 40.582 | 14.83 [0.365 | 1349
nasal voiced 53.473 | 19.267 |0.36 |4227
plosive voiced 48,736 (17.112 |0.351 | 3033
plosive voiceless | 76.715 | 26.183 | 0.341 | 3165
fricative |voicdess |91.046 |30.64 |0.337 | 2094
affricate |voiced 50.225 | 14.986 | 0.298 | 520
affricate |voicdess |86.013 |22.175 |0.258 | 387

4.2 .4 Previous/Next Phone ldentities

The preceding (Left) and following (Right) phone identities are used to model segment
duration. As the work of Klatt [Campbell 2000; Klatt 1987] reved ed that the segmental
context highly influences the segment’s duration, it is beneficia to use a larger window
however when the number of segments are considered it is difficult to find a database

covering sufficient representatives for modeling each combination.

4.2.5 Manner of Articulation of Previous/Next Phones
Using the i dentity of previous/next phones increases the dimension of the search space
to the order of 43x43. Since we use a database of limited dimension, the frequency of
every possible combination is not a a considerable level. In order to reduce the

dimension, we included manner of articulation property for consonants and
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backness/frontedness property for vowels of preceding and following phonemes. The
atributes are named as Leftcl and Rightcl for previous and following phones,
respectively. Using manner of articulations for the neighboring phones, the dimension of
the search space is reduced to 9x9. Table 4-5 reveals segmental durations with respect to
manner of aticulaions of following phones. The most striking result is segments
followed by a silence, i.e. a possible phrase break, have the largest durations. This result

agrees with that reported by Klatt about segments just before a pause [Campbell 2000].

Table 4-5: Mean, SD and CV for the voicing of the segments with respect to their right
nei ghbour’s manner of articulation in decreasing CV ratio.

. M OA of
\S/ggliggt()f Right Mean |SD CV |Frequency
Segment

voicel ess silence 152.174|64.981 |0.427 |121
voicel ess semivowe 94.529 |14.877 |0.157 |51
voice ess Nasa 89.077 |23.778 |0.267 |235
voicel ess liquid 86.576 |21.32 0.246 | 406
voicel ess Front 82.631 |26.323 |0.319 (1734
voicel ess Back 81.415 |24.834 |0.305 |2248
VOi cel ess plosive 74.815 (22466 |0.3 655
voicel ess affricate 64.977 |15.741 |0.242 |44
voiceless fricative 60.908 |24.224 |0.398 |152
voiced silence 122.484|53.797 |0.439 | 376
voiced semivowe 57524 |20.691 |0.36 |170
voiced affricate 55.587 |17.604 |0.317 |240
voiced plosive 54.814 |20.035 |0.366 | 1697
voiced fricative 48.745 |19.57 0.401 | 514
voiced liquid 47.057 |19.157 |0.407 | 768
voiced Nasa 45,776 |16.228 |0.355 | 522
voiced Front 44.496 |17.287 |0.389 | 5309
voiced Back 42.631 |16.238 |0.381 |5746
vowsl silence 134.441|30.447 |0.226 |513
vowsl Front 80.710 |41.187 |051 (214
vowsl affricate 73.062 |26.649 |0.365 |581
vowsl liquid 72.228 |29.689 |0.411 |3571
vowsdl fricative 69.732 |31.16 0.447 | 2732
vowsl Back 69.318 |36.011 |0.519 |333
vowsl plosive 69.012 |25.152 |0.364 |3417
vowsl Nasa 66.829 |31.607 |0.473 |3413
vowsl semivowe 62.385 |29.781 |0.477 |1093
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4.2.6 Voicing of Previous/Next Phones

Klatt also reported that vowe duration is shortened if it is followed by a voiceess
consonant in the same word [Campbell 2000; Klatt 1987]. In order to observe the effect
of voicing property of neghboring phones to segmental duration, we used neighboring
phones voicing property as well. The name for the attribute holding the voicing property
of previous phone is Leftc2 and for the following phone, it is Rightc2. Table 4-6 shows
the statistica results related to the segment duration and voicing property of neighboring
phones. According to the data in the table, when followed by a voiced segment, phone
duration increases. It should also be mentioned voiced fricative followers influence
voi cel ess phone durations more than voi ced plosive and affricate followers. However, the
maximum average segmental duration is attained by voiceless segments followed by
semivowels. Besides, the effect of a semivowel follower on voice ess segments is highly
influential since the CV ratio attains very smal values. One important attribute to be
mentioned about the data in the table is the insufficient representatives for some of the
combinations leading to less information about such data.

4.2.7 Lexical Stress
It is reported that the stress attribute is a relevant feature in duration control [Batusek
2002; Campbell 2000; Cordoba et. al. 1999; Cordoba et. al. 2002]. Therefore, the effects
of stress to segmental duration in Turkish are aso considered. The attribute is named as
Accent while using for model development. There exist two levels for lexica stress:
Accented (A) or Not-Accented (NA). A segment is associated with an A if the vowe of
the parent syllableis stressed and an NA otherwise.

It isreported in Cordobaet. al. (2002) that stressed vowel's are 20% longer on average
than unstressed vowels. For our database, mean durations for stressed and unstressed
segments turned out to be 62.43 ms and 63.47 ms, respectively. Table 4-7 through Table
4-9 reved s the statistics related to stressed and unstressed segment durations with respect
to segments’ features. Last column in Table 4-7 gives the percentage change of the
corresponding vowel when it occurred in a stressed syllable. The former summarizes the
mean durations for vowels occurring in stressed/unstressed syllables. Thereis a tendency
of a dlight increase in vowel durations occurring in stressed syllables but this is not the
case for al vowds. So, a generalization about vowel length with respect to stress attribute
cannot be done. Second table reveds the average durations of segments occurring in
stressed/unstressed syllables with their voicing property. According to the voicing of the
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segments, stressing of a segment does not play an important role in phones’ durations.
The latter table shows the segments’ manner of articulation properties with respect to
stressing property. As the table indicates a direct reation with stressing property of the

segments and the r duration.

Table 4-6: Mean, SD and CV for the voicing of the segments with respect to their right
nei ghbour’s manner of articulation in decreasing CV ratio.

Voicing |MOA of Voicing of

of Right Right Mean |SD CV |Frequency
Segment | Segment Segment

voicdess | semivowd | voiced 94.529 | 14.877 | 0.157 |51
voicdess | nasa voiced 89.077 | 23.778 | 0.267 | 235
voicdess | liquid voiced 86.576 | 21.32 |0.246 | 406
voicdess | fricative voiced 84.531 | 24.09 |0.285 |32
voiceess | plosive voiced 84.481 | 26.071 | 0.309 | 156
voicdess | front vowsl 82.631 | 26.323 | 0.319 | 1734
voicdess | back vowsl 81.415 | 24.834 | 0.305 | 2248
voicdess | affricate voiced 76.667 |8.733 |0.114 |6
voicedess | plosive Voiceless 71.794 |1 20.319 | 0.283 | 499
voicdess | affricate voice ess 63.132 | 15.875 | 0.251 | 38
voicdess | fricative voice ess 54.608 | 20.083 | 0.368 | 120
voiced semivowel | voiced 57.524 120.691 |0.36 | 170
voiced affricate voiced 57.157 | 16.313 | 0.285 | 159
voiced |plosive voiced 55.610 | 20.473 | 0.368 | 1187
voiced |plosive VOicel ess 52.961 | 18.866 | 0.356 | 510
voiced affricate voiceess 52.506 | 19.64 |0.374 |81
voiced fricative voiced 52.298 | 20.208 | 0.386 | 121
voiced fricative voice ess 47.651 | 19.264 | 0.404 | 393
voiced |liquid voiced 47.057 | 19.157 | 0.407 | 768
voiced nasal voiced 45.776 | 16.228 | 0.355 | 522
voiced front vowsl 44.496 | 17.287 | 0.389 | 5309
voiced back vowsl 42.631 | 16.238 | 0.381 | 5746
vowd front vowsl 80.710 | 41.187 | 0.51 |214
vowd affricate voiced 74.209 | 26.743 | 0.36 | 339
vowd liquid voiced 72.228 | 29.689 | 0.411 | 3571
vowsd fricative voiced 71.944 | 34.302 | 0.477 | 1272
vowd affricate voice ess 71.455 | 26.488 | 0.371 | 242
vowel plosive VOicel ess 69.893 | 24.709 | 0.354 | 2045
vowd back vowsl 69.318 | 36.011 | 0.519 | 333
vowd fricative voice ess 67.805 | 28.007 | 0.413 | 1460
vowel plosive voiced 67.698 | 25.752 | 0.38 | 1372
vowd nasal voiced 66.829 | 31.607 | 0.473 | 3413
vowd semivowel | voiced 62.385 | 29.781 | 0.477 | 1093
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Table 4-7: Mean and percentage values for Stressed and Unstressed vowes.

Lexical
Stress

S
=
o

Mean |Frequency |Percentage

78.754 | 2861 13.45
90.994 | 1167
132.073| 151 6.66
1415 |36
76.618 | 2090 11.11
86.196 | 1024
119.639| 61 -3.78
115.286|7
50.112 | 1037 8.14
54.551 | 693
88.05 |20 9.36
97.143 |7
57.421 | 2022 -0.04
574 1009
87.468 |62 -0.05
87.425 |40
81.29 980 8.12
88.455 |110
86.915 | 342 11.48
98.182 |11
113.25 |16 -
63 1 -
54.269 | 1009 7.79
58.856 | 347
89.574 |61 -
57.382 |516 7.04
61.729 |177
84.3 10 -

<< <|ele|evadN oo ===~ rrlklklao|o|o|o|o oo
2|z Z|IZ|1>ZIZ|I1Z|2Z|> 2222222222222

Table 4-8: Mean, SD, and CV values for Stressed and Unstressed segments with respect
totheir voicing. Thereis no abrupt change in stressed and unstressed segments.

\S/gglg]rgtof ;t?xgl Mean |SD Cv Frequency
voiced N 47.955 | 23.704 | 0.494 | 10102
voiced A 46.57 |21.274 |0.457 | 5240
voiceless N 82.722 | 28.491 | 0.344 | 4170
voiceess A 82.513 | 28.561 | 0.346 | 1476
vowsl N 70.28 |31.684 |0.451 | 11239
vowsl A 73.987 | 32.669 | 0.442 | 4628

51



Table 4-9: Mean, SD, and CV values for Stressed and Unstressed segments with respect
to their manner of articulations.

gegrﬁezft gﬁxe:? M ean SD Cv Frequency
affricate N 66.157 |25.083 |0.379 | 618
affricate A 64.08 26.451 |0.413 | 289
fricative N 76.023 |36.058 |0.474 | 2546
fricative A 72.093 |35.918 |0.498 | 1005
nasal N 54.027 |18.47 0.342 | 2484
nasal A 52.683 |20.329 |0.386 | 1743
plosive N 63.427 |26.349 |0.415 | 4573
plosive A 61.888 |25.936 |0.419 | 1625
liquid N 42.43 29.238 |0.689 | 3069
liquid A 40.417 |22.129 |0.548 | 1687
semivowel N 41.221 |15.11 0.367 | 982
semivowel A 38.872 |13.928 |0.358 | 367
back N 71.831 |32.166 |0.448 | 6135
back A 76.238 |33.682 |0.442 | 2360
front N 68.417 |30.996 |0.453 |5104
front A 71.646 |31.417 |0.439 | 2268

Although the tables and the overal statistics do not revea an influence on segmental
duration with respect to the occurrence in stresses/unstressed syllables as mentioned by
Cordoba et. al. (2002), we would like to observe this phenomenon in more detall
therefore we ind uded this attribute to our feature set.

Lexica stresses [Barker 2002; Demircan 2001; Lees 1961; Sezer 1981; Underhill
1976] of the words in the database are obtained through an automatic stress assignment
algorithm devel oped within the course of this study.

4.2.8 Position in Syllable

We consider phone position in syllable (PosinSyllable) as another feature influencing
duration in Turkish. A syllableis composed of an onset + rhyme. Onset is described to be
the consonants before the syllable vowd that forms the syllable nucleus. Rhyme is the
remaining part of the syllable, i.e it is composed of the nucleus + coda where codais the
consonants following the syllable nucleus. In our feature coding we use a three level
representation for the segment position in syllable: Nucleus (N), Onset (O) and Coda (C).
Decomposition of the syllable ‘ semt’ in the word ‘semtten’ is described in Figure 4-1.
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Figure 4-1: Decomposition of the syllable ‘semt’ into its PoslnSyllable tags

By this coding scheme, every vowel is set to N and consonants are set to either O or C.
In our database, the average durations are 43.33 ms and 82.285 ms for voiced and
voiceless consonants occurring a onset position while the average durations are 57.102
ms and 83.504 ms for voiced and voicel ess consonants occurring at coda position. Table
4-10 and Table 4-11 show the statistica figures obtained through our database for the
phones occurring in various positions in the parent syllable. It can be conduded that
segment durations for voice ess consonants are independent of the position in syllable
since they are amaost the same in either position. Thus, it can be deduced that thereis a
dlight increase on the average duration for the consonants occurring at onset. Besides,
voiced consonants are slightly longer when occur in coda position. Close examination of
Table 4-11 reveds that there is a significant difference between the durations of
affricates, nasals, plosives and liquids occurring at the onset and coda positions.

Table 4-10: Mean, SD, and CV values of segment duration with respect to Position in
Syllable feature. Segments are clustered according to their voicing property.

\S/gglir;gt()f g{oﬁ':bolgln Mean |SD CV |Frequency
voiced O 43.33 |16.629 | 0.384 | 10717
voiced C 57.102 | 31.117 | 0.545 | 4625
voice ess O 82.285 | 25.726 | 0.313 | 3875
voice ess C 83.504 | 33.796 | 0.405 | 1771
vowe N 71.362 | 32.018 | 0.449 | 15867

Under the light of the discussions with experts on Turkish and our statistical findings,
it is concluded that PoslnSyllable is an important parameter for consonant duration in
Turkish. Statistical information gathered from the database supports this conclusion.
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Table4-11: Mean, SD, and CV values of segment duration with respect to Position in
Syllable feature. Segments are clustered according to their manner of articulation.

gle(g)geﬂft g/oﬁ';'bolgln Mean |SD Cv Frequency
affricate (@] 62.716 |23.605 |0.376 |818
affricate C 91.034 |28.393 |0.312 |89
fricative O 72.785 | 33.682 |0.463 | 2534
fricative C 80.206 |40.925 |0.51 |1017
nasal (@] 47548 |15.022 |0.316 | 2265
nasal C 60.313 |21.263 |0.353 | 1962
plosive O 59.465 |23.262 |0.391 | 5043
plosive C 7856 32226 (041 |1155
liquid O 33.981 |12.687 |0.373 | 2898
liquid C 53.781 |37.003 |0.688 | 1858
semivowel O 40.067 | 15,539 |0.388 |1034
semivowel C 42,273 112.085 |0.286 |315
back N 73.055 |32.652 |0.447 | 8495
front N 69.41 |31.159 |0.449 |7372

4.2.9 Syllable Type

We dso include the type of the parent syllable (SylType) in our annotations. Two
levels are used to denote syllable types: Heavy (H) and Light (L). Heavy and light
syllables are sometimes called open and closed syllables, respectively. Average segment
durations are 67.87 ms for heavy segments and 62.46 ms for light segments. Table 4-12
and Table 4-13 reveal the overall segment durations with respect to their parent syllable
type. In genera, al segments have shorter durations in open syllables then in closed
syllables. From the overdl view, it can be deduced that syllable type is an influencing
attribute in segment duration in Turkish.

Table 4-12: Mean, SD, and CV values of segmentsin Heavy (H) and Light (L) syllables.
Segments are clustered with respect to their voicing property.

\S/%%ggtOf %Iézble Mean |SD Ccv Frequency
voiced L 43.073 |16.812 |0.39 6441
voiced H 50.673 |26.001 |0.513 | 8901
voicdess L 80.691 |26.03 [0.323 | 2099
voicdess H 83.837 129.818 |0.356 | 3547
vowdl L 65.061 | 31.297 |0.481 | 9135
vowdl H 79.91 130.988 |0.388 | 6732
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Table 4-13: Mean, SD, and CV values for segmentsin Heavy (H) and Light (L) syllables.
Segments are d ustered with respect to their manner of articul ations.

gle(g)geﬂft .IS%// Iézble Mean |SD Ccv Frequency
affricate L 59.649 |22.837 |0.383 |405
affricate H 70.211 |26.613 | 0.379 |502
fricative L 70.595 |34.103 | 0.483 |1379
fricative H 77.65 [36.991 0476 |2172
nasal L 47.882 |15.065 |0.315 | 1428
nasal H 56.325 |20.514 |0.364 |2799
plosive L 58.391 |22.861 | 0.392 | 3036
plosive H 67.471 |28.434 |0.421 |3162
liquid L 33.351 |1249 |0.374 |1737
liquid H 46.529 |31.479 |0.677 | 3019
semivowel L 39.115 |16.111 | 0.412 |555
semivowel H 41.607 |13.782 1 0.331 | 794
back L 65.012 |30.713 | 0.472 |4851
back H 83.762 |32.08 [0.383 |3644
front L 65.118 |31.949 |0.491 |4284
front H 75.365 |29.002 | 0.385 | 3088

4.2.10 Syllable-Position-in-Word
Like PosinSyllable feature, the location of parent syllable in the parent word
(SyllablePosinWordl) is used by many researchers as an influencing attribute on
segmenta duration. Klatt reported [Klatt 1987; Campbell 2000] especially that boundary
syllable segments are longer in duration. In order to examine the affects of the parent

Syllable-Pasition-in-Word, we tried different coding schemes.

In the first type of coding (SyllablePosinWord1l), the syllables of the same word are
counted from the | eft starting from 1. The database contains words of at most 10 syllables
thus the feature can take a most 10 as value. However, the database lacks words
containing 9 syllables. Table 4-14 reveds the database statistics rdated to segment
durations and parent syllable locations. The table does not provide direct information
reated to the segment durations of the last syllables but gives an intuition about the
shortening in segment durations with increasing number of syllablesin parent word.

In the second type of coding (SyllablePoslnWord2), a discrete set of symbols is used
to represent the location of parent syllable in the parent word. The segments of the parent
syllable take the value Initial if they congtitute the first syllable of the parent word, or
Final if they form the last syllable, or Middle otherwise. The segments of the words
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containing single syllables are represented by the value Single. With this coding scheme,
we have the advantage of differentiating initial and find syllables clearly. However, with
this coding, we loose the information relating segment duration with the actua location of
parent syllable. To overcome this issue, a third coding scheme is proposed. Table 4-15
demonstrates the quantitative results obtained from the database with second coding.
According to the data in the table, initia and final segments are longer in duration and

segment durations in words with single syllables attain the maximum average val ue.

Table 4-14: Mean, SD, and CV vdues for segmentsin syllables with respect to different
Syllable Positions.

?og?f)olr? Mean |SD Cv Frequency
69.344 |29.833 |0.43 |12371
60.067 |28.989 |0.483 |11462
59.405 | 31.671 |0.533 |7334
59.535 |34.235 |0.575 |3807
62.658 |37.577 |0.6 1423
64.306 |39.707 |0.617 |359
67.888 |35.01 |0.516 |80
66.867 |41.834 |0.626 |15

0 47.5 3536 |0.074 |2

PO |INO|O1DWIN|F-

According to the third coding scheme (SyllablePosInWord3), we scal e the raw syllable
positions (SyllablePosinWordl) with the total number of syllablesin the parent word. The

coding can be formulated as follows:

SyllablePo sinword 1- 1
WordLength -1

SyllablePo sinword 3 = (4-9)

With this coding, the initial and final syllables are differentiated while preserving
syllable position information in polysyllabic words. Theinitia syllables as well as single
syllables take the value 0 and the final syllables take the value 1.
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Table 4-15: Mean, SD, and CV values for segmentsin Initia (1), Middle (M), Fina (F)
and Single (S) syllables.

?o!?f)olr? Mean |SD CV | Frequency
I 68.485 | 28.369 | 0.414 | 10283
M 54.154 | 25.232 | 0.466 | 12800
F 66.456 | 35.946 | 0.541 | 11684
Single |73.578 |35.896 | 0.488 | 2088

4.2.11 Word Position in Sentence

In our experimental studies, we consider position of parent word in the sentence
(WordNo) to have an impact on segment duration since it has been reported that
increasing the number of words in a sentence results in shorter segments [Klatt 1987;
Campbell 2000] The feature values are set to be numeric and ranges from 1 to 19. All
segments take the same value in a parent word. Figure 4-2 demonstrates the distribution
of feature values in the database. Table 4-16 reved s the statistics of the database related
to the current coding scheme for WordNo feature. It can be observed that there is an
increase in average segment duration around the 9™ word in the sentences. However, we
think that thisincreaseis not related to the number of words but a possible sentence find.

Table 4-16: Mean values for segments of words in different locations in the utterance.

WordNol|Mean |Frequency|WordNol|Mean | Frequency
1 61.607 | 4187 10 69.771|984
2 62.771 | 4592 11 68.689 | 283
3 63.649 | 4482 12 69.704 | 142
4 62.205 | 4545 13 60.171| 35
5 62.296 | 4582 14 69.902 | 41
6 61.644 | 4247 15 86.929 | 14
7 63.707 | 3939 16 61.471|17
8 63.627 | 2872 17 71.385|13
9 67.267 | 1863 18 56.25 |8
19 52.222|9
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Figure 4-2: Histogram plot of Word Position in Utterance feature

We used the same coding scheme for WordNo feature as in SyllablePosinWord feature
to observe the effects of initial and final words in segment duration. The attribute va ues
for the second representation are as follows: The segments of the parent syllable attain a
value | for sentence initiad words, a value F for the words at the end of sentences and a
value M, dsewhere. Thetag Single is discarded from the set since thereis no single word
sentence in our database. The statistics with the new coding scheme is given in Table
4-17. The table reveds the lengthening effect of sentence finality on the segment
duration.

4.2.12 Word Part of Speech

In numerous studies, Part-of-Speech (POS) tags are used to observe effects on
duration. The attribute s name is WordPOS. We also employ POS tags for parent word in
our attribute space. The segments are annotated with their mgjor POS tags as being
NOUN, PRON, VERB, QUES, INF, POSTP, CONJ, ADV, ADJ, CNOUN, or EXC.
These tags are obtained through a morphologica anaysis procedure [Oflazer 1994].
Table 4-18 shows the average segment durations with respect to different POS tagsinthe
database. According to the table, question words reveal one of the largest average
duration. Our hypothesis is that question words mainly locates at phrase ends and the
maxima occurred in average segmental duration in question words is nothing but a
clause-final lengthening as reported by Klatt [Klatt 1987; Campbel | 2000].
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Table 4-17: Mean, SD, and CV vauesin Initia (1), Middle (M) and Find (F) Words.

WordNo2 | Mean SD CVv Frequency
I 61.607 |28.38 0.461 4187

M 61.452 |29.083 |0.473 27567

F 73.612 |40.962 |0.556 5101

Table 4-18: Mean, SD, and CV values for segment durations according to POS values of
tags of the parent word.

ggre;); Mean SD Ccv Frequency
CONJ ]79.992 |38.295 |0.479 |622
QUES 74417 |43.025 |0.578 |410
VERB |65.982 |35.04 0.531 | 8105
ADV 65.96 30.643 |0.465 | 2075
POSTP |65.771 |30.765 |0.468 | 682
PRON |63.253 |30.542 |0.483 |716
INF 62.039 |23.314 |0.376 | 256
NOUN |61.872 |29.428 |0.476 |17411
ADJ 59.678 |28.688 |0.481 | 6406
CNOUN |58.138 |24.672 |0.424 | 167
EXC 56.6 22.865 (0404 |5

4.2.13 Word Length

Previous studies indicates that segment duration is directly related to the number of
syllables in aword; increase in the number of syllables results in a squeezing in segment
duration. The number of syllables in the parent word is represented by the name
NumOfSyl. Therefore, we aso include the number of syllables in the parent word as an
influencing attribute. The atribute values are numeric and ranges from 1 to 10. Figure
4-3 revedls the histogram of NumOfSyl of the database. Table 4-19 gives the database
statistics related to segment durations and NumOfSyl attribute. From the table, it can be
inferred that as the number of syllables of a word increase, the average segment duration
is shortened. Thus, there is an inverse proportion between the number of syllables in the
parent word and average segment duration.
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Figure 4-3: Histogram plot of Word L ength.

Table 4-19: Mean, SD, and CV vdues for segment durations according to Word Length.

\vae?]rgq[h Mean SD Ccv Frequency
1 73578 |35.806 |0.488 | 2088

2 67.187 |31.443 |0.468 | 7704

3 64.259 |30.968 |0.482 | 10496

4 60.521 |30.234 |05 |9237

5 58436 |29.819 |0.51 |5182

6 56.518 |29.579 |0.523 | 1601

7 53929 |27.912 |0.518 | 434

8 53.967 |26.733 |0.49 |91

10 52182 |21.456 |0.411 |22

4.2.14 Total Number of Wordsin Utterance

We aso employ the total number of words in the utterance (NumOfWord) as a
separate attribute. The attribute values are in the range [3-19]. WordNo attribute is related
to NumOfWord such that the last word of each utterance attains the same value assigned
to the current attribute. Figure 4-4 and T able 4-20 show the histogram and mean segment
duration for the attribute val ues. Asthe tablereveds, the segment durations do not show a
characteristic change with respect to the number of words in the sentence. The figure and
the table al so show the utterance - number of word situation of our database.
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Table 4-20: Mean, SD, and CV according to Total Number of Words in Utterance.

NumOfWord | M ean SD CcVv Frequency
3 62.119 |29.937 |0.482 |42

4 64.065 |30.343 |0.474 | 185
5 64.418 |33.482 |0.52 |1606
6 63.285 |32.221 |0.509 | 2907
-

8

9

63.789 |32.17 0.504 | 6753
62535 |30.521 |0.488 | 7576

63 30.713 |0.488 | 8058
10 62.798 |31.11 0.495 | 6373
11 63.686 |30.432 |0.478 |1715
12 62.681 |28.878 |0.461 | 994
13 64.037 |28.211 |0.441 80
14 65.419 |33.008 |0.505 |270
15 62.283 |33.791 |0.543 |92
17 65.143 30.896 |0.474 | 105
19 63.939 |27.035 |0.423 |99

4.2.15 Syllable Position in Utterance
The position of the parent syllable in the utterance (SyINo) has been considered to
investigate the effects on segment duration. It has been reported that i ncreasing number of
syllables affect English timing to be shorter. The feature leves have numerical values
ranging from 1 to 45. The statistics of the database used for modeling are demonstrated in
Figure 4-5 and Table 4-21. From the table, it can also be concluded that the segments

having larger SyINo values are longer in duration then the rest of the segments. The main
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reason for this is the higher the value of SylINo value, the more probable that the syllable
is an utterance fina syllable in confirmation with Kilatt's rule about phrase-fina
lengthening in segment duration.
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Figure 4-5: Histogram plot of Syllable Position in Utterance.

Attributes below are obtai ned through the speech corpus identified perceptualy or by
direct extraction.

4.2.16 Phrase Break Information

Speech corpus has been evaluated perceptually severa times and the mgor perceptual
bresks in the utterances were marked manually. The marks mainly correspond to the
speaker’s breathings however some correspond to lengthening in the segment durations
causing perceptual differences in the utterance. Therefore, we doubt that the current
speaker is not efficient to make predictions on the pause durations. For phrase break
information (Phrinfo), we have only used three categorical levels. Segment takes a Phrase
Initia (Pl) valueif it immediady follows a phrase break, a Phrase media (PM) value if
there is no phrase break engagement and a Phrase Fina (PF) if a phrase break
immediately follows the segment. Table 4-22 reved s the average segment durations and
their standard deviaions for the three categorical values. According to thetable, it can be
deduced that our speaker has a tendency to lengthen segment durations a phrase
boundaries. The extension is morein phrase final segments.
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Table 4-21: Mean values according to Syllable Position in Utterance.

SylINo |Mean |Frequency| SylNo|Mean |Frequency | SyINo| Mean | Frequency
1 64.18 1551 16 61.625| 1441 |31 70.418 170
2 62.59 1660 17 63.3 1383 |32 63.084 119
3 63.991| 1601 18 61.932| 1298 |33 65.121 107
4 63.404| 1610 19 62.726| 1248 |34 66.908 76
5 62.671| 1630 |20 63.477| 1170 |35 70.237 59
6 62.887| 1601 |21 61.93 1050 |36 735 44
7 62.521| 1640 |22 64.469 961 37 75.071 28
8 63.328| 1599 |23 66.438 831 38 76.133 15
9 64.084| 1598 |24 65.018 708 39 59.6 15
10 62.86 1575 |25 65.653 580 40 59.933 15
11 60.023| 1579 |26 63.761 481 41 62.091 11
12 62.984| 1561 |27 64.73 408 42 53.5 12
13 61.534| 1541 |28 63.322 320 43 81.231 13
14 61.636| 1521 |29 68.158 284 44 97.714 7
15 62.484| 1490 |30 71.627 241 45 52.333 3

Table 4-22: Mean, SD, and CV vd ues according to Phrase Break.

PhraseBreak | Mean SD CV |Frequency
[ 69.447 |30.606 | 0.441 |4218
M 58.806 |26.498 |0.451 | 28011
F 83.734 |45.604 | 0.545 | 4626

4.2.17 Number of Words from (to) the Preceding (Following) Phrase
Break

When we examine the WordNo feature, we observed that there is an increase in the
average segment duration around the 9" word, a possible utterance final word. Therefore,
it can be deduced that the word position in the utterance has an impact on segment
duration. Since the segmental duration is affected by word location, we would like to
examine the influence of word position in the perceived phrases. Current attributes
identify the number of words between the parent word and the preceding (following)
phrase break counting from 0. The attributes are named as NumOfWordFromPrevBr and
NumOfWordToFolBr for the corresponding attributes, respectivey. Table 4-23 and
Figure 4-6 show the mean segment durations and histogram of the current attributes. As
seen from the left table, as the number of words from the preceding phrase break
increases, the average segment duraion also increases since the probability of
encountering a new phrase break increases. For the right pane of the table, the maxi mum
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average segment duration has occurred at 0" level meaning that the word is immediately
followed by a phrase break.

Table 4-23: Mean values for segment durations according to Number of Words from the
Preceding Phrase Break (L eft) and Number of Words to the Following Phrase Break

(Right).
romprevy | Men | Frequency TR e | Frequency
0 62.921 | 11753 0 68.83 | 13740
1 62.032 | 11052 1 58.908 | 10759
2 63.741 | 7694 2 50.808 |6852
3 64.008 |3929 3 61.708 | 3298
4 65.769 | 1502 4 60.31 |1400
5 65.769 | 577 5 61.72 |511
6 66.671 | 255 6 63.173 | 208
7 72.4 75 7 63.333 |75
8 74.667 |18 8 67.083 |12
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Figure 4-6: Histogram plots of Number of Words from the Preceding Phrase (L eft) and
Number of Words to the Following Phrase Break (Right).

4.2.18 Number of Syllablesfrom (to) the Preceding (Following) Phrase
Break

This attribute is amost the same as the number of words from the preceding phrase
bresk attribute. Instead of using word numbers, this attribute uses syllable counts. The
names for the attributes are NumOfSylFromPrevBr and NumOfSyl ToFolBr, respectively.
The values range from Oto 27. Table 4-24 and Table 4-25, and Figure 4-7 show the
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mean segment durations and histogram of the current attributes. From Table 4-24, it can
be observed that there is a maximum at the first entry, then a sharp decrease of
approximately 9 ms and a regular increase starting around 15" syllable in segmental
durations. The firg maxima is reated to lengthening phenomenon in phrase initial
syllables and as the syllables tend to approach phrase findity the average segment
durations increase. For the Table 4-25, we have a maximum at the 0" level. This
lengthening in segmental duration is due to the fact that the syllable that the segment
beongstoislocated at phrase final.

Table 4-24: Mean values for segment durations according to Number of Syllables from
the Preceding Phrase Break (L eft) and Number of Syllables to the Following Phrase

Break (Right).

NumOfSyl NumOfSyl

FromPrngBr Mean | Frequency FromPrngBr Mean | Frequency
0 60.447 | 4218 14 60.373 | 365
1 61.502 | 4510 15 66.786 | 295
2 62.162 | 4182 16 65.224 | 196
3 61.777 | 3981 17 68.232 | 151
4 61.053 | 3628 18 65.636 |99
5 61.051 | 3202 19 70.463 |82
6 62.577 | 2841 20 66.111 |45
7 62.949 | 2356 21 69.842 |33
8 63.912 | 1880 22 73 2
9 62.959 | 1471 23 58.08 |25
10 62.838 | 1148 24 78214 |14
11 64.431 | 896 25 59.857 |7
12 64.813 | 673 26 80.714 |7
13 63.878 | 509 27 10175 |4

4.2.19 Duration
Phoneme durations are measured in miliseconds. Raw durations are extracted from the
text files containing segmentation information. Alignment of speech files with
corresponding orthography has been achieved via embedded training using HTK toolkit
[University of Cambridge 2005].

The raw duration distribution is given in Figure 4-8. In this figure, severa fitsto raw
duration distribution such as Normal distribution, Gamma distribution and Inverse

65



Gaussian distribution are also given. Phoneme duration distribution is more likely to have

a Gamma distribution.

Table 4-25: Mean values for segment durations according to Number of Syllables from
Preceding Phrase Break (L eft) and Number of Syllables to Following Phrase Break

(Right).
_Il\_lg'r_;f(])loBi:rafl Mean Frequency _Il\_lg'r_;f(])loBi:rafl Mean Frequency
0 83.755 | 4632 14 60.094 | 372
1 50.95 |4451 15 608 | 285
2 60.532 | 4149 16 62.075 | 200
3 60.133 | 3909 17 66.507 | 144
4 59.223 | 3594 18 61.816 |98
5 59.076 | 3149 19 62.946 |74
6 59.908 | 2795 20 59.882 |51
7 60.385 | 2283 21 65.108 |37
8 60.238 | 1862 2 57.75 |28
9 60.428 | 1469 23 72.783 |23
10 61.429 | 1166 24 77 14
11 62.239 | 887 25 60.857 |7
12 60.55 | 664 26 44167 |6
13 62.133 | 503 27 58.333 |3
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Figure 4-7: Histogram plot of Number of Syllables from the Preceding Phrase Break
(Left) and Number of Syllables to the Following Phrase Break (Right).
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Figure 4-8: Gamma, Normal and I nverse Gaussian and phoneme duration distributions.
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CHAPTERS

DEVELOPING PHONEME DURATION MODELS

Generally three prosody components are modeled: Intonation, duration and intensity
[Batusek 2002]. Phoneme durations are part of the prosody and contain important cues
for understanding the spoken text [Riedi 1998]. Variations in duration provide assistance
for the listener to understand the meaning [Campbell 2000]. Different representational
factors specify and modify several aspects of speech during speech production (Klatt
1987).

In our studies, a corpus-based approach is considered to model phoneme duration in
Turkish. Tothis am, as presented in Chapter 3, a phonetically and prosodically balanced
text corpus is designed and corresponding speech corpus is generated through a careful
recording procedure. In Chapter 4, durational attributes used in phoneme duration
modeling process are introduced. This chapter addresses phoneme duration modeling
studies.

5.1 Duration Modeling Using Decison Trees

In duration modeling studies, a hierarchical framework is followed, i.e. attribute
combinations are successively analyzed, and best attribute set is obtained in a greedy
manner. Experiments are performed mostly with the REPTree algorithm of WEKA. For
some of the experiments, the results obtained with the M5P agorithm of WEKA are
presented to have a better understanding of the modds developed. Both REPTree and
M5P agorithms are used for building decision trees. The reason why we preferred
decision tree based d gorithms is explained in Chapter 4. As mentioned in Chapter 4, both
decision tree based agorithms yied better performance than other machine learning

algorithms for phoneme duration prediction.
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All phoneme types except silence are used in training. Most of the phoneme duration
prediction studies devdop models for vowes and consonants separately. They split
database into two subsets, vowd subset and consonant subset, then training is performed
on each subset to predict vowd and consonant durations. We study predicting vowel and

consonant duration one at atime.

Prediction performance of each experiment is evaluated using Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Corréation Coefficient (CC). It is better
to predict the performance of a model on new data (test data) rather than old data
(training data). In our studies, the whole database, which consists of 36855 phonemes, is
split into two subsets: training set and test set. The test set consists approximately 19.9%
of the database and the remai ning phonemes constitute the training set (80.1%). The total
number of instances in the training and test setsis 29527 and 7328, respectively.

5.2 Experimental Work

In the origina database there are 17 attributes, 16 predictors and 1 dependent
attribute, duration. Table 5-1 demonstrates the attribute and va ue pairs. The first column
of the table shows the indices of the attributes used in the experiments. Phoneme | dentity
is considered as the discriminating attribute; henceitisincduded in al of the experiments.
Left/Right (23) attribute is considered to form a single pair in order to take into account
context. In order to evaluate relative importance of each attribute, modds using all
possible attribute combinations are to be deveoped. For a set of N attributes the tota
number of combinaions is 2V -1. Discarding Phoneme Identity and considering
Left/Right attributes as a single attribute, the dimension of duration attribute set is
reduced to 15. Thus 2'° — 1 = 32767 experiments have to be performed to uncover the
relation between the phoneme durations and the chosen attributes. However, thisis not a
feasible vaue Therefore, experiments are performed considering limited number of
attribute combinations and making generalizations through the results. To this aim, each
of 15 attributes are paired with Phoneme Identity and used for dphoneme duration
modeling at first stage. At the second stage, two of the 15 attributes are combined with
Phoneme Identity and used in training. This procedure is repeated untill fifth stage. At
each stage, the number of attributes combined with Phone Identity is increased by 1.
When al five experiments are reviewed, it is observed that best performances of different
attribute combinations progress one step further. For example among the experiments
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performed with two atribute combinations, 1, 2-3, 6 resulted in the minimum RMSE.
When the experiments involving three factor combinations are examined, the minimum
RMSE is obtained with 1, 2-3, 6, 12. Reviewing the two results, it is observed that two of
the three factors that resulted in the best performance using three factors are aready
present in the two-attribute combination that yielded the best RMSE. Considering this
performance shift, it is concluded that the best six can be found using the best five and so
on. Last stage involves al 17 atributes in training. This procedure is known as Forward
Selection. Forward selection is used in many machine learning applications for sdecting
the best atribute set. Following section presents best prediction error performances and

related discussions.

Table 5-1: Attribute-Vaue pairs in the original database.

Index|Attribute Value

1 |Phoneme Identity 42 phones (42 leves)

2-3 |Left/Right 43 phonemes (43 x 43 levels)
4 |Accent N, A (2 levels)

5 [PosinSyllable N, C, O (3levds)

6 [SylType H, L (2levels)

7 SylINolnwWord Numeric

8 [WordNo Numeric

9 WordPOS N,P,V,QI TC A, JB,E(11levds)
10 [NumOfSyl Numeric

11 [NumOfWord Numeric

12 |Phrinfo I, M, F

13 [NumOfWordFromPreBriNumeric

14 INumOfWordToFolBr |Numeric

15 [SylNo Numeric

16 [NumOfSylFromPreBr |Numeric

17 [NumOfSylToFol Br Numeric

18 |Duration(ms) Numeric

5.2.1 Forward Selection of Duration Attributes
Each attribute described in Chapter 5 is eva uated on its own to observe the individual
affects on phoneme duration. Phoneme Identity is considered to be the discriminating
attribute; hence corresponding results are used as a reference (baseline) for the rest of the
experiments. Individual performances of the attributes in terms of CC, MAE and RMSE
are given in Table 5-2. As illustrated in the table, Phoneme Identity (1) is the best
predictor of al attributes. Contextual attributes (2-3) turn out to be the second best
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predictors. Third best predictor is PosinSyllable. Worst predictor performance given at
the bottom of the table corresponds to NumOfWord attribute (11). Best CC, MAE and
RMSE obtained are 0.5958, 18.2003, and 25.7872, respectively.

Table 5-2: Individua performances of attributes for predicting phoneme durations.
Results are given in increasing RM SE order.

Index |CC MAE (ms) |RMSE (ms)
1 0.5958 18.2003 25.7872
2-3 0.53 20.8325 27.1914
5 0.3106 23.3704 30.5724
12 | 0.2641 24.3414 30.9329
17 | 0.2443 245178 31.0977
6 0.1473 24.4769 31.7265
14 | 0.1381 24.8184 31.7601
10 | 0.1212 24.5606 31.8327
7 0.1218 24.4285 31.8344
9 0.0873 24.7954 31.9577
16 | 0.0713 24.6631 31.9872
8 0.0539 24.7744 32.0196
15 | 0.0386 24.7759 32.0445
13 | 0.0234| 24.7784 32.0597
4 0.0193 24.7751 32.0604
11 0 24.7806 32.0658

Table 5-2 illustrates the individual impacts of attributes on phoneme duration
however it does not present their combinatorial affect. Attributes that seem to predict
phoneme durations individually may fail to perform well when used in combination with
other attributes. Combinatorial affects of durational attributes are presented in the
subsequent paragraphs.

Table 5-3 shows the regression tree obtained incorporating only best predictor,
Phoneme Identity. As shown in the table, the tree is split into the values of Phoneme
Identity. Estimated phoneme durations are the average durations for each split. The
numbers in brackets are "(coverage in the training set/errors in the training set)" and
"[coverage in the pruning set/errors in the pruning set]”. Because there may be fractional
instances (i.e. instances with weight < 1) the numbers are not necessarily integers.
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Table 5-3: Resulting regression tree using Phoneme I dentity attribute only.

Phoneme = 2 : 87.55 (190/691.95) [95/654.65]
Phoneme =z : 70.83 (288/1578.03) [110/1401.13]
Phoneme = gj : 52.96 (219/275.32) [77/381.84]
Phoneme =y : 58.29 (368/604.41) [203/548.51]
Phoneme =r : 43.31 (1345/1126.61) [642/1217.83]
Phoneme = e: 79.19 (1647/755.94) [816/785.64]
Phoneme =b: 49.19 (484/322.79) [238/331.99]
Phoneme = n : 52.15 (1358/409.46) [637/371.6]
Phoneme =i : 57.36 (1612/928.38) [802/950.19]
Phoneme = c: 81.02 (377/714.41) [179/959.8]
Phoneme =1 : 41.58 (584/215.13) [334/308.08]
Phoneme = m: 53.99 (847/269.03) [440/305.98]
Phoneme = s: 98.36 (546/529.65) [313/524.36]
Phoneme =] : 41.63 (735/210.33) [354/255.33]
Phoneme = d : 48.91 (848/237.58) [486/226.71]
Phoneme = o: : 116.31 (9/311.8) [4/4258.92]
Phoneme = g : 57.95 (50/361.39) [34/926.46]
Phoneme = a: 81.57 (2122/847.94) [1101/843.88]
Phoneme =5 : 39.53 (608/172.32) [331/219.96]
Phoneme =1 : 51.87 (941/827.81) [465/804.55]
Phoneme = 0 : 81.59 (566/660.83) [312/724]
Phoneme =k : 81.09 (505/877.47) [248/741.05]
Phoneme =t : 73.12 (660/540.29) [307/641.85]
Phoneme = tS: 86.88 (204/526.35) [97/430.16]
Phoneme = S: 100.4 (292/1053.54) [143/658.95]
Phoneme = v : 45.89 (142/262.75) [66/201.85]
Phoneme = G : 35.93 (260/249.37) [119/275.03]
Phoneme = u : 55.53 (741/616.94) [360/682]
Phoneme = a : 133.89 (114/690.86) [41/1025.36]
Phoneme =f : 81.21 (86/449.4) [39/498.95]
Phoneme = w : 40.56 (62/148.42) [34/169.39]
Phoneme = dZ : 52.01 (273/250.07) [134/157.02]
Phoneme = p: 77.59 (174/392) [77/401.49]
Phoneme =i: : 87.61 (48/706.27) [26/775.95]
Phoneme = h : 51.93 (183/438.83) [ 74/566.99]
Phoneme =N : 55.17 (53/238.68) [42/245.01]
Phoneme = e: : 118.1 (35/421.53) [19/728.05]
Phoneme = u: : 88.82 (34/967.03) [17/737.49]
Phoneme = Z : 68.58 (55/153.56) [17/457.41]
Phoneme = 1: : 89.79 (12/534.17) [ 7/335.14]
Phoneme =y: : 82.12 (6/2281) [3/2006.67]
Phoneme = 2: : 63 (1/0) [0/Q]

To obtain best error performances, every possible attribute combination together with

Phoneme ldentity is used to model phoneme durations. The number of atributes is

N
increased by 1 a each stage. At the k™ stage, k+1 attributes are used and {k]

experiments are performed to obtain the best error performance. Best error performances
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obtained at each stage is given in Table 5-4. Columns of the table correspond to CC,
MAE and RMSE, respectively.

Table 5-4: Best prediction error performances obtai ned with forward sd ection.

Best Results
Attributes CC MAE (ms) | RMSE (ms)
1,23 0.7576 | 15.1605 20.9321
1,236 0.7706 | 14.7089 20.44
1,236 12 0.7744 | 14.6039 20.2937
1,236,912 0.7772 | 14.5887 20.184
1,2-3,4,6,9 12 0.7798 | 14.5613 20.0792
1,2-3,4,6,9 12 14 0.7806 | 14.5574 20.0456
1,2-3,4,6,912,14,7 | 0.7807 | 14.5607 20.0478
All 0.7718 | 14.6678 20.4236

After the fifth stage, the number of experiments, so the time to conduct the
experiments is incressed. Therefore, a the sixth stage, the best set obtained in the fifth
stageis used as the base for forthcoming experiments. First five experi ments showed that
attribute combination that resulted in the best error performances is encountered in the
larger dimensional attribute set that result in the best error performance. So, in order to
find the six attributes that gives the maximum CC and the minimum RMSE, five
atributes, 1, 2-3, 4, 6, 9, and 12 that yield best performance are used. Every other
attribute is combined with the best-five to obtain best-six set. Stages for k>6are

performed using the same framework.

At the seventh stage, it is observed that RMSE obtained with six atribute analysis is
0.01% better than best RM SE obtained at seventh stage. So, including further attributes to

the best six attribute set does not improve the error performances further.

In order to observe the tota effects of al the attributes on phoneme duration, a last
experiment involving al attributes is conducted. Error performances of al attributes are
worse than the best-six attribute. Considering all the results, it is concluded that Phoneme
Identity, Left/Right, Accent, Syl Type, WordPOS, Phrinfo, and NumOfWordToFolBr (1, 2-
3,4, 6,9, 12, and 14) constitutes optimum attribute set for phoneme duration modeling.
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5.3 Performance Improvements
In the previous section, the experiments performed using various numbers of attributes
to predict phoneme durations are presented. With the set of attributes (1, 2-3, 4, 6, 9, 12,
and 14), an RMSE of 20.0456 ms at best is obtained. When al attributes are used, RMSE
and CC is becomes 20.4236 ms and 0.77, respectively.

5.3.1 Attribute M odification
This section describes the modifications on the origina atribute set for possible
improvements on the model performance. The modifications given in the subsequent
sections include utilization of phonetic class (Manner of Articulation) instead of SAMPA
transcriptions [Wells 2003] for neighboring phonemes (Left/Right) and utilization of
Syl PosInWord2 and Syl Posl nWord3 attri butes instead of SylPoslnWord1 attribute.

5.3.1.1 Phonetic Class Instead of SAMPA Transcriptions

In Chapter 4, the effects of Left/Right context on phoneme duration is discussed. It is
verified that phoneme duration is highly corrdated with Manner of Articulation and
Voicing property of Left/Right phonemes as well as the phoneme itself. According to the
results of previous sections, Left/Right attribute turn out to be the most effective attribute
on phoneme duration. However, thereis a drawback of using Left/Right attributes as they
are. As discussed in Chapter 5, each Left/Right attribute consists of 42 SAMPA
characters [Wels 2003] plus the silence, so atotal of 43 values. When the two attributes
are considered together, their span is 43x43 = 1849 different Left-Right pairs. When the
phoneme itsdf is also considered, the search space is of size 43x42x43 = 77658. Let us
consider the database used in our experiments. Our database contains a total of 36855
instances/phonemes, 29527 of which are used for training and the remaining is used for
testing. The total number of instances is far beow the total number of possible triphone
combinations. So, even if we assume that our database contains distinct entries for Left-
Phoneme-Right trio, the database is still beyond the limits of being sufficient. Besides, the
database contains multiple entries. So, available data is insufficient to represent all
possibilities.

A reasonable choice for dimension reduction can be the utilization of manner—of-
articulations of the phonemes instead of their phonetic identities. As the identity of a
phoneme is the discriminating factor for its duration, we use manner-of-articulation for
left and right phonemes only. Vaues for the manner—of-articulation attribute are set as

74



follows. {Affricate, Fricative, Nasal, Liquid, Semivowe, Plosive, Back, Front, and
Silence}. With this modification, the number of possible triphones is reduced by
approximately 95.6% (9x42x9 = 3402).

Table 5-5 shows the attribute and value pairs in the revised database. The first column
of the table shows indices of the attributes used in the experiments. The index for
LeftC/RightC is named as 1920 since they come as a new pair of attributes. The
experimental results using manner-of-articulaions instead of phonetic identity and al
other attributes are given in Table 5-6. When the prediction performances of the two
experiments (last row of Table 54 and Table 5-6) are compared, it is observed that
athough the information content of the Left/Right attributes is reduced, a slight
improvement (approximately 3%) is achieved in the RMSE value.

Table 5-5: Attribute-Vd ue pairs in the modified database.

Index|Attribute Value
1 |Phoneme Identity 42 phones (42 levels)
. Affricate, Fricative, Nasal, Plosive, Back, Front,
1920 |LeftC/RightC Semivowd, Liquid, Silence (9 x 9 levals)

4 |Accent N, A (2 levds)

5 |PosinSyllable N, C, O (3leves)

6 [SylType H, L (2 levels)

7 |SyINolnWord Numeric

8 |WordNo Numeric

9 WordPOS N,P,V,Q,I,T,C A, JB,E(11lleves)
10 |[NumOfSyl Numeric

11 NumOfWord Numeric

12 |Phrinfo I, M, F

13 |[NumOfWordFromPreBriNumeric
14 NumOfWordToFolBr |[Numeric
15 |SyINo Numeric
16 |[NumOfSylFromPreBr |Numeric
17 |NumOfSylToFolBr Numeric
18 |Duration(ms) Numeric

Table 5-6: Prediction performance obtained using all attributes with MOAs.

CC MAE (ms) |RMSE (ms)
0.79 14.47 19.81

75



5.3.1.1.1 Modification of Phonetic Class (1)

Severa modifications on the revised attribute set are consdered. Obtaining better
results led us make new arrangements on the attributes |eftC/rightC. As discussed in
Chapter 4, right context plays a very crucia role on phoneme duration. However, the
effects of right context within the same syllable are not considered up to now. So, in order
to reveal the situation about the effects of right context on phoneme duration within the
same syllable, gatistical and yses are carried out on the dataset. The mean, SD, CV and
frequency of every occurrence in the dataset are given in Table 5-7, Table 5-8, and
Table 5-9. The first two columns of the tables give the right neighbor’s characteristics
while the top most entry is the characteristics of the phoneme. For example in the first
table, the first entry states that V oi cel ess phonemes followed by V oicel ess Fricatives have
an average duration of 90.667ms and a standard deviation of 30.271ms. Some
combinations in the tables may seem unredlistic but close examination of the dataset
reveds that they exist. When the three tables are examined, it can be conduded that the
phoneme durations vary abruptly according to the following phonemes manner—of-
articulation within the same syllable. Besides, it can be deduced that with the same right

context, different phone classes have different durations.

Table5-7: Mean, SD, CV and frequencies of the voice ess phones according to the
Manner of Articulation and Voicing property of their Right neighbour in the same
syllable.

Voice ess

RightC | RightV Mean | SD CVv Freguency
Fricative | Voicdess | 90.667 | 30.271 | 0.334 | 3

Plosive | Voicdess | 78.444 | 24.656 | 0.314 | 18
Liquid Voiced 79.757 | 30.386 | 0.381 | 37

Back Vowsd 81.579 | 25.035 | 0.307 | 2178
Front Vowsd 83.18 | 26.478 | 0.318 | 1653

Manner of Articulation of the following phoneme is enriched by adding some new
values. To this aim, statistically significant phonemes of each class are found and added
to the valueinventory of RightC. Statistical significance of a phoneme is decided upon its
CV vaue The smaler the CV value, the more significant the phoneme is. So, for each
Manner of Articulation class, most significant phoneme is selected as a new candidate for
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additional attribute value. The total number of additiona attribute values is selected to be

7 since Semivowel class contains only one type of phoneme (‘j’).

Table 5-8: Mean, SD, CV and frequencies of the voiced phones according to the Manner
of Articulation and Voicing property of their Right neighbour in the same syllable.

Voiced

RightC | RightV Mean | SD CVv Fregquency
Affricate | Voicdess | 50.1 22.679| 0.453 | 10
Fricative | Voicdess | 39.368 | 5.036 | 0.128 | 19
Fricative | Voiced 53 0 0 1
Plosive | Voicdess | 36.07 | 11.583 | 0.321 | 57
Plosive | Voiced 57.667 | 8.386 | 0.145 | 3
Liquid Voiced 62.429 | 27.724 | 0.444 | 7
Nasal Voiced 33.667 | 11.846 | 0.352 | 3
Back Vowd 42435 | 16.131 | 0.38 | 5562
Front Vowd 44,271 | 17.07 | 0.386 | 5148

Table 5-9: Mean, SD, CV and frequencies of the vowe s according to the Manner of
Articulation and Voicing property of their Right neighbour in the same syllable.

Vowe

RightC RightV Mean | SD CVv Frequency
Affricate | Voicdess | 75.132 | 23.416 | 0.312 | 68
Affricate | Voiced 81.364 | 15.062 | 0.185 | 11
Fricative Voiceess | 68.908 | 28.622 | 0.415 | 1563
Fricative | Voiced 92.97 | 31.605| 0.34 | 432
Plosive Voicdess | 72.207 | 23.707 | 0.328 | 1040
Plosive Voiced 79.093 | 23.637 | 0.299 | 43
Liquid Voiced 82.492 | 28.548 | 0.346 | 1858
Nasa Voiced 74.896 | 32.361 | 0.432 | 1959
Semivowsd | Voiced 81.81 | 25.378 | 0.31 | 315

Table 5-10 presents the attributes used for phoneme duration modeing with the recent
modifications on the RightC attribute. The corresponding prediction performances are
givenin Table 5-11. When the two tables are compared (Table 5-6 and Table 5-11), it is
seen that an improvement is not achieved in the RMSE as a result of increased dimension
of Right neighborhood.
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Table 5-10: Attribute-Value pairs in the modified database.

Index|Attribute Value
1 |Phoneme Identity 42 phones (42 leves)
19 |LeftC A, F,N,P,B,F, S, L, Silence (9 levels)
21 |RightC1 A+tS,F+SN+nP+t,B+aF+2 S L+,
Silence (9 + 7 =16 leves)
4 |Accent N, A (2 levds)
5 |PosinSyllable N, C, O (3leves)
6 [SyiType H, L (2levels)
7 |SyINolnWord Numeric
8 |WordNo Numeric
9 WordPOS N,P,V,Q,I,T,C A, JB,E(11lleves)
10 |[NumOfSyl Numeric
11 NumOfWord Numeric
12 |Phrinfo I, M, F
13 NumOfWordFromPreBrNumeric
14 NumOfWordToFolBr |[Numeric
15 |SyINo Numeric
16 |[NumOfSylFromPreBr |Numeric
17 |NumOfSylToFolBr Numeric
18 |Duration(ms) Numeric

Table 5-11: Prediction performance obtained using dl attributes with modified MOAs.

CC MAE (ms) |RMSE (ms)
0.78 14.51 19.91

5.3.1.1.2 Modification of Phonetic Class (2)

Among the SD and CV ratios of the newly added vaues, we observe that the
significance of ‘tS' is much beow than those of the others. So, we carried out an
experiment to observe the effect of discarding ‘tS’ from the value set of RightC attribute.
The new set of attributesisgivenin Table 5-12.

The prediction performance of the developed modd is given in Table 5-13. When the
last two prediction performances are compared, it is observed that by diminating ‘tS'
from the value set a minor improvement is obtained but the performance is still worse
than the performance of the origina modification (Table 5-6).
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Table 5-12: Attribute-Value pairs in the modified database.

IndexAttribute Value
1 |Phoneme | dentity 42 phones (42 levels)
19 |LeftC A, F,N,P,B,F S L, Silence(9leveds)
22 |RightC2 AF+SN+nP+t,B+aF+2 SL+I,
Silence (9 + 6 =15 levels)
4 |Accent N, A (2 leves)
5 |PosinSyllable N, C, O (3levels)
6 |SylType H, L (2leves)
7 |SyINolInWord Numeric
8 |WordNo Numeric
9 WordPOS N,P,V,Q,I,T,C, A, JB,E(1lleves)
10 [NumOfSyl Numeric
11 |NumOfWord Numeric
12 |Phrinfo I, M, F
13 [NumOfWordFromPreBriNumeric
14 INumOfWordToFolBr Numeric
15 |SylNo Numeric
16 [NumOfSylFromPreBr |Numeric
17 |NumOfSyl ToFolBr Numeric
18 [Duration(ms) Numeric

Table 5-13: Prediction performances obtained using al attributes with modified MOAs.

CC MAE (ms) |RMSE (ms)
0.78 14.5 19.89

5.3.1.2 Transfor mation of Numeric Attribute Values

Performance of decision tree algorithms is highly correlated to the selected attribute-
value pairs [Ross 1995]. In Chapter 3, we discuss the selected attribute-value pairs and
their effect in the chosen database. Among the sdected attributes, some of them have
categorical values while the rest of them have numerical vaues. Most of the numerical
attributes arerelated to positional attributes, like position-of-word-in-utterance. They take
integer values. In seeking for improved prediciton performance, we use two types of
transformations on attribute values: 1) Discretizing the attribute values and 2) Mapping
the attribute va ues to [0, 1] range. The effects of numeric transformations are tested via
the Syllable-Position-in-Word attribute. The transformations are described previously in
Chapter 3, Section 3.11. The smulations are held removing the origina Syllable-
Position-in-Word attribute and replacing the transformed attributes one by one. Table
5-14 shows the results of the experiments performed with original attribute set. The first
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row corresponds to the origina attribute set, in the second row, SylPosinWord1 attribute
is replaced by SylPosinWord2 and SylPosinWbrd2 is replaced by SylPosinWord3 in the
third row. Transformation in the values of the numerical attribute Syllable Paosition in
Word results in slight improvementsin error performances. Best performance is obtained

with the discretized version of the chosen attribute.

Table 5-14: Prediction performances of the original and transformed attributes with
original attribute set.

Attribute CC MAE (ms) RMSE (ms)
All with SylPosinWordl [0.7718 |14.6678 20.4236

All with SylPosinWord2 [0.7741 |14.5973 20.331

All with SylPosinWord3 [0.7729 |14.6359 20.3754

5.3.2 Duration Quantization
As mentioned in Chapter 4, the duration range in our database varies with a Gamma
distribution. The statistics of the duraion daa is given in the Table 5-15. The table
indicates that the duration data is widdy spread in the range 2 ms-295 ms with a mean
and standard deviation of 63.15 ms and 31.21 ms, respectively. There are 242 distinct

duration values.

Table 5-15: Duration statistics of the database

Median SD
57 31.2074

Rang
293

Mean
63.1529

Min | Max
2 295

Quantization of phone durations is considered for possible improvement in prediction
performance. A non-uniform quantization is applied to the original phone duraions and
duration attributes are used to model quantized phone durations (Figure 5-1). The
quantization step sizeis set to 1.1 and each quantization leve is mapped to the mean of
the corresponding duration interval. As seen in Figure 5-1, the total number of levels
used is 54. So the number of distinct duration values is reduced from 242 to 54
(approximatdy 77.7% reduction in variation). The histogram plot of the quantized

durationsisgivenin Figure 5-2.
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Figure 5-1: Mapping function.
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Figure 5-2: Histogram plot of the quantized duration

Table 5-16 shows the quantitative results obtained using al atributes. Comparison
with the model developed using original durations (last column of Table 5-4 and Table
5-16) shows that resulting error performances are slightly worse than obtai ned on training

origina durations.

Table 5-16: Quantitative results obtained for modding quantized durations.

CC MAE RMSE
0.7702 | 14.6901 | 20.4755

5.3.3 Removing the Outliers
Largest deviations in prediction errors on test data generally occur around the

boundary values of duration range i.e., around 2ms and 295 ms. Figure 5-3 demonstrates

81



MAE performance on test data sorted in decreasing order. As shown in the figure, MAE
drops to 20 ms, which corresponds to approximately 75% of the test data, around 1800
instance.

MAE

0 1000 2000 3000 4000 5000 6000 7000 8000
Instances

Figure 5-3: Mean Absolute Error (MAE) performance on test data using original 17
attributes.

Table 5-17 shows the MAE performances on test data. As observed in the table,
approximately 90% of the data have a MAE less than or equal to 30 ms and 75% have a
MAE less than or equal to 20 ms. Considering these information, leaving part of the
phonemes that have extreme duration val ues out of the modeling process is experi mented.

Table 5-17: Prediction performances of test data portions.

MAE <=20ms | 75.4503% (5529)
MAE <=25ms | 83.7063% (6134)
MAE <=30ms | 89.2058% (6537)
MAE <=35ms | 92.6310% (6788)
MAE <=40ms | 94.7871% (6946)
MAE <=45ms | 96.3155% (7058)
MAE <=50ms | 97.3253% (7132)
MAE <=55ms | 98.1441% (7192)
MAE <= 60ms | 98.5671% (7223)

Figure 5-4 shows the cumul ative frequencies of the instances both in the test and train
data with respect to their duration values. The text boxes indicate approximatdy 20 ms
and 150 ms duration values, respectively. The corresponding cumulative instance
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frequencies are 256 (3.5%) and 7205 (98.3) for the test data and 303 (~1%) and 29087
(98.5%) for thetrain data, respectively.
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Y:29087
251 q
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=
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Figure 5-4: Cumulative frequency of instances with respect to their duration values
evaluated on test data.

According to the given statistical figures, removing some of the data both from the
training and test set do not cause significant exception since most of the data till liesin
the selected range. Considering all of the data (both train and test data), 91.3% of the data
lies in the 22 ms — 117 ms range. Considering the distribution of durations and the
number of extreme instances both in the test and training data, 10 ms - 150 ms range is
sdected as a reliable duration data range. This new range of duration data contains
98.32% of the test data and 98.28% of the train data. Table 5-18 demonstrates the
quantitative results obtained after removing the outliers of the test and train data
Removing the outliers of the data resulted in an 8.8% RM SE improvement.

Table 5-18: Prediction performances obtained using all 17-attributes to model newly
constructed data

CC MAE (ms) |RMSE (ms)
0.7541 [13.9756 18.6214
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5.3.4 Attribute Selection Using M utual Information

Performance of decision tree learning is highly relaed to the quality of attributes
sdected for modding. Using attributes that are highly correlated or bear high mutual
information would yidd degraded performance. Therefore, it is important to carefully
determine the attributes to be used in model devel opment. We have previously studied the
sdection of attributes according to their performance in model devel opment. First, single
attributes are used for model deve opment and their prediction performances are given.
This result is informative about the contribution of each attribute to duration modeling.
Then, optimal subsets of attributes with increasing sizes of one dement are devel oped
and used for model development. Trying different attribute combi nations, we observe that
the optimal attribute sets that differ by one dement in size are dso different by one
element in type. The optimal subset that revealed the best result is composed of the
attributes 1, 2-3, 4, 6, 9, 12, and 14.

Determining the relevance of attributes can be performed in various ways. Another
criterion of atribute selection can be mutua information among attributes. Mutua
information of two random variabl es is a quantity that measures the indegpendence of two
variables. The unit of measurement of mutual information is bits.

Formally, in discrete case, if thejoint probability mass function of X and Y is p(x, y) =
Prob(X=x, Y=y), the margina probability mass function of X isf (x) = Prob(X=x), and
the margina probability mass function of Y is g(y) = Prob(Y=y), then the mutual
information of X and Y, 1(X, Y), is defined as:

(X, y)
1(X,Y) =Y p(x y)xlog (p—J (5-1)
Z 2LE(a(y)

and for the continuous case, probability mass functions are replaced by the corresponding
probability density functions and the summation is repl aced by theintegral:
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I (XvY) = I p(Xv y) IogZ[%] d(X1 y) (5'2)

(—00,00)%(—00,00)

Mutual information is a measure of independence in the following sense: 1 (X, Y) = 0 if
and only if X and Y are independent random variables. This is easy to see in one
direction: if X and Y are independent, then p(x,y) = f(X) g(y), and therefore:

ogM =logl=0 (5-3)

f(¥)a(y)

Moreover, mutual information is nonnegative (i.e. 1(X,Y) > 0) and symmetric (i.e.
1(X,Y) = 1(Y,X)).

Table 5-19 demonstrates the mutual information between the attributes (1-17, 19-22)
used in deve oping phoneme duration modds and durations of the training data. Duration
is considered to be a discrete random variable and the probability of each duration vaue
is calculated accordingly. The left part of the table shows the mutud information for
origind durations (262 levels) and the right part of the table reveds the mutua
information values for quantized duration values (53 levels). As observed in the table, top
seven entries are 1, 2-3, 15, 17, 16, 8, and 5 which are different from the d ements of the
attribute set that yields the best prediction performance previously (1, 2-3, 4, 6, 9, 12, and
14).

Table 5-20 and Table 5-21 show the mutua information values of the attributes with
respect to each other. The diagona entries in the table attain the largest vaues of the
corresponding column and row and the mutual information matrix is symmetric.
According to the tables, the attributes are not independent but have some dependencies.
The mutual information of the Phoneme-ldentity and the Left/Right, PosinSyllable,
LeftC/RightC, RightC1 and RightC2 attributes are dightly larger compared to the mutual
information vaues with other attributes revealing a stronger relation between them. The
relation between the phoneme and its context is reasonable but the relation between the
PosinSyllable and the Phoneme I dentity can be eaborated. The training database consists
of 5126 codas, 11684 onsets and 12717 nuclei. As mentioned in the third chapter, all the
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vowes of the database is |abeled as nucleus while the consonants are eithered labeled as
onset or coda. Because of the labding style there is a strong reation between the
PosinSyllable attribute and the Phoneme Identity. Other entries do not indicate strong

relation among any attribute pair.

Table 5-19: Mutua information of attributes with respect to original durations (L eft) and
with respect to quantized durations (Right) in decreasing hits.

Using original Using quantized
duration values duration levels

Attribute | | Attribute | |

1 0.5852 | 1 0.4688
3 0.2952 | 3 0.1721
2 0.2195 | 21 0.1345
21 0.1904 | 22 0.134
22 0.1874 | 20 0.1216
15 0.1809 | 2 0.0898
20 0.154 | 17 0.0677
17 0.1376 | 5 0.0638
16 0.1186 | 12 0.057
8 0.0763 | 15 0.0419
5 0.0732 | 7 0.0388
7 0.066 | 16 0.0346
12 0.0657 | 19 0.0313
19 0.0647 | 14 0.0268
11 0.0644 | 10 0.0244
9 0.0579 | 9 0.022
10 0.0549 | 6 0.0199
14 0.0518 | 8 0.0192
13 0.0425 | 11 0.0133
6 0.0252 | 13 0.0109
4 0.0072 | 4 0.0015
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Table5-20: Mutual information matrix.
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Table 5-21: Mutual information of matrix (continued).
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5.3.5 Shift and/or Scale M odification
In an atempt to decrease MSE further, we suggest making shift and/or scale
modifications on the predicted duration values. The modifications are described in the

following subsections.

5.3.5.1 Shift Modification
Suppose that we have devel oped a model using al attributes and therefore we have the

phoneme duration predictions,d for each train and test instance We define the new
predictions such thatdg,; =d +a wherea is a constant shift value. Here, the aim is to

find a, such that the MSE is minimized. To this aim, we first define the modified MSE:

kL (5-4)

To find a that minimizesMSE,, , we take the derivative of MSE,;, with respect to a and

equateto O:

OMSE;
shift _ 0 (5_5)
da
Solving above equation,
1 -
a=>> [ -d) (56)
k=1

We use (5-6) to calculatea’s for each phoneme class in the database. Then, the

corresponding MSE, is calculated using (5-4).
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5.3.5.2 Scale Modification

The same assumptions hold for the scae modification. The new predictions are
defined as d

scale

=bd whereb is aconstant. The modified MSE is defined as follows:

(57)
- 'Ak)z

In order to find b that minimizesMSE_,,, we take the derivative of MSE_, with
respect to b and equate to O:

OMSE

scale =0

I (5-8)

Solving above equation for b, we obtained

.Y dydy ]
b= XK (5-9)

For every phoneme type in the database, we cdculate the predictions for b and
MSE,,.is cal culated the accordingly.

5.3.5.3 Shift and Scale Modification
Another possibility is to apply shift and scale modification simultaneously. The new

predictions are defined as d shift scale = cd +e where ¢ and e are constants. Here, the

aimisto find ¢ and e such that MSE is minimized. The new MSE is defined as;
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(5-10)

In order to find ¢ and e that MiNiMizZeSMSEg e, the patid derivatives of

MSEgin sale With respect to ¢ and e are equated to 0 and solved simultaneously:

OMSEitt _ scate _ 0
dc (5-12)
OMSEgiift_ scale _ 0
oe
Solving above equation for ¢ and e, we obtained
1 ~
e=—de -Cc* dk
N
A 1 A
;dkdk _Nz§dkdj (5_12)
- i
c=
~o 1 A A
2.4 - 22 dd
k N ik

For every phoneme type in the database, we cd culate the predictions for ¢ and e, then
MSEgin sale 1S Caculated accordingly.

5.3.5.4 Application of Shift and/or Scale M odification
Predictions obtained using origina 17-attribute dataset is used (last column of Table

5-4) for the modifi cations described in the previous sections. M odifi cation parameters are
calculated both from the test set and the training set. Table 5-22 shows the MSE va ues
after applying the corresponding modifications on each database. The last row of thetable
shows the results of using a, b, ¢ and e on the test data when they are calculated from the
training data.
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Table 5-23 and Table 5-24 demonstrate corresponding RMSE and CC values for the
origind and modified predictions, respectivdy. As observed in the tables, both RMSE
and CC ae improved for the case where shift and scale modification are applied
simultaneoudly. It can be noticed that the improvements are slightly better when the

modification parameters are trained on the test data.

Table 5-22: Original and modified MSE val ues.

Database | MSE MSE gt MSE e | MSEqitt sale
Test 417.1231 | 400.9892 | 399.455 381.0388
Train 280.6778 | 280.6568 | 280.6429 | 280.5861
Train Test | 417.1231 | 417.2679 | 417.1450 | 415.8239

Table 5-23: Original and modified RMSE values (RMSE = VMSE ).

Database | RMSE | RMSEg,x RMSEs e | RMSEqint sale
Test 20.42 | 20.02 19.99 19.52
Train 16.75 | 16.75 16.75 16.75
Train Test | 20.42 | 20.43 20.42 20.39

Table 5-24: Original and modified CC values

Database | CC CCyitt | CCsale | CCuitt_scate
Test 0.77175 | 0.78305 | 0.78375 | 0.79335
Train 0.84129 | 0.84129 | 0.84130 | 0.84133
Train Test | 0.77175 | 0.77166 | 0.77170 | 0.77240

91



CHAPTER 6

SYLLABLE PITCH CONTOUR PREDICTION
DATABASE AND PROSODIC ATTRIBUTES

The database for predicting syllable pitch contours contains 15867 syllables of the 692
sentences in the database. There are 1254 distinct syllables in the database. For prediction
purposes, the database is split into two subsets. training and test datasets. Training set
contains approximately 80% (12483 instances) of the whole database and the remaining
20% (3384 instances) of the datais used for testing.

6.1 FeaturesUsed in Syllable Pitch Contour Prediction
Every syllable in the database is coded with a feature vector. Feature vector contains
information related to syllable, word and sentence levels.

The features used in syllable pitch contour prediction experiments are given the
succeeding sections.

6.1.1 Lexical Stress

This feature represents the lexical stress of the syllable. Analysis of the pitch contours
in our database revedls that pitch accents are mainly aligned with the lexically stressed
syllables of the words. Such an dignment can be observed in Figure 6-1. The figure
illustrates sound waveform, pitch contour and the syllable labels of the sentence
‘dogdugum blyidugim memleketime biraz faydam olsun istedim dedi’ (I want to be
helpful to the country | was born and held he said). Pitch accents of the sentence are
aligned with the words ‘dogdugum’ (I was born), ‘blyudigim’ (I was hed),
‘memleketime (to my country) and ‘faydam’ (helpful). Thelexical stresses of the words
are aligned with the syllables ‘ gunm’, ‘gim’, ‘me’, and ‘dam’, respectively. As shown in
the figure, pitch accents are aso aigned with the same syllables of the words. It should
also be noted that identical syllables have different lexical stresses and therefore different
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accent types”. Let us consider the syllable ‘me’ of the sentence ‘6zgiire beni bekl emesini
stylemedin mi’ (didn’t you tell 6zglr to wait for me) given in Figure 6-2. Although both
of the ‘me's are orthographically identical because of their lexical stress property, their
pitch contours differ. While the lexicaly stressed ‘me’ shows an increasing pattern, the
unstressed ‘me’ exhibits a decreasing pattern. Therefore, in order to develop an accurate
prosodic mode in Turkish, lexical stress should be employed in the prediction procedure.

Lexicaly stressed syllables are obta ned through a morphological analysis procedure.
Then, stress assignment rules for Turkish are gpplied to obtain the lexical stress of each
syllable. During coding, a syllable is represented with an ‘A’ if it is stressed and with an
‘N’, otherwise

sl doG |du Gum |by|jy|dy/Gynjmem le| ce |ti| me | bi | raz | fg |dam|oL|sun|is|te| dim |del di sl

0 © 4.374
Time (9
Figure 6-1: Sound waveform (upper pand), pitch contour (middle pandl), and syllable
labels (lower pand) of the sentence ‘ dogdugum biiyldigim memleketi me biraz faydam
olsun istedim dedi’.

2 No Accent should al so be considered as atype of pitch accent.
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gl Oz |gy| re|be|ni| bec |leme|l s |ni| Oj |lejme|l din | mi gl

0 2.80475
Time(9)

Figure 6-2: Sound waveform (upper), pitch contour (middi€), and syllabic segmentation
(lower) of the sentence * 6zgiire beni bekl emesini sdylemedin mi’.

6.1.2 Negation Flag (NegFlag)
NegFlag is a binary feature representing the syllables morphemic congtitute. If a
negation suffix is enclosed within syllable or the syllable is composed of a negation
suffix, then the NegFlag is set to 1 otherwiseit isset to 0.

As discussed in the stress subsection, the type of the lexical stress of a syllable plays
an important role in determining the pitch accents. In the previous section, we examine
the syllable ‘me’ with two different lexica stress constituents. In the first case, where the
syllable was enclosed within the sentence ‘dogdugum blyidigim memleketime biraz
faydam olsun istedim dedi’, ‘me’ was lexicaly stressed and has an increasing pitch
pattern. In the second case, where the syllable was enclosed within the sentence ‘ 6zgire
beni beklemesini sdylemedin mi’, the syllable ‘me’ is lexicaly unstressed and shows a
decreasing pitch pattern. However, not al the unstressed ‘me syllables show a
decreasing pitch pattern. Figure 6-3 demonstrates a counter example for the lexicaly
unstressed ‘me’ with dmost flat pitch contour. The figure shows the sound waveform,
pitch contour, pitch accents and syllable segmentation of the sentence ‘avukat nusret
senem merakla bekliyordu planlarinin isleyip islemeyecegini’ (lawyer nusret
senem was waiting curiously whether his plans was working or not). The difference

in the pitch contours of both ‘me’ principally is due to the morphemic structure. The ‘ me’
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shown in Figure 6-2 is an extrametrical® negation morpheme while the ‘me shown in
Figure 6-3 belongs to root of the word and is not related to an extrametrical suffix or
enditic. Therefore, we use a binary flag to discriminate the negation suffix due to its
stress blocking affect.

/7 ’\>/ N
g R BN
N ™ _/ N~ 7

n is

sl avukat | nus|reff selnemme rak La bec |lijordy pLan Laln Sl|lemixdZex ni s

ajip

0 4.71119
Time (s)

Figure 6-3: Sound waveform (upper pand), pitch contour (middle pandl), and syllable
labels (lower pand) of the sentence ‘avukat nusret senem merakla bekliyordu planlarinin

isleyip islemeyecegini’.

6.1.3 Syllable Type (SylType)
Type of parent syllable (SyIType) is included in the annotations. Two levels are used

to denote syllable types: Heavy (H) and Light (L). Heavy and light syllables are
sometimes called open and closed syllables, respectively.

6.1.4 Syllable Structure (SylStruct)

The structure of the syllablein terms of its constituents is represented by the Syl Sruct
feature. As mentioned before, the consonants occurring before syllable nucleus are called
onsets while the consonants occurring after the nucleus are caled codas. A syllable
should possess a single nucleus and our syllabification algorithm mainly reies on this
principle. Current feature codes the syllable according to the order of the onsets, nucleus
and codss, i.e.,, N, ON, ONC, OON, ONCC, and OONCC.

3 Extrametricality is equivalent to stress blocking and can be used interchangeably.
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It may be argued that syllable structure highly influences the location of pitch accent
peak within the syllable. An early or late peak can be observed depending on the
succeeding syllable or more specifically succeeding phoneme.

6.1.5 Syllable-Position-in-Word (SyINoinWord)
This attribute codes the position of the syllable in the word. Counting is performed in
syllable units. The feature attains numerical values ranging from 1 up to 10. Our database
contains words of at most 10 syllabl es thus the feature can take at most 10 as vd ue.

The default stress in Turkish is generally assigned to the last syllable of the word.
Therefore, the position of the syllable in the parent word plays a crucia role in pitch
accent and prominence level prediction. Accented syllables at the beginning of the
phrases have higher pitch vaues from the rest of the syllables except for the lexicaly
stressed syllable of the focus word. Syllables a the end of the phrases show gradual
decrease in the prominence level if the sentences are not in the question forms.

In Figure 6-4 - Figure 6-6 , three aspects of the syllable ‘ba’ from different words are
given. All the three pitch contours revea amost similar shapes but with different pitch
levels.

6.1.6 Syllable-Position-in-Word 1 (SylPosinWord1l)

Categorical feature representing the position of syllable in parent word. The feature
takes avalue |l (F) when the syllableis aword initia (final) syllable, a value Single when
the word consists of only one syllable word, or a value M for other cases. With this
coding scheme, we have the advantage of differentiating initial and final syllables as well
as words with single syllables. Using discrete symbols instead of integer values also
reduces the dimension of the attribute from 10 to 4. However, we loose the information
relating prominence with the actual location of parent syllable.
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labds (lower pand) of the words ‘ barinacak yerlerini’ (the places they will live).
Minimum pitch observed on the syllable ‘ba’ is around 192 Hz.

Figure 6-4: Sound waveform (upper pand), pitch contour (middle pandl), and syllable
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Figure 6-5: Sound waveform (upper pand), pitch contour (middle pandl), and syllable
labels (lower pand) of the words ‘ gorls tabanindan’ (base sight). Minimum pitch

observed on the syllable ‘ba’ is around 176 Hz.
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Figure 6-6: Sound waveform (upper pand), pitch contour (middle pandl), and syllable
labels (lower pand) of the words ‘arabayi kim’ (the car who). Minimum pitch observed

on thesyllable ‘ba’ isaround 225 Hz.

97



6.1.7 Word Position in Sentence (WordNoinSent)
WordNoinSent feature is a numeric feature that represents the position of word in the

sentence in terms of word units. The values change in therange[1, 14].

The position of the word within the sentence affects the word pitch contours such that
the words to the end of the sentences have lower peak values due to declination effect.
Downstep and declination are important aspects of intonation. Downstep refers to the
lowering effect observed in successive high (H) pitch targets in recursive H L patterns;
while declination refers to the tendency for FO to gradually decline over the course of an
utterance [Pierrehumbert, 2000; Xu and Wang, 2001]. But this is not the case for the
word that is intended. The word that is focused attains the maxima peak vaue
independent of its location in the sentence. We can not give examples from our database
to revead the locative effects of the words on the pitch contours since the database
sentences are not designed to have such variability. Words mostly appear in ther
inflected and derived surface forms. Hence, it is amost impossible to find a word at
various locations of sentences with identical surface forms. But al other effects can be
observed throughout the sentences given as examples previously with different words.

6.1.8 Word Position in Sentence 1 (WordPosinSent1)

Symbolic attribute representing the position of parent word in the sentence. The
feature takes avaluel (F) when theword islocated at sentenceinitia (final), or avalue M
for other cases. The main reason employing WordPosinSentl attribute is to discriminate
the sentence initial and final words. As mentioned in the previous section, declination is a
global aspect of intonation. Hence, words at phrase initials have higher peaks than phrase
fina words in declarative sentences. Therefore, using symbalic attribute for identifying
the word locati on in sentence helps to track this phenomenon in a better way. At the same
time, using symbolic representation reduces the attribute space considerably, i.e. the
former representation has 14 va ues while the latter has only 3 values.

6.1.9 Number of Phonesin Syllable (NumofPhninSyl)
Numerica attribute indicating the number of phones in the parent syllable. The values
changeintherange [1, 5]. This attribute is used to observe the effect of syllable length to

pitch contour.
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6.1.10 Number of Syllablesin Word (NumofSylinWord)
Numerica attribute indicating the number of syllables in the word. The value is same
for al syllables of the same word. The va ues changein the range [1, 10]. This attribute is
used to observe the effect of word length to pitch contour.

6.1.11 Number of Wordsin Sentence (NumofWordinSent)
Numerica attribute indicating the number of words in the sentence. The vaueis same
for al syllables of the same sentence. Since, the database consists of sentences having 3
to 19 words; the attribute attains vad ues in this range.

6.1.12 Part-of-Speech of Current Word (POSw)

Part-of-Speech (POS) of parent word is aso used in syllable pitch contour prediction.
Generdly, in Turkish, contrastive stress is realized by locating the most prominent word
(focus) to preverba position. Verb focusing is performed by carrying the verb to the
sentence initial but such kind of a contrastive stress does not exist in our database.
Commonly, the words placed after the verb, have no prominence. Thus, the contours
observed after the verb are very smooth with no abrupt pitch changes. Figure 6-7
manifests a non-verb find sentence, ‘bdyle bir ddnemde oynatilmasi tesadiif olamaz bu
filmin' (a such atime it is impossible to play this film on purpose). The verb of the
sentence is ‘olamaz’ (it is impossible) and it is located before the sentence final. The
words located after the verbs contribute to the pitch contour only with ther

mi croprosody.
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Figure 6-7: Sound waveform (upper pand), pitch contour (middle pandl), and syllable
labds of the sentence.

In Yes/No questions, the contrastive stress is redized by locating the prominent word
in front of the question enclitic ‘mi’. Figure 6-8 demonstrates focusing in Yes/No
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guestions by means of the enclitic ‘mi’. The waveform given in the figure belongs to the
sentence ‘bagcavus tiim takima kosu cezasi mi verdi’ (did the sergeant mgor give the
whole team running punishment). The word placed before the enclitic ‘mi’ is naturally
focused and thus bears the highest pitch of the sentence.

500;
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2001

Pitch (Hz)

1004

sl baS |tSa| wuS | tym | ta |kl |ma| ko | Su|dZe| zax | sl |ml| ver di sl

0 3215
Time (s)

Figure 6-8: Sound waveform (upper pand), pitch contour (middle pand), and syllable
|abels of the sentence ‘bascavus tiim takima k osu cezasi mi verdi’.

When the question enclitic ‘mi’ is placed at the end of the sentence, it either makes the
preceding syllable accented or it obeys to the previous rule and focuses the preceding
word, so the word is accented at its lexicaly stressed syllable. Figure 6-9 illustrates
focusing using the enclitic ‘mi’. The waveform given in the figure bel ongs to the sentence
‘Ozglre beni beklemesini sdylemedin mi’. The word placed before the enclitic ‘mi’ is
focused and bears the highest pitch of the sentence at the lexicdly stressed syllable ‘€.
In Figure 6-10, an example for pre-accenting is illustrated. The sentence studied in the
example is ‘ciplak dogrudan dogruya tadini duyuran ickiler var biliyor musun’ (do you
know that there are naked beverages that flavor directly). Here, the syllable ‘yor’ bears
the accent of the syllable although it is a part of a stress-blocking morpheme that never
bears lexical stress. A counter example for the unaccented version of the syllable ‘yor’ is
given in Figure 6-11. The sentence inspected in the figure is ‘zirveden once bu hususta
anlagilmasi gerekmiyor mu’ (isn't it necessary to make an agreement on the subject
before the summit). In this sentence, the word placed before the enclitic ‘mi’ is focused
and sharpest slopeis observed at itslexical stress.
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Figure 6-9: Sound waveform (upper pand), pitch contour (middle pandl), and syllable

labd s of the sentence ‘ 6zgiire beni beklemesini soylemedin mi’.
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Figure 6-10: Sound waveform (upper panel), pitch contour (middle pandl), and syllable
labels of the sentence ‘ ¢iplak dogrudan dogruya tadini duyuran ickiler var biliyor musun’.

Ell

mu

rec mi| jor

zir |ve|den| On |dZe bu | hu| sus |ta|an|La SIL|ma| sl | gie

sil

g 8 8 8 8
5“321
@) yond

3.7975

0

Time (s)

Figure 6-11: Sound waveform (upper panel), pitch contour (middie pandl), and syllable

labels of the sentence ‘ zirveden once bu hususta anlagiimasi gerekmiyor mu’.

Therefore, it is necessary to determine the part-of-speech of words to develop an

accurate model of Turkish prosody. The categories and their occurrence frequency are

givenin Table 6-1.
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Table 6-1: POS categories and their occurrence frequency.

NOUN | VERB | ADJ ADV | PROPN | PROPP | POSTP | CONJ | MODAL
6547 | 2765 2701 878 401 348 314 305 300
TELL | PRON | CNOUN | QUES | WH NOT INF EXC
280 252 199 188 184 114 89 2

6.1.13 Part-of-Speech of Succeeding Word (POSw+1)

This feature represents the POS of the word that immediately foll ows the parent word.
The feature has the same vd ues as the POSw feature plus a symbol none for the sentence
finals. As discussed in the previous section, verbs and enclitics play animportant role on
the pitch contours of their predecessors. Generally in Turkish, preverba word is focused.
In the previous section, we also discuss about the effects of the endlitic ‘mi’. Since
enditics are stress blockers words preceding the enclitics are generally accented. Hence,
using a three-word POS window (POSes of preceding, current, and succeeding words) as
attribute positively affects prediction performance.

6.1.14 Part-of-Speech of Preceding Word (POSw-1)
This feature represents POS of the word that immediately precedes parent word. The
feature has the same values as the POSw feature plus a symbol none for the sentence
initials.

6.1.15 Part-of-Speech of Word Root (POSRoot)
Part-of-Speech (POS) of the root of word is aso used in syllable pitch contour
prediction in order to capture the nature of words. The attribute attains values as in POSw
attribute.

6.1.16 Break Index (Break)

This attri bute encodes the perceptual break category of the syllable. The attribute takes
categorical values such as |, F, and M as well as Sl and SF. An | (F) value denotes that
the syllableislocated immediately after (before) a break, whilethe M valueis assigned to
the syllables that do not occur a boundary locations. A Sl (SF) value denotes that syllable
is at the beginning (end) of the sentence. Labels | and F refer to minor breaks while Sl
and SF refer to mgjor breaks. Mgor breaks are also considered as minor breaks but the

reverseisnot true.
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The database was previously manually labded with respect to perceptual breaks.
Close examination of the perceptual breaks reveal that, find lengthening occurs at break
positions. Besides, Turkish shows continuation rises at phrase finas like English. Also,
ded arative Verb-Fina sentences have a faling pitch pattern while question forms have
risng patterns. Therefore, using break indices provide assistance in discriminating such
FO patterns.

In Figure 6-12, the pitch contour and syllable segmentation of the sentence sentence
“mikroorganizmalari yok etmek icin sok Isitma ve sogutma yontemi kullanilir’ (in order
to exterminate the microorganisms shock heating and cooling method is used) is given.
The figure illustrates continuation rise and phrasefinal. Phrase find rising in
interrogative sentences is depicted in Figure 6-13 on the sentence ‘neden nurinin

sinemaya gitmesini istemiyorsun’ (why don’t you want Nuri to go to the cinema).
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Figure 6-12: Pitch contour, and syllable labels of the sentence * mikroorganizmalari yok
etmek icin sok 1sitma ve sogutma yontemi kullanilir’.
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Figure 6-13: Sound waveform, pitch contour, syllable labels and break indices of the
sentence ‘ neden nurinin sinemaya gitmesini istemiyorsun’.
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6.1.17 Sentence Type Index (STIndex)

Each syllable is coded with 4 attributes denoting sentence type categories. Sentences
are divided into four categories depending on their semantics (Affirmative, Negative, and
Interrogative), on their syntactic constituents (Simple, Compound, and Complex), on their
verbal compositions (Verb-final and non Verb-final) and for interrogatives, depending on
the question word or enclitic (Wh-ques and Y es/No_ques). Each category is represented
by an attribute in the feature set. Sentence type combinations observed in the database are
givenin Table 8-1.

6.1.18 Number of Words (Syllables) to the Following Major (Minor)

Break (NumofWordToFolM ajor Break, NumofSyl ToFolM ajor Break,
NumofWordToFolMinorBreak, and NumofSylToFolMinorBreak)

Attributes are used to denote the positions of words (syllables) to the next mgor
(minor) phrase break. The attributes are all numeric. Characteristics of attribute values are
givenin Table 6-2. The columns of the table correspond to mini mum, maximum, mean,

and standard deviations, respectively.

Table 6-2: Characteristics of NumofWordToFolM gjorBreak,
NumofSyl T oFol Maj orBreak, NumofW ordT oFolMinorBreak, and
NumofSyl T oFol MinorBreak.

Minimum | Maximum | Mean | STD
NumofWordT oFol Mg orBreak 0 18 3.782 | 2.649
NumofSyl ToFol MajorBreak 0 44 11.67 | 7.899
NumofWordT oFol MinorBreak 0 9 1.406 | 1.406
NumofSyl ToFol MinorBreak 0 27 4,918 | 4.176

6.1.19 Number of Words (Syllables) from the PreviousMajor (Minor)

Break (NumofWordFromPrevM ajor Break,
NumofSylFromPrevM ajor Break, NumofWordFromPrevMinorBreak, and
NumofSylFromPrevMinor Break)

Attributes are used to denote the positions of words (syllables) from the previous
magjor (minor) phrase break. The attributes are al numeric. Characteristics of attribute
values are given in Table 6-3. The columns of the table correspond to minimum,
maximum, mean, and standard deviations, respectively. The attributes are used in the
second approach (ref Section 7.2).
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Table 6-3: Characteristics of NumofWordToFolM gjorBreak,
NumofSyl T oFol Maj orBreak, NumofW ordT oFolMinorBreak, and
NumofSyl T oFol MinorBreak.

Minimum | Maximum | Mean | StdDev
NumofWordFromPrevMajorBreak 0 183591 | 2661
NumofSylFromPrevM g orBreak 0 441 11.67 | 7.899
NumofWordFromPrevMinorBreak 0 91284 | 1378
NumofSylFromPrevMinorBreak 0 2714918 | 4.176

6.1.20 Position of Words (Syllables) in Major (Minor) Phrases
(PosofWordM ajor, PosofSylM ajor, PosofWordMinor, and PosofSylMinor)

Attributes are used to dencte the positions of words (syllables) in major (minor)
phrases. All are represented by three categorical values: Initial, Middle and Final as in
Break feature The attributes are used in the second approach (ref Section 7.2).

6.1.21 Duration
Syllable durations are also used for syllable pitch contour prediction purposes since
they are effective in slope prediction.

6.1.22 Cluster Index of Previous Syllable (Cluster-sl)

For each syllable in the database, the cluster values of the syllables that immediately
precede the current syllable are aso used in syllable pitch contour prediction. The main
reason for this choice is to embed an initial vaue constraint on the pitch prediction
process. Depending on the model used, the attribute attains different values. However, its
value is aways categorical. Whatever approach is used, the attribute attains values of the
dependent variabl e (ref Section 6.1.23) plus a symbol none for sentence initials.

Pitch prediction employing secondly proposed method uses two different versions of
this attribute: Cluster-s1-major and Cluster-s1-minor. The former atains none value for
sentence initids only. The latter attains none val ue for intermediate phraseinitias as well

as sentenceinitials.

6.1.23 Dependent Variable
This feature contains the values to be predicted by decision tree learning. For pitch
contour prediction, two different approaches are used and each approach underwent some
modifications. Therefore, the feature attains different values to perform different decision
tasks.
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For parametric modeling, cluster indices obtained by k-means clustering algorithm are
used as dependent variable (ref Section 7.1.2). Each syllable is represented by one of 24
clusters given in Appendix A. Hence, the dependent variable attains categorical va ues
changing from 1 to 24. Then, accented and unaccented syllables are determined from the
cluster centroids (ref Section 7.1.3). So, the attribute attains only two values (accented
versus not-accented) for this task.

Second approach associates accent categories to syllables (ref Section 7.2). Therefore,
dependent variable is configured with respect to the anaysis results. The attribute either
takes three (positive, negative, and no-accent) or two (accented vs no-accent) categorical

values depending on the task performed.
6.2 Attribute Evaluation

Three statisticdl measures are used to reveal prosodic attribute (PA) - dependent
variable (DV) relation: Information Gain, Gain Ratio, and Symmetrical Uncertainty.

InfoGain(DV, PA) = H(DV )~ H (DV/|PA) (6-1)

H(DV)-H(DV|PA)

H(PA) €2

GainRatio(DV, PA) =

H(DV)-H(DV|PA)

H (V) +H(PA) (6-3)

SymmetricalUncertaint y(DV, PA) = 2*

where H denotes entropy.

Table 6-4 illustrates Information Gain, Gain Ratio and Symmetrical Uncertainty of
the attributes with respect to the 24 cluster centroids proposed in Chapter 8 section X.
According to the table, the Cluster-sl attribute attai ns the best Information Gain and Gain
Ratio value while the Duration attribute attains the best Symmetrical Uncertainty
measure. Attribute relevance according to Information Gain can be listed as follows:
Cluster-s1, Normalized_SyINolnSent, WordPosinSent1, WordNoinSent, SylPosinWordl,
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Break, STIndex, Duration, POSw, SylINoinWbrd, SyStruct, Stress, LeftSress, Break-sl,
POSw1, POS+wl, RightSylSruct, LeftSylStruct, and NegFlag.

Table 6-4: Information gain, Gain ratio and symmetrical uncertai nty measures of the
attributes with dependent variable in 24-cluster centroid prediction. Shaded values
correspond to the maxima of each measure.

Attribute | Attribute Information | Gain Symmetrical
I ndex Name Gain Ratio | Uncertainty

1 | NegFlag 0.0137 | 0.1025 0.019
2 | Stress 0.053 | 0.0608 0.008
3 | LeftStress 0.0503 | 0.0577 0.006
4 | SylStruct 0.0539 | 0.0369 0.02
5 | LeftSylStruct 0.0161 | 0.0109 0.056
6 | RightSylStruct 0.0234 | 0.0164 0.094
7 | SyINoinWord 0.0701 | 0.0444 0.048
8 | WordNoinSent 0.1727 | 0.0988 0.011
9 | POSw 0.0868 | 0.0403 0.031
10 | POS-w1 0.0367 | 0.0165 0.018
11 | POS+w1l 0.0295 | 0.0122 0.023
12 | Break 0.1108 | 0.1076 0.026
13 | Break-sl 0.0471 | 0.0509 0.005
14 | Normaized_SylNolnSent 0.2996 | 0.1562 0.017
15 | SylPosinWord1 0.1493 | 0.0831 0.008
16 | WordPos nSent1 0.2051 | 0.1937 0.02
17 | STIndex 0.0964 | 0.0196 0.04
18 | Duration 0.0957 | 0.0555 0.282
19 | Cluster-sl 1.2511 | 0.2824 0.074

Table 6-5 illustrates Information Gain, Gain Ratio and Symmetrical Uncertainty of
the attributes with respect to the three accent categories proposed in Section 7.2.
According to the table, SylPosinWordl is the best predictor when Information Gain
measure is considered. For the other measures Cluster-s1_major turns out to be the best
predictor.

Attribute rel evance with respect to Information Gain measureis as follows:

Syl-Pos-in-Word1
Cluster-s1_major
Cluster-s1_minor

Sress Syl-No-in-Word

Break
Num-of-Syl-To-Prev-Minor-Break
Pos-of-Syl-Minor
Num:-of-Syl-To-Fol-Major-Break

N~ ODE
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10.
11
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31
32.
33.
34.

Num-of-Syl-in-Word
Word-Pos-in-Sentl
Pos-of-Word-Major
Word-No-in-Sent

Num-of-Wor d-To-Fol-Maj or-Break
Num+of-Syl-To-Fol-Minor-Break
Syl-Sruct

POSA-1

Num+-of-Wor d-To-Prev-Major-Break
Num-of-Syl-To-Prev-Major-Break
Num-of-Wor d-To-Fol-Minor-Break
POS

POSRoot

POSM+1

Num-of-Phn-in-Syl
Pos-of-Word-Minor
Pos-of-Syl-Major

Duration

Num+of-Wor d-To-Prev-Minor Break
Syl-Type

Neg-Flag

ST4

ST2

ST3

STl

Num-of-Wor d-in-Sent.
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Table 6-5: Information gain, Gain ratio and symmetrical uncertai nty measures of the
attributes with dependent variable in three accent prediction.

Attribute| Attribute Information Gain Symmetrical
Index |Name Gain Ratio  |Uncertainty
10 NumofWordinSent 0 0 q
14 ST1 0.000445 0.000464| 0.000396
16 ST3 0.001035 0.000477 0.000598
15 ST2 0.001315 0.001487 0.001209
17 ST4 0.001362 0.001194 0.00112
4 NegFlag 0.001544 0.011555 0.00217
2 SylType 0.001574 0.0016 0.001384
27 NumofWordToPrevMinorBreaki  0.001947 0.002968 0.002
33 Duraion 0.013851] 0.008467 0.009464
30 Posof SylMajor 0.015827 0.030363 0.017466
31 PosofWordMinor 0.016846 0.01068 0.011746
11 NumofPhninSyl 0.019095 0.016422 0.015563
19 POSw+1 0.021362 0.006822 0.009661
8 POSRoot 0.022873 0.009615 0.012465

7 POS 0.022943 0.008377] 0.011384

23 NumofWordT oFol MinorBreak 0.023119 0.014697 0.016144
26 NumofSyl T oPrevM gj orBreak 0.023726 0.011414 0.014082
25 NumofWordToPrevMajorBreak|  0.024803 0.012845 0.015396

20 POSw-1 0.025837 0.008752 0.012178§
3 Syl Struct 0.026689 0.018277 0.019401
24 NumofSyl T oFol MinorBreak 0.028706 0.011767 0.015389
21 NumofWordT oFol Mg orBreak 0.032663 0.015309 0.019075
6 WordNoinSent 0.032811 0.015392 0.019172
29 PosofWordM gjor 0.032992 0.030858 0.027956
13  |WordPosinSentl 0.033041 0.031202 0.028119
9 NumofSylinword 0.033867 0.015538 0.019516f
22 NumofSyl T oFol Mg orBreak 0.036041] 0.015648 0.020055
32 Posof SylMi nor 0.038753 0.038078 0.03357
28 NumofSyl ToPrevMinorBreak 0.044632 0.030221, 0.032249
18 Break 0.07128 0.057245 0.056209
5 SylNoinWord 0.0922 0.06375 0.067364
1 Stress 0.0963 0.110415 0.089033
35 cluster-sl_minor 0.145895 0.089457 0.09984
34 cluster-s1_magjor 0.170166 0.112902 0.121621]
12 SylPosinWordl 0.184099 0.102418 0.119211
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CHAPTER 7

PITCH CONTOUR MODELING

General assumption for intonation modding is that it can be successfully generated
with fundamental frequency only, thus, the ultimate god is to develop a model that
generates the fundamental frequency contour of the origina utterance.

A great mgjority of intonation modeling studies consider syllables as the smallest unit
that bears prosody and uses syllable based intonationa attributes in predicting pitch
contours. Main trend is towards associating syllabl es with accents and boundary tones as
described in Chapterl and Chapter2. Pitch contour estimate is reconstructed using pre-
determined values for the target labels. These values are generally computed using
machine learning approaches. Syllables are taken as basic unitsin this study.

This chapter introduces stylization, prediction and reconstruction of pitch contours
using syllable units. Two approaches are proposed for modeling syllable pitch contours.
One of the approaches is phonetic in nature. The other is akind of phonologica method.

Prediction performance of each experiment involving regression tree is evaluated
using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Correlation
Coefficient (CC) while quantitative analysis of decision trees is performed using True
Positives rate (TP rate), False Positives rate (FP rate), Precision, Recall, and F-measures.
A hypothetical confusion matrix (Table 7-1) for binary classification can be used to
define these measures.

Table 7-1: Hypothetical confusion matrix of binary classification.

predicted class
yes no
actual yes | truepasitive (TP) false negative (FN)
class no | fasepositive(FP) | true negative (TN)
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TP

True Positives (TP) Rate= *100% (7-1)

TP+FN

- FP

FalsePositives (FP) Rate = *100% (7-2)

FP+TN
Recall = True Positive (TP) Rate = *100% (7-3)

TP+FN
Precision = P *100% (7-4)
+FP
* * T~

Fe re= 2* Recall * Precision _ 2TP *100% (7-5)

Recall + Precision ~ 2TP+FP+FN

7.1 Pitch Contour Modeling —A Phonetic Approach
Pitch contour prediction using phonetic approach involves stylization of pitch
contours, sampling, clustering, prediction, and reconstruction. Following sections
describe the steps invol ved in phonetic modeling of pitch contours.

Within the framework of this study, origina pitch contours are stylized by means of
non-parametric methods to make analysis and synthesis possible. Then, a codebook that
represents different linguistic aspects of the speech waveform is developed from the
stylized pitch contours.

7.1.1 Pre-Processing of Pitch Contours
Pitch contours reveal discontinuities mainly caused by unvoiced regions in speech
signa. Some of these may correspond to abrupt changes in the pitch contours. These |l ocal
changes have significant effectsin mode development hence remova of microprosody is
an important issue to be handled in pitch contour modeling studies.

In this study, pitch contours of various types of sentences observed in Turkish are
aimed to be modeled. Dynamic range of sentences changes depending on sentence type
and speaker’s emotional and physica state. Therefore, the dynamic ranges of the pitch
contours are normalized for further studies.
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Following sections present studies to remove microprosodic effects and normalization

of syllable pitch contours.

7.1.1.1 Removal of Microprosodic Effects

In order to develop a modd, microprosodic effects need to be diminated from the
origind pitch contour. Microprosodic effects are mainly observed in the unvoi ced regions
of the speech signa as abrupt changes in the contour. Since most of the pitch contour
andysis tools rey on the periodicity of the speech waveforms, unvoiced regions are
discarded or erroneously calculated. In our pitch contour anaysis and synthesis studies,
PRAAT [Boersma and Weenink 2005; Wood 2005], a free speech processing tool that
provides various andysis and synthesis functions, is employed. Succeeding paragraphs

describe the methods used to handl e microprosody removal.

Pitch contours of individua sound files are compouted using PRAAT. Minimum and
maximum pitch values are set to be 75 Hz and 450 Hz, respectively. Speech waveform
and pitch contour of the sentence ‘6zgire beni beklemesini sdylemedin mi’ are given in
Figure 7-1. The total time of the speech is 1.984 seconds. There are 44876 samples and
the speech is sampled at 16 kHz. As shown in the lower part of the figure, the pitch

contour is not continuous around unvoi ced regions of the speech signal.

Discontinuities caused by the unvoiced regions of the speech signal are eiminated by
Interpolation and Smoothing. By means of interpolation, the discontinuities are
interpolated linearly and possible candidates are eliminated to produce the best path.
Upper part of Figure 7-2 shows interpolated pitch contour of the example sentence. As
shown in the figure, discontinuities are mostly diminated but there are still abrupt

changes due to microprosody.

Remaining microprosody can be removed by means of a smoothing filter. A 10 Hz
smoothing filter is used to remove microprosody from the original contour. Resultant
interpolated and smoothed pitch contour is given in the lower part of Figure 7-2.
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Figure 7-1: Sound waveform (upper window) and pitch contour (lower window) of the
sentence ‘ 6zgire beni beklemesini séylemedin mi’.
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Figure 7-2: Interpolated (upper window) and smoathed (lower window) pitch contour of
the example sentence.

For each syllable, 10 equidistant pitch va ues are selected from the pitch contour and a
syllable pitch contour inventory is devel oped.
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7.1.1.2 Normalization

Syllable pitch contours exhibit similar patterns such as falls, rises or combination of
them as well as level curves. Therefore, contours of similar patterns are grouped to
develop a syllable pitch contour codebook. However, sentences have different dynamic
ranges and therefore pitch contours cannot be grouped to yield rdiable information as
they are. To eliminate levd differences, normalization is performed.

For each sentence, minimum and maximum pitch values are determined from
interpolated and smoothed FO contours. These val ues are used for normalization (FOmins
and FOmaxs). Syllable pitch contour normalization is performed as follows:

FO, - FO

i,min (7-6)

Foi,norml = FO —FO

i,max i,mn

Here FO;, FO; yin . and FO; o« represent sample, minimum and maximum pitch values
drawn from interpolated and smoothed pitch contour of the i sentence and, FO; norm1iS

the normalized FO value.

Normalized pitch contour of the example sentence is givenin Figure 7-3. This scheme
produces best match to the origina pitch contour, however, for unobserved data,
corresponding sentence minimum and maximum is not known; hence it requires
predi ction of sentence minimum and maximum as well.

7.1.2 Non-Parametric Representation of Pitch Contours

Normalized syllabl e pitch contours show similar pitch patterns. They can be identified
by a set of predefined contours. Those pre-defined contours, templates, can be obtained
by means of a clustering agorithm. K-means agorithm is used for clustering. Resulting
templates mostly bear level, rising and falling patterns. Therefore, there should be at least
four dusters in the templates to represent high, low, rising and faling patterns. An upper
bound should dso be set since increasing the number of dusters may result in
perceptually equivalent pitch contour dusters.
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Figure 7-3: Origina (upper) and normalized (lower) pitch contours of the example
sentence ‘ 6zgire beni beklemesini séylemedin mi’.

For experimentation, 4, 5, 8, 16, and 24 clusters are generated from the normaized
syllable pitch contours. Cluster centroids and corresponding elements for k-means
clustering with 24 dusters are given in Appendix A.

For 24-clusters, the normalized pitch contour of the sentence * 6zgiire beni bekl emesini
sbylemedin mi’ is reconstructed considering the cluster centroids only. Figure 7-4 shows
the sound waveform, corresponding glottal pulses, origina and reconstructed pitch
contours of the example sentence. Reconstructed pitch contour is obtained by using 24
cluster centroids given in Appendix A. The reconstructed pitch contour is perceptualy
equivaent to the original pitch contour athough it exhibits deviations from the original
contour.

Some of the 24-cluster centroids show amost similar contour shapes. For example,
cluster centroid-1 and -2 as well as the centroid-6 and -7 are quite similar. For the rest of
the cluster centroids such similarities can aso be found. This is a direct result of the
number of clusters used to partition the data space. Increasing the number of clusters
results in centroids with almost similar shapes but with different levels. Since similar
pitch contour shapes are represented by different cluster centroids, the predictive
capability of the algorithms in determining unseen pitch contours is expected to get
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lowered. Therefore, the number of clusters has a direct impact on contour prediction. So,

determini ng the appropriate number isimportant for the success of the predictions.
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Figure 7-4: Origina (upper) and reconstructed (lower) pitch contours of the example
sentence ‘ 6zgire beni beklemesini séylemedin mi’.

Another critical point about the clustersis that although there are pitch patterns having
multimoda characteristics, none of the cluster centroids exhibit such kind of patterns.
This phenomenon does not cause any aterations in the reconstruction process; however it
may cause performance reduction in the contour prediction process. This problem can be
tackled by increasing the number of clusters. However, increasing clusters results in
redundancy in partitioning of contours.

7.1.2.1 Decison Tree Learning Using Non-Parametric Representation

This section addresses syllable pitch contour prediction studies. Linguistic and
acoustical attributes presented in Chapter 6 are mapped to 24-cluster centroids associ ated
to the syllables in the database using decision trees. The data set is split into training
(79%) and test (21%) sets to observe the prediction performance of the decision trees on
unobserved data. Training and test datasets contain 12483 and 3384 syllables,
respectively. Decision tree is developed using training set and prediction performance is
eva uated using test set.
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Results of the prediction of syllable pitch contours obtained are given in Table 7-2 -
Table 7-4. Table 7-2 shows the size of the tree generated by decision tree learning, the
kappa statistics, and the total number of correctly and incorrectly classified instances.

Table 7-2: Totd number of leaves, size of the resultant tree and total number of correctly
classified and misclassified syllables.

Number of Leaves 9538

Size of the Tree 11046

Kappa statistics 0.22

Correctly Classified Instances 904 26.71 %
Incorrectly Classified Instances 2480 73.29 %

Cohen's kappa coefficient is a statistical measure of inter-annotator agreement. It is
generaly thought to be a more robust judge than simple percent agreement ca culation.
Kappa coefficient is defined as

(7-7)

where Pr(a) isthe relative observed annotator agreement, and Pr(e) is the probability that
agreement is due to chance. Pr(a) is computed from the predictions of decision tree, i.e,
proportion of total number of correct predictions over al predictions. Pr(e) is computed
in the same manner but with different estimates: for calculating Pr(e), syllables are

associated random duster indices. A kappa coefficient of 1 means a statigtically perfect
modeling whereas a 0 means every model vaue was different from the actua value. A
kappa statistic of 0.7 or higher is generally regarded as good statistic correation, but the
higher the value, the better the corrdation.

The percentage of correct classifications is about %27. This is a rather low rate;
however, as mentioned previously, most of the clusters centroids resemble each other and
causes |ow true dassification rate.

Table 7-3 reveds the TP rate, FP rate, Precision, Recdl, and F-measure values for
each cluster (last column indicates Class). As demonstrated by the table, the best TP rate
is obtained for the 2™ cluster and the worst TP rate is obtained for the 12" cluster.
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Table7-3: TPrate, FP rate, Precision, Recall, and F-measure.

TPRate | FPRate | Precision | Recall | F-Measure | Class
0.79 0.04 0.66 0.79 0.72 2
0.42 0.04 0.27 0.42 032 11
0.36 0.08 0.28 0.36 032 20
0.35 0.03 0.29 0.35 031| 23
0.33 0.09 0.18 0.33 0.23 7
0.31 0.06 0.33 0.31 0.32 1
0.26 0.03 0.26 0.26 026 | 13
0.25 0.02 0.26 0.25 025| 14
0.21 0.04 0.26 0.21 0.24 6
0.21 0.03 0.17 0.21 0.19 9
0.20 0.03 0.20 0.20 0.20 8
0.20 0.05 0.23 0.20 0.22 3
0.20 0.03 0.25 0.20 022| 19
0.18 0.03 0.13 0.18 015| 21
0.17 0.04 0.27 0.17 021| 17
0.11 0.02 0.12 0.11 011| 10
0.10 0.01 0.15 0.10 012| 24
0.09 0.02 0.13 0.09 011| 22
0.08 0.03 0.11 0.08 0.10| 18
0.08 0.02 0.12 0.08 0.09 4
0.07 0.01 0.14 0.07 0.10 5
0.07 0.03 0.08 0.07 0.08| 16
0.06 0.02 0.10 0.06 0.08| 15
0.04 0.01 0.07 0.04 0.05| 12

Table 7-4 demonstrates the confusion matrix for resulting predictions. The confusion
matrix shows the predicted clusters for each cluster in the test database. First column
shows the frequency of each cluster in the test database. The last column holds the
origina cluster values while the rows correspond to the predicted dusters. The diagona
elements of the matrix indicate true predictions while the off-diagonals indicate false

predictions.

Predicted pitch contours are compared with original pitch contours. Original and
predicted pitch contours of the example sentence are given in Figure 7-5. Bold
discontinuous curve belongs to the predicted contour while gray continuous curve
corresponds to the original pitch contour. Predicted pitch contour is reconstructed using

origina FOpi, and FOpu.
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Table 7-4: Confusion Matrix.

Predicted Clusters

# | 1] 2| 3] 4] 5] 6] 7] 8 9 10] 11] 12] 13] 14] 15| 16] 17| 18] 19] 20] 21[22] 23] 24

28288 61] 3| 1] 4] of 7] o o[ 12 of o of of o 4/ 22 o 2[63] 9 3 o 3 1
300 34[244] o 0| 4 of 2 of of 7/ of o of o o 1 3 011 2[ o o 1| 2
222 6| 1/ 45| 6| 0| 11|43 of 3| 7| 1| o] of 1| 2[ 11 27| 1| 2[ 26|20/ 5| o] 4] 3
90| o] 1] 5 7] o[10] 9 1| 2[ o[22 of 1| 2[ of 5 o 11 6 2 of 3 o 3 4
41 5| 8 1| o/ 3 of 6 o of 6 1| of of o o 3 1| o o 3 o 2[ o 2 5
192| 1| o] 14|11 o[ 41| 45] 4 2| o[ 10 of o 1| 6 12[ 5| 16/ 10| 2| 5 2| 1| 4] 6
196| 6| 228 4/ o[ 13[64] 2| o 3] 7| of o o 6| 10/ 21| 2/ 4 7| 12[ 3| o 2] 7
113] 0] 0 2 o] of 4] o 23[15 of 7| 3[12] 5] 5 1] 1| 8 13 o] o o 14 0 8
971 0o o o 2/ of 1 1] 7[20] o[ 12[ 3[ 16| 7| 1| o o 4/ 13[ o o o[ 10 0 9
104[16[ 17| 5] 0] 3] 1/12[ of o[ 11 o] o of 1| o 1] 5 of 023 4/ 5 o 0/10/9
o8] 0| 0 3| 5| o] 810 4 o 1[4 1| 4 1] of 4 2[ 4 2[ o 3 of 1 4 11|
26/ o o of o of of o 10 o o o 2 3 2 1] o of 1| 1] o 1| o] 16| 0] 12| >
110] o[ of 1] of o 1] 2[ 9[20] O 5 5[ 28 11] 0o 0 0] 5 2 ©of 1| 0[20 013/ O
69 0 0 of o[ of of o 1 o o 2 317[17 o of o 1 1 o o 0[18 0[14|G
o8] 0] 0 2 1/ o[ 13[11[10[ 6| 1| 3 2[ 1| 2| 6 2/ o 13/ 12[ o] 9 o 4/ o] 15| @
100| 7| 4 7| 3| 2[10[24] 1| o 3 3| o of o 2 g 6| 4 o 210 o 316"
204/ 31] 1/ 35| 0] 0] 7[47] of o[ 13 of o of o 2[ 9 51 o o e8| 17]12] o 1|17
143 o 1/14] o[ 22| 8/ 14| 9| o[ 18 1| 9 o/ 10| 4/ o[ 12 12| 1| 6 o 1| 1|18
156 0 1/ o[ 10[ 20/ 20 8 o of 4 o] 14 3 1| 1931 5/ 0] 6 019
263[64] 17/ 13 0] o] 1|12 o] o[ 17| 1| o of o o 7] 20 of 2/ 95 5 9 0 020
85| 3| 4/17] 1] o] of 9 of o o 1 of of o 6 o o 3 6|10 15 o 1| 0] 21
100| 5/ 7| 5 1] 1| 119 of o 9 3| o o o 1 8 11| o 113 of 9 0o 6|22
107] 0o o] o o/ of o o 10[13[ of 1| 915/ 16] o o o 2 3 o o 1[37 0] 23
60| 2| 4] 1] 2/ 4] 2[11] of o of 8 o o o of 5 1| 0 1 6] 4 3 0 6|24

Two striking points come out of the observations:

1) Most of the predictions reported to be FALSE dassifications are caused by leve
mismatches: The predicted clusters more or less resemble the origina cluster shapes but
have levd shifts.

2) The contours reconstructed from the predicted clusters manly missed
multimodalities observed in the original contour: Although the predicted cluster seems to
match the starting point of the syllable contour, it cannot impose an
inclination/declination or both on the syllable.

Level mismatches and lack of inclination can be observed from Figure 7-5..
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Figure 7-5: Original (gray) and predicted (black) pitch contours of the example sentence.
‘6zglire beni beklemesini sdylemedin mi’.

From preliminary prediction results given above, it is concluded that the predictions
by the decision tree learning method used in the experiments are not satisfactory in the 24
cluster case. The main reason for this is that severa dusters exhibit amost similar
contour shapes. Therefore, athough the decision tree predicts similar shapes, they are
counted to be misclassified.

When reconstructed pitch contours using predicted clusters are considered, it is
observed that the predictions cannot seize the multimodalities that exist in the origina
contour. This results from the lack of cluster centroids that represent multimodaities in
the cluster set. Multimodalities seen in pitch contours correspond to the perceptual
differences in the speech signd. Therefore, it is necessary to capture multimodalities of
the pitch contour. So, a multi-leve clustering agorithm is proposed and presented in the
following sections.

7.1.3 Parametric Representation to Phonological Representation
According to our observations on pitch contours, rel evant/perceptual pitch changes are
demonstrated by multimodalities on pitch contour, i.e. peaks and valleys of pitch
contours. Levels and pure risedfalls are used to link events (Figure 7-6). Predicted
contours exhibit levels patterns. However, levels are not perceptually relevant. Therefore,

atwo-level clustering approach is used to capture dynamic cluster centroids.
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Figure 7-6: Pitch contour of the example sentence.

For two-level dustering, first, leve differences among pitch contours are diminated
by a least-squares optimization agorithm. Cost function for the optimization problem is

as follows;

[éi]zarg min hz/l (ai + f; (x)—c)2 (7-8)
a x=1

where ¢ is a congant, and f;(x) represents the pitch points for the i syllable in the

database. As mentioned before, every syllable pitch contour is sampled at every tenth of
the overdl syllable duration so the value for M is 10. Least-squares optimization is

performed on {a,} values. For consistency, c is set to 0.5. Solution to the problem is

given as

M
13t (7-9)

ai =C-
10 x=1

K-means clustering algorithm is performed on level-removed syllable contours to
obtain 100 dusters. These 100 centroids are fed to a second k-means algorithm to obtain
25 clusters. Figure B-1 - Figure B-11 demonstrate 100 centroids grouped into 25 cluster
centroids. As shown in the figures, resultant 25 clusters have almost similar patterns.
Number of clusters is reduced 1) by diminating clusters with centroids representing
levels or purerises and falls and 2) by merging clusters of the same shape (determined by
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25 duster centroids) into single clusters. Merged d usters mainly coincide to multimodal

forms of pitch contours and various levels of them.

7.1.3.1 Decison Tree Learning Using Phonological Representation

According to our previous observations, selected clusters correspond to pitch events
whereas eliminated contours correspond to connections. Therefore, a binary decision is
performed on the resultant database to predict locations of pitch events. For binary
prediction, syllables represented by codewords that are manually selected are assigned
TRUE values while remaining syllables are assigned FAL SE values. Prosodic attributes
described in Chapter 6 are used to train decision tree. The statistical results for the binary
predi ction of pitch events are givenin Table 7-5 through Table 7-7.

However, this binary decision did not result in a better statistical performance than
before. Thisis mainly due to the fact that thereis a major difference between the number
of TRUEs and FALSEs in the database. The number of TRUEs is 3039 while the number
of FALSEsis 9444 in the training data and 763 versus 2621 in the test data set. Therefore,
the decision tree algorithm cannot cope with the less observable cases which correspond

to pitch events.

Table 7-5: Total number of leaves, size of the decision tree and total number of correctly
classified and misclassified syllables.

Number of Leaves 860

Size of thetree 1164

Kappa statistics 0.38

Correctly Classified Instances 2729 80.64%
Incorrectly Classified Instances | 655 19.36%

Table 7-6: TP rate, FP rate, Precision, Recall, and F-measure for each class.

TP Rate | FPRate | Precision | Recall Class | F-Measure | Class
0.92 0.58 0.85 0.92 0.88 | Fdse
0.43 0.08 0.6 0.43 0.5| True
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Table 7-7: Confusion matrix of binary prediction.

Predictions

Fase | True

2405 | 216 | Fase| O
Q.

439 | 324 | True | 8

TRUE and FALSE labels associated to syllables in the database are examined.
According to our observations, some of the sdected clusters do not really correspond to
pitch events (i.e. syllables with very smooth rises and falls are also considered as pitch
events) and some of the clusters that are previously discarded and assigned FALSE
should be considered as pitch events (i.e. there are sharp rises and fals that are not
included in selection but cause audible/ perceptua pitch changes). Therefore cluster
centroid selection is performed one more time taking into account the dynamic ranges of
the clusters: Cluster centroids having dynamic ranges greater than or equal to 40 Hz are
sdected as prominent (TRUE) syllables and |eave the others as FALSE. Threshold va ue

corresponds approximately 10% of the difference of minimum of FO, ;. and maximum

of FO, ., values.

Correspondign results are given in Table 7-8 and Table 7-10.

Table 7-8: Total number of leaves, size of the binary dassification tree and total number
of correctly classified and misclassified syllables.

Number of Leaves 1555
Size of thetree 2010
Kappa statistic 0.41
Correctly Classified Instances 2426 80.8806 %
Incorrectly Classified Instances 958 28.3097 %

Table 7-9: TP rate, FP rate, Precision, Recall, and F-measure val ues for each class.

TP Rate | FPRate | Precision | Recdl Class | F-Measure | Class
0.60 0.19 0.71 0.60 0.65 False
0.81 0.40 0.72 0.81 0.76 True
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Table 7-10: Confusion matrix for the binary prediction of pitch events.

Predictions
False True

886 598 False

euibluo

360 | 1540 True

According to the statistical results, prediction using codebook of varying size does not
result in reasonable performances. However, such kind of an implementation would
benefit by increasing the dimension of the database and making the cluster distributions
even. Ancther important result rising from the current study is that microprosody still
plays an important role in the clustering a gorithm since microprosody cannot be removed
completely from the pitch contours and causes spurious pitch contours for syllables.
Figure 7-7 demonstrates significant microprosodies. The speech signad and the pitch
contour given in the figure belong to the sentence ‘mikroorganizmalar yok etmek icin
sok 1sitma ve sogutma yontemi kullanilir' (shock heating and cooling method is used
to exterminate microorganisms). Though, successive application of hierarchical

clustering may provide better performances.
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Figure 7-7: Circles mark significant microprosody that can not be removed completdy.
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7.2 Pitch Contour Modeling - A Phonological Approach
Results of early attempts on pitch contour modeling using pre-defined clusters for
each syllable and predicting them through machine learning led us develop a new
approach that involves less contour dependency by decreasing the number of pre-defined
clusters. Proposed approach mainly relies on representing pitch contours as a sequence of
discrete events.

In this approach, syllables are assigned to pitch accents depending on the decisions
made over syllable pitch contours. Our primary aim is to distinguish accented syllables
from not-accented ones by means of a binary decision. For each accented syllable, a
prominence leve is predicted by means of regression trees.

Resulting work resembles to the intonation modding studies that involve ToBI
labeling where each syllable of the database is |abeled according to their accent status and
then a binary decison is performed whether the current syllable is accented or not
depending on acoustic and linguistic features derived from the speech and text corpora.
Then, each accent is further discriminated by another decision tree or some other learning
method such as a neural network. After identifying the labels of each syllable,
prominence levels are found. Thisis performed by means of numeric prediction methods.
Phrase and boundary tones are assigned and corresponding prominence levels are
predi cted with almaost same procedures but using different feature sets.

Studies incorporating ToBI transcription system rely on label-rich corpora. Generaly,
pitch contours are manualy transcribed using ToBI system and attributes are obtained by
deep linguistic analyses. Within the course of this study, such a corpus is not available.
Hence, intermediate representations, such as ToBI labels, that represent pitch contours do
not exist as well. Lexical stress scheme is available however it is still insufficient to
resolve stress assignments for compound words or even more complex forms such as
noun phrases.

Previous studies on other languages reported that pitch accents are observed as local
minima and maxima on pitch contours and should be aligned with the lexically stressed
syllable of the words that are accented [Pierrenumbert 2000]. Acoustic behavior and their
perceptual equivalences are captured by means of perceptual listening tests. According to
our observations, sharper rises turn out to be perceptually more prominent from the rest of
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the pitch contours. It is cond uded that selecting rises instead of maxima would be better
for predicting prominent, accented, syllables.

Deveoped pitch accent assignment algorithm locates accents according to syllable
pitch contours. For the example sentence given in Figure 7-6, the data used to assign
pitch accents are given in Table 7-11. First column of the table is related to the index of
the sentences within the database. In the second column, the syllable identities in their
SAMPA [Wells 2003] format are given. The third, fourth and fifth columns correspond to
the position of syllable in word (SylPosinword), position of word in sentence
(WordPosinSent), number of syllablesin word (NumofSylinwWord) obtained from the text.
The sixth column of the table holds the slope amplitudes cd culated from the original
syllable pitch contours. The seventh column manifests the sign of the slopes given in the
sixth column. Mean FO values of corresponding syllables are given as the last column of
thetable. Slope of syllablek is calculated as follows:

(FOK(8)+ Fok(g)j _(FOK(0)+ FOk(l)j

2 2

Sope, = (7-10)

Dy

where FO, (x) and D, correspospond to 10 equidistant FO val ues picked from the syllable
pitch contour and syllable duration.

Table 7-11: Data used by pitch accent assignment a gorithm.

ID |Syllable Labd |SylPasinWord WordPosinSentNumof SylinWordSlope Amp |SignM ean
0 Oz 1 1 3 -56.94 | -1|184
0 gy 2 1 3 351 1]202
0 re 3 1 3 96.18 1|224
0 be 1 2 2 101.36 | 1 | 229
0 ni 2 2 2 45.13 1237
0 bec 1 3 5 22.83 1]242
0 le 2 3 5 -239 | -1|244
0 me 3 3 5 118.7 1]252
0 s 4 3 5 56.09 1]262
0 ni 5 3 5 -164.21 | -1 | 253
0 sOj 1 4 4 23.1 1|248
0 le 2 4 4 90256 | 1 |320
0 me 3 4 4 -995.55 | -1|303
0 din 4 4 4 -127.9 | -1]172
0 mi 1 5 1 11.1 1]160
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Pitch accent assignment algorithm searches for rdevant positive and negative slopes
for every syllable of candidate words which are selected with respect to positive and
negative thresholds: Words having syllables with slopes greater (less) than positive
(negative) threshold are selected as candidates for positive (negative) accents.Threshold
value plays an important role in pitch accent assignment process. If the value is chosen
too small, every tiny slope is considered as a potentia candidate. If the threshold is

chosen too large, then most of the potential pitch accents are discarded.

Among the syllables of the candidate words, the ones with considerable positive and
negative slopes are associated with positive and negative pitch accents. Reevancy is
determined by means of slope amplitudes cd culated from the interpolated and smoothed
contours.

For positive accent assigment, two syllables with the highest mean FO among al
positive sloped syllables in the candidate word are selected. This choice is based on the
observations that

= the sharpest slope may not be aligned with the syllable with the highest mean FO,
= highest mean FO on a syllable may be an indicator of pitch accent on the syllable,

= hoth syllables have higher mean FO than the rest of the syllables in the candidate

word.

Positive accent is associated to the syllabl e with the lower mean FO if its slope amplitude
exceeds a scaled version of the highest mean FO va ued syllabl€e' s slope magnitude or to
the syllable with the highest mean FO otherwise.

Negative accents are assigned to the first syllable with the largest negative slopein the
candidate word.

Figure 7-8 shows positive and negative pitch accents accents associated to the
syllables of the sentence ‘mikroorganizmlari yok emek icin sok Isitma ve sogutma

yontemi kullanilir’ by accent assignment a gorithm.
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Figure 7-8: Positive (1's) and negative (-1's) pitch accents of the sentence
‘mikroorganizmlari yok etmek icin sok i1sitma ve sogutma yontemi kullanilir’.

The process of deciding whether a syllable is accented or not, can be viewed as a
binary classification problem.

7.2.1 Prediction of Pitch Contour Parameters
A three-step procedure is followed for modding pitch contours. First step involves
pitch accent placement, second step invol ves numeric prediction of accent slopes. In the
last step, syllable pitch contours are re-generated using slopes estimates and sentence
pitch contours are reconstructed by concantenating syllable pitch contours..

In the first part which involves a classification task, the decision tree agorithm (J48)
of WEKA package [Witten and Frank 1999] is used. In the second part, the problem is to
predict slope amplitudes, hence, requires numeric prediction methods. Therefore, at this
step, regression tree algorithm (REPTree) of the WEKA package [Witten and Frank
1999] is used.

For accent location prediction, two experiment sets are utilized. Both experiment sets
utilize prosodic attributes presented in Chapter 6. In the first experiment set (Experiment
Set 1), the decision tree is used to predict accent states of the syllables which are
determined by the accent assignment a gorithm. The syllables are either positive/negative
accented or not-accented (cf. Figure 7-8). Hence, three accent states are predicted in
Experiment Set 1.
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In the second experiment set (Experiment Set 2), positive and negative accent types

are merged to construct a single accented class.

For accent slope prediction, the slope values computed from the normalized syllable
pitch contours are predicted by the regression tree. Accent states of syllables are also used
in the learning. Slopes are predicted considering the experimental setups employed in
accent location prediction.

For each prediction task, the performance of the learning algorithm is eval uated using
three methods given bel ow.

Evaluation on training data (Training): Training data can be used to observe the
performance of the decision tree however performance on the training data is not a good
indicator of future performance, i.e. performance on new data: During the learning
process, the classifier tries to make the best prediction for every sample in the training
database, so the resulting error rate would be an optimistic one and very likedy to
overestimate the true predictive performance of the learning method. However, it is still
useful to look at these results, for they generally represent an upper bound on the model’s
performance Therefore, for each of the prediction tasks, an evaluation on training dataset
is performed to have an idea about decision tree's prediction capacity.

Evaluation on test data (Test): To predict the performance of decision tree on new
data, the performance should be calculated over a test set. The data in the test set is not
used in the learning phase of the decision tree The test data may be completely distinct
from the training data or may be part of it. The only constraint on the test datais: The test
data should not be employed in the development of the classifier. Hence, for each
predi ction task, evaluations on test data are performed.

Evaluation using 10-fold cross validation (CrossVal): In 10-fold cross validation,
the data is divided into 10 subsets of equa size. The decision tree is trained 10 times,
each time leaving out one of the subsets from training. The remaining subset is used to
compute the error rate. The overal error for the classifier is the average of erors
computed in 10 training. In most practical applications, 10-fold cross validation is used
for predicting error. Since 10-fold cross-validation method is a good indicator of decision
tree's future performance, 10-fold cross validation is performed.

In order to perform Training and Test, the database is split into two subsets: Training
and Test datasets. Training dataset is used to devel op appropriate d assification/regression
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tree while test dataset is used to evd uate the performance of resultant tree The training
dataset consists of 12483 samples of the syllable database and the test dataset consists of
the remaining 3384 samples of the syllabl e database. These values correspond to 78.67%
and 21.33% of the syllable database, respectively.

Following sections summarizes the results obtained from accent location and slope
prediction.

7.2.1.1 Accent Prediction
Statigtical observetions given in tables Table 7-12 through Table 7-18 beong to the
accent prediction experiments. For both of the experiment sets, Test and Crossval

performances are lower than Training performances however they are morerdiable.

Table 7-12: Correct and incorrect classification rates for Experiment Set 1 & 2.

Number  |Percentage]
of Syllables
Training Correctly Classifed Syllables 10515 84.23%
Incorrecly Classified Syllables 1968| 15.77%
Experiment Test Correctly Classifed Syllables 2523| 74.56%
Setl Incorrecly Classified Syllables 861 25.44%
CrossVal Correctly Classifed Syllables 11988| 75.55%
Incorrecly Classified Syllables 3879| 24.45%
Training Correctly Classifed Syllables 10558 84.58%
Incorrecly Classified Syllables 1925| 15.42%
Experiment Test Correctly Classifed Syllables 2568| 75.89%
Set 2 Incorrecly Classified Syllables 816| 24.11%
CrossVal Correctly Classifed Syllables 12025, 75.79%
Incorrecly Classified Syllables 3842| 24.21%

According to Table 7-12 , best correct classification rates are observed in the cases
where evauations are performed on training set in both experiment sets. These results
illustrate the upper limits of the decision trees. In Experiment Set 1, dassification rates
are worser than that of the cross validation performance which denotes that selected test
to evauate decision tree performance is not optimal. It is also observed that classification
rates obtai ned in both experiment sets are almost same although Experiment Set 1 is more
complicated since it relies on the prediction of three accent states. positive, negative and

no-accent.
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Kappa coefficients for both experiment sets are given in Table 7-13. Kappa statistics
of Experiment Set 1 are better than those of Experiment Set 2. Evaluations using training
sets approach 0.7 which is regarded as good statistic corrdation.

Table 7-13: Kappa statistics of Experiment Set 1 & 2.

K appa Statistics
. Training 0.68
Experiment

Set 1 Test 0.47

Crossval 0.50

Experiment Tr?;ng 84612
Set 2 :

Crossval 0.46

The confusion matrices of Experiment Set 1 & 2 are given in Table 7-14 and Table
7-16, respectivey. Diagond entries of the tables correspond to correct predictions while
off-diagonds correspond to false predictions. Confusion matrix of Experiment Set 1
(Table 7-14) shows tha decision trees cannot discriminate accented syllables from the
not-accented syllables. However, they perform a better discrimination in between positive
and negative accented syllables.

Table 7-14: Confusion matrices observed in Experiment Set 1 (positive, negative and no-

accent).
Classified as; | no-accent | positive | negative
no-accent 7411 260 335
Training | positive 577 1685 59
negative 677 60 1419
Experiment no-jc]r.:cent 1906 196 144
Set 1 Test positive 219 344 16
negative 256 30 273
no-accent 8889 627 736
Crossva | positive 1185 1600 115
negative 1116 100 1499

In order to compare performances of correct class predictions of both experiment sets,
confusion matrix of Experiment Set 1 (Table 7-14) is converted to two-class confusion
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matrix given in Table 7-15. The converson is performed by merging the statistics of
positive and negative classes. Comparison of the cofusion matrices of both experiment
sets (Table 7-15 and Table 7-16), it is observed that prediction of accented class is better
in Experiment Set 2 but Experiment Set 1 predicts no-accents better.

Table 7-15: Confusion matrices observed in Experiment Set 1 (accented vs no-accent).

Classified as: | no-accent accented

. no-accent 7411 595

Traning 1= cented 1254 | 3223

Experiment Test no-accent 1906 340
Setl accented 475 663
no-accent 8889 1363

CrossVal - cented 2301| 3314

Table 7-16: Confusion matrices observed in Experiment Set 2 (accented vs no-accent).

Classified as: | no-accent accented

. no-accent 7335 671

Traning 1= cented 1254 | 3223

Experiment Test no-accent 1881 365
Set 2 accented 451 687
no-accent 8671 1581

CrossVal 1 cented 2261 | 3354

As shown in Table 7-14 - Table 7-16, the total number of no-accents are grester than
the total number of pasitive and negative (accented) classes. The number of no-accented
syllablesin Training, Test and CrossVa are 8006, 2246 and 10252 accented syllables are
4477, 1138, and 5615, respectively. Hence, resulting decision trees predict no-accents
more accurately than accented classes.

TP rates, FP rates, Precisions, Recals and F-Measures for Experiment set 1 & 2 are
given in Table 7-17 and Table 7-18, respectively. It is observed that best TP rates are
observed for no-accents.
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Table 7-17: TPrate, FP rate, Precision, Recall and F-measures of Experiment Set 1.

TP Rate|FP Rate|Precision |Recall |F-Measure|Class
0.93 0.28 0.86 0.93 0.89 |no-accent
Training | 0.73 0.03 0.84 0.73 0.78 |positive
0.66 0.04 0.78 0.66 0.72 |negative
0.85 0.42 0.80 0.85 0.82 |no-accent
Test 0.59 0.08 0.60 0.59 0.60 |positive
0.49 0.06 0.63 0.49 0.55 |negative
0.87 0.41 0.79 0.87 0.839 |no-accent
CrossvVa | 0.55 0.06 0.69 0.55 0.61 |positive
0.55 0.07 0.64 0.55 0.59 |negative

Experiment
Set 1

Table 7-18: TPrate, FP rate, Precision, Recall and F-measures of Experiment Set 2.

TP Rate |[FP Rate |Precision |Recall |[F-Measure|Class
- 0.92 0.28 0.85 0.92 0.88 |no-accent
Traning 52> 1 008 | 083 | 072 | 077 |accented
Experiment Test 0.84 0.40 0.81 0.84 0.82 |no-accent
Set 2 0.60 0.16 0.65 0.60 0.63 |accented
Crossval 0.85 0.40 0.79 0.85 0.82 |no-accent
0.60 0.15 0.68 0.60 0.64 |accented

Figure 7-9 shows the decision tree generated in Experiment Set 1 for Training and
Test cases. Thetree has six splitting levels. As shown in the table, the first split occurs at
cluster-s1_major attribute which corresponds to the most significant attribute of the
attribute set. The significance order of the atributes can be considered by means of the
ordering in the trees, that is, the higher the attribute is observed on the branching, the
more significant the attribute is. Second level splits occur a SylPosinWordl, Stress, and
SylnoinWord. These two splits correspond to the most relevant prosodic attributes.

Third leve splits occur a NumofSylToPrevMinorBreak, PosofWordMajor, Duration,
and NumofSylinWord. Fourth levels splits occur at Break, NumofSyl ToPrevMinor Break,
and NumofSylTo-PrevMagorBreak  attributes.  The  fifth levd  splits  are
NumofWordToFolMinorBreak. At the last levd, the only splitting is observed at the
attribute NumofWordToPrevMajorBreak. The rest of attributes do not play any roleinthe
resultant decision therefore the rest of the attributes are irrdevant to accent prediction
using decision trees.
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In the tree structure, a colon (:) introduces the class labe that is assigned to a
particular leaf, followed by the number of instances that reach that leaf, expressed as a
decdma number. The decimals are used because of the way the a gorithm uses fractiona

instances to handle missing val ues [Witten and Frank 1999].

cluster-s1_major = NONE: cl0 (547.0/150.0)
cluster-s1_major = clO

| Stress=N

| NumofSylToPrevMinorBresk <= 0

| | Break =Sl: cl0(0.0)

| | Break =M:cl0(0.0)

| | Break =SF: cl0(203.0/40.0)

| | Break =F: cl (148.0/73.0)

| | Break =1:cl0(0.0)

| | Break =1/F: clO (4.0)

| NumofSylToPrevMinorBreak > 0: cl0 (4511.0/942.0)
Stress= A

| PosofWordMgjor = I: ¢l (320.0/34.0)

| PosofWordMajor =M

| | NumofSylToPrevMinorBreak <= 0: cl (433.0/142.0)

| | NumofSylToPrevMinorBreak > 0

| | | NumofWordToFolMinorBreak <=0

| | | | NumofWordToPrevMajorBreak <= 2: cl0 (161.0/77.0)
| | | | NumofWordToPrevMajorBreak > 2: cl (312.0/110.0)
| 1 | NumofWordToFolMinorBresak > O: cl0 (1129.0/431.0)
| PosofWordMgjor = F: cl0 (365.0/72.0)

cluster-s1_major = cl

| SylPosinwordl = I: cl-1 (1392.0/454.0)

| SylPosinwordl = M: cl-1 (228.0/89.0)

| SylPosinwordl = F; ¢l0 (353.0/139.0)

| SylPosinWordl = Single

| | Duration <= 0.168: cl-1 (109.0/50.0)

| | Duration>0.168: cl0 (132.0/67.0)

cluster-s1_major = cl-1

| SylNoinwWord <= 1: cl0 (426.0/164.0)

| SylNoinWord > 1

| | NumofSylinWord <=2

| | | NumofSylToPrevMajorBreak <= 8: cl0 (142.0/46.0)

| | | NumofSylToPrevMajorBreak > 8
I
I
I

| 1 | NumofSylToFolMinorBreak <= 3: cl (128.0/45.0)
| 1 | NumofSylToFolMinorBreak > 3: cl0 (108.0/52.0)
| NumofSylinWord > 2: ¢l0 (1332.0/90.0)

Figure 7-9: Decision tree obtained in Experiment Set 1 using training set.

Figure 7-10 demonstrates the resultant decision tree generated in Experiment Set 2 for
Training and Test cases. The tree has five splitting levels. As the table revedls, the first
split occurs at SylPosinWordl attribute. Second leve splits occur a cluster-s1_major,
NegFlag, PosofSyIMajor, and NumofWordToFolMajorBreak. Third level splits occur at
NumofSylToFolMajorBreak, Numof\WordToPrevMinorBreak, PosofWordMinor, and
SylType. Fourth leves splits occur a Duration, cluster-sl_minor, POSw+1, ST4,
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NumofSyl ToPrevMajor-Break, and POSRoot attributes. Last leve splits occur at ST4, and
SylNoinWord. The rest of attributes do not play any rolein the resultant decision therefore
they are irrelevant to accent prediction using decision trees. When current decision treeis
compared with the former (Figure 7-9), it can be seen that they are different from each
other athough they share common attributes but at different splits.

SylPosnWordl = |

clugter-s1_major = NONE: cl0 (455.0/73.0)

clugter-sl_major = cl0

| NumofSyl ToFolMajorBreak <= 4: cl_cl-1 (150.0/73.0)

| NumofSyl ToFolMajorBreak > 4: ¢l0 (1383.0/341.0)
clugter-sl_major =cl_dl-1

| NumofWordToPrevMinorBreak <= 1: cl_cl-1 (1067.0/320.0)
| NumofWordToPrevMinorBreak > 1

| | Duration <=0.201

| | | ST4=MI-Ques: clO (113.0/47.0)

| | | ST4=NONE: cl_cl-1(402.0/144.0)

| | | ST4=WH-Ques: cl_cl-1(40.0/13.0)

| | Duration>0.201: cl0 (116.0/41.0)

SylPosnWordl =M

| NegFlag = FALSE: cl0 (4170.0/597.0)

| NegFlag=TRUE

| | NumofSylToFolMajorBreak <= 17: cl_cl-1 (103.0/48.0)

| | NumofSyl ToFolMajorBreak > 17: cl0 (102.0/31.0)
SylPosnWordl1 = F

| PosofSylMajor = 1: cl0 (0.0)

| PosofSylMajor =M

| Posof WordMinor = |

| | custer-sl_minor = NONE: clO (1.0)
| | custer-sl_minor = cl0: cl_cl-1 (841.0/212.0)
| | custer-sl_minor =cl_d-1

| | | SylNoinWord <= 2: ¢l_dl-1(171.0/72.0)
| | | SylNoinword > 2: cl0 (194.0/56.0)
| Posof WordMinor = M

| | POSw+1 = PRON: clO (12.0/5.0)
|

|

|

|

|

|

| POSw+1 = NOUN: cl0 (392.0/124.0)

| ...

Posof WordMinor = F

| ST4 = MI-Ques: cl0 (129.0/28.0)

| ST4=NONE: cl_cl-1(462.0/93.0)

| ST4=WH-Ques: cl0 (36.0/4.0)
PosofSylMajor = F: cl0 (481.0/86.0)
SylPosnWordl = Single
NumofWordToFolMajorBreak <= 1: cl_cl-1 (165.0/40.0)
NumofWordToFolMajorBreak > 1
| SylType=H
| Numof Syl ToPrevMajorBreak <= 8: cl0 (107.0/38.0)
| Numof Syl ToPrevMajorBreak > 8: cl_cl-1 (114.0/55.0)
SylType =L
| POSRoot = NOUN: cl0 (5.0/2.0)
| POSRoot = PRON: cl_cl-1 (5.0/2.0)
| POSRoot = VERB: cl_cl-1 (0.0)
| POSRoot =TELL: cl_cl-1(0.0)
| POSRoot = QUES: cl_dl-1 (107.0/28.0)
| POSRoot = CNOUN: cl_cl-1(0.0)
|
|
|
|
|

POSRoot = MODAL: d_dl-1 (0.0)
POSRoot = POSTP: dl_d-1(0.0)
POSRoot = CONJ: dl_d-1 (120.0/42.0)

|
|
|
|
|
|
|
|
|
|
|
|
|
I
| POSRoot = ADV: d_d-1(1.0)
|

Figure 7-10: Decision tree obtained for Experiment Set 2 using training set.
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The best performance in accent predi ction experiments is obtained by means of binary
prediction, that is, the case where two accent types are merged into accented class and
not-accented ones are used for the other class. The evauations on the test set shows
74.56% correct prediction for triple accent prediction and 75.89% correct prediction for
binary prediction of accents. When the two experiments are examined in detall, it is seen
that the former predicts the not-accented syllables better while the later does it for
accented syllabl es.

Among the three evaluation methods utilized in binary prediction, the best
performance is obtained via Eval A, as expected. The second best statistical performance
is obtained using EvalB. Theworst performanceis obtained by means of EvalC; however,
it isthe most reliable evaluator.

In both of the experiments, the first two of the evauations are recovered from the split
train and test datasets while the third one bel ongs to the whol e syllable database.

Although the results are much more promising then our previous attempts on
cdassifying pitch accents by means of syllable pitch contour clusters, they still need
improvement. When the results are examined in detail, it is observed that prediction
accuracy for not-accented classes (class0) is better than the other classes in both of the
schemes. This is mainly due to the uneven distribution of accented and not-accented
syllables in the database. In the first set of experiments, the percentages of classl, dass-1,
and dass0 are 18.59%, 17.27%, and 64.14% in the training database and 17.11%,
16.52%, and 66.37% in the test database, respectively. In the second set of experiments
where two accent types are merged into one accent category (classl class-1), the
percentages of the accented and not-accented syllables are 35.86% and 64.14% in the
training dataset and 33.63% and 66.37% in the test database, respectively. Not-accented
syllables may cover feature combinations that can a so be observed for accented syllables.
Significant difference in the amounts of not-accented and accented syllables in the
database can explain the tendency of decision treesto labe a majority of syllables as not-

accented.

7.2.1.2 Slope Prediction for Accented Syllables
In the second stage of pitch contour modeling, syllables are associated with the
corresponding slopes by means of numeric prediction methods. With slope and duration

information, abstract accent labe's can be transformed into conti nuous pitch contours.
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Slope prediction is performed considering the two experimental setup employed in
accent prediction for three evauation methods (Training, Test, and CrossvVal). In the
first experiment set (Experiment Set 1), slopes are predicted for three accent states
(positive, negative, and no-accent). In Experiemtn Set 2, dopes are predicted for two
acce states (accented vs no-accent).

To decrease variation of daa, slope vaues are computed from the normalized pitch
contours instead of original pitch values. The histogram plot of syllable d opes computed
from the normalized pitch contours are illustrated in Figure 7-11 - Figure 7-13. Figure
7-11 demonstrates the slope histogram of dl syllables. In Figure 7-12, only the slope
histogram of syllables associated to no-accents is demonstrated. As reveded by the
figure, the slopes of no-accents vary from -5 to 4. This range partially overlaps the slope
ranges of negative accent (Figure 7-13 — | eft window) and positive accent (Figure 7-13 —
right window).

1000

900

800+

700+

600

500

Frequency

400

300+

200+

100}
i

0
-10 -8 -6 -4 -2 0 2 4 6 8
Slopes

Figure 7-11: Histogram plot of the slopes of al syllables in the database.
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Figure 7-12: Histogram pl ot of the slopes of syllables associated to no-accent.
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Figure 7-13: Histogram plots of the slopes of syllables associated to negative (L eft
window) and positive (Right window).

Table 7-19 demonstrates slope statistics of the training, test and overal datasets,
respectively. According to the table, the minimum and maximum slope va ues observed
in training database is -8.6 and 6.2, respectively. Corresponding values for the test
database are -5.6 and 7.3, respectively. These values correspond to rather steep slopes.
Generdly, these values are observed on syllables having shorter durations. According to
the table, the mean value for the slope is around O which denotes that al databases are
dominated by no-accents. However, when the histogram plots in Figure 7-11 - Figure
7-13 are considered, it is observed that the slopes of accented syllables are either at the
positive or negative haf of the slopeline.

When slope statistics of the train and test dataset are compared, it is observed that the
upper slope limit of the test data set is beyond the scope of the train dataset. This may
result in a performance reduction.

When sl ope statistics of complete dataset is considered, it is observed that it covers the
statistics of thetrain and test datasets, but resembl es the statistics of the train dataset.

Table 7-19: Slope statistics of the training and test data.

Minimum | Maximum | Mean | SD
Training -8.6 6.2 0.03 | 1378
Test -5.6 7.3 0.015 | 1.288
AllSyllables -8.6 7.3 0.027 | 1.359
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For comparison purposes, mean slope of corresponding dataset is used as a baseline

model for slope predi ction experi ments.

Table 7-20 illustrates the performance statistics of the decision trees and the baseline
model for both experiment sets. As shown in the table, the dope prediction statistics are
fairly good. Utilization of decision trees for slope prediction outperforms baseline model.

Table 7-20: Performance statistics of the the baseline, Experiment Set 1 & 2.

CC MAE RM SE

Train ~0 0.99 1.90
Basdine  [Test ~0 0.92 1.66
Crossvad ~0 0.97 1.85

Experi ment Training | 0.86 0.49 0.69
P Test 0.83 053 0.73

Set 1
CrossVal 0.84 0.54 0.75

Experi ment Training| 0.74 0.62 0.93
pSet ) Test 067 0.66 0.97

CrossvVal | 0.66 0.69 1.03

For both experiment sets, best performances are obtained using the training set and
worst performance are obtained with cross validation evauation. However, the

performances are more or less similar to each other numerically.

Considering al results obtained in Experiment Set 1 & 2, it can be said that decision
trees outperform basdine model. The percentageimprovement in MAE is around 46% for
Experiemtn Set 1 and 31% for Experiemtns Set 2.

When the results of Experiment Set 1 and 2 are compared, it is observed that Set 1
exhibits better performances. This is due to the fact that Experiment Set 1 uses three
accent states (positive, negative, and no-accent) while Experiment Set 2 uses two accent
states (accented vs no-accent). Merging positive and negative accents reduces the
prediction capacity. Experiment Set 1 performs approximately 20% and 26% better than
Experiment Set 2in MAE and RMSE, respectivdy.

Figure 7-14 demonstrates the resultant decision tree generated in Experiment Set 1 for
Training and Test cases. The tree has five splitting levels. Attributes at each split are as

follows:
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Accent (most significant attribute)
cluster-s1_major, POSw+ 1, and SylStruct
PosofWordMajor, NumofSyl ToFol Minor Break, and cluster-s1_minor
POSw+1
5. SylPosinWordl
Rest of the attributes do not play any role in the resultant regression tree therefore they

A wDd PP

areirrd evant for accent prediction using regression trees.

Accent = cl0

cluster-s1_major = NONE : 0.53 (258/0.44) [ 139/0.45]
cluster-s1_major = clO

| PosofWordMajor =1 : 0.62 (188/0.66) [94/0.45]

| PosofWordMajor =M

| | POSw+1=PRON : 0.06 (32/0.49) [15/0.87]

| | POSw+1=NOUN : 0.05(847/0.32) [418/0.31]

[l

| |1 | SylPosinWordl =1 : 0.05 (105/0.23) [59/0.4]

| |1 | SylPosinWordl =M : 0.09 (243/0.39) [110/0.39]

| | | SylPosinWordl = F : -0.25 (153/0.32) [69/0.46]

| | | SylPosinWordl = Single: 0(6/0.14) [7/0.08]

| | POSw+1=ADJ: 0.01(382/0.31) [190/0.39]

| | POSw+1=ADV : -0.06 (140/0.33) [78/0.23]

[

| PosofWordMajor = F: -0.14 (731/0.14) [338/0.11]
cluster-s1_major = cl : -0.22 (525/0.54) [260/0.45]
cluster-sl_major =cl-1

| NumofSylToFolMinorBreak < 1.5 : 0.2 (202/0.51) [71/0.33]

| | NumofSylToFolMinorBresk >= 1.5 : -0.43 (947/0.76) [481/0.83]
Accent = cl

| POSw+1=PRON : 1.88 (27/0.77) [11/1.07]

| POSw+1 =NOUN : 1.99 (569/0.79) [270/0.77]

| POSw+1=TELL :1.9(15/1.14) [12/1.72]

| POSw+1 =QUES: 2.67 (75/1.02) [44/1.12]

| POSw+1 =NONE : 1.59 (89/0.37) [39/0.31]

| ...

Accent = cl-1

| SylStruct =NC : -2.02 (118/0.9) [69/1.13]

| SylStruct = ON

| | cluster-s1_minor = NONE : -1.52 (104/0.38) [63/0.39]

| | cluster-s1_minor = cl0: -1.61 (247/0.49) [115/0.69]

| | cluster-s1_minor =cl : -1.97 (354/0.62) [186/0.7]

| | cluster-s1_minor = cl-1:-1.41(38/0.23) [17/0.29]

| SylStruct =ONC

| | cluster-s1_minor = NONE : -1.2 (42/0.18) [20/0.13]

| | cluster-s1_minor = cl0: -1.49 (118/0.37) [71/0.46]
I
I
I
I
I
I
I
I

| cluster-s1_minor =cl : -1.74 (192/0.43) [101/0.47]
| cluster-s1_minor = cl-1:-1.12 (22/0.12) [11/0.12]
SylStruct =N : -2.38 (161/1.86) [87/1.37]

SylStruct = ONCC : -1.48 (5/0.21) [4/0.1]

SylStruct = OONC : -1.16 (4/0.41) [3/0.1]

SylStruct = OON : -1.5 (2/0.09) [1/2.25]

SylStruct =NCC : -0.8 (1/0) [0/0]

Figure 7-14: Regression tree obtained for Experiment Set 1 using training set.
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Resultant regression tree obtained in Experiment Set 2 for training dataset is given in

Figure 7-15. Thetree has five splitting levels. Attributes ate each split are as follows:

cluster-s1_major (most significant attribute)

Accent, and SylPosinWord1

PosofWordMajor, Syl PosinWordl, Accent, and Break

POSw+1, SylSruct, and SylNoinWord

SylPosinWord1, and Accent

Rest of the attributes do not play any rolein theresultant regression tree therefore they

a c w DN R

areirrd evant to accent prediction using decision trees.

cluster-s1_major = NONE : 0.98 (350/1.19) [197/1.24]
cluster-s1_major = clO
| Accent =clO
| PosofWordMajor =1 : 0.62 (188/0.66) [94/0.45]
PosofWordMajor = M
POSw+1 = PRON : 0.06 (32/0.49) [15/0.87]
POSw+1 = NOUN : 0.05 (847/0.32) [418/0.31]

I
|
| | SylPosinWord1 = I : 0.05 (105/0.23) [59/0.4]

| | SylPosinWordl =M : 0.09 (243/0.39) [110/0.39]
| | SylPosinWordl = F: -0.25 (153/0.32) [69/0.46]
| | SylPosinWord1 = Single : 0 (6/0.14) [7/0.08]
| POSw+1=ADJ: 0.01(382/0.31) [190/0.39]
| POSw+1=ADV : -0.06 (140/0.33) [78/0.23]
I

I

||
||
||
||
||
||
||
||
||
|
| | PosofWordMajor = F : -0.14 (731/0.14) [338/0.11]
| Accent=cl_cl-1

| | SylPosinWordl = | : -1.03 (286/2.68) [132/1.94]
| | SylPosinWordl =M : 0.45 (303/3.27) [186/3.61]
| | SylPosinWordl = F: 1.71 (960/2.01) [469/1.97]
| | SylPosinWordl = Single: 0.65 (87/2.9) [40/2.59]
cluster-s1_major = cl_cl-1
| SylPosinWordl = |

| | Accent=cl0: -0.07 (423/0.34) [195/0.22]

| | Accent=cl_cl-1

| | | SylStruct =NC:-1.88(84/1.86) [52/1.96]

| | | SylStruct =ON: -1.47 (344/1.51) [179/1.4]
[

| SylPosinWordl =M : -0.49 (913/1.26) [445/1.48]

| SylPosinWordl = F

| | Break =Sl :-0.06 (0/0) [0/0]

| | Break=M

| | | SyINoinWord< 2.5

| 1| | Accent=clO:-0.36(116/0.5) [68/0.55]

| 1| | Accent=cl_cl-1:0.71 (119/3.71) [46/3.6]

| | | SylNoinWord >=2.5:-0.83 (196/1.47) [108/1.78]
| | Break =SF:0 (40/0.7) [24/1.29]

| | Break=F:0.74 (154/1.81) [61/2.56]

| | Break=1:-0.7 (0/0) [1/0.47]

| | Break =1I/F:-0.06 (0/0) [0/O]

| SylPosinwordl = Single : -0.28 (211/1.99) [110/2.4]

Figure 7-15: Regression tree obtained for Experiment Set 2 using training set.
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When the two regression trees are compared, it is observed that the first splits are
different in each of them. In the former, the Accent attribute turns out to be the most
prominent attribute while in the latter cluster-s1_major attribute occurs a the first split

thus it is the most promi nent attribute.

7.2.2 Improving Accent Prediction
The best performance in accent predi ction experiments is obtained by means of binary
prediction, that is, the case where positive and negative accents are merged into asingle
accented class. The evaluations on the test set show 74.56% and 75.89% correct
prediction for Experiment Set 1 and 2, respectively. When the two set of experiments are
examined in detail, it becomes obvious that the Experiment Set 1 predicts the no-accents
better while Experiment Set 2 predicts accented syllabl es better.

Results are much more promising then our previous attempts on dassifying pitch
accents by means of clusters associated syllable pitch contours using k-means partitioning
algorithm, however they still need improvement. It is observed that the sel ected threshol d
value st in accent assignment procedure results in a highly sdective agorithm.
Therefore, the a gorithm rejected some of the prominent accents which have slope va ues
below the selected threshold. A typicd case is illustrated in Figure 7-16. In the given
example, the sentence ‘ddvizde yapilan andizlerde ciddi bir sicrama beklenmiyor yil
sonuna kadar’ (serious changes are not expected in the analysis made over the currency
till the end of the year) is examined. It can be observed that the accent assignment
algorithm missed the negative accent on thefirst syllable of the word ‘ ciddi’ (serious) due
to the threshold value for determining candidates for accented syllables. Capturing the
negative slope on the demonstrated syllable is necessary since it constitutes the loca
minimum of the pitch contour. However, in order to capture such multimodalities, the
slope threshold should be set to avery low value.

Another critica point in accent assignment algorithm is encountered in the syllables
whose syllable pitch contours show multimodalities. In slope calculation, only the initial
and final FO values are considered to determine the slope of the intended syllable. So,
syllables hving multimoda pitch contours are discarded. In fact, although the syllables
showing multimodalities attain a rather considerable peak (valley) FO, the dedination
(inclination) afterwards causes slope computation to assign a comparativey low slope

value to the syllable. A typica caseis shown in Figure 7-17 where the sentence ‘ yavuz
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ise gitti ancak cihan carsiya ¢ikmadi’ (yavuz went to work but cihan did not go to
shaopping) is examined. The negative pitch accent on the syllable ‘cid’ of the word ‘ ciddi’
(serious) can not be captured by the accent assignment algorithm due to selected

threshold val ue. These accents can be captured using rather low threshold val ues.
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Figure 7-16: Sound waveform, pitch contour, syllable labels and pitch accents of the
sentence ‘ dovizde yapilan analizlerde ciddi bir sigrama beklenmiyor yil sonuna kadar’
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Figure 7-17: Sound waveform, pitch contour, syllable labels and pitch accents of the
sentence ‘ yavuz ise gitti ancak cihan ¢arsiya ¢ikmadr’

There are a so some limitations due to the accent assignment algorithm. The algorithm
is constraint to assign one accent of each type to each word. However, in the database,
there are words that have more than one accent of either accent type within its limits.
Figure 7-18 illustrates a misplacement in the accent assignment process observed in the
sentence ‘ancak savunanlar da hayli fazla deniliyor’ (however it is said that the defenders
are also too many). The first word of the sentence ‘ancak’ (however) has two prominent
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positive slopes: first accent implies the lexical stress of the word and the second implies
continuation at phrase boundary. As shown in the figure, the accent assignment agorithm
misses second accent since the agorithm is limited to assign single accent of each type to

each word. Such misplacements may result in reduced decision tree performance.
The accent assignment algorithm is modified to tackl e the above mentioned problems.

1. A rather smadl threshold valueis assigned to determine the candidate words.

2. Oneaccent per word constraint is removed.
Figure 7-19 - Figure 7-21 illustrate pitch accents of the example sentence given in
Figure 7-18 after modifications. Figure 7-19 illustrates corresponding accents for the
exampl e sentence using athreshold of 90 for positive slopes and 100 for negative slopes.
Using a threshold value of 100 for positive slopes alows the agorithm to capture the
rising portion of the pitch contour on the second syllable of the word ‘ancak’ (however).
However, current assignment is not sufficient enough to represent both the rise and fall on
the syllable at the same time since it till misses the negative dope. The agorithm assigns
only one accent per syllable and never assigns both positive and negative accents on the
same syllable. Future studies will consider syllables with rise/fal patterns as turning
points. For example, the resulting assignment inform that the pitch contour continue
risng till the end of the word. An approximation for the resulting contour after
reconstruction (dotted line) is also shown in Figure 7-19. The pitch on the word ‘ancak’
(however) is perceived differently from the original contour. Therefore, such syllables are

not assigned to any accent.

Two different applications involving different threshold vaues are given in Figure
7-20 and Figure 7-21. In Figure 7-20, the accent assignment method where the threshold
value for positive accentsis set to 90 as previously and the negative accent is set to 150 is
depicted. Figure 7-21 presents the case in which the positive threshold value is set to 100
and the negative threshold va ueis set to 150. According to the figures given, increasing
(decreasing) threshold values results in selecting more (less) accents per sentence. From
our discussions about multimodal syllables and the accent assignment methods given in
figures, the best choice for accent thresholds is 100 for positive and 150 for negative

accents.
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Figure 7-18: Pitch contour, syllable labels and pitch accents of the sentence ‘ ancak

savunanlar da hayli fazladeniliyor’.

EEEE=

Figure 7-19: Origina (continuous) and reconstructed (dotted) pitch contours, syllable
labels and pitch accents of the sentence ‘ ancak savunanlar da hayli fazla deniliyor’.

&ceent

Figure 7-20: Origina (continuous) and reconstructed (dotted) pitch contours, syllable
labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla deniliyor’
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Figure 7-21: Origina (continuous) and reconstructed (dotted) pitch contours, syllable
labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla deniliyor’

7.2.2.1 Accent Prediction

Accent location prediction is performed employing two experimenta setups as
discussed in Section 7.2.1.1: Experiment Set 1 and 2. Performances of the decision trees
areevduated using Training, Test and CrossVal methods.

Statigtical observetions given in tables Table 7-21 through Table 7-27 beong to the

accent prediction experiments. For both of the experiment sets, Test and Crossval

performances are lower than Training performances however they are morerdiable.

Table 7-21: Correct and incorrect classification rates for Experiment Set 1 & 2.

Number Per centage
of Syllables
Training Correctly Classifed Syllables (9920 79.4681%
Incorrecly Classified Syllables |2563 20.5319%
Experi ment Test Correctly Classifed Syllables (2126 62.8251%
Setl Incorrecly Classified Syllables [1258 37.1749%
Crossval Correctly Classifed Syllables (9859 62.1352%
Incorrecly Classified Syllables |6008 37.8648%
Training Correctly Classifed Syllables {10074 80.7018%
Incorrecly Classified Syllables 2409 19.2982%
Experiment Test Correctly Classifed Syllables 2234 66.0165%
Set 2 Incorrecly Classified Syllables [1150 33.9835%
Crossval Correctly Classifed Syllables 10669 67.2402%
Incorrecly Classified Syllables 5198 32.7598%
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According to Table 7-21, best correct classification rates are observed in the cases
where evaluations are performed on training set in both experiment sets. These results
illustrate the upper limits of the decision trees. It is observed that correct dassification
rates obtained in Experiment Set 2 is slightly better than those of Experiment Set 2.

Kappa coefficients for both experiment sets are given in Table 7-22. Although correct
classification rates of Experiment Setl are dlightly worse than Experiment Set 2,
corresponding Kappa coefficients of Experiment Set 1 are better than those of
Experiment Set 2. Evd uations using training sets approach 0.7 which is regarded as good
statistic correlation. Best Kappa coefficient is observed in Experiemtn Set 1.

Table 7-22: Kappa statistics of Experiment Set 1 & 2.

K appa Statistics
Experiment Tr_?_‘;tng ggg
Set 1 :
Crossval 0.38
Experiment Tr?;ng gg;
Set 2 :
Crossval 0.34

The confusion matrices of Experiment Set 1 & 2 are given in Table 7-23 and Table
7-25, respectively. Diagonal entries of the tables correspond to correct predictions while
off-diagonas correspond to false predictions. Confusion matrix of Experiment Set 1
(Table 7-23) shows tha decision trees cannot discriminate accented syllables from the
not-accented syllables. However, they perform a better discrimination in between positive

and negative accented syllables.

In order to compare performances of correct class predictions of both experiment sets,
confusion matrix of Experiment Set 1 (Table 7-23) is converted to two-class confusion
matrix given in Table 7-24. The converson is performed by merging the statistics of
positive and negative classes. Comparison of the cofusion matrices of both experiment
sats (Table 7-24 and Table 7-25), it is observed that prediction of accented class is better
in Experiment Set 2 but Experiment Set 1 predicts no-accents better. Approximately 11%
improvement is achieved in correct prediction of accented syllables.
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Table 7-23: Confusion matrices observed in Experiment Set 1 (positive, negative and no-

accent).
Classified as: | no-accent | positive | negative
no-accent 5327 444 336
Training | positive 765 2639 159
negative 677 182 1954
Experiment no-jc]r.:cent 1273 287 203
Set 1 Test positive 320 527 66
negative 290 92 326
no-accent 5679 1220 971
CrossVa | positive 1668 2418 390
negative 1364 395 1762

Table 7-24: Confusion matrices observed in Experiment Set 1 (accented vs no-accent).

Classified as: | no-accent accented
- no-accent 5327 780
Traning 1= cented 1442 4934
Experiment Test no-accent 1273 490
Set1 accented 610 1011
no-accent 5679 2191
CrossVal |- cented 3032 4965

Table 7-25: Confusion matrices observed in Experiment Set 2 (accented vs no-accent).

Classified as; | no-accent accented
- no-accent 4728 1379
Traning 1= cented 1030 5346
Experiment Test no-accent 1106 657
Set 2 accented 493 1128
no-accent 5100 2770
CrossVal I cented 2428 5569

TP rates, FP rates, Precisions, Recalls and F-Measures for Experiment set 1 & 2 are
given in Table 7-26 and Table 7-27, respectively. It is observed that best TP rates are
observed for no-accents in Experiment Set 1 while accented class is predicted better in

Experiment Set 2.
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Table 7-26: TP rate, FP rate, Precision, Recall and F-measures of Experiment Set 1.

TP Rate|FP Rate|Precision |Recall |F-Measure|Class
0.872 |0.226 |0.787 0.872 |0.827 no-accent
Training [0.741 |0.07 0.808 0.741 |0.773 positive
0.695 |0.051 |0.798 0.695 |0.743 negative
0.722 |0.376 |0.676 0.722 |0.698 no-accent

SPeMeN| Tet fo577 |o.a53 [0582  jo577 (0579 positive
046 [0.101 [0548 046 |05 negative

0.722 0379 06562 [0.722 |0.685 _ |no-accent

CrossVdl |0.54 0.142 0.6 054 |0.568 positive

0.5 0.11 0.564 0.5 0.53 negative

Table 7-27: TP rate, FP rate, Precision, Recall and F-measures of Experiment Set 2.

TP Rate |[FP Rate |Precision |[Recall |[F-Measure|Class
Training 0.774 0.162 0.821 0.774 |0.797 no-accent
0.838 0.226 0.795 0.838 |0.816 accented
Experiment Test 0.627 0.304 0.692 0.627 |0.658 no-accent
Set 2 0.696 0.373 0.632 0.696 |0.662 accented
Crossval 0.648 0.304 0.677 0.648 |0.662 no-accent
0.696 0.352 0.668 0.696 |0.682 accented

As aresult, it can be said that accented syllables are predicted better with the second
experiment set where we collected accented syllables into a single category. But the
performance in predicting not-accented syllables degrades when the second experiment
set isinvolved.

Improved accent assignment algorithm (ref Section 7.2.2) outputs are used in the last
six experiments. Them main motivation is to improve the performance of the former set
of experiments. Table 7-28 - Table 7-30 demonstrates the performances of the
evauations on training and test databases for comparison purposes. The performances
using the 10-fold cross vaidaion statistics are not considered since the remaining two
eva uations clarify current state.

The classification rates of the evauations on train and test data are given in Table
7-28. As revedled by the table, former experiments’ results are better than experiments
involving new assignments for pitch accents. The performance of the decision tree
reduced with the modified database. Therefore, it can be concluded that the resulting
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improvements in pitch accent assignment does not result in a performance i mprovement

in decision tree performance.

Table 7-28: Correct classification rates of Accent schemes before (Original) and after
modification (Modified).

Classification Rates

Correct | Incorrect

Experiment | Train | 84.23% | 15.77%
Set 1l Test | 74.56% | 25.44%

Origina - -
Experiment | Train | 84.58% | 15.42%
Set 2 Test | 75.89% | 24.11%
Experiment | Train | 79.47% | 20.53%
- Set 1
Modified Test | 62.83% | 37.17%

Experiment | Train | 80.70% | 19.30%
Set 2 Test | 66.02% | 33.98%

Table 7-29 demonstrates the overal performance obtained from the original database
and modified database. The columns correspond to TP rate, FP rate, precision, recall, and
F-measures, respectively. The prediction statistics also show that the former set of
experiments involving original database is better than the current set of experiments for
not-accented syllables. The accented syllables are better predicted with the current set f
experiments involving modified database. In fact, for the binary case, the accented
syllables are even better predicted than the not-accented syllables with the modified
database.

Table 7-30 demonstrates the confusion matrices of the decision trees using original
and modified databases, all together. Although, the number of correctly classified
accented syllables increased in the experiment set involving modified daabase, the

overal performanceis not improved further.

Considering al the statistics of both experiment sets involving original and modified
accent values given in the three tables, it can be said that the latter experiment set predict
accented syllables better. However, the prediction performance for the not-accented
syllables falls with the modified accent values. So, there is a trade-off in the selection of
the methods. If former decision tree is used, the prediction performance on the accented

syllables is rather low. But, if latter is used, then, the prediction performance of the not-
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accented syllables falls. As a matter of fact, performance improvement in predicting

accented syllables is accomplished in the | atter set of experi ments.

Table 7-29: TP Rate, FP Rate, Precision, and F-measure before and after modification.

TP Rate|FP Rate|Precision |F-M easure|Class
0.926 |0.28 0.855 0.889 no-accent
Train |0.726 |0.031 |0.84 0.779 positive
Experiment 0.658 10.038 |0.783 0.715 negative
Set 1 0.849 |0.417 |0.801 0.824 no-accent
Original Test 0.594 |0.081 |0.604 0.599 positive
0.488 |0.057 |0.63 0.55 negative
Train 0.916 |0.28 0.854 0.884 no-accent
Experiment 0.72 0.084 ]0.828 0.77 accented
Set 2 e 0837 [0.396  |0.807 0.822 no-accent
0.604 |0.163 |0.653 0.627 accented
0.872 [0.226 |0.787 0.827 no-accent
Train |0.741 |0.07 0.808 0.773 positive
Experiment 0.695 [0.051 |0.798 0.743 negative
Setl 0.722 |0.376 |0.676 0.698 no-accent
Modified Test 0.577 ]0.153 ]0.582 0.579 positiye
0.46 0.101 ]0.548 0.5 negative
Train 0.774 |0.162 |0.821 0.797 no-accent
Experiment 0.838 |0.226 |0.795 0.816 accented
Set 2 Test 0.627 |0.304 |0.692 0.658 no-accent
0.696 |0.373 |0.632 0.662 accented

One magjor drawback of the modified accent assignment is that some of the lexically
stressed syllables accented in the origina database are no longer accented because of the
newly set threshold vaues. An example is shown in Figure 7-22. In Figure 7-22, the
accents obtained after the modification is depicted in the third window. Accents
associated before modification are given in the fourth window. When both schemes are
examined, it is seen that the origina assignment method obeys rules of lexical stress
assignment better than the modified method. In order to preserve lexical stresses as well
as newly added accents, both outputs can be used.
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Table 7-30: Confusion matrices before and after modification.

Classified as. | no-accent | positive | negative
no-accent 7411 260 335
Train | positive 577 1685 59
Experiment negative 677 60 1419
Set 1 no-accent 1906 196 144
Original Test positiye 219 344 16
negative 256 30 273
Train no-accent 7335 671
Experiment accented 1254 3223
Set 2 Teq |NO-accent 1881 365
accented 451 687
no-accent 5327 444 336
Train | positive 765 2639 159
Experiment negative 677 182 1954
Set 1 no-accent 1273 287 203
Modified Test positiye 320 527 66
negative 290 92 326
Train no-accent 1106 657
Experiment accented 493 1128
Set 2 Test | nO-accent 5100 2770
accented 2428 5569

:0j

After

Before

|4zcent

Figure 7-22: Pitch contour and syllable labels and accent states before and after
modification of the sentence ‘ 6zgire beni beklemesini sdylemedin mi’
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7.2.2.2 Slope Prediction for Accented Syllables
As with the case discussed in Section 7.2.1.2, we perform slope amplitude prediction

involving two sets of experiments: Experiment Set 1 and 2.

For each set of experiments, three evauation methods are used: evaluation using
training data (Training), evaluation using test data (Test), and evaluation using 10-fold
cross vaidation method (CrossVal).

Table 7-31 demonstrates the quantitetive performance measures for slope prediction
after modifying accent assignemtn agorithm. Baseline performances usng mean slope
values aredso giveninthetable

According to the table, both experiment sets outperforms basdline model. Performance

improvement in MAE with respect to the baseline in Experiment Set 1 is around 54.2%
while it is around Performance improvement with respect to baseline in 27.3% in

Experiment Set 2.
The table also shows that overal performance of Experiment Set 1 is better than that

of Experiment Set 2. Best performances in both experimental setups are observed in
evauations using training dataset. Test dataset and 10-fold cross validation evaluation

performances are d most similar.

Table 7-31: Performance statistics of the the baseline, Experiment Set 1 & 2.

CC MAE RM SE

Training ~0 0.99 1.9

Basdine |Test ~0 0.92 1.66
CrossvVad ~0 0.97 1.85

. Training | 0.91 0.42 0.59
Experiment ==~ | 0.8 0.45 0.62

Set 1
Crossval| 0.88 0.45 0.64

Expariment Training | 0.67 0.67 1.02
pSet ) Test 0.60 0.69 1.04
Crossva| 059 0.73 111

Comparison of the performances of current set of experiments with those given in
Table 7-20, it is bserved that slope amplitude prediction isimproved after modification of

accent assignment algorithm for Experiment Set 1 but the performances decrease in
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Experiment Set 2 after modification. Overal performance improvement in MAE is
around 15% for Experiment Set 1. Experiment Set 2 performs slightly worse than slope
former corresponding experiment set given in Table 7-20. The overal performance
reduction in MAE is around 6%.

Considering dl the comparisons, we can say that modified accent assignment
improves performance in slope prediction using three accent categories. However, with
two accent case, performance measures of the former experiments were better.

Considering all results, using the origina accent assignment agorithm seems to
provide better performances. Therefore, corresponding results are used in pitch

reconstruction phase.

7.2.3 Pitch Contour Reconstruction
As discussed previoudy, a three-step procedure is followed for modeling pitch
contours. First step involves pitch accent placement, second step incorporates regression
trees for the prediction of accent slopes. In the last step, slopes estimates are used to
reconstruct syllable pitch contours which are used in deve oping resultant pitch contour
estimate.

In the first two steps of the pitch contour modeling, statistica corpus based methods
are employed. The classification task in the first step is handled by using the decision tree
algorithm (348) of WEKA package. The second part involves numeric prediction;
regression tree algorithm (REPTree) of the WEKA packageis used & this step.

For accent prediction, two different approaches are conducted. In the first one, the
accent of asyllableis predicted as one of the three accent classes. In the second approach,
the accented syllables are merged to construct a single dass for accented syllables.
Together with the not-accented syllables, the accented syllables constitute the dependent
variable of the decision tree learner. Then, accent types of each syllable are predicted

among the two classes.

Actual accent types of each syllable are considered as separate independent variables
for predicting accented syllables' slopesin the second step.

For each prediction task, the database is split into two subsets: training and test
datasets. Training dataset is used to develop an appropriate dassification/regression tree
while test dataset is used to evaluate the performance of induced tree. Training dataset
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consists of 12483 samples of the syllable database and the test dataset consists of the
remaining 3384 samples of the syllable database. These values correspond to 78.67% and
21.33% of the syllabl e database, respectively. The prediction performance is examined on
training and test datasets as well as by 10-fold cross validation.

When overdl statistics givenin Table 7-28 - Table 7-30 are considered, it is observed
that the performance of the decision tree is better when the former experiment set using
origina accent assignment algorithm is used. Therefore, for pitch contour reconstruction

purposes, we will mainly rely on the corresponding results.

For accent prediction, two different frameworks are provided: First set of experiments
involve three accent classes (classl, dass-1, and class0) for dope predictions while the
second set use two accent classes (classl class-l versus class0). Among the two
experiment sets, the latter is better in performance than the former. However, their
performances are still comparable. When the latter case is taken into account, one more
decision task should be performed, to discriminate the negative sloped accents from the
positive sloped accents, which may result in performance reduction for the overall case.
Therefore, three accent dassification results are used since they classify each syllable of
the corresponding test datainto one of three accents.

Results of the slope prediction experiment, with Accent related attribute having three
categorical values (positive, negative, and no-accent), given in Section 7.2.1, are used in

pitch contour reconstruction.

It should be mentioned that, although eva uations using training dataset, test dataset,
and 10-fold cross validation method are provided, results of the first two are considered
during pitch contour reconstruction process. The results on training dataset are better
since the same database is used to grow and test the decision tree. However, evaluation
using training data does not revea much information about the performance of the
decision/regression trees on new data. Therefore, results of the test data are focused in
generd.

For slope amplitude prediction, it is assumed that accent of the syllables in the
database are predicted previoudy, so they can be used as independent attributes in
regression tree development. Same assumption holds for pitch reconstruction phase also.
So, for reconstruction purposes, slope prediction results are directly employed, assuming
that the accent status of the syllables in the train database can be estimated with
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approximately 75% correct prediction rate. The slope values used in the learning phase
are drawn from the normdized pitch contours. The slope histogram of the overall
database, train and test database are given in Figure 7-11 - Figure 7-13.

In the reconstruction phase, we use slope va ues associated to each syllable as well as
initial FO value of each sentence. The slope value is used in combination with syllable
duration. For each syllable, the corresponding pitch contour is computed using the
previous syllable's fina FO, syllable duration and associated syllable slope. For making
slope computations to present a more redlistic framework, we set the estimated slope
values to zero for not-accented syllables (modified estimates). Both slopes are
demonstrated in the reconstructed contours fro comparison purposes.

For each syllable in the test set, we sdect ten time points that are equaly spaced.
Then, for each time point, corresponding FO valueis computed as follows:

FOft;) = FOftiy)+ (i —t )* m (7-11)

where {t ', corresponds to one of the ten time points belonging to the syllable mis the

dope estimate of the syllable and FO(t_,) is the previous FO value computed at time

{ti_1J1°,. For the sentence initial FO (FO(t =0)), the origind sentence start FO is used.

Future studies incorporate regression trees to estimate sentenceinitia FO.

Since, slopes as well as the sentence initial FO values are drawn from the normalized
pitch contours, the resultant reconstructions correspond to the normalized pitch contours.
The resultant pitch contours are shown in Figure 7-23 - Figure 7-33. All the contours
given in the figures are generated using three slope vaues: origind slopes, estimated
slopes, and estimated slopes with slope val ues corresponding to not-accented syllables set
to zero. We dso provide the results of the modified dataset (predictl) for making

comparisons.

156



Sertence 5 Fist Sertence 6 Fist

Figure 7-23: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets. Contours are generated using sentenceinitial FO and three slope
values: original slopes (bold line), estimated slopes (slim line), and modified estimates
(gray line) for the sentence.
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Figure 7-24: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.
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Figure 7-25: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.

157



Sentence 12 First Sentence 15 First

08
predict
+  original 08
t
predictl 0k

1
a4 o ﬁ/\\»w g
e 4 +
+H A fr
06 Sk ] f ol predict
4 M A +  oiiginal
: 7

predict1
T

0.5 1 15 2 25 3 35 4 4.5 o 05 1 15 2 25 3 35 4 45 5

Figure 7-26: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.
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Figure 7-27: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.
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Figure 7-28: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.
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Figure 7-29: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.
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Figure 7-30: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.
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Figure 7-31: Reconstructed pitch contours using origina (upper window) and modified
(lower window) datasets.

159



Sertence 39 Modiied

Figure 7-32: Reconstructed pitch contours using original slopes (+), estimated slopes (-),
and modified estimates (*) for the sentence*’ ().
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Figure 7-33: Reconstructed pitch contours using original slopes (+), estimated slopes (-),
and modified estimates (*) for the sentence*’ ().

In some of the cases, it is observed that using modified dataset instead of origina
dataset provides better pitch contour estimates whereas in some cases, the reconstructed
pitch contours corresponding to the regression tree derived from the origina database
provide better results.

For amost all cases, the peak locations are estimated satisfactorily. But, the
amplitudes of the peaks can not be attained (marked with circles in Figure 7-23, Figure
7-24, and Figure 7-26). One mgjor reason of this peak difference between actual and
predicted contours arises because of sudden jumps on severa syllables of the sentences.
When the database is considered, it is observed that sudden jumps are not encountered
frequently, thus, the corresponding regression tree produces smoother slopes for the
corresponding jumps.
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Another discrepancy observed on the estimated pitch contours is the inefficiency in
tracking the syllables with smoother slopes (marked with circles in Figure 7-30, Figure
7-31, and Figure 7-33); however, current accent assignment algorithm does not take into

account smoother slopes.

For most of the not-accented syllables, the pitch contour where the actual contour is
very smooth, the pitch contour shows a declination pattern. However, since we directly
sat the not-accented syllables' slope to O, the resultant pitch contours can not have
dedination on not-accented syllabl es (marked with dashed circlesin Figure 7-31, Figure
7-32, and Figure 7-33).

As a result, when triple accent classification and corresponding slope prediction
algorithms are considered, the resultant pitch contours of randomly sd ected test sentences
are estimated quite satisfactorily. The prediction accuracy of the classification trees can
not catch up with the state of the art prosody modding systems but it is believed that the
results can be further improved by incressing the size of the training data and by
providing more appropriate annotation schemes.

161



CHAPTER 8

SUMMARY AND CONCLUSIONS

Prosody plays an important role in speech communication. It is related to the
suprasegmental aspects of spoken language such as tonal qudity, stress, intention,
emphasis and speaker's characteristics. In natural speech, prosody of an utterance
depends on semantics, context, syntax, intended audience, and emotiond or physical state
of the speaker. The three mathematically tractable components of prosody generally cited
are; Pitch; segment duration and intensity. In this study, pitch contour and phoneme
durations are model ed to serve as abasis for Turkish speech and linguistic research. Steps
of our modeling efforts are summarized in the following sections.

8.1 Summary
First chapter introduces a brief definition of prasody and its components. Objectives

and motivations are discussed in this chapter.

Focusing on the most influencing research, an overview of different gpproaches to
intonation and duration modding is given in the second chapter. Intonation modding
studies are discussed under two broad categories. Phonological and phonetic modeling
approaches. Examples of phonological and phonetic intonation models are introduced.
Consequently, rule-based and recent corpus-based duration mode s are reviewed.

Third chapter introduces text and speech databases devel oped during the progression
of the thesis studies. The text database is designed to provide phonetic and prosodic
balance. A set-covering algorithm is used to select sentences from a larger set to
guarantee phonetic coverage. Resultant phoneicdly balanced set is modified
syntactically to attain prosodic coverage Designed text is recorded by a native female
speaker in a soundproof booth. Phonetic transcription and alignment is provided for the

resultant speech corpus.
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Chapter 4 introduces prosodic atributes incorporated in modeling phoneme durati ons.
Attributes used for phoneme duration modeling involves phoneme (segment) identity,
preceding/following phoneme identities, lexicd stress, and positiona attributes for
segment, syllable and word. Individud effects of durational attributes on phoneme
durations are examined in terms of statisticall measures such as mean value, standard
deviation and coefficient of variance. Some of the observations on phoneme durations

and durational attributes are given bdow:

It is observed that lexical stress does not play an important role in Turkish
phonemic structure as in other languages such as English; however, phrase-final
lengthening is observed in Turkish (ref Table 4-5).

Studies on voiced and unvoiced consonants reveal that differences between voiced
and voiceess consonants are very significant, i.e. in the order of 30-40 ms;
voiceless consonants are longer in duration than their voiced counterparts (ref
Table 4-4).

It is adso observed that when followed by a voiced consonant, phoneme duration
increases except for vowe + voiced-plosive combination. Moreover, voiced
fricative followers influence voicdess phoneme durations (~30 ms) more than
voi ced plosive (~12 ms) and affricate (~14 ms) followers (ref Table 4-6).

When phoneme durations with respect to syllable position are examined, it is
observed that voiced consonants are sightly longer when they occur in coda
position. Besides, affricates, nasals, plosives and liquids occurring at onset are
significantly longer in duration (around 20-30 ms) than the ones occurring at coda
(ref. Table4-11).

Studies on phoneme duration with respect to syllable type showed that phonemes
have shorter durations in open syllables than in closed syllables (ref. Table 4-12
and Table 4-13).

Phoneme durations are also affected by position-of-parent-syl labl e-i n-parent-word:
phonemes of word-initial and word-final syllables are longer and phonemes of
single-syllable-words attain the maximum average duration (ref T able 4-15).

According to parent-word-position-in-sentence, phonemes occurring & last words
of the sentences are longer than the ones occurring at sentence-initial or sentence-
media words. The percentage |engthening is approximatey 20% (ref Table 4-17).
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Average phoneme duration is shortened as the number of syllables in parent word
increases (ref. Table 4-19). Phoneme duration is 41% longer in single-syllable-
words than in words having ten syllables.

Phoneme durations do not show a characteristic change with respect to the number-
of-words-in-sentence (ref. Table 4-20).

Average segment duration increases as the number-of-words-from-preceding-
phrase-break increases since the probability of encountering a new phrase break
increases (ref. Table 4-23).

Words immediatd y foll owed by a phrase break attain maximum average phoneme
durations (ref. Table 4-23).

The chapter ends with a discussion about attribute dependencies using mutual
information criterion. Mutua information matrix showed that there is a stronger relation
between phoneme identity and contextual attributes.

Attributes identified in Chapter 4 are used for phoneme duration modeling in Turkish.
Corresponding results and discussions about phoneme duration modding are given in
Chapter 5. Forward sd ection method is used to determine the set of durationa attributes
that best modds phoneme duration. Performances of the resulting modds are
quantitatively analyzed. Best corrdation coefficient and root mean square error is
obtained with the attributes phoneme-identity, left/right, lexical-stress-of-parent-syllable,
syllable-type-of-parent-syllable, Part-of-Speech-of-parent-word, phrase-information and
number -of-wor ds-to-following-phrase-break  attributes.  Corresponding  correlation

coefficient and root mean squared error are 0.78 and 20.05 ms, respectively.

To improve duration prediction performance severa modifications, duration
quantization, modification of atribute vaues, outlier analysis, and shift and/or scale
modification, are proposed. Duration quantization provides a dimension reduction in the
duration values. Before modification, there are 242 distinct duration val ues. Quantization
is performed using 54 quantization levels. Prediction performances are sightly worse
than origina duration values. However, results showed that phoneme durations can be
model ed using fewer amount of data.

Another modification is performed in the sdection of attributes. Using identities of
preceding and following phonemes (Left/Right) requires a larger database for modeling
purposes. It is observed that the speech database used in phoneme duration modding does
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not cover al representatives of al possible triphones. Hence, instead of directly
incorporating identities of preceding and following phonemes, their manner of
articulations are used in phoneme duration modeling. Keeping al other attributes,
utilization of manner of articulaions resulted in a dight improvement in prediction
performances. Percentage improvements in correlation coefficient and root mean squared
error are approximately 2% and 3%, respectively. Furthermore, manner of articulation
values used are enlarged by adding the phonemes that effect phoneme duration
significantly. Significance is evaluated by means of coefficient of variance. However,
proposed modification does not improve the prediction performance obtained using

originad manner of articulations.

The numerical durationa atributes and the maximum values that an attribute can
atain are given as fallows: syllable-position-in-word (10), word-position-in-sentence
(19), length-of-word-in-syllable-units (10), length-of-sentence-in-word-units (19),
position-of-syllable-in-sentence  (45), number-of-wor ds-from(to)-preceding(foll owing)-
phrase-break (8 for each) and number-of-syllables-from(to)-preceding(fol lowing)-phrase-
break (27 for each). Their cross-product should be spanned by the database to be used in
modeling. Hence, 10x19x10x19x45x8x8x27x72 = 75792672000 phonemes are required
to represent al combinations of numerical attributes. However, this is not possible in
genera with the available speech databases. Therefore, two modifications are proposed
for reducing the size of numerical attributes: normaization and symbolic representation.
Proposed modifications are evaluated incorporating syllable-position-in-word attribute.
The sample attribute attains values changing from 1 to 10. Symbolic representation
involves coding of the attribute with respect to its relative position. For syllable-position-
in-word attribute, possible atribute values for symbolic coding are {I, for word-initial-
syllables, F for word-final-syllables, S for onesyllablewords and M for others}.
Normalization involves length information as well. Resulting values are rea valued lying
in the closed range of O (for word initial and single syllable words) and 1 (for word fina
syllables). Using normalized attributes may increase the attribute span; however they
eiminate utilization of length based atributes. Performances of the proposed
modifications are evaluated keeping al other attributes fixed and using modified
attributes. According to the results obtained, attribute value modification does not result

in significant performance improvement however slightly better results are obtained.
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Another modification for performance improvement in phoneme duration modeling is
performed by excluding extreme duration data. The data range used in modeing is
determined considering phoneme duration statistics. The duration dataiswiddy spread in
2ms — 295ms range. Mean, standard deviation and median values of duration data are 63
ms, 57 ms and 31 ms, respectively. Besides, 91.3% of the dataliesin the 22 ms— 117 ms
range in the overall database. Considering duration statistics, durations outside 10 - 150
ms range (approximately 1.7% of overdl dataset) are set as extreme duration values. Rest
of the duration va ues are model ed using the durational attributes described in Chapter 5.
Resulting prediction performances are improved significantly yieding a correation
coefficient of 0.75 and an RMSE of 18.6 ms. Best correation coefficient reported in
literature is around 0.9 [Venditti and van Santen, 1998]. The performance difference
between two data sets points that adthough manua correction is performed on phoneme
boundaries, there are ill segmentation errors in the database.

Shift and/or scde modification is another modification applied to improve the
prediction peformance in phoneme duration modeling. Predicted durations and
corresponding RMSEs are redefined using shift and/or scale parameters. Shift and/or
scale parameters are found so that corresponding RMSE is minimized. Parameters are
traned on training se&¢ RMSE and applied on test set predictions. Best correation
coefficient and RMSE values obtained are 0.79 and 19.5 ms, respectively. Resulting
modification improves corre ation coeffident and RM SE 2.6% and 4.4%, respectivdy.

Chapters 6 and 7 present pitch contour modeling studies. For pitch contour modeling,
syllables are selected as the basic units. Attributes that are used for pitch contour
modeling are defined in Chapter 6. Almost al attributes involved are defined in literature.
However, NegFlag, Sentence-type and POSRoot attributes have not been used in previous
studies. NegFlag is a binary attribute that represents whether current syllable comprise a
negation suffix or not. Sentence-type attribute is coded with 4 categorical attributes that
corresponds to the parent sentence structure described in Chapter 3. POS oot attribute is
used to capture parent word's original morphemic constitute, i.e. houn, adjective, verb,
and etc. Turkish isahighly aggl utinative language. There are derivationa suffixes as well
as inflectiond suffixes. Words can appear in their derived forms, for example, an adverb
can be obtained using the derivational suffix —ylp from a verb. POSroot attribute holds
parent word's original constitution. Chapter ends with a discussion about the relation of
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atributes and pitch contour parameters using information gain, gain ratio and

symmetrica uncertainty measures.

Pitch contour modeling studies are presented in Chapter 7. Two different methods are
proposed for pitch contour modding. One method can be associated to phonetic modeling
methods introduced in Chapter 2. The other method can be considered as a phonol ogical
model since it captures the prominence of syllables. Both proposals aim a describing
syllable pitch contours with alimited set of symbals.

One method generates a codebook of syllable pitch contours and uses corresponding
codewords in pitch contour prediction. Codebook generation is performed by means of
vector quantization of syllable pitch contours. Codebooks of various sizes are generated
but pitch contour modeling is performed using 24-codebooks. Prediction performances
are given in Section 7.1.2. All codebook entries are not sufficiently represented in the
database (Table 7-4). Besides, there are similar patterns in the codebook that may be
counted as wrong classifications. Hence, resulting correct classification percentage is
rather low, around %27. Best TP rate is obtained for codeword 2, which is the most
frequent codeword observed in the database, as 0.79. Worst TP rate is obtained for
codeword 12, which is one of the rarest codewords in the database.

Codewords are used to assign accent status to syllables depending on two criteria
multimodality and dynamic range. Former experimental results show that centroids with
dight level differences cause lower performances. Therefore, level differences are
removed from syllable pitch contours. Resultant contours are vector quantized in two
stages. In the first stage, a codebook of 100 centroids is generated from the syllable pitch
contours. In the second stage, codewords that are generated in the first stage are used to
generate a codebook of 25 dements. Among the resultant codewords, the ones having
multimodalities are associated to pitch accents. Binary prediction is performed to decide
whether a syllable is accented or not using previously described prosodic attributes.
Corresponding decision tree performance is given in Section 7.1.3. The percentage of
syllables that are correctly classified is around 80.6%. Although overal prediction
performance of binary classification is very good when compared to 24 codeword
classification, TP rate of the accented syllablesis rather low, around 43%. Examination of
resultant predictions yield that what determines pitch accent is not multimodality but the

dynamic range.

167



Accent assignment is revisited using dynamic range information. Observations on
perceptual tests reveal that prominence is perceived on abrupt changes of pitch contour.
Therefore, second approach uses dynamic range rather than contour shapes. Codewords
with dynamic ranges greater than a predefined threshold are associated to pitch accents.
Two experiments are performed using different thresholds. In the first experiment, the
threshold value is set to 108 Hz. Corresponding binary classification predicts
approximately 80.9% of syllables correctly. Overall performance of the decision tree is
improved slightly however accented syllable prediction performance is worse since
108Hz threshold causes most of the accented syllables to be eiminated. In the second
experiment, the threshold is lowered to 40 Hz. Corresponding decision tree predicts
80.9% of the syllables correctly. The TP rate of accented syllables is improved
significantly (81%) at the cost of lowered TP rate for unaccented syllables (~60%).
According to the resultant predictions, it is observed that TP rate of the less frequent

dependent variableis lower than that of the frequent ones.

Other approach relies on the definition of pitch accent for Turkish. Pitch accents
correspond to perceptud prominence and are mainly aligned with lexicaly stressed
syllables of the words. Accented syllables are associated with syllables having sudden
and large pitch movements. A pitch accent assignment algorithm is devel oped to describe
the accent status of syllables with respect to slope vaues and a predefined slope
threshold. Rising patterns are associated to positive accents while faling patterns are
associated to negative accents. Smoother contours are associated to no accent. Rising and
faling patterns are combined to produce accented syllables. Accent prediction is
performed within two frameworks. Three accent states (positive, negative and no accent)
and two accent schemes (accented versus not-accented) are predicted using decision tree
learning. Corresponding slope predictions are performed usi ng regressi on trees. Resultant
performances yield that two-accent prediction performs slightly better than three-accent
prediction. The utmost correct classification rate obtained in three-accent classification is
around 84.2%. Binary prediction performs slightly better with a correct classification rate
of 84.5%. However, binary prediction requires one more step to map syllables to three-
accent scheme. Predicting triple accent from binary predictions can lower the
performance due to generalization of decision treelearning. Hence, syllable-pitch-contour
prediction studies are based on triple accent classifications results. Best TP rates for not-
accented, positive and negative accented syllables are 92.6%, 72.6% and 65.8%,
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respectively. Not-accented syllables comprise approximately 64% of the database; that is
the main reason why best performance of triple accent classification corresponds to not-
accented syllabl es.

After accent prediction, dopes are predicted for the corresponding accented syllables.
Accent states of the syllables are incorporated in slope prediction. Best performance in
slope prediction is obtained using triple accents. Resultant correlation coefficient and root
mean squared error are 0.86 and 0.69, respectively. For comparison purposes, correlation
coefficient and root mean squared error corresponding to average slope values are given
as -3.6e-16 and 1.9, respectively. Involving regression trees improves predictions using
average slope vaues approximately 63.5%. Slope predictions are used to reconstruct
sentence pitch contours.

Considering resultant sentence pitch contours, accent assignment agorithm is
modified. Former version of the agorithm is constraint on selecting only one accented
syllable per word. However, consecutive syllables may show rising/faling patterns in
some words. The agorithm is improved to cach up al syllables that show rising and
faling patterns. With this improvement, best accent dassification with triple and two-
accent classification is performed with 79.5% and 80.7% accuracy, respectively. The TP
rates for triple accent classification are 0.87, 0.74, and 0.7 for not-accented, positive
accented and negative accented syllables. Corresponding TP rates in two-accent
classification are 0.77 and 0.84 for not-accented and accented syllables, respectively.

Using modified accent assignment scheme, best dope prediction is obtained via
incorporating triple accents in learning. Corresponding correlation coefficient and root
mean squared error are 0.91 and 0.59, respectively. Slopes predicted using regression
trees provide an improvement of approximately 68.95% over average slope values.
Sentence pitch contours are generated using accent information and predicted slopes. It is
observed that slopes follow origina pitch contour patterns. However, there are level
differences between reconstructed sentence contours and the origina contours. This level
shift is mainly due to syllables having multimodalities. Multimodal syllables can not be
model ed accurately with the current accent assignment agorithm since only one rising or
faling slope per syllable can be assigned. However, multimodal syllables require more
complex patterns. Future improvements to handle this problem are revisited in the
subsequent section. Another point related to the resultant sentence-pitch-contour
predictions is that predicted contours can not reach the maxima observed in the origina
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contour. The main reason for this phenomenon is such maxima are rarely observed in the
database, a most one syllable per sentence. And they generaly correspond to the
lexically stressed syllable of the intended word (focus) in the sentence. Currently, focus
information is not incorporated in decision tree learning. As discussed in the following

section, using focus information is considered as a future work.

Both proposals are different from previous intonation modeling studies. Almost all
intonation modeling systems rely on syllabl e units however their approaches differ in the
way they utilize syllabic information. From the point of view of describing fundamental
frequency contours, one of the proposed approaches can be considered as phonetic and
the other as phonological. Both depend on phonetic andysis, however, the latter rdies on
describing accent scheme for Turkish. Both approaches rely on syllable pitch contours to
predict pitch contours. Ten equidistant FO values are used to develop codebooks or to
assign pitch accent to the syllables. Based on the resulting scheme, predictions are
performed. As introduced in Chapter 2, non-parametric methods also rely on raw FO
values however proposed methods differ in the way they utilize raw FO vaues. Main

differences are summarized in the following paragraphs.

Vector quantization is used in different areas of intonation modding studies.
However, they differ from the proposed approach. Most of the studies incorporating
vector quantization in pitch contour modeling provide parametric representations
considering al syllables or only accented syllables. Sigmoids, Bezier functions,
polynomial extensions are used to represent pitch contours parametrically. Function
coefficients are vector quantized using minimum distance criterion. Some others use a set
of FO values together with some duraion parameters and perform vector quantization
afterwards. Proposed approach performs vector quantization of all syllable pitch contours.
Ten equidistant FO vaues for each syllable are used as input to the vector quantization
algorithm. Resulting codewords are used in pitch contour prediction. Codewords are also
used in the determination of accented syllables. Hence, a mapping from phonetic
description to phonologica entities is performed. Consequently, pitch prediction is
carried out by means of binary prediction. By means of two-level vector quantization,
codebook inventory is pruned so that identical centroids are merged. Syllables are
associated to accent status depending on the pruned centroids taking into account
dynamic range and shape of the centroids. Binary prediction is performed to determine

accent status of the syllables.
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Other proposed approach uses phonetic anaysis of pitch contours to assign accent
labels to syllables. From the ten FO values, mean and slope va ues for each syllable are
calculated. Developed accent assignment algorithm associates accents considering slope
and mean values of the syllables. A syllable is accented if it has a slope value that is
greater than a determined threshold. Threshold is determined experimentally. However,
an optimization can be performed on the threshold value. Optimization can be performed
by means of andysis-by-synthesis. Threshold can be optimized by means of perceptual
listening tests. Labeled database is used to predict whether a syllable is accented or not
accented.

Other methods that employ non-parametric methods for intonation modeling predict
every FO vdue independently or using vector regression trees. Vector regression trees
resemble our first proposal in the sense that FO values are predicted considering a
minimum distance criteria, usually Mahal onobis distance.

8.2 FutureDirectionson Turkish Prosody
Perceptual Evaluation of Performance: Phoneme durations and pitch contour
modeling for Turkish is accomplished. Performances of developed models are evaluated
quantitatively. However, prosody is meaningful perceptualy. Hence, perceptud
eva uations can be carried out to evaluate model performances as a future work.

Sentence Pitch Contour Modeling: Pitch contour modeling studies can consider
sentence pitch contours, not syllables, for locating pitch accents. Syllables can be
associated with pitch accents accordingly. Currently, slope computation considering
syllable pitch contour is not robust such that each syllable is assigned at most one slope
value. Assigning only one slope per syllable can not capture multimodal pitch patternsin
some of the syllables. Moreover, slopes are computed considering syllable initial and
final pitch values. Hence, multimodalities observed on syllable pitch contours do not
yield significant slope values. Those syllables which have sharp peaks or valeys are not
associated to pitch accents. Figure 8-1 shows speech waveform, pitch contour and
accents associated to syllables of the sentence ‘ancak savunanlar da hayli fazla
deniliyordu’. On the syllable‘cak’, thereis a fall-rise pattern which corresponds to aloca
valley. Depending on the chosen threshold, accent assignment a gorithm can assign only
one type of accent athough there are falling and rising patterns. Every prominent peak
and valley as well as rise and fal can be captured considering overall sentence pitch
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contours. Sentence contours can be inspected to find prominent pitch events (rise/fall,
peak/valley). Slope vd ues can be calculated considering the initid and final positions of
corresponding events. However, how this information will be incorporated into the
current study is still an open issue. There are severa limitations with the current study: 1)
Syllables ether have positive accents, negative accents or no-accent however, fdl-rise
and rise-fall patterns comprise both accent schemes. Solution to this problem 2) Let us
assume that the accent inventory is enlarged as in ToBI annotation scheme. Then, timing
will be another problem. There may be early rises/falls or late rises/fals or they may
appear right in the middle. 3) During reconstruction, predicted syllable slopes are used.
Hence,

ﬁ@ \W/\/_A
\k_\-h’—\“

=1 an dZak 53 ) nan Lar da hay i faz

Figure 8-1: Speech waveform, corresponding smoothed and interpolated pitch contour,
syllable labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla
deniliyor’ (however it issaid that the defenders are a so too much).

Codebook Generation: Codebook generation agorithm can be revisited. In this study,
pitch contours of every syllable is taken into account. Vector quantization is performed
over al syllables to generate a syllable-pitch-contour codebook. However, sentences are
not composed of successive pitch events. Events are separated by smooth contours that
are not perceptually significant. Codebook generation does not rdy on this fact.
Codebook generation can be performed considering only prominent pitch events as a
future study. This way, prominent syllables can be represented in detail and excess
information rd ated to smooth contours can be discarded.
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Acoustic Segmentation of Syllables: For pitch contour modeling, syllable boundaries
derived from phoneme boundaries are considered for each word taking into account
orthographic word form. However, Turkish native speakers concatenate successive words
if one ends with a consonant and other starts with a vowel. This phenomenon is known as
liaison. Liaisonis not gpplicableif thereis abreak between two successive words. Such a
case is shown in Figure 8-2. The words ‘andiz’ and ‘edilmek’ obeys liaison rules and
syllable boundaries can be assigned accordingly. The syllable boundaries considering
single words are given in the figure. Considering liaison effect, the words act as asingle
word and syllables can be segmented as follows: ‘&, ‘na, ‘li’, ‘z€, ‘dil’, ‘mek’. With this
modification, rise-fal pattern end osed within the syllable ‘liz’ can be partitioned into rise
and fdl pattern enclosed in syllables ‘1i’ and ‘ z€'.
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Figure 8-2: Speech waveform, corresponding pitch contour, and orthographic syllables of

the sentence ‘ yumurtalar analiz edilmek lizere ...". Using syllable boundaries considering

speech waveform, rise-fall pattern squeezed in the orthographic syllable ‘1iz’ can be split
into rise and fall patterns corresponding to acoustic syllables‘li’ and ‘z€'.

More on Speech Corpus. Phonetic transcription and aignment of the developed
corpus are provided within the scope of this thesis. Phonetic aignment is performed
automati cally. Approximatey 70% of the corpus is corrected manually and used in phone
durations and pitch contour modeling. 30% of the corpus will be manually corrected in

future.
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Designed text database used in building speech corpus has not been annotated with
punctuation marks. The main motivation in not using punctuation marks is to se the
speaker completey free. With this way speaker uttered corresponding text in the way she
thought to be correct. However, punctuation heps the speaker to impose regular
intonation patterns. Without punctuation, although correct, unexpected intonation patterns
can be observed. Punctuation marks also hdp in determining possible breaks in the
speech. A full-stop and a comma generally corresponds a long and a shorter pause in
speech. So utilization of punctuation marks provides speaker and model devel oper certain
facilities. Therefore, punctuation marks can be provided to the designed text and re-
recorded. Currently, phrase breaks are obtained perceptualy. Perceptual phrase break
assignment results in a more accurate break scheme than regarding only punctuation
marks. Though, punctuation marks can be used to verify perceptual phrase breaks.

Lexical Stress Assignment for Complex Structures: Lexica stress assignment for
compounds and phrases can be handled as a future work. Within the course of this thesis,
a stress assgnment agorithm has been generated considering Turkish stress rules.
However, this algorithm considers words one-by-one and assigns lexical stress
accordingly. Word stress pattern can be atered by compounding and phrasing in Turkish.
In Figure 8-3, the sentence * dovizde yapilan anaizlerde ciddi bir sigrama beklenmiyor yil
sonuna kadar’ with its pitch contour is given. The phrase ‘dovizde yapilan analizlerde
acts as a single word and the syllable ‘de’ of the word ‘dévizde' is the lexicaly stressed
syllable of the phrase. Currently, stress assignment algorithm handles each word
independently and assigns corresponding lexical stresses. Accordingly, three syllables are
lexically stressed: ‘de of dovizde, ‘lan’, and ‘de” of ‘anadizlerde’. To improve
performance, stress assignment agorithm can be revised to handle compound words and
phrases. However, it should be noted that the challenge liesin detecting compound words
and phrases not in assigning lexica stress to them. Lexicd stress rules apply compounds
and phrases a most same if one can capture the quantifier of the compound/phrase.

Utilization of Focus Information: Focus is an important aspect of speech. It is
observed that words that are focused reaches maxi mum pitch wherever it islocated in the
sentence. In our modeling studies, focus information has not been incorporated yet.
However, incorporating focus information can greatly improve predi ction performance.

41t should be noticed that, the risein the second ‘de’ indicates that sentence will continue after the
phrase.
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Figure 8-3: Speech waveform, smoothed and interpolated pitch contour, and orthographic
syllable boundaries of the sentence * dovizde yapilan analizlerde ciddi bir sicrama
beklenmiyor yil sonunakadar’. The phrase ‘ dovizde yapilan andizlerde’ acts asasingle
word and the syllable ‘ d€ isthelexically stressed syllable of the phrase.

8.3 Discussons

Phoneme duration modeling:

For duration modeling, attributes are selected sequentially so that each new attribute
increases prediction performance. Best prediction performance is obtained with Phoneme
Identity; hence it is sdected as the best predictor. It is observed that newly added
attributes after seventh attribute do not provide further improvement. The seven attributes
that best predicts phoneme duration are Phoneme Identity, Left/Right, Lexical Sress,
Syllable Type, Word Part-of-Speech, Phrase Break, and Number of Words to Following
Phrase Break.

It is also observed that the Left/Right attribute makes the best contribution to duration
modeling. Hence, Phoneme Identity and Context are the two most influential attributesin
duration modding. Depending on the observations that Phoneme identity and immediate
left and right context play an important rolein duration prediction, it can be inspected that
using larger contextual windows in duration modeling may improve performance.
However, larger contextual windows require large databases since the number of unitsto
be covered increases multiplicatively. For example, for a window of three phonemes
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(Ieft-current-right), the total number of possible combinations is 43x42x43 (= 0.077x10°)
while for awindow of 5 phonemes (I eft2-1€ft1-current-right1-right2), the total number of
combinations is 43x43x42x43x43 (= 0.14x10°%). So, increasing the window size to include
one more contextual phoneme results in a dimension increase of 43x43 (~99%). Hence,
the problem can beinvestigated for a coupl e of phonemes only. Phoneme sd ection can be
performed depending on the frequency of possible contextual windows. A speech
database can be constructed to include possible combinations for the considered
phonemes. Effect of larger contextual windows on phoneme duration can be revea ed by
means of quantitative analysis methods.

However, it is dmost impossible to ana yze effects of larger contextua windows on
duration modeling for dl phonemes with a limited database. Experiments performed
using phonetic class instead of phoneme identity for Ieft/right context show that reducing
the dimension of contextua window does not result in a reduced performance but slightly
better performance. Hence, the dimension problem encountered in contextual
window/phoneme duration dependency can be handled using phonetic class instead of
phonetic identity. Phonemes can be classified depending on their discriminative
characteristics such as vowes versus consonants, voiced versus unvoiced;, or more
specificaly depending on how they are produced.

Vowels are classified by the highest point reached by the tongue both in vertical and
horizontal directions. These directions are split into two parts: High/Low; and
Front/Back. Vowds are dso split into two depending on their lip shaping:
Round/Unround. Consonants i nvolve constrictions, or gestures that narrow the voca tract
a a particular point. Consonants are discriminated with respect to their place of
articulation:  Bilabial/Labio-dental/Dental/Alveolar/Vear/Glottal; and manner  of
articulation: Plosive/Affricate/ Stop/Nasal/Fricative/ Approximant. Selection of features to
be used in duration modeling as a predictor is another problem. Generaly, manner of
articulations are used in phoneme duration modeling studies. In our studies, instead of
identity, manner of articulations for consonants and backness/frontedness for vowels are
used. However, feature combinations or other aspects of features may be more
appropriate. Hence, in order to determine the features to be used, experiments involving
limited databases in which different aspects of consonants and vowe's are handled can be
formed.
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Another point of interest is the effect of word/phrase/sentence (for paragraphs)
boundaries in context study. Increasing the size of contextual windows is a step towards
using word-sized or even larger units. When larger contextual windows are selected, the
probability that a word boundary is enclosed within the sdected window increases.
Hence, one may wonder even if the context is same, is phoneme duration affected by
existence of a word boundary. Effect of word boundary on context hence phoneme
duration can be investigated using same contextual windows but with and without word
boundaries. The sentences ‘bdik adirdim’ and ‘bali kaldirdim’ comprise a pair of such
constitutions. Both sentences have the same phonetic sequence hence whatever context
sizeis chosen the e ements of the window will be the same. Effects of word boundary can

be uncovered consi dering the phonemes at boundaries.
One other factor that may have impact on duration modding is the speaking rate.

“...Results showed that the consonant and vowel durations were all significantly
influenced by speaking rates and utterance units. At five kinds of speaking rates, the
durations of vowels changed more than those of consonants. Fricative durations
expanded more than the durations of other consonants, while the duration of
unaspirated stops kept constant at five speaking rates. Vowels in monosyllable had
longer duration than thosein other utterance units....” [Jing 2004]

As stated in Jing, consonant and vowel durations are affected by local speaking rate.
Generdly in duration modeling studies, this phenomenon is underestimated. The main
reason for this is that duration modelling studies use recordings of a speaker with a
norma style. However, most modds depend on recordings that last over days. Hence,
speaker shows variations during in his’her speech. Consequently, one may wonder how
duration modelling performance is affected by changes in spegking rate. To observe the
effects of speaking rate on duration modelling, first effects of speaking rate on phoneme
durations are to be investigated. To this aim, a small speech database comprising normd,
fast and slow speech can be constructed and average phoneme durations for each
speaking rate can be determined. If there is a relationship between phoneme durations and
speaking rate, then speaking rate can be incorporated as a predictor in duration modeling

studies.

Discussions about phoneme duration modeing studies reveal ed the question that how
well we model phoneme durations? Are the attributes used in duration modeling studies
are sufficient? Or can the algorithms used in duration modeling studies develop duration

models from the given attribute set adequately? Let us assume that the attributes are well
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sdected and the algorithms produce perfect models. Average RMSE between observed
and predicted durations are around 20 msin literature, thet is, there is a considerable error
in duration prediction. What is the reason for this much of RMSE in duration prediction?
Is there randomness in duration modeling issues? In fact, phonemes are produced by a
physiological system. Like every system, the product of a physiological system may have
certain randomness while producing same phoneme even in the same context. Another
important fact about duration modeling is that it relies on either manua or automatic
labeled speech databases. Even in manual labeling, there may be inconsistencies which
may result in randomness.

Segmentation inconsistencies are generaly encountered in labeling vowel-voiced
boundaries. In order to avoid inconsistencies, one may suggest using a labding standard
however such a standard may dso be insufficient in determining the segment boundary
especialy in between voiced-semivowd transitions. Another solution may be considering
larger units for such cases. Some of the duration modeling studies relies on syllable-sized
units however in Turkish; syllables may be inadequate to capture such transitions. For
example in the sentence ‘roma jazarmlS', which can be rewritten in syllables as ‘ro-ma-
jazar-mlS', the syllables ‘ma and ‘ja can not be segmented accuratdy because of a
vowel-semivowed -vowd transition. Therefore in Turkish, larger unit concept does not
point out single type of units such as syllables but aunit with variable size.

In order to detect such units, visual cues may be incorporated in segmentation. Lip,
tongue and chin motion can be used in segmentation of speech into consistent speech
units. Modeling phoneme duration can then be transformed into modeling lip, tongue and
chin timings which can be determined more accurately than phoneme durations.

Pitch contour modeling:

Pitch contour modeing studies generaly rely on describing an intermediate
representation of pitch contours. The purpose of using intermediae representations is to
decrease the complexity of rdation between linguistic attributes and the pitch contour,
which is continuous in nature. ToBl and Fujisaki approaches are two extremes of
intermediate representations. ToBI is a phonological model that represents pitch contours
as a sequence of discrete symbols whereas Fujisaki’s model interprets pitch contours as
the superposition of three waveform components. baseline, loca and globa pitch

excursions.
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A major drawback of ToBI-like representations is the need for expert manua labeling
which is too much time-consuming. Labeling consistency among different labelers is
another problem; for example, one labder may mark a syllable as accented while the
other may not or one may mark a syllable as H+L*, the other as L*, and so on. Hence,
such modd's are highly influenced by human factors.

Labeler dependency is eliminated by means of automatic pitch contour modding
methods such as Fujisaki or Tilt modd. Both modes analyze pitch contours
automati cally. However, Tilt model incorporates ToBI labds in the analysis procedure
therefore it may be viewed as a semi-automatic model. Fujisaki mode decompose pitch
contours into three components: base FO, local excursions (pitch accents) and globa
excursions (phrase accents). Tilt modd assigns a tilt value for each accent or boundary
tone. Both models rdy heavily on pitch contours themselves in order to extract the

parameters necessary to synthesize the pitch contours.

Pitch contour extraction is performed in two ways. In the first approach, a
laryngograph is used in recording. In the second approach, pitch contour is extracted from
the speech signa itsdf. Laryngograph signa is more appropriate for pitch contour
modeling studies than the pitch contour extracted from speech signal since it is more
rdiable. In this study, pitch contours are extracted from the speech signas and it is
observed that athough the performance of the agorithm used to extract pitch contoursis
quite good, it is amost impossible to avoid errors. Because of the timing considerations,
the errors are not manually inspected within the framework of the study assuming that
they can be compensated by smoocthing and interpolation processes. The assumption
holds generally however there are gross errors and hence manual tuning is required.

However, using laryngograph signd may adso be inadequate for pitch contour
modeling studies tha rely on parametric representations. Tilt and Fujisaki modée
parameters are derived from continuous and smoother pitch contours as opposed to
origina contours. Original pitch contours revea discontinuous patterns that also exhibit
perturbations due to segmental effects, i.e. microprosody. The discontinuities are
encountered at the unvoiced regions of the speech where there is no FO. Consonants,
especialy plosives, result in smaler perturbations such as sudden peaks in the pitch
contour. Vowels also contribute to the pitch contour by means of ther intrinsic pitch
values, i.e. theintrinsic pitch values of high vowels are higher than those of low vowels;
hence, same type of pitch accents show different pitch patterns.
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Microprosody is diminated by interpolation and smoothing in most of the studies.
However, our studies show that interpolation and smoothing are not so powerful in
reducing the microprosodic effects. Interpolation avoids the discontinuities due to
unvoiced regions, smoothing diminates short-time perturbations; however larger
deviations are still present and cannot be handled automatically. It is obvious that
segmenta effects change the shape of the pitch contours hence attempts to handle
microprosodi ¢ effects can be understood. However, preprocessing of pitch contours may
change intonation. Interpolation does not affect the pitch contour shape since during
synthesis time the unvoiced regions will be handled appropriatdy. However, smoothing
has a considerable effect on pitch contours that cannot be reversed. Depending on the
smoothing filter used, it is possible to smooth almast al details. Therefore, effects of
smoothing on pitch contour modeling can be further studied. The degree of smoothing
that will not change modeling performance can be determined by means of experiments.
Besides, as mentioned previously, larger microprosodic effects are still present in pitch
contours after preprocessing. Hence, their effects on pitch contour modding can be
anayzed considering perceptual tests, and agorithms to remove these perturbations can
be devel oped.

One factor that affects pitch contour modding performance is the speech corpus
incorporated in modeling. As opposed to the most of the studies in pitch contour
modeling, a collection of various kinds of isolated sentences is used in this study. This
resulted in a decreased performance in our studies since each sentence type has not been
sufficiently represented in the database. It is believed that increasing the size of the
speech corpus by adding sufficient representatives of each sentence type incresses
predi ction performance. Besides, most studi es address pitch contour studies incorporating
only one type of sentences such as declaratives. However, in order to develop a pitch
contour model that serves as atool for speech synthesis applications al sentence types
should be model ed.

It is observed that modeling pitch contours of different sentence types a atime results
in low prediction performance. Hence, pitch contour modding for different sentence
types should be handled as separate problems. Each sub-problem may require different
sat of attributes depending on the sentence type. For example, question sentences may
need an extra attribute i ndi cating the type of the question sentence: polar, inverted, or wh-
question. Hence, for each sub-problem, different attribute sets can be generated and the
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most influential attributes can be used to devdop pitch contour model for the

corresponding sentence type.

One issue that is not addressed frequently in pitch contour modeling studies is the
utilization of speech databases that contains paragraph sentences. In our studies, isolated
sentences are used to develop pitch contour models. Therefore, resulting modes are
appropriate for isolated sentences. Then, the question remains as what if one chooses to
use paragraph sentences in pitch contour modding. Like the downstepping in isolated
sentences, pitch contours of paragraph sentences may show gradually decreasing patterns.
There may even be a relationship between the pitch contours of paragraph sentences and
isolated sentences that can be described in terms of sentence position in the paragraph.
This reaionship, if exists, can be revealed by forming a speech database of sentences at
different locations of paragraphs.

Concludingly, pitch contour and duration modeling studies are far from complete;
there are even untouched ideas that may increase the naturalness and quality of synthetic

speech.
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APPENDIX A

SYLLABLE PITCH CONTOUR CODEBOOK

In this part of the Appendix, cluster centroids and cluster members described in
Section 7.1.2 is given.
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Figure A-1: Cluster centroids (left) and cluster members (right).
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Figure A-2: Cluster centroids (left) and cluster members (right).
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Figure A-5: Cluster centroids (left) and cluster members (right).
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APPENDIX B

ACCENT ASSIGNMENT USING SYLLABLE
PITCH CONTOUR CODEWORDS

In this part of the Appendix, duster centroids and members obtained using two-leve
k-means algorithm described in Section 7.1.3 is presented. Cluster sizeis reduced

1) by diminating clusters with centroids representing levels or purerises and falls

2) by merging clusters of the same shape (determined by 25 cluster centroids) into
single clusters. Eliminated cluster centorids are marked with X.
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Figure B-1: Cluster centroids. numbers represent centoid's ID, frequency of pitch
contours represented by this centroid, dynamic range of the centroid with respect to
constant FOrmin and FOma , and percentage of the dynamic range.
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