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ABSTRACT 
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IN UNEVEN TERRAIN 
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Supervisor: Assoc. Prof. Dr. Vedat Toprak 
 

December 2002, 112 pages 
 

 

 

The aim of this study is to develop a framework for the integration of ancillary 

topographic information into supervised image classification to improve the 

accuracy of the classification product. Integration of topographic data into 

classification is basically through modification of training set in order to provide 

additional sensitivity to topographical characteristics associated with each land 

cover class in the study area. 

 

Multi-spectral Landsat 7 ETM  30x30 meter bands are the remotely sensed data 

used in the study. Ancillary topographic data are elevation, slope and aspect 

derived from 1/25000 scaled topographic map contours.  

 

A five-phase methodological framework was proposed for developing 

procedures for the integration of topographical data into a standard image 



 

 

 

iv

classification task. Briefly; first phase is the selection of initial class spectral 

signatures, second phase is analyzing the information content of class spectral 

signatures and topographical data for a potential relationship, and quantification 

of the related topographical data. Third phase is the selection of class 

topographical signatures from the related topographical data. Fourth phase is 

redefinition of two training sets where one of which includes spectral information 

only and the other includes both spectral and topographical information. The last 

phase is classification. Two products were derived where, first product used 

bands as input and was trained by spectral information only and the second was 

the product for which bands and topographical data was used as input and it 

was trained with both spectral and topographical information. 

 

Method was applied to image and associated ancillary topographical data 

covering rural lands mainly composed of agricultural practices and rangelands 

in Ankara. 

 

Method provided an improvement of 10% in overall accuracy for the 

classification with the integration of topographical data compared to that 

depended only on spectral data from remotely sensed images. 

 

 

 

Keywords: Image Classification, Integration of Ancillary Data, Topographical 
Data, Training set  
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ÖZ 
 
 
 

TOPOGRAFİK VERİ ENTEGRASYONU İLE ARAZİ ÖRTÜSÜ 
SINIFLANDIRMA HASSASİYETİNİN ARTIRILMASI 
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Tez Yöneticisi: Doç. Dr. Vedat Toprak 

 

Aralık 2002, 112 sayfa 

 

 

 

Bu çalışmanın amacı, görüntü sınıflandırma sonucunu iyileştirmek üzere 

yardımcı topoğrafik verinin sınıflandırmaya entegre edilmesini sağlamak için bir 

yöntem geliştirmektir. Topoğrafik verinin sınıflandırmaya entegre edilmesi temel 

olarak, eğitim setlerinin arazi örtüsü sınıflarının topoğrafik karakteristiklerine 

daha fazla hassasiyet gösterecek biçimde yeniden düzenlenmesi yolu ile 

gerçekleştirilmektedir. 

 

Çalışmada kullanılan uydu görüntüleri, Landsat Thematic Mapper 7 ETM 

bantlarından oluşmaktadır. Yardımcı topoğrafik veriler ise, 1/25000 ölçekli 

topoğrafik harita yükseklik konturlarından elde edilen yükseklik, eğim ve bakı 

verileridir. 
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Topoğrafik verilerin standart görüntü sınıflandırma işlemine entegre edilmesini 

sağlamak üzere beş aşamalı bir metodolojik yapı geliştirilmiştir. Özetle; birinci 

aşama sınıflara ait ilk spektral işaretlerin belirlenmesidir, ikinci aşama bu 

işaretlere topografik verilerin olası bir ilişkinin tespiti için analiz edilmesi ve ilişkili 

bulunan topografik verilerin seçilmesidir. Üçüncü aşama ilişkili bulunan 

topografik veriden sınıf topografik işaretlerinin belirlenmesidir. Dördüncü aşama 

iki eğitim setinden birinin sadece spektral bilgi içerecek, digerinin hem spektral 

hem topografik bilgi içerecek şekilde yeniden tanımlanmasıdır. Son aşama ise 

sınıflandırmadır. Sınıflandırma sonucunda, biri girdi olarak sadece spektral 

bantları kullanmış ve spektral bilgi ile eğitimlenmiş, diğeri ise girdi olarak bant ve 

topografik veri kullanmış ve hem spektral hem topografik veri ile eğitimlenmiş iki 

ürün elde edilmiştir. 

 

Metodoloji, Ankara’nın kuzeyinde, çoğunlukla tarım, mera ve çalılık alanlardan 

oluşan kırsal bir araziyi kapsayan Landsat TM görüntüleri ve ilgili topoğrafik 

veriler üzerinde uygulanmıştır.  

 

Metod topografik verinin entegrasyonu ile elde edilen üründe, sadece spektral 

bilginin kullanımı ile elde edilen ürüne göre doğrulukta %10 oranında iyileşme 

sağlamıştır. 

 
 
 
 
Anahtar Kelimeler:  Eğitim seti, Görüntü Sınıflandırma, Topoğrafik Veri, 

Yardımcı Veri Entegrasyonu. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

1.1. An Overview of Remote Sensing for Land Cover and Land Use Detection 
 
Information regarding the characteristics and spatial distribution of land cover 

and land use is critical in monitoring and management of environment. 

Information on actual land cover and land use serve as basis for various studies 

of geosciences and furthermore provide substantial background for determining 

and implementing strategies, policies and principles for planning in local, 

regional and global scale. However, available data on land cover and land use 

are often out-of-date, of poor quality or inappropriate for particular applications. 

 

The earth resources data are collected using basically two methods including in 

situ (field) and/or remote methods (Jensen, 1996). Beginning with the early use 

of aerial photography, remote sensing has been recognized as a valuable tool 

for viewing, analyzing, characterizing environment, and making decisions about 

environment. Today, satellite remote sensing is defined as the use of satellite-

borne sensors to observe, measure, and record the electromagnetic radiation 

reflected or emitted by the Earth and its environment. Rapid development of 

satellite techniques, the advances in geomatics technologies encouraged by the 

non-stop development of computer environment have created many advantages 

for monitoring and handling earth resources. Those advantages include; 

capability to capture a synoptic view, availability of multi-spectral data providing 

increased information, capability of repetitive coverage, being global in scale 

and being not limited by political or geographic boundaries, being contemporary, 

being fast and practical, giving easy access to the end user (Bruzzone et al., 

1997, Campbell, 1996)  
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In situ methods for collecting data often include point based measurements with 

direct contact and produce discrete data. However, remote sensing offers a way 

to avoid the logistical and economic difficulties associated with obtaining 

continuous in situ measurements of surface features.  

 

Aerial photographs also have long been primary data input for production of 

topographic maps and various types of ground truth information, but obviously 

after certain photogrammetric processing yet, they are subjected to 

considerable amount of geometric distortions. Considering the aforementioned 

advantages of satellite remote sensing with its relatively less amount of 

preprocessing compared to that required for aerial photographs, it is 

increasingly becoming more optimal method of data collection, even the only 

feasible approach to map land cover and land use, especially on regional to 

global scales if frequent updating is required. 

 

Remotely sensed imagery provides enormous quantity of data of the earth, but 

those data are inherently raw and user interpretation for such data is often 

limited in quality. Thus, automated processing of those images is apparently 

required to extract particular thematic information.  

 

Image classification is a widely used automated technique to extract information 

from remotely sensed images. Image classification is the process of converting 

image data into useful thematic information; it categorizes spectral data into 

classes with respect to statistical decision rules introduced by the classifier 

algorithm. The multi-spectral image classification techniques are various and 

performed using plenty of algorithms.  

 

However, information gathered by the classification of remotely sensed data, 

based solely on spectral variability is often insufficient in accuracy (Janssen et 

al., 1990; Bruzzone et al., 1997). Attempt to improve the accuracy of image 

classification would be to extend the classification procedure with the integration 

of data and/or information (Westmoreland and Stow, 1992, Bolstad and 

Lillesand, 1992, Gahegan and Flack, 1996). This data and information, also 

known as “ancillary data” in the literature, are often composed of map-based 
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thematic data, terrain data and non-spatial data. There have been numerous 

attempts to increase overall accuracy of classification during the period 

regarding the use of automated classification systems. Some of the 

representatives of those approaches are given in Background Study chapter. 

 

 

1.2. Purpose and Scope 
 

This study represents a framework and application to increase accuracy of 

image classification and yield more reliable land cover thematic information with 

the use of ancillary topographical data in a standard classification procedure. 

Method was intended to provide a simple and concise approach to the 

integration of ancillary topographical data into classification, with a series of 

straightforward procedures. The method was primarily based on integrating 

topographical data into supervised classification procedure as a component, in 

addition to the spectral bands of satellite imagery. The crucial point of 

integration is the modification of training set so as to take topographical 

signatures of classes into account, which efficiently yielded an improved training 

set sensitive to topographic characteristics of features as well. 

 

In image classification applications, it’s important to select an appropriate set of 

multi-spectral imagery to satisfy the final expectations. Landsat Thematic 

Mapper (TM) which has far been the most widely used and effective type of 

earth observing satellite in multi-spectral image classification applications at 

local and regional scales was the primary source of data for the study.  

 

Surface elevation above mean sea level and slope were the ancillary data being 

used in the study as they deployed significant relations with land cover data. 

Aspect, which is also a derivative of elevation data, was excluded from the 

analyses for being poorly related with land cover types in the study area. 

 

The proposed methodology, in which the aim was to partially prevent 

misclassifications due to spectral confusion, is implemented in five stages. In 

the first stage, an initial training set which represent the spatial characteristics of 
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four land cover classes was selected. In the second stage the degree of relation 

between the four classes and the elevation data (elevation, slope and aspect) 

were investigated, elevation and slope data after correlation analyses were 

realized to be related with the land cover classes and entitled to be used as 

ancillary data in the classification. The third stage was selection of topographic 

training set which is representing the class topographical signatures. Selection 

of the initial training set was finalized by this stage. The fourth stage was the 

modification of training set by taking ancillary data into consideration without 

changing the spectral training set definitions, which is almost impossible 

practically by manual editing of the supervisor. Thus, the initial training set is 

redefined by including all feature elements covered by the data ranges 

(minimum-maximum) of class signatures. After the redefinition, the fifth stage 

was classification. Two products are derived through classification. This was 

done to enable an objective comparison with the classification qualified with 

ancillary data to measure the effect of topography and classification of only 

images with maximum likelihood classifier by the standardized training set 

utilized for the images only. Then classification of images, elevation and slope 

together with maximum likelihood classifier by the standardized training set 

utilized for imagery, elevation and slope is performed. The fifth and the last 

stage is the comparison of the two results with the ground truth information. The 

two results were trained spectrally the same but in the second classification, 

training set included additive elevation and slope information yielding a result 

including effect of terrain. 

 

 

1.3. Method of the Study 
 

Study is primarily based on office work consisting of collection and evaluation of 

various data sets. Field work is also performed to understand the feature 

components of the study area and collect some test points to be used in 

production of ground truth data. The procedures to implement the study are 

mainly composed of geometric correction of the data, production of Digital 

Terrain Model (DTM) and derivatives, training set selection, automated training 

set selection where, all of the raster attributes were transferred to vector points, 
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every one of which represented a standard raster grid of 30x30 meters to 

execute the selection procedure, followed by classification, and accuracy 

assessment. 

 

The information about the nature and the evaluation of these data sets will be 

given in detail in following chapters.  

 

For handling the processes required to implement the study, TNTmips; map and 

image processing system of MicroImages was used. The system provides 

powerful tools for digital image processing and offers a flexible environment for 

the integration of image and the ancillary data. MapInfo was also used in 

particular stages. Statistical computations were mainly carried out using 

Microsoft Excel and SPSS. Correlation analysis was performed by an online 

biserial correlation calculator, which is a utility provided on Vassar Collage web 

site. 

 

 

1.4. Format of the Thesis 
 

This thesis consists of five chapters. The first chapter is Introduction. In chapter 

2, theoretical information on image classification and methods improving 

classification accuracy with the incorporation of ancillary data are represented 

and previous studies on image classification using ancillary data are introduced.  

In chapter 3, study area, data and preprocessing operations on data are 

described. In Chapter 4 the methodology and workflow of the study is 

represented. Chapter 5 involves the discussion of the results and the last 

chapter is conclusion and recommendations.  

 

 

1.5. Study Area 
This study represents a framework and application to increase accuracy of 

image classification. The proposed method was applied to the imagery and the  

associated data set covering rural areas in northern Ankara. 
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Study area is located in northern Ankara, in central Anatolia within the 

boundaries of Ankara municipality and including a part of Kızılcahamam city. It 

covers a rural area of approximately 66 km2 with dimensions 7.4 x 8.9 km 

(Figure 1.1). 

 

 
Figure 1.1 Location of the study area 

 

Topography of the study area is uneven. It covers a typical volcanic 

mountainous terrain of middle Anatolia with dissected stream valleys, besides; 

there also exists some flat regions. Elevation in the study area ranges from 890 

meters to 1440 meters, and slope varies from 0o to 40o. Middle and the southern 

parts are relatively low in altitude and have gentle slope. Northern and the north-

western parts of the study area have higher elevation with moderately or steeply 

sloping terrain.  

The native vegetation of the study area is typically composed of rangelands. 

Anderson et al. (1976) defined rangelands as natural vegetation types involving 

a variety of land from densely dominated shrub and brushes to sparsely 

vegetated herbaceous lands. Rangelands of the study area are composed of 

common steppe vegetation species in central Anatolian regions where typical 

continental climate is prevalent (DMİGM, 2002). The native shrubs and brushes 

of the study area are steppe species of maximum 2-meter height, distributed 

densely in the terrain. Herbaceous rangelands of the study area are poorly 

vegetated lands with herbaceous plants of maximum 20-30 cm height. In some 

areas, herbaceous rangelands are mixed with the native shrubs and brushes of 
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the study area. Moving through the north, particular areas are dominated with 

trees composed mainly of coniferous and partially of deciduous tree species.  

Apart from the natural land cover, particular land use classes are present in the 

study area. Land use classes in the study area are primarily agricultural, 

residential, industrial and transportational. Agricultural lands in the study area 

are mainly located in the mid and the southern parts. Predominant agricultural 

activity is cereal farming, also limited amount of vegetable farming is practiced 

nearby the rural settlements and the lower wetlands along Meraçayı River and 

branching intermittent streams. Residential development consists of several 

rural settlements and a part of Kızılcahamam city located at the upper edge of 

the study area. Industrial uses are expanding especially on the Kızılcahamam 

fringe and along Ankara–Kızılcahamam highway (D750).  

The main reason for choosing this area was that the data required for 

implementing the analyses within the methodological frame were available and 

somewhat current. The other reason was the variability of the classes as all of 

the superior classes were typically of continental environment of central 

Anatolia. Observations of the available data set and the site visits convincingly 

affirmed the presence of these classes. Other reason was unevenness of the 

terrain, where topography is significantly varying within the study area. And the 

final issue to mention is that the study area is located near Ankara and site visit 

is rather feasible and easy. 
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CHAPTER 2 
 

 

BACKGROUND STUDY 
 

 

 

In this chapter brief theoretical information about image classification, and 

approaches on improvement of classification accuracy with the integration of 

ancillary data or information are provided. Majority of the researches in the 

literature about the concept of accuracy improvement concentrate on increasing 

the measure of the accuracy of image classification procedures with the 

integration of ancillary data.  

 

In the first section of this chapter, image classification, factors influencing 

classification results and concept of classification accuracy are discussed. In the 

subsequent section focus is shifted a little deep into the technical issues 

concerning the basic, conventional image classification. And in the last section, 

particular approaches of integrating ancillary data into the classification 

procedure are introduced and previous studies on the subject are provided. 

 

 

2.1. Image Classification 
 

Spectral signatures of the features are recorded as reflectance values by 

remote sensing systems at different wavelengths. This introduces the multi-

spectral concept to a remote sensing system. Those bands within these 

different spectral settings include enormous amount of raw data regarding earth 

surface. A widely used method to convert these data into useful information or 

into thematic data is image classification. Image classification is an information 

extraction process that analyses the spectral signatures for classes and assigns 
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each pixel in the image to its appropriate class according to the class signatures 

(Sabins, 1977). 

 

Image classification methods depending on the spectral reflectance values yield 

satisfactory classification accuracies when land features are spectrally 

separable. But on the contrary case, where features of environment are 

spectrally complex, great difficulties are encountered. Spectral confusion 

affecting the class signatures is the main reason of misclassifications (Bruzzone 

et al., 1997).  

 

Factors which lead to spectral confusion basically have two different sources 

which are nature of environment and irregularities of terrain (Lunetta et al., 

1991). Some different land cover types naturally can give similar reflectance 

values, that a single spectral class may represent more than one information 

class, is a source of confusion depending on nature of environment and hard to 

surmount with classification of spectral data only. A single information class may 

not show the same spectral characteristics due to topographical effect which is 

defined as variation in radiance from inclined surfaces as a function of the 

orientation of the surface relative to the sun and sensor position (Burgess et al., 

1995).This is an error changing the original reflectance values of features but 

may be removed partially by radiometric correction. 

 

Under these circumstances, it is evident that image classification may have 

some uncertainties. Therefore; thematic information extracted from classified 

imagery can be served as an end product, but in case, provided together with a 

known degree of uncertainty. Considering the issue, a measure indicating the 

degree of uncertainty is useful. Uncertainty of a classification product is 

measured by a procedure widely known as accuracy assessment. Accuracy 

assessment is simply the comparison of two sources of information; remote 

sensing derived classification product and reference test information or ground 

truth data (Jensen, 1996). 
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2.2. Methods of Classification 
 

Image classification often includes the categorization of spatial features on earth 

into land cover and land use classes like forest, settlement, water, etc. by 

means of selected classifier algorithm. Various classification algorithms which 

basically depend on statistical decision rules are performed for classifying 

images. Major difference between these classification methods is their 

emphasis and ability to incorporate information obtained by remote sensing. 

 

The two generalized methods for image classification are supervised and 

unsupervised classification. Being supervised or unsupervised is the basic point 

of distinction for image classification where, supervised classification involves 

user interference, and unsupervised not. Nevertheless, image classification 

methods can be further categorized by means of being per-pixel or contextual, 

hard or fuzzy and parametric or non-parametric. 

 

Most commonly used classification algorithms depend on per-pixel decision 

rules, which evaluates the membership of pixels individually. In contextual 

classification, considering the spatial context, a pixel with weak observational 

evidence for being a member of a specific class is classified according to its 

neighboring pixels’ membership tendencies (Deusen, 1995). 

 

Soft or fuzzy methods of classification provide a partial membership for each 

pixel, in other words, a measure of degree of similarity for every class is 

assigned to every single pixel where, hard classifiers assign every single one of 

pixel to a single class according to the highest class membership information 

(Foody, 1992; Mather, 1999). 

 

Most of the classification methods are parametric which means, they are 

primarily based on Bayesian decision models and work under the theoretical 

assumption that the pixels in the image have a probability density function with 

normal distribution. Non-parametric classifiers do not depend on a particular 
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probabilistic models (Favela and Torres, 1998), thus they are free of restrictions 

introduced by the assumptions of the probabilistic models. 

 

2.2.1. Unsupervised Classification 
 

Unsupervised classification automatically categorizes the image data into 

spectral classes by means of an unsupervised classifier such as K means and 

ISODATA. The classifier algorithm estimates the mean values of the classes 

and other essential descriptive statistics required for clustering operation, after 

several iterations. In unsupervised classification algorithm-defined test pixels 

are utilized instead of user-defined training samples to construct class 

signatures. This method is inevitable where insufficient or no information of the 

area covered by the image is available. 

 

 

2.2.2. Supervised Classification 
 
In supervised classification a priori information of the area covered by the image 

becomes mandatory. The identity and location of feature classes or cover types 

are collected beforehand through field study and/or interpretation of aerial 

photographs or using up-to-date and reliable maps. Existing surface features on 

the ground are observed and corresponding pixel/pixels representing those 

features on the image are selected by the analyst and accepted without doubt 

that they successfully represent the characteristics of the associated class. 

These samples are called training samples or training sets. The initial procedure 

is calculation of univariate and multivariate statistics where, univariate statistics 

are; minimum, maximum, mean, variance, standard deviation and multivariate 

statistics are; variance-covariance matrix and correlation matrix for each training 

set. Then the spectral characteristics can be used to train a classification 

procedure to assign each pixel in the image to one of these classes. Each pixel 

is evaluated for its degree of being likely to be a member of a specific class and 

then, assigned to that class.  
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Supervised classification is more effective in terms of accuracy in mapping 

substantial classes whose validity depends to a degree on the cognition skills of 

the image specialist (Bolstad and Lillesand, 1992) 

 

The most widely used supervised methods are minimum distance to mean, 

parallel piped and maximum likelihood algorithms.  

 

Parallelepiped requires the least information from the supervisor compared to 

other three methods. For each information class, user identifies the minimum 

and maximum pixel values for each band. This ranges form parallelepipeds. 

Then, the algorithm assigns pixels to a class if value of the pixel is within the 

minimum and maximum ranges of a pre defined class. The method has 

drawbacks due to two extreme cases that may inherently occur. First one is 

point in the spectral space representing the pixel may not lie inside any of the 

regions defined by parallelepipeds. Then the pixel is not assigned to any class. 

An the second, point may lie inside two or more overlapping parallelepipeds, 

then decision becomes more complicated that it can not be solved within the 

capabilities of the classifier (Mather, 1989). Method may be successful in 

classification of data which is showing high seperability with no overlapped or 

unidentified regions but is not appropriate for data of natural phenomena which 

is not often so. 

 

Minimum Distance mean classifier analyzes the training set provided and 

calculates a mean vector for each information class, described by the class 

center coordinates in feature space (Jensen, 1996). The Minimum Distance to 

Mean algorithm then determines the Euclidean distance from each unclassified 

cell to the mean vector for each prototype class and assigns the pixel to the 

closest class. 

 

In Maximum Likelihood classification, an unknown pixel is assigned to a class 

which, the pixel is most likely to be member of. A set of observations based on 

mean and variance-covariance matrix corresponding to a class is generated, an 

individual pixel’s probability of being a member of each class is computed, then 

the pixel is assigned to the class for which the probability value is greatest 
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(Strahler, 1980). The probability that an unknown point belongs to a particular 

class depends on the distance from the point to the class center, and also on 

the variance and covariance of the class which define the size, shape and 

orientation of the distribution of points in the class (Microimages, 2002). 

 

The probability P(x) that a pixel vector x of p elements (a pattern defined in 

terms of p bands) is a member of class i is given by the equation of multivariate 

normal density: 

 

P(x) = 2π -0.5p  | Si | -0.5   exp (y’ Si
-1 y) 

 

Where | . | denotes the determinant of the specified matrix,  

Si is the sample variance-covariance matrix for class i, and  

y is (x-xm) where xm is the multivariate mean of class i 

(Mather, 1989) 

 

Maximum likelihood is a more complicated method compared to other two 

methods since it uses mean and variance-covariance matrix to compute class 

membership, where parallelepiped classifier use only minimum maximum value, 

and minimum distance to mean algorithm use only mean of the training set. The 

superiority of Maximum Likelihood classifier over the other supervised methods 

such as minimum distance to mean, parallelepiped and etc. is because it takes 

into account the shape, size and orientation of a cluster (Shrestra and Zinck, 

2001). 

 

However, Maximum Likelihood is a parametric model based on the assumption 

that the data has normal distribution. However this is usually not the case for 

remotely sensed data. 

 

 
2.3. Image Classification with the Integration of Ancillary Data 
 
Image classification depending on the spectral reflectance values only, is often 

limited in content and accuracy. Results derived from the classification of only 



 14

image data may not satisfy expected accuracy for particular applications. For 

instance United States Geological Survey (USGS) affirmed that thematic maps 

extracted from data set including remotely sensed imagery should satisfy 

minimum level of 85% accuracy (USGS, 2002). Under these circumstances it’s 

fair to state that image classification based on spectral data only may be 

unfeasible to satisfy desired level of accuracy required for particular 

applications. At this point solution can be the incorporation of non-image 

information into image classification. External non-image data so-called ancillary 

data are any type of spatial or non-spatial data such as elevation, slope, aspect, 

geology, vegetation, crop yield statistics etc. that may contribute to image 

classification procedure (Jensen, 1996). These data are usually utilized as 

additional information for assigning pixels, which are subject to spectral 

confusions or have some uncertainty of being a member of a particular class. 

 

Various methods were developed to improve accuracy of image classification 

with the use of ancillary data. These methods were grouped into three by 

Hutchinson (1982) as (1) use of ancillary data before classification; 

preclassification scene stratification, (2) use of ancillary data after classification; 

post classification sorting and (3) use of ancillary data during classification; 

classifier modification. 

 

Stratification involves segmentation of the image into smaller scenes before 

classification takes place in order to provide spectrally similar classes to be 

classified independently. Post-classification sorting is the use of ancillary data 

after classification based on the problem that a single class of objects may be 

assigned to more than one classes due to the fact that a class can show 

different spectral characteristics. These problematic cases are treated based on 

decision rules to assign problem pixels into appropriate class using ancillary 

data.  

 

Integration of ancillary data during classification has followed two approaches; 

inserting ancillary data as an additional channel or modifying prior probabilities 

derived from data statistics. (Hutchinson, 1982; Harris and Ventura, 1995; 

Mesev, 1998) 
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The first and the most obvious method is aimed to increase the number of 

attributes or channels of information used in the classification. For instance n 

bands plus one or more ancillary data layers can together be involved as input 

into classification. This technique is also called Logical Channel. Strahler et al. 

(1978) practiced simple additional channel technique for assessing urban 

change. He involved a land use map derived from a topographical map with 

SPOT panchromatic image into multispectral image classification procedure. 

However, simple addition of non-spectral data into classification without making 

any modifications on the training statistics may add little to classification. 

 

The second is classifier modification, which involves changing a priori 

probabilities according to areal composition of the expected product based on 

image statistics, ancillary data or a known relationship between classes and 

ancillary data. In conventional classification, prior probabilities are assumed to 

be equal for all classes. Classifier can be modified by changing the prior 

probabilities before classification. Prior probability is the probability of 

occurrence of classes which are based on separate, independent information 

concerning the area to be classified (Strahler, 1980). When used in 

classification procedure, the probabilities weight the classes according to their 

expected distribution in the data set by shifting decision space boundaries to 

produce larger volumes in measurement space for classes that are expected to 

be large or smaller volumes for classes expected to be small. 

 

The effect of ancillary information in improvement of image classification 

accuracy have long been a concept of research in remote sensing literature and 

many researchers made use of ancillary data to improve accuracy of image 

classification.  

 

Harris and Ventura (1995) developed a post-classification method incorporating 

ancillary spatial data to improve the accuracy of a land use classification derived 

from multi spectral imagery for pollution modeling in an urban area. Landsat TM 

images were classified with maximum likelihood method and the product was 

modified with zoning and housing data. This provided an increase both in 
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accuracy and content or namely, number of information classes of the 

classification. 

 

Mesev (1998) demonstrated a supervised classification method integrating 

population census data with urban land cover from remotely sensed data. 

Census data which is composed of points is converted into a continuous surface 

raster is then used to modify maximum likelihood classification through class a 

priori probabilities and in terms of post-classification sorting to resolve 

misclassified pixels. 

 

Vogelmann et al. (1998) aimed at generating a large region land cover ancillary 

data. Procedure involved unsupervised classification of Landsat TM, labeling of 

classes and further development of decision rules for splitting confused classes 

into the appropriate land cover category using one to several data sets some of 

which were elevation, slope, aspect, population, density and city lights. 

 

Maselli et al. (1995) have extended the methodology based on the inclusion of 

prior probabilities derived from the frequency histograms of the training sets in 

to maximum likelihood (Maselli et al., 1992) and proposed a new method to 

integrate ancillary data layers a priori probabilities into classification process 

instead. This led to significant increase in accuracy compared to the method 

previously proposed by the authors Maselli et al. (1992). Since they integrated 

additional information derived from the images once more into the classification 

procedure. 

 

A study by Eiumnoh and Shrestha (1997) attempted to explore the effect of 

DTM in accuracy of image classification by combining it as a component band 

with Landsat TM band combinations for land cover classification. The maximum 

likelihood supervised classifier was applied to digital terrain model and different 

band combinations of Landsat TM imagery. It was concluded that DTM as one 

type of ancillary data can improve the classification result.  

 

Irvin et al. (1997) performed an automated classification on Digital Terrain 

Model and its derivatives; slope, aspect, profile curvature and plan curvature to 
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automate the production of landform information. The aim was to produce a Soil 

map and landform information was one of the attributes used in soil mapping. 

First they have investigated whether units created from DTM and derivatives 

correlate with observed soil properties, they have hypothetically assumed that 

there is correlation between them and classified DTM and derivatives with 

standard ISODATA and fuzzy classification methods to be used in soil mapping. 

The classification product of land forms was quite similar to the ones which were 

manually delineated. 
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CHAPTER 3 
 
 

DATA AND PREPROCESSING 
 
 

 

3.1. Data 
 

A subscene of Landsat 7 ETM imagery of May 2000 extracted from the scene 

labeled 177/32 is the primary data source for the analyses (Figure 3.1). The 

subscene covering the study area was composed of 295 rows and 248 columns. 

Bands 1, 2, 3, 4, 5 and 7 with 30x30 meters spatial resolution were selected for 

the analyses. Band 6 and Band 8, which are also present in the Landsat TM 7 

data set were excluded from the analyses since, their information content and 

spatial resolution was quite different than the selected data set. Band 6 is 

presenting the thermal radiation emitted from the Earth surface with a spatial 

resolution of 60x60 meters. Band 8 is a panchromatic imagery with 15x15 

meters resolution. Although Band 8 is excluded from the analyses, it was used 

as a complementary data in the geometrical correction of 30x30 meter Landsat 

bands. 

 

The ancillary data source for the study is the topographical data. Topographical 

data were derived from elevation contours of 1/25000-scaled (Figure 3.2) 

topographical map obtained from General Command of Mapping (GCM). 

 

These two sets of data are described as the major data and were used in the 

analyses. Other data used in the study, so called minor data were set apart from 

the analyses and were only used for gathering ground truth information. Those 

data are two IRS panchromatic images with 5x5 meters resolution from 1c 

sensor (Appendix A.1) and from 1d sensor (Appendix A.2), 1/25000 forest map  
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Figure 3.1: Landsat True Color Composite (321) of the study area 
 

 

 
Figure 3.2: 1/25000-scaled topographical map of the study area 
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including two regions Yıldırım (Appendix A.3) and Kızılcahamam (Appendix A4),  

obtained from General Directorate of Forest (GDF) a digital land use and land 

cover map which was obtained from a pilot project of General Directorate of 

Rural Affairs (GDRA) (Appendix A5), an aerial photograph stereo pair and field 

observation data. Particular thematic information within the 1/25000-scaled 

topographical map may also be mentioned since it was used to extract some 

thematic information for the ground truth data. It was accomplished as a major 

data source actually. 

 

Detailed information on data used in analyses and ground truth information are 

given in Table 3.1 and Table 3.2. 

 
Table 3.1 Major Data; Data used in the analyses 

Primary - Remotely Sensed Data Ancillary – Topographical Data 

Data Acquision 
Date Source Data Date Source 

Landsat 
TM 7 10.05.2000 GDRA 1/25000 scaled 

topographical map 1985 GCM 

 

 
Table 3.2 Minor Data; Data used in gathering ground truth information 

Data Date Source 
IRS panchromatic (1C) 16.08.2000 GDRA 
IRS panchromatic (1D) 05.08.2000 GDRA 
1/25000 forest map 1994 GDF 
1/25000 topographical map 1985 GCM 
Digital Land use – land cover map 2001 GDRA 
1/35000 scaled aerial photograph 1983 GCM 

 
 
3.2. Preprocessing 
 

Pre-processing operations, sometimes referred to as image restoration or 

correction are intended to correct radiometric and geometric distortions that 

degrade the quality of the remotely sensed data. Image correction produces an 

image, geometrically close to ground truth and radiometrically close to the 
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radiance characteristics of the features (Jensen, 1996, Campbell, 1996). 

Preprocessing is a valuable and necessary process prior to particular analyses 

or processing on the data set. However, it must be taken into consideration that 

preprocessing operations change the original pixel values and this may 

introduce other errors as well. 

 

 
3.2.1. Radiometric Correction 
 

Landsat TM subscene covering the study area is free of internal distortions 

created by the sensor itself. These errors are predictable and constant for entire 

scene and generally corrected before offered. Remote sensor data may be 

acquired properly with a system functioning perfectly and may be free of internal 

distortions, but error may creep into the data acquision process due to platform 

perturbations and environmental factors, these errors are called external errors 

and require radiometric corrections (Jensen, 1996). The two most important 

sources of environmental error are atmospheric defects caused by atmospheric 

scattering and topographic defects due to slope and aspect especially in the 

mountainous terrain affecting the original pixel brightness values. (Franklin and 

Giles, 1995)  

 

In particular, applications involving image classification, radiometric correction 

due to environmental error is considered to be unnecessary, since it is regarded 

to have little effect on the product’s accuracy (Song et al., 2001; Fraser et al., 

1977). There is no doubt that the image covering the area of interest involve 

some environmental influences, nevertheless for this study removal of probable 

atmospheric and topographic defects were regarded unnecessary after the 

following evaluations.  

 

Atmospheric effects depending on the existence of aerosols and particles are 

assumed to make homogenous affects for small regions of interest on the Earth. 

Atmospheric effects influence all of the bands, and make an identical change in 

the pixel values of each individual band. Considering the issue for classification, 

this actually makes a relative change in class spectral signatures and whatever 
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the magnitude of change, it is almost the same for all class spectral signatures. 

As a consequence of this classification product from the corrected bands would 

not cause a reasonable amount of improvement compared to uncorrected 

bands. 

 

Topographic error is a kind of error affecting all of the bands, but making partial 

changes in the pixel values of each individual band especially corresponding to 

places with steeply slope due to orientation of the surface relative to the sun 

(Lunetta et al., 1991). Considering the issue for methodological frame of the 

study, the improvement that may be obtained by topographical correction is 

negligible. What if the input bands are corrected topographically, they will be  

input for both of the products derived to be compared after classification, and 

improvement will affect both of them in the same magnitude. That would add no 

to the comparison of the two products. 

 

 

3.2.2. Geometric Correction 
 
Remotely sensed data contain both systematic and unsystematic geometrical 

errors. Systematic or sensor specific errors due to scan skew, mirror-scan 

velocity, panoramic distortion, platform velocity, earth rotation and perspective 

are predictable and corrected by using some mathematical formulations based 

on the knowledge of sensor distortion (Jensen, 1996). These errors are often 

corrected in the ground station before offered to the end user. The unsystematic 

errors due to alterations in altitude and attitude however, cannot be corrected 

without ground control. Ground control is provided by assigning geographic 

coordinates via Ground Control Points (GCPs) to the remotely sensed data 

(Kardoulas et al., 1999) 

 

This procedure is followed by image rectification. Image rectification is 

described as geometrically rectifying the image to its correct position and it 

involves basically two operations that are; spatial interpolation (geometric 

transformation) and intensity interpolation (resampling) (Jensen, 1996). Once 

several well-distributed GCP pairs have been identified, the coordinate 
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information is evaluated by the image processing system to determine the 

proper transformation equations to apply to the original (row and column) image 

coordinates to map them into their new ground coordinates (CCRS, 2002).  

 

Spatial interpolation involves the geometrical transformation of raw image into 

geometrically correct image or in other words relocating every pixel in the 

original image to its proper location in the rectified image (Lillesand and Kiefer, 

1994). Mathematical transformation equations are applied to rectify images, 

those transformation equations use coefficients determined by the relation 

between image coordinates and geometric coordinates; so-called Root Mean 

Square Error (RMSE).  

 

RMSE is the root of the mean of the square of the errors and defined as; 

 
where; 

ri  = residual for each point 

n  = number of test points 

 

Intensity interpolation involves extraction of a pixels value from the image and 

relocation of this value to its appropriate location in the rectified output image,  

several methods of image interpolation or resampling are; Nearest Neighbor, 

Bilinear Interpolation and Cubic Convolution (Jensen, 1996). 

 

Geometric correction is essential in the point that it makes the data usable in 

conjunction with other spatial data, such as other images, maps, or GIS data. 

For this study, where remotely sensed imagery was proposed to be integrated 

with other sources of data, the whole data set must be in precise spatial 

correspondence. 

 

 

3.2.2.1. Geometric Correction of Major Data 
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For the geometric correction of the image data, 1/25000-scaled topographic 

map was available to be used as reference for performing image-to-map 

registration. But, prior to this procedure the topographic map should be 

registered to serve as a reference map.  

 

1/25000 scaled topographical map was scanned from an original and unfolded 

colored sheet. It was imported to TNTmips environment and was registered by 

means of 8 Ground Control Points read from the map sheet. The geometric 

correction procedure involved identifying the image coordinates (row, column) of 

UTM grid’s intersection points physically existing on the map sheet, and 

matching them to their true positions in ground coordinates. UTM projection, 

accepted widely as a national projection system was used where, zone is 36, 

which is the appropriate zone covering the study area, and datum is European 

1950 Mean.  

 

The total RMSE calculated was 1.00 meters with maximum residual of 1.14 

meters (Appendix B.1), which was quite satisfactory since the accuracy of the 

original 1/25000 topographical map sheets were affirmed as 5 meters in the 

horizontal plane and 2.5 meters in vertical plane by General Command of 

Mapping (HGK, 2002). The geometric correction of the data was implemented 

by 1st order transformation and nearest neighbor resampling. 

 

In consequence, the topographical map became ready for use as reference for 

image-to-map geometric correction of the Landsat TM 7 imagery. Image-to-map 

correction involves matching clearly identified features such as road junctions in 

both map and the image so as to get the coordinate information for the image 

pixel from the map that is accepted geometrically correct. However finding 

corresponding features on the images to match with the map is a quite difficult 

task if the image spatial resolution is coarse. Providentially, Landsat TM 7 unlike 

the previous Landsat series includes a panchromatic image with 15x15 meters 

spatial resolution. And it is reasonable to register this image first and then 

convert the GCP information into a form that the other bands with 30 meters 

resolution can use.  
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Landsat Panchromatic image with 15 meters resolution was registered image-

to-map. Total number of GCPs used was 22. The total RMS error was 12.45 

meters with the maximum error of 18.88 meters (Appendix B.2), slightly 

exceeding one pixel size. Since Images with total RMSE less than a pixel size 

are accepted of reasonable accuracy (Fonseca and Manjunath, 1996), these 

GCPs were admissible.  

 

The GCPs collected for Landsat panchromatic were saved into a text file. This 

file was then imported to Microsoft Excel. The raster coordinate values in 

columns with the titles line and column of Landsat Panchromatic GCPs were 

divided by 2 in order to adjust raster coordinates of GCPs to TM bands with 30 

meters resolution. This data is then transferred to 30-meters resolution Landsat 

images with “read GCPs from text” option. See column and line numbers in B2 

and B3 in Appendix B. By this way, 22 GCPs were practically located to their 

appropriate positions in Landsat TM1 band with 30x30 meters resolution. Figure 

3.3 representatively illustrates transfer of a GCP from 15x15 meters Landsat 

Pan to Landsat TM1 with 30x30 meters resolution  

 

GCP for TM 
panchromatic 15x15 m 

GCP for TM1 30x30 m 

  
 
Figure 3.3: Raster coordinates of the same GCP for Landsat Panchromatic and Landsat 
TM1 band 
 

The residual values are again almost the same for Landsat TM1 band where; 

maximum RMS error was computed 18.86 meters. Total RMS error is 12.47 

meters (Appendix B.3). Ground Control information is then saved and 

transferred to remaining 30-meter resolution bands by simple copy-paste 

procedure offered by the system. Geometric correction procedure was followed 

by 2nd order transformation. Higher polynomial transformations are appropriate 
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when the image has considerable distortions however; it is recommended that 

very high degree polynomials should be carefully used since they introduce 

local aberrations (CORINE, 1993). 2nd order transformation reduces the RMS 

error compared to the affine transformation (Novak, 1992; Fonseca and 

Manjunath, 1996) and is the most widely used in image geometric 

transformation. Nearest neighbor resampling method was used to implement 

geometric correction procedure applied to six bands (1, 2, 3, 4, 5 and 7). 

 

Twelve check points first four of which were lying on GCP locations and 

remaining eight of which were randomly selected were used for checking the 

accuracy of the image after geometric correction (Table 3.3). Test was simply a 

comparison of the coordinates of the checkpoints on the image and on the 

topographical map. The residual values for the first four points lying on or very 

near to GCP locations were naturally smaller, since those locations were the 

inputs of the geometric transformation. Other eight check points deployed 

relatively higher residuals. Anyway, errors measured for twelve check points 

were of acceptable quantity since, they were under a pixel size. 

 
Table 3.3: Landsat 1, 2, 3, 4, 5, 7 bands geometric error check 
 

#  Measured 
Coordinates 

Actual 
Coordinates 

x-y 
residual 

Residual 
(meter) 

N 4475996.39 4475988.29 8.10 1 E 471634.94 471636.92 1.98 8.33 

N 4474604.57 4474610.72 6.15 2 E 474041.71 474032.65 9.06 10.95 

N 4472464.9 4472456.93 7.97 3 E 476019.96 476014.77 5.19 9.51 

N 44779180.35 44779184.35 -4.00 4 E 472568.69 472563.69 5.00 6.40 

N 4476198.05 4476184.76 13.29 5 E 472799.04 472806.6 7.56 15.28 

N 4473078.79 4473065.77 13.02 6 E 472859.28 472867.87 8.59 15.59 

N 4472895.02 4472885.78 9.24 7 E 475494.28 475505.35 11.07 14.41 

N 4474351.12 4474357.22 -6.10 8 E 472182.7 472186.5 -3.80 7.18 

N 4473872.25 4473868.1 4.15 9 E 472337.36 472331.46 5.90 7.21 

N 4475441.54 4475431.11 10.43 10 E 471841.83 471836.74 5.09 11.60 

N 4475858.69 4475849.65 9.04 11 E 470925.46 470930.46 -5.00 10.33 
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N 4476758.87 4476744.87 14.00 12 E 471196.29 471198.29 -2.00 14.14 

 

 

3.2.2.2. Geometric Correction of the Minor Data 
 

Minor data are used in the accuracy assessment of the final products. Those 

data are; IRS panchromatic image, forest map, aerial photograph pair, digital 

land use and land cover map and field observation respectively. Accuracy 

assessment, which will be mentioned in section 4.4, is a procedure of testing the 

accuracy of the product with ground truth information. Ground truth information 

for the study was extracted from these four data sets and field observations 

data. Therefore, matching those data geometrically with respect to each other 

and to the primary data was of great importance for this study and it is possible 

with an accurate registration operation. 

 
Map-to Image geometric correction was applied to IRS panchromatic image with 

5 meters resolution. The study area coincides with two IRS scenes one of which 

is B1E15A6D from 1c sensor and the other is, D1E15A6D from 1d sensor. Both 

of those images were geometrically registered via image-to-map method, taking 

1/25000 topographical map as reference. The clearly identified matching points 

found both in the image and the topographical map were matched. Compared to 

registration of Landsat TM imagery, procedure was easier since the resolution 

of IRS panchromatic image was of higher quality. Total number of GCPs used 

for registering was 33 for B1E15A6D, and 40 for D1E15A6D.  

 

Total RMSE was calculated 7.11 meters for B1E15A6D, which exceeded a pixel 

size. Hence; four GCPs with the greatest amount of individual error were 

removed from the GCPs set. The recalculated value of total RMSE was reduced 

to 6.89 meters but is still over a pixel size Therefore, to lower the RMSE, 2nd 

order polynomial transformation method was used to transform the image. This 

reduced the total RMSE for remaining 29 GCPs to 5.55 meters (Appendix B.4). 

The image is then resampled by nearest neighbor method.  

 

Total RMSE calculated for D1E15A6D; 5.72 meters also exceeded a pixel size.  
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Six GCPs with the greatest amount of individual error were removed from the 

GCPs set.  The recalculated value of total RMSE with 34 GCPs for 2nd order 

polynomial transformation was reduced to 4.85 (Appendix B.5). The image is 

transformed using 2nd order polynomial interpolation and nearest neighbor 

resampling method.  

 

Another data used as ground truth was 1/25000-scaled Forest Map produced by 

General Directorate of Forest. The study area coincided with two maps one of 

which is labeled “Kızılcahamam 1” and the other; “Yıldırım 2” regions. Those 

maps had several tick points indicating the associated coordinates, however the 

coordinate values were hardly recognized since the maps were worn and 

wrinkled. Therefore, forest maps were registered with the use of matching points 

such as river joints present both in 1/25000-scaled topographical maps and the 

forest maps. 

 

16 GCPs were used for registering Kızılcahamam 1 with a total RMSE of 13,24 

meters and 11 GCPs were used for registering Yıldırım 2 with a total RMSE of 

9,94 meters. These errors appear to be high, however there is no available 

information about the geometric accuracy of these data, and taking the physical 

distortion of these old sheets into account, the high RMS error was disregarded 

and GCPs were accepted. The geometric correction was implemented by 2nd 

order transformation and nearest neighbor resampling of the data.  

 

1/35000-scaled Aerial Photograph pair consisted of consequent left and right 

scenes covering more than a half of the area. Those two aerial photographs 

were not scanned but were utilized as hard copy. They were examined with the 

help of a Stereoscope to obtain the 3D visualization of the study area. This 

provided better visualization of the area and gave valuable information about 

features existed within the study area.  

 

The remaining digital land use and land cover data has already been processed 

and was ready to use as a reference layer.  
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Field observation data consisted of two data sets one of which was the point 

observations gathered for the pilot project of General Directorate of Rural Affairs 

“Digital land use and land cover map” in August 2001 and other of which was 

the field observation for this study held in August 2002.  

 

 

3.2.3. Production of Ancillary Topographical Data 
 
Ancillary data produced to be used in the analyses involve Digital Terrain Model 

(DTM), and DTM driven slope and aspect data. 

 

 

3.2.3.1. Production of Digital Terrain Model (DTM) 
 

A digital terrain model (DTM) is a digital representation of a portion of the earth’s 

surface in a grid form where each grid point represents a ground elevation value 

(Ardiansyah and Yokoyama, 2002). Elevation can be presented as contour 

lines, elevation points or Triangulated Irregular Network (TIN) in a GIS 

environment. DTM differentiates in being a continuous surface raster modeled 

from discrete elevation data. Modeling enables presentation of the spatial 

variability of elevation in every part of the data. This makes DTM a valuable data 

entity especially when processed together with the image data. A digital terrain 

model also provides additional derivatives. Attributes derived from a DTM can 

be grouped into two as primary and secondary where primary attributes are 

directly derived slope, aspect, and secondary or compound attributes are 

derivatives from slope, aspect or elevation itself. (Gallant and Wilson, 1996). 

Within the study in addition to DTM, slope and aspect data derived from the 

DTM were also practiced.  

 

There are several methods for generating a DTM. These are direct 

photogrammetric measurements, interpolation from elevation points or contours 

and more recently, interferrometry from SAR satellite and laser scanner. 

(Mizukoshi and Ania, 2002). However, digital terrain model generation from 

contour lines continue to be used widely, because in most countries, this data 
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covers the whole area in different scales, thus presenting cheap data source. 

(Ardiansyah and Yokoyama, 2002) 

 

Elevation contours from 1/25000 topographical data available for the whole 

country were used to generate digital terrain model for the study area. Surface 

elevation in a 1/25000 topographical map is presented by contour lines in red, 

which are at ten meters interval in general but can go down to 0.5 meter interval 

in flat areas and with altitude points at the hilltops. The contour lines of 1/25000 

topographical maps can be either supplied from the General Command of 

Mapping in return of some price or digitized by oneself. Digitization procedure is 

performed in two ways one of which is manual digitization where the user traces 

each line and other one is automated where image processing system 

automatically performs the digitization. For this study manual digitization, which 

is time consuming and tedious was not preferred, instead automated digitization 

was performed, obviously followed by some automated and manual editing. 

Automated digitization is offered by the software together with raster-to-vector 

conversion utilities. Automated digitization process generated a new vector 

product composed of contour lines together with unwanted dangling lines, 

bubbles, sliver polygons etc. so called topological errors. Majority of these errors 

were removed by topological error filters and the remaining of the errors were 

removed by manual editing. Finally elevation values read from the underlying 

topographical map were entered into database table and each line is assigned 

with the appropriate elevation record. And the digital contour map generation 

was finalized (Figure 3.4) 
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Figure 3.4: Digital contour map of the study area 

 

DTM production depends on interpolation of the known elevation data. 

Interpolation is one of the basic estimation methods in order to describe the 

spatial variability of the data, for the data lacking locations, from locations of 

known data. DTM interpolation is a kind of function for determining elevation of 

unknown points using a set of proper known data. Selecting a set of appropriate 

neighboring reference data points is one of the key steps for DTM interpolation. 

The selected reference points are used for estimating the value of elevation at 

any location in the given area. 

 

A 30 meter DTM was produced using Kriging method via surface modeling utility 

provided by the software. Kriging is a sophisticated method of determining the 
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best estimate for each point in a target matrix, based on statistical principles. 

Kriging works best with datasets that have both regions of densely scattered 

data and regions of lightly scattered data (RSI, 2002). Method requires point 

data as input (Microimages, 2002). In order to convert the line data at hand into 

points, vertices and nodes from contour lines were converted into points by 

“poly2pnt” utility of MapInfo software and imported back to the TNTmips 

environment.  

 

Kriging method is appropriate to model elevation data, since the elevation points 

converted from contours are densely distributed along the contour lines and 

almost no elevation points exist except for the hill tops and some special points 

in the data. The parameters for Kriging were selected through the 

recommendations in the reference manual of TNTmips and a sequence of trial 

and error procedure. A variogram model must be used for running the Kriging 

method, because the variogram plot of the discrete control points serves as a 

basis for determining the appropriate model to select. The Linear model is 

adequate for general use. For drifting order linear method is again used, 

because it is assumed that there is a degree of drift in the input and linear model 

uses a first-order polynomial equation to model the drift. Initial sill and nugget 

values were not adjusted since adjusting those values was observed to yield 

unsatisfying results with the elevation data. Simple search type for points were 

used, search parameters were set as 80 points per sector and 16 minimum total 

points after a procedure of trial and error. The parameters used in the Kriging 

interpolation are given in the (Appendix C).  

 

Digital Terrain Model generated from elevation contours using Kriging method is 

presented with Figure 3.5. 
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Figure 3.5: Digital Terrain Model of the study area 

 

The elevation ranges from 896 to 1443 in the study area with a maximum 

concentration at 1115 meters (Figure 3.6). 

 

 
Figure 3.6: Elevation histogram of the study area 
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Quality of the digital representation of the terrain is important for the study in the 

way that the topographical parameters will numerically be compared and 

analyzed with those of images. Once a high-quality DTM has been generated to 

meet the requirements of the study, the use of these data in analysis will result 

in valid conclusions. 

 

In order to test the accuracy of the produced DTM, some principles adopted by 

USGS were used. According to USGS National Mapping Program Technical 

Instructions, a representative sampling of test points is used to verify the 

accuracy of any category of DTM. A minimum number of 28 test points per 

DTM, 20 of which are interior and 8 of which are from the edges is required 

(USGS, 2002a). 

 

The vertical root-mean-square error (RMSE) statistic is used to describe the 

vertical accuracy of a DTM, since the only measurable or perceivable errors in 

the DTM exist as vertical errors that may be partially attributable to horizontal 

error inherent in the source data. (USGS, 2002b) 

Vertical RMSE is defined as: 

 

 
where; 

Zi  = interpolated DTM elevation of a test point 

Zt  = true elevation of a test point 

n  = number of test points 

 

Accuracy is computed by a comparison of interpolated elevations in the DTM 

with corresponding measured elevations from the topographical map. A 

measured elevation mentioned is the average of elevation values corresponding 

to a 30 meter-DTM pixel in the topographical map. 

 

The test points collected from 28 points on the DTM were then compared with 

the elevations precisely measured from the topographical maps. The total 

vertical RMSE was found 1.72 meters, which is quite admissible within the 
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accuracy requirements of the study. The elevation values both from the model 

and the original data and the vertical errors are listed in Table 3.4.  

 
Table 3.4 Vertical RMSE in Digital Terrain Model (DTM) of the study area 

# check point elevation from DTM elevation measured from 
topographic map residual 

1 1044 1045 1.00 
2 1130 1130 0.00 
3 1311 1314 3.00 
4 1166 1165 1.00 
5 1205 1203 2.00 
6 1070 1069 1.00 
7 1152 1151 1.00 
8 1183 1183 0.00 
9 1390 1390 0.00 
10 1180 1179 1.00 
11 1219 1220 1.00 
12 1036 1032 4.00 
13 1222 1225 3.00 
14 1140 1141 1.00 
15 1409 1407 2.00 
16 1239 1239 0.00 
17 1214 1214 0.00 
18 1266 1266 0.00 
19 1044 1048 4.00 
20 1138 1138 0.00 
21 1115 1115 0.00 
22 1099 1099 0.00 

RMSE  1.72 
 

 
3.2.3.2. Production of Slope and Aspect  
 

Slope is the measure of rate of change in elevation or in other words; measure 

of the steepness of an area on the Earth's surface. Slope is the first derivative of 

a digital terrain model and is often calculated by means of a neighborhood 

operation applied on a DTM. The slope value assigned to each cell reflects the 

overall slope based on the relationship between that cell and its neighbors. 

Slope for the study area was computed by 3x3 window, which uses all eight 

cells that surround each raster cell to determine the slope value for that cell. 

Slope value was calculated in degrees where the minimum value can be zero 

and the maximum possible value can be 90 (Figure 3.7). The slope value 

ranges between 0 and 48 in the area however, slope greater than 40 compose 

only a slight portion (Figure 3.8) 
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Figure 3.8: Slope histogram of the study area 

An Aspect map is also derived from elevation values in a DTM. The Aspect 

value assigned to each cell in an Aspect map tells us the direction of slope 

(north, south, etc.) to which that cell is oriented. Just as slope is a measure of 

the rate of change of a DTM, aspect is the direction of change. While in simple 

terms this means we can use an aspect map to determine the direction faced by 

any part of the Earth's surface, aspect maps can be used to determine the 

direction of change of any phenomena. Aspect output cell values for the study 

area describe the direction that the slope inclines relative to north. The output 

was created in degrees and in the range zero to 360 (Figure 3.9). Zero indicates 

that the surface slopes north, 90 = east, 180 = south, 270 = west, and -1 

indicates no slope (flat). Distribution of the aspect values for the study area is 

given in Figure 3.10. 

 

Figure 3.10: Aspect histogram of the study area 
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Figure 3.7: Slope map of the study area 

 

Figure 3.9: Aspect map of the atudy area 
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3.2.4. Production of Ground Truth Data 
 

Production of the ground truth data is aimed at generating a reliable reference to 

test classification outputs in the accuracy assessment phase of the study. 

Accuracy assessment is the indispensable part of the classification task 

subsequent to the implementation of analyses associated with classification. In 

order to test the accuracy of the classification product, a reference data which is 

accepted to be a perfect representation of the actual phenomena is required 

and that is called ground truth data. For this study, ground truth information is 

composed of minor data and are IRS panchromatic image, aerial photo, Forest 

map which includes accurate delineations of land cover from 1/15000 aerial 

photographs, a digital land cover-land use map previously produced by General 

Directorate of Rural Affairs, and field observations from the study area.  

 

Ground truth for the study is gathered by interpreting all of this information in 

other words; a kind of synthesis task is carried on for combining information 

from all of these data. Production of this data basically depends on visual 

interpretation of fine resolution imagery and additional thematic data. Some 

point observations from two field studies one of which was the study of General 

Directorate of Rural Affairs held in 2002 for digital land cover and land use 

mapping and other for this study specifically, were also utilized in producing the 

ground truth information. The product is a thematic map including principle 

classes in the study area (Figure 3.11) and after a sampling operation to gather 

test points it was used for testing the accuracy of the end products in Chapter 4, 

section 4.4. 
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Figure 3.11: Ground truth information for the study area 
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CHAPTER 4 
 
 

METHOD AND THE ANALYSES 
 

 

 

4.1. Methodology and Framework 

 
This chapter explains the methodology of the study and gives the results of 

analysis obtained at different phases. A simplified flowchart of the methodology 

is given in Figure 4.1. The methodology involves four major steps: 1) 

Preprocessing, 2) Basic Definitions, 3) Analysis and, 4) Accuracy Assessment.  

 

Details of “Preprocessing” are explained in Chapter 3, which is related to the 

preparation of major and minor data. The data were initially processed and 

following input layers were produced: 

1. Topographic map (1/25.000 scale) was geometrically corrected  

2. Landsat TM 7 bands (1, 2, 3, 4, 5 and 7) were geometrically corrected 

3. Elevation contours from topographical map were digitized. 

4. Digital Terrain Model (DTM) was generated, from DTM, Aspect and 

Slope was derived. 

5. Some of Minor data (IRS Panchromatic image, 1/25.000 scaled forest 

map) were geometrically corrected. 

In the rest of the following sections, other three steps of the methodology will be 

explained. 

 

 

4.2. Basic Definitions 
 

Before starting the classification procedure, defining some basic criteria 

regarding classification with respect to the scope of the study is fundamental.  
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Figure 4.1: General Framework of the Study 
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Clearly identifying the principles also prevents the probable confusion and 

ambiguities that would occur later during classification.  

 

Principle criteria for this study were defined in a manner that the restrictions 

introduced by principles should comply the scope of the study. In CORINE 

(Coordination of Information of the Environment) Program the principle criteria 

prior to image classification were affirmed as (1) mapping scale, (2) size of the 

unit area and (3) land cover nomenclature respectively (CORINE, 1993). These 

headings were adapted to the study as (1) Size of the unit area, and (2) land 

cover nomenclature, mapping scale was excluded from the list of definitions 

since the product derived from this study is not bound to be a part of any 

standard or national geographical map. “In what scale the product should be?” 

is not the question of this study.  

 

 

4.2.1 Size of the Unit Area 
 

Size of the unit area is the surface of the smallest unit within a map. Once the 

unit area is defined, a feature with dimensions smaller than the unit area cannot 

be delineated or clustered throughout classification.  

 

Unit area, so-called minimum mapping unit is defined for a particular study after 

the thematic objectives, printing legibility and budgetary constraints are 

evaluated (CORINE, 1993). For this study, the only priority is given to the 

thematic information and other two objectives mentioned were negligible. Thus 

the unit size was defined as one pixel size, which corresponds to 900m2 (30 x 

30 meters) for the study area. 

 

Defining one pixel size as the unit area restricts any generalization, provided 

that the minimum area that was allowed to be mapped is already the minimum 

area that can be mapped. As a result of this definition; the classification product 

will not be modified using any generalization procedures such as hole-filling or 

modal filter.  
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4.2.2. Classification Level and Classes 
 

Describing the nature of the Earth’s surface has been the problematic of 

geoscientists interested in the definition and the distribution of the phenomenon. 

When describing the land cover, the issue is similar to that of taxonomists who, 

for instance, classify an animal into particular place in the hierarchy of animal 

kingdom. Likewise, a phenomenon on the Earth is classified into a certain type 

of unit in the hierarchy. The procedure of identification and labeling into classes 

is called classification (Mather, 1999).  

 

A figure is offered (Figure 4.2) that attempts to represent the hierarchical 

structure of the feature domain on the Earth’s surface. The figure is actually a 

synthesis of the two schema previously adopted by Jain (1989) (Appendix D1) 

and CORINE program (1993) (Appendix D2)  

 

 
Figure 4.2: Hierarchical Categorization of Feature Domain on Earth 
 

The hierarchical categorization of the earth surface can be extended with 

subdivisions until an individual feature unit is reached. However, classifying an 

image is rather different than classifying land cover of a specific area on Earth. 

Identification in individual feature level is dependent on the scale of observation 

and quantity of attributes available for the features that are used to determine 

class membership (Mather,1999), and is not possible yet through today’s 

remote sensing technologies. 

 

For a successful image classification aimed to detect land cover, it is critical to 

carefully select and define the classes of interest. This requires the use of a 
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classification scheme containing taxonomically correct definitions of information 

classes (Jensen, 1996). There are several classification schemes attempted to 

categorize land use and land cover for the use with remote sensing data. The 

two of the most widely accepted and practiced are USGS Land Use and Land 

Cover Classification System by Anderson et al. (1976) (Appendix E.1) and 

CORINE (1993) Land Cover Classification System (Appendix E.2). Both of the 

schemes are attempted to cover whole feature variety on the Earth surface but 

the categorization slightly differs. Classification scheme; involving two 

information; (1) level of classification, (2) classes and their definitions for this 

study was defined under the requirements and restrictions of the study. 

 

 

4.2.2.1. Classification Level 
 

Classification level denotes the level of thematic detail for classification. Most of 

the classification schemes are designed to use multi-level information. A multi-

level system is devised because different degrees of detail can be obtained from 

different types of product with different spatial and spectral resolution. Since the 

level of classification is dependent on the sensor system and image spatial 

resolution (Table 4.1), the level of classification for the study was set taking the 

image’s information capability into account, since the primary data source for 

the study is Landsat 7 ETM+, which has multispectral bands with 30x30 meters 

resolution; it was quite reasonable to perform a first level classification. 

 
Table 4.1: Relation between classification level and data characteristics (Jensen, 1996) 

Classification Level Typical Data Characteristics 

I 
Landsat MSS (79x79 m), Thematic Mapper (30x30 m), and 

SPOT XS (20x20 m) 

II 
SPOT Panchromatic (10x10 m) data or high-altitude aerial 

photography acquired at 12,400 m or above 

III Medium-altitude data acquired between 3,100 and 12,400 m 

IV Low-altitude data acquired below 3.100 m 
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4.2.2.2. Classes 
 

For the study it was proposed to classify all the land cover and land use 

categories within the scene at the beginning. The land cover and land use 

categories in the study area were composed of five Level I classes which were; 

(1) Urban and Built-up Land 

(2) Agricultural Land 

(3) Range Land 

(4) Forest 

(5) Water Bodies 

 

Urban and Built-up Land in general involve areas of intensive use with majority 

of land covered by artificial structures. This category includes cities, villages, 

transportation, power and communication facilities, commercial centers, and 

industrial units. Urban Built up land in the study area was composed of a part of 

Kızılcahamam urban development, several rural settlements, industrial 

developments, sites under construction and transportation. 

Agricultural Land can be broadly defined as land where crops and other yields 

for particular uses are cultivated. The category includes cropland, pasture, 

orchards, grooves, vineyards, nurseries and confined feeding. The agricultural 

lands in the study area were composed mainly of cereal farming also some 

vegetable farming was practiced; however it was a small proportion in the total 

area of agricultural vegetation. Agricultural land in the study area is composed 

of vegetated and non-vegetated cultivation lands.  

Rangeland is defined as the land with natural vegetation species such as 

grasses, grasslike plants, brushes and shrubs. Rangeland definition covers a 

broad variety of natural plants from i.e., grasslike plants to shrubs with 

distribution from sparse to dense in the nature. Rangelands of the study area 

are composed of common Anatolian steppe cover, which includes a wide range 

from particular land with little or no vegetation to native shrubs and brushes of 

maximum 2-meter height distributed densely in the terrain. The term range is 

hence, a very broad expression in defining the natural cover of the study area.  
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Forest is defined as the land where trees with height of five meters or more are 

densely distributed (OGM, 2002). The measure of density of distribution is the 

percentage of the closure of canopy, where areas with closure of 10% or more 

are accepted as forest. However, the lands where the closure is less than 10% 

but there is no other use or activity dominating the area are also accepted to be 

forest (Lillesand and Kiefer, 1994). Forestlands in the study area are composed 

mainly of black pine (Pinus nigra Arnold.); a coniferous species and a less 

amount of deciduous species majority of which are oaks (Quercus sp. L) 

especially in the northern parts of the study area and at the fringes of 

Kızılcahamam. 

Water bodies include streams, canals, lakes, reservoirs and bays in general. 

Water bodies were composed of a dam reservoir and two streams within the 

extent of the study area.  

Photographs taken at the field study are available for some of the classes 

including agriculture, rangelands and settlements (Appendix F). 

From the five Level I classes in the study area mentioned above, two of them 

were excluded from the procedures associated with image classification. These 

classes are Urban or built-up land and water bodies.  

For this study, the main reason for excluding the urban built-up land from the 

classification procedure was that it is a land use class specifically. Although 

ancillary data is widely used to improve classification in land cover applications, 

their use in land use applications is less common (Westmoreland and Stow, 

1992).  

The term land cover relates the type of feature present on the surface of the 

earth, however the term land use relates the human activity; a social or 

economic function practiced on a particular area. Whereas land cover 

information can be directly interpreted by means of spectral characteristics of an 

image, additional information sources are needed to reinforce the image data in 

order to identify whether the area mentioned is an area associated with human 

activities (Lillesand and Kiefer, 1996). This supplementary data is a usually a 

thematic map or information regarding the type of use of a specific area or 
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construction and often becomes more critical than the spectral data. Since the 

remotely sensed imagery is the primary data source for this study, superiority of 

an ancillary data, its becoming more important than, and even supersede 

spectral data is unacceptable. Other reason for excluding the urban built-up land 

was regarding the scope of this thesis where the aim is to test the affirmative 

effect of topography on improving the accuracy of classification. However, 

human factor when exceeded a trade-off between required development area 

and present suitable area, is often challenging, means that land use associated 

with human activities can be practiced anywhere even unusual, regardless of 

the topographical restrictions, but dependent on other parameters instead. 

Development of new residential areas at the fringe of the city on the steeply 

sloping terrain is an example of independency on topography. Construction of 

industrial units nearby the transportation is an example of dependency on the 

parameters other than topography. Another reason for excluding the class from 

classification relates the spectral properties of the urban or built-up land class. 

Multispectral image classification tends to be most successful for scenes 

characterized by homogenous cover. Urban built-up land however shows high 

spectral variability, which may cause high amount of misclassifications yielding 

unreliable classification results. Use of an unreliable result in testing effect of 

topography would not make sense.  

The main reason for excluding the water bodies from the classification was that 

clear water bodies with distinct and unambiguous spectral signatures are the 

most easily classified information class within a multispectral image, and there is 

no need to support classification of such water bodies with additional 

information, also considering that adding topographical information especially 

the elevation data may reduce the accuracy of the water bodies class rather 

than improving it, since elevation is constant for corresponding water pixels, and 

this may not yield meaningful relationship between elevation and water class 

signatures.  

As a consequence of these statements, land cover classes remained to be 

classified were; (1) Agriculture, (2) Range Land and (3) Forest. At this point, 

rangelands in the study area were reevaluated, because; rangelands of the area 

apparently consisted of two contextually different categories, which are 
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herbaceous rangeland and shrub rangeland. Thus it was reasonable to make a 

subdivision for rangeland category although it may violate Level I of some well-

known classification schemes (Anderson, 1976; CORINE, 1993). As a 

consequence of this subdivision; ultimate list of land cover ended up with four 

classes; 

Class1: Agriculture 

Class2: Rangeland-shrub (Range-shrub) 

Class 3: Rangeland-herbaceous (Range-herb) 

Class4: Forest 

When an information class defined by the analyst and spectral class defined for 

a particular category coincides or is very close, classification yields successful 

results. This statement is provided for the three classes but not for Agriculture.  

Agriculture is a special class because; it is regarded as a land use class. 

Related to this, any particular land dominated with agricultural activities is 

considered to be agricultural land, regardless of its being vegetated or non-

vegetated. Vegetated and non-vegetated lands inherently have different spectral 

reflectance values and patterns and this raises intolerable results in 

classification. 

Under these circumstances, non-vegetated agricultural lands were set apart 

from the classification procedure; hereafter agriculture class represented the 

vegetated agricultural land only. In other words it was treated as a specific land 

cover rather than a land use class. 

 

4.2.3. Classification Method 
 

Each feature or type of land cover may have their own spectral characteristics in 

different bands of electromagnetic spectrum. Image classification for this study 

is aimed to convert spectral data into four land cover classes. 

 



 49

An information class implies the class defined by the analyst. However spectral 

classes are those that are inherent in the remotely sensed data (Jensen,1996). 

Thus, a spectral class may not necessarily correspond to a specific information 

class defined by the analyst.  

 

In order to extract afore mentioned land cover classes from the image data 

supervised classification method was quite appropriate. The reason for selecting 

supervised classification was that, a supervised classification ideally yields 

information classes since the training samples were defined for each specific 

information class by the supervisor. However, an unsupervised classification 

predictably yields spectral classes, because the training set is automatically 

calculated from the image spectral data. 

 

A conventional supervised classification clusters the pixels into information 

classes by means of training data based on probability distribution models for 

the cases of interest. (Favela and Torres, 1998). Maximum Likelihood classifier 

is the most commonly used supervised method and is supposed to provide 

better results compared to the other supervised methods (Strahler, 1980; 

Bolstad and Lillesand, 1992; Foody et al.,1992; Deusen,1995; Maselli et al., 

1995). Superiority of Maximum Likelihood classifier over the other supervised 

methods such as minimum distance to mean, parallelepiped and etc. is due to 

its sensitivity on the shape, size and orientation of a cluster (Shrestra and Zinck, 

2001). However, Maximum Likelihood classifier is not particularly a robust 

technique, in handling natural geographical data since it assumes that the data 

has normal distribution. 

 

 
4.3. Analyses 
 
A five-phased methodological framework was proposed for developing a 

procedure for the integration of ancillary topographical information into image 

classification. 
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First phase basically involves understanding class spectral characteristics. In 

this phase, representative sets of pixel values that spectrally characterize 

classes to be extracted from the image data were defined. Class spectral 

signatures compose the initial training set for the multispectral image data. 

However, this set is not used for training a classification procedure but, it serves 

as prior information for the later redefinition of training data. 

 

Second phase involves analysis of the information content of data sources and 

quantification of the relationship between specific classes and particular 

topographical data. Dependent on the significant relationships, ancillary 

topographical data that may contribute to improvement of classification accuracy 

was determined. The topographical data, which was considered to add no to 

classification, was excluded from the remainder of the analyses. 

 

In the third phase the ancillary topographical data, which was tested and 

qualified to be used in the classification, was examined for the selection of class 

topographical signatures. A procedure similar to that performed in the first 

phase was carried on. However, this time the aim was to define the 

representative sets of values that topographically characterize classes of 

interest. 

 

The fourth phase; redefinition of training sets is very critical. The aim is to define 

two training sets where Training Set 1; involves class spectral signatures only 

and Training Set 2; involves both class spectral and class topographical 

signatures. The signatures were selected with respect to class spectral and 

topographical signatures previously defined. That’s why the task is described 

with the term redefinition. Training set 1 was then used to train classification of 

spectral data only and Training set 2 was used to train classification of both 

spectral and topographical data 

 

The fifth phase is classification. Classification for the study was aimed to prove 

the affirmative effect of topographical data on image classification accuracy by 

generating two products to be compared, where first was a product of 

classification based solely on spectral data (Figure 4.10) and second was a 
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product of classification based on both spectral and topographical data (Figure 

4.11).  

 

The five phases were followed by accuracy assessment, which is essential task 

for implementation of classification. Classification products were assessed to be 

verified for their correspondence to the ground truth information. In the accuracy 

assessment step; the effects of the method were achieved and the extent of 

contribution of topographical data to image classification with the integration of 

ancillary topographical data was quantified. 

 
 
4.3.1. Phase 1: Definition of Class Spectral Signatures 
 

Supervised classification as the term supervised denotes, is the classification 

supervised by the analyst. Supervising procedure is often performed by 

manually defining training samples to guide classification. Whereas image 

classification is a highly automated procedure, selection of training set is nothing 

but manual.  

 

The objective of training set selection is to assemble a set of statistics that 

describe the spectral signature/response pattern for each category to be 

classified within the image. Supervised classification methods define classes by 

analyzing the spectral signatures in each training area and determining their 

statistical properties. The defined class properties are then used as the basis for 

classifying the input raster set. The success of supervised classification to some 

extent depends on the quality of the training set. The goal is to define training 

areas of sufficient quality and quantity, so that every type of feature in the input 

can be assigned to a meaningful class.  

 

Training samples were selected for all classes overall the image, ensuring that 

they are good representatives of each information class. When selecting training 

samples there is a trade-off between having a sufficiently large sample size to 

generate accurate statistical parameters used by classifiers, and a restrictive 

sample size to ensure class seperability. It is essential not to exclude any 
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samples that would contribute to the representation of the class’s signature, but 

it is also equally essential not to include some of the samples redundantly not to 

computationally yield a training set of inferior quality. Generating training sets for 

spectral classes that are distinct and mutually exclusive do not pose problems 

(Mesev, 1998). However, it should always be kept in mind that this is the ideal 

case; samples representing a particular phenomenon may also cover a part of 

another. Thus, training set selection for natural phenomenon is often 

problematic.  

 

Selection of training set was given great importance for the study and samples 

were selected precisely as possible to represent land cover classes’ signatures 

well. Because; the generation of representative training statistics is sometimes 

more important for obtaining accurate classifications than is the selection of 

classifier algorithm itself.  

 

There are several ways to collect training samples. For this study on-screen 

polygonal selection was preferred. Polygonal selection tool is an effective way of 

training samples selection compared to those which are point based, because it 

enables the selection of multiple pixels located nearby, belonging to the same 

class instead of pointing them one by one. Training samples were collected by 

polygonal selection tool randomly from all over the scene for the four land cover 

classes to be extracted from the multispectral Landsat TM bands.  

 

Selection of the training set for the study basically depended on visual 

interpretation. A certain time was devoted to understanding visual components 

of land cover classes in the study area within particular band combinations and 

other reference data. Visual interpretation of a feature involves examining its 

tone, color, texture, pattern, shape, etc. Landsat 453 color composite was the 

primary reference to select training samples, since this band combination was 

regarded to represent distinctions of land cover classes better in the study area 

compared to other particular combinations. Training samples were collected 

from 453 composite making use of color and tone information. IRS 

panchromatic image, an aerial photograph, topographical map and forest map 

was used to obtain texture, pattern, shape information especially when 453 
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composite was insufficient in spatial detail. Visual interpretation of a feature 

involves examining its tone color, texture, shape, etc. (Figure 4.3).  

 
Figure 4.3: Relationship of Image Elements to Visual Interpretation (CORINE, 1993) 
 

Training set selection for the study was a multiphase procedure; it was not 

completed all at once. Selected training set was tested both for seperability and 

representativity, if not satisfied with the results; the training set was modified 

and tested again. This procedure continued since a balance between sample 

size and sample error was supplied. In other words; it was concluded that the 

training set is satisfactory, when samples were at that critical balance where 

attempts to make modification on a class’s training samples so as to generate 

more representative class signatures violates general seperability or visa versa; 

attempts to increase seperability violates a class’s representativity.  

 

The seperability of the training samples was tested with the help of a 

dendrogram. A Training Set Dendogram is used to obtain the results of a 

hierarchical analysis of the class signatures in graphic form. This analysis 

performs a successive grouping of pairs of classes on the basis of distance 

between class centers in feature space. The closest two classes are merged, a 

new joint class center computed, and class-center distances recalculated; this 

process repeats until all classes are merged into a single class. Classes that 

join together near the left side of the diagram are closely related in their spectral 

properties, and the degree of relation decreases to the right as the size of the 

class groups increases. The spectral seperability of signatures were tested by 

“Transformed Divergence” since it provides more appropriate seperability 
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definition for Maximum Likelihood method (Swain and Davis, 1978). 

Transformed divergence values range between 0.0-2.0; where 0 indicates the 

class pairs that cannot be distinguished and 2 indicates full seperability between 

two classes Seperabilty between 1.9-2.0 is accepted as best seperability, 1.7-

1.9 as fairy good seperability, 0-1.7 as poor seperability (Swain and Davis, 

1978). 

 

Figure 4.4 shows the seperability of the classes making use of a dendrogram. 

 

 
Figure 4.4: Seperability of Initial Training set by means of Transverse Divergence 
measurement 

 

Transformed divergence of approximately 1.5 is often accepted to represent 

spectral region of merging (Wiseman, 2002). However class2 and class 3;  

range-shrub and range-herb which have low seperability were previously 

defined as classes necessarily to be classified. And furthermore this set was not 

directly used for classification. The seperability of the training set may change 

after redefinition procedure mentioned in section 4.3.4. 

 

Although there is no certain upper limit for the number of samples to be 

collected for each class, there are several suggestions about minimum number 

of samples to be collected for each class. Jensen (1996) stated that the general 

rule for size of training samples was 10n where; n is the number of bands to be 

classified. However Mather (1989) recommended that sufficient number of 

samples to be collected is 30n. For the study, 32-174 pixels were selected by 

means of 8-28 polygons to define the training set for each class, and number of 

pixels used were 443 totally (Table 4.2). This number corresponds to 

approximately 70n where number of bands used was six and is quite sufficient 

for generating class signature statistics. Number of training samples collected 

for forests were noticeably small; however this was a consequence of the small 
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proportion of forestland within the image, rather than an undersampling 

problem. 

 
Table 4.2: Number of training samples and selecting polygons for each class 

Class Number of polygons Number of Training Samples 

Agriculture (Class1) 25 174 

Range-shrub (Class2) 21 116 

Range-herb. (Class3) 20 121 

Forest (Class4) 6 34 

TOTAL 72 443 

 

Training set is then used for generating class spectral statistics that will guide 

further refinements on training data. Fundamental characteristics that define 

class’s spectral signatures are univariate and multivariate statistics where, 

univariate statistics are; minimum, maximum, mean, variance, standard 

deviation) and multivariate statistics are; variance-covariance matrix and 

correlation matrix. Minimum, maximum, mean and the variance values for the 

Training set is given in Table 4.3.  

 
Table 4 3: Minimum, maximum,  mean and variance values for the Initial Training set  

 
CLASS1  
Agriculture minimum maximum mean variance 

TM1 64 84 72,81 12,99 
TM2 55 75 63,28 17,01 
TM3 41 73 53,96 45,18 
TM4 82 152 100,85 173,92 
TM5 67 112 84,01 87,09 
TM7 34 70 48,66 55,23 

 
CLASS 2  
Range-
shrub 

minimum maximum mean variance 

TM1 70 86 78,18 13,03 
TM2 57 77 67,03 14,66 
TM3 54 82 67,68 44,70 
TM4 51 85 67,97 56,02 
TM5 82 135 109,61 139,61 
TM7 52 98 76,04 108,45  
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Table 4 3: Minimum, maximum,  mean and variance values for the Initial Training set  
(continued) 

 
CLASS 3 
Range-
herb. 

minimum maximum mean variance 

TM1 75 95 83,61 19,63 
TM2 63 87 72,71 28,32 
TM3 60 98 76,14 68,82 
TM4 64 91 77,80 45,53 
TM5 107 165 129,55 135,46 
TM7 71 124 90,97 124,76 

 
CLASS 4 
Forest minimum maximum mean variance  

TM1 61 71 65,90 6,66 
TM2 46 58 50,03 8,80 
TM3 35 52 42,25 18,76 
TM4 50 68 58,31 18,60 
TM5 43 89 57,37 112,99 
TM7 24 49 34,93 45,27  

 

Actually, this training set was an initial study. It was aimed to serve as a basis 

for generating the redefined training sets by making use of minimum and 

maximum ranges. Hence, this training set was remarked as Initial Training set 

and was not used directly to train any classification procedure. 

 

 

4.3.2. Phase 2: Determination of Class–Topographical Data Relationship 
 

The effective use of ancillary data requires a consistent and known relationship 

between ancillary data and the subject of interest (Westmoreland and Stow, 

1992). For a particular application regarding the integration of ancillary data into 

classification; understanding ancillary data in the context and knowing how this 

data will contribute to image classification is of great importance.  

 

In this study, each of the ancillary data was evaluated for its degree of 

correspondence with land cover categories. The analyses were aimed to find 

out whether there is a relation between a specific class and a specific ancillary 

data. But the case involves comparison of two different types of variables, 

where class is dichotomous and topographical data are continuous. Biserial 

Analysis is quite adequate for making this kind of comparison since it pertains to 
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the case where one variable is dichotomous and the other is non-dichotomous. 

By convention, the dichotomous variable is treated as the X variable, its two 

possible values; being class A or not being class A, coded as X=1 or X=0; and 

the non-dichotomous variable is treated as the Y variable (Vassar, 2002). The 

task is simply correspondence analysis of Y variables associated with class A, 

and Y variables not associated with Class A. If the variation between these two 

sets is wide, than this means X variables being A or not being A extensively 

effects Y variables and is the confirmation for a high correlation between class A 

and Y variable. If there is little or no significant difference between the two data 

sets than there is no relation between Class and Y variable. 

 

Data to be tested for correspondence were the four land cover classes and the 

ancillary topographical data consisted of elevation, slope and aspect.  

 

Land cover data involved training samples assigned to land cover classes; 

agricultural land, range-shrub, range-herb., and forest. The training samples 

were collected randomly from all over the study area and were spectrally good 

representatives of their associated classes, so, they formed an adequate test 

set.  

 

Topographical data involved the pixel values corresponding to the training 

samples.  

 

Test was aimed to discover the effect of topography on the land cover classes. 

Thus, comparison of topographical variables corresponding to a specific class’s 

training samples and topographical variables corresponding to other remaining 

classes’ training samples may offer meaningful information about the effect of 

topography on that specific class. To be more specific, for example, elevation 

values corresponding to agriculture’s training samples are gathered and labeled 

as set1. On the other hand, elevation values corresponding to samples of other 

three classes are gathered and labeled as set2. If we can compare set1 and 

set2, we can achieve valuable correlation pertaining to information about the 

effect of elevation as an entity on class: Agriculture.  
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Biserial analysis was performed with 95% confidence interval for each class and 

each topographical attribute to measure a probable correlation. An online 

biserial coefficient calculator was used (Vassar, 2002). 

 

The correlation coefficients for 24 tests ranged between the minimum of 0.02 to 

maximum positive 0.65, and maximum negative 0.41 (Table 4.4); where 0 

denotes is there is no relationship (no correlation), 1 is perfect relationship and -

1 is perfect negative relationship. 

 
Table 4.4: Biserial correlation coefficients for four land cover classes and topographical 
data 

Topographic 

Parameter 
Test Set 

Correlation 

Coefficient 

Elevation  agriculture non- agriculture +0,62 

Slope  agriculture non- agriculture +0,65 

Aspect agriculture non- agriculture +0,02 

Elevation range-shrub non- range-shrub -0,34 

Slope  range-shrub non- range-shrub +0,48 

Aspect range-shrub non- range-shrub -0,11 

Elevation range-herb. non- range-herb. -0,41 

Slope  range-herb. non- range-herb. +0,08 

Aspect range-herb. non- range-herb. +0,06 

Elevation forest non- forest +0,1 

Slope  forest non- forest -0,5 

Aspect forest non- forest +0.24 

 

 

The result of the biserial correlation analysis was evidence for the relation 

between specific land cover classes in the area and the terrain attributes. The 

significance test of the correlation coefficient verified that all of the correlations 

which have correlation coefficients greater than approximately 0.30 are 

significant. Significance level, often called the p value is the probability that a 

statistical result as extreme as the one observed would occur if the null 

hypothesis were true. If the observed significance level is small enough, usually 

less than 0.05 or 0.01, the null hypothesis is rejected (SPSS help). 
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P < 0.0001 for all of the high correlations is a very low p value under 0.05 

(Appendix G), which is generally accepted as border line limit for significance 

(Statsoft, 2002). 

 

In general it was comprehended that land cover classes in the study area are 

highly related or in other words highly dependent on the elevation and slope of 

the terrain. However, aspect has little effect on most of the classes’ subsistence 

and distribution within the study area.  

 

Examining individually; 

Agriculture (C1) is highly correlated with both elevation and slope, but with 

coefficient value of 0.02 the least correlation is also between agriculture and 

aspect among all tests. Range-shrub (C2) is also correlated with elevation and 

slope to a degree, the correlation between elevation and range-shrub is 

however, a negative relationship, aspect has poor correlation with C2. Range-

herb (C3) has negative relationship with elevation in a reasonable level. 

However it has very poor correlation with both slope and aspect of the terrain. 

Forest (C4) has fair degree of negative relationship with slope and a reasonable 

relationship with aspect but it is randomly correlated with elevation of the terrain 

with a low significance. 

 

Under these evaluations; aspect was considered to add little or no to 

classification and incidentally it was excluded from the remaining part of the 

study associated with the integration of topographical data into classification 

procedure. As a consequence of the biserial analysis; elevation and slope data 

were qualified to be used as ancillary topographical data in classification. 

 

 

4.3.3. Phase 3: Definition of Class Topographical Signatures 
 

A set of samples that describe the spectral characteristics of each land cover 

class was previously selected as mentioned in section 4.3.1. Since it was 

realized after the evaluations in previous section 4.3.2. that elevation and slope 



 60

data are correlated with land cover classes in the study area, the next question 

is how this data will contribute to classification.  

 

Integration of ancillary data into classification is followed by two approaches. 

The first is inserting ancillary data into classification as additional band so-called 

logical channel method, and the second is classifier modification by changing 

prior probabilities.  

 

Changing prior probabilities either by using information gathered from bands or 

ancillary data actually makes areal estimations about the final product. Weights 

to be assigned to each class are derived from these data, and accuracy of the 

classification is highly dependent to accuracy of estimates. However, for this 

study any of the topographical data proposed to be integrated into classification 

can offer such reliable estimates about the areal distribution of classes in the 

final product, therefore, use of classifier modification was inadequate for this 

study with the information that can be derived from elevation or slope data.   

 

The other approach, addition of ancillary data as a separate channel seemed 

quite reasonable, however, simple addition of non-spectral data as input into 

classification adds little to accuracy of classification as it was stated by 

Hutchinson (1982). In order to make efficient use of ancillary data in 

classification procedure, modifying training set so as to guide classification to 

take ancillary data characteristics for each class into account would be a 

solution. This operation simply requires, topographical signatures for each land 

cover class to be included into training set.  

 

Selection of class topographical signatures was aimed just the same as 

selection of class spectral signatures, however, selection of topographical 

signatures was rather different than selection of spectral signatures. This is 

because, topographical samples should be selected according to being more 

likely to be observed in a specific class. As a consequence of this, topographical 

signatures cannot be collected via visual interpretation.  
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In order to gather topographical samples, a kind of stratified random sampling 

was applied making use of the pixels that satisfy the spectral ranges defined in 

class spectral signatures for each class but not the class spectral signatures 

themselves. The reason for using the pixels satisfying the minimum and 

maximum ranges for spectral signatures instead was the need for collecting 

more samples to better represent the topographical distribution and different 

samples to derive unbiased topographical relations.  

 

Fleeming and Hoffer (1979) used stratified TSRS (Topographical Stratified 

Random Sampling) for determining forest types-topography relationship via 

4450 points for 3750 km2 study area. Making a simple ratioing for the study 

area of 66 km2, a total of approximately 80 points were required. Anyway for 

this study total number of 1200 samples was gathered, in order to better 

represent site characteristics (Table 4.5), since topography shows wide 

variability and there are four different types of land cover classes.  

 
Table 4.5: Number of Stratified Random Samples collected for obtaining class-topography 

relationship 
 
Class Number of Samples 

Agriculture (C1) 128 

Range-shrub (C2) 482 

Range-herb. (C3) 540 

Forest (C4) 50 

TOTAL 1200 

 

 

These sample sets for each class were than used to stratify elevation and slope 

data. Subsequent to that, the elevation and slope values corresponding to class 

signatures were randomly selected. Location of the samples was random and 

those samples did not necessarily overlap with that of spectral training samples. 

 

Topographic distributions were developed to determine the frequency of 

occurrence of each elevation or slope value for any given land cover class. 

Frequency histogram was a valuable supplementary in defining elevation or 

slope ranges where classes were most likely to occur. Data ranges representing 
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class topographical signatures were determined with the help of histogram 

graphics. 

 

Histograms showing the distribution of observed topographical values for each 

class were truncated by removing the observations at the two tails of the 

histogram so as to exclude deviated region of the distribution profile. 

 

The topographical distribution for land cover classes were represented in Figure 

4.5. 
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Figure 4.5: Histograms for distribution of topographical values corresponding to spectral 
signatures of each class 
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Figure 4.5: Histograms for distribution of topographical values corresponding to spectral 
signatures of each class (continued) 

 

 

The topographical distributions are not normal and they have outlier elements 

which may cause erroneous representations for the classes of interest. The tails 

where outliers are situated were removed manually from the sets of 

topographical training data. By this way, minimum and maximum ranges for 

topographical attributes associated with four classes were redefined. The new 

minimum and maximum ranges were given in Table 4.6.  
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Table 4.6: Minimum, maximum, mean and variance values of topographical signatures for 
each class 

CLASS1: Agriculture minimum Maximum mean variance 
ELEVATION 945 1202 1109 4912 
SLOPE 0 8 4,6 13,92 

 
CLASS 2: Range-
shrub minimum Maximum mean Variance 

ELEVATION 1000 1363 1165 8603 
SLOPE 6 32 17,00 67,34 

 
CLASS 3: Range-
herb. minimum Maximum mean variance 

ELEVATION 1110 1375 1164 8251 
SLOPE 2 26 13,00 65,66 

 
CLASS 4: Forest minimum Maximum mean variance 

ELEVATION 1023 1240 1119 6140 
SLOPE 12 37 25,32 64,96  

 

Boxplot graphics derived from topographical signatures also give valuable 

information about the coincidence and seperability characteristics of elevation 

(Figure 4.6) and slope (Figure 4.7) for each class  
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Figure 4.6: Box plot of elevation signatures showing means and 1 standard deviations 
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Figure 4.7: Box plot of slope signatures showing means and 1 standard deviations 
 
 

4.3.4. Phase 4: Redefinition of Training Sets  
 

Selection of the initial training set including both the spectral and the 

topographical signatures was implemented sequentially as mentioned in section 

4.3.1. and 4.3.3.  

 

However the aim of selecting the initial training set was actually to obtain the 

spectral and topographical range of values that represent land cover classes 

rather than using this information directly for training of classification procedure. 

The training set was used as supplementary information to serve as basis for 

next and the last step in training set definition. 

 

The effect of ancillary topographical attributes on classification accuracy was 

intended to be tested as a requirement of the study. The test basically 

depended on a comparison of two products one of which was derived from 

spectral data and the other from both spectral and the topographical data. This 

can be achieved by classifying the multispectral image data by means of 

training set involving class spectral signature only, to yield Product 1, and on the 

other hand; classifying multispectral image data and topographical data by 
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means of training set involving both class spectral and topographical signatures 

to yield Product 2.  

 

As a consequence of this, two training sets were redefined to satisfy the afore 

mentioned criteria; Training Set 1; involving class spectral signatures only and 

Training Set 2; involving both class spectral and class topographical signatures. 

Training Set 1 has already been collected as mentioned in part 4.3.1. and was 

ready to be used to train classification in order to derive Product 1. However 

Training Set 2 was problematical. The cause of the problem with Training Set 2 

was that spectral training samples and the topographical samples did not 

coincide when merged in a single training raster. This was inherently a result of 

different manner and method used for collecting spectral and topographical 

samples. Solution of this problem could be to create a new Training Set 2 with 

sample pixels every single of which can satisfy both spectral and topographical 

class signatures. However, this task introduces a new problem of challenging 

the critical issue to ensure for the two training sets, that is; preventing the class 

spectral signatures constant in both Training Set 1 and Training Set 2. If this is 

not provided, we can never make sure that the difference in between Product 1 

and Product 2 is due to topographical effect. The question to mention here is “is 

it possible to manually select training samples that would also represent 

topographical signatures, without deforming the class spectral signatures?” 

Answer to this question is almost no. Because, collecting samples which can 

satisfy topographical signatures and do not change the characteristics of 

spectral signatures is impractical manually. Therefore an automated selection 

procedure was adopted to solve this problem. In order to implement automated 

selection, all of the raster attributes were transferred to vector points every one 

of which represented a standard raster grid of 30x30 meters. Pixel values data 

for every single raster related with the classification procedure were transferred 

as data base records into database tables attached to the internal table of point 

elements (Figure 4.8). 
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Figure 4.8: Database tables of point elements that are representing raster pixel values 

Two queries one of which is for Training Set 1 and other for Training Set 2 were 

performed with respect to minimum and maximum ranges. Those ranges were 

previously defined for each input of each class in the initial training set definition 

stage (section 4.3.1.). 

First query given was aimed to select pixels within the minimum and maximum 

ranges defined for bands only. And the second query given was aimed to select 

pixels within the minimum and maximum ranges defined for bands, elevation 

and slope.  

Query 1: 

if  TM_1.RastValue >= 64 and TM_1.RastValue <= 84  
and TM_2.RastValue >= 55 and TM_2.RastValue <= 75  
and TM_3.RastValue >= 41 and TM_3.RastValue <= 73  
and TM_4.RastValue >= 82 and TM_4.RastValue <= 152  
and TM_5.RastValue >= 67 and TM_5.RastValue <= 112  
and TM_7.RastValue >= 34 and TM_7.RastValue <= 70 assign to Class1 

 
if  TM_1.RastValue >= 70 and TM_1.RastValue <= 86  

and TM_2.RastValue >= 57 and TM_2.RastValue <= 77  
and TM_3.RastValue >= 54 and TM_3.RastValue <= 82  
and TM_4.RastValue >= 51 and TM_4.RastValue <= 85  
and TM_5.RastValue >= 82 and TM_5.RastValue <= 135  
and TM_7.RastValue >= 52 and TM_7.RastValue <= 98  assign to Class2 

 
if  TM_1.RastValue >= 75 and TM_1.RastValue <= 95  

and TM_2.RastValue >= 63 and TM_2.RastValue <= 87  
and TM_3.RastValue >= 60 and TM_3.RastValue <= 98  
and TM_4.RastValue >= 64 and TM_4.RastValue <= 91  
and TM_5.RastValue >= 107 and TM_5.RastValue <= 165  
and TM_7.RastValue >= 71 and TM_7.RastValue <= 124  assign to Class3 

 
if  TM_1.RastValue >= 61 and TM_1.RastValue <= 71  
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and TM_2.RastValue >= 46 and TM_2.RastValue <= 58  
and TM_3.RastValue >= 35 and TM_3.RastValue <= 52  
and TM_4.RastValue >= 50 and TM_4.RastValue <= 68  
and TM_5.RastValue >= 43 and TM_5.RastValue <= 89  
and TM_7.RastValue >= 24 and TM_7.RastValue <= 49  assign to Class4 

 

pixels satisfying Query 1 compose the Training Set for bands only (T1). 

 

Ouery 2: 
if  TM_1.RastValue >= 64 and TM_1.RastValue <= 84  

and TM_2.RastValue >= 55 and TM_2.RastValue <= 75  
and TM_3.RastValue >= 41 and TM_3.RastValue <= 73  
and TM_4.RastValue >= 82 and TM_4.RastValue <= 152  
and TM_5.RastValue >= 67 and TM_5.RastValue <= 112  
and TM_7.RastValue >= 34 and TM_7.RastValue <= 70  
and ELEV.RastValue >= 945 and KRIGING.RastValue <= 1202 
and SLOPE.RastValue >= 0 and SLOPE_s.RastValue <= 8  assign to Class1 

 
if  TM_1.RastValue >= 70 and TM_1.RastValue <= 86  

and TM_2.RastValue >= 57 and TM_2.RastValue <= 77  
and TM_3.RastValue >= 54 and TM_3.RastValue <= 82  
and TM_4.RastValue >= 51 and TM_4.RastValue <= 85  
and TM_5.RastValue >= 82 and TM_5.RastValue <= 135  
and TM_7.RastValue >= 52 and TM_7.RastValue <= 98  
and ELEV.RastValue >= 1000 and ELEV.RastValue <= 1363 
and SLOPE.RastValue >= 6 and SLOPE.RastValue <= 32  assign to Class2 

 
if  TM_1.RastValue >= 75 and TM_1.RastValue <= 95  

and TM_2.RastValue >= 63 and TM_2.RastValue <= 87  
and TM_3.RastValue >= 60 and TM_3.RastValue <= 98  
and TM_4.RastValue >= 64 and TM_4.RastValue <= 91  
and TM_5.RastValue >= 107 and TM_5.RastValue <= 165  
and TM_7.RastValue >= 71 and TM_7.RastValue <= 124  
and ELEV.RastValue >= 1110 and ELEV.RastValue <= 1375 
and SLOPE.RastValue >= 2 and SLOPE.RastValue <= 26  assign to Class3 

 
if  TM_1.RastValue >= 61 and TM_1.RastValue <= 71  

and TM_2.RastValue >= 46 and TM_2.RastValue <= 58  
and TM_3.RastValue >= 35 and TM_3.RastValue <= 52  
and TM_4.RastValue >= 50 and TM_4.RastValue <= 68  
and TM_5.RastValue >= 43 and TM_5.RastValue <= 89  
and TM_7.RastValue >= 24 and TM_7.RastValue <= 49  
and ELEV.RastValue >= 1023 and ELEV.RastValue <= 1240 
and SLOPE.RastValue >= 12 and SLOPE.RastValue <= 37  assign to Class4 

 

pixels satisfying Query 2 compose the Training Set for bands, elevation and 

slope (T2).Number of pixels selected to be training samples are given in Table 

4.7. Pixels with the attributes 0 for mask table, where 0 is attached to the 

elements to be masked and 1 is no action, were excluded from both of the 

training sets. 
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Table 4.7: Number of Pixels selected for T1 and T2 

T1 Training set for bands only 
 

CLASS 
 

Number of 
training pixels 

Agriculture 4141 
Range-shrub 43002 
Range-herb. 41103 
Forest 899  

T2 Training set for bands, elevation and 
slope 

CLASS 
 

Number of 
training pixels 

Agriculture 2799 
Range-shrub 28443 
Range-herb. 34214 
Forest 670  

 

The spectral characteristics including mean and variance for the two new 

training sets are presented in Table 4.7. Minimum and maximum values 

concerning spectral data are constant for bothT1 and T2. Elevation and slope 

values were given for Training set for bands only, although it is not used in 

anyway. That is to show what the elevation and slope values corresponding to 

spectral training samples in the normal case. A big amount of change is 

observed in elevation and slope compared to band signatures of T1 and T2. 

 

 
Table 4.8: Mean and variance values for T1 and T2 

T1 Training set for bands only 
 

CLASS1  
Agriculture mean variance 

TM1 75,99 14,51 
TM2 66,27 16,24 
TM3 59,99 48,02 
TM4 93,61 103,22 
TM5 95,24 119,90 
TM7 58,00 73,96 
ELEVATION 1112,09 699 
SLOPE 7,02 37,69 

 
CLASS 2  
Range-shrub mean variance 

TM1 80,02 12,53 
TM2 68,80 14,51 
TM3 70,24 37,69 
TM4 73,06 44,22 
TM5 115,29 150,55 
TM7 79,81 100,22 
ELEVATION 1174,88 6935,55 
SLOPE 11,81 66,74  

T2 Training set for bands, elevation and 
slope 

CLASS 1  
Agriculture mean variance 

TM1 75,55  15,44 
TM2 66,12 17,13 
TM3 59,66 53,58 
TM4 94,74 112,78 
TM5 92,74 122,98 
TM7 56,56 81,72 
ELEVATION 1102,61 2078,44 
SLOPE 3,81 4,62 

 
CLASS 2  
Range-shrub mean variance 

TM1 79,34 12,96 
TM2 68,21 15,84 
TM3 69,40 40,44 
TM4 72,40 47,88 
TM5 114,25 142,56 
TM7 78,77 98,40 
ELEVATION 1189,50 6263,13 
SLOPE 14,60 42,25  
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Table 4.8: Mean and variance values for T1 and T2  (continued) 

  
CLASS 3 
Range-herb. mean variance 

TM1 86,33 15,52 
TM2 76,45 20,07 
TM3 81,92 50,55 
TM4 79,54 38,44 
TM5 129,86 85,19 
TM7 93,19 74,82 
ELEVATION 1160,84 7044,24 
SLOPE 12,84 55,95 

 
CLASS 4 
Forest mean variance 

TM1 64,05 13,91 
TM2 51,70 16,97 
TM3 45,19 44,35 
TM4 57,76 35,88 
TM5 62,42 78,49 
TM7 39,54 69,72 
ELEVATION 1139,92 4385,08 
SLOPE 25,20 35,88  

  
CLASS 3 
Range-herb. mean variance 

TM1 84,04 5,10 
TM2 73,25 9,36 
TM3 77,35 14,64 
TM4 77,27 20,88 
TM5 127,28 87,98 
TM7 90,02 43,82 
ELEVATION 1183,19 32490,0 
SLOPE 7,90 60,84 

 
CLASS 4 
Forest mean variance 

TM1 66,98 5,10 
TM2 51,48 9,61 
TM3 44,92 18,57 
TM4 57,28 18,74 
TM5 61,48 90,06 
TM7 38,92 46,64 
ELEVATION 1127,92 11657,60 
SLOPE 25,01 40,96  

 

As observed from the signature statistics there is an overlap concerning range 

shrub and range-herb. This overlap was mainly due to the nature of the two 

rangeland classes, which show a degree of spectral similarity. Since the 

similarity was not that significant to necessitate merging of the two classes into 

a single class, overlap was accepted of reasonable extent. Although the overlap 

is acceptable in the spectral domain, representation of overlap in the training 

raster is impractical since a pixel may have a single value only. For the case, 

some pixels were satisfying both T1 and T2 criteria. In order to solve the 

problem, pixels satisfying more than one criterion were removed. The action 

attempted to provide that every one of pixels selected as training samples have 

only one class id, removed the overlapped region from both class 2 and 3 

 

The spectral characteristics after overlap extraction made negligible changes 

over the training spectra. The number of training samples decreased. Especially 

the samples of range-shrub and range-herb pixels reasonably decreased due to 

amount of overlapped region (Table 4.9).  
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Table 4.9: Number of pixels selected for T1 and T2 after overlap extraction 

T1 Training set for bands only 
 

CLASS 
 

Number of 
training pixels 

Agriculture 3169 
Range-shrub 11800 
Range-herb. 13585 
Forest 881  

T2 Training set for bands, elevation and 
slope 

CLASS 
 

Number of 
training pixels 

Agriculture 2660 
Range-shrub 11630 
Range-herb. 17591 
Forest 672  

 

 

Training statistics including, mean and variance for the two ultimate training sets 

are presented in Table 4.10. 

 
Table 4.10: Mean and variance values for ultimate T1 and T2 (overlap-excluded) 

T1 Training set for bands only T2 Training set for bands, elevation 
and slope 

 
CLASS1  
Agriculture mean variance 

TM1 75,11 32,26 
TM2 65,93 39,06 
TM3 58.93  94,09 
TM4 95.71   121,22 
TM5 94.05 228,91 
TM7 56.62 132,02 
ELEVATION 1115.02 5584.57 
SLOPE 6.28 32,83 

 
CLASS 2  
Range-shrub mean variance 

TM1 77.08 11,83 
TM2 65.53 13,54 
TM3 64.87 35,76 
TM4 68.65 44,48 
TM5 100.57 122,54 
TM7 69.00 79,56 
ELEVATION 1162.71   8302,85 
SLOPE 16.52 148,10 

 
CLASS 3 
Range-herb. mean variance 

TM1 86.26 28,72 
TM2 76.35 38,44 
TM3 81.82 90,06 
TM4 79.44 49 
TM5 130.18 99,80 
TM7 93.33 83,53 
ELEVATION 1164.41 8510,06 
SLOPE 12.86 55,50  

 
CLASS 1  
Agriculture mean variance 

TM1 75.44 55,50 
TM2 66.02 63,20 
TM3 59.36 172,65 
TM4 95.02 173,97 
TM5 92.41 225,30 
TM7 56.26 159,01 
ELEVATION 1102.72 2489,01 
SLOPE 3.52 10,69 

 
CLASS 2  
Range-shrub mean variance 

TM1 77.47 25,70 
TM2 66.14 35,52 
TM3 65.78 82,62 
TM4 69.46 78,67 
TM5 104.99 187,96 
TM7 71.96 146,16 
ELEVATION 1157.76 11406,24 
SLOPE 18.11 52,99 

 
CLASS 3 
Range-herb. mean variance 

TM1 84.02 26,11 
TM2 73.21 34,10 
TM3 77.29 84,45 
TM4 77.22 44,75 
TM5 127.34 92,54 
TM7 90.02 79,38 
ELEVATION 1183.38 5301,29 
SLOPE 7.89 41,99  
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Table 4.10: Mean and variance values for ultimate T1 and T2 (overlap-excluded) (continued) 

 
CLASS 4 
Forest mean variance 

TM1 67.01 8,82 
TM2 51.64 16,48 
TM3 45.14 29,92 
TM4 57.72 34,57 
TM5 62.28 131,79 
TM7 39.46 72,59 
ELEVATION 1141.30 5838,48 
SLOPE 25.35 148,10  

 
CLASS 4 
Forest mean variance 

TM1 66.95 9,48 
TM2 51.43 17,05 
TM3 44.86 30,80 
TM4 57.27 30,36 
TM5 61.34 132,48 
TM7 38.82 74,47 
ELEVATION 1128.03 5329 
SLOPE 25.06 68,72  

 

 
4.3.5. Phase 5: Classification 

Classification is simply the procedure of assignment of each pixel within the 

image to a particular class. Maximum likelihood classification for the study 

follows the selection of training samples and generation of training statistics, 

and is followed by accuracy assessment. 

Aim of the classification is to yield four pre-defined information classes which 

were; Agriculture, rangeland-shrub, rangeland-herb. and forest. Thus, other 

classes: Urban built-up land and water bodies were subject to being excluded 

from the classification procedure. The way to exclude mentioned classes from 

the classification is masking the regions associated with those classes from the 

analysis. Masking is generally known as visually excluding the regions of 

interest from the image or map. However, masking is offered as a utility of 

classification within the image processing system for excluding unwanted 

regions from the classification analysis. Classification procedure uses a binary 

raster where O indicates the pixels to be masked and 1 indicates pixels to be 

involved into classification. The mask raster was derived from the previously 

produced ground truth information data (Figure 4.9). 
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Figure 4.9: Ground Truth data and mask raster produced from ground truth data  

 

Urban built-up land, water bodies and their subclasses were all assigned to 

zero. After the mask raster was introduced to classification procedure, 

Classification was performed. Maximum likelihood classification was performed 

for two times; first to yield Product 1 (Figure 4.10),  

which is the result of classification of spectral data only by means of Training 1 

(Training set for spectral data only), second to yield Product 2 (Figure 4.11), 

which was the result of classification of both spectral and topographical data by 

means of Training 2 (Training set for spectral and topographical data). Product 3 

and product 4 was also produced to verify that the results of Product 1 and 

Product 2 were reasonable. Product 3 was the result of classification of spectral 

data only by means of Training2 and Product 4 was the result of classification of 

spectral and topographical data by means of Training1.  
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Figure 4.10: Product 1: Classification Product of bands used as input and trained by T1 

(Training set for bands) 

 

Figure 4.11: Product 2: Classification Product of bands, DTM and slope used as input and 

trained by T2 (Training set for bands, DTM and Slope) 



 75

 

There is a certain amount of difference between classification the product 

derived from spectral information and the product derived from both spectral 

and the topographical information. Distinction between the two products can 

even be visualized. Product 2 is smoother than Product 1. Land cover classes in 

Product 1 are rather mixed, whereas in Product 2 classes show homogeneity. 

However to understand the precise amount of disparity between the two 

products, and their association with the real world; statistically assessing the 

product data is needed.  

 

4.4. Accuracy Assessment 

Assessing the accuracy of classification product is of great importance to make 

use of the derived thematic map and /or associated statistics. What's more, 

classification is not regarded to be completed until its accuracy is assessed 

(Lillesand and Kiefer, 1996).  

One of the most common methods for quantitatively assessing the classification 

accuracy is to make use of an error matrix. An error matrix determines the 

accuracy of a classification product based on comparison between classification 

product and the ground truth test information. In an error matrix, there are equal 

number of rows and columns. Rows normally represent the classification results 

from remotely sensed data where columns represent the reference data. Error 

matrix is an effective way to represent the accuracy of classification and it is 

very useful since it provides accuracy information for each class. Moreover it 

provides both inclusion (commission error) and exclusion (omission error). 

Commission error occurs when a pixel is identified as class A while in fact it is 

not. Omission error occurs when a point is identified as a member or another 

class while in fact it is class A.  

Accuracy assessment is often performed through a group of sample from the 

product. Thus, prior to accuracy assessment sample size and sampling strategy 

must be determined. Widely used sample selection methods for classification  



 76

 

products are random sampling and stratified random sampling (SRS) (Richards, 

1996). In random sampling method, test samples are randomly distributed all 

over the area of interest, but this method may cause undersampling for classes 

that are relatively small but important as well. For the study SRS method was 

used, since it enables sufficient quantity of sample selection for forest 

agriculture classes whose size were relatively small compared to other two 

classes in the study area. The number of samples was offered as 3% of the total 

number pixels by Harris and Ventura (1995), 3% was adopted for the study 

which corresponds to 2178 observations approximately (Table 4.11). 

Table 4.11: Number of Stratified Random Samples of Ground Truth for Accuracy 

Assessment 

Class Number of Samples 

Agriculture (C1) 387 

Range-shrub (C2) 864 

Range-herb. (C3) 869 

Forest (C4) 60 

TOTAL 2180 

 

Two products of the two classifications were tested with the ground truth sample 

data. Figure 4.12 is the error matrix for Product 1 where only bands are given as 

input and Training set for bands only was used to train classification. Figure 

4.13 is for Product 2 where input data are; six Landsat TM bands, elevation and 

slope and the Training set is T1 that is prepared for bands, elevation and slope 

data. 
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Figure 4.12: Error matrix for Product 1 

 

Figure 4.13: Error matrix for Product 2 

Product 1 and product 2 are test products to better understand the effect of 

topography and classification of land cover classes. Product 3 and Product 4 

are cross-products actually as mentioned before. Figure 4.14 is the error matrix 

for Product 3 where input data were bands, elevation and slope and training 

data is however Training set 1 prepared for band only. And likewise, Figure 4.15 

is the error matrix for Product 4 where input data were bands only, and training 

data is however Training set 2 prepared for bands, elevation and slope. 

 

 

Figure 4.14: Error matrix for Product 3 
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Figure 4.15: Error matrix for Product 4 

The Error Matrix shows two measures of accuracy for individual classes. The 

accuracy values for each column indicate the percentage of cells in that ground 

truth class that were correctly classified. Values less than 100% indicate errors 

of omission (ground truth cells omitted from the output class). This value is 

sometimes called the producer’s accuracy.  Conversely, the accuracy values for 

each row show the percentage of sample cells in each output class that were 

correctly classified. Values less than 100% indicate errors of commision (cells 

incorrectly included in the output class). This value is sometimes termed the 

user’s accuracy 
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CHAPTER 5 
 
 

DISCUSSION AND CONCLUSIONS 
 
 
 

After the classification procedure two primary products which are P1 and P2, and 

two test products which are P3 and P4 were derived. 

 

The common approach for assessing the success of this study would be to 

emphasize the increase of accuracy for P2 relative to P1. Admitting that this 

comparison gives the critical information about the success of the study, it is 

considered to be insufficient. Comparison of P1 and P2 with cross products as well 

was preferred instead. The four products derived after the classification procedure 

were P1, P2, P3, P4, where; 

 

P1  input: bands 

 Training set: T1 (Training set for bands only) 

 

P2 input bands, elevation, and slope 

 Training set: T2 (Training set for bands, elevation, and slope) 
 
P3 input bands, elevation, and slope 

 Training set: T2 (Training set for bands only) 

 

P4 input bands 

 Training set: T2 (Training set for bands, elevation, and slope) 

 

P1 pertains to the product lacking topographical information, P2 is the result of 

classification with integrated topographic inputs and training signatures, P2 actually 

represents the ultimate product of the method. P3 and P4 are minor but essential 

test products.  
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Comparison of particular pairs among the four products is thought to supply very 

useful information about the success of the study. Pairs that were compared by 

means of accuracy measures are given sequentially. 

 

P1-P2: Reasonable amount of accuracy was obtained in P2 compared to P1.The 

basis for this improvement is simply the integration of topographical ancillary 

information both as input and training information. This improvement under the 

scope of the study is the evidence of the notion that, use of topographical data as 

ancillary information in classification procedure improves accuracy.  

 

P2-P3: Reasonable accuracy was obtained in P2, compared to P3. These two 

products both use spectral and topographical data as input, however, P3 which is 

derived by simple addition of ancillary data without any modification in the training 

set cannot compare to P2. Also see P1-P3 comparison. 

 

P2-P4: P2 is inherently superior. P2 and P4 both use the same training set prepared 

for bands and elevation data (T2), however, input data for P4 do not involve 

topographical attributes. T2 is essentially prepared for use with band, elevation and 

slope data. Since the elevation and slope data is missing in the input set, T2 doesn’t 

work. 

 

P1-P3: Slight amount of improvement is observed in P3 compared to P1. Both 

products used training set for bands (T1), where P3 utilized additional elevation and 

slope data. Result is the evidence for simply adding ancillary data may improve the 

classification result, but to one step slightly beyond. 

 

P1-P4: Both of the products seem equal in accuracy. It can hardly be affirmed that 

one is more accurate than the other because the indicators of accuracy are 

equivalent, anyway, although assumed it is, the improvement may be random as 

well. Both of these products used bands as input; however P4 is trained with T2, 

which is for band, elevation and slope. Actually, a better result that is obtained by 

another training set would be the evidence for the fact that T1 is not the best training 

set for classifying bands. And this would be an unfortunate for the study since; T1 

for bands is principally invented to be the best set to train the input spectral data. 

 



 81

Comparison between P1 and P2 in detail is also essential. P2 accomplishes overall 

accuracy of 73,67%; 10% greater than P1. The improvement can be observed in 

each single class. Differences of accuracy for each class seems reasonable in 

relation to the over all improvement. If the classes were put into a descending order 

to comprehend relative improvement based on the integration of topography, the list 

would be as presented in Table 5.1. 

 
Table 5.1: P2 Classes in descending order according to improvement in accuracy 
compared to P1 

order Class 
P2 omission- P1  
omission 

P2 commission- P1  
commission 

1st Agriculture (c1) %17,31 %17,63 

2nd Range-shrub (c2) %10,19 %12,76 

3rd Range-herb. (c3) %2,30 %6,37 

4th Forest (c4) %0,00 %3,86 

 

Effectively, the same sequence can be obtained when the classes were put into 

descending order according to their magnitude of correlation with topographical data 

(Table 5.2). 

Table 5.2: Classes in descending order according to their correlation with elevation and 

slope 

order class 
Topographic 

Attribute 
Correlation 
Coefficient 

Elevation +0,62 
1st Agriculture (c1) 

Slope +0,65 

Elevation -0,34 2nd 

 
Range-shrub (c2) 

Slope +0,48 

Elevation -0,41 
3rd  

 

Range-herb. (c3) Slope +0,08 

Elevation +0,1 
4th Forest (c4) 

Slope -0,5 
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Identical sequence of classes listed according to improvement in accuracy and 

correlation with topography presents precious information that magnitude of class-

topography correlation is highly related to the degree of accuracy of classes. This 

can yield the hypothesis; if the magnitude of correlation between class and 

topographical attributes is high, the product of classification with the integration of 

topographical data is more likely to be accurate.  

 

When P2 is examined for class accuracy, degree of increase in accuracy for each 

class compared to P1 seems reasonable in relation to the correlation of each class 

with topographical data. 

 

Something out of ordinary with the assessments for four products is that agriculture 

shows high omission error in all of the products. That is because the content of 

agriculture ground truth information is different than that of agriculture training 

signatures. Agriculture in ground truth information involves all of the agricultural 

land, where agricultural training signatures only represent vegetated agricultural 

land. As a consequence of this, classification normally ends up with smaller area off 

agriculture than the actual. The low accuracy is an issue on incorrespondance in 

class definition the ground truth information, rather than a misclassification problem.  

 

In this study, a method that was primarily based on integrating topographical data 

into classification procedure as a component in addition to the spectral data, was 

presented. The results of the classification with the integration of ancillary 

topographical data verified that the method worked well and it provided a 

reasonable amount of improvement compared to classification based solely on 

remotely sensed spectral data. 

 

Although the method presented successful results of improvement, these 

improvements were obtained under several conditions that may well have effect on 

the results. Thus, the method should be evaluated considering the cases where 

valid conditions change. Those conditions or parameters that may have effect on 

the success of the method are given: 

 

The method with all rules and restraints kept constant may pose different amount of 

improvement, probably a loss of improvement in accuracy, 

• when applied to a different site.  
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• when applied to a wide extent of area 

• when applied to a data set including remotely sensed imagery of a different 

season. 

• when applied to a data set including remotely sensed imagery of a different 

sensor system lacking some bandwidths present in Landsat TM imagery or 

having larger of bandwidths than the Landsat TM imagery. 

 

• when applied to a data set including topographical attributes derived from 

elevation data with less amount of quality or quantity of information. 

• when applied to a data set including remotely sensed imagery subject to 

substantial radiometric errors due to environmental influences. 

 

If the method is proposed to be applied in the existence of any aforementioned 

case; definition of classes, class spectral and topographical signatures, investigation 

of correlation between classes and topographical components should be revised 

and reconstructed if needed for the current case.  

 

The method, besides being successful for the case; also has some potential for 

further improvement and refinement. Points that are subject to improvement and 

refinement are basically some assumptions and generalizations admitted as 

drawbacks for the study. These drawbacks are grouped into subtitles as 

preprocessing, definition of class signatures, classification and accuracy 

assessment. 

 

 

5.1. Size of the Unit Area 

 

Size of the unit area which was defined as one pixel size (900 m2) restricts any 

generalization on the final product. However this concept is not equivalent to the 

minimum mapping unit of a thematic map, which is directly related with the scale of 

map. Size of the minimum mapping unit is usually accepted as 5x5 mm on a 

thematic map. In CORINE program, 25 ha was set as the minimum mapping unit of 

1/100 000 scaled thematic map (CORINE, 1993). This area was corresponding to 

5x5 mm on the 1/100 000 scaled map. Accordingly, 900 m2 unit area presents a 

scale of 1/6000. However, possible scale that can be derived from Landsat TM 

imagery is submitted as 1/20 000 to 1/55 000 (CORINE, 1993). Under these 
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circumstances, size of the unit area should not be considered as minimum mapping 

unit of a thematic map, instead it should be recognized as a restriction to 

generalizations and that the final product is kept originally.  

 
 
5.2. Preprocessing 
 

The radiometric corrections for the study were regarded to be of little importance. 

The main reason for disregarding radiometric corrections is that those corrections 

are problematic of improving the quality of a specific product. The study concerns 

the approval of the effect of topography in image classification, which is presented 

by the comparison of two classified image. Radiometric correction may add to the 

raw image but there will be no relative improvement for the two products that are 

compared, as they will use the same corrected input. Hence during the progress for 

the study, the products derived from image classification one of which used raw 

image as input and the other which used the topographically corrected image as 

input was compared with the ground truth data and it was observed that the product 

in which the raw (uncorrected) image was used appeared to present better match 

with the ground truth information. 
 

 

5.3. Redefinition of Class Signatures  
 
Redefinition of Training sets mentioned in section 4.3.4 causes slight amount of 

changes in class spectral signatures (tables 4.8 and 4.10), even it was desired to 

keep class spectral signatures constant to test the effect of topography as a 

necessity of the study. However this change was assumed not to pose problems if 

the direction of the change for each class is the same. In other words the spectral 

signature mean values slightly shifting in the same direction for all classes with 

almost identical magnitudes do not end up with extraneous results compared to that 

derived using the original training set. For the study a relative change at amount of 

%1-2 on the positive direction was accepted reasonable.  

 

In section 4.3.4 associated with redefinition of training sets, overlapping spectral 

regions were removed to end up with the ultimate training raster. Overlap extraction 

was actually a necessity of the system rather than the theoretical context because; 
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the classifier algorithm uses a raster training set where each training pixel may have 

only one attribute. This restricts overlap physically since, a pixel value cannot satisfy 

more than one class training criteria. Any way, exclusion of the overlapped part that 

concerns class 2 and 3 only, is not considered to pose a representativity problem. 

Because; pixels in the whole scene subject to the overlapped region can be 

assigned to one of class 2 or 3 according to its probability of being a member of 

one, within the capability of Maximum Likelihood classifier.  

 

Actually, if the system could enable the use of raster independent spectral training 

set there would not be any physical restrictions similar to that in 2D array raster, and 

hence, there would be no need to make such modification in the training set, which 

is probably making a slight change in the output. 

 

Redefined training sets are rather different than the standard training sets 

composed of samples that are only a very small proportion of the total number of 

pixels. However, number of samples redefined is of large amount compared to initial 

training set, because, redefined samples were collected by means of queries that 

select every single one of pixel that satisfy the criteria defined in the query. This is 

not commonplace for a standard training set. Nevertheless it was adopted for the 

study since a limit of maximum number sample size is not mentioned in the 

literature although there are suggestions about minimum sample size. Hence, 

increasing the training sample size yielded a training set more likely to be normal 

distribution compared to initial training set.  

 

Another issue is selection of class topographical signatures. Those signatures were 

defined via a sampling strategy. The pixel values of topographical data which were 

corresponding to class spectral signatures were gathered, consequently the tails of 

the distributions were excluded based on the justification that those values may 

cause confusion in topographical training sets and they were finalized as class 

topographical signatures. Removal of tails makes sense since, by this way the 

uncertain values are excluded from the training sets and making them more 

representative. However the way that removal is performed is questionable, 

because where to cut the tail was supervisor- defined. The data range covering 1 or 

2 standard deviation would be adopted easily if the distribution was normal, but the 

distribution for the topographical data, especially the slope is far from being normal. 
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A statistical approach that can handle the problem for such data should be 

considered as an enhancement of the method. 

 

5.4. Classification 

Maximum Likelihood being a per-pixel and parametric classifier also has some 

limitations. The per-pixel techniques of classification use the spectral information of 

each individual pixel to calculate its likelihood to a class regardless of the 

observation at neighboring pixels (Sharma and Sarkar, 1998), which is a 

shortcoming of per-pixel conventional techniques. These techniques do not take 

spatial position of image samples into account. They are commonly based on the 

implicit assumption that distribution of samples is random and each observation is 

independent. Unfortunately, this assumption violates one of the basic tenets of 

geography; the direct relationship between the distance and likeliness (Miller and 

Franklin, 2002). Vegetation types in an ecosystem in the real case have spatial 

dependence; means that, elements of an ecosystem close to one another are more 

likely to be similar because, they are influenced by the same generating process.  

 

Even though conventional per-pixel classifiers are used extensively with fair amount 

of success, neglecting spatial dependence may introduce some restrictions 

(Sharma and Sarkar, 1998; Abkar et al., 2000). To solve this problem the two 

approaches aimed to introduce spatial dependence are; (1) using contextual 

information and (2) performing per-field classification techniques. However, in this 

study integrating ancillary topographical data into classification is maybe a further 

approach for reducing the effects of the problem due to the lack of spatial context. 

For instance, neighboring pixels may show divergence on account of probable error 

sources, and classification may end up with assignment of those pixels to other 

classes erroneously. Elevation or slope data, which are tended to be constant, or 

slightly changing for a particular location may force those pixels to be classified into 

the same class, even though the procedure is pixel based. The improvement in 

accuracy for P2 is mainly due to redefinition of training set so as to take 

topographical characteristics of the classes into account, and this was mentioned in 

detail in the former chapters. But, the contextual effect of the topographical data 

should not be disregarded; the effect, which causes the improvement mentioned in 

P1-P3 comparison. Classification of topographical data together with spectral bands 

as if they were bands, is not a very common application. The elevation and slope 
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data that were used in the classification are inherently different types of data 

involving a context of information dissimilar to that of spectral bands. Elevation and 

slope data involve values of magnitude of change in elevation or slope, whereas 

bands involve the magnitude of spectral reflectance of features on Earth. Spectral 

bands are experimented to have certain amount of correlation among each other 

and likewise, topographical data also has an amount of correlation among each 

other. But the correlation between spectral and the topographical data is poor, and 

this is the main reason for rejecting the use of different type of data as input 

together with spectral data in a standard classification procedure. However, the 

correlation should not be searched within the whole range of these two types of 

data, because correlation can also be partial. And this correlation may pertain to an 

information class. The case was that for the study. To be more specific; not for the 

entire region but, for a certain land cover class, spectral and topographical data may 

be correlated, and this correlation can be obtained as it was done in section 4.3.2. 

 

Another about per-pixel classifier is that it produces an output where full 

membership for each individual pixel is represented. This means that a pixel in the 

classification output strictly belongs to one class. However, full membership of the 

allocated class is often not the case for this study. For instance there may be some 

mixed pixels in the products dependent on the spatial resolution of the imagery and 

the distribution of the classes on the ground, where, most of the geographical 

phenomena do not exist in discrete classes but in inter-grading continua instead. 

Accordingly, in the zones where classes inter-grade, land cover tends to exhibit the 

characteristics of two classes. Classification product especially in inter-grading 

zones is not a good representation of the actual land cover for the case. Mapping 

probabilities of class membership may be an approach to represent continua. And 

for this purpose, probability raster for each classification products is produced in 

addition to the primary classification output which is hard. A probability raster 

presents the probability of any pixel for being a member of the class it was 

assigned. A probability raster does not show partial class membership, but at least it 

may give an idea about the pixels assigned with low probability which may be 

subject to a part of inter-grade in the continuum. 

 

The other shortcoming of maximum likelihood classification is its being a parametric 

classifier, based on statistical parameters assuming that the training set has normal 
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distribution. However the natural phenomenon is often unlikely to show normal 

distribution. Performing Maximum Likelihood classification on such data introduces 

an amount of error. For the study ML classifier was used anyway even though 

training data did not show normal distribution. However it should be admitted that 

redefinition of training sets in order to derive T1 and T2 had affirmative effects on 

the distribution of the data by making it closer to normal distribution compared to the 

initial training set (Ti). 

 

5.5. Accuracy Assessment  

The ground truth information was based on various data from different sources. 

Knowing that those data may not necessarily be produced to serve as ground truth 

information for particular applications, their use is not ideal. Those data may be 

inadequate in scale, may have unknown measure of accuracy and may not be up-

to-date.  

On the other hand, ground truth data was produced by means of visual 

interpretation, which may also bring out user error. In order to test the accuracy of 

classification product, perfect solution would be to collect field observation data via 

GPS form the field. Nevertheless, this solution may be the best but not the optimal. 

Thus, there is a limited amount of field observation for the study area, and the 

ground truth data was produced mainly dependent on reference maps and fine 

resolution image and aerial photograph. Under these circumstances, it’s fair to state 

that ground truth information might have admissible amount of error. 

Ground truth data also has some ambiguities especially in inter-grading regions 

within the study area. Determining boundaries was a difficult task. Therefore there 

may be some conflicts in boundaries between two classes that are part of a 

continuum. When selecting random samples from this data, excluding points that 

are close to the boundaries is an approach for obtaining a more reliable test set. But 

it was not preferred for the study since it prevents testing of some amount of pixels 

that are near boundaries and would artificially yield improved results of accuracy 

where the fact would be rather different. 

Ground truth data and the products have different size of the unit area, which 

indicates that they are not of the same scale. The spatial detail in ground truth 
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information primarily related to available data used and interpreter skills is coarse 

compared to that of classification products where the size of the smallest unit is 900 

square meters.  
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APPENDIX A 

 
 

MINOR DATA USED IN THE STUDY 
 

 
 
Figure A.1: IRS panchromatic image from 1c sensor 
 

 
 

Figure A.2: IRS panchromatic image from 1c sensor 
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Figure A.3: Forest map: Yıldırım-2 region 
 
 

 
 

Figure A.4: Forest map: Kızılcahamam-1 region 
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Figure A.5: Digital land use and land cover map  
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APPENDIX B 
 

GCPs FOR THE STUDY AREA 
 
 
Table B.1: 1/25000 scaled Topographical Map GCPs 
 

#GCP Column Line North(m) East(m) Residual(m) 
1 4292.06 251.1 4483000 475000 0.985 
2 4918.52 4017.58 4477000 476000 1.042 
3 525.04 5272.8 4475000 469000 0.733 
4 3036.07 5273.85 4475000 473000 1.077 
5 4291.1 5274.12 4475000 475000 1.585 
6 3663.56 6528.09 4473000 474000 0.837 
7 4290.97 7784.05 4471000 475000 0.618 
8 525.95 8411.86 4470000 469000 1.143 

RMSE  1,00 
 
 
 
Table B.2: Landsat Panchromatic band GCPs 

#GCP Column Line North(m) East(m) Residual(m) 
1 1837.87 1139.59 4481486 473366.8 6.15 
2 2160.53 1058.13 4482684 478205.4 10.73 
3 1857.1 1217.34 4480327 473665.1 16.30 
4 1502.87 1387.3 4477774 468362.6 13.37 
5 1934.82 1396.59 4477632 474802.8 17.65 
6 1722.24 1507.26 4475981 471634.8 10.02 
7 1882.22 1597.27 4474616 474032.6 3.10 
8 2014.32 1740.08 4472478 476001.9 7.55 
9 1889.35 1788.51 4471750 474117.2 18.88 
10 1559.96 1673.06 4473473 469192.2 18.83 
11 2150.22 1760.77 4472157 478043.4 3.48 
12 2051.58 1964.63 4469104 476578.9 13.98 
13 1796.22 1783.81 4471822 472740 1.42 
14 1606.98 1254.2 4479757 469914.1 11.33 
15 1825.49 1426.41 4477188 473192.6 13.73 
16 1379.19 1800.03 4471586 466494 3.83 
17 1680.37 1915.3 4469865 471015.9 15.20 
18 1610.57 1055.48 4482739 469952.3 13.58 
19 2148.99 1186.72 4480760 478034.2 8.94 
20 2038.27 1683.28 4473312 476372.7 13.74 
21 1997.35 1455.13 4476752 475737.6 18.56 
22 1784.55 1293.02 4479188 472569.2 7.35 

RMSE  12.45 
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Table B.3: Landsat TM 1, 2, 3, 4, 5, 7 bands’ GCPs 

#GCP Column Line North(m) East(m) Residual(m) 
1 918.93 569.79 4481486 473366.8 6.18 
2 1080.27 529.07 4482684 478205.4 10.74 
3 928.55 608.67 4480327 473665.1 16.40 
4 751.43 693.65 4477774 468362.6 13.43 
5 967.41 698.29 4477632 474802.8 17.72 
6 861.12 753.63 4475981 471634.8 9.95 
7 941.11 798.63 4474616 474032.6 3.05 
8 1007.16 870.04 4472478 476001.9 7.58 
9 944.67 894.26 4471750 474117.2 18.86 
10 779.98 836.53 4473473 469192.2 18.86 
11 1075.11 880.38 4472157 478043.4 3.51 
12 1025.79 982.32 4469104 476578.9 13.96 
13 898.11 891.9 4471822 472740 1.35 
14 803.49 627.1 4479757 469914.1 11.37 
15 912.75 713.21 4477188 473192.6 13.75 
16 689.6 900.01 4471586 466494 3.82 
17 840.18 957.65 4469865 471015.9 15.19 
18 805.28 527.74 4482739 469952.3 13.59 
19 1074.49 593.36 4480760 478034.2 8.95 
20 1019.14 841.64 4473312 476372.7 13.79 
21 998.67 727.57 4476752 475737.6 18.54 
22 892.27 646.51 4479188 472569.2 7.29 

RMSE  12.47 
 
 
Table B.4: IRS B1E15A6D Panchromatic band GCPs according to 2nd order Transformation 

 #GCP Column Line North(m) East(m) Residual(m) 
1 1 6031.12 12931.87 4480213 470217.3 2.58
2 2 6780.7 1664.01 4534556 485507.9 6.71
3 3 7174.9 7007.08 4508015 481917 4.82
4 4 1691.72 7926.81 4509187 454184.7 5.07
5 5 1324.58 5259.31 4522610 455158.1 8.00
6 6 10135.49 4993.19 4514803 498455.6 6.38
7 7 7401.25 14135.23 4472907 475669.5 4.42
8 8 13943 13882.3 4467376 507866 2.61
9 9 4703.2 5582.97 4517530 471319.4 5.45

10 10 7683.76 3823.52 4523061 487688.5 4.38
11 11 14075.26 9930.92 4486563 512583.2 5.28
12 12 921.98 1080.98 4543474 457512.1 6.48
13 14 2951.83 9181.12 4501753 459047.7 6.67
14 15 3228.46 11179.84 4491677 458341 6.70
15 16 13409.06 1868.52 4526689 517670.9 2.99
16 17 8416.7 4786.59 4517588 490280.1 5.93
17 19 9892.05 9391.76 4493532 492713.3 7.47
18 20 8434.99 6920.09 4507130 488161.3 3.27
19 22 4811.07 8863.12 4501373 468454.5 5.48
20 23 3480.56 13171.98 4481680 457508.2 6.68
21 24 3237.48 7033.67 4511960 462656.5 6.08
22 25 8216.32 1593.29 4533418 492597.1 3.10
23 26 12200.75 9985.86 4488239 503373.8 6.28
24 27 12628.96 12854.8 4473759 502511.4 1.68
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Table B.4: IRS B1E15A6D Panchromatic band GCPs according to 2nd order Transformation 
(continued) 
 

25 28 9900.83 12523.18 4478200 489533.3 6.32
26 29 12698.33 7401.14 4500366 508475.3 3.02
27 30 2879.7 3817.56 4528064 464229.9 8.81
28 31 9844.52 1504.16 4532164 500637 4.05
29 32 329.91 14073.82 4480523 441191.8 6.06

RMSE  5.55
 
 
Table B.5: IRS D1E15A6D Panchromatic band GCPs according to 2nd order Transformation 
 #GCP Column Line North(m) East(m) Residual(m) 

1 1 12704.44 1762.79 4461142 496666.5 7.86
2 2 10343.04 10028.85 4423159 476571.9 4.81
3 4 5577.98 5271.74 4451369 458222.4 8.43
4 5 14439.96 2953.67 4453511 503919.8 6.31
5 6 756.86 8036.12 4442859 431816.9 1.36
6 7 1448.97 5795.01 4453097 437520.2 5.60
7 8 11488.34 6917.04 4437189 485386.6 7.13
8 9 9838.48 3868.07 4453813 480491.8 2.23
9 10 9027.05 3211.66 4457863 477210.6 3.49

10 11 4026.83 8989.53 4434805 446802.5 6.35
11 12 1271.45 9872.29 4433342 432431.6 4.76
12 14 7534.76 10260.26 4424937 462619.2 2.60
13 15 8432.2 13751.04 4406936 463379.5 6.56
14 16 12153.3 10233.46 4420278 485208.3 4.01
15 17 11424.22 9712.97 4423583 482179.5 5.86
16 18 12404.34 13247.84 4405267 483307.4 4.51
17 19 14198.94 10248.55 4418076 495179 3.60
18 20 7705.52 1148.55 4469329 472891.7 1.75
19 21 3146.91 10004.05 4430749 441456.4 4.36
20 22 8539.28 4637.4 4451399 473359.6 8.08
21 23 3055.14 13863.82 4411961 437005.3 5.33
22 24 317.44 13579.28 4416203 423925.1 1.20
23 26 5149.38 12071.42 4418561 449093.9 4.27
24 28 1632.35 1605.07 4473409 442748.2 6.68
25 29 12902.15 11292.02 4414321 487768.9 3.66
26 30 12871.04 3385.96 4453023 495810.6 6.65
27 31 6450.38 7699.07 4438586 459975.9 7.48
28 32 8006.34 8069.52 4435168 467194.5 2.91
29 33 8448.71 3290.44 4458088 474301.2 6.77
30 34 4012.75 7727.68 4440983 448044.6 4.83
31 35 6387.49 3664.8 4458388 463852.2 4.92
32 38 13068.17 5384.18 4443040 494692.5 7.04
33 39 10033.96 1783.02 4463807 483603 5.47
34 40 10134.69 12027.7 4413594 473492.1 5.48

RMSE  4.85
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APPENDIX C 
 

 
KRIGING PARAMETERS FOR DTM GENERATION 

 
 

 
 
Figure C.1: Kriging Parameters 
 
 
 
Input: Elevation points 
 
Variogram Model: Linear 
Drift order: Linear 
Sill value: 10330 (unadjusted) 
Nugget value: 0.0 (unadjusted) 
 
Search type: Simple 
Points per Sector: 80 
Minimum total points: 16 
 
Anisotropy: unadjusted 
Duplicate points: unadjusted 
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APPENDIX D 
 

FEATURE DOMAIN STRUCTURES 
 

 
 
Figure D.1: Hierarchical Tree Structure of Feature Domain (Jain, 1989) 
 
 
 
 
 
 

 
 
Figure D.2: Theoretical Schematic Construction of Land Cover Nomenclature (CORINE, 
1993)  
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APPENDIX E 
 

CLASSIFICATION SCHEMES 
 
 

Table E.1: Anderson Level I/II Classification Scheme 

Level I Level II 

1.1. Residential 

1.2. Commercial and Services 

1.3. Industrial 

1.4. Transportation, Communication and Utilities 

1.5. Industrial and Commercial Complexes 

1.6. Mixed Urban or Built-up Land 

1. Urban or Built-up Land 

1.7. Other Urban or Built-up Land 

2.1. Cropland and Pasture 

2.2. Orchards, Groves, Vineyards, Nurseries and 

Ornamental Horticultural Areas 

2.3. Confined feeding Operations 

2. Agricultural land 

2.4. Other Agricultural Land 

3.1. Herbaceous land 

3.2. Shrub and Brush Land 3. Rangeland 

3.3. Mixed Rangeland 

4.1. Deciduous Forest Land 

4.2. Evergreen Forest land 4. Forest 

4.3. Mixed Forest Land 

5.1. Streams and Canals 

5.2. Lakes 

5.3. Reservoirs 
5. Water 

5.4. Bays and Estuaries 

6.1. Forested Wetland 

6.2. Non-forested Wetland 6. Wetland 

9.2. Glaciers 
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Table E.1: Anderson Level I/II Classification Scheme (continued) 

7.1. Dry Salt Flats 

7.2. Beaches 

7.3. Sandy Areas other than Beaches 

7.4. Bare Exposed Rock 

7.5. Strip Mines, Quarries and Gravel Pits 

7.6. Transitional Areas 

7. Barren land 

7.7. Mixed Barren Land 

8.1. Shrub and Brush Tundra 

8.2. Herbaceous Tundra 

8.3. Bare Ground Tundra 

8.4. Wet Tundra 

8. Tundra 

8.5. Mixed Tundra 

9.1. Perennial Snowfields 
9. Perennial Snow or Ice 

9.2. Glaciers 

 

 
Table E.2: The CORINE Land Cover Classification Scheme 

Level I Level II Level III 

1.1.1 Continuous Urban Fabric 
1.1. Urban Fabric 

1.1.2. Discontinuous Urban Fabric 

1.2.1.  Industrial and Commercial 

Units 

1.2.2. Road and Rail networks and 

Associated Land 

1.2.3. Port Areas 

1.2. Industrial, commercial 

and transportation units 

1.2.4. Airports 

1.3.1. Mineral Extraction Sites 

1.3.2. Dump Sites 
1.3. Mine, Dump and 

Construction Sites 
1.3.3. Construction Sites 

1.4.1. Green Urban Areas 

1. Artificial 

Surfaces 

1.4. Artificial, Non-

Agricultural Vegetated 

Areas 
1.4.2. Port and Leisure Facilities 

2.1.1. Non-Irrigated Arable Land 

2.1.2. Permanently Irrigated Land 
2. Agricultural 

Areas 
2.1. Arable Land 

2.1.3. Rice Fields 
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Table E.2: The CORINE Land Cover Classification Scheme (continued) 

2.2.1. Vineyards 

2.2.2. Fruit Trees and Berry 

Plantations 
2.2. Permanent Crops 

2.2.3. Olive Groves 

2.3. Pastures 2.3.1. Pastures 

2.4.1. Annual Crops Associated 

with Permanent Crops 

2.4.2. Complex Cultivation Patterns 

2.4.3. Land Principally Occupied by 

Agriculture with Significant areas of 

Natural Vegetation 

2. Agricultural 

Areas 

2.4. Heterogeneous 

Agricultural Areas 

2.4.4. Agro-Forestry Areas 

3.1.1. Broad-Leaved Forest 

3.1.2. Coniferous Forest 3.1. Forests 

3.1.3. Mixed Forest 

3.2.1. Natural grassland 

3.2.2. Moors and Heathland 

3.2.3. Sclerophyllous Vegetation 

3.2. Shrub and/or 

Herbaceous Vegetation 

Associations 
3.2.4. Transitional Woodland Shrub 

3.3.1. Beaches, Dunes and sands 

3.3.2. Bare Rocks 

3.3.3. Sparsely Vegetated Areas 

3.3.4. Burnt Areas 

3. Forests and 

Semi-Natural 

Areas 

3.3. Open Spaces with 

Little or no Vegetation 

3.3.5. Glaciers and Perpetual 

Snow 

4.1.1. Inland Marshes 
4.1. Inland Wetlands 

4.1.2. Peat Bogs 

4.2.1. Salt Marshes 

4.2.2. Salines 

4. Wetlands 

4.2. Maritime Wetlands 

4.2.3. Interdinal Flats 

5.1.1. Water Courses 
5.1. Inland Waters 

5.1.2. Water Bodies 

5.2.1. Coastal Lagoons 

5.2.2. Estuaries 

5. Water Bodies 

5.2.Marine waters 

5.2.3. Sea and Ocean 
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APPENDIX F 
 

PHOTOGRAPHS FROM THE STUDY AREA 
 

 
Figure F.1: Agricultural Land in the Study Area 
 

 
Figure F.2: Rangeland (Range-shrub) in the Study Area 
 

 
Figure F.3: Rangeland (Range-herb.) in the Study Area 
 

 
Figure F.4: Rural Settlement in the Study Area 
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APPENDIX G 
 

POINT BISERIAL CORRELATION COEFFICIENT OUTPUTS 
 
 

 
Figure G1: test between agriculture – 
elevation 
 
 

 
 
Figure G2: test between agriculture – 
slope 
 
 
 
 
 
 
 
 
 
 
 

 
Figure G3: test between agriculture – 
aspect 
 
 

 
Figure G4: test between range-shrub– 
elevation 
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Figure G5: test between range-shrub– 
slope 
 
 

 
Figure G6: test between range-shrub– 
aspect 
 
 

 
Figure G7: test between range-herb.– 
elevation 
 
 
 

 
Figure G8:test between range-herb.– 
slope 
 
 

 
Figure G9: test between range-herb.– 
aspect 
 
 

 
GFgure G10: test between forest.– 
elevation 
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Figure G11: test between forest.– slope 
 
 

 
Figure G12: test between forest.– aspect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 


