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ABSTRACT 

 

 

FAULT TOLERANT DEPLOYMENT, SEARCH AND 

TASK COOPERATIVE CONTROL OF ROBOT/SENSOR 

NETWORKS 

 

Akın, Berkant 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. İsmet Erkmen 

Co-Supervisor: Prof. Dr. Aydan Erkmen 

 

September 2005, 182 pages 

 

This thesis focuses on developing of a distributed, efficient and fault tolerant 

multiresolutional architecture for sensor networks. For demonstrative purpose, a 

powerful simulation environment using 3D environment model has been developed. 

The robot network is composed of autonomous robots capable of working                                                                                                                                             

cooperatively equipped with single typed simple sensor. The developed layered 

control architecture is hybrid including both subsumption and motor schema control 

strategies. In this proposed control method, behaviors in different or in same layer 

are coordinated with an evaluator unit that overcomes the difficulties of subsumption 

based architectures in terms of behavioral coordination. The final coordination 

between these layers is achieved cooperatively. We performed many simulation 

experiments to test robot deployment, search and task execution. It is shown that 

some important parameters such as target reaching time, energy consumption, and 
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communication range can be optimized if an approximate prior information about the 

environment is known. Robots executes task based on a task allocation algorithm. 

Market based auction method is used as a task allocation algorithm with completely 

different robot fitness evaluation method allowing a distributive problem solving. Six 

non-linear fitness functions are developed to increase the fairness, and fault tolerance 

of task allocation. These functions have been tested to represent the successes and 

failures of robots in a compact form. Performance analyses test results have shown 

that fairness increases two times more in task allocation when these fitness functions 

are used, compared to the results existing fitness evaluation methods used in the 

market based auction algorithms.  Moreover, fault tolerance is increased by using 

fitness functions devoted to failure conditions.  

  

Keywords: Robot/sensor network, behavior based robotics, market based 

auction method, layered-hybrid control 
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ÖZ 

 
 

ROBOT/ALGILAYICI AĞLARINDA HATA TOLERANSI 

YÜKSEK KONUŞLANDIRMA, ARAMA VE KOOPERATİF İŞ 

YAPMA DENETİMİ 

 

Akın, Berkant 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. İsmet Erkmen 

Yardımcı Tez Yöneticisi: Prof. Dr. Aydan Erkmen 

 

Eylül 2005, 182 sayfa 

 

 

Bu tez dağınık, robot / sensör ağları için etkin, hata toleransı yüksek ve çok 

çözünürlüklü mimari tasarımını içermektedir. Gösterim amacı için etkin, 3 boyutlu 

çevre modeli kullanan bir benzetim ortamı geliştirilmiştir. Ağdaki robotlar otonom 

ve birlikte görev yapabilecek yetenektedirler. Ayrıca robotlar sadece bir tür basit 

sensörlerle donatılmıştır. Kontrol mimarisi olarak katmanlı-melez bir yapı 

geliştirilmiştir. Melez yapı hiyerarşik-öncelik tabanlı (subsumption) ve motor 

yaklaşımlı (schema) mimarilerinin birlikte kullanılmasından oluşmaktadır. 

Hiyerarşik-öncelik tabanlı mimarinin davranış koordinasyonuna ilişkin 

dezavantajlarını aşmak için farklı ya da aynı katmadaki davranışlar, değerlendirici 

denilen yeni bir birimle koordine edilmiştir. Farklı katmanların koordinasyonu ise 

kooperatif bir şekilde yapılmaktadır. Benzetimci kullanılarak, önerilen kontrol 
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mimarisi bir çok kapsamlı deneye tâbi tutulmuştur. Konuşlandırma, arama, 

davranışlar bir çok durum için test edilmiştir. Benzetim sonuçları, bazı önemli 

parametrelerin, örneğin hedef yakalama süresi, enerji tüketimi, haberleşme menzili, 

optimum değerlerinin bulunabileceğini göstermiştir. Bunun için tek koşul, ortam 

hakkında bazı yaklaşık verilerin bilinmesidir. Robotlar, görevleri belirli bir görev 

paylaşımı algoritmasına göre çözerler. Görev paylaşım yöntemi olarak dağınık 

problem çözmeye izin veren pazar tabalı açık artırma algoritması kullanılmıştır. 

Robot uygunluk hesabı tamamen farklı bir metoda göre yapılmaktadır. Adil görev 

dağılımı ve hata toleransı artırımı için 6 değişik uygunluk fonksiyonu geliştirilmiştir. 

Bu fonksiyonlar, başarı ve hata durumlarını oldukça yalın bir formda ifade 

etmektedirler. Geliştirilen uygunluk fonksiyonları, şu an pazar tabanlı açık artırma 

metodunda kullanılan uygunluk fonksiyonuna göre 2 kat daha adil görev dağılımı 

sağlamaktadır. Sistemin hata toleransı da hata durumları için ayrılan uygunluk 

fonksiyonları kullanımıyla artırılmıştır. 

 

Anahtar  Sözcükler:  Robot/sensör ağları, davranış tabanlı robotic, pazar tabanlı açık 

artırma,  katmanlı melez kontrol 
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CHAPTER 1  

 

Introduction 

 

1.1  An Emerging Field in Robotics: Robot Networks  

 
Multi-robot systems (MRS) have led to challenging contemporary research 

field of robot networks where intelligence is the recent focus.  An important reason 

behind this popularity is the acute attention brought to the field by military 

surveillance needs and the capabilities of highly distributed systems. Developments 

in multi-robot systems are depended on many parameters.  

 

Uncertainly handling was necessitated by application in unstructured 

environment and understanding and modeling intelligence in nature was the recent 

focus if MRS and robot networks. 

 

The need for MRS systems more recently that of robot networks rise from 

technological advancements, modular, distributed architectures and equipment [1]. 

These advancements have occurred in  

• Autonomous modular robotics 

• Computational capabilities 

• Flexible architecture developments 

• Communication capabilities 

• Analyses of complex systems 

 

Multi-robot systems generally based on architectures enabling collective 

behaviors are preferred [2] over others because: 
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1. Tasks may be inherently too complex (or impossible) for a single robot to 

accomplish, or performance benefits can be gained from using multiple 

robots 

 

2. Building and using several simple robots can be  easier, cheaper, more 

flexible and more fault tolerant than having a single powerful robot for  each 

separate task 

 

3. The constructive, synthetic approach inherent in cooperative mobile robotics 

can possibly   yield insights into fundamental problems in the social sciences 

(organization theory, economics, cognitive psychology), and life sciences 

(theoretical biology, animal ethology, biological inspirations). 

  

Progress can be also seen in research all around the world. The number of articles 

about the MRS increased significantly. In Figure 1, number of articles vs. year is 

shown [8]. 

 

 

Figure 1, Number of articles versus year [8]. 

 
 MRS covers the following applications: 

• Tasks requiring corporative working 

• Space Exploration 
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• Mapping 

• Surveillance & Reconnaissance 

• Hazardous waste clean up and mine removal 

 

Actually targeted future of MRS applications gives a live feeling about the future 

impact of this field. Within 30 years some people aim at football matches between 

robot players and human players. For some of us, this future guess may be too 

overwhelmed but trend in the robotics applications is towards this kind of hard to 

believe robots. Soldiers, future workers will probably be robots.  

1.2 Motivation of Thesis 

  

 Sensor network as a hyper multi-robot system is a recent focus in robotics, 

driven by the motivation that a network of intelligent simple agents can do many 

works more rapidly, and precisely based on “divide and conquer concept”. Moreover 

sensor networks can be used for executing tasks having potential danger or 

impossible for humans. Robustness is easily achieved by graceful degradation due to 

hyper redundancies of network modules where if one fails others can assume its role 

within the mission.  

 

  There are many examples of fields for which sensor networks should be 

used. Space exploration in unknown environments (on planets) where teams of 

autonomous robots explore, covering very large terrain, and send the exploratory 

data back to the base station. Surveillance & Reconnaissance (S&R) applications are 

also popular and progressing application field. For some S&R applications 

availability of humans may be very difficult, and in some situations even very 

dangerous for humans. Cleaning up, and mine removal are other application of 

sensor networks. 

 

 There are many topics left open in the MRS and sensor network research 

fields. Although there exist so many representational and architectural problems in 

MRS a powerful metric for measuring intelligence or any other types of quantities is 
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still lacking. Currently modeling of the MRS and especially sensor networks 

applications, evaluation of system performance and deployment of the intelligence 

are the main open issues.  

 

 Motivations behind this thesis can be listed as follows: 

• In sensor network applications, there are architectural issues. Effective, 

stable, and robust architectures may increase performance of sensor network 

significantly. For this purpose a new architecture is designed by inspired from 

existing methods. 

 

• Modeling of a multi-robot system is an extremely difficult task. Because 

there exist many parameters, and uncertainties crossly coupled with each 

other. Moreover, environmental conditions may not be predicted. Therefore 

statistical approaches are more suitable. To analyze the nature of a desired 

sensor network a simulation environment is necessary. This thesis also covers 

the implementation of a simulator. Using realistic simulators, non-linear 

models for optimization of system parameters can be developed. Optimal or 

sub-optimal models can increase efficiency considerably. We designed a 3D 

simulation environment to increase the reliability of simulations.  

 

• Task allocation is another important open issue in achieving powerful 

cooperation among agents of sensor network. Efficient metrics for 

performance measurement is quite important in task allocation. This is 

another motivation of this thesis. We aimed to generate an analytical fault 

tolerant performance metric for task allocation. 

1.3 Objective, and Goals 

 
 The main objective of thesis is designing a fault-tolerant, behavior based 

architecture for team of heterogeneous or homogenous agents acting in a sensor 

network. The proposed sensor network architecture is a platform for defining, and 

solving tasks cooperatively or autonomously. Robots’ tasks are detection, executing 
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specific missions, and undertaking information fusion in a bounded, dynamic, 

obstacle-dense, and unstructured environment. Our generated architecture can be 

used for various tasks requiring cooperative working such as hazardous waste 

detection & cleaning, reconnaissance & surveillance, mapping, and exploration. 

 

 Efficiency, robustness, and fault tolerance are the main goals of our approach. 

These goals are achieved in the performance analyses conducted on the developed 

architecture. Since system components are highly correlated with each other and thus 

any change in any component affects the global performance significantly. 

  

Moreover, issues regarding modeling are also considered. Modeling may 

include modeling of a behavior of an entire system or just a single parameter 

affecting performance significantly. For this purpose a simulation environment is 

developed. By using this simulator, proposed cooperative sensor network 

architecture can be tested for various conditions for very long duration. Simulation 

results are used to generate appropriate non-linear models for important system 

parameters such as range of communication.    

 

Another important aspect of simulator is that the environment is modeled in 3 

dimensional space enabling robots to undergo more realistic motion in the simulated 

environment. The 3D environment modeling allows implementation of the entire 

dynamics of robot as well as the dynamics of the robot team. 

 

There are drawbacks of designing, and testing the proposed architecture in a 

simulation environment, because it is extremely difficult to model the entire physical 

world. There are many parameters to be considered about the physics of the robot, 

and environment. Poor modeling may change correct evaluation of proposed 

architecture. However, for high level analysis of the architecture in terms of task 

allocation efficiency, fault tolerance performance, simulation environments can be 

preferred.  
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1.4 Methods  

A sensor network implementation encompasses many topics that have to be 

modeled, developed, and implemented, which can be classified as follows: 

• System architecture  

• Path planning  

• Communication 

• Task  allocation 

 

1.4.1 Architecture  
 

Architectural issues cover how each robot in the network achieves their basic 

functions, and interact with other robots. Moreover, the implementation of such robot 

functions, and the coordination of these functions should also be investigated. For 

instance, a robot should avoid obstacles, and other robots to wander securely in the 

environment. Therefore the architecture provides not only the implementation of 

basic behaviors, but also their coordination.  

 

To design a robust, efficient, and fault tolerant architecture, a behavior based 

approach is preferred. Reader is referred to [1] for basic information about behavior 

based robotics. Efficiency, robustness, and fault tolerance as design parameters can 

be achieved by developing capability measures of the behaviors compatible with this 

goal. For instance, efficiency of target detection is increased by adaptive wander 

behavior, whereas robustness of target detection process increased by heuristic 

wander behavior. 

 

Our developed behavior based architecture is a hybrid of both motor schema, 

and subsumption based architecture. There is an additional unit called evaluator 

which is used to coordinate   

• The equal priority behaviors in subsumption layer. 

• The behaviors in motor schema layer with behaviors in subsumption 

layer  
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 There are two types of behaviors in our proposed system: external and internal 

behaviors. External behaviors evaluate the information coming from external world 

via sensors, whereas internal behaviors monitor the activity of external behaviors to 

coordinate them accordingly. Internal behaviors behave as coordinator and 

interpreter of external behaviors. Coordination of behaviors is as crucial as 

implementation of behaviors. The nature of implemented coordination makes the 

system hybrid. Choosing this hybrid architecture is mainly due to the need for 

efficiency, and robustness. Well-known control strategies show poor performance in 

complex environments. Our hybrid architecture is aimed to generate an efficient and 

robust behavioral coordination even in very complex environments without 

degrading the simplicity and reactivity of the system.  

  

1.4.2 Path Planning  
 
 In group behavior, path planning is another critical issue in sensor networks. 

Each robot needs to plan its path to reach a desired location rapidly, and securely 

while sensory system of robot detects the set of obstacles, O , other robots R , and 

target points, T . Robot path planning strategy considers all of these sets to reach 

target point 1t  while considering its role in the global task allocation. 

 

 There are different path planning approaches in the literature. The most 

popular ones being: 

• Graph based approaches 

• Potential fields 

In this thesis, we preferred potential fields, because it is 

• Suitable for both 2D & 3D environments 

• Easy to compute, it does not require any search process 

• Fast 
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 Each behavior generates a 3D dimensional force field representing its desired 

direction in the 3D environment.  

 

 There is an important drawback of potential field used for path planning 

which is that of local minima problem. To avoid this problem, many techniques exist 

in literature. In our proposed architecture, we avoid local minima by adding noise 

continuously to the sum of potential field of behaviors in the architecture.  

1.4.3 Coverage 
 

Coverage is a part of performance of the search process. In this thesis, 

coverage is aimed to be increased while searching or exploring targets in the 

environment. There are two behaviors implementing search methods: Heuristic and 

adaptive wander behavior. Heuristic wander behavior is completely random. It does 

not take any information form the sensors. On the other hand adaptive wander uses 

coverage map, and detected obstacles’ location information to generate next wander 

point. This behavior is simple, and also contains randomness but it requires 

additional memory for maps.  

 

Coverage map contains last location of robot within coverage map 

timeout covTO . Obstacle map contains location of obstacles avoided within a 

predefined time frame called obstacle map timeout. Adaptive wander behavior 

generates a next wander point which is not covered within covTO . which  further 

helps to decrease obstacle avoidance rate. 

 

Time varying maps are used because  

• Dynamic environment assumption is not violated. Reliability of information 

is time-limited. 

• Memory demanded is decreased for these maps 

 We determine a value of the time frame that optimizes the coverage and 

memory usage experimentally using our simulator.  
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1.4.4 Communication 
  

 Communication is one of important issue in multi-robot system. Agents in 

MRS should communicate with each other in three ways: 

• Interacting via sensing 

• Interacting via the environment 

• Interaction via direct communication (for instance short range radio 

communication)  

 

Interacting via sensing, and environment can be grouped together as implicit 

communication. On the other hand, robot can explicitly communicate with each other 

using communication hardware.  

 Detection of other robots or some signs related with tasks in the environment 

is another way of communication. This kind of communication can be very effective 

if the nature of task is convenient.  

  

 In proposed architecture, explicit communication is used. Assumptions about 

communication are: 

• Robots can communicate within a user defined range. 

• Infinite communication bandwidth is available.  

• Usage of communication depends on the task allocation algorithm 

• Communication is perfect except for error simulations 

 

 In real world, usage of communication brings considerable cost. It requires 

higher energy consumptions. Communication cost increases exponentially as 

communication range is increased.  So, unnecessary usage of communication 

decreases the system performance in case of limited energy. For this purpose, 

extensive numbers of simulations are done to find optimal communication range. 

Target reaching time is measured for various numbers of targets, tasks and 

communication ranges.  These simulation results are fed to a neural network to 

generate an acceptable model.  
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1.4.5 Task Allocation, Definitions 
 
 Task allocation is the heart of the collaborative behavior. Task allocation 

algorithm depends on the type of control system which can be centralized, 

distributive, and hierarchical. In centralized systems, tasks allocation management is 

determined by a specific agent and all computations including task allocation is 

achieved by this agent. On the other hand, in distributed systems, there is no central 

control, computations or controls are achieved by individual team members 

distributively. In a hierarchical system, control of the system is achieved in a 

prioritized order. For instance, roles of the agents can be elected by entire team 

members, and roles can be altered by repeating elections within some time interval 

generated by vote number priority order. 

 

 There are advantages, and disadvantages of different control methods. 

Centralized approach enables development of global solutions, but its fault tolerance 

is poor. If the robot responsible for central control is corrupted then entire system 

may fail. Central control requires long communication ranges which cannot be 

accepted.  

 

 Current trend in the world is towards to decentralized systems. Although, 

distributed system may not reach global solutions, its fault tolerance is very high as 

compared with that of centralized systems. Moreover, problems having high 

computational complexities can be achieved distributively among the team members. 

This may decrease the need for powerful hardware for complex computations.  

 

 Our proposed architecture is a distributive system. Task allocation is achieved 

by a market based auction algorithm [51]. Each robot has an ability of allocating, and 

executing tasks if its fitness is sufficient. If a robot detects a task requiring 

collaborative work of different robots, then it starts the task allocation process where 

tasks are allocated among robots with respect to their fitness value.  
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 Goals of task allocation algorithm are to archive fair task allocation among 

robots functioning perfectly, and making the system fault tolerant. These goals are 

tried to be achieved by fitness calculation methods. In the proposed system, there are 

two types of time dependent exponential fitness functions 

• Function for success situation  

• Function for failure situation 

 

There are 6 fitness functions implemented. Functions for success situations are 

target reaching frequency, obstacle avoidance success frequency, coverage, and 

distance fitness. Functions for success situations are communication, and obstacle 

avoidance failure frequency. It is showed that, introduction of these fitness functions 

enables fair task allocation, and fault tolerance of system. Fault tolerance is tested by 

artificial error simulations. 

 

 Representation of tasks in simulation environment is also an important issue. 

For this purpose, a formal way is developed for representation of tasks. Agents 

should know how to decompose a task into sub-tasks to be solved cooperatively.  

 

  In the proposed system there are four different tasks: 

• Uncorrelated tasks solved by a single robot. 

• Correlated tasks with separate robot asynchronously solving the task 

• Synchronously correlated tasks, done by inseparably by multi-robots in a 

synchronous manner. 

• Sequentially correlated tasks, done inseparably by multi-robot doing the task 

sequentially. 

 

Any task can be represented as a combination of the above task types. This kind of 

task decomposition enables the defining tasks in the simulator even for very complex 

tasks.  
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1.5 Contributions of Thesis 

 
 In this thesis, the main contributions are in the architecture, behavior fusing 

nodes called evaluators, environment simulation, and task allocation fitness 

functions. Contributions can be listed as follows 

 

• Hybrid, fault tolerant, robust and efficient behavior based architecture is 

developed. In this architecture, fault tolerance, efficiency, and robustness are 

achieved by implementing appropriate behaviors, and behavioral 

coordination. 

 

• Hybrid architecture is composed of two layers: subsumption layer and motor 

schema layer. Evaluators are designed to coordinate the behaviors in 

subsumption layer, and behaviors in different layers. Evaluator concept helps 

for overcoming classical subsumption architecture problems by increasing the 

behavioral coordination. 

 

• A powerful simulator is developed. Using this simulator, many situations in a 

3D environment model are simulated for different system parameters. Path 

planning is achieved in 3 dimensional spaces. This is not common in robotic 

simulators. 

 

• Six important fitness parameters are developed for measuring performance of 

the robot. Fitness parameters are evaluated using exponential time-dependent 

fitness functions. Rate of increase & descent and maximum value of fitness 

parameter are the most important parameters of the fitness functions. Main 

goals of these fitness functions are obtaining fair, fault tolerant task 

allocation.  
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1.6 Outline of Thesis 

This thesis contains 6 chapters. Chapter 1 is introduction to thesis.  In Chapter 

2, literature survey about sensor networks is presented. Simulation environment is 

described in Chapter 3. Chapter 4 is devoted to the proposed method. This chapter 

contains description, and implementation of proposed behavior based architecture, 

behaviors, task allocation algorithm, and fitness calculations. In Chapter 5, results of 

experiments are given. Experiments are done to analyze the individual performance 

of behaviors, coverage & target reaching performance, communication range 

estimation, task allocation performance regarding fault tolerance, and fairness. 

Conclusion, and future studies are given in Chapter 6.  
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CHAPTER 2  

 

Literature Survey 

 
 Multi-robot systems applications can be decomposed into many sub-fields. 

The important subfields are: 

• Architecture, task planning, task allocation and  control 

• Biological inspiration 

• Localization, mapping, and exploration 

• Path planning or motion planning 

• Learning 

• Communication 

• Motion coordination, and formations 

• Reconfigurable robotics 

 

All of the fields listed above have many open research areas. In Figure 2, number of 

papers versus years is shown according to citation index for physics, electronics, and 

computing (INSPEC). For recent year publications numbers are growing with 

increasing speed.  

 

In this part, literature survey will mainly focus on thesis subjects. 

 

• Sensor Networks 

• Architectural issues 

• Learning 

• Multi-robot task allocation  

• Path planning, coverage 
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Figure 2, Articles distribution between 1979 -2001 

 

2.1 Sensor Networks 

 Sensor network is an emerging field of research where robots equipped with 

single typed simple sensors are deployed for search, surveillance, and rescue. Sensor 

nodes have been designed as small as micro electro mechanical system (MEMS) and 

this has boosted the development of the sensor network applications considerably 

[2], [3]. Mass production of sensor nodes based on MEMS technology allows 

realization of sensors networks having a huge number of nodes with relatively small 

cost, making such networks extendable, fault tolerant, and self organizing. With such 

a network of nodes fusion of information becomes un-crucial issue to be dealt with 

high reliability. Application of sensor networks can be classified as follows: 

• Military applications 

• Environmental applications 

• Home applications  

• Health applications 

  

 Military application covers military command & control, intelligence, 

surveillance, reconnaissance, environment monitoring. Sensor networks have found 
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ardent interest because of their fault tolerance and scalability becoming the main 

drive of military application.  

 

 Environmental application is another hot application area of sensor networks. 

Meteorology, flood detection, agriculture, fire detection, pollution analysis, are 

animal observations are main topics in this area. In [4], long term analysis of flood 

based on a distributive approach using mobile sensor networks. CORIE (Columbia 

River) for vessel transport and ALERT (automated local evaluation in real time) [5] 

for air rainfall and water analysis are popular examples of sensor networks. 

  

 Sensor network topology, fault tolerance, cost, scalability, communication 

medium, power consumption are the main design constraints of an sensor network 

application. Deployment of sensor network is one the important issue because it 

affects the quality of collected information, fault tolerance, and speed of the fusion of 

information. Deployments of the nodes are generally fixed or variable. Variable 

deployment enables self organizing networks. Deployment should be based on some 

statistical data, preserving the network topology [6], [7]. 

 

2.2 Multi-Robot Systems and Their Architectural Issues 

   

Multi-robot system defines how robot makes its functions, and how robot 

interacts with other robots, and environments. MRS is inherently a distributed 

system. The differences of MRS from other distributed systems are that MRS is 

highly dynamic, spatially limited or bounded and interacting with many 

environmental or physical conditions [1]. But MRS developers can examine other 

distributed systems, architecture to adapt or imitate the convenient parts of those to 

the MRS systems. In Figure 3, group architecture for MRS is given [1]. 
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Figure 3 General group architecture diagram 

 
 
 There are valuable surveys on multi-robot systems with considering many 

sub-fields. In [1], a good survey on multi-robot system is given in terms of group 

architecture. Moreover [8], [9] are valuable references for current state art in multi-

robot systems 

 

 In literature, robot control architectures can be grouped as reactive, 

deliberative, hybrid, and behavior based control. Depending on speed, and 

planning requirements, one of these control methods can be used [14].  

 

 Behavior based architectures are very popular in robotics applications. It was 

first developed by Rodney Brooks in 1980. Reasons behind this architecture are that 

it does not require any a priori external knowledge of world, and it is highly reactive. 

Reactivity can be expressed as “planning is just a way of avoiding figuring out what 

to do next" [12], i.e. in reactive systems planning of the next situations is considered 

as little as possible. 

 

 Behavior based robotics’ architecture has three main units [10]: 

1. Sensory Inputs 
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2. Behaviors 

3. Motor Actions. 

 

 Behavior is the mapping of sensory inputs to a pattern of motor actions that 

are used to achieve a task. “A behavior is a reaction to a stimulus” [10], it wraps 

perceptual and motor actions, i.e. it should both include behavior triggering 

conditions and motor actions if it is activated.  

 

 There is a famous behavior based approach called subsumption architecture. 

Subsumption architecture defines layers of the augmented finite state machines 

(FSMs). Some behaviors can suppress, reset or inhibit other behaviors [11]. This 

architecture is a revolutionary approach in mobile robotics. It enables an incremental 

design strategy like object oriented approach in software engineering.   

 

 Motor schema as hybrid reactive approach also makes inspiration from brain 

theory, and psychology [13]. In motor schema there is no subsumption, suppression 

or inhibition. Response is generated as a sum of all active behaviors’ responses, 

which is reason for reactivity. Schematic of motor schema is given Figure 4 

respectively.  

 

Subsumption architecture defines a priority among the behaviors. At any 

instant, only one behavior can be active. On the other hand, in motor schema 

cooperation among behaviors exists. More than one behavior can be active at a time. 

This may be an advantage of motor schema approach [17].   
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Figure 4, Motor Schema architecture 

 
  

 It is difficult to design complex system based on strict behavior based 

approach. To overcome this difficulty, hybrid architectures are developed  [15], [16], 

[18].  

 

 There are architectures being hybrid of motor schema, and deliberative 

control. AuRA [19] is one of these architectures connecting motor schema and 

planners modules (high level mission planner, spatial reasoner, and plan sequencer). 

System is also reactive for changes requiring fast responses.  Moreover AuRA [19] 

shown in Figure 5  contains parameter learning in run time.  

 

 

 

Figure 5, AuRA high level architecture [19] 
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 Three layer architecture described in [18] is another example of hybrid 

control where layer are that of controller, sequencer, and deliberator. The controller 

layer implements reactive behaviors. The sequencer selects the behavior to be 

executed by the controller. Function of the deliberator is to evaluate time consuming 

algorithms using internal states. 

 

 Designing multi-robot architectures is also a hot topic in robotics. Multi-

robot system is desired instead of single-robotics system due to many reasons. Some 

of them are [20]   

• Distributed action to increase fault tolerance. 

• Some tasks can be divided into different parts through task decomposition 

which can be handled by single robots. 

• Single robot may be too complex having wide range of capabilities. 

 

 CEBOT is an early version of heterogonous multi agent architecture. Agents 

are capable of forming different assemblies. CEBOT can reconfigure the whole 

system depending on given tasks and environments and organize collective or swarm 

intelligence [21] [22].  

 

 ALLIANCE is a fault tolerant multi-robot architecture for heterogonous 

robots team. There are set of behaviors composed of high and low level behaviors. 

Motivational approach is used to activate different set of behaviors. This approach 

brings fault tolerance [23] [24].  L-ALLIANCE is another version of ALLIANCE. It 

allows adaptive update of internal parameters from past experience of robots. 

Modeling of other robots is also considered in case of cooperative work [25].  

  

 Examples of other multi-robot architectures are ACTRESS, SWARM, and 

GOFFER. Short descriptions about these architectures can be found in [1]. 

 

 Swarm intelligence is an emerging field in multi-robot systems. Biological 

inspiration is a basis for behavior based robotics. Application of biological 

phenomenon to distributed robotics is preferable since biological organization is real 
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and working. Moreover it is known that most of the animals forming group behavior 

are not so clever to achieve observed tasks. But as a team, they get in complex 

dexterity. Another reason for biological inspiration is that a group of simple “non-

intelligent” low level agents can show group intelligence. This is the key point 

behind social animals. 

  

 Stigmergy is the application of swarm intelligence to the MRS. It is used 

very effectively in much loosely coupled system. Stigmergy is “term used by some 

biologists to describe influence on behavior due to persisting the environmental 

effects of previous behavior” [26] [[27]. 

 

 Many tasks are achieved by ants based on stigmergy. Ants secrete some 

pheromones. For example in finding shortest path between a point and nest can be 

solved by stigmergy. Ones an ant find this path, its pheromones will be distributed 

along this path. Since this is the shortest path among the possible paths, pheromone 

concentration along this path will be higher than that of other paths. Statistically, 

there will be a positive feedback to select this path. Ant colony approach was applied 

to mine detection problem with minimum mission completion time and successful 

results are obtained [28]. 

 

 Fundamental works based on the biological inspiration are basically on insect 

colonies [29], [30], flocking, dispersing, aggregating, foraging [31], selfishness 

showing emergent behavior  [32], predator-prey based systems  [33].  

 

2.3 Learning  

 Learning of parameters from interaction with the environment or other 

agents in the system increases the adaptivity of the system considerably. Any system 

is accepted as intelligent system if there is some kind of learning or adaptation. 

Popular learning methods are: 

• Reinforcement Learning 

• Neural Networks 
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• Evolutionary Learning 

 

Reinforcement learning (RL) method is widely used in most of the robotic 

systems. In RL, a reinforcement signal, reward, is fed back to the system indicating 

the result of action. If a desired condition is occurred and also agent is behaved 

accordingly then positive reward is given, otherwise punishment is fed back. 

Reinforcement learning has been studied deeply and applied many robotic systems 

[34], [35],  [36]. 

 

An important component of the RL based control system is the component 

responsible for evaluating the fitness of the response which is called “critic”. Critic 

function generates the reinforcement signal, i.e. critic has learning capabilities. 

General structure of RL based system is shown in Figure 6. There are two types of 

dominant RL algorithm present: adaptive heuristic critic (AHC), Q-Learning 

 

 

Figure 6, Reinforcement Learning System 

 

 Neural networks (NN) have been widely studied and applied many systems. 

NN is trained in a supervised or unsupervised fashion that synaptic weights are 

computed optimally so that difference between response to a set of stimulus and 

actual output is minimized. Synaptic weight update rule is different for distinct 

architectures. There are three main learning schemas in neural networks: classical 

conditioning, adaptive heuristic critic learning, and learning with associative 

memory. 

 

 Many researches have been made about application of NN to MRS. Fine and 

smooth adaptive action selection mechanics obtained using Extended Kohonen 
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Maps. Using this kind of mechanism is advantageous than other methods such as 

potential fields [37], [38].  

  

 Among the systems based on multi-layer perceptron (MLP), most impressive 

system is ALVINN (Autonomous Land Vehicle in a Neural Network) [39]. ALVINN 

can drive car autonomously at a speed of 60 Mph in a highway by a MLP based 

neural controller. In [40], a relatively simple single layer perceptron is used. As a 

training method Widrow-Hoff rule is selected. Depending on connection of neurons, 

behavior of the system is also analyzed. In [41] Hybrid evolutionary recurrent neural 

network controller is designed for secure navigation in the obstacle dense 

environments. A fitness space is defined and various fitness functions are evolved. 

Moreover fitness function contains both internal (behavioral) and external 

parameters.  

 

2.4 Multi-Robot Task Allocation (MRTA) 

 
Optimality of allocation determines local and global performance of the 

system. MRTA decides that which robot will perform which task in an optimal 

fashion. Moreover in order to increase immunity of system to faults, distributed 

problem solving is preferred to centralized approaches. MRTA should encourage the 

distributed problem solving. 

  

In the MRS literature, formal analysis of architectures regarding the task 

allocation is highly incapable. Authors try to prove their system performance 

empirically. There is little work about formal analysis of the task allocation issues. In 

this part, definitions, taxonomy, and formal analysis of MRTA problems will be 

given based on [43] and [44]. Good surveys about MRTAs can be found in [1], [8], 

[42], and [48]. 
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2.4.1 Definitions and Formal Analysis of MRTA 
 
 
 Task allocation deals with the assignment of tasks to the robots by 

minimizing a cost function or maximizing a utility function.   

 

• Task is a sub-goal and also independent of other sub-goals. By 

independence, it cannot be a decomposed into any other sub-goals.  

• Utility is a measure of specific action. When a task is assigned to a robot, 

utilty is the value of expected income from execution of this task. It is defined 

as formally difference between expected quality of task execution and cost of 

the resources and other things.  

 

URT : The utility of the assignment of task T to Robot R.  

QRT : The income of assignment of task T to robot R.  

CRT : The cost of assignment of task T to robot R.  
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Above equations show that a robot can be assigned to a task if expected 

income is larger than resource cost. Difficulty in MRTA is defining appropriate 

utility functions. Aim of the MRTA is given n robots and m tasks 
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Assign tasks to robots such that following metric should be maximized. 
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Where  

uik is the utility of execution of task k assigned to robot i. 
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 Types of MRTA problems are: 

 

• Single-task Robots (ST) means robots can execute at most one task at a 

moment whereas Multi-task Robots (MT) can do multiple tasks at a 

moment. 

• Single-robot task (SR) means each task can be achieved by only one robot 

whereas Multi-robot task (MR) requires more than one robot to execute a 

task. 

• Instantaneous assignment (IA) stands for the no planning about the task 

allocation whereas time extended assignment (TA) a kind of planning exist. 

 

MRS may have one of the following MRTA problems 

 

• ST-SR-IA , ST-SR-TA 

• ST-MR-IA, ST-MR-TA 

• MT-SR-IA, MT-SR-TA 

• MT-MR-IA, MT-MR-TA 

 

Many MRS has a MRTA mechanism ST-SR-IA or ST-SR-TA, it is the easiest 

type of optimal assignment (OAP) allocation problems. Greedy algorithm 

generates optimal solution for this kind of allocation problems. ST-MR-IA, ST-MR-

TA problems can be reduced to the set partitioning problem (SPP). Moreover MT-

MR-IA, MT-MR-TA can be classified as set covering problems (SCP) and it is the 

most difficult problem among the MRTAs and its complexity is NP hard. . Solution 

of various types of MRTA problems can be solved with the help of literature of 

optimization theory and set theory. Some of those problems can be reduced to 

equivalent linear programs. 

  

Optimal Assignment Problem is formulated [43]. as find mn negative 

integers αij maximizing  
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Constraints force the assignment problems to be achieved as single 

assignment problem. This is suitable for first type (ST-SR-IA, ST-SR-TA) of MRTA 

problems. 

 

Set Partitioning Problem can be defined as: Given a finite set E, a family F 

of acceptable subsets of E, and a utility function u : F � R+, find a maximum-utility 

family X of elements in F such that X is a partition of E. Moreover complexity of the 

SPP is strongly NP-hard. 

Set Covering Problem: Given a finite set E, a family F of acceptable subsets 

of E, and a cost function c: F � R+, find a minimum-cost family X of elements in F 

such that X is a cover of E. 

 

2.4.2 Task Allocation Methods 
 
 

There are five types of task allocation methods: auctions based methods, 

motivation-based methods, mutual inhibition, and no allocation.  

 
 Auctions methods are based on negotiations among the robots. Negotiation 

is achieved by a process called bidding. A robot (manager robot) sends requests to 

other robots (worker robots candidates) for their helps. Manager robot assigns the 

tasks according to a metric called fitness of the robots. There are two famous auction 

based methods. 
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 Contract net protocol (CNP) [49] [50] is the oldest version of auction based 

methods. It implements a central bidding method.  

 

 MURDOCH [51] is market inspired negotiation based algorithm [9]. The 

task announcement and bidding procedure almost the same with that of contract net 

protocol but there is no central manager. System is completely distributed. Task is 

always assigned to the most capable robot, i.e. MURDOCH has greedy based task 

allocation mechanism. Task can be announced any time this one of the advantageous 

of MURDOCH. MURDOCH is well applied to team of heterogonous robots. 

Hierarchical task structure is used, i.e. a task is composed of a tree of subtasks. In 

this thesis, task allocation mechanism is based on MURDOCH but fitness calculation 

is much different than that of original.  M+ [52] and CEBOT [53] are also using 

auction based task allocation methods. 

 ALLIANCE [23] [25] [24] uses motivation-based method for task 

allocation. Robots have internal motivation parameters for task allocation. There are 

two motivational parameters: impatience, and acquiescence. These motivations 

control task allocation by defining desire, and impatience. Moreover these 

mechanisms make ALLIANCE fault tolerant. Another motivational based task 

allocation method called “Affective” described in [48]. Main aim of the method is 

decreasing communication overheads. 

 

 In mutual inhibition [55], ”robots directly inhibit those around them being 

chosen for a task” [48]. It requires more commutation messages to make inhibition 

process.  In [56] task allocation is archived dynamically based on swarm intelligence. 

Dynamic role assignment is implemented in [57]. Agents exchange their roles 

depending on the conditions. Computational complexity analysis of different types of 

task allocation methods can be found in [51]. 
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2.5 Path planning, Coverage, and Exploration 

 
 Path planning defines an efficient way of navigation to a desired location 

without avoiding collision from obstacles or other robots. There are different path 

planning methods in literature: 

• Graph based approaches 

• Potential field 

 

 In this thesis, potential field method is taken as path planning method because 

of the earlier reasoning that we mentioned. Although graph based approach can reach 

optimum path planning, computational complexity of these algorithm is high as 

compared with that of potential field. Moreover, graph based approaches are prone to 

error in case of noisy data. Reader is referenced to works [58], [59] for approaches, 

and current state art in the graph based approaches.  

2.5.1 Potential Fields 
 
 Potential field approach is widely used in many fields especially in path 

planning.  In this proposed architecture, potential fields are used generating 

appropriate paths with avoiding collisions. Robot does not globally plan its path and 

is well suited for reactivity; it simply generates a path using recent information about 

environment via its sensors. Some kind of emergent path generation is obtained.  

 

 A potential field function can be any kind of function depending on the 

system. Field function defines eqi-potential lines in the space with equal distances 

from the center of reference point. If 3D space is assumed then potential field 

function will define a surface in 3D. Potential field force is computed by taking the 

gradient of the field function at a specified point. If a ball is located around a 

potential field surface then ball will move in the direction of the gradient at current 

point. How fast the robot will move is determined by the magnitude of gradient.  
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 Below some of potential field functions and associated force function with 

respect to position are given. 

 

0

U C

F U

= 
 

= ∇ = 
, Constant potential filed 

TU aX c

F U a

 = +
 

= ∇ = 
, Linear potential field 

2

TU aX X bX c

F U aX b

 = + +
 

= ∇ = + 
, Quadratic potential field 

 

Potential field function should not necessarily be continuous functions, 

depending on application; even non-linear field functions should also be preferred. In 

Figure 7, force lines are shown. 
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x x
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where oix  the position of the reference point; ia is the factor determining sign of the 

field that is whether it is repulsive or attractive and relative strength.  

 

 

Figure 7, Potential fieled forces generated by one attractive point, one repulsive point and one 

obstacle. 

 

Red point is evaluated as obstacle where as pink point is taken as target point. 

Potential field generates repulsive force with increasing magnitude around red circle. 

The potential field function can be obtained by integrating of force function.  
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 In the literature, there are many works about potential fields. Potential field 

approach is well suited with the issue of coverage. In [60], [61], [62], [63], by using 

appropriate field functions coverage of entire system is increased. In [62], local 

minima problem of potential field is prevented by selecting the activity of field 

functions in run time. A new potential field is proposed such that target point is kept 

in the global minimum of total potential field function by adjusting the parameter 

carefully [64]. Moreover, in [65], potential field based path planning is implemented 

for autonomous underwater vehicle guidance.  

2.5.2 Coverage 
 
 In path planning strategies, aim of the planning is reaching from start point to 

goal point. Coverage of the robot is not considered as a parameter to be optimized in 

path planning strategies. In this thesis, path planning is considered with coverage 

issue. A robot explores the environment by increasing coverage. Reader is referenced 

to [66] for taxonomy of coverage problems in the literature. There are works both 

considering path planning and coverage. A good survey on coverage algorithms is 

described in [67]. There are methods based on heuristic or non-heuristic (complete 

methods). Heuristic is a powerful tool if the robot does not know much thing about 

environment. Localization unit is not necessary if heuristic based search algorithm is 

adopted. Heuristic based approaches are more appropriate if cost effective and 

simple robots are used [68] [69] [70] [71].  

  

 If robot has a localization unit, then other type of methods can be utilized. 

These are 

• Approximate cellular decomposition 

• Semi approximate decomposition 

• Exact cellular decomposition  

 

Works and their summaries are given in [67]. Moreover, there are multi-robot 

versions of these coverage algorithms. In [72], an interesting solution is proposed for 

coverage, coverage, and sensor deployment. Robots have no information about 

environment. They are routed by sensor network to least visited cells. Potential field 
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approach can also be incorporated with coverage problem for both single and multi 

robot cases. In [73], constrained coverage is achieved for static sensor network node 

deployment. Works in [74], and [75] social potential function is implemented for 

robot formations by considering the coverage as an emergent behavior.   
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CHAPTER 3  

 

Our Proposed Behavior Based System Architecture 

 
 
 With this chapter we begin to introduce the system architecture that we 

developed for a robot/sensor system. 

3.1 Robot Network  

 Proposed multi-robot system is formed by heterogeneous robots. Each robot 

has one primary sensor and many auxiliary sensors. The primary sensor is used to 

detect a task source in the environment. For example for hazardous waste detection 

and clean up the robot in the system should have only one of the following primary 

sensors: chemical sensor, nuclear sensor, infrared sensor, spectrometer, etc. The 

primary sensor determines the role of that robot in the multi robot system.  Auxiliary 

sensors which do not affect the role of the robot are general purpose sensors used for 

secure navigation and detection of other robots. For instance robot should have sonar 

to detect and avoid obstacles; light or motion sensors to detect other robots.  

 

 Communication capability requires additional communication hardware. In 

this architecture the robot may or may not have a communication unit. A robot 

without communication unit will therefore cooperate effectively and deliberately 

during task achievement will not be able to request of other robots.  

 

 In this simulation, each robot has the following capabilities: 

• Robots have the same control architecture 

• Each robot senses the task source with its primary sensors 
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• Each robot senses the environment and the other robots to avoid collision 

and navigate securely. 

• Each robot monitors its status and generates appropriate actions. 

• Robot can request the help of other robots and respond the incoming 

requests coming from other robots if it has a communication unit. 

• Each robot can be master (manager) or slave (worker) in a cooperative 

task execution phase. 

• Each robot can evaluate its fitness for task allocation 

• Each robot generates optimal or near optimal wander direction to 

decrease target detection time and energy consumption. 

 

The properties listed above can be related to: 

• The robot behavior based control 

• The communication structure and algorithms 

• The optimality issues, concerning energy consumption and source detection 

and task execution time 

         

3.2 Proposed System Architecture 

3.2.1 The General Architecture 
 

Robots in our proposed system are heterogeneous and capable of working 

cooperatively based on a market-based auction task allocation algorithm assigning 

co-occurring, sequential or individual tasks. 

 

The layered, hybrid control system is designed based on subsumption and 

motor schema control strategies. In classical subsumption control, there is a priority 

based hierarchy between behaviors such that only one behavior can be active at a 

time. It is not being possible to separate behaviors, i.e. a behavior having high 

priority can cross couple with a behavior having low priority. Moreover, in complex 
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systems, there should be behaviors devoted to reactive action and be active at all 

time. 

 

To surpass these difficulties, we developed the hybrid controller which 

contains two main layers: the subsumption layer, and the motor schema layer.  

 

The subsumption layer contains priority based behaviors, whereas in motor 

schema layer, there are behaviors having equal priority. Behavior coordination is 

achieved in motor schema style which is devoted to behaviors requiring reactive 

actions. Final response is generated by summing responses from subsumption and 

motor schema layers.  

 

 We also introduce in the architecture a new control unit called evaluator 

which is used for defining priorities of behaviors in run-time, and the loosely coupled 

coordination between behaviors in subsumption and motor schema layers. The 

evaluator takes the state and output information of other behaviors as additional input 

parameters. By using an evaluator, priorities of behaviors in the subsumption layer 

can be changed dynamically depending on the state of behaviors. Another benefit is 

that behaviors in different layers can be fused within a function or filtered out, 

generating a coordination among the behaviors.  

  

 The proposed system has 4 types of units shown in Error! Reference source 

not found.:  External behaviors, internal behaviors, planner, and behavioral 

coordination buses. Behaviors are divided into two parts, external and internal 

behaviors. Behaviors triggered by external sensory inputs or virtual input generated 

by internal behaviors are called external behaviors. In our applications they are 

selected as listed below. 

• Target Reaching Behavior 

• Obstacle Avoidance Behavior 

• Robot Separation Behavior 

• Heuristic Wander Behavior 

• Adaptive Wander Behavior 
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• Communication Behavior 

• Environment Monitor Behavior 

These behaviors implement the main behavioral backbone. They translate the 

information gathered form sensors to an appropriate motor control vector. On the 

other hand, internal behaviors take the outputs of external behaviors and interpret 

them and control and coordinate the external behaviors. Outputs of these behaviors 

are either system state transition or virtual inputs to the external or internal 

behaviors. Internal behaviors implemented in the proposed system are: 

• State Evaluation Behavior 

• Physical Situation behavior 

 

 Behavior control bus includes necessary lines for subsumption style 

behavioral coordination. These are: suppress bus, inhibit bus, and reset bus.  State 

evaluation behavior uses these buses to control and coordinate external behaviors. 

Outputs of the external behaviors are transported over behavior output bus.  

  

 There is a planner unit responsible for task allocation and execution. 

Moreover, it arranges data structures, and maps used by other behaviors. 

3.2.1.1  Proposed Control Architecture 
 

In Figure 9, general structure of proposed architecture is shown with 

subsumption, and motor schema layers. Final response is generated by coordinating 

the subsumption and motor schema layers cooperatively, and sent to the actuators. A 

behavior may have or not have an associated evaluator posterior to it. If a behavior in 

the subsumption layer has not an associated evaluator then it is coordinated with 

other behaviors in the same layer just classical subsumption control strategy. The 

proposed control strategy is flexible enough when making complex actions without 

degrading the reactivity.  
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∑

 

Figure 8 Proposed system architecture 

 

 

Figure 9 Proposed control architecture 
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Obstacle avoidance and environment monitor behavior have the highest 

priority in the subsumption layer. Priorities of these behaviors are equal to each 

other. They are coordinated in the subsumption layer by using evaluator1 in 

cooperative coordination style. If one of these behaviors is active then, activities of 

target reaching, communication, adaptive wander behaviors are inhibited. For this 

case, subsumption layer outputs the sum of responses of obstacle avoidance and 

environment monitor behavior. 

 

 Communication and target reaching behavior have the second highest priority 

in the subsumption layer. Evaluator 2 coordinates these behaviors as shown in   

Figure 11. Communication behavior has a priority over target reaching behavior if 

certain conditions are satisfied. As shown in Evaluator 2, if communication behavior 

is active at previous step then it inhibits the target reaching behavior, otherwise 

depending on the location of target, and communication event, activity of one of the 

behavior is inhibited according to the minimum distance criteria. Adaptive wander 

behavior has the lowest priority in subsumption layer. Moreover it is coordinated 

with heuristic wander behavior in motor schema layer via Evaluator 3. Even if 

adaptive wander behavior is active, it may not generate an appropriate next wander 

point. Heuristics wander behavior resides in the motor schema layer; it is almost 

active all the time if adaptive wander behavior is not active. This behavior is not 

implemented in the subsumption layer because of the performance issues. Activity of 

obstacle avoidance behavior inhibits the activity of adaptive wander behavior but it is 

not desired to inhibit the activity of heuristic wander behavior. As a result heuristic 

wander behavior is designed in motor schema layer. But it is coordinated with other 

behaviors as shown in Evaluator3. 

 

Robot separation behavior is active for all time, so it resides in motor schema 

layer. It can be though that this behavior can also be deployed in the subsumption 

layer on top of obstacle avoidance behavior. But this will make the system inefficient 

because main goal of the system is implementing efficient collaborative work. Robot 

should execute target reaching behavior at the same time avoiding the collision with 

other robots. This behavior should reside in motor schema layer. 
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∑

 

Figure 10 Behavioral coordination made by state evaluation behavior 
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Figure 11 Evaluator used in behavioral coordination 

 

3.2.2 Behaviors in the Proposed System 
 

 A behavior encapsulates both its perceptual and motor schema. By perceptual 

schema, triggering conditions of behavior is meant. Motors schema determines the 

action of behavior to the stimulus. In this section, for each behavior both of the 

schemas will be analyzed. Motor schema is implemented with potential field 

methods. Each behavior’s motor schema generates a motor action represented with 
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potential field forces or equivalently each motor schema generates a potential field. 

Motion planning or potential field approach will be analyzed subsequent sections.  

 A behavioral unit is shown in Figure 12. As being compatible with 

subsumption and motor schema architecture, behavior both encapsulates its 

perceptual schema and motor schema. More specifically each behavior has  

• Input port 

• Output Port 

• Inhibit Line 

• Suppress Line 

• Reset Line 

 Input port transfers necessary input to the perceptual schema, whereas 

output port sends output of motor schema to the actuators. Suppress line is used to 

suppress the inputs of the behavior, on the other hand inhibit line is used to inhibit 

the output of this behavior. Reset line is used to reset behavior to its initial state.  

 

 

Figure 12 A behavioral Unit 

 

Evaluators are used with behaviors for  

• Defining priorities of behaviors in run-time 

• Defining loosely coupled coordination between behaviors in subsumption 

layer and motor schema layer. Evaluator takes state of other behaviors as 

additional input parameters 
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In Figure 13, structure of an evaluator is shown. Evaluators take different signals 

from behaviors in the same or different layers. It generates an output by considering 

the state and output information of other behaviors as additional input parameters. 

  

By using an evaluator, priorities of behaviors in the subsumption layer can be 

changed dynamically depending on the state of behaviors. Another benefit is that 

behaviors in different layers can communicate with each other.  

 

 

Figure 13, Evaluator structure 

 

The output of evaluator k, ,k Oute , is a function of both input 
,k Ine , state and 

output information, S,  of other behaviors, i.e. 

, ,( , )k Out k Ine F e S=                                                                

where 

,k Ine  : Input of evaluator k 

,k Oute : Output of evaluator k 

1 2 ,{ , , }, { , }u j j Out jS s s s s e ζ= =  

S  : Set of information of other behavior,  

js       :  State information of behavior j 

,j Oute : Output of behavior j 

jζ     : The state of behavior j.  

 

3.2.2.1 Target Reaching Behavior 
 
 Target reaching behavior is responsible for detection and reaching the target. 

Target detection is achieved with the primary sensor of robot. In the case of multiple 
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of targets that are detected then the robot selects the target which minimizes energy 

consumption, thus arrival time. The behavior related to target reaching generates 

attractive target reaching force to reach target after it is detected. This behavior is 

not all the time active and depending on the state of robot, it may be suppressed. 

3.2.2.2 Obstacle Avoidance Behavior 
 
 This behavior implements obstacle avoidance. Obstacle avoidance behavior is 

a crucial behavior since performance of this behavior directly affects the 

performance of the robot and the whole robot team. This behavior generates 

repulsive and tangential obstacle avoidance force to avoid obstacles. Inputs of this 

behavior are from secondary sensors. 

 

 Obstacle avoidance field is the sum of two vectors shown in Figure 14. The 

first one is a repulsive force from the obstacle and the second is the tangential force. 

Function of repulsive force is to avoid collision whereas tangential force with respect 

to obstacle is used to navigate around the obstacle for exploratory purposes. 

Tangential force increases the performance of the system considerable in obstacle 

avoidance sense. This behavior is active whatever the robot state, i.e. no inhibition or 

suppression is applicable for this behavior. 

 

 

 

Figure 14, Obstacle Avoidance Forces 

 

 Obstacles are detected by the algorithm listed in the obstacle detection 

procedure. Generally robot detects lots of obstacle objects in an instance of time. 

Total obstacle avoidance field is evaluated as a vector sum of each obstacle 

avoidance field of detected objects.  
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3.2.2.3 Robot Separation Behavior 
 
 Robot separation behavior detects other robots and avoids the collision. This 

behavior is necessary for secure navigation and task execution. Other robots are 

detected with secondary sensors. Robot knows the identification of other detected 

robots. This behavior generates repulsive robot separation field force. This 

behavior is active all the time whatever the robot state. There is no behavior inhibits 

or suppress this behavior. 

 

 Robot separation behavior may be implemented with obstacle avoidance 

behavior but this will lead to the degradation of cooperative working of robots. 

Obstacle avoidance behavior generates additional tangential force that does not allow 

robots to work close enough to each other.  

3.2.2.4 Heuristic Wander Behavior 
 
 This behavior is one of the wander behaviors. The main function of robot is 

wandering around the environment and detecting targets or involving in 

communication with others when needed. It generates an attractive heuristic wander 

force to wander in the environment. 

 

 The random nature of this behavior increases the reactivity. A deterministic 

wander algorithm may be prone to trapping in unplanned situations and its designer 

should be aware of everything exhaustively prior to the design and every possible 

situations about the environment. This means that extensive information fusion is 

required for optimal solutions [67], [68]. This heuristic wander field enables the 

robot wander very securely around the environment even under unexpected 

situations. Heuristic wander behavior is not active all the time; its activation 

condition depends on activity of other behaviors and it was discussed in 3.2.1.1.   
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3.2.2.5 Adaptive Wander Behavior 
 

 Adaptive wander behavior is designed to increase the wandering performance 

of robot. Since a robot detects its target through its primary sensors, wander 

performance directly affects the target detection time, and consequently team 

performance. This behavior is implemented as a attractive adaptive wander force 

which will discussed in section 3.2.3.5. 

 

 This behavior generates wander maps to fuse this information adaptively. 

Maps are time varying, carrying a forgetting factor for each map. Time varying 

property is compatible with dynamic environment assumption. Periodically maps are 

updated, i.e. some data are extracted from maps and this period is an adjustable 

parameter that naturally affects the performance. 

 

 When robot wanders around the environment and when it detects targets, 

obstacles, it generates its own wander map, detected target maps and detected 

obstacle maps. Information fusion is made through these maps to generate the new 

wander direction. The generated wander direction is optimum in the sense that: 

• Robot prefers the location which is not visited previously. 

• Robot avoids obstacle dense regions. If a wander direction crosses a wall 

previously detected, then robot should not prefer this direction.  

• Overall coverage time is decreased as compared to the heuristic wander. 

 

 

 This behavior is not active at all the times since then, the adaptive wander 

algorithm may generate false alarm which in this case, the heuristic wander behavior 

is activated. 

3.2.2.6 Communication Behavior 
 
 Communication behavior is responsible for reaching locations generated by 

the task allocation and execution planner suitable for communication. 
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Communication behavior is active all the time expect when the robot is executing a 

task. This behavior is implemented with an attractive communication force. 

3.2.2.7 Environment Monitor Behavior 
 
 Environment monitor behavior is implemented for wandering securely in a 

3D environment. In some cases robot may not be allowed to some regions. In this 

case this behavior tracks and controls this undesired regions through a repulsive 

environment monitor field force. In this 3D environment robots have to explore 

surrounding and execute every command   where the environmental conditions 

should put constraints  

 

 This environmental monitor behavior detects the following: 

 

• Unreasonable regions that robot dynamics will not be allowed to enter. For 

example, robot may not be allowed within regions having a steepness over a 

maximum allowed value. 

• Banned region avoidance. Some regions may be allowed for navigation only 

for some amount of time. Outside of this time limit, robots will be prohibited 

to wander to in those premises. 

 

 Environment monitor behavior is active all the time making the system 

definitely makes the system more realistic environmental changes. 

3.2.2.8 State Evaluation Behavior 
 
 State evaluation behavior is an internal behavior and monitors, coordinated 

the external behaviors using suppress, reset, and inhibit buses. Actually this behavior 

generates the logic of robot and a primary control of behavioral coordination among 

other behaviors. Since this behavior is an internal behavior, it does not generate a 

field force as other external behaviors. Coordinated motor control signal is sent to 

motors. 
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3.2.2.9 Physical Situation Behavior 
 
 Physical situation behavior is an also internal behavior that controls the 

situation of a robot in the physical environment by interpreting the outputs of the 

eternal behaviors.  It detects stuck conditions of robots and environmental conditions. 

This behavior continuously updates the environmental conditions. For instance, if 

robot is running at rainy environment then it will not be able to perform at a desired 

speed due to slippery ground. So a kind of calibration is needed for internal 

parameters. The overall function makes this behavior behave as a 

• Physical stuck detector, used as local minima detection or real physical stuck 

• Environment modeler from buffered internal data. This property is not 

implemented for the time being and will be addendum of future works 

 

This behavior is different from environment monitor behavior because it analyzes 

the outputs of the external behaviors and tries to detect unusual things. On the other 

hand environment monitor behavior just detects the locations having excessive 

slopes. This behavior is active the all times.  

3.2.2.10  Behavior Output with Potential Fields 
 
 Vectors are generated as forces using the derivative of  derivative of potential 

field force function with respect to distance in 3D space will be presented. The 

generated   force according to the proposed potential field  satisfies the following 

conditions: 

• High magnitude around target point.  

• Quadratic decrease in magnitude with increasing distance between target 

point and robot point 

• Constant in magnitude after some distance. 
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Figure 15, Potential field force magnitude with respect to distance 

 
  

 In Figure 15, magnitude of the proposed highly nonlinear force with respect 

to the distance is shown for the four different regions: 

R1: Constant high force region 

R2: Quadratic force region, force decreases quadratically with respect to distance 

The general form of the force in this region is 2

m
F n

x
= +  

R3: Transient region from R2 to R4.  

R4: Constant low region  

 

Introduction of these regions is necessary in: 

• Preventing sharp robot movements, smoothing down the motion. 

• Obtaining reasonable force values. Force values become bounded within 

some max. and, min. values.  

• Generating quadratic decrease or increase in region 2 enables the quick 

decrease or increase around target point.  Robot is more reactive to position 

change.  

• After some distance potential force begins to be ineffective. It is in effect 

within a region and zero outside. 
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In Figure 16, 2D plot of the gradient of proposed potential field giving the force is 

given. This plot is obtained relative to the origin by simply rotating force function 

along z-axis.  

 

 

 

Figure 16, Potential filed force in 3D 

 

The  magnitude of force function is given for each region as:  
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 Each behavior in the proposed architecture has 1 2 3 1 2 3, , , , ,F F F x x x  values. By 

changing these values relative strength and relative effective distance of each behavior is 
adjusted. In  

Table 1, the current force function parameter for each behavior is shown. We choose 

this set of parameters through simulation experiments. 

In  

Table 1, some values are shown as NA (∞∞∞∞). This is because of some behaviors takes 

only one behavior in reasonable distances.  Heuristic wander and adaptive Wander 
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behavior are this kind of behaviors. The logic behind their formulation gives rise to 

this result. Later, details of these behaviors will be discussed 

 

Table 1, Field function parameters for each behavior 

 
Behavior F1 F2 F3 X1 X2 X3 

Target Reaching 50.0 20.0 0.0 2.0 PSR - 2.5 PSR - 2.0 

Obstacle Avoidance, 

Repulsive Field 

100.0 5.0 0.0 1.0 ODSR – 1.5 ODSR – 1.0 

Obstacle Avoidance,  

Tangential Field 

10.0 1.0 0.0 1.0 ODSR/2– 

1.5 

ODSR/2 – 1.0 

Robot Separation  40.0 11.0 10.0 2.0 RSDSR– 2.5  RSDSR – 2.0  

Heuristic Wander 40.0 NA(∞) NA(∞) NA(∞) NA(∞) NA(∞) 

Adaptive Wander  40.0 NA(∞) NA(∞) NA(∞) NA(∞) NA(∞) 

Communication  50.0 20.0 0.0 2.0 CR - 2.5 CR - 2.0 

Environment Monitor  40.0 2..0 0.0 2.0 3.8 4.0 

Physical Situation  NA NA NA NA NA NA 

State Evaluation  NA NA NA NA NA NA 

Abbreviations: 

PSR          : Primary Sensor Range 

ODSR      : Obstacle Detector Sensor Range 

RSDSR    : Robot Separation Detector Sensor Range 

CR           : Communication Range 

NA(∞)     : Not Applicable or Infinite 

 

3.2.3 Implementation of Behaviors 
 

3.2.3.1 Target Reaching Behavior 
 
 Target reaching behavior gets input from primary sensors of the robot and 

generates a direction to which a robot is directed. Number of targets determined can 

be any number. Since robot can only lock and go to only one target, it should make a 

decision between sensed targets.  

 For any time list of sensed targets, { }1 2, ,..., nT t t t=  
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The robot selects the target at minimizing distance between robot and target. Robot 

evaluates the metric below for each target and selects the winning target.  

( )min ,0
iR tP P i n− ≤ ≤  

RP : Robot Position, 
it

P : ith target position 

 

 Target reaching behavior generates an attractive force from robot to target 

which had a magnitude evaluated according to equation (1).  

The force direction of  the force: 

T R

T R

P P
f

P P

→  −
=   − 

 

where, 

RP : Robot Position in 3D  

TP : Target Position in 3D 

Overall force vector will be: 

F f F
→ →

=  

3.2.3.2 Obstacle Avoidance Behavior 
 
 As mentioned earlier, this behavior is composed of two basic forces: a 

repulsive force and a tangential force. The repulsive one being responsible for 

avoiding collision whereas the tangential force is responsible for generating a 

direction for the robot to wander around obstacle. The magnitude of each force is 

evaluated with equation (1).  

 

 In Figure 17 obstacle particles detected by robot (blue circle) is shown. Red 

circle represents the range of robot obstacle detector sensors. Robot detects many 

obstacle particles for a medium size obstacle. The overall force generated by obstacle 

particles over the robot is a linear combination of each particle force.  
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Figure 17, Obstacle particles detected by robot 

 

Set of obstacles, O, detected by robot { }1 2, ,..., PO o o o=  

Direction of repulsive force for a particle is  

i

i

R O

i

R O

P P
f

P P

→  −
 =
 − 

 

RP : Robot Position in 3D  

iOP : ith Obstacle Position in 3D 

Overall repulsive force direction will be 

0
repulsive

P

i

i

f f
→ →

=

=∑  

 

 Tangential force evaluation is a little bit different. A set boundary points is 

chosen around the particle on the obstacle nearest to the robot. These objects are used 

to generate non-linear obstacle curve to calculate the relative direction of the robot 

with respect to nearest obstacle. The algorithm is given below.  

 

Algorithm, Tangential Force Calculation 

 

1. Evaluate the nearest obstacle particle to the robot, nearestO   

2. Generate a set, { }NR O , N points on the boundary of obstacle nearestO  
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3. Find the 3rd order polynomial curve, C  passing points in the { }NR O  set, 

minimizing least square error. 

4. Find the nearest point,
nearestOP , in { }NR O  to the robot, or simply use the 

position of nearestO particle.  

5. Evaluate the surface, 
nearestOS   passing through 

nearestOP  

6. Evaluate the tangential force direction, tan
f
→

 by projecting direction of robot, d
→

, 

on to the  surface,
nearestOS   

 

  In Figure 18, mentioned curves, sets and points are shown. In this case there 

are two different obstacles sensed by the robots. Robot executes the above algorithm 

to find the nearest obstacle particle and set of neighborhood particles. Then it 

evaluates the curve passing through this particle points (curve C shown in the figure). 

Surface passing through the nearest point on the curve to the robot is found. Finally 

tangential force is evaluated by projecting the direction vector of robot onto this 

surface. 

The net force will be 

tan1 2 tan1 2repu ls iv e rep u lsiverep u lsive rep u lsive

F f F f F f F
→ → → →

= + +  

Robot will move in the direction of F
→

. 

3.2.3.3 Robot Separation Behavior 
 
 Robot separation behavior is implemented for preventing collision of the 

robot with each other. Each robot is capable of sensing other robot regardless of its 

primary sensor type. A robot can sense any number of robots within its robot 

separation detector sensor range (RSDSR).  
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Figure 18, Tangential and repulsive force diagram. 

 
 
 

 The magnitude of robot separation force is calculated as described in equation 

(1). Robot separation force is a repulsive force; the direction of which is from the 

detected robot to one that detected. If more than one other robots are detected then 

the total force is evaluated by summing each robot separation force.  

Set of robots detected by robot 

{ }1 2, ,..., MR r r r=  

Direction of repulsive force for a detected robot is  

i

i

R R

i

R R

P P
f

P P

→  −
 =
 − 

 

RP : Robot Position in 3D  

iR
P : ith Robot Position in 3D 

Overall repulsive force direction will be 
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Figure 19, Robot Separation Forces 

 

3.2.3.4 Heuristic Wander Behavior 
 
 Heuristic wander behavior is one of the basic behaviors. Robot wanders 

around the environment and searches the targets heuristically with the help of this 

behavior. Heuristic wander behavior is not active all the time. It is active only when 

adaptive wander behavior is not active.  

 

 Heuristic wander behavior generates a new wander direction at the beginning 

of the behavior. Behavior does not generate a new direction until some time is 

elapsed. The reason behind this is that robot is allowed to wander a certain time. 

Generating new wander direction repeatedly will force the robot to wander around 

the same point which is undesirable. Since physical robot will not turn immediately, 

robot will not generate sharp wander direction. Maximum wander angle is limited by 

a limit angle maxθ . Choosing small maxθ will decrease dead reckoning error due to 
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the rotation sensors. Moreover there will be some resolution that for θ we denote as 

of turning angle resθ .  

 

θ
d
→

ω
→

Robot

V1 V2

V3

n
∧

 

Figure 20, robot generated a direction randomly by rotating it direction around normal vector 
of current grid that robot resides. 

 
In Figure 20, a robot on a 3D plane is shown. Vertices of the plane where the robot is 

currently located are v1, v2, and v3 respectively. These vertices are obtained from 

terrain map represented as a DirectX mesh structure. Algorithm of heuristic wander 

direction generation is listed below. 

Algorithm, Heuristic Wander Direction Generation 

 

1. Determine the vertices of the plane where the robot is located from 3D terrain 

mesh. 

2. Evaluate the normalized plane normal, n
∧

as 

 2 1 3 1

2 1 3 1

( ) ( )v v v v
n

v v v v

∧ − × −
=

− −
 

3. Generate an angle θ  randomly (uniformly distributed) between  maxθ− and 

maxθ  

4. Rotate robot direction vector, d
→

, about plane normal by an angle  

reskθ where 

max

res

k
θ
θ

 
=  
 

, new direction isω
→

. 
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5. Wait for some time, and continue from step 1. 

 

The overall force generated by this behavior is calculated using values from  

Table 1 and as shown there, the magnitude of the force is constant.  

3.2.3.5 Adaptive Wander Behavior 
 
 Adaptive wander behavior is designed for generating optimal or near optimal 

wander direction. It is more optimal as compared to heuristic wander behavior. This 

behavior considers the following issues to increase the wander performance: 

• Current coverage map 

• Obstacle map 

• Target map(optional) 

 

This behavior makes a data fusion among the generated maps and determines the 

next wander direction by: 

• Increasing temporary coverage by wandering through unvisited region 

• Decreasing obstacle crash rate by wandering through region that is not dense 

with obstacles 

• Increasing target detection rate by wandering through region having lower 

target density (estimated density). 

  

Coverage map is a 2D MxM grid map. Each entry of the map is a linked list 

having the following data structure in C++ style: 

struct { 

 _TIME time; 

 _POSITION pos; 

}MAP_COVERAGE_ELEMENT; 

time is the system time 

pos is the 3D position of robot 

The entire map has also the  following C++ deceleration: 

CList<MAP_COVERAGE_ELEMENT, MAP_COVERAGE_ELEMENT> **MapCoverage; 
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The number of times that the robot visited a region is determined by simply finding 

the length of the linked list.  

 

 The resolution of map is important because it determines the memory to be 

allocated for the coverage map and is determined by the range of the primary sensor 

of robot. In Figure 21, a grid of coverage map is shown. Theoretically, robot can 

sense the target within its primary sensor range shown as a dashed circle. Due to the 

noise or other undesired effect, the resolution of the coverage map is taken as smaller 

than the diameter of the robots sensing range.  Size of the coverage map grid is then 

formulated as 

2 rρ , where ρ  is the discount factor. Currently ρ  is set to 0.8. 

 

rρr

 

Figure 21, Coverage map resolution calculation diagram 

  

 To satisfy the dynamic environment assumption, data in the coverage map 

cannot be used forever. After a timeout limit, covTO , entries at the linked list are 

deleted if the time of an entry is too old. Let the entry time be 1T and the current time 

is
currT . Entry is deleted if 

1 covcurr
T T TO− > . 

Moreover at each simulation time the coverage map is refreshed to decrease its size. 

In   Figure 22 and Figure 23 coverage map at time T1 and T2, T2 >T1, is shown. The 

height value corresponds to coverage value of current grid, i.e. how many times that 

the robot has visited a grid cell. Due to the timeout, the vertex value of the grid map 
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shown in the region 1 of Figure 22 are deleted at time T2 as shown in Figure 23. Red 

line in the figures points the next wander point.  

 

 Value of covTO  is important: If the it is selected too high then robot will 

memorize the environment and dynamic environment assumption will fail. However 

if it is too small then it will not use past coverage information and its performance 

will approach to that of heuristic wander behavior. In this system it is set to a time 

that is required to  

 

 

Figure 22, Coverage Map at Time T1 

 
 

 

Figure 23, Coverage Map at Time T2 

Next Wander Point 

Next Wander Point 
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 Obstacle map stores the information about the obstacle in the environment. 

Its primary usage is to decrease the obstacle avoidance rate. Implementation is 

similar to coverage map except that its resolution is different. Data structures are 

same with that of coverage map. The entire obstacle map is also has following C++ 

deceleration: 

CList<MAP_OBSTACLE_ELEMENT, MAP_ OBSTACLE _ELEMENT> **MapObstacle; 

Resolution is calculated as 2 obsrρ  where 

ρ  is discount factor obsr is obstacle detector sensor range. 

 

obsrρ
obsr

 

Figure 24 Obstacle map resolution calculation diagram 

 

 Another critical parameter is the timeout time, obsTO , for obstacle map 

entry removal to satisfy dynamical environment assumption. It is set to cov3 / 2TO . 

  

 Target map is used to store the location sensed targets. Concept behind the 

target map implementation is the same as those of obstacle map and target map. 

Resolution of this map is equal to resolution of coverage map but the timeout 

time, tarTO  is set to cov / 4TO . 

3.2.3.5.1 Memory Requirements for Maps 

 
 Usage of maps increases the performance in terms of coverage and target 

detection time with better obstacle avoidance but there is a main disadvantage: 

memory allocation for maps. Memory space required for maps is determined by: 

• Resolution of map  
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• Timeout time 

  

 Resolution of map depends on the sensorial range of the robot. High sensorial 

range results in lower memory demand. By decreasing the values of above 

parameters memory demand can be controlled but performance of the system can be 

decreased.  Total space required can be calculated at steady state. Robot should have 

enough physical memory to meet the memory demand. 

 

 In Figure 25 normalized memory demand for three timeout values are shown. 

After some time, each situation reaches a saturation point. Of course reaching 

saturation will take different time for each case. For cov 3000TO = amount of 

memory needed at steady state is 1.5 times of that of cov 2000TO = and 3 times 

of cov 1000TO = . 

 

cov 3000TO =

cov 2000TO =

cov 1000TO =

1t 12t 13t
 

Figure 25, Normalized memory requirement versus time for coverage map. Each line 
corresponds to different timeout time. 

 

3.2.3.5.2 Fusion of Maps Generating Next Wander Direction 

  
 Fusion of maps is based on the finding free or unvisited location in the 

coverage and obstacle maps. The first step is searching the coverage and obstacle 
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maps for free grid cells. Of course, each location in the physical environment 

corresponds to a cell in the map with limited resolution. Searching the coverage map 

is achieved in an expanding radius search fashion, i.e. coverage map is searched 

starting from the cells having distance (in the index sense) 1 and at each step, it is 

increased by one.  

 

 In Figure 26, the search method is shown graphically. The robot location is 

shown as red circle. Start point of the path is in circular shape whereas end point is 

depicted as arrow.  Search path having depth 1 is shown as “Depth 1”. Shape of the 

search path can be square if the path does not intersect with the boundary. Depth 5 

and Depth 6 is not in square shape because of the reasoning above.  

 

 To decide that a cell in the coverage map is free, corresponding cell in the 

obstacle map should also be free. Search procedure is continued up to enough free 

points are found in specified minimum search depth. If any free point is not found 

then adaptive wander behavior should be disabled for the current simulation time.  

   

 

Figure 26, Coverage map search path 

 

 Frequently, search of the maps generates more then one free cell. So a 

decision should me made among these points. Decision making procedure is based 

on optimizing following issues: 

• Minimizing obstacle crash 
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• Minimizing the angle between current wander direction and next wander 

direction 

Depending on the above criterion some of the wander points are filtered out.  

 Some wander points should result in obstacle crash as shown in Figure 27. 

Even if the wander point does not contain any obstacle but robot should avoid the 

obstacle in its path. Obstacle avoidance will force the robot lose time and energy. In 

some cases robot should generate a wander point which is absolutely unreachable as 

shown in Figure 28. Robot should filter out this kind of wander points. So in any 

case some kind of post obstacle crash check should be made.  

 

 

Figure 27, Obstacle crash situation, partly reachable situation 

 
 

 

Figure 28, Obstacle crash situation, absolutely unreachable situation 
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3.2.3.5.2.1 Obstacle Crash Check 

 
 Obstacle crash check is achieved finding density of obstacle in the region 

defined by a rectangle whose corners formed by robot location and wander point 

location. If obstacle density obsD  is higher than a threshold then wander point is 

filtered out otherwise it is used. 

 

 In Figure 29 “Robot-Wander Point Rectangle” ( RWPR) is shown. Obstacle 

density estimation is calculated within this rectangle in horizontal direction. For each 

row in the RWPR obstacle presence is checked from obstacle map. If no obstacle is 

present along the row then this row is said to be obstacle crash free row.   

 

 

Figure 29, Robot-Wander Point rectangle for obstacle crash check 

 

But if an obstacle exists in a point in the row then this row is said to be obstacle crash 

susceptible row. For each row above procedure is executed. If the ratio of the number 

of “obstacle crash susceptible rows” and “total number of rows” exceeds a threshold 

then wander point under consideration is filtered out.  Depending on the value of this 

threshold “Partly Reachable” wander points may or may not be filtered out. 

 

 In Figure 30 obstacle density for two different situations are shown. The first 

case has obstacle density 0.57 since 4 of 7 rows are filled by obstacles. However in 

second case there are 5 rows filled with obstacles.  
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0.57obsD = 0.71obsD =
 

Figure 30, Obstacle Density for two situations. Image at the left hand side has obstacle density 
0.57 whereas right hand side situation has 0.71 obstacle density. 

 

3.2.3.5.2.2 Angle Check 

 
 Another important criteria in the adaptive wander point generation is that 

angle check algorithm. There can be wander point candidates. Some of them may be 

filtered out by obstacle crash check. Remaining points are checked for angle test. 

Logic behind angle test is that robot should not be turned with large angles relative to 

its current direction. Large angle turn blockage will result in more continuous motion 

and less dead-reckoning errors. In Figure 31 angles of wander point direction relative 

to robot current direction is shown.  

 

1α
2α

3α

 

Figure 31, Wander point angle with respect to robot current direction 

 

 Proposed angle check is achieved as follows: 
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Set of wander point candidates points { }1 2, ,..., MW w w w=  

 For each point in set W, there is a set of angles A relative to robot current direction 

{ }1 2, ,..., MA a a a=  

Final wander point candidates are selected whose angles are smaller than a threshold 

angle _w thrα . 

3.2.3.5.2.3 Final Decision of Wander Point 

 
 The final phase of the adaptive wander point generation is that making a 

decision between the wander points candidates filtered out by angle and obstacle 

crash check. Decision is made heuristically, i.e. wander point is determined among 

the candidate points randomly. This random nature is desired since it will allow robot 

to wander more freely within some degree. Moreover above deterministic algorithm 

becomes a little bit stochastic to filter out unconsidered situations.  Below overall 

algorithms are shown. 

 

Algorithm, Adaptive Next Wander Direction Generation (without Target Map 

fusion) 

 

1. Generate set of free (unvisited) locations { }1 2, ,..., MF f f f= by searching 

the coverage map and obstacle map up to a depth. If enough free cells are 

found then stop the searching. If no free point is found then return.  

 

2. Apply angle test for points in F for an angle _w thrα . Generate a new set 

formed by points that are passed angle check test. New set is “angled check 

passed” set { }1 2, , ..., ,acp KF ff ff ff K M= ≤  

 Where 

 , ,u dff f u M d M= ≤ ≤  
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3. Apply obstacle crash test for points in acpF . Generate a new set formed by 

points that are passed obstacle crash test. New set is “angle check passed 

obstacle crash check passed” set { }1 2, , ...,acpocp LF fff fff fff L K= ≤  

 , ,u dfff ff u K d K= ≤ ≤  

i.e. u and d are unique numbers. 

 

4. Find the final wander point from set 
acpocpF by selecting a point 

randomly(uniform distribution), say 0w pP fff=  

 

5. Estimate time, estt , necessary to visit from robot current position, r
P  to 

adaptive wander point, wpP . Estimated time will be  

{ }
r wp

est

r

P P
t

E v

−
=  

{ }rE v is the average speed of  robot. 

 

6. Wait estt and continue from step 1 

 

3.2.3.6 Communication Behavior 
 
 Since proposed multi-robot system is strongly a multi-robot system, some 

kind of explicit communication is needed. Depending on the situation there may be 

need of help of other agents in the environment, and then robot tries to gather 

necessary number of agents with enough capabilities. 

 

 Each robot can only execute only one communication task. A communication 

task is created by a communication requester agent in the environment. Requester 

robot commands the robot to go a location in the environment.  Communication 

behavior is responsible for navigating through this communication task location 
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securely. Logic behind the communication behavior is the same as target reaching 

behavior except that field force settings are different and there can be only one 

communication task location.   

 

Set of communication task contains only one active communication task, { }1C c=  

Direction of attractive force for a communication event  

1

1

R C

i

R C

P P
f

P P

→  −
 =
 − 

 

RP : Robot position in 3D  

iCP : Position of  ith communication task in  3D 

Over all force will be  

0
net

M

i

i

F f
→ →

=
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3.2.3.7 Environment Monitor Behavior 
 
 Function of environment monitor behavior is collecting information from 

environment and generating appropriate motor responses. Since robot has physical 

constraint, it cannot achieve all the maneuvers. Physical constraints may be: 

• Slope, robot cannot drive at a surface having big slope 

• Water or mud level of soil 

• Temperature or humidity of weather  

  Environment monitor behavior considers only slope constraints. Robot does 

not navigate a region having a slope over a threshold level, _s thrα . Force magnitude 

is computed using force parameter values from  

Table 1. Calculation of net force is presented below. 

Set of slope over limits detected by robot 

{ }1 2, ,..., TS s s s=  
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Direction of repulsive force for a detected slope over limit is  

i

i

S R

i

S R

P P
f

P P

→  −
 =
 − 

 

RP : Robot position in 3D  

iS
P : ith Slope over limit position in 3D 

Overall repulsive force direction will be 
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3.2.4 Physical Situation Behavior 
 

Primary function of physical situation behavior is detecting stuck conditions. 

In case of physical stuck, target reaching, communication, and adaptive wander 

behavior is inhibited.  This behavior adds white noise to final response, the 

maximum value of which   is taken to be (10,10,10) . 
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CHAPTER 4   

Task Abstraction and Task Allocation Algorithm 

 
 Proposed system is based on executing tasks which can be resolved with 

multi-agent effort, it is necessary to define task executed by robots clearly. At this 

stage, a powerful abstraction is needed. Any task can be reduced into a well defined 

execution  of sequence of sub tasks. Abstraction encapsulates the definition and 

execution of a task.  

 

 

Figure 32, Task Abstraction 

 

4.1 Task Definitions 

 In this proposed system there are four different type of tasks: 

• Uncorrelated Tasks 

• Correlated Tasks 

• Synchronously Correlated Tasks 

• Sequentially Correlated Tasks 

  Any robot has a primary sensor and depending on the primary sensor, its role 

differs. Moreover each robot is capable of sensing the nature of the task, i.e. whether 

the task is uncorrelated, correlated, synchronously correlated or sequentially 

correlated or not. 
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4.1.1 Uncorrelated Tasks 
 
 Uncorrelated task is a single task which can be resolved by a single robot. 

There are two important parameters of an uncorrelated task t . 

{ }, ,it τ κ= Λ  

τ : Task Type 

κ : Number of robots necessary executing for task type τ  

Λ : Task Execution time, constant for all subtasks 

for uncorrelated tasks κ is always equals to 1 

• Type of task:  Robot senses the type of task using its primary sensors. Type 

determines which robot executes the task  

• Task Time:  Time is necessary for executing task  

 

If a robot detects an uncorrelated task then it tries to execute it within task time. 

Robot does not generate any communication event since it can execute task by itself. 

Task symbol in simulator is shown below. 

 

 

Figure 33, Uncorrelated task representation simulator. Red rectangle stands for task type 1 with 
task time 1, whereas blue rectangle stands for task type 2 with task time 5. 

 

Uncorrelated Task Execution Algorithm 

 

1. Robot executes task in task time.  
2. Robot switch  to free-state 

 

4.1.2 Correlated Tasks 
 
 Correlated task is composed of at least two different subtasks and these 

subtasks are solved by different robots asynchronously at independent times.  
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{ }, ,it τ κ= Λ  

τ : Task Type 

κ : Number of robots necessary executing for task type τ , it is always 1. Because 1 

robot can execute task in task execution time. 

Λ : Task Execution time, constant for all subtasks 

 

Separated tasks can be executed independently. Let a correlated task, T, be composed 

of two tasks: 

{ }1 2T t t= ∪  

1t  can be executed by robot 1r  at time 1T  in 1T∆  

On the other hand 

2t  can be executed by robot 2r  at time 2T  in 2T∆  

If 1r finds the source of task first then it generates communication event to invite a 

robot with type 2 based on task allocation protocol.   

 

Correlated task execution does not require any kind of synchronization 

between executions of separable tasks. In Figure 34 a correlated task is shown. 

Relative height of different color rectangles shows the relative task time.  

 

 

 

 

Figure 34, Correlated task representation in simulator. Correlated task is composed of 
separable two subtasks: Task1 and Task2 with specified task time. 

 
 
Correlated Task Execution Algorithm 

 

1. Robot ir  separates the task into subtasks  

 { }1 2 .. MT t t t= ∪ ∪  
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2. Robot ir sends communication request and distributes task  

 , 1 ,jt j M j i≤ ≤ ≠  

 to appropriate robots based on communication protocol. 

3. Robot ir executes task it Λ in task time 

4. Robot switch to free-state. 

 

4.1.3 Synchronously Correlated Tasks 
 
 Synchronously correlated task is used to define a task composed of at least 

two different subtasks but execution of these subtasks is strictly synchronous at the 

same time. Task execution processes is managed by the task manager. Manager 

decides for: 

• Communicating with other robots to invite to join task execution 

• Gathering enough number of robots with appropriate type 

• Execution of task  

• Release of task  

 

Details of roles for the robot will be explained in detail in the communication 

section.  

A synchronously correlated task is represented as follows 

{ }1 2... MT t t t= ↔ ↔  

Task T is composed of M subtasks ↔ stands for synchronous task execution.  

A synchronously correlated subtask has three parameters. 

{ }, ,it τ κ= Λ  

τ : Task Type 

κ : Number of robots necessary executing for task type τ  

Λ : Task Execution time, constant for all subtasks 
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Figure 35, Synchronously correlated task representation in simulator. Synchronously correlated 
task is composed of separable two subtasks: Task1 and Task2 with specified task time. 

 

In Figure 35 Synchronously correlated task representation is shown. Relative height 

of different colored rectangle stands for relative task execution time. 

 

Synchronously Correlated Task Execution Algorithm 

 

1. Robot ir  separates the task into subtasks { }1 2.. MT t t t= ↔ ↔  

2. Robot ir sends communication request for tasks  , 1 ,jt j M j i≤ ≤ ≠  

 for number of robots  jt κ  based on communication protocol.  

3. If enough number of robots is joined, robot ir sends execute command for all 

robots. 

  Robot ir  monitors the task execution process. 

4. If all tasks are executed synchronously then robot ir sends “go to free-state” 

command for all robots. If an error occurred then ir restarts the task from the 

beginning of the error.  If the task is not completed within a timeout time for 

any reason then manager robot sends release command to all robots. 

5. All robots switch to free-state. 

 

4.1.4 Sequentially Correlated Tasks 
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 Sequentially correlated task is used to define tasks requiring sequential 

execution process. There is an order for task execution; for starting each task has to 

wait the completion of its predecessor task 

A synchronously correlated is represented as follows 

{ }1 2... LT t t t= → →  

Task T is composed of L subtask → stands for sequential task execution.  

 

A sequentially correlated subtask has for parameters. 

{ }, , ,it Qτ κ= Λ  

τ : Task Type 

κ : Number of robots necessary executing for task type τ  

Λ : Task Execution time, constant for all subtasks 

Q : Order of task.  

 

 

 

 

 

Figure 36 Sequentially correlated task representation in simulator. Synchronously correlated 
task is composed of separable three subtasks: Task1,  Task2, Task3  with specified task time and 

task order. 

 

Sequentially Correlated Task Execution Algorithm 

 

1. Manager robot ir  separates the task into subtasks as  { }1 2 ... LT t t t= → → . 

2. Robot ir sends communication request for tasks  , 1 ,jt j M j i≤ ≤ ≠  

 for number of robots  jt κ  based on communication protocol.  

3. If enough number of robots is joined, robot ir sends execute command in the 

order of task execution for tasks, and monitors the execution of task.  If 
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current task is completed successfully then robot sends execute command for 

the next task. In case of any error, manager robot restarts the current task. If 

task is not completed within a timeout then manager robot sends “release” 

command to all robots and all robots switch to free-state.  

 

4. All Robot switch to free-state 

 

 

4.1.5 Task Combinations 
 
 Any task can be formed by a combination of uncorrelated tasks, correlated 

tasks, synchronously correlated tasks, sequentially correlated tasks. Manager 

robot senses the type of task and separates it accordingly. In our system, a robot can 

sense only one type of task source, naturally it is expected that any robot in the 

system cannot achieve task separation but for simulation purposes each robot knows 

the type of the task and therefore how to decompose  a task in to sub-tasks. 

General form of set of task R is  

{ }1 2 3 4, , , ,...., LR T T T T T
∪ → ↔

=  

Where  

1T  : Uncorrelated Task 

2T
∪

: Correlated Task 

3T
→

: Sequentially Correlated Tasks 

4T
↔

: Sequentially Correlated Tasks 

Each task iT  is also a task and formed by a combination of other subtask. Execution 

of set of task will from 1T  to LT .  
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4.2 Task Allocation Algorithm (TAA) and Communication 

Protocol 

 
Task allocation is one of the central issues of any multi-robot system. It 

determines how tasks are allocated among the participants of a robot/sensor network. 

TAA can be very different depending on the system architecture If a centralized 

system architecture is applied then completely different TAA is used as compared 

with decentralized systems. Task allocation algorithm depends also on the 

communication type and communication type is also dependent on task allocation 

algorithm, i.e. TAA and communication type should be compatible.  

4.2.1 Communication Protocol 
 

In the proposed system within communication range, it is assumed that all 

robots can communicate each other without any fault for exchanging information. 

Important issue regarding communication protocol is the addressing of messages, i.e. 

how messages will be distributed correctly to robots. In this system there are two 

addressing modes: 

• Explicit addressing 

• Broadcast addressing 

In explicit addressing mode, messages are sent to a specific robot whereas broadcast 

addressing is used for sending message to robots within communication range. 

Explicit addressing is used for node to node communication. 

We provide here as an example of communication message structure as follows: 

<Addressing Mode><Message ID><Robot ID>< Word Count><Word1>…<WordN><CS> 

Table 2, Communication message structure 

Addressing Mode Mode of addressing, explicit or broadcast addressing 

Message ID Identification number of communication message 

Robot ID Identification number of robot to message sent. This is 

meaningful if addressing mode is explicit addressing. 

Word Count Total number of words in the message including word count 

and checksum. 
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Word1 Data Word1 

WordN Data WordN 

CS Checksum 

 

4.2.2 Task Allocation Algorithm (TAA) 
 

TAA is based on known decentralized market-based auction algorithm 

described in [51] with some differences. Fitness calculation is completely different in 

this thesis. It is assumed that robots live in a virtual liberal system. Actions of the 

robots are based on their reliability and their fitness for tasks. Robots send their 

requests and responses via a communication infrastructure.  

 

  There are two basic roles that a robot can have: the role of a  manager or that 

of a worker. The manager role is being manager of a multi-robot task, where 

management covers: 

• Distributing tasks to the workers according to defined criterion 

• Starting task &Ending task 

• Monitoring execution of task 

A Worker is responsible for the execution of a specific task. Worker robots should do 

following items: 

• Execution of task 

• Reporting of execution of task to manager 

• Reporting its current status to manager 

 

Roles of the robots are completely determined by a decentralized fashion. A 

robot can be a manager or a worker at different times. A robot is free for accepting 

its role, i.e. robot has not to be a worker or a manager even if it is requested. For 

instance, a robot can choose wandering around the environment instead of answering 

for a requested help depending on the requirements of requested help.   
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4.2.2.1 General Aspect of TAA algorithm 
 

TAA has four phases: 

• Task Request Phase 

• Task Response Phase 

• Task Acknowledge Phase 

• Task Execution Phase 

 

 

Figure 37, Phases of task allocation algorithm 

 

4.2.2.2 Task Request Phase 
 

In this phase, manager robot evaluates the current task and generates 

appropriate communication packet to request the help of other robots as worker 

robots.  

 

TAA is achieved according to the fitness of each robot. Fitness is the 

minimum required reliability of robot to achieve the task. Each task has a fitness 

value evaluated by manager robot. Since task in the proposed system is a linked list 

of subtasks then each subtask has, value for different robots, a different or equal 

fitness which  is determined by the conditions evaluated by manager robot. Fitness 

calculation is one of the important aspects in this TAA.  

 

After the calculation of the fitness value for a task the manager robot 

transmits a call for gathering enough number of robots for that task execution using 

the communication infrastructure. It starts to send a task request packet (TRP) to a 
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range allowed by its communication hardware. Parameters of TRP, and their 

explanations are given in Table 3. 

 

Table 3, Communication task request packet parameters 

Parameter Name Explanation 

PacketId Unique packet ID of communication task request packet. Simulator 

interprets the TRP according to its identification number.  

OwnId Unique identification number of manger robot requesting. A 

response is sent to correct manager robot using this OwnId number.  

OwnType Type of manager robot’s primary sensor. It is used by the robots 

candidates of being worker robot for request under consideration.  

RequestedType Type of robot’s primary sensor. If requested type and robot’s type is 

identical then robot should respond the manger robot. 

RequestedTaskType Type of task, i.e. whether task is uncorrelated, correlated, 

synchronously correlated or sequentially correlated. A robot request 

a communication task if its type is identical to TaskType and its 

fitness is enough.  

SourceId Unique identification number of source for which the request is to be 

generated. Simulator uses this parameter. 

RequestTime Time of request made. Request time is the time relative to manager 

robot. In this system, it is assumed that robots are not time 

synchronized. A robot synchronizes itself with manager robot with 

this parameter by setting the value of a counter dedicated to time 

synchronization to RequestTime value.  

ExpirationTime Time of expiration of request. Response made by worker robot 

candidates is accepted only time before ExpirationTime. A robot 

knows the expiration date and of course it will not make any 

response. 

OwnFitness Fitness of the owner robot. Worker robot candidates use this 

parameter before responding.  

RequestedFitness Required fitness of a worker robot candidate. Robots having fitness 

value greater then this value can be a worker robot candidate.  

OwnPosition Position of manager robot in 3D environment. A worker robot 

candidate knows the distance to the manger robot using this 

parameter. 

CommunicationRange Range of communication hardware owed by manager robot.  
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For each subtask a TRP is generated and sent. After sending enough number 

of request for each subtask then the manager robot gets the responses from the 

worker robot candidates. The entire task request phase algorithm is listed below. 

 

Task Request Phase Algorithm 

 

1. Manager robot detects a task in general form shown below. Each task has 

also subtasks.  

{ }1 2 3 4, , , , ...., LR T T T T T
∪ → ↔

=  

2. For each subtask of , 1jT j L≤ ≤  calculate fitness, generate TRP and sent 

TRP. 

3. Evaluate responses within some time specified by expiration time. If no 

response is received and a timeout value is not exceeded then decrease the 

fitness value and re-announce the task, go to step 1. If enough responses are 

received then go to step 4. If the expiration time is reached then release task 

and go away from current location. 

4. Switch to task acknowledge phase. 

 

4.2.2.3 Task Response Phase 
 
 In this phase, response is generated for incoming task request packets. This 

phase is only applicable for worker robots. In TRP, requested worker robot type 

(RequestedType) and requested fitness (RequestedFitness) are specified. If the robot 

type is identical to RequestedFitness and fitness is equal to RequestedFitness in TRP 

then that robot can respond this TRP in case of no limiting conditions, i.e. that robot 

may not be free then it cannot respond the incoming event even if it satisfies the 

requirements of current TRP.  

 

 In this phase, a robot as a worker robot candidate generates a task response 

packet (TRSP) and sends it.  Parameters of TRSP and their explanations are given in 
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Table 4. A worker robot candidate can only respond in the form of one task respond 

packet. A worker robot candidate is a resource in the manager robot side. A resource 

cannot be shared by different manager robots having different positions. Moreover if 

a worker robot candidate sends two response packets to two different manager robots 

and if these manager robots acknowledge the response then of course there will be a 

collision. The worker robot candidate should select one of the managers as a master. 

There should be an additional re-acknowledge phase from worker robot candidate to 

the manager robot. By limiting response packet generation count to one avoids this 

problem and as well as any other problems. 

Table 4, Task response packet parameters and their explanations 

Parameter Name Explanation 

PacketId Unique packet ID of communication task response packet. It is equal 

to the identification number at corresponding TRP.   

OwnId Unique identification number of worker robot candidate.  

ManagerId Identification number of manager robot whose TRP is received. 

Simulator sends the response packet to correct robot by checking both 

PacketId and ManagerId. 

OwnType Type of worker robot candidate. 

ResponseTime Time at which response is generated. This is necessary for 

synchronizing with manager robot. A manager robot synchronizes 

itself with worker robot candidate with this parameter by setting the 

value of a counter dedicated to time synchronization to 

ResponseTime value. 

OwnFitness Fitness value of worker robot candidate relative to corresponding task 

request packet. 

OwnPosition Position of worker robot candidate in 3D environment. 

 

Task Response Phase Algorithm 

 

1. If robot is available for communication request then task request packets are 

buffered into a linked list for some time. Let list of received task request 

packet be { }L TRP  shown below. 

 { }1 2{ } , , ..., NL TRP TRP TRP TRP=  



 82 

2. For each task request packet not expired in { }L TRP , generate  a relative 

fitness list as 

 { }1 2{ } , , ..., NL F F F F=  

3. Find the maximum of fitness, ,1kF k N≤ ≤ , in the fitness list { }L F .  

4. Generate and send task response packet for task request packet, kTRP . 

  

4.2.2.4 Task Acknowledge Phase 
 
 This phase responses from worker robot candidates are evaluated and worker 

robots are selected. After task request phase, manager robot waits for some time for 

completion of task response phase. Within this time, worker robot candidates send 

responses to manager robot. In task acknowledge phase, depending on the value of 

fitness in the task response packets, received from worker robot candidates, 

acknowledges are generated.  

  

For a given task request packet, there will be a list of responses sent by 

worker robot candidates. Manager robot acknowledges the response having the 

maximum fitness. For each task or subtask only one worker robot candidate is 

acknowledged. Since a worker robot candidate sends response to only one task 

request then there will be no resource allocation conflict. In Table 5, description task 

acknowledge packet (TAP) is given. 

 

Table 5,Task acknowledge packet parameters and their explanations. 

Parameter Name Explanation 

PacketId Unique packet ID of communication task acknowledge packet.  

TaskResponsePacketId Task response packet ID for which acknowledge is generated 

ManagerId Identification number of manager robot 

WorkerRobotId Identification number of worker robot 

AcknowledgeTime Time of acknowledge time. This time is used for synchronization 

purposes.  

ExpirationTime Time after which acknowledge is invalid. Worker robot should 

 reach to its destination pointed by task request packet 
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Task allocation among the worker robots are described below. Manager 

robot’s task request packet list { }L TRP is shown below.  

{ }1 2{ } , , ..., NL TRP TRP TRP TRP=  

For each element of this list, at least one response is received from the worker robot 

candidates.  

For each task request packet there will be a list of task response packets  

{ }1 2{ } , , .. ., ,1
jj S

L T R SP T R SP T R SP T R SP j N= ≤ ≤  

Where  

jS is the size of task response packet list { } jL TRSP  for task request packet jTRP  

For each task request packet ,1iTRP i N≤ ≤  in { }L TRP maximum of fitness value in 

the task response packet list { }iL TRSP is found. A task acknowledge packet is 

generated and sent for task response packet maximizing the fitness.  Overall 

acknowledge phase algorithm is described below. 

 

Task Acknowledge Phase Algorithm 

 

1. For manager robot’s task request packet list { }L TRP  

 { }1 2{ } , , ..., NL TRP TRP TRP TRP=  

 and corresponding task response packet list 

 { }1 2{ } , , .. . , ,1
jj SL T R SP TR SP TR SP TR SP j N= ≤ ≤

 

 If for each task request packets in { }L TRP is responded by at least one worker 

robot  candidates then apply task allocation algorithm described above. 

Otherwise clear all of the buffers and exit from task acknowledge phase                  

algorithm.   

2. Generate and send task acknowledge packet to worker robots 

3. Wait worker robots arrival for some time 
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4.2.2.5 Task Execution Phase 
 
 Task execution phase is the final phase of the task allocation algorithm. In 

this phase worker robots inform the manager robot on their arrival to location. 

Execution of task is started by the command of the manager robot if all of the worker 

robots are in the region of task execution. Periodically worker robots report the 

current status of the task execution. Once the task is completed then the manager 

robot sends release command to all robots. 

 Overall task execution phase algorithm is described below. 

 

Task Execution Phase Algorithm 

 

1. For manager robot’s task acknowledge packet list { }L TAP  

 { }1 2{ } , , ..., NL TAP TAP TAP TAP=  

 Received list of inform messages from worker robots { }L TAIP  

 { }1 2{ } , , ..., PL TA IP TA IP TA IP TA IP=  

If for all elements in { }L TAP is matched with the elements in the 

{ }L TAIP one to one then all workers robots are in the vicinity of task 

execution region. If one to one match is not achieved then some of workers 

robots are missing then manager robot sends release command for all robots. 

2. Send execute command for all robots. 

3. Receive and evaluate the task execution report from the worker robots. If an 

error occurred then send release command for all robots. 

4. If all tasks are completed successfully then send release command for all 

robots. 

 

 

4.2.2.6 Complexity of Task Allocation Algorithm 
 

The manger robot has to make many relative fitness calculations. The 

complexity of the task allocation algorithm is the complexity of the task 
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acknowledge phase algorithm. In the worst case the manger will be obliged to make 

n comparisons to evaluate the maximum fitness value of received response packets. 

Complexity of task allocation for manager is ( )O n . On the other hand, worker robot 

needs only calculate its fitness, so the complexity of task allocation for worker robot 

(bidder) is (1)O [46].  

4.2.2.7 Fitness Evaluation 
  

The fitness calculation is an important issue of the task allocation algorithm. 

Depending on the value, task allocation fairness can be affected, it is necessary to 

define the criterion of fitness calculation. In this system, there is no single fitness 

calculation but fitness is calculated relative to some conditions and we will consider 

each of conditions separately in subsections 6.5.2. 

 

 The fitness value depends on the following items and all conditions stem for 

those dependencies:  

• Target reaching frequency  

• Communication failure frequency 

• Obstacle avoidance success frequency 

• Obstacle avoidance  failure frequency 

• Coverage 

• Distance from task location 

 

 Target reaching frequency defines how frequent is the target reaching. If 

time interval between target reaching is small then robot’s target detection procedure 

is working fine. Target reaching frequency includes tasks allocated via 

communication.   

 

 Obstacle avoidance success and failure also shows the current status of the 

robot’s obstacle detector sensors. If there are problems with these sensors then 

obstacle avoidance, which has a deep impact on robot overall performance will not 

be done accurately.  
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 Communication failure frequency is also an important parameter. 

Communication task failures show a problem about robots communication hardware, 

or some cross-couplings with other structures.  

 

 Coverage is a valuable parameter since it shows how robot navigates, and its 

physical situation such as motors. Coverage is computed using a time-varying 

coverage map. High coverage value is always more preferable as compared with low 

coverage values. This fitness measure enables fair task allocation.  

 

 Distance from a task location is used to describe effect of distance. Distance 

is important since it means time and energy consumption.  A worker robot candidate 

will calculate its fitness by also taking into account its distance from the manager 

robot. 

4.2.2.7.1 Fitness Calculation 

 
 Fitness of the robot is determined by the sum of individual fitness values for 

target reaching, target reaching frequency, obstacle avoidance success and failure 

rate, communication task success and failure rate, coverage, distance from task 

location. So it is necessary to develop a well defined fitness calculation for the above 

parameters. For this purpose two different fitness function types are adopted. A 

Function for type 1 is used to measure the fitness of success parameters: 

• Target reaching frequency 

• Obstacle avoidance success frequency 

• Coverage fitness 

• Distance fitness 

On the other hand a function for type 2 is used to measure the fitness of failure 

fitness: 

• Communication failure frequency 

• Obstacle avoidance failure frequency 
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 The reason behind the selection of two different fitness functions is the speed 

of ascent or descent:  error fitness functions should decrease more rapidly as 

compared to success fitness functions. 

4.2.2.7.2 Fitness Function for Success Situations 

 
 For target reaching frequency, obstacle avoidance success frequency, 

coverage fitness, and distance fitness calculation the following fitness function is 

proposed. 

 
1 2

1 2( ) ( ) (1 e ) ( ) (1 e )f x f x

sF x u x F u x F
−= − + − −  

where, 

1F and, 2F  are  boundary values, 1f  is increase rate1 and 2f  are time constant or 

increase rates. 

x is defined as total number of events / time elapsed 

1 2

1 2

0, 0

0, 0

F F

f f

> <

> >
 

( )u t  is unit step function, i.e. 

( ) 1 0

( ) 0 0

u x x

u x x

= ≥ 
 

= < 
 

The above fitness function is preferred since it is bounded, i.e. 

1 2( )

x

F F x F

∞ ≤ ≤ ∞

≤ ≤
 

Moreover the rate of increase and decrease can be controlled by adjusting the values 

of 1f  and 2f . 
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Figure 38, Fitness functions for 1 210, 15F F= = −  and different increase rate values. 

 

 In Figure 38 different fitness functions are plotted for 1 210, 15F F= = −  and 

different increase rate values. The Increase rates  1 2 0.08f f= =  generate the 

maximum increase. However for 1 2 0.04f f= =  the increase rate is slow as 

compared to the first case. As a result, the introduction of this fitness function gives 

the flexibility of adjusting 

• Two limit values on both side of the fitness parameter axis 

• Increase rates to reach boundary fitness values. 

 

 Selection of values 1 2 1 2, , ,F F f f  is important issues among all these values 

determine the performance of task allocation among robots, since task allocation is 

made according to fitness values of robots as mentioned earlier. If a robot 

overestimates its fitness then the manager robot will allocate the task for that robot. 

Proper adjustment of these parameters will be achieved based on extensive 

simulations. Selection of the fitness function parameters can be evaluated by making 

some observations. For instance to select 1 2 1 2, , ,F F f f for target reaching, it is very 
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important to know the maximum number of targets that a robot can face statistically 

in a bounded region. These values can be adaptively updated by the robots. Another 

method can be based on selecting 1 2,F F  values large such that robot fitness function 

never saturates. Control of rate of ascent and descent to boundary values is also 

important. 1,f and 2f values can be selected in cooperation with 1 2,F F such that 

fitness parameter value reaching at 50% and 90%  of boundary values should be 

acceptable. 

1

2

1

2

(1 e ), 0
( )

(1 e ), 0

f x

f x

F x
F x

F x

− − ≥ 
=  

− <  
 

For positive values of fitness parameters, fitness parameter getting 10.5F and 

10.9F are 

0.5

1

(2)ln
x

f

+ = , 0.9

1

(10)ln
x

f

+ =  

For negative fitness values 

0.5

2

(2)ln
x

f

− = − , 0.9

2

(10)ln
x

f

− = −  

By choosing only 0.5x+ and 0.5x− , 1 2,f f values can be selected easily. 

 

4.2.2.7.3 Fitness Function for Failure Situations 

 
 For the communication failure, and obstacle avoidance failure fitness 

calculation the following function is proposed. 

1 0( )
1( ) ( ) (e )f t t

fF t u t F
− −=

,
 

where  F1 is the maximum value of the fitness, 1
f is the descent factor, 0

t is the time 

of last failure event, and t is time. 

 In this case 1
f  is selected depending on the speed of descent. 1

f  is selected to 

obtain a half fitness within a time interval. A 0.5t+ is selected such that it satisfies the 

following equality.  
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1
0.5( )

2f

F
F t+ =  

For this condition, value of  1
f  will be 

1
0.5 0

ln(2)
f

t t+=
−  

Large descent factor means that effect of failure will be forgotten in a few seconds, 

whereas high values means that effect of failure will continue very long time. 

4.2.2.7.4 Parameters Settings 

 
Parameter settings of fitness items are the central issue of fitness calculation. 

In multi-robot system it is hard to find an objective function to represent the cost of 

an action. Parameters are selected by prior estimates about environment and relative 

importance of fitness items. In Table 6, parameters of different fitness items are 

given. For all fitness functions, F2  is equal to zero, therefore 0.5x− , 0.9x−  is not 

meaningful for this case. 

 

The unit of 0.5x+  is number of target / time elapsed, F1 is a unitless parameter. 

Table 6, Fitness items parameters 

Fitness Functions Abbreviati

on 

F1 
0.5x+  0.5t+  

Target Reaching Frequency 
trfF  20 0.01  

Communication Failure Frequency 
cffF  50 NA 

0t + 500 

Obstacle Avoidance Success 
oasF  5 0.20  

Obstacle Avoidance Failure 
oafF  50 NA 

0t + 100 

Coverage 
cF  5 0.15  

Distance from task location 
dF  5 25  

 

The Target reaching frequency fitness is used to measure how frequent a 

robot reaches targets. This fitness item is an additional fitness to target reaching 
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fitness. It is necessary because it shows the average target reaching. If the frequency 

is high then robot finds its targets in a small amount of time and saves energy and 

time.  

Target reaching frequency
elep

N

t
=  

N   : Total Number of target reached up to current time 

elept :  Time elapsed since deployment of robot 

 

The frequency of target reaching is computed by dividing the total number of 

targets reaches to time elapsed from the beginning robot deployment. In this system, 

it is assumed that average target detection time is 100 seconds. For this value, target 

reaching frequency fitness reaches half of the maximum. As time goes on, the value 

of this fitness item decreases.  

  

The Communication failure frequency fitness is used to represent the 

effect of communication task failures. Higher values of this fitness show that robot is 

not successful in execution of communication tasks. In case of failure of a 

communication task, robot is punished. Its overall fitness is decreased accordingly. 

 

Whenever a communication failure takes place, the robot is temporally not 

allowed to assigned  task allocation for some time. This is achieved by adjusting the 

F1 value of the robot greater than sum of maximum of other positive fitness 

functions.  

 

The sum of success fitness functions excluding distance fitness is 
trfF + 

oasF +
cF  = 30. Since total fitness is calculated by subtracting failure fitness functions 

from success fitness functions, this kind of F1 setting will guarantee that the total 

fitness is less than zero so that robot cannot make any communication, i.e. F1 > 30, 

i.e. robot is punished so that it cannot get involved in a task allocation after the 

occurrence  of an communication error.  0.5t+  is selected as 500 seconds. This means 
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that if success fitness functions is not greater than 25 (F1/2), the robot will not make 

any task allocation within 500 seconds.  

 

The Obstacle avoidance success fitness is used to monitor the obstacle 

avoidance performance of the robot. A fitness function should exist to represent the 

effect of the obstacle-dense region since it is difficult to navigate in obstacle dense 

environments. If robot avoids obstacles, its fitness is increased the maximum 

obstacle avoidance success fitness is set to5 and it is small compared to other fitness 

values. 

 

The obstacle avoidance fitness frequency is calculated by dividing the total 

number of obstacles avoided by time elapsed. 

 

Obstacle avoidance failure frequency fitness is important since it shows the 

status of sensors used for obstacle avoidance or any other side sensors. In case of 

obstacle avoidance failure, robot is punished since obstacle avoidance failure is an 

unacceptable error.  F1 value is selected such that when an obstacle avoidance error 

is occurred then the robot cannot get involved in task allcoation. It is again selected 

as 50, and 0.5t+ time is 100 seconds. Obstacle avoidance failure is forgotten more 

rapidly as compared with communication failure fitness descent speed which is 

because obstacle avoidance failures are considered as occurring more frequently as 

compared to communication failures.  

 

Coverage fitness is also important because it shows the ability of wandering 

around the environment. Coverage fitness is estimated over temporal coverage, such 

that a time varying coverage map is used. Temporal coverage is computed from the 

position information belonging to the last 80 seconds of data. Map timeout is kept 

small to increase the reactivity to short time events such as target reaching. A robot 

making more target reaching will result in a decrease in coverage fitness, because 

robot will loose time for execution of tasks. Coverage fitness function is 

implemented to adjust the fairness of task allocation. While the robot’s target 

reaching is increasing, its coverage fitness will decrease, and as a result, the sum of 
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success fitness functions will be adjusted. Moreover this fitness function also takes a 

role in fault tolerance of robots.  

 

Distance from task location is a measure of distance from a location. In a 

communication task, if a robot is far from a task location then fitness of this robot is 

decreased. Robots near the task locations are preferred to those far from the task 

location. This is very logical since it leads to time and energy consumption reduction 

if other fitness values are compatible. F1 value of this fitness function is taken as 

small in order not to exaggerate the effect of distance from task location.  

Exaggeration will result in poor fault tolerance. 

The total fitness is sum of all fitness values.  

success trf oas c
F F F F= + +  

failure ctf oafF F F= +  

total success failure dF F F F= − −  

 In Figure 39, Figure 40, and Figure 41 plot of each fitness functions are 

shown. For failure case a single failure at 0 200t =  seconds is simulated.  

 

 

Figure 39, Target reaching frequency, and communication failure frequency fitness plot with 
parameters in Table 6. At t0 = 200 seconds a communication failure is occurred. 

 



 94 

 

Figure 40 Obstacle avoidance success, and failure frequency fitness plot with parameters in 
Table 6. At t0 = 200 seconds a obstacle avoidance failure is occurred. 

 
 
 

 

Figure 41 Coverage & distance from a task location with parameters in Table 6 
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CHAPTER 5  

 

 Developed Simulation Environment 

 

5.1 Introduction 

 
 A Simulation software (SS) is required to be implemented, and testing the 

proposed cooperative multi-robot system architecture. For this purpose, we design a 

visual simulator in Windows XP environment. SS is developed using Microsoft 

Visual C++ 6.0 compiler using MFC’s (Microsoft foundation classes) single 

document interface (SDI) model. Since object oriented approach is used, simulation 

environment is quite modular. Moreover, it is easy to use the simulator with its 

friendly graphical user interface (GUI). The reader is provided by a CD at the end of 

this thesis to experiment with the generated simulator. Total number of codes of the 

simulator exceeds 31.000 lines. The simulator is documented with Doxygen 1.4.3, a 

software documentation tool which is also provided in the CD added to this thesis. 

Matlab R13 is also used as a data analysis, and modeling tool to interpret simulation 

results. 

 

 Although many simulation environments are based on 2D environment 

model, implemented software is using 3D environment model. Robots are deployed 

in a 3D environment. Usage of 3D environment enables the realistic physical 

environment. Even if the proposed system does not cover dynamic model of robots, 

user can easily integrate the physics of robot with the simulation environment. The 

proposed system uses line of sight (LOS), and slope check in 3D environment.  

 

 3D infrastructure is designed using Microsoft’s DirectX technology. DirectX 

offers a powerful 3D software development kit for users. DirectX 9.0 is used in this 
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simulator. Necessary transformations (rotation, translation, and scaling) are also done 

with DirectX.  

 

 Robots are moving in a 3D base. Base is a 3D mesh structure defined by 

triangular strips. Since it is not easy to design a 3D mesh manually, auxiliary 

software is used. Discreet’s 3DS Max 6.0 software is an excellent 3D software for 

mesh design. Meshes designed with 3DS Max 6.0 are exported to the DirectX 

environment using an additional plug-in software. PandaDXExport6 is used to 

convert 3DS Max 6.0 binary file to DirectX’s X file format. After loading designed 

mesh to the simulator, it is preprocessed to increase efficiency in terms of 

computational time. Mesh information in DirectX is represented with vertex buffers, 

and index buffers, it is not suitable for fast search, and deployment operations. A 

prepossessing is applied after loading the raw mesh information. 

 

 The main properties of this simulation software are: 

 

• Modular object oriented software approach using MS Visual C++ 6.0, and 

DirectX technology. 

• Simulation is achieved over single thread.  

• 32 bit floating point representation 

• Friendly graphical user interface (GUI). User can easily modify, and monitor 

system. 

• 3D Environment. This type of model rarely used in many robot simulators.  

• User can use this simulator as a software development kit. It is easy to add 

new components, and environment models. Surface of moon can be 

simulated. It is up to user’s programming talent.  

• Realistic 3D environment model can be used to integrate the robot’s real 

dynamics to the system. More realistic simulation may be achieved.  

• Adding robots to the system with desired primary, and auxiliary sensors 

• Modifying robot settings even in run time 
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• Adding uncorrelated, correlated, sequentially correlated, synchronously 

correlated task to the environment 

• Adding obstacles to environment. User can design complex environments 

using obstacles. Inside of a factory or a very large terrain formed by houses or 

small hills can also be modeled. 

• Error simulations for fault tolerant analysis 

 

 Screen shoot of the simulation software is show in Figure 42. In this figure, 

robots, tasks, obstacles are shown in 3D environments. In Figure 43, top view editor 

of the simulator is shown. A top view editor is implemented since it is difficult to 

deploy components in a 3D environment. Moreover, rendering object in 3D is time 

consuming. Even if 3D rendering is disabled, user can monitor system using 2D 

editor. 

 

 

Figure 42, 3D view of Simulator 
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Figure 43, Top View Editor of Simulator 
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5.2 Classes and Class Hierarchy of Simulation Environment  

 

 There are many classes implemented for satisfactory simulation. List of 

classes and the class hierarch are shown in Figure 44. Classes can be categorized into 

3 main categories: 

• Environment, and DirectX classes 

• Sensor network objects (robots, tasks, obstacles, communication) classes 

• Display classes 

 

 Main application class, CMyDirect3DApp, is derived from 

CDirectDevice which is devoted to DirectX device generation. The purpose of this 

class is construction of 3D environment from 3D meshes. CSensorSoureNet class is 

used to represent sensor network. This class implements a virtual sensor network 

platform for the robots. All of robots, tasks, and obstacles are contained as attributes 

in this class. Simulation of sensor network is achieved incrementally using this class. 

CRobot is used to represent robots. It includes a complete description of a robot. 

CSource is used to implement 4 different types of tasks. Obstacles are described 

using CObstacle class. CCom class encapsulates all of list required for 

communication. Moreover, it is used to implement communication protocol. There 

are also classes, CEnvEditor, CTopEdit, CStats, implemented for display purposes.  

 

 There are other classes which is not included hierarch figure. Total 

number of classes, and structures used in simulator is 171. 

 

5.3 Flow of Simulation 

 
 There are 9 phases of simulation listed as below.  

• Initialization & environment loading phase 

• Deployment of objects phase 

• Object Detection phase 
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• Behavioral evaluation and coordination phase 

• Updates phase 

• Robot status generation phase 

• Task allocation phase 

• Movement of robot in 3D environment phase 

• Rendering phase 

 

 

Figure 44, Classes, and class hierarchy used in simulator 
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For each simulation instant these phases are executed. Flow of simulation is 

given in Figure 45. 

 

 
 

Figure 45 Flow of simulation for each robot 
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 Initialization & environment loading phase:  Global environment variables 

such as simulation step size, environment size, limits are set to the desired values. 

The 3D environment is loaded and preprocessed according to the simulation settings.  

  

 Deployment of objects phase: Robots, tasks, and obstacles are deployed to 

the desired locations in the environment with desired settings. Objects can be 

deployed either from files saved previously or from graphical user interface.  

  

 Object detection phase: At each simulation instant deployed robots detect 

the objects in the environment. Detectable objects are targets, tasks, obstacle & 

locations having excessive slope.  

 

 Behavior evaluation and coordination phase: Each robot makes its 

behavior response evaluation using detected objects. Commands for actuators are 

generated. Behavioral coordination is achieved depending on the control strategy. 

Default robot control strategy is our proposed hybrid control architecture, but user 

can set the control strategy of robots to the pure subsumption or motor schema 

strategies. 

 

 Updates phase:  Robot’s maps and fitness metrics are updated in this phase. 

Updates phase is one of the time consuming phase because depending on the 

resolution of maps, the size of the maps change considerably.  

 

 Robot status generation phase: Robot updates its status. Default status of 

each robot is set to free. If a robot detects a task source then it switches its status to 

from free to not-free state, and does not respond any help requests. Moreover, error 

checks are made regarding the data consistency of robot.  

 

 Task Allocation Phase:  If status generated in previous phase requires a task 

allocation process then, task allocation process is started, and continued according to 

task allocation algorithm. Response to a task allocation request is also made here for 

worker robot candidates.  
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 Movement of robot in 3D environment phase: Robot moves on the 3D 

terrain along the specified direction with specified speed. In this phase the next 

location of the robot is found in the 3D environment. If a crash condition, which is an 

extraordinary error is occurred then it is reported.  

  

 Rendering Phase: 3D structures are rendered moreover top view editor is 

updated. Since rendering is a quite time consuming process, for fast simulations, rate 

of rendering can be decreased or it can be completely disabled.  

5.4 Communication Medium  

 Messages coming from robots are transmitted over a virtual medium. Each 

robot has a class “CCom” containing the linked lists for communication protocol, 

and events. If a robot decides to call another robot for its help then it starts to 

transmit the communication request, and adds a request package to its corresponding 

communication request list. At each simulation instant, “CSensorSourceNet” class 

analyzes the lists of the robots, queues, and sends to the other robots appropriately. If 

robot A is in the communication range of robot B then, a message from robot B is 

transmitted to the robot A. It the proposed system it is assumed that virtual 

communication medium is perfect with infinite bandwidth. 

5.5 Robot Sensorial Structure in Developed Simulator 

 
 Sensors have some limited ranges and limited accuracy. Depending on the 

quality of sensor, accuracy and range may differ substantially. Auxiliary sensor range 

is generally shorter than primary sensor ranges. Since sensors are not perfect, to 

model the uncertainty some noise should be added on top of expected measurements. 

In this simulation 5% of desired range is added as Gaussian noise.  

_
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RS  : Real Sensor Range 

_

R   :  Desired Sensor Range 

R∆ :  Gaussian Noise 

 There are three important concepts regarding sensors: 

• Range of sensor 

• Accuracy of sensor 

• Line of sight (LOS) dependence 

 

LOS dependence may differ for different sensors. LOS check algorithm is simple but 

its computational complexity is high. LOS check is achieved by searching 

intersection of LOS line and terrain.  

 

 In Figure 46, 2D polar plot of robot sensor range is given. Red line shows the 

desired range, blue line show realistic range. In this case 10% percent noise added to 

the desired range, 10 units. This range plot is given in 2D but in actual case, robot 

lives in 3D world and real range plot will be a sphere added some noise on top of it.  

 

 

 

Figure 46, 2D Noisy Range Drawing 



 

 

CHAPTER 6  

 
 

Experiments & Results 

 

This part will cover the experiments on following issues 

• Motion control of robots 

• Coverage 

• Effect of communication  

• Single and multi-robot task execution  

• Effect of fitness calculation on fair and fault tolerant 

6.1 Robot Motion Control of Robots 

 In this part, results will present the implementation of basic behaviors. This 

part will include graphical illustrations of following behaviors:  

• Obstacle Avoidance Behavior 

• Robot Separation Behavior 

• Heuristic Wander Behavior 

 Other behaviors are not included because they will be discussed in more 

detail in different sections.  

6.1.1 Obstacle Avoidance Behavior 
 

Obstacle avoidance behavior is one of the important behaviors. Performance 

of this behavior affects the performance of the system directly. Obstacle avoidance 

behavior is evaluated for different basic obstacle shapes which are convex, concave, 

partially concave, strongly concave shapes. The avoidance algorithm is tested in 

robots reaching a target while avoiding obstacles.  
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In Figure 47, obstacle avoidance path from a rectangular shaped obstacle is 

shown. Actually rectangular shaped obstacles can be classified as partially concave 

obstacles. It is clear that avoidance is successful. Figure 48 shows the path of 

avoidance from partially concave shaped obstacle which is a difficult task to avoid. 

The Proposed obstacle avoidance algorithm handles avoidance process successfully. 

In Figure 49 and Figure 50, avoidance from concave and strongly concave shaped 

obstacles are shown respectively. The most difficult avoidance situation is avoiding 

from strongly concave shapes due. However the algorithm successfully avoided this 

obstacle and reached the target successfully.  

 

Our proposed method easily handles this kind of almost closed concave 

shaped obstacles owing to its behavioral integration. Using wandering concept 

together with other basic behaviors enables fast and secure avoidance.  

 

 

 

Figure 47, Final position of obstacle avoidance from rectangular shaped, convex obstacle.  
Robot avoided obstacle successfully by following shown path. 

 

 



 107 

 

Figure 48, Final position of obstacle avoidance from a partially concave obstacle.  Robot avoided 
obstacle successfully by following shown path. 

 

 

 

Figure 49, Final position of obstacle avoidance from a concave obstacle.  Robot avoided obstacle 
successfully by following shown path. 
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Figure 50, Final position of obstacle avoidance from a strongly concave obstacle.  Robot avoided 
obstacle successfully by following shown path. 

 

6.1.2 Robot Separation Behavior Analysis 
 
 Robot separation behavior can be thought as obstacle avoidance behavior 

because robot tries to avoid collision with other robots.  

  

 Figure 51 gives the initial positions of the robots and sources. A robot tries to 

go to a target source having the same color, i.e. robot 1 will go to source1 whereas 

robot 2 will go to source2. In Figure 52, it is clear that robot separation is achieved. 

In the separation region where robots detected existence of each other a repulsive 

robot separation force is exerted between each other and robots pass at clear distance 

from each other 
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Figure 51, Initial position of robots and sources 

 
 

 

Figure 52, Robots having initial positions shown in Figure 51 avoided collision each other in 
robot separation region successfully. 

 

6.1.3 Heuristic Wander Behavior Analysis 
 
 Heuristic wander behavior is used in conjunction with adaptive wander 

behavior. In Figure 53, Figure 54, Figure 55, Figure 56, and Figure 57 paths (blue 

curves) generated by heuristic wander behavior are shown for time intervals 0-100, 

0-200, 0-300, 0-400, 0-900 respectively. These plots are given to show the path 

generation of the heuristic wander behavior. Since this behavior generates the 

wander direction randomly, robot passes at the same locations within some time 

intervals which is not high. 
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 As far as any wander behavior is concerned, coverage is an important 

measure of the wander performance. In  Table 7, the coverage versus time table is 

tabulated. Even if it takes 300 seconds to reach 50% of entire terrain, it takes 900 

seconds to cover the entire region because heuristic wander behavior implements a 

random search strategy and naturally linear coverage with respect to time is not 

guaranteed. Moreover, it can take very long times to cover the entire region 100 

percent based on this kind of strategies. 

 

Table 7, Coverage performance table of heuristic wander behavior 

Time, seconds Coverage, % 

100  27.55 

200 55. 76 

300 76.543 

400 82.71 

900 100.00 

  

 Despite the coverage results, heuristic wander behavior increases the 

reactivity in dynamic environment. Heuristic wander behavior helps avoiding 

unexpected obstacles because it gives some degree of flexibility of movement. By 

wandering around the environment based on random strategies increases the 

probability of getting free in some regions filled with complex shaped obstacles. 

Deterministic wander algorithm has many advantages but they may fail in highly 

dynamic environments. In this system main wander algorithm is implemented by 

adaptive wander behavior. Heuristic wander behavior is an auxiliary wander 

behavior.  

 

 Heuristic wander behavior can be used for mapping purposes. In Figure 59, 

the mapping of environments given in Figure 58 is shown where mapping is 

achieved with collaboration of two robots. Robots have mapped the entire region 

except for obstacles. The shape of the obstacles can be distinguished easily from the 
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mapping, although mapping is well beyond the scope of the heuristic wander 

behavior. 

6.2 Coverage 

 

 Coverage is one of the most important concepts in any kind of wander 

algorithms. In this section, the performance of both heuristic and adaptive wander 

algorithm will be discussed. Measure of coverage is defined as follows 

n

MxM

c
C

G
=  

Where, nc     : Total number of grid covered up to now, and MxMG : Total number of 

grid of entire region. 

 

 

Figure 53, Robot path generated by heuristic wander behavior after 100 seconds from startup. 

Coverage is 28 percent. 
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Figure 54, Robot path after 200 seconds. Coverage is 56 percent. 

 
 

 

Figure 55, Robot path after 300 seconds. Coverage is 77 percent. 
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Figure 56, Robot path after 400 seconds. Coverage is 83 percent. 

 

 

 

Figure 57, Robot path after 900 seconds. Robot has covered the entire region. 
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Figure 58, Initial situation of two robot mapping of a region filled by obstacles. 

 
 

 

Figure 59, Final situation of two robots mapping. Black curves are the path of the robots. 
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A sample coverage map is shown in Figure 60. In this case nc is 12, and total 

number of grids are 81. Coverage is 15%, 
12

0.15
81

C= =  

 

 

Figure 60, Coverage map 

 
 
 In Figure 61, the coverage performance of the heuristic wander behavior is 

shown. Data is collected for 30 runs in an obstacle and target free environment. 

Vertical axis corresponds to the required coverage time for which a robot covers 95% 

of an entire 100x100 m2 region. As shown in the figure, coverage time varies 

between 4529 and 11243 system time. In real time these correspond to 452.9 and 

1124.3 seconds respectively. Environment settings and results are listed in Table 8. 

 

Table 8, Environment setting and simulation results of heuristic wander behavior 

Environment  Target and obstacle free 

Simulation Frequency, Hz 10 

Robot Primary Sensor Range, m 10 

Robot Maximum Speed, m/sec 2.5 

Region Dimension , m2 100x100 

Maximum Coverage Time, sec. 1124.3 

Minimum Coverage Time, sec. 452.9 

Mean Coverage Time, sec. 704.3 

1σ of Coverage Time, sec. 242.1 

 

Results shows that variance of coverage time of heuristic wander behavior is about 

0.3 of average coverage time. In worst case, detection time of target will take 1124 

seconds. Mean time is 704.3 seconds.    
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Table 9, Environment setting and simulation results of adaptive wander behavior 

Environment  Target and obstacle free 

Simulation Frequency, Hz 10 

Coverage Map Timeout Time, covTO , sec. 
200 

Region Dimension , m2 100x100 

Maximum Coverage Time, sec. 818.2 

Minimum Coverage Time, sec. 357.0 

Mean Coverage Time, sec. 500.6 

1σ of Coverage Time, sec. 114.3 

 

In Figure 61, the coverage performance of the adaptive wander behavior is 

shown. In Table 9, the performance of the adaptive wander behavior is found to be 

better than that of the heuristic wander behavior, about 50%. The mean coverage 

time is 500.6 seconds which is lower than that of the heuristic wander about 200 

seconds. In addition, standard deviation of coverage time is 114.3 seconds which is a 

half that of the standard deviation of heuristic wander behavior.  

 

In Figure 61 coverage time of heuristic and adaptive wander is given 

conceptually. These results show that the adaptive wander behavior gives better 

results than heuristic wander behavior in obstacle free regions. It is clear that 

probability of detecting a target using adaptive wander behavior is higher than that of 

heuristic wander behavior. This shows that design and implementation of adaptive 

wander behavior is successful. 

 

The performance of adaptive wander behavior is determined by the coverage 

map timeout time, covTO which as mentioned earlier determines the required 

memory space. Figure 62 gives, the time required for 95% entire region coverage 

versus coverage map timeout time is shown. As covTO is increased then required 

coverage time decreases. This is logical since robot has more data about covered & 

uncovered cells to evaluate next wander point and it covers entire region in small 

amount of time since robots try to wander to the locations previously uncovered. 

After some timeout value (500sec) there is no effect of increasing covTO  value. 
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This is because of the saturation of coverage map, i.e. robot covers the entire region 

before first timeout occurs in coverage map. 

 

 High timeout value of the coverage map requires large memory spaces to be 

allocated. In Figure 63, memory allocation needed for 95% coverage is shown. When 

changing the timeout in an increasing manner, beyond a certain value the memory 

demand does not increase much this is because after that value of timeout, the robot 

has already covered the entire region. Thus it is not needed to allocate unnecessary 

memory space.  

 

 The selection of covTO is important here. The selection criterion should be 

based on the comparison between memory requirements for 95% coverage and the 

steady state coverage. Steady state coverage map memory usage is the amount of 

memory needed at least to contain all the data within time interval, covTO . If for the 

same coverage timeout value these memory requirements differ highly then choosing 

the timeout value under consideration is not meaningful. 

 

 In Figure 63, the steady state memory allocation needed for different timeout 

values is depicted. For covTO = 500 seconds, 15 Kb memory should be allocated to 

satisfy the above timeout value. But in Figure 63, we see that for 95% coverage 12 

Kb memory is needed, 3Kb is wasted up. Above a certain value of the timeout value, 

steady state memory requirements exceed the memory requirements for 95% 

coverage value. So very high covTO is not useful. 

  

 In Figure 63, it is seen that memory requirements for covTO  up to the value 

of 400 seconds is almost the same. But for covTO  greater than 400 seconds, the 

difference between steady state coverage and 95% coverage memory requirements 

increases dramatically. Therefore it is logical to choose covTO  as 400 seconds. 
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Figure 61, Coverage time of both heuristic and adaptive wander behavior for various runs. 

 
 

 

Figure 62,  95% Coverage for different coverage map timeouts, covTO . There is an inverse 

proportionality between coverage time and covTO . 
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Figure 63, Memory usage at steady state and memory usage for 95% coverage.  After covTO = 

400 seconds, difference between memory usage increases considerably. Appropriate covTO  

value should be selected by considering this observation. 

 

6.3 Target Reaching  

 Target reaching is an essential component of the proposed cooperative control 

architecture for robot/sensor network. Target reaching behavior generated a motion 

motor control input whenever a target is detected. In this section, the performance of 

target reaching behavior in conjunction with system parameters will be discussed.  

 

 In Figure 64 and Figure 65, the target reaching in obstacle dense region is 

shown. The aim of the robot is to reach the target depicted as red square at the same 

time avoiding collision with many obstacles.  In these cases both target reaching and 

obstacle avoidance behaviors are active and the coordination between these 

behaviors is done as described in the subsection state evaluation behavior 3.2.1.1. 

 

The Environment in Figure 64 is filled by long and small rectangular 

obstacles. Avoiding these kind of obstacles are easy and the robot is found to reach 

the target easily without any collision. The environment in Figure 65 is filled by 
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large and small rectangular obstacles but depending on the robot direction to the 

target, these obstacles form convex and concave shaped general obstacles. Avoiding 

this kind of obstacles is relatively difficult using behavior based approach as 

described in subsection Error! Reference source not found.. Because in behavior 

based system reactivity is an important design constraints. Modules should be as 

simple, and reactive as possible. Avoidance from complex shaped obstacles requires 

careful design of behavior without degrading the simplicity of the system. Target 

reaching is successful as shown in the figure.   

 

 

Figure 64, Target reaching in an environment filled by long and small rectangular obstacles. 

 
 

 

Figure 65, Target reaching in an environment filled by dense concave and convex shaped 
obstacles. 
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 In Figure 66 gives 8 targets distributed around the environment.  The 

corresponding average target reaching time versus coverage map timeout, covTO  is 

in Figure 67. As covTO  increases, the average target reaching time is seen to 

decrease. This result is compatible with results in coverage section. It is seen that as 

we increase the map timeout value, then coverage time decreases. To reach all of 

targets, robot should cover the entire terrain. Therefore, the coverage time and the 

target reaching time are related with each other.  

 

 In Figure 68, target reaching time with respect to number of randomly 

deployed targets is shown. Targets are deployed around the region uniformly using 

uniform random number generation. The minimum distance between the sources is 

adjusted to 10m. The average target reaching time increases almost linearly after 20 

targets. Non-linearity up to 20 targets can be explained based on target density and 

the nature of wander behaviors. In case of low target density (less than 20 targets for 

this situation), robot non-linear effects of wander behavior becomes important, 

because target detection rate is low for low target densities. To detect all targets, the 

robot speeds much time for wandering, on the other hand for high target densities, 

robot finds the targets without wandering much thus the random nature of the wander 

behaviors becomes relatively less effective.  

 

 The average target reaching time with respect to randomly deployed robots is 

shown in Figure 69 where the environment is filled with randomly deployed 25 

targets. From 0 to 10 robots average target reaching time differs substantially, but 

after this point, the rate of decrease of the average target reaching time does not 

decrease much. This is because of two reasons: 

 

• As the number of deployed robots increases then target reaching time 

probability increases until a certain value beyond which probability does not 

change much.  So rate of decrease lessens.  
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• Reaching to the target takes some time because the robot should be very close 

to be accepted as having reached it. But when the number of robot 

deployment tends to infinity, zero target reaching is found because 

everywhere, the terrain will be filled by robots. 

 

For above 25 randomly distributed targets, the energy consumption of robots with 

respect to number of deployed robots is shown in Figure 70. It is interesting that even 

if the target reaching time is high, the energy consumption of 1 robot is the lowest, 

i.e. we can deploy 1 robot in the environment instead of many robots if we are 

aiming to decrease the energy consumption of the robots. Depending on the aim of 

system, time or energy consumption can be optimized. Average target reaching time 

versus energy plot for different number of robots is shown in Figure 71. Each 

triangle in the plot corresponds to a triplet (energy/time/number of deployed robots). 

If it is desired to operate at 670, 150 average energy consumption and average target 

reaching time then 10 robots should be deployed in the region. These plots are 

important because they give a statistical analysis of important constraints. 

 

 
Figure 66, Target distribution in 100x100 m2 region 

 
  

 . 
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Figure 67, Target reaching time with respect to covTO  for regularly deployed 8 targets shown 

in Figure 66. 
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Figure 68, Average target reaching time of single robot with respect to different number of 
randomly deployed targets. 

 

 
Figure 69, Average target reaching time of different number of randomly deployed robots to 

randomly deployed 25 targets. 

 
 

 
Figure 70, Average energy consumption of different number robots reaching to  randomly 

deployed 25 targets. 
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Figure 71,  Average energy consumption of different number of robots with respect to time. 

Each triangle corresponds to an energy-time-number of robots triplet. 

 
 

 So far, targets were deployed uniformly or very regularly in the 

environments. One of the basic assumptions of this system is the dynamic 

environment assumption. In the above cases dynamism is all around the 

environment. In some cases, probability of existence of targets may be high in some 

regions. System dynamism should include this kind of situations. We will analyze 

the  target reaching time when  target is not deployed uniformly around the 

environment. For some regions, density of target is high as compared to the other 

regions. 

 

 In Figure 72, average target reaching time of single robot with respect 

coverage map timeout, covTO  is given for 5 targets which are deployed randomly in 

right quarter of the entire region. The plot is given with respect to covTO because 

this parameter directly determines the reactivity to target deployment region. As 

shown in this figure, for covTO  300 and 400 seconds target reaching time is the 

minimum. As it increases beyond 400 seconds, average target reaching time gets 
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increased. This is because, once a robot has visited a region it takes a long time to 

revisit it because of high timeout value. Low covTO values give the worst results 

because it forgets the past rapidly.  For the system conditions listed in Table 8, 

covTO can be selected as cov270 400TO≤ ≤ . This is compatible with target 

reaching time and memory requirements analysis. 
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Figure 72, Target reaching time of a single robot with respect to covTO .  If Adaptive wander is 

enabled target reaching time decreases considerably in case of regionally deployed targets. 
There is a local minima optimizing dynamic response to regionally target deployments. 

 

6.4 Effect of Communication on Target Reaching 

 
This section is devoted to the discussion on communication range effect on 

target reaching time.  Communication is a key aspect in task allocation. Usage of 

communication enables an efficient multi-robot task solution. Despite its advantages, 

there are many issues to be considered as drawbacks, for example the usage of 

communication brings in an extra cost. There should be a measure of range in order 

to optimize the communication cost. In some cases which will be emphasized in 

below, increase of communication dose not increase the system performance 

considerably.  
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Since multi-robot systems are highly non-linear systems, it is difficult to model 

the entire system. There are many parameters affecting the system and also the 

coupling effects of these parameters. Moreover, since behaviors in the architecture 

contain randomness, it is difficult to develop appropriate models and we aim to 

identify the model using an appropriate designed neural network using simulated 

data.  

 

There are parameters affecting communication performance and cost, these 

are: 

• Number of robots 

• Number of targets 

• Communication range of robots 

• Primary sensorial range of robots 

• Nature of task 

 

Effective communication range can be found by making experiments for different 

values of the above parameters. Communication range performance is evaluated 

using total target reaching time (TAR), that is if 20 tasks are deployed, TAR is taken 

as the total time elapsed to reach zero task in the environment..   

 

 Primary sensorial range is kept constant as 10 meters. For a constant number 

of robots, targets numbers are changed. For each target number, TAR time is 

obtained for communication ranges 0, 25, 50, 75, 125, 150 meters. For each range, 

100 simulations are performed. Communication range 0 means no communication. 

For 150 meters communication range, a robot can communicate with any robot in the 

terrain. The upper limit is determined by the terrain size. In this case the terrain 

syurface is 100x100 meter2. 

 

Analysis of the Effect of Communication Range over Target Reaching Procedure 

 

1. Repeated step 2 for number of robots 4 and 8. Deploy robots in the center.  
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2. Repeat step 3 for number of targets 5, 10, 15, 25, 30, 35. Distribute the target 

randomly around the environment. Each target should not close to each other 

less than robots sensorial range. 

3. Repeat step 4 for communication ranges for 0, 25, 50, 75, 100, 125, and 150. 

4. Simulate environment 100 times and measure the TAR time for each 

simulation. Take the average of TAR times. This averaged time is saved. 

Each simulation is continued up to all of the tasks are executed. 

 

 

Analysis of the effect of the communication range over target reaching time 

procedure is listed above. Targets are correlated tasks formed by two independent 

sub-tasks. If a robot determines the existence of a correlated task, it executes a 

suitable sub-task compatible with its primary sensors. Communication request is 

generated for other sub-task, i.e. a robot having capability of solving this subtask is 

invited to handle it. If 4 robots are to be deployed, robot team is divided into equal 

two parts since there exist only 2 sub-tasks. Robots in the same team have the same 

primary sensor. 
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Figure 73 A screen shot from simulation environment for 6 robots and 25 correlated tasks. 
Communication range is 25 for each robot. 

 
 

In Figure 73, initial screen shot of the simulation for 4 robots, 25 targets and 

25m communication range is given. The range of primary sensors is 10m. Table 10 

covers the information about the environment and simulation. 

 

Table 10, Simulation and environment properties. 

 
Environment  Obstacle free 

Simulation Frequency, Hz 10 

Robot Primary Sensor Range, m 10 

Robot Maximum Speed, m/sec 2.5 

Region Dimension , m2 100x100 

 

In Figure 74, target reaching time (TRT) for 4 robots is shown. As the density 

of task increases, increase in communication range does not increase the TRT. Up to 

10 tasks increase of communication range decreases the TRT. But for tasks more 

than 10 and less than 30, there is a limit in their effect to TRT changes: for these task 

numbers, there is an optimum point around 50-75 meters communication range. As 
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the density of target increases beyond 30 then communication range increase does 

not change the performance. In this case (4 robots) for 30 and 35 target numbers, it is 

unnecessary to use communication. Since target density is so high, robots do not 

need to communicate with each other. But for lowest task density, increase in 

communication range directly affects the target reaching time. For 35 targets, 

situation gets worse when communication range is increased. 

 

The above discussion is also valid for simulation results of 8 robots shown in 

Figure 75. But since the robot density is high, increase in the communication range 

more rapidly saturates the TRT. After 15 tasks, communication range increase does 

not result in a considerable TRT performance increase. Results clearly show that, 

there is a limit to the communication range for creating an increase in TRT 

performance. For low task densities, communication covering wide range of regions 

is more preferable. 

 

 

Figure 74, Target reaching time (TRT) for 4 robots and different number of task and 
communication ranges. Neural network estimates are also shown as red lines with more 

resolution. 
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Figure 75, Target reaching time (TRT) for8 robots and different number of task and 
communication ranges. 

 

 

6.4.1 Neural Network Implementation 

A 4 layered neural network is designed using MATLAB R13 to estimate the 

effect of communication range for different conditions. Inputs to the neural network 

are number of robots, number of tasks and communication range. The output is 

estimated target reaching time. 

 

 

Figure 76, Implemented neural network architecture 
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In Figure 76, neural network structure is shown. There are two different non-

linearities are used: hyperbolic tangent sigmoid and logarithmic sigmoid functions. 

Neural network is trained using data collected from simulations of 4 and 8 robots. 

Neural network is trained with simulation data having a mean square error up to 

0.0005, using Levenberg-Marquardt method. To avoid over training, the network is 

trained using both training data and test data. In Figure 74, and Figure 75 both 

experimental data and trained neural network estimates for these data are shown. 

These plots show that the training of neural network give better results.  

 

To test the performance of neural network, simulation results and neural 

network outputs are compared in Figure 77. Described procedure is performed for 6 

robots. Since neural network is not trained with 6 robots data, this experiment can be 

used for comparative purposes. Even if the shapes of the curves are similar, the 

neural network does not give correct experimental results. The reason behind 

mismatch between results in experimental data, and neural network output, may be 

due to the lack of simulation data or due to system nature. As mentioned earlier, 

simulated system is highly stochastic and non-linear. Correct curve shape estimate is 

a benefit. This information can also be used to decide upon increasing the range of 

communication.  

 

The 3D plot of Neural network TRT estimates for 2, 4, 6, and 8 robots are 

shown in Figure 78, Figure 79, Figure 80, and Figure 81 respectively. X and Y axis 

are corresponding to the number of targets (tasks), and communication range. Since 

implemented model generated with neural network is highly non-linear, for some 

input values sharp changes can exist. These plots are given to show fitted model is 

meaningful because it does not have sharp changes, and compatible with the 

experimental data.  There are small deviations, hills, peaks in plots which are due to 

the non-linear nature of fitted model. 
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Figure 77, Experimental data and expected neural network output for 6 robots. 

 
 

 

Figure 78,  Neural network TRT estimates for 2 robots for different target numbers and 

communication ranges 
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Figure 79 Neural network TRT estimates for 4 robots for different target numbers and 

communication ranges 

 

 

Figure 80 Neural network TRT estimates for 6 robots for different target numbers and 

communication ranges 
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Figure 81 Neural network TRT estimates for 8 robots for different target numbers and 

communication ranges 

 

6.5 Task Allocation Performance Evaluation and Fault 

Tolerance 

 
 In this section, the performance of task allocation algorithm (TAA) presented 

in previous section will be analyzed. Task allocation process enables the robots to 

solve tasks requiring cooperation of robots. Therefore the performance of task 

allocation directly affects the performance of robots and task execution. 

 

 Task allocation is based on a performance criterion called fitness. Each robot 

is capable of evaluating its own fitness described in fitness sections. This section will 

cover the experimental results for  

 

• Fair task allocation in obstacle dense, and obstacle free regions 

• Selection of fitness functions 

• Fault tolerance analysis 
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6.5.1 Fair Task Allocation  
 
 Fair task allocation is a performance criterion regarding selection of fitness 

functions. Fair task allocation means that robots having no faults in bounded regions 

should have equal probability for task allocation. If the fitness criterion is not 

selected appropriately, fitness of some robots may become very high as compared to 

others. As result, un-fair task allocation can be obtained for some robots. For 

instance, in case of fair task allocation, if 5 robots are deployed in region then at 

steady state it is expected that each robot should execute 20 percent of the total 

executable tasks executed. In some un-fair allocation one robot may executes 40%, 

and others 15% of the total tasks. 

 

 Fairness of task allocation can be measured using the following metric [48]: 
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where 

iρ : Fairness of current robot 

if : Normalized number of task allocated for the robot under consideration 

µ : Average number of normalized task allocation 

Since if , and µ  are normalized, both of them less than or equal to 1. 

Total fairness, ρ , is  
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 The proposed fitness functions are found to eliminate the un-fair task 

allocation situations based on the above metric. Results are tested both in obstacle 

free and obstacle dense regions. 

6.5.1.1 Task Allocation for 5 Robots, 5 tasks at Obstacle-Free Region 
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 Task allocation performance evaluation is done for the test conditions 

presented in Table 11. 5 robots are deployed in 100x100 m2 environment to find and 

to solve 2-robot synchronously correlated tasks, and uncorrelated tasks. As 

mentioned earlier, the synchronously correlated task requires task allocation process; 

where as uncorrelated task does not require any task allocation. In this test, 5 robots 

are deployed on a terrain where three 2-robots synchronously correlated tasks, and 

two 1-robot uncorrelated tasks exist. As robots execute the tasks, the number of tasks 

decreases but this is not allowed. Task deployment strategy is based on keeping 

target density constant in the environment. Whenever a task is finished then a new 

task is created randomly in the region. In Table 12 fitness parameters of fitness 

functions are given.  

 

Table 11, Environment, robots, tasks, and simulation properties 

 
Behavioral status  No behaviors are inhibited 

Fitness evaluation status All fitness functions are enabled 

Environment  Obstacle free 

Simulation Frequency, Hz 10 

Simulation time, sec 3600 

Region Dimension , m2 100x100 

Robots 5 robots, all robots are the same type. 

Robots fault status All robots are functioning perfectly 

Robots’ initial position At the center of region 

Tasks 3 2-robots synchronously correlated task, and 2 

uncorrelated tasks 

Task deployment Strategy Task density is kept constant. Targets are randomly. 

Target Density, targets/ m2 5/(100x100) 

Robot main sensorial  range, m 10 

Communication range, m 50 

Coverage map timeout, sec 400 

Obstacle map timeout, sec 300 

  

Table 12, Fitness parameters 
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Fitness Item F1 F2 
0.5x+ / 0.5t+  

Target reaching frequency 20 0 0.01 

Communication failure frequency 10 0 0.01 

Obstacle avoidance success frequency 5 0 0.2 

Obstacle avoidance failure frequency 10 0 0.5 

Coverage  5 0 0.15 

Distance 5 0 25 

Coverage fitness timeout, sec 80 

 

 

 In Figure 82, the fitness functions for different robots are shown. In this case, 

the dominant fitness function is the target reaching frequency. But since all robots 

are functioning perfectly, error fitness functions, communication failure, and obstacle 

avoidance failure frequency are not activated.  It is shown that robots execute task at 

0.02 Hz, i.e. robots’ average target reaching time is 50 seconds.  

 

 Obstacle avoidance success frequency fitness functions are activated only at 

the borders of the environment. Its contribution is very small as compared to the 

other non-zero fitness functions.  

 

 

 Coverage fitness function is highly reactive for the coverage of robot. Since 

fitness coverage map time out is set to 80 seconds, a target reaching will decrease 

coverage fitness function since average target execution of a task is 30 seconds. This 

fitness function is one of the tuning functions for fair task allocation process. 

Therefore it fluctuates more rapidly. In Figure 82, distance fitness function is shown 

as zero but this is not the case. Distance fitness function is evaluated relative to task 

location. It is not meaningful to draw the fitness function with respect to time. 

Distance function, and coverage function enables fair task allocation operation. 

 

 In Figure 83, number of tasks executed by each robot, total number of tasks 

executed, percentage of task executed by different robots, and sum of fitness 

functions excluding distance fitness functions are given with respect to time.  
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 Sum of fitness functions excluding distance function is shown. It is clear that 

number of targets reached by each robot is proportional to the sum of fitness 

functions. For fair task allocation sum of fitness functions excluding distance fitness 

should be close enough to each other. Since 5 robots are deployed, it is expected that 

each robot should reach the 20% of the total targets reached. As shown in         

Figure 83, each robot reaches nearly 20% of the total number of tasks reached. 

Fairness of the task allocation is 0.020 

 

 Another important parameter is time of convergence to 20 percent task 

allocations.  In Figure 83, it is shown that after 750 seconds from the beginning, task 

allocation percentage reaches almost steady state task allocation percentage.  

 

 There are fluctuations over sum of fitness functions. This is because of 

fluctuations over coverage fitness function. Whenever a task is reached, coverage 

fitness is decreased otherwise robots coverage fitness increases. Actually, these 

fluctuations tune the sum of fitness functions for fair task allocation. 

 

 Another important aspect is the rate of task allocation/execution. In a normal 

situation, it should be linear with respect to time. The first figure with dashed lines in 

Figure 83 shows that task allocation rate is almost constant because total number of 

target reaches increases linearly with time. 

 Simulation results show that task allocation is fair enough, and linear for 

conditions on system and fitness parameters listed in Table 11, and Table 12 

respectively. 
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Figure 82 Fitness functions of 5 robots in obstacle-free region for 5/(100x100) task/m2 task 
density. 
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Figure 83  Number of tasks reached statistics, and sum of fitness function excluding distance of 
5 robots in obstacle-free region for 5/(100x100) task/m2 task density. 
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6.5.1.2 Task Allocation for 5 Robots, 5 tasks at Obstacle-Dense Region 
 
 Simulation environment settings are same as listed in Table 11 except that 

environment is filled with obstacles. Obstacle density is 10.5%. Obstacle distribution 

is the same for each run. Fitness functions settings are also same with parameters 

listed in Table 12. 

 

 Simulation results are shown in Figure 84, and Figure 85. Since the 

environment is filled by obstacles, obstacle avoidance fitness functions is more 

active for this case. Moreover coverage fitness function fluctuates much more than 

that of obstacle-free case. 

 

 Discussion about for the case of obstacle-free environment with the same 

number of robots, and tasks are valid for this case but convergence time to almost 

20% steady state task allocation is increased because of obstacles in the environment. 

It is nearly 1000 seconds. Results presented in Figure 85 show that fair task 

allocation with linear characteristic is also obtained for this case. Total task 

allocation fairness is 0.0217. 

6.5.1.3 Task Allocation for 5 Robots, 10 tasks at Obstacle-Dense Region 
 

 The aim of this simulation is to investigate the task allocation performance 

with respect to task density. In this case task density is doubled.   

 

 Simulation environment settings are same as with the setting listed in Table 

11 except that environment is filled with obstacles, and task number is increased by 

5. In this case robots are deployed in an environment having 8 2-robots 

synchronously correlated, and 2 1-robot uncorrelated tasks are deployed. Again task 

density is kept constant. Moreover, obstacle density is also10.5%. Fitness function 

settings are also the same as in Table 12. Simulation results are shown in Figure 86, 

and Figure 87. Almost perfect task allocation is obtained. Task allocation fairness is 

0.0189. Since fairness metric is defined as bias in task allocation, the smaller this 

value is the fairer becomes the task allocation. Time to 20 percent convergence time 
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is around 600 seconds. If these results are compared with 5 tasks case, it is clear that 

convergence time is decreased and more satisfactory task allocation percentage is 

obtained. This is clearly due to the increase in task density. High task density 

increases the probability of reaching targets. In this case, robot competes less for 

targets because it is not difficult to find a free-robot. 

 

 

Figure 84, Fitness functions of 5 robots in obstacle-dense region for 5/(100x100) task/m2 task 
density 
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Figure 85 Number of tasks reached statistics, and sum of fitness function excluding distance of 5 
robots in obstacle-dense region for 5/(100x100) task/m2 task density. 
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Figure 86 Fitness functions of 5 robots in obstacle-dense region for 10/(100x100) task/m2 task 
density. 
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Figure 87 Number of tasks reached statistics, and sum of fitness function excluding distance of 5 
robots in obstacle-dense region for 10/(100x100) task/m2 task density. 
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6.5.2 Selection of Fitness Functions 
 

 Choice of fitness functions is very important because it directly determines 

the fairness of task allocation, and fault tolerance. All of the proposed fitness 

functions were active in fairness analysis experiments. In this subsection, only one 

fitness function that of target reaching will be activated to observe its individual 

effect of fitness function on fairness and the same analysis will be repeated for 

coverage and distance fitness function. 

 

 It is not meaningful to analyze the obstacle avoidance success fitness function 

because the robot may operate in obstacle-free regions. Other fitness functions, 

communication failure, and obstacle avoidance failure functions are not suitable for 

task allocation purpose alone. They are designed for fault tolerance.  

 

 Simulation environment settings are adjusted to be the same with setting 

listed in Table 11 except that environment is filled with obstacles. Obstacle density is 

10.5%. 

 

6.5.2.1 First Fitness Analysis: Target Reaching Frequency 
 

 It is very meaningful to use target reaching frequency as a fitness parameter 

for task allocation. In Figure 88, target reaching percentages are shown for this case. 

By taking only target reaching frequency as fitness criterion, task allocation is not so 

satisfactory. The task allocation percentages at the steady state are given in Table 13. 

Almost 30% of all tasks are allocated to Robot1, whereas it is 13.5% for Robot4.  

Total task allocation fairness is 0.0847. It is clear that fair task allocation is not 

obtained as compared with the experimental results where all of the fitness functions 

were enabled. Moreover the linearity at steady state of task allocation got worsen.  

 

 Simulation results show that, usage of target reaching frequency as fitness 

function alone is not a good choice. 
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Table 13 Task allocation percentages for 5 robots when only target reaching frequency is 
activated. 

 
Robot  Steady state task allocation percentage 

Robot1 27 

Robot2 21.5 

Robot3 19.5 

Robot4 18.5 

Robot5 13.5 

 

6.5.2.2 Second Fitness Analysis: Coverage 
 
 Coverage can also be used as task allocation fitness criterion for missions 

requiring some search procedures. Coverage fitness has two important 

characteristics: 

• It represents how good robots wander. 

• It gives information about how frequent target reaching is done. 

 

If robot target reaching is very frequent then coverage fitness value decreases. This 

gives a kind of fairness. If a robot reaches a target then its coverage fitness will 

decrease but other robots coverage will remain relatively high. 

 

 In Figure 89, target reaching percentages is shown for this case. At steady 

state, task allocation percentages are given in Table 14. Task allocation fairness is 

0.0293. Task allocation results are fair enough as compared with the case only target 

reaching frequency is activated. Task allocation linearity is also satisfactory.  

 

 Results show that coverage fitness can be used as fitness parameter but this is 

only valid if all robots are functioning perfectly. In case of any fault, this parameter 

will not filter out some kind of faults such as robots primary sensor errors or 

communication errors.  
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Table 14 Task allocation percentages for 5 robots when only coverage fitness is activated. 

 
Robot  Steady state task allocation percentage 

Robot1 22 

Robot2 21 

Robot3 20 

Robot4 19 

Robot5 18 

 

6.5.2.3 Third Fitness Analysis: Distance 
 

 Distance to task location can also be used in a very simple manner as fitness 

criterion allocating the task to the robot nearest to that task location. Of course this 

simplicity can not do anything about the fault tolerance issue. In [48], and [51], 

distance based metric evaluation is made 

 

 In Figure 90, target reaching percentages is shown for this case. In Table 15, 

task allocation percentages are shown. Task allocation fairness is 0.0439. Task 

allocation is almost fair, and task allocation rate is almost constant. 

  

 The fairness analysis of different metrics shows that only coverage metric 

usage enables fairer task allocation as compared to using only target reaching, and 

only distance fitness function.  

 

Table 15 Task allocation percentages for 5 robots when only distance fitness is activated. 

 
Robot  Steady state task allocation percentage 

Robot1 24 

Robot2 21 

Robot3 19 

Robot4 18 

Robot5 18 
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In Table 16, task allocation fairness metric for different fitness metrics are given. 

Proposed fitness functions usage gives total 0.0217 task allocation fairness metric. 

On the other hand, distance based fitness calculation gives 0.0439 fairness showing 

that our proposed method enables almost 2 times fairer task allocation than distance 

based fitness calculation method used in the literature. Usage of coverage, obstacle 

avoidance and distance fitness measures at the same time enables fairer task 

allocation. 

Table 16 Task allocation fairness metric for different fitness metrics 

Fitness Metric Fairness metric 

Six fitness parameters are activated 0.0217 

Distance  0.0439 

Coverage 0.0293 

Target reaching frequency  0.0847 
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Figure 88 Only target reaching frequency fitness function is activated. Number of tasks reached 
statistics, and sum of fitness function excluding distance of 5 robots in obstacle-dense region for 

5/(100x100) task/m2 task density. 
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Figure 89 Only Coverage fitness function is activated. Number of tasks reached statistics, and 
sum of fitness function excluding distance of 5 robots in obstacle-dense region for 5/(100x100) 

task/m2 task density 
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Figure 90 Only Distance fitness function is activated. Number of tasks reached statistics, and 
sum of fitness function excluding distance of 5 robots in obstacle-dense region for 5/(100x100) 

task/m2 task density 
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6.5.3 Fault Tolerance Analysis 
 

 In this section fault tolerance of the proposed system will be analyzed. For 

this purpose, an artificial error situation is simulated.  Some of the deployed robots 

are made not to functioning perfectly, i.e. they are corrupted partly or completely. 

Consequently the following error situations are simulated: 

• Target reaching  errors 

• Obstacle avoidance error 

• Physical integrity error. 

 

 In case of above errors, task allocation to partly corrupted robots will be 

analyzed. It is expected that fitness of this partly or completely corrupted robots 

should be very low so that task allocation should not be made to them. In Table 17, 

simulated fault types are given. Moreover, reasons, effect and simulation methods of 

these faults are also given. 

 

Table 17 Simulated fault types, and information about these faults 

Fault Type Main Reason  Effect Simulation 

Method 

Target reaching 

errors 

Fault in robot’s sensors 

or communication 

hardware 

Robot cannot make 
efficient target 
reaching. 
 

Robot cannot lock 

targets 

Obstacle avoidance 

error 

Fault in robot’s 

secondary sensors 

Robot cannot make 

efficient obstacle 

avoidance. It can crash 

into obstacle and 

destroy its physical 

integrity. It can stuck 

and loose time. 

Robot average 

speed is decreased 

to 33% of average 

speed of normal 

robot while obstacle 

avoidance behavior 

is active. 

Physical errors Fault in robot motors or 

any kind of physical 

problem 

Robot cannot move 

appropriately. Robot 

may fail to execute the 

tasks. 

Robot average 

speed is decreased 

to 10% of average 

speed 
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6.5.3.1 Target Reaching Errors 
 

 Target reaching error is simulated using communication errors. When a robot 

is allocated to execute a task, it will not lock on to the task, and therefore it will make 

communication faults. So communication failure frequency fitness function will be 

activated. It is expected that the fitness of a robot having this kind of fault will 

decrease as compared with other robots.  

 

 Simulation is done at obstacle-free environment. Simulation environment 

settings are also same with setting listed in Table 11 except for task properties listed 

in Table 18. In this error simulation, only one of deployed robots is defective. Target 

reaching error simulation start time, and stop time are given in Table 19. After stop 

time, robot begins to function again properly by not doing any faults.  

 

Table 18 Robot, and task properties for target reaching error simulation 

 
Robots 5 robots, all robots are the same type. 

Robots fault status Robots are functioning perfectly except for Robot1 

Robots’ initial position At the center of region 

Tasks 3  2-robots synchronously correlated task 

Task deployment Strategy Task density is kept constant. Targets are randomly. 

Target Density, targets/ m2 3/(100x100) 

 

Table 19, Target reaching fault simulation timing 

 
Fault Simulation Method Start Time, sec Stop Time, sec Duration, sec 

Robot cannot lock to task 

allocated via communication 

1000 2000 1000 

 

In Figure 91 all of fitness functions are given. In Figure 92, target reaching 

counts for each robot, and sum of fitness functions with respect to time are given. 

Red line in each subplot belongs to the robot making target reaching error. It is 

shown in Figure 91 that the faulty robot has made a target reaching error at time 

1113 second. At that instant robot total fitness is reached to -28.5 excluding distance 
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fitness. Since task allocation algorithm requires that sum of fitness functions 

excluding distance should be greater or equal to zero, this robot should not undergo 

any task allocation. The robot should wait for the sum of fitness to exceed zero. As it 

is shown in Figure 92, defective robot fitness reaches zero near time 2000. After 

2000, no error is simulated so robot is functioning with no fault.   

 

In Figure 92, in subplot 2, normalized task allocation for each robot is shown. 

After the time communication error occurred, number of tasks allocated to defective 

robot decreased considerably due to the decrease in fitness functions. Since tasks are 

not allocated to the defective robot, task allocation linearity is not violated. In    

Figure 92, time interval, where robot1 could not make any task allocation, is marked. 

In this interval, the slope of task allocation line is decreased because effective 

number of robots decreased to 4 from 5, i.e. the total number of task allocated is 

decreased. After this time interval, robot 1’s fitness becomes greater than zero starts 

again to get allocated tasks after time 1960 seconds. Above results shows that task 

allocation is performed well in case of target reaching errors.  
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Figure 91 Fitness functions for all robots. Red line is belonging to defective robot making target 
reaching errors. 
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Figure 92 Number of tasks allocated, and sum of fitness functions  for all robots. Red line is 

belonging to defective robot making target reaching errors. 

 

No Task 
Allocation 
for Robot1 
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6.5.3.2 Obstacle Avoidance Errors 
 

 Obstacle avoidance error is simulated in a %10.5 obstacle filled environment.  

Error is simulated by decreasing the average speed of the robot described in Table 

17. Properties of robots and task are given in Table 20. In this case, average task 

number is increased to 10. 

 

Table 20 Robot, and task properties for obstacle avoidance error simulation 

 
Robots 5 robots, all robots are the same type. 

Robots fault status Robots are functioning perfectly except for Robot1 

Robots’ initial position At the center of region 

Tasks 10  2-robots synchronously correlated task 

Task deployment Strategy Task density is kept constant. Targets are randomly. 

Target Density, targets/ m2 10/(100x100) 

  

Table 21 Obstacle avoidance fault simulation timing 

 
Fault Simulation Method Start Time, sec Stop Time, sec Duration, sec 

Robot average speed is 

decreased to 33.3%  

1000 2000 1000 

 

 Obstacle avoidance fault is simulated according to timing given in Table 21. 

Fitness functions are given in Figure 93.  Task allocation statistics and sum of fitness 

functions are given in Figure 94. Red lines in the plots belong to the defective robot 

(robot 1). Robot1 has started to make obstacle avoidance error starting at time 1014. 

At this point, robot 1’s overall fitness goes to -28.8. Since total fitness excluding 

distance fitness is less than zero, this robot cannot be allocated any task. Robot1 

continues to make obstacle avoidance error up to time 2000 but its fitness reaches 

zero after 2168 seconds, i.e. even if there is no obstacle avoidance error after time 

2000, due to the decaying effect therefore due to the transient effect of the obstacle 

avoidance failure fitness function, the robot cannot make any task allocation for 168 
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seconds after error simulation is removed. This is the confidence interval. Since 

robot did not make any errors, its fitness increases gradually, but it takes some time 

to reach other robots having no fault. 

 Results for target reaching error are also valid for this case. Task allocation 

linearity is preserved for time intervals in which error is simulated or not simulated. 

Slope of total number of task allocation at error simulation interval is slightly less 

than the slopes at other instants. It is clear that task allocation is done effectively in 

case of obstacle avoidance faults. 

 

 

 
Figure 93, Fitness functions for all robots. Red line is belonging to defective robot making 

obstacle avoidance errors. 
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Figure 94 Number of tasks allocated, and sum of fitness functions  for all robots. Red line is 

belonging to defective robot making obstacle avoidance errors. 

 

No Task Allocation 
for Robot1 
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6.5.3.3 Physical Errors 
 

 Physical errors include robot physical structural errors such as faults in 

motors. These kinds of errors result in speed degradation. 

 

 Physical error is simulated in an obstacle-free environment.  Error is 

simulated by decreasing average speed of robot described in Table 17. Properties of 

robots and task are given in Table 22. 

 

Table 22 Robot, and task properties for obstacle avoidance error simulation 

 
Robots 5 robots, all robots are the same type. 

Robots fault status Robots are functioning perfectly except for Robot1 

Robots’ initial position At the center of region 

Tasks 3  2-robots synchronously correlated task 

Task deployment Strategy Task density is kept constant. Targets are randomly. 

Target Density, targets/ m2 10/(100x100) 

  

Table 23 Physical fault simulation timing 

 
Fault Simulation Method Start Time, sec Stop Time, sec Duration, sec 

Robot average speed is 

decreased to 10%  

1000 2000 1000 

 

 Physical fault is simulated according to timing given in Table 23. Fitness 

functions are given in Figure 95. Task allocation information and sum of fitness 

functions are given in Figure 96. Red lines in the plots again belong to the defective 

robot (robot 1).  

 

 Robot 1 starts to make this error beginning at time 1000. From this instant, 

coverage fitness function decreases to almost zero. But the actual fitness drop is 

obtained at instant 1615. Robot 1 makes a communication error because of a task 

allocated to this robot. But since it did not reach the target point then its task 

execution has failed. This communication error decreases the total fitness of robot 1 
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to -40, so it could not make any task allocation from then on. It is only after time 

2910 that the robot fitness reaches zero and robot1 can make task allocation. After 

time 2000, coverage fitness again starts to increase taking normal values.  

 Number of allocated task is also linear for this case for each simulation 

interval whether error simulation is active or not. This shows that task allocation is 

performed well among the healthy robots. As presented in this case, physical errors 

have serious deeper side effects affecting different fitness functions depending on the 

type of error.  

 
 

 
Figure 95 Fitness functions for all robots. Red line is belonging to defective robot making 

physical errors. 
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Figure 96 Number of tasks allocated, and sum of fitness functions for all robots. Red line is 

belonging to defective robot making physical integrity errors. 

 

No Task Allocation 
for Robot1 
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6.5.4 Fitness Summary 
 
 In sections from 6.5.1 to 6.5.3, fitness calculation of robots for task allocation 

has been analyzed with extensive number of simulations. Fairness, and fault 

tolerance are the main inherent issues of in fitness calculation. Moreover there is an 

important parameter, linearity of task allocation with respect to time. It is expected 

that, for constant number of robots, and task densities, the number of tasks allocated 

or executed should be constant regardless of the simulation instant.  

 

 Usage of 6 fitness functions enables the robots to allocate tasks fairly, and 

fault tolerantly. Fairness is tested for both obstacle-dense, and obstacle free regions 

for various robot numbers, and task densities. Fairness metric for these case ranges 

from 0.0189 to 0.0217.  Results are satisfactory about fairness, and task allocation 

linearity. 

 

 Moreover, selections of fitness functions are also important. If the usage of 

fitness function is unnecessary it should be used. For this purpose, target reaching 

frequency, coverage, and distance fitness functions are tested individually as an only 

fitness functions.  

 

 For these cases, fairness metric is not as good as the cases in which all fitness 

functions are enabled. Fairness of task allocation is almost 3 times less fair than those 

of the case when all functions are enabled. Linearity of task allocation is not as linear 

as expected. Moreover, fault tolerance will not be satisfied if these fitness functions 

are used individually.  

 

 Fault tolerance analyses are held for three error situations: 

• Target reaching error 

• Obstacle avoidance error 

• Physical integrity error 

Simulation results show that these kinds of errors are filtered well: no task is 

allocated for/ defective robots. If the task allocation to defective robots is inhibited, 
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the long time of operation is needed to reach fair task allocation. This is because of 

fitness of defective robots gradually increases but it takes some time to reach other 

robots’ fitness value. Fair task allocation requires more time in case of fault.   

  

 When an error has occurred, fitness functions (communication failure 

frequency fitness, obstacle avoidance failure fitness) dedicated to error situations is 

triggered. These fitness functions decreases more rapidly as compared with others. 

Selection of parameters of fitness functions is important. Overestimation of these 

parameters may worsen the fault tolerance. Decaying factors should be selected by 

considering average target detection, and execution time. 
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CHAPTER 7  

 

Conclusion, and Future Works 

 

 In this thesis, a hybrid behavior based architecture for a multi-robot system is 

implemented. The thesis covers  

 

• Designing a flexible, modular, scalable, as much as realistic 3D simulation 

environment 

• Designing a hybrid of both subsumption and motor schema architecture 

• Implementation of external and internal behavior  

• Implementation of task allocation based on the well known market based 

auction algorithm 

• Designing powerful task allocation metric allowing fair and fault tolerant task 

allocation 

• Extensive experiments for performance analysis both in low level (behavior 

level) and high level (system level) 

  

7.1 Simulation Environment 

 
 Simulation environment design is a challenging and time consuming work. 

Existing simulation environments can be used instead of designing a new 

environment. But this brings many limitations to the users. Many simulation 

environments are not based on 3D environment modeling. Once a base simulation 

environment is designed, it is not difficult to extend this environment to more 

realistic levels. Main advantage of designing own simulation environment is that 

every point of environment is open for designer. Designed environment are 
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satisfactory for simulation and test purposes except for realistic sensor, and robot 

dynamical model.  

 

7.2 Behavioral Architecture 

 

 Control and interaction of behaviors are achieved in a hybrid style. Behavior 

coordination is based on both subsumption, and motor schema type. A layered 

control strategy is implemented.  One layer is devoted to subsumption type control, 

and other is devoted to motor schema type control. Behaviors in the subsumption 

layer deal with the complicated tasks. On the other hand, behaviors in motor schema 

layer deal with tasks requiring reactivity.  

  

 Behaviors having relative priority with respect to each other reside in the 

subsumption layer, whereas behaviors having equal priority reside in the motor 

schema layer. These layers are coordinated cooperatively like in motor schema 

architectures. The reason behind the hybrid architecture is to take advantage of 

flexibility of controlling robots more accurately and effectively without violating 

reactivity.  

  

 In classical subsumption architecture, behaviors do not know anything about 

the state of each other. Behaviors are coordinated via lines (suppress, inhibits, and 

reset lines) in a priority based style. This coordination enables incremental and 

modular design. In complex systems this may not be easy. Because, there will be 

need for interaction of some low and high level behaviors. To overcome this 

difficulty, evaluators are introduced. In this thesis, evaluators can be used as  

• Defining priorities of behaviors in run-time 

• Defining loosely coupled coordination between behaviors in subsumption 

layer and motor schema layer. Evaluator takes state of other behaviors as 

additional input parameters 
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 Introduced control architecture does not degrade modularity, and reactivity. It 

gives an additional coordination mechanism, and flexibility. High, low, and equal 

priority behaviors can be controlled effectively by additional information about state 

of behaviors. Moreover, introduced system can be reduced to subsumption style 

control if evaluators are disabled.  

 

 Motor control of robots as an evaluation of external behaviors is tested, and 

simulation results are given sections from 6.1 to 6.3. Simulation results show that, 

external behaviors are functioning well enough individually.  

  

 Obstacle avoidance behavior is one of the basic and most important 

behaviors. Implementation of this behavior is very critical. For effective obstacle 

avoidance both repulsive and tangential potential field forces are generated. These 

two kinds of forces enable the robot to avoid obstacles more rapidly, and securely. 

Obstacle avoidance behavior is tested for convex, concave, partially concave and 

strongly concave shapes. Avoiding from strong concave obstacles is difficult using 

potential field because there is a probability of falling into local minima.  But the 

implemented obstacle avoidance algorithm minimizes this probability with the help 

of the behavior integration.  

 

 The main task of the robots is first finding tasks, and if multi-robot task 

allocation is required then robot tries to gather enough number of other robots. So 

detection phase of the tasks is the first thing that a robot should achieve. For this 

purpose two kinds of behaviors are implemented: 

• Heuristic wander  

• Adaptive wander behavior 

 

 Searching environment by considering coverage is not a new idea. There are 

graph based approaches generating optimal solutions. But these algorithms generate 

sub-optimal solutions in dynamic environments. Advantages of adaptive wander 

behavior with respect to existing methods are time-varying map usage for dynamic 

environment assumption and computational simplicity.  
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 It is assumed that the probability of occurrence of a task in any point of 

terrain is equal. Due to the equality, robot may go to locations previously wandered 

if enough time is elapsed. Adaptive wander behavior makes fusion of time varying 

coverage map, and obstacle map to generate next wander point. This point generated 

by this behavior is optimal or near optimal because 

  

• It is guaranteed that the next wander point is not visited previously within 

coverage map timeout 

• Path to the next wander point contains fewer obstacles, and then the robot 

will undergo less obstacle avoidance. As a result of this, time, and energy is 

saved.  

   

 Time varying maps are utilized in all maps used in adaptive wander behavior 

implementation. The reasons behind this are to increase coverage, and adaptivity to 

dynamic environment. Coverage is a good measure of wander behaviors. The 

performance of two wander behaviors is tested in terms of coverage by changing the 

parameters of the wander behaviors.  

 

 The performance of adaptive wander algorithm is tested by comparing the 

coverage times of heuristic wander behavior. It is shown that adaptive wander 

behavior is 50 percent better than heuristic one. The value of map timeout is critical 

in terms of memory usage. As coverage timeout, covTO , is increased, the coverage 

of the entire terrain decreases exponentially. But this increase brings considerable 

memory requirements. Simulation results show that there is an optimum memory 

requirement depending on the terrain dimensions. Analysis of memory requirements 

for steady state, and 95% coverage gives that there is an optimum covTO  in terms 

of memory usage. This is because for a given terrain dimensions, large covTO  is not 

necessary. For terrain size of 100x100 m2, 400 seconds covTO  is enough. 
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 There are many side effects in implementing two kinds of wander behaviors 

working together. In obstacle dense environments, adaptive wander behavior fails to 

generate the next wander point, and then heuristic wander takes the wander control. 

Since heuristic wander is more dynamic, it enhances the obstacle avoidance process. 

Results show that implementation of wander behaviors are satisfactory. It is not 

observed that a robot get stuck in the terrain. Adaptive wander behavior increases 

coverage time considerably. Moreover memory usage can be optimized using the 

simulator.  Moreover, these behaviors help obstacle avoidance behavior indirectly.  

 

Many experiments are done about target reaching time for various 

environmental conditions, team and task sizes. The main results of these simulations 

are that: 

 

• It is extremely difficult to model a multi-robot system. There are many 

parameters to be considered for appropriate model. 

 

• In general, optimum operating points can be found by adjusting parameters 

such as team size, main, sensorial range, and communication range. 

 

• If there is prior knowledge about the environment, different parameters 

should be optimized. For instance, if approximate task density is known, 

energy consumption of the robot team can be optimized. Number of robots 

optimizing target reaching time, and energy consumption can be found using 

the simulator. 

 

• Simulation can decrease unnecessary resource usage, i.e. if 20 meters 

communication range is enough, 30 meter communication range will increase 

cost considerably. 

 

Communication cost is one of the major constraints in the system. In this 

thesis, it is aimed to model the optimal communication range with respect to team 

size, task density, and main sensorial range. Many experiments are done to optimize 
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target reaching time with respect to communication range with the different 

parameters of are mentioned above. Simulation results are fed to a 4 layered neural 

network to train it. This neural network is asked to compute an optimum 

communication range for input data not uses for training. Even if the neural network 

estimated the correct shape, the error between estimated and simulated result is high 

for the time being.  

 

7.3 Task Allocation and Description   

 Task allocation is the central issue in multi-robot systems. It affects 

performance of the team directly. In this thesis, market based auction algorithm is 

implemented. Task allocation algorithm is almost the same with MURDOCH 

described in [51], except for fitness calculations.  

  

 Tasks are allocated to robots using their fitness values. In MURDOCH, 

fitness of robots is determined by the relative distance to the task location. In this 

work, there is a different method is developed calculating fitness. The main aims of 

the new fitness functions are to obtain:  

• A compact description of fitness of robot without dealing with the reasons 

• Fair task allocation  

• Fault-tolerant task allocation 

  

 There are two types of non-linear fitness functions, one for the success 

conditions, and one for the failure conditions. Fitness functions are non-linear, and 

time dependent functions. By using this non-linear fitness functions, following 

benefits are obtained 

 

• Rate of increase with respect to fitness function parameters  is determined 

• Upper bound for fitness values is specified 

• Time effect is inserted. Fitness is not absolute, it is time-dependent. As time 

goes on fitness function decreases.  
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Fitness are exponential functions, and more linear for small fitness parameters. 

As parameters increase, fitness function goes to more non-linear region. Meaning of 

this is that if a robot reaches 100 targets, and another has reached 105 targets, fitness 

of these robots will differ slightly.  

  

 Fair task allocation is achieved with success fitness functions: target reaching 

frequency, obstacle avoidance success frequency, coverage. Fault tolerant task 

allocation is achieved using failure fitness functions: communication failure 

frequency, obstacle avoidance failure frequency. In addition to these an 

instantaneous distance fitness function is also used to measure the fitness relative to 

task location.  

 

 In 6.5, effect of fitness functions on task allocation is analyzed. Results are 

quite satisfactory. Task allocation fairness is higher than the results for auction based 

task allocation algorithm given in [48], [51]. Three times fair task allocation is 

achieved using introduced fitness functions. Fairness of task allocation is achieved 

with coverage, and obstacle avoidance success frequency fitness functions. 

  

 Fault tolerance analysis is also satisfactory. To test the fault tolerance 

analysis, three types of error situations are simulated: 

• Communication errors 

• Obstacle avoidance error 

• Errors in the robots physical structure for instance faults in motors. 

 

Task is not allocated to a robot having faults. Robot fitness decreases dramatically in 

case of fault but if any other fault has not occurred, then fitness of the robot increases 

exponentially with a specified time constant so that the robot can again be allocated 

and execute tasks. 

 

 These fitness functions cover compact descriptions of success and failure 

conditions. For instance, a robot can determine the obstacle avoidance error, but it 

may not know the reasons of error. Fitness functions are intended to analyze the 
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results rather than reasons. Another beneficial side effect is the communication 

demand reduction in case of errors.  

  

 Method of task description used in this simulator is also satisfactory. User 

can define 4 different types of tasks. By nesting these 4 types of tasks, any task can 

be obtained. But even if four types of task description exist in the simulator, nesting 

is not implemented for the time being.   

 

7.4 Future Works  

  

 All results are obtained using the simulator implemented. Physical robot 

implementation is a meaningful and necessary future work. Proposed behavioral 

control architecture should be tested with embodied robots. This is the final 

validation of this thesis. Benefits of the simulator should not be forgotten. 

 

 Simulation environment can be developed further. Models of the sensors and 

the environment can be enhanced to obtain more realistic simulations. Currently, 

there is no physical model of the robot dynamics in the simulator. Robots are simply 

assumed to be box shaped with perfect kinematics. Dynamical model of robots with 

correct physical structure can be integrated with the simulation environment. 

 

 Motion control of the robot is achieved with potential fields. Magnitudes of 

different force parameters are found using the simulator for safe operations. But 

these values can be optimized further, or they can be updated in real time adaptively. 

Fitness functions can also be improved in terms of convergence time to fair task 

allocation. New paradigms can be developed in task allocation issues to decrease the 

communication demand. Currently, auction based algorithms need high 

communication resources.   

  

Understanding the nature of intelligence as an ultimate goal of the multi-robot 

system researches will never end. Many hot topics can be tackled in the future: If 
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robots do not perfectly fit to tasks that have to be achieved, relevance measures need 

to be evaluated besides fitness such that fused relevance of many robots will make 

that group fit for a task. Information need to be fused at different levels of resolution. 

Security issues can be investigated like sensing enemy, surveillance. 
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