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ABSTRACT 
 
 

RAY BASED FINITE DIFFERENCE METHOD  
FOR TIME DOMAIN ELECTROMAGNETICS 

 
 
 

Çiydem, Mehmet 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor      : Doç. Dr. S. Sencer KOÇ 

 
September 2005, 130 pages 

 
 
 
In this study, novel Ray Based finite difference method for Time Domain electromagnetics 

(RBTD) has been developed. Instead of solving Maxwell’s hyperbolic partial differential 

equations directly, Geometrical Optics tools (wavefronts, rays) and Taylor series have been 

utilized. Discontinuities of electromagnetic fields lie on wavefronts and propagate along 

rays. They are transported in the computational domain by transport equations which are 

ordinary differential equations. Then time dependent field solutions at a point are 

constructed by using Taylor series expansion in time whose coefficients are these 

transported distincontinuties. RBTD utilizes grid structure conforming to wave fronts and 

rays and treats all electromagnetic problems, regardless of their dimensions, as one 

dimensional problem along the rays. Hence CFL stability condition is implemented always 

at one dimensional eqaulity case on the ray. Accuracy of RBTD depends on the accuracy of 

grid generation and numerical solution of transport equations. Simulations for isotropic 

medium (homogeneous/inhomogeneous) have been conducted. Basic electromagnetic 

phenomena such as propagation, reflection and refraction have been implemented. 

Simulation results prove that RBTD eliminates numerical dispersion inherent to FDTD and 

is promising to be a novel method for computational electromagnetics. 

 
Keywords: Geometrical Optics, Wave front, Ray, Discontinuity, Finite Differences, Taylor 

series.  
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ÖZ 
 
 

ZAMANSAL ELEKTROMANYETİK İÇİN  
IŞIN TABANLI SONLU FARKLAR YÖNTEMİ 

 
 
 

Çiydem, Mehmet 

Doktora, Elektrik ve Elektronik Mühendisliği  Bölümü 

Tez Yöneticisi          : Doç. Dr. S. Sencer KOÇ 

 
Eylül 2005, 130 sayfa 

 
 

Bu çalışmada, Zamansal elektromanyetik için, yeni bir Işın Tabanlı sonlu farklar Yöntemi 

(ITZY) geliştirilmiştir. Hiperbolik Maxwell kısmi türev denklemlerini doğrudan çözmek 

yerine; Geometrik Optik araçları (dalga cepheleri, ışınlar) ve Taylor serisinden yarar-

lanılmıştır. Elektromanyetik alan kesintileri dalga cepheleri üzerinde bulunur ve ışın çizgileri 

boyunca yayılırlar. Bunlar, adi türev denklemleri olan taşıma denklemleri ile hesaplama 

ızgarasında taşınırlar. Daha sonra herhangi bir noktada, katsayıları bu kesintiler olan Taylor 

serisi marifetiyle zamansal elektromanyetik alan çözümleri oluşturulur. ITZY’de hesaplama 

ızgarasının dalga cepheleri ve ışınlar ile örtüşmesi gerekmektedir. ITZY tüm 

elektromanyetik problemleri ışınlar boyunca tek boyutlu probleme indirgemektedir. Bunun 

neticesi olarak, CFL kararlılık şartı ışın üzerinde hep eşitlik halinde tek boyutlu 

gerçeklenmiştir. ITZY’nin doğruluğu, hesaplama ızgarasının ve taşıma denklemlerinin 

sayısal çözümlerinin doğruluğuna bağlıdır. Homojen/inhomojen yönsüz ortamda 

benzetimler ile, yayılım, kırılım ve yansıma gibi temel elektromanyetik olaylar 

gösterilmiştir. Sonuçlar, ITZY’nin FDTD’de kalıtsal varolan sayısal saçınımı ortadan 

kaldırdığını ve etkin bir yöntem olarak gelecekte sayısal elektromanyetikte kullanı-

labileceğini göstermektedir. 

 
Anahtar Kelimeler: Geometrik Optik, Dalga cephesi, Işın, Kesinti, Sonlu Farklar, Taylor 

serisi 
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     CHAPTER 1 
 
 

1 INTRODUCTION 
 
 
 
1.1 Contents 
 
Underlying motivation behind this study has been to develop dispersion free numerical 

algorithms for computational electromagnetics (CEM) because one of the major CEM 

methods, Finite Difference Time Domain (FDTD), is inherently dispersive. Toward this end, 

many CEM methods in literature have been studied. Finally we have ended up with novel 

method, called Ray Based Time Domain (RBTD) method by us, for the computation of 

time-dependent electromagnetic (EM) fields.  

 
Chapter 2 discusses Maxwell’s equations, which are 1st order Partial Differential Equations 

(PDEs), and fundamentals of EM theory. Chapter 3 presents a historical survey of CEM 

methods in literature and discusses basic features of time domain finite methods with an 

emphasis on FDTD, Finite Volume Time Domain (FVTD) and characteristic-based 

methods. Grid structures, numerical dispersion, stability, and absorbing boundary condition 

(ABC) features are investigated. Although characteristic-based methods have many 

advantageous such as well-posedness, directional signal propagation, which improves the 

stability, numerical dispersion performance, and ease of ABC implementation, the 

coefficient matrix of governing equation cannot be diagonalised in higher dimensions. 

FDTD is very popular method for EM simulations and is widely used. The main drawback 

of FDTD is inherent numerical dispersion. There are two main factors causing numerical 

dispersion: discretization of PDE Maxwell’s equations (grid resolution, wavelength, time 

step) and propagation direction of wave in the grid. FDTD must obey CFL stability 

condition. There exists also superluminal effect in FDTD resulting from some modes 

traveling faster than light in the grid. 

 
In Chapter 4 and 5, which are the main contributions of this thesis, we have introduced how 

to utilize Geometrical Optics (GO) to remedy above drawbacks of time domain finite 

methods. GO tools such as discontinuity, discontinuity hypersurfaces, wave fronts, rays have 

been explained in Chapter 4 from EM approach. Then this theory has been extended to 

include higher order discontinuities to construct time dependent EM fields in Chapter 5.
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RBTD deals with discontinuities of field quantities, transport of them along rays (incident, 

reflected, refracted), and reflection/refraction of them at a boundary interface. After RBTD 

computes discontinuities in the computational domain, then it constructs time-dependent 

field by using Taylor series with coefficients being discontinuities at the point of interest. 

Chapter 6 presents numerous EM simulations for propagation, reflection and refraction of 

waves in isotropic homogeneous/inhomogeneous medium. Results for both FDTD and 

RBTD have been provided and compared. Then thesis concludes with Chapter 7 including 

conclusion and further study. 

1.2 Achievements 
 
In addition to RBTD, we have devised a novel grid structure for FDTD, which is Conformal 

FDTD, and observed that this approach removes dependence of numerical dispersion to 

propagation direction because grid conforming to wave fronts and rays has been aligned to 

follow ray direction. Then numerical dispersion only due to discretization of PDE remains 

left. To the best of our knowledge, conformal gridding in this sense for FDTD has been 

developed and implemented first in this thesis. 

 
RBTD is also based on characteristic theory of PDEs because grid structure of RBTD has to 

be wave fronts and rays, which are the characteristics and bicharacteristics of PDEs. Thus 

RBTD preserve the advantageous of characteristic-based methods but does not deal with any 

matrix diagonalisation.  

 
Honoring directional signal propagation and Ordinary Differential Equation (ODE) nature of 

transport equations provide to eradicate the numerical dispersion, which is the biggest 

advantage of RBTD over FDTD. RBTD not only eliminates numerical dispersion but also 

eliminates superluminal effects of FDTD. Contrary to FDTD, RBTD works on one of the 

field quantities, either E or H. FDTD must satisfy CFL stability condition while RBTD 

implements 1-D CFL condition (magic time step) along the rays. No matter what the 

dimension of problem is, it is treated as 1-D by RBTD. FDTD needs ABCs at the end of the 

computational domain. However in RBTD, after performing some pre-processing, 

discontinuities are determined and transported into computational domain as a spatial 

problem only. Hence no need to apply ABCs. 

 
As far as the type of input waveform is concerned, there is no limitation for RBTD (smooth 

or discontinuous) whereas FDTD needs smooth excitations. However it is preferable to find 

the solution first for simple waveforms such as step, ramp or rectangular pulses. Then one 

can construct the response to an arbitrary waveform from the response of simpler waveform. 



 

 

    CHAPTER 2 
 
 

2 MAXWELL’S EQUATIONS 
 
 
 
2.1 Introduction 
 
Before Maxwell’s work, many scientists studied the relationship between electricity and 

magnetism, but it was Maxwell who established the fundamental unification of electric and 

magnetic fields predicting electromagnetic wave phenomena. Nobel Laureate Richard 

Feynman has called it as the most outstanding achievement of 19th–century science. 

Maxwell’s partial differential equations (PDEs) describe dynamic nature of electromagnetic 

(EM) phenomena. They are 1st order systems of linear hyperbolic PDEs relating electric and 

magnetic fields. 

2.2 Basic Facts about Maxwell’s Equations 
 
The electric part of the EM field governed by Maxwell’s equations is described by two 

vectors D(x,y,z,t) and E(x,y,z,t) which are called electric flux density and electric field 

strength respectively. Associated with the vector field D is the scalar function ρ(x,y,z,t), 

which specifies the charge density (source charges and free charges in a conducting 

medium). The magnetic part of the EM field is described by two vectors B(x,y,z,t) and 

H(x,y,z,t). B is called magnetic flux density, and H the magnetic field strength. Whenever 

there is any motion of charges, there also exists current density, namely J(x,y,z,t). Then 

Maxwell’s equations in time domain (TD) can be expressed both in differential form and 

integral form as: 

 
 

Table 2-1: Maxwell’s equations in time domain 
 

 Differential form Integral form 

                             
BE
t

∂
∇× =

3 

 

                                                                               

−
∂

 ( )BE. . A
C A

d d
t

∂
= −

∂∫ ∫A  

DH J
t

∂
∇× = +

∂
 ( )DH. J . A

C A
d d

t
∂

= +
∂∫ ∫A  

.D∇ = ρ  D. A
A V

d dρ=∫ ∫ V  

0.B∇ =  0B. A
A

d =∫  
 

 



The first equations in Table 2-1 are known as Faraday’s law (or Lenz law) and state that the 

work done by the electric field (electromotive force) on a unit electric charge carried around 

closed path C is equal to the time rate of decrease of the flux of magnetic induction through 

surface A. The second ones are Maxwell’s generalization of Ampere’s law and state that the 

work done by the magnetic field (magnetomotive force) on a unit magnetic charge carried 

around C is equal to the flux of the total current through A. In any volume V bounded by a 

surface A, the third equations, known as Gauss law, relate vector field D on A to total charge 

in V. And the last ones are the restatement of a physical fact that no isolated magnetic 

charges exist in nature. 

 
In frequency domain (FD) with ejωt time convention, field variables and sources are phasors 

with angular frequency ω dependence, that is, D(x,y,z,ω), E(x,y,z,ω), B(x,y,z,ω), H(x,y,z,ω) 

and J(x,y,z,ω). Then Maxwell’s equations can be rewritten as in Table 2-2. 

 
 

Table 2-2: Maxwell’s equations in frequency domain 
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Differential form Integral form 
E Bj∇× = − ω  E. B . A

C A
d j dω= −A∫ ∫  

H J Dj∇× = + ω  ( )H . J D . A
C A

d jω= +∫ ∫A d   

                                                  .D =∇

                    

ρ  D. A
A V

d dρ=∫ ∫ V  

0.B∇ =  0B. A
A

d =∫  

 
 

Maxwell’s equations are also consistent with conservation of charge, which is represented 

by equation of continuity for current density J. 

 0.J
t
ρ∂

∇ + =
∂

 (2.1) 

It is convenient to regard J as consisting of two parts: conduction current density Jc and 

source current density (forced) Jf. 

 fJ J Jc= +  (2.2) 

Although Maxwell’s equations consist of four vector equations they are not all independent. 

Two divergence equations can be derived from two curl equations and the continuity 

equation by assuming zero initial conditions (ICs) for fields. Hence the following equations 

with proper ICs and boundary conditions (BCs) define an EM problem completely. 



,BE H
t t

DJ∂ ∂
∇× = − ∇× = +

∂ ∂
   (2.3) 

 
2.3 Constitutive Relations 
 
Eqn(2.3) relating four fundamental vectors E, D, H, and B, each having three components, 

represents twelve unknowns (field variables). System of differential equations (DE) is 

underdetermined since there are fewer equations than number of unknowns. Additional 

relations come from the physical nature of the medium called constitutive relations. 

 
In isotropic medium, parameters ε (permittivity), µ (permeability), and σ (conductivity) are 

scalars. If they are functions of (x,y,z) the medium is said to be inhomogeneous. Otherwise it 

is homogeneous. EM field vectors are related to each other in isotropic medium as follows: 

 c, ,D E B H J Eε µ σ= = =  (2.4) 

An anisotropic medium is again characterized by three medium parameters ε, µ, σ which are 

real, symmetric, positive definite matrices whose elements are functions of (x,y,z) in 

inhomogeneous medium and constants in homogeneous medium. In this case the relation-

ships among field vectors are given as: 

 c, ,D εE B µH J σE= = =  (2.5) 

Now Maxwell’s curl equations, Eqn(2.3), represent a determined system of PDEs with six 

equations for six field components (Ex, Ey, Ez, Hx, Hy, Hz) in Cartesian coordinates. Then one 

can determine E and H uniquely with proper ICs/BCs. 

 
Some additional remarks regarding medium parameters are in order. The medium in which 

the medium parameters are functions of frequency i.e.,ε(ω), µ(ω), σ(ω) are called dispersive. 

In dispersive media, phase velocity υ is a function of ω, which means that modulated or 

pulsed signal spreads and disperses as it propagates. This leads to the definition of group 

velocity υg, the velocity of energy or information travel, which must necessarily consist of 

some collection of frequencies. If the medium parameters depend on field quantities (in 

powers or in other nonlinear way) such as ε(E), µ(H) then it is said to be nonlinear. 

Expectedly, in time-invariant medium, medium parameters do not change with time. On the 

other hand, time-varying medium may have ε(t) or µ(t). 

2.4 Power and Energy Stored 
 
In electromagnetics, power and energy of EM fields is studied by means of Poynting’s 

theorem which is mathematically 
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 e m c( ) (w w ) ( )E H . A E.J
A V V

d dV
t
∂

− × = + + dV
∂∫ ∫ ∫   (2.6) 

It describes the law of conservation of energy in a closed EM system in which no source is 

present. The law states that the time rate of decrease of EM energy in volume V is equal to 

the rate of increase of ohmic losses (heat) in V plus the radiation flowing out through the 

closed surface A. The Poynting vector S(x,y,z,t) for instantaneous power flow is defined as: 

S E H= ×        (2.7) 

The direction of S gives us the direction of power flow. In Eqn(2.6), we, wm, and Pd stand for 

stored instantaneous electric, magnetic energy densities and dissipated ohmic energy 

respectively and are given by 

 2
e m d c

1 1w , w , P
2 2

E.D H.B E.J Eσ= = = =                 (2.8) 

For time-harmonic fields (ejωt convention), Poynting vector is 

 { } { }S Re Rej te ω= ×E H j te ω  (2.9) 

where E and H are phasors of E and H respectively. They are functions of (x,y,z) and can be 

complex vectors. Practically, average power density is more important and is found to be  

 {ave
1
2

S Re }′= ×E H  (2.10) 

E×H' is called as complex Poynting vector where superscript ' indicates complex conjugate. 

2.5 Electromagnetic Boundary Conditions 
 
Maxwell’s equations can be applied for any media to obtain the solution. But for the solution 

to be unique, they must satisfy the EM boundary conditions at the boundary separating the 

two media. To obtain these conditions, integral forms of Maxwell’s equations are used. For 

this purpose, fields are resolved into tangential components, which are parallel to boundary, 

and normal components, which are perpendicular to boundary. At the boundary, EM fields 

satisfy the following conditions at any point (x,y,z) in time and frequency. 

 [ ] 1 2( )n E n E E 0× = × − =  (2.11) 

 [ ] 1 2( )n H n H H Js× = × − =  (2.12) 

 [ ] 1 2( )n.D n. D D sρ= − =  (2.13) 

 [ ] 1 2( )n .B n . B B 0= − =  (2.14) 

where n, Js, and ρs are the unit normal vector to the boundary, surface current density and 

surface charge density respectively. Eqns(2.11), (2.14) state that tangential components of E 

and normal components of B are continuous across the boundary. But tangential components  
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of H and normal components of D are discontinuous by an amount of surface current density 

Js and surface charge density ρs as in Eqns(2.12), (2.13). 

2.6 Wave Equation 
 
Stated earlier, there are two independent, coupled, 1st order PDEs among Maxwell’s 

equations, namely Eqn(2.3) relating E and H. Eliminating one of the fields, a 2nd order PDE 

can be obtained for the field. And that PDE is to be solved for the problem of interest with a 

proper method subject to ICs/BCs. In isotropic medium, one can obtain the following for E. 
2

2
2 (E JE

tt
εµ µ∂ ∂

∇ − = +∇ ∇
∂

).E
∂

                                (2.15) 

In source free, nonconducting medium, Eqn(2.15) becomes 
2

2
2 0EE

t
εµ ∂

∇ − =
∂

    (2.16) 

This is generally referred to as vector wave equation in (x,y,z,t)-space. Noting that the 

permeability and permittivity of medium are in the form of 

0 r 0 r,µ µ µ ε ε ε= =     (2.17) 

where µ0, µr, ε0, and εr are permeability of free space, relative permeability of medium, 

permittivity of free space and relative permittivity of medium respectively. Then Eqn(2.16) 

is expressed as: 
2 2

2 2 r r
2 2 2 2 0E EE E

t c t
ε µ

υ
∂ ∂

∇ − = ∇ − =
∂ ∂

   (2.18) 

υ = (εµ)-1/2 and c = (ε0µ0)-1/2 are phase velocity and speed of light respectively. For 1-D 

problems in homogeneous medium, differential operators acting on E can be factorized as: 

( ) ( )E
x t x t

0
υ υ

∂ ∂ ∂ ∂
− + =

∂ ∂ ∂ ∂
   (2.19) 

Total solution E(x,t) can be constructed as sum of right and left propagating waves with υ. 

( ) ( ) ( )E , f gx t x t x tυ υ= − + +     (2.20) 

In higher dimensions, this factorization is not possible and solution cannot be constructed 

easily. Counterpart of vector wave equation in frequency domain is referred to as Helmholtz 

equation and given by 
2 2 0E Ek∇ + =      (2.21) 

where k = ω2εµ = 2π/λ is called the propagation constant or wave number of medium. λ is 

the wavelength. 

7 



8 

 

 

   CHAPTER 3 
 
 

3 COMPUTATIONAL ELECTROMAGNETICS 
 
 
 
3.1 Introduction 
 
Maxwell’s equations formulated circa 1873 define EM phenomena. Although it had been 

more than a century since its establishment, very few analytical solutions can be found for 

specific problems. Now engineers and researchers worldwide use numerical methods with 

computers to obtain solutions for the purpose of EM wave propagation, radiation, guiding 

and scattering. In this chapter we present first a brief history of computational 

electromagnetics (CEM), classification of EM problems and methods of solutions. Then we 

discuss basic features of time domain finite methods with specific emphasis to Finite 

Difference Time domain (FDTD) and Finite Volume Time Domain (FVTD). Finally 

characteristic based methods for Maxwell’s equations are introduced. The strong connection 

between the characteristic based methods and the novel method proposed in this thesis will 

be clear in Chapters 4 and 5 on which the scope of thesis heavily relies. 

3.2 History of Computational Electromagnetics 
 
Early development of CEM was prompted by intellectual curiosity on the implications of 

Maxwell’s equations, especially after Hertz’s verification of wireless propagation in the 

1880s. They concentrated on analytical solutions of Maxwell’s equations for diffraction 

problems via separation of variables, asymptotic evaluation of integrals etc. Diffraction 

theory evolved toward Geometrical Optics (GO) till the World War II. In the following 

years, the present Geometrical Theory of Diffraction (GTD) was formulated and elaborated. 

In the late 1940s Luneburg, Friedlander, Kline [1], [2], [3] devised a general high frequency 

(HF) theory of diffraction by showing that a field, associated with each point on a GO ray, 

has an asymptotic expansion in inverse powers of the wave number, k (or ω). In the 1950s, 

Keller [4] formulated GTD. This was based on generalization of Luneburg’s asymptotic 

series to include fields of diffracted rays arising from vertices, corners etc. He extended 

Fermat’s principle to derive laws governing these rays. Then, by considering canonical 

problems, researches were able to determine various diffraction coefficients [5], [6], [7]. 

This branch of the study of Maxwell’s equations has been called HF (Asymptotic) Methods.
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Almost parallel to Keller’s work , methods based on integral equation (IE) formulation and 

reduction of equations to practically manageable matrix formulations, previously known in 

other branches of science, was introduced to EM community during and after 1950s. In the 

mid 1960s, Harrington set the agenda for the next 20 years by working out a systematic, 

functional space description of EM interactions which he called the Method of Moments 

(MoM) [8]. After Harrington’s formulation, most of the work in CEM at low and moderate 

frequencies has concentrated on refining  MoM and applying it to variety of problems, even 

in HF diffraction coefficients for GTD analysis.  

 
HF Method studies in the years after Keller has concentrated on overcoming the defects of 

GTD to obtain a uniform representation of fields by employing asymptotic or numerical 

methods. Beyond the GO and Physical Optics (PO), variants of GTD such as Uniform 

Asymptotic Theory of Diffraction (UAT), Uniform Theory of Diffraction (UTD), Physical 

Theory of Diffraction (PTD), Incremental Theory of Diffraction (ITD), and Spectral Theory 

of Diffraction (STD) have been developed. After 1990s, time domain versions of these HF 

techniques have been reported in literature [9], [10], [11], [12], [13], [14]. They generally 

utilize either time-domain Green’s functions or inverse Fourier transformation to obtain time 

domain solutions.  

 
Two successful approaches of Keller and Harrington have well served the EM community 

for classes of problem that can be handled. However by the early 1980s, it became clear that 

rigorous engineering tools are needed for structures that could not be well treated by either 

method. For example, electrically large structures having complex shape and material 

composition were not easily modeled using GTD or its variants due to chaotic ray behavior. 

MoM suffered from computer limitations for large structures because of its dense, full 

matrix, matrix inversion and storage. To alleviate these drawbacks, iterative formulation of 

MoM was developed and then MoM was able to solve 10λ sized-structures using available 

computers at that time. But iterative MoM suffered from convergence. And much effort has 

been devoted to developing alternative to these frequency domain methods such as 

conjugate gradient, spectral domain, domain decomposition etc. 

 
In 1966, Yee introduced a computationally efficient means of directly solving Maxwell’s 

time-dependent curl equations using finite differences in Cartesian coordinates which is later 

called FDTD [15]. With this approach, the continuous EM field in a finite volume of space 

is sampled at distinct points in space and time. Wave propagation, scattering, and 

penetration phenomena are modeled in a self-consistent manner by marching in time, that is, 
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repeatedly implementing the finite difference (FD) analog of curl equations in the grid. Time 

marching continues as the numerical wave analogs propagates in the grid to causally connect 

the physics of modeled region and stops when the desired late time or steady state response 

is observed at the field points of interest. Yee algorithm is 2nd order accurate in space and 

time with a leap-frog scheme. The sampling in space at sub-λ resolution is selected to 

properly sample continuous field distribution in the Nyquist sense to avoid aliasing. 5 to 20 

samples per wavelength of the highest frequency of interest can be set depending on the 

application. The sampling in time is selected to ensure stability of the numerical algorithm. 

 
FDTD method in principle provided EM modeling with a level of detail as high as MoM. 

Unlike MoM, it does not lead to a system of linear equations defined over the entire problem 

space. Updating field components requires knowledge of only adjacent fields computed in 

previous time step, available in memory. Therefore overall computer storage and running 

time requirements of FDTD is linearly proportional to N, the number of field unknowns in 

the finite volume of space. In fact, the goal of iterative MoM in 1980s was this order of N on 

surface discretization. It is evident that it would be higher for volumetric MoM modeling. 

 
Despite potential advantages of Yee’s formulation, FDTD was very limited until the early 

1980s because of a number of basic problems. First Yee’s formulation provided no 

simulation of the field sampling space extending to infinity. This deficiency caused spurious, 

nonphysical reflection of the numerical wave analogs at the outer boundaries of 

computational domain. Second, it was not evident how to treat an incident wave having an 

arbitrary duration or arbitrary angle of incidence or angle of polarization. Third, it provided 

no means to obtain sinusoidal steady state magnitude and phase data from the computed 

transient field response. Fourth, it told nothing about wave interactions with important 

structures such as wires, and slots having dimension smaller than one lattice cell. Fifth, it 

provided no means to compute far field radiation or scattering patterns. And finally, it 

required volumetric space discretization and at that time computer resources was prohibitive. 

By the mid-1980s, the major difficulties with FDTD were overcome. Extensive publications 

during 1970s and early 1980s have put the FDTD modeling on credible foundations. In 1975 

Taflove and Brodwin published the correct numerical stability criterion for Yee’s algorithm 

and first grid-based time integration of a 2-D electromagnetic wave interaction problem for 

sinusoidal steady state [16] as well as the first 3-D grid-based computational model of 

electromagnetic wave absorption in complex, inhomogeneous biological tissues [17]. Mur 

published the first efficient successful finite difference implementation of absorbing 
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boundary conditions for Maxwell’s equations [18]. During the last 20 years, FDTD EM 

modeling of biomedical problems, frequency dependent dielectric permittivity, microstrips, 

antennas, picosecond devices has been introduced [19], [20], [21], [22], [23], [24]. With 

advent of high speed, high capacity computers now FDTD is able to solve approximately 

100λ sized structures. 

 
In the mid 1970s, finite element method for Helmholtz equation has been introduced. With 

this approach, the continuous EM field is approximated by a set of piecewise linear 

functions, each is defined over a specific triangular spatial element. Then Finite Element 

Time Domain (FETD) emerged for direct solution of Maxwell’s curl equations during 

1980s. Related works with FETD has been conducted by Mei, Madsen, Cangellaris and 

others [25]. Here a key consideration is optimizing the efficiency of mesh generation and 

coordinate storage because they have great impact on the overall computer resource 

requirement of finite element code. 

 
Another PDE based direct solution method of Maxwell’s equation, the Finite Volume Time 

Domain (FVTD) has been reported by Shankar et al., Madsen, Ziolkowski and Shang in 

1990s [26], [27], [28]. it can be considered as a variant of FDTD and relies on characteristic 

theory of hyperbolic PDE. Conservation form of Maxwell’s curl equations is used. FVTD 

collocates E and H fields at the cell centers while FDTD staggers them in space and time. 

FVTD will be discussed under characteristic based methods in Section 3.7 in some detail. 

 
In the late 1960s, 1970s and early 1980s available computer technology permitted the 

implementation of HF Methods and MoM for practical engineering problems. These two 

approaches which essentially limit the modeling to the surface of the structure of interest, 

presented a good match between computer resource needs of CEM algorithm and existing 

machines at that time. Realization of enormously enhanced computer speeds and storage 

capacities by 1980s enabled the direct solution of Maxwell’s PDEs and spurred new research 

activity in the area of FDTD, FETD, and FVTD within the entirety of structure of interest. 

Again there was a good match between the computer resources needed by CEM algorithms 

and the resources of existing machines. 

 
Pace and range of applications of FDTD, FETD, FVTD and related space-grid TD methods 

for solution of Maxwell’s equations are expanding rapidly. And they will continue to attract 

interest of researchers for emergent technologies since these can readily incorporate 

nonlinear and dispersive effects of materials and devices over large bandwidth. In particular  
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there is a strong trend toward proving the accuracy and usefulness of FDTD modeling of 

high speed optical and electronic devices [29]. 

 
The number of papers in this area presented at IEEE also proves the recent expanding level 

of interest to these time domain finite methods. For example in 1980s, related with FDTD, 

there were almost 10 publications on the average per year, but this number is around 1000 in 

recent years [29]. The reasons of interest can be summarized [30] as: 

 They have been found to be remarkably robust, providing highly accurate modeling. 

They use samples of both E and H, not only one of them. 

 They yield either sparse matrices (when structured as FETD) or no matrices at all 

(when structured as FDTD or FVTD) 

 They present systematic approach to deal with complex material properties and 

inhomogeneities. Here, specifying a new structure/medium is reduced to a problem 

of mesh generation rather than more complicated problem of reformulating and 

solving the IE in MoM which may require difficult derivation of geometry and 

medium dependent Green’s functions. 

3.3 Classification of Electromagnetic Problems 
 
EM problems are classified in terms of the equations describing them, boundary conditions 

and region of solution as in Table 3-1, [31]. 

 
 

Table 3-1: Classification of EM Problems 
 

Type of Equation Type of Boundary 
Condition 

Type of Solution  
Region 

 Differential 
 Integral 
 Integro-Differential 

 Dirichlet 
 Neumann 
 Mixed 

 Interior/Closed 
 Exterior/Open 

 
 
 
Exterior problems have generally open conducting bodies (electric/magnetic) and have 

apertures, cavities which make EM wave interaction complex while in interior ones, details 

of body’s composition such as material loss, inhomogeneities, anisotropy assume key role. 

3.4 Classification of Methods of Solutions of Maxwell’s Equations 
 
A number of methods exist for the solution of Maxwell’s equations [32]. We may classify 

them with respect to some criteria. First, they may be classified whether the method is 

analytical or numerical. Commonly used analytical and numerical methods are listed below. 
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Table 3-2: Commonly used analytical and numerical methods 
 

Analytical Methods Numerical Methods 
 Separation of Variables 
 Series Expansion 
 Conformal Mapping 
 Integral Solutions 
 Perturbation Method 

 

 Variational Method  
 Methods of Moment 
 Finite Difference Method 
 Finite Element Method 
 Finite Volume Method 
 TLM Method 

 
 
 
Substantial work in analytical area was carried out until 1960s. And most EM problems were 

solved using the classical methods of separation of variables and IE solutions. By means of 

them, only a narrow range of practical problems could be investigated due to complex 

geometries and medium parameters defining the problem. For example, separation of 

variables method was useful only for a small class of simple structures such as spheres, 

circular cylinders etc. By 1960s, emerging computer technology made numerical methods 

feasible. Since then considerable effort has been expended on solving practical, complex EM 

problems for which closed form analytical solutions are either intractable or do not exist. 

 
Secondly, methods of solutions may also be categorized according to their ability to provide 

specific time domain or frequency domain data as in Table 3-3. 

 
 

Table 3-3: Time domain and frequency domain methods 
 

Time Domain Methods Frequency Domain Methods 
 Separation of Variables 
 FDTD 
 FETD 
 FVTD 
 TLM 
 MoM 

 Separation of Variables 
 Variational Method  
 MoM 
 FDFD  
 FEFD 
 TLM 
 HF/Asymptotic Methods 

 
 
 
Note that in Table 3-3, some methods lie under both categories. Direct TD methods have 

been used to model both sinusoidal and pulse excitation. Equivalent FD data is obtained 

either by marching the solution to sinusoidal steady state or by performing a Fourier 

transform of the response. Direct FD methods employ time harmonic excitation (ejωt). 

Equivalent TD data is obtained by computing the magnitude/phase of a complete spectrum 

and then using inverse Fourier transform and convolution technique for a pulse excitation.  
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TD methods rely on IE (TDIE) or DE (TDDE) formulation. TDIE uses retarded potential 

integral approach and has the advantage that computational space is usually limited to 

structure surface. However, back-storage in time is required to perform retarded integrals. 

TDDE is adapted for example in FDTD and FETD. FD or FE analog of curl equations is 

marched in time in space grid consistently. A numerical wave radiation condition is 

employed to truncate computational domain. No-back storage is required for time marching. 

 
Similar to TD methods, FD methods also rely on IE formulation (FDIE) or DE formulation 

FDDE or both. The broad category of FDIE methods treats the EM phenomena as a 

boundary value problem and then deriving and solving integral or integro-differential 

equation for unknown fields at the surface of scatterer. But these equations are not general 

and have to be rederived based on the geometry and material characteristics. As stated 

earlier, the most widely used approach has been MoM augmented with iterative technique 

based on preconditioned conjugate gradient methods. HF Methods fall into this category. 

For electrically large objects, they can yield much information about the far field scattering 

response, especially for conducting structures. Ray-tracing based on GTD, or its variants has 

been applied for scattering, radiation properties of aircraft, antennas etc. Today TLM, finite 

element (FEFD) and finite difference (FDFD) in frequency domain are also commonly used. 

 
Combinations of above methods, called Hybrid Methods, are also possible. For example, 

various hybrid approaches involving MoM and HF methods have been explored to permit a 

self consistent composition of scattering effects of large as well as small features and 

conducting as well as dielectric material composition. Additional work has been done in 

attempting to apply HF methods to multi-ray regions using either hybrid ray/modal 

approaches or pure ray tracing within the cavities. Taflove and Umashankar [33] reported a 

hybrid MoM/FDTD method. Yee [34] proposed a hybrid FVTD/FDTD method utilizing 

classic leap-frog time marching. Another hybrid FDTD/Ray tracing method for indoor 

propagation has also been reported by Wang et al. recently [35]. 

 
 
 

Table 3-4: Some Hybrid Methods 
 

Hybrid Methods 
 MoM/HF Method 
 FDTD/MoM 
 FDTD/HF Method 
 FVTD/FDTD 
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3.5  Capabilities of Methods of Solution 
 
In applying any of the above methods to an EM problem, one has to check the suitability of 

the method because each method has its own advantages and disadvantages. Following 

tables represent an assessment of capabilities of some methods with respect to range of 

structure size, geometric features and material composition by the mid 1990s, [31]. 

Extensive research is still underway to improve them. 

 
 

Table 3-5: Modeling Approaches vs. Range of Structure Size (in λ) 
 

 < λ/10 λ 10λ 100λ > 100λ 
HF Methods NA NA       
MoM/iterative       ? NA 
FDTD or FETD ?       ? 

 

Table 3-6: Modeling Approaches vs. Geometric Features 
 

 close 
spherical

with 
edges

with 
corners

with corner 
reflectors 

with 
arbitrary 
unloaded 
cavities 

with 
arbitrary 
loaded 
cavities  

HF Methods    ? NA NA 
MoM/iterative      ? ? 
FDTD or FETD          

 

Table 3-7: Modeling Approaches vs. Material Composition 
 

Anisotropic media   PEC PMC Homo. 
dielectric 

Inhomo. 
dielectric 

Lossy  
media Diag. Gen. 

HF Methods   ? NA NA NA NA 
MoM/iterative       ? ? NA 
FDTD-FETD          ? 

 
 : Applicable NA: Not Applicable ?:Not sure if applicable  

 
 

3.6 Features of Time Domain Finite Methods 
 
We will discuss basic features of time domain finite methods such as grid structure 

(discretization), numerical dispersion and numerical stability based on [29], [30], [36]  

3.6.1 Grid Structure 
 
Time domain finite methods were originally formulated in orthogonal coordinate systems 

dictating orthogonal gridding. For example Yee algorithm (FDTD) was formulated in 
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Cartesian coordinates and numerical computations are performed on these grids. Smoothly 

varying surfaces has been modeled by staircasing. This led to significant errors in certain 

problems which were analyzed rigorously by Cangellaris and Holland [37], [38]. If the 

nature of the problem can be described in an orthogonal coordinate system other than 

Cartesian, it is rather simple to redevelop the formulation as was done by Merewether and 

Holland [39], [40]. Alternatively, a grid with varying spatial increments along different 

coordinate directions can be used (irregular mesh). Especially finer grids are useful in areas 

of rapid field fluctuations. Kunz and Lee [41] used this approach to calculate the external 

response of an aircraft to an electromagnetic pulse. 

 
Another gridding method is subgridding. In that, subdomains are gridded more finely than 

the rest of the problem space. Yee, Kasher, Kim, Hoefer and Zivanovic [42], [43], [44], [45] 

put forward this method. Here the key issue is the coupling of the fine and coarse grids. 

 
In 1980s, Holland, Simpson [46] and Holland, Gilbert [47] presented the implementation 

and analysis of FDTD thin-strut formalism and FDTD thin-slot formulation (TSF). They 

permitted the modeling of arbitrarily thin wires and narrow slots. Also Umashankar et al and 

Taflove et al derived field update equations for wires, slots, joints [48], [49]. These 

equations were obtained from the integral form of Faraday’s law. This method of gridding is 

called subcellular gridding.  

 
Maybe the most important method is conformal gridding. In 1983, Holland [50] published 

the first FDTD algorithm for generalized nonorthogonal coordinates based on the work of 

Stratton [51]. In this approach, fields are expressed in terms of covariant components (flow 

along coordinate direction) and contravariant components (flow through a constant 

coordinate surface). In orthogonal coordinates, covariant and contravariant components are 

collinear, however in nonorthogonal coordinates, they are not collinear and auxiliary 

equations must be obtained to express covariant components in terms of contravariant 

components or vice-versa. Holland’s formulation has been revisited by Fusco [52], [53]. Lee 

[54] generalized this approach assuming local curvilinear system for each cell face. Celuch-

Marcysak and Gwarek [55] also introduced a generalized TLM algorithm that permits 

curved boundaries. In order to take advantage of standard Cartesian grid and the benefit of 

conformal approach, Yee et al [56] developed an overlapping grid method for FDTD that 

uses conformal grid near the material and Cartesian grid elsewhere. Jurgens and Taflove 

[57] extended the method used previously for subcellular structures for PEC and dielectric 

curved surfaces. This so called Contour-Path (CP-FDTD) method used Cartesian grids 



except the vicinity of boundary where a distorted grid is used to conform. Mittra and Dey 

[58] also reported another conformal modeling for PEC surfaces. Madsen [59] extended 

original Yee’s approach to unstructured grids using discrete surface integral (DSI). Similar 

methods have been used by Gedney and Lansing [60] and referred to as Generalized Yee 

(GY) algorithm. FVTD also lies within the class of conformal gridding. It was originally for 

irregular, nonorthogonal structured grids, then generalized to unstructured grids [61]. 

 
Navaro et al. [62] and Ray [63] studied the fundamental aspects of numerical algorithms for 

conformal grids (nonorthogonal) such as stability, numerical dispersion and divergence free 

nature of Maxwell’s equations in source free region. While the usefulness of nonorthogonal 

curvilinear FDTD, DSI/GY reduces the boundary discretization error, additional dispersive 

errors can be introduced due to irregularity of grids. In general, above conformal methods 

are posed as a coupled set of difference equations (DE), and standard stability condition may 

not be sufficient to ensure strict stability of coupled DEs. The formulation must be well 

posed. Otherwise, numerical algorithm can be unconditionally unstable. 

3.6.2 Numerical Dispersion 
 
In this section, we will introduce the concept of numerical dispersion inherent to FDTD by 

working on 1-D scalar wave equation. But formulas and comments will also be provided for 

higher dimensional vector wave equations. 1-D scalar wave equation is rewritten as: 
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2 2 2

1u u
x c t
∂ ∂

=
∂ ∂

 (3.1) 

where u(x,t) is a scalar function and exact solution of PDE. Second derivatives may be 

approximated with 2nd order accurate central finite differences by using Taylor series 

expansion at point (x,t) = (i∆x,n∆t )as: 
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 (3.2) 

Truncating the higher terms in the expansion, then 1-D scalar wave equation can be 

approximated by a difference equation of 
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(3.3) 

Ui
n
 stands for exact solution of DE (numerical solution of PDE). To proceeding, let us 

consider the continuous sinusoidal traveling wave solution of Eqn(3.1) in phasor form as: 
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( )( , ) j t kxu x t e ω −=      (3.4) 

where k = ± ω/c. Then phase velocity and group velocity are found as 

 
/ , /gk c d dk cυ ω υ ω= = ± = = ±

 
(3.5) 

Now consider sinusoidal numerical wave analog evaluated by difference equation. 
(n j n t ki

iU e ω )x∆ − ∆=      (3.6) 

where k* is numerical wave number in the grid. In general k* differs from k of physical wave. 

This difference gives rise to numerical phase and group velocities that depart from actual 

values. This in turn causes numerical errors called numerical dispersion or anisotropy effect. 

Substituting numerical wave analog into DE yields the following dispersion relation which 

will be investigated next. 

 
2

( ) ( ) 1*cos cosc tt k x
x

ω ∆⎛ ⎞ 1⎡ ⎤∆ = ∆⎜ ⎟ − +⎣ ⎦∆⎝ ⎠
 (3.7) 

Case 1: Very fine mesh (∆t → 0, ∆x → 0) 

Applying one-term approximation to cosines for small arguments, we obtain  

 / ,* *
gk c cω υ υ * c= ± ⇒ = ± = ±  (3.8) 

We see that k* has exactly the same relation to ω with k and phase and group velocities are 

equal to c regardless of ω implying that numerical solution is dispersionless. This is intuitive 

result because in the limit as the space, time increments of DE go to zero, we expect the 

numerical solution to be exact. 

 
Case 2: Magic time step (c∆t = ∆x) 

Substituting magic time relation into numerical dispersion relation yields 

 
( ) ( *cos cost kω )x∆ = ∆  (3.9) 

This implies that 

  (3.10) / / / , /* * * *
gk t x c k c d dkω ω υ ω υ ω= ± ∆ ∆ = ± ⇒ = = ± = = ±* c

Numerical dispersion relation again reduces to that of exact solution. However, unlike case 

1, this is nonintuitive because it implies that numerical solution is exact regardless of the 

choice of space and time increments. No matters fine or coarse mesh. This is interesting. 

 
Case 3: Dispersive wave propagation 

General solution of dispersion relation Eqn(3.7), where numerical dispersion errors can 

exist, is found by manipulating Eqn(3.7) as: 
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 (3.11) 

For example, consider a choice of space and time increments such that c∆t = ∆x/2 and 

∆x = λ0/10 where λ0 is the free-space wavelength of physical wave. Further noting that 

k = 2π/λ0 and with this choice of ∆x, numerical wave number is found to be k* = 0.6364/∆x. 

This leads to numerical phase velocity of υ* = 0.9873c. The numerical phase velocity is seen 

to be 1.27% less than free-space phase velocity, c. That means that if a physical wave 

propagates over a distance of 100∆x space cells (10λ0), numerical wave would propagate 

98.73∆x distances. And there would be 45.72° phase errors at the leading edge of wave. If 

the ∆x were chosen to be λ0/20, then phase error would reduce to 11.19°. This is a reduction 

by a factor of about 4:1. Then one can conclude that numerical dispersion can be reduced by 

choosing finer mesh, but running time and storage requirements are influenced adversely. 

Phase errors due to numerical dispersion are cumulative. FDTD is inherently dispersive and 

has this basic limitation for modeling electrically large structures. The dispersion relation for 

Yee algorithm for 2-D and 3-D are given in a similar fashion as: 
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  (3.13) 

As seen from Eqns(3.12),(3.13), grid discretization (∆x,∆y,∆z), frequency ω and direction of 

propagation ( ) have effect on the numerical dispersion. ∆t is chosen 

in accordance with stability condition. If we fix the grid discretization and frequency, we 

observe that finite difference grids exhibit different phase velocity errors for different 

direction of propagation, with minimum at diagonal propagation in the grid. For example if 

(∆x,∆y,∆z) all are set equal (let ∆), then the choice of ∆t = ∆/c

x y zk k k= + +* * * *ˆ ˆk x y

2  in 2-D or ∆t = ∆/c 3  in 

3-D produces minimum phase error for diagonal propagating wave. But this is not of 

practical importance for general set of wave directions. Also note that ∆t for diagonal 

propagation is the limit set by stability condition (magic time step). If we fix the direction of 

propagation but vary cell sizes, finite difference grid exhibits a numerical LPF effect which 

is also inherent to FDTD. Phase velocity diminishes as the propagating wave is more 

coarsely resolved, eventually reaching a sharp cut-off frequency where the numerical phase 

velocity goes to zero and wave can no longer propagate in the grid. Thus pulses having finite 
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duration experience ringing and broadening of pulse since high frequencies propagate more 

slowly in the grid than the low frequencies. To keep this effect at minimum, principal 

spectral components must be resolved with at least 10 cells per wavelength. 

 
Elimination and reduction of dispersion error of related time domain finite method is very 

active research area. In 1989, Fang [64] proposed higher order accurate methods, i.e., 2nd 

order accurate in time and 4th order accurate in space. Another higher order method has also 

been reported by Hadi and Piket-May [65]. Higher order methods reduce dispersion but 

degrade the stability. A new FDTD method for reducing numerical dispersion was proposed 

by Cole [66]. In this method, nonstandard finite difference operators are used to substantially 

reduce the numerical dispersion over that of the Yee algorithm at a single frequency. 

Another method called Pseudo-Spectral Time Domain (PSTD) was put forward by Liu [67]. 

PSTD has the appealing property that the numerical dispersion error is made arbitrarily 

small simply by reducing the CFL stability number. Also new techniques developed from 

the theory of wavelets applied to Maxwell’s equations appear to be promising area. One 

such method is the Multi-Resolution Time Domain (MRTD) reported by Krumpholz and 

Katehi [68]. Wang and Teixeira [69] reported an angle optimized FDTD algorithm at 

preassigned frequencies. 

3.6.3 Numerical Stability 
 
In the previous section, we observed that space increments (∆x,∆y,∆z) and time step ∆t could 

affect the velocity of propagation of numerical wave in computational grid. Now another 

consideration enters into selection of time step ∆t. ∆t must be bounded in order to avoid 

numerical instability which is an undesirable feature of explicit numerical algorithms 

causing the computed result to increase spuriously without limit as time marching continues. 

For explicit algorithms spatially adjacent field and source samples do not interact within the 

same time step, hence unknowns can be solved algebraically, a matrix does not need to be 

solved. Explicit algorithms are easy to implement and but conditionally stable. 

 
Stability analysis of a numerical algorithm is achieved in a classical way established in 

Mathematics several decades ago by Courant, Friedrich, and Lewy (CFL) and Von 

Neumann. This approach permits separate analysis of time and space derivative parts of 

wave equation. To do this, numerical wave modes (Fourier modes, Plane wave modes) are 

introduced into difference equations. Then numerical algorithm is decomposed into separate 

time and space eigenvalue problems. Temporal and spatial spectrums are obtained. To 

guarantee numerical stability for every mode propagating in the grid, the spatial spectrum 



must be contained completely within the stable range of temporal spectrum. For 1-D scalar 

wave equation, this analysis result in 
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c /t x∆ ≤ ∆  (3.14) 

We see that ∆t has an upper bound. If ∆t is selected to be larger than this bound, it is 

certainty that numerical algorithm be unstable. Interestingly, the upper bound for stable 

operation of the numerical algorithm is the magic time step discussed earlier. CFL stability 

condition for Yee algorithm is given in 2-D and 3-D respectively as: 

 

2 2 2 2
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1 1 1 1 1

( ) ( ) ( ) ( ) ( )

t t

2

1

x y x y
υ υ

∆ ≤ ∆ ≤
+ +

∆ ∆ ∆ ∆ ∆z
+

 (3.15) 

If space increments (∆x,∆y,∆z) all are set equal (let ∆), then the CFL stability condition 

reduces to ∆t = ∆/c 2  in 2-D and ∆t = ∆/c 3  in 3-D. Eqn(3.15) are valid for isotropic, 

homogeneous medium and for uniform, regular meshes, i.e. space increments are constant in 

computational grid. In inhomogeneous medium, no neat formulas are available. But to be on 

the safe side, υmax of υ in the medium and smallest space increments in the grid are selected 

for the determination of ∆t. 

 
One can relax, even remove the CFL stability condition and select ∆t to be larger than upper 

bound of CFL condition by using implicit numerical algorithms. For implicit algorithms, 

interaction of unknowns within the same time step is allowed. The number of these 

interactions can be adjusted and limited so advancing solution from time step n to (n+1) 

requires the solution of a sparse rather than a full matrix. But the accuracy of implicit 

algorithms is inferior to that of explicit ones. Implicit methods maybe unconditionally stable. 

The primary time domain finite methods (FDTD, FETD, FVTD) used today are fully 

explicit, 2nd order accurate grid-based solvers employing highly vectorizable and concurrent 

schemes for time marching field components. Explicit nature of the solvers is maintained by 

either leap-frog or predictor-corrector time integration schemes. 

 
Numerical stability of time domain finite methods over the entire problem, in fact depends 

upon more than the CFL condition. There is a generalized (absolute) stability requirement 

due to interactions of numerical algorithm with algorithms augmenting it such as: 

 Boundary Conditions (ABCs) 

 Variable, Non-Cartesian, unstructured meshes 

 Lossy, dispersive, nonlinear and gain materials 



Thus one has to deal with these issues to enforce, ensure absolute stability. By the way, it is 

proper to mention relations among consistency, convergence and stability of difference 

equations (numerical algorithm) approximating the PDE. According to Lax theorem [70], a 

numerical algorithm is said to be convergent if it is consistent and stable. To prove 

convergence is difficult task, hence people usually deal with consistency and stability which 

are easier to show. Consistency is related to truncation errors which result from truncated 

Taylor’s series approximating derivatives. If truncation error goes to zero while space 

increments (∆x,∆y,∆z) and time step ∆t go zero so that  
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then numerical algorithm is said to be consistent with the PDE. In general most numerical 

algorithm is consistent, so to prove stability suffices to prove convergence.  

3.6.4 Absorbing Boundary Conditions 
 
In solving EM problems, many geometries of interest are defined in open regions where the 

spatial domain of computed field is unbounded in one or more coordinate directions. 

Obviously no computer can handle unlimited amount of data therefore computation domain 

must be limited in size in such a way that it must be large enough to enclose the structure of 

interest and a suitable boundary condition on the outer perimeter must be used to simulate its 

extension to infinity. In this process, the outer boundary condition must suppress spurious 

reflections of the outgoing numerical wave to an acceptable level, permitting the solution to 

remain valid in the interior for all time steps. These boundary conditions have been called 

either Radiation Boundary Conditions (RBCs) or Absorbing Boundary Conditions (ABCs). 

There are mainly two types of ABCs: differential operator type and material type. 

 
Differential operators which are simple to implement represents one of the achievements of 

ABC theory in 1970s and 1980s. These operators constitute a class of ABCs based upon the 

expansion of outward propagating wave solutions of the wave equation in spherical, 

cylindrical, Cartesian coordinates. They systematically kill, annihilate an arbitrary outgoing 

wave, leaving a remainder representing the residual error of process. Bayliss and Turkel [71] 

presented the basic idea to construct a weighted sum of three partial derivatives of the field. 

 spatial partial derivative in the direction of outgoing wave 

 spatial partial derivative in the direction transverse to the outgoing wave 

 time partial derivative.  

A better approach than Bayliss-Turkel method is to define a local coordinate system at the 

outer boundary that follows the natural grid planes, rather than crossing them. This is the 



Engquist-Majda method [72]. A PDE that permits wave propagation only in certain 

directions is called one-way equation. When applied at the outer boundary of an FDTD grid, 

one-way wave equation numerically absorbs impinging wave. Engquist and Majda derived a 

theory of one-way wave equations suitable for ABCs. Then in 1981, Mur [16] who adapted 

work of Engquist-Majda published the first numerically stable 2nd order accurate, successful 

finite difference scheme for ABC applied to Yee grid. In that paper Mur implemented the 

partial derivatives as numerical central differences expanded about an auxiliary grid point. 

Higdon [73], [74] and Liao et al. [75] improved these differential operator type ABCs and 

obtained generalized, higher order operators and extrapolations in mid 1980s. 

 
Material based ABCs are realized by surrounding the computational domain with a lossy 

material that dampens the outgoing fields. Early material ABCs did not provide sufficient 

low level of boundary reflections because the characteristic impedance of the material 

boundary was matched to the impedance of free space only at normal incidence. But the use 

of material ABCs significantly advanced with the work of Berenger [76] who introduced the 

PML ABC. Then Katz et al. [77] extended Berenger PML to 3-D problems. Large amount of 

loss can be introduced with PML for all frequencies and for all angles of incidence without 

affecting the phase velocity. Berenger PML ABCs can be used to truncate 2-D, 3-D space 

grid with a very small local reflection coefficient with more than 40dB improvement relative 

to Mur ABC. This allows the possibility of achieving FDTD simulations having a wide 

dynamic range of 70dB or more which is very critical in some applications such as radar 

cross section (RCS) simulations. Computational requirements of PML ABC are expectedly 

higher than differential operator types. 

3.7 Characteristic Based Methods for Solutions of Maxwell’s Equations 

3.7.1 Method of Characteristic for Hyperbolic PDEs 
 
Consider the 2nd order, linear PDE of 
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(3.17) 

where u is dependent variable to be solved and a, b, c, e may be functions of independent 

variables (x,t). Let us denote the first and second derivatives by 
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Let Γ be boundary where ICs (upto the first derivatives) are defined and C be a curve in (x,t) 
on which u, p, and q satisfy Eqn(3.17) and r, s, w are derivable from them. Such a problem is 

called Cauchy problem and ICs on Γ as Cauchy data ( 
Figure 3-1). 
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Figure 3-1: Cauchy problem and Method of Characteristic 
 

 

Differentials of p, q in direction tangential to C satisfy the equations 
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 (3.19) 

where ar+bs+cw+e = 0 and dt/dx is the slope of the tangent to C. Eliminating r, w yields 
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Now choose C so that the slope of the tangent at every point on it is a root of the equation 
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so that s is also eliminated in Eqn(3.20). Then it follows that in this direction 

 0dp dt dq dta c e
dx dx dx dx

+ + =
 

(3.22) 

This shows that at every point (x,t) of solution domain there are two directions, given by the 

roots of Eqn(3.21), along which there is a relationship, given by Eqn(3.22), between the total 

differentials dp and dq. This relationship can be used to solve the original PDE by a series of 

step-by-step integration. If the PDE is hyperbolic these roots are real, distinct and gives us 

the characteristic curve directions (α,β characteristics) as illustrated in Figure 3-2. ICs are 

propagated along α, β characteristics and solution u(x,t) is formed numerically. This is 

called Method of Characteristics (MoC). In order to obtain the solution, Γ along which 

Cauchy data is defined must be a non-characteristic curve. When it is a characteristic curve, 

then PDE have no solution unless Cauchy data satisfy necessary, additional differential 

relationship on that characteristic. 

24 



 
 

25 

 
 
 

 
 
 
 
 
 

β
α 

T

SR 

W Q P

t 

Γ 

x

Figure 3-2: Characteristic curves 
 

 

Scalar or vector hyperbolic PDEs (i.e., Maxwell’s equations, wave equation) in (x,t)-space 

can be solved numerically by MoC. But as the number of independent variables and 

dependent variables increase, many characteristics generate from a point. Then the method 

can not be easily, efficiently implemented and has some limitations as will be discussed in 

the next section. Theoretically in higher dimensions, there exist characteristic surfaces and 

characteristic curves (bicharacteristics) of PDE. In 1-D, characteristic surfaces degenerate 

into characteristic curves, that is, characteristics and bicharacteristics are the same. 

 
Elliptic and parabolic PDEs may have analytic solutions even when ICs/BCs are 

discontinuous. However, hyperbolic PDEs are not so. Discontinuities in the ICs are 

propagated into solution domain along bicharacteristics [70]. This interesting property will 

be utilized in Chapters 4 and 5 to establish the underlying theory of the novel method 

proposed in this thesis. In Figure 3-2, it is seen that solution at R is affected by ICs between 

P and Q then this region is called domain of dependence of R. Similarly Point Q affects the 

open region bounded by characteristics curves originating at Q. This open region is called 

domain of influence of Q. Hence as in the solution of scalar wave equation with finite 

differences, one must also pay attention to spatial and temporal increments to solve the PDE 

numerically by MoC. For example, let us consider again the solution of 1-D wave equation 

for t > 0 with Cauchy data defined on x-axis. It is repeated here. 
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whose characteristic directions are dt/dx = ±1/c. Suppose that we have approximated 

Eqn(3.23) with the same difference equation of Eqn(3.3). 
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Figure 3-3: Domain of dependence and stability 
 

 

Considering  
Figure 3-3, if the ICs along DE are altered, the solution at P by numerical algorithm will 

change. But these alterations will not affect the solution value of PDE at P due to ICs along 

DA and BE. Hence in this case an explicit numerical solution will not converge to analytic 

solution even as ∆x, ∆t go to zero and will not be stable. For convergence and stability, line 

DE (analytical domain of dependence) must be contained in line AB (numerical domain of 

dependence) implying that slope ∆t ≤ ∆x/c. This is, in fact, the CFL condition.  

 
Also recall that the solution of 1-D scalar wave equation at point P can be found by 

d’Alembert’s solution. 
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where f, g are ICs. In 2-D, 3-D, finding the solution of wave equation with ICs 
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is provided by  
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which is called Method of Spherical Means in 3-D (Poincare’s solution) and Method of 

Descent (Hadamard solution) in 2-D where λ = ⏐R′-R⏐ = ct. All these expressions rely on 

the domain of dependence concept [78]. 
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Efforts to take advantage of proven methods of CFD have led to the formulation of a very 

comprehensive numerical approach for solving electromagnetic scattering, and radiation 

problems involving complex objects. FVTD is essentially a characteristic based method and 

is known as dissipative despite dispersive nature of FDTD [79]. This approach is based on 

Riemann integration method and recent advances in numerical solution of PDEs in CFD. It 

has been successfully applied to diverse range of problems, involving electrically large 

scatterers, inhomogeneous and layered dielectrics, cavities, frequency dependent materials, 

impedance surfaces, canonical antennas etc. It collocates E and H in both space and time 

rather than interleaving them These are volume averages in the lattice. This has the 

advantage of reducing the complexity of gridding in material region and in extracting the 

near field data for transformation to far field. FVTD employs body fitted meshes to represent 

target geometry, hence fall into the conformal category. These properties reduce the 

limitations for storage and modeling of large bodies for RCS simulations. To apply 

characteristic based methods, Maxwell’s curl equations are first recast into conservation 

form, for example in source-free, nonconducting, isotropic medium as: 

 32 01 FF FU A B C
t x y z

∂∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
 (3.27) 

U is the quantity to be conserved in the centroid of lattice and F1, F2 and F3 are the fluxes at 

the lattice faces defined as: 
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Under coordinate transformation for conformal grids, governing equations become 
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V is the Jacobian of transformation (cell volume). In transformed system of equations, 

coefficient matrices can not be taken out of differential operator globally as in Eqn(3.27) If it 

were, decoupled equations would be obtained after diagonalization. Otherwise one treats the 

equations locally. Characteristic-based methods have basic limitation that coefficient 

matrices in Eqns(3.27),(3.29) can be diagonalised in 1-D at a time. Hence all 2-D, 3-D 

problems must be split into multiple 1-D sub-problems and solved by numerical sweeps. 
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Each 1-D subproblem is called Riemann problem for example the one in (Eqn(3.31)) with 

coefficient matrix A given by Eqn(3.32). 

 0U UA
t
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 (3.31) 
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From matrix A, one can find the eigenvalues by det(A-ΛI) = 0. They give us the speed and 

direction of propagation [80]. They are real and contain multiplicities. 

 (-1/ , -1/ , 1/ , 1/ , 0, 0)εµ εµ εµ εµΛ =  (3.33) 

Despite multiplicities, linearly independent eigenvectors can still be found and similarity 

matrices of diagonalization S, S-1 are obtained from them. Then fluxes can be split into 

negative and positive components with respect to positive and negative eigenvalues or 

characteristic variables (Riemann invariants) can be defined which propagate along 

characteristics. In this spatial part of the Riemann problem, implementation of several finite 

difference and finite volume explicit/implicit (Lax-Wendroff, Crank-Nicholson, Alternating 

Direction Implicit (ADI)) numerical algorithms have been reported [81], [82], [83], [84], 

[85], [86], [87], [88]. Time integration part of conserved quantity is handled by predictor-

corrector, leap-frog, or Runge-Kutta methods. Recently Beggs [90], [91] published first 1-D 

and then 2-D bicharacteristic FDTD methods. Novel method proposed in this thesis also 

relies on characteristic theory but as will be discussed in Chapters 4, and 5, it is totally 

different than above methods. 

 
Courant, Friedrich and Lewy in their classical paper [89] demonstrated necessary and 

sufficient condition for convergence and stability of a numerical algorithm. Based on their 

work, it has been shown that 2-step Lax-Wendroff upwind algorithm [83] for the solution of 

Maxwell’s equations is stable if and only if 

 max| | 2t
ξ
∆

Λ ≤
∆

 (3.34) 

where |Λ|max is the largest eigenvalue of matrix A at any point in the grid. In higher 

dimensions, the value of |Λ|max is taken to be 

 max| | (| | | | | |)max ξ η γΛ = Λ +Λ +Λ  (3.35) 
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   CHAPTER 4 
 
 

4 ELECTROMAGNETIC APPROACH TO GEOMETRICAL OPTICS 
 
 
 
4.1 Introduction 
 
EM community uses plane waves to explain the governing laws and tools of GO such as 

Fermat’s principle, Snell’s law of reflection and refraction, wave fronts and rays. Moreover 

the first term of HF asymptotic expansion (Luneburg-Kline series) of an EM field, say for E, 

0( ) m 0
0 m

m 0
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R E R

E R jke
j

ω
ω

∞
− Ψ

=

= ∑    (4.1) 

is called GO field of EM field and obeys laws of GO. This asymptotic series is accurate as k 

(or ω) goes to infinity. Higher order terms (m > 0) are understood as improvements over GO 

field. In this chapter we present a different approach for GO on the basis of EM foundation 

laid in Chapter 2. When a source begins to act, EM fields E, H spread out into space. Due to 

finite velocity of propagation, there will be a domain of (x,y,z,t)-space in which the field 

vectors are not zero, and a domain in which the fields do not penetrate [80]. Separating these 

two domains is a hypersurface. The field vectors are discontinuous on this hypersurface. 

And GO fields are defined in terms of these discontinuities. This approach can be called as 

Time Domain Geometrical Optics (TDGO). 

 
For this purpose, we first present IE forms of Maxwell’s equations. These IEs are not usual 

Amphere’s and Faraday’s laws of Chapter 2. Instead they involve integrals over hyper-

surfaces in (x,y,z,t)-space. The use of them is that they admit discontinuous solutions (weak) 

of Maxwell’s equations where DEs have no meaning. Based on them, discontinuity 

conditions are derived and types of discontinuity hypersurfaces are discussed. Transport 

equations which govern the variation of GO fields are also studied. By means of them, we 

furnish the theory of TDGO. The scope of this chapter totally depends on the work of Kline 

[92]. Instead of CGS, we present all derivation and formulation in MKS here.  

4.2 Maxwell’s Equations and Discontinuous Solutions 
 
Time-dependent Maxwell’s curl equations in isotropic, nonconducting medium are 

 , f
HE H
t t

µ ε∂
∇× = − ∇× = +

E J∂
∂ ∂

 (4.2) 
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An auxiliary function F related with the behavior of source charges is defined as: 

 f
FJ
t

∂
=
∂

 (4.3) 

ε, µ and F are assumed to be smooth (continuous and differentiable). Discontinuities in F is 

finite and ε, µ may have finite discontinuities at a boundary between two media. Source Jf 

(or F) begins to act at t=0 so that E, H be zero for t < 0 and nonzero for t ≥ 0 due to 

causality. We will consider solutions that exist in the (x,y,z,t > 0) half-space. Let Ω(x,y,z,t) 

be class of real, scalar testing functions with continuous and continuous derivatives of all 

orders in (x,y,z,t)-space. Moreover each Ω is to be zero on the boundary Γ and outside of a 

compact domain in the half-space. Then multiplying Eqn(4.2) with Ω and integrating over 

(x,y,z,t)-space, it is found that 
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where dw = dxdydzdt is a volume element of Γ. Taking above integrals using integration by 

parts, it can be shown that Eqns(4.4) is equivalent to 
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Then differential forms of Maxwell’s equations Eqn(4.2) and IEs Eqn(4.5) are equivalent in 

the sense that they have the same solutions. We will deal with discontinuous E, H solutions 

of Maxwell’s equations, and above IEs fit to the purpose. 

4.3 Discontinuity Conditions 
 
The objective in this section is to derive conditions that the discontinuities in E, H must 

satisfy on any discontinuity hypersurface. Let G be a subdomain of Γ and a discontinuity 

hypersurface φ = 0 passes through it as in Figure 4-1. Then the solutions E, H of Eqn(4.5) 

must satisfy the same IEs taken over the subdomain G. The hypersurface φ = 0 divides G 

into two domains G1 and G2. E, H is assumed to be analytic in these subdomains and 

discontinuities in themselves have finite limits as φ = 0 is approached through G1 or through 

G2. These facts are assured by the existence theorem of Lewis [93]. 
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Figure 4-1:Discontinuity hy

 
 

Then discontinuity conditions are found as: 

 
[ ] [

[ ] [

E H

H E

t

t

∂
∇ × +

∂
∂

∇ × −
∂

φφ µ

φφ ε

where [E] = E1 - E2. These conditions must hold on a

is counter part of Maxwell’s curl equations. Since fi

the values of the field vectors are denoted such tha

when (x,y,z,t) is approached through G1 and E2 the

approach through G2. These values E1 and E2 will i

values of E in G1 and G2 respectively. For example

time waveform for E and its derivative (Figure 4-2). 

 

 

 

 

 

 

 
Figure 4-2: Interpretation of finite

t

df(t)

t00 

f(t) 
 finite jump 

  
Γ 

1

2

G

 

persurface crossin

]

]

0

0F

=

+ =
 

ny hypersurface φ

eld vectors are di

t E1 is the value 

 corresponding va

n general be finit

, hypothetically c

 jump discontinuit

/dt 

t0
φ = 0

G

G

g  Γ 

(4.6) 

 = 0. In fact Eqn(4.6) 

scontinuous on φ = 0, 

of E(x,y,z,t) on φ = 0 

lue at (x,y,z,t) for an 

e limits of continuous 

onsider the following 

ies 

t 0

finite jump 



 

33 

 

 

 

 

 

 

 

t

x 

source 

φ = 0 
y 

 

Figure 4-3: A hypercone in (x,y,t)-space 
 
 
4.4 Types of Discontinuity Hypersurfaces 
 
There are mainly three types of discontinuity hypersurfaces represented by geometrical 

equation φ(x,y,z,t) = 0. In order to help us in our thinking about them, consider the related 

situation in (x,y,t)-space as in Figure 4-3. First kind of hypersurface is the hyperplane t = 0. 

If the spatial distribution of sources is some bounded domain of this hyperplane, field 

vectors will be nonzero there for t ≥ 0 but zero for t < 0 since sources are turned on at t = 0. 

Hence this hyperplane t = 0 is a discontinuity hypersurface and can be represented as: 

 ( , , , ) 0x y z t tφ ≡ =  (4.7) 

Then ∇φ = 0, ∂φ/∂t = 1 and discontinuity conditions on this hypersurface become 

 [ ] [ ]0, 0E F Hε µ+ = =  (4.8) 

Since E, H are 0 for t < 0 then we have 

 1( , , ,0 ) ( , , ,0 ), ( , , ,0 ) 0E F Hx y z x y z x y z
ε

+ + += − =  (4.9) 

Eqn(4.9) shows that ICs for Maxwell’s equations can be obtained from the source condition 

F. Moreover if a source continues to act after t = 0, the ICs do alone suffice to determine the 

solution of Maxwell’s equations in pure initial value problem. 

 
Second and maybe the most familiar type of hypersurface on which field vectors are 

discontinuous is a stationary boundary between two media such as  

 0( , , , ) ( , , ) 0x y z t x y zφ ≡ Ψ =

H

 (4.10) 

This is a surface in (x,y,z)-space and a cylindrical hypersurface whose elements are parallel 

to t-axis in (x,y,z,t)-space. In this case ∂φ/∂t = 0 and ∇φ = ∇Ψ0, then discontinuity conditions 

in source-free region become 

 0 00 , 0E∇Ψ × = ∇Ψ × =  (4.11) 



The vector ∇Ψ0 is normal to the surface Ψ0 = 0. These equations state that tangential 

components of E, H and normal components of D, B are continuous across any surface fixed 

in (x,y,z)-space. This statement contains the familiar boundary conditions of Chapter 2. 

 
Thirdly, the field created by source will spread out into (x,y,z,t)-space. Since the fields move 

through space with a finite velocity, they will reach any point (x,y,z,t) only after some time 

t0. Hence there is a region of (x,y,z,t)-space in which the fields are nonzero and outside of 

this, a region in which the fields are zero. Separating these two regions is also a 

discontinuity hypersurface. Inside the cone (Figure 4-3) fields are nonzero and outside they 

are zero. At any point on the cone and above t = 0 plane, source F = 0. And since we assume 

smooth media in this region, then discontinuity conditions for this case become 

 
[ ] [ ]

[ ] [ ]

0

0

E H

H E

t

t

∂
∇ × + =

∂
∂

∇ × − =
∂

φφ µ

φφ ε
 (4.12) 

These two vector equations form a homogeneous system of six scalar equations in the 

components of [E] and [H]. Solving for H, one can obtain 

 ( ) [ ] [ ]
2

2 0H H
t

∂⎛ ⎞∇ − ⎜ ⎟∂⎝ ⎠

φφ εµ =  (4.13) 

For nonzero solutions, determinant of coefficient matrix of Eqn(4.13) must be zero on φ = 0. 

 ( )
2

2 0
t

∂⎛ ⎞∇ − ⎜ ⎟∂⎝ ⎠

φφ εµ =  (4.14) 

This equation is known in the theory of PDEs as the characteristic condition for the 

characteristics of Maxwell’s equations, and the solutions φ = 0 are the characteristics. Note 

that this equation is not a true PDE because it holds only on φ = 0 where x,y,z, and t are not 

independent. These φs, characteristics (hypersurfaces), consist of several branches such as: 

 ( , , , ) ( , , ) 0x y z t x y z ctφ ≡ Ψ − =  (4.15) 

If Eqn(4.15) is substituted into Eqn(4.14), one can obtain a true PDE for Ψ(x,y,z).  

 2 2
r r ncεµ ε µ 2∇Ψ = = =  (4.16) 

This is the Eiconal equation of GO and its solutions are the wave fronts Ψ(x,y,z). Note that 

conductivity σ of the medium does not appear, this is not because our assumption of 

nonconducting medium The shape of the wave fronts is influenced only by ε, µ even in 

metals. 
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4.5 Geometrical Optics 

4.5.1 Definition of Geometrical Optics 
 
As we pointed out earlier, the field vectors E, H are discontinuous on φ = 0. And we define 

them as GO fields. In other words, GO field is a special set of values of full time dependent 

field, namely discontinuities of E, H.  

4.5.2 Wave Fronts and Rays 
 
The location of GO field can also be visualized in (x,y,z)-space in Figure 4-4. We are 

interested in the values of E, H on φ(x,y,z,t) = 0. If we cut the hypersurface φ = 0 by any 

hyperplane in the form of t = t0, we get a surface and we may project it parallel to t-axis onto 

(x,y,z)-space. Then as t0 varies we get a family of surfaces. Each of these surfaces is the 

boundary of the 3-D spatial region reached by the field at the corresponding time t0. These 

surfaces are wave fronts of GO. They are one-parameter family of wave fronts and can 

explicitly be written for t as discussed in the previous section. 

 ( , , )x y z ctΨ =  (4.17) 

Study of GO fields can be performed in terms of field vectors on the wave fronts. We will 

concentrate on the values of field vectors on wave fronts as they propagate into (x,y,z)-space 

as t increases. These values are GO field so they must obey the laws of GO. We shall find 

later that the behavior of the GO fields can be studied independently of the values inside the 

hypersurface φ = 0 (local phenomena nature of GO). The values of E(x,y,z,t), H(x,y,z,t) on 

the wave front Ψ = ct can be represented by Eqn(4.18). 
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Figure 4-4: Wave fronts 
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[ ]
[ ]

( , , ) ( , , , )

( , , ) ( , , , )

E E E /

H H H /

x y z x y z c

x y z x y z c

∗

∗

= = Ψ

= = Ψ   
 (4.18) 

Thus E*, H* give the values of GO field which is observed at (x,y,z) at time t = Ψ(x,y,z)/c. 

Recall that the values of E, H on φ = 0 are the discontinuities and hence they must obey the 

discontinuity conditions of Eqn(4.12). But instead of it, since φ = Ψ-ct=0 and ∂φ/∂t = -c and 

∇φ = ∇Ψ, we may write  

 0
0

E H
H E

c
c
µ

ε

∗ ∗

∗ ∗

∇Ψ× − =

∇Ψ× + =
 (4.19) 

If we form the scalar product of each of these equations with ∇Ψ and then form the scalar 

product of the first with H* and the second with E* ,we see that  

 0, 0, 0E .H .E .H∗ ∗ ∗ ∗= ∇Ψ = ∇Ψ =  (4.20) 

Thus the vectors E*, H* are tangential to the wave front (normal to the ∇Ψ) and also 

perpendicular to each other. Hence the vectors ∇Ψ, [E], [H] are mutually orthogonal at any 

point on a discontinuity surface φ = 0 or on wave fronts Ψ = ct. ∇Ψ is called as wave normal 

(normal to wave fronts) and denoted by vector p. 

 p =∇Ψ  (4.21) 

p is not a unit vector but |p| = n, index of refraction of medium. We consider next how the 

wave fronts Ψ(x,y,z)  = ct move out into space. For a family of wave fronts Ψ = ct, there 

exists 2-parameter family of rays (orthogonal trajectories) to them. Each curve of the family 

of rays will then have the direction of ∇Ψ at its intersection with the surface Ψ(x,y,z)  = ct. 

 
 

36 

 

 

 

 

 

 
 

Ψ = ct2Ψ = ct1 

P2 

P1 
P 

Figure 4-5: Propagation of a wave front 
 
 
 
The velocity υ of a wave front (phase velocity) or of E*, H* which propagates with the wave 

front is the velocity with which a point P moves along rays normal to the family of wave 

fronts as t increases (Figure 4-5). Rays can be written in parametric form as: 



 ( ), ( ), ( )x x t y y t z z t= = =    (4.22) 

Then the velocity υ along ray is  

 ˆ ˆx ydx dy dz
dt dt dt

υ = + + ẑ  (4.23) 

Noting that wave front Ψ can also be written as (( ( ), ( ), ( ))x t y t z t ctΨ =  and since  

 x y z c
t x t y t z t

∂Ψ ∂Ψ ∂ ∂Ψ ∂ ∂Ψ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
=  (4.24) 

υ is determined as  

 
n

cυ c
= =
∇Ψ

 (4.25) 

We have introduced the rays as the orthogonal trajectories of wave fronts Ψ = ct. However 

one can get rid of Ψ to specify rays. In this case totality of rays in a given medium is a 4-

parameter family of curves in (x,y,z)-space and can be characterized independently of the 

wave front function Ψ. The following system of equations describe all the rays in a medium. 

 
2 2 2 2 2

2 2 2

n n, ,
2 2

d x d y d z
x yd d dτ τ τ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2n
2z

∂  (4.26) 

 
2 2 2

2ndx dy dz
d d dτ τ τ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (4.27) 

τ is a parameter along ray and related to arc length s by ds = ndτ and to time t by t = n2τ/c. 

These ODEs are called characteristic DEs of Eiconal equation. However, since Eiconal is 

itself the characteristic DE of Maxwell’s equations. The system of ODEs is called 

bicharacteristic DEs of Maxwell’s equations and its solutions are called bicharacteristics. 

Discontinuities exist on φ(x,y,z,t) = 0 characteristics and propagate along bicharacteristics. 

Wave fronts and rays of GO are projections of characteristics and bicharacteristics onto 

(x,y,z)-space respectively (Figure 4-6). If one knows the equation of rays, he can also know 

the equations of wave fronts which belong to the problem and vice-versa. 
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Figure 4-6: Characteristics, bicharacteristics, wave fronts and rays 
 
 
 
4.5.3 Fermat’s Principle 
 
Eqn(4.24) in fact is the rate of change of distance with respect to time of a point P which 

moves with the front but along the ray normal to Ψ = ct. If we denote the arc length along 

the ray between two neighboring wave fronts by ds, then what have been found is υ = ds/dt. 

Then the optical path length L from P1 to P2 along ray is  

 
2 2

1 1

P P

1 2 2 1
P P

(P ) (P ) ( ) n nL c t t dt dsυ= Ψ −Ψ = − = =∫ ∫  (4.28) 

Fermat’s principle states that the actual path between two points taken by a signal is the one 

which renders the time of travel stationary. Rays described above satisfy Fermat’s principle. 

4.5.4 Power and Energy 
 
We next consider the energy that exists on a wave front. GO electric and magnetic energy 

densities are equal on a wave front and are given by 

  (4.29) (1/2)( )E .D H .B E .D H .BW ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + = = ∗

where W* denotes the total GO energy density on a wave front. The energy of GO fields 

moves along the rays. Poynting vector (GO power density) on a wave front is defined by  

 S E H∗ ∗ ∗= ×  (4.30) 

S* has the direction of p and energy flows in ray direction. Associated with S*, we can define 

a vector s such that 
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sS W∗ ∗=  (4.31) 

Also note that s.p = 1. In isotropic medium which is the scope of this thesis, since ε, µ are 

scalars, p and s have the same direction. In anisotropic medium, they are not parallel, that is, 

energy flow is in the ray direction but this time rays are not normal to the wave fronts. 

4.5.5 Propagation of Geometrical Optics Fields 
 
Next step is to examine the variation of GO field and GO energy along rays. This variation 

of GO fields will be described by linear, 1st order homogeneous ODEs called transport 

equations. Since E*, H* are the discontinuities in the solution E(x,y,z,t), H(x,y,z,t) of 

Maxwell’s equations, the transport equations tell us how discontinuities propagate. The 

transport equations are valid in regions in which ε, µ, σ are smooth. Then we shall discuss 

the solution of vector transport equations. The propagation of E*, H* across a discontinuity 

in the medium will also be treated. We start with discontinuity conditions again. 

 0* *p E Hc× − =µ  (4.32) 

 0* *p H Ec× + =ε  (4.33) 

However these equations do not suffice to determine E*, H* because the determinant of the 

coefficient matrix, i.e., Eiconal equation |∇Ψ|2-n2 = 0. Therefore we must seek additional 

conditions on E* and H*. We have by straightforward differentiation, 

 

1( )

1( )

*
* *

* *

EE E p

HH H p

c t

c t

∗

∂⎛ ⎞∇× = ∇× + ×⎜ ⎟∂⎝ ⎠

∂⎛ ⎞∇× = ∇× + × ⎜ ⎟∂⎝ ⎠

 (4.34) 

And from Maxwell’s equations we have 

 

HE

EH

t

t

∂
∇× = −

∂
∂

∇× =
∂

µ

ε
 (4.35) 

Using Eqns(4.34),(4.35) we arrive at the following additional (consistency) condition, 

 

* *
*

* *
*

E Hp E

E Hp H

c c
t t

c c
t t

∂ ∂⎛ ⎞ ⎛ ⎞− × + = − ∇×⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞+ × = ∇×⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

µ

ε

 (4.36) 

After some vector algebra [92], transport equation for E*can be found as: 

 1 n 0
2 n

* *
*E p .E. E pd

d
µ

τ µ
⎛ ⎞ ∇

+ ∇ +⎜ ⎟
⎝ ⎠

=  (4.37) 



Noting that  

 p.
x x y y z z µµ µ µ µ

µ µ µ µ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂Ψ ∂ ∂Ψ ∂ ∂Ψ

∇ = + + = ∆⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
Ψ  (4.38) 

Eqn(4.37) becomes  

 ( )1 n 0
2 n

* *
*E .EEd

d µτ
∇

+ ∆ Ψ + ∇Ψ =  (4.39) 

which is a vector ODE for GO field E* and holds along any ray (x(τ),y(τ),z(τ)). Similar 

formula can be written for H* with ∆µ replaced by ∆ε. Further, ∆µ can be expressed as 

 2 1n .s d
dµ
ε

ε τ
∆ Ψ = ∇ +  (4.40) 

Substituting this into Eqn(4.39), we end up with  

 
( ) ( )( ) ( )2

n1 n 0
2 n

* *

*
E .

.s E p
d

d

ε ε
ε

τ

∇ E
+ ∇ + =  (4.41) 

Thus the vector *Eε satisfies the same ODE. Transport equations are coupled system of 

scalar ODEs. Each equation involves, Ex
*, Ey

*, Ez
*. For special values of n, e.g., in homogen-

eous medium where ∇n = 0, these equations may be uncoupled. 

4.5.6 Solution of Transport Equations 
 
We shall now work directly with the vector ODE and integrate them to obtain solution. We 

will observe some results concerning the energy density W* which yields physical facts 

about GO field. First we will introduce vectors P (for E*) and Q (for H*) such that 

 ,* * * *E P HWε ε= = QW  (4.42) 

Substitution of this P into Eqn(4.41) yields a simpler form than Eqn(4.41). 

 n 0
n

P P.d
dτ

∇
+ ∇Ψ =  (4.43) 

In order to utilize this equation for the purpose finding E* we must know W*. W* holds the 

following relation in nonconducting medium. 

 0

0 0n n

** ( )( )
( ) ( ) ( ) ( )

WW
K K

ττ
τ τ τ τ

=  (4.44) 

Here τ0 characterizes an initial point along a ray, and τ an arbitrary point. K(τ) measures the 

expansion of the wave front along a ray. First we find P by Eqn(4.43), then W*(τ) by 

Eqn(4.44). Finally E* is determined. ICs for P is determined by ICs of E* and W*. Note that 

|P| is constant for all τ, i.e., along a ray and it is unitary vector. Eqns(4.41),(4.43) are 

themselves interesting because they show that the behavior of E*, P along a ray depend only  
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on the ray. But the same ray may belong to many different sets of wave fronts. For example 

a straight line can be orthogonal to both spherical wave fronts and plane wave fronts. 

Although transport equations exhibit no dependence on wave fronts, wave fronts do 

determine the ICs for E*, H* and therefore of W* as well as the growth of W* along a ray. 

4.5.7 Reflection/Refraction Across Discontinuity in the Medium 
 
In our treatment upto now, we assumed the functions ε, µ, σ are continuous. Then the wave 

fronts progress smoothly in the medium and transport equations hold. By solving these 

equations we obtain the behavior of E*, H*. However when the medium possesses a 

discontinuity in any or all of the ε, µ, σ, then not only do the transport equations not apply 

across the discontinuity but also the wave front does not propagate smoothly across the 

discontinuity because wave front is subject to a PDE involving ε, µ. 

 
Now we start by defining an isotropic medium whose parameters ε, µ, σ are piecewise 

smooth, i.e., they are continuous except on a finite number of surfaces. When a wave front 

strikes a discontinuity in a medium, it gives rise to a reflected and a refracted wave front. 

These two new families of wave fronts propagate out from the discontinuity. If several 

discontinuities are present in the same medium, then multiple families of wave fronts are 

generated overlapping in (x,y,z)-space as shown in Figure 4-7. 
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Figure 4-7: Reflection and refraction in (x,y)-space 
 

 

We must also think in terms of what happens in (x,y,z,t)-space. Figure 4-8 illustrates 

schematically the discontinuity hypersurfaces generated by an incident surface from left on 

discontinuity surface Γ1 and then on Γ2. A discontinuity in the medium may be pictured as a  
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hypercylinder in (x,y,z,t)-space parallel to t-axis. Each family of wave fronts is a discon-

tinuity hypersurface. Incident hypersurface Ψi-ct = 0 generates a reflected and a refracted 

hypersurface Ψr-ct = 0, Ψt-ct = 0 at Γ1. 
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Figure 4-8: Incident, reflected and refracted hypersurfaces in (x,y,t)-space 
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Hypersurfaces meet on Γ1. Since Γ1 is independent of t, it can be represented by 

 ( , ), ( , ), ( , )x f y g z hξ η ξ η ξ η= = =  (4.45) 

They also meet at any point (x,y,z) on Γ1 at the same time t. Hence we must have 

     i r t( ( , ), ( , ), ( , ))= ( ( , ), ( , ), ( , ))= ( ( , ), ( , ), ( , ))f g h f g h f g hξ η ξ η ξ η ξ η ξ η ξ η ξ η ξ η ξ ηΨ Ψ Ψ  (4.46) 

for those ξ,η which lie in the domain of intersection of Γ1. The vector  is the unit normal 

to surface Γ

M̂

1. At any (x,y,z) it is the same for all t because Γ1 is a hypercylinder. Normals to 

each family of wave fronts are also introduced as: 

 

i i i r r r
i r

t t t
t

,ˆ ˆ ˆ ˆ ˆp x y z p x y

ˆ ˆ ˆp x y z

ẑ
x y z x y z

x y z

∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ ∂Ψ
= + + = + +

∂ ∂ ∂ ∂ ∂ ∂

∂Ψ ∂Ψ ∂Ψ
= + +

∂ ∂ ∂

 (4.47) 

i r t are vectors along the incident, reflected and refracted rays. All four vectors lie in 

the plane of p

, ,p p p

ˆ

i and M , i.e., plane of incidence (Figure 4-9). It can be inferred that  ˆ

 r i t i,ˆ ˆ ˆp M p M p M p M× = × × = ×  (4.48) 
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This reflected field is present only above Ψr-ct = 0. E2, H2 are the refracted fields. E3, H3 are 

identically zero because no field can exist to the right of Γ before the refracted field arises at 

P. Since Γ is a fixed discontinuity hypersurface (φ = Ψ0(x,y,z) ⇒ ∂φ/∂t = 0, ∇φ = ∇Ψ0), upon 

applying discontinuity conditions in Eqn(4.12) at any point (x,y,z,t) on Γ, it is found that 
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0

0ˆ
 1 2 4 3

1 2 4 3

( ) 0, ( )

( ) 0, ( )

ˆ ˆE E M E E M
ˆH H M H H M

− × = − × =

− × = − × =
   (4.50) 

We consider next the discontinuities in E(x,y,z,t), H(x,y,z,t) on the hypersurfaces Ψi-ct = 0, 

Ψr-ct = 0, Ψt-ct = 0. These discontinuities exist all along the hypersurfaces but we are 

interested in discontinuities at P on Γ. They can be written as: 

         (4.51) 

i* i i* i
0 4 0

r* r r* r
1 0 1

t* t t* t
2 3 2

( , , ) ( , , , ) , ( , , ) ( , , , )
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x y z x y z c x y z x y z c
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They represent jumps across the respective hypersurfaces Ψi-ct = 0, Ψr-ct = 0, Ψt-ct = 0 at P. 

From Eqns(4.50),(4.51) we can write 

  (4.52) i* r* t* i* r* t*( ) , ( )ˆ ˆ ˆE E M E M H H M H M+ × = × + × = ×

But Eqn(4.52) is not sufficient to determine Er*, Hr*, Et*, Ht* from Ei*, Hi*. Hence 

additionally we can use the followings from discontinuity conditions. 

  (4.53) 
i i i r r r t t t

1 1
i i i r r r t t t

1 1

0, 0, 0

0, 0, 0

* * * * * *

* * * * * *

p H E p H E p H E

p E H p E H p E H

c c c

c c c

ε ε ε

µ µ

× + = × + = × + =

× − = × − = × − =

Recall that pi, pr, pt, and  lie in the same plane. Now we can solve EM̂ r*, Hr*, Et*, Ht* from 

Ei*, Hi*. To do this , we introduce the unit vector  defined by Ŝ

 i r tˆ ˆ ˆS p M p M p Mk = × = × = ×  (4.54) 

where i r
1 1 2n n nsin sin sink tθ θ= = = θ

1

. We also introduce three other unit vectors, namely,  

  (4.55) i i r r t t
1 1( /n ), ( /n ), ( /n )ˆ ˆ ˆˆ ˆ ˆN S p N S p N S p= × = × = ×

As a result we have three sets of orthogonal triples (pi, , ), (pŜ iN̂ r, , ), (pŜ rN̂ t, , ). Since 

E

Ŝ tN̂
i*, Hi* are orthogonal to pi and the same is true for reflected, refracted fields and wave 

fronts, we may express each field in terms of linear combination of parallel and 

perpendicular components to the plane of incidence such as 
i i i i r r r r t t t t

1 1 2

i i i i r r r r t t t
1 1 2

, ,

, ,

* * *

* * *

ˆ ˆˆ ˆ ˆE N S E N S E N S
ˆ ˆˆ ˆH N S H N S H N

ε α β ε α β ε α β
t

ˆ

ˆˆ Sµ β α µ β α µ β α

= + = + = +

= − + = − + = − +
    (4.56) 
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)We have four unknowns r r t t, , ,(α β α β  and two knowns i i,( )α β . Using Eqns(4.52), (4.55) 

and (4.56) we obtain four scalar equations for r r t t, , ,( )α β α β  which are 

 

t
r i t r i

1 2 1 2i

t
r i t r i

1 2 1 2i

/ , /
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θ t

t
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β β µ µ β β β ε ε
θ

− = − + =

− = − + = β

)

 (4.57) 

By means of Eqn(4.57), r r t t, , ,(α β α β  can be expressed in terms of. i i,( )α β  
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t r 1 2 1 2 i

i t i

1 2 1 2 1 2 1 2i i

t

t r 1 2 1 2 i

i t i

1 2 1 2 1 2 1 2i i

/ /2 ,
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θ θ
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−
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−
= =

+ +

 (4.58) 

Note that normal and parallel components of Ei* is i
1/β ε  and i

1/α ε  respectively. Then 

for normal and parallel components, we end up with 

 

1 2 1 2t i t
t t

1 2 1 2 1 2 1 2i i

t t

1 2 1 2 1 2 1 2i i
r i r

t t

1 2 1 2 1 2 1 2i i

2 2
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⊥ ⊥

⊥ ⊥

= =
+ +

− −
= =

+ +

& &

& &E

 (4.59) 

The same decomposition for reflected and refracted magnetic GO field H*can be written. In 

the case of normal incidence these formulas becomes much simpler. These formulas are 

supplement to transport equations because we can calculate GO field across discontinuity in 

the medium by means of them. They furnish ICs for reflected and refracted wave fronts. 

Note that Eqn(4.59) are identical with the Fresnel formulas, which are usually derived to 

show how a plane wave reflects and refracts on a plane interface between two media. Plane  

waves are often used to show how Maxwell’s equations yield the GO field and the basic 

laws of GO. But this approach is not complete for our purpose because GO field follows 

rays and each ray is an independent part of that field. Our treatment shows what happens 

along any one ray. And also in our treatment, refracting surface Γ can be a curved space in 

(x,y,z)-space as well as a plane. Moreover incident wave front can be of any shape and the 

media on both sides of interface Γ can be inhomogeneous. Also note that although we 

permitted the two media to have conductivities (σ1, σ2), they play no role in determining the 
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reflected and refracted fields at the interface. They do enter into transport equations and 

attenuate the refracted field as it proceeds into refracting medium and the reflected field as it 

travels back into the first medium. 



 

 

   CHAPTER 5 
 
 

5 GEOMETRICAL OPTICS FOR TIME-DOMAIN ELECTROMAGNETICS 
 
 
 
5.1 Introduction 
 
In Chapter 4, we have presented GO field E* and showed that the field E(x,y,z,t), evaluated 

at (x,y,z,t) which lie on discontinuity hypersurfaces φ(x,y,z,t) = 0, consists of special values 

of solutions of Maxwell’s equations. In other words, GO field is the finite discontinuities of 

E on the wave fronts at the time any wave front is at a given (x,y,z). Such field follows their 

own laws, that is, its behavior can be determined without knowing its behavior off the 

discontinuity hypersurface. And the determination of E on the wave fronts can be made 

independently of what happens at a given (x,y,z) at a later time than the t which satisfies 

t = Ψ(x,y,z)/c0. However, full solutions of Maxwell’s equations hold for a larger range of 

(x,y,z,t) values. Therefore we can seek exact solution of E(x,y,z,t) for a given problem. Our 

objective here is to obtain information about solutions of Maxwell’s equations, which may 

have arbitrary time dependence, by improving the GO solution. A feasible approach is to 

obtain a series for E(x,y,z,t) at a specified (x,y,z) in powers of (t - t0) where t0 is the value of t 

at which φ(x,y,z,t) = 0. Geometrically this approach has the following meaning. 
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Q0 (x0,y0,0) 

t
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φ(x,y,t) = 0 

P0 (x0,y0,t0) 

source 

t =t0

Ψ(x,y)=ct0 

P(x0,y0,t) 

Figure 5-1: Improvement over GO for time dependent fields 



Considering Figure 5-1, note that field is nonzero inside the hypercone and P0 lies on the 

cone. Point P is inside the cone with the same (x0,y0) as P0 but a value of t > t0. We shall seek 

a representation of the field E(x0,y0,t) at point P in terms of Taylor’s series expansion around 

(x0,y0,t0) in powers of (t-t0). Since (x0,y0) may be any point on φ(x,y,t0) = 0 for a given t0, the 

series will be valid for all such (x0,y0,t0) and the corresponding (x0,y0,t). Thus the series give 

the field at all points (x0,y0,t) in a region inside the hypercone in terms of the values on a 

section of the cone itself. This result has a helpful interpretation in (x,y,z)-space also. The 

wave front at time t0 is the projection of the section t = t0 of the hypercone onto (x,y,z)-space. 

Then Point P0 projects into the point Q0  on the wave front Ψ(x,y,z) = ct0. But all the points 

on the line segment from P0 to P have the same (x,y,z) but differ only in t values. Hence our 

expansion gives the behavior of the field E(x0,y0,z0,t) at a point (x0,y0,z0) at time t > t0, at 

which the wave front Ψ(x,y,z) = ct0 passes through the point (x0,y0,z0). In other words, we 

remain at (x0,y0,z0) on the wave front Ψ(x,y,z) = ct0 and then seek the subsequent behavior of 

E(x0,y0,z0,t) after t0, at which the field first becomes nonzero. Then the power series for E in 

(x,y,z,t)-space should have the form of 

 
0 0 0 0 0 0 0 0 0 0 0 0

2 2
0 0 0 0 0

2

( , , , ) [ ( , , , )] [ ( , , , )/ ]( )

( , , , ) ( )
[ ]

2

E E E

E
...

x y z t x y z t x y z t t t t

x y z t t t
t

= + ∂ ∂ −

∂ −
+ +

∂

 (5.1) 

for t > t0 and for any definite (x0,y0,z0,t0) satisfying ( , , , ) ( , , ) 0x y z t x y z ctφ = Ψ − = . The 

coefficients in Eqn(5.1) are the values of pulse solution and its successive time derivatives 

on the discontinuity hypersurface φ = 0 or on the wave fronts Ψ = ct. Since these functions 

are discontinuous on φ = 0 or Ψ = ct, what we want are discontinuities in the solution and in 

its successive time derivatives. For example the first coefficient [E(x0,y0,z0,t0)] is E*(x0,y0,z0), 

the GO field itself of Chapter 4. Hence the series Eqn(5.1) is an improvement on the GO 

field in the direction of an exact solution of Maxwell’s equations. 

 
In Chapter 4, we have examined how to determine GO fields. In order to obtain 

discontinuity conditions for the successive time derivatives, we will proceed as in Chapter 4 

because we still deal with discontinuities of solutions of Maxwell’s equations. Hence we 

must have similar IEs which accept these discontinuous solutions. Moreover just it has been 

found that GO fields satisfy ODE along the rays, so it will be found that discontinuities in 

the successive time derivatives also satisfy ODEs which express their variation along the 

rays. These differential equations are also linear, 1st order ODEs but now nonhomogeneous. 

They are called as the higher transport equations. Then we show how these vector transport 

equations can be solved. 
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The presentation in this chapter also applies to discontinuities on reflected and refracted 

hypersurfaces as well as to the discontinuities emanating from the source. Hence we will 

also consider series expansion in the neighborhood of those discontinuity hypersurfaces. 

 
Luneburg in his lectures at NY University in 1947-48, pointed out that discontinuities in E 

and its successive time-derivatives are coefficients in an asymptotic series representation of 

time-harmonic fields, Eqn(4.1). The study of discontinuities in E themselves had already 

been carried out by Luneburg [1] for the purpose of GO. Kline [92] undertook the study of 

higher discontinuities by basing the entire theory on the IEs and obtained the derivation of 

the higher discontinuity conditions and of the higher transport equations. The method of 

solving the vector higher transport equations is due to Kline [92]. The entire theory for 

Maxwell’s equations discussed here is also applicable to general 2nd order linear hyperbolic 

PDE such as scalar/vector wave equation, or to linearized acoustic problems [94], [95]. 

5.2 Discontinuity Conditions for Higher Discontinuities 
 
Maxwell’s equations in isotropic, nonconducting medium are repeated here for convenience. 

 

HE

E FH

t

t t

∂
∇× = −

∂
∂ ∂

∇× = +
∂ ∂

µ

ε
 (5.2) 

ε, µ, and F are assumed to be sectionally analytic that the discontinuities in F and its 

successive derivatives are finite. The source F and hence fields E, H are zero for t < 0 

because of causality. E, H are assumed to be smooth functions in subdomains and the 

discontinuities in E, H and their successive time derivatives are also finite (finite jumps) on 

φ = 0 as approached through G1 or G2 as discussed in Chapter 4. 
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Figure 5-2: Discontinuity hypersurface crossing Γ 



Then using the same reasoning, IEs for higher discontinuities of E, H can be written as: 
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∂ ∂
∂ Ω ∂ Ω ∂ Ω
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∫

∫

∫

∫
#

 (5.3) 

where volume element of Γ is dw = dxdydzdt. These IEs are precisely the ones used to 

establish existence, uniqueness, and other properties of the discontinuous (weak) solutions of 

Maxwell’s equations by Lewis [93], [96] as in Chapter 4. Higher discontinuities must satisfy 

these IEs for all testing functions Ω. The discontinuity hypersurface may again be of any of 

the three types, that is, it may be the initial hyperplane t = 0 when the source begin to act, or 

reflected/refracted hypersurface at a discontinuity in the medium, or a hypersurface arising 

from the source and separating zero/nonzero field region. Then discontinuity conditions for 

higher discontinuities become 
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∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂⎛ ⎞∇ × − + = − ∇×⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂ ∂ ∂ ∂

∇ × + = − ∇×
∂ ∂ ∂∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
∇ × − + = − ∇×⎜ ⎟∂ ∂∂ ∂ ∂⎝ ⎠

#
∂

 (5.4) 

Note that discontinuity conditions for higher order time derivatives are nonhomogeneous 

where as those for [E], [H] were homogeneous in Chapter 4. The fact seems surprising 

because ∂E/∂t and ∂H/∂t satisfy Maxwell’s equations as do E, H. The difference results 

from the behavior of the source. Our assumption rests on F to be sectionally analytic with 

finite discontinuities. ∂E/∂t and ∂H/∂t satisfy Maxwell’s equations with ∂F/∂t replaced by 

∂2F/∂t2. The discontinuities in ∂2F/∂t2 are of a higher order, and it is these discontinuities 

which propagate out along φ = 0. For example, if F is a step function u(t) (Heaviside) in the 

time behavior, then ∂F/∂t is an impulse δ(t), and ∂2F/∂t2 is a doublet δ’(t). These functions 

represent quite different physical sources in the sense of distributions. We must also repeat 

that the bracket symbol for a discontinuity means that the difference in the limits approached 
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by the enclosed quantity from either side of the discontinuity hypersurface. Then if F is u(t) 

then [F] = 1 and [∂F/∂t] = 0. Moreover this source function F is discontinuous in (x,y,z)-

space since the sources are confined to a bounded region. This implies discontinuous ICs. 

There are cases in which [E], [H] are zero on φ = 0, that is continuous, but some higher 

derivatives of E, H may be discontinuous. Then the wave fronts are discontinuity 

hypersurfaces for these derivatives. φ = 0 must still satisfy the characteristic condition and 

Ψ = ct must be wave fronts, and must satisfy Eiconal equation. As a result our approach is 

not altered even in these cases. Anyway proposed Taylor series is the expansion in the 

neighborhood of wave front in time but not in space. Another remark on Eqn(5.4) is that 

gradient operator applies only (x,y,z) before t is replaced by Ψ/c, but the curl operator 

applies to all (x,y,z) including t = Ψ(x,y,z)/c. The results up to here can be summarized by 

defining new vectors to be used in the rest of this chapter. 
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∂
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∂
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=
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 (5.5) 

Then at any point (x,y,z,t) on any hypersurface φ = 0 where any one or more of the vectors 

Aν, Bν, Fν may be discontinuous, they must satisfy the discontinuity conditions in Eqn(5.6) 

for ν ≥ 0. Recall that since φ = Ψ-ct = 0, the t value in Aν-1 and Bν-1 must be replaced by Ψ/c. 

 
-1

-1( )

A B A

B A F

v vt t

t t

ν

Bν ν ν ν

φ φφ µ

φ φφ ε

∂ ∂
∇ × + = − ∇×

∂ ∂
∂ ∂

∇ × − + = − ∇×
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 (5.6) 

5.3 Propagation of Higher Discontinuities 
 
In this section we will present 1st order ODEs for Aν, Bν which express their variation along 

rays of (x,y,z)-space. Since we are interested in the case where φ = Ψ-ct, discontinuity 

conditions, Eqn(5.6), become 

 1( , , , / ) ( , , , / ) ( , , , / )
( , , , / ) ( , , , / ) ( , , , / )

A B A
B A B

v v v

v v v

x y z c c x y z c c x y z c
x y z c c x y z c c x y z c

µ
ε

−∇Ψ× Ψ − Ψ = ∇× Ψ

∇Ψ× Ψ + Ψ = ∇× Ψ
 (5.7) 

Eqn(5.7) furnish six linear equations in the components of Aν, Bν,. However determinant of 

the coefficient matrix is zero because Ψ satisfies the Eiconal equation, and they do not 

determine Aν, Bν uniquely. However we have assumed that we are dealing with a solution 

E(x,y,z,t), H(x,y,z,t) of Maxwell’s equations whose discontinuities and the discontinuities of 
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the successive time derivatives of E, H on a hypersurface φ(x,y,z,t) = 0 are finite jumps. 

Hence for any given ν ≥ 0, solutions Aν, Bν of Eqn(5.7) do exist. Therefore Eqn(5.7) are 

consistent. Then the right hand terms of Eqn(5.7) must satisfy a consistency condition [92]. 

 0 0

0 0

0
0

A . B B . A
B . B A . A

ν ν

ν νµ ε
∇× − ∇× =

∇× + ∇× =
 (5.8) 

These equations furnish the necessary conditions for the nonhomogeneous terms of Eqn(5.7) 

that must be satisfied. If we form the scalar product of Eqn(5.7) with p, we have  

 1 ,p.A p B p.B p A 1ν ν ν νε µ− −= ∇× = − ∇×  (5.9) 

From Eqn(5.7) and Eqn(5.9), one can conclude that 

 1 0( ) , (p.A . A p.B . Bc c
ν νε

ε µ−= ∇ = ∇ 1 )νµ −  (5.10) 

As a consequence of homogeneous algebraic equation for A0, B0, they satisfy  

 0 0 0p.A p.B= =  (5.11) 

saying that GO field is transverse to ray direction (wave normal p = ∇Ψ), that is tangential 

to the wave front as expected. Using above equations and some vector algebra [92], 

transport equations for Aν, Bν are found as: 
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with the right hand source term being 
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  (5.13) 

In homogeneous medium (∇n = 0), then transport equations becomes a rather simple form. 

 2 2 2 2
1 12 , 2

A B
A A B

d d
c c

d d
ν ν Bν ν ν ντ τ− −+ ∇ Ψ = ∇ + ∇ Ψ = ∇  (5.14) 

These vector ODEs give us the variation of Aν, Bν along the rays which have the direction of 

p = ∇Ψ at any point. Also note that Eqn(5.12) is recursive via Cν, Dν. in Eqn(5.13). That is, 

we must solve first A0, B0 and use them as non-homogeneous terms in the equations for A1, 

B1 and so on. A0, B0 are the very quantities E* and H* which are GO fields of Chapter 4. If 

the equations of rays, x(τ), y(τ), z(τ) are substituted for x,y,z in transport equations then these 

equations are linear, nonhomogeneous, 1st order ODEs in the independent variable τ (time t). 
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5.4 Solutions of  Higher Transport Equations  
 
Higher transport equations, or simply transport equations of Eqn(5.12) constitute two vector 

equations, each consisting of three coupled equations. In homogeneous media they become 

uncoupled. They may also be uncoupled for some special values of index of medium, n. The 

transport equations give the variation of Aν, Bν along the rays which belong to a particular 

source and along the rays which may result from reflection and refraction at a discontinuity 

in the medium. To proceed with the solution we make use of the equations 

 2 21n , n.s .sd
d dµ ε

1 dε µ
ε τ µ

∆ Ψ = ∇ + ∆ Ψ = ∇ +
τ

 (5.15) 

Recall that s.p = 1. Just as in Chapter 4, transport equations get the form of 
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We now set 

 ,A P BW QWν ν ν ν ν νε µ= =  (5.17) 

Scalar Wν and vectors Pν, Qν are to be determined. Previously we showed that P0, Q0 are unit 

vectors (they are P, Q of Chapter 4) and energy Wν of νth discontinuity satisfies  

 0

0 0

( ) ( )
n( ) ( ) n( ) ( )

W W
K K

ν ντ τ
τ τ τ τ

=  (5.18) 

where the ratio of K(τ0) to K(τ) gives the relative expansion of the cross sectional area of a 

tube of rays and n(τ0), K(τ0) values of n(τ), K(τ) at some initial point on the ray x(τ), y(τ), 

z(τ). Then Eqn(5.16) transforms into  
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 (5.19) 

Since P0, Q0 are unit vectors and transverse to rays, we also make p = ∇Ψ a unit vector 

dividing it by n in order to have orthogonal unit triple vector set . Then, as the 

solutions of Eqn(5.19), components of P

0 0( , , )ˆˆ ˆP Q p

ν, Qν are given by Eqn(5.20). Below formulas 

presuppose that P0, Q0 are known from Chapter 3 for ν = 0. 
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 (5.20) 

These solutions are valid along hypersurface φ(x,y,z,t) = 0 or the trajectories to Ψ = ct as 

long as ε,µ,σ are smooth. Across a discontinuity in ε,µ,σ, Fresnel formulas must be applied 

and variation of Pν, Qν must be obtained along new rays which may arise from reflection or 

refraction. One other point should be noted in applying the series formulas that give Pν, Qν. 

In each of these, the quantities Cν, Dν occurs. They in turn depend on Aν-1, Bν-1, that is, 

recursive nature of transport equations. However when Aν-1, Bν-1 are determined from 

solutions for the case ν-1, Cν, Dν are determined as function of τ or (x,y,z).  

5.5 Initial Values for Transport Equations 
 
Transport equations hold along the rays provided that medium parameters are continuous. 

When a discontinuity in the medium occurs, a new family of wave fronts and rays arise. 

Therefore the transport equations must be solved along these new rays. Moreover, source 

begins to act at t = 0 creating discontinuous ICs. Hence, we need ICs at source side and at 

medium discontinuity. ICs are the initial values of Aν, Bν for Eqn(5.12). From them, ICs for 

Pν, Qν ,Wν for Eqns(5.19),(5.20) can also be determined using Eqns(5.17),(5.18). 

 
For this purposes, it is convenient to treat the ICs by considering relevant discontinuity 

hypersurfaces from which rays stem. The first one is the discontinuity hypersurface of the 

source. As we stated earlier, source charges are located in a bounded domain of (x,y,z)-space 

surrounding the origin where S is the source boundary as in Figure 5-3. 
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Figure 5-3:Determination of ICs at source boundary 
 
 
 
The distribution of these charges is specified by F(x,y,z,t) for t ≥ 0. Recall that F is smooth 

and discontinuities in F and in all its successive derivatives are finite. So it is clear that 

discontinuity hypersurface in (x,y,z,t)-space at t = 0 starts at the boundary S in (x,y,z)-space. 

ICs for Aν, Bν are their values t = 0 and at those points (x,y,z) which lie on S. These ICs for 

ν = 0 has been found to be in Chapter 4 as: 

 0

0
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 (5.21) 

These are the jumps in E, H at initial points of discontinuity hypersurface and are the same 

as the initial points of rays stemming from S. Then S can be interpreted as generator of wave 

fronts Ψ = ct belonging to these rays. For ν = 1, discontinuity conditions Eqn(5.6) become  
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 (5.22) 

Note that since we are dealing with φ ≡ t = 0 then ∂φ / ∂t = 1 and ∇×φ = 0. E, H, F are 

analytic within the discontinuity hypersurface, then using results of Eqn(5.21) in right hand 

terms of Eqn(5.22), ICs for ν = 1 are found to be 
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 (5.23) 

In above expressions we can omit brackets because fields are zero for t < 0. This process to 

obtain the ICs can be continued so on. Rather than the sources, if we are given a pulse field  



in the neighborhood of a discontinuity hypersurface, then we may use the field vectors and 

their successive time derivatives evaluated at the discontinuity surface to determine the ICs 

of the transport equations. We will adopt this way for simulations in Chapter 6. 

 
The second case is the determination of ICs for the rays arising from reflection and 

refraction at a fixed discontinuity surface φ = Ψ0(x,y,z) = 0. ICs for transport equations along 

reflected and refracted rays can in principle be handled, though no neat formulas can be 

presented for Aν, Bν beyond ν = 0. The case ν = 0 has actually been treated in Chapter 4 and 

Fresnel formulas obtained has shown the ICs of the reflected and refracted fields in terms of 

incident field impinging on the refracting surface. The ICs of A1, B1 for the reflected and 

refracted fields can also be obtained by the same method, but the results can not be presented 

as compact as Fresnel formulas. The complexity comes from discontinuity condition for 

ν = 1 which has nonzero right hand terms. The values of the right-hand members for ν = 1 

are known from the case ν = 0. The condition Eqn(4.50) remain the same for time 

derivatives of E, H because our more general conditions Eqn(5.6) applied to a fixed 

discontinuity surface φ = Ψ0(x,y,z) = 0 show that tangential components of Aν, Bν are zero. 

But the method of calculating the ICs of A1, B1 would be as follows. We see from Eqn(5.9) 

that the components of A1, B1 along p are given in terms of ∇×A0, ∇×B0 respectively. 

Anyway they have to be calculated in any case to solve the transport equations for A1, B1. 

Hence when we find the values A0, B0 we can calculate ∇×A0, ∇×B0. This remark applies to 

both the reflected and refracted fields. Thus we know the components of A1, B1 along the 

ray. We may therefore consider the components of A1, B1 which are normal to p. Whether 

incident, reflected, or refracted, we can write 

 1
ˆˆA Nn = + Sε α β  (5.24) 

Ŝ  and  have the same meanings in Chapter 4. Using Eqn(5.7) for ν = 1 we first write N̂

 1
1 1 2n n n nn

p.Ap B A Bn
cc εε ⎛ ⎞

0
p c

× + + = ∇×⎜ ⎟
⎝ ⎠

 (5.25) 

Substituting Eqn(5.24) into Eqn(5.25) and using Eqn(5.9) we have 

 1n n n n n n n
p pˆˆB N S . Bc c c cα ε β ε ⎛ ⎞× + + + ∇× = ∇×⎜ ⎟

⎝ ⎠
0 0

p B  (5.26) 

Note that the first term in left-hand side of Eqn(5.26) is the component of B1 normal to p/n. 

As a result we have 

 1 n n n n n
p pˆˆB N S . Bn

c c cα ε β ε ⎛⎛ ⎞= − − − ∇× −∇×⎜⎜ ⎟
⎝ ⎠⎝ ⎠

0 0B ⎞
⎟  (5.27) 
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We see that B1n is similarly expressed in terms of two parameters α,β. Other quantities are 

known. Following the same steps for obtaining Fresnel formulas, It can be found four scalar 

equations for αr, βr, αt, βt but more complicated equations than that of Chapter 4. 

5.6 Reconstruction of Time-Dependent Electromagnetic Fields 
 
Transport equations give the behavior of the finite discontinuities of E, H fields, i.e., [E], 

[H], [∂E/∂t], [∂H/∂t]…etc along rays. In terms of (x,y,z)-space, each family of curves is a 

family of rays associated with a family of wave fronts (arising from source, reflection and 

refraction) The solution to transport equations gives the discontinuity at any (x,y,z) but only 

at that t-value at which the wave front of the family of rays passes through (x,y,z). [E], [H] 

themselves furnish GO field. Higher discontinuities have no immediate physical meaning. 

But they may be regarded as improvement over GO. Direct accomplishment of this Chapter 

is that approximate representation of pulse solutions of E(x,y,z,t), H(x,y,z,t) by means of 

Taylor’s series is possible. The series must be distinguished on the basis of the nature of the 

discontinuity hypersurface in question at E, H are discontinuous. 
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Figure 5-4: Construction of Taylor series. 



Consider the point P0 or (x0,y0,z0,t0) in Figure 5-4 through which discontinuity hypersurface 

emanating from the source (e.g., Ψ(x,y,z)-ct = 0) passes. Since E, H are zero for t < t0, the 

values of E, H and their successive time derivatives at t = t0+, that is, the values obtained by 

approaching t0 from t > t0, are the discontinuities at t = t0. Hence in the neighborhood of t = t0 

for t > t0 we have 
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where t0 = Ψ(x0,y0,z0)/c. And the coefficients in this series are the discontinuities in E and its 

successive time derivatives. They can be determined by the solutions of the transport 

equations for A0, A1, A2….The solutions are being fixed by the ICs furnished by the source. 

 
However for the same (x0,y0,z0) there may be a t1 such that φr(x0,y0,z0,t1) = Ψr(x0,y0,z0)-ct1 = 0 

which is a reflected hypersurface. The expansion Eqn(5.28) for E(x,y,z,t) in the 

neighborhood of t = t0 still holds for t > t1 but it represents incident field for t > t1. However 

we may consider new expansions at (x0,y0,z0) in the neighborhood of t = t1 (point P1). Two 

expansions are possible, one holding in the domain t <t1 and the other t > t1. The coefficient 

in the first one will be the values of E and its successive derivatives at (x0,y0,z0,t1) when this 

point is approached through t < t1. This expansion may be valid for t > t1 also because the 

incident field alone may be analytic for these values of t. But this expansion represents only 

the incident field for t > t1. The coefficients in the second one will be the values of E and its 

successive time derivatives at (x0,y0,z0,t1) when P1 is approached through t > t1. These values 

belong to the sum of the incident and reflected fields. However we do not have the values of 

E in this neighborhood because these values should come from the knowledge of the exact 

solution of problem. But the exact E are discontinuous on φr(x0,y0,z0,t1) = 0 and the 

discontinuities of E and its successive time derivatives on φr(x0,y0,z0,t1) = 0 are the jumps in 

their values which result from the fact that a reflected field exist above φr = 0, that is, for 

t > t1. Hence for the reflected field only we have the following expansion. 
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 (5.29) 

This expansion is significant in the neighborhood of φr = 0 because the first term is reflected 

GO field and coefficients in this expansion are the discontinuities of E and its successive 

time derivatives on φr = 0 which propagate along the reflected rays and are determined by 
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the study of transport equations. They can be found by solving the transport equations along 

the φr = 0 or t = Ψr(x0,y0,z0)/c and by fixing the solutions uniquely with the ICs for the 

reflected field obtained from Fresnel formulas and their extensions to higher discontinuities 

A1, A2,... Then the total field E(x,y,z,t) for t > t1 can be obtained by the sum of Eqns(5.28)

,(5.29) as long as Eqn(5.28) holds for t > t1. 
i r

0 0 0 0 0 0 0 0 0( , , , ) ( , , , ) ( , , , )E E Ex y z t x y z t x y z t= +    (5.30) 

As for the series expansion in the neighborhood of the point P2, (x2,y2,z2,t2). There is no 

incident field below the refracted hypersurface φt(x,y,z,t) = 0. Hence the values of E and its 

successive time derivatives on φt = 0 (the values approached through t > t2). Then the 

expansion in the neighborhood of (x2,y2,z2,t2) will have these values as series coefficients. 

They can be found from Fresnel formulas and their extensions to higher discontinuities for 

refracted field. Then refracted field will be expressed as 
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The preceding discussion can also be put in other words in (x,y,z)-space. At a point (x,y,z), 

Eqn(5.28) gives the incident field from the instant t0 at which the incident wave front family 

Ψi(x,y,z)  = ct passes (x,y,z). Solutions of the transport equations along the rays belonging to 

this wave front family provide the coefficients of series expansion Eqn(5.28). At some later 

time t1, reflected wave front family Ψr(x,y,z) = ct passes through (x,y,z). The series expansion 

Eqn(5.29) gives the reflected field for t > t1. The coefficients of this series are calculated by 

solving the transport equations along the rays of reflected wave front family. The total field 

at (x,y,z) for t > t1 > t0 is the sum of these two series expansion if both series are still 

convergent for the value of t. Similar remarks apply to refracted field also. 

 
The existence of Taylor’s series in the neighborhood of points on the incident discontinuity 

hypersurface as well as on reflected and refracted discontinuity hypersurfaces presupposes, 

first of all, that the discontinuities in E and its successive time derivatives are finite. Infinite 

discontinuities (coefficients of Taylor series) occur for caustics and diffracted fields, then 

series expansion break down and does not converge. Secondly we are supposing that 

Taylor’s series (up to n-terms with remainder) can represent E in some region of t-values, 

that is, we can build Taylor’s expansion up to n-terms if E is differentiable upto the (n+1)th 

order. The existence and uniqueness of a solution of Maxwell’s equations are also assumed 

for the given problem. We are using Taylor’s series representing E only on one side of the 

59 



60 

point which the expansion is formed. The existence of the value of a function and its 

successive derivatives on one side only is sufficient to determine Taylor’s series [97]. The 

resulting series will represent an analytic function on both sides of the point under 

investigation, but only the values on one side may represent the true solution in which we 

are interested.  

 
In this chapter, we have mainly dealt with higher order discontinuities beyond the GO term 

to find or approximate full time dependent solutions of Maxwell’s equations. Similar to 

TDGO, this method can be called as Time Domain Ray Optics (TDRO). We can call TDGO 

and TDRO together as Ray Based Time Domain (RBTD) method. In the next chapter, we 

will present applications of RBTD method for several electromagnetic problems. Note that, 

different than time domain finite methods (FDTD,FETD,FVTD), RBTD deals with only one 

of the field quantities, either E or H.  
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    CHAPTER 6 
 
 

6 NUMERICAL STUDIES 
 
 
 
6.1 Introduction 
 
In Chapter 3, we have reviewed frequency and time-domain methods for CEM with 

emphasis on time domain finite methods, especially FDTD, FVTD and characteristic-based 

methods. Chapters 4 and 5 discussed the theoretical basis of Ray Based Time Domain 

method (RBTD) namely, hypersurfaces, discontinuities, wave fronts, rays, transport 

equations and Taylor series. RBTD is considered to replace FDTD and characteristic-based 

methods eliminating their deficiencies but not bringing new drawbacks. We must prove this 

statement. It is clear that diagonalisation of coefficient matrix of characteristic-based 

methods has been removed by RBTD since it has nothing to with coefficient matrix and its 

diagonalisation. The method of RBTD is completely different than characteristic-based 

methods. However RBTD itself by nature is a characteristic method since it utilizes 

characteristics and bicharacteristics curves (wave fronts, rays) of Maxwell’s PDE. Hence 

RBTD retains all the advantages of characteristic-based methods such as well-posedness, 

stability, dispersion, ABCs implementation and directional signal propagation. It is also 

claimed that RBTD eliminates numerical dispersion inherent to FDTD which depends on 

discretization of PDE (grid resolution, time step) and propagation direction. Making use of 

special grid structure (wave fronts and rays) and ODEs transport equations, RBTD gets rid 

of numerical dispersion too. We verify all these statements with several simulations of EM 

problems and comparing the results. Simulations have been adapted from [105]. 

6.2 Sample Problem I: 1-D Propagating Plane Wave  

6.2.1 Computational Grid 
 
For FDTD implementation in free space (ε0,µ0), Ex, Hy fields propagating in ± z directions 

are oriented in the computational grid as in Figure 6-1. RBTD requires grid to be wave 

fronts and rays. In this problem, computational grid is same for both FDTD and RBTD due 

to homogeneous medium and source condition. Field is defined on the initial plane wave 

front as input. Wave fronts, Ψ, are Ψ(x,y,z) = z = j∆z = constant plane surfaces. They also 

satisfy our definition of Ψ = ct. Then rays are straight lines normal to these Ψs. 



Figure 6-1 illustrates wave fronts and rays. Note that every grid point along z-axis (z = j∆z) 

has its associated time reference (t = tj = Ψ(j∆z)/c). Due to finite velocity of propagation, no 

wave can exist at that point for t < tj. At t = tj, only GO field can exist, and after t > tj, total 

time-dependent field exists. 
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Figure 6-1: 1-D plane wave and computational grid 
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Figure 6-2: Wave fronts and rays for RBTD 
 
 

6.2.2 FDTD Implementation  
 
Consider a simple 1-D transverse electromagnetic (TEM) plane wave (PW) propagating in 

± z directions. For this case, Maxwell’s equations, in source free region, reduce to: 

 y yx x
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1 1,
H HE E
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 (6.1) 

Eqn(6.1) also leads to 2nd order 1-D wave equation of 
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 (6.2) 

whose solution is sum of right and left propagating waves as in Eqn(2.20). A hard source 

excitation on the initial wave front which is a plane surface (z = zc = 0) is enforced, that is, 

x ( , ) ( )cE z t f t=      (6.3) 



f(t) can be any function such as rectangular, Gaussian or sinusoidal excitation. With the 

understanding of z = j∆z, t = n∆t, then discretization of Eqn(6.1) yields the following explicit 

time update equations for field quantities. 
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  (6.4) 

Let the highest frequency of f(t) that would propagate in the grid be . Then the 

minimum wavelength to be observed in the medium is 

max 1GHzf =

min max/ 30cc f mλ = = . The grid 

spacing (∆z) along z must be at least to satisfy Nyquist sampling, that is, min /2z λ∆ ≥ . And 

time step ∆t is selected to satisfy stability of numerical algorithm in accordance with CFL 

stability condition, for 1-D case, which is /t z c∆ ≤ ∆ . CFL number is defined to be 

CFL = c∆t/∆z. Then according to the choice of CFL number, time step ∆t becomes 

∆t = CFL(∆z/c). Throughout the simulations for Sample Problem I and II, following grid 

structures are worked out for the analysis and interpretation of results (Table 6-1). 

 
 

Table 6-1: Coarse and fine grid for Sample Problem I and II 
 

 Coarse grid Fine Grid 
Grid spacing (∆z) min /5λ  min /10λ  

 
 
 
6.2.2.1 Rectangular Pulse 
 
Let the excitation be f(t) = rect(t/T) whose pulse width is T = 10nsec (Figure 6-3). Fourier 

transform of f(t) has sinc(ωT) behavior whose 1/T main bandwidth is 100MHz. Then our 

assumption of fmax = 1GHz is good enough that it is 40dB below the peak of power spectra. 
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Figure 6-3: Rectangular pulse 



Coarse Grid (∆z = λmin/5): Presented results below are the values of Ex in the computational 

grid at the end of the observation time. The observation time is 450∆t for CFL = 1, 900∆t for 

CFL = 0.5 and 445∆t for CFL = 0.99. In Chapter 3, we stated that numerical solution of 

FDTD for1-D wave equation is exact analytical solution for the case of CFL = 1 (magic time 

step. Our simulation verifies that FDTD yields exact analytical solution for CFL = 1 no 

matter how long the numerical analogue of wave propagates. FDTD and analytic results 

overlap in Figure 6-4. As for the case of CFL = 0.5 and CFL = 0.99, Figure 6-5, Figure 6-6 

show that FDTD computed wave is prone to numerical dispersion as expected and numerical 

dispersion error is more pronounced as it propagates longer distances. Changing CFL 

number from 0.5 to 0.99 causes increase in the oscillation frequency of ripples but peak 

distortion does not change (similar to Gibbs phenomena). 
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Figure 6-4: FDTD rectangular pulse propagation (CFL = 1) 
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Figure 6-5: FDTD rectangular pulse propagation (CFL = 0.5) 
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Figure 6-6: FDTD rectangular pulse propagation (CFL = 0.99) 
 
 
 
Fine Grid (∆z = λmin/10): Now let us increase our spatial resolution and do our computations 

in finer grid. Presented results below are the values of Ex in the computational grid at the end 

of the observation time. Since we have increased the grid resolution twice, the observation 

time for the chosen CFL number will be doubled in the same grid compared to coarse case. 

That is, the observation times are 900∆t for CFL = 1, 1800∆t for CFL = 0.5 and 990∆t for 

CFL = 0.99. 
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Figure 6-7: FDTD rectangular pulse propagation (CFL = 1) 
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Figure 6-8: FDTD rectangular pulse propagation (CFL = 0.5) 
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Figure 6-9: FDTD rectangular pulse propagation (CFL = 0.99) 
 
 

Note that increasing spatial resolution has the same effect of increasing CFL number, 

causing increase in oscillation frequency of ripples but peak distortion still does not change. 

For this part, as a conclusion, we can state that only for CFL=1 can FDTD yield exact 

analytical result. FDTD can not track waveforms having discontinuities and needs smooth 

waveforms as is well known. Hence let us try Gaussian pulse. 

6.2.2.2 Gaussian Pulse 
 
Let excitation function f(t) be 

2
0( ) /( )( ) t t tf t e β− − ∆=

2

    (6.5) 

where t0 is the time at which the pulse reaches peak value (the mean) and / 2β  is the 

variance of Gaussian pulse. We need to specify t0 and β  so that the signal is turned on 
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smoothly and includes desired spectral content. [98] describes how to optimize a Gaussian 

pulse for FDTD simulation ensuring the turn-on value and fmax are 140dB less than peak 

values of signal and frequency spectra respectively. Based on [98], they are determined as: 

67 

max ) 0 4 , 1 278/(t t f tβ β= ∆ ≥ ∆.  (6.6) 

Time step ∆t is again selected in accordance with CFL stability condition after choosing 

spatial grid spacings properly. Then discretized form of f(t) becomes 

 
2 2

0( ) /( )( ) n nf n e β− −=  (6.7) 

Coarse Grid (∆z = λmin/5): Presented results below are the values of Ex in the computational 

grid at the end of the observation time. The observation times are 450∆t for CFL = 1 and 

900∆t for CFL = 0.5. 
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Figure 6-10: FDTD Gaussian pulse propagation (CFL = 1) 
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Figure 6-11: FDTD Gaussian pulse propagation (CFL = 0.5) 
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Figure 6-12: A closer look at the propagating pulse (CFL = 0.5) 
 
 
 
Figure 6-10, Figure 6-11, Figure 6-12 show that, except CFL = 1, FDTD still induces 

numerical dispersion even for the propagating smooth Gaussian pulse. But that error is not 

as much dramatic as that of rectangular pulse. Again recall that numerical dispersion error 

would be worse at farther distances since it is cumulative. 

 
Fine Grid (∆z = λmin/10): For fine grid, the observation times are 900∆t for CFL = 1 and 

1800∆t for CFL = 0.5. 
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Figure 6-13: FDTD Gaussian pulse propagation (CFL = 1) 
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Figure 6-14: FDTD Gaussian pulse propagation (CFL = 0.5) 
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Figure 6-15: A closer look at the propagating pulse (CFL = 0.5) 
 

 

As seen from Figure 6-14, Figure 6-15, increasing the grid resolution decreases the 

numerical dispersion and numerical results are more accurate but computational burden is 

heavier than coarse case due to increased resolution and reduced time step.  

 
Another important observation on all the simulations upto now is the superluminal effect of 

FDTD. Note that, except CFL = 1, which yields exact analytical solution, FDTD computed 

pulse (both rectangular and Gaussian) somewhat leads the analytical pulse. As reported by 

Schneider [99], [100] some numerical modes propagate faster than velocity of light, c, in 

FDTD computational grid. It is also reported that these modes are attenuated rapidly and 

disappear as the wave propagates out [99], [100]. 

69 



6.2.3 RBTD Implementation 

6.2.3.1 Rectangular Pulse 
 
Determination of Discontinuities: Considering rectangular pulse in Figure 6-3, we observe 

that there are only two 0th order discontinuities at the source (on the initial wave front where 

the excitation is defined). These are the initial values for  occurring Tsec apart. 0A

 0

(0 ) (0 ) 1 , 0
( ) [ ( , )]=

( ) ( ) -1 ,

ˆ ˆ ˆx x x
A E

ˆ ˆ ˆx x x
c c

f f
z z t

t =

f T f T t =

+ −− =
=

+ −− = T
 (6.8) 

Transport of Discontinuities: The two 0th order discontinuities are propagated in 

computational grid in accordance with transport equations given by Eqn(5.12). In isotropic, 

homogeneous medium like this problem, they reduce to 

 0 0( ) ( )
0

A Ad s d z
ds dz

= =  (6.9) 

s is the arc length along ray. This implies that initial values of  remain all constant. 0A

 
Construction of Time-Dependent Field: At t = 0, the first one of the two 0th order  

discontinuities starts to propagate out into computational domain and then at t = T the second 

one appears at the source and starts to propagate out. Note that these are GO fields as 

described in Chapters 4 and 5. Then for construction of time-dependent field by Taylor 

series at a point, series expansion with only one term will consist of these GO field terms.  

0A

 0 ( ) /
( , )

0 /
A

E
z t z c

z t
t z c
≥

=
<

 (6.10) 

Their individual responses at any point z = j∆z will be as the following.  
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 (6.11) 

Then total time-dependent field will be the sum. 

 1E E E2= +  (6.12) 
Due to the constant nature of discontinuities in this problem, there is no need to repeat the 

simulations for coarse and fine grids separately for RBTD. Therefore, we only present the 

coarse grid results at the end of the observation time, 450∆t. Figure 6-16 shows the result. 

Recall that RBTD utilizes always CFL = 1 on the ray. 
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Figure 6-16: RBTD rectangular pulse propagation 
 
 
 
6.2.3.2 Gaussian Pulse  
 
Gaussian pulse can be expanded in power series around turn-on point (t = 0) or around the 

peak (t = t0) so that one can determine coefficients (discontinuities) of series expansion. 

However computational wise, that would be cumbersome to deal with many higher order 

discontinuity terms. Instead, we treat Gaussian pulse as consisting of sum of step functions 

shifted by ∆t as if staircasing. Moreover we have already implemented the treatment of such 

finite jump discontinuities in rectangular pulse in the previous section. So we will follow the 

same reasoning. Considering the Gaussian pulse width as 2n0 from Eqn(6.6), we assume that 

there is (2n0+1) 0th order discontinuities occurring at source shifted by ∆t in time. 

0
0

(0) , 0
( ) [ ( , )]

( ) ( 1) ) , 0 2
x̂

A E
ˆ ˆx xc c

f t
z z t

f n t f n t t n t n t
=

= =
∆ − − ∆ < = ∆ ≤ ∆

 (6.13) 

They are subject to the same transport equation, and all remain constant throughout the 

computational domain. Individual time-dependent responses at any point z = j∆z will be 

found and then total time dependent field will be established by the summation of ∆t shifted 

responses as in the previous section. 
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Figure 6-17: RBTD Gaussian pulse propagation 
 
 

From RBTD plots, Figure 6-16 and Figure 6-17, one can observe that we propagate 

discontinuities exactly and construct time-dependent field exactly with no numerical 

dispersion no matter what the spatial resolution is or how long the wave propagates. For this 

problem, we can even go to equality case of Nyquist sampling condition in RBTD 

implementation. That would result in time step ∆t which is the lower limit to reconstruct a 

given pulse signal in time. Under these conditions, FDTD results would certainly be worse 

and worse except CFL=1. Note that RBTD always uses ∆z = c∆t, the equality case of CFL 

condition along ray, which is the magic time step. Moreover, superluminal effect of FDTD is 

also eliminated by RBTD due to the fact that each grid point has its time reference and no 

wave can exist at that point before its reference time. This is a physical fact used in RBTD. 

6.3 Sample Problem II: 1-D Plane Wave with Dielectric Interface 

6.3.1 Computational Grid 
 
PW simulations can be extended to incorporate reflection and refraction phenomena in 

addition to propagation. For this purpose, we put a dielectric medium (εr = 4) at distances 

zd = 500∆z (for coarse grid) and zd = 1000∆z (for fine grid). In real life, εr  exhibits frequency 

dependence. We ignore this point for simulations because it creates no problem to 

demonstrate applicability of methods. In both medium, grid spacing ∆z is kept same. That 

means CFL number in medium 1 correspond a lower CFL value in medium 2. 

Computational grid for FDTD is shown in Figure 6-18. As for RBTD grid, wave fronts are 

Ψ = rε z = constant surfaces and rays are straight lines along z-axis as in Figure 6-19. 

Computational grid is still same and overlap for RBTD and FDTD grid. 
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Figure 6-18: Computational grid 
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Figure 6-19: Wave fronts and rays for RBTD 
 
 

Phase velocity is halved in medium 2 and hence wave needs 2∆t time to traverse ∆z distance. 

Otherwise, if we were to keep ∆t constant for RBTD, then we would have to halve ∆z in 

medium 2 because we have to implement CFL = 1 (∆z = c∆t ) condition in both media as the 

requirement of RBTD. 

6.3.2 FDTD Implementation 
 
Accounting medium parameters, update equations Eqn(6.4) become 
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  (6.14) 

Using reflected and refracted pulse amplitudes, one can calculate reflection, refraction 

coefficients and compare them with analytical ones. 

 
r t
x 2 1 x 2
i i

2 1 2 1x x

2,E Z Z E Z
Z Z ZE E

τ
−

Γ = = = =
Z+ +

 (6.15) 

where 1 1/Z 1µ ε=  and 2 2/Z 2µ ε=  are medium impedances. For simulations we specify 

CFL with respect to medium 1 as CFL1 = 1. 



6.3.2.1 Rectangular Pulse  
 
Coarse grid (∆z = λmin/5): 
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Figure 6-20: Reflection and refraction of FDTD rectangular pulse (CFL1 = 1) 
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Figure 6-21: A closer look at the FDTD refracted pulse (CFL1 = 1) 
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Figure 6-22: A closer look at the FDTD reflected pulse (CFL1 = 1) 
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The observation times are 900∆t for coarse grid and 1800∆t for fine grid. Figure 6-20, 

Figure 6-21, and Figure 6-22 show us that both reflected and refracted pulses suffers from 

distortion. Distortion is more severe in medium 2 after refraction due to corresponding low 

CFL value in this medium (CFL2 = 1). However, reflected pulse also is distorted in medium 

1 due to interactions at discontinuous boundary interface although CFL1 = 1 is maintained. 

One can also more easily observe superluminal effect on the pulses at the closer look plots.  

 
Fine Grid (∆z = λmin/10): 
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Figure 6-23: Reflection and refraction of FDTD rectangular pulse (CFL1 = 1) 
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Figure 6-24: A closer look at the FDTD refracted pulse (CFL1 = 1) 
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Figure 6-25: A closer look at the FDTD reflected pulse (CFL1 = 1) 
 
 
 
Finer grid produces results closer to analytical ones but the nature of error remains same for 

rectangular pulse. Next we will see what will happen for Gaussian pulse. 

6.3.2.2 Gaussian Pulse 
 
Coarse Grid (∆z = λmin/5): 
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Figure 6-26: Reflection and refraction of FDTD Gaussian pulse (CFL1 = 1) 
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Figure 6-27: A closer look at the FDTD refracted pulse (CFL1 = 1) 
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Figure 6-28: A closer look at the FDTD reflected pulse (CFL1 = 1) 
 

Fine Grid (∆z = λmin/10): 
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Figure 6-29: Reflection and refraction of FDTD Gaussian pulse (CFL1 = 1) 
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Figure 6-30: A closer look at the FDTD refracted pulse (CFL1 = 1) 
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Figure 6-31: A closer look at the FDTD reflected pulse (CFL1 = 1) 
 
 

Similar comments as in rectangular pulse case applies to Gaussian pulse for coarse and fine 

grid. But as seen in the above figures, fine grid works much better, for Gaussian pulse since 

it is smooth function and has no jump discontinuities. 

6.3.3 RBTD Implementation 
 
Determination of Discontinuities: Discontinuities are the same as those of Sample Problem 

I, Eqn(6.8) for rectangular and Eqn(6.13) for Gaussian pulse. They all are 0th order 

discontinuities occurring at different time instants. 

 
Transport of Discontinuities: Discontinuities are also transported in the same fashion as in 

Sample Problem I. Transport equation, Eqn(6.9), applies individually to both media. The 

peculiarity of current problem is the existence of stationary discontinuity hypersurface 
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Ψ(x,y,z) = zd between two media. As discussed in Section 3.5.7, discontinuities obey the 

Snell’s law of reflection and refraction. Fresnel formulas of Eqn(4.59) are directly applicable 

to determine reflected and refracted 0th order discontinuities or we can immediately use 

Eqn(6.15). Remember that neat, compact formulas, similar to Fresnel formulas, for higher 

order discontinuities are not available for time being, and needs to be further elaboration. 

However, we have provided the way it is done for the 1st order discontinuities in section 4.5. 

Using Eqn(6.15), reflected and refracted discontinuities at the boundary are found as 

Eqn(6.16). We just need to implement this physical fact at the boundary. 
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Construction of Time-Dependent Field: The same reasoning in Sections 5.2.3.1 and 

5.2.3.2 to construct time-dependent field applies here too. After determining 0th order 

discontinuities in medium 1 as incident and reflected and in medium 2 as refracted on the 

rays with their associated time reference, time-dependent incident, reflected and refracted 

fields can be constructed by again Taylor series. Considering rectangular pulse and first one 

of the discontinuities, one can write 
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  (6.17) 

Note that υ = c/2 in medium 2.  is the time difference between source at z = zdT c and 

dielectric interface at z = zd. Incident, reflected and refracted fields due to the second 0th 

order discontinuity on the initial wave front occurring T(sec) later in rectangular pulse can 

also be written as: 

i i
2 x2 i

02

r r
2 x2 i

02

t t
2 2 i

02

0 /
( , )

/

0 /
( , )

/

0 /
( , )

τ /

ˆE x
x̂

ˆE x
x̂

ˆE x
x̂

d d

d d

d d
x

d d

j z c n t T
E j z n t

A j z c n t T

j z z c n t T T
E j z n t

A j z z c n t T

j z z n t T T
E j z n t

A j z z n t T

υ

υ

∆ > ∆ −
= ∆ ∆ =

∆ ≤ ∆ −

T

T

∆ − > ∆ − −
= ∆ ∆ =

Γ ∆ − ≤ ∆ − −

∆ − > ∆ − −
= ∆ ∆ =

∆ − ≤ ∆ − −

 (6.18) 

Since incident and reflected wave front/ray grids in medium 1 overlaps onto each other, then 

total time-dependent field in medium 1 is 
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r
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i i r
1 2 1E E E E E= + + +     (6.19) 

And in medium 2, there is only refracted field 

 t
1E E Et

2= +  (6.20) 

6.3.3.1 Rectangular Pulse 
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Figure 6-32: Reflection and Refraction of RBTD rectangular pulse 
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Figure 6-33: A closer look at the RBTD refracted pulse 
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Figure 6-34: A closer look at the RBTD reflected pulse 
 

 

6.3.3.2 Gaussian Pulse 
 
Gaussian pulse is again treated as the weighted sum of shifted step functions and 

discontinuities are determined as in Eqn(6.13). Propagation of these discontinuities and 

construction of incident, reflected and refracted time-dependent fields are also same as 

previous section. The only difference is that now we deal with not only two 0th order 

discontinuity but at least (2n0+1) 0th order discontinuities occurring at source shifted by ∆t in 

time due to staircase approximation of the Gaussian pulse. 
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Figure 6-35: Reflection and refraction of RBTD Gaussian pulse 
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Figure 6-36: A closer look at the RBTD refracted pulse 
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Figure 6-37: A closer look at the RBTD reflected pulse 

 
 
 
It is understood from Figure 6-36 and Figure 6-37 that RBTD is able to construct incident, 

reflected and refracted pulses (either rectangular or Gaussian) perfectly. No numerical 

dispersion, no error! Hence as expected, reflection and transmission coefficient calculations, 

Eqn(6.15) in Section 6.3.2, will be much more reliable than FDTD for such problems, using 

pulse amplitudes. One final remark is that spatial pulse width in medium 2 is halved due to 

halved phase velocity in the medium (εr = 4). This is observed in all refracted pulses. Also 

note that we have provided RBTD results for coarse grid only because discontinuities remain 

same and constant in the computational domain for both coarse and fine grid. No need to 

repeat the simulation for fine grid. 
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6.4 Sample Problem III: Electric Dipole in Homogeneous Medium 
 
Next, Hertzian electric dipole radiating in isotropic, homogeneous medium, i.e., (ε0,µ0), is 

considered in spherical coordinates (R,θ,ϕ), Figure 6-38. 
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Figure 6-38: Radiating Hertzian electric dipole 

 

 

The analytical impulse response is given by [103]: 
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 (6.21) 

where ˆ ˆR x y ẑx y z= + + , and Idl, Z are dipole moment (strength of the dipole) and medium 

impedance respectively. δ′(t), δ(t) and u(t) stand for doublet, impulse and step functions 

respectively. For simulations we will consider ramp response for the ease of implementation. 

Ramp response of Hertzian dipole (for example Eθ) itself is already in power series form. 

Then discontinuities will be determined directly by inspection for RBTD. Different than 

standard Yee algorithm, spherical FDTD [40] will be used for simulation. We believe this 

example is very didactic to understand RBTD better and compare it with FDTD. When 

considered ramp input; δ′(t), δ(t) and u(t) in Eqn(6.21) will be replaced by u(t), r(t) and q(t) 

respectively where r(t) = tu(t) is ramp function and q(t) = (1/2)t2u(t) is quadratic function. 

Eqn(6.21) then becomes 
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 (6.22) 

Note that although this is a 3-D problem, there is ϕ-axis symmetry and it can be treated as 2-

D problem at any ϕ = constant surface. To this end, we will do our computations on yz-plane 

where ϕ = 90°. 

6.4.1 Computational Grid 
 
Spherical coordinates have been used as natural grid for FDTD. Figure 6-39 depicts wave 

fronts, constant radius concentric spheres while Figure 6-40 depicts rays, straight radial 

lines, on yz plane. Since the medium is isotropic and homogeneous, RBTD and FDTD 

computational grids are same and overlap. They are easily generated exactly as will be 

discussed in Chapter 6. In these plots, we started to generate computational grid (same as 

wave fronts and rays) with initial spherical wave front of radius R0 = 1m. 
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Figure 6-39: Computational grid, wave fronts for coarse and fine grid 
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Figure 6-40: Computational grid, rays for coarse and fine grids 

 

 

6.4.2 Spherical FDTD Implementation 
 
Holland [40] provided the first FDTD implementation in spherical coordinates which is the 

early work of conformal gridding. Then he reported [50] FDTD formulation for 

nonorthogonal curvilinear coordinates based on Stratton’s work [51].The results of [40] 

which provides us field update equations in spherical coordinates can be summarized as in 

Eqn(6.23). We define analytical Eθ field as the input over given initial spherical wave front 

surface. It is sufficient to specify only tangential electric field which is Eθ [40]. The nature of 

the problem dictates radial outgoing wave only. 
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(6.23)

Throughout the simulations for Sample problem III and IV, we again assume fmax = 1GHz. 

Since ramp signal is smoother than rectangular pulse, assumption of fmax = 1GHz is still 

secure for both ramp and Gaussian as verified in Section 5.2.2. We adopt again two kinds of 

grid structure. The specification in Table 6-2 applies to discretization on initial wave front 

where initial field is defined. 

85 



Table 6-2: Coarse and fine grid for Sample Problem III and IV. 
 

 Coarse grid Fine Grid 

∆R 5min /λ  10min /λ  
∆θ 0 5 M M 5min / /R 2θ λ π∆ = = ⇒ =  0 10 M M 105min / /R θ λ π∆ = = ⇒ =  

 
 
 
∆t is selected to satisfy CFL stability condition using smallest grid dimensions. 

 
22

0

1 11/t c
R R θ

⎛ ⎞⎛ ⎞∆ ≤ + ⎜⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠
⎟  (6.24) 

For simulations, we set it to 

22

0

1 11/ 2t c
R R θ

⎛ ⎞⎛ ⎞∆ = + ⎜⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠
⎟     (6.25) 

Let us assume our excitation so that ZIdl/4π = 1 in Eqn(6.22), and proceed further. 

6.4.2.1 Ramp Pulse 
 
The computational grid extends from sphere of R0 = 1m to R = 31m with corresponding 

increment ∆R for coarse and fine grids. Next figures depict tangential electric field at the 

positions i = 400∆R (far field), i = 100∆R (near field) for coarse grid and i = 800∆R (far 

field), i = 200∆R (near field) for fine grid. The observation time is 1000∆t (coarse) and 

2000∆t (fine). Elevation angle observation point is at k = M/4 = 13 for coarse and 

k = M/4 ≅ 26 for fine grid. That means we are looking at the response with an angle of 45° 

from z-axis and at a distance of 25m (far field) and 7m (near field) from the origin 

approximately. Computed Eθ results are as follows: 
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Coarse Grid: 
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Figure 6-41: Propagation of FDTD ramp response (far field) 
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Figure 6-42: A closer look at the propagating pulse (far field) 
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Figure 6-43: Propagation of FDTD ramp response (near field) 
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Although the ramp input is smooth, there exists numerical dispersion in the response 

because dipole produces step discontinuity in Eθ (the first term in Eqn(6.22)). FDTD can not 

track that discontinuity. As seen from Figure 6-41, Figure 6-42, Figure 6-43, numerical 

dispersion is more at far field as expected. Now we do our computations for fine grid as 

described in Table 6-2. 

 
Fine Grid: 
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Figure 6-44: Propagation of FDTD ramp response (far field) 
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Figure 6-45: A closer look at the propagating pulse (far field) 
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Figure 6-46: Propagation of FDTD ramp response (near field) 
 
 
 
6.4.2.2 Gaussian Pulse 
 
For Gaussian input, u(t), r(t) and q(t) in Eqn(6.22) are replaced by derivative of Gaussian, 

Gaussian and integral of Gaussian (error function) respectively. Different than the plots upto 

here, we now look at the propagating pulse in both space and time, that is, at all grid points 

along a ray at the end of observation time and at a fixed grid point (near field and far field) 

during observation time. Grid structures are as described in Table 6-2. 
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Figure 6-47: Propagating FDTD Gaussian response (spatial) 
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Observe that there exists significant signal at the source (initial wave front) although the 

Gaussian wave arrives at the end of computational domain. This is due to the integral of 

Gaussian term in Eqn(6.22), which may be called as static term. This static term can easily 

be conferred from impulse response, Eqn(6.21). Physically, as soon as the dipole is turned 

on, charges immediately move to z = dl/2 and z = -dl/2. Then they remain static and produce 

static field effective in near field. Since it decays with 1/R3 in Eqn(6.21), it becomes 

negligible at far field. 
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Figure 6-48: Propagating FDTD Gaussian response (temporal, far field) 
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Figure 6-49: Propagating FDTD Gaussian response (temporal, near field) 
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Fine Grid: 
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Figure 6-50: Propagating FDTD Gaussian response (spatial) 
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Figure 6-51: Propagating FDTD Gaussian response (temporal, far field) 
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Figure 6-52: Propagating FDTD Gaussian response (temporal, near field) 
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Comparing Figure 6-47, Figure 6-48 with Figure 6-51, Figure 6-52, we find that distortion in 

the pulse is highly reduced for fine grid. Anyway we don’t expect distortion in the near field 

pulse (Figure 6-49, Figure 6-52). Regarding above plots, an important remark could be that 

the grid structure in spherical coordinates used for this problem is very advantageous for 

FDTD due to the nature of problem. However, had we used standard Yee algorithm in 

Cartesian coordinates for FDTD, results would be worse. 

6.4.3 RBTD Implementation 
 
Now we repeat the simulations with novel method RBTD. We treat first ramp input and then 

Gaussian input. The grid structure is as shown in Figure 6-39, Figure 6-40 for wave fronts 

and rays and as described in Table 6-2. 

 
Determination of Discontinuities: Recall that discontinuities are finite jumps in field 

quantities and their successive time derivatives. Then by inspection of Eqn(6.22), one can 

immediately determine discontinuities on the initial wave front where excitation is enforced. 

Since RBTD deals with only one of the field quantities (either E or H), considering only E 

field, the first discontinuity comes from step function term which is 

 0 ( , ) [ ] sin ˆA ER
cR
θθ θ= =  (6.26) 

The second one comes from derivative of ramp function term, which is also a step. 

1 2 2

2( , ) [ ]E cos sin ˆˆA R
t

R
R R

θ θθ θ∂
= = +

∂
   (6.27) 

The last one is obtained by differentiating E twice in time. That is, quadratic function turns 

out to be a step function and yields the third jump discontinuity. 
2

2 2 3 3

2( , ) E cos sin ˆˆA c cR
t R R

Rθ θθ θ
⎡ ⎤∂

= = +⎢ ⎥∂⎣ ⎦
  (6.28) 

Note that successive differentiation produces no more discontinuities in the sense of jumps. 

By means of this preprocessing, we determine the discontinuities since we assume input 

field is known over the initial wave front before we start computation at t = 0. Alternative 

implementation methods are possible, for example, determination of discontinuities and 

propagation of them can be done in parallel synchronously like time-marching as the input 

signal samples are launched into the computational grid. 

 
Transport of Discontinuities: Discontinuities are transported via transport equations along 

the rays (radial straight lines) in the computational grid. For isotropic, homogeneous 

medium (n = 1, ∇n = 0), then transport equations can be written as: 
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d
ν Aν µ ντ −+ ∆ Ψ = − ∇     (6.29) 

Noting that ds = ndτ, s = R and noting that , Eqn(6.29) becomes 2 2 2/.snµ∆ Ψ = ∇ Ψ = ∇ = R
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Slope estimate method [101] has been utilized in the predictor-corrector sense such that 
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The right hand side of Eqn(6.30) is zero for A0 and we have a simple ODE. In our 

implementation, A0 is computed first throughout the computational domain. After having all 

A0 available, then A1 is computed throughout the computational domain with non-zero right-

hand side. In a similar way A2 is computed with non-zero right hand side. In all 

computations, slopes are calculated as described in Eqn(6.31). Recursive nature of transport 

equations make the computations of right-hand side cumbersome. Those right-hand sides are 

computed numerically using 2nd order accurate difference scheme in ray and transverse to 

ray directions. Next section presents the results for A0θ, A1θ, and A2θ in coarse and fine grid. 
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Figure 6-53: Transport of discontinuities (A0θ, A1θ, A2θ) 
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Figure 6-54: Percent error 
 
 
 
Although the results in Figure 6-53 appears to be overlapped for analytical and numerical 

values, that does not depict the actual picture for small values. Figure 6-54 provides the 

percent error to asses the results. Numerical scheme transports A0θ very accurately, 

maximum error is almost %0.1 at the end of computational domain. But A1θ has some error 

(maximum %6) and A2θ has dramatic error (maximum %240). Error increases toward the 

end of computational domain or stating otherwise as the discontinuity propagates along ray. 

One of the source of error is the recursive nature of transport equations. Error in one stage 

inputs to the next stage. Moreover there are heavy numerical computations there, namely 

Laplace operator acting on a vector. The second one is the variation characteristics of 

discontinuities. Note from Eqns(6.26), (6.27), (6.28) that A0θ, A1θ, A2θ exhibit 1/R, 1/R2 and 

1/R3 spatial variations. And the numerical scheme in Eqn(6.31) can not transport accurately 

higher order discontinuities due to their rapid variations. Better methods could be found. 

However we should not worry about this issue because higher order discontinuities decay 

rapidly and lose their effect at far field. They are essential to accurately compute time-

dependent near field and we are already transporting them accurately in that region. We will 

turn back to this issue while discussing construction of time-dependent field from 

discontinuities. 
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Fine Grid: 
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Figure 6-55: Transport of discontinuities (A0θ, A1θ, A2θ) 
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Figure 6-56: Percent error 
 
 

From Figure 6-55, Figure 6-56, it is evident that fine grid performs well in transporting 

discontinuities. Errors are reduced by a factor of 4 or 5. This indicates us that numerical 

scheme is consistent with the actual transport equations because error tends to zero as grid 

spacings are reduced as described in Table 6-2. Note that in above plots A0θ, A1θ, A2θ are 

normalized values, that is, A0θ is multiplied by c, A1θ is as it is, and A2θ is divided by c. 

 
Construction of Time-Dependent Field: After having all discontinuities available at every 

grid point, we can directly construct time-dependent field at any point (i,k) of R. 
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6.4.3.1 Ramp Pulse 
 
We construct time-dependent field (Eθ) from discontinuities of (A0θ, A1θ, A2θ) utilizing 

Taylor series. For this purpose results are presented at far field (i = 400 and i = 800) and near 

field (i = 100 and i = 200)during observation interval of 500∆t and 1000∆t for coarse and 

fine grid respectively. Our aspect angle is 45° measured from z-axis (k = 13 for coarse and 

k = 26 for fine grid). Recall that RBTD implements ∆s = ∆R = c∆t, CFL condition (magic 

time step), along rays. Thus in effect, ∆t of RBTD is larger than the ∆t of FDTD, so we need 

less for the same grid spacings (∆R, ∆θ). 
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Figure 6-57: RBTD constructed ramp response (far field) 
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Figure 6-58: Percent error (far field) 
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Figure 6-59: RBTD constructed ramp response (near field) 
 

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

tim e(# of tim e steps)

Et
h 

pe
rc

en
t e

rr
or

 
 

Figure 6-60: Percent error (near field) 
 

Fine Grid: 
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Figure 6-61: RBTD constructed ramp response (far field) 
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Figure 6-62: Percent error (far field) 
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Figure 6-63: RBTD constructed ramp response (near field) 
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Figure 6-64: Percent error (near field) 
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Examining coarse grid plots (Figure 6-57, Figure 6-58, Figure 6-59, Figure 6-60) and fine 

grid plots (Figure 6-61, Figure 6-62, Figure 6-63, Figure 6-64), one can conclude that far 

constructed field exhibits some error if one sits at a point and makes long time observation 

because Taylor series expansion is an approximation in a neighborhood. Higher order 

discontinuities are not so accurately transported to far field by our numerical scheme. 

However there is an advantage that higher order discontinuities are weak, small coefficients 

of Taylor series at far field. Near field constructed datum are accurate. Both 0th order and 

higher order discontinuities are computed very accurately in that region. Thus, constructed 

time-dependent field is also accurate. Results also proves that fine grid is much better than 

coarse grid as expected. 

6.4.3.2 Gaussian Pulse 
 
In Sample Problem I and II. we have approximated Gaussian pulse by shifted rectangular 

pulses. By the same reasoning, since ramp response of Hertzian dipole has already been 

computed, then it is easy to construct the Gaussian response. For this purpose, input 

Gaussian pulse is approximated by ramp functions within ∆t interval and Gaussian response 

is computed as the weighted sum of the shifted ramp responses. Both near/far field and 

spatial/temporal plots are presented in the next section under the same simulation parameters 

and conditions. 
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Figure 6-65: RBTD constructed Gaussian response (spatial) 
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Figure 6-66: RBTD constructed Gaussian response (temporal, far field) 
 

50 100 150 200 250 300 350 400 450 500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time(# of time steps)

Et
h(

V/
m

)

analytic
RBTD

 
 

Figure 6-67: RBTD constructed Gaussian response (temporal, near field) 
 
Fine Grid: 
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Figure 6-68: RBTD constructed Gaussian response (spatial) 
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Figure 6-69: RBTD constructed Gaussian response (temporal, far field) 
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Figure 6-70: RBTD constructed Gaussian response (temporal, near field) 
 
 
 
Comparing the RBTD plots with those of FDTD, It is certain that RBTD achieves what 

FDTD can not. There is no numerical dispersion either at far field or near field. As discussed 

in Section 5.4.3, our numerical scheme induces errors during the transport of higher 

discontinuities. But this error has nothing to do with numerical dispersion. It is just 

numerical computation error and better algorithms could be found. However This is not the 

purpose of this thesis study. Moreover, we conclude that their erroneous nature is not 

important at far field. As for near field, they are already computed very accurately and time-

dependent near field is also constructed accurately. This is consistent with the understanding 

of frequency domain GO/GTD research. Dominek [104] tried to interpret the higher order 

terms in Luneburg-Kline series in Eqn (4.1). His study concluded that higher order terms in 

that expansion is not significant for propagation, reflection and refraction at some canonical  
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scattering surfaces such as spherical, cylindrical etc. It should also be mentioned that 

computational burden of RBTD is not heavier than that of FDTD. Simple physical facts on 

wave phenomena must be implemented wisely. 

6.5 Sample Problem IV: Electric Dipole in Inhomogeneous Medium 
 
Now we introduce inhomogeneity to Sample Problem III. To do this, considering Figure 

6-39, Figure 6-40 we define a medium 2 having relative dielectric profile of 

  (6.33) r

1 ( 10)/5 10
( )

1
z z

z
elsewhere

ε
− + ≤ −⎧

= ⎨
⎩

Note that εr has variation only in z-direction. At the boundary, continuity of εr is assured so 

that there exists no reflection. The medium 1 is free space (ε0, µ0). In real life, εr  exhibits 

frequency dependence. We ignore this point for simulations because it creates no problem to 

demonstrate applicability of methods. Within the scope of this problem three simulations 

have been conducted: Firstly, Spherical FDTD implementation in standard spherical 

coordinates, secondly Conformal FDTD implementation in conformal grids and finally 

RBTD which already necessitates conformal gridding. 

6.5.1 Computational Grid 
 
Computational grid for spherical FDTD is the one used in Sample Problem III (Figure 6-39, 

Figure 6-40) and as in Table 6-2. However, RBTD requires grid to conform wave fronts and 

rays. In this problem, wave fronts and rays remain same in medium 1 as in Sample Problem 

III but are bent toward z-axis, deformed in medium 2 (inhomogeneous) as depicted in Figure 

6-71, Figure 6-72. We will use this grid structure for conformal FDTD simulations too.  
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Figure 6-71: Wave fronts for coarse and fine grids. 
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Figure 6-72: Rays on yz-plane for coarse and fine grids 

 
 

6.5.2 Spherical FDTD Implementation 
 
Taking into account medium parameters, field update equations Eqn(6.23) turn into 

Eqn(6.34). ∆t is again set to its value by Eqn(6.25) according to homogeneous part of 

medium because smallest grid dimensions lie here on initial wave front. From now on, 

simulations are conducted only for Gaussian pulse. For inhomogeneous medium, we don’t 

have analytical results in our hand, so we only provide numerical results and compare them. 
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 (6.34) 

Coarse Grid: Figure 6-73, Figure 6-74 depict Eθ in space at the end of observation time, 

1000∆t, for k values of 31, 36, 42, 47, and 49 in the 4th quadrant of yz-plane (Figure 6-40) of 

coarse grid. k = 31 radial line has no intersection with inhomogeneous medium in the 

computational domain. So wave on it never enters into inhomogeneous medium. k = 36, 

k = 42, k = 47, k = 49 radial lines (ray in homogeneous medium but not ray in 

inhomogeneous one) lie in both media. Recall that M = 52 for coarse grid in Table 6-2. Then 

k values and corresponding elevation angles are as follows. 
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Table 6-3: k values and corresponding elevation angles in coarse grid 
 

k(integer) 0.6M = 31 0.7M = 36 0.8M = 42 0.9M = 47 0.95M = 49 
angle 105° 122° 143° 160° 167° 
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Figure 6-73: Spherical FDTD propagated Gaussian response (spatial) 
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Figure 6-74: A closer look at the Gaussian response (spatial) 
 
 

Fine Grid: Figure 6-75, Figure 6-76 depict Eθ in space at the end of observation time k 

values and corresponding elevation angles for fine grid are shown in Table 6-4. Observation 

time is 2000∆t. Recall that M = 105 for fine grid in Table 6-2. 

 
 

Table 6-4: k values and corresponding elevation angles in fine grid 
 

k(integer) 0.6M = 63 0.7M = 74 0.8M = 84 0.9M = 95 0.95M = 100 
angle 107° 126° 143° 162° 170° 
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Figure 6-75: Spherical FDTD propagated Gaussian response (spatial) 
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Figure 6-76: A closer look at the Gaussian response (spatial) 
 

 

Waves in inhomogeneous medium is more distorted than homogeneous medium because 

propagation direction of wave changes continuously and approaches toward z-axis. Since 

spherical coordinate grids do not follow ray bending (propagation direction) in medium 2, 

wave is additionally more liable to numerical dispersion. Both discretization and 

propagation direction dependence contributes to numerical dispersion in this problem. Note 

that wave is compressed in inhomogeneous medium and it lags as it travels due to decreased 

phase velocity. Comparing with coarse grid results, it is understood that fine grid reduces 

distortion much while increasing computational complexity. Note that waves entering more 

obliquely to inhomogeneous medium exhibits more distortion (k = 36, k = 42 and k = 74, 

k = 84). Other waves (k = 47, k = 49 and k = 95, k = 100) enter into inhomogeneous medium 

close to normal incidence and their propagation direction changes are very smooth. Recall 
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from Section 2.6.2 that Teixeira [69] reported angle optimized FDTD algorithm to alleviate 

dependence of numerical dispersion on propagation direction. For that purpose, we have a 

new, better idea, which is Conformal FDTD, as by-product of this thesis. 

6.5.3 Conformal FDTD Implementation 
 
Formulation of FDTD in nonorthogonal curvilinear coordinate system was first introduced 

by Holland [50]. Then Fusco et.al [52], [53] provided FDTD implementation in curvilinear 

coordinates. Palandech, Mittra [54] generalized Fusco’s approach. But this conformal 

gridding concept has been understood and used with FDTD to conform only the geometry of 

scatterer body in order to avoid staircase approximation. And people preferred standard 

FDTD algorithm in the rest of the computational domain. As we discussed earlier, our 

understanding of conformal grid in RBTD is the one conforming to wave fronts and rays. To 

the best of our knowledge, there has been no attempt to use such a grid for FDTD. We will 

see what is the meaning of this grid during simulations. Before proceeding further, let us 

introduce conformal grid structure. Results of [54] for our implementation can be 

summarized as follows. Each cell in the computational domain can be approximated as a 

parallelepiped in nonorthogonal curvilinear coordinates (u1, u2, u3) as shown in Figure 6-77. 
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Figure 6-77: Oblique coordinate system and a typical cell 
 

 

Sides of parallelepiped, the vectors (a1,a2,a3), are called covariant basis vectors. Contra-

variant basis vectors are defined as: 

 2 3 3 1 1 2
1 2 3, ,

a a a a a ab b b
V V V
× × ×

= = =  (6.35) 
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)where is the volume of a cell (parallelepiped). The metric and inverse metric 

tensor also have the following elements respectively. 

1 2 3(a . a aV = ×

 i,j i j i,j i j,a .a b .bg h= =  (6.36) 

Finally from Eqn(6.35), one can derive the relation ji j i,a .b δ=  where δi,j is the Kronecker 

delta. In nonorthogonal coordinates, E and H are expressed by their covariant and contra-

variant components. For example, E is expanded as: 

 
i

3 3

ib i a
i=1 i=1

E aE E= =∑ ∑ ib  (6.37) 

The coefficients of summation are called contravariant and covariant components of E 

respectively. These components of any vector, say E, can be obtained by 

 
j jb j a jE.b , E.aE E= =

ja

 (6.38) 

One can also derive the relationship between these components as 

 
i j i

3 3

a i,j b b i,j
j=1 j=1

,E g E E h E= =∑ ∑  (6.39) 

After discretizing Maxwell’s equations, similar to spherical FDTD but now with slight 

differences, we end up with the following update equations in terms of covariant and 

contravariant components of E and H. Although we have introduced inhomogeneity in along 

z-axis, we can still utilize the ϕ-axis symmetry and work on only yz-plane. 
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Note that in this general nonorthogonal space, ∆ui are effectively 1 since the physical edge 

lengths are incorporated in covariant basis vectors and thus ∆ui are included in V(i,k). This 

formulation is much more general because basis vectors are cell dependent and coordinates 

can be deformed in a general manner. The right-hand sides of Eqn(6.40) involve the 

covariant components of E and H, whereas the components being time-stepped are 

contravariant components. Once the time-dependent contravariant fields are computed, they 

can be mapped back to the physical space. Using this grid structure conforming to wave 

fronts and rays, we have made simulations for both coarse and fine grid. The terms, ‘coarse’ 

and ‘fine’ grid, still pertain to homogeneous part of medium where z ≥ - 10m and as 



described in Table 6-2. Please keep in mind that the medium is inhomogeneous for z < - 10m 

with the given permittivity profile in Eqn(6.33). ∆t is selected to be same as with that of 

spherical FDTD since smallest cells lie in homogeneous part of medium on the initial wave 

front.  

 
Coarse Grid: Figure 6-78, Figure 6-79 illustrate the results for Eθ on a wave front i = 400 

for different k values of Table 6-3. The observation duration is 1000∆t. Observation points 

on the 400th wave front, of course, have different radial distance from the origin contrary to 

spherical FDTD case because wave fronts and rays are deformed due to permittivity profile 

and grid conforms to it, that is grid follows ray bending (propagation direction). Also note 

that angles corresponding to k values are valid for homogeneous part where rays are radial 

lines. 
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Figure 6-78: Conformal FDTD propagated Gaussian response (temporal) 
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Figure 6-79: A closer look at the propagating Gaussian response (temporal) 
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Waves are lined up and experience the same type of dispersion error. There is no 

dependence on ray bending (propagation direction) because our conformal grid is aligned, 

oriented with it. This conformal grid approach to FDTD is completely new and eliminates 

dependence of numerical dispersion on propagation direction. It contributes directional 

property to FDTD which did not have that capability upto now. Then numerical dispersion 

stems only from PDE nature of FDTD and discretization of it. That can be removed by 

having ODE. This is what RBTD method achieves. RBTD is both directional and ODEs-

based. If computation at the same grid points were done by spherical FDTD, we would have 

the next figure. 
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Figure 6-80: Spherical FDTD propagated Gaussian response (temporal) 
 

 

Fine Grid: Similar to previous case, Figure 6-81, Figure 6-82 illustrate the results for Eθ on 

a wave front i = 800 for different k values of Table 6-4. The observation duration is 2000∆t. 

The comments done for coarse grid totally apply to them but with an addition that fine grid 

performs better. Had we computed results by spherical FDTD at the same grid points, we 

would have Figure 6-83. In addition to that fine grid is, of course, better than coarse grid, 

same comments apply to following plots. 
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Figure 6-81: Conformal FDTD propagated Gaussian response (temporal) 
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Figure 6-82: A closer look at the propagating Gaussian response (temporal) 
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Figure 6-83: Spherical FDTD propagated Gaussian response (temporal) 
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6.5.4 RBTD Implementation 
 
In Section 5.4.3, after demonstrating construction of time-dependent near and far field, we 

have concluded that higher order discontinuities are negligible at far field but essential at 

near field. They have been transported accurately to near field but with some error to far 

field. However transport of 0th order discontinuity A0 is very accurate everywhere. Its 

reflection, refraction can be performed easily and accurately as well. In this section, we deal 

with only A0, which is GO field term, to find the time-dependent the far field using covariant 

and contravariant components in nonorthogonal curvilinear grid conforming to wave fronts 

and rays, which is the requirement of RBTD. 

 
Determination of Discontinuities: A0 on the initial wave front (in homogeneous medium) is 

the same as in Sample Problem III. 

 0 0( ) sin ˆA R
cR
θ θ=  (6.41) 

Transport of Discontinuity: The transport equation is 
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This is homogeneous ODE. Using , Eqn(6.42) becomes 2(n n / ).s d dsµ ε ε∆ Ψ = ∇ +

 20
0 0

n 22n n ( n) 0
n

A
A .s A

d d
ds ds

ε
ε

⎛ ⎞+ ∇ + + ∇ ∇Ψ =⎜ ⎟
⎝ ⎠

i  (6.43) 

p∇Ψ =  is wave normal and indicates ray direction. Considering grid structure and typical 

cell in Figure 6-77, one can infer that ∇Ψ  is 

 1 1n /p a a∇Ψ = =  (6.44) 

And since 1p.s = , this leads to  

 1 1/ns a a=  (6.45) 

Then transport equation turns out to be 
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.s∇  and  can be computed numerically in forward difference manner. n∇
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The last term in Eqn(6.46) has a1. Then A0 must be expanded in contravariant components. 

112 

2a 
1 20 0b 1 0bA AA a= +  (6.48) 

Finally we can write the point slopes as: 
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 (6.49) 

Note that 1a  is the edge length of a cell along the ray and ds is arc length. Then ∆s = 1a . 

Hence using the same slope estimation and predictor-corrector method of Section 5.4.3, 

contravariant components can be computed as: 
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They must be mapped back to physical space. For example, A0b2 is similar to A0θ in spherical 

coordinates, hence mapping results in 

 
20 22A gθ = 0bA  (6.51) 

Coarse Grid: Figure 6-84 depicts transported A0θ. Figure 6-85 is a closer view. Each ray 

(different k values in Table 6-3) enters into inhomogeneous medium at different positions 

(wave front locations) naturally. 
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Figure 6-84: Transport of discontinuity A0θ 
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Figure 6-85: A closer look at A0θ

 
 
 

Fine Grid: Figure 6-86 depicts transported 0A θ  for fine grid. Figure 6-87 is detailed view of 

A0θ. Different k-valued rays enter into inhomogeneous medium at different positions 

naturally. 
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Figure 6-86: Transport of discontinuity A0θ 
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Figure 6-87: A closer look at A0θ

 
 

Construction of Time-Dependent Field: Using only GO field 0A θ , time-dependent far 

field Eθ can be constructed. 

 0θ
θ

A ( )
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t t
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t t
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=
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 (6.52) 

ti corresponds to time associated with ith wave front. On the ith wave front, all the wave is in 

time-phase. Their variations are due to different k-values sitting on ith wave front. For 

example, next we present constructed Eθ at i = 400 (coarse) and i = 800 (fine) for different k-

valued rays in the 4th quadrant of yz-plane. The observation interval is 500∆t (coarse) and 

1000∆t (fine). Remember that RBTD uses ∆s = υ∆t along rays. Thus, physically no wave 

can exist at i = 400 wave front for all k-valued rays before ti = 400∆t. The same comment 

applies to fine grid with i = 800 and ti = 800∆t. 
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Coarse Grid: 
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Figure 6-88: RBTD constructed Gaussian response (temporal) 
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Figure 6-89: A closer look at the Gaussian response (temporal) 
 
Fine Grid:  
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Figure 6-90: RBTD constructed Gaussian response (temporal) 
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Figure 6-91: A closer look at the Gaussian response (temporal) 
 
 
 
Figure 6-88, Figure 6-89 depict the constructed Eθ for coarse grid while Figure 6-90, Figure 

6-91depict the constructed Eθ for fine grid. RBTD excels in performance even Conformal 

FDTD. As stated earlier, RBTD is directional and ODEs-based. Thus, main sources of 

numerical dispersion have been eradicated. The only source of error in RBTD may stem 

from numerical computations. 

6.6 Stability of Transport Equations 
 
Transport equations in Eqn(5.12) for discontinuities are 1st order Ordinary Differential 

Equations (ODEs) and recursive. They reduce to homogeneous equations for 0th order 

discontinuity and non-homogeneous equations for higher order ones. The stability analysis 

of these 1st order ODEs is neither the aim nor within the scope of this thesis. That study has 

been well established and is available in many textbooks, for example [101]. Anyway, this is 

issue is not a problem for RBTD as demonstrated by simulations. 

6.7 Grid Generation 
 
One of the peculiarity of RBTD is to generate computational grid conforming to wave fronts 

and rays in the medium as accurately as possible. Since computations start from a given 

initial wave front, consider a surface patch on it. First we find tangential vectors in 

transverse directions (T1 and T2) by fitting a circle to neighboring points (4,5,2) for T1 and to  

neighboring points (1,5,3) for T2.  Then we find the wave normal direction N, which is the 

ray direction, by T2×T1. Finally next grid points are generated by going in ray direction by 

∆s = υ∆t amount where ∆s, υ, and ∆t are arc length traversed, phase velocity at the point of  
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interest, and time step chosen. Repeating this procedure at each step, computational grid is 

created. Note that in RBTD, this is just like a 1-D wave motion along ray although the 

problem is higher dimensional.  
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Figure 6-92: Grid generation 
 

 

6.8 Accuracy of RBTD 
 
The accuracy RBTD relies on the accuracy of grid generation, which must conform to wave 

fronts and rays, and the accuracy of finite difference solution of transport equations. Hence, 

for RBTD simulations upto here, a question may arise as to how accurate we generate our 

grid on which numerical computations are done. Grid can be generated perfectly in 

homogeneous medium starting from an initial wave front as in Sample Problem I, II and III. 

However, in inhomogeneous medium, depending on the nature of medium parameters and 

shape of initial wave front (degree of smoothness), there may be some errors. As an 

example, let us discuss Sample Problem IV. Permittivity profile has been defined in 

Eqn(6.33). Using it, the exact equation of rays on yz-plane can be written [3] as: 

 
0
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( ( ))

z

z

ady z
n a

γ

γ
=

−
∫  (6.53) 

Figure 6-93, Figure 6-94 depict the numerical rays generated by our grid generation 

procedure for RBTD and analytical rays computed by Eqn(6.53) Even for coarse case, 

results are excellent in inhomogeneous part of the medium. They overlap. Hence we can 

trust on accuracy of grid structure. 

 
As for the accuracy of finite difference solution of transport equations, we have already 

discussed the accuracy of numerically computed discontinuities and their effects in Sample  



Problem III. Results for A0 was excellent everywhere in the computational domain. 

Transport equation of A0 is homogeneous ODE and it can easily be solved for many physical 

permittivity profile. Higher order discontinuities have been transported accurately to near 

field but with an appreciable error to far field. Better numerical schemes could be found but 

this issue again is not the purpose of this thesis. Moreover, it has been concluded that higher 

order discontinuities are not significant in the far field. They are essential in the near field 

and they have been transported accurately to that region of computational domain. For this 

reason, only A0 has been considered in Sample Problem IV for far field computations and 

results have been very accurate without loss of any information. Then it is claimed that 

RBTD computations are highly accurate. 
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Figure 6-93: Analytical and numerical rays (coarse grid) 
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Figure 6-94: Analytical and numerical rays (fine grid) 
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     CHAPTER 7 
 
 

7 CONCLUSION 

 
 
 
7.1 Conclusion 
 
We have started this study with motivation of developing dispersion free numerical algo-

rithms for FDTD. Many aspects of FDTD and characteristic-based methods have been 

examined and finally we ended up with novel method, called RBTD by us, for the 

computation of time-dependent electromagnetic fields.  

 
Although characteristic-based methods have many advantageous such as well-posedness, 

directional signal propagation, which improves the stability and numerical dispersion 

performance, the coefficient matrix cannot be diagonalised in higher dimensions. FDTD is 

very popular method for EM simulations and is widely used. It utilizes both E and H fields. 

The main drawback of FDTD is inherent numerical dispersion. There are two main factors 

causing numerical dispersion: discretisation of PDE Maxwell’s equations (grid resolution, 

wavelength, time step) and propagation direction of wave in the grid. FDTD yields exact 

analytical solution only for 1-D wave and at CFL = 1 condition. Otherwise there always 

exists numerical dispersion. In Chapter 6, we have devised a novel grid structure conforming 

to wave fronts and rays (natural grid of RBTD) for FDTD and observed that this approach 

removes dependence of numerical dispersion to propagation direction because grid has been 

aligned to follow ray direction. Then numerical dispersion only due to discretization of PDE 

remains left. Although some researchers reported some angle optimized algorithms to 

alleviate numerical dispersion due to propagation direction and EM community used 

conformal gridding to conform the body of a scatterer, conformal gridding in the sense of 

wave fronts and rays for FDTD has been developed and implemented first in this thesis. 

 
Contrary to FDTD, RBTD works on one of the field quantities, either E or H. RBTD is, in 

fact, also based on characteristic theory of PDEs. The grid structure of RBTD has to be wave 

fronts and rays, which are the characteristics and bicharacteristics of PDEs. RBTD deals 

with discontinuities of field quantities, transport of them along rays (incident, reflected, 

refracted), and reflection/refraction of them at a boundary interface. After RBTD computes 
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discontinuities in the computational domain, then it constructs time-dependent field by using 

Taylor series with coefficients being discontinuities transported to the point of interest. Thus 

RBTD preserve the advantageous of characteristic-based methods but does not deal with any 

matrix diagonalisation. Honoring directional signal propagation and ODE nature of transport 

equations provide to eliminate numerical dispersion, which is the biggest advantage of 

RBTD over FDTD. In Chapter 6, RBTD has been successfully applied to numerous EM 

problems in isotropic homogeneous/inhomogeneous medium (propagation, refraction, 

reflection). The same simulations have also been conducted for FDTD and results show that 

RBTD is superior to FDTD. RBTD not only eliminates numerical dispersion and 

superluminal effects of FDTD but we also believe it to be a completely new computational 

method in electromagnetic society. 

 
Although rigorous analysis and study of stability of transport equations has not been 

undertaken, it can be inferred from the theory of ODEs that stability requirement of ODEs is 

less stringent than the stability requirement of PDEs. Thus we don’t consider it to be a 

problematic issue for RBTD while FDTD algorithm has to satisfy CFL stability condition. 

RBTD implements ∆s = υ∆t 1-D CFL condition (magic time step) along the rays. No matter 

what the dimension of problem is, it is treated as 1-D by RBTD. 

 
FDTD needs ABCs at the end of the computational domain as discussed in Chapter 3. 

Improper termination causes unrealistic results. However RBTD does not require ABCs. 

RBTD implementation in Chapter 6 assumed a given input on the initial wave front. 

Performing some pre-processing, discontinuities have been determined and transported into 

computational domain as a spatial problem only. Hence no need to apply ABCs. 

 
The presented theory of RBTD handles propagation, reflection and refraction of finite jump 

discontinuities. This is the condition for the convergence of Taylor series expansion. 

Otherwise series would diverge. 

 
As far as the type of input waveform is concerned, there is no limitation for RBTD (smooth 

or discontinuous) whereas FDTD needs smooth excitations. However it is preferable to find 

the solution first for simple waveforms such as step, ramp or rectangular pulses. Then one 

can construct the response to an arbitrary waveform from the response of simpler waveform 

with the desired accuracy but depending on the accuracy of response of the simpler 

waveform. Considering only one period of waveform, one can treat even sinusoidal input. 
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7.2 Further Study 
 
We believe RBTD to be very promising method. In future, following potential studies can be 

conducted so that RBTD gets mature and is widely used both in electromagnetics and in 

other branches of science for the solution of engineering problems. 

 
 Better numerical methods to transport higher order discontinuities accurately can be 

further explored and found. 

 RBTD can immediately be applied to ionospheric propagation and MUF calculation  

problems.  

 Although we have given intuitively a sample treatment of 1st order discontinuity for 

reflection and refraction in Chapter 4, there is no neat, explicit formulas, like Fresnel 

formulas for GO fields, to determine reflected and refracted higher order discontinuities at 

discontinuous medium interface. This formulation can be further elaborated. 

 For some problems, use of RBTD may be advantageous in some region while another 

method may be advantageous in the other region. Therefore hybridization of RBTD with 

other numerical methods can be considered. 

 For some phenomena in electromagnetics, such as evanescent modes in waveguide, 

physical wave fronts and rays cannot be defined as in this study. To overcome this difficulty, 

complex-ray definition can be developed and RBTD formulation can be modified 

accordingly. 

 Transport equations in RBTD have been implemented using finite differences. In 

Chapter 4, we have also provided the solution based on transport of energy terms related 

with discontinuities on a cross section of wave front. RBTD implementation, transporting 

energy terms in ray tubes, can also be demonstrated. Energy based implementation may 

exhibit better performance. 

 Since the present theory of RBTD treats finite jump discontinuities, one of the important 

phenomena of electromagnetics, diffraction, cannot be handled. Infinite discontinuities 

resulting from caustic, foci points create diffracted field and make Taylor series go to 

infinity. So treatment of infinite discontinuities will add an important feature to RBTD. 

Incorporation of diffraction phenomenon by RBTD may lead to establishment of 3-D time 

domain theory of diffraction called ‘paragon=big problem’ in electromagnetics. In frequency 

domain, GO/GTD people neglect higher order terms in Luneburg-Kline series (as we did in 

Chapter 5 for Taylor series). They first obtain GO solution (the first term), then find the 

diffracted field from canonical problems of GTD and finally bring them together for total 
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solution. In our future study, we expect to follow the same reasoning and procedures in time 

domain to extend the RBTD. 

 Problems in dispersive medium, where medium parameters changes with frequency are 

important in electromagnetics. FDTD solves them using convolution type integrals. This 

capability can be added to RBTD. 

 Recall that in isotropic medium, wave normal and direction of energy propagation (ray 

direction) are parallel. Thus finding the wave normal in grid generation and transporting 

discontinuities in that direction means to follow energy flow. This thesis has dealt with 

isotropic medium. However in anisotropic medium, wave normal and ray directions are not 

parallel. Generation of wave fronts and rays need special care. Kline[92] provides the 

method how to transport GO field in anisotropic medium. But the method for higher 

discontinuities is not available. Due to these factors, developing the formulation and solving 

electromagnetic problems in anisotropic medium using RBTD is also considered to be a 

future study. 

 Recall that there are there types of discontinuity hypersurfaces as mentioned in Chapter 

3. In some problems, one must directly deal with source (charges and currents) to start the 

computation. During simulations we have assumed given input field on the initial wave front 

and treated stationary discontinuous boundary and propagating boundary separating 

zero/non-zero field regions. We have not treated discontinuous source boundary. This source 

boundary could be a wave front (Huygen’s principle) or a non-wave front boundary 

(generator of wave fronts). In chapter 4, we have described how to determine ICs for 

discontinuities directly from source. Transport of these ICs from non-wave front source 

boundary to the nearest wave front is deferred to later studies. 

 Transport equations for GO fields have an interesting and for some purpose useful 

interpretation if we consider their meaning in a special non-Euclidean geometry (Riemann 

geometry). GO fields move along the rays so that each remains parallel to itself in the sense 

of “parallelism” in Riemann geometry. In this “parallel transfer”, GO field is said to be 

displaced parallel to itself if it satisfy a specific differential equation in Riemann geometry. 

And this differential equation is satisfied along special curves called geodesic. GO fields are 

parallel transferred along the rays when latter are regarded as geodesics in Riemann 

geometry. Hence RBTD concept may be applied/adapted to geodesic curves and geodesic 

flows which geophysics, magneto hydrodynamics deal with. 

 Applicability of RBTD to fluid dynamics (Navier-Stokes equation), acoustics (acoustic 

wave equation) and quantum waves (Schrodinger equation) also needs to be explored. 
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