

PROGRESSES IN PARALLEL RANDOM NUMBER GENERATORS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜLİN KAŞIKARA TENEKECİOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of
Science

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Ayşe Kiper
 Supervisor

Examining Committee Members

Prof. Dr. Volkan Atalay (METU, CENG)

Prof. Dr. Ayşe Kiper (METU, CENG)

Assoc. Prof. Dr. Veysi İşler (METU, CENG)

Assoc. Prof. Dr. Tayyar Şen (METU, IE)

Assist. Prof. Dr. Halit Oğuztüzün (METU, CENG)

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last name: GÜLİN KAŞIKARA

 TENEKECİOĞLU

Signature :

iv

ABSTRACT

PROGRESSES IN PARALLEL RANDOM NUMBER GENERATORS

Tenekecioğlu Kaşıkara, Gülin

M.Sc., Department of Computer Engineering

Supervisor : Prof. Dr. Ayşe Kiper

September 2005, 132 pages

Monte Carlo simulations are embarrassingly parallel in nature, so having a parallel and

efficient random number generator becomes crucial. To have a parallel generator with

uncorrelated processors, parallelization methods are implemented together with a binary

tree mapping. Although, this method has considerable advantages, because of the

constraints arising from the binary tree structure, a situation defined as problem of falling off

the tree occurs. In this thesis, a new spawning method that is based on binary tree traversal

and new spawn processor appointment is proposed to use when falling off the tree problem

is encountered. With this method, it is seen that, spawning operation becomes more costly

but the independency of parallel processors is guaranteed. In Monte Carlo simulations,

random number generation time should be unperceivable when compared with the

execution time of the whole simulation. That is why; linear congruential generators with

Mersenne prime moduli are used. In highly branching Monte Carlo simulations, cost of

parameterization also gains importance and it becomes reasonable to consider other types

of primes or other parallelization methods that provide different balance between

parameterization cost and random number generation cost. With this idea in mind, in this

thesis, for improving performance of linear congruential generators, two approaches are

proposed. First one is using Sophie-Germain primes as moduli and second one is using a

v

hybrid method combining both parameterization and splitting techniques. Performance

consequences of Sophie-Germain primes over Mersenne primes are shown through graphics.

It is observed that for some cases proposed approaches have better performance

consequences.

Keywords: Parallel random number generation, parameterization methods, linear

congruential genetators, binary tree mapping, problem of falling off the tree

vi

ÖZ

PARALEL RASTGELE SAYI GENERATÖRLERİNDE GELİŞMELER

Tenekecioğlu Kaşıkara, Gülin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ayşe Kiper

September 2005, 132 sayfa

Monte Karlo simülasyonları doğaları gereği paralel yapıya sahip oldukları için, paralel ve

verimli bir rasgel sayı üreticisinin mevcut olması çok önemlidir. Aralarında korelasyon

olmayan işlemcilere sahip paralel bir üretici oluşturabilmek için, paralelleştirme metodları, ikili

ağaç yapısı eşleştirmesi ile birlikte uygulanır. Bu şekilde bir paralelleştirmenin hatırı sayılır bir

çok avantajı olmasına rağmen, ikili ağaç yapısının getirdiği kısıtlamalardan dolayı ağaçtan

düşme durumu oluşur. Bu tez çalışmasında, ikili ağaç yapısının taranması ve yeni üretim

işlemcisinin atanması işlemlerine dayanan bir üretim metodu önerilmektedir. Bu yeni metod

ile, üretim işlemi süre olarak artmış fakat, paralel işlemcilerin birbirinden bağımsız olmaları

garantilenmiştir. Monte Karlo simulasyonlarında, rasgele sayı üretim süresinin, toplam

simulasyon süresi ile karşılaştırıldığında farkedilmeyecek seviyede olması gerekir. Bu nedenle,

doğrusal kongruent üreticilerde, modülüs olarak Mersenne asalları kullanılır. Çok dallanan bir

Monte Karlo simülasyonunda, parametrikleştirme maliyeti de önem kazanır. Bu gibi

durumlarda, parametrikleştirme maliyeti ile rasgele sayı üretim maliyeti arasında farklı bir

denge kurabilen, farklı asalları veya paralleştirme metodlarını incelemek gerekebilir. Bu

düşünceden yola çıkarak, tez kapsamında, doğrusal kongruent üreticilerin performans

değerlerinin yükseltilmesine yönelik iki yaklaşım önerilmektedir. İlk yaklaşım, modülüs olarak

vii

Sophie-Germain asallarının kullanılması, ikinci yaklaşım ise, parametrikleştirme ve bölme

metodlarını birleştiren hibrit bir paralelleştirme metodunun kullanılmasıdır. Sophie-Germain

asallarının, Mersenne asallarına göre performans ölçümleri grafikler ile gösterilmekte ve bazı

durumlarda, önerilen yaklaşımların daha iyi performans değerleri oluşturduğu görülmektedir.

Anahtar Kelimeler: Paralel rasgele sayı üretimi, parametrikleştirme metodları, doğrusal

kongruent üreticiler, ikili ağaç eşleştirmesi, ağaçtan düşme problemi

viii

To My Husband

ix

ACKNOWLEDGMENTS

I would like to thank to my supervisor Prof. Dr. Ayşe Kiper for her guidance, advice and

criticism in writing of this thesis.

I would like to express my deepest gratitude to my husband, Gökhan who encouraged and

supported me throughout the study.

I would like to thank to my parents and my sister, who motivated me all the time and

always be with me whenever needed.

x

TABLE OF CONTENTS

PLAGIARISM…….iii

ABSTRACT……….iv

ÖZ………..vi

DEDICATION.………viii

ACKNOWLEDGMENTS.…………………………………………………………………………………………………ix

TABLE OF CONTENTS…………………………………………………………………………………………………..x

LIST OF TABLES……xii

LIST OF FIGURES………………………………………………………………………………………………………xiii

CHAPTER

1 INTRODUCTION……………………………………………………………………………………………….1

1.1 Random Numbers and Monte Carlo Simulations.. 1

1.2 Motivation .. 5

1.3 Organization of Thesis .. 7

2 SERIAL RANDOM NUMBER GENERATION……………………………………………………………8

2.1 Requirements for Serial Random Number Generators................................ 8

2.2 Linear Congruential Generators ... 9

2.3 Lagged Fibonacci Generators..11

3 PARALLEL RANDOM NUMBER GENERATION………………………………………………………15

3.1 Requirements for Parallel Random Number Generators15

3.2 Types of Parallel Random Number Generators...16

3.3 Techniques for Parallelization ...17

3.3.1 Splitting Techniques ..17

3.3.2 Parameterizing Techniques ..20

3.4 Method for Instantiating Processors ..25

3.4.1 Initialization Algorithm...27

3.4.2 Spawning Algorithm ..29

3.4.3 Problem of Falling off the Tree ...35

xi

4 IMPROVEMENTS ON BINARY TREE MAPPING……………………………………………………38

4.1 Implementation on PVM system ...38

4.1.1 Architecture ..39

4.1.2 Algorithmic Structure ...40

4.2 Algorithms Related with Spawn Routes ...54

4.2.1 Breadth First Route ...56

4.2.2 Inorder Route ...57

4.2.3 Preorder Route..58

4.2.4 Postorder Route ..59

4.2.5 Upward Tracking Route ...60

4.2.6 Least Recently Used Route...61

4.2.7 Randomly Chosen Route..66

4.3 Algorithms Related with Spawn Pointers ...67

4.3.1 Dividing Spawn Pool ..70

4.3.2 Merging Spawn Pointers ..76

4.4 Analysis of Improvements ..78

5 ENHANCEMENTS IN PARALLELIZING LCG WITH PRIME MODULUS……………………..89

5.1 Parallel LCG Implementation ..90

5.1.1 Enumeration Algorithms...94

5.1.2 Modular Arithmetic Algorithms ...95

5.2 New Technique: Hybrid Method for Parallelization99

5.3 Analysis of Enhancements ..110

5.3.1 Sophie-Germain Prime vs. Mersenne Prime110

5.3.2 Case Analysis ..116

6 CONCLUSION AND FUTURE WORK…………………………………………………………………119

REFERENCES………121

APPENDICES

A. FINDING PRIMITIVE ROOT MODULO M...124

B. FLOW CHARTS FOR INITIALIZATION AND SPAWNING OPERATIONS126

C. GRAPHICS FOR SOPHIE-GERMAIN PRIME..131

xii

LIST OF TABLES

Table 2.1 Iteration formula ...13

Table 3.1 Algorithm of LCG parameterization ...22

Table 4.1 Algorithm for breadth first search ...56

Table 4.2 Algorithm for inorder route ..57

Table 4.3 Algorithm for preorder route ..58

Table 4.4 Algorithm for postorder route...59

Table 4.5 Algorithm for upward tracking route ...61

Table 4.6 Algorithm for least recently used route ...62

Table 4.7 Least recently used table before Spawn(0,2)...64

Table 4.8 Least recently used table after Spawn(0,2) ...65

Table 4.9 Least recently used table before Spawn(0,4)...65

Table 4.10 Least recently used table ...65

Table 4.11 Algorithm for randomly chosen route ..66

Table 4.12 Cost analysis of spawning operation ...84

Table 4.13 Spawn calls and binary tree costs ...87

Table 5.1 Euclid’s GCD..94

Table 5.2 Mersenne reduction...96

Table 5.3 Modular multiplication..97

Table 5.4 Modular exponentiation ...99

Table 5.5 Remainder class MOD Φ(m-1) ..104

Table 5.6 Splitting methods ..107

Table 5.7 Four cases and best approaches...118

xiii

LIST OF FIGURES

Figure 2.1 Matrix equation for LFG ..12

Figure 3.1 Leapfrog method with three processors ...19

Figure 3.2 Canonical form for LFG ...24

Figure 3.3 Binary tree structure...27

Figure 3.4 Node structure ...28

Figure 3.5 Initialization of binary tree with three processors ...29

Figure 3.6 Processor 1 spawns 1 processor ..31

Figure 3.7 Initial state of binary tree: Spawn Pools and Spawn Pointers33

Figure 3.8 State of binary tree after three spawning operations ..34

Figure 3.9 Problem of falling off the tree ...37

Figure 4.1 Architecture of implementation ...39

Figure 4.2 Node structure ...41

Figure 4.3 Algorithmic structure of slave program: Three Phases43

Figure 4.4 Algorithmic structure of the third phase ...44

Figure 4.5 Algorithmic structure of master program..46

Figure 4.6 Algorithm for initialization operation ..48

Figure 4.7 Flow chart of spawn operation ..50

Figure 4.8 Algorithm for spawn operation ..51

Figure 4.9 Algorithm for RN generation ...53

Figure 4.10 Flow chart of spawn search PVM ...55

Figure 4.11 Tree chart for breadth first search ...56

Figure 4.12 Tree chart for inorder route ..57

Figure 4.13 Tree chart for preorder route ..58

Figure 4.14 Tree chart for postorder route...59

Figure 4.15 Tree chart for upward tracking route ...60

Figure 4.16 State of binary tree after three spawning operations.......................................63

Figure 4.17 Random search ..67

xiv

Figure 4.18 Flow chart of spawn algorithms ...69

Figure 4.19 Flow chart of calculating spawn pointer values ...71

Figure 4.20 Initial state of the binary tree..72

Figure 4.21 State of the binary tree after Spawn(1,2)...73

Figure 4.22 State of the binary tree after Spawn(0,1)...74

Figure 4.23 State of the binary tree after Spawn(1,2)...75

Figure 4.24 Initial state of the binary tree..77

Figure 4.25 State of the binary tree after Spawn(1,2)...77

Figure 4.26 State of the binary tree after Spawn(0,2)...78

Figure 4.27 Binary tree traversal time..80

Figure 4.28 Spawn routes traversal rates...80

Figure 4.29 LRU table creation time...83

Figure 4.30 LRU route execution time..83

Figure 4.31 Spawn operation execution time..86

Figure 4.32 Several spawn operation sequences execution times88

Figure 5.1 Parameterization algorithm of parallel LCG...93

Figure 5.2 Parameterization algorithm of parallel LCG: Hybrid Method101

Figure 5.3 Parameterized iteration: LCG(3, 31, 5)...102

Figure 5.4 Parameterized iteration & splitting method LCG(3, 31, 5)................................103

Figure 5.5 Flow chart of seed creation algorithm ..106

Figure 5.6 Mersenne prime sequence splitting..108

Figure 5.7 Mersenne prime leapfrog method ..109

Figure 5.8 Execution times for enumeration operations...111

Figure 5.9 Execution times for modular arithmetic operations ...112

Figure 5.10 Execution time for Mersenne prime..114

Figure 5.11 Execution time for Sophie-Germain prime ..114

Figure 5.12 Speed up for Mersenne and Sophie-Germain primes115

Figure 5.13 Speed up for Mersenne and Sophie-Germain primes115

Figure 5.14 Efficiency for Mersenne and Sophie-Germain primes.....................................116

1

CHAPTER 1

INTRODUCTION

1.1 Random Numbers and Monte Carlo Simulations

The property of randomness lies on the foundation of stochastic simulations and MC (Monte

Carlo) methods. Simulating stochastic methods require a source of randomness. A question

which follows is what can be considered random? In ordinary language, the word random is

used to express apparent lack of purpose or cause. This suggests that no matter what the

cause of something, its nature is not only unknown but the consequences of its operation

are also unknown. Various disciplines handle the word random differently. In natural

sciences, random takes on an operational meaning. Eveything that have undetermined or

uncontrolled causes, is considered as random. Whereas, in statistics, random means some

event happens with some probability distribution. In computing, the term random generally

refers to generating or using a set of truly random sequence of RNs (Random Numbers)

within some set range. For the purposes of simulation and MC computations, randomness

becomes a valuable resource since these methods require a large supply of RNs, or means

to generate them on demand [1].

RNs are used extensively in simulation of stochastic systems, statistical experiments,

modeling, probabilistic algorithms, computer games, gambling machines and in numerical

analysis with MC methods. In simulation, RNs are used to randomly pick event outcomes

based on statistical or experiential data. In statistics, RNs are used to generate data with a

particular distribution to calculate statistical properties when analytic techniques fail. In

modeling, RNs are used to model random processes in nature such as those arising in

ecology or economics. Moreover, RNs are widely used in cryptography to hide information

from others. Besides, RNs are also used in games, computer programming, for interaction

with the user or for decision making [2, 3].

2

RNs can be classified according to source of randomness. Formally, there are three types of

RNs. Truly random, pseudorandom and quasirandom numbers. Truly random is defined as

exhibiting true randomness. These RNs can be the result of a physical process such as

timing clocks, circuit noise, Geiger counts, or bad memory. Pseudorandom numbers are

defined as having the appearance of randomness, but exhibiting a specific repeatable

pattern. Quasirandom is defined as filling the solution space sequentially in fact; these

sequences are not at all random. They can be defined as half way between random and

uniform grid.

RNs are computed using deterministic algorithms. So, they are defined as pseudorandom

numbers. In this thesis, what is meant by an RN is in fact a pseudorandom number. In an

RN sequence, next number is created by a function called generator, which takes as input

one or more previous numbers from the sequence and generates the next number according

to the predefined formula. The resulting sequence created by this way is expected to look

statistically independent and uniformly distributed. RN sequences possess the following

properties as a result of their cyclical structures. The sequence consists of finite number of

integers and begins to repeat itself when the period is exceeded. Besides, the sequence is

traversed in a particular order and the integers in it need not be distinct [4].

There are several RNGs (Random Number Generator). The most commonly used generators

are LCG (Linear Congruentail Generator) and LFG (Lagged Fibonacci Generator). The LCG is

first proposed for use by Lehmer in 1949 and is referred as the Lehmer generator. LCG can

be defined by a recursion formula which in short represented as LCG(a, b, m, X0) where a is

the multiplier, b is additive constant, X0 is seed, and m is the modulus. The LFG is becoming

popular since it offers a simpler and faster method for obtaining higher periods. LFG is

defined by LFG(l, k, m) where l and k are the lag values and m is the modulus. With proper

chosen parameters, good RN sequences can be constructed from these generators.

When RN generation is considered, the question comes in mind, why use a deterministic

computer algorithm instead of a truly random mechanism for generating RNs? Using a

program is more convenient than throwing dice or picking balls from a box and entering the

corresponding numbers on a computer's keyboard, especially when thousands of RNs are

needed for a computer experiment. Attempts have been made at constructing RNGs from

physical devices such as noise diodes, gamma-ray counters, and so on, but these remain

largely impractical and unreliable, because they are not practical, and it is generally not true

3

that the successive numbers that they produce are independent and uniformly distributed.

Besides, there are problems related with such sequences like being too slow, expensive and

having low quality. In order not to have a purely deterministic algorithm, combining the

output of a well designed RNG with some physical noise can be considered [5].

RNs are used on various fields. Among these fields, the area that makes the most extensive

use of RNs is MC methods. MC methods are described as any computational method that

uses RNs as an essential part of the algorithm. MC methods can be used in everything from

economics to nuclear physics. With MC methods, a complex system is sampled in a number

of random configurations, and that data can be used to describe the system as a whole [6].

When using MC simulation, RNs are used to determine attributes of particles, and

interactions of particles with the medium. By stating the expected properties of attributes of

particles, the desirable properties for RN sequences can be understood. For an MC

simulation to be effective, the attributes of each particle should be independent of those

attributes of any other particle and the attributes of particles should be able to fill the entire

attribute space in a uniform way. When these aspects are applied to RNs, there appear

several requirements for RNGs. Briefly speaking; the most important requirements can be

summarized as being uncorrelated, uniform and having long period. When parallel

architectures are considered, it is worth to consider additional aspects like low initialization

overhead and no inter-processor communication [4].

The MC methods are often referred to as the method of last resort since they consume large

computing resources and require very long runs. As computers become more powerful, MC

methods become more commonly used. In a large-scale MC simulation literally millions or

even billions of RNs are required [4]. That is why; the process of RN generation should

ideally be very efficient. By the advent of supercomputers and more advanced parallel

architectures, in order to get higher speed, MC methods begin to make extensive use of

parallel computers, since these calculations are particularly well suited to such architectures

and often require very long runs. A common way to parallelize MC is to put identical clones

on the various processors, only the RN sequences are different. It is therefore important that

to have a parallel MC, the underlying RNs must also be created in parallel in an uncorrelated

manner [7]. Necessity to get higher speed becomes the driving force for the parallelization

of RNs. Although, MC methods are known as embarrassingly parallel, the truth of this notion

depends highly on the quality of the PRNG (Parallel Random Number Generator) used [4].

4

In many problems for which RNs are most heavily used like MC methods, it has been

discovered that the quality of the RNs can influence the results. This is especially true in

large-scale simulations on parallel supercomputers, which consume huge quantities of RNs,

and require parallel algorithms for random number generation. As computers become more

powerful and MC methods become more commonly used, the quality of RN sequence and

the parallelization schemes become more important [3] .

There are two main approaches for the parallelization of RNG, which are called splitting and

parameterization. Splitting approach depends on the idea of dividing the underlying

sequence of RNs into different processors. Each processor uses the same iteration formula

but with widely separated seed values [7]. Parameterization is another approach for

generating parallel RNs. The exact meaning of parameterization depends on the type of RNG

used. This method identifies a parameter in the underlying recursion of an RNG that can be

varied. Each valid value of this parameter leads to a recursion that produces a unique, full-

period stream of RNs [8,9].

When the PRNGs are considered, one should take care of the following aspects. The

generation of the streams must be reproducible and without any inter-processor

communication. The generator must be portable between serial and parallel platforms.

Lastly, the generator must provide high quality RNs in a computationally inexpensive and

scalable manner [10]. In order to achieve all these aspects, a technique for mapping a large

number of parameterized RNGs onto a binary tree is utilized to permit an efficient, portable

and reproducible MIMD implementation [11]. The point of using a binary tree to map the

parallel processors is that one defines an entire subtree with each assignment and ensures

that processors elsewhere in the computation can not accidentally assign the same

processor. In addition, the computation of what node and subtree follow can be done with

only local information, without any inter-processor communication [11]. Although, this

mapping works fine for a considerable number of proseccors, problems can arise from the

fact that the binary tree structure puts an upper limit on the number of processors that a

processor can spawn with its local information. This problem is named as the problem of

Falling off the tree.

5

When considering the parameterization of LCG, modulus plays an important role and lies on

the heart of two costly operations. First one is named as the initialization cost occurring as a

result of parameterized iteration, and the second one is the cost per RN generation resulting

from the modular reduction [10]. In order to reduce the cost per RN generation, Mersenne

primes are used as moduli [10]. By using a Mersenne prime, the cost of modular reduction is

reduced but the initialization cost remains still.

1.2 Motivation

In this thesis, the subject of parallel random number generation is discussed from two

different perspectives. Firstly, the binary tree mapping is considered and a solution is

proposed to the falling off the tree problem. Secondly, performance consequences of LCGs

with prime moduli are examined and two approaches are proposed in order to obtain better

performance measures.

Problem of falling off the tree can be a disastrous situation if application in hand requires

huge amounts of independent processors. In order to handle this problem, firstly, a naïve

solution is given where the seed is changed and new processors are pointed to nodes

elsewhere in the tree that may or may not be independent from those already been used

[11]. Later, another solution is given in [2]. This solution enables the user to have access to

all the independent processors. What is left to the user is to pick a generator with as many

processors as maximum number of processors needed. So long as an upper bound can be

established that is smaller than the number of processors for some generator, the user need

not fear falling off the tree. But in such a case, the user must do the bookkeeping and take

great care not to choose a processor that has already been used [12]. In this thesis, a new

spawning method that is based on several spawn routes and two spawn algorithms is

suggested as a solution to the problem of falling off the tree. Binary tree structure is

traversed according to different spawn routes like breadth first search, inorder search,

preorder search, postorder search, random search and least recently used search and the

available processor is assigned as the new parent and from now on, this processor acts as if

it is the original processor that requested the spawn call and starts creating new processors

only with its local information. Although this method requires inter-processor communication

for determining the new spawn processor, it can be useful since it enables automatic

assignment of the next spawn processor without user interaction. By this way, not only the

spawning operation can continue until all the nodes in the binary tree are exhausted, but

6

also, it is assured that all the newly created processors are independent from each other and

from the already existing ones. To minimize the inter-processor communication, two spawn

algorithms are also proposed. These algorithms rely on the fact that a processor which has

spawned before is more probably to spawn in the future.

As a part of this thesis, the parameterization of LCG is implemented on PVM (Parallel Virtual

Machine) system. The initialization and RN generation costs of LCGs are examined in detail.

When the moduli is high, it is reasonable to ask if the reduced cost of modular reduction

obtained when using a Mersenne prime is balanced by the increased initialization cost. In

situations, where several processors with short periods are needed, one should consider

other schemes that have a different balance between the cost per RN and the initialization

cost. With this idea in mind, two approaches that are mentioned as future research topics in

[10] are implemented and their effects on the performance consequences of LCGs are

discussed.

First approach is based on changing the type of prime that is used as moduli. Instead of

using a Mersenne prime, a Sophie-Germain prime is used as modulus. As a result of its

nature, Sophie-Germain prime reduces the initialization cost considerably. The price paid for

this is having to use standard modular multiplication [10]. LCG with Sophie-Germain prime is

implemented and the comparison based analyis of Mersenne prime and Sophie-Germain

prime is done case by case through speed up and efficieny graphics.

Second approach is based on the idea of changing the parallelization method, which is

accomplished by utilizing a technique where splitting and parameterization are used

together. By this way, the number of parallel processors available is increased by using

several subsequences from each full period cycle. This improvement would allow the same

number of parallel processors to become spawnable with a smaller modulus and with a

smaller period length. Thus it would also speed up the cost of RN generation [10].

As a result, in this thesis, not only LCG is implemented with Sophie-Germain prime, but also,

it is implemented through a parallelization method that combines parameterized iteration

with sequence splitting or leapfrog methods. For which situations, this parallelization method

is suitable is determined.

7

1.3 Organization of Thesis

The organization of the thesis is as follows. In Chapter 2, the theory of RN generation is

covered by explaining the details of two well known generators. In Chapter 3, methods for

parallelization of RNGs are discussed. In addition, the mapping scheme of processors on the

binary tree and the problem of falling off the tree is given. In Chapter 4, the proposed

solution to the falling off the tree problem is explained in great detail together with

comparison based anaylsis, several tree charts, and graphics. In Chapter 5, the

implementation of parameterized LCG on PVM system is discussed. Both architectural and

algorithmic details are given. The emphasis is given to the enhancements on the LCG with

prime moduli. To make LCG more efficient, proposed approaches are discussed. Advantages

and disadvantages of using Sophie-Germain prime over Mersenne prime are explained. The

resulting sequences that are created by the hybrid parallelization method are shown. Case

analysis is done in order to determine the best approach for each case. Finally, in Chapter

6, all the comments are made, open questions and future are stated.

8

CHAPTER 2

SERIAL RANDOM NUMBER GENERATION

SRNGs (Serial Random Number Generators) are used for generating an array of numbers

that have a random distribution. Generation is done by a function called generator, which is

defined as, when applied to a number, yields the next number in the sequence. The SRNGs

used in practice do not actually generate numbers that are truly random. Only the resulting

sequence looks statistically independent and uniformly distributed.

SRNGs require the user to specify an initial value, or seed. Initializing the generator with the

same seed gives the same sequence of RNs. If different sequences are needed, different

seeds must be used.

Many widely used SRNGs have been shown to have quite poor randomness properties that

lead to incorrect results in certain applications. It is better to use an SRNG that has been

thoroughly tested. For applications in which RNs are only used occasionally, the quality of

the generator doesl probably not matter, however in applications which use a lot of RNs,

such as MC simulations, the quality of the generator is important and poor generators can

lead to incorrect results [3].

2.1 Requirements for Serial Random Number Generators

An SRNG should produce a random number sequence that has the following properties,

• uniform distribution

• uncorrelation,

• never repeating itself,

• satisfying statistical test for randomness,

• having long period

• being reproducible,

9

• being fast

• being portable,

• changeable by adjusting seed values,

• easy to split into many independent subsequences,

• requiring low memory resources.

These properties are for ideal case. In practice it is impossible to satisfy all these

requirements exactly. For practical purposes, it is required that the period of the sequence

be much larger than the number of RNs needed for the application, and that the correlations

be small enough that they do not noticeably affect the outcome of a computation [3].

In many applications that use RNs require that the SRNG be of highest quality. This

requirement is in contradiction with the desire for being fast. A fast generator requires a

minimal number of very simple operations, and it is this simplicity that often leads to

problems with the quality of such generators. It is logical to sacrifice a little speed for much

better randomness properties. While using an SRNG, it is usually better to be slow than

sorry [3].

2.2 Linear Congruential Generators

The most commonly used RNG is the LCG. It is based on the iteration in Formula 2.1.

X n = (a X n-1 + b) mod m (2.1)

In Formula 2.1, m is the modulus, a is the multiplier, and b is the additive constant that may

be set to 0. The next number is generated using the random integer Xn-1, the integer

constants a, b, and the integer modulus m. To get started, the algorithm requires an initial

seed X0. The entire sequence is referred as LCG(a, b, m, X0). The appearance of

randomness is provided by performing modulo arithmetic or remaindering. Note that the

next result, Xn, depends on only the previous integer, Xn-1. This is a characteristic of LCGs

which minimizes storage requirements, but at the same time, imposes restrictions on the

period. (a, b, m) must be chosen carefully for a long period, good uniformity and

randomness properties. The size of the modulus constrains the period, and is usually a

prime or a power of 2 [3]. The period length for an LCG can be defined by the Theorem 2.1.

The proof of the Theorem 2.1 can be found in [13].

10

Theorem 2.1 The LCG produces a sequence of period length m if and only if (b,m) = 1,

a ≡ 1 (mod p) for all primes p dividing m, and a ≡ 1 (mod 4) if 4 | m [4].

For different choices of modulus and additive constant, generators behaves differently.

When m is a power of two, the full period of m = 2M is obtained if and only if a ≡ 1 (mod 4),

and b is odd (often chosen as 1). By using a power of two modulus, the process of

performing modulus operation becomes very efficient but it causes correlation on least

significant bits. All that a different choice of the initial seed does is shift the starting point in

the sequence already determined by a, b, and m.

When additive constant b is zero, generator is termed as multiplicative congruential

generator. The maximum period is 2M-2 (one quarter of the modulus), and is obtained if and

only if a ≡ 3 (mod 8) or a ≡ 5 (mod 8) and the initial seed is odd. Low order bits are not

random [4].

When the modulus m is prime, the maximum period length is m-1, and it is obtained when a

is primitive modulo m. To show that a is primitive modulo m, it is sufficient to show that

aΦ(m)/q = 1(mod m) for all prime divisors q of m where Φ(m) is the Euler Phi function which

gives the number of relatively prime integers less than m. In the case of m being prime,

Φ(m) has the value m-1. Even when b is non-zero, the maximum period of this generator is

still one less than the modulus. Thus, for LCG with a prime modulus, using a non-zero b

does not increase the modulus [4].

When debugging, it is important to implement the algorithm to reproduce the same stream

of RNs on successive runs. If the run is a debug run, the seed should be set to constant

initial value, such as a large prime number. Otherwise, the initial seed should be set to a

random odd value [3].

The costliest task when generating RNs is the modular reduction since it requires an integer

division. When modulus is power of two, integer division and remaindering can be

accomplished much more efficiently. With a divisor of 2M, after the multiplication of aXn, the

next seed is obtained simply by performing a logical AND of Xn with a mask of (M-1) ones,

right justified. On the other hand, when modulus is prime, standard modular reduction is

used. To reduce this cost, Mersenne prime of the form p = 2k – 1 where k is prime can be

used. It is shown that such p's lead to fast modular reduction methods which use only a few

11

integer additions and subtractions. This technique is quite useful in practice, since it makes

possible to implement long integer modular arithmetic without using multiple precision

operations [14].

LCGs are commonly used since they are easy to implement, fast and adequate for most

applications. Many commonly used LCGs use a modulus m that is a power of 2 since it is fast

and convenient to implement on a computer. However, this approach produces highly

correlated low order bits and long-range correlations for intervals that are a power of 2. To

avoid these problems, it is best to use a modulus that is prime rather than a power of 2 [3].

In [15], it is found that LCG(75, 0, 231 – 1, X0) has good results in spectral tests.

2.3 Lagged Fibonacci Generators

The name of the generator comes from the Fibonacci sequence. LFGs generate RNs from

the iterative scheme in Formula 2.2.

Xn = Xn-l Θ Xn-k (mod m) (2.2)

As seen in Formula 2.2, l and k are the lags, satisfying the conditions l > k > 0 and Θ is any

binary arithmetic operation (addition, multiplication or XOR). The current X is determined by

the values of X from l and k places ago. For an LFG, l initial values X0, X1,.....,Xl-1 are needed.

This method requires storing the l previous values in the sequence in an array called a lag

table. In addition, for most applications of interest m is a power of two, that is m = 2M [3].

As in LCGs, the parameters l, k and m must be carefully chosen to provide good randomness

properties and the largest period. An advantage of this generator is that the period can be

made arbitrarily large by just increasing the lag l. This also improves randomness properties

since smaller lags mean higher correlations between the numbers in the sequence. One

problem with LFG is that l words of memory must be kept current, where as LCG requires

only that the last value of X is saved [4]. With proper choice of l, k and the first l values of

X, the period, P, of this generator is equal to (2l - 1) × 2(M-1). Proper choice of l, and k here

means that the trinomial xl + xk + 1 is primitive over the integers mod 2. The only condition

on the first l values is that at least one of them must be odd [16].

12

The value of the modulus, m, does not by itself limit the period of the generator as it does in

the case of an LCG. Note also that LFG is computationally simple. An integer add, a logical

AND (to accomplish the mod 2M operation), and the decrementing of two array pointers are

the only operations required to produce a new RN. The major drawback in the case of this

type of generator is the fact that l words of memory must be kept current. An LCG requires

only one, the last value of X generated [4].

Conceptually, a Fibonacci generator acts the same as a linear shift register, and if M = 1 that

m = 21, then the generator is a binary linear shift register. Since the state transformation of

the shift register content is a linear operation, a matrix equation describing it can be given

as shown in Figure 2.1.

The action of the shift register can be described by the Formula 2.3. In Formula 2.3, xn is

the entire vector after n time steps. When the vector x0 has been given some initial set of

values, for different n values, Formula 2.3 can be rewritten in terms of the initial vector x0 as

can be seen in Table 2.1. In the special case where n is taken as period p, AP becomes

equal to I, the identity matrix.

xn = Axn-1 (mod 2M) (2.3)

Figure 2.1 Matrix equation for LFG

13

Table 2.1 Iteration formula

Iteration Formula

1 x1 = Ax0

2 x2 = Ax1 = A2x0

3 x3 = Ax2 = A2x1 = A3x0

n xn = Anx0

p xP = APx0

The randomness properties of LFGs are best when multiplication is used, with addition being

next best, XOR being by far the worst. LFGs using addition are the most popular because

they are very simple and very fast. Each RN can be generated with a single addition and a

modulus operation. Great care must be taken when choosing the lags for additive LFGs.

Usually, much too small lags to give adequate randomness properties are chosen in many

applications. Increasing the lag improves the randomness properties of the generator. A lag

greater than 1000 is recommended for an additive LFG. The randomness properties can be

improved by using multiple lags by combining three or more previous elements of the

sequence, rather than two [3].

The choice of the lag may affect the speed of the generator, depending on the computer

used. If a vector processor is used, a larger lag may improve performance, since the vector

lengths are larger. If a scalar processor with limited cache is used, having a large lag may

reduce the performance [3].

Multiplicative LFGs have seen little use. Although, slower than additive LFGs, they are as fast

as 32-bit LCGs. They can be used with lags smaller than additive LFGs. One of the problems

of multiplicative LFGs is handling the possible overflow of multiplication [3].

The algorithmic complexity of SRNGs can be defined as O(n) where n is the amount of RNs

required. When considering SRNGs, what are more important are the properties of the

generator that are inherited from the underlying recurrence relation like having long period

or good randomness properties. Computational complexity of the recurrence relation is not

of great concern. Though the complexity of SRNGs is fairly good, the problem arises when n

14

is in the range of millions, which is the case occurring most of the time. In problems where

RNs are heavily used, execution of the SRNG slows the execution of problem considerably.

In order to fasten random number generation, SRNGs are parallelized by several different

methods forming a new class of RNGs, PRNGs which will be discussed in the next chapter.

15

CHAPTER 3

PARALLEL RANDOM NUMBER GENERATION

The goal of parallel RN generation is to design an RNG that produces random sequences of

integers on each processor in a parallel computing environment [17]. Driving force to

parallelize SRNGs comes from the necessity to get higher speed in MC applications. In order

to get higher speed, these applications make extensive use of the parallel computers, since

these calculations are particularly well suited to such architectures and often require very

long run [7].

There are several methods for parallelization of SRNGs. These methods all assume a good

source of sequential RNs which is transformed in some manner to a sequence of normally

distributed RNs. There are several researches going on in order to improve parallelization

methods of different SRNGs according to the requirements of an ideal PRNG. As a result of

these researches, a software package named as SPRNG (Scalable Library for Pseudorandom

Number Generation) based on MPI (Message Passing Interface) was created. Details of this

package can be found in [20].

3.1 Requirements for Parallel Random Number Generators

In addition to the requirements for an ideal SRNG, a PRNG should possess the following

additional properties:

• Generator should work for any number of processors

• Individual sequences on each processor should satisfy the requirements of a good

SRNG.

• Sequences on different processors should be uncorrelated.

• Same sequence of RNs should be produced for different numbers of processors, and

for the special case of a single processor [17].

16

• Speed of generation of the numbers on each processor and the amount of memory

required per processor should be independent of the number of processors.

• There should be no data movement between processors. Thus, after the generator

is initialized, each processor should generate its sequence independently of the

other processors.

As with the ideal sequential generator, in practice it is not feasible to meet all these

requirements. Among the above mentioned requirements of PRNGs, the most important one

is the requirement that there should be no inter-processor correlation. This issue did not

arise in the case of SRNGs [3].

3.2 Types of Parallel Random Number Generators

There are three general approaches to the generation of RNs on parallel computers;

centralized, replicated, and distributed. In the centralized approach, a sequential generator

is encapsulated in a task from which other tasks request RNs. This avoids the problem of

generating multiple independent random sequences, but is unlikely to provide good

performance. Furthermore, it makes reproducibility hard to achieve. The response to a

request depends on when it arrives at the generator, and hence the result computed by a

program can vary from one run to the next [18].

In the replicated approach, multiple instances of the same generator are created. Each

generator uses either the same seed or a unique seed, derived, for example, from a task

identifier. Clearly, sequences generated in this fashion are not guaranteed to be independent

and, indeed, can suffer from serious correlation problems. However, the approach has the

advantages of efficiency, and ease of implementation and should be used when appropriate

[18].

In the distributed approach, responsibility for generating a single sequence is partitioned

among many generators, which can then be parceled out to different tasks. The generators

are all derived from a single generator; hence, the analysis of the statistical properties of the

distributed generator is simplified. Most commonly used methods for parallelizing SRNGs are

based on distributed approach [18].

17

3.3 Techniques for Parallelization

There are several methods for creating distributed PRNGs. These methods can be grouped

under two basic techniques, which are splitting and parameterization. The underlying idea

behind the splitting technique to parallelize a sequential generator is taking the elements of

the sequence of RNs it generates and distribute them among the processors in some way

[8]. On the other hand, parameterizing technique identifies a parameter in the underlying

recursion of an SRNG that can be varied. Each valid value of this parameter leads to a

recursion that produces a unique, full-period stream of RNs [19].

Finding a good PRNG is a very difficult problem. One of the reasons is that, any small

correlations that exist in the sequential generator may be amplified by the method used to

distribute the sequence among the processors, producing stronger correlations in the

subsequences on each processor. Inter-processor correlations may also be introduced. Also,

the method used to initialize a PRNG is at least as important as the algorithm used for

generating the RNs, since any correlation between the seeds on different processors could

produce strong inter-processor correlations.

3.3.1 Splitting Techniques

Splitting techniques based on the following concept. In order to parallelize a sequential

generator, take the elements of the sequence of RNs it generates and distribute them

among the processors in some way.

There are several methods to do this, which differs slightly but have the same basic concept,

like sequence splitting, leapfrog, independent sequences, and random tree method. A top-

down approach can be taken to choose a splitting scheme and an SRNG. There are five

properties that make an SRNG suitable for splitting. These are,

• existence of a fast-leap-ahead algorithm,

• period long enough to be split,

• serial pseudo randomness,

• substream independence,

• fast serial implementation [9].

By considering these five important factors, two different splitting techniques are discussed.

18

3.3.1.1 Sequence Splitting

Sequence splitting method for parallelizing RNGs is to split a serial RN sequence into non-

overlapping contiguous sections, each generated by different processors. If there are N

processors, and the period of the serial sequence is P, then the first processor gets the first

P/N RNs, the second processor gets the second P/N RNs, etc. This method requires a fast

way to advance the serial sequence P/N steps. It turns out that LCG is a good candidate for

this, but also, it is possible to use additive LFGs since jumping ahead is done only once in

the initialization of the generator [3, 8].

A possible problem with this method is that although the sequences on each processor are

disjoint, this does not necessarily mean that they are uncorrelated. In fact, it is known that

LCG with power of two modulus, causes long-range correlations, which could become short-

range interstream or inter-processor correlations in parallel generators [3]. One danger of

this method is that if the user happens to consume more RNs than expected, then the

sequences could overlap. Another disadvantage of this kind of generator is that it does not

produce the same sequence for different number of processors [3].

3.3.1.2 LeapFrog Method

In this approach, the sequence of a serial generator is partitioned in turn among multiple

processors like a deck of cards dealt to card players. If there are N processors, each

processor leapfrogs by N in the sequence. For example, processor i gets Xi , Xi+N , Xi+2N , etc.

To produce the same sequence of RNs for different number of processors, this method can

be used. In order to use this method, jumping ahead in the sequence should be done easily.

This can be done quite easily with LCGs but not practical for LFGs [3, 8].

This method has serious problems that long-range correlations in the original sequence can

become short-range inter-stream correlations in the parallel generator. Since, it is known

that LCGs using a power of two modulus have correlations between elements in the

sequence that are a power of two apart. Moreover, for many parallel computers, the

physical number of processors is a power of two. So, this method becomes useless. It may

be adequate for some applications. If it is to be used, number of processors must be fixed

and the modulus must be prime [3].

19

In some circumstances, it can be known that a program requires a fixed number of

generators. In this case, leapfrog method can be used to generate sequences, which are

guaranteed not to overlap for a certain period [3]. Let N be the number of sequences

required. Two generators, L and R, are used and their corresponding a values, aL and aR, are

defined as a and aN respectively as shown in Formula 3.1 and Formula 3.2.

Lk+1 = a Lk mod m (3.1)

Rk+1 = aN Rk mod m (3.2)

N different right generators (R0… RN-1) are created by taking the first N elements of L as

their starting values. The name leapfrog method refers to the fact that the ith sequence Ri

consists of Li and every Nth subsequent element of the sequence generated by L. As this

method partitions the elements of L, each subsequence has a period of at least P/N, where P

is the period of L. In addition, the N subsequences are disjoint for their first P/N elements.

In Figure 3.1, the leapfrog method with three processors can be seen. Each of the three

right generators selects a disjoint subsequence of the sequence constructed by the left

generator's sequence [3].

Figure 3.1 Leapfrog method with three processors

20

3.3.2 Parameterizing Techniques

The parameterization technique is one of the latest techniques for generating parallel RNs.

The exact meaning of parameterization depends on the type of the SRNG. This method

identifies a parameter in the underlying recursion of an SRNG that can be varied. Each valid

value of this parameter leads to a recursion that produces a unique, full-period stream of

RNs. Each processor is given the same SRNG but with a different set of parameter values.

Hence, each processor executes the same general algorithm, and the same piece of code,

only the parameters passed in initialization is varied from processor to processor [8,9].

There are two different methods for parameterization, which are cycle parameterization and

parameterized iteration [7]. The emphasis will be on the parameterized iteration technique.

3.3.2.1 Parameterized Iteration

Parameterized iteration, lies on the fact that the iteration function can be parameterized.

Here sequence i gets iteration function Ti. This is the case in the parameterization of LCGs

[7]. The most important parameter of an LCG is the modulus m. Its size constraints the

period, and for implementation reasons it is always chosen to be either prime or a power of

two [20].

The parameterization method used is based on the type of modulus that has been chosen.

When m is prime, a method based on use of the multiplier a as the parameter has been

proposed. An alternative way to parallelize LCGs is to parameterize the additive constant

when the modulus is a power of two [20]. In the next section, parameterization of power of

two case is considered.

3.3.2.1.1 Parameterization of Power of Two Modulus

This method is first proposed as a way for providing PRNG for NYU Ultra-Computer. This

technique has some interesting advantages over parameterization by multiplier. However,

this technique, also has considerable disadvantages [20].

To parameterize power of two modulus, a set of additive constants that are pair-wise

relatively prime are chosen. A logical choice can be to choose bj as the jth prime. By this

way, pair-wise relative primality is ensured. However, difficult problem of computing the jth

prime arises when j gets higher [20].

21

Important advantage of power of two parameterization is that, spectral tests show it has

good inter-stream independence. The disadvantage is, it is needed to compute inverse

function of Π(x), where Π(x) is the number of primes less than x. If large number of streams

are to be provided, fast algorithms can be used for the computation of Π(x). Regardless of

the efficiency of the algorithm, it is known to be a difficult computation with respect to

computational complexity [20].

With a power of two modulus, cost of modular multiplication is far less than prime modulus

case. On the other hand, a major shortcoming of LCGs modulo a power of two compared

with prime modulus LCGs derives from the fact that the least significant bits of the power of

two modulus have short period and are highly correlated. These aspects make the

parameterization of power of two modulus less preferable [20].

3.3.2.1.2 Parameterization of Prime Modulus

To parameterize a prime modulus LCG, one can vary either the modulus or the multiplier or

the additive constant. To vary the modulus is not acceptable because the modulus is chosen

in a way to optimize the modular multiplication (the number theoretic properties of this

modulus are used to optimize the modular multiplication). Thus, using a different modulus

on different parallel processors lead to RN generation codes with very different execution

times per RN [10].

There are two choices left, parameterizing the additive constant or the multiplier. If it is

chosen to parameterize the multiplier when modulus is prime it can be shown that there is a

set of initial conditions that makes the difference of a pair of prime modulus LCGs with same

multiplier constant as show in [10]. This leads to RNs that are correlated. One more

advantage of parameterizing the multiplier over the additive constant is that when

parameterizing the multiplier, all the additive constants can be chosen as zero. This speeds

the implementation, as only one modular multiplication and no modular addition is required

per RN generation.

When modulus m is prime, a method based on use of multiplier a as the parameter has

been proposed. To parameterize a, when m is prime, first the family of permissible a’s must

be determined (The family of a’s that makes the iteration formula to have the maximum

period m-1). When m is prime, to obtain the maximal period, a condition on a is to be

22

primitive modulo m. With a primitive modulo m, any choice of additive constant b gives

period m-1 so b is chosen as 0 [20]. An integer a is primitive modulo m if it obeys the rules

explained in Appendix A.

Given primitivity, if a and α are primitive elements modulo m, then α = ai (mod m) for some

i relatively prime to Φ(m) where Φ(m) is the number of relatively prime numbers to m that

are less than m. When m is prime, Φ(m) = m-1. Thus, a single reference primitive element a

and an explicit enumeration of the integers that are relatively prime to m-1 furnish an

explicit parameterization for the jth primitive element, aj = alj (mod m) where lj is the jth

integer relatively prime to m-1. If all of the primitive elements modulo m can be

parameterized then parameterization of all the full period LCG sequences modulo m will be

accomplished. To calculate the other primitive elements, a single reference primitive element

must be known. The parameterization is reduced to an explicit computation of the jth

number relatively prime to m-1 [21].

Table 3.1 Algorithm of LCG parameterization

LCG Algorithm

1

Find primitive element modulo m

Assign it as the multiplier

a

2 Prime factorization of m – 1 {p1,….,pn}

3 Find the jth element relatively prime to m – 1 lj

4 Compute the new multiplier for the jth processor aj = alj (mod m)

5 Start iteration according to the recursion formula X n = (a X n-1 + b) mod m

In summary, in order to parameterize the LCG via the multiplier, start with a reference value

of a that is primitive element modulo m and choose the multiplier for the jth stream as

aj = alj (mod m) where lj is the jth integer relatively prime to m-1. From here, it can be seen

that there can be at most Φ(m) processors with disjoint sequences. An open question is

whether the prime modulus must be chosen to minimize the cost of computing lj or to

23

minimize the cost of modular multiplication modulo m. The use of Mersenne prime minimizes

the computational cost of modular multiplication whereas the use of Sophie Germain prime

minimizes the cost of computing lj [10]. The algorithm of the LCG parameterization is given

in Table 3.1. In this thesis, parameterization of LCG with prime modulus is implemented.

Modular multiplication and modular exponentiation operations are computed according to

the Russian Peasant Algorithm. When Mersenne prime is used, modular reduction is done

with Mersenne Reduction Algorithm. Otherwise, normal modular reduction is used. The

details of these algorithms will be discussed in Chapter 5.

3.3.2.2 Cycle Parameterization

Cycle parameterization makes use of the fact that some PRNGs have more than one cycle. If

the seeds are chosen carefully, then it can be assumed that each random sequence starts

out in a different cycle so two sequences will not overlap. Thus the seeds are parameterized

that is, sequence i gets a seed from cycle i, the sequence number being the parameter that

determines the cycle [7]. In other words, consider a single SRNG that has full-period cycles

that fall into different ECs (Equivalence Classes) depending on the initial seed. This

generator is then seeded appropriately to ensure that each parallel processor uses a

different EC. This is the case for the LFG, which is parameterized through its initial values

[11].

LFG has relatively short period with respect to the size of its seed. However, the short period

is more than made up for with the huge number of full-period cycles it contains. LFG is

defined by the Formula 2.2 and denoted as LFG(l, k,m). This generator has maximum

possible period as given in Formula 3.3, if and only if at least one of the seeds is odd (Proof

can be found in [22]). The number of seeds that give the maximum possible period is given

in Formula 3.4. Since each of these seeds is in a maximum possible period cycle, the

number of cycles with maximum possible period is calculated with respect to Formula 3.5.

Each of these full period cycles is called an EC [16].

The use of these ECs will be the key to parallelizing this generator. Thus, firstly, all ECs are

enumerated in some way and then using this enumeration, a unique seed is created for each

EC. To derive an explicit enumeration, one seed from the full period must be chosen to

serve as the representative of the entire EC. This representative seed is called EC’s canonical

form. In other words, in order to derive an explicit enumeration, given any arbitrary seed, it

24

must be transformed into a seed with a canonical form Additionally, application of this

procedure to seeds from different ECs produces different canonical form seeds. As a result,

a single seed is produced which is the representative for its EC and is in canonical form [16].

P = (2l - 1) 2(m-1) (3.3)

S = (2l -1) 2(m-1)l (3.4)

E = (2l -1)2(m-1)l / (2l -1)2(m-1) = 2(m-1)(l-1) (3.5)

Figure 3.2 Canonical form for LFG

After canonical form transformation comes the enumeration of different ECs. Since the

number of ECs is as in Formula 3.5, a set of (l-1)(m-1) bits are needed to specify a unique

EC. The canonical form has already specified the l least significant bits so it could be hoped

that the canonical form gives the explicit enumeration in Figure 3.2. In fact this explicit

enumeration also shows the construction of all the EC representatives. This enumeration

leaves exactly (l-1)(m-1) bits to be specified in the canonical form and yields exactly E

different possibilities as computed by Formula 3.5 [16]. To make a parallel implementation,

bm-1 bm-2 - - b1 b0

- - - - - bl-1 xl-1

 - - - - bl-2 xl-2

- - - - - - -

- - - - - - -

- - - - - b01 x1

0 0 0 0 0 b00 x0

25

the key is to associate each independent parallel processor in the computation with a unique

parallel processor identifier, K. This K is then used to select the Kth EC for this processor.

This procedure works without difficulty provided that the parameters for the generator are

chosen so that no K is required in the computation that exceeds E-1 [11].

The simplest way to parallelize this generator is to associate the Kth parallel processor with

EC number K. Although, it is simple and has ease in computation, this naïve approach has

some shortcomings. Starting all of the pseudorandom sequences from seeds that are in

canonical form, leads to so-called flat spots. This is because the seeding values used for

small EC numbers are numerically small themselves. Thus the initial segments will start and

remain numerically small for an unacceptably long stretch. Worse than that, since all of the

ECs start from their canonical forms in the naive implementation, all low-numbered ECs will

suffer from flat spots that are lined up with respect to their cycles. So not only is a low-

numbered EC initially distorted, all of those with similar EC number will be similarly distorted

[11].

This natural numbering of the ECs, will cause flat spots of the lowest numbered ECs to

appear at the very beginning of their cycles, giving the initial appearance of both non

randomness and high cross-correlation. An alternative approach is to renumber the ECs so

that the first ECs chosen will not have flat spots and neighboring ECs will have very different

representatives. This new reordering can be accomplished by the aid of a high quality LCG.

Although the details of such an implementation is beyond to scope of this thesis, the details

can be found in [11].

3.4 Method for Instantiating Processors

When parallelization of RNGs is considered, the following concepts must be taken with great

care. Firstly, the generator must be able to provide a reproducible stream of parallel RNs.

This reproducibility must hold independent of the number of processors used in the

computation. Besides, the generator must allow for the creation of unique RN streams on a

parallel machine without any inter-processor communication. The generator must be

portable between serial and parallel platforms. Furthermore, the generator must provide

high quality RNs in a computationally inexpensive and scalable manner [10]. In order to

achieve all these aspects, a technique based on mapping of parameterized RNGs onto a

binary tree is proposed in [19] to permit a portable and reproducible MIMD implementation.

26

Each parallel processor also has the ability to create new child processors. The point of using

a binary tree to map the parallel processors is that, one defines an entire subtree with each

assignment and insures that processors elsewhere in the computation can not accidentally

assign the same processor. In addition, the computation of child processors’ identifiers and

subtree follow can be done with only local information, without any inter-processor

communication [11].

Binary tree can be defined as a data structure where it consists of a node called root

together with two binary trees called the left subtree and the right subtree of the root. In a

binary tree structure, there is a parent-child relationship where each parent has at most two

direct children. If parent has an identifier K, then the two children of the parent have the

identifiers, 2K and 2K+1 respectively. The structure of the binary tree with seven nodes is

given in Figure 3.3.

To produce a child processor with a process identifier K that is guaranteed to be distinct

from others created elsewhere in the computation, using a binary tree mapping is essential.

In the binary tree structure as shown in Figure 3.3, nodes are representing real processors.

Each node must contain in its simplest case, the task id of the related processor and a node

number which shows from which node in the binary tree to start if spawning child

processors is needed. By this way, the assignment of process identifiers to newly created

child processors becomes a local computation based only on the parent’s processor

identifier. For instance, when the processor for node K is required to create n children, it

does so by assigning the n nodes closest and below it on the binary tree. This assures a

local computation. In particular, if the processor assigned to node K has two children, they

receive nodes 2K and 2K+1 respectively.

There are two main operations related with parallel processors and binary tree structure.

These operations are defined as Initialization and Spawning. How and according to which

rules the structure of binary tree changes with respect to these operations are described in

the following sections.

27

Figure 3.3 Binary tree structure

3.4.1 Initialization Algorithm

Initialization operation as its name implies is related with the initial organization of the

parallel processors. Organization of processors on the binary tree structure, assignment of

initial values, and the interaction between the parallel processors are the main parts of the

initialization algorithm. In this section, the initialization algorithm is considered only with

respect to its effects on the binary tree structure. The details of the overall initialization

algorithm together with parallel calls to processors will be given in Chapter 4.

As described in the previous section, binary tree structure consists of nodes where each

node represents a processor. When this is the case, it becomes essential that a node

contains all the needed information for a processor to be able to spawn with only its local

information. That is why; a node structure consists of in its simplest form from three

attributes as can be seen from the Figure 3.4. First one is the task id of the related

processor which is the process identifier of the processor. The second one is the node

number. The third one is the node number of the first child processor to be created as a

result of spawning operation. This attribute is defined as the Spawn Pointer and plays an

important role during spawning operation.

0

1

2

6 7 4

K

2K 2K+1

Parent

Child

Root

3

28

Figure 3.4 Node structure

Suppose a program needs N initial generators which will run independently from each other.

One processor is created for each generator and these generators are placed at nodes n =

0, 1, 2, …. , nmax where nmax = N – 1 of the binary tree. While organizing the binary tree

structure, for each node, according to the its node number, spawn pointer values are

calculated with respect to the Formula 3.6 where SP represents spawn pointer [11].

SPn = 2j (2n + 1) for the smallest j such that 2j (2n + 1) > nmax (3.6)

To illustrate the initialization operation, consider an example situation where a program

needs initially three generators and where the maximum number of processors is restricted

to 16. These generators are placed at nodes n = 0, 1 and 2 of the tree where nmax becomes

2. For each generator, spawn pointer values are calculated according to the Formula 3.6.

The state of the binary tree after the initialization of three processors is shown in Figure 3.5.

In Figure 3.5, spawn pointers are represented by arrows and the dashed circles are the

nodes that are not created yet but pointed by the spawn pointers. For instance, node 1’s

spawn pointer points to 3. This means that when a spawn call is requested by node 1, this

node will begin to create new child processors starting from node 3 and continue to produce

within the subtree where node 3 is the root. This subtree is defined as the spawn pool of the

node 1. In other words, Spawn Pool of a node can be defined as the subtree rooted by the

spawn pointer of that node.

LEFT Task id Node Number Spawn Pointer RIGHT

LEFT
SUBTREE

RIGHT
SUBTREE

Subtree starting
with node

number equal to
spawn pointer

29

Figure 3.5 Initialization of binary tree with three processors

3.4.2 Spawning Algorithm

Spawning operation can be described as a processor being parent, wants to create new child

processors. It is important that a parent processor could do this creation operation with only

its local information, without a need for inter-processor communication. That is why;

processors are mapped into a binary tree and spawn pointer and spawn pool concepts are

introduced. Spawn pointers are providing a way to know where to start spawning in the

binary tree whereas spawn pools are setting the boundaries between the parent processor

and the other parts of the tree preventing those two processors accidentally assign same

node numbers to different processors.

0

1

2 3

Spawn Pool of P 1

5 4

Spawn Pool of P 0 Spawn Pool of P 2

Spawn
Pointer

Spawn
Pointer

Spawn
Pointer

8 9 10 11

6 7

12 13 14 15

30

When a processor wants to spawn N new child processors, it gives the node number which

is pointed by its spawn pointer to the first processor spawned. Then, continues to spawn

within its spawn pool according to the rules of the binary tree structure. While spawning

new child processors, there are two important aspects. First one is, it is required that these

child processors must have been assigned spawn pointers, in case they will need to spawn

in the future. Spawn pointers of child processors are calculated with the Formula 3.6 where

nmax is changed to the maximum numbered node that is created during spawning. Second

one is related with the spawn pointer of the parent processor. It must be adjusted according

to the new organization of the binary tree with respect to the Formula 3.6. Other processors

are not related with these spawn pointer adjustments since spawning is accomplished within

the boundaries of the spawn pool of the parent processor. This adjustment of spawn

pointers can be defined as dividing the spawn pool of parent processor between the newly

created processors and itself.

To illustrate the spawning operation, consider an example situation where a program needs

initially three generators and where the maximum number of processors is restricted to

sixteen. Initial state of the binary tree together with spawn pools and spawn pointers can be

seen in Figure 3.5. Assume that processor 1 needs to spawn one more processor. When this

is the case, processor 1 creates the new child processor and gives this new processor its

spawn pointer as its node number. In other words, processor 1 spawns processor 3

according to its spawn pointer. After giving the node number, with respect to the Formula

3.6, spawn pointer of processor 3 is calculated as seven and then the spawn pointer of

processor 1 is updated according to Formula 3.6 to six, since nmax = 3. What is happened

actually can be clearly seen when Figure 3.5 and Figure 3.6 are compared. In Figure 3.5, it

is seen that, processor 1 has a spawn pool consisting of seven processors which means that

processor 1 can spawn at most seven processors. When processor 1 spawns one processor,

its spawn pool is divided into two between itself and the newly created child processor which

can be seen in Figure 3.6 clearly.

31

Figure 3.6 Processor 1 spawns 1 processor

Consider another example. In Figure 3.7, the initial state of the binary tree with three

processors numbered from 0 to 2 is displayed together with spawn pointers and spawn

pools. Here, the maximum number of processors is restricted to thirty two. Since three

processors are already spawned, there are twenty nine processors left. These twenty nine

processors are the overall spawn pool of the three processors and this spawn pool is divided

among three processors according to their spawn pointers.

As can be seen from Figure 3.7, processor 1 has the spawn pointer three so the subtree

starting from node 3 is processor 1’s spawn pool, giving fifteen processors to processor 1 to

spawn. In a similar manner, when processor 2 is considered, it is seen that, processor has

the spawn pool as the subtree starting from node 5, having a total of seven processors to

0

1

2 3

Spawn Pool of P 3

5 4

Spawn Pool of P 0 Spawn Pool of P 2

Spawn
Pointer

Spawn
Pointer

8 9 10 11

6 7

12 13 14 15

Spawn Pool of P 1

32

spawn. Lastly, processor 0 has the spawn pool as the subtree rooted by node 4. Like

processor 2, processor 0 has seven processors to spawn. In summary, the spawn pool of

twenty nine processors is divided among three processors in a way that processor 1 gets

fifteen, whereas processor 2 and 0 gets seven processors each.

Assume that processor 1 wants to spawn three processors. Processor 1 has a spawn pool as

the subtree rooted by node 3. It can spawn fifteen processors at most. According to the

spawn pointer, processor 1 assigns the first processor created, the node number of 3. The

other two processors get the node numbers 6 and 7 respectively. During this operation, the

spawn pool is also divided among processor 1 and newly created child processors. The result

of the spawn pool division is clearly seen in Figure 3.8. Consider the case where processor 0

wants to spawn one processor. Processor 0 has a spawn pool rooted by node 4. It can

spawn seven processors at most. According to the spawn pointer, processor 0 assigns the

newly created processor the node number of 4. Also, the spawn pool of processor 0 is

divided among itself and the newly created processor.

All these examples point to one fact: Spawning operation is accomplished within the

boundaries of spawn pool. The spawn pool of the parent processor is divided among itself

and the newly created child processors. Spawning operation relies on dividing spawn pool

concept and updating of spawn pointers. It is these properties that enable spawning

operation to be done independently and without needing inter-processor communication.

Whereas, it is also these properties that put constraint on the number of child processors

that a processor can spawn and constitute a situation called falling off the tree whose details

will be given in the next section.

3
3

 Figure 3.7 Initial state of binary tree: Spawn Pools and Spawn Pointers

16

0

1

2 3

5 4

Spawn

Pointer

Spawn

Pointer

8 9 10 11

6 7

12 13 14 15

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Spawn Pool of P 1 Spawn Pool of P 2 Spawn Pool of P 0

Spawn

Pointer

3
4

Figure 3.8 State of binary tree after three spawning operations

0

1

2 3

5 4

8 9 10 11

6 7

12 13 14 15

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 16

Spawn Pool

of P 4
Spawn Pool

of P 2
Spawn Pool

of P 5
Spawn Pool

of P 7
Spawn Pool

of P 3
Spawn Pool

of P 6
Spawn Pool

of P 1
Spawn Pool

of P 0

35

3.4.3 Problem of Falling off the Tree

Binary tree mapping works fine for a considerable number of processors, however, problems

can arise from the fact that the binary tree structure puts an upper limit on the number of

processors that a processor can spawn with its local information. This problem is named as

the problem of Falling off the tree. It is defined as the condition of having made a spawn call

requesting more processors than in the spawn pool of the processor given as input. This can

be a serious problem when a processor needs to spawn several times.

The problem is clearly stated in Figure 3.10. Assume that there are initially two processors

and the maximum number of processor is restricted to sixteen. Initially, processor 0 has

seven processors in its spawn pool and wants to spawn one more processor. It spawns

processor 2. Its spawn pool is divided into two and its spawn pointer is updated. Now,

processor 0 has at most three processors to spawn. Again, processor 0 wants to spawn two

processors. It spawns processors 4 and 8. When it comes to dividing the spawn pool, since

there is only one processor left, not all of the processors are assigned to a spawn pool. As

can be seen from Figure 3.9, only the processor 4 is assigned a spawn pool consisting of

one processor. The other child processor 8 and the parent processor 0 assigned a null

spawn pointer, meaning that they are unable to spawn any more. When such a situation is

considered, it is seen that, upper limit for number of processors is sixteen, and so far only

five processors are spawned leaving eleven processors. There are still processors left in the

overall spawn pool but processor 0 is unable to spawn since there are not any processors

left in its spawn pool.

Problem of falling off the tree can be a serious problem in applications where processors

tend to spawn new processors continuously. In such cases, after a while, the RN sequences

of independent processors will begin to correlate leading to incorrect computations. For

instance, consider the situation where the path of each neutron is determined by a random

sequence created by a processor. When there are correlations among individual sequences,

the related neutrons will have the same path, and the quality of the computation becomes

questionable.

36

As a solution to the falling off the tree problem, one proposal is changing the seed and

pointing new processors to nodes elsewhere in the tree that may or may not be independent

from those already been used. Another proposal is to enable the user to have access to all

the independent processors. What is left is to pick a generator with as many processors as

maximum number of processors needed. But in such a case, the user must do the

bookkeeping and take great care not to choose a processor that has already been used [2].

In this thesis, a solution to the problem is suggested which will be described in Chapter 4.

37

Initial State with two processors

Processor 0 spawns 1 processor

Processor 0 spawns 2 processors

Figure 3.9 Problem of falling off the tree

0

1

2 3

0

1

2 3

4 5

0

1

2 3

4 5

8 9

NULL

NULL

38

CHAPTER 4

IMPROVEMENTS ON BINARY TREE MAPPING

Ideally, a PRNG should be able to produce individual sequences without inter-processor

communication. To reduce inter-processor communication and to enable a processor to

spawn new processors with only its local information, together with binary tree mapping,

concepts of spawn pointer and spawn pool are exposed. But what if a processor wants to

spawn more processors than in its spawn pool? The problem of falling off the tree appears.

In such cases, if it is still important to spawn new processors without inter-processor

communication, then there is no chance but to accept the correlated sequences on newly

created processors. On the other hand, if minimized cost of inter-processor communication

is acceptable, then there can be other solutions to the problem of falling off the tree, where

it is guaranteed that uncorrelated sequences on individual processors are created. In fact,

this is a serious trade-off between inter-processor communication and correlation that the

users of RNGs must consider.

In this chapter, firstly, the implementation details of a parallel LCG on PVM system is given.

Secondly, a solution to the problem of falling off the tree that requires inter-processor

communication is proposed. This new solution consists of several search routes and two

algorithms that minimizes the need for inter-processor communication. Lastly, detailed

analysis of the proposed solution is madethrough graphics.

4.1 Implementation on PVM system

Although LFG has better quality consequences, in this thesis, LCG is chosen to be

implemented. Since in LCG, memory handling and parameterization operations are carried

out easily. In this section, the architectural and algorithmic details of LCG implementation

are given. The implementation consists of five main algorithms as shown below:

39

• Algorithm for parameterization of LCG

• Initialization algorithm

• Spawning algorithm

• Algorithm for solving the falling of the tree problem

• RN generation algorithm

Although, the overall structure of implementation is considered, only the initialization,

spawning and RN generation algorithms will be detailed in this section. The algorithm for

parameterization of LCG will be considered in Chapter 5 and the algorithm for solving the

falling off the tree will be fully clarified in Section 4.2.

4.1.1 Architecture

Parallel LCG is implemented on a cluster system using PVM. Cluster system consists of three

separate computers of nearly equal computational resources as can be seen in Figure 4.1.

Laptop computer

Workstation Workstation

Figure 4.1 Architecture of implementation

40

4.1.2 Algorithmic Structure

Parallel LCG implementation consists of two separate programs written on PVM. These

programs are named as MASTER and SLAVE respectively. MASTER program handles user

input, creates initial processors, initializes binary tree structure and keeps binary tree up to

date. Moreover, as a result of the proposed solution to the problem of the falling off the tree

problem, MASTER program is responsible from directing spawn calls to available processors

with respect to new spawn routes and algorithms. Whereas, SLAVE program represents

individual processors and responsible from RN generation and spawning new child

processors. Whole implementation relies on the communication between MASTER and

SLAVE programs together with interaction with the binary tree structure. In this section,

firstly, the node structure of the binary tree is represented. Secondly, the structure of

MASTER and SLAVE programs are given. Lastly, the three basic operations, initialization,

spawning and RN generation are explained with respect to MASTER SLAVE interaction.

4.1.2.1 Node Structure

Binary tree structure is the foundation of the initialization and spawning operations. It must

be correctly initialized and updated with each new processor created. Now, it is reasonable

to ask the question of what must be the structure of an individual node in practice? In

binary tree structure, each node represents a real processor and as explained in Section

3.4.1, it must contain all the needed information for a processor to be able to spawn with

only its local information. Besides, as a result of the new proposed solution to the falling off

the tree problem, it becomes necessary to extend the structure further. The structure of a

binary tree node can be seen in Figure 4.2. Each field in the node structure has a special

purpose and will be explained briefly one by one.

41

Figure 4.2 Node structure

Task id represents the task id of the processor given by the PVM system. It is needed for

sending messages to real processors easily and makes a mapping between the node and the

real processor. Node id is the node number needed for the binary tree mapping. Parent id

is the node id of the processor that has spawned this node. Spawn pointer, represents the

first node in the spawn pool of the node. Spawn pointer can be NULL, meaning that spawn

pool of the node is empty. Multiplier is the local value computed by the processor and

needed for RN generation formula. The details of the multiplier computation are given in

Chapter 5. Direction represents the way that must be taken when traversing the spawn

pool of the node. NumSpawned is the number of processors spawned by the node so far.

NumToSpawn is the maximum number of processors that can be spawned at once. Parent

id, Direction, NumSpawned, NumToSpawn are newly added fields for the proposed solution

of the falling off the tree problem. The necessity of these fields will be clarified as it is

progressed through the details of the proposed solution.

Task id

Node id

Parent id

Multiplier

LEFT

RIGHT Spawn Pointer

NumSpawned

Direction

NumToSpawn

42

4.1.2.2 Structure of SLAVE Program

In the implementation, SLAVE program corresponds to an individual processor. In fact, the

structure of the SLAVE program represents the life cycle of a processor. That is why; the

flow of SLAVE program is explained in terms of processor’s actions. The life cycle of a

processor consists of three phases. In the first phase, initial data is taken from parent

processor. If it is initialization operation, parent is the MASTER program. Otherwise, if it is

spawning operation, parent is another processor. After taking the initial data, in the second

phase, with this data, computations for LCG parameterization are performed. The

algorithmic details of these computations are given in Chapter 5.

Briefly speaking, as a result of these computations, processor becomes ready to generate

RN sequence that is guaranteed to be uncorrelated from other processors’ sequences. In the

third phase processor goes into an endless loop, waiting for action commands coming from

the MASTER program. The flow of actions can be seen in Figure 4.3 and Figure 4.4 together

with PVM calls. There are basically two important actions of a processor. First one is

spawning child processors and second one is generating RNs. Algorithm for spawning is

given in Section 4.1.2.5 and algorithm for generating RN is explained in Section 4.1.2.6.

43

Figure 4.3 Algorithmic structure of slave program: Three Phases

PVM CALL
Receive Msgid = 0 from PARENT

RECEIVE

• uplimit
• nmax
• global a
• modulus
• coef
• type
• splitting method
• division
• global seed
• phi

RECEIVE

• node number

PVM CALL
Receive Msgid = 0 from PARENT

Computations for LCG
parameterization

FIRST PHASE

SECOND PHASE

THIRD PHASE

44

Figure 4.4 Algorithmic structure of the third phase

True

PVM CALL
Receive Msgid = 7 from MASTER

Command = ‘g’

Command = ‘s’

Command = ‘a’

Command = ‘b’

Command = ‘e’

Command = ‘u’

Generate Random Numbers

Spawn Child Processors

PVM CALL
Send alocal to MASTER
Msgid = 9

PVM CALL
Send seedlocal to MASTER
Msgid = 15

PVM CALL
Send Spawn Pointer to MASTER
Msgid = 12

Update Spawn Pointer

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

THIRD PHASE

45

4.1.2.3 Structure of MASTER Program

MASTER program as its name implies, is responsible from the following operations:

• Coordinating user commands

• Creating and initializing binary tree structure

• Updating binary tree structure

• Displaying RN sequences

• Searching for a new parent for spawn call

MASTER program takes user commands and makes the relevant actions. Program starts by

receiving initialize command together with related parameters like number of processors

(nproc) from the user. By receiving initialize command, MASTER program executes the step

called Initialize PVM in Figure 4.5. Briefly speaking, initialization operation takes the following

actions:

• Creates real processors and broadcasts initial data,

• Creates binary tree structure,

• Creates nodes in the binary tree and fills the node structure appropriately.

After executing initialize command, now MASTER program becomes ready for the other

operations like spawning and generating numbers. When spawn command is received

together with the parent processor and number of child processors (nchild), MASTER

program executes the steps that are represented as Spawn PVM and Spawn Search PVM in

Figure 4.5.

Spawning operation can be summarized as follows:

• Sends parent processor the spawn call,

• Receives the number of processors spawned,

• Adjusts the binary tree structure according to the newly created processors,

• In cases where parent processor is out of spawn pool and there are more to spawn,

searches the binary tree according to spawn routes and assigns an available

processor as the new parent,

• Adjusts the binary tree structure according to the newly created processors with

respect to the spawn algorithms.

46

Figure 4.5 Algorithmic structure of master program

Receive command from

user

Command
=

Initialize

Receive from user
• coef
• type
• # of processors (nproc)
• splitting method
• division

Initialize PVM
• Create nproc procesors
• Initialize binary tree

structure

True

Command
=

Spawn

Receive from user
• parent processor
• # of child processors (nchild)

Calculate number of processors
that parent process can spawn
(nspawn)

Spawn PVM
• Parent processor spawns
• Binary tree structure adjusted

nspawn < nproc

Spawn Search PVM
• Search binary tree for new

parents and spawn

YES

YES

NO

NO

NO

YES

Command
=

Generate

Generate Random
Numbers

YES

NO

47

The fourth and fifth steps are as a result of the new proposed solution and are considered in

detail in Sections 4.2 and 4.3. Apart from spawn and initialize commands, there is another

command which is called generate. As a result of this command MASTER program executes

the step Generate Random Numbers in Figure 4.5. In summary, RN generation operation is

explained by the following steps:

• Sends each processor in the binary tree generate command,

• Receives from each processor in the binary tree, the RN sequences,

• Displays the RN sequences on screen and outputs to files.

In the following sections, details of initialization, spawning and RN generation operations are

explained one by one.

4.1.2.4 Initialization Operation

Initialization operation is the implementation of the initialization algorithm that is explained

in Section 3.4.1. In Figure 4.6, the algorithm of the initialization operation is displayed in

terms of MASTER SLAVE interaction.

MASTER program spawns processors and broadcasts initial data to SLAVE program. Then,

MASTER program sends each new processor their node number. Meanwhile, SLAVE program

receives initial data and its node number and makes the related computation for LCG

parameterization and begins to wait in an endless loop for the other action commands.

MASTER program sends SLAVE program send multiplier command. SLAVE program receives

the command, sends MASTER program its local multiplier value and continues to wait in the

loop. Meanwhile, MASTER program initializes binary tree structure by creating nodes

corresponding to new processors. When nodes are created in the binary tree, initialization

operation ends.

48

Figure 4.6 Algorithm for initialization operation

MASTER SLAVE

Receive From User

• uplimit
• nmax
• global a
• modulus
• coef
• type
• splitting method
• division
• global seed
• phi

Calculate nmax

Spawn nproc processors

PVM CALL
Broadcast initial data to all
SLAVEs Msgid 0

PVM CALL
Send node number to each
SLAVE Msgid 1

PVM CALL
Send Msgid 7 to SLAVEs
• Task id of master
• Send command: multiplier

PVM CALL
Receive Msgid 9 from SLAVEs
• Multipliers of new

processors

Initialize binary tree structure

PVM CALL
Receive initial data from MASTER Msgid 0

PVM CALL
Receive node number from MASTER Msgid 1

Calculate node number for parameterization

Find kth number relatively prime (kprime)

Calculate local multiplier

Calculate local seed

Calculate period

If leapfrog is used advance sequence

PVM CALL
Receive Msgid = 7 from MASTER
• Task id of MASTER
• Receive command: multiplier

PVM CALL
Send Msgid = 9 to MASTER
• Local multiplier value

True

49

4.1.2.5 Spawning Operation

Spawning operation is the implementation of the spawning algorithm that is explained in

Section 3.4.2. Spawning operation is represented by Spawn PVM in Figure 4.7. This

operation mainly consists of two parts. First part is the creation of real processors and the

second part is the adjustment of the binary tree structure according to these newly created

processors. Second part is represented by Spawn Binary Tree Structure in Figure 4.7 and

details of this algorithm together with a more detailed flow chart of spawning operation with

PVM calls can be found in Appendix B. Furthermore, in Figure 4.8, algorithm of the spawning

operation is displayed in terms of MASTER SLAVE interaction.

As can be seen from Figure 4.8, during spawning operation, there are interactions between

at least three processors which are MASTER, PARENT and the newly created CHILD

processors. PARENT and CHILD processors are represented by SLAVE program and can be

defined as SLAVE PARENT and SLAVE CHILD. Spawning operation starts by MASTER

receiving the spawn command from user together with parent node and the number of child

processors (nchild). Firstly, MASTER processor finds the PARENT processor in the binary tree

structure and checks whether this PARENT processor can spawn nchild processors. After

making these computations, MASTER processor sends PARENT processor spawn command.

PARENT processor spawns new child processors and sends back the number of spawned

processors to MASTER processor. PARENT processor also broadcasts initial data to CHILD

processors and sends node numbers to each CHILD processor. CHILD processor receives the

initial data and node number from PARENT processor and makes the computations for LCG

parameterization. Then, CHILD processor goes into an endless loop and waits for action

commands. Meanwhile, PARENT processor sends the task ids of the CHILD processors to

MASTER processor. MASTER processor sends each CHILD processor send multiplier

command. Each CHILD processor sends its local multiplier value to MASTER program and

continues to wait in the loop for other commands. MASTER processor, after receiving all the

related information, starts adjusting the binary tree structure with respect to newly created

processors. Spawning operation ends after the binary tree adjustment is finished.

50

Update binary tree structure
Spawn Binary Tree Structure

Spawn PVM Spawn Binary Tree Structure

Calculate how many processors can
parent node spawn

PVM CALLs for spawning

parent node's
direction = L

PVM CALL to parent node
for spawn pointer update

NO

Search binary tree for a node whose
spawn pointer is equal to old sp

YES

Store parent node's spawn pointer
(old sp)

Update parent node's spawn pointer
(new sp)

node found

Update node's spawn pointer
as new sp

PVM CALL to node for spawn
pointer update

YES

END

NO

Calculate maximum numbered node

Insert node with parent node's spawn
pointer to binary tree

Insert node with parent node's spawn
pointer to LRU queue

parent node's
direction = R

Calculate node id
node id = parent's spawn pointer*2+1
Insert node to binary tree
Insert node to LRU queue

Start from the lastly inserted
node and insert node to binary
tree and lru queue

Update parent node's
spawn pointer
numToSpawn
numSpawned

there are more
to spawn

YES

parent's spawn
pointer = NULL

Delete parent node from LRU
queue

END

NO

YES

NO

YES

NO

Figure 4.7 Flow chart of spawn operation

5
1

 Figure 4.8 Algorithm for spawn operation

SLAVE CHILD SLAVE PARENT

PVM CALL
Send PARENT processor Msgid = 7
• Task id of MASTER
• # of child processors (nspawn)
• Spawn command

Calculate nmax
Find number of processors parent
can spawn (nspawn)

Receive from user
• parent processor
• number of child processors

PVM CALL
Receive Msgid = 7 from MASTER
• Task id of MASTER
• # of child processors (nspawn)
• Spawn command

Spawn nspawn processors

PVM CALL
Send Msgid = 13 to MASTER

• # of spawned processors

Calculate nmax

PVM CALL
Broadcast initial data to all child
processors Msgid 0

PVM CALL
Send node number to each newly
created processor Msgid 1

PVM CALL
Send task ids of child processor to
MASTER Msgid 10

Update spawn pointer

PVM CALL
Receive Msgid 13 from PARENT
• # of spawned processors

PVM CALL
Send PARENT processor Msgid = 7
• Task id of MASTER
• Send command: Multiplier

PVM CALL
Receive Msgid 9 from PARENT
• Multipliers of newly created

processors

MASTER

PVM CALL
Receive initial data from PARENT Msgid 0

PVM CALL
Receive node number from PARENT Msgid

Calculate node number for

Find kth number relatively prime (kprime)

Calculate local multiplier

Calculate local seed

Calculate period

If leapfrog is used advance sequence

PVM CALL
Receive Msgid = 7 from MASTER
• Task id of MASTER
• Receive command: Multiplier

PVM CALL
Send Msgid = 9 to MASTER
• Local multiplier value

True

Adjust Binary Tree Structure

PVM CALL
Receive Msgid 10 from PARENT
• Task ids of new processors

52

4.1.2.6 Random Number Generation Operation

Each processor represented by SLAVE program is responsible from RN generation. MASTER

program receives generate command from user and sends this command to all the

processors in the binary tree structure. Meanwhile, all processors are waiting inside the loop

for action commands. Slave programs (processors) receiving generate command, start to

produce the next RN in the sequence and send that number back to MASTER program. After

sending the number, if period is not reached, SLAVE programs start to wait for the continue

command. Meanwhile, MASTER program receives the numbers from each SLAVE program

and prints these numbers to screen and then if period is not reached sends continue

command to each processor for the next number generation. This interaction continues until

the period is reached. Then, RN generation operation ends.

53

Figure 4.9 Algorithm for RN generation

MASTER SLAVE

PVM CALL
Send Msgid 7 to SLAVEs
• Task id of master
• Generate numbers command

PVM CALL
Receive Msgid 5 from all SLAVEs
• The next random number

generated

PVM CALL
Receive Msgid = 7 from MASTER
• Task id of MASTER
• Generate numbers command

Generate the next number

True

Print the received results
• on screen
• in file

PVM CALL
Send Msgid 6 from all SLAVEs

Period is not
reached

TRUE

END

PVM CALL
Send Msgid 5 to MASTER
• Random number generated

PVM CALL
Receive Msgid 6 from MASTER

Period is not
reached

TRUE

FALSE

FALSE

YES

54

4.2 Algorithms Related with Spawn Routes

As a solution to the problem of falling off the tree, methods based on traversing binary tree,

are proposed. When falling off the tree problem occurs, binary tree is traversed. Traversal

starts from root and continues according to the chosen method until a node with not null

spawn pointer is reached. When such a node is found, search operation stops and found

node is assigned as the new parent. After this assignment is made, spawn command is send

to the related processor. This operation continues until all the child processors are spawned.

By this way, newly assigned parents make the spawning operation in place of the original

parent and it is assured that the child processors have uncorrelated sequences.

Problem of falling off the tree occurs when parent node has null spawn pointer or when

parent node does not have enough processors in its spawn pool. In both situations, binary

tree is traversed but in the second case, before traversing the binary tree, a spawn call is

made with the original parent processor. When it is thought in terms of inter-processor

communication, second case is more costly than the first case, since it requires one more

spawn call in total in order to accomplish the overall spawning operation.

The proposed methods which are defined as spawn routes are different from each other on

the way they are traversing the binary tree. The flow chart of the proposed solution, with

seven spawn routes and two spawn algorithms can be seen in Figure 4.10. The details of

these seven routes are given in the following sections. The comparison of these routes

together with running time and cost analysis are given in Section 4.4.

55

Start from root

Upward Tracking Route
SpawnAllTreeBottom

YES

There are
processors to

spawn

NO

Spawn route = 'b'

Spawn route = 'l'

Spawn route = 'n'

Spawn route = 'p'

Spawn route = 'o'

Spawn route = 'r'

YES

NO

NO

NO

NO

Breadth First Route
SpawnAllTree

Inorder Route
SpawnAllTreeInOrder

NO

Preorder Route
SpawnAllTreePreOrder

Postorder Route
SpawnAllTreePostOrder

Random Route
SpawnAllTreeRandom

Least Recently Used
Route

SpawnAllTreeLRU

YES

YES

YES

YES

YES

YES

There are free
unspawned nodes on

the tree

Apply Spawn Algorithm

YES

END

NO

NO

NO

spawn Route
spawn Algorithm
number of processors
parent Node

Figure 4.10 Flow chart of spawn search PVM

56

4.2.1 Breadth First Route

First route is called Breadth First Route. As its name implies, in this route, binary tree is

traversed in breadth first manner as shown in Figure 4.11. Starting from node 0, until a

node with not null spawn pointer is found, binary tree is traversed level by level. The

algorithmic details of this route are given in Table 4.1.

Table 4.1 Algorithm for breadth first search

SpawnAllTree

Input Pointer to tree structure, number of child processors to spawn

Output Last node spawned

1 Traverse tree in breadth first manner

2 If node’s spawn pointer is not null, assign this node as the new parent

node and send spawn command to parent processor, return number of

processors spawned

3 If all processors are spawned or there is not any processor left to spawn,

end, else continue to traverse the tree in breadth first manner

Figure 4.11 Tree chart for breadth first search

0

1

2 3

5 6 7

NULL

4 E

S

57

4.2.2 Inorder Route

Second route is called Inoder Route. In this route, binary tree is traversed in inorder manner

as shown in Figure 4.12. Starting from node 0, until a node with not null spawn pointer is

found, binary tree is traversed. The algorithmic details of this route is given in Table 4.2.

This route is recursive in nature, and nodes are traversed in order 0, 4, 2, 5, 1, 6, 3, and 7.

Table 4.2 Algorithm for inorder route

SpawnAllTreeInOrder

Input Pointer to tree structure, number of processors to spawn

Output Last node spawned

1 Traverse tree in inorder manner

2 If node’s spawn pointer is not null, assign this node as the new

parent node and send spawn command to parent processor,

return number of processors spawned

3 If all processors are spawned or there is not any processors left

to spawn end, else continue to traverse the tree in inorder

manner

Figure 4.12 Tree chart for inorder route

0

1

2 3

5 6 7 4

S

E

NULL

58

4.2.3 Preorder Route

Third route is called Preorder Route. In this route, binary tree is traversed in preorder

manner as shown in Figure 4.13. Starting from node 0, until a node with not null spawn

pointer is found, binary tree is traversed. The algorithmic details of this route are given in

Table 4.3. This route is recursive in nature, and nodes are traversed in order 0, 1, 2, 4, 5, 3,

6 and 7.

Table 4.3 Algorithm for preorder route

SpawnAllTreePreOrder

Input Pointer to tree structure, number of processors to spawn

1 Traverse tree in pre order manner

2 If node’s spawn pointer is not null, assign this node as the new

parent node and send spawn command to parent processor,

return number of processors spawned

3 If all processors are spawned or there is not any processors

left to spawn end, else continue to traverse the tree in pre

order manner

Figure 4.13 Tree chart for preorder route

0

1

2 3

5 6 7

NULL

4

S

E

59

4.2.4 Postorder Route

Fourth route is called Postorder Route. In this route, binary tree is traversed postorder

manner as shown in Figure 4.14. Starting from node 0, until a node with not null spawn

pointer is found, binary tree is traversed. The algorithmic details of this route are given in

Table 4.4. This route is recursive in nature, and nodes are traversed in order 4, 5, 2, 6, 7, 3,

1, and 0.

Table 4.4 Algorithm for postorder route

SpawnAllTreePostOrder

Input Pointer to tree structure, number of processors

Output Last node spawned

1 Traverse tree in post order manner

2 If node’s spawn pointer is not null, assign this node as the

new parent node and send spawn command to parent

processor, return number of processors spawned

3 If all processors are spawned or there is not any processors

left to spawn end, else continue to traverse the tree in post

order manner

Figure 4.14 Tree chart for postorder route

0

1

2 3

5 6 7

NULL

4 S

E

60

4.2.5 Upward Tracking Route

Fifth route is called Upward Tracking Route. In this route, it is searched for the highest

numbered node whose parent is the node that makes the spawn call. If such a node is

found and it has not null spawn pointer, then it is assigned as the new parent and search

continues like this way, until all the child processors are spawned. In fact, in this route,

search area is restricted with the initial spawn pool of parent processor. Consider the

situation in Figure 4.15, the initialization operation is accomplished with four processors from

0 to 3. When this is the case, initially, processor 0 has the spawn pool as the subtree rooted

by node 4. After many spawning operations, processor 0 has null spawn pointer but it wants

to spawn more, according to this route, first place to look is the subtree starting with node

4, in other words, initial spawn pool of the processor 0. If spawn call could not be fully

covered with this route, then search can continue with one of the other six methods. The

algorithmic details of this route are given in Table 4.5.

Figure 4.15 Tree chart for upward tracking route

0

1

2 3

4 E

9 8

16 17 18 19

32 36 S

NULL

61

Table 4.5 Algorithm for upward tracking route

SpawnAllTreeBottom

Input Pointer to tree structure, parent node id, number of processors

to spawn

Output Last node spawned

While true

1 Find highest number node whose parent is equal to parent node

id and spawn pointer is not null

2 If there is such a node, assign it as the new parent node and

send spawn command to the parent node, return number of

processors spawned

3 If there is not any processors left to spawn assign new parent

node as last spawned node

EndWhile

4.2.6 Least Recently Used Route

Sixth route is called LRU (Least Recently Used) Route. In this route, with all the nodes in

the binary tree structure having not null spawn pointer, a LRU table is created. Then the

elements in the LRU table are considered according to the number of processors spawned so

far (NumSpawned) and the maximum number of processors that can be spawned by the

node (NumToSpawn). For this route, node structure is extended with two new fields which

are called NumSpawned and NumToSpawn respectively.

This route relies on the idea that if a processor spawns it is more likely to spawn in the

future. So, LRU table is sorted in ascending order with respect to NumSpawned and in

descending order with respect to NumToSpawn. The first element of the LRU table is

assigned as the new parent node and makes the spawning operation. After finishing the

spawning operation, since NumSpawned and NumToSpawn values of the parent node are

changed, it is needed to sort the LRU table once more. If there are more to spawn, the

assignment procedure continues as explained above. After a LRU table is created in

62

memory, in order to keep LRU table up to date, results of spawning operations like new

processors creations and changes in spawn pointer values are reflected to the table. While

new processors are inserted into the LRU table, the processors with null spawn pointers are

deleted from LRU table. The algorithmic details of this route are given in Table 4.6.

Table 4.6 Algorithm for least recently used route

SpawnAllTreeLRU

Input Pointer to tree structure, number of processors to

spawn

Output Last node spawned

1 If LRU queue is not created, create LRU queue from

binary tree structure

2 Sort LRU queue according to least spawned, most to

spawn

While LRU queue is not empty

and there are more to spawn

3 Assign first node of the queue as parent node

4 Send spawn command to the parent node and return

number of processors spawned

5 If there is not any processors left to spawn assign

parent node as last spawned node and end

6 Sort LRU queue according to least spawned, most to

spawn

EndWhile

6
3

 Figure 4.16 State of binary tree after three spawning operations

0

1

2 3

5 4

8 9 10 11

6 7

12 13 14 15

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 16

NULL

64

Consider the example in Figure 4.16, where upper limit for number of processors is thirty

two and processor 0 has a null spawn pointer. In such a case, when processor 0 wants to

spawn two more processors by using LRU route, firstly, binary tree structure is converted

into LRU table and this table is sorted according to NumSpawned and NumToSpawn. The

resulting table looks like Table 4.7. For instance, processor 16 is not in LRU table since it has

null spawn pointer. So, if there is such a LRU table then the first element of the LRU table

which is the node number 3 is assigned as the new parent and makes the spawning

operation in place of processor 0. During spawning operation, LRU table is also modified,

two new processors 7 and 14 are added into the table and processor 3 is moved to another

place in the table since its NumSpawned and NumToSpawn values are changed. The state of

the LRU table after spawning operation can be seen in Table 4.8.

Consider that processor 0 again wants to spawn four processors by using LRU route. When

this is the case, according to Table 4.8, processor 4 is assigned as the new parent, but this

processor is able to spawn at most three processors so at first step only three processors are

created (9, 18 and 19). Since, new child processors have null spawn pointers. They are not

taken into LRU table. Besides, since processor 4 has a null spawn pointer, it is taken out

from the table, leaving it as in Table 4.9. After adjusting LRU table, as a second step, a

parent must be found for spawning one more processor. The first element of the LRU table

which is processor 5 is assigned as the new parent. As a result of the spawning operation,

processor 11 is created. Since processor 11 has not null spawn pointer, it is added to the

LRU table, and the modifications on processor 5 are also reflected to the LRU table. As a

result, LRU table has the form as in Table 4.10.

Table 4.7 Least recently used table before Spawn(0,2)

Processor Number NumSpawned NumToSpawn
3 0 7
4 0 3
5 0 3
8 0 1
13 0 1
2 1 3
6 2 1
1 2 3

65

Table 4.8 Least recently used table after Spawn(0,2)

Processor Number NumSpawned NumToSpawn

4 0 3
5 0 3
7 0 1
8 0 1
13 0 1
14 0 1
2 1 3
3 1 1
6 2 1
1 2 3

Table 4.9 Least recently used table before Spawn(0,4)

Processor Number NumSpawned NumToSpawn

5 0 3
7 0 1
8 0 1
13 0 1
14 0 1
2 1 3
3 1 1
6 2 1
1 2 3

Table 4.10 Least recently used table

Processor Number NumSpawned NumToSpawn

7 0 1
8 0 1
13 0 1
11 0 1
14 0 1
5 1 1
2 1 3
3 1 1
6 2 1
1 2 3

66

4.2.7 Randomly Chosen Route

The last route is called Randomly Chosen Route. In this route, with all the nodes in the

binary tree structure having not null spawn pointer, an index queue is created. Then,

randomly an index is chosen and the row in the table with that index is assigned as the new

parent. If there are more processors to spawn, assignment is accomplished as explained

above. The algorithmic details of this route are given in Table 4.11.

Consider the example in Figure 4.16, where upper limit for the number of processors is thirty

two and processor 0 has a null spawn pointer. In such a case, when processor 0 wants to

spawn two more processors by using randomly chosen route, firstly, from the nodes of the

binary tree structure having not null spawn pointers, an index queue is created. The

structure of the queue can be seen in Figure 4.17. The queue has eight elements so the RN

must be chosen between one and eight. If it is assumed that the RN is chosen as seven,

then, the node on the seventh position of the queue is assigned as the new parent.

Table 4.11 Algorithm for randomly chosen route

SpawnAllTreeRandom

Input Pointer to tree structure, number of processors

Output Last node spawned

1 Traverse the tree, push the nodes with not null spawn pointer

to queue

While queue is not empty

2 Randomly chose an index of the queue, assign it as parent

3 Send parent node spawn command and return the number of

processors spawned

4 If parent node’s spawn pointer is null, delete parent node

from queue

5 If more processors to spawn continue. Otherwise, end

EndWhile

67

Figure 4.17 Random search

4.3 Algorithms Related with Spawn Pointers

As a solution to the problem of falling off the tree, in the previous section, several spawn

routes are explained. These routes are based on binary tree traversal and parent node

assignment. After new parent is determined, spawn call is made to that parent processor

through PVM calls. When spawn routes are considered from cost perspective, two extra

costs are encountered which do not exist in an ordinary spawning operation. These costs

can be defined as the cost of traversing binary tree and the cost of making a spawn call for

the new assigned parent processor. Especially, second cost has more significance since it

appears as an inter-processor communication cost which must be minimized as much as

possible. In order to reduce inter-processor communication cost, proposed solution is

enhanced with two algorithms which are called spawn algorithms.

Queue Structure

FIRST

1 1 NEXT

2

2 NEXT

3 3 NEXT

4 4 NEXT

5 5 NEXT

6 6 NEXT

7 8 NEXT

8 13 NEXT

LAST

of Elements = 8

Chose a random
number between 1
and 8

Random Number is 7

68

Spawn algorithms are based on the fact that a processor spawned before is more likely to

spawn in the future. That is why; if a processor has null spawn pointer and wants to spawn,

after spawning operation is accomplished through spawn routes, original processor’s spawn

pointer is updated according to these algorithms and the updated values are sent to related

processors through PVM calls. By this way, if the same processor wants to make a spawn

call in the future, it can do this without need for binary tree traversals and extra spawn calls

since, it has non zero spawn pointer value. These spawn algorithms extends the node

structure further by adding a new field called Direction and changes the spawn pointer

calculation formula slightly. The details of these algorithms are given in the following

sections. The flow chart of spawn algorithms can be seen in Figure 4.18.

69

original parent node (onode)
last parent node (lnode)
spawn Algorithm
uplimit

Spawn
Algorithm

Last parent node's spawn
pointer is not NULL

YES

Calculate original parent node's spawn pointer (sp)
onode's sp = lnode's sp * 2

Dividing Spawn Pool

onode's sp > uplimit

onode's sp = NULL

YES

Update directions
onode's direction = D
lnode's direction = R

Update numToSpawn
onode's numToSpawn = lnode's numToSpawn/2

lnode's numToSpawn = lnode's numToSpawn/2+1

PVM CALL
Send original node's processor new spawn pointer

value Msgid 7

LRU table is
created

Insert original node into LRU table

NO

YES

END

NO

Calculate original parent node's spawn pointer (sp)
onode's sp = lnode's sp

Merging Spawn Pointers

Update directions
onode's direction = D

NO

Figure 4.18 Flow chart of spawn algorithms

70

4.3.1 Dividing Spawn Pool

First algorithm is called Dividing Spawn Pool. As its name implies, it is based on the idea of

dividing the spawn pool of the new parent processor into two, between itself and the

original processor. For this algorithm, Direction field is inserted into node structure. It can

have three values (L, D and R). Initially, when a node is created, its direction is given as L.

Direction field shows which way to take from the root node of the spawn pool while

advancing deeper into the tree and directly affects the calculation of spawn pointer. The

flow chart for calculating spawn pointer values with respect to different direction values can

be seen in Figure 4.19. If parent node’s direction is L, its spawn pointer is updated according

to Formula 3.6. When its direction is D, new spawn pointer value is found by doubling the

old spawn pointer until it is higher than nmax. When its direction is R, firstly, the spawn

pointer value of the first child node created is found. Then, parent’s spawn pointer is

updated by doubling the child node’s spawn pointer value. During all these calculations,

calculated value is checked against the upper limit for the number of processors and

updated as null in cases where it is higher than the upper limit.

Consider the example in Figure 4.20 where initial state of a binary tree is shown. Processor 0

has a null spawn pointer and wants to spawn two more processors. If it is assumed that

breadth first route is used, then processor 1 is assigned as the new parent processor and

makes the spawn call in place of processor 0. The state of the binary tree after spawning

operation is shown in Figure 4.21. Two new processors are created (6, and 12) and

processor 1’s spawn pointer is updated. Now, processor 1 has a spawn pool as subtree

rooted by node 24. According to dividing spawn pool algorithm, this spawn pool must be

divided between processor 1 and processor 0 and the direction fields of each node must be

updated. As a result of this division operation, processor 0 gets the subtree rooted by 48 as

its spawn pool. Also, its direction is changed to D. On the other hand, processor 1 has a

spawn pool of starting from node 24 and going right to subtree rooted by node 49 and its

direction is updated to R. As a last remark, consider that node 24 is defined as Temporary

Node in Figure 4.21. When the spawn pool is divided into two between processor 1 and

processor 0. Processor 0 gets the spawn pointer as node 48. But in fact, node 48 is the child

of node 24 according to the binary tree structure. Meaning that, in order to have a node 48,

it is compulsory to have node 24. But there can be situations where processor 0 spawns

before processor 1. In such cases, problems occur since a node is wanted to be created

71

whose parent has not been created yet. To prevent such situations, a temporary node is

created in the binary tree structure. It is important to note that, this node is only for

consistency purposes and it has no correspondence with a real processor. Later, for

instance, when processor 1 decides to spawn, this temporary node is converted into a real

node with a specific processor assignment.

Update parent node's spawn pointer
Double the spawn pointer until it is
higher than maxnum

parent node's
direction = L

Update spawn pointer
wrt formula

YES

parent node's
direction = D

NO

YES

parent node's sp
>

uplimit

parent node's sp = NULL

YES

END

Find first child of parent node in tree
(enode)

NO

enode's sp
 =

NULL

parent node's sp = NULL

YES

parent node sp = enode sp*2

NO

parent node's sp
>

uplimit

NO

parent node's sp = NULL

YES

Update direction
parent node direction=D
enode direction = R

NO

Figure 4.19 Flow chart of calculating spawn pointer values

72

After processor 1 spawns two processors and spawn pointers are updated, consider the case

where processor 0 wants to spawn one processor. Since, processor 0 has non zero spawn

pointer, without a need for spawn route, spawning operation can be carried out. As a result,

processor 48 is created and spawn pointer of node 0 is updated according to the flow in

Figure 4.19. Since only one processor is created, nmax is 48. New spawn pointer value of

processor 0 is calculated by doubling the old value until it is higher than forty eight, causing

it to be ninety six. The state of the binary tree after processor 0 spawns one processor can

be seen in Figure 4.22.

Spawn(0,2) Processor 0 wants to spawn two processors

Figure 4.20 Initial state of the binary tree

0

1

2 3

5 6 7

NULL

L

L

L L

73

Spawn(0,2) is converted to Spawn(1,2)

Figure 4.21 State of the binary tree after Spawn(1,2)

Temporary
Node

0

1

2 3

5 6 7

12 13

24 25

48

D

R

L

L

L

L

49

74

Spawn(0,1) Processor 0 wants to spawn one processor

Figure 4.22 State of the binary tree after Spawn(0,1)

As another example, consider the case where processor 1 wants to spawn two new

processors. Since processor 1 has direction R, after creating processor 24, it is continued

from right subtree and processor 49 is created. Since these newly created processors have

direction L, their spawn pointer values are calculated according to the Formula 3.6.

Calculation of spawn pointer of processor 1 can be described as dividing the spawn pool of

processor 24 between itself and processor 1. In order to update spawn pointer of processor

0

1

2 3

5 6 7

12 13

24 25

48

96 97

D

R

L L

L

L

L

75

1, firstly, the spawn pointer of processor 24 is found, which is node 98. Then, processor 1’s

spawn pointer is calculated by doubling the spawn pointer value of processor 24. So,

processor 1’s spawn pointer is updated to node 96. Besides, processor 1’s direction is

updated to D. Whereas, processor 24’s direction is changed to R. The state of the binary

tree structure after processor 1 spawns two processors can be seen in Figure 4.21.

Spawn(1,2) Processor 1 wants to spawn two processors

Figure 4.23 State of the binary tree after Spawn(1,2)

0

1

2 3

5 6 7

12 13

24 25

48

D

D

L

L

L

L

49

98 99

R

L

196

76

4.3.2 Merging Spawn Pointers

Second spawn algorithm is named as Merging Spawn Pointers. In this algorithm, unlike the

previous algorithm, spawn pool is not divided among processors but several processors are

directed to the same spawn pool. In this algorithm, when a processor spawns, not only the

spawn pointer of that processor is updated but also other processors pointing to the same

spawn pool need to update their spawn pointer values. This algorithm requires an overall

adjustment of spawn pointer values on the binary tree structure. Besides, these updated

values must also be sent to their corresponding processors.

This algorithm is suitable for architectures where spawning operation is delivered from a

single program since there can be correlations when two processors pointing to the same

spawn pool want to spawn simultaneously. Consider the example binary tree structure in

Figure 4.24. Here, processor 0 has null spawn pointer and wants to spawn two more

processors. If it is assumed that binary tree is traversed in breadth first route, then

processor 1 is assigned as the new parent processor. After this assignment, processor 1

accomplishes the spawning operation by creating processors 6 and 7 respectively and

updates its spawn pointer to node 24 by using the Formula 3.6. According to merging spawn

pointers algorithm, processor 0 is also assigned to the spawn pool of processor 1 by

updating the spawn pointer value to node 24. Besides, processor 0’s direction value is

changed to D. The state of the binary tree structure after processor 1 spawns two

processors can be seen in Figure 4.25.

After processor 1 spawns two processors, processor 1 and processor 0 points to the subtree

rooted by node 24. When processor 0 wants to spawn one more processor, it accomplishes

the spawning operation locally and its spawn pointer value is updated to forty eight by

doubling the old spawn pointer value until it is higher than the maximum numbered node

created. Updated value is also sent to the processor 0 through PVM calls. After spawning

operation ends, the binary tree structure is traversed looking for the nodes having spawn

pointer value equal to twenty four. Node 1 is found. Its spawn pointer value is updated to

forty eight and this value is sent to the processor 1 through PVM calls. The state of the

binary tree structure after spawning operation can be seen in Figure 4.26.

77

Spawn(0,2) Processor 0 wants to spawn two processors

Figure 4.24 Initial state of the binary tree

Spawn(0,2) is converted to Spawn(1,2)

Figure 4.25 State of the binary tree after Spawn(1,2)

0

1

2 3

5 6 7

12 13

24 25

D

L

L L

L

L

0

1

2 3

5 6 7

NULL

L

L

L L

78

Spawn(0,1) Processor 0 wants to spawn one processor

Figure 4.26 State of the binary tree after Spawn(0,2)

4.4 Analysis of Improvements

In this thesis, a solution to the problem of falling off the tree is proposed. This solution is

based on the idea of traversing the binary tree and finding new spawn parents. In order to

accomplish such assignments, several spawn routes are proposed. When the result of such a

solution is considered from performance perspectives, it is seen that two extra costs appear,

binary tree traversal cost and the cost of the spawn call that is to be made for the new

spawn parents. In order to reduce these costs, proposed solution is enlarged with two

spawn algorithms. The details of these spawn routes and spawn algorithms are given in the

previous sections. Now, the performance consequences of these routes and algorithms will

be examined and the best method to use will be defined.

0

1

2 3

5 6 7

12 13

24 25

48 49

D

L

L L

L

L

L

79

Before analyzing the performance aspects of the proposed solution, it is better to define the

performance criteria for the proposed solution. The spawning operation is accomplished by

the new solution must be made with minimum number of spawn calls and in the resulting

binary tree structure, spawn pools must be equally distributed and the number of null spawn

pointer assigned processors must always be minimized. These two criteria are determined in

order to reduce the extra costs that are gained as a result of the proposed solution. All

spawn routes and spawn algorithms must be examined with respect to these performance

criteria.

While searching the binary tree structure to find the new spawn parent, the chosen spawn

route determines the path to be taken through the tree. As going deeper into the binary tree

structure, the probability of choosing a processor with a small spawn pool as the new spawn

parent increases. Choosing such a processor leads to two disastrous situations and disobeys

the rules of performance criteria. First one is the case where the spawn request can not be

covered with that spawn parent, since it does not have enough elements in its spawn pool.

When this is the case, several binary tree traversals and spawn calls are accomplished until

the spawn request is fully covered. In the second case, although, the spawn request is

covered at once, the spawn pool is so small that it can not be divided among the parent and

the newly created processors. This leads to spawn parent and newly created processors to

have empty spawn pools leading to an increase in the number of null spawn pointer

assigned processors. So, in order to have better performance, it is recommended that spawn

request should be handled from the processors in the upper levels of the binary tree. As a

result, it can be stated that, spawn routes that start traversing the binary tree from upper

levels have better performance consequences.

In Figure 4.27, the binary tree traversal time for different sized binary trees are represented.

For sparse binary trees, traversal time of the whole binary tree is low. Whereas, in massive

binary trees with high amounts of nodes, binary tree traversal time increases considerably.

In fact, as can be seen from the trend line in Figure 4.27, there is a linear relation between

number of nodes and binary tree traversal times.

80

Binary Tree Traversal Time

62797

56301

50312

38074

28761

17615

7140

801

45105

0

10000

20000

30000

40000

50000

60000

70000

Number of Nodes

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
il

i
s

e
c

.)

Execution Time 801 7140 17615 28761 38074 45105 50312 56301 62797

36 300 600 972 1260 1476 1620 1800 1936

Figure 4.27 Binary tree traversal time

Spawn Routes Traversal Rates

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Node Numbers

N
u
m

b
e
r
o
f
T
ra

v
e
rs

a
ls

BreathFirst

InOrder

PostOrder

PreOrder

Figure 4.28 Spawn routes traversal rates

81

When spawn routes are considered according to performance criteria, it is seen that breadth

first and preorder routes are better in performance than inorder, postorder and upward

tracking routes. Since, they are traversing the binary tree in top to bottom approach. In

Figure 4.28, for different spawn routes, the number of traversals needed for finding a

specified node is shown. For instance, for finding node 0, in breath first route, number of

traversals needed is zero. While in postorder route, thirty five traversals are required in

order to reach node 0. Likely, in order to reach node 15, in breadth first route, fifteen

traversals, in inorder route, thirty five traversals, in postorder route, thirty two traversals and

in preorder route, thirty four traversals are needed. Number of traversals vary greatly from

route to route, leading to considerable differences in traversal times. When examined from

this point of view, breadth first route seems to be the most stable route. Since, traversal

time is directly related with the node number to be found. For inorder route and postorder

routes, node 32 requires the least number of traversals. For preorder route and breadth first

route, node 0 needs the lowest number of traversals. This situation appears from the fact

that, preorder and breadth first routes start searching from the top of the binary tree

whereas, inorder and postorder routes start from bottom.

When choosing the spawn route, two facts must be kept in mind. First one is, it is better to

choose a route that searches from top to bottom since, the nodes in the upper levels have

higher number of elements in their spawn pools. Second one is, it is preferable to keep the

traversal time as small as possible. When these consequences are considered, initially, it

becomes reasonable to start with breadth first route until a certain threshold and then

continue with a route that starts searching from the bottom. This threshold value for a

binary tree with at most thirty six nodes can be easily recognized in Figure 4.28. Until node

15, the traversal time of breadth first route is the best when compared with the others. After

that, it is seen that, breadth first route becomes the worst one. While, postorder route is the

best. It can be stated that, spawn route must be chosen according to the current state of

the binary tree. If the number of nodes with null spawn pointer values in the upper levels is

high, then it is better to start with a route that starts searching from bottom. Otherwise,

routes starting from top can be chosen together with a threshold value when reached, it

should be switched to a route that starts searching from bottom.

82

Random route and LRU route are different in structure since they are not based on binary

tree traversal while searching for the new spawn parent. In random route, every time,

binary tree is converted into an index queue. As the binary tree structure gets deeper, the

cost of this conversion operation increases considerably. That is why; for cases with vast

amount of processors, this route is not recommended. In LRU route, at first, LRU table is

created from binary tree structure. Once it is created, no binary tree traversals remain since

LRU table always kept current. In Figure 4.29, the LRU table creation time is given for

different sized binary trees. As the binary tree grows, the time to convert it into LRU table

increases. LRU table is sorted in ascending order with respect to NumSpawned and in

descending order with respect to NumToSpawn. The first element of the LRU table is

assigned as the spawn parent. By this way, the processor which spawned less and with the

widest spawn pool is appointed as the spawn pointer. Although, LRU route tries to make a

uniform distribution among processors’ spawn pools, it requires, two costly operations,

which are conversion of binary tree into LRU table and sorting of LRU table. Conversion cost

can be thought of as an initialization cost. Whereas, sorting cost is encountered during each

spawn parent search. The overall execution cost of LRU route is given in Figure 4.30.

Initially, binary tree with thirty six nodes is converted into LRU table and is sorted

accordingly. Then, as the number of nodes increases, only the sorting operation is required.

LRU route on its own, can be thought as unattractive but when combined with a spawn

algorithm, it can become feasible.

83

LRU Table Creation Time

185277

391743

298059

601024561718

506868

460553

91552

10775,6

0

100000

200000

300000

400000

500000

600000

700000

Number of Nodes

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
il
i
s
e
c
.)

Execution Time 10775,6 91552 185277 298059 391743 460553 506868 561718 601024

36 300 600 972 1260 1476 1620 1800 1936

Figure 4.29 LRU table creation time

LRU Route Execution Time

38285

31796
34598

48330

56341
57924

53948
51605

51184

45646
4373342000

40088

39978

3832533909

29903
28180

26658

0

10000

20000

30000

40000

50000

60000

70000

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Number of Nodes

E
x
e
cu

ti
o
n
 T

im
e
 (
m

il
i
se

c.
)

L

Figure 4.30 LRU route execution time

84

Before analyzing the performance of two spawn algorithms, it is necessary to understand

the effects of the binary tree traversal and spawn call costs on the spawning operation. The

effects can be described by considering three spawn operations. First case is the ordinary

spawning operation where there is no need for binary tree traversal, only related spawn call

is made to the parent processor. In the second case, parent processor has a null spawn

pointer that is why, binary tree is traversed to find the new spawn parent. Spawn call is

made to the new spawn pointer. If the spawn request is covered, execution stops, else it

continues with traversing the binary tree. In the second case, there is at least one binary

tree traversal cost and one spawn call cost. In the third case, parent processor does not

have a null spawn pointer but it does not have enough elements in its spawn pool either. In

such a case, firstly spawn call is made to the parent. Then, binary tree is traversed in order

to find the new spawn parent. Spawn call is made to the new spawn pointer. If the spawn

request is covered, execution stops, else it continues with traversing the binary tree. In the

third case, there are at least two spawn call costs and one binary tree traversal cost. The

cost analysis of these three cases can be seen in Table 4.12. When considering the

spawning operation with null spawn pointer from cost perspective, it is seen that best

approach is to find a spawn parent that is able to cover the spawn request at once. But this

is not often possible, so a more reasonable approach can be to be able to cover the spawn

request with minimum number of spawn calls and binary tree traversals.

Table 4.12 Cost analysis of spawning operation

 Spawn Call Cost Binary Tree Traversal Cost

1st Case 1 -

2nd Case >=1 >=1

3rd Case >=2 >=1

85

In Figure 4.31, an example case that clarifies the three cases of spawn operation is given.

The initial state of the binary tree contains four nodes. Firstly, processor 0 spawns three

processors simultaneously through normal spawning operation according to case 1. So, in

Figure 4.31, while processor number increases from four to seven, total execution time

remains unchanged. After that processor 0 attempts to spawn two more processors. Only

one processor can be spawned by processor 0, for the other one, binary tree is traversed in

breadth first route and processor 1 is assigned as the new spawn parent. In order to spawn

two processors, two spawn calls and one binary traversal are accomplished as can be seen

in step 4 of the Table 4.13, leading to a case 3 situation. Execution time is leading to a peak.

Then, processor 0 wants to spawn two more processors. Since, its spawn pool is empty,

binary tree is traversed according to breadth first route and again processor 1 is assigned as

the new spawn parent. Fortunately, spawn request can be covered from the spawn pool of

processor 1, leading to a case 2 situation. This time, a small increase in execution time is

observed. Example case continues in this manner with peaks and small increases. Execution

time for a spawn operation can be summarized as follows. As can be seen from Figure 4.31,

case 1 has no effect on execution time. That is why; it can be defined as the ideal case.

Whereas, case 2 and case 3 lead to an increase in the execution time that is directly related

with the number of processors joining to the spawning operation. If the spawn call can be

handled with less number of processors, then, there happens a small increase in execution

time. Otherwise, there appears a peak. It is to be sure that, case 3 takes longer execution

time than case 2. In fact, when the number of processors that are used to cover a spawn

request increases, execution time increases considerably. Such situations are represented in

Table 4.13 with bold letters. The most costly operation is making the spawn call since it

necessitates inter-processor communication. That is why; spawning operations should be

handled in a way that minimizes the number of spawn calls. Execution times for several

spawn sequences can be seen in Figure 4.32. As it is seen in Figure 4.32, there can be

situations with very low cost while on the other hand, there can be situations where

execution time has enormous values. Such difference in execution time directly depends on

the properties and necessities of the application.

86

Spawn Operation Execution Time

10

22

12
14

18

24
26

54

40

86

30

42

16

10

66

30

10

22

20

74

0

10

20

30

40

50

60

70

80

90

100

Processor Count

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

ic
ro

 s
e
c

.)

Spawn Operation 10 10 10 22 12 14 30 16 18 20 42 22 24 26 54 30 66 74 40 86

5 6 7 9 11 13 15 17 19 20 22 23 25 26 28 29 31 33 34 36

Figure 4.31 Spawn operation execution time

When the cost of the spawning operation is increased through the new spawning method, to

minimize these costs, two spawn algorithms are proposed. These algorithms are based on

the assumption that if a processor spawns it is more probable that it will spawn in the

future. With this idea, the existing spawn pools are shared among processors with null

spawn pointers. By this way, a more uniform distribution of spawn pools is accomplished

and the number of processors with null spawn pointer values is decreased. Especially,

dividing spawn pool algorithm is more cost effective, since after dividing the spawn pool

between the spawn parent and the original processor, original processor continues to spawn

as in case 1. Whereas, in merging spawn pointers algorithm, there appears an extra cost of

traversing the binary tree and adjusting the spawn pointer values after each spawning

operation. The worst case for these spawn algorithms occurs when the underlying

assumption of these algorithms does not work as expected. In other words, consider the

case with two processors A and B. A wants to spawn but it has null spawn pointer. Binary

tree is traversed and B is chosen as the spawn parent and B spawns in place of A. Then, B’s

87

spawn pool is divided among itself and A according to the dividing spawn pool algorithm.

After that, A never spawns again but B continues to spawn several times. In such a case, by

restricting the spawn pool of B to one half, in fact, something worse is accomplished.

Table 4.13 Spawn calls and binary tree costs

 Spawn Command Executed SC New Nodes Formula Time Proc. #
1 S(0,1) S(0,1) 4 s 10 5

2 S(0,1) S(0,1) 8 s 10 6

3 S(0,1) S(0,1) 16 s 10 7

4 S(0,2) S(0,1) 32 2s+bt 22 9

 S(1,1) 6

5 S(0,2) S(1,2) 12, 24 s+bt 12 11

6 S(0,2) S(2,2) 5, 10 s+2bt 14 13

7 S(0,2) S(2,1) 20 2s+5bt 30 15

 S(3,1) 7

8 S(0,2) S(3,2) 14, 28 s+3bt 16 17

9 S(0,2) S(4,2) 9,18 s+4bt 18 19

10 S(0,1) S(5,1) 11 s+5bt 20 20

11 S(0,2) S(5,1) 22 2s+11bt 42 22

 S(6,1) 13

12 S(0,1) S(6,1) 26 s+6bt 22 23

13 S(0,2) S(7,2) 15,3 s+7bt 24 25

14 S(0,1) S(8,1) 17 s+8bt 26 26

15 S(0,2) S(8,1) 34 2s+17bt 54 28

 S(9,1) 19

16 S(0,1) S(10,1) 21 s+10bt 30 29

17 S(0,2) S(11,1) 23 2s+23bt 66 31

 S(12,1) 25

18 S(0,2) S(13,1) 27 2s+27bt 74 33

 S(14,1) 29

19 S(0,1) S(15,1) 31 s+15bt 40 34

20 S(0,2) S(16,1) 33 2s+33bt 86 36

 S(17,1) 35

88

Spawn Operation Execution Time

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

Processor Count

E
x
e
cu

ti
o
n
 T

im
e
 (
m

ic
ro

 s
e
c.
)

Lower

Upper

Average 3

Average 2

Average 1

Figure 4.32 Several spawn operation sequences execution times

After all these comments, which route and which algorithm must be chosen in order to have

a cost efficient spawning operation must be determined. As a route, it is feasible to choose

routes like breadth first route and preorder route. When there are so many processors with

null pointer values, it can be efficient to choose LRU route and continue with it, in order to

bring the binary tree to a more uniform state. When LRU route is combined with dividing

spawn pool algorithm, it is highly probable that good performance values are reached.

No matter which spawn route or spawn algorithm is used, the solution to the problem of

falling off the tree is a more expensive operation than an ordinary spawning operation since

it relies on inter-processor communication. If an application requires processors with

spawning capabilities and if it is important to have disjoint sequences in each processor,

then, this proposed solution can be used by paying the price of inter-processor

communication cost.

89

CHAPTER 5

ENHANCEMENTS IN PARALLELIZING LCG WITH PRIME

MODULUS

LCGs are commonly used since they are one of the oldest methods for RN generation and

they are easy to compute. An LCG can be defined as LCG(a, b, m, X0). Here, the most

important parameter is modulus since its size constraints the period. There are two

possibilities for the choice of modulus, power of two and prime. According to the type of

modulus, parameterization methods of LCG differ. Details of LCG parameterization can be

found in Section 3.3.2.1. In this thesis, LCG with prime modulus is implemented since LCG

with power of two modulus is highly correlated on least significant bits.

When considering the parameterization of LCG, there appear two costly operations. First one

is named as the initialization cost, finding the jth number relatively prime to m-1, arising

from parameterization and the second one is the cost per RN generation resulting from the

modular reduction. In order to reduce the cost per RN generation, Mersenne prime is used.

Besides, as future work, using Sophie-Germain prime is stated as a different approach [10].

Since, it forms a completely different balance between initialization cost and RN generation

cost. As part of this thesis, LCG parameterization is implemented with both Mersenne prime

and Sophie-Germain prime.

When parallelizing LCG, splitting methods can also be considered as another alternative. It is

well known that the structure of LCG is well suited to splitting methods like sequences

splitting and leapfrog. When splitting methods are used, though the period lessens, the only

cost encountered is the cost of RN generation. Unlike parameterized iteration there is no

initialization cost. Although splitting methods are easy to implement and less costly than

parameterization, they have well know defects as explained in Section 3.3.1. How will be the

consequences if a method based on both splitting and parameterization methods is used for

90

parallelizing LCG? This question is asked for the first time, as a future research topic in [10].

In this thesis, such a hybrid method is implemented for LCG that combines sequence

splitting with parameterized iteration. The effects of this hybrid method on the costs of LCG

are tried to be determined.

In this chapter, firstly, the implementation details of parallel LCG with prime modulus are

given. Then, both Mersenne prime and Sophie-Germain prime implementations are

compared from different perspectives with several graphics. Lastly, the algorithmic details of

hybrid method are explained together with its effects on performance.

5.1 Parallel LCG Implementation

The costliest tasks of parallel parameterized LCG are the cost of modular reduction which is

defined as the cost per RN generation and the initialization cost arising from the

parameterized iteration. In order to reduce these costs, special types of primes must be

chosen. Two candidates are Mersenne prime and Sophie-Germain prime.

In 1999, Jerome Solinas introduced families of moduli called the generalized Mersenne

numbers and showed a small weight prime moduli which is suitable for Mersenne modular

reduction of the form p = 2k – 1 where k is prime [14]. It is shown that such p's lead to fast

modular reduction methods which use only a few integer additions and bitwise shifting. This

technique is quite useful in practice, since it makes possible to implement long integer

modular arithmetic without using multiple precision operations [10]. It becomes optimal to

choose a Mersenne prime as modulus.

When modulus is not so high, it is reasonable to ask if the reduced cost of modular

reduction obtained when using a Mersenne prime is balanced by the increased cost required

in computing the jth number relatively prime to m-1 during initialization. If the number of

RNs required per processor is large, reduced cost per RN is preferred to a stiff initialization

cost. However, in highly branched MC computations, one often uses only a few hundred to a

few thousand RNs before branching. Thus, one should consider other schemes that have

different balance between the cost per RN and the initialization cost. A possible approach is

to consider using Sophie-German primes instead of Mersenne primes as modulus [10].

91

Sophie Germain prime is a prime of the form m = 2q + 1 where q itself is prime. This special

prime, has an explicit enumeration of the primitive elements modulo m. The price payed for

this explicit enumeration is having to use standard modular multiplication [10].

The parameterization algorithm of the parallel LCG implementation is given in Figure 5.1

with MASTER SLAVE interaction. In order to parallelize LCG with parameterization, firstly,

MASTER program receives input from user. Then, according to the type of modulus,

modulus is calculated. After that, a multiplier value that satisfies the conditions for maximum

period is determined. As explained in Section 2.2, in order to have a maximum period,

multiplier must be primitive element modulo m. For a number a to be primitive element

modulo m it must satisfy Formula 5.1 for all prime divisors q of m.

am-1/q = 1(mod m) (5.1)

After calculating multiplier value, maximum number of processors with disjoint cycles is

calculated. LCG parameterization is accomplished by finding the jth number relatively prime

to m-1 for the jth processor. So, maximum number of processors can not be higher than the

number integers that are relatively prime to m-1. This value is represented as Φ(m-1) and

called as Euler Phi Function. It is easily calculated by the Formula 5.2.

Φ(m-1) = (m-1) * Π (1 – 1/p) for all prime divisors p of m-1. (5.2)

After calculating upper limit, global seed value is calculated. Then, all these initial data are

sent to the newly created child processor together with binary tree node number through

PVM calls. After receiving these initial data and the node number, each processor begins to

make the relevant computations related with LCG paralelization. Only after these

computations are carried out truly, the processor becomes ready for RN generation.

Parameterization operation starts when processor receives initial data from MASTER

processor. Assume there is a processor with node number j. First of all, processor j finds the

jth number relatively prime to m-1. This operation is named as enumeration operation. The

method for finding the jth number differs by the type of modulus. When Mersenne prime is

92

used, it is defined as Mersenne Enumeration. Whereas, for Sophie-Germain prime, it is

named as SP Enumeration and it is easier since, because of its nature, there exists an

explicit enumeration for finding the jth number relatively prime. After jth number relatively

prime to m-1 is computed by the jth processor, multiplier for the jth processor is calculated

by the Formula 5.3, where lj is the jth number relatively prime to m-1 and aj is the multiplier

value of the jth processor. After computing the multiplier, parameterization operation ends.

Now processor j is ready to create an RN sequence that is guaranteed to be disjoint from

other processors’ sequences.

aj = alj (mod m) (5.3)

When the parameterization algorithm in Figure 5.1 and the Formula 2.1 is considered, it is

seen that, while generating RNs or when parameterizing an LCG, modular arithmetic

operations like modular reduction, multiplication and exponentiation are heavily used.

Basically, it can be stated that, for a parallel parameterized LCG, not only an enumeration

algorithm is needed but also, there must be efficient modular reduction, modular

exponentiation and modular multiplication algorithms. In the following two sections, the

details of enumeration algorithms and the details of algorithms used for modular arithmetic

operations are given with respect to the type of modulus chosen.

93

PVM CALL
Broadcast initial data to new

processors Msgid 0
� coef
� m
� a
� phi
� division
� splitting method
� modulus type
� global seed

Receive user input
� Coefficient of modulus
� Type of modulus
� Splitting method
� Number of divisions

MASTER SLAVE

Calculate modulus (m)

Calculate additive constant
Find primitive element

modulo m (a)

Calculate upper limit for
number of processors

Find phi(m-1)

PVM CALL
Receive initial data Msgid 0

� coef
� m
� a
� phi
� modulus type
� global seed

PVM CALL
Send node number Msgid 1
� node number

PVM CALL
Receive node number Msgid 1

Calculate global seed

modulus type

Calculate kth number relatively prime
kprime = Mersenne Enumeration

Calculate kth number relatively prime
kprime = SP Enumeration

Calculate multiplier
alocal = a^kprime (mod m)

Mersenne Sophie Germain

END

END

Figure 5.1 Parameterization algorithm of parallel LCG

94

5.1.1 Enumeration Algorithms

Enumeration algorithm or in other words, the algorithm for finding the jth number relatively

prime to m-1 is the foundation of LCG parameterization via multiplier. The cost of this

operation is referred as the initialization cost and its performance depends highly on the

type of the modulus chosen. The efficiency of an enumeration algorithm directly affects the

performance consequences of a parallel LCG implementation. For the two choices of prime

moduli, Mersenne prime and Sophie-Germain prime, algorithms for enumeration operation

differ considerably having completely different performance consequences.

For LCG with Mersenne prime, an efficient algorithm for finding the jth number relatively

prime to m-1 can be found in [10]. In this thesis, Mersenne enumeration is accomplished

that is based on linear search via finding GCD (Greatest Common Divisor). GCD operation is

implemented according to Euclid's GCD algorithm. Euclid's algorithm is an efficient way to

find the GCD of two numbers a and n, given a is less than n, it is based on the fact that if a

and b have divisor d then so does a-b, a-2b and so on. C code of Euclid’s algorithm can be

seen in Table 5.1. Because of GCD computation of several times, Mersenne enumeration,

does not have good performance when compared with Sophie-Germain enumeration.

Table 5.1 Euclid’s GCD

int GCD(int n1, int n2)

{
 int gcd;
 while(n1%n2!=0)
 {
 gcd = n1%n2;
 n1=n2;
 n2=gcd;
 }
 return gcd;
}

95

Sophie-Germain prime is a prime of the form m = 2q + 1 where q itself is prime as

explained before. In this case m – 1 = 2q so the integers that are relatively prime to m-1 are

all the odds except q. Because of this explicit enumeration, Sophie-Germain enumeration has

better performance than Mersenne Prime enumeration. On the other hand, Mersenne prime

has an efficient modular reduction algorithm which is called as Mersenne Reduction. The

details of Mersenne reduction together with other modular arithmetic algorithms are given in

the next section.

5.1.2 Modular Arithmetic Algorithms

Parameterization of LCG and its iterative scheme for RN generation is based on modular

arithmetic operations like modular reduction, modular multiplication and modular

exponentiation. While calculating the multiplier according to the Formula 5.3, modular

exponentiation is used. Moreover, creating RNs with Formula 2.1 depends on modular

multiplication operation. That is why, special algorithms are used for computing these

operations efficiently with integer arithmetic on 32 bit systems.

5.1.2.1 Mersenne Reduction Algorithm

Mersenne prime is a special type of prime number represented as p = 2k – 1 where k is

prime. Such prime numbers are known to have an efficient modular reduction algorithm

where reduction is accomplished with only addition and shifting operations. When compared

with normal reduction operation where division is used, it is clear that Mersenne reduction

algorithm has better performance.

96

Table 5.2 Mersenne reduction

uint MersenneReduction(unit number, uint mprime, uint coef)
{
 unsigned int i, itot, old;
 old=number;
 itot=0;
 if(number < mprime)
 return number;
 else
 if(number == mprime)
 return 0;
 else{
 do{
 itot=0;
 do
 {
 i = old;
 i = i & mprime;
 old = old >> coef;
 itot = itot + i;
 }
 while(old!=0);
 old = itot;
 }
 while(old>mprime);
 return old;
 }

}

In Mersenne reduction algorithm, number to be reduced is separated into two parts; k lower

bits where k is the Mersenne coefficient and y higher bits which begin at bit position k.

Finally the reduction happens by adding the y higher bits after shifting them right to index 0

to the lower k bits and repeating this until no higher bits are left. If the result equals to

Mersenne prime then it is set to zero. The C code of the algorithm can be found in Table

5.2. Other modular arithmetic operations like modular multiplication and modular

exponentiation can be implemented by using special multiplication or exponentiation

algorithms in combination with a modular reduction algorithm. In the following section, such

a special algorithm and its variation according to modular reduction operation is explained.

97

5.1.2.2 Russian Peasant Algorithm

While computing local multiplier during parameterizaton and while generating RNs, modular

exponentiation and modular multiplication operations are used. In order to accomplish these

operations, an approach based on the Russian Peasant method is used. Russian Peasant

algorithm is one of the earliest algorithms that have been discovered and it is for

multiplication and exponentiation operations. This algorithm is also utilized in [23] while

implementing a random number generator package with splitting techniques.

Table 5.3 Modular multiplication

uint RussianMul(uint n, uint x, uint m, uint coef, char type)

{ unsigned int P;
 while ((n & 1) == 0)
 { if(type=='m')
 x = MersenneReduction(x<<1, m, coef);
 else
 x= NormalReduction(x<<1, m, coef);
 n >>= 1;
 }
 P = x;
 n >>= 1;
 while (n > 0)
 { if(type==m)
 x = MersenneReduction(x<<1, m, coef);
 else
 x= NormalReduction(x<<1, m, coef);
 if ((n & 1) != 0)
 { if(type=='m')
 P = MersenneReduction(P+x, m, coef);
 else
 P = NormalReduction(P+x, m, coef);
 }
 n >>= 1;
 }
 return P; }

98

The fundamental definition of exponentiation, for positive integral exponents is defined by

Formula 5.4.

xn = x × . × x (n times) (5.4)

If that definition is directly turned into code, that would be wasteful since an algorithm

based directly on that definition would use nine multiplications to compute x10. Instead,

since x10 = ((x2)2)2 × x2, x can be multiplied by itself to obtain x2, multiply x2 by itself to

obtain x4 and then x4 by itself to obtain x8, and finally multiply x8 by x2 to obtain the result.

By this way, x10 is computed in four steps instead of nine. This simple observation is the

basis of the exponentiation algorithm of the Russian Peasant algorithm. In order to turn

exponentiation into modular exponentiation, multiplication operations are done modulo m.

The C code of the modular exponentiation operation is given in Table 5.4. As can be seen

from Table 5.4, when Mersenne prime is used, modular multiplication operation with

Mersenne reduction is utilized.

After considering both enumeration and modular arithmetic operations, it is understood that,

there is not any prime modulus having good performance characteristics for all types of

operations. Mersenne prime is good at modular arithmetic operations. Whereas Sophie-

Germain prime has an efficient explicit enumeration for finding the jth number relatively

prime to m-1. When this is the case, the problem is studied from a different perspective and

instead of changing the modulus, a different approach based on changing the parallelization

method of LCG is proposed as an alternative for adjusting performance consequences of

LCG implementation.

99

Table 5.4 Modular exponentiation

uint RussianExp(uint n, uint x, uint m, uint coef, char type)
{
 int P;
 while ((n & 1) == 0) {
 x = RussianMul(x,x,m,coef,type);
 n >>= 1; }
 P = x;
 n >>= 1;
 while (n > 0) {
 x = RussianMul(x,x,m,coef,type);
 if((n & 1) != 0)
 P = RussianMul(P,x,m,coef,type);
 n >>= 1; }

 return P;

}

5.2 New Technique: Hybrid Method for Parallelization

When LCG parameterization is considered, not only is the period of the LCG a function of the

modulus, but so is the total number of full-period LCGs. Since many branching MC

computations require many available generators when using the binary tree mapping, large

modulus is required in these situations to give deep binary trees. One drawback of this fact

is that a large modulus is used for reasons other than the total number RNs needed in a

particular computation. This is a clear weakness for parallel LCGs since the computational

cost per RN increases as the number of processors needed increases. As a solution to this

problem, a hybrid method that is based on both splitting and parameterization is

implemented. By this way, number of available parallel processors is increased by using

several subsequences from each full period cycle. How the sequence is divided into

subsequences is determined by the splitting method used. This improvement allows the

same number of parallel processors to be furnished with a smaller modulus, and thus it also

speeds up the cost of computing individual RN [10].

100

New hybrid method extends parameterized iteration method further by adding two splitting

methods, sequence splitting and leapfrog. This extension consists of three major additions.

First one is the calculation of node number, second one is the assignment of seed values

and the third one is the computation of the multiplier value for leapfrog method. Why such

additions are needed and how they are implemented are explained in detail in the following

paragraphs.

Algorithm of the hybrid method is shown in Figure 5.2. This method combines sequence

splitting and leapfrog methods with parameterized iteration when parallelizing LCG. When

compared with the algorithm in Figure 5.1, it is seen that steps that are shown in red in

Figure 5.2, are added as a result of this combination. There appear two new fields that are

crucial for this method, first one is for the splitting method and the second one is for the

number of subsequences. Splitting method determines how a sequence is divided. Whereas,

the number of subsequences, determines the maximum number of independent processors.

101

PVM CALL
Receive initial data Msgid 0

� coef
� m
� a
� phi
� division
� splitting method
� modulus type
� global seed

Calculate node number
k = (node number % phi) + 1

PVM CALL
Broadcast initial data to new

processors Msgid 0
� coef
� m
� a
� phi
� division
� splitting method
� modulus type
� global seed

Receive user input
� Coefficient of modulus
� Type of modulus
� Splitting method
� Number of divisions

MASTER SLAVE

Calculate modulus (m)

Calculate multiplier
Find primitive element

modulo m (a)

Calculate upper limit for
number of processors

Find phi(m-1)

PVM CALL
Send node number Msgid 1
� node number

PVM CALL
Receive node number Msgid 1

Calculate global seed

modulus type

Calculate kth number relatively prime
kprime = Mersenne Enumeration

Calculate kth number relatively prime
kprime = SP Enumeration

Calculate local multiplier
alocal = a^kprime (mod m)

Calculate local seed

Calculate period
period = (m-1)/division

splitting
method

Advance sequence
alocal = alocal^division (mod m)

Mersenn
e

Sophie Germain

Leapfrog

END

END

Figure 5.2 Parameterization algorithm of parallel LCG: Hybrid Method

102

According to the algorithm in Figure 5.2, after SLAVE processor receives initial data and

node number from MASTER program, it calculates the node number in order to use it during

enumeration operation. Recall that in the parameterization algorithm, operations are

computed with respect to the binary tree node number. For instance, for a processor being

in node 3 of the binary tree, 3rd number relatively prime to m-1 is found and Formula 5.3 is

applied for determining the multiplier. In the hybrid method, for a processor in node n of the

binary tree, n value is converted by taking n MOD Φ(m-1). With this new value of n,

multiplier is calculated. By making such an adjustment, nodes in the binary tree that are in

the same remainder class of MOD Φ(m-1) have the same multiplier value thus, creating

different parts of the same RN sequence.

Figure 5.3 Parameterized iteration: LCG(3, 31, 5)

Consider the situation in Figure 5.3, for LCG(3, 31, 5) with Mersenne prime. When only

parameterized iteration is used, there appears eight independent processors. On the other

hand, when parameterized iteration is combined with a splitting method and a single disjoint

sequence is divided into three subsequences, there can be at most twenty four independent

a4 = 22

0

1

2 3

4 5 6 7

a0 = 3

a1 = 17

a2 = 13 a3 = 24

a7 = 21 a6 = 11 a5 = 12

103

processors as seen in Figure 5.4. In fact, there are eight disjoint sequences of period thirty.

By dividing an independent sequence into three parts, twenty four processors are obtained

with period reduced to one third. Here, sequences are divided among processors in different

divisions according to the splitting method chosen. In Figure 5.4, there are three divisions.

That is why; a single sequence is divided among three processors in different divisions but in

the same remainder class of MOD 8. Processors 0, 8 and 16 are such an example. They are

in the same remainder class, creating the different parts of the same sequence. For the

example situation in Figure 5.4, list of processor groupings is given in Table 5.5.

Figure 5.4 Parameterized iteration & splitting method LCG(3, 31, 5)

0

1

2 3

4 5 6 7

8 9 10 11 15 12 13 14

16 17 18 19 20 21 22 23
2st

division

3st

division

1st

division

104

Table 5.5 Remainder class MOD Φ(m-1)

MOD Φ(30) = MOD 8 R Multiplier an

0 ≡ 8 ≡ 16 0 a0 = al0 (mod m) 3

1 ≡ 9 ≡ 17 1 a1 = al1 (mod m) 17

2 ≡ 10 ≡ 18 2 a2 = al2 (mod m) 13

3 ≡ 11 ≡ 19 3 a3 = al3 (mod m) 24

4 ≡ 12 ≡ 20 4 a4 = al4 (mod m) 22

5 ≡ 13 ≡ 21 5 a5 = al5 (mod m) 12

6 ≡ 14 ≡ 22 6 a6 = al6 (mod m) 11

7 ≡ 15 ≡ 23 7 a7 = al7 (mod m) 21

After calculating the multiplier value, each SLAVE processor computes its local seed to

determine its starting point in the sequence. According to the type of splitting method used,

seed creation differs. The algorithm for creating local seed in terms of different splitting

methods can be seen in Figure 5.5. When sequence splitting is used, sequence is advanced

P/D steps each time where D is the number of subdivisions and P is the period. The

corresponding value is assigned as the seed. Whereas, in leapfrog method, the first D

numbers are given as the seed values to corresponding processors.

When processors 0, 8 and 16 are considered, in order to divide the sequence between these

processors by using sequence splitting method, seeds must be assigned by advancing the

sequence. In sequence splitting, processor 0 gets the global seed value. For processor 8,

sequence is advanced ten steps and the 10th value in the sequence is given as the seed.

Lastly, sequence is advanced twenty steps and the 20th value in the sequence is assigned as

the seed to processor 16. By such assignments, processor 0 creates the 1st division of the

whole sequence, processor 8 creates the 2nd division and processor 16 creates the 3rd

division. When leapfrog method is used as the splitting method, processor 0 gets the first

number in the sequence, processor 8 gets the second number and processor 16 gets the

third number in the sequence as the seed value. In Table 5.6, seed assignment and

sequence division for both Sequence splitting and leapfrog methods are given.

105

After seed assignment is completed, period reduction is done by each processor. Since

overall sequence is divided among processors, the period of the subsequences lessen

accordingly. If the overall period is thirty and if there are three divisions as in Table 5.6,

then period of each processor is reduced to ten.

Processors become ready for RN generation after all these calculations are accomplished. In

sequence splitting, RNs are computed by using the Formula 2.1. Whereas, in leapfrog,

multiplier must be enhanced in a way that enables easy advancing of the overall sequence.

When using the hybrid method, choosing the splitting method also becomes important. The

comparison of several splitting methods suitable for LCG is given in Section 3.3.1. According

to the characteristics of the generator used, the most appropriate method can be chosen.

When LCG is considered, it is seen that sequence splitting and leapfrog methods are the

most suitable ones. As explained in Section 3.3.1, these methods differ only in the way of

dividing the overall sequence between processors.

106

Receive user input
� Splitting method
� Binary tree node number (nid)
� Global seed (seed)
� Phi
� Period
� Modulus
� Local multiplier (a)

Splitting method = Blocking

Splitting method = Leapfrog

nid = nid / phi
svalue = nid * period/division

svalue=0

local seed = 1local seed = a^svalue mod m
Russian Exponentiation

local seed = local seed * seed mod m
Russian Multiplication

Yes

YesNoNo

nid = nid / phi + 1

local seed = a^n mod m
Russian Exponentiation

local seed = local seed * seed mod m
Russian Multiplication

Yes

END

No

local seed = seed

Figure 5.5 Flow chart of seed creation algorithm

107

Table 5.6 Splitting methods

Sequence Splitting Leapfrog

 1st 2nd 3rd 1st 2nd 3rd

15 15 15 15

14 14 14 14

11 11 11 11

2 2 2 2

6 6 6 6

18 18 18 18

23 23 23 23

7 7 7 7

21 21 21 21

1 1 1 1

3 3 3 3

9 9 9 9

27 27 27 27

19 19 19 19

26 26 26 26

16 16 16 16

17 17 17 17

20 20 20 20

29 29 29 29

25 25 25 25

13 13 13 13

8 8 8 8

24 24 24 24

10 10 10 10

30 30 30 30

28 28 28 28

22 22 22 22

4 4 4 4

12 12 12 12

5 5

5 5

108

To make the whole picture clear, two graphics of LCG with Mersenne prime, are presented

that show the state of the sequence divided with both sequence splitting and leapfrog

methods. In Figure 5.5, sequence generated by LCG with Mersenne prime of 27 – 1 is shown

together with its subsequences shared among three processors by the sequence splitting

method. Overall sequence has a period of 27 – 2. With sequence splitting method, it is

provided that P0 creates the first 42 numbers, P1 creates the second 42 numbers, and P3

generates the third 42 numbers. In order to accomplish such divisions, P1 and P2 advance in

the sequence and assign the last number to be created by the previous processor as their

seed values. Unlike leapfrog method, sequence splitting needs advancing operation only

during initialization while calculating the seed values.

2^7-1 Sequence Splitting

0

50

100

150

200

250

300

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

Order

G
en

e
ra

te
d
 R

a
n
d
o
m

 N
u
m

b
e
rs

P

P0

P1

P2

Figure 5.6 Mersenne prime sequence splitting

109

The subsequences generated by dividing the sequence using leapfrog method are shown in

Figure 5.6. The overall sequence is created by LCG with Mersenne prime of 27 – 1. Among

the three processors, the sequence is divided in a manner that each processor creates

numbers that are three places apart in the sequence. In order to accomplish such a

distribution, the underlying RNG must have an easy to advance structure. For LCG, this is

easily accomplished by changing the value of the multiplier in the iterative schema. The

behaviour of the splitting method is independent from the type of moduli chosen for LCG as

long as it is prime. Graphics for LCG with Sophie-Germain modulus, for both sequence

splitting and leapfrog methods can be seen in Appendix C.

2^7-1 LeapFrog

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

Order

G
e
n
er

a
te

d
 R

a
n
d
o
m

 N
u
m

b
e
rs

P

P0

P1

P2

Figure 5.7 Mersenne prime leapfrog method

New hybrid method is based on the idea of increasing the upper limit for number of

processors by reducing the period of each processor. This property of the method can be

considered as its major drawback especially in situations where high amounts of RNs are

110

needed. But in other cases, where total number of RNs needed is not so high, this method

can be preferred since with a smaller modulus, more processors can be spawned. This is a

serious trade-off between having higher number of processors and having higher number of

RNs. In the next section, all these newly proposed methods are analyzed case by case. The

best method for each case is tried to be determined.

5.3 Analysis of Enhancements

In this thesis, in order to improve performance measures of LCG with prime moduli two

different approaches are presented. In the first approach, the type of modulus is changed

from Mersenne prime to Sophie-Germain prime. In the second approach, the type of

parallization method is changed, instead of using parameterized iteration method, a hybrid

method which combines two splitting methods with parameterized iteration method is used.

In this section, the analysis of these approaches are given in terms of execution time via

graphics. While comparing Sophie-Germain prime with Mersenne prime, speed up and

efficiency graphics are also presented. Finally, in order to determine which approach suits

best to which situation, these two approaches are examined case by case.

5.3.1 Sophie-Germain Prime vs. Mersenne Prime

Sophie-Germain prime, according to its nature, has an explicit parameterization when finding

the kth number relatively prime to m-1. This enumeration operation can be accomplished by

just checking if the number is odd which is done easily by bitwise operations. The execution

time comparison of Mersenne prime and Sophie-Germain prime is given in Figure 5.8. For

both Mersenne prime of 231 – 1 and Sophie-Germain prime of 2.147.483.579, several k

values are chosen and the execution time for calculating these kth numbers relatively prime

to m-1 are measured. The results are really interesting, since Sophie-Germain prime

enumeration seems considerably faster than Mersenne prime enumeration. This great

difference between Sophie-Germain and Mersenne prime implementations appears from the

fact that, Mersenne prime enumeration linearly searches the sequence from 2 to m-2 by

checking the greatest common divisor of each number with m-1. Whereas, Sophie-Germain

enumeration depends only on checking if a number is odd or not through bitwise operators.

111

Another feature of Sophie-Germain prime is having a high Φ(m-1) value. The upper limit for

the maximum number of independent processors increases considerably when Sophie-

Germain prime is used. In the case of Sophie-Germain prime, there are situations where the

upper limit for the number of processors is nearly two times higher than the Mersenne prime

case, which means that nearly same amount of indepedent processors can be furnished by

using a lower Sophie-Germain prime as modulus.

Enumeration Operation

1.210

587

283

136

7321
0

200

400

600

800

1.000

1.200

1.400

kth Number

E
x
e
cu

ti
o
n
 T

im
e
 (
se

c.
)

Mersenne 136 283 587 1.210

Sophie-Germain 1 2 3 7

66.825.000 133.650.000 267.300.000 534.600.000

Figure 5.8 Execution times for enumeration operations

112

Modular Reduction Time

726

456

686

459

171

201

0

100

200

300

400

500

600

700

800

Modulus

E
x
e
cu

ti
o
n
 T
im

e
 (
se

c.
)

Mersenne Reduction

Normal Reduction

Mersenne Reduction 171 459 726

Normal Reduction 201 456 686

127 524.287 2.147.483.647

Figure 5.9 Execution times for modular arithmetic operations

Up to this point, only the superiorities of Sophie-Germain prime over Mersenne prime are

considered. In order to possess these superior features of Sophie-Germain prime, what is

paid as a price is using standard modular reduction. Unlike, Mersenne prime, Sophie-

Germain prime does not have an efficient modular reduction algorithm. The execution time

values of an LCG generating one billion RNs with both Mersenne prime and Sophie-Germain

prime are presented in Figure 5.9. Three different Mersenne primes and Sophie-Germain

primes are taken as modulus values. It is seen that for smaller modulus values, the

execution time of Mersenne prime is better than Sophie-Germain prime. As the modulus gets

higher, for both Mersenne prime and Sophie-Germain prime, RN generation time increases

and by the time, the difference between these costs decreases. In practice, when the m

approaches a few hundred bits in size, the cost of the shift and add modular reduction for a

Mersenne prime is comparable to standard modular reduction. Thus it makes sense to

consider using Sophie Germain primes when large moduli are needed [10].

113

After comparing execution times of Sophie-Germain prime and Mersenne prime on operation

basis, now it is time to see the overall cost of RN generation for each prime. The execution

time of Mersenne prime for different amounts of RN is shown in Figure 5.10. Whereas, in

Figure 5.11, the execution time of Sophie-Germain prime is shown. As can be seen, for

Mersenne prime, initialization cost is high, RN generation cost is low. Whereas, for Sophie-

Germain prime, initialization cost is low, RN generation cost is high. That is why; in total,

cost of Mersenne and Sophie-Germain prime is very near.

In Figure 5.12, speed up graphic for both Mersenne prime and Sophie-Germain prime is

given together, with respect to theoritical speed up value. Speed up is calculated by the

Formula 5.5 where N is the number of processors. For one processor, execution time for E

numbers is measured. Then for N processors, the execution time of each processor creating

E/N numbers is measured. The ratio of these two measurement gives the speed up.

S = T1/TN (5.5)

In Figure 5.13, only the speed up values of Mersenne and Sophie-Germain prime are

displayed. Because of the initialization costs in more than one processor case, ideal speed up

values are not reached for both types of prime moduli. Howover, as can be seen, Sophie-

Germain prime has a slightly better speed up values than Mersenne prime since the

initialization cost of Sophie-Germain prime is much lower than Mersenne prime. After

calculating the speed up value, efficiency is calculated by the Formula 5.6. The effect of this

decrease can also be seen in Figure 5.14 in terms of efficieny analysis.

E = 1/S (5.6)

114

Execution Time Mersenne Prime

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

of Random Numbers

E
x
e
cu

ti
o
n
 T
im

e
 (
m
ic
ro

 s
e
c.
)

Total 244.712 535.937 746.879 987.305 1.112.725 1.335.118 1.646.057 1.940.111

Initialization 36.161 83.964 196.965 343.211 430.225 377.951 468.630 687.205

Random Number Generation 208.551 451.973 549.914 644.094 682.500 957.167 1.177.427 1.252.906

127 635 1270 1905 2540 3175 3810 4572

Figure 5.10 Execution time for Mersenne prime

Execution Time Sophie-Germain Prime

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

of Random Numbers

E
x
e
cu

ti
o
n
 T
im

e
 (
m
ic
ro

 s
e
c.
)

Total 351.543 513.389 743.974 987.267 1.374.430 1.651.024 1.850.748 2.362.596

Initialization 59.035 73.326 170.028 203.446 367.412 445.021 409.832 485.863

Random Number Generation 292.508 440.063 573.946 783.821 1.007.018 1.206.003 1.440.916 1.876.733

167 835 1670 2505 3340 4175 5010 6012

Figure 5.11 Execution time for Sophie-Germain prime

115

Speed Up

0,00000

5,00000

10,00000

15,00000

20,00000

25,00000

30,00000

35,00000

40,00000

Number of Processors

S
p
e
e
d
 U

p
 V

a
lu

e
s

Speed Up Mersenne 1,00000 2,28303 3,27646 3,71788 4,39843 4,58222 4,45997 4,54079

Ideal Speed Up 1 5 10 15 20 25 30 36

Speed Up Sophie-Germain 1,00000 3,42375 4,72521 5,34115 5,11547 5,32311 5,69839 5,35663

1 5 10 15 20 25 30 36

Figure 5.12 Speed up for Mersenne and Sophie-Germain primes

Speed Up

0,00000

1,00000

2,00000

3,00000

4,00000

5,00000

6,00000

Number of Processors

S
p
e
e
d
 U

p
 V

a
lu

e
s

Speed Up Mersenne 1,00000 2,28303 3,27646 3,71788 4,39843 4,58222 4,45997 4,54079

Speed Up Sophie-Germain 1,00000 3,42375 4,72521 5,34115 5,11547 5,32311 5,69839 5,35663

1 5 10 15 20 25 30 36

Figure 5.13 Speed up for Mersenne and Sophie-Germain primes

116

Efficiency

0

0,2

0,4

0,6

0,8

1

1,2

Number of Processors

E
ff
ic
ie
n
cy

 V
a
lu

e
s

Efficiency Mersenne 1 0,45660591 0,32764611 0,24785856 0,21992136 0,18328867 0,14866557 0,12613299

Efficiency Sophie-Germain 1 0,68474977 0,47252055 0,35607693 0,25577367 0,21292422 0,18994644 0,14879522

İdeal Effficiency 1 1 1 1 1 1 1 1

1 5 10 15 20 25 30 36

Figure 5.14 Efficiency for Mersenne and Sophie-Germain primes

5.3.2 Case Analysis

Two approaches are proposed in order to improve the performance consequences of an LCG

with prime moduli. All of these methods have advantages over one another but none of

them can be considered as applicable in all circumstances. In fact, according to the needs of

the situation, the most appropriate approach must be chosen. For this purpose, in this

section, four separate cases are determined and the best approach to be taken for each

case is tried to be realized.

First case is defined as LCG used in an application where amount of RNs needed is high and

the need for independent processors is low. When number of indenpendent processors is

low, this means that enumeration operation is rarely used and has little effect on

performance. On the other hand, since the RNs required is large, reduced cost per RN is

desirable. The most suitable approach is using LCG with a Mersenne prime in order to make

use of the cost reduction arising from the efficient modular reduction operation. When

modulus is so large, using Sophie-Germain prime can be another alternative. But, this will

not bring any performance gain, since enumeration operations are rarely utilized.

117

In the second case, LCG is used in an application where the need for RNs and independent

processors are high. In such a circumstance, both RN generation cost and parameterization

cost must be reduced. Using Sophie-Germain prime can be an alternative in order to reduce

the cost of enumeration operations but this approach has no effect on the cost of RN

generation. According to the acceptable performance thresholds of a particular application,

decision between using Mersenne prime or using Sophie-Germain prime should be made.

Consider the third case as LCG utilized in an application where RNs needed per processor is

low but several independent processors are required. Since, RNs needed is not so high,

hybrid method can be used. Besides, in order to reduce the cost of enumeration operation,

using Sophie-Germain prime can be preferred. According to the nature of Sophie-Germain

prime, when combined with the hybrid method requires a very low modulus value in order to

cover the requirements of the third case.

Last case is defined as LCG used in an application where the necessity for both RNs and

independent processors are low. Since, RNs needed is not so high, hybrid method can be

used together with Mersenne prime. Since, enumeration operation is seldomly used, by

choosing Mersenne prime, the cost of RN generation can be reduced. Also, by using hybrid

method, with a smaller modulus, required amount of processors and RNs can be created.

Having a smaller modulus value also leads to a reduced cost of RN generation since it is

shown that, Mersenne prime has better modular reduction performance for smaller modulus

values. For these four separate cases, the best approach is tried to be determined. The

summary of these cases can be found in Table 5.7.

As a last word, according to the performance consequences of LCG with prime moduli what

can be stated is, every single application has its own requirements, in order to find the best

approach, firstly, performance thresholds related with these requirements must be decided.

Only after such determinations, the best approach for that specific application can be

designated by taking into consideration the performance criteria for each approach.

118

Table 5.7 Four cases and best approaches

 Case Approach

1 RNs needed = high

Number of independent processors = low

Mersenne prime

2 RNs needed = high

Number of independent processors = high

Sophie-Germain prime

3 RNs needed = low

Number of independent processors = high

Sophie-Germain prime with hybrid

method

4 RNs needed = low

Number of independent processors= low

Mersenne prime with hybrid method

119

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, parallel RN generation is considered from two different perspectives. Firstly

parallelization topology based on binary tree structure is taken into consideration and a

solution to the problem of falling off the tree is given. Secondly, the performance

consequences of parallel LCG with prime moduli are considered and several methods for

improving the performance are given.

By the proposed solution to the falling off the tree problem, when a processor made a

spawn request, no matter the state of its spawn pool, it is made possible to respond to that

spawn request by traversing the binary tree structure and determining the new spawn

parents. This spawning operation continues until the overall spawn pool of the generator

vanishes. Since assignment is accomplished according to the rules of binary tree, it is

guaranteed that each processor created has a completely different random behaviour from

the other processors in the environment. Such an assignment brings up two additional costs

to the spawning operation. First one is the cost of binary tree traversal and second one is

the inter-processor communication arising from new spawn parent assignment. In order to

reduce these costs, dividing spawn pool and merging spawn pointer algorithms are

proposed. As discussed in Section 4.4, for different situations, the performance

consequences of the proposed solution differ considerably. Especially, when dividing spawn

pool algorithm is utilized, performance of the proposed solution gets better. If processors in

an application tend to spawn continuously and if it is crucial that each processor has disjoint

sequences, then, by bearing to some inter-processor communication, whole spawn pool of

the generator can be appointed for the application. This is a trade-off between having

independent sequences and having no inter-processor communication. The best decision can

be given by considering the performance graphics given in Section 4.4 according to the

requirements of the application.

120

The LCG with prime modulus is parallelized by an explicit parameterization of its multiplier.

When this is the situation, there appear two different types of cost for an LCG. First one is

the cost of parameterization and the second is the cost per RN generation. By choosing

different types of prime moduli, it is possible to reduce these costs. But unfortunately, there

are not any prime moduli, which have good performance characteristics for both

parameterization and RN generation operations. In this thesis, performance of an LCG is

discussed with respect to both Mersenne prime and Sophie-Germain prime. It is shown that,

for some cases, Sophie-Germain primes show better performance than Mersenne primes.

Whereas, Mersenne primes can not be left aside because they have high performance in

modular reduction operations. For an LCG, having a high prime modulus is the cause of all

costly operations. With the new hybrid method, because of its structure, same number of

processors are provided with a lower modulus value. This decrease in modulus value,

improves both the performance of parameterization and RN generation. Whereas, what is

paid as a price is the considerable decrease in the period. As a result of all these

investigations, it can be stated that there is not any method or any parameter which suits

best for all types of applications. The choices must be made carefully with respect to the

necessities of the underlying application.

As a future work in the area of parallel RN generation, the parallelization aspects of

combined generators can be considered. They become preferable since they possess better

quality consequences than the ordinary generators. Their parallelization schemes and their

topological architectures can be further examined from performance and efficiency

perspectives with respect to the requirements of PRNGs.

In the scope of this thesis, although, the theoretical information related with LFG is given, it

is not implemented in PVM system. Implementation of LFG in PVM can be thought of as a

future work. Besides, as Sophie-Germain primes are used as moduli, implementation of

other types of special primes like Fermat primes can be considered. Although, Fermat

primes are very rare, they are known to be very efficient in modular arithmetic operations

like Mersenne primes.

121

REFERENCES

[1] Wikipedia The Free Encyclopedia, Random Numbers.

http://en.wikipedia.org/wiki/Random_number, 2005 (Last accessed August 2005).

[2] Srinivasan A., Mascagni M., and Ceperley D., Testing Parallel Random Number

Generators. Parallel Computing, 29:69-94, 2003.

[3] P. D. Coddington, Random number generators for parallel computers,

http://www.npac.syr.edu/users/paulc/papers/NHSEreview1.1/, 1996 (Last accessed

July 2005)

[4] Computational Science Education Project, Random Numbers.

http://csep1.phy.ornl.gov/rn/rn.html, 1995 (Last accessed July 2005).

[5] P. L'Ecuyer, Random Numbers. In the International Encyclopedia of the Social and

Behavioral Sciences, N. J. Smelser and Paul B. Baltes Eds., Pergamon, Oxford, 2002,

12735-12738.

[6] Computational Science Education Project, Introduction to Monte Carlo Methods.

http://csep1.phy.ornl.gov/mc/mc.html, 1995 (Last accessed July 2005).

[7] Srinivasan A., Ceperley M. D., and Mascagni M., Random number generators for

parallel applications. In D. Ferguson, J. I. Siepmann, and D. G. Truhlar, editors,

Monte Carlo Methods in Chemical Physics, Advances in Chemical Physic series, Vol.

105, New York, John Wiley and Sons, pp 13-36 1999.

[8] Mascagni M., Theory and Software for Parallel Random Number Generation.

Proceedings of The Fourth International Conference on Supercomputing in Nuclear

Applications (SNA 2000), 2000.

122

[9] Mascagni M., Parallel Pseudorandom Number Generation. SIAM News, August, pp.

1,8-10, 1999.

[10] Mascagni M., Parallel Linear Congruential Generators with Prime Moduli. Parallel

Computing, 24: 923-936, 1998.

[11] Pryor V. D., Cuccaro A. S., Mascagni M., and Robinson L. M., Implementation and

usage of a portable and reproducible parallel pseudorandom number generator. In

Proceedings of Supercomputing `94, IEEE, pp. 311-319, 1994.

[12] Parker J., Extensions and Optimizations to the Scalable, Parallel Random Number

Generators Library. M.Sc. Thesis, Florida State University, 2003.

[13] Knuth E. D. The Art of Computer Programming, Vol 2: Seminumerical Algorithms

Third Edition, Addison Vesley, Reading, Massachusetts, 1998.

[14] Solinas A. J, Generalized Mersenne numbers. Technical Report CORR 99-39, Centre

for Applied Cryptographic Research, University of Waterloo, 1999.

[15] Park S. K. and Miller K. W., Random number generators: good ones are hard to find.

Comm of the ACM 31, 1192-1201, 1988.

[16] Mascagni M., Robinson L. M., Pryor V. D., and Cuccaro A. S., A fast, high-quality,

and reproducible lagged-Fibonacci pseudorandom number generator. J. Comput.

Physics, 15:211-219, 1995.

[17] Aluru S., Prabhu M. G., and Gustafson J., A random number generator for parallel

computers. Parallel Computing Vol. 18, pp. 839-847, 1992.

[18] Foster Ian, Designing and Building Parallel Programs.

http://www-unix.mcs.anl.gov/dbpp/, 1995 (Last accessed July 2005)

[19] Mascagni M., Parallel pseudorandom number generation. SIAM News, August, pp.

1,8-10, 1999.

123

[20] Mascagni M., SPRNG: A Scalable Library for Pseudorandom Number Generation.

Proceeding of the 9th SIAM Conference on Parallel Processing for Scientific

Computing, MS11, March 22-24, 1999.

[21] Mascagni M., Serial and Parallel Random Number Generation. In Quantum Monte

Carlo in Physics and Chemistry, P. Nightingale and C. Umrigar, editors, Springer-

Verlag: New York, Berlin, pp. 277-288, 1999.

[22] Brent P. R., On the periods of generalized Fibonacci Recurrences. In the Pess, Math.

Comput. 1994.

[23] L’ ecuyer P., Cote S., Implementing a random number package with splitting

facilities. ACM Transactions on Mathematical Software, Vol 17, no, 1, March 1991.

124

APPENDIX A

FINDING PRIMITIVE ROOT MODULO M

In this section, finding primitive root modulo m is shown by an example.

Corollary A.1: Let r be a primitive root modulo m where m is an integer m > 1. Then ru is a

primitive root modulo m if and only if u and m are relatively prime.

Theorem A.1: The integer 7 is a primitive root of 231 – 1.

Proof A.1:

To show that 7 is a primitive root of 231 – 1, show that, 7^(231 – 2)/q ≠ 1 (mod 231 – 1) for

all prime divisors q of 231 – 2.

To find factorization of 231 – 2, 231 – 2 = 2(230 – 1)

 = 2(215 – 1)(215 + 1)

 = 2(25 – 1)(210 + 25 + 1)(25 + 1)(210 - 25 + 1)

 = 2.32.7.11.31.151.331

if it is shown that 7^(231 – 2)/q ≠ 1 (mod 231 – 1) for q = 2,3,7,11,31,151,331, then it is

known that 7 is a primitive root of 231 – 1 = 2147483647. Since,

7^(231 – 2)/2 ≠ 2147483546 ≠ 1 (mod 231 – 1)

7^(231 – 2)/3 ≠ 1513477735 ≠ 1 (mod 231 – 1)

7^(231 – 2)/7 ≠ 120536285 ≠ 1 (mod 231 – 1)

125

7^(231 – 2)/11 ≠ 1969212174 ≠ 1 (mod 231 – 1)

7^(231 – 2)/31 ≠ 512 ≠ 1 (mod 231 – 1)

7^(231 – 2)/151 ≠ 535044134 ≠ 1 (mod 231 – 1)

7^(231 – 2)/331 ≠ 1761885083 ≠ 1 (mod 231 – 1)

In practice the primitive root 7 is not used as the multiplier, since the first few integers

generated are small. A larger primitive root is found by taking a power of 7 where the

exponent is relatively prime to 231 – 2 (as stated in Corollary A.1). For instance, since

GCD(5, 231 – 2) = 1, Corollary A.1 tells us that 75 = 16807 is also a primitive root. Since

GCD(13, 231 – 2) = 1, another possibility is to use 713 = 252246292 (mod 231 – 1) as the

multiplier.

126

APPENDIX B

FLOW CHARTS FOR INITIALIZATION AND SPAWNING

OPERATIONS

In this section, the flow charts of initialization and spawning operations are given. In Figure

B.1, initialization algorithm together with PVM calls is given. Moreover, in Figure B.2 and

Figure B.3, the details of the spawning operation are displayed. In Figure B.2, spawning

operation is considered from PVM calls perspective while in Figure B.3, the focus is the

effects of the spawning operation on binary tree structure.

127

PVM CALL
Send node number to each new

processor Msgid 1

PVM CALL
Spawn nproc processors

Receive user input
coef
prime type
number of processors (nproc)
splitting method
division

Calculate modulus (m)

Calculate multiplier (a)
Find primitive element modulo m

Calculate upper limit for number of
processors

Calculate global seed

PVM CALL
Broadcast initial data to new

processors Msgid 0

PVM CALL
Send each processor Msgid 7

Task id of master
Send Multipliers Command

PVM CALL
Receive from each processor Msgid 9

Local multiplier values

Create binary tree structure

Initialize binary tree with nproc
processors

 uplimit
 max numbered node
 nproc
multiplier
 coef
 prime type
 splitting method
 division
 global seed

Calculate max numbered node

Figure B.1 Flow chart of initialization operation with PVM calls

128

Adjust binary tree structure
Spawn Binary Tree Structure

parent node
number of child processors

Find parent node in the binary
tree structure

Check how many processors
parent node can spawn (pc)

pc > 0

PVM CALL
Send parent processor Msgid 7
� Spawn command
� Task id of Master
� Direction of parent node
� Number of processors to spawn (pc)

PVM CALL
Receive from parent processor Msgid 13
� Number of processors spawned (pc)

pc > 0

PVM CALL
Receive from parent processor Msgid 10
� Task ids of newly created child

processors

PVM CALL
Send each new child processor Msgid 7
� Task id of Master
� Send command: Multiplier

PVM CALL
Receive from each new child processor
Msgid 9
� Multiplier values

parent node's
direction = L

PVM CALL
Send each new child processor Msgid 7
� Task id of Master
� Update spawn pointer command

Search binary tree for a node whose
spawn pointer is equal to old sp

node found

Update node's spawn pointer
as new sp

PVM CALL to node for spawn
pointer update

YES

END

NO

Store parent node's spawn pointer
(old sp)

Update parent node's spawn pointer
(new sp)

YES

NO

YES

NO

YES
NO

Figure B.2 Flow chart of spawn operation with PVM calls

129

� uplimit
� parent
� number of processors (pcount)
� task ids of new processors
� additive constant values of new

processors

Find parent node in the binary tree structure
(pnode)

Find maximum numbered node (maxnum)

Calculate node number
node number = parent node's spawn pointer
Insert new node into tree
Decrement pcount

Insert new node into LRU Queue

LRU Queue is created
&

new node's sp != NULL

pnode's direction = R
&

more left to spawn

Calculate node number
node number = 2*parent node's sp + 1
Insert new node into tree
Decrement pcount

YES

NO

YES

Insert new node into LRU Queue

LRU Queue is created
&

new node's sp != NULL
YES

NONO

A

Figure B.3.1 Spawn operation on binary tree first part

130

Update parent node's spawn pointer
Double the spawn pointer until it is
higher than maxnum

B

parent node's
direction = L

Update spawn pointer
wrt formula

YES

parent node's
direction = D

NO

YES

parent node's sp
>

uplimit

parent node's sp = NULL

YES

END

Find first child of parent node in tree
(enode)

NO

enode's sp
 =

NULL

parent node's sp = NULL

YES

parent node sp = enode sp*2

NO

parent node's sp
>

uplimit

NO

parent node's sp = NULL

YES

Update direction
parent node direction=D
enode direction = R

NO

Figure B.3.2 Spawn operation on binary tree second part

131

APPENDIX C

GRAPHICS FOR SOPHIE-GERMAIN PRIME

Sequence generated by LCG with Sophie-Germain prime of 2*83+1 is shown together with

its subsequences shared among three processors by the sequence splitting method in Figure

C.1.

Sophie Germain 2x83+1

0

50

100

150

200

250

300

350

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

1
4
6

1
5
1

1
5
6

1
6
1

1
6
6

Order

G
e
n
e
ra

te
d
 R

a
n
d
o
m

 N
u
m

b
e
rs

P

P0

P1

P2

Figure C.1 Sophie-Germain prime sequence splitting method

132

Sequence generated by LCG with Sophie-Germain prime of 2*83+1 is shown together with

its subsequences shared among three processors by the leapfrog method in Figure C.2.

Sophie Germain LeapFrog 2x83+1

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180

Order

G
e
n
e
ra

te
d
 R

a
n
d
o
m

 N
u
m

b
e
rs

P

P0

P1

P2

Figure C.2 Sophie-Germain prime leapfrog method

