AN MPEG-7 VIDEO DATABASE SYSTEM FOR CONTENT-BASED
MANAGEMENT AND RETRIEVAL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CIGDEM CELIK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2005



Approval of the Graduate School of Natural and Applied Sciences,

Prof. Dr. Canan Ozgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Nihan Kesim Cigekli

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Ferda Nur Alpaslan (METU)

Assoc. Prof. Dr. Nihan Kesim Cicekli (METU)

Assist. Prof. Dr. ilyas Cicekli (Bilkent Univ.)

Assoc. Prof. Dr. Ahmet Cosar (METU)

Dr. Pinar Senkul (METU)




I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I
have fully cited and referenced all material and results that are not

original to this work.

Name, Last name : Cigdem Celik

Signature

11



ABSTRACT

AN MPEG-7 VIDEO DATABASE SYSTEM FOR CONTENT-BASED
MANAGEMENT AND RETRIEVAL

Gigdem Celik
M.Sc., Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Nihan Kesim Cicekli

September 2005, 142 pages

A video data model that allows efficient and effective representation and
querying of spatio-temporal properties of objects has been previously
developed. The data model is focused on the semantic content of video streams.
Objects, events, activities performed by objects are the main interests of the
model. The model supports fuzzy spatial queries including querying spatial
relationships between objects and querying the trajectories of objects. In this
thesis, this work is used as a basis for the development of an XML-based video
database system. This system is aimed to be compliant with the MPEG-7
Multimedia Description Schemes in order to obey a universal standard. The
system is implemented using a native XML database management system.

Query entrance facilities are enhanced via integrating an NLP interface.

Keywords: Video Database, MPEG-7, Native XML Database

iv



0z

KAPSAM TABANLI YONETIM VE ERISIM iCIN MPEG-7 VIDEO VERI TABANI
SISTEMI

Gigdem Celik
YUksek Lisans, Bilgisayar Mihendisligi B6IGmu
Tez Yoneticisi: Dogent. Dr. Nihan Kesim Cicekli

Eylll 2005, 142 sayfa

Nesnelerin uzay-zamansal 6zelliklerini verimli ve etkin bir bi¢cimde temsil eden
ve sorgulayan bir video veri modeli daha Once gelistirilmisti. Bu model
videonun anlamsal igerigi iizerine odaklidir. Nesneler, olaylar ve nesneler
tarafindan  gergeklestirilen  aktiviteler ~bu modelin ana konusunu
olusturmaktadir. Ayrica nesnelerin uzaysal iliskileri ve yoriingelerine yonelik
sorgulamalar1 da desteklemektedir. Bu tezde bu modeli temel alarak XML
tabanli bir video veri tabani sistemi gelistirilmistir. Sistemin uluslararas: bir
standard olan MPEG-7 multimedya tanmimlama semalarna uygun
gelistirilmistir. Bu sistemin uygulamas: yerli XML veri taban1 yonetim sistemi
kullanilarak yapilmistir. Gelistirilen bu sisteme sorgu girisini kolaylastirmak

amaciyla bir NLP arayiizii entegre edilmistir.

Anahtar Kelimeler: Video Veri Tabani, MPEG-7, Yerli XML Veri Tabani



TABLE OF CONTENTS

PLAGIARISM ...ttt ettt e e ae e e st e s be e e e ab e e s be e e eaeeesabeeenneesabeeenneeeas I
AB ST RACT .ttt ettt ettt bttt e e bt e e e a e e e e bt e e eh b e e s be e e ahee e ebe e e be e e anreeeaeeenareenaee v
O Z ettt ettt ettt n ettt s s st et san s \'%
TABLE OF CONTENTS ...ttt Vi
LIST OF TABLES ...ttt e e sen e VI
LIST OF FIGURES...... .ottt e s IX
CHAPTER
1. INTRODUGTION. ...t ittt ettt e e e st s e s ane e e saneesne e e smreenaneeesaneenas 1
8 0 R [N =700 U0 o N TSR 1
1.2 RELATED STUDIES .. ettiiuteteitttaauteeateeeauteesateeesaeeasaeeeaaseeesabeeabeeaaaseesseeesaseesasessansessasessnnes 4
1.3 CONTRIBUTIONS OF THE THESIS. ... ttiiiuteeeiueeenieeeateeerieeesteeesteeesuseesaeeesaseesasesesnsessasessnnes 7
L S 100 =P TRRTRR 9
2. XML DATABASES ...ttt ettt ettt e e e sbe e e s be e e bt e e sabeeenaeesaneaan 10
2 4 | PRSP 10
211 SHUCTUNING XML ...t 11
2.2 DATASTORAGE WITH XML .....eiiiiieiiiiie e 14
2.2.1  Using XML with Databases .......ccueeiiiiiiiiiiiieecee e 16
222  Querying With XML ......ooiiiiiiee e 29
2.2.3 BERKELEY DB XML ...ooiiiiiiiiieeie ettt 34
3. MPEG-7 MULTIMEDIA DESCRIPTION SCHEMES ........cooiiiiiiieie e 40
O B Y [ = =L PSR 40
3.2 DATADESCRIPTION LANGUAGE ..ottt 42
3.3 MULTIMEDIA DESCRIPTION TOOLS ...ttt 44
R T =Y o TSRS 44
3.3.2  Content Description TOOIS .....c.eiiiiiiiiiieiiee ettt 46
4. DESCRIBING VIDEO SEMANTIC CONTENT WITH MPEG-7 DESCRIPTION TOOLS
FOR A SPATIO-TEMPORAL VIDEO INFORMATION SYSTEM .....cooviiiiiieeieeeree e 64
4.1 VIDEO CONTENT MODELING ..ottt 64
4.1.1  ST-AVIS - Spatio-Temporal Video Information System ..........c.ccccocvvviiriennen 65
4.1.2 Application of Multimedia Description Schemes Over ST-AVIS .............c.c...... 73
5. IMPLEMENTATION OF THE VIDEO DATABASE MANAGEMENT SYSTEM ................. 88
5.1 ARCHITECTURE ... ettt st rae e s e 88
511 User Interface Module ..........c..eeeeiiiiiiiec e 89
5.1.2 Data Storage and Querying Module..........cccoiiiiiiiiniiniiieee e 102
6. CONGCLUSION ..ottt ettt ettt ettt e e sae e e sabe e ebe e e sase e sbe e e saeeesnbeesaneeesaneeans 122
5.1 COMMENTS ..ttt ettt ettt et ee e bt e ae e e e be e e s st e e sabe e e aaeeesabeeesbee e embeeebeeesabeeaseeeanseesneeesaneaans 122

vi



8.2  FUTURE WORK....eiiiiiiiiiteee e e ettt e e e e et e e e e e e e e ate e e e e e e e e e e annteeeeaeaeeaaannnneeeaaaaean 123

REFERENGES. ... .ottt et 125
APPENDICES ...ttt ettt e n e 129
APPENDIX A e e e e 129
APPENDIX B 132
APPENDIX C ..ottt ettt 133
APPENDIX D .. 134
APPENDIX E.. e 135
APPENDIX F e 137
APPENDIX G ..o e 140

vii



LIST OF TABLES

Table 3.1 - Types of Multimedia Meta Data..........coocveviiiiiiiiiie e 46
Table 3.2 - StlIREGION DS....c ittt rae e see e 50
Table 3.3 - VideoSegment DS ... 52
Table 3.4 - Classification framework for segment relationships .........cccooceeiiiiieninneenn. 53
Table 3.5 - SematicBase DS.........cooo i 60
Table 3.6 - ODJECT DS......oo i 61
Table 3.7 - AGeNtODJECE DS ... 61
Table 3.8 - EVENT DS ... .o 62
Table 3.9 - Semantic RelationTyPes ......cccueiiiiiriiie et 62
Table 3.10 - SemanticRelation CS........ooiii e 63
Table 4.1 - Relation between the membership value and angle between the centers of

[g=Te r=TgTo | (T T PP U PP PP 70

viil



LIST OF FIGURES

Figure 2.1 - A SAmMPIE DT D ....oiiiiieieie ettt st eaee s 11
Figure 2.2 - An Example XDR SChema .......ccociiiiiiiii e 12
Figure 2.3 - An Example XSD SChema.........cocviiiiiiieeieee e 13
Figure 2.4 - An Example Data Centric XML Document .........ccoocceeriiiienenniiee e 14
Figure 2.5 - An Example Document Centric XML Document .........cccccccceeevniieneenciieneenee. 15
Figure 2.6 - XML Schema Suitable for Table-Based Mapping ........ccccoeevrveeinreerieeenennn 19
Figure 2.7 - XML Document Created with Table-Based Mapping ........cccoeeeeeeeenieenennnnen. 20
Figure 2.8 - XML Document Created with Object-Relational Mapping.........cccccecveeeennee. 21
Figure 2.9 - Tabular Representation of XML Dcoument...........cccooveviiieieiiiiee e 21
Figure 2.10 - Example XML Element INdeXing ........ccccueeiiiiiiiiiiiieeeiee e 23
Figure 2.11 - XPath EXamPIes ......ooo e 30
Figure 2.12 - Example Element ConStruCtor.........ccooiiei i 31
Figure 2.13 - Example FLOWR EXPression.........cccoiieiiiiiiiiin e 32
Figure 2.14 - Example Conditional EXPression..........c.ueieiiiireiiiieee e 33
Figure 2.15 - Example Quantified EXPreSSion .........ccccveieeerireeiieeiseee e 33
Figure 2.16 - Example User-Defined FUNCHON .......coociiiiiiiiii e 34
Figure 3.1 - Overview of MDSS ......oooiiiiiieee e 44
Figure 3.2 - MPEG7 Multimedia DS - content description .........ccccccoveieeeiniien e, 47
Figure 3.3 - Example Multimedia DeSCription ..o 48
Figure 3.4 - Example Narrative World...........coooiiiiii e 55
Figure 3.5 - Semantic DS and COMPONENLS ......cccueiiiiiiiiiieie e 57
Figure 4.1 - A sample assoCiation MapP.......ueeiiiiiiieriiee e 66
Figure 4.2 - Frame Segment TrEE .....cccoi ittt 68
Figure 4.3 - Examples for LEFT relationship for two objects.........cccccoeeiiiiieiiiiiieneee, 70
Figure 4.4 - The extended assoCIiation MapP..........ceveiiiiiiiiiiiee e 71
Figure 4.5 - Organization of Mpeg7 root and top-level elements .........ccccoeceeeiiiienennen. 75
Figure 4.6 - ContentENitY TYPE ..eeeiiieee e e 76
FIQUIre 4.7 - VidEOTYPE. .coiieiiei ettt s e e e nee e e e ennes 77
Figure 4.8 - VideoSegmMENTTYPE ...ooi it 78
Figure 4.9 - VideoSegmentTemporalDecompositionTYPE.....ccovvveeeeireeeeiniee e 79
Figure 4.10 - VideoSegmentSpatioTemporalDescriptionType .......cccceveereierinieeineeenieen. 79
Figure 4.11 - MediaTimeETYPE ....ueeii e 79
Figure 4.12 - StIlIREGIONTYPE ..ueeiiiiieiiee ettt 80
Figure 4.13 - RegioNLOCAtOITYPE ...couviiiiiiiieie ettt 81
Figure 4.14 - SemanticBagTyPe .......ooiiiiiie e 84
Figure 4.15 - SemanticBaseTyPe ......cocciiiiii i 85
Figure 4.16 - RelatiONTYPE ..eeeiiiiiiiieeeiee et 86
Figure 4.17 - Semantic Description of ObJect .........coovv i 86
Figure 5.1 - The System ArChiteCIUre ......occuueii i 88
Figure 5.2 - M-AVIS Opening Page ......coooiiiiiiiiee ettt 90
Figure 5.3 - New Video ENntry FOrM ......ooiii e 91
Figure 5.4 - Adding Object Region Paiir .........ccoiiiiiiiiiiiieiee e 91
Figure 5.5 - Add EVENT ... 92
Figure 5.6 - Graphical Query INterface ........oocii i 93
Figure 5.7 - List of Video & INtervals........occueeiiiiiiii e 94

iX



Figure 5.8 - Playing Result Vide0o ClPS ...ocuii it e 95

Figure 5.9 - Available Video Name LisSt.........couoiiiiiiiiiie e 96
Figure 5.10 - List of Objects & INTervalS.........oceiiiiiiieieieeeeee e 97
Figure 5.11 - Region Selection FOIM ... 98
Figure 5.12 - ReQION LiST......eiiiiiiiiieee e 99
Figure 5.13 - Draw TrajeCIOry ......ooo o 100
Figure 5.14 - Play TrajeCOry ...t 100
Figure 5.15 - NLP Query Interface ..o 102
Figure 5.16 - Elementary Object QUETY .......oooviiiieiiiiee e 103
Figure 5.17 - Elementary Activity TYpe QUETY .......cooiiiiiieiiieeee e 105
Figure 5.18 - Elementary EVEnt QUENY ........ooiiiiiiiiie e 106
Figure 5.19 - Object OccurrenCe QUETY .......oooveiiieeeiiee e 108
Figure 5.20 - Activity Type Occurrence QUETY .......ccoiueeiiuiiireeeiiee i 110
Figure 5.21 - Event OCCUIrenCe QUETY ........ooiuiiiiii et eiee ettt sae e s 112
Figure 5.22 - Fuzzy Spatial Relationship QUETY ........cccooiiiiiiiiiieee e 114
Figure 5.23 - Regional(Frame) QUETY .........coaiiiiiiiieiee et 116
Figure 5.24 - Regional(Interval) QUEIY .........oocuiiiiiiiiiee et 118
Figure 5.25 - Trajectory Query Part.1 ..o e 120
Figure 5.26 - Trajectory Query Part.1 ... 121



CHAPTER 1

INTRODUCTION

1.1 Introduction

The increased usage of multimedia systems in our daily life has paved the
way for querying multimedia and consequently video related data. The
content of the video is the most considerable metadata subject to
querying. The two main branches of video content are low-level features
dealing with properties such as shape, color, motion and luminance
values and the high level features addressing entities like persons and
events. Entities like persons, trees, cars are called objects, whereas the
flying of a bird or the crash of a car is of type event. The entities together
with their spatial, temporal and spatio-temporal properties form the

semantic content of a video.

A video database system should use a model that provides querying the
semantic content of the videos. There are basically three approaches used
in model development studies: the annotation based technique that uses
user specified annotations to describe semantics, the physical level video
segmentation approach that describes video as a stream of small segments

with application specific temporal and spatial properties, and the object-



based modeling that adopts object-oriented programming concepts to

define video semantics.

In this thesis, the aim is to develop a video database management system
built on an object-oriented video data model. The main focus of the model
is on semantic entities, such as objects (cars, buildings, persons, etc.),
activities (eating, flying, etc.) and events (eating spaghetti by Ali). The
spatio-temporal properties of objects, spatial relationships between
objects, and temporal properties of activities and events are also
considered. Queries dealing with object, activity, and event occurrences;
spatial locations of objects, spatial relationships between two objects; and
object trajectories are supported by the system. Also, the spatial, spatial
relationship and spatio-temporal queries consider fuzzy behavior to cope
up with the uncertainties originating from the spatial properties of

objects.

Other than a video data model, the way the semantic content is stored
arises as a critical decision. Having a reliable, efficient, extendible, and
adaptable storage strategy is the key point to construct a rigid video
database system that provides accurate search functionality. Moving
Pictures Expert Group (MPEG) offers MPEG-7 standard [1] for the
description of audiovisual content. The MPEG-7 framework consists of
Descriptors (Ds), Description Schemes (DSs), a Description Definition
Language (DDL), and coding schemes [2]. With the set of description
tools it presents, MPEG-7 promises to allow applications to enable

effective search, filtering, navigation and reuse of content [3].



The metadata descriptions of videos in this thesis are embedded into the
determined XML schemes that are useful for search and retrieval
processes. Moreover, the schemes are modeled to conform to the MPEG-7
standard. Rather than using partial descriptions, complete descriptions
are adopted. Spatio-temporal decomposition of video with VideoSegment
DSs and semantic entity descriptions with SemanticDesription DSs are
studied separately and combined via defining relations with

SegmentSemanticBaseRelation DSs.

The question that concerns any multimedia database system is how to
store the data physically. Since XML files are determined to be the storage
units for our study, there were actually three different choices. First one
suggests storage directly on the file system. This type of usage is
advantageous if a few files are subject to management. This is not a valid
condition for our study. Also this choice does not provide any database
management facilities for our application. Another approach addresses
storing files as columns of a table in a relational database management
system. This way of managing documents requires loading files to
memory to manipulate the documents for querying purposes. We
preferred to use the last choice that proposes native XML databases to
meet storage and search requirements. Because, native XML databases are
specialized for storing XML documents and provide useful facilities for
managing these documents. In our study, all queries are achieved using
an XML Query Language (XQuery) provided by the native XML database
we use. The semantic content is divided into three different groups to

perform each query type over only the related group of files. The



collections in native XML databases are used as the means for this file

classification.

Query interfaces are also important for any search system. People tend to
use systems which can parse spoken language. In order to extract the
query parameters from the sentences entered by the user, an existing NLP

Query entrance interface [4] is integrated to the developed system.
1.2 Related Studies

AVIS (Advanced Video Information System) is an object-based video data
model [5]. It models the semantic entities (object, activity, event) together
with the temporal properties of these entities. The model utilizes a
number of data structures to figure out the entities and their properties.
The video is decomposed into segments that are stored in a frame
segment tree structure. The nodes of the tree addresses frame sequences
together with the objects and events that take place in the frame sequence.
The system can answer only temporal queries including object, activity

and event occurrence queries.

The study in [6] extends the model proposed by AVIS with spatio-
temporal properties of object. The data structures in AVIS are modified to
adapt for the newly added properties. The content of the nodes of the
frame segment tree are remodeled to include object-region pairs instead
of just objects. In this way the number of supported query types are
increased with spatial, spatial relationship (e.g. left, right, top, bottom,
etc.), and spatio-temporal (e.g. the trajectory of an object) queries. This

extended system is called ST-AVIS, ST standing for spatio-temporal.



Our video database management system is based on ST-AVIS model.
That is, the data structures proposed by the model are completely
mapped to MPEG-7 XML schemas and each supported query type is
implemented with XQuery. Support for multiple video querying is also

added to this system.

OVID [7] is a content based object oriented model. The common
descriptional data among objects are shared via interval-inclusion based
inheritance. The study defines operations to composite video objects.
VideoSQL that is an SQL based query language is introduced for query

entrance.

BilVideo provides an integrated support for queries on spatio-temporal,
semantic and low-level features (color, shape, and texture) on video data
[8]. The spatio-temporal queries are handled using a knowledge-base,
and the semantic queries are performed via an object-based relational
database. All queries are handled by the native XML database in our
study. The study in [8] does not use MPEG-7 standard. In addition to the
graphical query interface a text-based SQL-like query language is

available for users while we provide an NLP query interface.

In [9] an object-oriented video database system is introduced. The system
is capable of accessing the video content via high level query-based
retrieval. To cope up with the dynamic spatial and temporal properties of
semantic entities, a versatile modeling technique is devised. The system
uses an Object-oriented database engine (NeoAccess). A query language
supporting spatial and temporal primitives is introduced to be used in the

query interface.



There is a growing effort to adopt MPEG-7 descriptors for video metadata
management. The systems that use MPEG-7 descriptors are introduced in

the following.

PANORAMA [10] is a system for digitization, storage and retrieval of
audiovisual information and its associated data. A branch of this study
deals with developing a set of algorithms to extract visual features such
as color and texture information, moving objects, faces and regions with
text. Actually, the web-based system uses XML documents to exchange
data among subsystems. Therefore, it uses MPEG-7 compliant XML
schemas for communication purposes rather than using it as a storage

format.

[11] introduces COSMOS-7 as an MPEG-7 compliant metadata modeling
and filtering scheme for digital video. The scheme considers all of the
semantic entities modeled in our study. It also introduces a content-based
filtering strategy to extract user’s preferred content. The output of the
filtering operation might be the metadata or the frame sequences
satisfying the filter expression. COSMOSIS is developed as a Java-based
front-end to COSMOS-7. No special implementation detail emphasizing

strategy for storing the XML documents is given.

AMOS [2] is a video object segmentation and retrieval system. It models
the objects and their trajectories. The descriptions of visual features and
spatio-temporal relationships are also included. AMOS also provides
similarity retrieval. The study concerns only objects as opposed to our

study that additionally models activities and events.



Yavuz [12] uses MPEG-7 Description Tools to build a video database
management system based on the ST-AVIS model. This study adopts
partial descriptions to construct a schema for the semantic content while
our study concerns complete descriptions. Only one scheme is used and
all information about a video is embedded into one file. We preferred to
classify the content considering the execution of the query types we
support. In [12] a relational database (SQL Server 2000) management
system is used and the file is stored as text large object type. The queries are
performed with XPath on the DOM (Document Object Model) tree loaded
into the memory [12]. Our system executes XQuery expressions via the
Native XML database. Lastly, [12] allows classification of videos

according to their subject, such as news, sports, etc.
1.3 Contributions of the Thesis
The contributions of this study can be listed as follows:

1. Originating from the Spatio-Temporal Video Information System
[6], that is capable of querying only one video at a time a video
database management system that can query all videos has been

developed.

2. A video semantic content description is modeled adopting
Multimedia Description Schemes to ST-AVIS data model
Complete descriptions are used to have a more flexible design that

can easily be adapted to contain new features.

3. Among the alternatives for storing XML tagged video metadata a

native XML Database is determined. In order to provide each



query type to be performed over only the related files, the semantic
content is distributed into three different collections, one for object
related data, the other for event related data and the last is for

frame segment tree.

4. XQuery is used to extract data that is required to process the

queries.

5. A prototype system is implemented. Three applications are
combined into one application group that work interactively with
one another. A user interface for data and query entry is integrated
with an NLP interface for parsing query sentences. This
combination is adapted to communicate with our application that
carries out actual database operations using Berkeley DB XML [13].
The communication is achieved by sending and receiving

messages via network.

6. None of the systems introduced in 1.2 allow entering queries in
natural language. The NLP interface embedded into the system has
put forward a considerably important facility that extracts query
parameters automatically from the sentence entered by the user.
The NLP interface uses ontology to find words similar to the ones
extracted from the query sentence. These words are also searched
for to allow the user to access a larger set of results similar to the

actual ones.

Considering the systems designed for video data management, this thesis

study contributes the features listed above. To the best of our knowledge



this study is unique in that it collects object-oriented video data model,
spatio-temporal querying, MPEG-7 adoption with complete semantic
descriptions, native XML database usage with XQuery, and NLP query

interface into one complete system.
1.4 Scope

Chapter 2 explains XML and XML databases in detail. Chapter 3 presents
MPEG-7 description tools addressing structural and semantic content
definition. Chapter 4 explains how ST-AVIS entities and their
spatio/temporal properties are expressed with MPEG-7 description tools.
Chapter 5 explains the overall structure of the implemented video
database management system. Chapter 6 concludes the thesis study

pointing out future extensions.



CHAPTER 2

XML DATABASES

2.1 XML

XML [14] stands for eXtensible Markup Language. XML is a W3C
recommendation for marking up data using tags [15]. XML was
developed to overcome the shortcomings of HTML. In HTML the
semantics and syntax of tags is fixed. As more and more functionality was
added to HTML to account for the diverse needs of users of the Web, the
language began to grow increasingly complex and unwieldy [14]. So a
language like XML, which allows creation of unique data formats for

specific applications, was inevitable to be built.

XML was originally developed as a way to mark up content but it also
became an important as a data storage method and interchange format.

As a data format the advantages of XML over others are [14]:

1. Built in support for internationalization due to the fact that it utilizes

unicode,
2. Platform independence (for instance, no need to worry about endianess),

3. Human readable format makes it easier for developers to locate and fix

errors than with previous data storage formats,

10



4. Extensibility in a manner that allows developers to add extra information
to a format without breaking applications that where based on older

versions of the format,

5. Large number of off-the-shelf tools for processing XML documents

already exists.
2.1.1 Structuring XML

Since XML provides defining document structures specific to the
application, there should be a means for defining the structure and
constraints on the content model of XML documents. Document Type
Definitions (DTD) and XML Schemas are two different ways to describe

the format of a valid XML document.
2.1.1.1 Document Type Definitions(DTD)

DTDs are the original means of specifying the structure of an XML
document. They are used to specify the order and occurrence of elements

in an XML document. Below is an example DTD:

<IELEMENT student (name, surname)>
<IATTLIST student student_no CDATA>
<IELEMENT name (#PCDATA)>
<IELEMENT surname (#PCDATA)>

Figure 2.1 - A Sample DTD

11



In this specification, the student element has two child elements, name
and surname; and an attribute, student_no. The two child elements and

the attribute contain character data.
2.1.1.2 XML Data Reduced(XDR)

Some data types used in XML were not defined in DTD. Due to weakness
of DTD, XDR was recommended as a potential XML schema standard.
XDR was XML based and overcame some inadequacies related with DTD
but it was eventually rejected. Below is the specification of the same

scheme given in Figure 2.1:

<Schema name="student_schema" xmlns="urn:schemas-microsoft-com:xml-data"
xmins:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="name" dt:type=" string" />
<ElementType name="surname" dt:type="string" />
<AttributeType name="student_no" dt:type="uil" />
<ElementType name="student" order="seq">
<element type="name" minOccurs="1" maxOccurs="1"/>
<element type="surname" minOccurs="1" maxOccurs="1"/>
<attribute type="student_no" />
</ElementType>
</Schema>

Figure 2.2 - An Example XDR Schema

This schema specifies that the name and surname elements contain string
type of content and the student_no attribute contains an unsigned integer
as its content. It also specifies that the student element is composed of
name and surname elements and a student _no attribute. The name and

surname elements occurs exactly once in a student element.

12




2.1.1.3 XML Schema Definitions(XSD)

The W3C XML Scheme recommendation provides XSD as a means to
define XML Schema. XSD supports more data types than XDR. XSD also
supports the creation of custom data types, and object oriented
programming concepts like inheritance and polymorphism. Example 2.3

is the specification of the same schema given in Figures 2.1 and 2.2:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema" >
<element name="student">
<complexType>
<sequence>
<element name="name" type="string"/>
<element name="surname" type="string"/>
</sequence>
<attribute name="student_no">
<simpleType>
<restriction base="string">
<pattern value="e\d{6}"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
</schema>

Figure 2.3 - An Example XSD Schema

This schema specifies student element as a complex type, namely it may
have element type children. The student element is composed of a
sequence of name and surname elements together with a student_no
attribute. The name and surname elements and the student no attribute
have string type of content. Also the student_no element should match the

regular expression that matches the letter “e” followed by 6 digits.

13



2.2 DATA STORAGE WITH XML

XML is used with databases. The most common reason to use XML with a
database is to publish the data stored in the database as XML. For
example a student registry system might return the academic record sheet
of a student as an XML document. Similarly, data transfer to a database
may be carried out by means of an XML document. For example, a
university may submit the transcript of a student in XML format to a
company. An application within an institute may extract the data (i.e.
university, GPA) from the XML document and store it in the database.
The most popular usage of XML is to model semi-structured data due to
the extensibility it provides. If it is hard to predicate all kinds of data that
may be required in the near future, it is impractical to determine and use
a relational schema. Also, for large volumes of data, XML provides better

storage, management and querying facilities.

In the previous examples XML documents are used in a data-centric way.
Data-centric XML documents contain discrete pieces of regularly
structured, fine-grained data. The example in Figure 2.4 shows the

characteristic of a data-centric XML document:

<Student>
<Name>Cigdem Celik</Name>
<N0>1164623</No>
</Student>

Figure 2.4 - An Example Data Centric XML Document

14



Another way of using XML documents is document-centric usage.
Document-centric documents contain mixed content, larger-grained data
and have irregular structure. Mixed content is a mixture of child and text

elements like in the example in Figure 2.5:

<element>This element has <type>mixed</type> content</element>

Figure 2.5 - An Example Document Centric XML Document

Document-centric XML documents are mainly used with databases for
managing and querying purposes. For example, the end user
documentation for a thermal camera system may contain vast amount of
data. Managing such kind of a document set with a classical database is
critical. In such a case, document-centric usage may be utilized to freely
extract new XML documents from fragments of existing documents and
perform queries over these newly created documents in an XML query

language.

Actually, using XML as a database is not always that advantageous. The
very first argument against using XML as a database is that XML is an
inefficient storage format. It is verbose, so data access will be slow due to
the time spent for parsing. Also, the XML family lacks many of the
technologies commonly found in modern databases, such as indexes,
transactions, multi-user access, security, logging, referential integrity,
triggers, and so on [16]. As a result, using XML for data storage and

management issues requires a lot of coding. So it may be advantageous

15



for small, single-user databases but impractical for large, multi-user

applications that require real database facilities.
2.2.1 Using XML with Databases

Actually, there is no strict distinction between a data-centric and a
document-centric XML document. For example, a data-centric, i.e.
academic record sheet of a student, document may contain a description
part as a large-grained, irregularly piece of data. Likewise, a document-
centric, i.e. user documentation for a thermal camera system, document
may contain release data in the form of regularly structured, fine-grained
data. However, classifying the documents as data-centric and document
centric is useful in the perspective of determining which type of a
database to use. Databases are classified into two categories in the respect

that they use XML. XML is used to:

1. To exchange data between a database and an application or

between two databases:

For example, an e-commerce Web service may return the properties
of a product, which is stored in a database, as an XML document and
this document may be used by an end-user application or database.
The first part of this process, namely extracting data from database
and constructing XML document, is called publishing. The reverse
process, namely extracting data from an XML document and
recording it to a database, is called shredding. If shredding and
publishing are carried out by the built in capabilities of the database,
the database is said to be XML-enabled.

16



2. To be directly stored in a database:

For example, the end-user documentation of a product may be stored
in the database. Native XML databases are developed to use XML in

this fashion.
2.2.1.1 XML Enabled Databases

An XML-enabled database uses a data model, i.e. relational, other than
XML. So the actual data model should be mapped onto XML data model
and vice versa. The XML-enabled databases utilize a special application,
which carries out mapping operations, either internal or external to the

database engine.

For example, DB2 XML Extender, the XML Wrapper, and SQL/XML
can all transfer data between XML documents and the DB2 database.
XML Extender and XML Wrapper are external to the database engine,
while SQL/XML support is integrated into the DB2 database engine itself
[16].

The main advantage of using an XML-enabled database is that it does not
require data model redesign or application update. The existing data and
applications are kept intact. A built in facility behaves as a glue
application providing some sort of communication between XML

document and the database.

17



Mapping Database Schema to an XML Schema

In order to transfer data between an XML document and an XML-enabled
database, it is necessary to map the database schema to the XML schema

(or vice versa).

Mapping is a many-to-many operation. You can map the data in the
database to many different types of results. For example the academic
record sheet of a student may be mapped to a report of the student’s

current status or to a report showing the status of all of the students.

Mappings are generally a design time issue. Mapping is an operation
applied on element types, attribute and text. The physical structure, such
as entities and encoding information, and logical structure, such as
processing instructions and the order, in which the elements occur, are
almost always omitted. This may cause the creation of a different file
when the file is stored in a database and later reconstructed from the data
in the database. This situation may be acceptable depending on the

application.

Table-based and object-relational mappings are two types of mappings
commonly used by the applications. Query languages are also accepted as
a means for mapping since they are able to return results in XML format.

In other words, they may define a one-directional mapping from the

database to XML.

1. Table Based Mapping: The table-based mapping models XML
documents as a single table or set of tables. The database is

modeled as the XML Schema in Figure 2.1 viewing with the

18



perspective of table-based mapping. As seen, columns are modeled
as elements. But depending on the application they can also be
mapped to attributes. The application can also use a naming
strategy for tables, elements and attributes. Also, products that use
table-based mappings can optionally contain metadata for tables
and columns either as attributes of each related table or column

element or at the start of the document.

Table-based mapping is useful for serializing relational data, if the
format of the XML document matches the schema in Figure 2.6.

Figure 2.7 is an example for table-based mapping;:

<database>
<table1>
<rowl>
<columni>...</columni>
<column2>...</column2>

<column(n)>...</column(n)>
</rowl>
<row2>
</row2>
<row(n)>
</row(n)>
</tablel>
<table2>
</table2>

<table(n)>

</table(n)>
</database>

Figure 2.6 - XML Schema Suitable for Table-Based Mapping

19



<database>
<students>
<student description = “This is where student personal data is stored”>
<name>Jonathan</name>
<surname>Rice</surname>
<student_no>111111</student_no>
</student>
</students>
<courses>
<course>
<name>Statistics - I</name>
<code>5550444</code>
</course>
</courses>
</database>

Figure 2.7 - XML Document Created with Table-Based Mapping

The database in Figure 2.7 is composed of two tables, namely
students and courses. The rows of the students table is tagged in
between <student> and </student>. The same case holds for the
courses table. Also each column of each table is tagged as an

element.

Object Relational Mapping: The object-relational mapping is used
by all XML-enabled relational databases and some middleware
products [17]. Object-relational mapping views XML document as
a tree of objects that are specific to the data in the document.
Objects are mapped to tables, properties are mapped to columns.
The relationships between objects are viewed as integrity
constraints. The example in Figures 2.8 and 2.9 illustrates object-

relational mapping:

20



<database>
<students>
<student>
<name>Jonathan</name>
<surname>Rice</surname>
<student_no>111111</student_no>
<course description = “course taken by the student”>
<code>5550111</code>
<grade>AA</grade>
</course>
<course>
<code>5550222</code>
<grade>BA</grade>
</course>
</student>
</students>
</database>

Figure 2.8 - XML Document Created with Object-Relational Mapping

The student object contains two course objects representing the
courses taken by the student. The student and the courses taken by
the student may be stored in two different tables and the tabular

representation of this mapping is as in Figure 2.9.

Student
Name Surname | Student No
Jonathan Rice 111111
TakesCourse
Student No Code Grade
111111 5550111 AA
111111 5550222 BA

Figure 2.9 - Tabular Representation of XML Dcoument

21



2.2.1.2 Managing XML Documents

There are two alternative ways of managing XML documents as data
storage. The first alternative proposes keeping files in the file system or in
a relational database. In the second alternative the files are stored in

native XML databases. The former one causes limited XML functionality.

XML Documents in the File System

For small application that uses a small set of files it is fine to keep the files
in the file system. The system commands can then be used to query, i.e.
grep in UNIX, or modify the content of these documents. A simple
transaction control may also be organized via using a version control

system.

XML Document as a Column of a Table

Another alternative is keeping documents as BLOBs in a relational
database. This is more advantageous than the former due to additional
facilities provided by the database engine such as transactional control,
security, multi-user access. In addition, many relational databases
provide means for full-text, proximity, synonym and fuzzy searches.
Some of these databases have XML-aware searching tools that provide
XML Querying. Also elements and attributes may be indexed. If an index
is applied on an item (element or attribute), the document is searched for
all instances of the indexed element or attribute. The found instances are
recorded into the index table together with the identifier of the document

the instance is found in. Then the values of the items are indexed in order

22



to provide fast access to a searched item and then the corresponding XML

document. Figure 2.10 demonstrates this indexing strategy.

Suppose we have a set of documents with the following schema:
<schema xmlIns="http://www.w3.0rg/2001/XMLSchema"
<element name="student">
<complexType>
<sequence>
<element name="name" type="string"/>
<element name="surname" type="string"/>
</sequence>
<attribute name="student_no">
<simpleType>
<restriction base="string">
<pattern value="e\d{6}"/>
</restriction>
</simpleType>
</attribute>
</complexType>
</element>
</schema>
If we want to index the element student_no we can store the indexes in the
following tables:

1. StudentNumbers:

StudentNo VARCHAR(50)
Documentld | INTEGER

2. Documents:

Documentld | INTEGER
Content LONGVARCHAR

When a document is inserted to the database the application adds the
document to the Documents table. It searches the content of the document for
the attribute <student_no> and records the found values of the attribute and
the Documentld of the document to the StudentNumbers table. To find the
contents of all the documents those contain the student with the student_no
111111 the application executes the following query:

SELECT Content

FROM Documents

WHERE Documentld IN (SELECT Documentld

FROM StudentNumbers
WHERE StudentNo ='111111))

Figure 2.10 - Example XML Element Indexing

23



Native XML Databases

A native XML database is one that [18]:

e Defines a (logical) model for an XML document -- as opposed to the data
in that document -- and stores and retrieves documents according to that
model. At a minimum, the model must include elements, attributes,
PCDATA, and document order. Examples of such models are the XPath
data model, the XML Infoset, and the models implied by the DOM and
the events in SAX 1.0.

® Has an XML document as its fundamental unit of (logical) storage, just
as a relational database has a row in a table as its fundamental unit of

(logical) storage.

e Is not required to have any particular underlying physical storage model.
For example, it can be built on a relational, hierarchical, or object-oriented
database, or use a proprietary storage format such as indexed, compressed

files.
Application Areas:

Native XML databases preserve issues such as document order,
processing instructions, comments, CDATA sections, entity usage. So
they are suitable for storing document-centric documents. Native XML
databases support XML query languages. So they provide answers to
queries like "Find all documents in which the first paragraph contains a

bold word.” which are difficult with other query languages.

24



If the natural format of the documents that are used in an application is
XML, it is a good choice to use a native XML. Think of an application that
uses XML documents for communication. If these documents required to
be queued, it is best to use a message queuing system built on a native
XML database. This is because XML-specific capabilities (i.e. XML query
languages) offered by a native XML database, will usually provide faster

retrieval of whole messages.

Since native XML databases can accept, store, and understand any XML
document without prior configuration, they present the most convenient
solution for storing documents that do not conform to an XML Schema.
Otherwise, transferring the data in an XML document to a relational or
object-oriented database requires you to first create a mapping and a

database schema [17].

Native XML databases are also used to store semi-structured data, and to

increase retrieval speed in certain situations.
Features of Native XML Databases:

1. Document Collections: Most native XML databases allow users to
logically group the documents into collections. This is analogous to
a table in a relational database. For example, if the students of a
class are stored in different XML documents then a collection
might be defined to collect these documents under a group, so that
queries related to these files can execute apart from other unrelated

tiles. Collections may also be nested.

25



2. Query Languages: Native XML databases support one or more
query languages. XPath and XQuery are the most popular ones.
The capabilities of the query language play an important role in

determining a database suitable for an application.

3. Updates and Deletes: There are different strategies for updating
and deleting documents in a native XML database. The problem
may be solved in a manner that just replaces or deletes the original

document or that modifies the document through a live DOM tree.

There are also languages that specify ways to modify the
fragments of a document. Today two languages are available
working in this fashion, namely XUpdate and XQuery. With
XUpdate a set of nodes are defined with XPath, then the type of
the operation is specified like deleting these nodes or inserting
before or after these nodes. The W3C XQuery working group and
Patrick Lehti proposed a set of extensions to XQuery for update

facilities.

4. Transactions, Locking, and Concurrency: Native XML databases
support transactions. But the level of locking for an XML
document is a critical issue. When locking is at document level,
multi-user concurrency decreases. Document-level locking might
not be a matter if the users updating the same document at the
same time. However, document-level locking may cause

unacceptable delays in high-volume applications.

26



Node-level locking seems to be a solution for applications for
which high multi-user concurrency is required. However, this is
not the case yet, since implementing node-level locking is
problematic. Usually locking a node requires locking its parent,
and so on up to the root of the document. This condition is the
same with locking the whole document. A partial solution to this
problem is proposed by Stijn Dekeyser [19]. This solution offers
annotating the locks with the path from the locked node to the
target node. This allows other transactions to determine whether
they may cause a confliction with any of the queries currently in

process.

Node-level locking seems to be supported by most native XML

databases in the future.

. Application Programming Interfaces (APIs): Nearly all native
XML databases offer programmatic APIs. These APIS generally
support ODBC-like functionalities such as connecting to the
database, executing the query and returning the results. Results are
usually of type XML string, a DOM tree or an XMLReader over the

returned XML document.

The APIs are specific to the database but there is a tendency
towards having a unique programming interface for native XML
databases. XML:DB API and JSR 225: XQuery API for Java (XQJ)

are being developed for this purpose.

27



6. Round-Tripping: Native XML databases are able to round-trip
XML documents. That is, an XML document can be stored in a
native XML database and retrieved back. This facility is vital for
document-centric applications for which it is important to get the

exact copy of the stored documents.

7. Remote Data: XML documents stored in a native XML database
can contain remote data. This remote data is generally data
retrieved from relational database using table-based or object-
based mapping. Remote data may be live or not depending on the
native XML database. The changes made on the live remote data
are reflected in the remote database. Most native XML databases

will probably support live remote data.

8. Indexes: Native XML databases support indexes. There are three
types of indexing. Value indexes index text and attributes.
Structural indexes index the location of elements and attributes.
Full-text indexes index the individual tokens in the text. While
only a few native XML databases support full-text indexes, value
and structural indexes are supported by most of the native XML

databases.

9. External Entity Storage: An external entity is any reference that
points information stored outside the database. It may be the URL

of a Web page or the chapters of a manual.

External entity storage is currently an unsolved problem by the

native XML databases. Specific to the application it may be

28



desirable to keep the reference as it is or to expand the external
entity and then store it. So the solution to this problem should be
such a flexible one that allows choosing whether or not to expand

external entity references.

2.2.2 Querying with XML

XPath [20] and XQuery [21] are the two most common XML Query

languages.
2.2.2.1 XPath

XPath is an expression language used to select portions of an XML
document. XPath expressions are just like regular expressions operating
on XML nodes. Examples in Figure 2.11 are useful means for

understanding XPath:

29



e /a/b Find all b elements that are children of element a which is the child of the
root of the document.

e //b Find all b elements that appear at any depth (//) in the document.

e count(//b) Find the count of all b elements that appear anywhere in the document.

e //video[title = “Brave Heart”] Find all video elements, which have a child title
element of value “Brave Heart”. A predicate surrounded with a bracket behaves as
a filter over the results. These brackets can be nested

e //video[@duration > 20] Find all video elements, which have a duration attribute
of value greater than 20. The @ sign marks the attributes.

e //video[@duration] Find all video elements, which have a duration attribute of any
value.

e //video/@duration Find all duration attributes, which are attached to a video
element.

e (a | b)Find all a or b child elements of the current context node.

e //a[.= “avalue”] Find all a elements that have a value “avalue”. “.” represents the
current context node.

e (//a)[1l/text() Find the text nodes of the element a, which appears first in the

document. [] is now used to specify the rank of the element.

Figure 2.11 - XPath Examples

2.2.2.2 XQuery

XQuery is a technology under development by the World Wide Web
Consortium that's designed to query collections of XML data -- not just
XML files, but anything that can appear as XML, including relational
databases [22].

XPath expressions form the simple parts in an XQuery. In other words,
XQuery is built on XPath extending it with F(or) L(et) W(here) O(order

by) R(eturn) expressions.

30



XQuery Explained with Examples
The features of XQuery are explained with examples in the following.

Element Constructors: It is possible to create or generate elements in an

XQuery expression by embedding element constructors into the query.

<video videoid = {$id}>
{$title}
{$duration}
</video>

Figure 2.12 - Example Element Constructor

The expression in Figure 2.12 generates a video element with a videoid
attribute. $id, $title and $duration are variables that are assigned a value in
the previous parts of the query and they compose the value of the videoid

attribute and the content of the video element.

FLWOR Expressions: FLWOR (pronounced "flower") stands for For, Let,
Where, Order by, and Return keywords. These keywords are the names

of the clauses that form the basic building blocks of XQuery.

1. A FOR clause provides an iteration construct over the set of results

returned by a query.

2. A LET clause works like assigning a single value to a single

variable.

31



3. A WHERE clause contains a logical expression that filters the

results returned by the preceding LET and FOR clauses.

4. The ORDER BY clause sorts the results according to the variable

given with the clause.

5. The RETURN clause produces the output of the FLWOR

expression.

As an example, consider the query in Figure 2.13.

FOR $student IN document("students.xml")//student
WHERE $student/name = "Ozge" OR $student/surname = "Celik"
RETURN $student/student_no

Figure 2.13 - Example FLOWR Expression

This query returns a list of numbers of students whose names are Ozge or

surnames are Celik.

Conditional Expressions: A conditional expression works just like if
statements in a programming language. It evaluates a logical expression
and returns the corresponding result expression according to the

evaluated value.

32



FOR $vid IN
RETURN

<video>
{
$vid/title,
IF ($vid/@type = "Fiction")
THEN $vid/editor
ELSE $vid/director
}

</video>

Figure 2.14 - Example Conditional Expression

The query in Figure 2.14 returns a list of videos. If the type of the video is
fiction it includes the editor information. Otherwise it includes the

director information.

Quantified Expressions: The SOME clause in XQuery is an existential
quantifier that is satisfied if there is at least one node satisfying the related
predicate. The EVERY clause is a universal quantifier used to test if all
nodes in a series of values satisfy the related predicate. The following
query in Figure 2.15 finds the titles of clips in which every object has a

name that contains the word man.

FOR $c IN //clip
WHERE EVERY $obj IN $c//object SATISFIES contains($obj/name, "man")
RETURN $c/title

Figure 2.15 - Example Quantified Expression

33



Functions and Operators: XQuery supports a large set of functions and
operators that provide math, string, regular expression, logical
expression, XML node, sequence and input manipulation, type
conversions, date and time comparisons. The most common ones are

listed in Appendix A.

User Defined Functions: XQuery also allows users to define and use their

own functions. Figure 2.16 illustrates a user defined function.

This example is directly taken from W3C Working Draft [23]
NAMESPACE xsd = http://www.w3.0rg/2001/XMLSchema
DEFINE FUNCTION depth($e) RETURNS xsd:integer
{

# An empty element has depth 1

IF (empty($e/*)) THEN 1

# Otherwise, add 1 to max depth of children
ELSE max(depth($e/*)) + 1

}
depth(document("partlist.xml"))

This function finds the maximum depth of the document named "partlist.xml."

Figure 2.16 - Example User-Defined Function

2.2.3 BERKELEY DB XML

Berkeley DB XML (BDB XML) is an open source, embedded XML
database engine developed by Sleepycat Software. It is built on top of
Berkeley DB, a "key-value" database which provides record storage and

transaction management [24].

34



BDB XML is a C ++ library that links into the application. A programming
API is available that provides managing, querying and modifying the
documents. BDB XML supports multiple processes per application and

multiple threads per process.

BDB XML provides command line tools to load, backup, dump and

interact with the XML databases.
2.2.3.1 Languages and Platforms

Although written in C++, a BDB XML API is available for the languages
C++, Java, Perl, Python, PHP, and Tcl. BDB XML also has third party

bindings for Ruby and other popular languages.

BDB XML supports the platforms Windows, Linux, UNIX and other O/S.
2.2.3.2 XML Features

BDB XML conforms to the W3C standards for XML and XML
Namespaces, XPath 2.0 and the XQuery 1.0 July 2004 draft. It additionally
offers the following features related to XML data management and

queries:

Containers (Collections): BDB XML store documents in containers. A
container is a single file that contains one or more XML documents,
together with their metadata and indices. Adding, deleting, and
modifying documents and managing indices are carried out via
containers. BDB XML allows operating on multiple containers at the same

time.

35



Indices: BDB XML provides flexible indexing of XML nodes, elements,
attributes and document meta-data. BDB XML offers a single mechanism
for indexing, which indexes XML data according to four criteria, namely

Uniqueness, Path Type, Node Type, and Key Type.

Indices are declared after a container is initialized and before any
documents are added. In addition, multiple indices can be declared per

container.

1. Uniqueness: If an item is indexed with uniqueness, it can occur
only once in a container. By default, indices are not unique;

uniqueness for an index should be explicitly declared.

2. Path Type: There are two types of path elements in the tree, a node
type and an edge type. Node type is just the node itself. Edge type
is any location where two nodes meet. If an XML document is
viewed as a tree then there are also two types of path elements in
an XML document. Path type node indicates that a node in the path
is indexed. Path type edge indicates that the portion of the path
where two nodes meet is indexed. BDB XML query processor uses
edge-type indices because they are more specific than a node-type

index.

3. Node Type: If an element is subject to indexing node type element
should be used. Similarly attributes should be indexed via node

type attribute.

4. Key Type: When testing the value of the element against a

provided value (//a [b='value b']), equality index is recommended.

36



If testing is for the existence of an element, presence index is
useful, and if testing using the XPath contains () function (//a

[contains (b, 'value')]), substring index should be used.

Query Optimization: BDB XML implementation of XQuery uses a cost-

based query optimizer. Pre-compiling a query can triple the performance.

Query results: BDB XML retrieves results that match a given XQuery

query either as a set of values or as an XML document.

Storage: BDB XML can store documents as whole documents or as
document nodes. In the former one the documents are kept in their
entirety. In the second one the document is broken down into nodes and
each resulting node is kept as a different record in the container.
Considering the query performance, storing the whole document is best
for small documents, while the other is shown to be ideal for XML

documents with size greater than 1 MB.

BDB XML preserves the encoding and keeps the documents in their

native format.

Metadata attribute support: Recording metadata associated with a
document is useful since it provides keeping data that do not conform the
schema of the document. Documents in BDB XML can have metadata

attributes.

Document modification: BDB XML supports efficient updates to

document fragments. BDB XML’s robust document modification facility

37



allows easily adding and deleting documents, and modifying selected

portions of documents [25].
2.2.3.3 Database Features

BDB XML inherits several database features from Berkeley DB. The most

important ones are listed below:

In-process Data Access: BDB XML is a library running in the same
process space as the application using it. So BDB XML is better than other
traditional client/server-based database implementations, which cause

IPC-overhead.
Database Environment Support: BDB XML environments support:
1. multiple databases,
2. transactions,
3. deadlock detection,
4. lock and page control, and
5. encryption.

Atomic Operations: A series of read and write operations to BDB XML

can be compiled into a single atomic operation as a transaction.

Isolated Operations: Operations performed inside a transaction see all
XML documents as if no other transactions are currently operating on

them [25].

38



Recoverability: Data saved inside BDB XML’s transactions are

guaranteed to be fully available even if the application system fails.

Concurrent Access: More than one thread or process can read or write
XML data set in parallel via employed isolation and deadlock handling

mechanisms supplied by BDB XML.

39



CHAPTER 3

MPEG-7 MULTIMEDIA DESCRIPTION SCHEMES

3.1 MPEG-7

In recent years, as the amount of multimedia increased, the attempt to
develop technologies to manipulate audiovisual data has also increased.
One of the crucial points subject to standardization is to extract useful
information from multimedia and to apply it in a search system. To have
a common protocol for defining and using multimedia data is important
due to scalability, intelligence and interoperability it will provide for
multimedia applications. MPEG-7 [26] has improved a set of description
tools considering different sights of multimedia at different levels of

abstraction.

MPEG-7 standard deals with a wide range of multimedia properties and

has tools to describe:
1. visual features (e.g., color),
2. audio features (e.g., timbre),
3. structure (e.g., moving regions and video segments),

4. semantics (e.g., objects and events),

40



5. management (e.g., creator and format),

6. collection organization (e.g., collections and models),
7. summaries (e.g., hierarchies of key frames) and,

8. user preferences (e.g., for search) of multimedia.

The ones describing the structure and semantics of multimedia form the

main concern of this thesis and they will be examined in section 3.3.2.

The MPEG-7 standard also known as "Multimedia Content Description
Interface" aims at providing standardized core technologies allowing
description of audiovisual data content in multimedia environments [27].
This aim is really a hard task to achieve, considering the variety of
requirements and multimedia applications, and the broad number of
crucial audiovisual features. In order to achieve this broad goal, MPEG-7

aims to standardize [28]:

1. Descriptors (D): representations of features, that define the syntax and

the semantics of each feature representation,

2. Description Schemes (DS), that specify the structure and semantics of the

relationships between their components, which may be both D’s and DS’s,

3. A Description Definition Language (DDL), to allow the creation of new
DS’s and, possibly, D’s and to allows the extension and modification of

existing DS’s,

4. System tools, to support multiplexing of description, synchronization

issues, transmission mechanisms, file format, etc.

41



The standard is subdivided into seven parts [28]:

1. Systems: Architecture of the standard, tools that are needed to prepare
MPEG-7 Descriptions for efficient transport and storage, and to allow
synchronization between content and descriptions. Also tools related to

managing and protecting intellectual property.

2. Description Definition Language: Language for defining new DSs and
perhaps eventually also for new Ds, binary representation of DDL

expressions.
3. Visual: Visual elements (Ds and DSs).
4. Audio: Audio elements (Ds and DSs).

5. Multimedia Description Schemes: Elements (Ds and DSs) that are

generic, i.e. neither purely visual nor purely audio.

6. Reference Software: Software implementation of relevant parts of the

MPEG-7 Standard.

7. Conformance: Guidelines and procedures for testing conformance of

MPEG-7 implementations.

Parts 2 and 5 will be examined within the scope of thesis in sections 3.2

and 3.3.

3.2 DATA DESCRIPTION LANGUAGE

The MPEG-7 standard has a central component, namely the Description

Definition Language (DDL). DDL enables users to compose their own

42



Description Schemes (DSs) and Descriptors (Ds) by providing them with
a sound descriptive basis. The expression, combination, extension and
refinement of DSs and Ds are carried out by syntactic rules, which are

defined by DDL.

XML is used as the syntax for the MPEG-7 DDL. Due to the fact that XML
Schema language was not designed particularly for audiovisual content,
certain extensions are indispensable if all the MPEG-7 DDL requirements
must be met. Therefore, DDL consists of the below components whose

descriptions:
1. XML Schema structural components;
2. XML Schema datatypes;

3. MPEG-7-specific extensions: XML Schema is extended to satisfy
the MPEG-7 DDL requirements such as:

a. array and matrix datatypes,
b. typed references,

c. built-in derived datatypes such as enumerated datatypes for
MimeType, CountryCode, RegionCode, Character-SetCode,

and CurrencyCode and a set of additional timedatatypes.

For complete specifications, MPEG-7 DDL Committee Draft [29] and the
W3C XML Schema Candidate Recommendations [30] can be consulted.

43



3.3 MULTIMEDIA DESCRIPTION TOOLS

3.3.1 Overview

produc ticn

Uzage

Content mmgewm‘[

e S Collzction & Modal
- Nenigation &
Creation & Access

Conteni descripfion
Structural
aspects

Summary I

User
interaction

User
prefErnces

Datatype & Basic Link & media
strctures 2 lements localiztion

Baszic DS

Figure 3.1 - Overview of MDSs

Figure 3.1 taken from [27] overviews the Multimedia Description

Schemes (MDSs). Basic elements are placed at the lower level in the

Multimedia Description Scheme (MDS) organization. Their work area

consists of basic datatypes, mathematical structures, and tools for linking

and media localization along with basic DSs, from which more complex

DSs are formed. Content management and description elements, which give

descriptions of the content from several viewpoints, stem from this lower

level. There are three elements (Creation and Production, Media, Usage)

44




for identifying information about the content management. On the other
hand, the Structural and Conceptual aspects describe the perceivable
content. A more precise definition for each set of these elements is listed

in the Table 3.1 which is adopted from [28]:

The five sets of elements are shown as separate entities. However, there
are interrelations between them and they may partially include the one
another. To illustrate, the structural content description may involve
individual segments where Media, Usage or Creation & Production
elements are attached. Depending on the application, different

combinations of the areas of the content description may be chosen.

In addition to the direct content description obtained from the five sets of
elements mentioned in Table 3.1, there are tools defined for navigation
and access. The summary elements provide browsing. Information on
probable content variations is supplied as well. In order to adapt different
multimedia presentations to the facilities of the client terminals, network
conditions or user preferences, the original Audio Visual (AV) content

can be replaced by variations.

Content Organization is the set of tools for describing content organization

via classification, definition of collections and modeling.

The final set of tools collected in User Interaction, are specified to denote

user choices for the utilization of multimedia material.

45



Table 3.1 - Types of Multimedia Meta Data

Elements Functionality
Creation & Meta information describing the creation and production of the
Production content: typical features include title, creator, classification, purpose

of the creation, etc. This information is most of the time author
generated since it cannot be extracted from the content.

Usage Meta information related to the usage of the content: typical
features involve rights holders, access right, publication, and
financial information. This information may very likely be subject
to change during the lifetime of the Audio Visual (AV) content.

Media Description of the storage media: typical features include the
storage format, the encoding of the AV content, elements for the
identification of the media. Note that several instances of storage
media for the same AV content can be described.

Structural Description of the AV content from the viewpoint of its structure:

aspects the description is structured around segments that represent
physical spatial, temporal or spatio-temporal components of the AV
content. Each segment may be described by signal-based features
(color, texture, shape, motion, audio features) and some elementary
semantic information.

Conceptual Description of the AV content from the viewpoint of its conceptual

aspects notions. (Note that currently this part of the MDS is still under Core
Experiment and no elements are included in the XM [27] or WD
[28]).

3.3.2 Content Description Tools

Content description tools describe the structure and semantics of
multimedia data [31]. The hierarchical view of content description tools

are given in Figure 3.2 [32].

46



«0 S «DSa «DSw
Still region Multimedia segm ent Audio segment

«DSw
5till region 3D
«DSx
(Video segment

«D S
Semantic place

Audic visual region

Ewent ‘

«DS»
Semantic time

P
Agent object

Figure 3.2 - MPEG7 Multimedia DS - content description

The structural and semantic tools are examined separately in sections

3.3.2.1 and 3.3.2.2.
3.3.2.1 Structural MPEG-7 Description Tools

MPEG-7 has description tools for describing the structure of the
multimedia data in space, time, and media source. Structural description
of multimedia data consists of general or application specific segments
and the corresponding attributes, hierarchical decomposition, and

relations.

Still Region is the most fundamental visual segment. It represents a group
of pixels in an image of a frame in a video. In Figure 3.3 three still regions
are illustrated. The first one (SR1) corresponds to a full image, while the
other two, SR2 and SR3, show the regions where two object reside in the
video frame. The description of StillRegion DS is given in Table 3.2
adopted from [33].

47



One other visual segment is the Video Segment that describes a sequence of
frames. The definition of elements of VideoSegment DS is given in Table

3.3 adopted from [33].

The Moving Region is yet another visual segment that is a set of pixels in a

group of frames in a video.

Shake hands

Still region SR2:
Textual annotation

hasAccompanierQOf

Color Structure

I
Still region SR1: : Concept C1:
Creation information | ; Label
Textual annotation i Event EV1: Property
7 i Label Property
i Semantic time Concept tic
1 Semantic place base relation:
Spatial segment i hasPropertyOf
decomposition: !
et Jn o | - . .
.| No overlap, gap L Pr— Comradeship
1 1| relation: Object-event
!l hasAgentOf : relation:
I
; ;
i
i
I
I
1

1 Alf-x Ana___l .

“! Agent object

. . 2
Still region SR3: i Agent object Algbel
Textual annotation Directional spatial | ! Segment-semantic base AOL: Person
Color structure segment relation: ' | relation: Label
Contour shape left : hasMediaPerceptionOf Person
I

Figure 3.3 - Example Multimedia Description

The visual and audio features of the multimedia data can be represented
by the visual and audio Ds and DSs. Also, media, creation and usage
information represented by segments can be described using media,
creation and usage tools, respectively. Segment attribute description tools
are designed to define segment related attributes such as spatio-temporal,
media, and graph masks; importance for matching and point of view;

creation and media of ink segments; and hand writing recognition.

48



The segment decomposition tools specify the decomposition of multimedia
data into a hierarchy of segments. There are four types of decompositions
defined by MPEG-7, namely spatial, temporal, spatio-temporal and media
resource decompositions. Using spatial decomposition, a frame in a video
can be divided into still regions depicting the regions of objects in

concern.

The still regions can then be decomposed into other still regions. The
example in Figure 3.3 adopted from [31] illustrates the spatial
decomposition of spatial region SR1 into other still regions, SR2 and SR3.
Similarly temporal, and spatiotemporal decompositions can be applied to

multimedia data.

The role of media source decomposition is to provide a means to break
segments into their media components such as audio and video tracks.
The resulting segments may overlap in time, space, and/or media. Also
the union of them may have gaps compared to the original segment.
Figure 3.3 illustrates a spatial decomposition that has gaps but no

overlaps.

In order to designate the common relations among segments, the segment
relation description tools are developed. The spatial relation left between

the still regions SR2 and SR3 is shown in Figure 3.3.

49



Name

StillRegionType

SpatialLocator

SpatialMask

MediaTimePoint

MediaRelTimePoint

MediaRellncrTimePoint

Visual Descriptor

VisualDescriptionScheme

GridLayoutDescriptors

SpatialDecomposition

Table 3.2 - StillRegion DS

Definition

Describes 2d spatial region of an image or video
frame, which can correspond to an arbitrary set of
pixels, a single pixel, or even the full image or video
frame. The still region does not need to be
connected in space.

Describes the spatial localization of the still region
(optional).

Describes the composition of spatially non-
overlapping, connected components that form a
non-connected still region (optional). If absent, the
segment is composed of the single connected region
in space defined by the SpatialLocator element. If
present, the segment refers to the set of non-
overlapping sub-regions in space defined by the
SpatialMask element.

Indicates the time point of the still region when it
belongs to a video using an element of type
mediaTimePointType (optional).

Indicates the time point of the still region when it
belongs to a video frame in a video using an
element of type MediaRelTimePointType (optional).
Indicates the time point of the still region when it
belongs to a video frame in a video frame using an
element of type MediaRellncrTimePointType
(optional).

Describes a visual feature of the still region using a
visual descriptor (optional).

Describes complex visual features of the still region
using a visual description scheme (optional).
Describes visual features of the sub-regions
resulting from a grid decomposition of the still
region (optional). GridLayoutDescriptors
descriptions only apply to rectangular still regions.
Describes a spatial decomposition of the still region
into one or more sub-segments (optional).

50



MPEG-7 defines a set of directional (e.g. right), topological (e.g. touches),
temporal (e.g. before, after, during), spatio-temporal (e.g. union,
intersection) and additional (e.g. annotates) relations. A classified list of

relation types are given in the Table 3.4:

51



Table 3.3 - VideoSegment DS

Name

VideoSegmentType

MediaTime

TemporalMask

VisualDescriptor
VisualDescriptionScheme
TimeSeriesDescriptors
Mosaic
SpatialDecomposition
TemporalDecomposition
SpatioTemporalDecoposition

MediaSourceDecoposition

Definition

Describes a temporal interval or segment of video data,
which can correspond to an arbitrary sequence of frames,
a single frame, or even the full video sequence.

Describes the temporal localization of the video segment
by specifying the start time and the duration of the video
segment. If the video segment is non-connected, the
duration should be equal to the duration of the smallest
connected temporal interval that includes the video
segment. For example, if a video segment is composed of
two connected components of duration 2 and 3 seconds
and there is a gap of 1 second between them, then, the
duration of the smallest connected temporal interval that
includes the video segment is 6 seconds. MediaTime is
optionally described in cases in which the video segment
refers to an entire video.

Describes the composition of temporally non-
overlapping, connected components that form a non-
connected video segment (optional). If absent, the
segment is composed of the single connected interval in
time defined by the MediaTime element. If present, the
segment refers to the set of non-overlapping sub-intervals
in time defined by the TemporalMask element.

Describes a visual feature of the video segment using a
visual descriptor (optional).

Describes complete visual features of the video segment
using a visual descriptor (optional).

Describe a temporal sequence of visual features in the
video segment (optional). TimeSeriesDescriptors
descriptions only apply to connected video segments.

Describes a mosaic of the video segment (optional).

Describes a spatial decomposition of the video segment
into one or more sub-segments (optional).

Describes a temporal decomposition of the video segment
into one or more sub-segments (optional).

Describes a spatio-temporal decomposition of the video
segment into one or more sub-segments (optional).

Describes a media source decomposition of the video
segment into one or more sub-segments (optional).

52



Table 3.4 - Classification framework for segment relationships

Types of relationships

Structural

Spatial

Temporal

Visual

Topological

Metric

Directional

Topological

Metric

Directional

Global

Local

Composition

Examples

Adjacent to, Overlap, Contained in,
Composed of, Consist of

The union, The intersection, The negation
Near from, Far from

R in Theta-R Graph, 0.5 inches from

Left of, Top of, Upper left of, Lower right

of. Behind
2D-String’s spatial relationships

20 degrees north from, 40 degrees east
from, the union of two segments

Theta and R in Theta-R Graph

Co-begin, Co-End, Parallel, Sequential,
Overlap, Adjacent, Within, Composed,
Consist of

SMIL’s <seg> and <par>

The union, The intersection, The negation
SMIL’s <seq> and <par> with attributes
(start time, end time, MediaDuration)

Near from, Far from

20 min. apart from, 20 sec. overlap

Before, After

20 min. after

Smoother than, Darker than, More yellow
than, Similar texture, Similar Color,
Similar speed

Distance in texture feature, Distance in
color histogram

Indexing hierarchy based on color
histogram

Faster than, To grow slower than, Similar
speed, Similar shape

20 miles/hour faster than, Grow 4
inches/sec. faster than

Indexing hierarchy based on local motion,
deformation features

More symmetric than,

Distance in symmetry feature
Indexing hierarchy based on symmetry feature

53



3.3.2.2 Semantic MPEG-7 Description Tools

The semantic descriptions take part in a narrative world, which refers to
the world depicted in the multimedia data such as the context of a movie.
Objects, agent objects, events, concepts, semantic states, semantic places,
and semantic times, together with their attributes and relations constitute
the semantic entities in multimedia data. The perceivable items that
occupy time and space in the narrative world are mapped to objects.
Events are another group of entities understood as occasions upon which
something happens [33]. Agent objects refer to objects that are persons, a
group of persons, or organizations. Figure 3.3 shows an event, EV1

(Shake hands), and two agent objects AO1 (Alex), and AO2 (Ana).

The semantic entities of the narrative world can possess properties and
they can pass through states. Semantic states are parametric attributes of
semantic entities and semantic relations at a specific point in time and
space (i.e., weight and height of person) [31]. Also, they may have
relations with semantic and other entities. A narrative world is illustrated
in Figure 3.4 adopted from [34]. This world is built upon an image that
contains two persons, an event, a place, a time and a concept. The

relationships between these entities are also illustrated.

To sum up, entities in narrative worlds, their attributes and their relations
constitute the semantic content of multimedia. The MPEG-7 tools

describing these constituents are reviewed in the following sections.

54



Semantic relation:
depictedBy

Semantic relation:
location

5P1:

SemanticPlace |,

Label
Place

New York

{
L
.
|
it
|

9 September
SemanticTime | - —_
ST1: V= r
Label
Time

Semantic relation:
time

Semantic relation:
symbolizedBy

Concept C1:
Label
Property
Property

Semantic relation:
representedBy

Event EV1:
Label

Semantic relation:

accompanier

agent

Semantic relation:

Agent object ADL:

Label
Person

Agent object AQ2:

Label
Perzon

Figure 3.4 - Example Narrative World

The Abstraction Model

Abstraction in logic replaces one or more of the constant expressions in a

statement by a variable [34]. That is, abstraction replaces an instance with

a more general class the instance belongs to. Since abstraction forms a

means to perceive the world, it is appropriate to use it to develop

descriptive techniques for describing the narrative world in multimedia.

In MPEG-7, abstract properties can be represented without abstraction,

but media and formal abstractions are also considered. A media

abstraction is a description that has been drawn from a specific entity and

is capable of describing similar instances of multimedia. The description

of the image in Figure 3.4 is “Alex is shaking hands with Ana in New

55




York on the 9th of September". This description can be a media
abstraction and can be used to describe the same event in another media.

To clarify, the variable in media abstraction is the media itself.

A formal abstraction is a description that represents a pattern common to
a set of examples. The pattern contains placeholders or variables that may
be substituted by those that are common to the set. The description is
called formal since it contains variables. When these variables are filled
in, the result should be media abstractions or concrete descriptions. "Alex
is shaking hands with any woman in New York on the 9th of September",
is a formal abstraction for the example in Figure 3.4. The variable in this
abstraction is “any woman” and when filled with “Ana” it forms the
aforementioned media abstraction “Alex is shaking hands with Ana in

New York on the 9th of September".

MPEG-7 also allows description of properties and concepts. The property
“Hardness” can be an attribute of the object “Rock”. Concepts are abstract
entities that are not directly perceived but used to name a group of
properties. In a sense, they can be defined as the generalization of
perceivable semantic entities. "Comradeship” (Cl) in Figure 3.4 is a
concept. Concept DS is specialized to describe relationships of a property,
or allow multiple semantic entities to be related to a single property, or
specify the strength of a property. The property or group of properties

must be described as a concept [34].

56



Semantic Entities

The Semantic DS and its components are shown in Figure 3.5 taken from
[34]. The MPEG-7 semantic entity tools describe narrative worlds and

semantic entities such as objects, events, concepts, states, places and times

[34].

AbstractionLevel ] —1 AgentObject DS

j Object DS

Collection D

Model DS SemanticBase DS <« Event DS
(abstract)
Segment DS * —| Concept DS
SemanticBag DS | |
(ab:acr] — SemanticState DS
Semantic DS — SemanticPlace DS
desecribes
= — SemanticTime DS

ﬁﬂtin‘lﬂQ \

Content | captures

WNarrative World

Figure 3.5 - Semantic DS and Components

The SemanticBase DS forms the basis for semantic entity tools.
SemanticBase DS is an abstract type that represents any semantic entity
including a narrative world. Different semantic tools provide a way to
describe different status or functionality related to the same semantic

entity in the narrative world.

57



The Semantic DS is derived from another abstract type the SemanticBag
DS, which is used for the representation of any kind of collection of

semantic entities and their relationships.

The Semantic DS is specialized to form other DSs, namely Object,
AgentObject, Event, SemanticPlace, SemanticTime, SemanticState and
Concept DSs. Object DS and Event DS describe objects and events present
in the narrative world. Trivially they describe the semantic entities
described in part 4.3.2.2.1, namely objects, agent objects, events and

semantic place, time, state, and concepts.

Object and Event DSs allow recursive definitions of objects and events.

Semantic Attributes

MPEG-7 can describe semantics entity labels (Label), by a textual
definition (Definition), or in terms of properties (Property) or of features
of the media segments where they occur (MediaOccurence). These and
other semantic attributes are given in Table 3.5 which is adopted from

[33].

The content of derived semantic tools, Object DS, AgentObject DS, Event

DS are given in Tables 3.6, 3.7 and 3.8 (all adopted from [33]) respectively.

Semantic Relations

MPEG-7 has standardized common semantic relations such as agent and
time but it allows the description of non-normative relations too. The

normative semantic relations in MPEG-7 are listed in Table 3.9.

58



The Semantic Relation description tools present means for defining the
common relations among semantic entities and other entities. The
semantic relation tools include the SemanticRelation CS, which specifies
semantic relations that apply to entities that have semantic information.
Normative semantic relations may describe how several semantic entities
relate in a narrative or story. The element definitions of SemanticRelation

CS are given in Table 3.10 which is adopted from [33].

Currently defined semantic relations include [31]:
1. relations among semantic entities,
2. relations among semantic entities and semantic relations,
3. relations among semantic entities and segment, and relations

among semantic entities and models.

The relations classified according to their types are listed in Table 3.9. The

inverse of these relations also exist.

59



Name
SemanticBaseType

AbstractionLevel
Label

Definition
Property

MediaOccurence

MedialLocator

TemporalMask
SpatialMask
SpatioTemporalMask

Relation

Type

Table 3.5 - SematicBase DS
Definition
Describes a semantic entity

Indicates the kind of abstraction performed in the description
of the semantic entity (optional).

Identifies the type of the semantic entity.
Defines the semantic entity (optional).

Describes a quality or adjectival property associated with the
semantic entity (optional).

Describes an appearance of the semantic entity in the media
(optional).
Locates the media in which the semantic entity appears.

Describes the temporal intervals of the media in which the
semantic entity appears (optional).

Describes the spatial intervals of the media in which the
semantic entity appears (optional).

Describes the spatiotemporal intervals of the media in which
the semantic entity appears (optional).

Describes a relation between the semantic entity and other
content description entities such as still regions, objects
events, and models, among others (optional).

Indicates the type of media occurrence. The types of media
occurrences are defined as follows:

Perceivable — the semantic entity is perceivable in the media.
For example, Bill Clinton is perceivable in a picture of him.
Reference — the semantic entity is a reference in the media. For
example, Bill Clinton is a reference in a news reports about
him but where he cannot be seen or heard.

Symbol — The semantic entity is symbolized in the media. For
example, freedom is a symbol in a picture of the Statue of
Liberty.

The attribute value is “perceivable” by default.

60



Table 3.6 - Object DS

Name Definition

ObjectType Describes a semantic object that exists in the narrative
world with temporal and spatial extent (perceivable
object, e.g., Tom’s piano) or an abstraction of a
perceivable object (abstract object, e.g., any piano)

Object Describes one object resulting from the decomposition
of the parent object (optional).

ObjectRef References an existing description of an object resulting
from the decomposition of the parent object (optional).

Table 3.7 - AgentObject DS

Name Definition

AgentObjectType Describes an object that is an agent — a person, an
organization, or a group of people in a narrative world.

Agent Describes the agent represented by the object (optional).

AgentRef References the existing description of the agent

represented by the object (optional).

61



Name

EventType

Event
EventRef
SemanticPlace

SemanticTime

Type
Semantic

Combination

Key

Table 3.8 - Event DS
Definition
Describes a dynamic relation involving one or more
objects occurring in a region in time and space of a
narrative world (perceivable event, Tom playing the
piano) or an abstraction of a perceivable event (abstract
event, e.g., anyone playing the piano). The place where
an event takes place can be described by the
SemanticPlace DS and Event DS or a semantic relation
locationOf to the SemanticPlace DS representing that
place. The time when an event happens happens can
be described by the SemanticTime DS in Event DS or a
semantic relation timeOf to the SemanticTime DS
representing that time.

Describes one event resulting from the decomposition
of the parent event.

References an existing description of an event resulting
from the decomposition of the parent event (optional).

Describes semantically a place where the event occurs,
and/or its extent (optional).

Describes semantically a time when the event occurs,
and/or its duration.

Table 3.9 - Semantic RelationTypes

Relations

agent, agentOf, patient, patientOf, experiencer, experiencerOf,
stimulus, stimulusOf, causer, causerOf, goal, goalOf, beneficiary,
beneficiaryOf, them, themOf, result, resultOf, instrument,
instrumentOf, accompanier, accompanierOf, summarizes,
summarizedBy, state, stateOf.

specializes,  generalizes, similar, opposite, exemplifies,
exemplifiedBy, interchangeable, identifier, part, partOf, contrasts,
property, propertyOf, user, userOf, component, componentOf,
substance, substanceOf,

entailment, entailmentOf, manner, mannerOf, influences,
dependsOn, membershipFunction

keyFor, annotes, annotatedBy, shows, appearsln, reference,
referenceOf, quality, qualityOf, symbolizes, symbolizedBy,
location, locationOf, source, sourceOf, destination, destinationOf,
path, pathOf, time, timeOf, depicts, depictedBy, represents,
representedBy, context, contextFor, interprets, interpretatedBy

62



Name

RelationBaseType

Property

Argument

Source

Target

Properties
Strength
RelationType
Name

Arity

Table 3.10 - SemanticRelation CS
Definition

Base DS for the relations amongst a set of two or more
description schemes (abstract).

Describes the properties of the relation. The properties of a
relation may be defined either for each instance of the Relation
Property data type using the type attribute (see below). Only one
of these may be specified.

Describes one argument of a relation. The arguments appear in a
Relation DS instance in order: first argument appears, second
argument, followed by each subsequent argument, followed by
each subsequent argument. This element shall not be used if
values for source and taget (or both) are present.

References the description scheme that is the first argument of the
relation. This attribute must not be present if the arguments of
the relation are specified using the Argument.

References the description scheme that is the second argument of
the relation. This attribute must not be present if the arguments
of the relation are specified using the Argument.

Describes the properties of the relation.

Indicates the strength of the relationship on a fuzzy scale from
[0,1], where one is the strongest value and zero the weakest. This
can be used represent fuzzy graphs. The default value is one.

DS describing a relation amongst a set of two or more description
schemes.

Identifies the relations using an XML qualified name; for example
“before”.

Indicates the number of arguments (arity) in the relation. A
relation must have an arity of a relation is determined from the
number of actual arguments present, either as values of
Arguments, or as the values of source and target.

63



CHAPTER 4

DESCRIBING VIDEO SEMANTIC CONTENT WITH
MPEG-7 DESCRIPTION TOOLS FOR A SPATIO-
TEMPORAL VIDEO INFORMATION SYSTEM

4.1 VIDEO CONTENT MODELING

Video is a complex data type that needs a rich data model for
representing the important aspects of video information [5]. Video
content can be modelled at several levels and of granularity and
abstraction. Determining this level is highly dependent on the searching
facilities that are planned to be provided. Actually, today there are two
different approaches for video content queriying. While the first one deals
with the low-level features, such as color, texture and shapes, the other
concentrates on high-level semantics, such as objects, spatial relationships
between objects, events and actions involving objects, temporal
relationships between events and actions. This thesis study concerns the
second one. Therefore, it fundementally neccesiates a semantic data

model.

There are also different aspects for modelling the semantic content,
namely annotation-based modelling, physical level video segmentation

approach, and object based modelling approaches.

64



1. Annotation-based video models semantics and spatial features are

annotated with free text or attributes or keywords.

2. The physical level video segmentation approach represents video
data as a stream of small segments together with temporal and
spatial properties specific to the application. This approach does
no directly point the semantic concepts such as, objects, events,

roles, players, etc.

3. Object based models focus on the modelling of semantic content of

the video data using object-oriented modelling techniques.

For this thesis study a pre-extisting object-based model is chosen that will

be intoduced in section 4.1.1.
4.1.1 ST-AVIS - Spatio-Temporal Video Information System

ST-AVIS, the Spatio-Temporal Video Information System, is an extension
to the object-based model, of an advanced video information system, the
AVIS [5]. The AVIS model itself and how ST-AVIS is extended with the
integration of spatio-temporal properties and relations are explained in

the succeeding subsections.
4.1.1.1 AVIS - Advanced Video Information System

AVIS (Advanced Video Information System) [5], is an object-based video
data model that can be used for any kind of video data. It models the
semantic entities objects, events and activities. The individual entities,
such as the characters of a movie like Homer, Marge or things like cars,

trees, etc., are called objects. An activity describes the subject of a given

65



video frame-sequence [30]. Eating, walking and flying are examples of
activities. Instantiation of activities results in events such as “Ali is
walking”. An event has additional features other than an activity, roles
and actors. For instance, Ali is the actor of the “Ali is walking” event and

his role is eater.

A video stream is composed of a set of video frames. Contiguous frames
that contain semantically meaningful data form a frame sequence. Each
semantic entity is related with one or more frame sequences in which
they are seen. The association map introduced in [5] illustrates these

relations in a graphical form.

>
=8 .
o8 —
o7 —
el —
== —
ed —
=3 — —
ez
B B —
sln E2 E=
PERD == == 1 B2 =3
B | e o |
a7 e e
o8+ B BT B
as ] e B
o4 | e, B s | B A
o3 ] B A =74 EA
ezl B ] B E= A A |
ol + | T ,1,0/ T e | 2 e _,30, T ey | —

Figure 4.1 - A sample association map

Figure 4.1 taken from [5] is an example association map. The x-axis

represents the frames; y-axis represents the entities. The line segments

66



establish the relation of the entities on the y-axis with the frames in which
they appear. The thick lines are used for event while the thin ones are

used for objects. For example the entity el occurs in the frame segment [2,

4).

Based upon the association map, a frame segment tree (FST) is built for
indexing purposes. The nodes of the tree represent the overlapping line
segments. Figure 4.2 shows the frame segment tree equivalence of the
association map in Figure 4.1. The identities of the list of entities
appearing in an interval are listed in each node, corresponding to that

interval.

An object cannot be listed in a node if it does not appear in all the frames
of the node. For example, 09 cannot be included in the list of node 13
because node 13 represents the frame segment [1, 6) and the object 09
appears in the frame segment [2, 4). In addition, if the appearance of an
object exceeds the time interval related to a node, it is included in more
than one node. Object 09 exceeds the time interval represented by node 2

and, therefore it is also listed in node 3.

67



(L1}
el ed)

e o
'l u L'l. |4
[=.11)
0 adoof }
Efs2}
[ I2-‘=} FL“'P Ii-Ji:l [N I.l}] [:I':LI.]]
uﬂwnm ol D{¢3J>I.D} Of{ol} [ {51

Figure 4.2 - Frame Segment Tree

FST is used for evaluating queries to search for the interval a semantic
entity occurs. Traversing the tree to answer such kind of queries can be

done fast and easily.
4.1.1.2 Spatio-Temporal Properties

To specify the spatial location of an entity, ST-AVIS model utilizes a 2-
dimensional coordinate system. Since the location of an object in a video
is not that exact all the time, an approximation strategy has been used.
Minimum Bounding Rectangle (MBR) approach, which is a common
strategy for 2-dimensional coordinate system defines MBR as the
minimum rectangles that covers all parts of an object. ST-AVIS model
makes use of MBR approach for approximating the location of objects. ST-
AVIS defines the spatial property of an object as follows [6]: “The spatial
property of an object A is a tuple (R, I), where, R is a rectangular area (a
region) that covers all area in which object A appears during the time
interval I=[t; tf. R is not exactly the minimum-bounding rectangle of A.

At any time t in [t; tf], object A may be located anywhere in R.”

68



If an object is static in a location during a time interval, R is actually the
minimum-bounding rectangle of A. Otherwise, R is determined so that

the object has a uniform movement in R.
4.1.1.3 Spatio-Temporal Relations

The spatial relationship between two objects is obtained from the spatial
relationship between the regions of each object. ST-AVIS model uses a
rule base that covers the relations top, bottom, right, left, top-right, top-left,
bottomright, bottom-left, overlaps, equal, inside, contain, touch, and disjoint.
The movement of objects causes spatial relations to change over time.
Therefore the relationships between objects may not be exactly the same
among a time interval. To cope up with this fact the ST-AVIS introduced
fuzzy spatio-temporal relationships. ST-AVIS defines the spatio-temporal
relationship as follows [6]: “Let Ai and Aj be two objects. Their fuzzy
spatio-temporal relationship during time interval Ik is Ao, I)Aj where a is
one of the spatial relations supported by our model (top, left, etc.), and
is the value of membership. AiapAjis true during the interval I..” The
membership value, p, is the degree two objects satisfy the spatial
relationship. p can take values in [0,1]. In Figure 4.3 [6], the relation “A
being at the LEFT of B” possessing different membership values is
illustrated. The angle between the x-axis and the line passing through the
centers of the rectangles are used to calculate the membership value.
Table 4.1 taken from [6] illustrates the relation between the angle and the

membership value for each relation.

69



X
=

X

=

Figure 4.3 - Examples for LEFT relationship for two objects

Table 4.1 - Relation between the membership value and angle between the
centers of rectangles

Relation Angle (*) Membership Value
TOP arctan(x/y) 1- (angle/90)

LEFT arctan(y/x) angle/90

TOP-LEFT arctan(x/y) 1 - (abs(angle-45) / 45)

TOP-RIGHT arctan(y/x) 1 - ((angle — 45) / 45)

* x is the horizontal distance between centers of two rectangles.
*y is the vertical distance between centers of two rectangles.

4.1.1.4 ST-AVIS Extensions

ST-AVIS model is an extension of AVIS model with spatio-temporal
properties/relationships. Association map and consequently the frame

segment tree are redesigned to represent the newly added features.

70



F !
carry(boy)

hit(car, boy) —
cry(womarnd —
walwnmany
ran(police)
winb o¥)

ar BN SRRt
police (s I | I I ST
boy INNRENNIiaaENNSS| T TS e e e S T T T T T T I T IO IT T

woman [Fre A 111 (IS EEmESEEEE| A R .
10 20 30 A0 i

Figure 4.4 - The extended association map

In AVIS the association map segments the video considering only the
existence of an object. ST-AVIS further divides the frame sequences
according to the locations of the objects. As a result, the extended
association map represents (interval, region) pairs for objects. Figure 4.4
shows an example ST-AVIS association map. The different patterns on a
line segment are used to discriminate the changing locations of an object.
To illustrate, the boy is seen in three different locations in the first frame

sequence.

The node structure in the frame segment tree is also extended to contain a
list of (object, region) pairs instead of just the object list. Each object region
pair entails that the object is seen in the region within the interval

associated with the node.

71



4.1.1.5 Supported Query Types

ST-AVIS video model supports the following types of queries:

1. Elementary Object Queries: Asks for videos together with the

frame sequences where an object occurs.

2. Elementary Activity Type Queries: Asks for videos together with

the frame sequences where an activity occurs.

3. Elementary Event Queries: Asks for videos together with the frame

sequences where an event occurs.

4. Object Occurrence Queries: Asks for the objects in a given interval

and video.

5. Activity Type Occurrence Queries: Asks for the activities in a given

interval and video.

6. Event Occurrence Queries: Asks for the events in a given an

interval and video.

7. Fuzzy Spatial Relationship Queries: Asks for the videos together
with the frame sequences where two objects satisfy a given relation

with a given membership value.

8. Regional(Frame) Queries: Asks for the videos together with the
frame sequences where an object is seen in a given region with a

given membership value.

9. Regional(Interval) Queries: Asks for the videos together with the

regions where an object is seen in a given interval.

72



10. Trajectory Queries: Asks for the videos together with a number of
lists of regions which form a trajectory that begin and end in two

given regions with a given membership value.

4.1.2 Application of Multimedia Description Schemes Over ST-
AVIS

In this thesis, the ST-AVIS model is used to build a database system. The
database is intended to provide querying the content of all videos at the

same time.

Three different XML files are designed to store the whole data related to a

single video:

¢ Object File: Stores objects seen in a video together with their

spatio-temporal properties,
e Event File: Stores events together with their temporal properties,

e Frame Segment File: Stores the data of the calculated frame
segment tree. This file has the same functionality with the frame

segment tree in query execution.
The example files are illustrated in Appendices E, F, and G.

The succeeding sections illustrate how ST-AVIS modeling constructs are
associated with MPEG-7 Multimedia Description Tools in order to design
these three file types. The complete description adopted for ST-AVIS will
be given in two steps, the video segment decomposition is introduced
followed by the description of events, objects and their relations with

segments.

73



4.1.2.1 MPEG-7 Root and Top Level Elements

The MPEG-7 root and top level elements are necessary to create valid
descriptions. The root element is the main element enclosing the entire

description.

The organization of MPEG-7 root and top-level elements are illustrated in
Figure 4.5 taken from [36]. The Description Units carry partial
descriptions and can include any MPEG-7 element. Semantically
complete descriptions that include top-level elements immediately after
the root do also exist. The three different types of description tasks,
namely Content Entity Description, Content Abstraction Description, and
Content Management are wrapped into top-level elements to compose

complete descriptions.

74



Mpeg/

\0,\\ Q
Description
Metadata {or}
| |
0% (L1} (1.1}
Description
Unit
——{ or }—
(Any Mepg7 Element)
Content Content
Description || Management
VN
Content Content
Entity Abstraction

Figure 4.5 - Organization of Mpeg7 root and top-level elements

Different types of multimedia, such as image, video and audio, may be
described using the models provided by the Content Entity Description
elements. Header, Medialnformation, Media Locators, creation
information, Usage information, Spatial locators, Spatial Masks, visual
features, textual annotation, Structural unit, Matching unit, Point of view

and Relation are the elements described in this class.

The summary of the multimedia content, the different explanations of the
image, video and audio signals, variations of the content and real-world
semantics of multimedia content can be described by the elements

defined with Content Abstraction Description.

75



The Content Management element contains the description of the creation,

the classification and the usage of multimedia content.
4.1.2.2 Modeling Video Structure

The structural data related to a video is wrapped into the ContentEntity
description. The ContentEntityType defines the structure of
ContentEntity. Figure 4.6 displays the ContentEntityType expressed with
DDL.

<complexType name="ContentEntityType">
<complexContent>
<extension base="mpeg7:ContentDescriptionType">
<sequence>
<element name="MultimediaContent"
type="mpeg7:MultimediaContentType"
minOccurs="1" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

Figure 4.6 - ContentEntityType

ContentEntityType extends ContentDescriptionType. Additionally it
contains a sequence of child elements of type MultimediaContentType.
VideoType that is a specialized MultimediaContentType is chosen to

further cover the VideoSegment DS. VideoType is shown in Figure 4.7.

76



<complexType name="VideoType">
<complexContent>
<extension base="mpeg7:MultimediaContentType">
<sequence>
<element name="Video"
type="mpeg7:VideoSegmentType"/>
</sequence>
</extension>
</complexContent>
</complexType>

Figure 4.7 - VideoType

In Figure 4.7, VideoSegmentType defines the structure of a VideoSegment
DS. The detailed content of VideoSegmentType is given in Figure 4.8. Out
of the content of this description TemporalDecomposition DS is chosen to
model the temporal properties of events and the spatio-temporal
properties of objects. With the
VideoSegmentTemporalDecompositionType, distinct frame sequences in
the video are mapped to different segments. MediaTime element in
VideoSegmentType delineates these segments. Among the alternative
elements in  MediaTime the  MediaRellncrTimePoint  and
MedialncrDuration in Figure 4.11 are chosen since their combination is
appropriate for representing a frame sequence. MediaRellncrTimePoint is
a descriptor specifying a media time point relative to a time base by
counting time units [28]. The time units correspond to the time increment
of the timestamps of successive frames in the video stream in our model.
The timeUnit attribute MediaRellncrTimePoint and MedialncrDuration
types is set to "PTIN25F" indicating that 25 frames are seen in 1 second.

The media time point is then specified by the number of these time units.

77



MedialncrDuration is a descriptor specifying the duration of a media time

period by counting time units [28].

<complexType name="VideoSegmentType">
<complexContent>
<extension base="mpeg7:SegmentType">
<sequence><choice minOccurs="0">
<element name="MediaTime" type="mpeg7:MediaTimeType"/>
<element name="TemporalMask" type="mpeg7:TemporalMaskType"/>
</choice>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="VisualDescriptor" type="mpeg7:VisualDType"/>
<element name="VisualDescriptionScheme" type="mpeg7:VisualDSType"/>
<element name="VisualTimeSeriesDescriptor"
type="mpeg7:VisualTimeSeriesType"/>
</choice>
<element name="MultipleView"
type="mpeg7:MultipleViewType" minOccurs="0"/>
<element name="Mosaic" type="mpeg7:MosaicType" minOccurs="0"
maxOccurs="unbounded"/>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="SpatialDecomposition"
type="mpeg7:VideoSegmentSpatialDecompositionType"/>
<element name="TemporalDecomposition"
type="mpeg7:VideoSegmentTemporalDecompositionType"/>
<element name="SpatioTemporalDecomposition"
type="mpeg7:VideoSegmentSpatioTemporalDecompositionType"/>
<element name="MediaSourceDecomposition"
type="mpeg7:VideoSegmentMediaSourceDecompositionType"/>
</choice>
</sequence>
</extension>
</complexContent>
</complexType>

Figure 4.8 - VideoSegmentType

78



<complexType name="VideoSegmentTemporalDecompositionType">
<complexContent>
<extension base="mpeg7:TemporalSegmentDecompositionType">
<choice minOccurs="1" maxOccurs="unbounded">
<element name="VideoSegment" type="mpeg7:VideoSegmentType"/>
<element name="VideoSegmentRef" type="mpeg7:ReferenceType"/>
<element name="StillRegion" type="mpeg7:StillRegionType"/>
<element name="StillRegionRef" type="mpeg7:ReferenceType"/>
</choice>
</extension>
</complexContent>
</complexType>

Figure 4.9 - VideoSegmentTemporalDecompositionType

<complexType name="VideoSegmentSpatioTemporalDecompositionType">
<complexContent>
<extension base="mpeg7:SpatioTemporalSegmentDecompositionType">
<choice minOccurs="1" maxOccurs="unbounded">
<element name="MovingRegion" type="mpeg7:MovingRegionType"/>
<element name="MovingRegionRef" type="mpeg7:ReferenceType"/>
<element name="StillRegion" type="mpeg7:StillRegionType"/>
<element name="StillRegionRef" type="mpeg7:ReferenceType"/>
</choice>
</extension>
</complexContent>
</complexType>

Figure 4.10 - VideoSegmentSpatioTemporalDescriptionType

<complexType name="MediaTimeType"><sequence>
<choice>
<element name="MediaTimePoint" type="mpeg7:mediaTimePointType"/>
<element name="MediaRelTimePoint" type="mpeg7:MediaRelTimePointType"/>
<element name="MediaRellncrTimePoint"
type="mpeg7:MediaRellncrTimePointType"/>
</choice>
<choice minOccurs="0">
<element name="MediaDuration" type="mpeg7:mediaDurationType"/>
<element name="MedialncrDuration"
type="mpeg7:MedialncrDurationType"/>
</choice>
</sequence></complexType>

Figure 4.11 - MediaTimeType

79




<complexType name="StillRegionType">
<complexContent>
<extension base="mpeg7:SegmentType">
<sequence>
<choice minOccurs="0">
<element name="SpatialLocator"
type="mpeg7:RegionLocatorType"/>
<element name="SpatialMask"
type="mpeg7:SpatialMaskType"/>
</choice>
<choice minOccurs="0">
<element name="MediaTimePoint"
type="mpeg7:mediaTimePointType"/>
<element name="MediaRelTimePoint"
type="mpeg7:MediaRelTimePointType"/>
<element name="MediaRellncrTimePoint"
type="mpeg7:MediaRellncrTimePointType"/>
</choice>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="VisualDescriptor"
type="mpeg7:VisualDType"/>
<element name="VisualDescriptionScheme"
type="mpeg7:VisualDSType"/>
<element name="GridLayoutDescriptors"
type="mpeg7:GridLayoutType"/>
</choice>
<element name="MultipleView"
type="mpeg7:MultipleViewType" minOccurs="0"/>
<element name="SpatialDecomposition"
type="mpeg7:StillRegionSpatialDecompositionType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

Figure 4.12 - StillRegionType

80




<complexType name="RegionLocatorType" final="#all">
<sequence>
<element name="CoordRef" minOccurs="0">
<complexType>
<attribute name="ref" type="IDREF" use="required"/>
<attribute name="spatialRef" type="boolean" use="optional" default="false"/>
</complexType>
</element>
<element name="Box" minOccurs="0" maxOccurs="unbounded">
<complexType>
<simpleContent>
<extension base="mpeg7:BoxListType">
<attribute name="unlocatedRegion" type="boolean"
use="optional" default="false"/>
</extension>
</simpleContent>
</complexType>
</element>
<element name="Polygon" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="Coords" type="mpeg7:IntegerMatrixType"/>
</sequence>
<attribute name="unlocatedRegion" type="boolean"
use="optional" default="false"/>
</complexType>
</element>
</sequence>
</complexType>

Figure 4.13 - RegionLocatorType

VideoSegmentType also contains SpatioTemporalDecomposition DS
which further includes StillRegion DS to describe the spatial property of
an object. StillType that describes StillRegion DS comprises the
RegionLocatorType that allows defining the rectangular region
mentioned in ST-AVIS. The Box element within the definition of
RegionLocatorType given in Figure 4.13 is where the coordinates of the
rectangle reside. The Box element contains a Coords element where the
four vertices of a rectangle are specified as a 2*2 matrix. The X-

coordinates are written first followed by the y coordinates.

81




The example structural decompositions prepared for the ST_AVIS video
data in Appendices B and C illustrate what is meant by all these data
types. In Appendix B, there are two different segments whose ids are Seg0
and Segl. Seg0 describes a frame sequence [775, 790] together with the
rectangular region [[x1, y1] : [127, 173] [x2, y2] : [162, 216]]. That is to say,
the object related to Seg0 appears at the region expressed as [[x1, y1] :
[127,173], [x2, y2]] : [162, 216]], in the time interval [775, 790].

Similarly the segment decomposition in Appendix C illustrates the
segments related to events. In this description only temporal
decompositions can take place since events in ST-AVIS are not related

with location information.

A more sophisticated structural decomposition forms the content of the
frame segment tree file. This decomposition 1is based on
TemporalDecomposition DS. In addition to the interval and region data
that exist in the previous decomposition the segments also contain the
relationship data. A sequence of Relation elements in SegmentType that is
the base class of VideoSegmentType provides representation of
relationship of a video segment with the objects and events. Moreover the
regions that cover different objects should also be discriminated. The
StillRegion is identified with the element name to handle this distinction.
The example in Appendix D shows how the regions covering “rachel” and

“joey” in Seg67 are represented.

The content description presented in the frame segment tree file also
includes video’s full path name and duration meta-data. SegmentType

which is the base class of VideoSegmentType contains Medialnformation

82



element of MediaElementType which contains the MediaProfile of type
MediaProfileType. The MediaProfileType includes Medialnstance
element and consequently the MediaUri via MedialLocator element.
MediaUri is where the full path name of the video takes place. The
MediaTime element of VideoSegmentType is used to describe the video

duration in this case.
4.1.2.3 Modeling Semantic Entities

This section explains the way semantic entities, i.e. objects and events, are
described for ST-AVIS and how they are related with the segments

extracted with the structural decomposition.

The SemanticDescriptionType, which is used as the wrapper for semantic
content of an ST-AVIS video, groups metadata regarding objects and
object properties (including object inter-relationships), events and
temporal relationships between events [11]. The Semantics is an element
in the description of SemanticDescriptionType is where description of
each event and object will occupy. The Semantic DS is derived from
SemanticBag DS (Figure 4.14) that contains a sequence of elements of
SemanticBaseType. The Object DS and Event DS are specialized
description tools derived from the SemanticBase DS and they are used to
describe objects and events. That is to say, the Semantics element includes

a sequence of object and event descriptions.

83



<complexType name="SemanticBagType" abstract="true">
<complexContent>
<extension base="mpeg7:SemanticBaseType">
<sequence>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="SemanticBase" type="mpeg7:SemanticBaseType"/>
<element name="SemanticBaseRef" type="mpeg7:ReferenceType"/>
</choice>
<element name="Graph" type="mpeg7:GraphType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent>
</complexType>

Figure 4.14 - SemanticBagType

The Label element of SemanticBaseType represents the names of the
entities, while a sequence of Relation elements of type RelationType
keeps the relations of these entities with the video segments. The
RelationType given in Figure 4.16 has three attributes to define a
relationship, namely type, source and target. The source attribute is
omitted and type and target attributes are used to demonstrate the
relationships of the described entity with the segments. A semantic
description extracted from the object file is given in Figure 4.17. This
figure  describes a  video with a full path  name
“D:\Cigdem\ TezAvi\ Friends - 108 - Tow nana dies twice.avi”. Two objects
named cup and joey are given together with their relations with identities
of segments in which they are seen. The cup object has a relationship with

Seg0 and Seg1 of type hasMediaPerceptionOf.

84



<complexType name="SemanticBaseType" abstract="true"><complexContent>
<extension base="mpeg7:DSType">
<sequence>
<element name="AbstractionLevel"
type="mpeg7:AbstractionLevelType" minOccurs="0"/>
<element name="Label" type="mpeg7:TermUseType"
minOccurs="1" maxOccurs="unbounded"/>
<element name="Definition" type="mpeg7:TextAnnotationType" minOccurs="0"/>
<element name="Property" type="mpeg7:TermUseType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="MediaOccurrence" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<choice minOccurs="0">
<element name="Medialnformation" type="mpeg7:MedialnformationType"/>
<element name="MedialnformationRef" type="mpeg7:ReferenceType"/>
<element name="MedialLocator" type="mpeg7:MedialLocatorType"/>
</choice>
<element name="Mask" type="mpeg7:MaskType" minOccurs="0"/>
<element name="AudioDescriptor" type="mpeg7:AudioDType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="AudioDescriptionScheme" type="mpeg7:AudioDSType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="VisualDescriptor" type="mpeg7:VisualDType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="VisualDescriptionScheme" type="mpeg7:VisualDSType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="type" use="optional" default="perceivable">
<simpleType>
<union>
<simpleType>
<restriction base="NMTOKEN">
<enumeration value="perceivable"/>
<enumeration value="reference"/>
<enumeration value="symbol"/>
</restriction>
</simpleType>
<simpleType>
<restriction base="mpeg7:termReferenceType"/>
</simpleType>
</union>
</simpleType>
</attribute>
</complexType>
</element>
<element name="Relation" type="mpeg7:RelationType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</extension>
</complexContent> </complexType>

Figure 4.15 - SemanticBaseType

85




<complexType name="RelationType">
<complexContent>
<extension base="mpeg7:DSType">
<attribute name="type" type="mpeg7:termReferenceType" use="optional"/>
<attribute name="source" use="optional">
<simpleType>
<list itemType="anyURI"/>
</simpleType>
</attribute>
<attribute name="target">
<simpleType>
<list itemType="anyURI"/>
</simpleType>
</attribute>
<attribute name="directed" type="boolean"
use="optional" default="true"/>
<attribute name="strength" type="mpeg7:zeroToOneType"
use="optional" default="1.0"/>
</extension>
</complexContent>
</complexType>

Figure 4.16 - RelationType

<mpeg7:Description xsi:type="SemanticDescriptionType"><mpeg7:Semantics>
<mpeg7:Label><mpeg7:Name>D:\Cigdem\TezAvi\Friends - 108 - Tow
nana dies twice.avi</mpeg7:Name></mpeg7:Label>
<mpeg7:SemanticBase xsi:type="0bjectType">
<mpeg7:Label>
<mpeg7:Name>cup</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Relation

</mpeg7:SemanticBase>

<mpeg7:SemanticBase xsi:type="0bjectType">
<mpeg7:Label><mpeg7:Name>joey</mpeg7:Name></mpeg7:Label>
<mpeg7:Relation

</mpeg7:SemanticBase>
</mpeg7:Semantics></mpeg7:Description>

Figure 4.17 - Semantic Description of Object

86




The description of an event is more complex since the role player data
should also be modeled. The Definition element in SemanticBaseType
allows inserting free form text. A notation is determined to show the list
of role/players. The role name followed by a colon followed by the player
name forms a role/player pair. The blank separated role/player pairs form
the list of role/players of an event. That is to say, the role/players list of
the event “Ali calls Ahmet” is represented as caller:Ali callee:Ahmet. The
role/players list expressed in the given notation is wrapped into the

Definition element.

87



CHAPTER 5

IMPLEMENTATION OF THE VIDEO DATABASE
MANAGEMENT SYSTEM

5.1 ARCHITECTURE

The general overview of the developed video database system is as

follows:

USER INTERFACE MODULE

DATA ENTRY| |:>

INTERFACE NATIVE XML DATABASE
TCcp/Ip INTERFACE

GRAPHICAL
QUERY
INTERFA CE

QUERY INTERFACES

NLP QUERY
INTERFACE

BERKELEY DB XML

Figure 5.1 - The System Architecture

88



The user interface module provides users a means for data entrance and
requests. Native XML Database Interface that communicates with the
user interface module via TCP/IP handles actual database operations.
These operations are carried out on Berkeley native XML database

through the API it presents.
5.1.1 User Interface Module

The user interface module that consists of the data entry module and the
query interface was developed with Borland C++ Builder previously [6].
Actually, the application that was initially using Borland’s built in
database facilities could not be used because table designs were missing.
Since we were to develop our own database operations, we did not need
the ones in the existing code. As the first step of the implementation
phase the existing code for user interface module is compiled. A network
communication infrastructure is added to this system that provides

communication with the new database interface implemented in Java.

When the application starts, it presents the interface shown in Figure 5.2.
We named our application M-AVIS standing for METU Advanced Video

Information System.

89



Il MainForm :”E| E|

Mew Video Entry Query Exit

M-AVIS

Figure 5.2 - M-AVIS Opening Page

5.1.1.1 Data Entry Module

Data entry module is accessed under the menu item New Video Entry.
After the menu item is triggered the user is asked to select the path of the
video that is subject to annotation. The New Video Entry form shown in
Figure 5.3 allows the user to track the video via a media player API and

enter video semantic data.

Navigating through the video by the available buttons on the form, the
object region pairs or event and role/players information related to frames
can be entered. The current frame number is shown below the media
player pane. When a rectangle is drawn on the media player pane that
covers the object the coordinates of the rectangle is automatically written
in the fields under the title Area. The name of the object should be written
into the Name field under the Object title and the frame interval into the
tields of Frames. Then the ADDOBJECT button should be pressed. An

illustration is given in Figure 5.4.

90



Jl: NewEntryForm

Frames : to

Object :
I ame |
Area ; ’_ : ’_ CLE
H’— B ’—
Ewvent :
I ame |
Rales/Players |

ADDOBJECT | ADDEVENT |

CLEAR | CAVE | Current Frame : 289 [6.178)

Figure 5.3 - New Video Entry Form

i NewEntryForm

244 1o [
Object

Hame |chair
L |25_ T IT
Area CLR
Rf115  B[242
Event :
Marne |

Fiolez/Players |

ADDOBJECT } ADDEVENT |

CLEAR | Sa0E | EXIT ‘ Current Frame ;. 285 [0, 83]

Figure 5.4 - Adding Object Region Pair

The event addition operation requires the event name together with

role/players. The Role/Players is filled with each colon-separated

91



role/player pair separated with a blank character. The ADDEVENT button

is pressed to add the event data. The illustration is in Figure 5.5.

After the annotation for a video is completed the Save button is used to

save the data entered.

lli: NewEntryForm |:| |E| I'ZI

EINECIEIEE

Frames : ]2?5? to  |2774

Object :

M ame ]

LJ— Ti—

Area CLR
HJ— B[
Marme |fal

Ruoles/Players ]falling:rnssl

ADDOBJECT ‘ @]

CLEAR | SAME | ExIT Current Frame : 2774 [&7. 0]

Figure 5.5 - Add Event

5.1.1.2 Graphical Query Form

This form provides an interface for the user to view the possible query
parameters and select among these parameters and start the query. The
possible query parameters are all the items recorded into the database.
The graphical query from is shown in Figure 5.6. The objects are listed in

Object]l and Object2. The relations supported by the system are listed in

92



Relation. The threshold value for fuzzy relationship queries can be
selected from Threshold. The events can be accessed from Event Name.
When an Event Name is chosen the corresponding role/players are added
to Role Player List. The buttons allow users to query about over the video
content in different ways. The query types listed below will later be

referenced by the numbers in this list.

It Query g@

-y _____-§ _-/§
I | I

- Objects AMD relation --» frames
Object AMD interval --» regions Object AMD region > frames

Object --» frames Framesz --» Objects

EXIT

Figure 5.6 - Graphical Query Interface

1. Elementary Object Queries: When Object = frames button is
pressed the frames in which the selected object from Object] are

queried.

An example query result is demonstrated in Figures 5.7 and 5.8.

The ShowVideosForm appears when the query result is not null.

93



This form lists the videos and the frames in these videos in a tree
view. When the video name is selected and the Show The Results
button is pressed, the solid frame segment set calculated is listed in
Show Frames form from where the user is enabled to play the
resulting segments. If an interval under a video name is selected in

ShowVideosForm form, only that interval is presented again in the

ShowFrames form.

o T
.

sul ShowVideosForm E@IZI

>

aldistii 126213
- 214283

- 294,320
? 7 - 321,387
Find Trajectory . 495,944
7 7 - 9911364
Object AMD interval - 19762208

- 2253,2608

[=)- D:A\CigdemT ez AwitSimpzonsgiSimpzons_-_16x12_-_Goo Goo_Gal PanPOTW lol [uanw.the-realwarld. de].avi

- 30333139

- 31423142 2t
- 3143,3143
I - 44,3144

|i%

Show The Results Exxit

Figure 5.7 - List of Video & Intervals

94



Il Show Frames |:||E| IZI

Select Frame Interval:

19762208
2253, 2608
126,327

Current Frame Ma; 496

Figure 5.8 - Playing Result Video Clips

2. Elementary Activity Type Queries: This query type is not

supported via this interface.

3. Elementary Event Queries: This query can be performed over the
event specified by the selected Event Name and Role Player List. The
Event = frames button should be pressed to perform the query. The
result is presented in a similar way to the elementary object

queries.

4. Object Occurrence Queries: The frame interval on which this
query performed is specified by the Begin and End. The Frames =2

Objects button is used for executing this type of queries.

95



When the Frames >Objects button is pressed the ShowVideosForm
is opened listing all the videos annotated, as in Figure 5.9. And if a
video is selected and Show The Results button is pressed the Show
List form opens with the list of objects given in the video together
with the interval they are seen. An example result is seen in Figure
5.10. The user can then watch the resulting scenes by selecting
either the object name (provides a solid set of intervals) or just an

interval on the Show Frames form.

5. Activity Type Occurrence Queries: This query type is not

supported via this interface.

6. Event Occurrence Queries: This is analogous to query type 4. The

Frames =2 Events button is used in this case.

Il ShowVideosForm Mi=1E3
D:\Cigdem' T ez AvibSimpsonsithe. simpsonz. uk. smasmeszage2004. wvid-zc.avi

[:ACigdemh T ez AvitSimpzonghThe Simpzone- 16184 Star I Torm, avi
[:\Cigdemh T ez AvitSimpzonghSimpzons_-_16x12_-_Goo_Goo_Gai Pan.POTY ol [wwww the-reahwornld. de). avi

Show The Results ‘

Figure 5.9 - Available Video Name List

96



I Show List [ |[BX]

= liza
215,215
216,216
2727
218,218
219,219
220,220
2 222
223223
224 228
226,227

Show

Ok

Figure 5.10 - List of Objects & Intervals

7. Fuzzy Spatial Relationship Queries: This query requires four
different parameters. The relation that is subject to query is
determined by Relation. The source object is selected from Object]
and the target object is selected from Object2. Also the membership
value can be determined from Threshold. The Objects and relation >

frames provides access to this type of query.

The result of this query is presented in a similar way to elementary

object queries.

8. Regional(Frame) Queries: The object for this query is selected
from Objectl. When the Object AND region = frames button is
pressed the region is also requested from the user by the form
given in Figure 5.11. After selecting the region, the query is carried

out by the user determined parameters.

97



The result of this query is presented analogous to elementary

object queries.

. Regional(Interval) Queries: The object parameter is selected from
Object1 and the interval is specified by Begin and End. The query is
performed when the Object AND interval = regions button is
pressed. The users selects a video from the ShowVideosForm. The
coordinates of the returned regions are shown on the Show List

form as in Figure 5.12.

- RSelectForm

Select the "rectangle of interest" in the area below

Left: 89 Top: 62 Right: 197 Bottom;: 177

CaMCEL

Figure 5.11 - Region Selection Form

98



- Show List [=|B]X

119.233.0.245 ”~
140.224.0,245

136,228.0.245

141 ,226,3,243

93.178.1.245

103,170.1.245

1.35118.244

043,120,245

0.53.111.244

964117 244

8.71.124,244

20.71.120,243

18.82121.243 ¥

Show

Figure 5.12 - Region List

10. Trajectory Queries: The object parameter is selected from Object1.
The edit box near Find Trajectory button is for threshold value
specification. When the Find Trajectory button is pressed two
regions are requested from the user via the region selection form in

Figure 5.11.

The resulting videos and the related intervals are placed in a tree
view on ShowVideosForm form. If the video name is selected all
trajectories are displayed on the ShowTraj form as in Figure 5.13. If
an interval is selected the trajectory is played on the Show Frames
form. Three frames from the trajectory in Figure 5.13 are shown in

Figure 5.14.

99



l: ShowTrajForm

The following trajectories are found:

3+

Figure 5.13 - Draw Trajectory

1. Show Frames [= |[B][X] | 1. Show Frames [Z][8]X] | 1. Show Frames [Z |[B]X]

Select Frame Interval: Select Frame Interval: Select Frame Interval:

EINEDIED EINECIE

_‘._ﬂci_ EN. _._-n-T
Current Frame Mo; 174 Current Frame Mo; 180

Current Frame Mo; 167

Figure 5.14 - Play Trajectory

100



5.1.1.3 NLP Query Form

Although the graphical query interface meets majority of the
requirements for query processing it may also be problematic. All the
objects and events recorded to the database are listed for selection
purposes. The number of these items may be so high that listing them
into a combo box may not be an appropriate usage. In addition, a query
system that understands human language is highly desirable. To provide
a better query interface an NLP form is plugged into the developed

system.

The code developed for the study in [4] is used as the query parser in our
study. The code that was written in C and the user interface module

written in C++ are compiled into just one executable code.

The parser code actually maps queries to semantic representations. The
parameters that are directly determined via the graphical query interface
is determined out of the query sentence in this case. As an example,
consider the query “Retrieve all frames in which Bush is seen.”. The first
parameter that should be extracted from this query sentence is the type of
the query. The example query is an elementary object query represented
with the number 1. For an elementary object query the only parameter is

the object name that is also extracted by the parser.

The query type and the parameters are written to intermediate files to

allow the data storage and querying module to access them.

The code utilized for natural language processing can also exhibit

ontological behavior. This facility is beneficial in the respect that

101



synonymous or similar words are also searched. The interface is shown is

Figure 5.15.

B

|Select Yideo j

|Shl:uw all frames where the cat iz zeen at the upper left of the zcreen,

e

Figure 5.15 - NLP Query Interface

The presentation of the results is identical to the graphical query

interface. Query types 2 and 5 are also supported via this interface.
5.1.2 Data Storage and Querying Module

The data entered for each video is first embedded into the MPEG-7
compliant schemes and then saved into three different files. After the
object related data, event related data are entered and the frame segment
tree is derived from the former ones are stored in video object file, video
event file and frame segment tree file. To store each type of file a different
container is created namely VideoObj.bdbxml,  VideoEvt.bdbxml,
VideoFst.bdbxml. In this way, a query is executed just against the relevant

container eliminating searching irrelevant files.

102



5.1.2.1 Query Expressions

The following sections explain the XQueries used to evaluate the

supported queries.

Elementary Object Queries

“Retrieve all frames in which Beckham is seen.” is an example elementary
object query. The XQuery expression used for evaluating this class of

queries is given in Figure 5.16.

for $videofilename in collection('VideoObj.bdbxml’)
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:Semantics
/mpeg7:Label/mpeg7:Name/text()

for $segmentid in(collection('VideoObj.bdbxml’)
/mpeg7:Mpeg7/mpeg7:Description
/mpeg7:Semantics[mpeg7:Label/mpeg7:Name=$videofilename]
/mpeg7:SemanticBase[mpeg7:Label/mpeg7:Name="0ObjectName"]
/mpeg7:Relation/@target/text())

let $segmentdata :=
(collection('VideoObj.bdbxml’)
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video
/mpeg7:TemporalDecomposition
/mpeg7:VideoSegment[@id=$segmentid])

let $startingframe :=
$segmentdata/mpeg7:MediaTime/mpeg7:MediaRellncrTimePoint/text()

let $duration :=
$segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration
return
<result>
<videofilename> { $videofilename } </videofilename>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>
</result>

Figure 5.16 - Elementary Object Query

103



The outer loop of the expression extracts the video file names in the video
object container and executes the rest of the query for each of the name
found. The second for loop calculates the ids of the video segments
(intervals) that the object is related to and iterates again on these results.
The rest of the query finds the starting and duration times of the segment
and returns the result in the XML structure that is composed of the video
tile name, starting and ending frame. That is to say, the videos and the

intervals in these videos form the outcome of this query.

The NLP interface module lists a set of object names that are ontologically
related to the original name drawn from the query. To search for a set of
names the expression [mpeg7:Label/mpeg7:Name="ObjectName”] is
extended to include a test for each name. For instance, the word set
containing the words “joey” and “boy” is queried with the expression is

[mpeg7:Label/mpeg7:Name="joey" or mpeg7:Label/mpeg7:Name="boy"].

104



Elementary Activity Type Queries

for $videofilename in collection('VideoEvt.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:Semantics
/mpeg7:Label/mpeg7:Name/text()

for $eventdata in collection('VideoEvt.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description
/mpeg7:Semantics[mpeg7:Label/mpeg7:Name=$videofilename]
/mpeg7:SemanticBase[mpeg7:Label/mpeg7:Name="EventName"]

for $segmentid in $eventdata/mpeg7:Relation/@target/text()

let $segmentdata := (collection('VideoEvt.bdbxml')
/mpeg7:Mpeg7/mpegT7:Description
/mpeg7:MultimediaContent/mpeg7:Video
/mpeg7:TemporalDecomposition
/mpeg7:VideoSegment[@id=$segmentid])

let $startingframe := $segmentdata/mpeg7:MediaTime
/mpeg7:MediaRellncrTimePoint/text()

let $duration := $segmentdata/mpeg7:MediaTime
/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration

return
<result>
<videofilename> { $videofilename } </videofilename>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>
</result>

Figure 5.17 - Elementary Activity Type Query

A query that asks the question “Find all frames in which somebody plays
football.” is an elementary activity type query. The expression is just like
the previous elementary object query, but this time the event name is

seeked for.

105




Elementary Event Queries

for $videofilename in collection('VideoEvt.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:Semantics
/mpeg7:Label/mpeg7:Name/text()

for $eventdata in collection('VideoEvt.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description
/mpeg7:Semantics[mpeg7:Label/mpeg7:Name=$videofilename]
/mpeg7:SemanticBase[mpeg7:Label/mpeg7:Name="EventName"]

for $segmentid in $eventdata/mpeg7:Relation/@target/text()

let $segmentdata := (collection('VideoEvt.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video
/mpeg7:TemporalDecomposition
/mpeg7:VideoSegment[@id=$segmentid])

let $startingframe :=
$segmentdata/mpeg7:MediaTime/mpeg7:MediaRellncrTimePoint/text()

let $roleplayer :=
$eventdata/mpeg7:Definition/mpeg7:FreeTextAnnotation/text()

let $duration :=
$segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration

return
<result>
<videofilename> { $videofilename } </videofilename>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>
<roleplayer> { $roleplayer } </roleplayer>
</result>

Figure 5.18 - Elementary Event Query

The specialized form of the elementary activity type query is the

elementary event query. For example, “Find all frames in which Ali plays

football.” is an instantiation of the query “Find all frames in which

somebody plays football.”. Somebody is substituted with the object Ali,

106



meaning role/player data is added. To extract the actual results, the
role/player information returned by the query is compared with the
queried role/player data. If they are equivalent, the video- interval is

evaluated as a valid result.

107



Object Occurrence Queries

for $segmentdata in collection('VideoFst.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video[mpeg7:Medialnformation/mpeg7:MediaProfile
/mpeg7:Medialnstance/mpeg7:MedialLocator
/mpeg7:MediaUri="VideoFileName"]
/mpeg7:TemporalDecomposition/mpeg7:VideoSegment

let $startingframe := $segmentdata/mpeg7:MediaTime
/mpeg7:MediaRellncrTimePoint/text()

let $duration :=

$segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration

for $objectname in $segmentdata/mpeg7:Relation
[@type="urn:mpeg:mpeg7:cs:SemanticRelationCS:
2001:hasMediaPerceptionOfObject"]
/@target/text()

where
( StartingFrame <= $startingframe and
$startingframe <= EndingFrame ) or
( StartingFrame <= $endingframe and
$endingframe <= EndingFrame ) or
( $startingframe <= StartingFrame and
EndingFrame <= $endingframe )
return
<result>
<itemname> { $objectname } </itemname>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>
</result>

Figure 5.19 - Object Occurrence Query

“Show all objects present in the last 5 minutes in the clip.” is an object

occurence query. The frame segment tree container is searched to answer

the query. Since the query concerns a specific video, the segment data

related to it is fetched by the outermost for loop. For each segment

information fetched, the starting and ending frames are calculated and

108



tested against the condition that asks if the segment interval intersects
with the interval in the query. If the condition holds the name of the

object is returned as a result together with the segment interval.

109



Activity Type Occurrence Queries

for $segmentdata in collection('VideoFst.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video[mpeg7:Medialnformation/mpeg7:MediaProfile
/mpeg7:Medialnstance/mpeg7:MedialLocator
/mpeg7:MediaUri="VideoFileName"]
/mpeg7:TemporalDecomposition/mpeg7:VideoSegment

let $startingframe := $segmentdata/mpeg7:MediaTime
/mpeg7:MediaRellncrTimePoint/text()

let $duration := $segmentdata/mpeg7:MediaTime
/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration

for $eventname in $segmentdata/mpeg7:Relation

[@type="urn:mpeg:mpeg7:cs:SemanticRelationCS:
2001:hasMediaPerceptionOfEvent"]
/@target/text()

where
( StartingFrame <= $startingframe and
$startingframe <= EndingFrame ) or
( StartingFrame <= $endingframe and
$endingframe <= EndingFrame ) or
( $startingframe <= StartingFrame and
EndingFrame <= $endingframe)

return

<result>
<itemname> { $eventname } </itemname>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>

</result>

Figure 5.20 - Activity Type Occurrence Query

Activity type occurrence queries seek for the list of activities performed in
a specified time of interval, such as “Retrieve activities performed in the
first 20 minutes.”. In the query expression in Figure 5.20, each evaluated

segment interval is tested if it intersects with the queried interval. The

110



event names occurring in the segments that pass the test are returned
together with the segment interval. The intervals are later used to play the

corresponding video segments by the user interface module.

111



Event Occurrence Queries

for $eventdata in collection(“VideoEvt.bdbxml”)
/mpeg7:Mpeg7/mpeg7:Description
/mpeg7:Semantics[mpeg7:Label/mpeg7:Name = “VideoFileName”]
/mpeg7:SemanticBase[@xsi:type="EventType"]

for $segmentid in $eventdata/mpeg7:Relation/@target/text()

let $segmentdata :=
(collection(“VideoEvt.bdbxml”)/mpeg7:Mpeg7
/mpegT7:Description/mpeg7:MultimediaContent
/mpeg7:Video/mpeg7:TemporalDecomposition
/mpeg7:VideoSegment[@id=$segmentid])

let $eventname := $eventdata/mpeg7:Label/mpeg7:Name/text()

let $roleplayer := $eventdata/mpeg7:Definition
/mpeg7:FreeTextAnnotation/text()

let $startingframe := $segmentdata/mpeg7:MediaTime
/mpeg7:MediaRellncrTimePoint/text()

let $duration := $segmentdata/mpeg7:MediaTime
/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration

where
(StartingFrame <= $startingframe and
$startingframe <= EndingFrame) or
(StartingFrame<= $endingframe and
$endingframe <= EndingFrame) or
($startingframe <= StartingFrame and
EndingFrame <= $endingframe)

return

<result>
<itemname> { $eventname },{ $roleplayer } </itemname>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>
</result>

Figure 5.21 - Event Occurrence Query

112



The event occurrence queries are executed against the container
VideoEvt.bdbxml. The query asks for the events occurring in a video in a
specified time interval. An example is “Find all events performed in the
last 10 minutes.” To achieve this query, the expression in Figure 5.21 is
executed. In this expression, the data related to all of the events in the
specified video is extracted. For each value returned, the intervals in
which the event occurs are extracted. The events occurring in the intervals
intersecting with the interval in the query are listed together with the

intervals.

113



Fuzzy Spatial Relationship Queries

for $videofilename in collection('VideoFst.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent/mpeg7:Video
/mpeg7:Medialnformation/mpeg7:MediaProfile
/mpeg7:Medialnstance/mpeg7:MedialLocator/mpeg7:MediaUri/text()
for $segmentdata in collection('VideoFst.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video[mpeg7:Medialnformation/mpeg7:MediaProfile
/mpeg7:Medialnstance/mpeg7:MediaLocator/mpeg7:MediaUri=$videofilename]
/mpeg7:TemporalDecomposition/mpeg7:VideoSegment
[mpeg7:Relation
[@type=
"urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptionOfObject"
and
@target="Object1Name"] and
mpeg7:Relation
[@type=
"urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptionOfObject"
and @target="Object2Name"]]

let $startingframe :=
$segmentdata/mpeg7:MediaTime/mpeg7:MediaRellncrTimePoint/text()

let $duration := $segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()

let $endingframe := $startingframe + $duration

let $box1 := $segmentdata/mpeg7:SpatioTemporalDecomposition
/mpeg7:StillRegion[@id="Object1Name"]
/mpegT7:SpatialLocator/mpeg7:Box/text()

let $box2 := $segmentdata/mpeg7:SpatioTemporalDecomposition

/mpeg7:StillRegion[@id="Object2Name"]
/mpegT7:SpatialLocator/mpeg7:Box/text()

return

<result>
<videofilename> { $videofilename } </videofilename>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>
<box1> { $box1 } </box1>
<box2> { $box2 } </box2>

</result>

Figure 5.22 - Fuzzy Spatial Relationship Query

114



A fuzzy spatial relationship query finds the video and intervals in which

a specified relationship between two objects is satisfied within the given

threshold.

The video file names are extracted as a first step to execute the query in
Figure 5.22. For each video at hand, the container VideoFst.bdbxml is
searched for the segment data that contains the views of both of the
objects. From the segment data the interval and the regions in which the
objects occur are extracted. The video name, the starting and ending
frames of the segment and the regions related to the first and second
objects are listed for further programmatic eliminations. The elements of
the list are examined one by one to test if the regions satisfy the relation
with a specified membership value. The satisfying elements are returned

as the actual result of the query.

115



Regional(Frame) Queries

Distinct-values(

for $segmentdata in (collection('VideoObj.bdbxml')
/mpeg7:Mpeg7[mpeg7:Description/mpeg7:Semantics
/mpeg7:SemanticBase/mpeg7:Label/mpeg7:Name="ObjectName" and
mpeg7:Description/mpeg7:Semantics/mpeg7:Label/mpeg7:Name="VideoFileName"]
/mpeg7:Description/mpeg7:MultimediaContent/mpeg7:Video
/mpeg7:TemporalDecomposition/mpeg7:VideoSegment)\n"

let $segmentid := $segmentdata/@id

let $box := $segmentdata/mpeg7:SpatioTemporalDecomposition
/mpeg7:StillRegion/mpeg7:SpatialLocator/mpeg7:Box/text()

let $startingframe :=
$segmentdata/mpeg7:MediaTime/mpeg7:MediaRellncrTimePoint/text()

let $duration := $segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()
let $endingframe := $duration + $startingframe

where

( StartingFrame <= $startingframe and
$startingframe <= EndingFrame ) or

( StartingFrame <= $endingframe and
$endingframe <= EndingFrame ) or

( $startingframe <= StartingFrame and
EndingFrame <= $endingframe)

return

<result>
<box> { $box } </box>

</result>

Figure 5.23 - Regional(Frame) Query

Regional(Frame) queries evaluate the regions in which an object is seen in
a specified time interval in a specified video. For instance “Show all
frames where Bill is seen at the upper left of the screen.” is a regional

(frame) query.

116



In Figure 5.23, the segment data is extracted considering both the video
and the object name. The related interval is tested to see if it somehow
intersects with the specified interval. If this is the case the region

information extracted from the segment data is returned as a result.

117



Regional(Interval) Queries

for $videofilename in collection('VideoObj.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:Semantics
/mpeg7:Label/mpeg7:Name/text()

for $segment in(collection('VideoObj.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description
/mpeg7:Semantics[mpeg7:Label/mpeg7:Name=$videofilename]

/mpeg7:SemanticBase[mpeg7:Label/mpeg7:Name="ObjectName"]
/mpeg7:Relation/@target/text())

let $segmentdata := (collection('VideoObj.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video/mpeg7:TemporalDecomposition
/mpeg7:VideoSegment[@id=$segment])

let $box := $segmentdata/mpeg7:SpatioTemporalDecomposition
/mpeg7:StillRegion/mpeg7:SpatialLocator/mpeg7:Box/text()

let $startingframe :=
$segmentdata/mpeg7:MediaTime
/mpeg7:MediaRellncrTimePoint/text()

let $duration :=
$segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()
let $endingframe := $duration + $startingframe

return

<result>
<videofilename> { $videofilename } </videofilename>
<startingframe> { $startingframe } </startingframe>
<endingframe> { $endingframe } </endingframe>"
<box> { $box } </box>

</result>

Figure 5.24 - Regional(Interval) Query

The Regional(Interval) queries find the video and intervals that an object
occurs in a given region. In Figure 5.24, for each video found in the

container VideoObj.bdbxml, the segment data, in which the object appears

118



is extracted. From the segment data the interval and the region
information are obtained and appended to the video name to form the
return value. From the results returned by the XQuery, the region
information is extracted. If the extracted region is within the queried

region the video-interval pairs form the final results to the query.

119



Trajectory Queries

A query like “Show the trajectory of a ball that moves from the left to the

center.” is a trajectory query.

In order not to mix the object’s interval-region data related to different

videos, an extra query that lists the video file names is executed first.

distinct-values( collection( 'VideoObj.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:Semantics
/mpeg7:Label/mpeg7:Name/text())

Figure 5.25 - Trajectory Query Part.1

Each value obtained from the query in Figure 525 is passed as a
parameter to the query in Figure 5.26. The expression in Figure 5.26 lists
the interval-region data related to the queried object in ascending order
with respect to the starting frame. The results returned from the query are
loaded into interval-region list that is further manipulated to look for a

trajectory.

The algorithm searching the trajectory examines each interval-region one
by one. Whenever a region within the boundaries of the starting region in
query is encountered, a new trajectory is started. Actually, the
comparison of two regions is done in a fuzzy way. Then the consecutive
intervals are tracked to look for a region within the boundaries of the

ending region. If the second region is also found, a trajectory is obtained

120



and recorded. The rest of the list is further searched for new trajectories in

a similar way.

for $segment in(collection('VideoObj.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description
/mpeg7:Semantics[mpeg7:Label/mpeg7:Name="VideoFileName"]
/mpeg7:SemanticBase[mpeg7:Label/mpeg7:Name="0ObjectName"]
/mpeg7:Relation/@target/text())

let $segmentdata := (collection('VideoObj.bdbxml')
/mpeg7:Mpeg7/mpeg7:Description/mpeg7:MultimediaContent
/mpeg7:Video/mpeg7:TemporalDecomposition
/mpeg7:VideoSegment[@id=$segment])

let $box := $segmentdata/mpeg7:SpatioTemporalDecomposition
/mpeg7:StillRegion/mpeg7:SpatialLocator/mpeg7:Box/text()

let $startingframe :=
$segmentdata/mpeg7:MediaTime/mpeg7:MediaRellncrTimePoint/text()

let $duration :=
$segmentdata/mpeg7:MediaTime/mpeg7:MedialncrDuration/text()

order by $startingframe ascending

return
<result>
<box> { $box } </box>
<startingframe> { $startingframe } </startingframe>
<duration> { $duration } </duration>
</result>

Figure 5.26 - Trajectory Query Part.1

121



CHAPTER 6

CONCLUSION

6.1 Comments

A video database management system has come out as the result of this
thesis that has gathered a number of considerably important topics within

the literature of video metadata storage and retrieval.

1. An object-based video data model is adopted to develop a system

that provides full video database search.

2. To meet the description requirements, MPEG-7 description tools
defined in the Multimedia Description Scheme and the Visual
Description Scheme part of the standard are examined. The study
revealed that the standard is well-founded and that it provides
various description views of video content. This universally
committed standard was adequate to describe the video content
that satisfies the requirements of the adopted video data model.
For large amounts of audiovisual content, the employment of a

standard description will appear to be quite beneficial.

3. Native XML databases are utilized to store the metadata employed
into MPEG-7 compliant XML files.

122



Using XML files was advantageous since the data in our database
can be used in any platform for further studies. Also the addition of
extra elements to enrich the content is allowed due to the nature of

XML.

The survey on native XML databases illustrates that they can
provide many of the facilities as that a relational database does. The
Berkeley DBXML served well for our needs. With the support for
XQuery, complex queries are easily performed. Also the results
returned in XML format were easily manipulated. Grouping the
files into logical collections with the containers in BDB XML both
eliminated to search unrelated files and provided a well-structured

design.

4. To overcome the deficiencies related to query entrance in graphical

query interface, an NLP interface is adopted to the system.

6.2 Future Work

The biggest handicap in video data management and retrieval systems

and consequently our work is automatic data extraction. Utilizing image

processing techniques different approaches might be devised. At least the

objects introduced to the system might be tracked to extract the

corresponding occurrence data.

Since this thesis study dealt mainly with semantic content modeling the

focus was on data entry rather than data modification. However Berkeley

DB XML has XUpdate support that may be easily used to enhance the

system with metadata update facilities. In addition indexing facilities

123



provided by BDB XML may be used for faster access in case of large

compiles of video data.

New query types can be added. The simple type queries in use might be
broadened via conjunction, or union operations applied over them.

Moreover support for new topological and temporal relations might be

added.

The content of the video metadata can be enriched considering different
necessities for different applications. The newly added data can be
appended or inserted into the existing XML files with small amount of

effort.

Multimodality is one of today’s hot topics whose employment to current
systems has been studied in several works. In this respect the video data

model might be extended to include textual and audio data.

124



(1]

(2]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

REFERENCES

Martinez, J.M., ISO/MPEG N4674, Overview of the MPEG-7 Standard,
v 6.0, MPEG Requirements Group, Jeju, March 2002

Ana B. Benitez, Shih-Fu Chang, Extraction, Description and
Application of Multimedia Using MPEG-7, Asimolar Conference of
Signals, Systems, and Computers, Invited Paper on Special Session on
Document Image Processing, Monterey, CA, November 2003

Divitini, M., Multimedia Description with MPEG-7, Trondheim, 16
June 2003

Erozel, G., Natural Language Interface on a Video Data Model, Ms
Thesis, METU, July 2005

Adali, S., Candan, K.S., Chen, S., Erol, K., Subrahmanian, V.S., The
Advanced Video Information System: data structures and query
processing, Multimedia Systems, vol. 4, pp. 172-186, 1996

Koprulu, M., Cicekli, N.K. and Yazici, A., Spatio-Temporal Querying
in Video Databases, Proc. of the Sixth International Conf. on Flexible
Query Answering Systems (FQAS’2002), Denmark, Oct 2002

Oomoto, E., Tanaka, K., OVID: Design and implementation of a video-
object database system, IEEE Transactions on Knowledge and Data
Engineering, Vol.5, No.4, August 1993

Donderler, M.E., Saykol E., Ulusoy, 0., Giidiikbay , U., BilVideo, A
Video Database Management System, IEEE Multimedia, Vol. 10, No. 1,
pp. 66-70, January/March 2003

Chan, S. S. M., Li, Q., Developing an Object-Oriented Video Database
System with SpatioTemporal Reasoning Capabilities, Proceedings of the
International Conference on Conceptual Modeling (ER'99), pp. 47-61,
1999.

125



[10]  Akrivas, G., loannou, S., Karakoulakis, E., Karpouzis, K., Avrithis, Y.,
Delopoulos, A., Kollias, S., Varlamis L., and Vaziriannis, M., An
Intelligent System for Retrieval and Mining of Audiovisual Material
Based on the MPEG-7 Description Schemes., Proc. of the European
Symposium on Intelligent Technologies, Hybrid Systems and their
implementation on Smart Adaptive Systems (EUNITE), Tenerife,
Spain, 12-14 December 2001

[11]  Aguis, H., Angelides, M. C., Modeling and Filtering of MPEG-7-
Compliant Meta-Data for Digital Video, 2004 ACM Symposium on
Applied Computing, 2004

[12]  Yavuz, O., A Video Database Management System Based on MPEG-7
Standard, METU, 2002

[13]  Sleepycat, Sleepycat Software:Products:Berkeley DB XML,
http://www.sleepycat.com/products/xml.shtml, Last Accessed Date: 31
August 2005

[14]  Obasanjo D., An Exploration of XML in Database Management
Systems, http://www.25hoursaday.com/StoringAndQueryingXML.html,
Last Update Date: 2001, Last Accessed Date: 1 September 2005

[15] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Extensible Markup
Language (XML) 1.0 W3C Recommendation,
http://www.w3.0rg/TR/1998/REC-xml-19980210, Last Update Date: 10
February 1998, Last Accessed Date: 1 September 2005

[16]  Steegmans, B., XML for DB2 Information Integration, ibm-redbooks,
July 2004

[17] Bourret R., XML and Databases,
http://www.rpbourret.com/xml/XMLAndDatabases.htm, Last Update
Date: December 2004, Last Accessed Date: 2 September 2005

[18] Bourret R., XML Database Products: Native XML Databases,
http://www.rpbourret.com/xml/XMILDatabaseProds.htm, Last Update
Date: December 2004, Last Accessed Date: 10 September 2005

[19] Dekeyser S., Hidders, J., Paredaens, J., A Transaction Model for XML
Databases, World Wide Web, v.7 n.1, p.29-57, March 2004

[20] Clark, J., DeRose, S., XML Path Language (XPath) Version 1.0 W3C
Recommendation, http://www.w3.org/TR/xpath, Last Update Date: 16
November 1999, Last Accessed Date: 1 September 2005

126



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J.,
Siméon, J., XQuery 1.0: An XML Query Language W3C Working Drafft,
http://www.w3.org/TR/xquery, Last Update Date: 04 April 2005, Last
Accessed Date: 1 September 2005

Jason Hunter, Xquery.com: Specifications, Articles, Mailing List, and
Vendors, http://www.xquery.com/, Last Update Date: 2003, Last
Accessed Date: 18 August 2005

Hunter, J., X is for XQuery, Oracle Magazine, May/June 2003

Paul Ford, Berkeley DB XML: An Embedded XML Database,
http://www.xml.com/pub/a/2003/05/07/bdb.html, Last Update Date: 07
May 2003, Last Accessed Date: 1 September 2005

Sleepycat Software, Getting Started with Berkeley DB XML for Java,
http://www.sleepycat.com/xmldocs/gsg xml/java/BerkeleyDBXML-
JAVA-GSG.pdf, Last Update Date: 25 April 2005, Last Accessed Date:
1 September 2005

MPEG-7 Home Page, http://www.chiariglione.org/mpeg, Last Accessed
Date: 31 August 2005

Peter Van Beek, Ana B. Benitez, Joerg Heuer, Jose Martinez, Philippe
Salembier, John Smith, Toby Walker, MPEG-7 Multimedia Description
Schemes XM (Version 3.1), July 2000, Beijing

Peter Van Beek, Ana B. Benitez, Joerg Heuer, Jose Martinez, Philippe
Salembier, John R. Smith, Toby Walker, MPEG-7 Multimedia
Description Schemes WD (Version 3.1), July 2000, Beijing

Ernest Wan (CISRA), Claude Seyrat (UPMC), Cédric Thiénot (UPMC),
Frank Nack (CWI), DDL Working Draft 4.0, July 2000 (Beijing)

World Wide Web Consortium Issues XML Schema as a Candidate
Recommendation, http://www.w3.0rg/2000/10/xml-schema-

pressrelease.html, Last Update Date: November 2000, Last Accessed
Date: 2 September 2005

Benitez, A. B., Rising, H., Jorgensen, C., Leonardi, R., Bugatti, A.,
Hasida, K., Mehrotra, R., Tekalp, A. M., Ekin, A., Walker, T.,
Semantics of Multimedia in MPEG-7, Proceedings of 2002 IEEE
Conference on Image Processing (ICIP-2002), Rochester, New York,
USA, 22-25 September 2002.

127



[32]

[33]

[34]

[35]

[36]

[37]

Dr Matt Roach, Lecture Notes, Lecture 3 MPEG 7 standard,
Multimedia Communications EG 371,
http://galilee.swan.ac.uk/homepages/Home/pub/clabs/MPEG7Standard

3.ppt, Last Accessed Date: 21 August 2005

Peter Van Beek, Ana B. Benitez, Joerg Heuer, Jose Martinez, Philippe
Salembier, Shibata Yoshiaki, John R. Smith, Toby, Walker , Text of
15938-5 FCD Information Technology - Multimedia Content
Description Interface — Part 5 Multimedia Description, ISO/IEC JC
1/SV 29/WG 11 MPEG01/M7009, Singapore, March 2001

Tsinaraki C., Papadomanolakis S., Christodoulakis S., A Video
Metadata Model supporting Personalization & Recommendation in
Video-based Services, MDDE Workshop 2001 (in conjunction with
ReTIS 2001), July 2001

Hjelsvold, R., Midtstraum, R., and Sandst, O., Multimedia Database
Systems: Design and Implementation Strategies, chapter Searching and

Browsing a Shared Video Database, pages 89 - 122. Kluwer Academic
Publisher, 1996

Salembier, P., Smith, J., Overview of MPEG-7 multimedia description
schemes and schema tools, In B. S. Manjunath, P. Salembier, T. Sikora,
Introduction to MPEG-7: Multimedia Content Description Interface,
Chapter 6, Wiley, 2002

Hunter, J., X Is for Xquery: Part 2, Oracle Magazine, May/June 2003

128



APPENDIX A

MOST COMMON XQUERY OPERATONS AND FUNCTIONS [37]

1. Math: +, -, ¥, div, idiv, mod, = !=, < >, <= >= floor(), ceiling(),

round(), count(), min(), max(), avg(), sum()

Division is done using div rather than a slash because a slash indicates an
XPath step expression. idiv is a special operator for integer-only division

that returns an integer and ignores any remainder.

2. Strings and Regular Expressions: compare(), concat(), starts-with(),
ends-with(), contains(), substring(), string-length(), substring-
before(), substring-after(), normalize-space(), upper-case(), lower-

case(), translate(), matches(), replace(), tokenize()

compare() dictates string ordering. translate() performs a special mapping
of characters. matches(), replace(), and tokenize() use regular expressions

to find, manipulate, and split string values.

3. Date and Time: current-date(), current-time(), current-dateTime()

+ -, div eq, ne, It, gt, le, gt

XQuery has many special types for date and time values such as duration,
dateTime, date, and time. On most you can do arithmetic and comparison

operators as if they were numeric. The two-letter abbreviations stand for

129



equal, not equal, less than, greater than, less than or equal, and greater

than or equal.

4. XML node and QNames: node-kind(), node-name(), base-uri() eq,
ne, is, isnot, get-local-name-from-QName(), get-namespace-from-

QName() deep-equal() >>, <<

node-kind() returns the type of a node (i.e. "element"). node-name()
returns the QName of the node, if it exists. base-uri() returns the URI this

node is from.

Nodes and QName values can also be compared using eq and ne (for
value comparison), or is and isnot (for identity comparison). deep-equal()

compares two nodes based on their full recursive content.

The << operator returns true if the left operand precedes the right

operand in document order. The >> operator is a following comparison.

5. Sequences: item-at(), index-of(), empty(), exists(), distinct-nodes(),
distinct-values(), insert(), remove(), subsequence(), unordered(),

position(), last()

item-at() returns an item at a given position while index-of() attempts to
tind a position for a given item. empty() returns true if the sequence is
empty and exists() returns true if it's not. dictinct-nodes() returns a
sequence with exactly identical nodes removed and distinct-values()
returns a sequence with any duplicate atomic values removed.

unordered() allows the query engine to optimize without preserving

130



order. position() returns the position of the context item currently being

processed. last() returns the index of the last item.
6. Type Conversion: string(), data(), decimal(), boolean()

These functions return the node as the given type, where possible. data()

returns the "typed value" of the node.
7. Booleans: true(), false(), not()

There's no "true" or "false" keywords in XQuery but rather true() and

talse() functions. not() returns the boolean negation of its argument.
8. Input functions: document(), input(), collection()

document() returns a document of nodes based on a URI parameter.
collection() returns a collection based on a string parameter (perhaps
multiple documents). input() returns s general engine-provided set of

input nodes.

131



APPENDIX B

Example Structural Content Description for ST-AVIS Object

<mpeg7:Description xsi:type="ContentEntityType">
<mpeg7:MultimediaContent xsi:type="VideoType">
<mpeg7:Video xsi:itype="VideoSegmentType">
<mpeg7:TemporalDecomposition
xsi:type="mpeg7:VideoSegmentTemporalDecompositionType">
<mpeg7:VideoSegment id="Seg0">
<mpeg7:MediaTime>
<mpeg7:MediaRellncrTimePoint
timeUnit="PTAN25F">775</mpeg7:MediaRellncrTimePoint>
<mpeg7:MedialncrDuration
timeUnit="PTAN25F">15</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion>
<mpeg7:SpatialLocator>
<mpeg7:Box mpeg7:dim="2 2">127 162 173 216</mpeg7:Box>
</mpeg7:SpatialLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
</mpeg7:VideoSegment>
<mpeg7:VideoSegment id="Seg1">
<mpeg7:MediaTime>
<mpeg7:MediaRellncrTimePoint
timeUnit="PTAN25F">31544</mpeg7:MediaRellncrTimePoint>
<mpeg7:MedialncrDuration
timeUnit="PTAN25F">41</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion>
<mpeg7:SpatialLocator>
<mpeg7:Box mpeg7:dim="2 2">163 210 175 216</mpeg7:Box>
</mpeg7:SpatialLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
</mpeg7:VideoSegment>
</mpeg7:TemporalDecomposition>
</mpeg7:Video>
</mpeg7:MultimediaContent>
</mpeg7:Description>

132




APPENDIX C

Example Structural Content Description for ST-AVIS Event

<mpeg7:Description xsi:type="ContentEntityType">
<mpeg7:MultimediaContent xsi:type="VideoType">
<mpeg7:Video xsi:itype="VideoSegmentType">
<mpeg7:TemporalDecomposition xsi:
type="mpeg7:VideoSegmentTemporalDecompositionType">
<mpeg7:VideoSegment id="Seg52">
<mpeg7:MediaTime>
<mpeg7:MediaRellncrTimePoint
timeUnit="PTAN25F">2425</mpeg7:MediaRellncrTimePoint>
<mpeg7:MedialncrDuration
timeUnit="PTAN10F">50</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>
<mpeg7:VideoSegment id="Segb53">
<mpeg7:MediaTime>
<mpeg7:MediaRelincrTimePoint timeUnit="PTAN25F">
4520
</mpeg7:MediaRellncrTimePoint>
<mpeg7:MedialncrDuration timeUnit="PT1N10F">
109
</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>
</mpeg7:TemporalDecomposition>
</mpeg7:Video>
</mpeg7:MultimediaContent>
</mpeg7:Description>

133




APPENDIX D

FST Description Example

<mpeg7:Description xsi:type="ContentEntityType">
<mpeg7:MultimediaContent xsi:type="VideoType">
<mpeg7:Video xsi:itype="VideoSegmentType">
<mpeg7:Medialnformation>
<mpeg7:MediaProfile>
<mpeg7:Medialnstance>
<mpeg7:MedialLocator><mpeg7:MediaUri>D:\Cigdem\TezAvi\Friends - 108 -
Tow nana dies twice.avi</mpeg7:MediaUri>
</mpeg7:MedialLocator>
</mpeg7:Medialnstance>
</mpeg7:MediaProfile>
</mpeg7:Medialnformation>
<mpeg7:MediaTime>
<mpeg7:MediaTimePoint timeUnit="PTAN25F">0</mpeg7:MediaTimePoint>
<mpeg7:MediaDuration timeUnit="PT1N25F">1309560</mpeg7:MediaDuration>
</mpeg7:MediaTime>
<mpeg7:VideoSegment id="Seg67">
<mpeg7:Relation source="Seg67"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptionOfObj
ect" target="rachel"/>
<mpeg7:Relation source="Seg67"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptionOfObj
ect" target="joey"/>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion id="rachel">
<mpeg7:SpatialLocator>
<mpeg7:Box mpeg7:dim="2 2">10 59 53 176 </mpeg7:Box>
</mpeg7:SpatialLocator>
</mpeg7:StillRegion>
<mpeg7:StillRegion id="joey">
<mpeg7:SpatialLocator>
<mpeg7:Box mpeg7:dim="2 2">147 215 67 166</mpeg7:Box>
</mpeg7:SpatialLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
<mpeg7:MediaTime>
<mpeg7:MediaRellncrTimePoint>4092</mpeg7:MediaRellncrTimePoint>
<mpeg7:MedialncrDuration>28</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>
</mpeg7:TemporalDecomposition>
</mpeg7:Video>
</mpeg7:MultimediaContent>
</mpeg7:Description>

134




APPENDIX E

EXAMPLE OBJECT FILE

<mpeg7:Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mpeg/7="urn:mpeg:mpeg’:schema:2001"
xsi:schemalLocation="urn:mpeg:mpeg7:schema:2001 Mpeg7-2001.xsd">
<mpeg7:Description xsi:type="SemanticDescriptionType">
<mpeg7:Semantics>
<mpeg7:Label>
<mpeg7:Name>D:\Cigdem\TezAvi\Friends - 108 - Tow nana
dies twice.avi</mpeg7:Name>
</mpeg7:Label>
<mpeg7:SemanticBase xsi:type="ObjectType">
<mpeg7:Label>
<mpeg7:Name>cup</mpeg7: Name>
</mpeg7:Label>
<mpeg7:Relation

type="urn:...:hasMediaPerceptionOf" target="Seg0"/>
<mpeg7:Relation
type="urn:...:hasMediaPerceptionOf" target="Segl"/>

</mpeg’:SemanticBase>

<mpeg7:SemanticBase xsi:type="ObjectType">
<mpeg7:Label>
<mpeg7:Name>joey</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Relation

</mpeg7:SemanticBase>
</mpeg7:Semantics>
</mpeg7:Description>
<mpeg7:Description xsi:type="ContentEntityType">
<mpeg7:MultimediaContent xsi:type="VideoType">
<mpeg7:Video xsi:type="VideoSegmentType">
<mpeg7:TemporalDecomposition
xsi:type="mpeg7:VideoSegmentTemporalDecompositionType">

<mpeg7:VideoSegment id="Seg0">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">775</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PTIN25F">15</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>

135



<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion>
<mpeg7:Spatiallocator>
<mpeg7:Box
mpeg7:dim="2 2">127 162 173 216</mpeg7:Box>
</mpeg7:SpatiallLocator>
</mpeg7:StillRegion>
</mpeg’7:SpatioTemporalDecomposition>
</mpeg’7:VideoSegment>

<mpeg7:VideoSegment id="Segl">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">31544</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PTIN25F">41</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion>
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2
2">163 210 175 216</mpeg’7:Box>
</mpeg’7:SpatialLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
</mpeg7:VideoSegment>

<mpeg7:VideoSegment id="Seg2">
<mpeg’7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">3300</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PT1IN25F">30</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion>
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2
2">15 117 89 222</mpeg7:Box>
</mpeg7:SpatiallLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
</mpeg7:VideoSegment>
</mpeg7:TemporalDecomposition>
</mpeg7:Video>
</mpeg7:MultimediaContent>
</mpeg7:Description>
</mpeg7:Mpeg7>

136



APPENDIX F

EXAMPLE EVENT FILE

<mpeg7:Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2001"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mpeg/7="urn:mpeg:mpeg’:schema:2001"
xsi:schemalocation="urn:mpeg:mpeg7:schema:2001 Mpeg7-2001.xsd">
<mpeg7:Description xsi:type="SemanticDescriptionType">
<mpeg7:Semantics>
<mpeg7:Label><mpeg7:Name>D:\Cigdem\TezAvi\Friends - 108 -
Tow nana dies twice.avi</mpeg7:Name></mpeg7:Label>
<mpeg7:SemanticBase xsi:type="EventType">
<mpeg7:Label>
<mpeg7:Name>eat</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Definition
xsi:type="mpeg7:TextAnnotationType">
<mpeg7:FreeTextAnnotation
xsi:type="mpeqg7:TextualType">eater:monica
</mpeg7:FreeTextAnnotation>
</mpeg7:Definition>
<mpeg7:Relation

</mpeg’7:SemanticBase>
<mpeg7:SemanticBase xsi:type="EventType">
<mpeg7:Label>
<mpeg7:Name>talk on the phone</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Definition
xsi:type="mpeg7:TextAnnotationType">
<mpeg7:FreeTextAnnotation
xsi:type="mpeg7:TextualType">talker:monica
</mpeg’7:FreeTextAnnotation>
</mpeg7:Definition>
<mpeg7:Relation

</mpeg7:SemanticBase>
<mpeg7:SemanticBase xsi:type="EventType">
<mpeg7:Label>
<mpeg7:Name>wear coat</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Definition
xsi:type="mpeg7:TextAnnotationType">
<mpeg7:FreeTextAnnotation
xsi:type="mpeg7:TextualType">wearer:monica
</mpeg7:FreeTextAnnotation>

137



</mpeg7:Definition>
<mpeg7:Relation

</mpeg’7:SemanticBase>
<mpeg7:SemanticBase xsi:type="EventType">
<mpeg7:Label>
<mpeg7:Name>fall</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Definition
xsi:type="mpeg7:TextAnnotationType">
<mpeg7:FreeTextAnnotation
xsi:type="mpeg7:TextualType">faller:ross
</mpeg7:FreeTextAnnotation>
</mpeg7:Definition>
<mpeg7:Relation
type="urn:...:hasMediaPerceptionOf" target="Seg55"/>
</mpeg7:SemanticBase>
<mpeg7:SemanticBase xsi:type="EventType">
<mpeg?:Label>
<mpeg7:Name>hug</mpeg7:Name>
</mpeg7:Label>
<mpeg7:Definition
xsi:type="mpeg7:TextAnnotationType">
<mpeg7:FreeTextAnnotation
xsi:type="mpeqg7:TextualType">huggerl:ross hugger2:monica
</mpeg7:FreeTextAnnotation>
</mpeg7:Definition>
<mpeg7:Relation

</mpeg’7:SemanticBase>
</mpeg7:Semantics>
</mpeg7:Description>

<mpeg7:Description xsi:type="ContentEntityType">
<mpeg7:MultimediaContent xsi:type="VideoType">
<mpeg7:Video xsi:type="VideoSegmentType">
<mpeg7:TemporalDecomposition
xsi:type="mpeg7:VideoSegmentTemporalDecompositionType">

<mpeg7:VideoSegment id="Segb52">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">2425</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PTIN25F">50</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>

<mpeg7:VideoSegment id="Segb53">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">4520</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialncrDuration
timeUnit="PT1IN25F">109</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>

138



<mpeg7:VideoSegment id="Segb54">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">19315</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PTIN25F">22</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>

<mpeg7:VideoSegment id="Segb55">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">21833</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PTIN25F">47</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>

<mpeg7:VideoSegment id="Segb56">
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint
timeUnit="PTIN25F">23902</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration
timeUnit="PTIN25F">48</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>
</mpeg7:TemporalDecomposition>
</mpeg7:Video>
</mpeg7:MultimediaContent>
</mpeg7:Description>
</mpeg7:Mpeg7>

139



APPENDIX G

EXAMPLE FRAME SEGMENT TREE FILE

mpeqg7:Mpeg’7 xmlns="urn:mpeg:mpeg7:schema:2001"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mpeg/7="urn:mpeg:mpeg’:schema:2001"
xsi:schemalocation="urn:mpeg:mpeg7:schema:2001 Mpeg7-2001.xsd">
<mpeg7:Description xsi:type="ContentEntityType">
<mpeg7:MultimediaContent xsi:type="VideoType">
<mpeg7:Video xsi:type="VideoSegmentType">
<mpeg7:MediaInformation>
<mpeg7:MediaProfile>
<mpeg7:Medialnstance>
<mpeg7:Medialocator>
<mpeg7:MediaUri>D:\Cigdem\TezAvi\Friends
- 108 - Tow nana dies twice.avi</mpeg7:MediaUri>
</mpeg7:MediaLocator>
</mpeg7:Medialnstance>
</mpeg7:MediaProfile>
</mpeg7:MediaInformation>

<mpeg7:MediaTime>
<mpeg7:MediaTimePoint
timeUnit="PT1IN25F">0</mpeg7:MediaTimePoint>
<mpeg7:MediaDuration
timeUnit="PTIN25F">1309560</mpeg7:MediaDuration>
</mpeg7:MediaTime>

<mpeg7:TemporalDecomposition
xsi:type="mpeg7:VideoSegmentTemporalDecompositionType">

<mpeg7:VideoSegment id="Seg6l">
<mpeg7:Relation source="Segb6l"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptio
nOfObject" target="cup"/>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion id="cup">
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2 2">127 162 173 216 </mpeg7:Box>
</mpeg7:SpatiallLocator>
</mpeg7:StillRegion>
</mpeg’7:SpatioTemporalDecomposition>
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint>775</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MediaIncrDuration>15</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>

140



</mpeg’7:VideoSegment>

<mpeg7:VideoSegment id="Seg62">
<mpeg7:Relation source="Segb62"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptio
nOfEvent" target="eat"/>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
</mpeg’7:SpatioTemporalDecomposition>
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint>2425</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration>50</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg’7:VideoSegment>

<mpeg7:VideoSegment id="Seg63">
<mpeg7:Relation source="Seg63"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptio
nOfObject" target="joey"/>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion id="joey">
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2 2">15 117 89 222 </mpeg7:Box>
</mpeg’7:SpatiallLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint>3300</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MediaIncrDuration>30</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>

<mpeg7:VideoSegment id="Seg64">
<mpeg7:Relation source="Segb64"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptio
nOfObject" target="plate"/>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion id="plate">
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2 2">142 211 143 171 </mpeg7:Box>
</mpeg7:SpatiallLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint>3480</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialIncrDuration>100</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg’7:VideoSegment >

<mpeg7:VideoSegment id="Seg65">
<mpeg7:Relation source="Seg6b"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptio
nOfObject" target="monica"/>

141



<mpeg7:Relation source="Segbt5"
type="urn:mpeg:mpeg7:cs:SemanticRelationCS:2001:hasMediaPerceptio
nOfObject" target="chandler"/>
<mpeg7:SpatioTemporalDecomposition
xsi:type="mpeg7:VideoSegmentSpatioTemporalDecompositionType">
<mpeg7:StillRegion id="monica">
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2 2">18 122 67 236 </mpeg7:Box>
</mpeg’7:SpatiallLocator>
</mpeg7:StillRegion>
<mpeg7:StillRegion id="chandler">
<mpeg7:Spatiallocator>
<mpeg7:Box mpeg7:dim="2 2">150 243 39 235 </mpeg7:Box>
</mpeg’7:SpatiallLocator>
</mpeg7:StillRegion>
</mpeg7:SpatioTemporalDecomposition>
<mpeg7:MediaTime>
<mpeg7:MediaRelIncrTimePoint>3930</mpeg7:MediaRelIncrTimePoint>
<mpeg7:MedialncrDuration>4</mpeg7:MedialncrDuration>
</mpeg7:MediaTime>
</mpeg7:VideoSegment>
</mpeg7:TemporalDecomposition>
</mpeg7:Video>
</mpeg7:MultimediaContent>
</mpeg7:Description>
</mpeg7:Mpeg7>

142



