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ABSTRACT 
 

DISCHARGE PREDICTIONS USING ANN IN SLOPING RECTANGULAR 
CHANNELS WITH FREE OVERFALL 

 
 

ÖZTÜRK, Hayrullah Uğraş 

M.Sc., Department of Civil Engineering 

Supervisor: Prof. Dr. Metin GER 

Co-Supervisor: Assist. Prof. Dr. Şahnaz Tiğrek 

October 2005, 45 pages 
 

In recent years, artificial neural networks (ANNs) have been applied to 

estimate in many areas of hydrology and hydraulic engineering. In this thesis, 

multilayered feedforward backpropagation algorithm was used to establish for the 

prediction of unit discharge q (m3/s/m) in a rectangular free overfall. Researchers’ 

experimental data were used to train and validate the network with high 

reliability. First, an appropriate ANN model has been established by considering 

determination of hidden layer and node numbers related to training function and 

training epoch number. Then by applying sensitivity analysis, parameters 

involved in and their effectiveness relatively has been determined in the 

phenomenon.  In the scope of the thesis, there are two case studies. In the first 

case study, ANN models reliability has been investigated according to the training 

data clustered and the results are given by comparing to regression analysis. In the 

second case, ANN models’ ability in establishing relations with different data 

clusters is investigated and effectiveness of ANN is scrutinized.  

 

 

 

Key Words: Artificial Neural Networks (ANN), Brink Depth, Free Overfall, 

Discharge Measurement 
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ÖZ 

 

SERBEST DÜŞÜLÜ EĞİMLİ DİKDÖRTGEN KESİTLİ KANALLARDA YSA 

İLE DEBİ TAHMİNİ 

 

 

ÖZTÜRK, Hayrullah Uğraş 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Danışman: Prof. Dr. Metin GER 

Yardımcı Danışman: Yard. Doç. Dr. Şahnaz Tiğrek 

Ekim 2005, 45 sayfa 
 

 

Son yıllarda, yapay sinir ağları (YSA) hidroloji ve hidrolik 

mühendisliğinde etkili tahminler yapmakta oldukça geniş bir alanda 

kullanılmıştır. Bu tezde de, birim debi tahmininde, dikdörtgen kesitli serbest 

düşülü eğimli kanallarda, çok katmanlı, ileri beslemeli, geri yayınım algoritmalı 

bir YSA mimarisi kullanılmıştır. Çeşitli araştırmacılar tarafından toplanan veriler 

ağın eğitiminde ve testinde kullanılmıştır. En uygun modelin oluşturulmasında, 

eğitim fonksiyonu ve iterasyon sayısına bağlı olarak değişen, gizli katman ve 

nöron sayıları hesaplanmıştır. Daha sonra duyarlılık analizi uygulanarak, olaydaki 

girdi parametrelerin etkinlik dereceleri araştırılmıştır. Tezin kapsamı dahilinde iki 

örnek çalışma yapılmıştır. YSA modellerinin farklı eğitim kümelerine göre 

güvenirliliği test edilmiş, sonuçlar regresyon analizi sonuçlarıyla 

karşılaştırılmıştır. İkincisinde ise, oluşturulan YSA modellerinin farklı veri 

kümeleriyle ilişkiler kurabilme yeteneği incelenmiş ve YSA’nın etkinliği 

irdelenmiştir. 

 

 

Anahtar Kelimeler: Yapay sinir ağları (YSA), Düşü Akım Derinliği, Serbest 

Düşü, Debi Ölçümü. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1 Problem Definition 
 
The overfall refers to the downstream portion of a rectangular channel, horizontal 

or sloping, terminating abruptly at its lower end. If it is not submerged by the tail 

water, it is referred to as the free overfall (Rajaratnam and Muralidhar, 1976). 

 

The free overfall has a distinct importance in hydraulic engineering; it forms the 

starting point in computations of the surface in a gradually varied flow such as the 

discharge spills into an open reservoir at the downstream end. Typical free 

overfall and the parameters are illustrated in Figure 1.1.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Typical free overfall and parameters involved in. 
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In this Figure, So (m/m) is the bed slope, n is Manning’s roughness coefficient, ye 

(m) is the brink depth, yo (m) is the normal depth, yc (m) is the critical depth, q 

(m3/s/m) is the unit discharge of a flume of width b(m).  

 

The study of a free overfall is also important because it can be used as a 

discharge-measuring device. The problem of the free overfall as a discharge 

measuring device has been investigated for 70 years and the end depth discharge 

relationship has been extensively studied by carrying out the theoretical and 

experimental studies by establishing a relationship between the critical depth, yc 

and the brink depth (end depth), ye. Rouse (1936) was the first to point out the 

possibility of using the free overfall as a flow meter, which needs no calibration 

(Firat, 2004).  

Theoretical approaches are studied by many researchers. But these 

theoretical solutions on free overfall based on some sort of the assumptions. Even 

though giving promising answers, inadequacies of the studies lead researchers to 

pursue working on the issue. Detailed information can be found in Özsaraç 

(2001).    

 

1.2 Scope of the Thesis 

 
In the present study, it is tried to obtain an approximation with the experimental 

data in the literature by using artificial neural networks (ANN). 

 

In the literature there are many attempts to obtain a relation between brink depth 

and discharge in channels (having cross sections rectangular, trapezoidal, 

triangular, circular and parabolic). Studies to find such a relation can be classified 

as; theoretical approaches and experimental approaches.  

 

As for the experimental studies on this field, they are studied by numerous 

researchers. Among them, Rajaratnam and Muralidhar (1976), Ferro (1999), 

Davis et al. (1998), Turan (2002), Fırat (2004), and Kutlu (2005) have conducted 

quite a few numbers of experiments. For the experimental studies, most of the 
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time to collect data on each variable could not be obtained due to the physical 

restrictions in the laboratory environment. For this reason, collected data are not 

sufficient to provide information out of data range. So the need for another 

method is warranted to complete missing data. At this point, soft computational 

methods may be useful because of their high ability to establish firm relations 

between input and output parameters.  

 

In this study an approach has been suggested to relate discharge Q to brink depth 

ye, and the other effective parameters (bed slope, So, Manning’s roughness 

coefficient, n, and channel width, b), by using one of the soft computation 

methods, called Artificial Neural Networks (ANN).   

     

Raikar et al. (2004) presents the application of ANN to determine the end depth 

ratio for a smooth inverted semicircular channel based on data of Dey (2003). In 

their study, discharge related to the slope and brink depth. However, in this study 

an analysis will be demonstrated for rectangular free overfall. Also, surface 

roughness and channel width will be included. 

 

In the literature, as a soft computational method, ANNs have not yet been used as 

a predictive tool in rectangular free overfall.  
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CHAPTER 2 
 
 

IMPORTANT ASPECTS OF ANN MODELLING 
 

 

There are no fixed rules for developing an ANN, even though a general 

framework can be followed based on previous successful applications in 

engineering. Some issues that typically arise while developing an ANN are briefly 

described in this section. 

 

2.1 Components of ANNs  

 

Artificial Neural Networks (ANNs) consist of large number of processing 

elements with their interconnections. ANNs are basically parallel computing 

systems similar to biological neural networks. They can be characterized by three 

components: 

• Nodes 

• weights (connection strength)  

• An activation (transfer) function  

 

In ANNs architecture, there are layers and nodes at each layer. Each node at input 

and inner layers receives input values, processes and passes to the next layer. This 

process is conducted by weights. Weight is the connection strength between two 

nodes. The most commonly used ANN is the three-layer feed-forward ANN.  
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2.2 Three-Layered Feed-forward ANN 

 

A typical three-layer feed-forward ANN, consists of a layer of input nodes, a 

single layer of hidden nodes, and a layer of output nodes, as shown in Figure 2.1. 

In the Figure, i, j, k denote nodes inner layer, hidden layer and output layer, 

respectively. w is the weight of the nodes. Subscripts specify the connections 

between the nodes. For example, wij is the weight between nodes i and j. The term 

"feed-forward" means that a node connection only exists from a node in the input 

layer to other nodes in the hidden layer or from a node in the hidden layer to 

nodes in the output layer; and the nodes within a layer are not interconnected to 

each other. 

 

 
 

 

  

 

 

 

Input Layer     Hidden Layer    Output Layer   

   

Figure 2.1. A typical three-layer feed forward ANN  
 

 

Each node in the input layer receives an input variable and passes it to the nodes 

in the hidden layer. In addition, a bias node, which is also a weight with a fixed 

input, 1.0, is usually added to the input layer and to the hidden layer. The nodes in 

the hidden layer and in the output layer are nonlinear nodes meaning the weights 

multiplied by inputs. A typical node in the hidden layer or in the output layer is 

shown in Figure 2.2. Here  woj is the bias function. 

i 

j 

k 
 

wij 
 

wjk 
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 Figure 2.2. A typical node in the hidden layer or the output layer 
 
 
 

The input to the node j, is designated as Sj. Sj is the weighted sum of all the 

incoming inputs, which are the outputs from the nodes in the previous layer. It can 

be mathematically represented as; 

 

                                              (2.1) 
 
 
 
The parameters in this equation are as follows: 

wij is the weight between nodes i and j; 

ui is the output from the node i in the previous layer; 

m is the total number of inputs to the node j; 

yj which is the output from node j, is calculated using an activation function. 

Activation function determines the response of a node to the total input it receives. 

The sigmoid function is the most commonly used one (ASCE 2000a), given as; 

 

=logsig(Sj)                 (2.2) 

 

w2j 

 
     j 
 

1 

woj 

wmj 

w1j 
u1 

u2 

um 

j j
j

1y f (S )
1 exp( S )

= =
+ −

m

j ij i
i 0

S w u
=

= ∑
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A logsig transfer function is given in Figure 2.3. 

 

        yj 

 
 
 
                                                                              Sj 
 
 
 
 
 
  Figure 2.3. Logsig transfer function 
 
 
 

 
Sigmoid functions are used to bound the outputs of the weighted sum of all the 

incoming inputs Sj. Whatever the output of Sj becomes, the result will be limited 

to [0, 1] interval by sigmoid function in a nonlinear manner. Since, it is easy to 

take derivative of sigmoid function; it is more popular than any other functions. 

 

2.3 Backpropagation of Neural Networks 

 

Backpropagation models, in a feedforward architecture, contain three 

components. They are an input layer, an output layer and at least one hidden layer.  

All those layers are fully connected to each other as shown in Figure 2.4 a-b. 

 

In backpropagation algorithm there are two main steps. The first step is a forward 

pass, which is also called as activation phase. In that step, inputs are processed to 

reach the output layer through the network. After the error is computed, a second 

step starts backward through the network, which is also called as error 

backpropagation.  
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Output layer 

 

 

Hidden layer 

 

 

Input layer 

 

 
Figure2.4 Backpropagation of Neural Networks 

  a) Feedforward of inputs              b) Backpropagation of output error  

 

 

There are three types of learning in ANNs. These are supervised, reinforced and 

unsupervised learning. In supervised learning, true answer is given to the system. 

In reinforced learning, only, whether the answer is of the system produced is told 

as true or not. In unsupervised learning, correct or wrong answers are not 

differentiated. 

 

Backpropagation process is conducted by supervised learning. Because, the output 

of the system delivered is compared to the exact values. Most of the  

backpropagation models also employ a delta learning rule, which requires the 

continual backpropagation of an error term from the output layer back to the input 

layer. The delta rule is one of the most commonly used learning rules. For a given 

input vector, the output vector is compared to the correct answer. Then, the 

weights are adjusted to reduce this difference. This procedure is applied until the 

difference between the actual and predicted outputs is less than preassigned value 

of maximum error. For ANN architectures with no hidden units, it is guaranteed 

to reach the global minima, since error space will always be a parabolic shape. 

But, as in our case, there will be at least one hidden layer. As shown in Figure 2.5, 
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there is no one minimum point. In this case, generalized delta rule is used to 

adjust the weights.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. A typical weight (w) versus Error (E) graph for an ANN architecture 

with hidden layer(s).  

 

 

During the training phase, an error value, usually mean square error (MSE) is 

calculated between the desired output and the actual output. The MSE is then 

propagated backwards to the input layer and the connection weights between the 

layers are readjusted. After the weights have been adjusted and the hidden layer 

nodes have generated an output result, the error value is again re-determined. If 

the error has not reached, which is usually defined by a particular iteration 

number, the error will then again be propagated backwards to the input layer. This 

procedure continues until the model has finally reached to the predetermined 

tolerance limit. 

 

The weights in backpropagation algorithm are adjusted according to the direction 

in which the performance function, in this study MSE, decreases rapidly. 

Although the function decreases most rapidly along the steepest descent direction 

(negative of the gradient), it may not produce the fastest convergence. A search is 

E (error) 

w (weight)  

Local Minimum 

Global minimum 
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performed along conjugate directions, which produces generally faster 

convergence than steepest descent directions (Matlab 7.0, 2004). 

 

Before the training phase begins, parameters involved in the phenomenon must be 

defined. In addition to declaring the total number of input nodes, the number of 

hidden layer nodes and the total number of iteration (epoch) must also be 

declared. Since most of the time, the performance of the network is affected by 

the number of the nodes in a hidden layer.  To avoid failing to reach convergence, 

it is recommended the total number of hidden layer nodes be at least three times 

the total number of input layer nodes.  

 

First of all, the input values are presented to the network and a desired output is 

determined. Next, the total number of hidden layer numbers and the hidden layer 

nodes are specified, as well as the number of iterations of the network. 

Initialization of training phase, the weights are given in a random manner to be 

used in an activation function. Since backpropagation models are sensitive to 

initial weight values, the weight values are randomized in order to ensure that the 

delta learning rule does not reach convergence prematurely (Merwin, 2004). In 

Figure 2.6, a typical backpropagation flow chart is given.  
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Figure 2.6. Flowchart of backpropagation algorithm. 
 

 

2.4 Literature Survey  

 
Attempts to simulate the human brain date back to 1930s. In 1986, on Artificial 

Neural Network, there has been a tremendous growth in its computational 

mechanism by Rumerhalt et al. Within the last decade, ANN has become a 

powerful computation tool due to the development of more sophisticated 

Introduce inputs 
Initialize weights 

Choose an activation function 
and calculate the ANN outputs 

 
E<Emax 

Calculate the sum of weighted average 

Calculate overall error, E 

Calculate error term, E between ANN 
outputs and measured values 

Backpropagation of error  
Adjust all weight changes 

YesNo
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algorithms. After these improvements, they have been applied to many branches 

of the science.  

 

The first article on a civil/structural engineering application of neural networks 

was published by Adeli and Yeh (1989). Since then, a large number of articles 

have been published on civil engineering applications of neural networks (Adeli, 

2001).  

  

As an example, Raikar et al. (2004) work briefed below. They applied ANN to 

determine the end-depth-ratio (EDR) for a smooth inverted semi-circular channel 

for subcritical and supercritical flows. In their study, four-layered feed forward 

ANN model is used to analyze the experimental data. The sigmoidal function is 

used as an activation function. In the hidden layer, they have tried 3,5, and 7 

nodes to find out optimum ANN architecture. They have divided their data set to 

50:50 and 65:35 as training and test data keeping Manning’s roughness coefficient 

constant and with three different diameters of the channel cross section. They 

have concluded that the results of the ANN gives close answers to the target 

values in the study of Dey (2003). For subcritical flow, the EDR has been 

predicted. For supercritical flow an empirical relationship is given for discharge 

calculation.  

 

2.5 Performance Functions 

 

A performance function is used in ANNs to evaluate the effectiveness of the 

output of the network. The typical performance function that is used for training 

feedforward neural networks is the mean sum of squares (MSE) of the network 

errors. 

 

                    (2.3) 

 

( )
2N

p p
p 1

1MSE t o
N =

= −∑
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where, N is the number of the patterns; tp is the target value for the pth pattern; op 

is the output of the pth pattern which is  produced by ANNs. 

 
The performance control of the ANN outputs was evaluated by estimating the 

correlation coefficient (R2) which is defined as: 

 
                                 
 
           (2.4) 
 
 
 
 

where, tmean is the mean target value. 

 

Threshold Statistics (TS) for a level of x% is a measure of the consistency in 

forecasting errors from a particular model. The TS are represented as TSx and 

expressed as a percentage. This criterion can be expressed for different levels of 

absolute relative error from the model. It is defined as: 

 
                       (2.5)               
 
 

where, ox; is the number of computed values (out of N total computed) for which 

absolute relative error is less than x% from the model (Doğan et al., 2005). 

 

2.6 Developing an ANN model 

 

There are no fixed rules for developing an ANN, even though a general 

framework can be followed based on previous successful applications in 

engineering. Some issues that typically arise while developing an ANN are briefly 

described in this section. 

N N
2 2
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2.6.1 Selection of Input and Output Variables  

 

In order to use ANN structures effectively, input variables in the phenomenon 

must be selected with great care. This highly depends on the better understanding 

of the problem. In a firm ANN architecture, in order to prevent confusing training 

process key variables must be introduced and unnecessary variables must be 

avoided. For this purpose, a sensitivity analysis can be used to find out the key 

parameters. Also sensitivity analysis can be useful to determine the relative 

importance of the parameters when sufficient data are available (ASCE 2000a). 

 

2.6.2 Sensitivity Analysis 

 

The sensitivity analysis is used to determine the effect of changes and to 

determine relative importance or effectiveness of a variable on the output. The 

input variables that do not have a significant effect on the performance of an ANN 

can be excluded from the input variables, resulting in a more compact network. 

Then, it becomes necessary to work on methods like sensitivity analysis to make 

ANNs work effectively (ASCE, 2000). 

 

2.6.3 Designing an ANN 

 

This important step involves the determination of the ANN architecture and 

selection of a training algorithm. An optimal architecture may be considered the 

one giving the best performance in terms of error minimization, while retaining a 

simple and compact structure. There is no specific information for determination 

of such an optimal ANN architecture. Often, more than one ANN can generate 

similar results. The numbers of input and output nodes are problem dependent. 

The flexibility lies in selecting the number of hidden layers and in assigning the 

number of nodes to each of these layers as well as in the number of iteration. A 
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trial-and-error procedure is generally applied to decide on the optimal 

architecture.  

 

Feedforward neural networks depend on two main factors. Feedforward neural 

networks can be used without needing any explicit mathematical equation relating 

inputs and outputs. This shows the computational superiority of ANNs. Also, 

feedforward network with a hidden layer or hidden layers without considering the 

number of sigmoidal hidden nodes can approximate any continuous function 

(ASCE, 2000a). This feature of ANNs points the high capacity in establishing 

relations between inputs and outputs. 

 

The number of hidden layer nodes significantly influences the performance of a 

network. Both too few and too many nodes in the hidden layer lead the system to 

poor performance. If there are too few nodes in the hidden layer, the problem of 

underfitting, if there are too many nodes in the hidden layer the problem of 

overfitting is encountered. Thus, optimum number of nodes in the hidden layer 

must be selected. This process will be explained in Chapter 3. 

 

2.6.4 Training and Testing  

 

Training and testing concept can be understood as a calibration process. The 

available data set is generally grouped into two parts, one for training and the 

other for testing. 

 

The purpose of training is to determine the set of connection weights that cause 

the ANN to estimate outputs within the given tolerance limits to target values. The 

data set reserved for training is used for this purpose. This grouping of the 

complete data to be employed for training should contain sufficient patterns so 

that the network can learn the underlying relationship between input and output 

variables adequately. That is why the training part generally consists of a large 

percentage the data available. In the literature, there is no specific rule while 

grouping total data into training and test divisions. 
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The weights are assigned small random values initially. During training, these are 

adjusted based on the error, or the difference between ANN output and the target 

responses. This adjustment continues until a weight space is found, which results 

in the smallest overall prediction error. However, there is the danger of 

overtraining a network in this fashion, which is known as overfitting. This 

happens when the network parameters are too fine-tuned to the training data set. It 

is as if the network, in the process of trying to ‘‘learn’’ the underlying rule, has 

started trying to fit the noise component of the data as well. In other words, 

overtraining results in a network that memorizes the individual examples, rather 

than trends in the data set as a whole. When this happens, the network performs 

very well over the data set used for training, but shows poor predictive capabilities 

when supplied with data other than the training patterns. This case can be thought 

as “memorization” rather than “learning”. To prevent this kind of overfitting, 

testing procedure is usually recommended. The goal of this procedure is to stop 

training when the network begins to overtrain. The second part of the data is 

reserved for this purpose. In Figure 2.7a-b this situation is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

             Figure 2.7a An ANN architecture poorly predictive.  

 

 

 

= test data 
 
= train data 

x 
 

y = f(x) 
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      Figure 2.7b. An ANN architecture that have high generalization capabilities. 

 

 

Although the curve fits almost exactly through the training data in Figure 2.7a, 

giving almost zero error, the test data are poorly predictive. The ANN architecture 

has generalized poorly. But in Figure2.7b, a firm ANN architecture has been 

established. Although the error term is larger for training part, this architecture has 

high generalization capabilities. If we use more hidden layers, ANN architecture 

will not be able to understand the underlying trend in the phenomenon. So this 

case must be avoided. 

 

After the adjustment of network parameters with each epoch, the network is used 

to find the error for this data set. Initially, errors for both the training and test data 

sets decrease. After an optimal amount of training has been achieved, the errors 

for the training set continue to decrease, but those associated with the test data set 

begin to rise as shown in Figure 2.8. This is an indication that further training will 

likely result in the network overfitting the training data. The process of training is 

stopped at this time, and the current set of weights is assumed to be the optimal 

values. The network is ready for use as a predictive tool. If the available data set is 

too small for partitioning, the simplest way to prevent overtraining is to stop 

training when the mean square error stops to decrease significantly. 

 

x 

y = f(x) 
 = test data 

                         
= train data        
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Figure 2.8 Error distributions according to test and training data. 

 

2.6.5 Strength and Limitations 

 

ANNs become popular because of numerous reasons. They can be summarized as 

follows:  

 

1. ANNs can utilize a relationship between input and output variables without 

needing explicit mathematical consideration. 

 

2. Even though the training sets include some errors due to the measurements or 

inadequacy of the measuring devices, they can work well.  

 

3.  ANNs can be adapted easily for different circumstances easily. 

 

4. Once key input variables are introduced to the system, ANNs are easy to use 

and modify for a particular problem. 

 

In general, the mathematical expression obtained using experimental observations 

are limited by the range of the data. Furthermore, these expressions are also 

limited by the assumption made in their construction. That makes ANNs seem 

Undertraining Overtraining 

Epoch (iteration) number 

E (Error) 

Test  
Data 

Training  
Data 
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more attractive. Because, ANNs can be used without having to solve complicated 

partial differential equations. Furthermore, there is no need to make assumptions 

between input and output. 

 

The presence of noise in the inputs and outputs is handled by an ANN without 

severe loss of accuracy because of distributed processing within the network. 

This, along with the nonlinear nature of the activation function, truly enhances the 

generalizing capabilities of ANNs and makes them desirable for a large class of 

problems. 

 

The ANN approach does not require a prior defined functional structure. An ANN 

adapts its structure in the modeling process to the available data set. A good ANN 

structure should be able to work generally. Thus it would produce result beyond 

the available data set which used for model development. Once the structure of an 

ANN is determined, the ANN becomes a parametric model, thus the number of 

parameters (weights) is fixed (Jia, 2004). 
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CHAPTER 3 
 
 

PROCEDURE AND DISCUSSIONS 

 

3.1 Application of ANN Model by Using Matlab Neural Network Toolbox 
 

In order to apply neural networks to our study, Matlab Neural Network Toolbox is 

used. Architecture of the network and the parameters selected are given in this 

section. 

 

First, a new network is created. Secondly, in the Create New Network window, the 

Network Type is set to feedforward backpropagation. The input ranges can be set 

by entering numbers in that field, but it is easier to get them by importing from a 

specified file.  

 

In this study, the scaled conjugate gradient backpropagation function (trainscg), a 

logsig transfer function and a learngdm adaptation learning function are used in 

the architecture of the ANN. In the Create New Network menu, Transfer function 

and Learning function are chosen respectively. As default parameter mean square 

errors (MSE) is used as performance function. The Create New Network window, 

then, looks like as depicted in Figure 3.1. 
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Figure 3.1 Creating New Network 

 

Next, by clicking on the View button the network is viewed as depicted in Figure 

3.2. This Figure shows that a network is created such that it consists of an input 

layer with four elements, a hidden layer with fourteen nodes and an output layer 

with a single output. Data importing window is illustrated in Figure 3.3. 

 

 

                      Figure 3.2 View of network 
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Figure 3.3 Network data manager 
 

To train the network, the train button on network data manager window is 

clicked. First, on this window outputs are specified by clicking on the left tab 

Training Info and selecting “egin” (training inputs; user defined) from the pop-

down list of inputs and “egout” (training inputs) from the pull-down list of targets. 

The Network: model1 window looks like as shown in Figure 3.4. 
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Figure 3.4.  Training info 
 
 
 
There are eight training parameters associated with trainscg: epochs, show, goal, 

time, min_grad, max_fail, sigma and lambda as shown in Figure 3.5. The training 

status is displayed for every iteration (epoch) selected of the algorithm. The other 

parameters determine the time to terminate. The training stops; 

 

i) if the number of iterations exceeds epochs, 

ii) if  the performance function drops below goal,  

iii) if the magnitude of the gradient is less than min_grad, or  

iv) if the training time is longer than time seconds.  

 

Max_fail is related with the maximum validation failures. Test vectors are used as 

a further check that the network is generalizing well, but do not have any effect on 

training. The parameter sigma determines the change in the weight for the second 

derivative approximation (Mathworks Inc.,  2004). 
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           Figure 3.5 Training control parameters. 

 
 

3.2 Overfitting 

 

One of the problems that occur during neural network training is called 

overfitting. Overfitting is suggested when the error on the training set is driven to 

a very small value, while for the test data presented to the network the error is 

large. That means the network has memorized the training examples, but it has not 

learned to generalize a new situation. In order to prevent overfitting training data, 

appreciate epoch number, number of hidden layers and node number of hidden 

layer must be chosen by trial and error process.  

 

Networks are sensitive to the number of nodes in their hidden layers. Too few 

nodes can lead to underfitting and too many nodes can result in overfitting. In 

order to reach an optimum amount of hidden layer nodes, from 1 to 20 nodes are 

tested. The results are shown in Figure 3.6. Up to 6 nodes there are excessive 

fluctuations suggesting that number nodes should be within the interval of 6 

through 20. Within this range, 14 nodes corresponding to the first smallest 

difference between training and test MSE values is seemingly the best choice. 

Although a similar MSE value occurs for the 20th node, for the sake of avoiding 

additional computational time a hidden layer with 14 nodes is selected. 
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Figure 3.6.Distribution of MSE values of train and test data according to    

amount of nodes. 

 

Networks also are sensitive to the number of hidden layers. In this study, ANN 

architectures with only one and two hidden layers are tested. Since, three or more 

hidden layered systems are known to cause unnecessary computational overload. 

The variation of MSE for one and two hidden layers obtained are presented in 

Figure 3.7 a,b. As it is seen, an ANN architecture with one hidden layer turns out 

to be a more stable design.  
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Figure 3.7 a. ANN system with one hidden layer 
 
 
 

 
 

Figure 3.7 b. ANN system with two hidden layers 
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Test 
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Thus, for this study an ANN architecture of 5000 epochs with one hidden layer 

having 14 nodes have been adopted. If the epoch number exceeds 5000, 

deviations and thus overfitting begins as illustrated in Figure 3.7.a. 

 

3.3 Sensitivity Analysis 

 
In this study, a sensitivity analysis has been conducted to determine the degree of 

effectiveness of a variable by using performance functions. In this analysis, the 

data which are given in the appendix are composed of studies of Rajaratnam and 

Muralidhar (1976), Ferro (1999), Davis et al. (1998), Turan (2002), Fırat (2004), 

and Kutlu (2005). Parameters in the phenomenon are given in Table 3.1. 

 

Table 3.1. Parameters in the phenomenon  

 
Parameters Definition 

q Discharge per Unit Depth 
ye Brink Depth 
b Channel Width 
So Channel Bed Slope 
n Manning’ s Roughness Coefficient
µ Viscosity of water 
ρ Density of water 
g The acceleration due to gravity 

 

 

Unit discharge q (m3/s/m), depends on the other parameters and can be given in 

this form:                                          .  (Fırat, 2004). 

 

In terms of availability of the data, properties of the liquid (water) and the 

gravitational acceleration is constant. Thus, rest of the study effectiveness of brink 

depth ye, channel bed slope So, channel width b and Manning’s roughness 

coefficient n, are used as the independent parameters over unit discharge to 

establish an ANN architecture. 

 

e o oq f (y , y ,b,S ,g, , , n)= μ ρ
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Sensitivity analysis correlation coefficients (R2) of the parameters involved in the 

phenomenon is given in Figure 3.8 a-d respectively. The most effective parameter 

is determined as ye, the brink depth, among the set of the variables that also 

include So, n and b. 
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     Figure 3.8 a. Variation of q with ye 
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     Figure 3.8 b. Variation of q with So 
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Figure 3.8 c. Variation of q with n 
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            Figure 3.8 d. Variation of q with b 

 

Figure 3.8 a-d. Sensitivity analysis and correlation coefficient (R2) of the 

parameters involved in the phenomenon. 
 

Thus, ye is used as the common parameter for the rest of the sensitivity analysis. 

Performance evaluation of all possible combination of variables such that each 

and every combination includes ye, were also investigated. The findings are listed 

in Table 3.2. As shown in this table, the MSE value becomes smaller when ye is 

used in combination with other variables in a group. 
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Table 3.2. Performance evaluation of the effective parameters for sensitivity 

analysis. 

 
Performance ye ye+b ye+So ye+n ye+So+n ye+So+b ye+n+b ye+b+n+So

MSE 0.0011 3.26E-04 1.93E-04 2.32E-04 8.70E-05 1.24E-04 2.36E-04 5.63E-05
R2 0.941 0.984 0.998 0.990 0.997 0.996 0.990 0.997 

TS10(%) 36.364 54.545 72.727 45.455 81.818 72.727 45.455 81.818 
 

Performance of the groups of two and three with the smallest MSE values, that is 

to say with the best performance values, and the performance of the group that 

includes all four variables is listed in Table 3.3 and the respective MSE values are 

depicted in Figure 3.9. 

 

Table 3.3 Best group performances according to number of parameters.  

 
Performance ye ye+So ye+So+n ye+So+n+b

MSE 1.10E-03 1.93E-04 8.70E-05 5.63E-05 
R2 0.941 0.998 0.997 0.997 

TS10(%) 36.364 72.727 81.818 81.818 
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    Figure 3.9. MSE performances according to number of parameters. 
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Based on the findings, as depicted in Figure 3.9, MSE values decreases as the 

number of variables in the group increases. Furthermore, it can also discerned that 

the relative increase in the performance due to inclusion of So is larger than the 

contribution of n and b to that effect. 
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CHAPTER 4 
 
 

IMPLEMENTATION OF ANN ON FREE OVERFALL 
 
 
 

4.1 Implementation of ANN on Free Overfall 

 

Data ranges of researchers used in the study are listed in Table 4.1. All the data 

used in the study is made available in the Appendix.  

 

Table 4.1 Data ranges of researchers. 
 

Researchers Slope Range   
So 

Roughness 
Range        

n 

Width 
Range    
b (m) 

Brink Depth 
Range      
ye(m) 

Unit 
Discharge 

Range 
q(m3/s/m) 

Kutlu 
(2005) 0.00063~0.0387 0.014700 1 0.0046~0.0503 0.002~0.061

Fırat  
(2004) 0.0003~0.0394 0.0091  and 

0.0147 1 0.0038~0.0545 0.002~0.084

Turan 
(2002) 0.0017~0.04 0.009104 1 0.0101~0.0581 0.012~0.078

Ferro 
(1999) 0 0.014700 0.05~0.3 0.0167~0.0784 0.011~0.102

Rajaratnam
and 

Muralidhar 
(1976) 

0~0.0136 0.0199~0.0213 0.46 0.0183~0.1751 0.028~0.235

Davis et al. 
(1998) 0.0033~0.02 0.0099  and 

0.0147 0.295 0.005~0.0365 0.001~0.046

  

    

4.2 Case Study 1 

 

In the implementation of ANN, train groups corresponding to test data are 

presented below. Test data sets are formed by the randomly chosen 11 data from 

each researchers’ own data cluster. Those data sets are tested twice. In the first 

step, test data are tested with another researchers’ data in training group without 
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any data having their own cluster. In the second step, training group is composed 

by adding its own cluster excluding test data. Same procedure is followed for the 

others. Inputs to program, performance values of mean unit discharges (measured, 

ANN and regression analysis) are presented in Table 4.2. 

 

The Regression analysis outputs mentioned above are obtained by knowing the 

relation ye/yc = f ( oS /n) from previous studies. Extensive information can be 

found in Fırat’s study (2004). From this relation an experimental equation can be 

obtained. By replacing yc by 3

2

g
q , a unit discharge prediction equation is 

obtained. This procedure is applied in accordance with the implementation of 

ANN.  

 

The available data clusters which are summarized in Table 4.1 are named after the 

researcher such that “(K,k)” in for Kutlu, “(E,e)” for Firat, “(T,t)” for Turan, 

“(F,f)”, for Ferro, “(R,r)” for Rajaratnam and Muralidhar and “(A,a)” for Davis et 

al..  

 

In the above naming convention, upper case implies that the set includes all the 

data in the respective cluster while lower case implies that only the randomly 

selected data from the respective cluster is included.  

 
 
Table 4.2. Performance evaluation of clustered data sets. 

Total Groups ANN Regression AnalysisStep 
No Test Train Group MSE R2 MSE R2 
1 r K 1.19E-03 0.8145 1.24E-03 0.9854
2 r K + (R-r) 5.70E-04 0.9885 1.00E-03 0.9862
3 t K + R 5.46E-01 0.4029 8.36E-05 0.9371
4 t K + R + (T-t) 1.52E-04 0.9830 1.24E-04 0.9817
5 a K + R + T 5.65E-01 0.4868 4.57E-05 0.9602
6 a K+ R + T + (A-a) 4.24E-04 0.8858 4.99E-05 0.9583
7 e K + R + T + A 2.04E-04 0.9712 8.36E-05 0.9583
8 e K + R + T + A+ (E-e) 5.69E-05 0.9925 8.02E-05 0.9676
9 f K + R + T + A + E 9.98E-03 0.6573 1.13E-03 0.9357
10 f K + R + T + A + E+ (F-f) 5.76E-05 0.9945 8.29E-04 0.9565
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Considering the results as listed in Table 4.2, ANN returns a closer approximation 

comparing to regression analysis if the same cluster excluding the test data is 

introduced into the analysis. Yet, if only the train data are used, that is excluding 

the test data of the same cluster, results becomes unreliable as compared that of 

regression analysis. This unreliability becomes more apparent for Davis et al.’s 

(1998) and Turan’s (2002) data. For ANN to be able to make robust relations, data 

distribution of the train group must be regular and close the test group’s values. 

For example, a teacher should not ask a question from a topic that was never 

explained to the students. If it happens, percentage of answering correctly will not 

be high. Due to the results observed, ANN’s cannot predict its out of range. In 

other words, ANN cannot extrapolate in long ranges. 

 

4.3 Case Study 2 

 

In the second part, ANN models’ ability in establishing relations with different 

data clusters is studied. As mentioned above, all data clusters used during this 

study consists of different researchers’ data. In this part, one of those six 

researchers’ data cluster was introduced as test and remaining 5 researchers’ data 

clusters were used to compose training data. Using this approach six different 

models are constructed and the results obtained using ANN and regression 

analysis are given in Table 4.3 and depicted in Figure 4.1 for companion 

purposes.  

 

  

Table 4.3 Result of ANN and regression analysis of each researcher 

 
 ANN Regression 
 MSE R2 MSE R2 

Davis et al. 1.09E-04 0.835627 6.36E-05 0.950243 
Rajaratnam 2.63E-03 0.746602 8.66E-04 0.868204 

Ferro 7.64E-04 0.555433 2.76E-05 0.993902 
Kutlu 4.73E-06 0.992277 5.89E-05 0.980425 
Turan 2.04E-05 0.980816 7.88E-05 0.850099 
Fırat 1.01E-05 0.983723 1.15E-04 0.956305 
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Examining the findings, one may discern that Kutlu’s (2005), Turan’s (2002) and 

Fırat’s (2004) data clusters turn out a better estimate as compared to the rest of the 

data clusters. This may be attributed to the fact that they have used the same flume 

in gathering data. In other words, the majority of the clusters are originated from 

the same flume inducing a bias towards themselves as far as learning is 

concerned. 

 

Furthermore the size of the data in the combined clusters of Kutlu (2005), Turan 

(2002), and Fırat (2004) is larger than that of the rest. This may also induce some 

unfavorable bias for Davis et al.’s (1998), Ferro’s (1999) and Rajaratnam’s (1976) 

data during the training. 
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Figure 4.1 a. qmean of ANN versus qmeasured for Kutlu (2005). 
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Figure 4.1 b. qpredicted of Regression analysis versus qmeasured for Kutlu (2005) 
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Figure 4.1 c. qpredicted of ANN versus qmeasured for Davis et al. (1998) 
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Figure 4.1 d . qpredicted of Regression analysis versus qmeasured for Davis et al. (1998) 
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Figure 4.1 e. qpredicted of ANN versus qmeasured for Turan (2002) 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.02 0.04 0.06 0.08

Predicted q (m3/s/m)

M
ea

su
re

d 
q 

(m
3 /s

/m
)

 

Figure 4.1 f . qpredicted of Regression analysis versus qmeasured for Turan (2002) 
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Figure 4.1 g. qpredicted of ANN versus qmeasured  for Ferro (1999) 
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Figure 4.1 h. qpredicted of Regression analysis versus qmeasured  for Ferro (1999) 
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Figure 4.1 i. qpredicted of ANN versus qmeasured for Rajaratnam and Muralidhar 

(1976) 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.1 j. qpredicted of Regression analysis versus qmeasured for Rajaratnam and 

Muralidhar (1976) 
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Figure 4.1 k. qpredicted of ANN versus qmeasured for Fırat (2004) 
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Figure 4.1 l. qpredicted of Regression analysis versus qmeasured for Fırat (2004) 

Figure 4.1 a-l Comparison of predicted ANN unit discharges and regression 

analysis with measured unit discharge values.
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CHAPTER 5 
 
 

CONCLUSION 
 

 

 

There are several factors that affect the duration of the training process in ANN 

development. To obtain a good statistical model of the given problem using 

multilayer feed-forward networks, the most important thing is to properly define 

the input and output nodes so that they can adequately reflect the nature of the 

problem. The next important parameters include the number of hidden layers and 

nodes and the number of training iterations. In the absence of specific guidelines, 

obtaining an optimum ANN optimum architecture is a trial error procedure.  

 

In order to construct a robust ANN architecture in this study, after overfitting 

analysis, 5000 epochs with one hidden layer having 14 nodes are selected. That is, 

if the epoch number exceeds this value, deviations and thus overfitting begins. 

 

In the present study, sensitivity analysis has been conducted to determine the 

degree of effectiveness of the variables by using performance functions. 

According to sensitivity analysis, correlation coefficients (R2), the most effective 

parameter is determined as ye, the brink depth, among the set of variables that also 

include So, slope of the flume, n, Manning’s roughness coefficient, and b, the 

flume width. 

 

It can also be derived from the results that the relative effectiveness in increasing 

the performance, of the remaining parameters (So, n and b), So is more effective 

than n and n is more effective than b.  

 

In the scope of the thesis, there are two case studies. In the first case study, ANN 

models reliability has been investigated according to the training data clustered 

and the results are given by comparing to regression analysis. In the second case, 
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ANN models’ ability in establishing relations with different data clusters is 

studied. Based on the findings, it is concluded that, ANNs are highly sensitive to 

training data group. Furthermore, even though a firm ANN model has been fixed, 

it is once more confirmed that ANNs must be used with caution for the range 

outside the based on which they are established. 
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APPENDIX-A 
 
 

Table A.1. Researchers’ data used in the study 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Kutlu 1 0.00063 1.270 0.01474 0.00814 
Kutlu 1 0.00063 2.237 0.01474 0.01888 
Kutlu 1 0.00063 3.817 0.01474 0.04230 
Kutlu 1 0.00063 5.027 0.01474 0.06136 
Kutlu 1 0.00166 1.397 0.01474 0.00888 
Kutlu 1 0.00166 1.410 0.01474 0.00998 
Kutlu 1 0.00166 2.885 0.01474 0.02821 
Kutlu 1 0.00166 3.840 0.01474 0.04157 
Kutlu 1 0.00188 0.463 0.01474 0.00175 
Kutlu 1 0.00188 2.290 0.01474 0.02046 
Kutlu 1 0.00188 3.270 0.01474 0.03342 
Kutlu 1 0.00188 3.910 0.01474 0.04581 
Kutlu 1 0.00194 1.675 0.01474 0.01228 
Kutlu 1 0.00194 2.455 0.01474 0.02120 
Kutlu 1 0.00194 3.695 0.01474 0.03890 
Kutlu 1 0.00194 4.440 0.01474 0.05100 
Kutlu 1 0.00300 1.665 0.01474 0.01248 
Kutlu 1 0.00300 2.205 0.01474 0.01897 
Kutlu 1 0.00300 3.495 0.01474 0.03573 
Kutlu 1 0.00300 4.410 0.01474 0.04968 
Kutlu 1 0.00388 1.660 0.01474 0.01240 
Kutlu 1 0.00388 3.060 0.01474 0.02916 
Kutlu 1 0.00388 3.615 0.01474 0.03866 
Kutlu 1 0.00388 4.425 0.01474 0.05200 
Kutlu 1 0.00506 0.785 0.01474 0.00376 
Kutlu 1 0.00506 1.760 0.01474 0.01381 
Kutlu 1 0.00506 2.640 0.01474 0.02492 
Kutlu 1 0.00506 4.165 0.01474 0.04578 
Kutlu 1 0.00613 1.465 0.01474 0.01041 
Kutlu 1 0.00613 2.330 0.01474 0.02086 
Kutlu 1 0.00613 3.085 0.01474 0.03143 
Kutlu 1 0.00613 4.210 0.01474 0.04824 
Kutlu 1 0.00728 1.360 0.01474 0.00861 
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Table A.1 (cont’d) 
 
 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 

Kutlu 1 0.00728 2.400 0.01474 0.02113 
Kutlu 1 0.00728 3.155 0.01474 0.03100 
Kutlu 1 0.00728 4.220 0.01474 0.04782 
Kutlu 1 0.01325 1.610 0.01474 0.01265 
Kutlu 1 0.01325 2.140 0.01474 0.01932 
Kutlu 1 0.01325 2.980 0.01474 0.03189 
Kutlu 1 0.01325 4.245 0.01474 0.05384 
Kutlu 1 0.01978 1.180 0.01474 0.00826 
Kutlu 1 0.01978 2.225 0.01474 0.02274 
Kutlu 1 0.01978 2.830 0.01474 0.03317 
Kutlu 1 0.01978 3.585 0.01474 0.04741 
Kutlu 1 0.02838 1.360 0.01474 0.01112 
Kutlu 1 0.02838 2.135 0.01474 0.02275 
Kutlu 1 0.02838 2.795 0.01474 0.03517 
Kutlu 1 0.02838 3.810 0.01474 0.05612 
Kutlu 1 0.03869 1.490 0.01474 0.01395 
Kutlu 1 0.03869 2.180 0.01474 0.02456 
Kutlu 1 0.03869 2.850 0.01474 0.03938 
Kutlu 1 0.03869 3.360 0.01474 0.05081 
Fırat 1 0.00280 3.590 0.01474 0.03753 
Fırat 1 0.00280 2.707 0.01474 0.02450 
Fırat 1 0.00280 0.470 0.01474 0.00170 
Fırat 1 0.00280 5.450 0.01474 0.06585 
Fırat 1 0.00280 1.567 0.01474 0.01095 
Fırat 1 0.00280 1.037 0.01474 0.00576 
Fırat 1 0.00450 1.370 0.01474 0.00798 
Fırat 1 0.00450 5.287 0.01474 0.06543 
Fırat 1 0.00450 0.607 0.01474 0.00264 
Fırat 1 0.00450 3.350 0.01474 0.03608 
Fırat 1 0.00450 1.183 0.01474 0.00804 
Fırat 1 0.00450 2.277 0.01474 0.02060 
Fırat 1 0.01930 1.847 0.01474 0.01740 
Fırat 1 0.01930 4.320 0.01474 0.06376 
Fırat 1 0.01930 0.590 0.01474 0.00262 
Fırat 1 0.01930 3.193 0.01474 0.04168 
Fırat 1 0.01930 1.510 0.01474 0.01311 
Fırat 1 0.01930 2.413 0.01474 0.02784 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Fırat 1 0.03940 1.817 0.01474 0.02047 
Fırat 1 0.03940 0.617 0.01474 0.00321 
Fırat 1 0.03940 1.083 0.01474 0.00866 
Fırat 1 0.03940 3.903 0.01474 0.06519 
Fırat 1 0.03940 2.157 0.01474 0.02710 
Fırat 1 0.03940 1.022 0.01474 0.00860 
Fırat 1 0.00880 3.880 0.01474 0.04542 
Fırat 1 0.00880 1.420 0.01474 0.01057 
Fırat 1 0.00880 4.163 0.01474 0.05101 
Fırat 1 0.00880 0.603 0.01474 0.00289 
Fırat 1 0.00880 2.697 0.01474 0.02578 
Fırat 1 0.00880 1.603 0.01474 0.01247 
Fırat 1 0.00230 2.460 0.01474 0.02246 
Fırat 1 0.00230 0.813 0.01474 0.00455 
Fırat 1 0.00230 1.043 0.01474 0.00661 
Fırat 1 0.00230 5.397 0.01474 0.06746 
Fırat 1 0.00230 1.547 0.01474 0.01185 
Fırat 1 0.00230 3.163 0.01474 0.03373 
Fırat 1 0.00080 1.910 0.01474 0.01696 
Fırat 1 0.00080 0.860 0.01474 0.00476 
Fırat 1 0.00080 4.940 0.01474 0.06248 
Fırat 1 0.00080 1.977 0.01474 0.01724 
Fırat 1 0.00080 4.110 0.01474 0.04673 
Fırat 1 0.00080 3.080 0.01474 0.03175 
Fırat 1 0.02690 1.203 0.01474 0.01014 
Fırat 1 0.02690 4.233 0.01474 0.06872 
Fırat 1 0.02690 0.480 0.01474 0.00246 
Fırat 1 0.02690 2.513 0.01474 0.03223 
Fırat 1 0.02690 1.093 0.01474 0.00825 
Fırat 1 0.02690 2.243 0.01474 0.02669 
Fırat 1 0.03850 0.957 0.00910 0.01195 
Fırat 1 0.03850 1.597 0.00910 0.02824 
Fırat 1 0.03850 2.677 0.00910 0.06094 
Fırat 1 0.03850 0.530 0.00910 0.00412 
Fırat 1 0.03850 3.293 0.00910 0.07860 
Fırat 1 0.02630 2.170 0.00910 0.03410 
Fırat 1 0.02630 1.380 0.00910 0.01544 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Fırat 1 0.02630 2.310 0.00910 0.03594 
Fırat 1 0.02630 1.790 0.00910 0.02468 
Fırat 1 0.02630 1.850 0.00910 0.02550 
Fırat 1 0.02630 0.690 0.00910 0.00481 
Fırat 1 0.02630 1.760 0.00910 0.02305 
Fırat 1 0.02630 1.050 0.00910 0.01094 
Fırat 1 0.02630 2.495 0.00910 0.04129 
Fırat 1 0.02630 3.220 0.00910 0.05620 
Fırat 1 0.02630 3.050 0.00910 0.05197 
Fırat 1 0.02630 1.760 0.00910 0.02555 
Fırat 1 0.02630 0.470 0.00910 0.00377 
Fırat 1 0.02630 1.310 0.00910 0.01440 
Fırat 1 0.02630 0.700 0.00910 0.00496 
Fırat 1 0.01920 2.167 0.00910 0.02891 
Fırat 1 0.01920 1.617 0.00910 0.01805 
Fırat 1 0.01920 1.357 0.00910 0.01812 
Fırat 1 0.01920 2.787 0.00910 0.04834 
Fırat 1 0.01920 3.347 0.00910 0.05963 
Fırat 1 0.01920 2.957 0.00910 0.05039 
Fırat 1 0.01920 1.927 0.00910 0.03044 
Fırat 1 0.01920 1.217 0.00910 0.01453 
Fırat 1 0.01920 0.667 0.00910 0.00588 
Fırat 1 0.01920 2.137 0.00910 0.03425 
Fırat 1 0.01920 1.657 0.00910 0.02428 
Fırat 1 0.01920 0.677 0.00910 0.00690 
Fırat 1 0.01920 0.997 0.00910 0.01056 
Fırat 1 0.01920 1.913 0.00910 0.02832 
Fırat 1 0.01920 3.167 0.00910 0.05421 
Fırat 1 0.01920 0.717 0.00910 0.00544 
Fırat 1 0.01920 2.690 0.00910 0.04323 
Fırat 1 0.01920 1.123 0.00910 0.01171 
Fırat 1 0.00960 2.600 0.00910 0.03066 
Fırat 1 0.00960 5.000 0.00910 0.08412 
Fırat 1 0.00960 1.410 0.00910 0.01274 
Fırat 1 0.00960 3.410 0.00910 0.04610 
Fırat 1 0.00960 0.850 0.00910 0.00571 
Fırat 1 0.00540 3.353 0.00910 0.03794 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Fırat 1 0.00540 0.383 0.00910 0.00170 
Fırat 1 0.00540 4.920 0.00910 0.06705 
Fırat 1 0.00540 2.610 0.00910 0.02448 
Fırat 1 0.00540 1.723 0.00910 0.01286 
Fırat 1 0.00540 1.513 0.00910 0.01125 
Fırat 1 0.00540 0.760 0.00910 0.00483 
Fırat 1 0.00300 1.600 0.00910 0.01185 
Fırat 1 0.00300 2.100 0.00910 0.02020 
Fırat 1 0.00300 4.080 0.00910 0.04352 
Fırat 1 0.00300 4.290 0.00910 0.04901 
Fırat 1 0.00300 2.590 0.00910 0.02463 
Fırat 1 0.00300 1.250 0.00910 0.00792 
Fırat 1 0.00300 3.110 0.00910 0.03296 
Fırat 1 0.00300 2.220 0.00910 0.02106 
Fırat 1 0.00300 2.870 0.00910 0.03031 
Fırat 1 0.00300 2.250 0.00910 0.02260 
Fırat 1 0.00300 2.210 0.00910 0.01875 
Fırat 1 0.00300 2.990 0.00910 0.03261 
Fırat 1 0.00300 4.780 0.00910 0.05506 
Fırat 1 0.00300 3.140 0.00910 0.03482 
Fırat 1 0.00250 2.330 0.00910 0.02287 
Fırat 1 0.00250 1.350 0.00910 0.00908 
Fırat 1 0.00250 1.300 0.00910 0.00894 
Fırat 1 0.00250 0.603 0.00910 0.00294 
Fırat 1 0.00250 4.470 0.00910 0.05524 
Fırat 1 0.00140 3.130 0.00910 0.03029 
Fırat 1 0.00140 0.927 0.00910 0.00514 
Fırat 1 0.00140 5.177 0.00910 0.06258 
Fırat 1 0.00140 0.483 0.00910 0.00161 
Fırat 1 0.00140 1.970 0.00910 0.01567 
Fırat 1 0.00140 0.517 0.00910 0.00206 
Fırat 1 0.00140 0.580 0.00910 0.00275 
Fırat 1 0.00030 2.200 0.00910 0.01865 
Fırat 1 0.00030 0.517 0.00910 0.00198 
Fırat 1 0.00030 5.243 0.00910 0.06390 
Fırat 1 0.00030 4.483 0.00910 0.04887 
Fırat 1 0.00030 2.820 0.00910 0.02718 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Fırat 1 0.00030 0.840 0.00910 0.00448 
Turan 1 0.04000 1.010 0.00910 0.01245 
Turan 1 0.04000 1.370 0.00910 0.02070 
Turan 1 0.04000 1.910 0.00910 0.03348 
Turan 1 0.04000 2.710 0.00910 0.05069 
Turan 1 0.04000 2.970 0.00910 0.06345 
Turan 1 0.04000 3.310 0.00910 0.07560 
Turan 1 0.02000 1.300 0.00910 0.01233 
Turan 1 0.02000 1.660 0.00910 0.01787 
Turan 1 0.02000 2.190 0.00910 0.02852 
Turan 1 0.02000 2.450 0.00910 0.03601 
Turan 1 0.02000 2.920 0.00910 0.04647 
Turan 1 0.02000 3.350 0.00910 0.05666 
Turan 1 0.02000 3.980 0.00910 0.07053 
Turan 1 0.02000 4.480 0.00910 0.07704 
Turan 1 0.01000 1.410 0.00910 0.01286 
Turan 1 0.01000 1.930 0.00910 0.02020 
Turan 1 0.01000 2.630 0.00910 0.03226 
Turan 1 0.01000 3.450 0.00910 0.04533 
Turan 1 0.01000 4.250 0.00910 0.06145 
Turan 1 0.01000 4.980 0.00910 0.07738 
Turan 1 0.00333 2.640 0.00910 0.02537 
Turan 1 0.00333 3.610 0.00910 0.03810 
Turan 1 0.00333 4.010 0.00910 0.04676 
Turan 1 0.00333 4.700 0.00910 0.05357 
Turan 1 0.00333 5.140 0.00910 0.06102 
Turan 1 0.00333 5.700 0.00910 0.07441 
Turan 1 0.00167 1.730 0.00910 0.01346 
Turan 1 0.00167 2.840 0.00910 0.02718 
Turan 1 0.00167 3.700 0.00910 0.03935 
Turan 1 0.00167 4.670 0.00910 0.05605 
Turan 1 0.00167 5.130 0.00910 0.06162 
Turan 1 0.00167 5.810 0.00910 0.07797 

Rajaratnam 0.46 0.00500 3.6905 0.01992 0.04800 
Rajaratnam 0.46 0.00500 8.7535 0.01992 0.14382 
Rajaratnam 0.46 0.01000 8.5705 0.01992 0.14363 
Rajaratnam 0.46 0.00999 7.381 0.01992 0.11907 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Rajaratnam 0.46 0.00997 5.49 0.01992 0.08112 
Rajaratnam 0.46 0.00994 6.7405 0.01992 0.10661 
Rajaratnam 0.46 0.00000 9.7295 0.02044 0.16465 
Rajaratnam 0.46 0.00000 6.466 0.02044 0.09154 
Rajaratnam 0.46 0.00000 11.224 0.02044 0.19814 
Rajaratnam 0.46 0.00000 4.2395 0.02044 0.05582 
Rajaratnam 0.46 0.00000 2.4095 0.02044 0.02791 
Rajaratnam 0.46 0.00000 12.5355 0.02044 0.23498 
Rajaratnam 0.46 0.00000 7.3505 0.02044 0.11442 
Rajaratnam 0.46 0.00000 5.3985 0.02044 0.06977 
Rajaratnam 0.46 0.00000 3.477 0.02044 0.04047 
Rajaratnam 0.46 0.00727 4.7885 0.02044 0.06419 
Rajaratnam 0.46 0.00727 8.357 0.02044 0.14233 
Rajaratnam 0.46 0.00724 17.507 0.02044 0.22884 
Rajaratnam 0.46 0.01209 10.675 0.02044 0.22326 
Rajaratnam 0.46 0.01209 5.3985 0.02044 0.08372 
Rajaratnam 0.46 0.01211 7.93 0.02044 0.14791 
Rajaratnam 0.46 0.01193 1.83 0.02044 0.02791 
Rajaratnam 0.46 0.01358 3.233 0.02044 0.03963 
Rajaratnam 0.46 0.01354 2.6535 0.02044 0.03349 
Rajaratnam 0.46 0.01357 1.9825 0.02044 0.02791 
Rajaratnam 0.46 0.01347 3.8125 0.02044 0.05386 
Rajaratnam 0.46 0.00000 7.4725 0.02134 0.11610 
Rajaratnam 0.46 0.00000 4.9105 0.02134 0.06977 
Rajaratnam 0.46 0.00000 3.3245 0.02134 0.04186 
Rajaratnam 0.46 0.00000 4.453 0.02134 0.06140 
Rajaratnam 0.46 0.00000 2.7755 0.02134 0.03070 
Rajaratnam 0.46 0.00000 3.8125 0.02134 0.05023 
Rajaratnam 0.46 0.00000 5.6425 0.02134 0.08233 
Rajaratnam 0.46 0.00975 8.54 0.02134 0.16047 
Rajaratnam 0.46 0.00971 5.7645 0.02134 0.09377 
Rajaratnam 0.46 0.00970 4.1175 0.02134 0.06140 
Rajaratnam 0.46 0.00966 2.8975 0.02134 0.04186 
Davis et al. 0.305 0.03300 0.530233 0.00990 0.00396 
Davis et al. 0.305 0.03300 1.823256 0.00990 0.02476 
Davis et al. 0.305 0.03300 0.813953 0.01470 0.00702 
Davis et al. 0.305 0.03300 1.627907 0.01470 0.01699 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Davis et al. 0.305 0.03300 2.35814 0.01470 0.03062 
Davis et al. 0.305 0.03300 3.055814 0.01470 0.04593 
Davis et al. 0.305 0.02000 0.497674 0.00990 0.00288 
Davis et al. 0.305 0.02000 0.948837 0.00990 0.00756 
Davis et al. 0.305 0.02000 1.64186 0.00990 0.01767 
Davis et al. 0.305 0.02000 0.813953 0.01470 0.00487 
Davis et al. 0.305 0.02000 1.706977 0.01470 0.01402 
Davis et al. 0.305 0.02000 2.376744 0.01470 0.02456 
Davis et al. 0.305 0.02000 3.2 0.01470 0.03819 
Davis et al. 0.305 0.01000 0.604651 0.00990 0.00256 
Davis et al. 0.305 0.01000 0.813953 0.00990 0.00448 
Davis et al. 0.305 0.01000 1.683721 0.00990 0.01353 
Davis et al. 0.305 0.01000 2.325581 0.00990 0.02197 
Davis et al. 0.305 0.01000 0.697674 0.01470 0.00426 
Davis et al. 0.305 0.01000 1.432558 0.01470 0.01092 
Davis et al. 0.305 0.01000 2.237209 0.01470 0.01903 
Davis et al. 0.305 0.01000 3.032558 0.01470 0.02919 
Davis et al. 0.305 0.01000 3.651163 0.01470 0.03925 
Davis et al. 0.305 0.00330 0.56092 0.00990 0.00212 
Davis et al. 0.305 0.00330 1.02069 0.00990 0.00144 
Davis et al. 0.305 0.00330 1.981609 0.00990 0.01639 
Davis et al. 0.305 0.00330 1.117241 0.01470 0.00521 
Davis et al. 0.305 0.00330 1.43908 0.01470 0.00955 
Davis et al. 0.305 0.00330 2.312644 0.01470 0.01631 
Davis et al. 0.305 0.00330 2.873563 0.01470 0.02331 

Ferro 0.299 0.00000 1.67 0.01470 0.01070 
Ferro 0.299 0.00000 2.34 0.01470 0.01739 
Ferro 0.299 0.00000 2.4 0.01470 0.01806 
Ferro 0.299 0.00000 2.51 0.01470 0.02007 
Ferro 0.299 0.00000 2.77 0.01470 0.02308 
Ferro 0.299 0.00000 2.91 0.01470 0.02475 
Ferro 0.299 0.00000 3.17 0.01470 0.02776 
Ferro 0.299 0.00000 3.59 0.01470 0.03411 
Ferro 0.299 0.00000 4.05 0.01470 0.04013 
Ferro 0.299 0.00000 4.38 0.01470 0.04448 
Ferro 0.299 0.00000 4.71 0.01470 0.05017 
Ferro 0.299 0.00000 5.09 0.01470 0.05753 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Ferro 0.299 0.00000 5.91 0.01470 0.06722 
Ferro 0.299 0.00000 6.14 0.01470 0.07057 
Ferro 0.299 0.00000 6.55 0.01470 0.07993 
Ferro 0.299 0.00000 7.37 0.01470 0.09365 
Ferro 0.299 0.00000 7.61 0.01470 0.09900 
Ferro 0.299 0.00000 7.84 0.01470 0.10201 
Ferro 0.251 0.00000 2.44 0.01470 0.01753 
Ferro 0.251 0.00000 3.04 0.01470 0.02510 
Ferro 0.251 0.00000 3.41 0.01470 0.02988 
Ferro 0.251 0.00000 3.73 0.01470 0.03426 
Ferro 0.251 0.00000 4.1 0.01470 0.03984 
Ferro 0.251 0.00000 4.4 0.01470 0.04422 
Ferro 0.251 0.00000 4.95 0.01470 0.05378 
Ferro 0.251 0.00000 5.71 0.01470 0.06335 
Ferro 0.251 0.00000 5.84 0.01470 0.06813 
Ferro 0.251 0.00000 6.39 0.01470 0.07649 
Ferro 0.251 0.00000 6.79 0.01470 0.08446 
Ferro 0.251 0.00000 7.26 0.01470 0.09562 
Ferro 0.2 0.00000 2.63 0.01470 0.01950 
Ferro 0.2 0.00000 2.86 0.01470 0.02250 
Ferro 0.2 0.00000 3.13 0.01470 0.02600 
Ferro 0.2 0.00000 3.3 0.01470 0.02850 
Ferro 0.2 0.00000 3.78 0.01470 0.03450 
Ferro 0.2 0.00000 4.22 0.01470 0.04050 
Ferro 0.2 0.00000 4.49 0.01470 0.04500 
Ferro 0.2 0.00000 4.9 0.01470 0.05050 
Ferro 0.2 0.00000 5.45 0.01470 0.06000 
Ferro 0.2 0.00000 5.89 0.01470 0.06800 
Ferro 0.2 0.00000 6.27 0.01470 0.07500 
Ferro 0.2 0.00000 6.77 0.01470 0.08250 
Ferro 0.2 0.00000 7.08 0.01470 0.08950 
Ferro 0.2 0.00000 7.29 0.01470 0.09500 
Ferro 0.151 0.00000 2.86 0.01470 0.02185 
Ferro 0.151 0.00000 3.1 0.01470 0.02517 
Ferro 0.151 0.00000 3.42 0.01470 0.02848 
Ferro 0.151 0.00000 3.59 0.01470 0.03179 
Ferro 0.151 0.00000 3.71 0.01470 0.03642 
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Table A.1 (cont’d) 
 

 Researcher b(m) So(m/m) ye(cm) n q(m3/s/m) 
Ferro 0.151 0.00000 4.07 0.01470 0.04172 
Ferro 0.151 0.00000 4.37 0.01470 0.04570 
Ferro 0.151 0.00000 4.95 0.01470 0.05166 
Ferro 0.151 0.00000 5.39 0.01470 0.05894 
Ferro 0.151 0.00000 6.01 0.01470 0.06887 
Ferro 0.151 0.00000 6.59 0.01470 0.07947 
Ferro 0.151 0.00000 7.14 0.01470 0.08940 
Ferro 0.151 0.00000 7.39 0.01470 0.09470 
Ferro 0.1 0.00000 2.9 0.01470 0.02200 
Ferro 0.1 0.00000 3.19 0.01470 0.02700 
Ferro 0.1 0.00000 3.57 0.01470 0.03200 
Ferro 0.1 0.00000 3.74 0.01470 0.03400 
Ferro 0.1 0.00000 3.92 0.01470 0.03700 
Ferro 0.1 0.00000 4.18 0.01470 0.04000 
Ferro 0.1 0.00000 4.57 0.01470 0.04600 
Ferro 0.1 0.00000 4.63 0.01470 0.04900 
Ferro 0.1 0.00000 5.53 0.01470 0.06300 
Ferro 0.1 0.00000 5.77 0.01470 0.07000 
Ferro 0.1 0.00000 5.96 0.01470 0.07300 
Ferro 0.1 0.00000 6.63 0.01470 0.08500 
Ferro 0.05 0.00000 4.25 0.01470 0.04200 
Ferro 0.05 0.00000 4.57 0.01470 0.04600 
Ferro 0.05 0.00000 4.72 0.01470 0.05200 
Ferro 0.05 0.00000 5.05 0.01470 0.06200 
Ferro 0.05 0.00000 5.62 0.01470 0.07200 
Ferro 0.05 0.00000 6.39 0.01470 0.07800 

 


