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Abstract

ANALYSIS AND PREDICTION OF GENE

EXPRESSION PATTERNS BY DYNAMICAL

SYSTEMS, AND BY A COMBINATORIAL

ALGORITHM

Mesut Taştan

M.Sc., Department of Scientific Computing

Supervisor: Prof. Dr. Gerhard Wilhelm WEBER

Co-Advisor: Prof. Dr. Bülent KARASÖZEN

August 2005, 75 pages

Modeling and prediction of gene-expression patterns has an important place

in computational biology and bioinformatics. The measure of gene expression

is determined from the genomic analysis at the mRNA level by means of mi-

croarray technologies. Thus, mRNA analysis informs us not only about genetic

viewpoints of an organism but also about the dynamic changes in environment

of that organism. Different mathematical methods have been developed for an-

alyzing experimental data. In this study, we discuss the modeling approaches

and the reasons why we concentrate on models derived from differential equa-

tions and improve the pioneering works in this field by including affine terms on

the right-hand side of the nonlinear differential equations and by using Runge-

Kutta instead of Euler discretization, especially, with Heun’s method. Here-

with, for stability analysis we apply modified Brayton and Tong algorithm to

time-discrete dynamics in an extended space.

Keywords: Computational Biology, Gene-Expression Data, Mathematical Mod-

eling, Prediction, Dynamical System, Runge-Kutta Discretization, Stability.
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Öz

GEN MOTİLERİNİN DİNAMİK SİSTEMLER VE

KOMBİNATORİK BİR ALGORİTMA İLE

ANALIZLERİN YAPILMASI VE GELECEK

TAHMİNLERİ

Mesut Taştan

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Prof. Dr. Gerhard Wilhelm Weber

Eş Danışman: Prof. Dr. Bülent KARASÖZEN

Ag̃ustos 2005, 75 sayfa

Gen motiflerinin modellenmesi ve buna dayali tahminler, hesaplamalı biyoloji

ve biyoinformatik alanlarinda çok önemli bir yer tutmaktadırlar. Gen aktivite

deg̃işimleri, mRNA deg̃erlerinin mikrodizin teknolojisi sayesinde ölçülmesi ile

anlaşılır. Deney verilerinin analizi için deg̃işik matematiksel modeller geliştiril-

miştir. Bu tezde, modelleme yaklaşımları incelenmiş ve gen motiflerinin deg̃işim-

leri bayağı diferansiyel denklemler yardımı ile modellenmiş olup bunun sebep-

leri açıklanmıştır. Bu konuda daha önce yapılmış, sürekli modellere dog̃rusal

olmayan yer deg̃iştirme terimleri eklenerek yeni bir model geliştirilmiş ve Eu-

ler kesintileme metodu yerine Runga-Kutta metodu kullanılmıştır. Bunların

yanında zaman kesintili modelin kararlılık analizi, genişletilmiş uzay içerisinde

Brayton-Tong Algoritmasının değiştirilmiş hali ile yapılmıştır.

Anahtar Kelimeler: Biyolojik Hesaplama, Gen Düzenleme Verisi, Matema-

tiksel Modelleme, Dinamik Sistemler, Runga-Kutta Kesintilemesi, Kararlılık.
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Chapter 1

Introduction

1.1 Introduction

Genome research is one of the most exciting scientific disciplines of the 21st

century. The genome of an organism is perhaps the most important topic of

biology but yet, in general, it is the least understood [59].

An organism is shaped by its genome by mapping the primary structure of

nucleic acid molecules like DNA and RNA to a primary structure of protein

molecule. During such a mapping, proteins are constructed in the process called

gene expression which constitutes the essence of a cell. The answer of the

question which and how genes are expressed, under which conditions and where,

can give clues for understanding the functions of genes. The regulation of gene

expression is specified by the interactions between DNA, RNA, proteins and

small molecules [30]. This complex of interactions is called a gene regulatory

network.

While the study of expression patterns is vital for understanding the physio-

logical features, the characterization of most known genes is incomplete [53].

Thus, computational methods like networking and microarrays for identifying

and understanding the dynamics behind the gene expression are found to be

most efficient ways. Moreover, they engage the interest in gene regulatory sys-

tems and in bioinformatics. An advantage of these technologies is that they

allow the profiling of thousands of genes in a single experiment.
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1.2 DNA Experiments

It is assumed those huge amount of genes and their products (i.e., RNA and

proteins) create the mystery of life. However, traditional methods in molecular

biology generally work on a ”one gene in one experiment” basis, which means

that the throughput is very limited and the ”whole picture” of a gene function

is hard to obtain. Recently, a new technology, called a DNA microarray, has

attracted a tremendous interest among biologists. This technology promises to

monitor the whole genome on a single chip so that researchers can have a better

picture of the interactions among thousands of genes simultaneously.

Microarray experiments provide us with a huge amount of data to be analyzed.

Recently, many databases of experimental results are available for researchers

but the evaluation of these results for representing the complex patterns of genes

interactions merges with a big scientific challenge with high industrial pay-offs

[30].

GENE \ time 0 9.5 11.5 13.5 15.5 18.5 20.5

’YHR007C’ 0.224 0.367 0.312 0.014 -0.003 -1.357 -0.811
’YAL051W’ 0.002 0.634 0.31 0.441 0.458 -0.136 0.275
’YAL054C’ -1.07 -0.51 -0.22 -0.012 -0.215 1.741 4.239
’YAL056W’ 0.09 0.884 0.165 0.199 0.034 0.148 0.935
’PRS316’ -0.046 0.635 0.194 0.291 0.271 0.488 0.533

’KAN-MX’ 0.162 0.159 0.609 0.481 0.447 1.541 1.449
’E. COLI 10’ -0.013 0.88 -0.009 0.144 -0.001 0.14 0.192
’E. COLI 33’ -0.405 0.853 -0.259 -0.124 -1.181 0.095 0.027

Table 1.1: A portion of row gene expression data for Yeast cells from Stanford
microarray database [52].

Base-pairing (i.e., A-T and G-C for DNA; A-U and G-C for RNA) or hybridiza-

tion is the underlining principle of DNA microarrays. An array, an orderly

arrangement of samples, enables a medium for matching known and unknown

DNA samples based on base-pairing rules and automating the process of iden-

tifying the unknowns. These experiments use microplates or standard blotting

membranes, and can be created by hand or make use of robotics to deposit the

sample. In general, arrays are described as macroarrays or microarrays, the

2



difference lies in the size of the sample spots.

Main applications of DNA microarray technologies can be listed as gene discov-

ery, disease diagnosis, drug discovery and toxicological researches.

1.3 Mathematical Strategies on Experimental

Data

Since the 1950s, a variety of mathematical identifications have been proposed.

In 1952, Turing has firstly introduced the idea of a mathematical model for

biological systems [12, 57, 63]. In according to this approach, the change of

the state of the cell is equal to the sum of all acting forces on that cell. This

basic idea is one of the foundations for regulatory systems, but the development

of experiments at molecular levels requires extended and computer supported

models.

Easily accessible data through databases make modeling techniques popular.

Based on these experimental data it is aimed to make reliable future predictions

and simulations and to find the correlation between genes. For example, from

the data above we try to analyze and compare the approximations with real

data (cf. Figure 1.1).

The modeling approaches which we try to summarize and explain in this study

are Bayesian networks, Boolean networks, models derived from ordinary or

piece-wise linear differential equations and hybrid system modeling. All these

methods have both advantages and disadvantages [20, 30] concerning goodness

of data fit, computation time, capturing dynamics well, stability and other

qualitative or quantitative aspects.
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1.4 About This Thesis

Our work is an interdisciplinary specialization of scientific areas including molec-

ular biology, discrete mathematics, computational technologies, dynamical sys-

tems, optimization theory, statistical analysis and interpretation of biological

data.

We begin with briefly presenting the biological background for genes and gene

expression, then we summarize the experimental design (cf. Chapter 2). We

do this because of the need to point out our study’s importance and possible

applications in medicine, computational biology, bioinformatics, medicine and

pharmacy.

In Chapter 3, we discuss the modeling approaches and the reasons why we

concentrate on models derived from differential equations. Firstly, their more

detailed representation of regulatory interactions can provide a more accurate

understanding of the physical systems. Secondly, there is a large body of dy-

namical systems theory that can be used to analyze such models. Thirdly,

concerning that biological systems evolve in continuous time, we prefer to use

the systems of differential equations.

The method of data analysis should be selected with careful consideration for

the experimental setup and the underlying physics (if they are known). We are

particularly interested in how gene expression patterns change over time. In this

module, we look at two different kinds of models, namely, as time-continuous

models and time-discrete models which are examples of dynamical systems.

Our work improves the time-continuous model introduced and developed in the

pioneering works in this field [8, 13, 15, 47, 63] by additively including an affine

shift term to the systems of nonlinear differential equations. Furthermore, we

also improve the time-discrete model by using different numerical methods (cf.

Chapter 4). These procedures apply in an extended dimension 2n instead of n.

When a dynamical model is introduced, then the questions concerning stability,

parameter estimation, parameter sensitivity analysis and other qualitative or

4



quantitative aspects arise. Parameter estimation requires statistical learning

methods and optimization [25]. Such a kind of work, up to some extent, is done

in [16, 63].

Stability is an important analysis criterion and item for systems of differential

equations. Staying of a system near an equilibrium can be interpreted as both

a controllability and coming of a disease to a rest, but also a lack of flexibility

to adopt to new environmental condition. A system is (Lyapunov) stable if all

states will remain bounded for all time, for any finite initial condition. Since

gene expression patterns lie in a bounded regions, in Chapter 5, we perform

the stability analysis for goodness of fit test of our generalized model. This will

be done in the extended space, and with the help of the algorithmic method

introduced by Brayton and Tong [5]. The idea of applying this combinatorial

algorithm to gene dynamics was firstly mentioned by Gebert, Lätsch, Pickl, We-

ber and Wünschiers in the paper [15] which exploits the time-discrete dynamics

by matrix multiplication and the extremal points of polyhedral regions. More-

over, it relates the geometry of polytopes with the theory of dynamical systems.

To explain and illusrate the method better, similar to the one studied in [4], we

explain the algorithm step by step and present an example in Chapter 6.

Our model provides an inference of a wide range of gene networks, and in

terms of stability and predictions. We believe that given reliable data and

high capability of computational efforts, our study can serve for identifying and

anticipating gene expression patterns for the future. Herewith, we aim at a

mathematical contribution to biological and medical progress, and to health

care.
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Chapter 2

Biological Background

2.1 Life Molecules

All living systems from single-celled to multicellular plants and animals store,

replicate and transmit the information to next offsprings. Genetics is the study

and the science of heredity which includes the information passing from gen-

eration, in fact parent, to generation, the progeny. Without a knowledge of

genetics, a true understanding of biology cannot be obtained or appreciated [3].

Cell, the minimal unit of the life, contains many macromolecules that organize

and coordinate all of the events. This wide range of molecules can be written

as water, Deoxyribonucleic acid (DNA), proteins, polysaccharide, and small or-

ganic compounds like acids and sugars. In the following subsections, we give a

rough summary about the elementary molecules of genetics.

2.1.1 DNA and Genes: The Heredity Materials

Some macromolecules have other vital properties as controlling and governing

of all activities. Here, the DNA molecule is the chief of this complex structure

because it stores the information about the structure of macromolecules and

helps for production of them with respect to the cell’s needs. A DNA molecule

forms the ”blueprint” of an organism by encoding the information [37]. Several

lines of DNA contain genetic material of living organisms within the units known

as nucleotides and in each such molecules, the sequence of four different bases:

adenine (A), guanine (G), thymine (T) and cytosine (C) specify the type and

synthesis timing of proteins. These base pairs stand as A-T and G-C in the

6



double helix structure deduced by J. D. Watson and F. H. C. Crick in 1953 (see

Figure 2.1).

Figure 2.1: DNA structure and bases (taken from National Human Genome Re-
search Institute, Division of Intramural Research) [43].

An important character of the DNA model is that the two strands are held

together by noncovalent hydrogen bonds, weak electrostatic cord between two

atoms that can be easily broken and reformed. The number of bonds varies

in base-pairs so that there are two between A and T whereas there are three

bonds between G and C. The meaningful parts, units, of the DNA sequence are

genes that control the identifiable hereditary traits of an organism. In fact, a

gene can be defined as a segment of DNA determining a functional RNA. Here,

we say ”meaningful parts” because only some regions of DNA and genes are

encoding segments (Figure 2.2). In humans, the proportion of protein-coding

region is less than 5% [23].

The total set of genes involved in an individual or in a cell is called its

genome. What genomics tries to define is the genotype, the genetic structure

of the organisms. The phenotype, however, tries to make the list of features

expressed under a particular set of environmental factors. The phenotypic fea-

tures (appearance) may or may not directly reflect the genotype (the present

7



Figure 2.2: Coding Regions for DNAs and genes [23].

genes). Genetic material controls both phenotypic and genotypic characters.

According to the definition done by Mendel a century ago [38], a gene is a unit

element that satisfies two basic natures, namely:

• a ”particulate factor” that must be capable of storing genetic information

and that passes unchanged from parents to progeny,

• an object that may exist in different, alternative forms as alleles which

may produce the differences.

The DNA molecules are contained in chromosomes composed of two kinds of

large organic molecules called proteins and nucleic acids. Chromosomes also

involve regulatory elements and other intervening nucleotide sequences.

2.2 Central Dogma of Biology

There is an information flow from DNA with Ribonucleic acid (RNA) to pro-

teins. The intermediary element RNA has similar structure to DNA molecules.

The differences stay, firstly, in sugar that instead of deoxyribose, RNA, involves

ribose and, secondly, in base pairs such that instead of thymine (T) RNA con-

tains uracil (U) and, thirdly, in strand property usually RNA is single-stranded.

This route of transfer mentioned above defines central dogma of biology which

involves the transfer of genetic information from DNA to RNA called transcrip-

tion and the passing of information from RNA to proteins called translation

(Figure 2.3). The idea which is coming from the central dogma and stating that

8



Figure 2.3: Central Dogma of Biology [61].

one gene is responsible for one protein molecule has recently been changed. We

are faced with a more complex dynamics than it was imagined. One gene has

may interactions with many particles in a cell and can lead to the production of

more protein molecules. However, with all this complexity, the map of relation-

ships between genes still seems to be constructible because of limited interaction

of genes stemming from their limited topological structures [49].

2.2.1 Transcription

In most cases, proteins are synthesized in the cytoplasm, but the organisms

like eukaryotes have their DNA and chromosomes in the nuclei of cells. RNA,

therefore, is used as a template for synthesis. This indirect effect of DNA over

RNA constitutes the main concept of the central dogma [24]. One strand of

DNA called the sense or noncoding strand is the template for encoding infor-

9



mation. This process begins with binding of RNA polymerase to promotors,

which are the special regions of the noncoding strand near a gene where tran-

scription starts. RNA polymerase causes hydrogen bounds to break and the

helix strands to unwind. Then, for an opened single-pair, the complementary

base-pairs are again tied by hydrogen bonds and construct the messenger RNA

(mRNA) (for details please see [19]). After RNA polymerase reaches the termi-

nation region on the strand, the process ends and the DNA turns to the original

form. The molecule mRNA is one the three types of RNA taking part in the

protein synthesis. In most molecules, a high proportion of the RNA nucleotides

are used for encoding. For this reason, in experiments usually mRNA levels are

measured to determine future predictions.

2.2.2 Translation

Translation is the second process in protein synthesis in which mRNA carries

the genetic information from the chromosomes to the ribosomes, a cell struc-

ture containing ribosomal RNA (rRNA) and protein base pairs. Similar to

transcription, translation has also three parts, namely, initiation, base-paring

and termination. Nucleotide sequences are transferred into triplets and each of

those triplets is linked to a specific amino acid. Each three mRNA nucleotides

are called as codons, and the corresponding ones in tRNA are called its anti-

codons. In ribosomes, the codon AUG which specifies the amino acid methionine

initiates the polypeptide synthesis and, through hydrogen bonds, the base pairs

on mRNA are matched to the ones on transfer RNA (tRNA). Here, tRNA is a

small single-stranded RNA molecule to the length 74-95 nucleotids [23]. Each

tRNA carries only one amino acid. As we see in Figure 2.4, when tRNA finds

its places in the mRNA line, the attached amino acid becomes the new terminal

end of the growing polypeptide chain. The codons UAA, UAG and UGA ter-

minate the translation process. Transcription and translation processes result

in proteins which are the most functional life molecules because of catalyzing a

wide variety of chemical reactions and also serving as building blocks for cellular
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Figure 2.4: Translation in the cytoplasm: tRNA carries amino acids which are added
to the growing peptide chain in the ribosome (taken from National Human Genome
Research Institute, Division of Intramural Research) [43].

structures like muscles, skin, enzymes, etc.. The tissue, metabolic state of the

cell, specifies the amount of protein that a cell expresses.

2.3 Gene Expression and

Microarray Experiments

Gene (or protein) expression is the process by which gene information is con-

verted for producing cell structures and cell functions. In the previous sections,

we roughly summarized the beginning main events transcription and transla-

tion, taking part in this process. After transcription and translation, steps like

folding, post-translational modification and targeting occur before protein prod-

uct but we leave these details to [34]. Since mRNA is an exact copy of the

DNA coding regions, mRNA analysis can be well used to explore the process

in coding regions of DNA. More importantly, the measure of gene expression

can be determined from the genomic analysis at the mRNA level [48]. Both

genomic and environmental factors affect the gene expression levels. For ex-

ample, the environmental factors including stress, light, temperature and other
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signals cause some changes in hormones and in enzymatic reactions that influ-

ence the gene expression level. That is why mRNA analysis informs us not only

about genetic viewpoints of an organism but also about the dynamic changes

in environment of that organism. For most genes, protein levels are defined

by steady state mRNA levels [62]. Thus, quantitative expressions at mRNA

level provide important clues about the underlying dynamics. Peculiar changes

in monitoring mRNA levels generally refer to drug treatment, shocks, disease

or metabolic states. Such kinds of perturbation are also concerned as genomic

instability which we include in this study.

2.4 Microarray Technology

Microarray technology is an array-based technology that monitors thousands

of different RNA molecules simultaneously revealing their expression patterns

and perturbed subsequent cellular pathways. One of the most frequently used

microarray applications [7] is to compare gene expression levels of the same cell

type like healthy cell and diseased cell under two different conditions. Such

application can give vital information on the reasons of diseases. Recently, ex-

pression analysis is the main large-scale application of microarrays and it is

followed by DNA variation on a genome-wide scale [6]. Both of these applica-

tions share similar requirements, but they differ in some crucial aspects that

have resulted in two different types of microarrays. In microarray technology,

gene expression profiling or gathering the data is mainly done by either cDNA

arrays or oligonucleotide arrays.

2.4.1 Oligonucleotide Arrays and Implementation

Small parts of DNA molecules up to 25 nucleotides called as oligonucleotides

that can be created by reverse transcription of expressed mRNA levels in a

cell type. Basically, oligonucleotide arrays are composed of glass or silicon

surfaces having hundreds to thousands of immobilized oligonucleotide array
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of detection units (probes) that permit the hybridization. We can summarize

the implementation as follows: In oligonucleotide chips, a flourescently labeled

nucleic acid sample is injected to the probe where hybridization occurs between

sample and probe. Then, laser detection is applied at the interface of array

surface through the back of the glass material. A lens gathers the fluorescence

emission to pass it to a sensitive detector with the help of series of optical

filters. After scanning by the laser, a two-dimensional fluorescence image of

hybridization intensity is created.

2.4.2 cDNA Arrays and Implementation

Chemically or by polymerase chain reactions (PCR) synthesized form of the

coding part of the DNA sequence complementary to its corresponding mRNA

transcript is defined as complementary DNA (cDNA). The cDNA chips include

a relatively large amount of nucleic acids, usually more than 100 nucleotides.

They are generally used for the measurement of RNA expression levels and

cheaper than the oligonucleotide chips. The implementation process can be

described as:

1. samples are arrayed on the slides, air-dried and are immobilized by ultra-

violet irradiation,

2. labeled cDNA samples are hybridized with probes after little mousturing,

3. heating and washing the arrays, unbounded cDNAs and solutions are

eliminated,

4. after image processing techniques, gene expression levels are obtained.

In Figure 2.5, we can see a generalized scheme illustrating DNA microarray

experiments.
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Figure 2.5: Design and implementation of DNA microarray experiments [15].

2.5 Evaluating the Expression Data

Microarray experiments can quickly monitor the expression values for large

numbers of genes. The goal researchers have in mind is ultimately to clarify the

precise connections of the genetic network : mathematically speaking, a graph

consisting of vertices as genes and of edges connecting genes (please refer to

Section 3.2). For each gene it is aimed to find which genes are how much influ-

enced by this gene. Different mathematical methods have been developed for

construction and analyzing such networks. Thus, our study may support these

techniques to add new insights by means of mathematical modeling, dynamical

systems and algorithms.
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Chapter 3

Gene Regulatory Networks

3.1 Overview

Although recent development of microarray technology added new insights to

the study of genetic regulatory systems, it still contains many challenges like

the limited number of experimental data, noise, and quality of training data.

Such obstacles make it difficult to understand the underlying dynamics of the

regulatory network.

Besides the experimental design, the existence of lots of positive and negative

feedbacks in genetic regulatory systems lets the intuitive understanding be hard.

However, in the light of combined biochemical and genetics studies and user-

friendly computer tools, a variety of mathematical models have been constructed

to describe gene interactions and to make predictions in a systematic way [30].

Below in Figure 3.1, we express basic ideas and notions behind the modeling

aspects in mathematical biology, computational biology and bioinformatics.

3.2 Modeling Approaches

3.2.1 Modeling by Graphs

Gene regulatory networks are generally modeled by considering them as a di-

rected graphs.

Definition 3.1. A directed graph is a tuple G = (V, E), where V is the set of
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Figure 3.1: General modeling approach.

vertices (genes) and E is the set of edges (relationships). It is also possible to

define the edges as directed in such that the tuple of vertices (vi, vj), sometimes

in short: (i, j), with the head (vi) and the tail (vj) of the edge. These edges

can carry some weight or they can be labeled. For example, the activation

or inhibition of ith gene by jth gene can be represented as (i, j, +) or (i, j,−),

respectively.

A simple directed graph representation of a regulatory network of three genes

is shown in Figure 3.2.

Figure 3.2: A graph representation of a simple regulatory network [30].

Biological features can be modeled by or learned from the operations on the reg-

ulatory networks. These operations such as pathways between two predefined

genes, cycles, connectivity, etc., give us some clues about missing regulatory
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relations, connectivity, structures (components and clusters) and about redun-

dancy in the network.

3.2.2 Bayesian Networks

Formally, Bayesian networks are described in terms of probabilities and condi-

tional independence statements such that a relation can be noted between this

characterization and the notion of direct causal influence [27, 51].

They are promising tools in network modeling because, firstly, statistical learn-

ing and simulation techniques of Bayesian networks from experiments and com-

putational algorithms are well developed and have been used successfully in

many applications [25]. Secondly, some noise naturally involved in measure-

ments makes the Bayesian network approach attractive, because in those net-

works noise is taken into account [30]. Thirdly, they are useful for deducing

events composed of locally interacting components, i.e., one can imagine or

decompose the whole gene network in to small ones.

In [14], a genetic regulatory system is represented by a directed acyclic graph

G = (V, E) in which for each gene i, represented by the ith vertex, there is

an associated random variable Xi, and for each Xi a conditional distribution

p(Xi|parents(Xi)) is defined by Friedman, Linial, Nachman and Pe’er [14].

Here, parents(Xi) indicates the elements that regulate the ith gene in a direct

way. Such parents together with the graph define the unique joint probability

distribution p(X) by means of Markov assumption [30] in the form of

p(X1, X2, ..., Xn) =
n∏

i=1

p(Xi|parents(Xi)).

Having the experimental data and related set of independent values for X =

{X1, X2, ..., Xn}, one can make a characterization of a network by Bayesian

learning techniques, which, in essence, is based on a matching score to determine

the network G with given training data D. Evaluating each network with respect
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to the training data needs a scoring function. A commonly used scoring function

[14] is

Score(G : D) := log P (G|D) = log P (D|G) + log P (G) + C,

where

P (G|D) :=

∫
P (D|G, x)P (x|G)dx.

The choice of the priors P (G) and P (x|G) defines the score, but finding a

network G which maximizes the score turns to be an optimization problem

(see [14, 27]). Such an optimization problem is hard to solve because there

is no known polynomial time algorithm to find the global maximum. Thus,

it is called an NP-hard (nondeterministic polynomial time) problem. Hence,

Friedman et al. [14] used a heuristic search method but reaching to a network

cannot be guaranteed since we only have a bounded finite number of expression

data among the thousands of genes [30]. This backbone arises the dimensionality

problem for the method.

However, in [14] a heuristic search algorithm for deducing the network has

been proposed to overcome such a discrepancy by focusing on the properties

common to high-scoring networks. For this, the authors used two particular

tools, namely, Markov relations and order relations between pairs of variables

X and Y . (For details and examples please refer to [14, 50, 51].)

Since there is an incomplete information in gene networks, using a Bayesian

approach seems to be reasonable. However, dynamical aspects of gene regularity

networks are lost in this method. That is why, to some extent, Murphy and Mian

[42] developed dynamical Bayesian networks.
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3.2.3 Boolean Networks

In reality, many biological processes evolving in time exhibit an S-shaped, or

sigmoidal curve, but in Boolean networks this is converted to the on-off idea.

Thus, we have some discontinuity instead (see Figure 3.3):

Figure 3.3: From reality to Boolean networks.

Boolean networks (BN ) are systems of variables with a possible state of activity

as on or off. Hence, they deal with (1) the presence or (0) the absence of genes.

Moreover, activity of each element (gene) can depend on prior activity of some

other gene according to a Boolean switching function.

The Boolean network model became popular after studies done by Kauffman

(1969) for the modeling of metabolism of living organisms. It is mathematically

defined as:

G(V, F ), where V is the set of nodes (genes) and F is a list of Boolean functions.

If the vector x̂ represents the state of n regulatory elements, then each x̂i has

only a value 0 or 1, and the total number of states is 2n. At time t+1, the state

of the gene x̂i is determined by a Boolean function fi which uses the k states of

n elements at previous time t. Here, k defines the number of connectivity which

varies from gene to gene. As an illustration, for n = 3 and k = 2, we give the

following simple model:

x̂1(t + 1) = x̂2(t) and x̂3(t),

x̂2(t + 1) = x̂1(t) or x̂3(t),

x̂3(t + 1) = x̂2(t) nor x̂3(t).

19



Such an interaction is also represented in the form of a wiring diagram as shown

in Figure 3.4:

Figure 3.4: Wiring diagram of the Boolean network.

All three variables affect each other by predefined Boolean functions. For ex-

ample, the next state of x3 depends on the present states of x2 and x3. In

Kauffman’s example [33], the 8 states are displayed in Table 3.1.

t t + 1

x1 x2 x3 x1 x2 x3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 1 1

Table 3.1: The iteration table [33].

As it can be seen in the iteration table, the state vector 000 at t moves to and

remains in the state 000 at time t+1. So, we figured out that this initial state is

connected with itself. A sequence of states which are connected with transitions

are called the trajectories of the systems. Since the possible number of states

is finite, all initial states of a trajectory eventually arrive at a steady state or

state cycle, also known as attractor. In Figure 3.5, we see the state cycles for

Kauffman’s model.

20



Figure 3.5: Limit cycles of Kauffman’s example [33].

Drawing out such diagrams for small networks is possible by hand, but larger

networks require computer programs. Wuensche [60] has developed such a com-

puter program called DDLab to find attractors and their basins of attraction.

The basic logic behind the Boolean networks is to generate random networks

with local properties that hold for all members of the system [33]. By defining

the attractors, basins of attraction and trajectories, it is possible to investigate

the simplifications of the local properties for the global dynamics of the network.

Thus, the transition tables allowed algorithms like REVEAL to be constructed

[39]. Basically, it searches the logical rules with respect to a given finite set of

data. By assuming that the number of regulatory genes is bounded, Akutsu,

Miyano and Kuhara [2] proposed a simpler algorithm such that it looks whether

a unique Boolean exists or not.

Kauffman [33] has calculated that for small values of the number of connectiv-

ity (k) and certain choices of regulatory functions, the system demonstrates a

highly-ordered dynamics. In such cases, the expected number of attractors was

empirically found to be about
√

n and the length of cycles is also proportional

to
√

n where n is the number of regulatory elements, genes. As k increases,

the dynamics gets a more and more complex structure such that some chaotic
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behaviors can be observed [33].

Thomas and Kauffman [56] showed that replacing S-shaped functions by Boolean

step functions, the qualitative behaviour of a gene network does not change but

adding a particular dynamics to the system is very hard. In addition, although

on-off BN idealization is better for nonlinear systems, in reality, instead of

simultaneous activation there is a time delay between switching states. Thus,

Thomas [56] has expanded the notion introduced by Kauffman by adding multi-

ple time delays. Further extension considered by Öktem, Pearson and Egiazar-

ian [45] by passing from time discrete to time continuous models.

3.2.4 Dynamical System Models

Differential equations are one of the most widely used modeling formalisms in

mathematical biology because they have the capability of capturing behaviors

like oscillations, cyclical patterns, multistationarity, switch-like, etc. [17].

The concentrations of gene products, such as RNAs and proteins, are continuous

values, which are more accurate and can provide a detailed understanding of

the nonlinear dynamical behavior exhibited by biological systems. A differential

relation between n variables of gene networks generally is represented in the form

dxj

dt
= fj(x) (j = 1, 2, ..., n),

where x = (x1, x2, ..., xn)T is the vector of positive concentrations of proteins,

mRNAs, or small components, and fj : Rn → R are nonlinear functions (j =

1, 2, ..., n).

A first differential equation or dynamic system model consisting of mRNA and

protein concentrations was proposed by Chen and Aihara [8] in the form of

Ė = ME, where M is a constant matrix and E is the expression level of

individual genes. Later on, De Hoon and Imoto [29] used this linear model

on mRNA data of Bacillus subtilis to estimate M by the maximum likelihood

estimation method. In 2001, Sakamoto and Iba [47] proposed a more flexible
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model

Ėj = Fj(E1, E2, ..., En) (j = 1, 2, ..., n)

with Fj being functions of E = (E1, E2, ..., En)T determined by genetic pro-

gramming and least-squares methods.

The models described above were refined by Gebert, Lätsch, Pickl, Weber and

Wünschiers [15] with many ideas. They regard the model Ė = M(E)E with

its deterministic matrix multiplicative form. Here, the matrix M , not usually a

constant matrix, depends on E. In the same study, to modify the optimization

problem which will be mentioned in Chapter 4, the solution space is restricted

by assuming that the number of regulating factors for each gene is bounded.

Based on the idea in [16], Yılmaz [63] modeled the gene expression patterns by

Ė = F (E),

where the right-hand side F (E), F = (F1, F2, ..., Fn)T , component-wisely con-

sists of a sum of quadratic functions:

Fj(E) = fj,1(E1) + ... + fj,n(En) (j = 1, 2, ..., n).

(For details please we refer to Chapter 4.) In our study, we develop and gener-

alize the model Ė = M(E)E with an affine term C(E), namely,

Ė = M(E)E + C(E). (3.2.1)

The basic example is given by C(E) ≡ E, corresponding to the absolute (scalar)

term from Yılmaz [63], quadratic ansatz. However, also nonconstant functions

C(E) are possible. The right-hand side M(E)E +C(E) may be regarded as the

result of factorizing a vector-valued function F (E) withrespect to E. Herewith,

it may represent to an extent that right-hand side F (E) is close to multiplicative

matrix form M(E)E in n dimension.
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By writing C(E) = M̌(E)Ě where M̌(E) is a n×n diagonal matrix, we eventu-

ally find that Ě is constant. In fact, we shall consider the initial value problem

with E(t0) = E0 and Ě(t0) = (1, 1, ..., 1)T . Thus, we reformulate (3.2.1) as

(
Ė
˙̌E

)
=


 M(E) M̌(E)

0 0




(
E

Ě

)
.

Canonically defining

E :=

(
E

Ě

)
and M(E) :=


 M(E) M̌(E)

0 0


 ,

we have reintroduced the following general form

Ė = M(E)E,

which is characterized by a matrix multiplication.

Since one of our main concerns is stability of the system (3.2.1), we investigate

stability of the previous new system in terms of polytopes [15] in the extended

space [55] (see Chapters 4-5).

3.2.5 Hybrid System Models

There also exist hybrid models [8, 11, 20] which combine discrete and continuous

system models and illustrate both switch-like and smooth variations of genetic

networks. Such a kind of behavior arises in both man-made systems like traffic

flows and living systems in nature.

In the hybrid scheme, the concentration of proteins (or gene expressions) are

supposed to obey the switching linear differential equations

ẏj = −yj + Fj(ỹ) (j = 1, 2, ..., n), ỹ = (ỹ1, ỹ2, ..., ỹn)T ,
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where

ỹj =





0 if yj < 0,

1 if yj > 0.

Since, there exist time delays in the gene expression process, Chen et al. [8]

have improved the time-continuous models by time delays. In general, simula-

tion these continuous models generally take much more time than the Boolean

models need [8]. In terms of delay differential equations (DDE), they proposed

the following model:

ṁ(t) = −Kmm(t) + c(p(t, τp)),

ṗ(t) = −Kpp(t) + d(m(t, τm)).

Here, m = (m1,m2, ..., mn)T ∈ Rp and p = (p1, p2, ..., pn)T ∈ Rn stand for con-

centrations of mRNAs and proteins, respectively, Km = diag(km1, km2, ..., kmn) ∈
Rn×n and Kp = diag(kp1, kp2, ..., kpn) ∈ Rn×n are positive real diagonal matrices

representing the degradation. Furthermore, τm = (τm1, τm2, ..., τmn)T ∈ Rn and

τp = (τp1, τp2, ..., τpn)T ∈ Rn are positive real vectors indicating the time delays

with m(t, τm) = (m1(t − τm1), (m2(t − τm2), ..., mn(t − τmn))T and p(t, τp) =

(p1(t−τ1p), p2(t−τ2p), ..., pn(t−τpn))T . The vectors c(p) = (c1(p), c2(p), ..., cn(p))T

and d(m) = (d1(m1), d2(m2), ..., dn(mn))T are generally nonlinear terms corre-

sponding to switching-like phenomena in the form of sigmoid functions, e.g.,

tanh(xi

ε
) or

xk
i

xk
i +ε

with a positive constant ε and hill coefficient k.

3.2.6 Models with Piecewise-Linear Differential Equa-

tions

The S-shaped, or sigmoid, change in concentration is approximated step func-

tions in Boolean networks. An alternative approximation can be made by

piecewise-linear differential equations (see Figure 3.6).

It is known that rates of degradation of some mRNA molecules and the maximal
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Figure 3.6: Approximation with piecewise-linear equations.

possible number of regulating genes for one gene can be included into the model

as known parameters as well. A simple formalism of this approach stated in

[20, 40, 56] is

dxj

dt
= gj(x)− γjxj (j = 1, 2, ..., n),

where xj denotes the cellular concentration of gene i and γi is the degradation

rate of xj.

Gebert, Radde and Weber [17] focused on the model represented by Figure 3.7

which is mathematically formulated as

Figure 3.7: Example of a model derived from PLDE [17].

ẋ1 = k1,1 · h+(x1, θ1,1,m1,1) + k1,3 · h−(x3, θ1,3,m1,3)− γ1x1,

ẋ2 = k1,1 · h−(x1, θ2,1,m2,1)− γ1x1,

ẋ3 = k3,1,2 · h+(x1, θ3,1, m3,1) · h+(x2, θ3,2,m3,2)− γ3x3.
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Using one variable for the mRNA concentration with assuming that the proteins

are approximated by this variable can lead to bad approximations, but the

fraction of post-transcriptional regulations in procaryotes is less than those in

eucaryotes. Thus, the model approaches such as the above ones can provide a

qualitative mathematical analysis only for procaryotes.

3.3 Our Extended Modeling

Most of the common modeling and simulation techniques for gene regulatory

networks are deterministic. Hoon [29] has compared about ten different mod-

eling formalisms and categorized them as coarse, average and fine. According

to these comparison results, the models built up from partial and nonlinear

differential equations are found to be qualitatively fine.

We also claim that modeling by a dynamical system is better prepared to cap-

ture the underlying structure of gene networks. In [1, 16, 63], the constant form,

C, the linear form, ME +C, and the nonlinear (especially, the quadratic) form,

M(E)E + C, of the time-continuous models are already compared in terms of

fitting the experimental data, and it is numerically shown [63] that nonlinear

models do a much better data fitting. Furthermore, the allowance of nonlinear-

ity in modeling guarantees a better prediction of the future expression states

by means of the corresponding time-discrete dynamics [63].

In this work, we extend the nonlinear continuous model Ė = M(E)E by adding

an affine shift term to the right hand side of the equation, i.e.,

Ė = M(E)E + C(E),

where C(E) stands for the additive affine shift term. Differently from M(E)E,

the second term (shift) C(E) does not need to reveal E as a factor, e.g., exp

or cos. In case where M(E) and C(E) are polynomial, component-wise un-

derstood, M(E)E may have a higher degree than C(E). The important and
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basic case where C(E) is constant, i.e., C(E) ≡ C, was in modeling studied by

Yılmaz [63].

Using such an additive shift C(E) has several advantages in both biological

sense and mathematical analysis. We will deepen and integrate these details of

our model further in the coming chapters.
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Chapter 4

The Extended Model

4.1 The State of the Art

Experiments involving dynamic measurements typically require a careful defi-

nition of the physical quantities to be measured and the instrumental means.

One is often interested in testing hypotheses or making inferences on the ba-

sis of temporal patterns in time-series data. When the observed dynamics are

relatively simple, such as sinusoidal periodicities, traditional analytical tools

such as Fourier transforms are easily used to characterize the patterns. More

complex dynamics like gene expression patterns can require more sophisticated

approaches because of bifurcations, chaotic oscillations and unknown regulating

factors.

Let the n-column vector E = E(t) represent gene expression patterns at differ-

ent times t. We denote the given finite set of experimental results as Ē0, Ē1, ...,

Ēl−1, where each Ēm ∈ Rn corresponds to the gene profile taken at time t̄m. Fur-

thermore, we denote the time-discrete approximations introduced subsequently

by E0, E1, ..., El−1, ....

Gebert et al. [16] developed a time-continuous model by taking account of

that interaction between variables is nonlinear but the number of associated

regulating influences is bounded. This flexible model was formulated in the

following multiplicative form of nonlinear ordinary differential equations:

(CE) Ė = M(E)E.
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This system of ordinary differential equations (CE) is autonomous; i.e., the

right-hand side depends on the state vector E, but not on the time t. This

implies that nontrivial trajectories (i.e., ones which are not stationary) do not

cross themselves. The matrix M(E) is component-wise defined by a family

of any class of functions including unknown parameters. For example, for a

(2× 1)-vector E = (E1, E2)
T , the matrix M(E) could be

Ma1,a2,a3,a4
a5,a6,a7,a8

:=


 a1E

2
1 + a2E1E2 a3E2 cos(E1) + a4

a5 cos(E2) + a6E1 a7E
2
1 + a8E2


 .

We note that the polynomial, trigonometric, but otherwise also exponential,

etc., entries represent the growth or other kinds of changes in the concentrations.

In this example, there are eight parameters in total.

Now, two different stages of problem come into consideration concerning the

parametrized entries of the matrices M(E). Firstly, the optimization problem

of discrete (least-squares) approximation which can be written as

minimize
α

l−1∑

k=0

||Mα(Ēk)Ēk − ˙̄Ek||2.

Here, the least-squares methods of linear and nonlinear regression are used to

estimate the vector α of a first part of the parameters to fit the set of given

experimental data and to characterize the statistical properties of estimates.

Secondly, we investigate which components of remaining parameter vector β

produce a stable, which ones an unstable influence on the dynamics. For a

closer presentation of this two-stage problem from parametric optimization, we

refer to [16, 31].
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4.2 Model with Quadratic Polynomials

An extension to (CE) was considered by Yılmaz et al. [63] by proposing the

nonlinear form

Ė = F (E),

where F = (F1, F2, ..., Fn)T is a tuple of functions depending on E ∈ Rn. More

specifically, for representing the influence of gene i to gene j, the authors consid-

ered the quadratic (also: constant, linear) functions fj,i(x) = aj,ix
2 + bj,ix + cj,i

where x = Ei denotes the concentration of genei and aj,i, bj,i, cj,i ∈ R. In [63],

the least-squares approximation errors of constant, linear and nonlinear, in fact

quadratic, models are compared. Here, by saying error we mean the least-

squares difference between the experimental data Ē and the model approxima-

tion E. In according to this comparison and the prediction by a corresponding

time-discrete dynamics, the quadratic model yields better results.

4.3 Generalized Model

The model extended by Yılmaz et al. [63] allows nonlinear interactions and

uses an affine constant term of shift. However, the recursive iteration idea

mentioned in [15] looks to be lost by this shift term. Here, we generalize (CE)

by the following affine addition:

(ACE) Ė = M(E)E + C(E),

allowing even a non-constant, state-depending shift. We defend and underline

that the additional column vector C(E) can help us for accounting the environ-

mental changes in the sense of perturbations and capturing the dynamics better.

Our approach in overcoming the more complex form of (ACE) algorithmically

is that C(E) can be written as
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C(E) = M̌(E)Ě,

where

M̌(E) := diag(CT (E)) =




C1(E) 0

C2(E)

.

.

.

0 Cn(E)




and Ě :=




Ě1

Ě2

.

.

.

Ěn




.

In fact, we shall see by means of the corresponding initial value Ě(t0) = e (e :=

(1, 1, ..., 1)T ) that the (time-depending) variable Ě is constant and identically

Ě ≡ e. In this sense of initial conditions, (ACE) is equivalent to

Ė = M(E)E + M̌(E)Ě.

Let us define the vector and the matrix of canonical form:

E :=

(
E

Ě

)
and M(E) :=


 M(E) M̌(E)

0 0


 ,

so that we end up with the following form of the extended initial value problem:

(CE)ext Ė = M(E)E and E0 := E(t0) =


 E(t0)

Ě(t0)


 =




E0

1

.

.

.

1




.
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By the previous reformulation, in our present research, we benefit from both (i)

the affine shift term structure for better modeling gene expression patterns and

for better future predictions, and (ii) the time-continuous matrix multiplication

approach by means of dimensional extension into dimension 2n. The latter mul-

tiplicative form will become an iterative multiplicative one in the corresponding

time-discrete dynamics which we are going to introduce.

4.3.1 Time Discretization

Discretization concerns the process of transferring continuous models and equa-

tions into discrete counterparts. The numerical solution simulating the behavior

of a system governed by a system of ordinary differential equations, (ODE s),

starting with the initial value E0 at t0 gives an approximation to the solution

at a discrete set of points. For a particular state, next states are generated iter-

atively. In other words, we follow trajectories with approximate solution values

which are generated step by step in increments moving across a time interval

in which the solution is sought.

Stability and precision of the simulation results are two main concerns of cor-

responding numerical solution of differential equation [10]. By discretizing the

continuous process, we are able to compare the approximative results E0, E1, ...,

El−1, ... with the given set of experimental results Ē0, Ē1, ..., Ēl−1.

Dubois and Kalisz [10] have already compared the discretization methods of

Euler’s and Runga-Kutta in the case of a simple differential equation system:

the harmonic oscillator. In this study, it is shown that Euler algorithm is

unstable compared to exact solution. Here, we start with Euler’s method mainly

for conceptual reasons and, for simplicity, of the explanation in the nonextended

space Rn firstly.
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4.3.1.1 Euler’s Method

Let a general system of ODEs: Ė = f(t, E) be given, where E is a continuous

and p times differentiable variable on an interval I = [a, b]. If t, t + h ∈ I, then

we write the Taylor series as

E(t + h) = E(t) + hE
′
(t) +

h2

2!
E
′′
(t) + ... +

hp−1

(p− 1)!
E(p−1)(t) +

hp

p!
E(p)(γ)

with an appropriate number γ ∈ (t, t+h) if h > 0, and γ ∈ (t+h, t) if h < 0 (|h|
being small enough). Euler’s method results from canceling second and higher

order terms in Taylor series to approximate the solution

Ek+1 = Ek + hkf(tk, Ek) (k ∈ N0).

Now, let us come back to 2n dimensions. We first apply Euler’s method, to

discretize the time-continuous process M(E)E as follows: For all k ∈ N0,

Ek+1 − Ek

hk

= M(Ek)Ek (4.3.1)

⇔ Ek+1 = (I+ hkM(Ek))Ek, (4.3.2)

where hk is the step-size, i.e., hk = tk+1− tk, between the discrete times tk with

tk < tk+1 (k ∈ N0).

In our extended model, (4.3.2) looks like:

(
Ek+1

Ěk+1

)
= (I + hk


 M(Ek) M̌(Ek)

0 0


)

(
Ek

Ěk

)
.

Let us define

Mk := (I + hk


 M(Ek) M̌(Ek)

0 0


)
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so that we obtain the discrete time-varying difference equation and dynamics

(DE) Ek+1 = MkEk (k ∈ N0).

Thus, we iteratively generate, in fact approximate, the next state from the

previous one. Setting E0 = (ĒT
0 , 1, 1, ..., 1)T , the kth approximation is calculated

as

(DE) Ek = Mk−1(Mk−2...(M1(M0E0))) (k ∈ N0).

Having a multiplicative formula for predictions has a great computational and

analytical advantage. However, the matrix multiplications in front of the given

initial state E0 force us to consider the question of stability and boundedness

of the solution.

4.3.1.2 Runga-Kutta Method

While solving ODEs numerically, we are faced with two kinds of errors, namely,

the rounding error as a result of finite precision of floating-point arithmetic and,

secondly, the truncation error associated with the method used. For example,

in Euler’s method, the truncation error is by far larger because the curve E(t)

is approximated by a straight-line between the end points tk and tk+1 of time

intervals. In addition, Euler’s method evaluates derivatives at the beginning of

the subinterval, i.e., at tk, which makes the method asymmetric with respect to

the beginning and the end of the interval. Hence, more symmetric integration

methods like Runge-Kutta method (RK ), which takes into account the midpoint

of the interval, can be applied for the system (CE)ext. Moreover, Runge-Kutte

methods are similar in motivation to the Taylor series approach, but do not

require the computation of higher derivatives. Using Runge-Kutta methods has

another advantage: it is more sensitive to infinitesimal numerical changes [26].

RK methods use only the information at time tk, which makes them self-starting

at the beginning of integration, and also makes methods easy to program, which

accounts in part for their popularity [26].
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The idea of applying RK methods for modeling of gene expression patterns

has firstly been introduced by Ergenç and Weber [13]. Here, we illustrate the

application of a different RK method, called Heun’s method. Heun’s method is

more illustrative and the simplest case of the Runge-Kutte approach. In our

extended space, it is formulated as:

Ek+1 = Ek +
hk

2
(k1 + k2) (k ∈ N0), (4.3.3)

where

k1 = M(Ek)Ek is the term predictor, and

k2 = M(Ek + hkk1)(Ek + hkk1) corresponds to the term corrector .

More explicitly, instead of (4.3.3) we write

Ek+1 = Ek +
hk

2
M(Ek)Ek +

hk

2
M(Ek + hkM(Ek)Ek)(Ek + hkM(Ek)Ek)

⇔ Ek+1 = (I+
hk

2
M(Ek) +

hk

2
M(Ek + hkM(Ek))(I + hkM(Ek)))Ek.

Defining

I := (2n)× (2n) unit matrix in R2n, and

Mk := I+
hk

2
M(Ek) +

hk

2
M(Ek + hkM(Ek)Ek)(I + hkM(Ek)),

we get the following time-discrete equation

(DE)2
ext Ek+1 = MkEk.

In the case of constant matrix M, i.e., if M(E) and C(E) are constant, the

time-discrete system would contain a quadratic (in M) term of matrices [13].

That is why, we use the notation (DE)2
ext.

We note that Runge-Kutta discretization of our model equation generates a
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nonlinear discrete equation with respect to parameters. In our case, the term

M(Ek + hkM(Ek)Ek)(I + hkM(Ek))

shows the parametrical nonlinearity. If we use implicit Runge-Kutta methods

[13], it may not be possible to get the discrete equation (DE)2
ext.

The dynamics of the time-discrete model (DE)2
ext is strongly related with the

matrix multiplications. Thus, we investigate the questions concerning how prod-

ucts of matrices Mk look like, what is the product structure and what does the

block structure say about boundedness or unboundedness of the products of

finitely many matrices.

4.4 Algebra of Matrix Products

Remember that the matrix in the time-continuous model has the canonical form

M(E) =


 M(E) M̌(E)

0 0


 .

These matrices help us for defining relation between genes and understanding

the structure of gene networks.

The product of two matrices having this block form is again a matrix in the

same structure, because for any X,Y ∈ Rn it holds:


 M(X) M̌(X)

0 0





 M(Y ) M̌(Y )

0 0


 =


 M(X)M(Y ) M(X)M̌(Y )

0 0




:=


 M̃(X, Y ) ˜̌M(X, Y )

0 0


 .

Matrix multiplication is not needed the case for the time-continuous model,

but we try to understand whether our matrices Mk and their products in the
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time-discrete iterative system have some ”canonical” block form or not. After

some simplifications, by definition of Mk, where we insert certain arguments

and step-lengths hk, we find that

Mk = I+
hk

2


 M(Ek) M̌(Ek)

0 0


 +

hk

2


 A Ã

0 0


 +

h2
k

2


 B B̃

0 0


 ,

where I = I2n (unit matrix of type (2n)× (2n)) and

A := M
(
Ek + hk

(
M(Ek)Ek + M̌(Ek)Ěk

))
,

Ã := M̌
(
Ek + hk

(
M(Ek)Ek + M̌(Ek)Ěk

))
,

B := M
(
Ek + hk

(
M(Ek)Ek + M̌(Ek)Ěk

))
M(Ek) and

B̃ := M
(
Ek + hk

(
M(Ek)Ek + M̌(Ek)Ěk

))
M̌(Ek).

We conclude that Mk has its final canonical block form


 M̂(Ek)

̂̌M(Ek)

0 In


 .

Here, one of our main questions concerns iterative multiplication of matrices

having the same form with model Mk. In the next chapter, for our stability

analysis we have to study these matrices Mk, namely, the introduction (selec-

tion) and their iterative multiplication, in detail. What a form has the product

of two and, by induction, finitely many matrices Mk? By using Â, B̂, Ĉ, D̂ to

represent the corresponding block matrices, we calculate:


 Â B̂

0 In





 Ĉ D̂

0 In


 =


 ÂĈ ÂD̂ + B̂

0 In


 =:


 K̂ L̂

0 In


 .

We observe that any finite product of matrices in the extended space preserves

the same structure as a single matrix Mk. This same appearance as Mk enables

us for doing a similar, n-dimensional stability analysis performed for (CE) in [15].
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In fact, multiplying any canonical matrix Mk by a vector (ET , eT )T reproduces

a vector (ẼT , eT )T of the same type. For this reason, there is no restriction if

we focus our attention on the first n coordinates of the vectors and on the first

n rows of our matrices.

Stability analysis of the time-continuous dynamical systems is closely related

with the time-discrete case concerning the definition, eigenvalues, matrix norm

and suitable Lyapunov functions. An algorithmic method which studies stabil-

ity and introduces Lyapunov functions in the time-discrete case has first been

introduced by Brayton and Tong [5], then modified and implemented by Pickl

[15]. Very analogously, we apply the same algorithm to (DE)2
ext in the extended

space in Chapter 5, keeping the focus on the first n coordinates in mind.
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Chapter 5

Stability Analysis

5.1 Introduction

In the biological context, especially in population dynamics, a stability concept

is well-defined [36]. From the point of view of genetics, it corresponds to the

resistance of chemical compounds (e.g., proteins and nucleic acids) towards

conformational changes and is associated the thermodynamics [15]. Cancer, for

example, can be viewed as a genomic instability stemming from mutations and

variance in chromosome numbers.

From the point view of mathematics, stability is a condition on the behavior of

dynamical systems under initial perturbations around equilibrium points. This

can be thought as a characterization of environmental changes given to the

system, of disease or of the treatment of the cell by some medical or radiation.

Since gene expression values lie in a bounded region, stable solutions can refer

to a better goodness of data fit (see Figure 5.1).

The traditional logic behind the stability notion stating that the only good

systems are those ones with all of their qualitative features not changing by

perturbations might be reformulated [21]. For example, in terms of biology,

stability could also be interpreted negatively, namely as a lack of flexibility or

of the readiness to adopt to changes of the environment.

Since there are no general rules for writing down analytic formulas for the

solutions of systems of nonlinear differential equations, the analysis of such

systems is accomplished by two approaches [41]:
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Figure 5.1: Real data and model stability.

1. A quantitative approach including numerical solutions with the help of

sensitive computers.

2. A qualitative approach without seeking specific solutions but concerned

with the behavior of families of solutions of given differential equations.

These approaches complete each other in applications. The fundamental prin-

ciple of the qualitative approach includes the stability of an equilibrium point

which is one of the main concerns in dynamical system theory.

Here we start with mathematical definition of stability of a time-continuous

system:

Definition 5.1. A point E∗ ∈ Rn is called an equilibrium point of system (S)

Ė = f(t, E) where (t, E) ∈ R×Rn if f(t, E∗) = 0 for all t ∈ R. An equilibrium

E∗ of (S) is called stable (in the Lypunov sense) if for every ε > 0 there exists

a δ = δ(ε) > 0 such that at time t = t0 it satisfies ||E(t)− E∗|| ≤ δ and for all

t > t0 it holds ||E(t)− E∗|| < ε.

Roughly speaking, the solutions initiated from small neighborhood of the equi-

librium never escapes and remains in a bounded region.

Another widely useful stability aspect for nonlinear systems is BIBO stability

[44], meaning that any bounded input to the system ends up with a bounded

deviation of the solutions.
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A common method for demonstration of stability is to find a Lyapunov function

for that system.

Definition 5.2. Let D ⊆ Rn be a open subset of real Euclidean space. A

Lyapunov function is a real valued function L : D → R that is continuously

differentiable with the following properties:

1. Positive definite, i.e., L(E) > 0 for all E 6= E∗ and L(E∗) = 0,

2. Along the solution of (S), L̇ < 0 for all E 6= E∗.

The existence of a Lyapunov function for which the derivative of function L

along the solution of the system Ė = f(t, E),

L̇ =
n∑

j=1

∂L

∂Ej

Ėj

is smaller or equal to zero, negative semi-definite, on some region containing

the origin, guarantees the stability of the zero solution of Ė = f(t, E) [28].

While the existence of a Lyapunov function for which derivative of L along

solutions of Ė = f(t, E) is strictly less then zero, negative definite, on some

region containing the origin guarantees the asymptotical stability of the zero

solution [22, 32].

In order to introduce the idea of a Lyapunov function a bit closer, we give an

example in the time-continuous case.

Example 5.3. Simple Pendulum

Assume that for a simple pendulum we have the following governing equations

ẋ1 = x2,

ẋ2 = −k sin(x1),

where k > 0. Basically the equilibrium point is X∗ =


 x1

x2


 =


 0

0


 . Let
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us choose our Lyapunov function as

L(x1, x2) :=
1

2
x2

2 + k(2− cos(x1)),

which is positive definite. Along the solution, the derivative of L is

L̇ = x2ẋ2 + k sin(x1)ẋ1 = −x2k sin(x1) + k sin(x1)x2 = 0,

which is negative semi-definite. Thus, we say that the solution X∗ = 0 is stable.

However, the problem of finding a suitable Lyapunov function arises because

there is no general rule for establishing such functions [5]. Therefore, Brayton

and Tong described a promising iterative tool for determining stability of non-

linear systems of differential equations in terms of a given finite set of matrices

namely, M = {M0,M1, ...,Ml−1}, derived from discretization.

5.2 Stability of a Single Matrix

We begin with the stability of a single matrix M , i.e., in case M = {M}.

Definition 5.4. (stability of a matrix) A matrix M is called stable if there

exists a number K ∈ R, K > 0, such that ||M j|| ≤ K for all j ∈ N.

For any matrix M ∈ Cn×n, there exists an invertible matrix P ∈ Cn×n such

that [35]

P−1MP = J = diag(J1, J2, ..., Jn),

43



where each block matrix Jk is of the form

Jk =




λk 1 . . . 0 0

0 λk . . . 0 0

. . . . .

. . . . .

. . . . .

0 0 . . . λk 1

0 0 . . . 0 λk




.

This matrix J is called the Jordan form of the matrix M .

Using Jordan form and the matrix norm ‖.‖ which is introduced by Euclidean

vector norm ‖.‖2, we obtain:

M j = PJ

In︷ ︸︸ ︷
P−1PJ

In︷ ︸︸ ︷
P−1P...PJP−1 = PJ jP−1 (5.2.1)

⇒ ‖M j‖ = ‖PJ jP−1‖ ≤ ‖P‖‖J j‖‖P−1‖ ≤ ‖J‖j. (5.2.2)

Lemma 5.5. If J ∈ Cn×n is a block matrix of type s × s whose eigenvalues

λj(M) have magnitude |λj(M)|, then

‖J j‖∞ =
s−1∑

k=0

(
j

k

)
|λ(J)|j−k.

Proof. Please see [4].

From the lemma above, an equivalent characterization for stability of a matrix

can be stated as follows

Corollary 5.6. [4, 5] M is stable ⇔ |λ(M)| ≤ 1 and in case of |λj(M)| = 1

for some eigenvalue λj(M), then the algebraic multiplicity and geometric mul-

tiplicity coincide.
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5.3 Stability of a Set of Matrices

Stability of a set of matrices implies that the system of differential equations is

stable. Such a set is derived by means of discretizing the function representing

the continuous system (see Chapter 4) or by means of results coming from early

experiments.

In this section, we will present a definition for the stability of a set of matrices

and will produce the connections between a stable set and a norm. Based on

this norm, statements can be encountered about the stable or unstable behavior

of the set of matrices.

For the stability of a set of matrices it not sufficient that the single matrices in

this set are stable [4, 5].

Let M = {M0,M1, ...,Ml−1} be a set of given real matrices. We will consider

the larger multiplicative semigroupM′ containing all finite products of matrices

produced from M. In other words,

M′ = {
k∏

s=1

Mls
s : Ms ∈M, ls ∈ N (s ∈ {1, 2, ..., k}),

Ms 6= Ms+1 ∀s ≤ k − 1, k ∈ N,

k∑
s=1

ls = p, p ∈ N}.

Now, we introduce a concept important for us: stability of a set of matrices.

We begin with the formal definition:

Definition 5.7. (stability of a set of matrices) A set M of complex (2n×
2n)-matrices is stable if for every neighborhood of the origin U ⊆ C2n there

exists another neighborhood of the origin V such that MV ⊆ U for each M ∈
M′.

Figure 5.2 gives a small geometric interpretation of this definition.

Since our dynamical analysis bases on the linear algebra of matrices, especially,

on the spectral study of eigenvalues, we have to locate our study over the

45



Figure 5.2: Stability of a set of (n× n)-matrices [4].

complex numbers rather than the reals.

The following conclusion for stability of a set of matrices is formulated and

proved by Brayton et al. [5]:

Lemma 5.8. [5] A set of matrices M is stable if and only if there exists a

bounded neighborhood of the origin B ⊂ C2n such that for each M ∈M′ it holds

MB ⊆ B.

Furthermore, B can be chosen to be convex and balanced, i.e, for any pair of

vectors u, v ∈ B, the vector (1−λ)u+λv is in B for all λ ∈ [0, 1] ( convexity),

and if z ∈ B, then we have zeiθ ∈ B for all θ ∈ R (balancedness).

Proof. Please see [4, 5].

In [5], the authors developed a criterion that enables a relation between a Ly-

punov function and the stability of a set of matrices. A matrix norm plays the

role of this function. This connection is stated by the following lemma:

Lemma 5.9. [5] If the set of matrices M is stable, then there exists a norm,

‖.‖, such that

‖ME‖ ≤ ‖E‖ ∀ M ∈M, E ∈ C2n.

Many studies have been made for understanding the special structure of the

Lyapunov functions, but Brayton et al. [5] introduces an algorithmic method
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where the structure of Lyapunov functions is related with polytopes in a con-

structive way. Thus, the norm mentioned above will be obtained by means of

the following construction principle.

Theorem 5.10. (Brayton and Tong [5]) Let M = {M0,M1, ...,Mm−1} be

a finite set of m (n× n)-matrices. Let B0 ⊂ C2n be a bounded neighborhood of

the origin. If for all k ∈ N, we define the sets in a iterative way

Bk := H
( ∞⋃

j=0

Mj
k′Bk−1

)
, where k′ ≡ k − 1 (mod m),

then, M is stable ⇐⇒ B∗ is bounded, where

B∗ :=
∞⋃

j=0

Bj.

Proof. Please see Appendix A.

Here, for any set S, the set H(S) denotes the convex hull. Formally, this is the

smallest convex polyhedron which contains all the points of S [46]. Geometri-

cally, it can be viewed as shown in Figure 5.3.

Figure 5.3: Convex hull of a set S.
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Given a neighborhood of origin B0, two iterations of successive formula give us

B1 = H (∪∞n1=0M
n1
0 B0

)
= H (

(M0
0B0) ∪ (M1

0B0) ∪ ... ∪ (Mn1
0 B0)...

)
, and

B2 = H (
(M0

1 ∪∞n1=1 M
n1
0 B0) ∪ (M1

1 ∪∞n1=1 M
n1
0 B0) ∪ ... ∪ (Mn2

1 ∪∞n1=1 M
n1
0 B0)...

)
.

We note that, in these iterations, computation of Mj
k′Bk−1 may results in some

structureless sets. This drawback is overcomed in [5, 15], by regarding the

convex neighborhoods Bk−1 as polyhedral regions. Moreover, such regions can

be represented by their finite number of extremal points. An extreme point

of a convex set S in a real vector space is a point in S which does not lie in

the open line segment joining any two different points of S. Intuitively, an

extreme point is a ”corner” of S (see Figure 5.3). From now on, we let the

neighborhoods Bk be polyhedral regions. Those have finite number of extreme

points. This finiteness will make the Theorem 5.6 constructive. Thus, we shall

be allowed to focus on their extremal points for construction. We remark that

our polyhedral neighborhoods Bk of O = O2n are closures of open sets; and

with the boundedness of B0 and, by Theorem 5.10, these sets are bounded and,

herewith, polytopes in C2n, in the case of stability.

5.4 Discrete Steps for Construction

Let E(Bk) be the set of extreme points for Bk defined in Theorem 5.6. Then, it

has the following property:

E(Bk) ⊆ E
( ∞⋃

j=0

Mj
k′Bk−1

)
.

If z ∈ E(Bk), then from the previous inclusion one can find a j ∈ N such that

z ∈ E(Mj
k′Bk−1).
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This implies that z = Mj
k′u with a suitable u ∈ E(Bk−1). Here, we can write

the conclusion as follows.

Lemma 5.11. [5] If z is an extremal point of Bk (k > 0), then there exists a

j ∈ N0 with

z = Mj
k′u,

where u is an extremal point of Bk.

Thus, extremal points of the set Bk−1 generate the extremal points of the set

Bk (see Figure 5.4).

Figure 5.4: Generating new extreme points [4].

However, the nodes of the form z = Mj
k′u may not always be new extreme

points. Thus, the following stopping criterion is applied to process:

Lemma 5.12. Let ui be an extremal point of Bk−1 and zi = Mj
k′ui for some

corresponding j ∈ N0. Then, the new polyhedral region Bk = H{z1, z2, ..., zr} is

completely constructed, if and only if

Mk′zi ∈ H{z1, z2, ..., zr} (i ∈ {1, 2, ..., r}).

Proof. See Appendix B.

This construction procedure is shown in Figure 5.5.
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Figure 5.5: Illustration of the stopping criterion [15].

Note that in the general Theorem 5.6 of Brayton and Tong [5], an infinite

number of regions would have to be formed iteratively but, in terms of computer

applications, we need it to be finite. Lemma 5.13 guarantees us that no infinite

union must be needed, but after some finite k iterations we are finished.

Lemma 5.13. Let M be a matrix whose eigenvalues λj(M) have magnitude

|λj(M)| < 1, then, there exists a k ∈ N0 such that

∞⋃
j=0

MjB =
k⋃

j=0

MjB

for any bounded neighborhood B of the origin in R2n.

Proof. Using equation (5.2.1) we write

MkB = PJ

In︷ ︸︸ ︷
P−1PJ

In︷ ︸︸ ︷
P−1P ...PJP−1B = PJ iP−1B,

⇒ ‖Mk‖ = ‖PJkP−1‖ ≤ ‖P‖‖Jk‖‖P−1‖ ≤ ‖J‖k.

Since by Lemma 5.5 and Corallary 5.6 we have

‖Jk‖∞ =
s−1∑
j=0

(
k

j

)
|λ(J)|k−j, and

|λj(M)| < 1,
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we write

‖Jk‖ → 0 as k →∞.

Thus, letting v ∈ P−1B, we can find a k ∈ N0 such that

‖Jkv‖ < d := min{‖w‖ : w /∈ P−1B}.

For such a k, JkP−1B ⊆ P−1B and, hence,

MjB = PJ jP−1B︸ ︷︷ ︸
⊆P−1B

⊆ PP−1B = B ∀j ≥ k.

This concludes the proof.

However, it remains yet the question open when this k is reached and with which

sequences. In order to answer this question, we need additional statements that

presents boundedness and unboundedness criterions for the algorithm. The

following lemmas indicated in [4, 5, 15] deal with boundedness of the set B∗.

Lemma 5.14. [5] Let

Bk := H
( ∞⋃

j=0

Mj
k′Bk−1

)
, where k′ = (k− 1) modulo m, and B∗ =

∞⋃
j=0

Bj.

If there exists a k ∈ N0 such that

∂B0 ∩ ∂Bk = ∅,

then B∗ is unbounded which implies the set M is unstable.

Proof. See Appendix B.

Thus, whenever we find that faces of the polyhedral regions have no common

points, we stop and conclude that B∗ is unbounded (cf. Figure 5.6).

Lemma 5.15. We make the same assumptions as in Lemma 5.14. If for some

k ≥ m it holds Bk = Bk−m, then the set B∗ is bounded.
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Figure 5.6: Illustration of the unboundness criterion [4].

Proof. Let us write B∗ as

B∗ =
∞⋃

j=0

Bj =

(
k−m⋃
j=0

Bj

)
∪

( ∞⋃

j=k−m+1

Bj

)
. (5.4.3)

We know that B0 ⊆ B1 ⊆ ... ⊆ Bk−m ⊆ ... ⊆ Bk. Since Bk = Bk−m, we have

Bk−m+1 = Bk−m+2 = ... = Bk. (5.4.4)

Thus, (5.4.3) is equivalent to

B∗ = Bk ∪
( ∞⋃

j=k−m+1

Bj

)
= Bk ∪

=Bk


︷ ︸︸ ︷
k⋃

j=k−m+1

Bj


 ∪

( ∞⋃

j=k+1

Bj

)

= Bk ∪
( ∞⋃

j=k+1

Bj

)
.

If we can show for j ≥ k + 1, Bj = Bk, then we are done. Let us take j = k + 1.
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Then, since k′ ≡ (k − 1) (mod m), by (5.4.4) we write

Bk+1 = H
( ∞⋃

j=0

Mj
(k+1)′Bk

)
= H

( ∞⋃
j=0

Mj
(k−m+1)′Bk−m

)
= Bk−m+1 = Bk.

Thus, we have the desired result: B∗ =
∞⋃

j=0

Bj = Bk, hence, by the boundedness

of Bk, B∗ is bounded.

The stability of time-continuous model (CE)ext describing gene expression pro-

files is strongly related with the stability of time-discrete system by the following

theorem.

Theorem 5.16. Let the map E 7→ M(E) be Lipschitzian. If time-discrete sys-

tem Ek+1 = Ek + hkM(Ek)Ek (k ∈ N0), E0 ∈ R2n and some appropriate

hmax > 0 given, is stable for all values hk ∈ [0, hmax], then the continuous

system Ė = M(E)E is also stable.

Proof. See [4, 5].

After deriving the set of matrices M = {M0,M1, ...,Ml−1} by discretely ap-

proximating the set

{M(E, h)| E ∈ R2n, h ∈ [0, hmax]},

where M(E, h) := I+ hM(E).

Since, however, we are using RK method, in our case, M(E, h) takes the form:

M(E, h) := I +
h

2
M(E) +

h

2
M(E+ hM(E)E)(I + hM(E)).

In fact, we are discretizing the function M(E, h) in a way that the values of the

implied matrix entries are taken at their maximal or minimal values, and h (by

hmax) chosen extremally as well. When iteratively applying the resulting entire

matrices to polyhedral sets, we represent and understand the worst-case growth

behavior of any finite matrix multiplication, i.e., whether instability is holding.
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In the next chapter, we present an implementation and a small simulation of

the algorithm.
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Chapter 6

Implementation of The

Algorithm

6.1 Overview

We stated all prerequisites around the algorithm, derived from the construction

theorem, that examine a finite set of matrices for stability.

In fact, we could refer to a neighborhood of O2n, B0 as the closure of an open

set in 2n dimensions. However, according to our reflections in Section 5.3 we

may fix the last n components of the elements E ∈ B0 and, herewith, E ∈ Bk,

by (1, 1, ..., 1)T . Then, our sets B0 and Bk become neighborhoods of O only in

the first n components, and they are neighborhoods of (OT , eT )T in Cn × {e},
now.

Given a polyhedral region, a bounded neighborhood of the origin, B0, we iter-

atively construct the set of of extremal points as mentioned Section 5.4. After

each step, the stopping and boundedness criterions are checked.

Through the numerical procedure for constructing the algorithm the absolute

value of all eigenvalues of the matrices are required to be less then 1 and in

case of equality algebraic multiplicity and geometric multiplicity are required

to coincide.

Now, we present and follow the structure of modified Brayton and Tong’ s algo-

rithm done in [15]. Regarding our extended space now, we write the algorithm

step by step similar to one presented in [4].
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6.2 The Steps of the Algorithm

STEP 0: Initializing

set E(B0) := {x ∈ R2n : x = (x1, x2, ..., xn, 1, 1..., 1)T ,∀i, ‖xi‖ = 1}
set k := 0
set l := 0

We begin with initializing the set of extreme points E(B0). In practice, in our

extended space, B0 is usually selected as simple as possible, i.e., it is chosen as

the region defined by above.

Note that E(B0) is determined by these totally 2n extreme points.

STEP 1: Formation of new set of extreme points

set j := 0
set flag := 0
set TEMP := E(Bk)
set V := E(B0) ∩ E(Bmax{k−m,0})

if V = TEMP and k ≥ m exit stable
otherwise go to Step 2.

At the beginning of each step, we check whether the newly constructed set of

extreme points fulfills the condition stated in Lemma 5.15. Here, m stands for

the number of matrices in the set M.

STEP 2

set POINT := Point j of E(Bk)
if POINT ∈ E(B0) and POINT ∈ H(TEMP )
or POINT /∈ E(B0) and POINT ∈ H(TEMP − POINT )

set TEMP := TEMP \ P0INT
go to Step 4

otherwise flag = 0
if POINT ∈ V and k ≥ m

go to Step 4
otherwise NewPOINT := POINT
go to STEP 3.

In this step, for each of the points is controlled whether this point strictly lies in

the convex hull of the set TEMP or not. If it is contained in V , then we drop

it from V and look for whether the condition stated in Lemma 5.10 is satisfied

or not. By generating a new point we continue the algorithm.
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STEP 3

set NewPOINT := MlNewPOINT
set flag := 0

if NewPOINT /∈ H(TEMP )
set TEMP := TEMP ∪NewPOINT
set flag := 1

otherwise go to Step 4.

Note that new points are obtained by matrix multiplication.

STEP 4

if {E(B0) ∩ TEMP} = ∅
exit unstable

otherwise:
if flag = 1
go to Step 3
otherwise set j := j + 1
if j ≤ |E(Bk)|
go to Step 2
else set l := l + 1 (mod m)
set k := k + 1
set E(Bk) := TEMP
go to Step 1.

6.3 An Example

For a better understanding of the algorithm we present our example:

Example 6.1. Let us consider the set M = {M0,M1} (m = 2) where

M0 =




0.6 1 −0.2 0

−0.4 0 0 0.1

0 0 1 0

0 0 0 1




, M1 =




0.1 0 0.15 0

0.13 0.5 0 0.22

0 0 1 0

0 0 0 1




(n = 2).
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Initializing with respect to Step 0 gives:

E(B0) = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1



},

k = 0,

l = 0.

Now, Step 1 performs the following:

j = 1,

f lag = 0,

TEMP = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1



},

V = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1



}.

Since m = 2, V = E(B0) ∩ E(Bmax{−2,0}) = E(B0) = TEMP , but the condition

k ≥ m does not hold. Thus, we pass the Step 3 :

POINT = (1, 1, 1, 1, 1)T ∈ E(B0) and POINT /∈ H(TEMP − POINT ), but
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POINT ∈ V implies

flag = 1,

NewPOINT = M0POINT =




1.4

−0.3

1

1




,

f lag = 0.

The following linear program is used for deciding whether NewPOINT is con-

tained in the set H(TEMP ) or not: If P ∈ H{P1, P2, ..., Pn}

minimize 0 subject to

P =
n∑

i=1

λiPi, λi ≥ 0 and
n∑

i=1

λi = 1.

For our example, it is clear that NewPOINT /∈ H(TEMP ). Hence, we extend

the set by adding this new point. In other words,

TEMP = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1




,




1.4

−0.3

1

1



} and flag = 1.

59



Generating new points once more, we get

NewPOINT := M0NewPOINT =




0.6 0.1 −0.2 0

−0.4 0 0 0.1

0 0 1 0

0 0 0 1







1.4

−0.3

1

1




=




0.34

−0.46

1

1



∈ H(TEMP ).

By Step 4, we set j = 2 and again return to Step 2 and take POINT =

1,−1, 1, 1)T . Corresponding new point is

NewPOINT = M0POINT = (−1.8, 0.5, 1, 1).

Similar to the previous case, there is no more points to be added. So we arrive

at the set

TEMP = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1




,




1.4

−0.3

1

1




,




1.8

−0.5

1

1



},

and flag = 1. We can easily verify that the third (j = 3) and fourth (j = 4)

points of the set TEMP cannot generate new extreme points. When j = 5,
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being larger than the number of points in E(B0), we write

l = 1 (mod 2),

k = 1,

E(B1) = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1




,




1.4

−0.3

1

1




,




1.8

−0.5

1

1



},

j = 1,

f lag = 0,

TEMP = E(B1),

V = E(B1) ∩ E(Bmax{0,1−2}) = E(B0).

Here, we see that our task with matrix M0 has been done. We repeat the same

steps for the points of the new set E(B1). However, it is not possible to get new

extreme point from the set E(B1) by matrix multiplication with M1. Thus, we

end up with

l = 0 (mod 2),

k = 2,

E(B2) = {




1

1

1

1




,




−1

−1

1

1




,




1

−1

1

1




,




−1

1

1

1




,




1.4

−0.3

1

1




,




1.8

−0.5

1

1



},

j = 1,

f lag = 0,

TEMP = E(B2) = E(B1),

V = E(B2) ∩ E(Bmax{0,2−2}) = E(B1) ∩ E(B0) = E(B0).

This part of the iteration defines TEMP := E(B3) = E(B1). Therefore, if

k = 3, then V = E(B3) ∩ E(Bmax{0,3−2}) = E(B1) = TEMP . We reach a
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stopping criterion in terms of boundedness as stated in Lemma 5.11. According

to our simulation result, we finally conclude that the set M = {M0,M1} is

stable. This implies that, by Theorem 5.12, the corresponding time-continuous

model is also stable.

We note that applications on real data require much more computational efforts

because of parametric nonlinearities we have. However, nonlinear least-squares

method can be applied to overcome this problem.
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Figure 6.1: Structure chart of modified Brayton’s and Tong’s algorithm [4].
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Chapter 7

Conclusion and Future Work

This thesis is a part of advanced studies in the modern and emerging field of

modeling, analysis and prediction based on DNA microarray experiments. Ob-

jects of these studies are DNA patterns investigated in their time-dependence

and prediction, and, dynamical representations. In this field, at IAM of METU

and with its international colleagues, a lot of knowledge and scientific experi-

ence has been gathered in the last years. The content of this work has been

continuation of these studies, whereby methods of dynamical systems theory, of

discrete mathematics and of statistical learning are rigorously applied to gain

further insights.

In this study, from the viewpoint of dynamical system and for making models

more realistic, approximative and better prepared for the purpose of forecast-

ing, we improved the mathematical model and stability analysis. Here, we

introduced affine shift terms, and we investigated the system by considering

advantages of the Runge-Kutta methods. Thus, our study may help these tech-

niques to achieve new insights by mathematical modeling, dynamical systems,

optimization and algorithms. A modified powerful algorithmic stability analy-

sis tool, Brayton and Tong’s algorithm [5], has been used to detect stability or

instability in combinatorial and geometrical terms.

Beside the stability analysis, models on gene expression patterns require also

sensitivity analysis. There are several methods to do this. For example in

[58], sensitivity analysis is applied with differential algebraic equation methods.

For the future, it is our intention to combine both approaches which makes it

algorithmically possible to determine regions of stability and instability.
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Appendix A

Proof of Brayton and Tong’s

Theorem

Proof. [5] ′ ⇐′: Let us assume that B∗ is bounded. To show that M is stable we

take U = B∗ (see Definition 3). Let M ∈ M′ be in the form of Mk1
j1
Mk2

j2
...Mkn

jn

where ∀i, ki 6= 0 and ji 6= ji+1. Our aim is to show for any M ∈M′, MB∗ ∈ B∗.
In other words, for any z ∈ B∗ we have Mz ∈ B∗.

Here, z ∈ B∗ implies z ∈ Bi0 for some i0. Since B0 ⊆ B1 ⊆ B2 ⊆ ... ⊆ B∗,

z ∈ Bi0+1,Bi0+2, ...,Bi0+m. Remembering

Bi := H
( ∞⋃

i=0

Mi
k′Bk−1

)
, where k′ = (k − 1) modulo m,

we can conclude Mi
k′z ∈ B∗ for k′ = 0, 1, 2, ..., m− 1. By induction,

• for the case n = 1, Mz = Mi
k′z ∈ B∗;

• assume that it holds for n = r, Mz = Mk1
j1
Mk2

j2
...Mkr

jr
z ∈ B∗;

• take n = r + 1,

Mz = (Mk1
j1
Mk2

j2
...Mkr

jr
)(Mkr+1

jr+1
z)

= (Mk1
j1
Mk2

j2
...Mkr

jr
)z′ ∈ B∗.

Since B∗ is bounded, by our Lemma 5.4, M is stable.

′ ⇒′: Suppose M is stable. Then, there exists a bounded neighborhood of
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the origin B such that for each M ∈M′, MB ⊆ B. Since B0 is also bounded we

can find ρ > 0 so that ρB0 ⊆ B. By induction, we proceed as follows:

• assume that for k ∈ N, ρBk ⊆ B;

• consider the (k + 1)th case:

ρBk+1 = ρH
( ∞⋃

i=0

Mi
k′Bk

)
⊆ H

(
ρ

∞⋃
i=0

Mi
k′Bk

)

= H
( ∞⋃

i=0

ρMi
k′Bk

)
= H




∞⋃
i=0

Mi
k′(ρBk)︸ ︷︷ ︸

⊆B




⊆ B.

So, we conclude

ρB∗ = ρ

∞⋃
i=0

Bi =
∞⋃
i=0

(ρBi) ⊆ B,

which implies that B∗ is bounded.
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Appendix B

Proofs of Lemma 5.12 and

Lemma 5.14

Proof of Lemma 5.12

Proof. [4, 5] ′ :⇒′ Suppose Bk = H{z1, z2, ..., zr}. By the construction theorem

we have Bk := H
( ∞⋃

i=0

Mi
k′Bk−1

)
. Thus, Mk′zi = Mk′Mj

k′ui = Mj+1
k′ ui ∈ Bk

′ ⇐:′ Let us define U := H{z1, z2, ..., zr}.

”Bk ⊆ U”: If for all i, Mk′zi ∈ U , then Mk′U ⊆ U . Thus Mj
k′U ⊆ U and

hence Bk := H
( ∞⋃

i=0

Mi
k′Bk−1

)
⊆ U .

”Bk ⊇ U”: Assume that there exists a point p ∈ U but p /∈ Bk. Then

there must be an extreme point of U not belonging to Bk. However, this is

a contradiction because the extreme points of U having the form Mj
k′ui where

ui ∈ E(Bk), must be in Bk.

Therefore, U = Bk.

Proof of Lemma 5.14

Proof. [4, 5] Suppose B∗ :=
∞⋃
i=0

Bi is bounded. Then by Brayton and Tong’s

Theorem M is stable and by Lemma 5.4 there is a bounded convex neighbor-

hood of the origin B ⊆ C such that

MB ⊆ B for all M ∈M.
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Let us choose a suitable constant ρ > 0 so that ∂B0 ∩ ∂Bk 6= ∅ and ρB0 ⊆ B.

For any matrix M and any set of points P ,

MH{P} = H{MP}.
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Genetic networks and anticipation of gene expression patterns, Computing

Anticipatory Systems: CASYS03 - Sixth International Conference, AIP

Conference Proceedings 718 (2004) 474-485.

[17] Gebert, J., Radde, N., and Weber, G.W., Modeling gene regulatory net-

works with piecewise linear differential equations, preprint, Middle East

Technical University, Institute of Applied Mathematics (2005).

[18] Gebert, J., Pickl, S.W., Radde, N., Weber, G.W., Yılmaz, F.B., and
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