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ABSTRACT 
 

 

MODELING PHONEME DURATIONS AND 
FUNDAMENTAL FREQUENCY CONTOURS IN 

TURKISH SPEECH 
 

 

 
Öztürk, Özlem 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Tolga Çilo� lu 

 
October 2005, 202 pages 

 

The term prosody refers to characteristics of speech such as intonation, timing, 

loudness, and other acoustical properties imposed by physical, intentional and emotional 

state of the speaker. Phone durations and fundamental frequency contours are considered 

as two of the most prominent aspects of prosody. Modeling phone durations and 

fundamental frequency contours in Turkish speech are studied in this thesis.  

Various methods exist for building prosody models. State-of-the-art is dominated by 

corpus-based methods. This study introduces corpus-based approaches using 

classification and regression trees to discover the relationships between prosodic 

attributes and phone durations or fundamental frequency contours. In this context, a 

speech corpus, designed to have specific phonetic and prosodic content has been recorded 

and annotated. 

A set of prosodic attributes are compiled. The elements of the set are determined 

based on linguistic studies and literature surveys. The relevances of prosodic attributes 

are investigated by statistical measures such as mutual information and information gain. 

Fundamental frequency contour and phone duration modeling are handled as 

independent problems. Phone durations are predicted by using regression trees where the 



 v 

set of prosodic attributes is formed by forward selection. Quantization of phone durations 

is studied to improve prediction quality. A two-stage duration prediction process is 

proposed for handling specific ranges of phone duration values. Scaling and shifting of 

predicted durations are proposed to minimize mean squared error. 

Fundamental frequency contour modeling is studied under two different frameworks. 

One of them generates a codebook of syllable-fundamental-frequency-contours by vector 

quantization. The codewords are used to predict sentence fundamental frequency 

contours. Pitch accent prediction by two different clustering of codewords into accented 

and not-accented subsets is also considered in this framework. Based on the experience, 

the other approach is initiated. An algorithm has been developed to identify syllables 

having perceptual prominence or pitch accents. The slope of fundamental frequency 

contours are then predicted for the syllables identified as accented. Pitch contours of 

sentences are predicted using the duration information and estimated slope values. 

Performance of the phone duration and fundamental frequency contour models are 

evaluated quantitatively using statistical measures such as mean absolute error, root mean 

squared error, correlation and by kappa coefficients, and by correct classification rate in 

case of discrete symbol prediction.  

Keywords: Duration modeling, fundamental frequency contour modeling, speech 

database, prosody, intonation, classification and regression trees. 
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ÖZ 
 

 

TÜRKÇE KONU � MADA SESB � R � M SÜRELER � N � N 
VE TEMEL FREKANS E � R � LER � N � N 

MODELLENMES�  
 

 

 
Öztürk, Özlem 

Doktora, Elektrik Elektronik Mühendisli � i Bölümü 

Tez Yöneticisi: Doç. Dr. Tolga Çilo� lu 

 
Ekim 2005, 202 sayfa 

 

Ezgi, konu� manın süre, vurgu, genlik ve di � er akustik özelliklerinden olu� an, 

konu� macının fiziksel ve duygusal durumuna ba� lı olarak de� i � iklikler gösteren 

nitelikleridir. Sesbirim süreleri ve perde e� rileri, ezginin en önemli bile� enlerinden ikisi 

olarak kabul edilmektedir. Bu tezde, sesbirim süreleri ve perde e� rileri Türkçe konu� ma 

için modellenmi � tir. 
Birçok ezgi modelleme yöntemi bulunmaktadır. Yapılan son çalı � malarda ço� unlukla 

derlem-tabanlı yöntemler kullanılmaktadır. Bu çalı � ma, ezgi öznitelikleri ile perde e� risi 

ve sesbirim süreleri arasındaki ili � kiyi meydana çıkarmak için sınıflandırma ve ba� lanım 

(classification and regression) a� açları kullanarak derlem-tabanlı çalı � maları 

içermektedir. Bu çerçevede, istenilen ezgisel ve sesbirimsel içerikte bir derlem 

kaydedilmi �  ve i � aretlenmi � tir. 
Dilbilimsel çalı � malar ve yazın ara� tırmaları do� rultusunda ezgi öznitelikleri 

derlenmi � tir. Kar � ılıklı bilgi (mutual information) ve bilgi kazancı (information gain) gibi 

istatistiksel ölçütler kullanılarak, ezgi özniteliklerinin ezgi ile olan ilgileri belirlenmi � tir. 
Perde e� risi ve sesbirim süresi modelleme çalı � maları ba� ımsız  problemler olarak ele 

alınmı � tır. Sesbirim süreleri ba� lanım a� açları kullanılarak ileri seçme (forward selection) 
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yöntemi ile olu� turulmu�  ezgi özniteliklerinden öngörülmü� tür. Sesbirim süreleri ba� arımı 

artırmak için nicemlenmi � tir. Süre aralıklarının ayrı ayrı ele alınabilmesi için iki a� amalı 

süre modelleme yöntemi öne sürülmü� tür. Ortalama karesel hatanın dü� ürülmesi için 

öngörülen süreler üzerinde ölçekleme ve öteleme yapılmı � tır.  
Perde e� risi modelleme iki ayrı çatı altında incelenmi � tir. Birinde hece perde e� ri leri 

için vektör nicemleme kullanılarak kod defteri olu� turulmu� tur. Hece kodları tümce 

perdesi öngörümünde kullanılmı � tır. Ayrıca, iki farklı sınıflandırma yöntemi kullanılarak 

hece kodlarının vurgulu ve vurgusuz alt kümeleri belirlenmi � ; bu bilgi kullanılarak perde 

vurgusu öngörülmü� tür. Bu bölümde elde edilen deneyimler di � er yakla� ım için ba� langıç 

olmu� tur. Algısal önemi olan ya da perde vurgusu alan hecelerin belirlenmesi için bir 

algoritma geli � tirilmi � tir. Perde vurgusu alan hecelerin perde e� imleri öngörülmü� tür. 

Süre ve e� im öngörüleri kullanılarak tümce perdeleri elde edilmi � tir. 
Sesbirim süreleri ve perde e� risi modelleme ba� arımları nicel olarak 

de� erlendirilmi � tir. Sayısal de� erlendirmeler mutlak hata, etkin hata ve ilinti gibi 

istatistiksel ölçütlerle gerçekle� tirilmi � tir. Ayrık i � aret kestirimlerinde ise kappa 

katsayıları ve do� ru kestirim oranları kullanılmı � tır. 
Anahtar  Kelimeler : Ezgi, entonasyon, süre modelleme, perde e� risi modelleme, 

derlem, sınıflandırma ve ba� lanım a� açları. 
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CHAPTER 1  
 

 

INTRODUCTION 
 

 

 

The term prosody refers to characteristics of speech such as intonation, timing, stress, 

loudness, and other acoustical properties imposed by articulatory, emotional, mental, and 

intentional states of the speaker. The most prominent components of prosody are 

considered as phoneme duration and pitch contour. This study started with the aim of 

predicting phoneme durations and pitch contour of a Turkish sentence given its written 

form. The resultant phoneme durations and pitch contour are expected to resemble natural 

speech. From a practical point of view, such information are needed in Text-to-Speech 

(TTS) synthesis systems. Text-to-Speech synthesis is used in many areas such as 

information retrieval systems; language education, and reading machines for visually 

impaired [Fortinea 1999; Kenney 1998; Lemmetty 1999].Without appropriate prosody 

models, synthetic speech is perceived as monotonous, boring and less intell igible [Ross 

1995].“It has been shown that poor prosody is worse than no prosody (Benoit 1990)”  

[Monaghan 1997]. 

TTS systems can be divided into two major subsystems (Figure 1-1) Natural language 

processing (NLP) subsystem and 2) Signal processing subsystem The NLP module 

performs the task of converting input text into a l inguistic representation including 

phonetic and prosodic information. The DSP module generates output speech waveform 

using information provided by NLP subsystem [Dutoit 1997; Lemmetty 1999].  

The NLP subsystem can be further divided into two parts (Figure 1-2): Text-to-

phonetic conversion module is responsible for the transformation of text into 

corresponding phonetic units that specify sounds to be produced. Text-to-prosodic 

parameter conversion module performs the generation of prosodic parameters, 

fundamental frequency, duration and intensity in general, which specify how these sounds 

are to be produced [Dutoit 1997; Huang et. al. 1997; Lemmetty 1999]. 
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Figure 1-1: Functional block diagram of a general TTS synthesizer 

 

 

Figure 1-2: Block Diagram of NLP subsystem. 

 

The fundamental problem encountered in speech synthesis systems is the poor 

generation of prosody for unrestricted text [Sun 2002; Huang et. al. 1997]. Every spoken 

language has its own prosody. However, the prosody of an utterance is not unique. A 

sentence may have a number of perceptually acceptable but significantly di fferent (in a 

mathematical sense) prosody patterns while carrying the same semantic information. Any 

spoken utterance is produced with a particular sound pattern shaped by its prosody. 

Prosody is a means of conveying information. It plays an important role in human speech 

communication. In natural speech, prosody of an utterance may depend on semantics, 

context, syntax of the statement, intended audience, and emotional or physical state of the 

speaker. Today, prosody modeling constitutes one of the main arenas of speech research 

[Agüero et. al 2004; Fujisaki and Nagashima 1969; Sun 2002; Taylor 1992; Taylor and 

Isard 1992].  
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The elements of prosody commonly derived from speech are:  

�  Intonation; variations in pitch which gives speech its melody.  
�  Timing; variations in phoneme duration, speaking rate (tempo) and pausing.  
�  Loudness pattern. 

�  Stress, perceived in terms of pitch, loudness and duration 

All these ingredients are present in varying amounts in every spoken utterance. 

Specific mixtures of these elements orient the listener in interpreting the utterance. When 

we speak we do not only produce a sequence of speech sounds but also impose stress and 

intonation patterns to convey a meaning. For example, in Turkish, words having identical 

orthographies can bear di fferent meanings that can only be differentiated by their 

semantic context and prosody: the only difference between the noun yazma’  (a kind of 

scarf) and the verb yaz’ma (do not write) is that of prosodic variation due to lexical stress 

placement. 

Recently, a number of speech studies on Turkish have come out. Automatic Speech 

Recognition [Bayer 2005; Büyük et. al. 2005; Çarkı et. al. 2000; Çilingir 2003; Çömez 

2003; Orkan 2005; Salor et. al. 2002a, 2002b; Yapanel 2000; Yılmaz 1999], Language 

Modeling [Bayer 2005; Çilo� lu 2004, Çilo� lu et. al. 2004; 
�
ahin, 2003], Voice 

Transformation [Salor 2004; Arslan 1997, 1999; Türk and Arslan 2002, 2004], and Text-

to-Speech [Abdullahme� e 1998; Fidan 2002; Oskay 2000, 2001; Özge, 2003; Vural and 

Oflazer 2004] are some of them. There is no study which covers a comprehensive 

prosody modeling in Turkish. Existing studies either handle a part of the modeling 

process or they do not rely on detailed linguistic analysis [Abdullahme� e 1998; Fidan 

2002; Oskay 2000, 2001; Özge, 2003]. 

Various methods exist for building prosody models [Agüero 2004; Batusek 2002; 

Black and Hunt 1996; Chen et. al. 1996; Dusterhoff 2003; Pierrehumbert 2000; Lee and 

Oh 1999a, 1999b, 2001; Mixdorff 2000, 2001; Riedi 1998; Sakurai et. al. 2003; Shih and 

Kochanski 2002; Sun 2002; Taylor 1992, 1995, 2002; Vegnaduzzo 2003]. Those used at 

the initial stages of prosody modeling are generally known as rule-based approaches. 

Rule-based heuristic systems such as Klatt’s duration modeling system [Klatt, 1987] 

combine linguistic expert knowledge and manual analysis of quite limited amount of text 

and their recordings. They are often unsatisfactory and case-dependent. Hence, they 

exhibit less flexibil ity against, for example, personality and speaking style. State-of-the-
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art is dominated by corpus-based approaches. They have appeared due to the increasing 

computational power and availability of large corpora. Corpus-based (data-driven) 

modeling utilizes large text and speech corpora to discover rules as a function of prosodic 

attributes. Prosodic attributes, defined on text, are l inguistic features (phonetic context, 

number of words in sentence, number of syllables in word, etc.) that are considered to be 

affecting prosody. Corpus-based modeling involves machine learning techniques such as 

Artificial Neural Networks (ANN), and Classification and Regression Trees (CART) to 

reveal the relation between prosody and prosodic attributes. They can be adapted to new 

speaking styles by providing new data. This study concentrates on corpus-based modeling 

and uses machine learning techniques to develop models of phoneme duration and pitch 

contour for Turkish.  

Each modeling method mentioned above has its advantages and disadvantages. Neural 

networks are very popular machine learning algorithms. They are known for their ability 

to generalize according to the similarity of their inputs. With sufficient data, neural 

networks can approximate any nonlinear function. However, the trained model is not 

human readable which is a disadvantage if one needs to understand the conceptual 

relationship between inputs and outputs [Campbell 2000; Chen et. al. 1996; Taylor 1995; 

Witten and Frank 1999].  

A decision tree is a predictive model that can be viewed as a tree. It is a popular 

nonparametric supervised learning method. In decision trees, each branch of the tree 

represents a choice and the leaves of the tree represent decisions. Decision trees provide 

interpretability. They can also be applied to any data and requires less parameter tuning 

[Agüero et. al. 2004; Black and Taylor 1997; Breiman et. al. 1984; Batusek 2002; Witten 

and Frank 1999]. Within the framework of this dissertation, decision tree learning is 

incorporated for phoneme duration and pitch contour modeling. 

State-of-the-art TTS systems use pre-recorded acoustic units, such as phones, 

diphones, or polyphones, to perform synthesis [Bulyko and Ostendorf 2002; Chen et. al. 

1996; Violaro and Böeffard 1998]. To improve the naturalness of synthetic speech, 

continuous speech databases composed of multiple representations of these units are 

developed. In general, language can be considered as the set of all possible combinations 

of these units. However, it is not practical to record all combinations.  
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Success of prosody modeling is mainly related to chosen corpus used for training. I f 

the speech corpus is rich enough to represent the prosodic and contextual variety of the 

language, higher performance can be achieved in modeling [Iida and Campbell 2001; 

Campione and Veronis 1998a]. Hence, speech corpora design is one of the key issues to 

improve the naturalness and intelligibility of synthetic speech. 

A speech database can be built randomly or by means of optimizing the units 

acoustically or with respect to their textual properties. Random selections may not be 

adequate to provide sufficient variabil ity for prosody research. To develop appropriate 

prosody models, we also need a speech database of sufficient phonetic and prosodic 

coverage. Phonetic coverage can be obtained by supplying sufficient representatives of 

each unit [Iida and Campbell 2001]. Prosodic coverage is achieved by considering 

various types of syntactic constituents with sufficient representatives. Within the scope of 

this thesis, a phonetically and prosodically rich speech database is developed. 

General assumption for intonation modeling is that it can be successfully handled only 

by fundamental frequency, thus, the ultimate goal is to develop a model to generate 

fundamental frequency contours. Various intonation models have been proposed in the 

past. They are contrasted by di fferent viewpoints [Monaghan 1992; Veronis et. al. 1998; 

Taylor and Isard 1992]: the systems may be phonological or phonetic; pitch contours can 

be produced by parametric or nonparametric methods; or the systems may use level tones 

or pitch movements. These viewpoints can be summarized in a more compact form as 

shown in Figure 1-3. 

Phonological models employ a set of discrete symbols to represent the pitch contour 

[Dusterhoff 2000; Frid 2001; Jilka et. al. 1999; Taylor 1992; Veronis et. al. 1998]. The 

most influential one is Pierrehumbert’s model later evolved into a standard (Tones and 

Breaks Indices, ToBI) for transcribing American English. As stated in Silverman et. al. 

(1992), ToBI is the most widely used system for the symbolic transcription of intonation 

at present. It provides a four level transcription system to the researchers, which obeys the 

general outline proposed by Beckman and Pierrehumbert [Pierrehumbert 2000]. In 

Beckman and Pierrehumbert, six different pitch accents (H*, L*, L+H*, L*+H, H+L*, 

H*+L) and two levels of intonational phrasing (intermediate and full intonational phrase) 

were proposed [Pierrehumbert 2000]. Pitch accents are mainly aligned with accented 

syllables. A boundary tone is associated to each intonational phrase boundary. The 

symbol L- (H-) describes a low (high) tone at an intermediate phrase boundary. The 
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symbols L-L%, L-H%, H-L% and H-H% are used to represent full intonational phrase 

boundaries. 

Figure 1-3: Classification of intonation models. 

 

Another example of phonological models is the Instituut voor Perceptie Onderzoek’s 

(IPO) perceptual model which relies on identifying perceptually relevant pitch 

movements and approximating them with straight lines. The main point of the approach is 

to simplify the F0 curve and preserve the same melodical impression to the listener 

[Monaghan 1992; Veronis et. al. 1998]. 

Parametric models that belong to the broader class of phonetic models use a set of 

continuous parameters to describe intonation patterns [Campione and Veronis 1998a, 

1998b, 1988c; Hirst et. al. 1994; Syrdal et. al. 1998; Möhler 1998, 1999; Conkie and 

Möhler 1998]. A well known parametric model is the Fujisaki’s superpositional model. 

The actual F0 contour is obtained by the superposition of baseline F0, phrase and accent 

components on a logarithmic scale. A second-order, critically damped linear filter in 

response to an impulse function called phrase command generates the phrase component. 

Accent component is generated by another second-order, critically damped linear fi lter in 

response to a step function called accent command. Basically, fi lters used in accent and 

phrase component generation differ in the effective length of their impulse responses 

[Fujisaki and Hirose 1984; Fujisaki and Nagashima 1969; Fujisaki 2003; Mixdorff 2000, 

2001; Mixdorff and Jokish 2001; Sakurai et. al. 2003].  
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The Tilt intonation modeling proposed by Taylor can be considered both as 

phonological and phonetic because continuous tilt parameters are computed only at event 

locations and non-event parts of the pitch contour are generated by linear interpolation. 

Pitch accents and boundary tones are defined as events. Events have rise-fall patterns. 

Each event is represented by three tilt parameters: duration, amplitude and tilt [Taylor 

1992; Taylor and Isard 1992; Taylor 2000]. Duration is the sum of the rise and fall 

durations. Amplitude is the sum of the magnitudes of the rise and fall amplitudes. The ti lt 

parameter is a dimensionless number which expresses the overall shape of the event 

[Taylor 2000, Taylor 1998]. 

Nonparametric approaches use F0 values themselves. Samples from the pitch contour 

are taken to develop intonation models. Examples of nonparametric methods are rare. 

Black and Hunt used a linear regression based method to predict F0 target values for the 

start, mid-vowel, and end of every syllable [Black and Hunt, 1996]. In his approach, 

Traber (1991, 1992) uti lized neural networks to identi fy the regular relations among 

German sentences. Traber predicted eight F0 values per syllable by recurrent neural 

networks [Keller and Werner, 1997]. 

Main trend in intonation modeling studies is towards the util ization of intermediate 

representation such as ToBI [The Ohio State University Department of Linguistics 1999], 

ti lt, etc. described above [Campione and Veronis 1998; Conkie and Möhler 1998; Möhler 

1998; 1999; Pierrehumbert 1983, 2000; Ross 1995; Taylor 1992, 1995, 1998, 2000; 

Sakurai et. al. 2003]. A great deal of the studies involve labeling of pitch accents and 

intonational phrases introduced by Pierrehumbert [Black and Hunt 1996; Jilka et. al., 

1999; Pierrehumbert 2000; Taylor 2000; Sun 2002a, 2002b]. Pitch contours are annotated 

with respect to those pitch accents and boundary tones by expert labelers considering 

language specific constraints [Bulyko and Ostendorf 2002]. Phonetic transcription of the 

speech signals is also provided. Phonetic transcriptions together with abstract labels for 

the pitch contours constitute prosodically labeled speech databases.  

Boston University Radio Speech Corpus, speaker F2B is widely used among 

researchers studying English intonation [Clark 2003; Dusterhoff et. al. 1999; Jilka et. al. 

1999; Ross 1995; Sun 2002a; Taylor 1998]. The database consists of about 40 minutes of 

speech read aloud by a female professional announcer. It is also labeled using ToBI 

transcription [The Ohio State University Department of Linguistics 1999] system. The 

total number of syllables in the database is 14377. The database is also labeled with 
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phoneme, syllable, and word boundaries, part-of-speech tags and includes lexical stress 

markings. It is also labeled with intonation labels based on the Tilt intonation model. 

[Dusterhoff et. al. 1999] 

For pitch contour modeling in Turkish, we do not have a prosodically labeled speech 

database. Consequently, we do not have labels that identify accent status of the syllables 

in the database. Besides, there is no concrete definition of pitch accent for Turkish as for 

other languages such as English, German, or etc. The only source is the pitch contours of 

the sentences. Hence, for pitch contour modeling in Turkish, labels are derived from the 

pitch contours themselves.  

Two methods are proposed for pitch contour modeling in Turkish. One method 

involves a nonparametric approach whereas the other can be considered as a phonological 

approach; both incorporate syllable units. Yet, both of the proposals yield a mathematical 

accent definition.Using proposed methods, syllables are associated to “pitch accents” . 

Pitch accents are associated to syllables having sudden pitch excursions. This choice of 

pitch accent assignment is motivated by perceptual listening tests as a result of which 

prominence is decided to be perceived on sharp rises. 

Decision trees are used to map the relation between intonational (prosodic) attributes 

and accent status of the syllables. Performance of accent classification is evaluated by 

correct/incorrect classification rates, kappa coefficient and confusion matrix. For accented 

syllables, regression trees are incorporated to predict the gradient of the syllable pitch 

contours. The performance of gradient estimation is evaluated by objective measures such 

as correlation coefficient, mean absolute error, and root mean squared error. Syllable 

pitch contours are reconstructed using syllable duration information and gradient 

estimates. Overall pitch contour is reconstructed by concatenating individual syllable 

pitch contours.  

Timing or duration plays as much important role as intonation in the 

encoding/decoding of speech by the speaker/l istener. Duration can be defined as the time 

taken to utter an acoustic unit such as phoneme, syllable, etc. Duration modeling studies 

mainly concentrate on phoneme duration [Batusek 2002; Cordoba et. al. 1999; Cordoba 

et. al. 2002; Febrer et. al. 1998; Klatt 1987; Krishna et. al. 2004; Krishna and Murthy 

2004; Lee and Oh 1999a, 1999b, 2001; Möbius and van Santen 1996; Riedi 1998; 

Venditti and van Santen 1998] however there are studies also on syllable duration 
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[Campbell 2000; Chen et. al. 2003; Lee et. al. 1989; Sreenivasa and Yegnanarayana 

2004]. Durational patterns are part of the prosody and contain important cues for 

understanding the spoken text [Riedi 1998]. As stated by Campbell, variations in duration 

provide assistance for the listener to extract the meaning [Campbell 2000].  

As a rule-based approach, Klatt used the notion of intrinsic duration introduced by 

Peterson and Lehiste (1960) [Campbell 2000; Klatt 1987]. Intrinsic duration is the 

average duration of the syllable nucleus. His model assumes that each phonetic segment 

type has an inherent duration that can be modified by a set of rules, but phonemes cannot 

be compressed shorter than a certain minimum duration [Klatt 1987]. Riley (1990, 1992) 

used a 1500 hand-labeled speech database from a single male speaker for segmental 

duration prediction using CART trees [Campbell 2000]. van Santen states that 

classification trees require huge amount of training data to cover all possible feature space 

and proposed the sum-of-products models reference. Sum-of-products model find 

phoneme durations by a summation of functions of attributes (van Santen 1992, 1993, 

1994) [van Santen 1997, Venditti and van Santen 1998, Möbius and van Santen 1996]. 

Campbell (1992) utilized neural networks for predicting syllable timing [Cambpell 2000]. 

He used a categorical factor analysis to find out the factors that influence the syllable 

duration.  

For phoneme duration modeling, a collection of attributes are derived from the 

database such as phoneme identity, left/right context, lexical stress, Part-of-Speech 

(POS), and etc. The selection of these features is guided by those for other languages in 

literature and the suggestions of Turkish linguists Prof. Dr. � clal Ergenç, Prof. Dr. Engin 

Sezer, and Assoc. Dr. Engin Uzun. Relevance of attributes affecting phoneme duration in 

Turkish are determined by means of statistical analyses. Using regression trees durational 

attributes are mapped to phoneme durations. The performance of the mapping is 

evaluated by objective measures such as correlation coefficient (CC), mean absolute error 

(MAE), and root mean squared error (RMSE). In order to increase phoneme duration 

prediction performance, modifications on attribute values are proposed. Error 

minimization in the least squares sense is applied to the resulting predictions in order to 

further improve RMSE between predicted and actual phoneme durations. Performance of 

decision trees on predicting discretized segmental duration is evaluated.  
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1.1 Goals and Outline of the Thesis 
In the work presented here, our primary goal is to build pitch contour and phoneme 

duration models for Turkish using classification and regression trees. A prosodically and 

phonetically rich speech corpus has been built as part of this study. Relevant prosodic 

attributes appropriate for pitch contour and phoneme duration modeling are identified  

The outline of the thesis is as follows: First chapter introduces a brief definition of 

prosody and its components. Objectives and motivations are discussed in this chapter.  

Focusing on the most influencing research, an overview of different approaches to 

intonation and duration modeling is given in Chapter 2. Intonation modeling studies are 

discussed under two broad categories: Phonological and phonetic modeling approaches. 

Well-known intonation and duration models are introduced.  

Chapter 3 introduces the produced text and speech databases. The text database is 

designed to provide phonetic and prosodic balance. A set-covering algorithm is used to 

select sentences from a larger set to guarantee phonetic coverage. The phoneticall y 

balanced set is modified syntactically to attain prosodic coverage. Designed text is 

recorded by a native female speaker in a soundproof booth. SAMPA transcriptions of 

speech files are provided. 

Chapter 4 introduces durational attributes used for phoneme duration modeling. 

Attributes used for phoneme duration modeling involves phoneme (segment) identity, 

preceding/following phoneme identities, lexical stress, and positional features for 

segments, syllables, and words.  

Phoneme duration modeling studies are presented and their results are discussed in 

Chapter 5. Forward selection method is used to optimize durational attributes. 

Performances of the models are quantitatively analyzed. To improve performance several 

modi fications; duration quantization, modi fication of attribute values, outlier analyses, 

and mean square error correction, are proposed. 

Chapter 6 presents the attributes used in pitch contour modeling. The attributes are 

associated to syllable units while the ones discussed in Chapter 5 belong to phonemes.  

Pitch contour modeling studies are presented in Chapter 7. Two di fferent methods are 

proposed for pitch contour modeling. One method can be associated to phonetic modeling 

described in Chapter 1. The other method can be viewed as a phonological model since it 
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captures the prominence of syllables. Both aim at identifying syllable pitch contours with 

a limited set of symbols. The symbols used in the former method involved a large 

codebook that resulted in lower prediction performance. However, the latter uses only 

binary levels for syllable prominence. Slope values used to reconstruct overall pitch 

contour of a given sentence are predicted for prominent syllables. 

Chapter 8 comprises final conclusions and future directions. 

 

 



 12 

CHAPTER 2  
 

 

PROSODY MODELING 
 

 

 

This chapter reviews intonation and duration modeling studies in the literature. 

2.1 Intonation Modeling 
General assumption for intonation modeling is that it can be successfully generated 

with fundamental frequency only, thus, the ultimate goal is to develop a model that 

generates the fundamental frequency contour of the original utterance. Various intonation 

models have been have been proposed since 1960’s. They are contrasted by different 

point of views: Phonological versus phonetic models; l inear or superpositional models; or 

models involving level tones or pitch movements. Linear models interpret F0 contour as a 

linear sequence of phonologically distinctive units (tones or pitch accents), which are 

local in nature. Superpositional models interpret F0 contour as a complicated pattern of 

components that are superimposed on each other. 

2.1.1 Phonological Models 

The goal of a phonological model is to study the organization and underlying structure 

of intonation [Sun 2002a; Taylor 1992; Dusterhoff 2000; Clark 2003; Monaghan 1992b; 

Ross 1995]. Intonation patterns are described by a set of abstract descriptions which are 

regarded as the primitive entities in representing intonation. Generall y, the symbol 

inventory is developed by means of phonetic analysis of F0 curves either from a 

production perspective or from a perception perspective [Clark 2003; Dusterhoff 2000; 

Monaghan 1992b; Ross 1995; Sun 2002a; Taylor 1992; Vegnaduzzo 2003]. 

2.1.1.1 Autosegmental-Metr ical (AM) Approach 

The most influential work on intonational phonology is the Autosegmental-Metrical 

(AM) approach which constitutes the basics of American School. Pike (1945) and 
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Bolinger (1965) were the first who paid more attention to intonation in the American 

School which was dominated by the notion of phoneme. Pike used four phonemicall y 

distinct levels (L, LM, HM, and H) whereas Bolinger used F0 changes to decompose 

melodies [Goldsmith 1999; Grice et. al. 2000; Pierrehumbert, 2000; Pirker et. al. 1997]. 

With the development of Autosegmental analysis (Goldsmith, 1976) and metrical 

phonology (Liberman, 1975), American phonological community shifted considerably to 

intonation studies. Autosegmental analysis involves breaking down phonological systems 

into parallel interacting systems of tones and syllables. In 1975, Liberman proposed 

metrical phonology as a complementary system to autosegmental analysis. He argued that 

there were not two (accented and unaccented) but three functionally distinct roles in 

which a High/Low contrast arises in English intonation. Liberman called the tone playing 

the third role a “boundary tone, and indicated by a % adjacent to the tone [Goldsmith 

1999; Pierrehumbert 2000]. 

Pierrehumbert in her dissertation (1980) studied English intonation using the 

autosegmental-metrical framework. She used the term “pitch accent”  developed by 

Bolinger (Bolinger 1958, 1965) for the tone associated with the accented syllable. 

Pierrehumbert’s intonation model used two basic tone levels (H and L). She proposed 

bitonal pitch targets which are phonologically located at metrically prominent syllables. 

She also distinguished pitch accents from boundary tones. Pierrehumbert (1980) proposed 

seven pitch accents which were then reduced to six by Beckman and Pierrehumbert 

(1986). The six pitch accents include H*, L*, L+H*, L*+H, H+L*, H*+L. In Beckman 

and Pierrehumbert (1986), there were two levels of intonational phrasing: intermediate 

phrase and intonational phrase which were also associated to boundary tones (L or H) 

[Pierrehumber 2000; Pirker et. al. 1997]. A full grammar of possible patterns is given in 

Figure 2-1. 

During reconstruction of pitch contours, each tonal element is mapped onto F0 targets 

which were then interpolated to produce intonation contour referans var mı?. The F0 

targets depend on the speaker’s choice of pitch range.  

Pierrehumbert also employed the concept of downstep for successive high tones 

occurring in alternating (H L H L H…) patterns [Pierrehumbert 2000]. Downstep 

involves the lowering of succeeding Hs. Besides, she used an upstep rule which applies 

only to intonation phrase boundary tones following an H tone. 
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Figure 2-1: The grammar of English intonation patterns according to Beckman and 
Pierrehumbert (1986) [Pierrehumbert, 2000]. 

 

The studies of Beckman and Pierrehumbert (1986) and Pierrehumbert (1980) then 

evolved into a standard for transcribing American English. Tone and Breaks Indices 

(ToBI) is the most widely used intonation transcription system at present [Pierrehumbert 

2000; Pirker et. al. 1997; Silverman et al. 1992].  

“ToBI is a framework for developing community-wide conventions for transcribing the 

intonation and prosodic structure of spoken utterances in a language variety. A ToBI 

framework system for a language variety is grounded in careful research on the 

intonation system and the relationship between intonation and the prosodic structures of 

the language.”  [The Ohio State University Department of Linguistics 1999].  

ToBI provides a four level transcription system to the researchers: 

1) Orthographic/phonetic transcription of the words, 

2) Tone tier that follows the general outline of Beckman and Pierrehumbert (1986) 

[Pierrehumbert 2000]  

3) Break indices tier for indicating the strength of connection between words ranging 

from 0 (no boundary) to 4 (a maximal, fully-marked intonation boundary) and  

4) Miscellaneous tier for any comments.  

The prosodic features of ToBI include four intonation features: pitch accent, phrase 

accent, boundary tone and break index. Pitch and phrase accents and boundary tones are 

depicted in the tone tier while break indices tier show corresponding break indices. 
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Pitch accent is the intonational prominence that makes a particular word or syllable 

implicit in a stream of speech. It corresponds to the local maximum or minimum of the 

fundamental frequency taking the values H*, L*, L*+H, L+H*, H+!H.  

• H* is an apparent tone target on the accented syllable in the upper part of the 

speaker’s pitch range for the phrase.  

• L* is an apparent tone target on the accented syllable in the lowest part of the 

speaker’s pitch range.  

• L*+H is a low tone target on the accented syllable followed by a sharp rise to a 

peak in the upper part of the speaker’s pitch range.  

• L+H* is a high peak target on the accented syllable preceded by a relatively sharp 

rise from a valley in the lowest part of the speaker’s pitch range.  

• H+!H* is a clear step down onto the accented syllable from a high pitch but can not 

be accounted as a high pitch itself.  

Phrase accent is the pitch level, which extends the last accent in an intermediate 

phrase, namely nuclear accent, to the end of the intermediate phrase. It can be either L- or 

H-.  

Boundary tone is the tone type at the end of each intonational phrase. It can be either 

L% or H%.  

Break index indicates the degree of the perceived juncture between adjacent words. It 

can take values ranging from 0 to 4 [The Ohio State University Department of Linguistics 

1999]. An example annotation is given in Figure 2-2. 

American-English-ToBI is adapted to many other languages such as German, Korean, 

Japanese, Mandarin, Greek, and etc. Oskay studied ToBI labeling scheme on Turkish 

[Oskay 2002]. In her thesis, she associates pitch accents and phrasal tones to words 

assuming that pitch accents always occur on the lexically stressed syllable of words. Her 

tone inventory is not as rich as Pierrehumbert’ s though she obtained quite satisfactory 

results. 
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Figure 2-2: TOBI annotation of the Sentence “I need flour and sugar and butter and oh I 

don’ t know”.  

 

2.1.1.2 The IPO (Instituut voor Perceptie Onderzoek) Approach 

The IPO approach, developed at Institute of Perception Research at Eindhoven, is 

probably the best-known perceptual model of intonation ('t Hart et al., 1990) [Koutny et. 

al. 2000; Sun 2002a; Campione et. al. 1997; Vegnaduzo 2003]. Although it is counted as 

a phonological model, it is phonetic in nature. It was originally developed for Dutch and 

later for English intonation (de Pijper 1983) [Clark, 2003]. The main point of the IPO 

approach is that only perceptually relevant pitch movements are important to intonation 

and natural F0 contours can be simplified by means of stylization [Sun 2002a]. 

Stylization is the process of reducing the amount of information that the fundamental 

frequency possess while keeping perceptually equivalent [Campione et. al., 1997; Hirst 

et. al, 2000].  

In late 70s, De Pijper (1979) introduced the concept of close-copy stylization. The 

stylized contours are generated by means of straight line segments in log-domain. There 

is no limit in the number of straight line segments used; however, in order to maintain 

simplification, their quantity is restricted to the smallest possible value with which the 

perceptual equivalence can be obtained. A close copy is obtained when subjects are 

unable to distinguish the synthesized version from the original [Campione et. al. 1997; 

Hirst et. al. 2000; Vegnaduzzo 2003]. 
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The IPO model inventory is composed of pitch movements rather than pitch levels. 

These movements occur between three levels of pitch making eight distinct movements 

which occur as steep and or? Shallow shallow, steep’ in kar � ıtı de� i l rises and falls 

between any two levels of the pitch range. Each movement can be aligned with a syllable 

in three ways according to its location: early, middle or late. So, the total number of 

elements in the inventory of IPO model is 24 movements in total [Campione et. al. 1997; 

Clark 2003; d’ Imperio 2000; Vegnaduzzo 2003]. 

Figure 2-3 contains a representation of the IPO method applied to the sentence 

‘malaria will worry anyone’ . The figure shows original, close copy, and stylized F0 

contours of the utterance. Close copy and stylized F0 contours are approximations to 

original F0 contour. According to the IPO model, the three F0 contours should be 

perceptually equivalent and acceptable by listeners. The figure is presented to 

il lustrate the data reduction process used in the IPO model [Campione et. al. 1997].  

The stylization approach proposed for Dutch intonation by Cohen and ‘ t Hart is 

applied to other languages such as English, German, Russian, French and Indonesian 

[Campione et. al. 1997; Hirst et. al. 2000]. 

 

 

Figure 2-3: IPO data reduction method as applied to the sonorous utterance, “Malaria will 
worry anyone.”  Original (top), close copy (middle), and stylized F0 contour (bottom) of 

the utterance.  

 

2.1.1.3 INTSINT (INternational Transcr iption System for INTonation) 

INTSINT proposed by Hirst and Di Cristo. (1998) is used for coding the intonation 

pattern of an utterance [Campione et. al. 1997; Campione and Veronis 1998a, 1998b, 

1998c; Hirst et. al. 2000; Hirst et. al. 1994; Veronis et. al. 1998]. They use the proposed 
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system for transcribing the intonation patterns of several languages. Pitch patterns are 

represented as a sequence of discrete tonal symbols (Top, M id, Bottom, Higher, Same, 

Lower, Upstepped, Downstepped). The pitch patterns are coded either as absolute tones 

(T, M, and B) or relative tones (H, S, L, U, and D). Absolute (global) tones are assumed 

to refer to the speaker’s overall pitch range whereas relative (local) tones refer only to the 

value of the preceding tone. Relative tones can be further split into two categories: non-

iterative (H, S, and L) and iterative (U and D) tones. Iterative raising or lowering uses a 

smaller F0 interval than non-iterative raising or lowering. There is no corresponding 

iterative tone for S tones. Figure 2-4 shows the abstract symbols used in the INTSINT 

labeling system [Campione et. al. 1997; Campione and Veronis 1998a, 1998b, 1998c; 

Hirst et. al. 2000; Hirst et. al. 1994; Louw and Barnard 2004; Veronis et. al. 1998]. 

 

 

Figure 2-4: INTSINT labelling scheme. 

 

The INTSINT codes for a given speech signal is computed as follows: 

1) Code highest and lowest target F0 values as T and B, respectively. 

2) Code first target point or any target point that follows a silent pause as M (unless 

already coded as T or B). 

3) Code all other target points with relative tones. Assign an S tone to the targets which 

are below a predetermined threshold value, otherwise code as H, L, U, or D 

depending on the targets configuration with respect to its preceding and following 

target points. 

4) Compute the statistical value of each category for each target point. Assign mean 

values for absolute tones and handle relative tones by a linear regression on the 

preceding target. 
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5) To improve statistical model, recode target points H and L as T, U, B, or. 

6) Repeat 4 and 5 until no more recoding. 

Figure 2-5 contains INTSINT representation of the sentence ‘özgüre beni beklemesini 

söylemedin mi’  (didn’ t you tell özgür to wait for me). The figure also shows the sound 

waveform, original pitch contour, original and predicted pitch values of the corresponding 

tones.  

 

 

Figure 2-5: Sound waveform, (upper panel), original pitch contour (mid panel), and 
INTSINT codes of the sentence ‘özgüre beni beklemesini söylemedin mi’  [Auran 2005].  

 

2.1.2 Phonetic Models 

Phonetic models use a set of waveform elements and related parameters to describe 

intonation patterns of an F0 contour [Dusterhoff et. al. 1999; Dusterhoff 2000; Fujisaki 

and Nagashima 1969; Fujisaki and Hirose 1984; Fujisaki 2003; Lee and Oh 2001; 

Mixdorf 2000, 2001; Mixdorf and Jokish 2001; Möhler and Conkie 1998; Möhler 1999; 

Ross 1995; Sakurai et. al 2003; Sun 2002a, 2002b; Taylor 1992, 1995, 1998, 2000; 

Taylor and Isard 1992; Vegnaduzzo 2003; Wright and Taylor 1997]. The ultimate goal of 

phonetic models is to reconstruct the F0 contour given model parameters. However, for 

functionality, a phonetic model has to be convenient for linking model parameters and 

linguistic entities. In fact, the challenge of phonetic models lies in the mapping of 

linguistic cues to model parameters [Sun 2002a, 2002b;; Ross 1995;]. 

Depending on their representation of F0 contours, phonetic models are mainly 

examined under two categories: parametric versus nonparametric. The former approach 
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transforms the original F0 values into some predictable parametric forms while the latter 

uses the F0 values themselves [Black and Hunt 1996; Dusterhoff 2000; Sun 2002a; 

Vegnaduzzo 2003]. 

2.1.2.1 Parametr ic Methods 

2.1.2.1.1 Fujisaki’s Superpositional Model 

Fujisaki and Nagashima [Fujisaki and Nagashima 1969] presented a model  that 

generates pitch contours from a set of binary steps corresponding to phrase and accent 

commands. The model was further improved by Fujisaki and Hirose (1984) to the well-

known superpositional model. The later assumes that the actual F0 curve can be 

expressed by superimposing phrase and accent components in log-domain as given by the 

equations (2-1) – (2-3). A second-order, critically damped linear fil ter, phrase command 

fi lter, generates the phrase component in response to an impulse, and the accent 

component is generated by another second-order, critically damped linear fi lter, accent 

command filter,  in response to a step function [Fujisaki and Nagashima 1969; Fujisaki 

and Hirose 1984; Fujisaki 2003; Mixdorff 2000, 2001; Mixdorf and Jokish 2001].  

 

( ) ( ) ( ) ( )[ ]��
==

−−−+−+=
J

j
jjj

I

i
ii TtGaTtGaAaTtGpApFbtF

1
21

1
0ln0ln   (2-1) 

( ) ( )��
�� �

<
≥−=

,0for                         ,0

,0for      ,exp2

 t

 ttt
tGp

αα       (2-2) 

( ) ( ) ( )[ ]�� �
<
≥−+−

=
.0for                                               ,0

,0for      ,,exp11min

t

ttt
tGa

γββ
    (2-3) 

 

where Gp(t) represents the impulse response function of the phrase control mechanism 

and Ga(t) represents the step response function of the accent control mechanism. The 

symbols in the above equations indicate 

Fb : baseline value of fundamental frequency, 

I : number of phrase commands, 

J : number of accent commands, 

Api : magnitude of the ith phrase command, 
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Aaj : amplitude of the jth accent command, 

T0i : timing of the ith phrase command, 

T1j : onset of the jth accent command, 

T2j : end of the jth accent command, 
�  : natural frequency of the phrase control filter, 

�
 : natural frequency of the accent control fil ter, 

�  : relative ceil ing level of accent components. 

Parameters �  and 
�
 are assumed to be constant at least within an utterance, while the 

parameter �  is typically set to 0:9. 

A block diagram of Fujisaki’s superpositional model is given in Figure 2-6. 

 

 

Figure 2-6: A command-response model for F0 contour generation of Japanese utterances 
[Fujisaki and Nagashima 1969; Fujisaki and Hirose 1984; Fujisaki 2003]. 

 

Two examples of Analysis-by-Synthesis of F0 contours using Fujisaki’s 

superpositional model is given in Figure 2-7. 

 

 

Figure 2-7: Examples of Analysis-by-Synthesis of F0 contours utterances [Fujisaki and 
Nagashima 1969; Fujisaki and Hirose 1984; Fujisaki 2003]. 
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2.1.2.1.2 Tilt Model 

In his studies, Taylor [Dusterhoff et. al. 1999; Dusterhoff 2000; Taylor 1992, 1995, 

1998, 2000; Taylor and Isard 1992; Wright and Taylor 1997] presentes 

Rise/Fall/Connection (RFC) model, which analyzes an F0 curve as a sequence of three 

elements: rise, fall and connection (RFC) [Taylor 1992]. The rise and fall are parabolic 

while the connection element is linear. The basic unit of investigation is the intonational 

event, which is either a pitch accent or a phrase boundary. Each event is characterized by 

the amplitudes and durations of the rises and falls. Hence, four parameters, rise 

amplitude, rise duration, fall amplitude and fall duration, are used to represent events. 

Taylor, subsequently, introduces the Tilt intonational model where the three Tilt 

parameters, namely duration, amplitude and tilt are obtained by transforming the four 

RFC parameters. Duration is the sum of the rise and fall durations. Amplitude is the sum 

of the magnitudes of rise and fall amplitudes. The tilt parameter is a dimensionless 

number taking values between [-1, 1]. Tilt parameter expresses the overall shape of the 

event [Taylor 2000]. A pure rise (fall) takes a value of 1 (-1) while a rise-fall (fall-rise) 

pattern whose rise and fall magnitudes are equal values takes a value of 0. Tilt parameters 

are computed as follows: 
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Graphical representations of Tilt parameters are given in Figure 2-8. Figure 2-9 

depicts a schematic representation of F0 contour and corresponding Tilt parameters 

associated to the syllable nuclei. 

 

Figure 2-8: Tilt parameters [Dusterhoff 2000] 

 

 
Figure 2-9: Schematic representation of F0, intonational event stream (circled events) and 
segment stream in the Tilt model. Events, labelled a for pitch accent and b for boundary 

are associated to syllable nuclei of syllable stream [Taylor, 2000]. 

 

2.1.2.1.3 MOMEL (MOdélisation de MELodie) 

MOMEL was originally proposed by Hirst (1980, 1983, 1987, and 1992) and 

automated by Hirst and Espessser (1993). MOMEL represents the fundamental frequency 

as a sequence of target points (relevant local variations of F0 curve) in frequency and 

time pairs, <F0, t>. For interpolation, MOMEL uses a quadratic spline function resulting 

in a continuous, smooth curve. Quadratic splines provide a simpler codification. In order 

to maintain the continuity of the resulting curve, interpolation is performed over the 
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unvoiced segments [Campione et. al. 1997; Campione and Veronis 1998a, 1998b, 1998c; 

Hirst et. al. 1994; Hirst et. al. 2000].  

The model has been used for the analysis of F0 contours of other languages including 

English, French, Spanish, Italian, and Arabic [Campione et. al. 1997; Campione and 

Veronis 1998a, 1998b; Hirst et. al. 2000]. 

 

 
Figure 2-10: Estimation of candidate target point (grey lines) and final targets (white 

squares). The grey lines connect the centre of the moving window to the extremum of the 
parabola estimated for that window [Campione et. al, 2000]. 

 

2.1.2.1.4 Parametric representation of Intonation Events (PAintE) 

Mohler and Conkie (1998) describe an intonation event using two sigmoids with a 

fixed time delay given by the following equation:  
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where a1 and a2 represent the steepness of sigmoids, c1 and c2 model the amplitude of 

sigmoids, b stands for the alignment of the function and d corresponds to the function’s 

peak. The syllable length is defined as unity. PAintE model function and parameters are 

given in Figure 2-11.  

This model emphasizes intonation events like Tilt model does. F0 contours’  

parameterization is applied to the accented syllable as an anchor point. The 
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approximation is performed within a three syllable window around the syllable carrying 

accent. 

Möhler and Conkie (1998) introduced Vector Quantization (VQ) of PaIntE 

parameters. They use codebooks of different size. They argue that: 

1) intonation can be described by a number of distinct shapes,  

2) reducing data can improve machine learning performance;  

3) VQ allows predicting all six parameters together rather than individually [Möhler 

and Conkie 1998; Möhler 1998, 1999; Sun 2002a].  
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Figure 2-11: The PaIntE model function is the sum of a rising and a fall ing sigmoid with 
a fixed time delay. Time axis is in syllable units [Möhler and Conkie 1998]. 

 

2.1.2.2 Non-Parametric Models 

Non-parametric methods use F0 values themselves to generate intonation based on 

available linguistic information [Sun 2002a]. Non-parametric methods use samples of 

smoothed and interpolated F0 contours usuall y associated to syllable units. Traber (1992) 

uses Recurrent Neural Networks (RNN) to predict a number of pitch values per syllable 

[Buhmann et. al. 2000]. Based on Traber (1992), Buhmann et. al. incorporates RNNs to 

predict 5 F0 values per syllable for 6 languages [Buhmann et. al. 2000]. Lee and Oh 

predictes 10 F0 values values per syllable using a CART tree to generate an F0 contour 

for a given sentence [Lee and Oh 2001]. Ross and Ostendorf (1999) develop a dynamical 

system model to predict normalized F0 values in a syllable. They also use regression trees 

to predict dynamic range of the F0 contours [Ross 1995; Ross and Ostendorf 1999]. 
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2.2 Duration Modeling 
Generally three prosody components are modeled: Intonation, duration and intensity 

[Batusek 2002]. Duration plays as much important role as intonation in the 

encoding/decoding of speech by the speaker/listener. The durational patterns are part of 

the prosody and contain important cues for understanding the spoken text [Riedi 1998]. 

Variations in duration provide assistance for the listener to understand the meaning 

[Campbell 2000]. Different representational factors specify and modi fy several aspects of 

speech during speech production [Klatt 1987]. Historicall y, duration prediction models 

can be split into two as rule-based and corpus-based-duration models.  

One of the most salient rule-based duration models has been proposed by Klatt 

[Möbius and Santen 1996]. Klatt’s work on duration modeling has pioneered the 

development of several duration models. Klatt’ s immediate antecedents are Peterson and 

Lehiste (1960) and Barnwell (1971). Klatt use the notion of intrinsic duration introduced 

by Peterson and Lehiste (1960) [Campbell 2000]. They define intrinsic duration as “the 

average duration of syllable nucleus measured from minimal pairs differing in the voicing 

of the final consonant” . Peterson and Lehiste carry on a comparative study on the 

durations of read 1263 single words in a sentence and report specifically that the syllable 

nuclei tend to be shortened when followed by a voiceless consonant. Barnwell (1971) 

presents an algorithm to model vowel duration as a function of [Campbell 2000]: 

• the word-level stress of the parent syllable,  

• the structural location of the parent word,  

• the number of syllables in the parent word,  

• the proximity of any word or syllable juncture.  

Dennis Klatt summarizes Barnwell’s work (1971) and proposes a set of rules to model 

duration. Both Klatt and Barnwell (1971) use a context-related percentage change 

following Peterson and Lehiste’s (1960) findings. Klatt’s model evolves into its final 

form in 1987 (Klatt 1987). The model assumes that each phonetic segment type has an 

inherent duration that is specified as one of its distinctive properties, each rule assigns a 

percent increase or decrease in the duration of the segment but segments cannot be 

shortened less than a certain minimum duration (Klatt 1987). The model is summarized 

as:  
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DUR = MINDUR + (INHDUR-MINDUR) x PRCNT / 100  (2-10) 

 

where INHDUR is the inherent duration of a segment in ms, MINDUR is the minimum 

duration of a segment if stressed and twice that if unstressed, and PRCNT is the percent 

shortening determined by applying Klatt’s eleven rules.  

Many other rule systems have been developed for di fferent languages. However, these 

systems were developed when sufficient speech data and computational power to analyze 

the data did not exist. Recently, with the availabil ity of large speech corpora and 

advances in computational power, a general interest in corpus-based methods has arised 

[Möbius and Santen 1996]. Corpus-based statistical models employ natural speech data. 

Generally, model parameters are trained over the data to optimize some criteria [Kenney 

1998; Lemmetty1999].  

Application of Classification and Regression Trees (CART) [Breiman et. al. 1984] to 

segmental duration prediction appears in the context of Corpus-Based statistical 

modeling. The input is formed by attribute-value pairs in CART modeling. Successive 

splitting of data into two sub-trees, in which the variance of newly formed subsets is 

minimal with respect to dependent variable, forms a regression tree. For each node of the 

tree, observed average duration of the associated subset of the corpus is listed. Riley 

(1990, 1992) uses a 1500-sentence hand-labeled speech database from a single male 

speaker for segmental duration prediction using CART [Campbell 2000]. Lee and Oh 

proposed 10 features to predict segmental duration from a set of 400 sentences using 

CART trees [Lee and Oh 1999]. 

One of the great advantages of CART is that the algorithm has the validation of the 

model. CART builds a very complex tree and then pruns it back to an optimal tree based 

on the results of cross validation or test set validation. The tree is pruned back based on 

the performance of the various pruned versions of the tree on the test set data. The most 

complex tree rarely fares the best on the held aside data as it has been over fitted to the 

training data. By using cross validation the tree that is most likely to do well on new, 

unseen data can be chosen. 

CART algorithm is relatively robust with respect to missing data [Breiman et. al. 

1984]. If the value is missing for a particular predictor in a particular record, that record 
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will not be used in making the determination of the optimal split when the tree is being 

built. In effect CART utilizes as much information as it has on hand in order to make the 

decision for picking the best possible split. 

Van Santen (1992) summarizes different approaches employed in duration modeling 

for synthesis applications. He identifies four principle classes:  

• Sequential rule systems such as Klatt’s model (1987);  

• equation systems, 

• look-up tables, 

• binary classification trees referring to Riley’  studies (1992) [Campbell 2000; van 

Santen et. al. 1997].  

He states that lookup tables and classification trees require huge amount of training 

data to cover all possible feature space and proposes the sum-of-products models (1992, 

1993,1994) [Santen 1997, Venditti and Santen 1998, Möbius and Santen 1996]. Sum-of-

products model combines scales of attribute values by forming sums and products. 

According to this model, segment duration is given by 
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where jiS ,  is the function representing the influence of factors i, j and fi is the ith element 

of descriptor vector f [Batusek 2002; Möbius and van Santen 1996; van Santen 1997; 

Venditti and van Santen 1998].  

Neural networks constitute another method for prosody modeling. Campbell (1992) 

util izes neural networks for predicting syllable timing “to account for the interaction 

between higher and lower level of timing control” [Cambpell 2000]. He employs a 

categorical factor analysis to find out the factors that influence the syllable duration. A 

three-layer back-propagation neural network is used to predict syllable durations as a first 

approximation. In the second stage, a top-down accommodation process determines the 

durations of each segment in syllable where syllable duration is partitioned among 

phonemes of the syllable according to their intrinsic duration. 
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In their work, Rao and Yegnanarayana use a four layer feedforward neural network 

trained with standard backpropagation algorithm for predicting syllable durations of 

Indian languages. Riedi applied a neural network to duration modeling in German and 

obtained very good results [Riedi, 1995]. Cordoba et. al. uses phoneme as the base unit in 

their model involving neural networks [Cordoba et. al. 2002]. 

Ostendorf and Roukos propose the stochastic segment model, the recognition 

algorithm, and an iterative training algorithm for estimating segment models from 

continuous speech [Ostendorf and Roukos, 1986]. 

2.3 Research on Turkish Prosody 
Prosodic analysis experienced a considerable boost about 20 years ago, and there have 

been an increasing number of publications on prosodic research for the last two decades 

[van Santen et. al. 1997]. However, Turkish has been left almost untouched. The only 

attempt to model Turkish prosody is Oskay’s in her masters’  thesis [Oskay 2002]. In her 

studies, she adapts ToBI [Black and Hunt 1996; Pierrehumbert 2000] for Turkish and 

models word–level labels via machine learning. She uses a database of 400 sentences 

recorded by herself. The sentences are selected from the Turkish Treebank Corpus [Metu-

Sabancı Turkish Treebank Corpus 2005; Nart, Oflazer and Say 2003]. Treebank provides 

the morphosyntactic information of the sentences. In her thesis, Oskay performs word, 

syllable and phoneme level transcriptions of speech waveforms automatically and 

incorporates modified ToBI labels (H and L tones) to the transcription. She uses an 

inductive learning scheme, RIPPER [Cohen 1996] developed at AT&T to predict word-

level ToBI labels. 

Abdullahme� e devised a fundamental frequency contour synthesis system relying on a 

sentence database and utilizing the syntactic structure of sentences based on word 

categories and stress information [Abdullahme� e 2001]. 

In his thesis, Özge argues that prosody is the sole structural determinant of 

information structure and proposes a tune-based account for the structural realization of 

information structure in Turkish [Özge 2003]. 

 

 



 30 

CHAPTER 3  
 

 

TEXT AND SPEECH CORPORA DEVELOPMENT 
 

 

 

Speech corpus design is one of the key issues to improve the naturalness of synthetic 

speech. A language can be considered as the set of all possible combinations of speech 

units. However, it is not possible to have all combinations in a database. A speech 

database can be built randomly or by means of optimizing the units acoustically or with 

respect to their textual properties. For our purposes, random selections may not be 

adequate to provide sufficient variability. Thus, it is aimed to construct an optimal 

continuous speech database consisting most frequent units with more than one 

representation.  

Recent studies about prosody modeling use speech corpora of l imited size. In their 

research about Korean prosody modeling, Lee and Oh used 400- and 500-sentence 

databases, 60% of which are used for modeling and remaining for testing [Lee and Oh 

1999, 2001]. For modeling Spanish duration, Cordoba et. al. employe 732 phrases 

[Cordoba 2002]. In their studies on automatic classification of intonational phrase 

boundaries, Wang and Hirschberg uses 298 utterances from the 774 sentences in the 

DARPA collected Air Travel Information Service (ATIS) database [Wang and 

Hirschberg 1992]. Black and Hunt test their regression-based F0 contour modeling on 

Boston University FM Radio Corpus (Speaker f2b) (include 14778 syllables) [Black and 

Hunt 1996]. Dusterhoff, Black and Taylor uses 3 different databases: Boston University 

Radio News Corpus (Speaker f2b), 450 TIMIT sentences (10% of which are questions), 

and an instructional text database consisting 43 excerpts of text describing a museum 

exhibition [Dusterhoff et. al. 1999]. For duration modeling in German, Möbius and van 

Santen employ Kiel Corpus of Read Speech which includes 23490 phonemes [Möbius 

and van Santen 1996]. Venditti and van Santen perform an optimization over 34000-

sentence database and obtaines 197 sentences covering their feature space. They use this 
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197 sentence to model Japanese duration [Venditti and van Santen 1998]. In Sakurai, 

Hirose and Minematsu, 486 sentences are used to generate F0 contours [Sakurai et. al. 

2003]. For experimental purposes, Agüero, Wimmer and Bonafonte use a Spanish corpus 

of 500 sentences for the joint extraction and prediction of Fujisaki’s parameters [Agüero 

et. al.2004]. In a very recent work on Hindi duration modeling a corpus of 250 sentences 

is uti lized [Krishna et. al.2004]. The list may not be complete, however, it points out the 

importance of speech corpus in prosody modeling. 

Construction of a speech database requires three stages: creation of a text corpus, 

recording and annotation. In the following sections each step involved in text and speech 

corpora development is introduced. 

3.1 Text Corpus 
Text design by random selection of sentences from various topics is one of the most 

frequently used techniques for speech corpora design. However, corpus formation is a 

long and difficult task and therefore some means of optimization are necessary. 

Especially for building open domain applications, optimization becomes a must since 

recording every possible speech event is practically impossible.  

The coverage concept is very appropriate in formulating the problem and searching for 

solutions. The aim can be stated as optimal design of a text corpus, which has highest 

coverage for a target synthesis domain. Coverage of a domain can be defined via the 

concept of unit. Units in this research are determined to comprise phonemes and sentence 

types to account for phonetic and prosodic variety. 

As a prosodic corpus, it has to be representative of the prosodic variations of the 

language. The corpus may also be available for synthesis research thus another point is to 

provide phonetic balance. Along with the speci fications, a two-step approach is taken. In 

the first stage, phonetic coverage is provided and in the second one, the resulting database 

is forced to present prosodic variations by means of adding new sentences or changing 

the types of the sentences obtained after the first stage.  

Our initial text database is a collection of sentences selected from various resources 

such as grammar books [Adalı 1979; Aksan 1995; Atabay et. al. 1981; Hatibo� lu 1972; 

Kornfilt 1997], newspapers and TREEBANK project [Metu-Sabancı Turkish Treebank 

Corpus 2005; Nart, Oflazer and Say 2003]. A first selection has been performed on 
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newspaper and TREEBANK text to remove very long and short sentences. The resulting 

text together with the sentences taken from the grammar books1 constitutes the main 

source text (5802 sentences) used in this study. There are 43867 words 16708 of which 

are distinct. Phonetic transcription of the text database has been performed using Turkish 

SAMPA conventions [Well 2003]. The total number of occurrences for 42 SAMPA 

characters is 305341. The sentence lengths in terms of word counts of the source text are 

given in Figure 3-1. 
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Figure 3-1: Sentence histogram of the original database in terms of word numbers. 

 

Since large databases require much time and effort for building speech corpora, it is 

needed to condense the text database to a convenient size. Database reduction is 

presented in the following sections. 

3.1.1 First Step: Phonetic Coverage 

One of the constraints on the resulting database is to have phonetic variety and 

phonetic balance. There exist rare phonemes in Turkish such as Z in aZan (agent) and w 

in tawuk (chicken). When random selection is considered to reduce database size, the 

probability of the coverage of the sentences containing rare phonemes becomes very low. 

Since phonetic balance is desired, a greedy-like approach to cover the rarest phonemes in 

the source text is followed.  

                                                
1 Sentences from grammar books do not need a filtering in length since they are already in desired 
form. 
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A set of sentences (approximately 650) including rarest phonemes is selected from the 

source text database (5802 sentences). Since there is no other constraint on the selection 

process it is expected to maintain the original distribution in some manner. Resulting 

phoneme distributions reveal that selecting the sentences with rarest phonemes result in a 

text having nonrare phoneme distribution almost the same as that of the original one, 

yielding phonetic balance. 

Diphone coverage is another important issue. The original source text has a total 

number of 1130 distinct diphones consisting approximately 64.1% of all-possible diphone 

combinations (41 SAMPA + pause = 42; 42*42-1 = 1763 diphones). The diphone 

coverage of the original database seems to be very low; however some combinations are 

not encountered. The total number of diphone occurrences is 299539. Resulting database 

has 949 distinct diphones, which is approximately 84% of the original diphone set, with 

36280 occurrences.  

With the help of a simple greedy approach, the dimension of our original database is 

reduced from 5802 sentences to 675 sentences (approximately 88.4% reduction ratio) and 

achieved full phonetic coverage and partial diphone coverage. 

3.1.2 Second Step: Prosodic Coverage 

Sentence types and phonemes are taken as units to be covered in the database. To 

provide phonetic coverage, 675 sentences are chosen from the text database consisting 

5802 sentences using a greedy-like approach. For prosodic coverage, it is aimed to cover 

sufficient representations of each sentence type in Turkish. Following section introduces 

sentence types encountered in Turkish. 

3.1.2.1 Turkish Sentence Types 

Broadly, Turkish sentences can be investigated under three categories that can be 

further split into subcategories [Adalı 1979; Aksan 1995; Atabay et. al. 1981; Demircan 

2001; Hatibo� lu 1972; Kornfilt 1997]:  

Depending on Syntactic Constituents 

Simple Sentence 

Simple sentences are composed of only one judgment with one verb. Since they are 

simple in structure, their prosodic variations are also simple. In most of the sentences, 

preverbal word carries sentence focus. However this is not so when di fferent types are 
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considered: Question enclitics affect preceding word; question words constitute focus of 

the sentences, and etc. Some examples of simple clauses are given below (words in italic 

indicate verbs of the sentences): 

Ahmet annesini ziyaret etti (Ahmet visited his mother) (Figure 3-2) 

Kim televizyon seyretti (Who watched television?) 

Hasan kitabı okumadı (Hasan didn’ t read the book) 

Compound Sentence 

Sentences consisting more then one verb are known to be compound sentences. Each 

sub-sentence can be viewed as an intonation group. They have a complex prosodic 

structure. Compound sentence examples are given below (intonation groups are enclosed 

within /’s): 

Hasan nereye gitmi � se/ orada kaldı (Hasan stayed wherever he went) (Figure 3-3) 

Bir adam /ki çocuklarını sevmez/ yalnız ya� amalıdır (A man who does not love his 
children must l ive alone) 

Complex Sentence (Clauses) 

Complex sentences are composed of a main clause and one or more nominal, 

adjectival or adverbial clauses. In most of the cases, prosodically, complex sentences can 

be handled as simple sentences. However, as given in the examples below, they may 

show complex prosodic structures.  

Yarın benimle sinemaya gelmeni istiyorum (I want you to come to the movie with 
me tomorrow) (Figure 3-4) 

Ahmet /çok çalı � arak/ hedefine ula� tı (Ahmet attained his goal by working a lot) 

/Müdürün tatile çıkmasından sonra/ ofis kapandı (After the director went on 
vacation, the office is closed) 

Coordinate Sentence 

Coordinate sentences are composed of more than one simple, compound, or complex 

sentences that are related to each other in terms of meaning. Although there are complete 

simple sentences, the meaning of coordination requires di fferent intonational patterns 

(continuation rise). Examples are given as follows: 

Hasan i � e gitti, Ali evine döndü, ben de parkta kaldım (Hasan went to work, Ali 
returned home, and I stayed in the park) 

Hasan arabayı yıkadı ve evi süpürdü (Hasan washed the car and swept the house) 
(Figure 3-5) 
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Hasan istakozu pi � irdi, Ali de balı � ı (Hasan cooked the lobster and Ali cooked the 
fish) 

Reported Speech 

Although reported speech sentences can be thought as compound sentences, we 

investigate them as another type to emphasize the difference in their pronunciation. 

Below are the examples: 

Kom� ular /yarın seyahate çıkaca� ız/ dediler (The neighbors said: We will go on a 
trip) (Figure 3-6) 

Ahmet /sinemaya gidece� im/ diye mırıldandı (Ahmet muttered ‘ I will go the 
movie) 

Depending on Verbal Composition 

Verb-Final Sentence 

Turkish is a standard Subject-Object-Verb (SOV) order language. However, variations 

to this structure exist, i.e. OSV, SVO, OVS, VSO, and VOS depending on the focus of 

the sentence. The word to be focused comes to preverbal location in general. Among 

these various compositions, SOV and OSV structures are known to be verb-final 

sentences Sentences given in previous subsection are examples of verb-final sentences.  

Non-Verb Final Sentence 

Sentences in SVO, OVS, VSO, and VOS are named to be non verb-final sentences. In 

general, non verb-final sentences are used in conversations. They are mostly encountered 

in poems and daily communication like e-mails and messages. They are used to express 

emphasis in formal writing. Example of a non verb-final sentence is given below: 

Hasan bugün yedi istakozu (Hasan ate the lobster today) (Figure 3-7) 

Depending on Semantics 

Affirmative Sentence 

They are the sentences carrying positive sense. All of the previous examples are in 

affirmative form. Some examples are given below: 

Ahmet annesini ziyaret etti (Ahmet visited his mother) (Figure 3-2) 

Hasan i � e gitti, Ali evine döndü, ben de parkta kaldım (Hasan went to work, Ali 
returned home, and I stayed in the park) 
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Negative Sentence 

Negation in sentences is either marked by negation enclitics (-me, -ma) or by the word 

‘de� i l (not)’ . When used, the meaning of the sentence should be sensed in the opposite 

manner. Examples are as follows: 

Hasan istakozu bugün yemedi (Hasan did not eat the lobster today) (Figure 3-8) 

Hasan kitabı okumadı (Hasan didn’ t read the book) 

Interrogative Sentence 

These are question forms. The questions can be formed using question enclitics (-mi, -

mı, and variants) or question words like kim (who), ne (what), nerede (where), and etc. 

Verb-final sentences are turned into question sentences by placing the question enclitic 

before the subject under suspect or using the question words instead of the subject itsel f. 

Examples are: 

Hasan bugün istakoz mu yedi (did Hasan eat lobster today) (Figure 3-8) 

Ahmet neyi ö� rencilere sattı (Ahmet sold what to the students) 

 

 

Figure 3-2: Example of an affirmative, simple, and verb-final sentence: “Ahmet annesini 
ziyaret etti” . Speech waveform (upper) corresponding F0 contour (middle) and word 

segmentation (bottom). The pitch contour declines throughout the utterance. 
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Figure 3-3: Example of an affirmative, compound, and verb-final sentence: “Hasan 
nereye gitmi � se orada kaldı”. There are two intonational phrases: Second intonational 

phrase starts at the word ‘orada’ . 

 

 

Figure 3-4: Example of an affirmative, complex, verb-final sentence: “Yarın benimle 
sinemaya gelmeni istiyorum”. 

 

 

Figure 3-5: Example for an affirmative, coordination, and verb-final sentence: “Hasan 
arabayı yıkadı ve evi süpürdü” . 
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Figure 3-6: Example for an affirmative, reported, verb-final sentence: “Kom� ular yarın 
seyahate çıkaca� ız dediler” . 

 

 

Figure 3-7: Examples for affirmative, simple, non verb-final and affirmative, simple, 
verb-final sentences: “Hasan bugün yedi istakozu” and “Hasan bugün istakozu yedi”. 

 

 

Figure 3-8: Examples for negative, simple, verb-final and affirmative, simple, question 
forms: “Hasan istakozu bugün yemedi” and “Hasan bugün istakoz mu yedi” . 

 

Each sentence in the 675-sentence reduced database is annotated with respect to their 

sentence structures. Although this reduced subset contains almost all sentence structures, 
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there are not sufficient representatives for non verb-final, compound and coordination, 

reported speech sentences as well as interrogative sentences. However, non verb-final 

constructions are frequentl y used in daily li fe, informal written materials as well as 

literature especially in poetry and theatrical texts [Adalı 1979; Aksan 1995; Atabay et. al. 

1981; Demircan 2001; Hatibo� lu 1972; Kornfilt 1997]. Hence, it is necessary to increase 

the size of non verb-final sentences in our database. They have been increased to 

acccount for the 29.4% of the overall database). 

Reported speech sentences are another frequently used pattern existing in daily l ife, 

informal and news texts, and literature [Adalı 1979; Aksan 1995; Atabay et. al. 1981; 

Demircan 2001; Hatibo� lu 1972; Kornfilt 1997]. Their original size should also be 

increased, however not to repeat words indicating reported speech such as ‘ dedi (said)’ , 

we avoid increasing the number of such sentences to a comparable level as that of other 

types (10% of the overall database).  

Mostly by adding new sentences, the number of compound and coordination sentences 

is increased to a comparable level (14% and 20% respectively). Sentences are made 

interrogative by appropriate question words and morphemes. 

While selecting sentences and/or converting them into an appropriate form, special 

care is taken to ensure easily pronounceable sentences. Sentences seemed to be nonsense 

or hard to pronounce are deleted during prosodic coverage. 

Some of the previous 675 sentences have undergone small perturbations or deletions 

to provide balance between sentence structures. The remaining 335 sentences are selected 

either from the original database or from other resources to ful fill the sentence type 

balance. The total number of changed sentences in the resulting database to provide 

prosodic balance is 555 (55.5%). 

The original database has been enlarged to 5903 sentences with 311542 segments and 

the final reduced database is composed of 1000 sentences (16.9% of the original 

database) with a total of 54892 segments (17.6% of the original segment size). The total 

number of distinct diphones in the expanded and the resulting text are 1116 and 991, 

respectively. The resulting database covers approximately 89% of the diphones of the 

expanded database. The total number of diphone instances for expanded and the resulting 

database are 305639, and 53892 (approximately 18%), respectively.  
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Sentence distribution of the resultant database is given in Figure 3-9. Approximately 

30% of the database is composed of non verb-final sentences, while 70% is of verb-final 

sentences as desired. The Reported Speech sentences are allowed to reach a threshold 

value of 10% which seemed to be a good resolution. Among the sentence types, the 

complex sentence number is above the average, around 34%. This is an expected result 

since our original database sentences are composed mostly of complex sentences. It 

should be mentioned that in written Turkish most of the grammatical forms observed are 

verb-final, simple/complex affirmative sentences. 
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Figure 3-9: Sentence type distribution of the resultant database. 

 

3.2 Speech Corpus 
Last step in building METU Prosodic Speech Corpus is the recording process. 

Selected prompts are recorded in a soundproof booth located at METU's speech lab 

(Figure 3-10). The speaker uses a Sennheiser microphone with a ME102 modular mini-

microphone capsule.  

Selected sentences have been recorded using EMU Speech Tools [Cassidy and 

Harrington 1996]. EMU is a collection of software tools for the creation, manipulation 

and analysis of speech databases.  

After recording, speech waveforms are examined perceptually. It has been noted that 

the speaker made natural deviations: i.e. pronounce words such as yapmayaca� ım as 

yapmıca:m or de� il as di:l, etc. These are carefully examined and the speech database is 

then rebuilt considering these modifications.  
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3.2.1 Labeling 

Resulting speech database is designed to serve as a research material for prosodic 

modeling; hence it is necessary to provide a basic annotation scheme along with the 

speech corpus. Many researchers employ phonemes as segments in duration modeling 

whereas more complex units such as syllables or words are used in F0 contour modeling. 

Phoneme boundaries can be used to obtain syllable or word boundaries. 

Automatic phonetic labeling of speech corpus is performed using HTK Speech 

Recognition Tool [University of Cambridge 2005] developed for building and 

manipulating Hidden Markov models. 70% of the labels are then manually corrected and 

used in phoneme duration and pitch contour modeling studies. 

 

 

Figure 3-10: Soundproof booth. 
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CHAPTER 4  
 

 

IDENTIFICATION OF DURATIONAL ATTRIBUTES 
 

 

 

In natural speech, two similar speech sounds rarely have exactly the same durations 

due to many factors [Campbell 2000]. The influences of these factors on durational 

characteristics of speech have been investigated from the very beginning of prosody 

research. Selecting incomplete or inappropriate set of attributes results in an erroneous 

prediction of duration. Therefore, determination of attributes that have greater influence 

on speech timing is a crucial step in duration modeling process.  

Various durational attributes have been used in the literature for modeling purposes. 

Campbell (1992) used number-of-phones-in-the-syllable, nature-of-syllabic-peak, 

position-in-tone-group, type-of-foot, stress and word-class to predict syllable timing 

[Campbell 2000]. Shih and Ao utilize segment-identity, tone-identity, previous/next-

segment-identity, previous/next-tone-identity, degree-of-discourse-prominence, number-

of-preceding-syllables-in-the-word/phrase/utterance, number-of-following-syllables-in-

the-word/phrase/utterance, syllable-type for modeling Mandarin duration [van Santen et. 

al. 1997]. van Santen (1994) use phone-identity, surrounding-phones-identity, pitch-

accent, syllabic-stress, within-syllable/word/utterance-position [Cordoba et. al. 1999, 

2002]. Venditti and van Santen employ current/preceding/following-phone-identities, 

left/right-prosodic-context, accent-status, syllable-structure and special-morpheme-status 

for Japanese duration modeling [Venditti and van Santen 1998]. Segment-identity, 

segment-type, word-class, position-of-phrase-in-utterance, phrase-length-in-number-of-

words, position-of-word-in-phrase, word-length-in-number-of-syllables, position-of-

syllable-in-word, stress, segment-position-in-syllable, segmental-context, segmental-

context-type are used by Möbius and van Santen for modeling German duration [Möbius 

and van Santen 1996]. For modeling Catalan duration, Febrer et. al. utilize vowel-identity, 

stress, sentence-position, post-vocalic-phone-class and manner-of-articulation [Febrer et. 
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al. 1998]. For duration modeling in Spanish, phone-identity, contextual-phones, stress, 

stress-in-the-syllable, syllable-beginning-with-vocal, diphthong, phone-in-a-function-

word, phrase-type, positioning-phrase and number-of-units-in-the phrase are employed 

[Cordoba et. al. 1999]. Attributes used to predict Hindi duration are as follows: segment-

identity, segment-features, previous/next-segment-features, parent-syllable-structure, 

position-in-parent-syllable, parent-syllable-initial/final, parent-syllable-position-type, 

number-of-syllables-in-parent-word, position-of-parent-syllable, parent-syllable-break-

information, phrase-length-in-number-of-words, position-of-phrase-in-utterance, and 

number-of-phrases-in-utterance [Krishna et. al. 2004]. For the prediction of Czech 

duration, current/previous/next-phone-identities, syllable/word/phrase-lengths-in-phones, 

phone-position-in-syllables-from-beginning/end, phone-position-in-word-from-beginning/ 

end and word-position-in-phrase are utilized [Batusek 2002]. Lee and Oh use 

morphological and syntactic features as well as positional attributes for predicting Korean 

duration [Lee and Oh 1999]. 

We have been in contact with l inguists Prof. Dr. � clal ERGENÇ and Assoc. Prof. Dr. 

Engin UZUN from Ankara University, Prof. Dr. Güne�  MÜFTÜO� LU from Middle East 

Technical University and Assoc. Prof. Dr. Engin SEZER from Bilkent University. They 

state that the most influencing attribute for segmental duration in Turkish is the phonetic 

context, i.e. the phonetic identity of preceding and following segments, and especiall y 

that the next segment has a higher impact on segmental duration. Another influencing 

attribute for consonant duration is the position of consonant in parent syllable. All three 

agreed on the fact that contrary to other languages like English or Spanish, Turkish 

segment durations are not significantly affected by stress. Sezer mentions that long 

vowels do not appear in open syllables (syllables ending with short vowels). He also 

states that segments occurring in the last syllable of a word are longer in duration if there 

is a clear word boundary. 

Regarding the attributes selected in previous research on other languages and remarks 

by Turkish researchers, we select a set of attributes for modeling Turkish duration. Each 

phone in the database is assigned a feature vector describing the phone and the values of 

its attributes. The attributes and their values used in this study are presented next. 
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4.1 Performance Measures 
We employ several statistical measures for the quantitative analysis of the durational 

attributes used in this study. Let us assume that durations in an n-dimensional database is 

represented by the vector x=[x1, x2, …, xn]. Then, the expressions of Mean, Standard 

Deviation (SD) and Coefficient of Variation (CV) for the corresponding x vector are 

given by (4-1) through (4-3). In order to reveal duration-segment relations, we mainly 

rely on CV which is a dimensionless measure. CV is a suitable measure that describes the 

degree of spread around the mean of the data. 
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4.2 Durational Attributes 
Attributes used in phoneme duration modeling are presented in the followinf sections. 

4.2.1 Phone Identity 

Phone identity (Phn) is known to be the most influencing attribute on speech timing as 

duration is directly related to the characteristics of the phone and its closest neighbors. 

We use SAMPA convention [Wells 2003] to identify phones in our database. No 

allophonic variations are used for the vowels and the consonant ‘r’ but allophones of ‘g’, 

‘k’, ‘n’, and ‘l’ are used. Long vowels are separated from their short counterparts as well. 

The total number of symbols used is 43 including silence. The lists of symbols and their 

frequency in the speech corpus are given in Table 4-1. 

4.2.2 Manner of Articulation 

Although manner of articulation for consonants and backness/frontedness for vowels 

are added as influencing attributes, the feature is not used for modeling purposes. Instead, 

we use this feature to reveal the relationship between segments and their durations. The 

values of the feature are: {Affricate, Fricative, Nasal, Liquid, Semivowel, Plosive, Back, 
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Front, and Silence}. Table 4-2 shows the phone coverage of each feature value. Table 

4-3 demonstrates the duration distribution of phones with respect to their manner of 

articulations. As the table reveals, maximum deviation is seen on the duration of the 

consonant ‘r’ with a CV ratio of 0.797 while the least is observed on the vowel ‘e:’. 

 

Table 4-1: Frequencies of the phones in the speech corpus 

Phone Frequency Phone Frequency 
a 5790 m 2228 
a: 268 n 3627 
b 1292 N 156 
c 1007 o 1521 
d 2142 o: 31 

dZ 731 2 493 
e 4451 2: 1 
e: 94 p 436 
f 235 r 3570 
g 163 s 1503 
G 685 S 747 
gj 546 silence 2000 
h 459 t 1761 
1 2415 tS 547 
1: 42 u 1980 
i 4378 u: 84 
i: 141 v 391 
j 1931 w 178 
k 1389 y 972 
l 1656 y: 14 
5 1705 z 757 
  Z 133 

 

Table 4-2: Phone clusters with respect to their manner of articulation property 

Manner of Articulations Phones 
Affricate tS, dZ 
Fricative f, v, w, s, z, S, Z, h, G 
Nasal m, n, N 
Liquid l, 5, r 
Semivowel j 
Plosive p, b, t, d, c, gj, k, g 
Back a, I, o, u, a:, I:, o:, u: 
Front e, i, 2, y, e:, i:, 2:, y: 
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Table 4-3: Mean, standard deviation (SD) and standard deviation over mean (CV) for the 
segments in the database with respect to their manner of articulations (MOA) in 

decreasing CV ratio. 

Segment MOA of 
Segment 

Mean SD CV Frequency 

r Liquid 43.253 34.493 0.797 2450 
1 Back 51.890 29.328 0.565 1730 
z Fricative 70.385 38.231 0.543 512 
i Front 57.414 30.672 0.534 3031 
y: Front 84.300 44.659 0.530 10 
u Back 55.442 25.11 0.453 1356 
G Fricative 34.698 15.311 0.441 470 
g Plosive 55.598 23.558 0.424 112 
h Fricative 53.073 22.475 0.423 330 
y Front 58.492 24.046 0.411 693 
l Liquid 41.635 16.148 0.388 1152 
n Nasal 52.968 20.524 0.387 2522 
b Plosive 48.244 17.809 0.369 902 
j Semivowel 40.582 14.83 0.365 1349 
k Plosive 79.642 28.736 0.361 948 
5 Liquid 38.535 13.861 0.360 1154 
c Plosive 80.040 28.399 0.355 696 
a Back 82.300 29.027 0.353 4028 
e Front 79.768 27.59 0.346 3114 
v Fricative 45.822 15.464 0.337 264 
gj Plosive 52.419 17.586 0.335 372 
o: Back 113.250 37.629 0.332 16 
d Plosive 47.706 15.848 0.332 1647 
u: Back 89.574 29.498 0.329 61 
t Plosive 72.472 23.382 0.323 1214 
m Nasal 54.174 17.372 0.321 1594 
w Fricative 40.133 12.874 0.321 120 
S Fricative 101.423 32.363 0.319 523 
o Back 82.013 25.869 0.315 1090 
i: Front 87.451 26.913 0.308 102 
2 Front 87.266 25.99 0.298 353 

dZ Affricate 50.225 14.986 0.298 520 
f Fricative 81.830 23.937 0.293 171 
N Nasal 54.874 14.931 0.272 111 
p Plosive 76.919 20.27 0.264 307 
1: Back 90.407 23.352 0.258 27 
tS Affricate 86.013 22.175 0.258 387 
Z Fricative 67.022 15.32 0.229 91 
s Fricative 99.217 22.349 0.225 1069 
a: Back 133.888 26.924 0.201 187 
e: Front 119.191 23.802 0.200 68 
2: Front 63.000 0 0.000 1 
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4.2.3 Voicing 

Since the phone and its characteristics play an important role on the duration 

mechanism of speech, we consider the effects of voicing of the phones on duration by 

considering voicing property of the segments. Table 4-4 reveals the mean durations of 

the segments’ manner of articulation with respect to their voicing property. According to 

the table, the differences between voiced and voiceless consonants are very significant, in 

the order of 30-40 ms; voiceless segments are longer in duration then their voiced 

counterparts. 

Table 4-4: Mean, SD and CV for the MOA of the segments with respect to their voicing 
in decreasing CV ratio. 

MOA of 
 Segment 

Voicing of 
 Segment 

Mean SD CV Frequency 

liquid voiced 41.716 26.947 0.646 4756 
fricative voiced 51.721 30.129 0.583 1457 
front vowel 69.41 31.159 0.449 7372 
back vowel 73.055 32.652 0.447 8495 
semivowel voiced 40.582 14.83 0.365 1349 
nasal voiced 53.473 19.267 0.36 4227 
plosive voiced 48.736 17.112 0.351 3033 
plosive voiceless 76.715 26.183 0.341 3165 
fricative voiceless 91.046 30.64 0.337 2094 
affricate voiced 50.225 14.986 0.298 520 
affricate voiceless 86.013 22.175 0.258 387 

 

4.2.4 Previous/Next Phone Identities 

The preceding (Left) and following (Right) phone identities are used to model segment 

duration. As the work of Klatt [Campbell 2000; Klatt 1987] revealed that the segmental 

context highly influences the segment’s duration, it is beneficial to use a larger window 

however when the number of segments are considered it is difficult to find a database 

covering sufficient representatives for modeling each combination. 

4.2.5 Manner of Articulation of Previous/Next Phones 

Using the identity of previous/next phones increases the dimension of the search space 

to the order of 43x43. Since we use a database of limited dimension, the frequency of 

every possible combination is not at a considerable level. In order to reduce the 

dimension, we included manner of articulation property for consonants and 
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backness/frontedness property for vowels of preceding and following phonemes. The 

attributes are named as Leftc1 and Rightc1 for previous and following phones, 

respectively. Using manner of articulations for the neighboring phones, the dimension of 

the search space is reduced to 9x9. Table 4-5 reveals segmental durations with respect to 

manner of articulations of following phones. The most striking result is segments 

followed by a silence, i.e. a possible phrase break, have the largest durations. This result 

agrees with that reported by Klatt about segments just before a pause [Campbell 2000].  

 

Table 4-5: Mean, SD and CV for the voicing of the segments with respect to their right 
neighbour’s manner of articulation in decreasing CV ratio.  

Voicing of 
Segment 

MOA of 
Right 
Segment 

Mean SD CV Frequency 

voiceless silence 152.174 64.981 0.427 121 
voiceless semivowel 94.529 14.877 0.157 51 
voiceless Nasal 89.077 23.778 0.267 235 
voiceless liquid 86.576 21.32 0.246 406 
voiceless Front 82.631 26.323 0.319 1734 
voiceless Back 81.415 24.834 0.305 2248 
voiceless plosive 74.815 22.466 0.3 655 
voiceless affricate 64.977 15.741 0.242 44 
voiceless fricative 60.908 24.224 0.398 152 
voiced silence 122.484 53.797 0.439 376 
voiced semivowel 57.524 20.691 0.36 170 
voiced affricate 55.587 17.604 0.317 240 
voiced plosive 54.814 20.035 0.366 1697 
voiced fricative 48.745 19.57 0.401 514 
voiced liquid 47.057 19.157 0.407 768 
voiced Nasal 45.776 16.228 0.355 522 
voiced Front 44.496 17.287 0.389 5309 
voiced Back 42.631 16.238 0.381 5746 
vowel silence 134.441 30.447 0.226 513 
vowel Front 80.710 41.187 0.51 214 
vowel affricate 73.062 26.649 0.365 581 
vowel liquid 72.228 29.689 0.411 3571 
vowel fricative 69.732 31.16 0.447 2732 
vowel Back 69.318 36.011 0.519 333 
vowel plosive 69.012 25.152 0.364 3417 
vowel Nasal 66.829 31.607 0.473 3413 
vowel semivowel 62.385 29.781 0.477 1093 
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4.2.6 Voicing of Previous/Next Phones 

Klatt also reported that vowel duration is shortened if it is followed by a voiceless 

consonant in the same word [Campbell 2000; Klatt 1987]. In order to observe the effect 

of voicing property of neighboring phones to segmental duration, we used neighboring 

phones voicing property as well. The name for the attribute holding the voicing property 

of previous phone is Leftc2 and for the following phone, it is Rightc2. Table 4-6 shows 

the statistical results related to the segment duration and voicing property of neighboring 

phones. According to the data in the table, when followed by a voiced segment, phone 

duration increases. It should also be mentioned voiced fricative followers influence 

voiceless phone durations more than voiced plosive and affricate followers. However, the 

maximum average segmental duration is attained by voiceless segments followed by 

semivowels. Besides, the effect of a semivowel follower on voiceless segments is highly 

influential since the CV ratio attains very small values. One important attribute to be 

mentioned about the data in the table is the insufficient representatives for some of the 

combinations leading to less information about such data. 

4.2.7 Lexical Stress 

It is reported that the stress attribute is a relevant feature in duration control [Batusek 

2002; Campbell 2000; Cordoba et. al. 1999; Cordoba et. al. 2002]. Therefore, the effects 

of stress to segmental duration in Turkish are also considered. The attribute is named as 

Accent while using for model development. There exist two levels for lexical stress: 

Accented (A) or Not-Accented (NA). A segment is associated with an A if the vowel of 

the parent syllable is stressed and an NA otherwise. 

It is reported in Cordoba et. al. (2002) that stressed vowels are 20% longer on average 

than unstressed vowels. For our database, mean durations for stressed and unstressed 

segments turned out to be 62.43 ms and 63.47 ms, respectively. Table 4-7 through Table 

4-9 reveals the statistics related to stressed and unstressed segment durations with respect 

to segments’ features. Last column in Table 4-7 gives the percentage change of the 

corresponding vowel when it occurred in a stressed syllable. The former summarizes the 

mean durations for vowels occurring in stressed/unstressed syllables. There is a tendency 

of a slight increase in vowel durations occurring in stressed syllables but this is not the 

case for all vowels. So, a generalization about vowel length with respect to stress attribute 

cannot be done. Second table reveals the average durations of segments occurring in 

stressed/unstressed syllables with their voicing property. According to the voicing of the 
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segments, stressing of a segment does not play an important role in phones’ durations. 

The latter table shows the segments’ manner of articulation properties with respect to 

stressing property. As the table indicates a direct relation with stressing property of the 

segments and their duration. 

 

Table 4-6: Mean, SD and CV for the voicing of the segments with respect to their right 
neighbour’s manner of articulation in decreasing CV ratio. 

Voicing 
of 
Segment 

MOA of  
Right  
Segment 

Voicing of  
Right  
Segment 

Mean SD CV Frequency 

voiceless semivowel voiced 94.529 14.877 0.157 51 
voiceless nasal voiced 89.077 23.778 0.267 235 
voiceless liquid voiced 86.576 21.32 0.246 406 
voiceless fricative voiced 84.531 24.09 0.285 32 
voiceless plosive voiced 84.481 26.071 0.309 156 
voiceless front vowel 82.631 26.323 0.319 1734 
voiceless back vowel 81.415 24.834 0.305 2248 
voiceless affricate voiced 76.667 8.733 0.114 6 
voiceless plosive voiceless 71.794 20.319 0.283 499 
voiceless affricate voiceless 63.132 15.875 0.251 38 
voiceless fricative voiceless 54.608 20.083 0.368 120 
voiced semivowel voiced 57.524 20.691 0.36 170 
voiced affricate voiced 57.157 16.313 0.285 159 
voiced plosive voiced 55.610 20.473 0.368 1187 
voiced plosive voiceless 52.961 18.866 0.356 510 
voiced affricate voiceless 52.506 19.64 0.374 81 
voiced fricative voiced 52.298 20.208 0.386 121 
voiced fricative voiceless 47.651 19.264 0.404 393 
voiced liquid voiced 47.057 19.157 0.407 768 
voiced nasal voiced 45.776 16.228 0.355 522 
voiced front vowel 44.496 17.287 0.389 5309 
voiced back vowel 42.631 16.238 0.381 5746 
vowel front vowel 80.710 41.187 0.51 214 
vowel affricate voiced 74.209 26.743 0.36 339 
vowel liquid voiced 72.228 29.689 0.411 3571 
vowel fricative voiced 71.944 34.302 0.477 1272 
vowel affricate voiceless 71.455 26.488 0.371 242 
vowel plosive voiceless 69.893 24.709 0.354 2045 
vowel back vowel 69.318 36.011 0.519 333 
vowel fricative voiceless 67.805 28.007 0.413 1460 
vowel plosive voiced 67.698 25.752 0.38 1372 
vowel nasal voiced 66.829 31.607 0.473 3413 
vowel semivowel voiced 62.385 29.781 0.477 1093 
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Table 4-7: Mean and percentage values for Stressed and Unstressed vowels.  

Vowel Lexical 
Stress 

Mean Frequency Percentage 

a N 78.754 2861 13.45 
a A 90.994 1167  
a: N 132.073 151 6.66 
a: A 141.5 36  
e N 76.618 2090 11.11 
e A 86.196 1024  
e: N 119.639 61 -3.78 
e: A 115.286 7  
1 N 50.112 1037 8.14 
1 A 54.551 693  
1: N 88.05 20 9.36 
1: A 97.143 7  
i N 57.421 2022 -0.04 
i A 57.4 1009  
i: N 87.468 62 -0.05 
i: A 87.425 40  
o N 81.29 980 8.12 
o A 88.455 110  
2 N 86.915 342 11.48 
2 A 98.182 11  
o: N 113.25 16 - 
2: N 63 1 - 
u N 54.269 1009 7.79 
u A 58.856 347  
u: N 89.574 61 - 
y N 57.382 516 7.04 
y A 61.729 177  
y: N 84.3 10 - 

 

Table 4-8: Mean, SD, and CV values for Stressed and Unstressed segments with respect 
to their voicing. There is no abrupt change in stressed and unstressed segments. 

Voicing of 
Segment 

Lexical 
Stress 

Mean SD CV Frequency 

voiced N 47.955 23.704 0.494 10102 
voiced A 46.57 21.274 0.457 5240 
voiceless N 82.722 28.491 0.344 4170 
voiceless A 82.513 28.561 0.346 1476 
vowel N 70.28 31.684 0.451 11239 
vowel A 73.987 32.669 0.442 4628 
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Table 4-9: Mean, SD, and CV values for Stressed and Unstressed segments with respect 
to their manner of articulations. 

MOA of 
Segment 

Lexical 
Stress 

Mean SD CV Frequency 

affricate N 66.157 25.083 0.379 618 
affricate A 64.08 26.451 0.413 289 
fricative N 76.023 36.058 0.474 2546 
fricative A 72.093 35.918 0.498 1005 
nasal N 54.027 18.47 0.342 2484 
nasal A 52.683 20.329 0.386 1743 
plosive N 63.427 26.349 0.415 4573 
plosive A 61.888 25.936 0.419 1625 
liquid N 42.43 29.238 0.689 3069 
liquid A 40.417 22.129 0.548 1687 
semivowel N 41.221 15.11 0.367 982 
semivowel A 38.872 13.928 0.358 367 
back N 71.831 32.166 0.448 6135 
back A 76.238 33.682 0.442 2360 
front N 68.417 30.996 0.453 5104 
front A 71.646 31.417 0.439 2268 

 

Although the tables and the overall statistics do not reveal an influence on segmental 

duration with respect to the occurrence in stresses/unstressed syllables as mentioned by 

Cordoba et. al. (2002), we would like to observe this phenomenon in more detail 

therefore we included this attribute to our feature set. 

Lexical stresses [Barker 2002; Demircan 2001; Lees 1961; Sezer 1981; Underhill 

1976] of the words in the database are obtained through an automatic stress assignment 

algorithm developed within the course of this study.  

4.2.8 Position in Syllable 

We consider phone position in syllable (PosInSyllable) as another feature influencing 

duration in Turkish. A syllable is composed of an onset + rhyme. Onset is described to be 

the consonants before the syllable vowel that forms the syllable nucleus. Rhyme is the 

remaining part of the syllable, i.e. it is composed of the nucleus + coda where coda is the 

consonants following the syllable nucleus. In our feature coding we use a three level 

representation for the segment position in syllable: Nucleus (N), Onset (O) and Coda (C). 

Decomposition of the syllable ‘ semt’ in the word ‘semtten’ is described in Figure 4-1.  
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Figure 4-1: Decomposition of the syllable ‘semt’ into its PosInSyllable tags 

 

By this coding scheme, every vowel is set to N and consonants are set to either O or C. 

In our database, the average durations are 43.33 ms and 82.285 ms for voiced and 

voiceless consonants occurring at onset position while the average durations are 57.102 

ms and 83.504 ms for voiced and voiceless consonants occurring at coda position. Table 

4-10 and Table 4-11 show the statistical figures obtained through our database for the 

phones occurring in various positions in the parent syllable. It can be concluded that 

segment durations for voiceless consonants are independent of the position in syllable 

since they are almost the same in either position. Thus, it can be deduced that there is a 

slight increase on the average duration for the consonants occurring at onset. Besides, 

voiced consonants are slightly longer when occur in coda position. Close examination of 

Table 4-11 reveals that there is a significant difference between the durations of 

affricates, nasals, plosives and liquids occurring at the onset and coda positions. 

 

Table 4-10: Mean, SD, and CV values of segment duration with respect to Position in 
Syllable feature. Segments are clustered according to their voicing property. 

Voicing of 
Segment 

Position In  
Syllable 

Mean SD CV Frequency 

voiced O 43.33 16.629 0.384 10717 
voiced C 57.102 31.117 0.545 4625 
voiceless O 82.285 25.726 0.313 3875 
voiceless C 83.504 33.796 0.405 1771 
vowel N 71.362 32.018 0.449 15867 

 

Under the light of the discussions with experts on Turkish and our statistical findings, 

it is concluded that PosInSyllable is an important parameter for consonant duration in 

Turkish. Statistical information gathered from the database supports this conclusion. 

Onset Rhyme 

Nucleus Coda 

s e mt 
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Table 4-11: Mean, SD, and CV values of segment duration with respect to Position in 
Syllable feature. Segments are clustered according to their manner of articulation. 

MOA of 
Segment 

Position In  
Syllable 

Mean SD CV Frequency 

affricate O 62.716 23.605 0.376 818 
affricate C 91.034 28.393 0.312 89 
fricative O 72.785 33.682 0.463 2534 
fricative C 80.206 40.925 0.51 1017 
nasal O 47.548 15.022 0.316 2265 
nasal C 60.313 21.263 0.353 1962 
plosive O 59.465 23.262 0.391 5043 
plosive C 78.56 32.226 0.41 1155 
liquid O 33.981 12.687 0.373 2898 
liquid C 53.781 37.003 0.688 1858 
semivowel O 40.067 15.539 0.388 1034 
semivowel C 42.273 12.085 0.286 315 
back N 73.055 32.652 0.447 8495 
front N 69.41 31.159 0.449 7372 

 

4.2.9 Syllable Type 

We also include the type of the parent syllable (SylType) in our annotations. Two 

levels are used to denote syllable types: Heavy (H) and Light (L). Heavy and light 

syllables are sometimes called open and closed syllables, respectively. Average segment 

durations are 67.87 ms for heavy segments and 62.46 ms for light segments. Table 4-12 

and Table 4-13 reveal the overall segment durations with respect to their parent syllable 

type. In general, all segments have shorter durations in open syllables then in closed 

syllables. From the overall view, it can be deduced that syllable type is an influencing 

attribute in segment duration in Turkish.  

 

Table 4-12: Mean, SD, and CV values of segments in Heavy (H) and Light (L) syllables. 
Segments are clustered with respect to their voicing property. 

Voicing of  
Segment 

Syllable 
Type Mean SD CV Frequency 

voiced L 43.073 16.812 0.39 6441 
voiced H 50.673 26.001 0.513 8901 
voiceless L 80.691 26.03 0.323 2099 
voiceless H 83.837 29.818 0.356 3547 
vowel L 65.061 31.297 0.481 9135 
vowel H 79.91 30.988 0.388 6732 
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Table 4-13: Mean, SD, and CV values for segments in Heavy (H) and Light (L) syllables. 
Segments are clustered with respect to their manner of articulations. 

MOA of 
Segment 

Syllable 
Type 

Mean SD CV Frequency 

affricate L 59.649 22.837 0.383 405 
affricate H 70.211 26.613 0.379 502 
fricative L 70.595 34.103 0.483 1379 
fricative H 77.65 36.991 0.476 2172 
nasal L 47.882 15.065 0.315 1428 
nasal H 56.325 20.514 0.364 2799 
plosive L 58.391 22.861 0.392 3036 
plosive H 67.471 28.434 0.421 3162 
liquid L 33.351 12.49 0.374 1737 
liquid H 46.529 31.479 0.677 3019 
semivowel L 39.115 16.111 0.412 555 
semivowel H 41.607 13.782 0.331 794 
back L 65.012 30.713 0.472 4851 
back H 83.762 32.08 0.383 3644 
front L 65.118 31.949 0.491 4284 
front H 75.365 29.002 0.385 3088 

 

4.2.10 Syllable-Position-in-Word 

Like PosInSyllable feature, the location of parent syllable in the parent word 

(SyllablePosInWord1) is used by many researchers as an influencing attribute on 

segmental duration. Klatt reported [Klatt 1987; Campbell 2000] especially that boundary 

syllable segments are longer in duration. In order to examine the affects of the parent 

Syllable-Position-in-Word, we tried different coding schemes.  

In the first type of coding (SyllablePosInWord1), the syllables of the same word are 

counted from the left starting from 1. The database contains words of at most 10 syllables 

thus the feature can take at most 10 as value. However, the database lacks words 

containing 9 syllables. Table 4-14 reveals the database statistics related to segment 

durations and parent syllable locations. The table does not provide direct information 

related to the segment durations of the last syllables but gives an intuition about the 

shortening in segment durations with increasing number of syllables in parent word.  

In the second type of coding (SyllablePosInWord2), a discrete set of symbols is used 

to represent the location of parent syllable in the parent word. The segments of the parent 

syllable take the value Initial if they constitute the first syllable of the parent word, or 

Final if they form the last syllable, or Middle otherwise. The segments of the words 
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containing single syllables are represented by the value Single. With this coding scheme, 

we have the advantage of differentiating initial and final syllables clearly. However, with 

this coding, we loose the information relating segment duration with the actual location of 

parent syllable. To overcome this issue, a third coding scheme is proposed. Table 4-15 

demonstrates the quantitative results obtained from the database with second coding. 

According to the data in the table, initial and final segments are longer in duration and 

segment durations in words with single syllables attain the maximum average value. 

 

Table 4-14: Mean, SD, and CV values for segments in syllables with respect to different 
Syllable Positions. 

Syllable 
Position 

Mean SD CV Frequency 

1 69.344 29.833 0.43 12371 
2 60.067 28.989 0.483 11462 
3 59.405 31.671 0.533 7334 
4 59.535 34.235 0.575 3807 
5 62.658 37.577 0.6 1423 
6 64.306 39.707 0.617 359 
7 67.888 35.01 0.516 80 
8 66.867 41.834 0.626 15 
10 47.5 3.536 0.074 2 

 

According to the third coding scheme (SyllablePosInWord3), we scale the raw syllable 

positions (SyllablePosInWord1) with the total number of syllables in the parent word. The 

coding can be formulated as follows: 

 

 
1

1-1
3

−
=

WordLength

sInWordSyllablePo
sInWordSyllablePo     (4-4) 

 

With this coding, the initial and final syllables are differentiated while preserving 

syllable position information in polysyllabic words. The initial syllables as well as single 

syllables take the value 0 and the final syllables take the value 1. 
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Table 4-15: Mean, SD, and CV values for segments in Initial (I), Middle (M), Final (F) 
and Single (S) syllables. 

Syllable 
Position 

Mean SD CV Frequency 

I 68.485 28.369 0.414 10283 
M 54.154 25.232 0.466 12800 
F 66.456 35.946 0.541 11684 
Single 73.578 35.896 0.488 2088 

 

4.2.11 Word Position in Sentence 

In our experimental studies, we consider position of parent word in the sentence 

(WordNo) to have an impact on segment duration since it has been reported that 

increasing the number of words in a sentence results in shorter segments [Klatt 1987; 

Campbell 2000] The feature values are set to be numeric and ranges from 1 to 19. All 

segments take the same value in a parent word. Figure 4-2 demonstrates the distribution 

of feature values in the database. Table 4-16 reveals the statistics of the database related 

to the current coding scheme for WordNo feature. It can be observed that there is an 

increase in average segment duration around the 9th word in the sentences. However, we 

think that this increase is not related to the number of words but a possible sentence final. 

 

Table 4-16: Mean values for segments of words in different locations in the utterance. 

WordNo1  Mean Frequency WordNo1 Mean Frequency 
1 61.607 4187 10 69.771 984 
2 62.771 4592 11 68.689 283 
3 63.649 4482 12 69.704 142 
4 62.205 4545 13 60.171 35 
5 62.296 4582 14 69.902 41 
6 61.644 4247 15 86.929 14 
7 63.707 3939 16 61.471 17 
8 63.627 2872 17 71.385 13 
9 67.267 1863 18 56.25 8 
   19 52.222 9 
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Figure 4-2: Histogram plot of Word Position in Utterance feature 

 

We used the same coding scheme for WordNo feature as in SyllablePosInWord feature 

to observe the effects of initial and final words in segment duration. The attribute values 

for the second representation are as follows: The segments of the parent syllable attain a 

value I for sentence initial words, a value F for the words at the end of sentences and a 

value M, elsewhere. The tag Single is discarded from the set since there is no single word 

sentence in our database. The statistics with the new coding scheme is given in Table 

4-17. The table reveals the lengthening effect of sentence finality on the segment 

duration. 

4.2.12 Word Part of Speech 

In numerous studies, Part-of-Speech (POS) tags are used to observe effects on 

duration. The attribute’s name is WordPOS. We also employ POS tags for parent word in 

our attribute space. The segments are annotated with their major POS tags as being 

NOUN, PRON, VERB, QUES, INF, POSTP, CONJ, ADV, ADJ, CNOUN, or EXC. 

These tags are obtained through a morphological analysis procedure [Oflazer 1994]. 

Table 4-18 shows the average segment durations with respect to different POS tags in the 

database. According to the table, question words reveal one of the largest average 

duration. Our hypothesis is that question words mainly locates at phrase ends and the 

maxima occurred in average segmental duration in question words is nothing but a 

clause-final lengthening as reported by Klatt [Klatt 1987; Campbell 2000]. 
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Table 4-17: Mean, SD, and CV values in Initial (I), Middle (M) and Final (F) Words. 

WordNo2 Mean SD CV Frequency 
I 61.607 28.38 0.461 4187 
M 61.452 29.083 0.473 27567 
F 73.612 40.962 0.556 5101 

 

Table 4-18: Mean, SD, and CV values for segment durations according to POS values of 
tags of the parent word. 

Part of 
Speech Mean SD CV Frequency 

CONJ 79.992 38.295 0.479 622 
QUES 74.417 43.025 0.578 410 
VERB 65.982 35.04 0.531 8105 
ADV 65.96 30.643 0.465 2075 
POSTP 65.771 30.765 0.468 682 
PRON 63.253 30.542 0.483 716 
INF 62.039 23.314 0.376 256 
NOUN 61.872 29.428 0.476 17411 
ADJ 59.678 28.688 0.481 6406 
CNOUN 58.138 24.672 0.424 167 
EXC 56.6 22.865 0.404 5 

 

4.2.13 Word Length 

Previous studies indicates that segment duration is directly related to the number of 

syllables in a word; increase in the number of syllables results in a squeezing in segment 

duration. The number of syllables in the parent word is represented by the name 

NumOfSyl. Therefore, we also include the number of syllables in the parent word as an 

influencing attribute. The attribute values are numeric and ranges from 1 to 10. Figure 

4-3 reveals the histogram of NumOfSyl  of the database. Table 4-19 gives the database 

statistics related to segment durations and NumOfSyl attribute. From the table, it can be 

inferred that as the number of syllables of a word increase, the average segment duration 

is shortened. Thus, there is an inverse proportion between the number of syllables in the 

parent word and average segment duration. 
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Figure 4-3: Histogram plot of Word Length. 

 

Table 4-19: Mean, SD, and CV values for segment durations according to Word Length. 

Word 
Length 

Mean SD CV Frequency 

1 73.578 35.896 0.488 2088 
2 67.187 31.443 0.468 7704 
3 64.259 30.968 0.482 10496 
4 60.521 30.234 0.5 9237 
5 58.436 29.819 0.51 5182 
6 56.518 29.579 0.523 1601 
7 53.929 27.912 0.518 434 
8 53.967 26.733 0.495 91 
10 52.182 21.456 0.411 22 

 

4.2.14 Total Number of Words in Utterance 

We also employ the total number of words in the utterance (NumOfWord) as a 

separate attribute. The attribute values are in the range [3-19]. WordNo attribute is related 

to NumOfWord such that the last word of each utterance attains the same value assigned 

to the current attribute. Figure 4-4 and Table 4-20 show the histogram and mean segment 

duration for the attribute values. As the table reveals, the segment durations do not show a 

characteristic change with respect to the number of words in the sentence. The figure and 

the table also show the utterance - number of word situation of our database. 
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Figure 4-4: Histogram plot of Total number of Words in Utterance. 

 

Table 4-20: Mean, SD, and CV according to Total Number of Words in Utterance. 

NumOfWord Mean SD CV Frequency 
3 62.119 29.937 0.482 42 
4 64.065 30.343 0.474 185 
5 64.418 33.482 0.52 1606 
6 63.285 32.221 0.509 2907 
7 63.789 32.17 0.504 6753 
8 62.535 30.521 0.488 7576 
9 63 30.713 0.488 8058 
10 62.798 31.11 0.495 6373 
11 63.686 30.432 0.478 1715 
12 62.681 28.878 0.461 994 
13 64.037 28.211 0.441 80 
14 65.419 33.008 0.505 270 
15 62.283 33.791 0.543 92 
17 65.143 30.896 0.474 105 
19 63.939 27.035 0.423 99 

 

4.2.15 Syllable Position in Utterance 

The position of the parent syllable in the utterance (SylNo) has been considered to 

investigate the effects on segment duration. It has been reported that increasing number of 

syllables affect English timing to be shorter. The feature levels have numerical values 

ranging from 1 to 45. The statistics of the database used for modeling are demonstrated in 

Figure 4-5 and Table 4-21. From the table, it can also be concluded that the segments 

having larger SylNo values are longer in duration then the rest of the segments. The main 
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reason for this is the higher the value of SylNo value, the more probable that the syllable 

is an utterance final syllable in confirmation with Klatt’s rule about phrase-final 

lengthening in segment duration. 

 

 

Figure 4-5: Histogram plot of Syllable Position in Utterance. 

 

Attributes below are obtained through the speech corpus identified perceptually or by 

direct extraction. 

4.2.16 Phrase Break Information 

Speech corpus has been evaluated perceptually several times and the major perceptual 

breaks in the utterances were marked manually. The marks mainly correspond to the 

speaker’s breathings however some correspond to lengthening in the segment durations 

causing perceptual differences in the utterance. Therefore, we doubt that the current 

speaker is not efficient to make predictions on the pause durations. For phrase break 

information (PhrInfo), we have only used three categorical levels. Segment takes a Phrase 

Initial (PI) value if it immediately follows a phrase break, a Phrase medial (PM) value if 

there is no phrase break engagement and a Phrase Final (PF) if a phrase break 

immediately follows the segment. Table 4-22 reveals the average segment durations and 

their standard deviations for the three categorical values. According to the table, it can be 

deduced that our speaker has a tendency to lengthen segment durations at phrase 

boundaries. The extension is more in phrase final segments. 
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Table 4-21: Mean values according to Syllable Position in Utterance. 

SylNo Mean Frequency SylNo Mean Frequency SylNo Mean Frequency 
1 64.18 1551 16 61.625 1441 31 70.418 170 
2 62.59 1660 17 63.3 1383 32 63.084 119 
3 63.991 1601 18 61.932 1298 33 65.121 107 
4 63.404 1610 19 62.726 1248 34 66.908 76 
5 62.671 1630 20 63.477 1170 35 70.237 59 
6 62.887 1601 21 61.93 1050 36 73.5 44 
7 62.521 1640 22 64.469 961 37 75.071 28 
8 63.328 1599 23 66.438 831 38 76.133 15 
9 64.084 1598 24 65.018 708 39 59.6 15 
10 62.86 1575 25 65.653 580 40 59.933 15 
11 60.023 1579 26 63.761 481 41 62.091 11 
12 62.984 1561 27 64.73 408 42 53.5 12 
13 61.534 1541 28 63.322 320 43 81.231 13 
14 61.636 1521 29 68.158 284 44 97.714 7 
15 62.484 1490 30 71.627 241 45 52.333 3 

 

Table 4-22: Mean, SD, and CV values according to Phrase Break. 

Phrase Break Mean SD CV Frequency 
I 69.447 30.606 0.441 4218 

M 58.806 26.498 0.451 28011 
F 83.734 45.604 0.545 4626 

 

4.2.17 Number of Words from (to) the Preceding (Following) Phrase 
Break 

When we examine the WordNo feature, we observed that there is an increase in the 

average segment duration around the 9th word, a possible utterance final word. Therefore, 

it can be deduced that the word position in the utterance has an impact on segment 

duration. Since the segmental duration is affected by word location, we would like to 

examine the influence of word position in the perceived phrases. Current attributes 

identify the number of words between the parent word and the preceding (following) 

phrase break counting from 0. The attributes are named as NumOfWordFromPrevBr and 

NumOfWordToFolBr for the corresponding attributes, respectively. Table 4-23 and 

Figure 4-6 show the mean segment durations and histogram of the current attributes. As 

seen from the left table, as the number of words from the preceding phrase break 

increases, the average segment duration also increases since the probability of 

encountering a new phrase break increases. For the right panel of the table, the maximum 
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average segment duration has occurred at 0th level meaning that the word is immediately 

followed by a phrase break. 

 

Table 4-23: Mean values for segment durations according to Number of Words from the 
Preceding Phrase Break (Left) and Number of Words to the Following Phrase Break 

(Right). 

NumOfWord 
FromPrevBr 

Mean Frequency NumOfWord 
ToFolBr 

Mean Frequency 

0 62.921 11753 0 68.83 13740 
1 62.032 11052 1 58.908 10759 
2 63.741 7694 2 59.808 6852 
3 64.008 3929 3 61.708 3298 
4 65.769 1502 4 60.31 1400 
5 65.769 577 5 61.72 511 
6 66.671 255 6 63.173 208 
7 72.4 75 7 63.333 75 
8 74.667 18 8 67.083 12 

 

 

Figure 4-6: Histogram plots of Number of Words from the Preceding Phrase (Left) and 
Number of Words to the Following Phrase Break (Right). 

 

4.2.18 Number of Syllables from (to) the Preceding (Following) Phrase 
Break 

This attribute is almost the same as the number of words from the preceding phrase 

break attribute. Instead of using word numbers, this attribute uses syllable counts. The 

names for the attributes are NumOfSylFromPrevBr and NumOfSylToFolBr, respectively. 

The values range from 0to 27. Table 4-24 and Table 4-25, and Figure 4-7 show the 
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mean segment durations and histogram of the current attributes. From Table 4-24, it can 

be observed that there is a maximum at the first entry, then a sharp decrease of 

approximately 9 ms and a regular increase starting around 15th syllable in segmental 

durations. The first maxima is related to lengthening phenomenon in phrase initial 

syllables and as the syllables tend to approach phrase finality the average segment 

durations increase. For the Table 4-25, we have a maximum at the 0th level. This 

lengthening in segmental duration is due to the fact that the syllable that the segment 

belongs to is located at phrase final.  

 

Table 4-24: Mean values for segment durations according to Number of Syllables from 
the Preceding Phrase Break (Left) and Number of Syllables to the Following Phrase 

Break (Right). 

NumOfSyl 
FromPrevBr 

Mean Frequency NumOfSyl 
FromPrevBr 

Mean Frequency 

0 69.447 4218 14 60.373 365 
1 61.592 4510 15 66.786 295 
2 62.162 4182 16 65.224 196 
3 61.777 3981 17 68.232 151 
4 61.053 3628 18 65.636 99 
5 61.051 3202 19 70.463 82 
6 62.577 2841 20 66.111 45 
7 62.949 2356 21 69.842 38 
8 63.912 1880 22 73 32 
9 62.959 1471 23 58.08 25 
10 62.838 1148 24 78.214 14 
11 64.481 896 25 59.857 7 
12 64.813 673 26 80.714 7 
13 63.878 509 27 101.75 4 

 

4.2.19 Duration 

Phoneme durations are measured in miliseconds. Raw durations are extracted from the 

text files containing segmentation information. Alignment of speech files with 

corresponding orthography has been achieved via embedded training using HTK toolkit 

[University of Cambridge 2005].  

The raw duration distribution is given in Figure 4-8. In this figure, several fits to raw 

duration distribution such as Normal distribution, Gamma distribution and Inverse 
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Gaussian distribution are also given. Phoneme duration distribution is more likely to have 

a Gamma distribution. 

 

Table 4-25: Mean values for segment durations according to Number of Syllables from 
Preceding Phrase Break (Left) and Number of Syllables to Following Phrase Break 

(Right). 

NumOfSyl 
ToFolBr 

Mean Frequency NumOfSyl 
ToFolBr 

Mean Frequency 

0 83.755 4632 14 60.094 372 
1 59.95 4451 15 60.8 285 
2 60.532 4149 16 62.075 200 
3 60.133 3909 17 66.597 144 
4 59.223 3594 18 61.816 98 
5 59.076 3149 19 62.946 74 
6 59.908 2795 20 59.882 51 
7 60.385 2283 21 65.108 37 
8 60.238 1862 22 57.75 28 
9 60.428 1469 23 72.783 23 
10 61.429 1166 24 77 14 
11 62.239 887 25 60.857 7 
12 60.55 664 26 44.167 6 
13 62.133 503 27 58.333 3 

 

Figure 4-7: Histogram plot of Number of Syllables from the Preceding Phrase Break 
(Left) and Number of Syllables to the Following Phrase Break (Right). 
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Figure 4-8: Gamma, Normal and Inverse Gaussian and phoneme duration distributions. 
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CHAPTER 5  
 

 

DEVELOPING PHONEME DURATION MODELS 
 

 

 

Generally three prosody components are modeled: Intonation, duration and intensity 

[Batusek 2002]. Phoneme durations are part of the prosody and contain important cues 

for understanding the spoken text [Riedi 1998]. Variations in duration provide assistance 

for the listener to understand the meaning [Campbell 2000]. Different representational 

factors specify and modify several aspects of speech during speech production (Klatt 

1987).  

In our studies, a corpus-based approach is considered to model phoneme duration in 

Turkish. To this aim, as presented in Chapter 3, a phonetically and prosodically balanced 

text corpus is designed and corresponding speech corpus is generated through a careful 

recording procedure. In Chapter 4, durational attributes used in phoneme duration 

modeling process are introduced. This chapter addresses phoneme duration modeling 

studies. 

5.1 Duration Modeling Using Decision Trees 
In duration modeling studies, a hierarchical framework is followed, i.e. attribute 

combinations are successively analyzed, and best attribute set is obtained in a greedy 

manner. Experiments are performed mostly with the REPTree algorithm of WEKA. For 

some of the experiments, the results obtained with the M5P algorithm of WEKA are 

presented to have a better understanding of the models developed. Both REPTree and 

M5P algorithms are used for building decision trees. The reason why we preferred 

decision tree based algorithms is explained in Chapter 4. As mentioned in Chapter 4, both 

decision tree based algorithms yield better performance than other machine learning 

algorithms for phoneme duration prediction.  
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All phoneme types except silence are used in training. Most of the phoneme duration 

prediction studies develop models for vowels and consonants separately. They split 

database into two subsets, vowel subset and consonant subset, then training is performed 

on each subset to predict vowel and consonant durations. We study predicting vowel and 

consonant duration one at a time. 

Prediction performance of each experiment is evaluated using Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and Correlation Coefficient (CC). It is better 

to predict the performance of a model on new data (test data) rather than old data 

(training data). In our studies, the whole database, which consists of 36855 phonemes, is 

split into two subsets: training set and test set. The test set consists approximately 19.9% 

of the database and the remaining phonemes constitute the training set (80.1%). The total 

number of instances in the training and test sets is 29527 and 7328, respectively.  

5.2 Experimental Work 
In the original database, there are 17 attributes, 16 predictors and 1 dependent 

attribute, duration. Table 5-1 demonstrates the attribute and value pairs. The first column 

of the table shows the indices of the attributes used in the experiments. Phoneme Identity 

is considered as the discriminating attribute; hence it is included in all of the experiments. 

Left/Right (23) attribute is considered to form a single pair in order to take into account 

context. In order to evaluate relative importance of each attribute, models using all 

possible attribute combinations are to be developed. For a set of N attributes the total 

number of combinations is 2N -1. Discarding Phoneme Identity and considering 

Left/Right attributes as a single attribute, the dimension of duration attribute set is 

reduced to 15. Thus 215 – 1 = 32767 experiments have to be performed to uncover the 

relation between the phoneme durations and the chosen attributes. However, this is not a 

feasible value. Therefore, experiments are performed considering limited number of 

attribute combinations and making generalizations through the results. To this aim, each 

of 15 attributes are paired with Phoneme Identity and used for dphoneme duration 

modeling at first stage. At the second stage, two of the 15 attributes are combined with 

Phoneme Identity and used in training. This procedure is repeated untill fifth stage. At 

each stage, the number of attributes combined with Phone Identity is increased by 1. 

When all five experiments are reviewed, it is observed that best performances of different 

attribute combinations progress one step further. For example, among the experiments 
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performed with two attribute combinations, 1, 2-3, 6 resulted in the minimum RMSE. 

When the experiments involving three factor combinations are examined, the minimum 

RMSE is obtained with 1, 2-3, 6, 12. Reviewing the two results, it is observed that two of 

the three factors that resulted in the best performance using three factors are already 

present in the two-attribute combination that yielded the best RMSE. Considering this 

performance shift, it is concluded that the best six can be found using the best five and so 

on. Last stage involves all 17 attributes in training. This procedure is known as Forward 

Selection. Forward selection is used in many machine learning applications for selecting 

the best attribute set. Following section presents best prediction error performances and 

related discussions. 

 

Table 5-1: Attribute-Value pairs in the original database. 

Index Attribute Value 
1 Phoneme Identity 42 phones (42 levels) 

2-3 Left/Right 43 phonemes (43 x 43 levels) 
4 Accent N, A (2 levels) 
5 PosInSyllable N, C, O (3 levels) 
6 SylType H, L (2 levels) 
7 SylNoInWord Numeric 
8 WordNo Numeric 
9 WordPOS N, P, V, Q, I, T, C, A, J, B, E (11 levels) 
10 NumOfSyl Numeric 
11 NumOfWord Numeric 
12 PhrInfo I, M, F 
13 NumOfWordFromPreBr Numeric 
14 NumOfWordToFolBr Numeric 
15 SylNo Numeric 
16 NumOfSylFromPreBr Numeric 
17 NumOfSylToFolBr Numeric 
18 Duration(ms) Numeric 

 

5.2.1 Forward Selection of Duration Attributes 

Each attribute described in Chapter 5 is evaluated on its own to observe the individual 

affects on phoneme duration. Phoneme Identity is considered to be the discriminating 

attribute; hence corresponding results are used as a reference (baseline) for the rest of the 

experiments. Individual performances of the attributes in terms of CC, MAE and RMSE 

are given in Table 5-2. As illustrated in the table, Phoneme Identity (1) is the best 

predictor of all attributes. Contextual attributes (2-3) turn out to be the second best 
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predictors. Third best predictor is PosInSyllable. Worst predictor performance given at 

the bottom of the table corresponds to NumOfWord attribute (11). Best CC, MAE and 

RMSE obtained are 0.5958, 18.2003, and 25.7872, respectively.  

 

Table 5-2: Individual performances of attributes for predicting phoneme durations. 
Results are given in increasing RMSE order. 

Index CC MAE (ms) RMSE (ms) 
1 0.5958 18.2003 25.7872 

2-3 0.53 20.8325 27.1914 
5 0.3106 23.3704 30.5724 

12 0.2641 24.3414 30.9329 
17 0.2443 24.5178 31.0977 
6 0.1473 24.4769 31.7265 

14 0.1381 24.8184 31.7601 
10 0.1212 24.5606 31.8327 
7 0.1218 24.4285 31.8344 
9 0.0873 24.7954 31.9577 

16 0.0713 24.6631 31.9872 
8 0.0539 24.7744 32.0196 

15 0.0386 24.7759 32.0445 
13 0.0234 24.7784 32.0597 
4 0.0193 24.7751 32.0604 

11 0 24.7806 32.0658 

 

Table 5-2 illustrates the individual impacts of attributes on phoneme duration 

however it does not present their combinatorial affect. Attributes that seem to predict 

phoneme durations individually may fail to perform well when used in combination with 

other attributes. Combinatorial affects of durational attributes are presented in the 

subsequent paragraphs.  

Table 5-3 shows the regression tree obtained incorporating only best predictor, 

Phoneme Identity. As shown in the table, the tree is split into the values of Phoneme 

Identity. Estimated phoneme durations are the average durations for each split. The 

numbers in brackets are "(coverage in the training set/errors in the training set)" and 

"[coverage in the pruning set/errors in the pruning set]". Because there may be fractional 

instances (i.e. instances with weight < 1) the numbers are not necessarily integers. 
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Table 5-3: Resulting regression tree using Phoneme Identity attribute only.  

Phoneme = 2 : 87.55 (190/691.95) [95/654.65] 
Phoneme = z : 70.83 (288/1578.03) [110/1401.13] 
Phoneme = gj : 52.96 (219/275.32) [77/381.84] 
Phoneme = y : 58.29 (368/604.41) [203/548.51] 
Phoneme = r : 43.31 (1345/1126.61) [642/1217.83] 
Phoneme = e : 79.19 (1647/755.94) [816/785.64] 
Phoneme = b : 49.19 (484/322.79) [238/331.99] 
Phoneme = n : 52.15 (1358/409.46) [637/371.6] 
Phoneme = i : 57.36 (1612/928.38) [802/950.19] 
Phoneme = c : 81.02 (377/714.41) [179/959.8] 
Phoneme = l : 41.58 (584/215.13) [334/308.08] 
Phoneme = m : 53.99 (847/269.03) [440/305.98] 
Phoneme = s : 98.36 (546/529.65) [313/524.36] 
Phoneme = j : 41.63 (735/210.33) [354/255.33] 
Phoneme = d : 48.91 (848/237.58) [486/226.71] 
Phoneme = o: : 116.31 (9/311.8) [4/4258.92] 
Phoneme = g : 57.95 (50/361.39) [34/926.46] 
Phoneme = a : 81.57 (2122/847.94) [1101/843.88] 
Phoneme = 5 : 39.53 (608/172.32) [331/219.96] 
Phoneme = 1 : 51.87 (941/827.81) [465/804.55] 
Phoneme = o : 81.59 (566/660.83) [312/724] 
Phoneme = k : 81.09 (505/877.47) [248/741.05] 
Phoneme = t : 73.12 (660/540.29) [307/641.85] 
Phoneme = tS : 86.88 (204/526.35) [97/430.16] 
Phoneme = S : 100.4 (292/1053.54) [143/658.95] 
Phoneme = v : 45.89 (142/262.75) [66/201.85] 
Phoneme = G : 35.93 (260/249.37) [119/275.03] 
Phoneme = u : 55.53 (741/616.94) [360/682] 
Phoneme = a: : 133.89 (114/690.86) [41/1025.36] 
Phoneme = f : 81.21 (86/449.4) [39/498.95] 
Phoneme = w : 40.56 (62/148.42) [34/169.39] 
Phoneme = dZ : 52.01 (273/250.07) [134/157.02] 
Phoneme = p : 77.59 (174/392) [77/401.49] 
Phoneme = i: : 87.61 (48/706.27) [26/775.95] 
Phoneme = h : 51.93 (183/438.83) [74/566.99] 
Phoneme = N : 55.17 (53/238.68) [42/245.01] 
Phoneme = e: : 118.1 (35/421.53) [19/728.05] 
Phoneme = u: : 88.82 (34/967.03) [17/737.49] 
Phoneme = Z : 68.58 (55/153.56) [17/457.41] 
Phoneme = 1: : 89.79 (12/534.17) [7/335.14] 
Phoneme = y: : 82.12 (6/2281) [3/2006.67]  
Phoneme = 2: : 63 (1/0) [0/0] 

 

To obtain best error performances, every possible attribute combination together with 

Phoneme Identity is used to model phoneme durations. The number of attributes is 

increased by 1 at each stage. At the kth stage, k+1 attributes are used and ���
�����

k

N
 

experiments are performed to obtain the best error performance. Best error performances 



 73 

obtained at each stage is given in Table 5-4. Columns of the table correspond to CC, 

MAE and RMSE, respectively. 

 

Table 5-4: Best prediction error performances obtained with forward selection. 

Best Results 
Attributes CC MAE (ms) RMSE (ms) 
1, 2-3 0.7576 15.1605 20.9321 
1, 2-3, 6 0.7706 14.7089 20.44 
1, 2-3, 6, 12 0.7744 14.6039 20.2937 
1, 2-3, 6, 9, 12 0.7772 14.5887 20.184 
1, 2-3, 4, 6, 9, 12 0.7798 14.5613 20.0792 
1, 2-3, 4, 6, 9, 12, 14 0.7806 14.5574 20.0456 
1, 2-3, 4, 6, 9, 12, 14, 7 0.7807 14.5607 20.0478 
All 0.7718 14.6678 20.4236 

 

After the fifth stage, the number of experiments, so the time to conduct the 

experiments is increased. Therefore, at the sixth stage, the best set obtained in the fifth 

stage is used as the base for forthcoming experiments. First five experiments showed that 

attribute combination that resulted in the best error performances is encountered in the 

larger dimensional attribute set that result in the best error performance. So, in order to 

find the six attributes that gives the maximum CC and the minimum RMSE, five 

attributes, 1, 2-3, 4, 6, 9, and 12 that yield best performance are used. Every other 

attribute is combined with the best-five to obtain best-six set. Stages for 6≥k are 

performed using the same framework. 

At the seventh stage, it is observed that RMSE obtained with six attribute analysis is 

0.01% better than best RMSE obtained at seventh stage. So, including further attributes to 

the best six attribute set does not improve the error performances further. 

In order to observe the total effects of all the attributes on phoneme duration, a last 

experiment involving all attributes is conducted. Error performances of all attributes are 

worse than the best-six attribute. Considering all the results, it is concluded that Phoneme 

Identity, Left/Right, Accent, SylType, WordPOS, PhrInfo, and NumOfWordToFolBr (1, 2-

3, 4, 6, 9, 12, and 14) constitutes optimum attribute set for phoneme duration modeling. 
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5.3 Performance Improvements 
In the previous section, the experiments performed using various numbers of attributes 

to predict phoneme durations are presented. With the set of attributes (1, 2-3, 4, 6, 9, 12, 

and 14), an RMSE of 20.0456 ms at best is obtained. When all attributes are used, RMSE 

and CC is becomes 20.4236 ms and 0.77, respectively. 

5.3.1 Attribute Modification 

This section describes the modifications on the original attribute set for possible 

improvements on the model performance. The modifications given in the subsequent 

sections include utilization of phonetic class (Manner of Articulation) instead of SAMPA 

transcriptions [Wells 2003] for neighboring phonemes (Left/Right) and utilization of 

SylPosInWord2 and SylPosInWord3 attributes instead of SylPosInWord1 attribute. 

5.3.1.1 Phonetic Class Instead of SAMPA Transcriptions 

In Chapter 4, the effects of Left/Right context on phoneme duration is discussed. It is 

verified that phoneme duration is highly correlated with Manner of Articulation and 

Voicing property of Left/Right phonemes as well as the phoneme itself. According to the 

results of previous sections, Left/Right attribute turn out to be the most effective attribute 

on phoneme duration. However, there is a drawback of using Left/Right attributes as they 

are. As discussed in Chapter 5, each Left/Right attribute consists of 42 SAMPA 

characters [Wells 2003] plus the silence, so a total of 43 values. When the two attributes 

are considered together, their span is 43x43 = 1849 different Left-Right pairs. When the 

phoneme itself is also considered, the search space is of size 43x42x43 = 77658. Let us 

consider the database used in our experiments. Our database contains a total of 36855 

instances/phonemes, 29527 of which are used for training and the remaining is used for 

testing. The total number of instances is far below the total number of possible triphone 

combinations. So, even if we assume that our database contains distinct entries for Left-

Phoneme-Right trio, the database is still beyond the limits of being sufficient. Besides, the 

database contains multiple entries. So, available data is insufficient to represent all 

possibilities.  

A reasonable choice for dimension reduction can be the utilization of manner–of-

articulations of the phonemes instead of their phonetic identities. As the identity of a 

phoneme is the discriminating factor for its duration, we use manner-of-articulation for 

left and right phonemes only. Values for the manner–of-articulation attribute are set as 
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follows: {Affricate, Fricative, Nasal, Liquid, Semivowel, Plosive, Back, Front, and 

Silence}. With this modification, the number of possible triphones is reduced by 

approximately 95.6% (9x42x9 = 3402). 

Table 5-5 shows the attribute and value pairs in the revised database. The first column 

of the table shows indices of the attributes used in the experiments. The index for 

LeftC/RightC is named as 1920 since they come as a new pair of attributes. The 

experimental results using manner-of-articulations instead of phonetic identity and all 

other attributes are given in Table 5-6. When the prediction performances of the two 

experiments (last row of Table 5-4 and Table 5-6) are compared, it is observed that 

although the information content of the Left/Right attributes is reduced, a slight 

improvement (approximately 3%) is achieved in the RMSE value. 

 

Table 5-5: Attribute-Value pairs in the modified database. 

Index Attribute Value 
1 Phoneme Identity 42 phones (42 levels) 

1920 LeftC/RightC Affricate, Fricative, Nasal, Plosive, Back, Front, 
Semivowel, Liquid, Silence (9 x 9 levels) 

4 Accent N, A (2 levels) 
5 PosInSyllable N, C, O (3 levels) 
6 SylType H, L (2 levels) 
7 SylNoInWord Numeric 
8 WordNo Numeric 
9 WordPOS N, P, V, Q, I, T, C, A, J, B, E (11 levels) 

10 NumOfSyl Numeric 
11 NumOfWord Numeric 
12 PhrInfo I, M, F 
13 NumOfWordFromPreBr Numeric 
14 NumOfWordToFolBr Numeric 
15 SylNo Numeric 
16 NumOfSylFromPreBr Numeric 
17 NumOfSylToFolBr Numeric 
18 Duration(ms) Numeric 

 

Table 5-6: Prediction performance obtained using all attributes with MOAs. 

CC MAE (ms) RMSE (ms) 
0.79 14.47 19.81 
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5.3.1.1.1 Modification of Phonetic Class (1) 

Several modifications on the revised attribute set are considered. Obtaining better 

results led us make new arrangements on the attributes leftC/rightC. As discussed in 

Chapter 4, right context plays a very crucial role on phoneme duration. However, the 

effects of right context within the same syllable are not considered up to now. So, in order 

to reveal the situation about the effects of right context on phoneme duration within the 

same syllable, statistical analyses are carried out on the dataset. The mean, SD, CV and 

frequency of every occurrence in the dataset are given in Table 5-7, Table 5-8, and 

Table 5-9. The first two columns of the tables give the right neighbor’s characteristics 

while the top most entry is the characteristics of the phoneme. For example, in the first 

table, the first entry states that Voiceless phonemes followed by Voiceless Fricatives have 

an average duration of 90.667ms and a standard deviation of 30.271ms. Some 

combinations in the tables may seem unrealistic but close examination of the dataset 

reveals that they exist. When the three tables are examined, it can be concluded that the 

phoneme durations vary abruptly according to the following phonemes’ manner–of-

articulation within the same syllable. Besides, it can be deduced that with the same right 

context, different phone classes have different durations. 

 

Table 5-7: Mean, SD, CV and frequencies of the voiceless phones according to the 
Manner of Articulation and Voicing property of their Right neighbour in the same 

syllable.  

  Voiceless 
RightC RightV Mean SD CV Frequency 
Fricative Voiceless 90.667 30.271 0.334 3 
Plosive Voiceless 78.444 24.656 0.314 18 
Liquid Voiced 79.757 30.386 0.381 37 
Back Vowel 81.579 25.035 0.307 2178 
Front Vowel 83.18 26.478 0.318 1653 

 

Manner of Articulation of the following phoneme is enriched by adding some new 

values. To this aim, statistically significant phonemes of each class are found and added 

to the value inventory of RightC. Statistical significance of a phoneme is decided upon its 

CV value. The smaller the CV value, the more significant the phoneme is. So, for each 

Manner of Articulation class, most significant phoneme is selected as a new candidate for 
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additional attribute value. The total number of additional attribute values is selected to be 

7 since Semivowel class contains only one type of phoneme (‘j’). 

 

Table 5-8: Mean, SD, CV and frequencies of the voiced phones according to the Manner 
of Articulation and Voicing property of their Right neighbour in the same syllable.  

  Voiced 
RightC RightV Mean SD CV Frequency 
Affricate Voiceless 50.1 22.679 0.453 10 
Fricative Voiceless 39.368 5.036 0.128 19 
Fricative Voiced 53 0 0 1 
Plosive Voiceless 36.07 11.583 0.321 57 
Plosive Voiced 57.667 8.386 0.145 3 
Liquid Voiced 62.429 27.724 0.444 7 
Nasal Voiced 33.667 11.846 0.352 3 
Back Vowel 42.435 16.131 0.38 5562 
Front Vowel 44.271 17.07 0.386 5148 

 

Table 5-9: Mean, SD, CV and frequencies of the vowels according to the Manner of 
Articulation and Voicing property of their Right neighbour in the same syllable.  

  Vowel 
RightC RightV Mean SD CV Frequency 
Affricate Voiceless 75.132 23.416 0.312 68 
Affricate Voiced 81.364 15.062 0.185 11 
Fricative Voiceless 68.908 28.622 0.415 1563 
Fricative Voiced 92.97 31.605 0.34 432 
Plosive Voiceless 72.207 23.707 0.328 1040 
Plosive Voiced 79.093 23.637 0.299 43 
Liquid Voiced 82.492 28.548 0.346 1858 
Nasal Voiced 74.896 32.361 0.432 1959 
Semivowel Voiced 81.81 25.378 0.31 315 

 

Table 5-10 presents the attributes used for phoneme duration modeling with the recent 

modifications on the RightC attribute. The corresponding prediction performances are 

given in Table 5-11. When the two tables are compared (Table 5-6 and Table 5-11), it is 

seen that an improvement is not achieved in the RMSE as a result of increased dimension 

of Right neighborhood.  
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Table 5-10: Attribute-Value pairs in the modified database. 

Index Attribute Value 
1 Phoneme Identity 42 phones (42 levels) 

19 LeftC A, F, N, P, B, F, S, L, Silence (9 levels) 
21 RightC1 A + tS, F + S, N + n, P + t, B + a, F + 2, S, L + l, 

Silence (9 + 7 =16 levels) 
4 Accent N, A (2 levels) 
5 PosInSyllable N, C, O (3 levels) 
6 SylType H, L (2 levels) 
7 SylNoInWord Numeric 
8 WordNo Numeric 
9 WordPOS N, P, V, Q, I, T, C, A, J, B, E (11 levels) 

10 NumOfSyl Numeric 
11 NumOfWord Numeric 
12 PhrInfo I, M, F 
13 NumOfWordFromPreBr Numeric 
14 NumOfWordToFolBr Numeric 
15 SylNo Numeric 
16 NumOfSylFromPreBr Numeric 
17 NumOfSylToFolBr Numeric 
18 Duration(ms) Numeric 

 

Table 5-11: Prediction performance obtained using all attributes with modified MOAs. 

CC MAE (ms) RMSE (ms) 
0.78 14.51 19.91 

 

5.3.1.1.2 Modification of Phonetic Class (2) 

Among the SD and CV ratios of the newly added values, we observe that the 

significance of ‘tS’ is much below than those of the others. So, we carried out an 

experiment to observe the effect of discarding ‘tS’ from the value set of RightC attribute. 

The new set of attributes is given in Table 5-12.  

The prediction performance of the developed model is given in Table 5-13. When the 

last two prediction performances are compared, it is observed that by eliminating ‘tS’ 

from the value set a minor improvement is obtained but the performance is still worse 

than the performance of the original modification (Table 5-6). 
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Table 5-12: Attribute-Value pairs in the modified database. 

Index Attribute Value 
1 Phoneme Identity 42 phones (42 levels) 
19 LeftC A, F, N, P, B, F, S, L, Silence (9 levels) 
22 RightC2 A, F + S, N + n, P + t, B + a, F + 2, S, L + l, 

Silence (9 + 6 =15 levels) 
4 Accent N, A (2 levels) 
5 PosInSyllable N, C, O (3 levels) 
6 SylType H, L (2 levels) 
7 SylNoInWord Numeric 
8 WordNo Numeric 
9 WordPOS N, P, V, Q, I, T, C, A, J, B, E (11 levels) 
10 NumOfSyl Numeric 
11 NumOfWord Numeric 
12 PhrInfo I, M, F 
13 NumOfWordFromPreBr Numeric 
14 NumOfWordToFolBr Numeric 
15 SylNo Numeric 
16 NumOfSylFromPreBr Numeric 
17 NumOfSylToFolBr Numeric 
18 Duration(ms) Numeric 

 

Table 5-13: Prediction performances obtained using all attributes with modified MOAs. 

CC MAE (ms) RMSE (ms) 
0.78 14.5 19.89 

 

5.3.1.2 Transformation of Numeric Attribute Values 

Performance of decision tree algorithms is highly correlated to the selected attribute-

value pairs [Ross 1995]. In Chapter 3, we discuss the selected attribute-value pairs and 

their effect in the chosen database.  Among the selected attributes, some of them have 

categorical values while the rest of them have numerical values. Most of the numerical 

attributes are related to positional attributes, like position-of-word-in-utterance. They take 

integer values. In seeking for improved prediciton performance, we use two types of 

transformations on attribute values: 1) Discretizing the attribute values and 2) Mapping 

the attribute values to [0, 1] range. The effects of numeric transformations are tested via 

the Syllable-Position-in-Word attribute. The transformations are described previously in 

Chapter 3, Section 3.11. The simulations are held removing the original Syllable-

Position-in-Word attribute and replacing the transformed attributes one by one. Table 

5-14 shows the results of the experiments performed with original attribute set. The first 
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row corresponds to the original attribute set, in the second row, SylPosInWord1 attribute 

is replaced by SylPosInWord2 and SylPosInWord2 is replaced by SylPosInWord3 in the 

third row. Transformation in the values of the numerical attribute Syllable Position in 

Word results in slight improvements in error performances. Best performance is obtained 

with the discretized version of the chosen attribute. 

 

Table 5-14: Prediction performances of the original and transformed attributes with 
original attribute set. 

Attribute CC MAE (ms) RMSE (ms) 
All with SylPosinWord1 0.7718 14.6678 20.4236 
All with SylPosinWord2 0.7741 14.5973 20.331 
All with SylPosinWord3 0.7729 14.6359 20.3754 

 

5.3.2 Duration Quantization 

As mentioned in Chapter 4, the duration range in our database varies with a Gamma 

distribution. The statistics of the duration data is given in the Table 5-15. The table 

indicates that the duration data is widely spread in the range 2 ms-295 ms with a mean 

and standard deviation of 63.15 ms and 31.21 ms, respectively. There are 242 distinct 

duration values.  

 

Table 5-15: Duration statistics of the database 

Min Max Mean Median SD Rang 
2 295 63.1529 57 31.2074 293 

 

Quantization of phone durations is considered for possible improvement in prediction 

performance. A non-uniform quantization is applied to the original phone durations and 

duration attributes are used to model quantized phone durations (Figure 5-1). The 

quantization step size is set to 1.1 and each quantization level is mapped to the mean of 

the corresponding duration interval. As seen in Figure 5-1, the total number of levels 

used is 54. So the number of distinct duration values is reduced from 242 to 54 

(approximately 77.7% reduction in variation). The histogram plot of the quantized 

durations is given in Figure 5-2.  
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Figure 5-1: Mapping function.  

 

 

Figure 5-2: Histogram plot of the quantized duration 

 

Table 5-16 shows the quantitative results obtained using all attributes. Comparison 

with the model developed using original durations (last column of Table 5-4 and Table 

5-16) shows that resulting error performances are slightly worse than obtained on training 

original durations.  

 

Table 5-16: Quantitative results obtained for modeling quantized durations. 

CC MAE RMSE 
0.7702 14.6901 20.4755 

 

5.3.3 Removing the Outliers 

Largest deviations in prediction errors on test data generally occur around the 

boundary values of duration range, i.e., around 2ms and 295 ms. Figure 5-3 demonstrates 
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MAE performance on test data sorted in decreasing order. As shown in the figure, MAE 

drops to 20 ms, which corresponds to approximately 75% of the test data, around 1800th 

instance.  

 

 

Figure 5-3: Mean Absolute Error (MAE) performance on test data using original 17 
attributes. 

 

Table 5-17 shows the MAE performances on test data. As observed in the table, 

approximately 90% of the data have a MAE less than or equal to 30 ms and 75% have a 

MAE less than or equal to 20 ms. Considering these information, leaving part of the 

phonemes that have extreme duration values out of the modeling process is experimented. 

 

Table 5-17: Prediction performances of test data portions. 

MAE <= 20 ms 75.4503% (5529) 
MAE <= 25 ms 83.7063% (6134) 
MAE <= 30 ms 89.2058% (6537) 
MAE <= 35 ms 92.6310% (6788) 
MAE <= 40 ms 94.7871% (6946) 
MAE <= 45 ms 96.3155% (7058) 
MAE <= 50 ms 97.3253% (7132) 
MAE <= 55 ms 98.1441% (7192) 
MAE <= 60 ms 98.5671% (7223) 

 

Figure 5-4 shows the cumulative frequencies of the instances both in the test and train 

data with respect to their duration values. The text boxes indicate approximately 20 ms 

and 150 ms duration values, respectively. The corresponding cumulative instance 
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frequencies are 256 (3.5%) and 7205 (98.3) for the test data and 303 (~1%) and 29087 

(98.5%) for the train data, respectively.  

 

 

Figure 5-4: Cumulative frequency of instances with respect to their duration values 
evaluated on test data. 

 

According to the given statistical figures, removing some of the data both from the 

training and test set do not cause significant exception since most of the data still lies in 

the selected range. Considering all of the data (both train and test data), 91.3% of the data 

lies in the 22 ms – 117 ms range. Considering the distribution of durations and the 

number of extreme instances both in the test and training data, 10 ms - 150 ms range is 

selected as a reliable duration data range. This new range of duration data contains 

98.32% of the test data and 98.28% of the train data. Table 5-18 demonstrates the 

quantitative results obtained after removing the outliers of the test and train data. 

Removing the outliers of the data resulted in an 8.8% RMSE improvement.  

 

Table 5-18: Prediction performances obtained using all 17-attributes to model newly 
constructed data. 

CC MAE (ms) RMSE (ms) 
0.7541 13.9756 18.6214 
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5.3.4 Attribute Selection Using Mutual Information 

Performance of decision tree learning is highly related to the quality of attributes 

selected for modeling. Using attributes that are highly correlated or bear high mutual 

information would yield degraded performance. Therefore, it is important to carefully 

determine the attributes to be used in model development. We have previously studied the 

selection of attributes according to their performance in model development. First, single 

attributes are used for model development and their prediction performances are given. 

This result is informative about the contribution of each attribute to duration modeling. 

Then, optimal subsets of attributes with increasing sizes of one element are developed 

and used for model development. Trying different attribute combinations, we observe that 

the optimal attribute sets that differ by one element in size are also different by one 

element in type. The optimal subset that revealed the best result is composed of the 

attributes 1, 2-3, 4, 6, 9, 12, and 14. 

Determining the relevance of attributes can be performed in various ways. Another 

criterion of attribute selection can be mutual information among attributes. Mutual 

information of two random variables is a quantity that measures the independence of two 

variables. The unit of measurement of mutual information is bits.  

Formally, in discrete case, if the joint probability mass function of X and Y is p(x, y) = 

Prob(X=x, Y=y), the marginal probability mass function of X is f (x) = Prob(X=x), and 

the marginal probability mass function of Y is g(y) = Prob(Y=y), then the mutual 

information of X and Y, I(X, Y), is defined as: 
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and for the continuous case, probability mass functions are replaced by the corresponding 

probability density functions and the summation is replaced by the integral: 
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Mutual information is a measure of independence in the following sense: I(X, Y) = 0 if 

and only if X and Y are independent random variables. This is easy to see in one 

direction: if X and Y are independent, then p(x,y) = f(x) g(y), and therefore: 
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Moreover, mutual information is nonnegative (i.e. I(X,Y) �  0) and symmetric (i.e. 

I(X,Y) = I(Y,X)). 

Table 5-19 demonstrates the mutual information between the attributes (1-17, 19-22) 

used in developing phoneme duration models and durations of the training data. Duration 

is considered to be a discrete random variable and the probability of each duration value 

is calculated accordingly. The left part of the table shows the mutual information for 

original durations (262 levels) and the right part of the table reveals the mutual 

information values for quantized duration values (53 levels). As observed in the table, top 

seven entries are 1, 2-3, 15, 17, 16, 8, and 5 which are different from the elements of the 

attribute set that yields the best prediction performance previously (1, 2-3, 4, 6, 9, 12, and 

14). 

Table 5-20 and Table 5-21 show the mutual information values of the attributes with 

respect to each other. The diagonal entries in the table attain the largest values of the 

corresponding column and row and the mutual information matrix is symmetric. 

According to the tables, the attributes are not independent but have some dependencies. 

The mutual information of the Phoneme-Identity and the Left/Right, PosInSyllable, 

LeftC/RightC, RightC1 and RightC2 attributes are slightly larger compared to the mutual 

information values with other attributes revealing a stronger relation between them. The 

relation between the phoneme and its context is reasonable but the relation between the 

PosInSyllable and the Phoneme Identity can be elaborated. The training database consists 

of 5126 codas, 11684 onsets and 12717 nuclei. As mentioned in the third chapter, all the 
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vowels of the database is labeled as nucleus while the consonants are eithered labeled as 

onset or coda. Because of the labeling style, there is a strong relation between the 

PosInSyllable attribute and the Phoneme Identity. Other entries do not indicate strong 

relation among any attribute pair. 

 

Table 5-19: Mutual information of attributes with respect to original durations (Left) and 
with respect to quantized durations (Right) in decreasing bits.  

Using original 
duration values 

Using quantized 
duration levels 

Attribute I Attribute I 
1 0.5852 1 0.4688 
3 0.2952 3 0.1721 
2 0.2195 21 0.1345 
21 0.1904 22 0.134 
22 0.1874 20 0.1216 
15 0.1809 2 0.0898 
20 0.154 17 0.0677 
17 0.1376 5 0.0638 
16 0.1186 12 0.057 
8 0.0763 15 0.0419 
5 0.0732 7 0.0388 
7 0.066 16 0.0346 
12 0.0657 19 0.0313 
19 0.0647 14 0.0268 
11 0.0644 10 0.0244 
9 0.0579 9 0.022 
10 0.0549 6 0.0199 
14 0.0518 8 0.0192 
13 0.0425 11 0.0133 
6 0.0252 13 0.0109 
4 0.0072 4 0.0015 
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Table 5-20: Mutual information matrix. 

 1 2 3 4 5 6 7 8 9 10 11 
1 4.635 0.9181 0.9117 0.0331 1.0776 0.0687 0.1333 0.0273 0.1154 0.0481 0.0146
2 0.9181 4.6985 0.5788 0.0273 0.5825 0.0571 0.16 0.0659 0.0926 0.0518 0.0145
3 0.9117 0.5788 4.6743 0.032 0.8982 0.0627 0.0704 0.0388 0.1019 0.0354 0.0142
4 0.0331 0.0273 0.032 0.8913 0.0011 0.0047 0.1156 0.001 0.017 0.0704 0.0002
5 1.0776 0.5825 0.8982 0.0011 1.4912 0.1877 0.0041 0.0004 0.0025 0.0031 0.0002
6 0.0687 0.0571 0.0627 0.0047 0.1877 0.9988 0.0067 0.0021 0.0118 0.0147 0.001
7 0.1333 0.16 0.0704 0.1156 0.0041 0.0067 2.1287 0.0083 0.0436 0.4859 0.0033
8 0.0273 0.0659 0.0388 0.001 0.0004 0.0021 0.0083 3.3243 0.1417 0.0387 0.2836
9 0.1154 0.0926 0.1019 0.017 0.0025 0.0118 0.0436 0.1417 2.1441 0.1543 0.0254

10 0.0481 0.0518 0.0354 0.0704 0.0031 0.0147 0.4859 0.0387 0.1543 2.421 0.0202
11 0.0146 0.0145 0.0142 0.0002 0.0002 0.001 0.0033 0.2836 0.0254 0.0202 2.8556
12 0.0453 0.1265 0.1122 0.0462 0.0012 0.0017 0.234 0.0637 0.0569 0.0507 0.0008
13 0.0128 0.0564 0.0189 0.0007 0.0002 0.0012 0.0046 0.657 0.061 0.0257 0.0231
14 0.0172 0.0256 0.054 0.001 0.0001 0.0005 0.0081 0.1209 0.134 0.0328 0.0217
15 0.0587 0.1312 0.0654 0.0209 0.0013 0.0045 0.1812 1.5787 0.1295 0.0697 0.1191
16 0.0603 0.1467 0.0531 0.0398 0.0013 0.0031 0.4466 0.2843 0.0692 0.1101 0.0148
17 0.0548 0.0607 0.1444 0.0199 0.0007 0.0029 0.0747 0.1002 0.1544 0.0409 0.014
19 0.6233 2.8638 0.321 0.0144 0.5158 0.0497 0.0748 0.0443 0.0292 0.0204 0.0027
20 0.6461 0.298 2.8585 0.0146 0.8303 0.0324 0.0247 0.0187 0.0366 0.0119 0.0028
21 0.7373 0.3774 3.544 0.0169 0.8548 0.0366 0.0378 0.0245 0.0612 0.0184 0.0053
22 0.7329 0.3745 3.5214 0.0159 0.8548 0.0365 0.0366 0.0239 0.0595 0.0161 0.0049

Table 5-21: Mutual information of matrix (continued). 

 12 13 14 15 16 17 19 20 21 22 
1 0.0453 0.0128 0.0172 0.0587 0.0603 0.0548 0.6233 0.6461 0.7373 0.7329
2 0.1265 0.0564 0.0256 0.1312 0.1467 0.0607 2.8638 0.298 0.3774 0.3745
3 0.1122 0.0189 0.054 0.0654 0.0531 0.1444 0.321 2.8585 3.544 3.5214
4 0.0462 0.0007 0.001 0.0209 0.0398 0.0199 0.0144 0.0146 0.0169 0.0159
5 0.0012 0.0002 0.0001 0.0013 0.0013 0.0007 0.5158 0.8303 0.8548 0.8548
6 0.0017 0.0012 0.0005 0.0045 0.0031 0.0029 0.0497 0.0324 0.0366 0.0365
7 0.234 0.0046 0.0081 0.1812 0.4466 0.0747 0.0748 0.0247 0.0378 0.0366
8 0.0637 0.657 0.1209 1.5787 0.2843 0.1002 0.0443 0.0187 0.0245 0.0239
9 0.0569 0.061 0.134 0.1295 0.0692 0.1544 0.0292 0.0366 0.0612 0.0595

10 0.0507 0.0257 0.0328 0.0697 0.1101 0.0409 0.0204 0.0119 0.0184 0.0161
11 0.0008 0.0231 0.0217 0.1191 0.0148 0.014 0.0027 0.0028 0.0053 0.0049
12 1.0156 0.2259 0.2235 0.175 0.5359 0.5663 0.0963 0.0906 0.095 0.0945
13 0.2259 2.2495 0.1312 0.2755 1.0574 0.1093 0.0449 0.009 0.0107 0.0105
14 0.2235 0.1312 2.1778 0.1012 0.129 1.0353 0.0122 0.04 0.0436 0.0431
15 0.175 0.2755 0.1012 4.8819 1.2866 0.1319 0.0833 0.0244 0.035 0.0338
16 0.5359 1.0574 0.129 1.2866 3.809 0.1624 0.1012 0.0208 0.026 0.0255
17 0.5663 0.1093 1.0353 0.1319 0.1624 3.7997 0.0202 0.0951 0.1063 0.1048
19 0.0963 0.0449 0.0122 0.0833 0.1012 0.0202 2.8638 0.1915 0.2387 0.2379
20 0.0906 0.009 0.04 0.0244 0.0208 0.0951 0.1915 2.8585 2.8585 2.8585
21 0.095 0.0107 0.0436 0.035 0.026 0.1063 0.2387 2.8585 3.544 3.5214
22 0.0945 0.0105 0.0431 0.0338 0.0255 0.1048 0.2379 2.8585 3.5214 3.5214
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5.3.5 Shift and/or Scale Modification 

In an attempt to decrease MSE further, we suggest making shift and/or scale 

modi fications on the predicted duration values. The modifications are described in the 

following subsections.  

5.3.5.1 Shift Modification 

Suppose that we have developed a model using all attributes and therefore we have the 

phoneme duration predictions, d̂  for each train and test instance. We define the new 

predictions such that add shitf += ˆˆ  wherea  is a constant shift value. Here, the aim is to 

find a, such that the MSE is minimized. To this aim, we first define the modi fied MSE: 
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To find a that minimizes shiftMSE , we take the derivative of shiftMSE with respect to a and 

equate to 0: 
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Solving above equation, 
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We use (5-6) to calculateâ ’s for each phoneme class in the database. Then, the 

corresponding shiftMSE is calculated using (5-4). 
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5.3.5.2 Scale Modification 

The same assumptions hold for the scale modification. The new predictions are 

defined as dbd scale
ˆ.ˆ =  where b is a constant. The modi fied MSE is defined as follows: 
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In order to find b that minimizes scaleMSE , we take the derivative of scaleMSE with 

respect to b and equate to 0: 

 

0=
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b

MSEscale      (5-8) 

 

Solving above equation for b, we obtained 
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For every phoneme type in the database, we calculate the predictions for b and 

scaleMSE is calculated the accordingly. 

5.3.5.3 Shift and Scale Modification 

Another possibility is to apply shift and scale modification simultaneously. The new 

predictions are defined as edcd scaleshift += ˆˆ
_  where c and e are constants. Here, the 

aim is to find c and e such that MSE is minimized. The new MSE is defined as: 
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In order to find c and e that minimizes scaleshiftMSE _ , the partial derivatives of 

scaleshiftMSE _ with respect to c and e are equated to 0 and solved simultaneously: 
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Solving above equation for c and e, we obtained 
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For every phoneme type in the database, we calculate the predictions for c and e, then 

scaleshiftMSE _  is calculated accordingly. 

5.3.5.4 Application of Shift and/or Scale Modification  
Predictions obtained using original 17-attribute dataset is used (last column of Table 

5-4) for the modifications described in the previous sections. Modification parameters are 

calculated both from the test set and the training set. Table 5-22 shows the MSE values 

after applying the corresponding modifications on each database. The last row of the table 

shows the results of using a, b, c and e on the test data when they are calculated from the 

training data.  
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Table 5-23 and Table 5-24 demonstrate corresponding RMSE and CC values for the 

original and modified predictions, respectively. As observed in the tables, both RMSE 

and CC are improved for the case where shift and scale modification are applied 

simultaneously. It can be noticed that the improvements are slightly better when the 

modi fication parameters are trained on the test data. 

 

Table 5-22: Original and modified MSE values. 

Database MSE shiftMSE  scaleMSE  scaleshiftMSE _  

Test 417.1231 400.9892 399.455 381.0388 
Train 280.6778 280.6568 280.6429 280.5861 
Train_Test 417.1231 417.2679 417.1450 415.8239 

 

Table 5-23: Original and modified RMSE values ( MSERMSE = ). 

Database RMSE shiftRMSE  scaleRMSE  scaleshiftRMSE _  

Test 20.42 20.02 19.99 19.52 
Train 16.75 16.75 16.75 16.75 
Train_Test 20.42 20.43 20.42 20.39 

 

Table 5-24: Original and modified CC values 

Database CC shiftCC  scaleCC  scaleshiftCC _  

Test 0.77175 0.78305 0.78375 0.79335 
Train 0.84129 0.84129 0.84130 0.84133 
Train_Test 0.77175 0.77166 0.77170 0.77240 
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CHAPTER 6  
 

 

SYLLABLE PITCH CONTOUR PREDICTION 
DATABASE AND PROSODIC ATTRIBUTES 

 

 

 

The database for predicting syllable pitch contours contains 15867 syllables of the 692 

sentences in the database. There are 1254 distinct syllables in the database. For prediction 

purposes, the database is split into two subsets: training and test datasets. Training set 

contains approximately 80% (12483 instances) of the whole database and the remaining 

20% (3384 instances) of the data is used for testing. 

6.1 Features Used in Syllable Pitch Contour Prediction 
Every syllable in the database is coded with a feature vector. Feature vector contains 

information related to syllable, word and sentence levels.  

The features used in syllable pitch contour prediction experiments are given the 

succeeding sections. 

6.1.1 Lexical Stress 

This feature represents the lexical stress of the syllable. Analysis of the pitch contours 

in our database reveals that pitch accents are mainly aligned with the lexically stressed 

syllables of the words. Such an alignment can be observed in Figure 6-1. The figure 

il lustrates sound waveform, pitch contour and the syllable labels of the sentence 

‘do� du� um büyüdü� üm memleketime biraz faydam olsun istedim dedi’  (I want to be 

helpful to the country I was born and held he said). Pitch accents of the sentence are 

aligned with the words ‘do� du� um’ (I was born), ‘büyüdü� üm’ (I was held), 

‘memleketime’  (to my country) and ‘ faydam’ (helpful). The lexical stresses of the words 

are aligned with the syllables ‘ � um’, ‘ � üm’, ‘me’ , and ‘dam’, respectively. As shown in 

the figure, pitch accents are also aligned with the same syllables of the words. It should 

also be noted that identical syllables have different lexical stresses and therefore different 
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accent types2. Let us consider the syllable ‘me’  of the sentence ‘özgüre beni beklemesini 

söylemedin mi’  (didn’ t you tell özgür to wait for me) given in Figure 6-2. Although both 

of the ‘me’s are orthographically identical because of their lexical stress property, their 

pitch contours differ. While the lexically stressed ‘me’  shows an increasing pattern, the 

unstressed ‘me’  exhibits a decreasing pattern. Therefore, in order to develop an accurate 

prosodic model in Turkish, lexical stress should be employed in the prediction procedure. 

Lexically stressed syllables are obtained through a morphological analysis procedure. 

Then, stress assignment rules for Turkish are applied to obtain the lexical stress of each 

syllable. During coding, a syllable is represented with an ‘A’  if it is stressed and with an 

‘N’ , otherwise. 

 

sil doG du Gum by jy dyGymmem le ce ti me bi raz faj dam oL sun is te dim de di sil

1 -1 1 -1 1 1 -1

Time (s)
0 4.374

 

Figure 6-1: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels (lower panel) of the sentence ‘do� du� um büyüdü � üm memleketime biraz faydam 

olsun istedim dedi’ .  

 

                                                
2 No Accent should also be considered as a type of pitch accent. 
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sil Oz gjy re be ni bec le me si ni sOj le me din mi sil

1 -1 1 -1

Time (s)
0 2.80475

 

Figure 6-2: Sound waveform (upper), pitch contour (middle), and syllabic segmentation 
(lower) of the sentence ‘özgüre beni beklemesini söylemedin mi’ .  

 

6.1.2 Negation Flag (NegFlag) 

NegFlag is a binary feature representing the syllables’  morphemic constitute. If a 

negation suffix is enclosed within syllable or the syllable is composed of a negation 

suffix, then the NegFlag is set to 1 otherwise it is set to 0. 

As discussed in the stress subsection, the type of the lexical stress of a syllable plays 

an important role in determining the pitch accents. In the previous section, we examine 

the syllable ‘me’  with two different lexical stress constituents. In the fi rst case, where the 

syllable was enclosed within the sentence ‘do� du� um büyüdü � üm memleketime biraz 

faydam olsun istedim dedi’ , ‘me’  was lexically stressed and has an increasing pitch 

pattern. In the second case, where the syllable was enclosed within the sentence ‘özgüre 

beni beklemesini söylemedin mi ’ , the syllable ‘me’  is lexically unstressed and shows a 

decreasing pitch pattern. However, not all the unstressed ‘me’  syllables show a 

decreasing pitch pattern. Figure 6-3 demonstrates a counter example for the lexicall y 

unstressed ‘me’  with almost flat pitch contour. The figure shows the sound waveform, 

pitch contour, pitch accents and syllable segmentation of the sentence ‘ avukat nusret 

senem merakla bekliyordu planlarının i � leyip i � lemeyece� ini’  (lawyer nusret 

senem was waiting curiously whether his plans was working or not). The difference 

in the pitch contours of both ‘me’  principally is due to the morphemic structure. The ‘me’  
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shown in Figure 6-2 is an extrametrical3 negation morpheme while the ‘me’  shown in 

Figure 6-3 belongs to root of the word and is not related to an extrametrical suffix or 

enclitic. Therefore, we use a binary flag to discriminate the negation suffix due to its 

stress blocking affect.  

 

sil awukat nus ret se nemme rak La bec li jordu pLan LarInIn iS le jip iS lemixdZex ni sil

1 -1 1 -1 -1 1 -1

Time (s)
0 4.71119

 

Figure 6-3: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels (lower panel) of the sentence ‘avukat nusret senem merakla bekliyordu planlarının 

i � leyip i � lemeyece� ini’ .  

 

6.1.3 Syllable Type (SylType) 

Type of parent syllable (SylType) is included in the annotations. Two levels are used 

to denote syllable types: Heavy (H) and Light (L). Heavy and light syllables are 

sometimes called open and closed syllables, respectively. 

6.1.4 Syllable Structure (SylStruct) 

The structure of the syllable in terms of its constituents is represented by the SylStruct 

feature. As mentioned before, the consonants occurring before syllable nucleus are called 

onsets while the consonants occurring after the nucleus are called codas. A syllable 

should possess a single nucleus and our syllabification algorithm mainly relies on this 

principle. Current feature codes the syllable according to the order of the onsets, nucleus 

and codas, i.e., N, ON, ONC, OON, ONCC, and OONCC.  

                                                
3 Extrametricality is equivalent to stress blocking and can be used interchangeably. 
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It may be argued that syllable structure highly influences the location of pitch accent 

peak within the syllable. An early or late peak can be observed depending on the 

succeeding syllable or more specifically succeeding phoneme. 

6.1.5 Syllable-Position-in-Word (SylNoinWord) 

This attribute codes the position of the syllable in the word. Counting is performed in 

syllable units. The feature attains numerical values ranging from 1 up to 10. Our database 

contains words of at most 10 syllables thus the feature can take at most 10 as value.  

The default stress in Turkish is generall y assigned to the last syllable of the word. 

Therefore, the position of the syllable in the parent word plays a crucial role in pitch 

accent and prominence level prediction. Accented syllables at the beginning of the 

phrases have higher pitch values from the rest of the syllables except for the lexicall y 

stressed syllable of the focus word. Syllables at the end of the phrases show gradual 

decrease in the prominence level if the sentences are not in the question forms. 

In Figure 6-4 - Figure 6-6 , three aspects of the syllable ‘ba’  from different words are 

given. All the three pitch contours reveal almost similar shapes but with different pitch 

levels. 

6.1.6 Syllable-Position-in-Word 1 (SylPosinWord1) 

Categorical feature representing the position of syllable in parent word. The feature 

takes a value I (F) when the syllable is a word initial (final) syllable, a value Single when 

the word consists of only one syllable word, or a value M for other cases. With this 

coding scheme, we have the advantage of differentiating initial and final syllables as well 

as words with single syllables. Using discrete symbols instead of integer values also 

reduces the dimension of the attribute from 10 to 4. However, we loose the information 

relating prominence with the actual location of parent syllable. 
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sil a nIz LarI ja ka rak barI na dZak jer le ri ni ju wa LarI nI cyl e di dZec cOj ly le ri miz sil
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Figure 6-4: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels (lower panel) of the words ‘barınacak yerlerini’  (the places they will live). 

Minimum pitch observed on the syllable ‘ba’  is around 192 Hz. 

 

sil biz sax de dZe mil lix gjO ryS ta ba nIn dan di Gil by tyn ce sim ler den oj aL dIk sil
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Figure 6-5: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels (lower panel) of the words ‘görü�  tabanından’  (base sight). Minimum pitch 

observed on the syllable ‘ba’  is around 176 Hz. 

 

sil a ra ba jI cim haN gji ga ra Za gjO tyr dy sil
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Figure 6-6: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels (lower panel) of the words ‘arabayı kim’  (the car who). Minimum pitch observed 

on the syllable ‘ba’  is around 225 Hz. 
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6.1.7 Word Position in Sentence (WordNoinSent) 

WordNoinSent feature is a numeric feature that represents the position of word in the 

sentence in terms of word units. The values change in the range [1, 14]. 

The position of the word within the sentence affects the word pitch contours such that 

the words to the end of the sentences have lower peak values due to declination effect. 

Downstep and declination are important aspects of intonation. Downstep refers to the 

lowering effect observed in successive high (H) pitch targets in recursive H L patterns; 

while declination refers to the tendency for F0 to gradually decline over the course of an 

utterance [Pierrehumbert, 2000; Xu and Wang, 2001]. But this is not the case for the 

word that is intended. The word that is focused attains the maximal peak value 

independent of its location in the sentence. We can not give examples from our database 

to reveal the locative effects of the words on the pitch contours since the database 

sentences are not designed to have such variabil ity. Words mostly appear in their 

inflected and derived surface forms. Hence, it is almost impossible to find a word at 

various locations of sentences with identical surface forms. But all other effects can be 

observed throughout the sentences given as examples previously with different words. 

6.1.8 Word Position in Sentence 1 (WordPosinSent1) 

Symbolic attribute representing the position of parent word in the sentence. The 

feature takes a value I (F) when the word is located at sentence initial (final), or a value M 

for other cases. The main reason employing WordPosinSent1 attribute is to discriminate 

the sentence initial and final words. As mentioned in the previous section, declination is a 

global aspect of intonation. Hence, words at phrase initials have higher peaks than phrase 

final words in declarative sentences. Therefore, using symbolic attribute for identifying 

the word location in sentence helps to track this phenomenon in a better way. At the same 

time, using symbolic representation reduces the attribute space considerably, i.e. the 

former representation has 14 values while the latter has only 3 values. 

6.1.9 Number of Phones in Syllable (NumofPhninSyl) 

Numerical attribute indicating the number of phones in the parent syllable. The values 

change in the range [1, 5]. This attribute is used to observe the effect of syllable length to 

pitch contour. 
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6.1.10 Number of Syllables in Word (NumofSylinWord) 

Numerical attribute indicating the number of syllables in the word. The value is same 

for all syllables of the same word. The values change in the range [1, 10]. This attribute is 

used to observe the effect of word length to pitch contour. 

6.1.11 Number of Words in Sentence (NumofWordinSent) 

Numerical attribute indicating the number of words in the sentence. The value is same 

for all syllables of the same sentence. Since, the database consists of sentences having 3 

to 19 words; the attribute attains values in this range. 

6.1.12 Part-of-Speech of Current Word (POSw) 

Part-of-Speech (POS) of parent word is also used in syllable pitch contour prediction. 

Generally, in Turkish, contrastive stress is realized by locating the most prominent word 

(focus) to preverbal position. Verb focusing is performed by carrying the verb to the 

sentence initial but such kind of a contrastive stress does not exist in our database. 

Commonly, the words placed after the verb, have no prominence. Thus, the contours 

observed after the verb are very smooth with no abrupt pitch changes. Figure 6-7 

manifests a non-verb final sentence, ‘böyle bir dönemde oynatılması tesadüf olamaz bu 

fi lmin’  (at such a time it is impossible to play this film on purpose). The verb of the 

sentence is ‘olamaz’  (it is impossible) and it is located before the sentence final. The 

words located after the verbs contribute to the pitch contour only with their 

microprosody.  

 

sil bOj le bir dO nem de oj na tIL ma sI te sax dyf o La maz bu fil min sil
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Figure 6-7: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels of the sentence. 

 

In Yes/No questions, the contrastive stress is realized by locating the prominent word 

in front of the question enclitic ‘mi’ . Figure 6-8 demonstrates focusing in Yes/No 
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questions by means of the enclitic ‘mi ’ . The waveform given in the figure belongs to the 

sentence ‘ba� çavu�  tüm takıma ko� u cezası mı verdi’  (did the sergeant major give the 

whole team running punishment). The word placed before the enclitic ‘mi’  is naturally 

focused and thus bears the highest pitch of the sentence.  
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Figure 6-8: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels of the sentence ‘ba� çavu�  tüm takıma ko� u cezası mı verdi’ . 

 

When the question enclitic ‘mi’  is placed at the end of the sentence, it either makes the 

preceding syllable accented or it obeys to the previous rule and focuses the preceding 

word, so the word is accented at its lexically stressed syllable. Figure 6-9 illustrates 

focusing using the enclitic ‘mi’ . The waveform given in the figure belongs to the sentence 

‘özgüre beni beklemesini söylemedin mi’ . The word placed before the enclitic ‘mi’  is 

focused and bears the highest pitch of the sentence at the lexically stressed syllable ‘ le’ . 

In Figure 6-10, an example for pre-accenting is illustrated. The sentence studied in the 

example is ‘çıplak do� rudan do� ruya tadını duyuran içkiler var biliyor musun’  (do you 

know that there are naked beverages that flavor directly). Here, the syllable ‘ yor’  bears 

the accent of the syllable although it is a part of a stress-blocking morpheme that never 

bears lexical stress. A counter example for the unaccented version of the syllable ‘ yor’  is 

given in Figure 6-11. The sentence inspected in the figure is ‘zirveden once bu hususta 

anla� ılması gerekmiyor mu’  (isn’ t it necessary to make an agreement on the subject 

before the summit). In this sentence, the word placed before the enclitic ‘mi’  is focused 

and sharpest slope is observed at its lexical stress. 
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sil Oz gjy re be ni bec le me si ni sOj le me din mi sil
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Figure 6-9: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels of the sentence ‘özgüre beni beklemesini söylemedin mi’ . 

 

sil tSIp Lac doG ru dan doG ru ja ta dI nI du ju ran itS ci ler var bi li jor mu sun sil

0

500

100

200

300

400

Time (s)
0 4.29831

 

Figure 6-10: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels of the sentence ‘çıplak do� rudan do� ruya tadını duyuran içkiler var biliyor musun’ .  
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Figure 6-11: Sound waveform (upper panel), pitch contour (middle panel), and syllable 
labels of the sentence ‘zirveden once bu hususta anla� ılması gerekmiyor mu’ .  

 

Therefore, it is necessary to determine the part-of-speech of words to develop an 

accurate model of Turkish prosody. The categories and their occurrence frequency are 

given in Table 6-1. 
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Table 6-1: POS categories and their occurrence frequency. 

NOUN VERB ADJ ADV PROPN PROPP POSTP CONJ MODAL 
6547 2765 2701 878 401 348 314 305 300 

TELL PRON CNOUN QUES WH NOT INF EXC 
280 252 199 188 184 114 89 2 

 

6.1.13 Part-of-Speech of Succeeding Word (POSw+1) 

This feature represents the POS of the word that immediately follows the parent word. 

The feature has the same values as the POSw feature plus a symbol none for the sentence 

finals. As discussed in the previous section, verbs and enclitics play an important role on 

the pitch contours of their predecessors. Generally in Turkish, preverbal word is focused. 

In the previous section, we also discuss about the effects of the enclitic ‘mi’ . Since 

enclitics are stress blockers words preceding the enclitics are generally accented. Hence, 

using a three-word POS window (POSes of preceding, current, and succeeding words) as 

attribute positively affects prediction performance. 

6.1.14 Part-of-Speech of Preceding Word (POSw-1) 

This feature represents POS of the word that immediately precedes parent word. The 

feature has the same values as the POSw feature plus a symbol none for the sentence 

initials.  

6.1.15 Part-of-Speech of Word Root (POSRoot) 

Part-of-Speech (POS) of the root of word is also used in syllable pitch contour 

prediction in order to capture the nature of words. The attribute attains values as in POSw 

attribute. 

6.1.16 Break Index (Break) 

This attribute encodes the perceptual break category of the syllable. The attribute takes 

categorical values such as I, F, and M as well as SI and SF. An I (F) value denotes that 

the syllable is located immediately after (before) a break, while the M value is assigned to 

the syllables that do not occur at boundary locations. A SI (SF) value denotes that syllable 

is at the beginning (end) of the sentence. Labels I and F refer to minor breaks while SI 

and SF refer to major breaks. Major breaks are also considered as minor breaks but the 

reverse is not true. 
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The database was previously manually labeled with respect to perceptual breaks. 

Close examination of the perceptual breaks reveal that, final lengthening occurs at break 

positions. Besides, Turkish shows continuation rises at phrase finals like English. Also, 

declarative Verb-Final sentences have a fall ing pitch pattern while question forms have 

rising patterns. Therefore, using break indices provide assistance in discriminating such 

F0 patterns. 

In Figure 6-12, the pitch contour and syllable segmentation of the sentence sentence 

‘mikroorganizmaları yok etmek için � ok ısıtma ve so� utma yöntemi kullanılır’  (in order 

to exterminate the microorganisms shock heating and cooling method is used) is given. 

The figure il lustrates continuation rise and phrase-final. Phrase final rising in 

interrogative sentences is depicted in Figure 6-13 on the sentence ‘neden nurinin 

sinemaya gitmesini istemiyorsun’  (why don’ t you want Nuri to go to the cinema).  
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Figure 6-12: Pitch contour, and syllable labels of the sentence ‘mikroorganizmaları yok 
etmek için � ok ısıtma ve so� utma yöntemi kullanılır’ . 
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Figure 6-13: Sound waveform, pitch contour, syllable labels and break indices of the 
sentence ‘neden nurinin sinemaya gitmesini istemiyorsun’ .  
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6.1.17 Sentence Type Index (STIndex) 

Each syllable is coded with 4 attributes denoting sentence type categories. Sentences 

are divided into four categories depending on their semantics (Affirmative, Negative, and 

Interrogative), on their syntactic constituents (Simple, Compound, and Complex), on their 

verbal compositions (Verb-final and non Verb-final) and for interrogatives, depending on 

the question word or enclitic (Wh-ques and Yes/No_ques). Each category is represented 

by an attribute in the feature set. Sentence type combinations observed in the database are 

given in Table 8-1. 

6.1.18 Number of Words (Syllables) to the Following Major (M inor) 
Break (NumofWordToFolMajorBreak, NumofSylToFolMajorBreak, 

NumofWordToFolMinorBreak, and NumofSylToFolMinorBreak) 
Attributes are used to denote the positions of words (syllables) to the next major 

(minor) phrase break. The attributes are all numeric. Characteristics of attribute values are 

given in Table 6-2. The columns of the table correspond to minimum, maximum, mean, 

and standard deviations, respectively. 

 

Table 6-2: Characteristics of NumofWordToFolMajorBreak, 
NumofSylToFolMajorBreak, NumofWordToFolMinorBreak, and 

NumofSylToFolMinorBreak.  

  Minimum Maximum Mean STD 
NumofWordToFolMajorBreak 0 18 3.782 2.649 
NumofSylToFolMajorBreak 0 44 11.67 7.899 
NumofWordToFolMinorBreak 0 9 1.406 1.406 
NumofSylToFolMinorBreak 0 27 4.918 4.176 

 

6.1.19 Number of Words (Syllables) from the Previous Major (M inor) 
Break (NumofWordFromPrevMajorBreak, 

NumofSylFromPrevMajorBreak, NumofWordFromPrevMinorBreak, and 
NumofSylFromPrevMinorBreak) 

Attributes are used to denote the positions of words (syllables) from the previous 

major (minor) phrase break. The attributes are all numeric. Characteristics of attribute 

values are given in Table 6-3. The columns of the table correspond to minimum, 

maximum, mean, and standard deviations, respectively. The attributes are used in the 

second approach (ref Section 7.2). 
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Table 6-3: Characteristics of NumofWordToFolMajorBreak, 
NumofSylToFolMajorBreak, NumofWordToFolMinorBreak, and 

NumofSylToFolMinorBreak.  

 Minimum Maximum Mean StdDev 
NumofWordFromPrevMajorBreak 0 18 3.591 2.661 
NumofSylFromPrevMajorBreak 0 44 11.67 7.899 
NumofWordFromPrevMinorBreak 0 9 1.284 1.378 
NumofSylFromPrevMinorBreak 0 27 4.918 4.176 

 

6.1.20 Position of Words (Syllables) in Major (M inor) Phrases 
(PosofWordMajor, PosofSylMajor, PosofWordMinor , and PosofSylMinor) 

Attributes are used to denote the positions of words (syllables) in major (minor) 

phrases. All are represented by three categorical values: Initial, Middle and Final as in 

Break feature. The attributes are used in the second approach (ref Section 7.2). 

6.1.21 Duration 

Syllable durations are also used for syllable pitch contour prediction purposes since 

they are effective in slope prediction. 

6.1.22 Cluster Index of Previous Syllable (Cluster-s1) 

For each syllable in the database, the cluster values of the syllables that immediately 

precede the current syllable are also used in syllable pitch contour prediction. The main 

reason for this choice is to embed an initial value constraint on the pitch prediction 

process. Depending on the model used, the attribute attains different values. However, its 

value is always categorical. Whatever approach is used, the attribute attains values of the 

dependent variable (ref Section 6.1.23) plus a symbol none for sentence initials. 

Pitch prediction employing secondly proposed method uses two di fferent versions of 

this attribute: Cluster-s1-major and Cluster-s1-minor. The former attains none value for 

sentence initials only. The latter attains none value for intermediate phrase initials as well 

as sentence initials. 

6.1.23 Dependent Var iable 

This feature contains the values to be predicted by decision tree learning. For pitch 

contour prediction, two different approaches are used and each approach underwent some 

modi fications. Therefore, the feature attains different values to perform different decision 

tasks. 
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For parametric modeling, cluster indices obtained by k-means clustering algorithm are 

used as dependent variable (ref Section 7.1.2). Each syllable is represented by one of 24 

clusters given in Appendix A. Hence, the dependent variable attains categorical values 

changing from 1 to 24. Then, accented and unaccented syllables are determined from the 

cluster centroids (ref Section 7.1.3). So, the attribute attains only two values (accented 

versus not-accented) for this task. 

Second approach associates accent categories to syllables (ref Section 7.2). Therefore, 

dependent variable is configured with respect to the analysis results. The attribute either 

takes three (positive, negative, and no-accent) or two (accented vs no-accent) categorical 

values depending on the task performed.  

6.2 Attr ibute Evaluation 
 

Three statistical measures are used to reveal prosodic attribute (PA) - dependent 

variable (DV) relation: Information Gain, Gain Ratio, and Symmetrical Uncertainty. 

 

( ) ( ) ( )PADVHDVHPADVInfoGain −=,    (6-1) 

 

( ) ( ) ( )
( )PAH

PADVHDVH
PADVGainRatio

−
=,    (6-2) 

 

( ) ( ) ( )
( ) ( )PAH
DVH

PADVHDVH
PADVylUncertaSymmetrica +

−
= *2,int  (6-3) 

 

where H denotes entropy. 

Table 6-4 il lustrates Information Gain, Gain Ratio and Symmetrical Uncertainty of 

the attributes with respect to the 24 cluster centroids proposed in Chapter 8 section X. 

According to the table, the Cluster-s1 attribute attains the best Information Gain and Gain 

Ratio value while the Duration attribute attains the best Symmetrical Uncertainty 

measure. Attribute relevance according to Information Gain can be listed as follows: 

Cluster-s1, Normalized_SylNoInSent, WordPosinSent1, WordNoinSent, SylPosinWord1, 
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Break, STIndex, Duration, POSw, SylNoinWord, SylStruct, Stress, LeftStress, Break-s1, 

POS-w1, POS+w1, RightSylStruct, LeftSylStruct, and NegFlag. 

 

Table 6-4: Information gain, Gain ratio and symmetrical uncertainty measures of the 
attributes with dependent variable in 24-cluster centroid prediction. Shaded values 

correspond to the maxima of each measure. 

Attr ibute 
Index 

Attr ibute 
Name 

Information 
Gain 

Gain 
Ratio 

Symmetr ical 
Uncertainty 

1 NegFlag 0.0137 0.1025 0.019 
2 Stress 0.053 0.0608 0.008 
3 LeftStress 0.0503 0.0577 0.006 
4 SylStruct 0.0539 0.0369 0.02 
5 LeftSylStruct 0.0161 0.0109 0.056 
6 RightSylStruct 0.0234 0.0164 0.094 
7 SylNoinWord 0.0701 0.0444 0.048 
8 WordNoinSent 0.1727 0.0988 0.011 
9 POSw 0.0868 0.0403 0.031 

10 POS-w1 0.0367 0.0165 0.018 
11 POS+w1 0.0295 0.0122 0.023 
12 Break 0.1108 0.1076 0.026 
13 Break-s1 0.0471 0.0509 0.005 
14 Normalized_SylNoInSent 0.2996 0.1562 0.017 
15 SylPosinWord1 0.1493 0.0831 0.008 
16 WordPosinSent1 0.2051 0.1937 0.02 
17 STIndex 0.0964 0.0196 0.04 
18 Duration 0.0957 0.0555 0.282 
19 Cluster-s1 1.2511 0.2824 0.074 

 

Table 6-5 il lustrates Information Gain, Gain Ratio and Symmetrical Uncertainty of 

the attributes with respect to the three accent categories proposed in Section 7.2. 

According to the table, SylPosinWord1 is the best predictor when Information Gain 

measure is considered. For the other measures Cluster-s1_major turns out to be the best 

predictor.  

Attribute relevance with respect to Information Gain measure is as follows:  

1. Syl-Pos-in-Word1  
2. Cluster-s1_major  
3. Cluster-s1_minor  
4. Stress Syl-No-in-Word  
5. Break  
6. Num-of-Syl-To-Prev-Minor-Break  
7. Pos-of-Syl-Minor  
8. Num-of-Syl-To-Fol-Major-Break  
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9. Num-of-Syl-in-Word  
10. Word-Pos-in-Sent1  
11. Pos-of-Word-Major  
12. Word-No-in-Sent  
13. Num-of-Word-To-Fol-Major-Break  
14. Num-of-Syl-To-Fol-Minor-Break  
15. Syl-Struct  
16. POSw-1  
17. Num-of-Word-To-Prev-Major-Break  
18. Num-of-Syl-To-Prev-Major-Break  
19. Num-of-Word-To-Fol-Minor-Break  
20. POS  
21. POSRoot  
22. POSw+1  
23. Num-of-Phn-in-Syl  
24. Pos-of-Word-Minor  
25. Pos-of-Syl-Major  
26. Duration  
27. Num-of-Word-To-Prev-MinorBreak  
28. Syl-Type  
29. Neg-Flag  
30. ST4  
31. ST2  
32. ST3  
33. ST1  
34. Num-of-Word-in-Sent. 
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Table 6-5: Information gain, Gain ratio and symmetrical uncertainty measures of the 
attributes with dependent variable in three accent prediction. 

Attr ibute 
Index 

Attr ibute  
Name 

Information
Gain 

Gain 
Ratio 

Symmetr ical
Uncertainty 

10 NumofWordinSent 0 0 0
14 ST1 0.000445 0.000464 0.000396
16 ST3 0.001035 0.000477 0.000598
15 ST2 0.001315 0.001487 0.001209
17 ST4 0.001362 0.001194 0.00112
4 NegFlag 0.001546 0.011555 0.00217
2 SylType 0.001574 0.0016 0.001384
27 NumofWordToPrevMinorBreak 0.001947 0.002968 0.002
33 Duration 0.013851 0.008467 0.009464
30 PosofSylMajor 0.015827 0.030363 0.017466
31 PosofWordMinor 0.016846 0.01068 0.011746
11 NumofPhninSyl 0.019095 0.016422 0.015563
19 POSw+1 0.021362 0.006822 0.009661
8 POSRoot 0.022873 0.009615 0.012465
7 POS 0.022943 0.008377 0.011386
23 NumofWordToFolMinorBreak 0.023119 0.014697 0.016144
26 NumofSylToPrevMajorBreak 0.023726 0.011414 0.014082
25 NumofWordToPrevMajorBreak 0.024803 0.012845 0.015396
20 POSw-1 0.025837 0.008752 0.012178
3 SylStruct 0.026689 0.018277 0.019401
24 NumofSylToFolMinorBreak 0.028706 0.011767 0.015389
21 NumofWordToFolMajorBreak 0.032663 0.015309 0.019075
6 WordNoinSent 0.032811 0.015392 0.019172
29 PosofWordMajor 0.032992 0.030858 0.027956
13 WordPosinSent1 0.033041 0.031202 0.028119
9 NumofSylinWord 0.033867 0.015538 0.019516
22 NumofSylToFolMajorBreak 0.036041 0.015648 0.020055
32 PosofSylMinor 0.038753 0.038078 0.03357
28 NumofSylToPrevMinorBreak 0.044632 0.030221 0.032249
18 Break 0.07128 0.057245 0.056209
5 SylNoinWord 0.0922 0.06375 0.067364
1 Stress 0.0963 0.110415 0.089033
35 cluster-s1_minor 0.145895 0.089457 0.09986
34 cluster-s1_major 0.170166 0.112902 0.121621
12 SylPosinWord1 0.184099 0.102418 0.119211
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CHAPTER 7  
 

 

PITCH CONTOUR MODELING 
 

 

 

General assumption for intonation modeling is that it can be successfully generated 

with fundamental frequency only, thus, the ultimate goal is to develop a model that 

generates the fundamental frequency contour of the original utterance.  

A great majority of intonation modeling studies consider syllables as the smallest unit 

that bears prosody and uses syllable based intonational attributes in predicting pitch 

contours. Main trend is towards associating syllables with accents and boundary tones as 

described in Chapter1 and Chapter2. Pitch contour estimate is reconstructed using pre-

determined values for the target labels. These values are generally computed using 

machine learning approaches. Syllables are taken as basic units in this study. 

This chapter introduces stylization, prediction and reconstruction of pitch contours 

using syllable units. Two approaches are proposed for modeling syllable pitch contours. 

One of the approaches is phonetic in nature. The other is a kind of phonological method. 

Prediction performance of each experiment involving regression tree is evaluated 

using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Correlation 

Coefficient (CC) while quantitative analysis of decision trees is performed using True 

Positives rate (TP rate), False Positives rate (FP rate), Precision, Recall, and F-measures. 

A hypothetical confusion matrix (Table 7-1) for binary classification can be used to 

define these measures. 

 

Table 7-1: Hypothetical confusion matrix of binary classification. 

  predicted class 
  yes no 

yes true positive (TP) false negative (FN) actual 
class no false positive (FP) true negative (TN) 
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7.1 Pitch Contour  Modeling – A Phonetic Approach 
Pitch contour prediction using phonetic approach involves stylization of pitch 

contours, sampling, clustering, prediction, and reconstruction. Following sections 

describe the steps involved in phonetic modeling of pitch contours.  

Within the framework of this study, original pitch contours are stylized by means of 

non-parametric methods to make analysis and synthesis possible. Then, a codebook that 

represents di fferent linguistic aspects of the speech waveform is developed from the 

stylized pitch contours.  

7.1.1 Pre-Processing of Pitch Contours 

Pitch contours reveal discontinuities mainly caused by unvoiced regions in speech 

signal. Some of these may correspond to abrupt changes in the pitch contours. These local 

changes have significant effects in model development hence removal of microprosody is 

an important issue to be handled in pitch contour modeling studies.  

In this study, pitch contours of various types of sentences observed in Turkish are 

aimed to be modeled. Dynamic range of sentences changes depending on sentence type 

and speaker’s emotional and physical state. Therefore, the dynamic ranges of the pitch 

contours are normalized for further studies. 
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Following sections present studies to remove microprosodic effects and normalization 

of syllable pitch contours.  

7.1.1.1 Removal of Microprosodic Effects 

In order to develop a model, microprosodic effects need to be eliminated from the 

original pitch contour. Microprosodic effects are mainly observed in the unvoiced regions 

of the speech signal as abrupt changes in the contour. Since most of the pitch contour 

analysis tools rely on the periodicity of the speech waveforms, unvoiced regions are 

discarded or erroneously calculated. In our pitch contour analysis and synthesis studies, 

PRAAT [Boersma and Weenink 2005; Wood 2005], a free speech processing tool that 

provides various analysis and synthesis functions, is employed. Succeeding paragraphs 

describe the methods used to handle microprosody removal. 

Pitch contours of individual sound fi les are compouted using PRAAT. Minimum and 

maximum pitch values are set to be 75 Hz and 450 Hz, respectively. Speech waveform 

and pitch contour of the sentence ‘özgüre beni beklemesini söylemedin mi’  are given in 

Figure 7-1. The total time of the speech is 1.984 seconds. There are 44876 samples and 

the speech is sampled at 16 kHz. As shown in the lower part of the figure, the pitch 

contour is not continuous around unvoiced regions of the speech signal.  

Discontinuities caused by the unvoiced regions of the speech signal are eliminated by 

Interpolation and Smoothing. By means of interpolation, the discontinuities are 

interpolated linearly and possible candidates are eliminated to produce the best path. 

Upper part of Figure 7-2 shows interpolated pitch contour of the example sentence. As 

shown in the figure, discontinuities are mostly eliminated but there are still abrupt 

changes due to microprosody.  

Remaining microprosody can be removed by means of a smoothing filter. A 10 Hz 

smoothing filter is used to remove microprosody from the original contour. Resultant 

interpolated and smoothed pitch contour is given in the lower part of Figure 7-2. 
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Figure 7-1: Sound waveform (upper window) and pitch contour (lower window) of the 
sentence ‘özgüre beni beklemesini söylemedin mi’ .  
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Figure 7-2: Interpolated (upper window) and smoothed (lower window) pitch contour of 
the example sentence. 

 

For each syllable, 10 equidistant pitch values are selected from the pitch contour and a 

syllable pitch contour inventory is developed.  
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7.1.1.2 Normalization 
Syllable pitch contours exhibit similar patterns such as falls, rises or combination of 

them as well as level curves. Therefore, contours of similar patterns are grouped to 

develop a syllable pitch contour codebook. However, sentences have different dynamic 

ranges and therefore pitch contours cannot be grouped to yield reliable information as 

they are. To eliminate level differences, normalization is performed. 

For each sentence, minimum and maximum pitch values are determined from 

interpolated and smoothed F0 contours. These values are used for normalization (F0mins 

and F0maxs). Syllable pitch contour normalization is performed as follows: 

 

mini,maxi,

mini,i
norm1i, F0F0

F0 - F0
F0

−
=     (7-6)  

 

Here iF0 , mini,F0 , and maxi,F0  represent sample, minimum and maximum pitch values 

drawn from interpolated and smoothed pitch contour of the i th sentence and, norm1i,F0 is 

the normalized F0 value.  

Normalized pitch contour of the example sentence is given in Figure 7-3. This scheme 

produces best match to the original pitch contour, however, for unobserved data, 

corresponding sentence minimum and maximum is not known; hence it requires 

prediction of sentence minimum and maximum as well. 

7.1.2 Non-Parametr ic Representation of Pitch Contours 

Normalized syllable pitch contours show similar pitch patterns. They can be identified 

by a set of predefined contours. Those pre-defined contours, templates, can be obtained 

by means of a clustering algorithm. K-means algorithm is used for clustering. Resulting 

templates mostly bear level, rising and falling patterns. Therefore, there should be at least 

four clusters in the templates to represent high, low, rising and falling patterns. An upper 

bound should also be set since increasing the number of clusters may result in 

perceptually equivalent pitch contour clusters. 
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Figure 7-3: Original (upper) and normalized (lower) pitch contours of the example 
sentence ‘özgüre beni beklemesini söylemedin mi’ . 

 

For experimentation, 4, 5, 8, 16, and 24 clusters are generated from the normalized 

syllable pitch contours. Cluster centroids and corresponding elements for k-means 

clustering with 24 clusters are given in Appendix A.  

For 24-clusters, the normalized pitch contour of the sentence ‘özgüre beni beklemesini 

söylemedin mi’  is reconstructed considering the cluster centroids only. Figure 7-4 shows 

the sound waveform, corresponding glottal pulses, original and reconstructed pitch 

contours of the example sentence. Reconstructed pitch contour is obtained by using 24 

cluster centroids given in Appendix A. The reconstructed pitch contour is perceptually 

equivalent to the original pitch contour although it exhibits deviations from the original 

contour. 

Some of the 24-cluster centroids show almost similar contour shapes. For example, 

cluster centroid-1 and -2 as well as the centroid-6 and -7 are quite similar. For the rest of 

the cluster centroids such similarities can also be found. This is a direct result of the 

number of clusters used to partition the data space. Increasing the number of clusters 

results in centroids with almost similar shapes but with di fferent levels. Since similar 

pitch contour shapes are represented by di fferent cluster centroids, the predictive 

capability of the algorithms in determining unseen pitch contours is expected to get 



 116 

lowered. Therefore, the number of clusters has a direct impact on contour prediction. So, 

determining the appropriate number is important for the success of the predictions.  
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Figure 7-4: Original (upper) and reconstructed (lower) pitch contours of the example 
sentence ‘özgüre beni beklemesini söylemedin mi’ .  

 

Another critical point about the clusters is that although there are pitch patterns having 

multimodal characteristics, none of the cluster centroids exhibit such kind of patterns. 

This phenomenon does not cause any alterations in the reconstruction process; however it 

may cause performance reduction in the contour prediction process. This problem can be 

tackled by increasing the number of clusters. However, increasing clusters results in 

redundancy in partitioning of contours. 

7.1.2.1 Decision Tree Learning Using Non-Parametr ic Representation 

This section addresses syllable pitch contour prediction studies. Linguistic and 

acoustical attributes presented in Chapter 6 are mapped to 24-cluster centroids associated 

to the syllables in the database using decision trees. The data set is split into training 

(79%) and test (21%) sets to observe the prediction performance of the decision trees on 

unobserved data. Training and test datasets contain 12483 and 3384 syllables, 

respectively. Decision tree is developed using training set and prediction performance is 

evaluated using test set. 
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Results of the prediction of syllable pitch contours obtained are given in Table 7-2 - 

Table 7-4. Table 7-2 shows the size of the tree generated by decision tree learning, the 

kappa statistics, and the total number of correctly and incorrectly classified instances.  

 

Table 7-2: Total number of leaves, size of the resultant tree and total number of correctly 
classified and misclassified syllables. 

Number of Leaves 9538 
Size of the Tree 11046 
Kappa statistics 0.22 
Correctly Classified Instances 904 26.71 % 
Incorrectl y Classified Instances 2480 73.29 % 

 

Cohen's kappa coefficient is a statistical measure of inter-annotator agreement. It is 

generally thought to be a more robust judge than simple percent agreement calculation. 

Kappa coefficient is defined as  

 
( ) ( )

( )e

ea

Pr1

PrPr

−
−=κ      (7-7) 

 

where ( )aPr  is the relative observed annotator agreement, and ( )ePr  is the probability that 

agreement is due to chance. ( )aPr  is computed from the predictions of decision tree, i.e., 

proportion of total number of correct predictions over all predictions. ( )ePr  is computed 

in the same manner but with different estimates: for calculating ( )ePr , syllables are 

associated random cluster indices. A kappa coefficient of 1 means a statistically perfect 

modeling whereas a 0 means every model value was different from the actual value. A 

kappa statistic of 0.7 or higher is generally regarded as good statistic correlation, but the 

higher the value, the better the correlation. 

The percentage of correct classifications is about %27. This is a rather low rate; 

however, as mentioned previously, most of the clusters centroids resemble each other and 

causes low true classification rate. 

Table 7-3 reveals the TP rate, FP rate, Precision, Recall, and F-measure values for 

each cluster (last column indicates Class). As demonstrated by the table, the best TP rate 

is obtained for the 2nd cluster and the worst TP rate is obtained for the 12th cluster. 
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Table 7-3: TP rate, FP rate, Precision, Recall, and F-measure. 

TP Rate FP Rate Precision Recall F-Measure Class 
0.79 0.04 0.66 0.79 0.72 2 
0.42 0.04 0.27 0.42 0.32 11 
0.36 0.08 0.28 0.36 0.32 20 
0.35 0.03 0.29 0.35 0.31 23 
0.33 0.09 0.18 0.33 0.23 7 
0.31 0.06 0.33 0.31 0.32 1 
0.26 0.03 0.26 0.26 0.26 13 
0.25 0.02 0.26 0.25 0.25 14 
0.21 0.04 0.26 0.21 0.24 6 
0.21 0.03 0.17 0.21 0.19 9 
0.20 0.03 0.20 0.20 0.20 8 
0.20 0.05 0.23 0.20 0.22 3 
0.20 0.03 0.25 0.20 0.22 19 
0.18 0.03 0.13 0.18 0.15 21 
0.17 0.04 0.27 0.17 0.21 17 
0.11 0.02 0.12 0.11 0.11 10 
0.10 0.01 0.15 0.10 0.12 24 
0.09 0.02 0.13 0.09 0.11 22 
0.08 0.03 0.11 0.08 0.10 18 
0.08 0.02 0.12 0.08 0.09 4 
0.07 0.01 0.14 0.07 0.10 5 
0.07 0.03 0.08 0.07 0.08 16 
0.06 0.02 0.10 0.06 0.08 15 
0.04 0.01 0.07 0.04 0.05 12 

 

Table 7-4 demonstrates the confusion matrix for resulting predictions. The confusion 

matrix shows the predicted clusters for each cluster in the test database. First column 

shows the frequency of each cluster in the test database. The last column holds the 

original cluster values while the rows correspond to the predicted clusters. The diagonal 

elements of the matrix indicate true predictions while the off-diagonals indicate false 

predictions. 

Predicted pitch contours are compared with original pitch contours. Original and 

predicted pitch contours of the example sentence are given in Figure 7-5. Bold 

discontinuous curve belongs to the predicted contour while gray continuous curve 

corresponds to the original pitch contour. Predicted pitch contour is reconstructed using 

original F0min and F0max. 
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Table 7-4: Confusion Matrix.  

  Predicted Clusters 
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24   
282 88 61 3 1 4 0 7 0 0 12 0 0 0 0 0 4 22 0 2 63 9 3 0 3 1 
309 34 244 0 0 4 0 2 0 0 7 0 0 0 0 0 1 3 0 0 11 2 0 0 1 2 

222 6 1 45 6 0 11 43 0 3 7 1 0 0 1 2 11 27 1 2 26 20 5 0 4 3 
90 0 1 5 7 0 10 9 1 2 0 22 0 1 2 0 5 0 11 6 2 0 3 0 3 4 
41 5 8 1 0 3 0 6 0 0 6 1 0 0 0 0 3 1 0 0 3 0 2 0 2 5 

192 1 0 14 11 0 41 45 4 2 0 10 0 0 1 6 12 5 16 10 2 5 2 1 4 6 
196 6 2 28 4 0 13 64 2 0 3 7 0 0 0 6 10 21 2 4 7 12 3 0 2 7 

113 0 0 2 0 0 4 0 23 15 0 7 3 12 5 5 1 1 8 13 0 0 0 14 0 8 
97 0 0 0 2 0 1 1 7 20 0 12 3 16 7 1 0 0 4 13 0 0 0 10 0 9 

104 16 17 5 0 3 1 12 0 0 11 0 0 0 1 0 1 5 0 0 23 4 5 0 0 10 
98 0 0 3 5 0 8 10 4 0 1 41 1 4 1 0 4 2 4 2 0 3 0 1 4 11 
46 0 0 0 0 0 0 0 10 9 0 0 2 3 2 1 0 0 1 1 0 1 0 16 0 12 

110 0 0 1 0 0 1 2 9 20 0 5 5 28 11 0 0 0 5 2 0 1 0 20 0 13 
69 0 0 0 0 0 0 0 1 9 0 2 3 17 17 0 0 0 1 1 0 0 0 18 0 14 
98 0 0 2 1 0 13 11 10 6 1 3 2 1 2 6 2 0 13 12 0 9 0 4 0 15 

109 7 4 7 3 2 10 24 1 0 3 3 0 0 0 2 8 6 4 1 9 2 10 0 3 16 

294 31 1 35 0 0 7 47 0 0 13 0 0 0 0 2 9 51 0 0 68 17 12 0 1 17 
143 0 0 1 14 0 22 8 14 9 0 18 1 9 0 10 4 0 12 12 1 6 0 1 1 18 
156 0 0 5 1 0 10 20 20 8 0 9 0 4 0 14 3 1 19 31 0 5 0 6 0 19 
263 64 17 13 0 0 1 12 0 0 17 1 0 0 0 0 7 20 0 2 95 5 9 0 0 20 
85 3 4 17 1 0 0 9 0 0 0 1 0 0 0 6 0 9 3 6 10 15 0 1 0 21 

100 5 7 5 1 1 1 19 0 0 9 3 0 0 0 1 8 11 0 1 13 0 9 0 6 22 
107 0 0 0 0 0 0 0 10 13 0 1 9 15 16 0 0 0 2 3 0 0 1 37 0 23 
60 2 4 1 2 4 2 11 0 0 0 8 0 0 0 0 5 1 0 1 6 4 3 0 6 24 

O
riginal C

lusters 

 

Two striking points come out of the observations:  

1) Most of the predictions reported to be FALSE classifications are caused by level 

mismatches: The predicted clusters more or less resemble the original cluster shapes but 

have level shifts.  

2) The contours reconstructed from the predicted clusters mainly missed 

multimodalities observed in the original contour: Although the predicted cluster seems to 

match the starting point of the syllable contour, it cannot impose an 

inclination/declination or both on the syllable.  

Level mismatches and lack of inclination can be observed from Figure 7-5.. 
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Figure 7-5: Original (gray) and predicted (black) pitch contours of the example sentence. 
‘özgüre beni beklemesini söylemedin mi’ . 

 

From preliminary prediction results given above, it is concluded that the predictions 

by the decision tree learning method used in the experiments are not satisfactory in the 24 

cluster case. The main reason for this is that several clusters exhibit almost similar 

contour shapes. Therefore, although the decision tree predicts similar shapes, they are 

counted to be misclassi fied.  

When reconstructed pitch contours using predicted clusters are considered, it is 

observed that the predictions cannot seize the multimodalities that exist in the original 

contour. This results from the lack of cluster centroids that represent multimodalities in 

the cluster set. Multimodalities seen in pitch contours correspond to the perceptual 

differences in the speech signal. Therefore, it is necessary to capture multimodalities of 

the pitch contour. So, a multi-level clustering algorithm is proposed and presented in the 

following sections.  

7.1.3 Parametr ic Representation to Phonological Representation 

According to our observations on pitch contours, relevant/perceptual pitch changes are 

demonstrated by multimodalities on pitch contour, i.e. peaks and valleys of pitch 

contours. Levels and pure rises/falls are used to link events (Figure 7-6). Predicted 

contours exhibit levels patterns. However, levels are not perceptually relevant. Therefore, 

a two-level clustering approach is used to capture dynamic cluster centroids.  

 



 121 

sil Oz gjy re be ni bec leme si ni sOj le me din mi sil

0

500

100

200

300

400

Time (s)
0 2.80475

 

Figure 7-6: Pitch contour of the example sentence. 

 

For two-level  clustering, first, level differences among pitch contours are eliminated 

by a least-squares optimization algorithm. Cost function for the optimization problem is 

as follows: 
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where c is a constant, and ( )xf i  represents the pitch points for the i th syllable in the 

database. As mentioned before, every syllable pitch contour is sampled at every tenth of 

the overall syllable duration so the value for M is 10. Least-squares optimization is 

performed on { }ia  values. For consistency, c is set to 0.5. Solution to the problem is 

given as 
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K-means clustering algorithm is performed on level-removed syllable contours to 

obtain 100 clusters. These 100 centroids are fed to a second k-means algorithm to obtain 

25 clusters. Figure B-1 - Figure B-11 demonstrate 100 centroids grouped into 25 cluster 

centroids. As shown in the figures, resultant 25 clusters have almost similar patterns. 

Number of clusters is reduced 1) by eliminating clusters with centroids representing 

levels or pure rises and falls and 2) by merging clusters of the same shape (determined by 

Pitch events 

Connections 
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25 cluster centroids) into single clusters. Merged clusters mainly coincide to multimodal 

forms of pitch contours and various levels of them. 

7.1.3.1 Decision Tree Learning Using Phonological Representation 

According to our previous observations, selected clusters correspond to pitch events 

whereas eliminated contours correspond to connections. Therefore, a binary decision is 

performed on the resultant database to predict locations of pitch events. For binary 

prediction, syllables represented by codewords that are manually selected are assigned 

TRUE values while remaining syllables are assigned FALSE values. Prosodic attributes 

described in Chapter 6 are used to train decision tree. The statistical results for the binary 

prediction of pitch events are given in Table 7-5 through Table 7-7. 

However, this binary decision did not result in a better statistical performance than 

before. This is mainly due to the fact that there is a major difference between the number 

of TRUEs and FALSEs in the database. The number of TRUEs is 3039 while the number 

of FALSEs is 9444 in the training data and 763 versus 2621 in the test data set. Therefore, 

the decision tree algorithm cannot cope with the less observable cases which correspond 

to pitch events.  

 

Table 7-5: Total number of leaves, size of the decision tree and total number of correctly 
classified and misclassified syllables. 

Number of Leaves 860 
Size of the tree 1164 
Kappa statistics 0.38 
Correctly Classified Instances 2729 80.64%  
Incorrectly Classified Instances 655 19.36%  

 

Table 7-6: TP rate, FP rate, Precision, Recall, and F-measure for each class.  

TP Rate FP Rate Precision Recall Class F-Measure Class 
0.92 0.58 0.85 0.92 0.88 False 
0.43 0.08 0.6 0.43 0.5 True 
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Table 7-7: Confusion matrix of binary prediction.  

Predictions 

False True 

2405 216 False 

439 324 True 
O

riginal 

 

TRUE and FALSE labels associated to syllables in the database are examined. 

According to our observations, some of the selected clusters do not really correspond to 

pitch events (i.e. syllables with very smooth rises and falls are also considered as pitch 

events) and some of the clusters that are previously discarded and assigned FALSE 

should be considered as pitch events (i.e. there are sharp rises and falls that are not 

included in selection but cause audible/ perceptual pitch changes). Therefore, cluster 

centroid selection is performed one more time taking into account the dynamic ranges of 

the clusters: Cluster centroids having dynamic ranges greater than or equal to 40 Hz are 

selected as prominent (TRUE) syllables and leave the others as FALSE. Threshold value 

corresponds approximately 10% of the di fference of minimum of mini,F0  and maximum 

of maxi,F0 values.  

Correspondign results are given in Table 7-8 and Table 7-10. 

 

Table 7-8: Total number of leaves, size of the binary classification tree and total number 
of correctly classified and misclassified syllables. 

Number of Leaves 1555 
Size of the tree 2010 
Kappa statistic 0.41 
Correctl y Classified Instances 2426 80.8806 % 
Incorrectly Classified Instances 958 28.3097 % 

 

Table 7-9: TP rate, FP rate, Precision, Recall, and F-measure values for each class. 

TP Rate FP Rate Precision Recall Class F-Measure Class 
0.60 0.19 0.71 0.60 0.65 False 
0.81 0.40 0.72 0.81 0.76 True 
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Table 7-10: Confusion matrix for the binary prediction of pitch events. 

Predictions 

False True 

886 598 False 

360 1540 True 
O

riginal 

 

According to the statistical results, prediction using codebook of varying size does not 

result in reasonable performances. However, such kind of an implementation would 

benefit by increasing the dimension of the database and making the cluster distributions 

even. Another important result rising from the current study is that microprosody sti ll 

plays an important role in the clustering algorithm since microprosody cannot be removed 

completely from the pitch contours and causes spurious pitch contours for syllables. 

Figure 7-7 demonstrates significant microprosodies. The speech signal and the pitch 

contour given in the figure belong to the sentence ‘mikroorganizmaları yok etmek için 

� ok ısıtma ve so� utma yöntemi kullanılır’  (shock heating and cooling method is used 

to exterminate microorganisms). Though, successive application of hierarchical 

clustering may provide better performances. 
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Figure 7-7: Circles mark significant microprosody that can not be removed completely. 
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7.2 Pitch Contour  Modeling - A Phonological Approach 
Results of early attempts on pitch contour modeling using pre-defined clusters for 

each syllable and predicting them through machine learning led us develop a new 

approach that involves less contour dependency by decreasing the number of pre-defined 

clusters. Proposed approach mainly relies on representing pitch contours as a sequence of 

discrete events. 

In this approach, syllables are assigned to pitch accents depending on the decisions 

made over syllable pitch contours. Our primary aim is to distinguish accented syllables 

from not-accented ones by means of a binary decision. For each accented syllable, a 

prominence level is predicted by means of regression trees.  

Resulting work resembles to the intonation modeling studies that involve ToBI 

labeling where each syllable of the database is labeled according to their accent status and 

then a binary decision is performed whether the current syllable is accented or not 

depending on acoustic and linguistic features derived from the speech and text corpora. 

Then, each accent is further discriminated by another decision tree or some other learning 

method such as a neural network. After identifying the labels of each syllable, 

prominence levels are found. This is performed by means of numeric prediction methods. 

Phrase and boundary tones are assigned and corresponding prominence levels are 

predicted with almost same procedures but using di fferent feature sets.  

Studies incorporating ToBI transcription system rely on label-rich corpora. Generally, 

pitch contours are manually transcribed using ToBI system and attributes are obtained by 

deep linguistic analyses. Within the course of this study, such a corpus is not available. 

Hence, intermediate representations, such as ToBI labels, that represent pitch contours do 

not exist as well. Lexical stress scheme is available however it is sti ll insufficient to 

resolve stress assignments for compound words or even more complex forms such as 

noun phrases.  

Previous studies on other languages reported that pitch accents are observed as local 

minima and maxima on pitch contours and should be aligned with the lexically stressed 

syllable of the words that are accented [Pierrehumbert 2000]. Acoustic behavior and their 

perceptual equivalences are captured by means of perceptual listening tests. According to 

our observations, sharper rises turn out to be perceptually more prominent from the rest of 
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the pitch contours. It is concluded that selecting rises instead of maxima would be better 

for predicting prominent, accented, syllables.  

Developed pitch accent assignment algorithm locates accents according to syllable 

pitch contours. For the example sentence given in Figure 7-6, the data used to assign 

pitch accents are given in Table 7-11. First column of the table is related to the index of 

the sentences within the database. In the second column, the syllable identities in their 

SAMPA [Wells 2003] format are given. The third, fourth and fifth columns correspond to 

the position of syllable in word (SylPosinWord), position of word in sentence 

(WordPosinSent), number of syllables in word (NumofSylinWord) obtained from the text. 

The sixth column of the table holds the slope amplitudes calculated from the original 

syllable pitch contours. The seventh column mani fests the sign of the slopes given in the 

sixth column. Mean F0 values of corresponding syllables are given as the last column of 

the table. Slope of syllable k is calculated as follows: 
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where )(0 xF k and kD correspospond to 10 equidistant F0 values picked from the syllable 

pitch contour and syllable duration. 

 

Table 7-11: Data used by pitch accent assignment algorithm. 

ID Syllable Label SylPosinWord WordPosinSent NumofSylinWord Slope Amp Sign Mean 
0 Oz 1 1 3 -56.94 -1 184 
0 gjy 2 1 3 351 1 202 
0 re 3 1 3 96.18 1 224 
0 be 1 2 2 101.36 1 229 
0 ni 2 2 2 45.13 1 237 
0 bec 1 3 5 22.83 1 242 
0 le 2 3 5 -23.9 -1 244 
0 me 3 3 5 118.7 1 252 
0 si 4 3 5 56.09 1 262 
0 ni 5 3 5 -164.21 -1 253 
0 sOj 1 4 4 23.1 1 248 
0 le 2 4 4 902.56 1 320 
0 me 3 4 4 -995.55 -1 303 
0 din 4 4 4 -127.9 -1 172 
0 mi 1 5 1 11.1 1 160 
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Pitch accent assignment algorithm searches for relevant positive and negative slopes 

for every syllable of candidate words which are selected with respect to positive and 

negative thresholds: Words having syllables with slopes greater (less) than positive 

(negative) threshold are selected as candidates for positive (negative) accents.Threshold 

value plays an important role in pitch accent assignment process. I f the value is chosen 

too small, every tiny slope is considered as a potential candidate. If the threshold is 

chosen too large, then most of the potential pitch accents are discarded. 

Among the syllables of the candidate words, the ones with considerable positive and 

negative slopes are associated with positive and negative pitch accents. Relevancy is 

determined by means of slope amplitudes calculated from the interpolated and smoothed 

contours.  

For positive accent assigment, two syllables with the highest mean F0 among all 

positive sloped syllables in the candidate word are selected. This choice is based on the 

observations that  

�  the sharpest slope may not be aligned with the syllable with the highest mean F0, 

�  highest mean F0 on a syllable may be an indicator of pitch accent on the syllable, 

�  both syllables have higher mean F0 than the rest of the syllables in the candidate 

word.  

Positive accent is associated to the syllable with the lower mean F0 if its slope amplitude 

exceeds a scaled version of the highest mean F0 valued syllable’s slope magnitude or to 

the syllable with the highest mean F0 otherwise.  

Negative accents are assigned to the first syllable with the largest negative slope in the 

candidate word.  

Figure 7-8 shows positive and negative pitch accents accents associated to the 

syllables of the sentence ‘mikroorganizmları yok etmek için � ok ısıtma ve so� utma 

yöntemi kullanılır’  by accent assignment algorithm.  
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Figure 7-8: Positive (1’s) and negative (-1’s) pitch accents of the sentence 
‘mikroorganizmları yok etmek için � ok ısıtma ve so� utma yöntemi kullanılır’ . 

 

The process of deciding whether a syllable is accented or not, can be viewed as a 

binary classification problem.  

7.2.1 Prediction of Pitch Contour Parameters 

A three-step procedure is followed for modeling pitch contours. First step involves 

pitch accent placement, second step involves numeric prediction of accent slopes. In the 

last step, syllable pitch contours are re-generated using slopes estimates and sentence 

pitch contours are reconstructed by concantenating syllable pitch contours.. 

In the fi rst part which involves a classification task, the decision tree algorithm (J48) 

of WEKA package [Witten and Frank 1999] is used. In the second part, the problem is to 

predict slope amplitudes, hence, requires numeric prediction methods. Therefore, at this 

step, regression tree algorithm (REPTree) of the WEKA package [Witten and Frank 

1999] is used. 

For accent location prediction, two experiment sets are uti lized. Both experiment sets 

util ize prosodic attributes presented in Chapter 6. In the first experiment set (Experiment 

Set 1), the decision tree is used to predict accent states of the syllables which are 

determined by the accent assignment algorithm. The syllables are either positive/negative 

accented or not-accented (cf. Figure 7-8). Hence, three accent states are predicted in 

Experiment Set 1.  
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In the second experiment set (Experiment Set 2), positive and negative accent types 

are merged to construct a single accented class. 

For accent slope prediction, the slope values computed from the normalized syllable 

pitch contours are predicted by the regression tree. Accent states of syllables are also used 

in the learning. Slopes are predicted considering the experimental setups employed in 

accent location prediction. 

For each prediction task, the performance of the learning algorithm is evaluated using 

three methods given below. 

Evaluation on training data (Training): Training data can be used to observe the 

performance of the decision tree however performance on the training data is not a good 

indicator of future performance, i.e. performance on new data: During the learning 

process, the classifier tries to make the best prediction for every sample in the training 

database, so the resulting error rate would be an optimistic one and very likely to 

overestimate the true predictive performance of the learning method. However, it is still 

useful to look at these results, for they generally represent an upper bound on the model’ s 

performance. Therefore, for each of the prediction tasks, an evaluation on training dataset 

is performed to have an idea about decision tree’s prediction capacity.  

Evaluation on test data (Test): To predict the performance of decision tree on new 

data, the performance should be calculated over a test set. The data in the test set is not 

used in the learning phase of the decision tree. The test data may be completely distinct 

from the training data or may be part of it. The only constraint on the test data is: The test 

data should not be employed in the development of the classifier. Hence, for each 

prediction task, evaluations on test data are performed. 

Evaluation using 10-fold cross validation (CrossVal): In 10-fold cross validation, 

the data is divided into 10 subsets of equal size. The decision tree is trained 10 times, 

each time leaving out one of the subsets from training. The remaining subset is used to 

compute the error rate. The overall error for the classifier is the average of errors 

computed in 10 training. In most practical applications, 10-fold cross validation is used 

for predicting error. Since 10-fold cross-validation method is a good indicator of decision 

tree’s future performance, 10-fold cross validation is performed. 

In order to perform Training and Test, the database is split into two subsets: Training 

and Test datasets. Training dataset is used to develop appropriate classification/regression 
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tree while test dataset is used to evaluate the performance of resultant tree. The training 

dataset consists of 12483 samples of the syllable database and the test dataset consists of 

the remaining 3384 samples of the syllable database. These values correspond to 78.67% 

and 21.33% of the syllable database, respectively.  

Following sections summarizes the results obtained from accent location and slope 

prediction. 

7.2.1.1 Accent Prediction 

Statistical observations given in tables Table 7-12 through Table 7-18 belong to the 

accent prediction experiments. For both of the experiment sets, Test and CrossVal 

performances are lower than Training performances however they are more reliable. 

 

Table 7-12: Correct and incorrect classi fication rates for Experiment Set 1 & 2. 

  
 Number 

of Syllables 
Percentage 

Correctly Classifed Syllables  10515 84.23% 
Training 

Incorrecly Classified Syllables 1968 15.77% 
Correctly Classifed Syllables  2523 74.56% 

Test 
Incorrecly Classified Syllables 861 25.44% 
Correctly Classifed Syllables  11988 75.55% 

Experiment 
Set 1 

CrossVal 
Incorrecly Classified Syllables 3879 24.45% 
Correctly Classifed Syllables  10558 84.58% Training 
Incorrecly Classified Syllables 1925 15.42% 
Correctly Classifed Syllables  2568 75.89% Test 
Incorrecly Classified Syllables 816 24.11% 
Correctly Classifed Syllables  12025 75.79% 

Experiment 
Set 2 

CrossVal 
Incorrecly Classified Syllables 3842 24.21% 

 

According to Table 7-12 , best correct classification rates are observed in the cases 

where evaluations are performed on training set in both experiment sets. These results 

il lustrate the upper limits of the decision trees. In Experiment Set 1, classification rates 

are worser than that of the cross validation performance which denotes that selected test 

to evaluate decision tree performance is not optimal. It is also observed that classification 

rates obtained in both experiment sets are almost same although Experiment Set 1 is more 

complicated since it relies on the prediction of three accent states: positive, negative and 

no-accent. 
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Kappa coefficients for both experiment sets are given in Table 7-13. Kappa statistics 

of Experiment Set 1 are better than those of Experiment Set 2. Evaluations using training 

sets approach 0.7 which is regarded as good statistic correlation. 

 

Table 7-13: Kappa statistics of Experiment Set 1 & 2. 

  Kappa Statistics 
Training 0.68 

Test 0.47 
Experiment 

Set 1 
CrossVal 0.50 
Training 0.65 

Test 0.45 
Experiment 

Set 2 
CrossVal 0.46 

 

The confusion matrices of Experiment Set 1 & 2 are given in Table 7-14 and Table 

7-16, respectively. Diagonal entries of the tables correspond to correct predictions while 

off-diagonals correspond to false predictions. Confusion matrix of Experiment Set 1 

(Table 7-14) shows that decision trees cannot discriminate accented syllables from the 

not-accented syllables. However, they perform a better discrimination in between positive 

and negative accented syllables. 

 

Table 7-14: Confusion matrices observed in Experiment Set 1 (positive, negative and no-
accent). 

  Classified as: no-accent positive negative 
no-accent 7411 260 335 
positive 577 1685 59 Training 
negative 677 60 1419 
no-accent 1906 196 144 
positive 219 344 16 Test 
negative 256 30 273 
no-accent 8889 627 736 
positive 1185 1600 115 

Experiment 
Set 1 

CrossVal 
negative 1116 100 1499 

 

In order to compare performances of correct class predictions of both experiment sets, 

confusion matrix of Experiment Set 1 (Table 7-14) is converted to two-class confusion 
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matrix given in Table 7-15. The converson is performed by merging the statistics of 

positive and negative classes. Comparison of the cofusion matrices of both experiment 

sets (Table 7-15 and Table 7-16), it is observed that prediction of accented class is better 

in Experiment Set 2 but Experiment Set 1 predicts no-accents better.  

 

Table 7-15: Confusion matrices observed in Experiment Set 1 (accented vs no-accent). 

  Classified as: no-accent accented 
no-accent 7411 595 Training 
accented 1254 3223 
no-accent 1906 340 

Test 
accented 475 663 
no-accent 8889 1363 

Experiment 
Set 1 

CrossVal 
accented 2301 3314 

 

Table 7-16: Confusion matrices observed in Experiment Set 2 (accented vs no-accent). 

  Classified as: no-accent accented 
no-accent 7335 671 Training 
accented 1254 3223 
no-accent 1881 365 

Test 
accented 451 687 
no-accent 8671 1581 

Experiment 
Set 2 

CrossVal 
accented 2261 3354 

 

As shown in Table 7-14 - Table 7-16, the total number of no-accents are greater than 

the total number of positive and negative (accented) classes. The number of no-accented 

syllables in Training, Test and CrossVal are 8006, 2246 and 10252 accented syllables are 

4477, 1138, and 5615, respectively. Hence, resulting decision trees predict no-accents 

more accurately than accented classes.  

TP rates, FP rates, Precisions, Recalls and F-Measures for Experiment set 1 & 2 are 

given in Table 7-17 and Table 7-18, respectively. It is observed that best TP rates are 

observed for no-accents. 
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Table 7-17: TP rate, FP rate, Precision, Recall and F-measures of Experiment Set 1. 

  TP Rate FP Rate Precision Recall F-Measure Class 
0.93 0.28 0.86 0.93 0.89 no-accent 
0.73 0.03 0.84 0.73 0.78 positive Training 
0.66 0.04 0.78 0.66 0.72 negative 
0.85 0.42 0.80 0.85 0.82 no-accent 
0.59 0.08 0.60 0.59 0.60 positive Test 
0.49 0.06 0.63 0.49 0.55 negative 
0.87 0.41 0.79 0.87 0.839 no-accent 
0.55 0.06 0.69 0.55 0.61 positive 

Experiment 
Set 1 

CrossVal 
0.55 0.07 0.64 0.55 0.59 negative 

 

Table 7-18: TP rate, FP rate, Precision, Recall and F-measures of Experiment Set 2. 

  TP Rate FP Rate Precision Recall F-Measure Class 
0.92 0.28 0.85 0.92 0.88 no-accent Training 
0.72 0.08 0.83 0.72 0.77 accented 
0.84 0.40 0.81 0.84 0.82 no-accent Test 
0.60 0.16 0.65 0.60 0.63 accented 
0.85 0.40 0.79 0.85 0.82 no-accent 

Experiment 
Set 2 

CrossVal 
0.60 0.15 0.68 0.60 0.64 accented 

 

Figure 7-9 shows the decision tree generated in Experiment Set 1 for Training and 

Test cases. The tree has six splitting levels. As shown in the table, the first split occurs at 

cluster-s1_major attribute which corresponds to the most significant attribute of the 

attribute set. The significance order of the attributes can be considered by means of the 

ordering in the trees, that is, the higher the attribute is observed on the branching, the 

more significant the attribute is. Second level splits occur at SylPosinWord1, Stress, and 

SylnoinWord. These two splits correspond to the most relevant prosodic attributes. 

Third level splits occur at NumofSylToPrevMinorBreak, PosofWordMajor, Duration, 

and NumofSylinWord. Fourth levels splits occur at Break, NumofSylToPrevMinorBreak, 

and NumofSylTo-PrevMajorBreak attributes. The fi fth level splits are 

NumofWordToFolMinorBreak. At the last level, the only splitting is observed at the 

attribute NumofWordToPrevMajorBreak. The rest of attributes do not play any role in the 

resultant decision therefore the rest of the attributes are irrelevant to accent prediction 

using decision trees.  
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In the tree structure, a colon (:) introduces the class label that is assigned to a 

particular leaf, followed by the number of instances that reach that leaf, expressed as a 

decimal number. The decimals are used because of the way the algorithm uses fractional 

instances to handle missing values [Witten and Frank 1999].  

 

cluster-s1_major = NONE: cl0 (547.0/150.0) 
cluster-s1_major = cl0 
|   Stress = N 
|   |   NumofSylToPrevMinorBreak <= 0 
|   |   |   Break = SI: cl0 (0.0) 
|   |   |   Break = M: cl0 (0.0) 
|   |   |   Break = SF: cl0 (203.0/40.0) 
|   |   |   Break = F: cl (148.0/73.0) 
|   |   |   Break = I: cl0 (0.0) 
|   |   |   Break = I/F: cl0 (4.0) 
|   |   NumofSylToPrevMinorBreak > 0: cl0 (4511.0/942.0) 
|   Stress = A 
|   |   PosofWordMajor = I: cl (320.0/34.0) 
|   |   PosofWordMajor = M 
|   |   |   NumofSylToPrevMinorBreak <= 0: cl (433.0/142.0) 
|   |   |   NumofSylToPrevMinorBreak > 0 
|   |   |   |   NumofWordToFolMinorBreak <= 0 
|   |   |   |   |   NumofWordToPrevMajorBreak <= 2: cl0 (161.0/77.0) 
|   |   |   |   |   NumofWordToPrevMajorBreak > 2: cl (312.0/110.0) 
|   |   |   |   NumofWordToFolMinorBreak > 0: cl0 (1129.0/431.0) 
|   |   PosofWordMajor = F: cl0 (365.0/72.0) 
cluster-s1_major = cl 
|   SylPosinWord1 = I: cl-1 (1392.0/454.0) 
|   SylPosinWord1 = M: cl-1 (228.0/89.0) 
|   SylPosinWord1 = F: cl0 (353.0/139.0) 
|   SylPosinWord1 = Single 
|   |   Duration <= 0.168: cl-1 (109.0/50.0) 
|   |   Duration > 0.168: cl0 (132.0/67.0) 
cluster-s1_major = cl-1 
|   SylNoinWord <= 1: cl0 (426.0/164.0) 
|   SylNoinWord > 1 
|   |   NumofSylinWord <= 2 
|   |   |   NumofSylToPrevMajorBreak <= 8: cl0 (142.0/46.0) 
|   |   |   NumofSylToPrevMajorBreak > 8 
|   |   |   |   NumofSylToFolMinorBreak <= 3: cl (128.0/45.0) 
|   |   |   |   NumofSylToFolMinorBreak > 3: cl0 (108.0/52.0) 
|   |   NumofSylinWord > 2: cl0 (1332.0/90.0) 

Figure 7-9: Decision tree obtained in Experiment Set 1 using training set. 

 

Figure 7-10 demonstrates the resultant decision tree generated in Experiment Set 2 for 

Training and Test cases.The tree has five splitting levels. As the table reveals, the first 

split occurs at SylPosinWord1 attribute. Second level splits occur at cluster-s1_major, 

NegFlag, PosofSylMajor, and NumofWordToFolMajorBreak. Third level splits occur at 

NumofSylToFolMajorBreak, NumofWordToPrevMinorBreak, PosofWordMinor, and 

SylType. Fourth levels splits occur at Duration, cluster-s1_minor, POSw+1, ST4, 
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NumofSylToPrevMajor-Break, and POSRoot attributes. Last level splits occur at ST4, and 

SylNoinWord. The rest of attributes do not play any role in the resultant decision therefore 

they are irrelevant to accent prediction using decision trees. When current decision tree is 

compared with the former (Figure 7-9), it can be seen that they are di fferent from each 

other although they share common attributes but at different splits.  

 

SylPosinWord1 = I 
|   cluster-s1_major = NONE: cl0 (455.0/73.0) 
|   cluster-s1_major = cl0 
|   |   NumofSylToFolMajorBreak <= 4: cl_cl-1 (150.0/73.0) 
|   |   NumofSylToFolMajorBreak > 4: cl0 (1383.0/341.0) 
|   cluster-s1_major = cl_cl-1 
|   |   NumofWordToPrevMinorBreak <= 1: cl_cl-1 (1067.0/320.0) 
|   |   NumofWordToPrevMinorBreak > 1 
|   |   |   Duration <= 0.201 
|   |   |   |   ST4 = MI-Ques: cl0 (113.0/47.0) 
|   |   |   |   ST4 = NONE: cl_cl-1 (402.0/144.0) 
|   |   |   |   ST4 = WH-Ques: cl_cl-1 (40.0/13.0) 
|   |   |   Duration > 0.201: cl0 (116.0/41.0) 
SylPosinWord1 = M 
|   NegFlag = FALSE: cl0 (4170.0/597.0) 
|   NegFlag = TRUE 
|   |   NumofSylToFolMajorBreak <= 17: cl_cl-1 (103.0/48.0) 
|   |   NumofSylToFolMajorBreak > 17: cl0 (102.0/31.0) 
SylPosinWord1 = F 
|   PosofSylMajor = I: cl0 (0.0) 
|   PosofSylMajor = M 
|   |   PosofWordMinor = I 
|   |   |   cluster-s1_minor = NONE: cl0 (1.0) 
|   |   |   cluster-s1_minor = cl0: cl_cl-1 (841.0/212.0) 
|   |   |   cluster-s1_minor = cl_cl-1 
|   |   |   |   SylNoinWord <= 2: cl_cl-1 (171.0/72.0) 
|   |   |   |   SylNoinWord > 2: cl0 (194.0/56.0) 
|   |   PosofWordMinor = M 
|   |   |   POSw+1 = PRON: cl0 (12.0/5.0) 
|   |   |   POSw+1 = NOUN: cl0 (392.0/124.0) 
|   |   |   … 
|   |   PosofWordMinor = F 
|   |   |   ST4 = MI-Ques: cl0 (129.0/28.0) 
|   |   |   ST4 = NONE: cl_cl-1 (462.0/93.0) 
|   |   |   ST4 = WH-Ques: cl0 (36.0/4.0) 
|   PosofSylMajor = F: cl0 (481.0/86.0) 
SylPosinWord1 = Single 
|   NumofWordToFolMajorBreak <= 1: cl_cl-1 (165.0/40.0) 
|   NumofWordToFolMajorBreak > 1 
|   |   SylType = H 
|   |   |   NumofSylToPrevMajorBreak <= 8: cl0 (107.0/38.0) 
|   |   |   NumofSylToPrevMajorBreak > 8: cl_cl-1 (114.0/55.0) 
|   |   SylType = L 
|   |   |   POSRoot = NOUN: cl0 (5.0/2.0) 
|   |   |   POSRoot = PRON: cl_cl-1 (5.0/2.0) 
|   |   |   POSRoot = VERB: cl_cl-1 (0.0) 
|   |   |   POSRoot = TELL: cl_cl-1 (0.0) 
|   |   |   POSRoot = QUES: cl_cl-1 (107.0/28.0) 
|   |   |   POSRoot = CNOUN: cl_cl-1 (0.0) 
|   |   |   POSRoot = MODAL: cl_cl-1 (0.0) 
|   |   |   POSRoot = POSTP: cl_cl-1 (0.0) 
|   |   |   POSRoot = CONJ: cl_cl-1 (120.0/42.0) 
|   |   |   POSRoot = ADV: cl_cl-1 (1.0) 
|   |   |   … 

Figure 7-10: Decision tree obtained for Experiment Set 2 using training set. 
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The best performance in accent prediction experiments is obtained by means of binary 

prediction, that is, the case where two accent types are merged into accented class and 

not-accented ones are used for the other class. The evaluations on the test set shows 

74.56% correct prediction for triple accent prediction and 75.89% correct prediction for 

binary prediction of accents. When the two experiments are examined in detail, it is seen 

that the former predicts the not-accented syllables better while the latter does it for 

accented syllables.  

Among the three evaluation methods utilized in binary prediction, the best 

performance is obtained via EvalA, as expected. The second best statistical performance 

is obtained using EvalB. The worst performance is obtained by means of EvalC; however, 

it is the most reliable evaluator.  

In both of the experiments, the first two of the evaluations are recovered from the split 

train and test datasets while the third one belongs to the whole syllable database. 

Although the results are much more promising then our previous attempts on 

classifying pitch accents by means of syllable pitch contour clusters, they still  need 

improvement. When the results are examined in detail, it is observed that prediction 

accuracy for not-accented classes (class0) is better than the other classes in both of the 

schemes. This is mainly due to the uneven distribution of accented and not-accented 

syllables in the database. In the first set of experiments, the percentages of class1, class-1, 

and class0 are 18.59%, 17.27%, and 64.14% in the training database and 17.11%, 

16.52%, and 66.37% in the test database, respectively. In the second set of experiments 

where two accent types are merged into one accent category (class1_class-1), the 

percentages of the accented and not-accented syllables are 35.86% and 64.14% in the 

training dataset and 33.63% and 66.37% in the test database, respectively. Not-accented 

syllables may cover feature combinations that can also be observed for accented syllables. 

Significant di fference in the amounts of not-accented and accented syllables in the 

database can explain the tendency of decision trees to label a majority of syllables as not-

accented.  

7.2.1.2 Slope Prediction for Accented Syllables 

In the second stage of pitch contour modeling, syllables are associated with the 

corresponding slopes by means of numeric prediction methods. With slope and duration 

information, abstract accent labels can be transformed into continuous pitch contours.  
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Slope prediction is performed considering the two experimental setup employed in 

accent prediction for three evaluation methods (Training, Test, and CrossVal). In the 

first experiment set (Experiment Set 1), slopes are predicted for three accent states 

(positive, negative, and no-accent). In Experiemtn Set 2, slopes are predicted for two 

accet states (accented vs no-accent).  

To decrease variation of data, slope values are computed from the normalized pitch 

contours instead of original pitch values. The histogram plot of syllable slopes computed 

from the normalized pitch contours are illustrated in Figure 7-11 - Figure 7-13. Figure 

7-11 demonstrates the slope histogram of all syllables. In Figure 7-12, only the slope 

histogram of syllables associated to no-accents is demonstrated. As revealed by the 

figure, the slopes of no-accents vary from -5 to 4. This range partially overlaps the slope 

ranges of negative accent (Figure 7-13 – left window) and positive accent (Figure 7-13 – 

right window). 
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Figure 7-11: Histogram plot of the slopes of all syllables in the database. 
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Figure 7-12: Histogram plot of the slopes of syllables associated to no-accent. 
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Figure 7-13: Histogram plots of the slopes of syllables associated to negative (Left 
window) and positive (Right window). 

 

Table 7-19 demonstrates slope statistics of the training, test and overall datasets, 

respectively. According to the table, the minimum and maximum slope values observed 

in training database is -8.6 and 6.2, respectively. Corresponding values for the test 

database are -5.6 and 7.3, respectively. These values correspond to rather steep slopes. 

Generally, these values are observed on syllables having shorter durations. According to 

the table, the mean value for the slope is around 0 which denotes that all databases are 

dominated by no-accents. However, when the histogram plots in Figure 7-11 - Figure 

7-13 are considered, it is observed that the slopes of accented syllables are either at the 

positive or negative half of the slope line.  

When slope statistics of the train and test dataset are compared, it is observed that the 

upper slope limit of the test data set is beyond the scope of the train dataset. This may 

result in a performance reduction. 

When slope statistics of complete dataset is considered, it is observed that it covers the 

statistics of the train and test datasets, but resembles the statistics of the train dataset.  

 

Table 7-19: Slope statistics of the training and test data.  

 Minimum Maximum Mean SD 
Training -8.6 6.2 0.03 1.378 
Test -5.6 7.3 0.015 1.288 
AllSyllables -8.6 7.3 0.027 1.359 
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For comparison purposes, mean slope of corresponding dataset is used as a baseline 

model for slope prediction experiments. 

Table 7-20 illustrates the performance statistics of the decision trees and the baseline 

model for both experiment sets. As shown in the table, the slope prediction statistics are 

fairly good. Utilization of decision trees for slope prediction outperforms baseline model.  

 

Table 7-20: Performance statistics of the the baseline, Experiment Set 1 & 2. 

  CC MAE RMSE 
Train ~0 0.99 1.90 
Test ~0 0.92 1.66 Baseline 
CrossVal ~0 0.97 1.85 
Training 0.86 0.49 0.69 

Test 0.83 0.53 0.73 
Experiment 

Set 1 
CrossVal 0.84 0.54 0.75 
Training 0.74 0.62 0.93 

Test 0.67 0.66 0.97 
Experiment 

Set 2 
CrossVal 0.66 0.69 1.03 

 

For both experiment sets, best performances are obtained using the training set and 

worst performance are obtained with cross validation evaluation. However, the 

performances are more or less similar to each other numerically. 

Considering all results obtained in Experiment Set 1 & 2, it can be said that decision 

trees outperform baseline model. The percentage improvement in MAE is around 46% for 

Experiemtn Set 1 and 31% for Experiemtns Set 2.  

When the results of Experiment Set 1 and 2 are compared, it is observed that Set 1 

exhibits better performances. This is due to the fact that Experiment Set 1 uses three 

accent states (positive, negative, and no-accent) while Experiment Set 2 uses two accent 

states (accented vs no-accent). Merging positive and negative accents reduces the 

prediction capacity. Experiment Set 1 performs approximately 20% and 26% better than 

Experiment Set 2 in MAE and RMSE, respectively. 

Figure 7-14 demonstrates the resultant decision tree generated in Experiment Set 1 for 

Training and Test cases. The tree has five splitting levels. Attributes at each split are as 

follows:  
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1. Accent (most significant attribute) 

2. cluster-s1_major, POSw+1, and SylStruct 

3. PosofWordMajor, NumofSylToFolMinorBreak, and cluster-s1_minor 

4. POSw+1 

5. SylPosinWord1 

Rest of the attributes do not play any role in the resultant regression tree therefore they 

are irrelevant for accent prediction using regression trees.  

 

Accent = cl0 
|   cluster-s1_major = NONE : 0.53 (258/0.44) [139/0.45] 
|   cluster-s1_major = cl0 
|   |   PosofWordMajor = I : 0.62 (188/0.66) [94/0.45] 
|   |   PosofWordMajor = M 
|   |   |   POSw+1 = PRON : 0.06 (32/0.49) [15/0.87] 
|   |   |   POSw+1 = NOUN : 0.05 (847/0.32) [418/0.31] 
|   |   |   … 
|   |   |   |   SylPosinWord1 = I : 0.05 (105/0.23) [59/0.4] 
|   |   |   |   SylPosinWord1 = M : 0.09 (243/0.39) [110/0.39] 
|   |   |   |   SylPosinWord1 = F : -0.25 (153/0.32) [69/0.46] 
|   |   |   |   SylPosinWord1 = Single : 0 (6/0.14) [7/0.08] 
|   |   |   POSw+1 = ADJ : 0.01 (382/0.31) [190/0.39] 
|   |   |   POSw+1 = ADV : -0.06 (140/0.33) [78/0.23] 
|   |   |   … 
|   |   PosofWordMajor = F : -0.14 (731/0.14) [338/0.11] 
|   cluster-s1_major = cl : -0.22 (525/0.54) [260/0.45] 
|   cluster-s1_major = cl-1 
|   |   NumofSylToFolMinorBreak < 1.5 : 0.2 (202/0.51) [71/0.33] 
|   |   NumofSylToFolMinorBreak >= 1.5 : -0.43 (947/0.76) [481/0.83] 
Accent = cl 
|   POSw+1 = PRON : 1.88 (27/0.77) [11/1.07] 
|   POSw+1 = NOUN : 1.99 (569/0.79) [270/0.77] 
|   POSw+1 = TELL : 1.9 (15/1.14) [12/1.72] 
|   POSw+1 = QUES : 2.67 (75/1.02) [44/1.12] 
|   POSw+1 = NONE : 1.59 (89/0.37) [39/0.31] 
|   … 
Accent = cl-1 
|   SylStruct = NC : -2.02 (118/0.9) [69/1.13] 
|   SylStruct = ON 
|   |   cluster-s1_minor = NONE : -1.52 (104/0.38) [63/0.39] 
|   |   cluster-s1_minor = cl0 : -1.61 (247/0.49) [115/0.69] 
|   |   cluster-s1_minor = cl : -1.97 (354/0.62) [186/0.7] 
|   |   cluster-s1_minor = cl-1 : -1.41 (38/0.23) [17/0.29] 
|   SylStruct = ONC 
|   |   cluster-s1_minor = NONE : -1.2 (42/0.18) [20/0.13] 
|   |   cluster-s1_minor = cl0 : -1.49 (118/0.37) [71/0.46] 
|   |   cluster-s1_minor = cl : -1.74 (192/0.43) [101/0.47] 
|   |   cluster-s1_minor = cl-1 : -1.12 (22/0.12) [11/0.12] 
|   SylStruct = N : -2.38 (161/1.86) [87/1.37] 
|   SylStruct = ONCC : -1.48 (5/0.21) [4/0.1] 
|   SylStruct = OONC : -1.16 (4/0.41) [3/0.1] 
|   SylStruct = OON : -1.5 (2/0.09) [1/2.25] 
|   SylStruct = NCC : -0.8 (1/0) [0/0] 
|   … 

Figure 7-14: Regression tree obtained for Experiment Set 1 using training set. 
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Resultant regression tree obtained in Experiment Set 2 for training dataset is given in 

Figure 7-15. The tree has five splitting levels. Attributes ate each split are as follows: 

1. cluster-s1_major (most significant attribute) 

2. Accent, and SylPosinWord1 

3. PosofWordMajor, SylPosinWord1, Accent, and Break 

4. POSw+1, SylStruct, and SylNoinWord 

5. SylPosinWord1, and Accent 

Rest of the attributes do not play any role in the resultant regression tree therefore they 

are irrelevant to accent prediction using decision trees.  

 
cluster-s1_major = NONE : 0.98 (350/1.19) [197/1.24] 
cluster-s1_major = cl0 
|   Accent = cl0 
|   |   PosofWordMajor = I : 0.62 (188/0.66) [94/0.45] 
|   |   PosofWordMajor = M 
|   |   |   POSw+1 = PRON : 0.06 (32/0.49) [15/0.87] 
|   |   |   POSw+1 = NOUN : 0.05 (847/0.32) [418/0.31] 
|   |   |   … 
|   |   |   |   SylPosinWord1 = I : 0.05 (105/0.23) [59/0.4] 
|   |   |   |   SylPosinWord1 = M : 0.09 (243/0.39) [110/0.39] 
|   |   |   |   SylPosinWord1 = F : -0.25 (153/0.32) [69/0.46] 
|   |   |   |   SylPosinWord1 = Single : 0 (6/0.14) [7/0.08] 
|   |   |   POSw+1 = ADJ : 0.01 (382/0.31) [190/0.39] 
|   |   |   POSw+1 = ADV : -0.06 (140/0.33) [78/0.23] 
|   |   |   … 
|   |   PosofWordMajor = F : -0.14 (731/0.14) [338/0.11] 
|   Accent = cl_cl-1 
|   |   SylPosinWord1 = I : -1.03 (286/2.68) [132/1.94] 
|   |   SylPosinWord1 = M : 0.45 (303/3.27) [186/3.61] 
|   |   SylPosinWord1 = F : 1.71 (960/2.01) [469/1.97] 
|   |   SylPosinWord1 = Single : 0.65 (87/2.9) [40/2.59] 
cluster-s1_major = cl_cl-1 
|   SylPosinWord1 = I 
|   |   Accent = cl0 : -0.07 (423/0.34) [195/0.22] 
|   |   Accent = cl_cl-1 
|   |   |   SylStruct = NC : -1.88 (84/1.86) [52/1.96] 
|   |   |   SylStruct = ON : -1.47 (344/1.51) [179/1.4] 
|   |   |   … 
|   SylPosinWord1 = M : -0.49 (913/1.26) [445/1.48] 
|   SylPosinWord1 = F 
|   |   Break = SI : -0.06 (0/0) [0/0] 
|   |   Break = M 
|   |   |   SylNoinWord < 2.5 
|   |   |   |   Accent = cl0 : -0.36 (116/0.5) [68/0.55] 
|   |   |   |   Accent = cl_cl-1 : 0.71 (119/3.71) [46/3.6] 
|   |   |   SylNoinWord >= 2.5 : -0.83 (196/1.47) [108/1.78] 
|   |   Break = SF : 0 (40/0.7) [24/1.29] 
|   |   Break = F : 0.74 (154/1.81) [61/2.56] 
|   |   Break = I : -0.7 (0/0) [1/0.47] 
|   |   Break = I/F : -0.06 (0/0) [0/0] 
|   SylPosinWord1 = Single : -0.28 (211/1.99) [110/2.4] 

Figure 7-15: Regression tree obtained for Experiment Set 2 using training set. 
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When the two regression trees are compared, it is observed that the first splits are 

different in each of them. In the former, the Accent attribute turns out to be the most 

prominent attribute while in the latter cluster-s1_major attribute occurs at the first split 

thus it is the most prominent attribute.  

7.2.2 Improving Accent Prediction 

The best performance in accent prediction experiments is obtained by means of binary 

prediction, that is, the case where positive and negative accents are merged into a single 

accented class. The evaluations on the test set show 74.56% and 75.89% correct 

prediction for Experiment Set 1 and 2, respectively. When the two set of experiments are 

examined in detail, it becomes obvious that the Experiment Set 1 predicts the no-accents 

better while Experiment Set 2 predicts accented syllables better.  

Results are much more promising then our previous attempts on classifying pitch 

accents by means of clusters associated syllable pitch contours using k-means partitioning 

algorithm, however they still need improvement. It is observed that the selected threshold 

value set in accent assignment procedure results in a highly selective algorithm. 

Therefore, the algorithm rejected some of the prominent accents which have slope values 

below the selected threshold. A typical case is illustrated in Figure 7-16. In the given 

example, the sentence ‘dövizde yapılan analizlerde ciddi bir sıçrama beklenmiyor yıl 

sonuna kadar’  (serious changes are not expected in the analysis made over the currency 

ti ll the end of the year) is examined. It can be observed that the accent assignment 

algorithm missed the negative accent on the first syllable of the word ‘ ciddi’  (serious) due 

to the threshold value for determining candidates for accented syllables. Capturing the 

negative slope on the demonstrated syllable is necessary since it constitutes the local 

minimum of the pitch contour. However, in order to capture such multimodalities, the 

slope threshold should be set to a very low value. 

Another critical point in accent assignment algorithm is encountered in the syllables 

whose syllable pitch contours show multimodalities. In slope calculation, only the initial 

and final F0 values are considered to determine the slope of the intended syllable. So, 

syllables hving multimodal pitch contours are discarded. In fact, although the syllables 

showing multimodalities attain a rather considerable peak (valley) F0, the declination 

(inclination) afterwards causes slope computation to assign a comparatively low slope 

value to the syllable. A typical case is shown in Figure 7-17 where the sentence ‘ yavuz 
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i � e gitti ancak cihan çar � ıya çıkmadı’  (yavuz went to work but cihan did not go to 

shopping) is examined. The negative pitch accent on the syllable ‘ cid’  of the word ‘ ciddi’  

(serious) can not be captured by the accent assignment algorithm due to selected 

threshold value. These accents can be captured using rather low threshold values.  

 

 

Figure 7-16: Sound waveform, pitch contour, syllable labels and pitch accents of the 
sentence ‘dövizde yapılan analizlerde ciddi bir sıçrama beklenmiyor yıl sonuna kadar’   

 

 

 

Figure 7-17: Sound waveform, pitch contour, syllable labels and pitch accents of the 
sentence ‘ yavuz i � e gitti ancak cihan çar � ıya çıkmadı’   

 

There are also some limitations due to the accent assignment algorithm. The algorithm 

is constraint to assign one accent of each type to each word. However, in the database, 

there are words that have more than one accent of either accent type within its limits. 

Figure 7-18 illustrates a misplacement in the accent assignment process observed in the 

sentence ‘ancak savunanlar da hayli fazla deniliyor’  (however it is said that the defenders 

are also too many). The first word of the sentence ‘ancak’  (however) has two prominent 
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positive slopes: first accent implies the lexical stress of the word and the second implies 

continuation at phrase boundary. As shown in the figure, the accent assignment algorithm 

misses second accent since the algorithm is limited to assign single accent of each type to 

each word. Such misplacements may result in reduced decision tree performance. 

The accent assignment algorithm is modified to tackle the above mentioned problems.  

1. A rather small threshold value is assigned to determine the candidate words.  

2. One accent per word constraint is removed.  

Figure 7-19 - Figure 7-21 il lustrate pitch accents of the example sentence given in 

Figure 7-18 after modifications. Figure 7-19 illustrates corresponding accents for the 

example sentence using a threshold of 90 for positive slopes and 100 for negative slopes. 

Using a threshold value of 100 for positive slopes allows the algorithm to capture the 

rising portion of the pitch contour on the second syllable of the word ‘ancak’  (however). 

However, current assignment is not sufficient enough to represent both the rise and fall on 

the syllable at the same time since it still misses the negative slope. The algorithm assigns 

only one accent per syllable and never assigns both positive and negative accents on the 

same syllable. Future studies will consider syllables with rise/fall patterns as turning 

points. For example, the resulting assignment inform that the pitch contour continue 

rising till the end of the word. An approximation for the resulting contour after 

reconstruction (dotted line) is also shown in Figure 7-19. The pitch on the word ‘ancak’  

(however) is perceived differently from the original contour. Therefore, such syllables are 

not assigned to any accent.  

Two different applications involving di fferent threshold values are given in Figure 

7-20 and Figure 7-21. In Figure 7-20, the accent assignment method where the threshold 

value for positive accents is set to 90 as previously and the negative accent is set to 150 is 

depicted. Figure 7-21 presents the case in which the positive threshold value is set to 100 

and the negative threshold value is set to 150. According to the figures given, increasing 

(decreasing) threshold values results in selecting more (less) accents per sentence. From 

our discussions about multimodal syllables and the accent assignment methods given in 

figures, the best choice for accent thresholds is 100 for positive and 150 for negative 

accents.  
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Figure 7-18: Pitch contour, syllable labels and pitch accents of the sentence ‘ancak 
savunanlar da hayli fazla deniliyor’ .  

 

 

Figure 7-19: Original (continuous) and reconstructed (dotted) pitch contours, syllable 
labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla deniliyor’ . 

 

 

Figure 7-20: Original (continuous) and reconstructed (dotted) pitch contours, syllable 
labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla deniliyor’  
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Figure 7-21: Original (continuous) and reconstructed (dotted) pitch contours, syllable 
labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla deniliyor’  

 

7.2.2.1 Accent Prediction 

Accent location prediction is performed employing two experimental setups as 

discussed in Section 7.2.1.1: Experiment Set 1 and 2. Performances of the decision trees 

are evaluated using Training, Test and CrossVal methods. 

Statistical observations given in tables Table 7-21 through Table 7-27 belong to the 

accent prediction experiments. For both of the experiment sets, Test and CrossVal 

performances are lower than Training performances however they are more reliable. 

 

Table 7-21: Correct and incorrect classi fication rates for Experiment Set 1 & 2. 

  
 Number 

of Syllables 
Percentage 

Correctly Classifed Syllables  9920 79.4681% Training 
Incorrecly Classified Syllables 2563 20.5319% 
Correctly Classifed Syllables  2126 62.8251% Test 
Incorrecly Classified Syllables 1258 37.1749% 
Correctly Classifed Syllables  9859 62.1352% 

Experiment 
Set 1 

CrossVal 
Incorrecly Classified Syllables 6008 37.8648% 
Correctly Classifed Syllables  10074 80.7018% 

Training 
Incorrecly Classified Syllables 2409 19.2982% 
Correctly Classifed Syllables  2234 66.0165% 

Test 
Incorrecly Classified Syllables 1150 33.9835% 
Correctly Classifed Syllables  10669 67.2402% 

Experiment 
Set 2 

CrossVal 
Incorrecly Classified Syllables 5198 32.7598% 
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According to Table 7-21, best correct classification rates are observed in the cases 

where evaluations are performed on training set in both experiment sets. These results 

il lustrate the upper limits of the decision trees. It is observed that correct classification 

rates obtained in Experiment Set 2 is slightly better than those of Experiment Set 2. 

Kappa coefficients for both experiment sets are given in Table 7-22. Although correct 

classification rates of Experiment Set1 are slightly worse than Experiment Set 2, 

corresponding Kappa coefficients of Experiment Set 1 are better than those of 

Experiment Set 2. Evaluations using training sets approach 0.7 which is regarded as good 

statistic correlation. Best Kappa coefficient is observed in Experiemtn Set 1. 

 

Table 7-22: Kappa statistics of Experiment Set 1 & 2. 

  Kappa Statistics 
Training 0.67  

Test 0.38 
Experiment 

Set 1 
CrossVal 0.38 
Training 0.61 

Test 0.32 
Experiment 

Set 2 
CrossVal 0.34 

 

The confusion matrices of Experiment Set 1 & 2 are given in Table 7-23 and Table 

7-25, respectively. Diagonal entries of the tables correspond to correct predictions while 

off-diagonals correspond to false predictions. Confusion matrix of Experiment Set 1 

(Table 7-23) shows that decision trees cannot discriminate accented syllables from the 

not-accented syllables. However, they perform a better discrimination in between positive 

and negative accented syllables. 

In order to compare performances of correct class predictions of both experiment sets, 

confusion matrix of Experiment Set 1 (Table 7-23) is converted to two-class confusion 

matrix given in Table 7-24. The converson is performed by merging the statistics of 

positive and negative classes. Comparison of the cofusion matrices of both experiment 

sets (Table 7-24 and Table 7-25), it is observed that prediction of accented class is better 

in Experiment Set 2 but Experiment Set 1 predicts no-accents better. Approximately 11% 

improvement is achieved in correct prediction of accented syllables. 
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Table 7-23: Confusion matrices observed in Experiment Set 1 (positive, negative and no-
accent). 

  Classified as: no-accent positive negative 
no-accent 5327 444 336 
positive 765 2639 159 Training 
negative 677 182 1954 
no-accent 1273 287 203 
positive 320 527 66 Test 
negative 290 92 326 
no-accent 5679 1220 971 
positive 1668 2418 390 

Experiment 
Set 1 

CrossVal 
negative 1364 395 1762 

 

Table 7-24: Confusion matrices observed in Experiment Set 1 (accented vs no-accent). 

  Classified as: no-accent accented 
no-accent 5327 780 Training 
accented 1442 4934 
no-accent 1273 490 

Test 
accented 610 1011 
no-accent 5679 2191 

Experiment 
Set 1 

CrossVal 
accented 3032 4965 

 

Table 7-25: Confusion matrices observed in Experiment Set 2 (accented vs no-accent). 

  Classified as: no-accent accented 
no-accent 4728 1379 Training 
accented 1030 5346 
no-accent 1106 657 

Test 
accented 493 1128 
no-accent 5100 2770 

Experiment 
Set 2 

CrossVal 
accented 2428 5569 

 

TP rates, FP rates, Precisions, Recalls and F-Measures for Experiment set 1 & 2 are 

given in Table 7-26 and Table 7-27, respectively. It is observed that best TP rates are 

observed for no-accents in Experiment Set 1 while accented class is predicted better in 

Experiment Set 2. 
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Table 7-26: TP rate, FP rate, Precision, Recall and F-measures of Experiment Set 1. 

  TP Rate FP Rate Precision Recall F-Measure Class 
0.872 0.226 0.787 0.872 0.827 no-accent 
0.741 0.07 0.808 0.741 0.773 positive Training 
0.695 0.051 0.798 0.695 0.743 negative 
0.722 0.376 0.676 0.722 0.698 no-accent 
0.577 0.153 0.582 0.577 0.579 positive Test 
0.46 0.101 0.548 0.46 0.5 negative 
0.722 0.379 0.652 0.722 0.685 no-accent 
0.54 0.142 0.6 0.54 0.568 positive 

Experiment 
Set 1 

CrossVal 
0.5 0.11 0.564 0.5 0.53 negative 

 

Table 7-27: TP rate, FP rate, Precision, Recall and F-measures of Experiment Set 2. 

  TP Rate FP Rate Precision Recall F-Measure Class 
0.774 0.162 0.821 0.774 0.797 no-accent Training 
0.838 0.226 0.795 0.838 0.816 accented 
0.627 0.304 0.692 0.627 0.658 no-accent Test 
0.696 0.373 0.632 0.696 0.662 accented 
0.648 0.304 0.677 0.648 0.662 no-accent 

Experiment 
Set 2 

CrossVal 
0.696 0.352 0.668 0.696 0.682 accented 

 

As a result, it can be said that accented syllables are predicted better with the second 

experiment set where we collected accented syllables into a single category. But the 

performance in predicting not-accented syllables degrades when the second experiment 

set is involved. 

Improved accent assignment algorithm (ref Section 7.2.2) outputs are used in the last 

six experiments. Them main motivation is to improve the performance of the former set 

of experiments. Table 7-28 - Table 7-30 demonstrates the performances of the 

evaluations on training and test databases for comparison purposes. The performances 

using the 10-fold cross validation statistics are not considered since the remaining two 

evaluations clarify current state. 

The classification rates of the evaluations on train and test data are given in Table 

7-28. As revealed by the table, former experiments’  results are better than experiments 

involving new assignments for pitch accents. The performance of the decision tree 

reduced with the modified database. Therefore, it can be concluded that the resulting 
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improvements in pitch accent assignment does not result in a performance improvement 

in decision tree performance.  

 

Table 7-28: Correct classification rates of Accent schemes before (Original) and after 
modification (Modified). 

 Classification Rates 
   Cor rect Incorrect 

Train 84.23% 15.77% Experiment 
Set 1 Test 74.56% 25.44% 

Train 84.58% 15.42% 
Original 

Experiment 
Set 2 Test 75.89% 24.11% 

Train 79.47% 20.53% Experiment 
Set 1 Test 62.83% 37.17% 

Train 80.70% 19.30% 
Modified  

Experiment 
Set 2 Test 66.02% 33.98% 

 

Table 7-29 demonstrates the overall performance obtained from the original database 

and modified database. The columns correspond to TP rate, FP rate, precision, recall, and 

F-measures, respectively. The prediction statistics also show that the former set of 

experiments involving original database is better than the current set of experiments for 

not-accented syllables. The accented syllables are better predicted with the current set f 

experiments involving modified database. In fact, for the binary case, the accented 

syllables are even better predicted than the not-accented syllables with the modified 

database. 

Table 7-30 demonstrates the confusion matrices of the decision trees using original 

and modified databases, all together. Although, the number of correctly classified 

accented syllables increased in the experiment set involving modified database, the 

overall performance is not improved further. 

Considering all the statistics of both experiment sets involving original and modified 

accent values given in the three tables, it can be said that the latter experiment set predict 

accented syllables better. However, the prediction performance for the not-accented 

syllables falls with the modified accent values. So, there is a trade-off in the selection of 

the methods. If former decision tree is used, the prediction performance on the accented 

syllables is rather low. But, if latter is used, then, the prediction performance of the not-
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accented syllables falls. As a matter of fact, performance improvement in predicting 

accented syllables is accomplished in the latter set of experiments.  

 

Table 7-29: TP Rate, FP Rate, Precision, and F-measure before and after modification. 

   TP Rate FP Rate Precision F-Measure Class 
0.926 0.28 0.855 0.889 no-accent 
0.726 0.031 0.84 0.779 positive Train 

0.658 0.038 0.783 0.715 negative 
0.849 0.417 0.801 0.824 no-accent 
0.594 0.081 0.604 0.599 positive 

Experiment 
Set 1 

Test 

0.488 0.057 0.63 0.55 negative 
0.916 0.28 0.854 0.884 no-accent Train 
0.72 0.084 0.828 0.77 accented 
0.837 0.396 0.807 0.822 no-accent 

Original 

Experiment 
Set 2 

Test 
0.604 0.163 0.653 0.627 accented 
0.872 0.226 0.787 0.827 no-accent 
0.741 0.07 0.808 0.773 positive Train 
0.695 0.051 0.798 0.743 negative 
0.722 0.376 0.676 0.698 no-accent 
0.577 0.153 0.582 0.579 positive 

Experiment 
Set 1 

Test 
0.46 0.101 0.548 0.5 negative 
0.774 0.162 0.821 0.797 no-accent Train 
0.838 0.226 0.795 0.816 accented 
0.627 0.304 0.692 0.658 no-accent 

Modified  

Experiment 
Set 2 

Test 
0.696 0.373 0.632 0.662 accented 

 

One major drawback of the modified accent assignment is that some of the lexically 

stressed syllables accented in the original database are no longer accented because of the 

newly set threshold values. An example is shown in Figure 7-22. In Figure 7-22, the 

accents obtained after the modification is depicted in the third window. Accents 

associated before modification are given in the fourth window. When both schemes are 

examined, it is seen that the original assignment method obeys rules of lexical stress 

assignment better than the modified method. In order to preserve lexical stresses as well 

as newly added accents, both outputs can be used.  
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Table 7-30: Confusion matrices before and after modification. 

   Classified as: no-accent positive negative 
no-accent 7411 260 335 
positive 577 1685 59 Train 

negative 677 60 1419 
no-accent 1906 196 144 
positive 219 344 16 

Experiment 
Set 1 

Test 

negative 256 30 273 
no-accent 7335 671   Train 
accented 1254 3223   

no-accent 1881 365   

Original  

Experiment 
Set 2 

Test 
accented 451 687   
no-accent 5327 444 336 
positive 765 2639 159 Train 

negative 677 182 1954 
no-accent 1273 287 203 
positive 320 527 66 

Experiment 
Set 1 

Test 
negative 290 92 326 
no-accent 1106 657   Train 
accented 493 1128   
no-accent 5100 2770   

Modified  

Experiment 
Set 2 

Test 
accented 2428 5569   

 

 

Figure 7-22: Pitch contour and syllable labels and accent states before and after 
modification of the sentence ‘özgüre beni beklemesini söylemedin mi’   

 

After 
 
Before 
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7.2.2.2 Slope Prediction for Accented Syllables 

As with the case discussed in Section 7.2.1.2, we perform slope amplitude prediction 

involving two sets of experiments: Experiment Set 1 and 2.  

For each set of experiments, three evaluation methods are used: evaluation using 

training data (Training), evaluation using test data (Test), and evaluation using 10-fold 

cross validation method (CrossVal).  

Table 7-31 demonstrates the quantitative performance measures for slope prediction 

after modifying accent assignemtn algorithm. Baseline performances using mean slope 

values are also given in the table.  

According to the table, both experiment sets outperforms baseline model. Performance 

improvement in MAE with respect to the baseline in Experiment Set 1 is around 54.2% 

while it is around Performance improvement with respect to baseline in 27.3% in 

Experiment Set 2. 

The table also shows that overall performance of Experiment Set 1 is better than that 

of Experiment Set 2. Best performances in both experimental setups are observed in 

evaluations using training dataset. Test dataset and 10-fold cross validation evaluation 

performances are almost similar. 

 

Table 7-31: Performance statistics of the the baseline, Experiment Set 1 & 2. 

  CC MAE RMSE 
Training ~0 0.99 1.9 
Test ~0 0.92 1.66 Baseline 
CrossVal ~0 0.97 1.85 
Training 0.91 0.42 0.59 

Test 0.88 0.45 0.62 
Experiment 

Set 1 
CrossVal 0.88 0.45 0.64 
Training 0.67 0.67 1.02 

Test 0.60 0.69 1.04 
Experiment 

Set 2 
CrossVal 0.59 0.73 1.11 

 

Comparison of the performances of current set of experiments with those given in 

Table 7-20, it is bserved that slope amplitude prediction is improved after modification of 

accent assignment algorithm for Experiment Set 1 but the performances decrease in 
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Experiment Set 2 after modification. Overall performance improvement in MAE is 

around 15% for Experiment Set 1. Experiment Set 2 performs slightly worse than slope 

former corresponding experiment set given in Table 7-20. The overall performance 

reduction in MAE is around 6%. 

Considering all the comparisons, we can say that modified accent assignment 

improves performance in slope prediction using three accent categories. However, with 

two accent case, performance measures of the former experiments were better. 

Considering all results, using the original accent assignment algorithm seems to 

provide better performances. Therefore, corresponding results are used in pitch 

reconstruction phase. 

7.2.3 Pitch Contour Reconstruction 

As discussed previously, a three-step procedure is followed for modeling pitch 

contours. First step involves pitch accent placement, second step incorporates regression 

trees for the prediction of accent slopes. In the last step, slopes estimates are used to 

reconstruct syllable pitch contours which are used in developing resultant pitch contour 

estimate. 

In the first two steps of the pitch contour modeling, statistical corpus based methods 

are employed. The classification task in the first step is handled by using the decision tree 

algorithm (J48) of WEKA package. The second part involves numeric prediction; 

regression tree algorithm (REPTree) of the WEKA package is used at this step.  

For accent prediction, two different approaches are conducted. In the first one, the 

accent of a syllable is predicted as one of the three accent classes. In the second approach, 

the accented syllables are merged to construct a single class for accented syllables. 

Together with the not-accented syllables, the accented syllables constitute the dependent 

variable of the decision tree learner. Then, accent types of each syllable are predicted 

among the two classes. 

Actual accent types of each syllable are considered as separate independent variables 

for predicting accented syllables’  slopes in the second step. 

For each prediction task, the database is split into two subsets: training and test 

datasets. Training dataset is used to develop an appropriate classification/regression tree 

while test dataset is used to evaluate the performance of induced tree. Training dataset 
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consists of 12483 samples of the syllable database and the test dataset consists of the 

remaining 3384 samples of the syllable database. These values correspond to 78.67% and 

21.33% of the syllable database, respectively. The prediction performance is examined on 

training and test datasets as well as by 10-fold cross validation. 

When overall statistics given in Table 7-28 - Table 7-30 are considered, it is observed 

that the performance of the decision tree is better when the former experiment set using 

original accent assignment algorithm is used. Therefore, for pitch contour reconstruction 

purposes, we will mainly rely on the corresponding results.  

For accent prediction, two di fferent frameworks are provided: First set of experiments 

involve three accent classes (class1, class-1, and class0) for slope predictions while the 

second set use two accent classes (class1_class-1 versus class0). Among the two 

experiment sets, the latter is better in performance than the former. However, their 

performances are stil l comparable. When the latter case is taken into account, one more 

decision task should be performed, to discriminate the negative sloped accents from the 

positive sloped accents, which may result in performance reduction for the overall case. 

Therefore, three accent classification results are used since they classify each syllable of 

the corresponding test data into one of three accents.  

Results of the slope prediction experiment, with Accent related attribute having three 

categorical values (positive, negative, and no-accent), given in Section 7.2.1, are used in 

pitch contour reconstruction.  

It should be mentioned that, although evaluations using training dataset, test dataset, 

and 10-fold cross validation method are provided, results of the first two are considered 

during pitch contour reconstruction process. The results on training dataset are better 

since the same database is used to grow and test the decision tree. However, evaluation 

using training data does not reveal much information about the performance of the 

decision/regression trees on new data. Therefore, results of the test data are focused in 

general. 

For slope amplitude prediction, it is assumed that accent of the syllables in the 

database are predicted previously, so they can be used as independent attributes in 

regression tree development. Same assumption holds for pitch reconstruction phase also. 

So, for reconstruction purposes, slope prediction results are directly employed, assuming 

that the accent status of the syllables in the train database can be estimated with 
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approximately 75% correct prediction rate. The slope values used in the learning phase 

are drawn from the normalized pitch contours. The slope histogram of the overall 

database, train and test database are given in Figure 7-11 - Figure 7-13. 

In the reconstruction phase, we use slope values associated to each syllable as well as 

initial F0 value of each sentence. The slope value is used in combination with syllable 

duration. For each syllable, the corresponding pitch contour is computed using the 

previous syllable’s final F0, syllable duration and associated syllable slope. For making 

slope computations to present a more realistic framework, we set the estimated slope 

values to zero for not-accented syllables (modified estimates). Both slopes are 

demonstrated in the reconstructed contours fro comparison purposes. 

For each syllable in the test set, we select ten time points that are equally spaced. 

Then, for each time point, corresponding F0 value is computed as follows: 

 

( ) ( ) ( ) mtttFtF iiii *00 11 −+= −−     (7-11) 

 

where { }10
1=iit  corresponds to one of the ten time points belonging to the syllable, m is the 

slope estimate of the syllable and ( )10 −itF  is the previous F0 value computed at time 

{ }10
11 =− iit . For the sentence initial F0 ( ( )00 =tF ), the original sentence start F0 is used. 

Future studies incorporate regression trees to estimate sentence initial F0.  

Since, slopes as well as the sentence initial F0 values are drawn from the normalized 

pitch contours, the resultant reconstructions correspond to the normalized pitch contours. 

The resultant pitch contours are shown in Figure 7-23 - Figure 7-33. All the contours 

given in the figures are generated using three slope values: original slopes, estimated 

slopes, and estimated slopes with slope values corresponding to not-accented syllables set 

to zero. We also provide the results of the modi fied dataset (predict1) for making 

comparisons.  
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Figure 7-23: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. Contours are generated using sentence initial F0 and three slope 

values: original slopes (bold l ine), estimated slopes (slim line), and modified estimates 
(gray line) for the sentence.  
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Figure 7-24: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-25: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-26: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-27: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-28: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-29: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-30: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-31: Reconstructed pitch contours using original (upper window) and modified 
(lower window) datasets. 
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Figure 7-32: Reconstructed pitch contours using original slopes (+), estimated slopes (-), 
and modified estimates (*) for the sentence ‘ ’  (). 
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Figure 7-33: Reconstructed pitch contours using original slopes (+), estimated slopes (-), 
and modified estimates (*) for the sentence ‘ ’  (). 

 

In some of the cases, it is observed that using modified dataset instead of original 

dataset provides better pitch contour estimates whereas in some cases, the reconstructed 

pitch contours corresponding to the regression tree derived from the original database 

provide better results.  

For almost all cases, the peak locations are estimated satisfactorily. But, the 

amplitudes of the peaks can not be attained (marked with circles in Figure 7-23, Figure 

7-24, and Figure 7-26). One major reason of this peak difference between actual and 

predicted contours arises because of sudden jumps on several syllables of the sentences. 

When the database is considered, it is observed that sudden jumps are not encountered 

frequently, thus, the corresponding regression tree produces smoother slopes for the 

corresponding jumps.  
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Another discrepancy observed on the estimated pitch contours is the inefficiency in 

tracking the syllables with smoother slopes (marked with circles in Figure 7-30, Figure 

7-31, and Figure 7-33); however, current accent assignment algorithm does not take into 

account smoother slopes.  

For most of the not-accented syllables, the pitch contour where the actual contour is 

very smooth, the pitch contour shows a declination pattern. However, since we directly 

set the not-accented syllables’  slope to 0, the resultant pitch contours can not have 

declination on not-accented syllables (marked with dashed circles in Figure 7-31, Figure 

7-32, and Figure 7-33). 

As a result, when triple accent classification and corresponding slope prediction 

algorithms are considered, the resultant pitch contours of randomly selected test sentences 

are estimated quite satisfactorily. The prediction accuracy of the classification trees can 

not catch up with the state of the art prosody modeling systems but it is believed that the 

results can be further improved by increasing the size of the training data and by 

providing more appropriate annotation schemes.  
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CHAPTER 8  
 

 

SUMMARY AND CONCLUSIONS 
 

 

 

Prosody plays an important role in speech communication. It is related to the 

suprasegmental aspects of spoken language such as tonal quality, stress, intention, 

emphasis and speaker’s characteristics. In natural speech, prosody of an utterance 

depends on semantics, context, syntax, intended audience, and emotional or physical state 

of the speaker. The three mathematically tractable components of prosody generally cited 

are: Pitch; segment duration and intensity. In this study, pitch contour and phoneme 

durations are modeled to serve as a basis for Turkish speech and linguistic research. Steps 

of our modeling efforts are summarized in the following sections. 

8.1 Summary 
First chapter introduces a brief definition of prosody and its components. Objectives 

and motivations are discussed in this chapter.  

Focusing on the most influencing research, an overview of different approaches to 

intonation and duration modeling is given in the second chapter. Intonation modeling 

studies are discussed under two broad categories: Phonological and phonetic modeling 

approaches. Examples of phonological and phonetic intonation models are introduced. 

Consequently, rule-based and recent corpus-based duration models are reviewed. 

Third chapter introduces text and speech databases developed during the progression 

of the thesis studies. The text database is designed to provide phonetic and prosodic 

balance. A set-covering algorithm is used to select sentences from a larger set to 

guarantee phonetic coverage. Resultant phonetically balanced set is modified 

syntactically to attain prosodic coverage. Designed text is recorded by a native female 

speaker in a soundproof booth. Phonetic transcription and alignment is provided for the 

resultant speech corpus. 
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Chapter 4 introduces prosodic attributes incorporated in modeling phoneme durations. 

Attributes used for phoneme duration modeling involves phoneme (segment) identity, 

preceding/following phoneme identities, lexical stress, and positional attributes for 

segment, syllable, and word. Individual effects of durational attributes on phoneme 

durations are examined in terms of statistical measures such as mean value, standard 

deviation and coefficient of variance. Some of the observations on phoneme durations 

and durational attributes are given below: 

• It is observed that lexical stress does not play an important role in Turkish 

phonemic structure as in other languages such as English; however, phrase-final 

lengthening is observed in Turkish (ref Table 4-5).  

• Studies on voiced and unvoiced consonants reveal that differences between voiced 

and voiceless consonants are very significant, i.e. in the order of 30-40 ms; 

voiceless consonants are longer in duration than their voiced counterparts (ref 

Table 4-4).  

• It is also observed that when followed by a voiced consonant, phoneme duration 

increases except for vowel + voiced-plosive combination. Moreover, voiced 

fricative followers influence voiceless phoneme durations (~30 ms) more than 

voiced plosive (~12 ms) and affricate (~14 ms) followers (ref Table 4-6).  

• When phoneme durations with respect to syllable position are examined, it is 

observed that voiced consonants are slightly longer when they occur in coda 

position. Besides, affricates, nasals, plosives and liquids occurring at onset are 

significantly longer in duration (around 20-30 ms) than the ones occurring at coda 

(ref. Table 4-11).  

• Studies on phoneme duration with respect to syllable type showed that phonemes 

have shorter durations in open syllables than in closed syllables (ref. Table 4-12 

and Table 4-13).  

• Phoneme durations are also affected by position-of-parent-syllable-in-parent-word: 

phonemes of word-initial and word-final syllables are longer and phonemes of 

single-syllable-words attain the maximum average duration (ref Table 4-15). 

• According to parent-word-position-in-sentence, phonemes occurring at last words 

of the sentences are longer than the ones occurring at sentence-initial or sentence-

medial words. The percentage lengthening is approximately 20% (ref Table 4-17). 
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• Average phoneme duration is shortened as the number of syllables in parent word 

increases (ref. Table 4-19). Phoneme duration is 41% longer in single-syllable-

words than in words having ten syllables. 

• Phoneme durations do not show a characteristic change with respect to the number-

of-words-in-sentence (ref. Table 4-20). 

• Average segment duration increases as the number-of-words-from-preceding-

phrase-break increases since the probability of encountering a new phrase break 

increases (ref. Table 4-23). 

• Words immediately followed by a phrase break attain maximum average phoneme 

durations (ref. Table 4-23). 

The chapter ends with a discussion about attribute dependencies using mutual 

information criterion. Mutual information matrix showed that there is a stronger relation 

between phoneme identity and contextual attributes.  

Attributes identi fied in Chapter 4 are used for phoneme duration modeling in Turkish. 

Corresponding results and discussions about phoneme duration modeling are given in 

Chapter 5. Forward selection method is used to determine the set of durational attributes 

that best models phoneme duration. Performances of the resulting models are 

quantitatively analyzed. Best correlation coefficient and root mean square error is 

obtained with the attributes phoneme-identity, left/right, lexical-stress-of-parent-syllable, 

syllable-type-of-parent-syllable, Part-of-Speech-of-parent-word, phrase-information and 

number-of-words-to-following-phrase-break attributes. Corresponding correlation 

coefficient and root mean squared error are 0.78 and 20.05 ms, respectively.  

To improve duration prediction performance several modifications, duration 

quantization, modification of attribute values, outlier analysis, and shift and/or scale 

modi fication, are proposed. Duration quantization provides a dimension reduction in the 

duration values. Before modification, there are 242 distinct duration values. Quantization 

is performed using 54 quantization levels. Prediction performances are slightly worse 

than original duration values. However, results showed that phoneme durations can be 

modeled using fewer amount of data. 

Another modification is performed in the selection of attributes. Using identities of 

preceding and following phonemes (Left/Right) requires a larger database for modeling 

purposes. It is observed that the speech database used in phoneme duration modeling does 
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not cover all representatives of all possible triphones. Hence, instead of directly 

incorporating identities of preceding and following phonemes, their manner of 

articulations are used in phoneme duration modeling. Keeping all other attributes, 

util ization of manner of articulations resulted in a slight improvement in prediction 

performances. Percentage improvements in correlation coefficient and root mean squared 

error are approximately 2% and 3%, respectively. Furthermore, manner of articulation 

values used are enlarged by adding the phonemes that effect phoneme duration 

significantly. Significance is evaluated by means of coefficient of variance. However, 

proposed modification does not improve the prediction performance obtained using 

original manner of articulations.  

The numerical durational attributes and the maximum values that an attribute can 

attain are given as follows: syllable-position-in-word (10), word-position-in-sentence 

(19), length-of-word-in-syllable-units (10), length-of-sentence-in-word-units (19), 

position-of-syllable-in-sentence (45), number-of-words-from(to)-preceding(following)-

phrase-break (8 for each) and number-of-syllables-from(to)-preceding(following)-phrase-

break (27 for each). Their cross-product should be spanned by the database to be used in 

modeling. Hence, 10x19x10x19x45x8x8x27x72 = 75792672000 phonemes are required 

to represent all combinations of numerical attributes. However, this is not possible in 

general with the available speech databases. Therefore, two modifications are proposed 

for reducing the size of numerical attributes: normalization and symbolic representation. 

Proposed modifications are evaluated incorporating syllable-position-in-word attribute. 

The sample attribute attains values changing from 1 to 10. Symbolic representation 

involves coding of the attribute with respect to its relative position. For syllable-position-

in-word attribute, possible attribute values for symbolic coding are { I, for word-initial-

syllables, F for word-final-syllables, S for one-syllable-words and M for others} . 

Normalization involves length information as well. Resulting values are real valued lying 

in the closed range of 0 (for word initial and single syllable words) and 1 (for word final 

syllables). Using normalized attributes may increase the attribute span; however they 

eliminate utilization of length based attributes. Performances of the proposed 

modifications are evaluated keeping all other attributes fixed and using modified 

attributes. According to the results obtained, attribute value modification does not result 

in significant performance improvement however slightly better results are obtained.  
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Another modification for performance improvement in phoneme duration modeling is 

performed by excluding extreme duration data. The data range used in modeling is 

determined considering phoneme duration statistics. The duration data is widely spread in 

2ms – 295ms range. Mean, standard deviation and median values of duration data are 63 

ms, 57 ms and 31 ms, respectively. Besides, 91.3% of the data lies in the 22 ms – 117 ms 

range in the overall database. Considering duration statistics, durations outside 10 - 150 

ms range (approximately 1.7% of overall dataset) are set as extreme duration values. Rest 

of the duration values are modeled using the durational attributes described in Chapter 5. 

Resulting prediction performances are improved significantly yielding a correlation 

coefficient of 0.75 and an RMSE of 18.6 ms. Best correlation coefficient reported in 

literature is around 0.9 [Venditti and van Santen, 1998]. The performance difference 

between two data sets points that although manual correction is performed on phoneme 

boundaries, there are still segmentation errors in the database. 

Shift and/or scale modification is another modification applied to improve the 

prediction performance in phoneme duration modeling. Predicted durations and 

corresponding RMSEs are redefined using shi ft and/or scale parameters. Shift and/or 

scale parameters are found so that corresponding RMSE is minimized. Parameters are 

trained on training set RMSE and applied on test set predictions. Best correlation 

coefficient and RMSE values obtained are 0.79 and 19.5 ms, respectively. Resulting 

modi fication improves correlation coefficient and RMSE 2.6% and 4.4%, respectively. 

Chapters 6 and 7 present pitch contour modeling studies. For pitch contour modeling, 

syllables are selected as the basic units. Attributes that are used for pitch contour 

modeling are defined in Chapter 6. Almost all attributes involved are defined in literature. 

However, NegFlag, Sentence-type and POSRoot attributes have not been used in previous 

studies. NegFlag is a binary attribute that represents whether current syllable comprise a 

negation suffix or not. Sentence-type attribute is coded with 4 categorical attributes that 

corresponds to the parent sentence structure described in Chapter 3. POSroot attribute is 

used to capture parent word’s original morphemic constitute, i.e. noun, adjective, verb, 

and etc. Turkish is a highly agglutinative language. There are derivational suffixes as well 

as inflectional suffixes. Words can appear in their derived forms, for example, an adverb 

can be obtained using the derivational suffix –yIp from a verb. POSroot attribute holds 

parent word’s original constitution. Chapter ends with a discussion about the relation of 
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attributes and pitch contour parameters using information gain, gain ratio and 

symmetrical uncertainty measures.  

Pitch contour modeling studies are presented in Chapter 7. Two di fferent methods are 

proposed for pitch contour modeling. One method can be associated to phonetic modeling 

methods introduced in Chapter 2. The other method can be considered as a phonological 

model since it captures the prominence of syllables. Both proposals aim at describing 

syllable pitch contours with a limited set of symbols.  

One method generates a codebook of syllable pitch contours and uses corresponding 

codewords in pitch contour prediction. Codebook generation is performed by means of 

vector quantization of syllable pitch contours. Codebooks of various sizes are generated 

but pitch contour modeling is performed using 24-codebooks. Prediction performances 

are given in Section 7.1.2. All codebook entries are not sufficiently represented in the 

database (Table 7-4). Besides, there are similar patterns in the codebook that may be 

counted as wrong classifications. Hence, resulting correct classification percentage is 

rather low, around %27. Best TP rate is obtained for codeword 2, which is the most 

frequent codeword observed in the database, as 0.79. Worst TP rate is obtained for 

codeword 12, which is one of the rarest codewords in the database.  

Codewords are used to assign accent status to syllables depending on two criteria: 

multimodality and dynamic range. Former experimental results show that centroids with 

slight level differences cause lower performances. Therefore, level differences are 

removed from syllable pitch contours. Resultant contours are vector quantized in two 

stages. In the first stage, a codebook of 100 centroids is generated from the syllable pitch 

contours. In the second stage, codewords that are generated in the first stage are used to 

generate a codebook of 25 elements. Among the resultant codewords, the ones having 

multimodalities are associated to pitch accents. Binary prediction is performed to decide 

whether a syllable is accented or not using previously described prosodic attributes. 

Corresponding decision tree performance is given in Section 7.1.3. The percentage of 

syllables that are correctly classified is around 80.6%. Although overall prediction 

performance of binary classification is very good when compared to 24 codeword 

classification, TP rate of the accented syllables is rather low, around 43%. Examination of 

resultant predictions yield that what determines pitch accent is not multimodality but the 

dynamic range.  
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Accent assignment is revisited using dynamic range information. Observations on 

perceptual tests reveal that prominence is perceived on abrupt changes of pitch contour. 

Therefore, second approach uses dynamic range rather than contour shapes. Codewords 

with dynamic ranges greater than a predefined threshold are associated to pitch accents. 

Two experiments are performed using different thresholds. In the first experiment, the 

threshold value is set to 108 Hz. Corresponding binary classification predicts 

approximately 80.9% of syllables correctly. Overall performance of the decision tree is 

improved slightly however accented syllable prediction performance is worse since 

108Hz threshold causes most of the accented syllables to be eliminated. In the second 

experiment, the threshold is lowered to 40 Hz. Corresponding decision tree predicts 

80.9% of the syllables correctly. The TP rate of accented syllables is improved 

significantly (81%) at the cost of lowered TP rate for unaccented syllables (~60%). 

According to the resultant predictions, it is observed that TP rate of the less frequent 

dependent variable is lower than that of the frequent ones.  

Other approach relies on the definition of pitch accent for Turkish. Pitch accents 

correspond to perceptual prominence and are mainly aligned with lexically stressed 

syllables of the words. Accented syllables are associated with syllables having sudden 

and large pitch movements. A pitch accent assignment algorithm is developed to describe 

the accent status of syllables with respect to slope values and a predefined slope 

threshold. Rising patterns are associated to positive accents while falling patterns are 

associated to negative accents. Smoother contours are associated to no accent. Rising and 

fall ing patterns are combined to produce accented syllables. Accent prediction is 

performed within two frameworks. Three accent states (positive, negative and no accent) 

and two accent schemes (accented versus not-accented) are predicted using decision tree 

learning. Corresponding slope predictions are performed using regression trees. Resultant 

performances yield that two-accent prediction performs slightly better than three-accent 

prediction. The utmost correct classi fication rate obtained in three-accent classification is 

around 84.2%. Binary prediction performs slightly better with a correct classification rate 

of 84.5%. However, binary prediction requires one more step to map syllables to three-

accent scheme. Predicting triple accent from binary predictions can lower the 

performance due to generalization of decision tree learning. Hence, syllable-pitch-contour 

prediction studies are based on triple accent classifications results. Best TP rates for not-

accented, positive and negative accented syllables are 92.6%, 72.6% and 65.8%, 
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respectively. Not-accented syllables comprise approximately 64% of the database; that is 

the main reason why best performance of triple accent classification corresponds to not-

accented syllables.  

After accent prediction, slopes are predicted for the corresponding accented syllables. 

Accent states of the syllables are incorporated in slope prediction. Best performance in 

slope prediction is obtained using triple accents. Resultant correlation coefficient and root 

mean squared error are 0.86 and 0.69, respectively. For comparison purposes, correlation 

coefficient and root mean squared error corresponding to average slope values are given 

as -3.6e-16 and 1.9, respectively. Involving regression trees improves predictions using 

average slope values approximately 63.5%. Slope predictions are used to reconstruct 

sentence pitch contours.  

Considering resultant sentence pitch contours, accent assignment algorithm is 

modi fied. Former version of the algorithm is constraint on selecting only one accented 

syllable per word. However, consecutive syllables may show rising/falling patterns in 

some words. The algorithm is improved to catch up all syllables that show rising and 

fall ing patterns. With this improvement, best accent classification with triple and two-

accent classification is performed with 79.5% and 80.7% accuracy, respectively. The TP 

rates for triple accent classification are 0.87, 0.74, and 0.7 for not-accented, positive 

accented and negative accented syllables. Corresponding TP rates in two-accent 

classification are 0.77 and 0.84 for not-accented and accented syllables, respectively.  

Using modified accent assignment scheme, best slope prediction is obtained via 

incorporating triple accents in learning. Corresponding correlation coefficient and root 

mean squared error are 0.91 and 0.59, respectively. Slopes predicted using regression 

trees provide an improvement of approximately 68.95% over average slope values. 

Sentence pitch contours are generated using accent information and predicted slopes. It is 

observed that slopes follow original pitch contour patterns. However, there are level 

differences between reconstructed sentence contours and the original contours. This level 

shift is mainly due to syllables having multimodalities. Multimodal syllables can not be 

modeled accurately with the current accent assignment algorithm since only one rising or 

fall ing slope per syllable can be assigned. However, multimodal syllables require more 

complex patterns. Future improvements to handle this problem are revisited in the 

subsequent section. Another point related to the resultant sentence-pitch-contour 

predictions is that predicted contours can not reach the maxima observed in the original 
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contour. The main reason for this phenomenon is such maxima are rarely observed in the 

database, at most one syllable per sentence. And they generall y correspond to the 

lexically stressed syllable of the intended word (focus) in the sentence. Currently, focus 

information is not incorporated in decision tree learning. As discussed in the following 

section, using focus information is considered as a future work. 

Both proposals are different from previous intonation modeling studies. Almost all 

intonation modeling systems rely on syllable units however their approaches differ in the 

way they utilize syllabic information. From the point of view of describing fundamental 

frequency contours, one of the proposed approaches can be considered as phonetic and 

the other as phonological. Both depend on phonetic analysis; however, the latter relies on 

describing accent scheme for Turkish. Both approaches rely on syllable pitch contours to 

predict pitch contours. Ten equidistant F0 values are used to develop codebooks or to 

assign pitch accent to the syllables. Based on the resulting scheme, predictions are 

performed. As introduced in Chapter 2, non-parametric methods also rely on raw F0 

values however proposed methods di ffer in the way they utilize raw F0 values. Main 

differences are summarized in the following paragraphs. 

Vector quantization is used in different areas of intonation modeling studies. 

However, they differ from the proposed approach. Most of the studies incorporating 

vector quantization in pitch contour modeling provide parametric representations 

considering all syllables or only accented syllables. Sigmoids, Bezier functions, 

polynomial extensions are used to represent pitch contours parametrically. Function 

coefficients are vector quantized using minimum distance criterion. Some others use a set 

of F0 values together with some duration parameters and perform vector quantization 

afterwards. Proposed approach performs vector quantization of all syllable pitch contours. 

Ten equidistant F0 values for each syllable are used as input to the vector quantization 

algorithm. Resulting codewords are used in pitch contour prediction. Codewords are also 

used in the determination of accented syllables. Hence, a mapping from phonetic 

description to phonological entities is performed. Consequently, pitch prediction is 

carried out by means of binary prediction. By means of two-level vector quantization, 

codebook inventory is pruned so that identical centroids are merged. Syllables are 

associated to accent status depending on the pruned centroids taking into account 

dynamic range and shape of the centroids. Binary prediction is performed to determine 

accent status of the syllables.  
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Other proposed approach uses phonetic analysis of pitch contours to assign accent 

labels to syllables. From the ten F0 values, mean and slope values for each syllable are 

calculated. Developed accent assignment algorithm associates accents considering slope 

and mean values of the syllables. A syllable is accented if it has a slope value that is 

greater than a determined threshold. Threshold is determined experimentally. However, 

an optimization can be performed on the threshold value. Optimization can be performed 

by means of analysis-by-synthesis. Threshold can be optimized by means of perceptual 

listening tests. Labeled database is used to predict whether a syllable is accented or not 

accented. 

Other methods that employ non-parametric methods for intonation modeling predict 

every F0 value independently or using vector regression trees. Vector regression trees 

resemble our first proposal in the sense that F0 values are predicted considering a 

minimum distance criteria, usually Mahalonobis distance.  

8.2 Future Directions on Turkish Prosody 
Perceptual Evaluation of Performance: Phoneme durations and pitch contour 

modeling for Turkish is accomplished. Performances of developed models are evaluated 

quantitatively. However, prosody is meaningful perceptually. Hence, perceptual 

evaluations can be carried out to evaluate model performances as a future work.  

Sentence Pitch Contour Modeling: Pitch contour modeling studies can consider 

sentence pitch contours, not syllables, for locating pitch accents. Syllables can be 

associated with pitch accents accordingly. Currently, slope computation considering 

syllable pitch contour is not robust such that each syllable is assigned at most one slope 

value. Assigning only one slope per syllable can not capture multimodal pitch patterns in 

some of the syllables. Moreover, slopes are computed considering syllable initial and 

final pitch values. Hence, multimodalities observed on syllable pitch contours do not 

yield signi ficant slope values. Those syllables which have sharp peaks or valleys are not 

associated to pitch accents. Figure 8-1 shows speech waveform, pitch contour and 

accents associated to syllables of the sentence ‘ancak savunanlar da hayli fazla 

deniliyordu’ . On the syllable ‘ cak’ , there is a fall-rise pattern which corresponds to a local 

valley. Depending on the chosen threshold, accent assignment algorithm can assign only 

one type of accent although there are falling and rising patterns. Every prominent peak 

and valley as well as rise and fall can be captured considering overall sentence pitch 
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contours. Sentence contours can be inspected to find prominent pitch events (rise/fall, 

peak/valley). Slope values can be calculated considering the initial and final positions of 

corresponding events. However, how this information will be incorporated into the 

current study is still an open issue. There are several limitations with the current study: 1) 

Syllables either have positive accents, negative accents or no-accent however, fall-rise 

and rise-fall patterns comprise both accent schemes. Solution to this problem 2) Let us 

assume that the accent inventory is enlarged as in ToBI annotation scheme. Then, timing 

will be another problem. There may be early rises/falls or late rises/falls or they may 

appear right in the middle. 3) During reconstruction, predicted syllable slopes are used. 

Hence,  

 

 

Figure 8-1: Speech waveform, corresponding smoothed and interpolated pitch contour, 
syllable labels and pitch accents of the sentence ‘ancak savunanlar da hayli fazla 

deniliyor’  (however it is said that the defenders are also too much).  

 

Codebook Generation: Codebook generation algorithm can be revisited. In this study, 

pitch contours of every syllable is taken into account. Vector quantization is performed 

over all syllables to generate a syllable-pitch-contour codebook. However, sentences are 

not composed of successive pitch events. Events are separated by smooth contours that 

are not perceptually significant. Codebook generation does not rely on this fact. 

Codebook generation can be performed considering only prominent pitch events as a 

future study. This way, prominent syllables can be represented in detail and excess 

information related to smooth contours can be discarded. 
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Acoustic Segmentation of Syllables: For pitch contour modeling, syllable boundaries 

derived from phoneme boundaries are considered for each word taking into account 

orthographic word form. However, Turkish native speakers concatenate successive words 

if one ends with a consonant and other starts with a vowel. This phenomenon is known as 

liaison. Liaison is not applicable if there is a break between two successive words. Such a 

case is shown in Figure 8-2. The words ‘analiz’  and ‘edilmek’  obeys liaison rules and 

syllable boundaries can be assigned accordingly. The syllable boundaries considering 

single words are given in the figure. Considering liaison effect, the words act as a single 

word and syllables can be segmented as follows: ‘a’ , ‘ na’ , ‘ li’ , ‘ze’ , ‘dil’ , ‘mek’ . With this 

modi fication, rise-fall pattern enclosed within the syllable ‘ liz’  can be partitioned into rise 

and fall pattern enclosed in syllables ‘ li’  and ‘ze’ . 

 

 

Figure 8-2: Speech waveform, corresponding pitch contour, and orthographic syllables of 
the sentence ‘ yumurtalar analiz edilmek üzere …’. Using syllable boundaries considering 
speech waveform, rise-fall pattern squeezed in the orthographic syllable ‘ liz’  can be split 

into rise and fall patterns corresponding to acoustic syllables ‘ li’  and ‘ze’ .  

 

More on Speech Corpus: Phonetic transcription and alignment of the developed 

corpus are provided within the scope of this thesis. Phonetic alignment is performed 

automatically. Approximately 70% of the corpus is corrected manually and used in phone 

durations and pitch contour modeling. 30% of the corpus will be manually corrected in 

future.  
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Designed text database used in building speech corpus has not been annotated with 

punctuation marks. The main motivation in not using punctuation marks is to set the 

speaker completely free. With this way speaker uttered corresponding text in the way she 

thought to be correct. However, punctuation helps the speaker to impose regular 

intonation patterns. Without punctuation, although correct, unexpected intonation patterns 

can be observed. Punctuation marks also help in determining possible breaks in the 

speech. A full-stop and a comma generally corresponds a long and a shorter pause in 

speech. So utilization of punctuation marks provides speaker and model developer certain 

facilities. Therefore, punctuation marks can be provided to the designed text and re-

recorded. Currently, phrase breaks are obtained perceptually. Perceptual phrase break 

assignment results in a more accurate break scheme than regarding only punctuation 

marks. Though, punctuation marks can be used to veri fy perceptual phrase breaks. 

Lexical Stress Assignment for Complex Structures: Lexical stress assignment for 

compounds and phrases can be handled as a future work. Within the course of this thesis, 

a stress assignment algorithm has been generated considering Turkish stress rules. 

However, this algorithm considers words one-by-one and assigns lexical stress 

accordingly. Word stress pattern can be altered by compounding and phrasing in Turkish. 

In Figure 8-3, the sentence ‘dövizde yapılan analizlerde ciddi bir sıçrama beklenmiyor yıl 

sonuna kadar’  with its pitch contour is given. The phrase ‘dövizde yapılan analizlerde’  

acts as a single word and the syllable ‘de’  of the word ‘dövizde’  is the lexically stressed 

syllable of the phrase. Currently, stress assignment algorithm handles each word 

independently and assigns corresponding lexical stresses. Accordingly, three syllables are 

lexically stressed: ‘de’  of dövizde’ , ‘ lan’ , and ‘de4’  of ‘analizlerde’ . To improve 

performance, stress assignment algorithm can be revised to handle compound words and 

phrases. However, it should be noted that the challenge lies in detecting compound words 

and phrases not in assigning lexical stress to them. Lexical stress rules apply compounds 

and phrases almost same if one can capture the quantifier of the compound/phrase.  

Utilization of Focus Information: Focus is an important aspect of speech. It is 

observed that words that are focused reaches maximum pitch wherever it is located in the 

sentence. In our modeling studies, focus information has not been incorporated yet. 

However, incorporating focus information can greatly improve prediction performance. 

                                                
4 It should be noticed that, the rise in the second ‘de’  indicates that sentence wil l continue after the 
phrase. 
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Figure 8-3: Speech waveform, smoothed and interpolated pitch contour, and orthographic 
syllable boundaries of the sentence ‘dövizde yapılan analizlerde ciddi bir sıçrama 

beklenmiyor yıl sonuna kadar’ . The phrase ‘dövizde yapılan analizlerde’  acts as a single 
word and the syllable ‘de’  is the lexically stressed syllable of the phrase. 

 

8.3 Discussions 
Phoneme duration modeling: 

For duration modeling, attributes are selected sequentially so that each new attribute 

increases prediction performance. Best prediction performance is obtained with Phoneme 

Identity; hence it is selected as the best predictor. It is observed that newly added 

attributes after seventh attribute do not provide further improvement. The seven attributes 

that best predicts phoneme duration are Phoneme Identity, Left/Right, Lexical Stress, 

Syllable Type, Word Part-of-Speech, Phrase Break, and Number of Words to Following 

Phrase Break.  

It is also observed that the Left/Right attribute makes the best contribution to duration 

modeling. Hence, Phoneme Identity and Context are the two most influential attributes in 

duration modeling. Depending on the observations that Phoneme identity and immediate 

left and right context play an important role in duration prediction, it can be inspected that 

using larger contextual windows in duration modeling may improve performance. 

However, larger contextual windows require large databases since the number of units to 

be covered increases multiplicatively. For example, for a window of three phonemes 

Marks lexical 
stress 

Marks 
continuation 
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(left-current-right), the total number of possible combinations is 43x42x43 (= 0.077x106) 

while for a window of 5 phonemes (left2-left1-current-right1-right2), the total number of 

combinations is 43x43x42x43x43 (= 0.14x109). So, increasing the window size to include 

one more contextual phoneme results in a dimension increase of 43x43 (~99%). Hence, 

the problem can be investigated for a couple of phonemes only. Phoneme selection can be 

performed depending on the frequency of possible contextual windows. A speech 

database can be constructed to include possible combinations for the considered 

phonemes. Effect of larger contextual windows on phoneme duration can be revealed by 

means of quantitative analysis methods. 

However, it is almost impossible to analyze effects of larger contextual windows on 

duration modeling for all phonemes with a l imited database. Experiments performed 

using phonetic class instead of phoneme identity for left/right context show that reducing 

the dimension of contextual window does not result in a reduced performance but slightly 

better performance. Hence, the dimension problem encountered in contextual 

window/phoneme duration dependency can be handled using phonetic class instead of 

phonetic identity. Phonemes can be classified depending on their discriminative 

characteristics such as vowels versus consonants; voiced versus unvoiced; or more 

speci fically depending on how they are produced.  

Vowels are classified by the highest point reached by the tongue both in vertical and 

horizontal directions. These directions are split into two parts: High/Low; and 

Front/Back. Vowels are also split into two depending on their lip shaping: 

Round/Unround. Consonants involve constrictions, or gestures that narrow the vocal tract 

at a particular point. Consonants are discriminated with respect to their place of 

articulation: Bilabial/Labio-dental/Dental/Alveolar/Velar/Glottal; and manner of 

articulation: Plosive/Affricate/Stop/Nasal/Fricative/Approximant. Selection of features to 

be used in duration modeling as a predictor is another problem. Generally, manner of 

articulations are used in phoneme duration modeling studies. In our studies, instead of 

identity, manner of articulations for consonants and backness/frontedness for vowels are 

used. However, feature combinations or other aspects of features may be more 

appropriate. Hence, in order to determine the features to be used, experiments involving 

limited databases in which different aspects of consonants and vowels are handled can be 

formed.  
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Another point of interest is the effect of word/phrase/sentence (for paragraphs) 

boundaries in context study. Increasing the size of contextual windows is a step towards 

using word-sized or even larger units. When larger contextual windows are selected, the 

probability that a word boundary is enclosed within the selected window increases. 

Hence, one may wonder even if the context is same, is phoneme duration affected by 

existence of a word boundary. Effect of word boundary on context hence phoneme 

duration can be investigated using same contextual windows but with and without word 

boundaries. The sentences ‘balık aldırdım’ and ‘balı kaldırdım’ comprise a pair of such 

constitutions. Both sentences have the same phonetic sequence hence whatever context 

size is chosen the elements of the window will be the same. Effects of word boundary can 

be uncovered considering the phonemes at boundaries.  

One other factor that may have impact on duration modeling is the speaking rate.  

“…Results showed that the consonant and vowel durations were all significantly 
influenced by speaking rates and utterance units. At five kinds of speaking rates, the 
durations of vowels changed more than those of consonants. Fricative durations 

expanded more than the durations of other consonants, while the duration of 
unaspirated stops kept constant at five speaking rates. Vowels in monosyllable had 
longer duration than those in other  utterance units….”  [Jing 2004] 

As stated in Jing, consonant and vowel durations are affected by local speaking rate. 

Generally in duration modelling studies, this phenomenon is underestimated. The main 

reason for this is that duration modelling studies use recordings of a speaker with a 

normal style. However, most models depend on recordings that last over days. Hence, 

speaker shows variations during in his/her speech. Consequentl y, one may wonder how 

duration modelling performance is affected by changes in speaking rate. To observe the 

effects of speaking rate on duration modelling, first effects of speaking rate on phoneme 

durations are to be investigated. To this aim, a small speech database comprising normal, 

fast and slow speech can be constructed and average phoneme durations for each 

speaking rate can be determined. If there is a relationship between phoneme durations and 

speaking rate, then speaking rate can be incorporated as a predictor in duration modeling 

studies. 

Discussions about phoneme duration modeling studies revealed the question that how 

well we model phoneme durations? Are the attributes used in duration modeling studies 

are sufficient? Or can the algorithms used in duration modeling studies develop duration 

models from the given attribute set adequately? Let us assume that the attributes are well 
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selected and the algorithms produce perfect models. Average RMSE between observed 

and predicted durations are around 20 ms in literature, that is, there is a considerable error 

in duration prediction. What is the reason for this much of RMSE in duration prediction? 

Is there randomness in duration modeling issues? In fact, phonemes are produced by a 

physiological system. Like every system, the product of a physiological system may have 

certain randomness while producing same phoneme even in the same context. Another 

important fact about duration modeling is that it relies on either manual or automatic 

labeled speech databases. Even in manual labeling, there may be inconsistencies which 

may result in randomness.  

Segmentation inconsistencies are generally encountered in labeling vowel-voiced 

boundaries. In order to avoid inconsistencies, one may suggest using a labeling standard 

however such a standard may also be insufficient in determining the segment boundary 

especially in between voiced-semivowel transitions. Another solution may be considering 

larger units for such cases. Some of the duration modeling studies relies on syllable-sized 

units however in Turkish; syllables may be inadequate to capture such transitions. For 

example in the sentence ‘ roma jazarm1S’, which can be rewritten in syllables as ‘ ro-ma-

ja-zar-m1S’, the syllables ‘ma’  and ‘ ja’  can not be segmented accurately because of a 

vowel-semivowel-vowel transition. Therefore in Turkish, larger unit concept does not 

point out single type of units such as syllables but a unit with variable size.  

In order to detect such units, visual cues may be incorporated in segmentation. Lip, 

tongue and chin motion can be used in segmentation of speech into consistent speech 

units. Modeling phoneme duration can then be transformed into modeling lip, tongue and 

chin timings which can be determined more accurately than phoneme durations. 

Pitch contour modeling: 

Pitch contour modeling studies generally rely on describing an intermediate 

representation of pitch contours. The purpose of using intermediate representations is to 

decrease the complexity of relation between linguistic attributes and the pitch contour, 

which is continuous in nature. ToBI and Fujisaki approaches are two extremes of 

intermediate representations. ToBI is a phonological model that represents pitch contours 

as a sequence of discrete symbols whereas Fujisaki’s model interprets pitch contours as 

the superposition of three waveform components: baseline, local and global pitch 

excursions.  
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A major drawback of ToBI-like representations is the need for expert manual labeling 

which is too much time-consuming. Labeling consistency among different labelers is 

another problem; for example, one labeler may mark a syllable as accented while the 

other may not or one may mark a syllable as H+L*, the other as L*, and so on. Hence, 

such models are highly influenced by human factors.  

Labeler dependency is eliminated by means of automatic pitch contour modeling 

methods such as Fujisaki or Tilt model. Both models analyze pitch contours 

automatically. However, Tilt model incorporates ToBI labels in the analysis procedure 

therefore it may be viewed as a semi-automatic model. Fujisaki model decompose pitch 

contours into three components: base F0, local excursions (pitch accents) and global 

excursions (phrase accents). Tilt model assigns a tilt value for each accent or boundary 

tone. Both models rely heavily on pitch contours themselves in order to extract the 

parameters necessary to synthesize the pitch contours.  

Pitch contour extraction is performed in two ways. In the first approach, a 

laryngograph is used in recording. In the second approach, pitch contour is extracted from 

the speech signal itself. Laryngograph signal is more appropriate for pitch contour 

modeling studies than the pitch contour extracted from speech signal since it is more 

reliable. In this study, pitch contours are extracted from the speech signals and it is 

observed that although the performance of the algorithm used to extract pitch contours is 

quite good, it is almost impossible to avoid errors. Because of the timing considerations, 

the errors are not manuall y inspected within the framework of the study assuming that 

they can be compensated by smoothing and interpolation processes. The assumption 

holds generally however there are gross errors and hence manual tuning is required.  

However, using laryngograph signal may also be inadequate for pitch contour 

modeling studies that rely on parametric representations. Tilt and Fujisaki model 

parameters are derived from continuous and smoother pitch contours as opposed to 

original contours. Original pitch contours reveal discontinuous patterns that also exhibit 

perturbations due to segmental effects, i.e. microprosody. The discontinuities are 

encountered at the unvoiced regions of the speech where there is no F0. Consonants, 

especially plosives, result in smaller perturbations such as sudden peaks in the pitch 

contour. Vowels also contribute to the pitch contour by means of their intrinsic pitch 

values, i.e. the intrinsic pitch values of high vowels are higher than those of low vowels; 

hence, same type of pitch accents show different pitch patterns.  
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Microprosody is eliminated by interpolation and smoothing in most of the studies. 

However, our studies show that interpolation and smoothing are not so powerful in 

reducing the microprosodic effects: Interpolation avoids the discontinuities due to 

unvoiced regions; smoothing eliminates short-time perturbations; however larger 

deviations are still present and cannot be handled automatically. It is obvious that 

segmental effects change the shape of the pitch contours hence attempts to handle 

microprosodic effects can be understood. However, preprocessing of pitch contours may 

change intonation. Interpolation does not affect the pitch contour shape since during 

synthesis time the unvoiced regions will be handled appropriately. However, smoothing 

has a considerable effect on pitch contours that cannot be reversed. Depending on the 

smoothing filter used, it is possible to smooth almost all details. Therefore, effects of 

smoothing on pitch contour modeling can be further studied. The degree of smoothing 

that will not change modeling performance can be determined by means of experiments. 

Besides, as mentioned previously, larger microprosodic effects are still  present in pitch 

contours after preprocessing. Hence, their effects on pitch contour modeling can be 

analyzed considering perceptual tests, and algorithms to remove these perturbations can 

be developed. 

One factor that affects pitch contour modeling performance is the speech corpus 

incorporated in modeling. As opposed to the most of the studies in pitch contour 

modeling, a collection of various kinds of isolated sentences is used in this study. This 

resulted in a decreased performance in our studies since each sentence type has not been 

sufficiently represented in the database. It is believed that increasing the size of the 

speech corpus by adding sufficient representatives of each sentence type increases 

prediction performance. Besides, most studies address pitch contour studies incorporating 

only one type of sentences such as declaratives. However, in order to develop a pitch 

contour model that serves as a tool for speech synthesis applications all sentence types 

should be modeled.  

It is observed that modeling pitch contours of different sentence types at a time results 

in low prediction performance. Hence, pitch contour modeling for different sentence 

types should be handled as separate problems. Each sub-problem may require different 

set of attributes depending on the sentence type. For example, question sentences may 

need an extra attribute indicating the type of the question sentence: polar, inverted, or wh-

question. Hence, for each sub-problem, different attribute sets can be generated and the 
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most influential attributes can be used to develop pitch contour model for the 

corresponding sentence type.  

One issue that is not addressed frequently in pitch contour modeling studies is the 

util ization of speech databases that contains paragraph sentences. In our studies, isolated 

sentences are used to develop pitch contour models. Therefore, resulting models are 

appropriate for isolated sentences. Then, the question remains as what if one chooses to 

use paragraph sentences in pitch contour modeling. Like the downstepping in isolated 

sentences, pitch contours of paragraph sentences may show gradually decreasing patterns. 

There may even be a relationship between the pitch contours of paragraph sentences and 

isolated sentences that can be described in terms of sentence position in the paragraph. 

This relationship, if exists, can be revealed by forming a speech database of sentences at 

different locations of paragraphs. 

Concludingly, pitch contour and duration modeling studies are far from complete; 

there are even untouched ideas that may increase the naturalness and quality of synthetic 

speech.  
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APPENDIX A 
 

 

SYLLABLE PITCH CONTOUR CODEBOOK 
 

 

 

In this part of the Appendix, cluster centroids and cluster members described in 

Section 7.1.2 is given. 
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Figure A-1: Cluster centroids (left) and cluster members (right). 
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Figure A-2: Cluster centroids (left) and cluster members (right). 
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Figure A-3: Cluster centroids (left) and cluster members (right). 
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Figure A-4: Cluster centroids (left) and cluster members (right). 
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Figure A-5: Cluster centroids (left) and cluster members (right). 
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Figure A-6: Cluster centroids (left) and cluster members (right). 
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APPENDIX B 
 

 

ACCENT ASSIGNMENT USING SYLLABLE 
PITCH CONTOUR CODEWORDS 

 

 

 

In this part of the Appendix, cluster centroids and members obtained using two-level 

k-means algorithm described in Section 7.1.3 is presented. Cluster size is reduced  

1) by eliminating clusters with centroids representing levels or pure rises and falls  

2) by merging clusters of the same shape (determined by 25 cluster centroids) into 

single clusters. Eliminated cluster centorids are marked with X. 

 

0 5 10
0

0.5

1
6  106   205.923396   57.200943

0 5 10
0

0.5

1
11  138   165.039130   45.844203

0 5 10
0

0.5

1
56  77   180.841558   50.233766

0 5 10
0

0.5

1
58  62   225.811742   62.725484

0 5 10
0

0.5

1
9  31   72.807097   20.224194

0 5 10
0

0.5

1
54  128   66.310312   18.419531

0 5 10
0

0.5

1
70  273   65.411341   18.169817

0 5 10
0

0.5

1
82  264   54.330682   15.091856

0 5 10
0

0.5

1
83  273   74.504308   20.695641

0 5 10
0

0.5

1
92  145   89.976166   24.993379

 

Figure B-1: Cluster centroids: numbers represent centoid’s ID, frequency of pitch 
contours represented by this centroid, dynamic range of the centroid with respect to 

constant F0min and F0max , and percentage of the dynamic range. 
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Figure B-2: Cluster centroids 
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Figure B-3: Cluster centroids 
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Figure B-4: Cluster centroids 
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Figure B-5: Cluster centroids 
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Figure B-6: Cluster centroids 
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Figure B-7: Cluster centroids 
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Figure B-8: Cluster centroids  

0 5 10
0

0.5

1
40  89   165.300674   45.916854

0 5 10
0

0.5

1
51  73   132.164384   36.712329

0 5 10
0

0.5

1
73  41   115.691707   32.136585

0 5 10
0

0.5

1
99  168   143.961000   39.989167

0 5 10
0

0.5

1
7  33   85.444364   23.734545

0 5 10
0

0.5

1
8  165   53.554473   14.876242

0 5 10
0

0.5

1
57  107   79.500112   22.083364

0 5 10
0

0.5

1
97  26   62.460000   17.350000

 

Figure B-9: Cluster centroids  
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Figure B-10: Cluster centroids  
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Figure B-11: Cluster centroids  
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Figure B-12: Cluster centroids  
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Figure B-13: Cluster centroids  
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