FAULT TOLERANT DEPLOYMENT, SEARCH, AND TASK COOPERATIVE

CONTROL OF ROBOT/SENSOR NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BERKANT AKIN

IN PARTIAL FULFILLMENT OF THE REQUIRMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2005

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. ismet Erkmen

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Aydan Erkmen Prof. Dr. ismet Erkmen

Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Erol Kocaoglan (Chairman),(METU, EE)

Prof. Dr. Ismet Erkmen, (METU, EE)

Prof. Dr. Aydan Erkmen, (METU, EE)

Assist. Prof. Dr. Afsar Saranli, (METU, EE)

Dr. Tolga Sonmez, (TUBITAK-SAGE)

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last name : Berkant Akin

Signature

i1

ABSTRACT

FAULT TOLERANT DEPLOYMENT, SEARCH AND
TASK COOPERATIVE CONTROL OF ROBOT/SENSOR

NETWORKS

Akin, Berkant
M.S., Department of Electrical and Electronics Engineering
Supervisor: Prof. Dr. Ismet Erkmen

Co-Supervisor: Prof. Dr. Aydan Erkmen

September 2005, 182 pages

This thesis focuses on developing of a distributed, efficient and fault tolerant
multiresolutional architecture for sensor networks. For demonstrative purpose, a
powerful simulation environment using 3D environment model has been developed.
The robot network is composed of autonomous robots capable of working
cooperatively equipped with single typed simple sensor. The developed layered
control architecture is hybrid including both subsumption and motor schema control
strategies. In this proposed control method, behaviors in different or in same layer
are coordinated with an evaluator unit that overcomes the difficulties of subsumption
based architectures in terms of behavioral coordination. The final coordination
between these layers is achieved cooperatively. We performed many simulation
experiments to test robot deployment, search and task execution. It is shown that

some important parameters such as target reaching time, energy consumption, and

v

communication range can be optimized if an approximate prior information about the
environment is known. Robots executes task based on a task allocation algorithm.
Market based auction method is used as a task allocation algorithm with completely
different robot fitness evaluation method allowing a distributive problem solving. Six
non-linear fitness functions are developed to increase the fairness, and fault tolerance
of task allocation. These functions have been tested to represent the successes and
failures of robots in a compact form. Performance analyses test results have shown
that fairness increases two times more in task allocation when these fitness functions
are used, compared to the results existing fitness evaluation methods used in the
market based auction algorithms. Moreover, fault tolerance is increased by using

fitness functions devoted to failure conditions.

Keywords: Robot/sensor network, behavior based robotics, market based

auction method, layered-hybrid control

0z

ROBOT/ALGILAYICI AGLARINDA HATA TOLERANSI
YUKSEK KONUSLANDIRMA, ARAMA VE KOOPERATIF IS
YAPMA DENETIMIi

Akin, Berkant
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Ismet Erkmen

Yardimci Tez Yoneticisi: Prof. Dr. Aydan Erkmen

Eyliil 2005, 182 sayfa

Bu tez daginik, robot / sensor aglar i¢in etkin, hata toleransi yiiksek ve ¢ok
¢Oziinlirliklii mimari tasarimini icermektedir. Gosterim amaci i¢in etkin, 3 boyutlu
cevre modeli kullanan bir benzetim ortami gelistirilmistir. Agdaki robotlar otonom
ve birlikte gorev yapabilecek yetenektedirler. Ayrica robotlar sadece bir tiir basit
sensoOrlerle donatilmistir. Kontrol mimarisi olarak katmanli-melez bir yap1
gelistirilmistir. Melez yap1 hiyerarsik-Oncelik tabanli (subsumption) ve motor
yaklasimli (schema) mimarilerinin birlikte kullanilmasindan olusmaktadir.
Hiyerarsik-oncelik tabanli mimarinin davranis koordinasyonuna iliskin
dezavantajlarin1 asmak i¢in farkli ya da ayni katmadaki davranislar, degerlendirici
denilen yeni bir birimle koordine edilmistir. Farkli katmanlarin koordinasyonu ise

kooperatif bir sekilde yapilmaktadir. Benzetimci kullanilarak, onerilen kontrol

vi

mimarisi bir ¢ok kapsamli deneye tabi tutulmustur. Konuslandirma, arama,
davraniglar bir ¢ok durum igin test edilmistir. Benzetim sonuglari, bazi 6nemli
parametrelerin, 6rnegin hedef yakalama siiresi, enerji tiiketimi, haberlesme menzili,
optimum degerlerinin bulunabilecegini gdstermistir. Bunun i¢in tek kosul, ortam
hakkinda bazi yaklasik verilerin bilinmesidir. Robotlar, gorevleri belirli bir gorev
paylasimi algoritmasina gore cozerler. Gorev paylasim yontemi olarak daginik
problem ¢dzmeye izin veren pazar tabali acik artirma algoritmasi kullanilmistir.
Robot uygunluk hesabi tamamen farkli bir metoda gore yapilmaktadir. Adil gorev
dagilimi ve hata toleransi artirimi igin 6 degisik uygunluk fonksiyonu gelistirilmistir.
Bu fonksiyonlar, basar1 ve hata durumlarimi olduk¢a yalin bir formda ifade
etmektedirler. Gelistirilen uygunluk fonksiyonlari, su an pazar tabanli acik artirma
metodunda kullanilan uygunluk fonksiyonuna gore 2 kat daha adil gérev dagilimi
saglamaktadir. Sistemin hata toleransi da hata durumlar i¢in ayrilan uygunluk

fonksiyonlar1 kullanimiyla artirilmagtir.

Anahtar Sozciikler: Robot/sensor aglari, davranig tabanli robotic, pazar tabanli agik

artirma, katmanli melez kontrol

vil

ACKNOWLEDGEMENTS

I wish to express my special thanks my supervisor Prof. Dr. Ismet Erkmen,
and my co-advisor Prof. Dr. Aydan Erkmen for their guidance, support and

suggestions.

I also wish to thank my colleagues at TUBITAK SAGE, especially to Dr. A.
Pinar Koyaz, Dr. Tolga S6nmez, and A. Galip Yildirim for their support and advices.

Beside, I would like to thank my family for their love and support. I also

would like to thank my friends for their encouragements and support.

Finally, the support provided by TUBITAK-SAGE to this thesis is greatly
acknowledged.

viil

TABLE OF CONTENTS

PLAGIARISM.....ccceeteeeeeeeeeeereeseseesssassss 111

ABSTRACT ...aeeeeeereeeeeneecseeeesseeessssssssssesses v

OZcueeeeerereeeseseesesesessssssssssssssssasssssasasasssssasasssasasasasssssasssssssssasssasssasasssssssssses \Y |

ACKNOWLEDGEMENTS . ..oottttteeceeeerereessessssssccsses VIII

TABLE OF CONTENTS ..o ieeeteeeeeeeeeeessessssessses IX

LIST OF TABLES ...ooeeeeeeeeeeeeeenreeeesseessssessessses XII

LIST OF FLIGURES ...auueeieeeeteeeeeneeecseesseress XIII
CHAPTER

1. INTRODUC GCTION.ccceeereeeeneeeeeceesseeesssesss 1

1.1 AN EMERGING FIELD IN ROBOTICS: ROBOT NETWORKS ..cevueeeiiiieeeeieieeeennnn. 1

1.2 MOTIVATION OF THESIS c.veueeeeeeeeeeteeeeeeeeeeeetetaaeeeeeeeseeeessaaneeeesesesessnnnnnaeseees 3

1.3 OBJECTIVE, AND GOALS ... oottt e e e e e e e e e e e e e e e seeeeeeeeeeas 4

14 IMEETHODS . ettt e e e et e e e et e e e e e e e e e e e e e e e eeaaeeeeaaaeeeeaanaaaaees 6

LA T ATCHIEECIUIC .. e eeeeee et e e e e e e et e e e e e e eeeeeeeaaeeaaaaeeeeeaaeseaenaaeas 6

1.4.2 Path Planningcccoocieeiioiieiiieieeie ettt st 7

L.4.3 COVETAZE ..veentiieiiie ettt ettt ettt ettt ettt ettt e et e e esnsee e 8

1.4.4 COMIMUINICATION c.uutteeetee e e et eeeeeeeeeeeeeeeteeeseeaeaeseesanaeseesenaaseesnaessesnnaaseeennaaes 9

1.4.5 Task Allocation, Definitionscccceveviiiiiiiiiiiieeieeeee e 10

1.5 CONTRIBUTIONS OF THESIS ...uuueteeeeetietieeeeeeeeeteeeeieeeeeeeeeeesaneeeseseseessannnnnns 12

1.6 OUTLINE OF THESIS... . ettttttttteeeeeeeeeeteeeeeeeeeeeeettaaaieeeeeseestesanaeessssseessannnnns 13

2. LITERATURE SURVEY ...cttteeettteeecceeeeeeeeess 14

2.1 SENSOR NETWORKS ...ttt ettt e e eee e e et e e e etaaeseeeaaeeeereaeeeenenaeeeennnns 15

X

2.2 MULTI-ROBOT SYSTEMS AND THEIR ARCHITECTURAL ISSUESuevevvennnnn.. 16

23 LEARNING ..ttt ettt ettt ettt sttt ettt et e e 21
2.4 MULTI-ROBOT TASK ALLOCATION (MRTA) ...ccccviiiiiieiieeeeeee e, 23
2.4.1 Definitions and Formal Analysis of MRTA..........ccccevviiiiriiiiniieiee 24
2.4.2 Task Allocation Methodsccocieeiiiiiieiiieiiecie e 26
2.5 PATH PLANNING, COVERAGE, AND EXPLORATIONcooovvviiiiiiieiiiieeeeieeennn. 28
2.5.1 Potential Fields........ccciieiiiiiiiieeiice et 28
2.5.2 COVEIAZE weeeeeiriieeeeiiiieeeeitee e et te e e e tate e e et eeeesataeesesaaeeeesnssaeesnnsaeeeanns 30
. OUR PROPOSED BEHAVIOR BASED SYSTEM ARCHITECTURE........ 32
3.1 ROBOT NETWORKeoutiiiiiiiiiiieeieeeiteiee ettt ettt e 32
3.2 PROPOSED SYSTEM ARCHITECTUREcceittiaiiiiiiieeniieenieee sttt 33
3.2.1 The General ATChIteCtUIe........cccviiveuiieiiiieeiie e e 33
3.2.2 Behaviors in the Proposed System.........ccccceevviiriiniienieniicieeieeeeee, 39
3.2.3 Implementation of Behaviors..........ccccoecieviiiniiiinieniieieceeeeee e, 49
3.2.4 Physical Situation Behavior.........ccccceeeeiiiiciiiiiiieeeie e 68
. TASK ABSTRACTION AND TASK ALLOCATION ALGORITHM.......... 69
4.1 TASK DEFINITIONS ...uttiiitiieeniieeitenite et esiteeteeseee et e sieeeneesbeesneesareeneenaees 69
4.1.1 Uncorrelated Tasks........ccccvieriieriieniieiieie ettt 70
4.1.2 Correlated TasKs........ccoueeriuiieriiieeiiie et 70
4.1.3 Synchronously Correlated Tasks..........cccccvveeeiieriieeniieeie e, 72
4.1.4 Sequentially Correlated Tasks..........ccceerieeiiieniiiiiienieeiieeececeee 73
4.1.5 Task COmMDINAtIONSceevveeriiieiieiieeieeie ettt 75
4.2 TASK ALLOCATION ALGORITHM (TAA) AND COMMUNICATION PROTOCOL
76
4.2.1 Communication Protocolcccccveeviieeiiieeiiieeieecee e 76
4.2.2 Task Allocation Algorithm (TAA).....cccoooueeiieiieeiieeeeieee e 77
. DEVELOPED SIMULATION ENVIRONMENT.......cccceevtrirsnrersnnrcssnnncssnsecnes 95
5.1 INTRODUCTION. ...ttt ettt sttt sttt e e e e 95
5.2 CLASSES AND CLASS HIERARCHY OF SIMULATION ENVIRONMENT............. 99
53 FLOW OF SIMULATION ...outiiiiiiiiiiieeieeiee ettt ettt 99

54 COMMUNICATION MEDIUMuuiiiiiiiiiiiieeeeeeeeeeeeeieeeeeeeeeeeesaeeeeeeseeeeesannnnnns 103

5.5 ROBOT SENSORIAL STRUCTURE IN DEVELOPED SIMULATORccceeneen. 103

6. EXPERIMENTS & RESULTS . ccuuuiiiiiinniiinicsnnnicssssnnnscssssssessssssssssssssssssssssssseses 105
6.1 ROBOT MOTION CONTROL OF ROBOTSceeiiiiiiiiiiniieeniieenieeeiee e 105
6.1.1 Obstacle Avoidance Behavior..........cccoccueeciieniiiiiiinieeiieieceeeee, 105
6.1.2 Robot Separation Behavior Analysiscccccceeeevienieeiienieeieeieee, 108
6.1.3 Heuristic Wander Behavior Analysis........ccccceeeeieirciieeeieeeniie e, 109

6.2 COVERAGE ...ttt ettt sttt et e s 111
6.3 TARGET REACHINGotiiiiiiiiiiiiiteee ettt 119
6.4 EFFECT OF COMMUNICATION ON TARGET REACHINGc.ceevvveriiiiiennenne 126
6.4.1 Neural Network Implementation...........cccceeeveeereiieencieeeciieeeiee e, 131

6.5 TASK ALLOCATION PERFORMANCE EVALUATION AND FAULT TOLERANCE

135

6.5.1 Fair Task AlLOCAtIONuuueeeeeeeeeeeeeee e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeaaeeaens 136
6.5.2 Selection Of FitNesS FUNCHONSuoieveeeeeeeieee e eeeeeeeeeeeeeeeeeeeeeeenanns 147
6.5.3 Fault Tolerance ANalysiS........ccccvueeriiieriiiieniiieeie e 154
0.5.4 FitnesS SUMMATYccoviiiiieiiiieiierie ettt ettt ettt e sae e seee e 165

7. CONCLUSION, AND FUTURE WORKSeeeeieccccsrscssansassecccssssonsassans 167
7.1 SIMULATION ENVIRONMENT ...cvteteteeee e et e e e e e eeeee e e e e e e eeeeeeeeanaeeaees 167
7.2 BEHAVIORAL ARCHITECTURE ...cottettiteee et e e e eeeeeeeeanns 168
7.3 TASK ALLOCATION AND DESCRIPTIONoiiiitiiiiieeeeeeeeeeereeeeeeeeeeeenennnnnns 172
7.4 FUTURE WORKS ...ttt ettt s e e e e etaaaaeeeeeeeseeeeanannas 174
REFERENCES ... cceetreettteeereeeessessssseessssssssesssssssssssssssssssssessssssssssssssssssssssssssssssssses 176

X1

LIST OF TABLES

Table 1. Field function parameters for each behavior............cccccceeveiieniiiiniieeniene, 49
Table 2. Communication MesSage StTUCLUIEcccveeerveeerereeeiiieeeieeeereeeereeeeeree e 76
Table 3. Communication task request packet parameters............ccecveeeevieercveeerneennne. 79
Table 4. Task response packet parameters and their explanations............c.ccccevuenne. 81
Table 5.Task acknowledge packet parameters and their explanations.c............. 82
Table 6. Fitness 1tems ParameEterscccvieeeureerrieerieeeiieeestreeeieeeereeesreeessseeessseeennns 90
Table 7. Coverage performance table of heuristic wander behavior 110

Table 8. Environment setting and simulation results of heuristic wander behavior 115

Table 9. Environment setting and simulation results of adaptive wander behavior 116

Table 10. Simulation and environment Properties.cceeeveererreerrrieerireeesiveeesiveenns 129
Table 11. Environment, robots, tasks, and simulation properties.............c.ccceeeuvennn 137
Table 12. FItNess PArameters........ceeruierieeriierieeiienieeiteeseeeieesteeseesnreeseessseesseessnes 137

Table 13. Task allocation percentages for 5 robots when only target reaching
frequEnCy 1S ACtIVALEd. ...c.uviieiiieciieece e e e 148

Table 14. Task allocation perc.for 5 robots when only coverage fitness is activated.

.. 149
Table 15. Task allocation perc. for 5 robots if only distance fitness is activated. ... 149
Table 16. Task allocation fairness metric for different fitness metrics.................... 150
Table 17. Simulated fault types, and information about these faults....................... 154
Table 18. Robot, and task properties for target reaching error simulation 155
Table 19. Target reaching fault simulation timing..........ccccceceeververieneniieneenennnn 155
Table 20. Robot, and task properties for obstacle avoidance error simulation........ 159
Table 21. Obstacle avoidance fault simulation timing..............ccceeeevveercieeencieeenneenns 159
Table 22. Robot, and task properties for obstacle avoidance error simulation........ 162
Table 23. Physical fault simulation timingccccoeceeveevienienenienieneceeceee 162

Xil

LIST OF FIGURES

Figure 1. Number of articles versus year [8].......ccceevureriieriieeiiieniieieeieeeeee e 2
Figure 2. Articles distribution between 1979 -2001.........cccevievinieninniniineeieneene, 15
Figure 3. General group architecture diagramcccceeeeveeeiieeniiieeniie e 17
Figure 4. Motor Schema architeCture...........ccueeevieeiieeeiiie e 19
Figure 5. AuRA high level architecture [19]ccoviiiiniiiiiiiiieee, 19
Figure 6. Reinforcement Learning SyStemccccceevuieriieiiiienienieeieeie e 22

Figure 7. Potential fieled forces generated by one attractive point, one repulsive point

ANd ONE ODSLACIE.eiuiiiiiiiiiieeieee e e 29
Figure 8. Proposed system archit@Cturecccoevverieerierieneenienienceieneesieeee e 36
Figure 9. Proposed control architeCturecccevvievirviiniinienienienicieneciceeeee 36
Figure 10. Behavioral coordination made by state evaluation behavior.................... 38
Figure 11. Evaluator used in behavioral coordinationc.ccceeeevvvenciieencieeenneenne. 39
Figure 12. A behavioral Unitcccooeviiiiiiiiniiiiieeeeeeeeee e 40
Figure 13. Evaluator StrUCLUIE.cocuevuiiiiiiiieeieeitetcee e 41
Figure 14. Obstacle Avoidance FOICeScoiiviiriiniiiiiniiieeieeieteeseeeee e 42
Figure 15. Potential field force magnitude with respect to distance............c.cceuveeee. 47
Figure 16. Potential filed force in 3D........ccccviiiiiiiiiiieeeeeeeeeee e 48
Figure 17. Obstacle particles detected by 1ObOt........cceeviiriiriieiinieniieneeeeee 51
Figure 18. Tangential and repulsive force diagram.c..ccoceeverieniniinienenncnnene. 53
Figure 19. Robot Separation FOTCes..........ccovviiiiiieiiiieiie e 54

Figure 20. robot generated a direction randomly by rotating it direction around

normal vector of current grid that robot resides.ceecueeviirciienieiiieniieeiee 55
Figure 21. Coverage map resolution calculation diagramc.ccceceevvevieneeniennenne. 57
Figure 22. Coverage Map at Time T1......cccovieoiiieiiieeeeeeeeeeee e 58
Figure 23. Coverage Map at Time T2.......cccoiveiiiieiiieeeeeeeeeeeee e 58

xiil

Figure 24. Obstacle map resolution calculation diagram............cccevceevevveneeniennenne. 59

Figure 25. Normalized memory requirement versus time for coverage map. Each line

corresponds to different timeout tiMe.cceeevveeerieeeiieeeie e 60
Figure 26. Coverage map search path..........ccccocovveeiiiieiii i 61
Figure 27. Obstacle crash situation, partly reachable situation............ccccceevueerveennenn. 62
Figure 28. Obstacle crash situation, absolutely unreachable situation....................... 62
Figure 29. Robot-Wander Point rectangle for obstacle crash check.......................... 63

Figure 30. Obstacle Density for two situations. Image at the left hand side has
obstacle density 0.57 whereas right hand side situation has 0.71 obstacle

ENSIEY. ettt ettt ettt et e e e st e et e e saeebeeenb e et e e enaeenseeenaeenne 64
Figure 31. Wander point angle with respect to robot current direction..................... 64
Figure 32. Task ADSIraCtionc.ccccuiieiiiiieiiiieeciie ettt e e e e 69

Figure 33. Uncorrelated task representation simulator. Red rectangle stands for task

type 1 with task time 1, whereas blue rectangle stands for task type 2 with task

Figure 34. Correlated task representation in simulator. Correlated task is composed
of separable two subtasks: Task1 and Task2 with specified task time. 71
Figure 35. Synchronously correlated task representation in simulator. Synchronously
correlated task is composed of separable two subtasks: Taskl and Task2 with
SPECIfied taSK TIMC.veeeiiieeiieeiee et e e e e ea 73
Figure 36. Sequentially correlated task representation in simulator. Synchronously
correlated task is composed of separable three subtasks: Taskl, Task2, Task3
with specified task time and task order.c.ccccovveeviiiniiieee e, 74
Figure 37. Phases of task allocation algorithmccccoeviieniiiiiiiiine e, 78

Figure 38. Fitness functions for F, =10, F, =—15 and different increase rate values.

Figure 39. Target reaching frequency, and communication failure frequency fitness
plot with parameters in Table 6. At to= 200 seconds a communication failure is
OCCUITE. ...ttt ettt ettt ettt s bt e be et sae e bt e e saeenaes 93

Figure 40. Obstacle avoidance success, and failure frequency fitness plot with
parameters in Table 6. At tp = 200 seconds a obstacle avoidance failure is

OCCUITE. e e e e e e e e e e e e e e eeeeeaeaeaaeaaaaaaasaaaaaaasaseaesasesenaaaaaaananans 94

X1V

Figure 41. Coverage & distance from a task location with parameters in Table 6.... 94

Figure 42. 3D view Of SImMUIator.........coeivieiiiiiiieiieieecceeeee e 97
Figure 43. Top View Editor of SIMulator..........cccoeevvieeiiieeiiieeieeeieeeee e 98
Figure 44. Classes, and class hierarchy used in simulator..............cccceeevveeecieeennens 100
Figure 45. Flow of simulation for each robotc.cccoceeviniiniiiiniiniicees 101
Figure 46. 2D Noisy Range Drawing.........ccccoeceevieienieninienieneeieeeseeeseeseeen 104

Figure 47. Final position of obstacle avoidance from rectangular shaped, convex
obstacle. Robot avoided obstacle successfully by following shown path....... 106
Figure 48. Final position of obstacle avoidance from a partially concave obstacle.
Robot avoided obstacle successfully by following shown path....................... 107
Figure 49. Final position of obstacle avoidance from a concave obstacle. Robot
avoided obstacle successfully by following shown path...........cccccccvvveeveennnen. 107
Figure 50. Final position of obstacle avoidance from a strongly concave obstacle.
Robot avoided obstacle successfully by following shown path....................... 108
Figure 51. Initial position of robots and SOUICES.........cccuieerieeriiiieriiieriie e 109
Figure 52. Robots having initial positions shown in Figure 51 avoided collision each
other in robot separation region successfully...........coccveviiniiiiniiniieniinieee 109

Figure 53. Robot path generated by heuristic wander behavior after 100 seconds from

startup. Coverage 1S 28 PETCENL.ccuuieerrieereiieeriieeeieeeeteeesreeesreeesreeesereeeeneas 111
Figure 54. Robot path after 200 seconds. Coverage is 56 percent.............ccceeeuneenne 112
Figure 55. Robot path after 300 seconds. Coverage is 77 percent..............cceueen.e.. 112
Figure 56. Robot path after 400 seconds. Coverage is 83 percent.........cccccecuevuennene 113

Figure 57. Robot path after 900 seconds. Robot has covered the entire region....... 113
Figure 58. Initial situation of two robot mapping of a region filled by obstacles.... 114
Figure 59. Final situation of two robots mapping. Black curves are the path of the

100] 010 1 OSSPSR P TP UPRRPRROPSRRPI 114
Figure 60. COVEIaZe MAP ...cveervieeiieniieeiieeiie et eeiee et esiteete e teeeteeaeesnseenseesnseenseesnnes 115
Figure 61. Coverage time of both heuristic and adaptive wander behavior for various

TUIIS .ttt ettt e e et e e e et e e e et e e e et e e e e e e e eee e eeean e e e eeaneseenaneeeeeaneeeenanaeeennnans 118

Figure 62. 95% Coverage for different coverage map timeouts, 7O . There is an

inverse proportionality between coverage time and 70,cccoocvvennc... 118

XV

Figure 63. Memory usage at steady state and memory usage for 95% coverage. After

TO_, = 400 seconds, difference between memory usage increases

cov

considerably. Appropriate 70, value should be selected by considering this

ODSCIVALION. .ottt sttt sttt nb et st nae e 119
Figure 64. Target reaching in an environment filled by long and small rectangular
ODSTACIES. ..t 120
Figure 65. Target reaching in an environment filled by dense concave and convex
Shaped ODSTACIES.cvieiiieiieiie e 120
Figure 66. Target distribution in 100x100 mM” TEZION.ovvvveveeeeereeereeeeereenn. 122

Figure 67. Target reaching time with respect to 70, for regularly deployed 8

targets Shown in FIGUIE 66.cccvvieiiiieiiiececceeeeeee e 123
Figure 68. Average target reaching time of single robot with respect to different
number of randomly deployed targets..........ccoceevvieriiiiieniiieiieeieeeeee e, 124
Figure 69. Average target reaching time of different number of randomly deployed
robots to randomly deployed 25 targets.cccveeeveeeciiieeiieeeieece e 124
Figure 70. Average energy consumption of different number robots reaching to
randomly deployed 25 targets.ccccveeieeiierieeieee e 124
Figure 71. Average energy consumption of different number of robots with respect

to time. Each triangle corresponds to an energy-time-number of robots triplet.

Figure 72. Target reaching time of a single robot with respect to 7’0, . If Adaptive

wander is enabled target reaching time decreases considerably in case of
regionally deployed targets. There is a local minima optimizing dynamic
response to regionally target deployments.coccueevieriienieeniieniienieeieeee, 126
Figure 73. A screen shot from simulation environment for 6 robots and 25 correlated
tasks. Communication range is 25 for each robot.ccceeeevvvercieinciieenieenne, 129
Figure 74. Target reaching time (TRT) for 4 robots and different number of task and
communication ranges. Neural network estimates are also shown as red lines
With MOTE TeSOIULION. ...eoiiiiiiiiiiiiie e 130
Figure 75. Target reaching time (TRT) for8 robots and different number of task and

COMMUNICALION TANZES. ..veeuvreeerreiieeireerieeeaeeteesseenseessseeseessseeseessseesseessseenseens 131

Xvi

Figure 76. Implemented neural network architecturec..ccoceeverieniencniencennens 131
Figure 77. Experimental data and expected neural network output for 6 robots. 133
Figure 78. Neural network TRT estimates for 2 robots for different target numbers
and COMMUNICALION TANZES......ccevvvreerrreeerreerieeenreeesreeessreessseeessseeesseeessesessses 133
Figure 79. Neural network TRT estimates for 4 robots for different target numbers
and COMMUNICATION TANZES........eeruierrierirerieeteenreenteeseeeseessseeseesseenseesseenseens 134
Figure 80. Neural network TRT estimates for 6 robots for different target numbers
and COMMUNICALION TANZESccecvvreerrreeerreerieeesreeesreeesreeesseeesseeessseeessseesssnes 134
Figure 81. Neural network TRT estimates for 8 robots for different target numbers
and COMMUNICATION TANZES........eeruierreeriierieeteenreenseesreeseessseeseesseenseesseenseens 135
Figure 82. Fitness functions of 5 robots in obstacle-free region for 5/(100x100)
£aSK/M? tASK ENSILY. ..o e e e ee s 140
Figure 83. Number of tasks reached statistics, and sum of fitness function excluding

distance of 5 robots in obstacle-free region for 5/(100x100) task/m” task density.

Figure 84. Fitness functions of 5 robots in obstacle-dense region for 5/(100x100)
£aSK/M? tASK AENSILY ... 143
Figure 85. Number of tasks reached statistics, and sum of fitness function excluding
distance of 5 robots in obstacle-dense region for 5/(100x100) task/m® task
14153 115 1 /SRR 144
Figure 86. Fitness functions of 5 robots in obstacle-dense region for 10/(100x100)
£aSK/M? tASK AENSILY......veoveveeeeeeeeeeeeee e 145
Figure 87. Number of tasks reached statistics, and sum of fitness function excluding
distance of 5 robots in obstacle-dense region for 10/(100x100) task/m’ task
14153 115 1 /SRR 146
Figure 88. Only target reaching frequency fitness function is activated. Number of
tasks reached statistics, and sum of fitness function excluding distance of 5
robots in obstacle-dense region for 5/(100x100) task/m” task density. 151
Figure 89. Only Coverage fitness function is activated. Number of tasks reached
statistics, and sum of fitness function excluding distance of 5 robots in obstacle-

dense region for 5/(100x100) task/m? task density.............ccocovevevererreeennns 152

Xvii

Figure 90. Only Distance fitness function is activated. Number of tasks reached
statistics, and sum of fitness function excluding distance of 5 robots in obstacle-
dense region for 5/(100x100) task/m? task densitycocovevereeerereeenns 153

Figure 91. Fitness functions for all robots. Red line is belonging to defective robot
making target reaching errors

Figure 92. Number of tasks allocated, and sum of fitness functions for all robots.
Red line is belonging to defective robot making target reaching errors. 158

Figure 93. Fitness functions for all robots. Red line is belonging to defective robot
making obstacle avoidance eITOrS.cocevierierierieniiiereeeee e 160

Figure 94. Number of tasks allocated, and sum of fitness functions for all robots.
Red line is belonging to defective robot making obstacle avoidance errors.... 161

Figure 95. Fitness functions for all robots. Red line is belonging to defective robot
mMaking PhySiCal @ITOTS.cciieiiiiieeiieie ettt 163

Figure 96. Number of tasks allocated, and sum of fitness functions for all robots. Red

line is belonging to defective robot making physical integrity errors

xviii

CHAPTER 1

Introduction

1.1 An Emerging Field in Robotics: Robot Networks

Multi-robot systems (MRS) have led to challenging contemporary research
field of robot networks where intelligence is the recent focus. An important reason
behind this popularity is the acute attention brought to the field by military
surveillance needs and the capabilities of highly distributed systems. Developments

in multi-robot systems are depended on many parameters.

Uncertainly handling was necessitated by application in unstructured
environment and understanding and modeling intelligence in nature was the recent

focus if MRS and robot networks.

The need for MRS systems more recently that of robot networks rise from
technological advancements, modular, distributed architectures and equipment [1].

These advancements have occurred in

o Autonomous modular robotics

o Computational capabilities

o Flexible architecture developments
o Communication capabilities

o Analyses of complex systems

Multi-robot systems generally based on architectures enabling collective

behaviors are preferred [2] over others because:

1. Tasks may be inherently too complex (or impossible) for a single robot to
accomplish, or performance benefits can be gained from using multiple

robots

2. Building and using several simple robots can be easier, cheaper, more
flexible and more fault tolerant than having a single powerful robot for each

separate task

3. The constructive, synthetic approach inherent in cooperative mobile robotics
can possibly yield insights into fundamental problems in the social sciences
(organization theory, economics, cognitive psychology), and life sciences

(theoretical biology, animal ethology, biological inspirations).

Progress can be also seen in research all around the world. The number of articles
about the MRS increased significantly. In Figure 1, number of articles vs. year is

shown [8].

350

0 -
1975 1980 1985 1990 1995 2000 2005

Figure 1, Number of articles versus year [8].

MRS covers the following applications:
e Tasks requiring corporative working

e Space Exploration

e Mapping
e Surveillance & Reconnaissance

e Hazardous waste clean up and mine removal

Actually targeted future of MRS applications gives a live feeling about the future
impact of this field. Within 30 years some people aim at football matches between
robot players and human players. For some of us, this future guess may be too
overwhelmed but trend in the robotics applications is towards this kind of hard to

believe robots. Soldiers, future workers will probably be robots.

1.2 Motivation of Thesis

Sensor network as a hyper multi-robot system is a recent focus in robotics,
driven by the motivation that a network of intelligent simple agents can do many
works more rapidly, and precisely based on “divide and conquer concept”. Moreover
sensor networks can be used for executing tasks having potential danger or
impossible for humans. Robustness is easily achieved by graceful degradation due to
hyper redundancies of network modules where if one fails others can assume its role

within the mission.

There are many examples of fields for which sensor networks should be
used. Space exploration in unknown environments (on planets) where teams of
autonomous robots explore, covering very large terrain, and send the exploratory
data back to the base station. Surveillance & Reconnaissance (S&R) applications are
also popular and progressing application field. For some S&R applications
availability of humans may be very difficult, and in some situations even very
dangerous for humans. Cleaning up, and mine removal are other application of

sensor networks.

There are many topics left open in the MRS and sensor network research
fields. Although there exist so many representational and architectural problems in

MRS a powerful metric for measuring intelligence or any other types of quantities is

still lacking. Currently modeling of the MRS and especially sensor networks
applications, evaluation of system performance and deployment of the intelligence

are the main open issues.

Motivations behind this thesis can be listed as follows:

e In sensor network applications, there are architectural issues. Effective,
stable, and robust architectures may increase performance of sensor network
significantly. For this purpose a new architecture is designed by inspired from

existing methods.

e Modeling of a multi-robot system is an extremely difficult task. Because
there exist many parameters, and uncertainties crossly coupled with each
other. Moreover, environmental conditions may not be predicted. Therefore
statistical approaches are more suitable. To analyze the nature of a desired
sensor network a simulation environment is necessary. This thesis also covers
the implementation of a simulator. Using realistic simulators, non-linear
models for optimization of system parameters can be developed. Optimal or
sub-optimal models can increase efficiency considerably. We designed a 3D

simulation environment to increase the reliability of simulations.

e Task allocation is another important open issue in achieving powerful
cooperation among agents of sensor network. Efficient metrics for
performance measurement is quite important in task allocation. This is
another motivation of this thesis. We aimed to generate an analytical fault

tolerant performance metric for task allocation.

1.3 Objective, and Goals

The main objective of thesis is designing a fault-tolerant, behavior based
architecture for team of heterogeneous or homogenous agents acting in a sensor
network. The proposed sensor network architecture is a platform for defining, and

solving tasks cooperatively or autonomously. Robots’ tasks are detection, executing

specific missions, and undertaking information fusion in a bounded, dynamic,
obstacle-dense, and unstructured environment. Our generated architecture can be
used for various tasks requiring cooperative working such as hazardous waste

detection & cleaning, reconnaissance & surveillance, mapping, and exploration.

Efficiency, robustness, and fault tolerance are the main goals of our approach.
These goals are achieved in the performance analyses conducted on the developed
architecture. Since system components are highly correlated with each other and thus

any change in any component affects the global performance significantly.

Moreover, issues regarding modeling are also considered. Modeling may
include modeling of a behavior of an entire system or just a single parameter
affecting performance significantly. For this purpose a simulation environment is
developed. By wusing this simulator, proposed cooperative sensor network
architecture can be tested for various conditions for very long duration. Simulation
results are used to generate appropriate non-linear models for important system

parameters such as range of communication.

Another important aspect of simulator is that the environment is modeled in 3
dimensional space enabling robots to undergo more realistic motion in the simulated
environment. The 3D environment modeling allows implementation of the entire

dynamics of robot as well as the dynamics of the robot team.

There are drawbacks of designing, and testing the proposed architecture in a
simulation environment, because it is extremely difficult to model the entire physical
world. There are many parameters to be considered about the physics of the robot,
and environment. Poor modeling may change correct evaluation of proposed
architecture. However, for high level analysis of the architecture in terms of task
allocation efficiency, fault tolerance performance, simulation environments can be

preferred.

1.4 Methods

A sensor network implementation encompasses many topics that have to be
modeled, developed, and implemented, which can be classified as follows:
e System architecture
e Path planning
e Communication

e Task allocation

1.4.1 Architecture

Architectural issues cover how each robot in the network achieves their basic
functions, and interact with other robots. Moreover, the implementation of such robot
functions, and the coordination of these functions should also be investigated. For
instance, a robot should avoid obstacles, and other robots to wander securely in the
environment. Therefore the architecture provides not only the implementation of

basic behaviors, but also their coordination.

To design a robust, efficient, and fault tolerant architecture, a behavior based
approach is preferred. Reader is referred to [1] for basic information about behavior
based robotics. Efficiency, robustness, and fault tolerance as design parameters can
be achieved by developing capability measures of the behaviors compatible with this
goal. For instance, efficiency of target detection is increased by adaptive wander
behavior, whereas robustness of target detection process increased by heuristic

wander behavior.

Our developed behavior based architecture is a hybrid of both motor schema,
and subsumption based architecture. There is an additional unit called evaluator
which is used to coordinate

e The equal priority behaviors in subsumption layer.
e The behaviors in motor schema layer with behaviors in subsumption

layer

There are two types of behaviors in our proposed system: external and internal
behaviors. External behaviors evaluate the information coming from external world
via sensors, whereas internal behaviors monitor the activity of external behaviors to
coordinate them accordingly. Internal behaviors behave as coordinator and
interpreter of external behaviors. Coordination of behaviors is as crucial as
implementation of behaviors. The nature of implemented coordination makes the
system hybrid. Choosing this hybrid architecture is mainly due to the need for
efficiency, and robustness. Well-known control strategies show poor performance in
complex environments. Our hybrid architecture is aimed to generate an efficient and
robust behavioral coordination even in very complex environments without

degrading the simplicity and reactivity of the system.

1.4.2 Path Planning

In group behavior, path planning is another critical issue in sensor networks.
Each robot needs to plan its path to reach a desired location rapidly, and securely
while sensory system of robot detects the set of obstacles, O, other robots R, and
target points, 7. Robot path planning strategy considers all of these sets to reach

target pointz, while considering its role in the global task allocation.

There are different path planning approaches in the literature. The most
popular ones being:
e Graph based approaches
e Potential fields
In this thesis, we preferred potential fields, because it is
e Suitable for both 2D & 3D environments
e Easy to compute, it does not require any search process

e Fast

Each behavior generates a 3D dimensional force field representing its desired

direction in the 3D environment.

There is an important drawback of potential field used for path planning
which is that of local minima problem. To avoid this problem, many techniques exist
in literature. In our proposed architecture, we avoid local minima by adding noise

continuously to the sum of potential field of behaviors in the architecture.

1.4.3 Coverage

Coverage is a part of performance of the search process. In this thesis,
coverage is aimed to be increased while searching or exploring targets in the
environment. There are two behaviors implementing search methods: Heuristic and
adaptive wander behavior. Heuristic wander behavior is completely random. It does
not take any information form the sensors. On the other hand adaptive wander uses
coverage map, and detected obstacles’ location information to generate next wander
point. This behavior is simple, and also contains randomness but it requires

additional memory for maps.

Coverage map contains last location of robot within coverage map
timeout /'O, . Obstacle map contains location of obstacles avoided within a
predefined time frame called obstacle map timeout. Adaptive wander behavior
generates a next wander point which is not covered within7'O__, . which further

helps to decrease obstacle avoidance rate.

Time varying maps are used because

e Dynamic environment assumption is not violated. Reliability of information
is time-limited.

e Memory demanded is decreased for these maps
We determine a value of the time frame that optimizes the coverage and

memory usage experimentally using our simulator.

1.4.4 Communication

Communication is one of important issue in multi-robot system. Agents in
MRS should communicate with each other in three ways:
e Interacting via sensing
e Interacting via the environment
e Interaction via direct communication (for instance short range radio

communication)

Interacting via sensing, and environment can be grouped together as implicit
communication. On the other hand, robot can explicitly communicate with each other
using communication hardware.

Detection of other robots or some signs related with tasks in the environment
is another way of communication. This kind of communication can be very effective

if the nature of task is convenient.

In proposed architecture, explicit communication is used. Assumptions about
communication are:
e Robots can communicate within a user defined range.
¢ Infinite communication bandwidth is available.
e Usage of communication depends on the task allocation algorithm

e Communication is perfect except for error simulations

In real world, usage of communication brings considerable cost. It requires
higher energy consumptions. Communication cost increases exponentially as
communication range is increased. So, unnecessary usage of communication
decreases the system performance in case of limited energy. For this purpose,
extensive numbers of simulations are done to find optimal communication range.
Target reaching time is measured for various numbers of targets, tasks and
communication ranges. These simulation results are fed to a neural network to

generate an acceptable model.

1.4.5 Task Allocation, Definitions

Task allocation is the heart of the collaborative behavior. Task allocation
algorithm depends on the type of control system which can be centralized,
distributive, and hierarchical. In centralized systems, tasks allocation management is
determined by a specific agent and all computations including task allocation is
achieved by this agent. On the other hand, in distributed systems, there is no central
control, computations or controls are achieved by individual team members
distributively. In a hierarchical system, control of the system is achieved in a
prioritized order. For instance, roles of the agents can be elected by entire team
members, and roles can be altered by repeating elections within some time interval

generated by vote number priority order.

There are advantages, and disadvantages of different control methods.
Centralized approach enables development of global solutions, but its fault tolerance
is poor. If the robot responsible for central control is corrupted then entire system
may fail. Central control requires long communication ranges which cannot be

accepted.

Current trend in the world is towards to decentralized systems. Although,
distributed system may not reach global solutions, its fault tolerance is very high as
compared with that of centralized systems. Moreover, problems having high
computational complexities can be achieved distributively among the team members.

This may decrease the need for powerful hardware for complex computations.

Our proposed architecture is a distributive system. Task allocation is achieved
by a market based auction algorithm [51]. Each robot has an ability of allocating, and
executing tasks if its fitness is sufficient. If a robot detects a task requiring
collaborative work of different robots, then it starts the task allocation process where

tasks are allocated among robots with respect to their fitness value.

10

Goals of task allocation algorithm are to archive fair task allocation among
robots functioning perfectly, and making the system fault tolerant. These goals are
tried to be achieved by fitness calculation methods. In the proposed system, there are
two types of time dependent exponential fitness functions

e Function for success situation

e Function for failure situation

There are 6 fitness functions implemented. Functions for success situations are
target reaching frequency, obstacle avoidance success frequency, coverage, and
distance fitness. Functions for success situations are communication, and obstacle
avoidance failure frequency. It is showed that, introduction of these fitness functions
enables fair task allocation, and fault tolerance of system. Fault tolerance is tested by

artificial error simulations.

Representation of tasks in simulation environment is also an important issue.
For this purpose, a formal way is developed for representation of tasks. Agents

should know how to decompose a task into sub-tasks to be solved cooperatively.

In the proposed system there are four different tasks:

e Uncorrelated tasks solved by a single robot.

e Correlated tasks with separate robot asynchronously solving the task

e Synchronously correlated tasks, done by inseparably by multi-robots in a
synchronous manner.

e Sequentially correlated tasks, done inseparably by multi-robot doing the task

sequentially.
Any task can be represented as a combination of the above task types. This kind of

task decomposition enables the defining tasks in the simulator even for very complex

tasks.

11

1.5

Contributions of Thesis

In this thesis, the main contributions are in the architecture, behavior fusing

nodes called evaluators, environment simulation, and task allocation fitness

functions. Contributions can be listed as follows

Hybrid, fault tolerant, robust and efficient behavior based architecture is
developed. In this architecture, fault tolerance, efficiency, and robustness are
achieved by implementing appropriate behaviors, and behavioral

coordination.

Hybrid architecture is composed of two layers: subsumption layer and motor
schema layer. Evaluators are designed to coordinate the behaviors in
subsumption layer, and behaviors in different layers. Evaluator concept helps
for overcoming classical subsumption architecture problems by increasing the

behavioral coordination.

A powerful simulator is developed. Using this simulator, many situations in a
3D environment model are simulated for different system parameters. Path
planning is achieved in 3 dimensional spaces. This is not common in robotic

simulators.

Six important fitness parameters are developed for measuring performance of
the robot. Fitness parameters are evaluated using exponential time-dependent
fitness functions. Rate of increase & descent and maximum value of fitness
parameter are the most important parameters of the fitness functions. Main
goals of these fitness functions are obtaining fair, fault tolerant task

allocation.

12

1.6 Outline of Thesis

This thesis contains 6 chapters. Chapter 1 is introduction to thesis. In Chapter
2, literature survey about sensor networks is presented. Simulation environment is
described in Chapter 3. Chapter 4 is devoted to the proposed method. This chapter
contains description, and implementation of proposed behavior based architecture,
behaviors, task allocation algorithm, and fitness calculations. In Chapter 5, results of
experiments are given. Experiments are done to analyze the individual performance
of behaviors, coverage & target reaching performance, communication range
estimation, task allocation performance regarding fault tolerance, and fairness.

Conclusion, and future studies are given in Chapter 6.

13

CHAPTER 2

Literature Survey

Multi-robot systems applications can be decomposed into many sub-fields.

The important subfields are:

e Architecture, task planning, task allocation and control

e Biological inspiration

e Localization, mapping, and exploration

e Path planning or motion planning

e Learning

e Communication

e Motion coordination, and formations

e Reconfigurable robotics

All of the fields listed above have many open research areas. In Figure 2, number of
papers versus years is shown according to citation index for physics, electronics, and
computing (INSPEC). For recent year publications numbers are growing with

increasing speed.
In this part, literature survey will mainly focus on thesis subjects.

e Sensor Networks

e Architectural issues

e Learning

e Multi-robot task allocation

e Path planning, coverage

14

(Values based upon
INSPEC search for
years 1979 - 2001)

Articles in INSPEC

Figure 2, Articles distribution between 1979 -2001

2.1 Sensor Networks

Sensor network is an emerging field of research where robots equipped with
single typed simple sensors are deployed for search, surveillance, and rescue. Sensor
nodes have been designed as small as micro electro mechanical system (MEMS) and
this has boosted the development of the sensor network applications considerably
[2], [3]. Mass production of sensor nodes based on MEMS technology allows
realization of sensors networks having a huge number of nodes with relatively small
cost, making such networks extendable, fault tolerant, and self organizing. With such
a network of nodes fusion of information becomes un-crucial issue to be dealt with

high reliability. Application of sensor networks can be classified as follows:
e Military applications
e Environmental applications
e Home applications

e Health applications

Military application covers military command & control, intelligence,

surveillance, reconnaissance, environment monitoring. Sensor networks have found

15

ardent interest because of their fault tolerance and scalability becoming the main

drive of military application.

Environmental application is another hot application area of sensor networks.
Meteorology, flood detection, agriculture, fire detection, pollution analysis, are
animal observations are main topics in this area. In [4], long term analysis of flood
based on a distributive approach using mobile sensor networks. CORIE (Columbia
River) for vessel transport and ALERT (automated local evaluation in real time) [5]

for air rainfall and water analysis are popular examples of sensor networks.

Sensor network topology, fault tolerance, cost, scalability, communication
medium, power consumption are the main design constraints of an sensor network
application. Deployment of sensor network is one the important issue because it
affects the quality of collected information, fault tolerance, and speed of the fusion of
information. Deployments of the nodes are generally fixed or variable. Variable
deployment enables self organizing networks. Deployment should be based on some

statistical data, preserving the network topology [6], [7].

2.2 Multi-Robot Systems and Their Architectural Issues

Multi-robot system defines how robot makes its functions, and how robot
interacts with other robots, and environments. MRS is inherently a distributed
system. The differences of MRS from other distributed systems are that MRS is
highly dynamic, spatially limited or bounded and interacting with many
environmental or physical conditions [1]. But MRS developers can examine other
distributed systems, architecture to adapt or imitate the convenient parts of those to

the MRS systems. In Figure 3, group architecture for MRS is given [1].

16

Group Architecture

l

Figure 3 General group architecture diagram

There are valuable surveys on multi-robot systems with considering many
sub-fields. In [1], a good survey on multi-robot system is given in terms of group
architecture. Moreover [8], [9] are valuable references for current state art in multi-

robot systems

In literature, robot control architectures can be grouped as reactive,
deliberative, hybrid, and behavior based control. Depending on speed, and

planning requirements, one of these control methods can be used [14].

Behavior based architectures are very popular in robotics applications. It was
first developed by Rodney Brooks in 1980. Reasons behind this architecture are that
it does not require any a priori external knowledge of world, and it is highly reactive.
Reactivity can be expressed as “planning is just a way of avoiding figuring out what
to do next" [12], i.e. in reactive systems planning of the next situations is considered

as little as possible.

Behavior based robotics’ architecture has three main units [10]:

1. Sensory Inputs

17

2. Behaviors

3. Motor Actions.

Behavior is the mapping of sensory inputs to a pattern of motor actions that
are used to achieve a task. “A behavior is a reaction to a stimulus” [10], it wraps
perceptual and motor actions, i.e. it should both include behavior triggering

conditions and motor actions if it is activated.

There is a famous behavior based approach called subsumption architecture.
Subsumption architecture defines layers of the augmented finite state machines
(FSMs). Some behaviors can suppress, reset or inhibit other behaviors [11]. This
architecture is a revolutionary approach in mobile robotics. It enables an incremental

design strategy like object oriented approach in software engineering.

Motor schema as hybrid reactive approach also makes inspiration from brain
theory, and psychology [13]. In motor schema there is no subsumption, suppression
or inhibition. Response is generated as a sum of all active behaviors’ responses,
which is reason for reactivity. Schematic of motor schema is given Figure 4

respectively.

Subsumption architecture defines a priority among the behaviors. At any
instant, only one behavior can be active. On the other hand, in motor schema
cooperation among behaviors exists. More than one behavior can be active at a time.

This may be an advantage of motor schema approach [17].

18

Motor Schemas

Environmental
Sensors =

P Robot
Vec tor\\ -
; Motors
ANy
/
P

HZmgZomRH"<4ZMW

PS = Perceptual Schema
PSS = Perceptual Subschema
MS = Motor Schema

ES = Environmental Sensor

Figure 4, Motor Schema architecture

It is difficult to design complex system based on strict behavior based
approach. To overcome this difficulty, hybrid architectures are developed [15], [16],
[18].

There are architectures being hybrid of motor schema, and deliberative
control. AuRA [19] is one of these architectures connecting motor schema and
planners modules (high level mission planner, spatial reasoner, and plan sequencer).
System is also reactive for changes requiring fast responses. Moreover AuRA [19]

shown in Figure 5 contains parameter learning in run time.

Leaming User Input
- R
Plan Recognition User Intentions Mission Planner H
User Profile =
H ; Hierarchical
1 1 . H = Component
= : E
| Spatial Leaming & Spatial Goals 1 Spatial Reasoner | =
1 L L T
TETTTTTTTEPEEEEEEEE,
Opportunism Mission Plan Seguencer
Alterations E
Y ry
1 = .
I on-ine = Teleautonamy Schema Controller J Reactive
: Adaptation : H Motor ;Perceptual Component
. .. l—-----------l

Actuation Sensing

Figure 5, AuRA high level architecture [19]

19

Three layer architecture described in [18] is another example of hybrid
control where layer are that of controller, sequencer, and deliberator. The controller
layer implements reactive behaviors. The sequencer selects the behavior to be
executed by the controller. Function of the deliberator is to evaluate time consuming

algorithms using internal states.

Designing multi-robot architectures is also a hot topic in robotics. Multi-
robot system is desired instead of single-robotics system due to many reasons. Some
of them are [20]

e Distributed action to increase fault tolerance.
e Some tasks can be divided into different parts through task decomposition
which can be handled by single robots.

e Single robot may be too complex having wide range of capabilities.

CEBOT is an early version of heterogonous multi agent architecture. Agents
are capable of forming different assemblies. CEBOT can reconfigure the whole
system depending on given tasks and environments and organize collective or swarm

intelligence [21] [22].

ALLIANCE is a fault tolerant multi-robot architecture for heterogonous
robots team. There are set of behaviors composed of high and low level behaviors.
Motivational approach is used to activate different set of behaviors. This approach
brings fault tolerance [23] [24]. L-ALLIANCE is another version of ALLIANCE. It
allows adaptive update of internal parameters from past experience of robots.

Modeling of other robots is also considered in case of cooperative work [25].

Examples of other multi-robot architectures are ACTRESS, SWARM, and
GOFFER. Short descriptions about these architectures can be found in [1].

Swarm intelligence is an emerging field in multi-robot systems. Biological
inspiration is a basis for behavior based robotics. Application of biological

phenomenon to distributed robotics is preferable since biological organization is real

20

and working. Moreover it is known that most of the animals forming group behavior
are not so clever to achieve observed tasks. But as a team, they get in complex
dexterity. Another reason for biological inspiration is that a group of simple “non-
intelligent” low level agents can show group intelligence. This is the key point

behind social animals.

Stigmergy is the application of swarm intelligence to the MRS. It is used
very effectively in much loosely coupled system. Stigmergy is “term used by some
biologists to describe influence on behavior due to persisting the environmental

effects of previous behavior” [26] [[27].

Many tasks are achieved by ants based on stigmergy. Ants secrete some
pheromones. For example in finding shortest path between a point and nest can be
solved by stigmergy. Ones an ant find this path, its pheromones will be distributed
along this path. Since this is the shortest path among the possible paths, pheromone
concentration along this path will be higher than that of other paths. Statistically,
there will be a positive feedback to select this path. Ant colony approach was applied
to mine detection problem with minimum mission completion time and successful

results are obtained [28].

Fundamental works based on the biological inspiration are basically on insect
colonies [29], [30], flocking, dispersing, aggregating, foraging [31], selfishness

showing emergent behavior [32], predator-prey based systems [33].

2.3 Learning

Learning of parameters from interaction with the environment or other
agents in the system increases the adaptivity of the system considerably. Any system
i1s accepted as intelligent system if there is some kind of learning or adaptation.
Popular learning methods are:

e Reinforcement Learning

e Neural Networks

21

e Evolutionary Learning

Reinforcement learning (RL) method is widely used in most of the robotic
systems. In RL, a reinforcement signal, reward, is fed back to the system indicating
the result of action. If a desired condition is occurred and also agent is behaved
accordingly then positive reward is given, otherwise punishment is fed back.

Reinforcement learning has been studied deeply and applied many robotic systems

[34], [35], [36].

An important component of the RL based control system is the component
responsible for evaluating the fitness of the response which is called “critic”. Critic
function generates the reinforcement signal, i.e. critic has learning capabilities.
General structure of RL based system is shown in Figure 6. There are two types of

dominant RL algorithm present: adaptive heuristic critic (AHC), Q-Learning

Controller Plant

v

Reinforcement l
Signal

Critic

Figure 6, Reinforcement Learning System

Neural networks (NN) have been widely studied and applied many systems.
NN is trained in a supervised or unsupervised fashion that synaptic weights are
computed optimally so that difference between response to a set of stimulus and
actual output is minimized. Synaptic weight update rule is different for distinct
architectures. There are three main learning schemas in neural networks: classical
conditioning, adaptive heuristic critic learning, and learning with associative

memory.

Many researches have been made about application of NN to MRS. Fine and

smooth adaptive action selection mechanics obtained using Extended Kohonen

22

Maps. Using this kind of mechanism is advantageous than other methods such as

potential fields [37], [38].

Among the systems based on multi-layer perceptron (MLP), most impressive
system is ALVINN (Autonomous Land Vehicle in a Neural Network) [39]. ALVINN
can drive car autonomously at a speed of 60 Mph in a highway by a MLP based
neural controller. In [40], a relatively simple single layer perceptron is used. As a
training method Widrow-Hoff rule is selected. Depending on connection of neurons,
behavior of the system is also analyzed. In [41] Hybrid evolutionary recurrent neural
network controller is designed for secure navigation in the obstacle dense
environments. A fitness space is defined and various fitness functions are evolved.
Moreover fitness function contains both internal (behavioral) and external

parameters.

2.4 Multi-Robot Task Allocation (MRTA)

Optimality of allocation determines local and global performance of the
system. MRTA decides that which robot will perform which task in an optimal
fashion. Moreover in order to increase immunity of system to faults, distributed
problem solving is preferred to centralized approaches. MRTA should encourage the

distributed problem solving.

In the MRS literature, formal analysis of architectures regarding the task
allocation is highly incapable. Authors try to prove their system performance
empirically. There is little work about formal analysis of the task allocation issues. In
this part, definitions, taxonomy, and formal analysis of MRTA problems will be
given based on [43] and [44]. Good surveys about MRTAs can be found in [1], [8],
[42], and [48].

23

2.4.1 Definitions and Formal Analysis of MRTA

Task allocation deals with the assignment of tasks to the robots by

minimizing a cost function or maximizing a utility function.

e Task is a sub-goal and also independent of other sub-goals. By
independence, it cannot be a decomposed into any other sub-goals.

e Utility is a measure of specific action. When a task is assigned to a robot,
utilty is the value of expected income from execution of this task. It is defined
as formally difference between expected quality of task execution and cost of

the resources and other things.

Ugr : The utility of the assignment of task T to Robot R.
Qrr : The income of assignment of task T to robot R.
Crr : The cost of assignment of task T to robot R.

U. - {QRT _CRT QRT > CRT}
RT —

0 " Otherwise

Above equations show that a robot can be assigned to a task if expected
income is larger than resource cost. Difficulty in MRTA is defining appropriate
utility functions. Aim of the MRTA is given n robots and m tasks

R= {rl, ry..r, }
T={t,t,.1, }

Assign tasks to robots such that following metric should be maximized.

n_m
Utotal = Zzuik
i=1 k=1

Where

uy 1s the utility of execution of task k assigned to robot i.

24

Types of MRTA problems are:

o Single-task Robots (ST) means robots can execute at most one task at a
moment whereas Multi-task Robots (MT) can do multiple tasks at a
moment.

¢ Single-robot task (SR) means each task can be achieved by only one robot
whereas Multi-robot task (MR) requires more than one robot to execute a
task.

e Instantaneous assignment (IA) stands for the no planning about the task

allocation whereas time extended assignment (TA) a kind of planning exist.

MRS may have one of the following MRTA problems

e ST-SR-IA, ST-SR-TA

e ST-MR-IA, ST-MR-TA
e MT-SR-IA, MT-SR-TA
e MT-MR-IA, MT-MR-TA

Many MRS has a MRTA mechanism ST-SR-IA or ST-SR-TA, it is the easiest
type of optimal assignment (OAP) allocation problems. Greedy algorithm
generates optimal solution for this kind of allocation problems. ST-MR-IA, ST-MR-
TA problems can be reduced to the set partitioning problem (SPP). Moreover MT-
MR-IA, MT-MR-TA can be classified as set covering problems (SCP) and it is the
most difficult problem among the MRTAs and its complexity is NP hard. . Solution
of various types of MRTA problems can be solved with the help of literature of
optimization theory and set theory. Some of those problems can be reduced to

equivalent linear programs.

Optimal Assignment Problem is formulated [43]. as find mn negative

integers o;j maximizing

25

L

U= Z Z oo Uy

i=1 j=1

subject fo

m
Zﬂs‘j =1, 1=j=mn
i=l
Zf"'-i‘ =1, 1=1i<= m.
i=1

Constraints force the assignment problems to be achieved as single
assignment problem. This is suitable for first type (ST-SR-IA, ST-SR-TA) of MRTA

problems.

Set Partitioning Problem can be defined as: Given a finite set E, a family F
of acceptable subsets of E, and a utility function u : F = R,, find a maximum-utility
family X of elements in F such that X is a partition of E. Moreover complexity of the
SPP is strongly NP-hard.

Set Covering Problem: Given a finite set E, a family F of acceptable subsets
of E, and a cost function c: F = R., find a minimum-cost family X of elements in F

such that X is a cover of E.

2.4.2 Task Allocation Methods

There are five types of task allocation methods: auctions based methods,

motivation-based methods, mutual inhibition, and no allocation.

Auctions methods are based on negotiations among the robots. Negotiation
is achieved by a process called bidding. A robot (manager robot) sends requests to
other robots (worker robots candidates) for their helps. Manager robot assigns the
tasks according to a metric called fitness of the robots. There are two famous auction

based methods.

26

Contract net protocol (CNP) [49] [50] is the oldest version of auction based

methods. It implements a central bidding method.

MURDOCH [51] is market inspired negotiation based algorithm [9]. The
task announcement and bidding procedure almost the same with that of contract net
protocol but there is no central manager. System is completely distributed. Task is
always assigned to the most capable robot, i.e. MURDOCH has greedy based task
allocation mechanism. Task can be announced any time this one of the advantageous
of MURDOCH. MURDOCH is well applied to team of heterogonous robots.
Hierarchical task structure is used, i.e. a task is composed of a tree of subtasks. In
this thesis, task allocation mechanism is based on MURDOCH but fitness calculation
is much different than that of original. M+ [52] and CEBOT [53] are also using
auction based task allocation methods.

ALLIANCE [23] [25] [24] uses motivation-based method for task
allocation. Robots have internal motivation parameters for task allocation. There are
two motivational parameters: impatience, and acquiescence. These motivations
control task allocation by defining desire, and impatience. Moreover these
mechanisms make ALLIANCE fault tolerant. Another motivational based task
allocation method called “Affective” described in [48]. Main aim of the method is

decreasing communication overheads.

In mutual inhibition [55], ’robots directly inhibit those around them being
chosen for a task” [48]. It requires more commutation messages to make inhibition
process. In [56] task allocation is archived dynamically based on swarm intelligence.
Dynamic role assignment is implemented in [57]. Agents exchange their roles
depending on the conditions. Computational complexity analysis of different types of

task allocation methods can be found in [51].

27

2.5 Path planning, Coverage, and Exploration

Path planning defines an efficient way of navigation to a desired location
without avoiding collision from obstacles or other robots. There are different path
planning methods in literature:

e Graph based approaches

e Potential field

In this thesis, potential field method is taken as path planning method because
of the earlier reasoning that we mentioned. Although graph based approach can reach
optimum path planning, computational complexity of these algorithm is high as
compared with that of potential field. Moreover, graph based approaches are prone to
error in case of noisy data. Reader is referenced to works [58], [59] for approaches,

and current state art in the graph based approaches.

2.5.1 Potential Fields

Potential field approach is widely used in many fields especially in path
planning. In this proposed architecture, potential fields are used generating
appropriate paths with avoiding collisions. Robot does not globally plan its path and
is well suited for reactivity; it simply generates a path using recent information about

environment via its sensors. Some kind of emergent path generation is obtained.

A potential field function can be any kind of function depending on the
system. Field function defines eqi-potential lines in the space with equal distances
from the center of reference point. If 3D space is assumed then potential field
function will define a surface in 3D. Potential field force is computed by taking the
gradient of the field function at a specified point. If a ball is located around a
potential field surface then ball will move in the direction of the gradient at current

point. How fast the robot will move is determined by the magnitude of gradient.

28

Below some of potential field functions and associated force function with
respect to position are given.

{U =C } , Constant potential filed
F=VU=0

U=aX" +c¢
F=VU-=a

} , Linear potential field

{UzaXTX+bX+c

, Quadratic potential field
F=VU=2aX+b

Potential field function should not necessarily be continuous functions,
depending on application; even non-linear field functions should also be preferred. In
Figure 7, force lines are shown.

_ (xx)
EEEA
where x , the position of the reference point; g, is the factor determining sign of the

field that is whether it is repulsive or attractive and relative strength.

Figure 7, Potential fieled forces generated by one attractive point, one repulsive point and one

obstacle.

Red point is evaluated as obstacle where as pink point is taken as target point.
Potential field generates repulsive force with increasing magnitude around red circle.

The potential field function can be obtained by integrating of force function.

29

In the literature, there are many works about potential fields. Potential field
approach is well suited with the issue of coverage. In [60], [61], [62], [63], by using
appropriate field functions coverage of entire system is increased. In [62], local
minima problem of potential field is prevented by selecting the activity of field
functions in run time. A new potential field is proposed such that target point is kept
in the global minimum of total potential field function by adjusting the parameter
carefully [64]. Moreover, in [65], potential field based path planning is implemented

for autonomous underwater vehicle guidance.

2.5.2 Coverage

In path planning strategies, aim of the planning is reaching from start point to
goal point. Coverage of the robot is not considered as a parameter to be optimized in
path planning strategies. In this thesis, path planning is considered with coverage
issue. A robot explores the environment by increasing coverage. Reader is referenced
to [66] for taxonomy of coverage problems in the literature. There are works both
considering path planning and coverage. A good survey on coverage algorithms is
described in [67]. There are methods based on heuristic or non-heuristic (complete
methods). Heuristic is a powerful tool if the robot does not know much thing about
environment. Localization unit is not necessary if heuristic based search algorithm is
adopted. Heuristic based approaches are more appropriate if cost effective and

simple robots are used [68] [69] [70] [71].

If robot has a localization unit, then other type of methods can be utilized.
These are
e Approximate cellular decomposition
e Semi approximate decomposition

e Exact cellular decomposition

Works and their summaries are given in [67]. Moreover, there are multi-robot
versions of these coverage algorithms. In [72], an interesting solution is proposed for
coverage, coverage, and sensor deployment. Robots have no information about

environment. They are routed by sensor network to least visited cells. Potential field

30

approach can also be incorporated with coverage problem for both single and multi
robot cases. In [73], constrained coverage is achieved for static sensor network node
deployment. Works in [74], and [75] social potential function is implemented for

robot formations by considering the coverage as an emergent behavior.

31

CHAPTER 3

Our Proposed Behavior Based System Architecture

With this chapter we begin to introduce the system architecture that we

developed for a robot/sensor system.

3.1 Robot Network

Proposed multi-robot system is formed by heterogeneous robots. Each robot
has one primary sensor and many auxiliary sensors. The primary sensor is used to
detect a task source in the environment. For example for hazardous waste detection
and clean up the robot in the system should have only one of the following primary
sensors: chemical sensor, nuclear sensor, infrared sensor, spectrometer, etc. The
primary sensor determines the role of that robot in the multi robot system. Auxiliary
sensors which do not affect the role of the robot are general purpose sensors used for
secure navigation and detection of other robots. For instance robot should have sonar

to detect and avoid obstacles; light or motion sensors to detect other robots.

Communication capability requires additional communication hardware. In
this architecture the robot may or may not have a communication unit. A robot
without communication unit will therefore cooperate effectively and deliberately

during task achievement will not be able to request of other robots.

In this simulation, each robot has the following capabilities:
e Robots have the same control architecture

e Each robot senses the task source with its primary sensors

32

e Each robot senses the environment and the other robots to avoid collision
and navigate securely.

e Each robot monitors its status and generates appropriate actions.

e Robot can request the help of other robots and respond the incoming
requests coming from other robots if it has a communication unit.

e Each robot can be master (manager) or slave (worker) in a cooperative
task execution phase.

e Each robot can evaluate its fitness for task allocation

e Each robot generates optimal or near optimal wander direction to

decrease target detection time and energy consumption.

The properties listed above can be related to:
e The robot behavior based control
e The communication structure and algorithms
e The optimality issues, concerning energy consumption and source detection

and task execution time

3.2 Proposed System Architecture

3.2.1 The General Architecture

Robots in our proposed system are heterogeneous and capable of working
cooperatively based on a market-based auction task allocation algorithm assigning

co-occurring, sequential or individual tasks.

The layered, hybrid control system is designed based on subsumption and
motor schema control strategies. In classical subsumption control, there is a priority
based hierarchy between behaviors such that only one behavior can be active at a
time. It is not being possible to separate behaviors, i.e. a behavior having high

priority can cross couple with a behavior having low priority. Moreover, in complex

33

systems, there should be behaviors devoted to reactive action and be active at all

time.

To surpass these difficulties, we developed the hybrid controller which

contains two main layers: the subsumption layer, and the motor schema layer.

The subsumption layer contains priority based behaviors, whereas in motor
schema layer, there are behaviors having equal priority. Behavior coordination is
achieved in motor schema style which is devoted to behaviors requiring reactive
actions. Final response is generated by summing responses from subsumption and

motor schema layers.

We also introduce in the architecture a new control unit called evaluator
which is used for defining priorities of behaviors in run-time, and the loosely coupled
coordination between behaviors in subsumption and motor schema layers. The
evaluator takes the state and output information of other behaviors as additional input
parameters. By using an evaluator, priorities of behaviors in the subsumption layer
can be changed dynamically depending on the state of behaviors. Another benefit is
that behaviors in different layers can be fused within a function or filtered out,

generating a coordination among the behaviors.

The proposed system has 4 types of units shown in Error! Reference source
not found.. External behaviors, internal behaviors, planner, and behavioral
coordination buses. Behaviors are divided into two parts, external and internal
behaviors. Behaviors triggered by external sensory inputs or virtual input generated
by internal behaviors are called external behaviors. In our applications they are
selected as listed below.

e Target Reaching Behavior

e Obstacle Avoidance Behavior
e Robot Separation Behavior

e Heuristic Wander Behavior

e Adaptive Wander Behavior

34

e Communication Behavior

e Environment Monitor Behavior
These behaviors implement the main behavioral backbone. They translate the
information gathered form sensors to an appropriate motor control vector. On the
other hand, internal behaviors take the outputs of external behaviors and interpret
them and control and coordinate the external behaviors. Outputs of these behaviors
are either system state transition or virtual inputs to the external or internal
behaviors. Internal behaviors implemented in the proposed system are:

e State Evaluation Behavior

e Physical Situation behavior

Behavior control bus includes necessary lines for subsumption style
behavioral coordination. These are: suppress bus, inhibit bus, and reset bus. State
evaluation behavior uses these buses to control and coordinate external behaviors.

Outputs of the external behaviors are transported over behavior output bus.

There is a planner unit responsible for task allocation and execution.

Moreover, it arranges data structures, and maps used by other behaviors.

3.2.1.1 Proposed Control Architecture

In Figure 9, general structure of proposed architecture is shown with
subsumption, and motor schema layers. Final response is generated by coordinating
the subsumption and motor schema layers cooperatively, and sent to the actuators. A
behavior may have or not have an associated evaluator posterior to it. If a behavior in
the subsumption layer has not an associated evaluator then it is coordinated with
other behaviors in the same layer just classical subsumption control strategy. The
proposed control strategy is flexible enough when making complex actions without

degrading the reactivity.

35

aui Induj

EXTERNAL BEHAVIORS

Target Reaching
Behavior

1

Obstacle Avoidance
Behavior

1

Robot Separation
Behavior

1

Suppress
Bus

Heuristic Wander
Behavior

Inhibit

1

Optimal Wander
Behavior

7999 F%

Environment Monitor
Behavior

Communication
Behavior

I

Behavior
Output
Bus

Physical Situation
Behavior

STATE
EVALUATION
BEHAVIOR

Behavioral
Coordination

{ PLANNER

Task Allocation
and
Planner Unit

Figure 8 Proposed system architecture

aui jnduj

Final Behavioral
Coordination

)+

Subsumption Layer

Motor Schema Layer

au 3ndu|

Figure 9 Proposed control architecture

36

Obstacle avoidance and environment monitor behavior have the highest
priority in the subsumption layer. Priorities of these behaviors are equal to each
other. They are coordinated in the subsumption layer by using evaluatorl in
cooperative coordination style. If one of these behaviors is active then, activities of
target reaching, communication, adaptive wander behaviors are inhibited. For this
case, subsumption layer outputs the sum of responses of obstacle avoidance and

environment monitor behavior.

Communication and target reaching behavior have the second highest priority
in the subsumption layer. Evaluator 2 coordinates these behaviors as shown in
Figure 11. Communication behavior has a priority over target reaching behavior if
certain conditions are satisfied. As shown in Evaluator 2, if communication behavior
is active at previous step then it inhibits the target reaching behavior, otherwise
depending on the location of target, and communication event, activity of one of the
behavior is inhibited according to the minimum distance criteria. Adaptive wander
behavior has the lowest priority in subsumption layer. Moreover it is coordinated
with heuristic wander behavior in motor schema layer via Evaluator 3. Even if
adaptive wander behavior is active, it may not generate an appropriate next wander
point. Heuristics wander behavior resides in the motor schema layer; it is almost
active all the time if adaptive wander behavior is not active. This behavior is not
implemented in the subsumption layer because of the performance issues. Activity of
obstacle avoidance behavior inhibits the activity of adaptive wander behavior but it is
not desired to inhibit the activity of heuristic wander behavior. As a result heuristic
wander behavior is designed in motor schema layer. But it is coordinated with other

behaviors as shown in Evaluator3.

Robot separation behavior is active for all time, so it resides in motor schema
layer. It can be though that this behavior can also be deployed in the subsumption
layer on top of obstacle avoidance behavior. But this will make the system inefficient
because main goal of the system is implementing efficient collaborative work. Robot
should execute target reaching behavior at the same time avoiding the collision with

other robots. This behavior should reside in motor schema layer.

37

~CT 3 —

® 35 =-r

O,

SUBSUMPTION LAYER

S

Obstacle Avoidance
Behavior

4

O,

©

Environment Monitor
Behavior

(e

O,

2|

Target Reaching
Behavior

®

D,

Communication
Behavior

©O)

L

—' Evaluator 1 '

Evaluator 2

Physical Situation

Adaptive Wander
Behavior

O,

MOTOR SCHEMA BASED
COORDINATION

Heuristic Wander
Behavior

O,

G

Robot Separation
Behavior

Behavior
Y
S 1 —Qb

\
4

law (Saw) S1

—]
MOTOR SCHEMA LAYER Oow

2

»{ Evaluator 3
(Shw) |

Figure 10 Behavioral coordination made by state evaluation behavior

38

(Evaluator 1

2

Obstacle Avoidance
Behavior Output

Environment Monitor

Behavior Output _
(" Evaluator 2)
- Cc ication
~| Task Location, P1 l
Passive (Scom)
Communication . . -
. Previous Activity P1> P2
Behavior (ScomT Active (Scom)
Target
Location, P2
v
Target Reaching kf I\
Behavior A/
_
(Evaluator 3
—»| Next Wander Point
Arrival?
$1 Activity
Pasif

And Next Wander Point

Timout Exceeded?
(Saw) Active
Adaptive Wander Activity

And
Yes 0
.| Heuristic Wander (0)
! Timeout Exceeded? Ihw
Pasif —>
(1)
) 4
{ Oow

Heuristic Wander |\
N\

(Shw)

v

_ J

Figure 11 Evaluator used in behavioral coordination

3.2.2 Behaviors in the Proposed System

A behavior encapsulates both its perceptual and motor schema. By perceptual
schema, triggering conditions of behavior is meant. Motors schema determines the
action of behavior to the stimulus. In this section, for each behavior both of the
schemas will be analyzed. Motor schema is implemented with potential field

methods. Each behavior’s motor schema generates a motor action represented with

39

potential field forces or equivalently each motor schema generates a potential field.

Motion planning or potential field approach will be analyzed subsequent sections.

A Dbehavioral unit is shown in Figure 12. As being compatible with
subsumption and motor schema architecture, behavior both encapsulates its
perceptual schema and motor schema. More specifically each behavior has

e Input port

e Output Port

e Inhibit Line

e Suppress Line
e Reset Line

Input port transfers necessary input to the perceptual schema, whereas
output port sends output of motor schema to the actuators. Suppress line is used to
suppress the inputs of the behavior, on the other hand inhibit line is used to inhibit

the output of this behavior. Reset line is used to reset behavior to its initial state.

Suppres Line Inhibit Line
Input Behavior Output
Port Port
R
Reset Line

Figure 12 A behavioral Unit

Evaluators are used with behaviors for

e Defining priorities of behaviors in run-time
e Defining loosely coupled coordination between behaviors in subsumption
layer and motor schema layer. Evaluator takes state of other behaviors as

additional input parameters

40

In Figure 13, structure of an evaluator is shown. Evaluators take different signals
from behaviors in the same or different layers. It generates an output by considering

the state and output information of other behaviors as additional input parameters.

By using an evaluator, priorities of behaviors in the subsumption layer can be
changed dynamically depending on the state of behaviors. Another benefit is that

behaviors in different layers can communicate with each other.

s1 sk

Evaluator n

Figure 13, Evaluator structure

Input Output

The output of evaluator K, e, ,,, is a function of both input ¢, , state and
output information, S, of other behaviors, i.e.
€ om = F(e, ,»S)
where

e, ,, - Input of evaluator k

€, on - Output of evaluator k

S=1{5,,5,,5,} S, = {ej,Out’ gj}
S : Set of information of other behavior,

s; : State information of behavior j

e; o - Output of behavior j

¢, :The state of behavior j.

3.2.2.1 Target Reaching Behavior

Target reaching behavior is responsible for detection and reaching the target.

Target detection is achieved with the primary sensor of robot. In the case of multiple

41

of targets that are detected then the robot selects the target which minimizes energy
consumption, thus arrival time. The behavior related to target reaching generates
attractive target reaching force to reach target after it is detected. This behavior is

not all the time active and depending on the state of robot, it may be suppressed.

3.2.2.2 Obstacle Avoidance Behavior

This behavior implements obstacle avoidance. Obstacle avoidance behavior is
a crucial behavior since performance of this behavior directly affects the
performance of the robot and the whole robot team. This behavior generates
repulsive and tangential obstacle avoidance force to avoid obstacles. Inputs of this

behavior are from secondary sensors.

Obstacle avoidance field is the sum of two vectors shown in Figure 14. The
first one is a repulsive force from the obstacle and the second is the tangential force.
Function of repulsive force is to avoid collision whereas tangential force with respect
to obstacle is used to navigate around the obstacle for exploratory purposes.
Tangential force increases the performance of the system considerable in obstacle
avoidance sense. This behavior is active whatever the robot state, i.e. no inhibition or

suppression is applicable for this behavior.

................ » Tangential Force

————» Repulsive Force

Obstacle e » Robot Direction

Figure 14, Obstacle Avoidance Forces

Obstacles are detected by the algorithm listed in the obstacle detection
procedure. Generally robot detects lots of obstacle objects in an instance of time.
Total obstacle avoidance field is evaluated as a vector sum of each obstacle

avoidance field of detected objects.

42

3.2.2.3 Robot Separation Behavior

Robot separation behavior detects other robots and avoids the collision. This
behavior is necessary for secure navigation and task execution. Other robots are
detected with secondary sensors. Robot knows the identification of other detected
robots. This behavior generates repulsive robot separation field force. This
behavior is active all the time whatever the robot state. There is no behavior inhibits

or suppress this behavior.

Robot separation behavior may be implemented with obstacle avoidance
behavior but this will lead to the degradation of cooperative working of robots.
Obstacle avoidance behavior generates additional tangential force that does not allow

robots to work close enough to each other.

3.2.2.4 Heuristic Wander Behavior

This behavior is one of the wander behaviors. The main function of robot is
wandering around the environment and detecting targets or involving in
communication with others when needed. It generates an attractive heuristic wander

force to wander in the environment.

The random nature of this behavior increases the reactivity. A deterministic
wander algorithm may be prone to trapping in unplanned situations and its designer
should be aware of everything exhaustively prior to the design and every possible
situations about the environment. This means that extensive information fusion is
required for optimal solutions [67], [68]. This heuristic wander field enables the
robot wander very securely around the environment even under unexpected
situations. Heuristic wander behavior is not active all the time; its activation

condition depends on activity of other behaviors and it was discussed in 3.2.1.1.

43

3.2.2.5 Adaptive Wander Behavior

Adaptive wander behavior is designed to increase the wandering performance
of robot. Since a robot detects its target through its primary sensors, wander
performance directly affects the target detection time, and consequently team
performance. This behavior is implemented as a attractive adaptive wander force

which will discussed in section 3.2.3.5.

This behavior generates wander maps to fuse this information adaptively.
Maps are time varying, carrying a forgetting factor for each map. Time varying
property is compatible with dynamic environment assumption. Periodically maps are
updated, i.e. some data are extracted from maps and this period is an adjustable

parameter that naturally affects the performance.

When robot wanders around the environment and when it detects targets,
obstacles, it generates its own wander map, detected target maps and detected
obstacle maps. Information fusion is made through these maps to generate the new
wander direction. The generated wander direction is optimum in the sense that:

e Robot prefers the location which is not visited previously.
e Robot avoids obstacle dense regions. If a wander direction crosses a wall
previously detected, then robot should not prefer this direction.

e Opverall coverage time is decreased as compared to the heuristic wander.

This behavior is not active at all the times since then, the adaptive wander
algorithm may generate false alarm which in this case, the heuristic wander behavior

is activated.

3.2.2.6 Communication Behavior

Communication behavior is responsible for reaching locations generated by

the task allocation and execution planner suitable for communication.

44

Communication behavior is active all the time expect when the robot is executing a

task. This behavior is implemented with an attractive communication force.

3.2.2.7 Environment Monitor Behavior

Environment monitor behavior is implemented for wandering securely in a
3D environment. In some cases robot may not be allowed to some regions. In this
case this behavior tracks and controls this undesired regions through a repulsive
environment monitor field force. In this 3D environment robots have to explore
surrounding and execute every command where the environmental conditions

should put constraints

This environmental monitor behavior detects the following:

e Unreasonable regions that robot dynamics will not be allowed to enter. For
example, robot may not be allowed within regions having a steepness over a
maximum allowed value.

e Banned region avoidance. Some regions may be allowed for navigation only
for some amount of time. Outside of this time limit, robots will be prohibited

to wander to in those premises.

Environment monitor behavior is active all the time making the system

definitely makes the system more realistic environmental changes.

3.2.2.8 State Evaluation Behavior

State evaluation behavior is an internal behavior and monitors, coordinated
the external behaviors using suppress, reset, and inhibit buses. Actually this behavior
generates the logic of robot and a primary control of behavioral coordination among
other behaviors. Since this behavior is an internal behavior, it does not generate a
field force as other external behaviors. Coordinated motor control signal is sent to

motors.

45

3.2.2.9 Physical Situation Behavior

Physical situation behavior is an also internal behavior that controls the
situation of a robot in the physical environment by interpreting the outputs of the
eternal behaviors. It detects stuck conditions of robots and environmental conditions.
This behavior continuously updates the environmental conditions. For instance, if
robot is running at rainy environment then it will not be able to perform at a desired
speed due to slippery ground. So a kind of calibration is needed for internal
parameters. The overall function makes this behavior behave as a

e Physical stuck detector, used as local minima detection or real physical stuck
e Environment modeler from buffered internal data. This property is not

implemented for the time being and will be addendum of future works

This behavior is different from environment monitor behavior because it analyzes
the outputs of the external behaviors and tries to detect unusual things. On the other
hand environment monitor behavior just detects the locations having excessive

slopes. This behavior is active the all times.

3.2.2.10 Behavior Output with Potential Fields

Vectors are generated as forces using the derivative of derivative of potential
field force function with respect to distance in 3D space will be presented. The
generated force according to the proposed potential field satisfies the following
conditions:

e High magnitude around target point.
e (Quadratic decrease in magnitude with increasing distance between target
point and robot point

e (Constant in magnitude after some distance.

46

Force Magnitude

A

F1

R1 R2 R3 R4

F2

F3

\4

X1 X2 X3

Figure 15, Potential field force magnitude with respect to distance

In Figure 15, magnitude of the proposed highly nonlinear force with respect
to the distance is shown for the four different regions:
R1: Constant high force region

R2: Quadratic force region, force decreases quadratically with respect to distance

m
The general form of the force in this region is £ =—+n
X

R3: Transient region from R2 to R4.

R4: Constant low region

Introduction of these regions is necessary in:

e Preventing sharp robot movements, smoothing down the motion.

e Obtaining reasonable force values. Force values become bounded within
some max. and, min. values.

e Generating quadratic decrease or increase in region 2 enables the quick
decrease or increase around target point. Robot is more reactive to position
change.

e After some distance potential force begins to be ineffective. It is in effect

within a region and zero outside.

47

In Figure 16, 2D plot of the gradient of proposed potential field giving the force is

given. This plot is obtained relative to the origin by simply rotating force function

along z-axis.

Figure 16, Potential filed force in 3D

The magnitude of force function is given for each region as:

F LR(0<X <x))
2 2
(E_Fzz)(jlxz) LZJFFI _w R, (x, <X <x,)
X XX
|F|= xl x2 172 (1)
(F=F) . p (FoF) R, <X <)
(X, —x;) (X, —x3)
\F; ,R4(X3SX<00)

Each behavior in the proposed architecture has F{, F,, F}, X, X,, X; values. By

changing these values relative strength and relative effective distance of each behavior is
adjusted. In

Table 1, the current force function parameter for each behavior is shown. We choose

this set of parameters through simulation experiments.

In
Table 1, some values are shown as NA (). This is because of some behaviors takes

only one behavior in reasonable distances. Heuristic wander and adaptive Wander

48

behavior are this kind of behaviors. The logic behind their formulation gives rise to

this result. Later, details of these behaviors will be discussed

Table 1, Field function parameters for each behavior

Behavior F; F, F; X1 X, X3

Target Reaching 50.0 20.0 0.0 2.0 PSR -2.5 PSR -2.0
Obstacle Avoidance, 100.0 | 5.0 0.0 1.0 ODSR-1.5 | ODSR-1.0
Repulsive Field

Obstacle Avoidance, 10.0 1.0 0.0 1.0 ODSR/2- ODSR/2-1.0
Tangential Field 1.5

Robot Separation 40.0 11.0 10.0 2.0 RSDSR-2.5 | RSDSR - 2.0
Heuristic Wander 40.0 NA(®) | NA(©) | NA(®0) | NA(wx) NA(o0)
Adaptive Wander 40.0 NA() | NA(©0) | NA(®) | NA(x®) NA(o0)
Communication 50.0 20.0 0.0 2.0 CR-25 CR-2.0
Environment Monitor | 40.0 2.0 0.0 2.0 3.8 4.0

Physical Situation NA NA NA NA NA NA

State Evaluation NA NA NA NA NA NA
Abbreviations:

PSR : Primary Sensor Range

ODSR : Obstacle Detector Sensor Range

RSDSR : Robot Separation Detector Sensor Range

CR : Communication Range

NA(w) : Not Applicable or Infinite

3.2.3 Implementation of Behaviors

3.2.3.1 Target Reaching Behavior

Target reaching behavior gets input from primary sensors of the robot and
generates a direction to which a robot is directed. Number of targets determined can
be any number. Since robot can only lock and go to only one target, it should make a

decision between sensed targets.

For any time list of sensed targets, 7' = {tl,tz yees tn}

49

The robot selects the target at minimizing distance between robot and target. Robot

evaluates the metric below for each target and selects the winning target.

t;

nﬂn(Hf}——P

»OSiSn

P, : Robot Position, P, : i"™ target position

Target reaching behavior generates an attractive force from robot to target

which had a magnitude evaluated according to equation (1).

- P.-P
f= T Rj
[IPT—PRI

The force direction of the force:

where,
P, : Robot Position in 3D
P, : Target Position in 3D

Overall force vector will be:

F = f|F|
3.2.3.2 Obstacle Avoidance Behavior

As mentioned earlier, this behavior is composed of two basic forces: a
repulsive force and a tangential force. The repulsive one being responsible for
avoiding collision whereas the tangential force is responsible for generating a
direction for the robot to wander around obstacle. The magnitude of each force is

evaluated with equation (1).

In Figure 17 obstacle particles detected by robot (blue circle) is shown. Red
circle represents the range of robot obstacle detector sensors. Robot detects many
obstacle particles for a medium size obstacle. The overall force generated by obstacle

particles over the robot is a linear combination of each particle force.

50

Figure 17, Obstacle particles detected by robot

Set of obstacles, O, detected by robot O = {01 05500050 P}

Direction of repulsive force for a particle is
J—; B P, - Po,
P - P,
P & - Robot Position in 3D

P o, : i Obstacle Position in 3D

Overall repulsive force direction will be

- P
frepulxive = Z fl
i=0

Tangential force evaluation is a little bit different. A set boundary points is
chosen around the particle on the obstacle nearest to the robot. These objects are used
to generate non-linear obstacle curve to calculate the relative direction of the robot

with respect to nearest obstacle. The algorithm is given below.

Algorithm, Tangential Force Calculation

1. Evaluate the nearest obstacle particle to the robot, O

nearest

2. Generate a set, R{O},, N points on the boundary of obstacle O

nearest

51

3. Find the 3™ order polynomial curve, C passing points in the R{O} N set,

minimizing least square error.

4. Find the nearest point, P 0 in R{O} y to the robot, or simply use the

nearest

position of Onearest particle.

5. Evaluate the surface, S 0 passing through F, o)

nearest nearest

9

5
6. Evaluate the tangential force direction, f wn DY projecting direction of robot, d,

on to the surface, S 0

nearest

In Figure 18, mentioned curves, sets and points are shown. In this case there
are two different obstacles sensed by the robots. Robot executes the above algorithm
to find the nearest obstacle particle and set of neighborhood particles. Then it
evaluates the curve passing through this particle points (curve C shown in the figure).
Surface passing through the nearest point on the curve to the robot is found. Finally
tangential force is evaluated by projecting the direction vector of robot onto this
surface.

The net force will be

-
+ F F
repulsivel repulsive 2

)

repulsive 2 tan

F=f

repulsivel | tan

Robot will move in the direction of 1_5 .

3.2.3.3 Robot Separation Behavior

Robot separation behavior is implemented for preventing collision of the
robot with each other. Each robot is capable of sensing other robot regardless of its
primary sensor type. A robot can sense any number of robots within its robot

separation detector sensor range (RSDSR).

52

Obstacle1

Obstacle2

Figure 18, Tangential and repulsive force diagram.

The magnitude of robot separation force is calculated as described in equation
(1). Robot separation force is a repulsive force; the direction of which is from the
detected robot to one that detected. If more than one other robots are detected then
the total force is evaluated by summing each robot separation force.

Set of robots detected by robot
R={n,r,.ry}

Direction of repulsive force for a detected robot is

[, - B
P, : Robot Position in 3D

P R i Robot Position in 3D

Overall repulsive force direction will be

53

- M
Fm:Zfi

= —
s

. f=f

- 1

vepulsivel ‘ repulivel

Figure 19, Robot Separation Forces

3.2.3.4 Heuristic Wander Behavior

Heuristic wander behavior is one of the basic behaviors. Robot wanders
around the environment and searches the targets heuristically with the help of this
behavior. Heuristic wander behavior is not active all the time. It is active only when

adaptive wander behavior is not active.

Heuristic wander behavior generates a new wander direction at the beginning
of the behavior. Behavior does not generate a new direction until some time is
elapsed. The reason behind this is that robot is allowed to wander a certain time.
Generating new wander direction repeatedly will force the robot to wander around
the same point which is undesirable. Since physical robot will not turn immediately,

robot will not generate sharp wander direction. Maximum wander angle is limited by

a limit angle @ . Choosing small &, will decrease dead reckoning error due to

max

54

the rotation sensors. Moreover there will be some resolution that for 0 we denote as

of turning angle 8., .

v3

Figure 20, robot generated a direction randomly by rotating it direction around normal vector
of current grid that robot resides.

In Figure 20, a robot on a 3D plane is shown. Vertices of the plane where the robot is
currently located are v;, v,, and v; respectively. These vertices are obtained from
terrain map represented as a DirectX mesh structure. Algorithm of heuristic wander
direction generation is listed below.

Algorithm, Heuristic Wander Direction Generation

1. Determine the vertices of the plane where the robot is located from 3D terrain

mesh.

2. Evaluate the normalized plane normal, nas

;l= (Vz _VI)X(VS _Vl)
|V2 _V1||V3 _v1|

3. Generate an angle ¢ randomly (uniformly distributed) between —6_ and

7

max

N
4. Rotate robot direction vector, d , about plane normal by an angle

k0., where

9 -
k =| 2% | new direction is @ .

res

55

5. Wait for some time, and continue from step 1.

The overall force generated by this behavior is calculated using values from

Table 1 and as shown there, the magnitude of the force is constant.

3.2.3.5 Adaptive Wander Behavior

Adaptive wander behavior is designed for generating optimal or near optimal
wander direction. It is more optimal as compared to heuristic wander behavior. This
behavior considers the following issues to increase the wander performance:

e Current coverage map
e Obstacle map

e Target map(optional)

This behavior makes a data fusion among the generated maps and determines the
next wander direction by:
e Increasing temporary coverage by wandering through unvisited region
e Decreasing obstacle crash rate by wandering through region that is not dense
with obstacles
e Increasing target detection rate by wandering through region having lower

target density (estimated density).

Coverage map is a 2D MxM grid map. Each entry of the map is a linked list
having the following data structure in C++ style:
struct {
_TIME time;
_POSITION pos;
IMAP_COVERAGE_ELEMENT;
time is the system time
pos is the 3D position of robot
The entire map has also the following C++ deceleration:

CList<MAP_COVERAGE_ELEMENT, MAP_COVERAGE_ELEMENT> **MapCoverage;

56

The number of times that the robot visited a region is determined by simply finding

the length of the linked list.

The resolution of map is important because it determines the memory to be
allocated for the coverage map and is determined by the range of the primary sensor
of robot. In Figure 21, a grid of coverage map is shown. Theoretically, robot can
sense the target within its primary sensor range shown as a dashed circle. Due to the
noise or other undesired effect, the resolution of the coverage map is taken as smaller
than the diameter of the robots sensing range. Size of the coverage map grid is then
formulated as

2 pr ,where p is the discount factor. Currently p 1is set to 0.8.

-~

pr k

N

'
le——— Coverage Map Grid

'
'
'
]
.
’

.
-~ .
~~~~~~~

Figure 21, Coverage map resolution calculation diagram

To satisfy the dynamic environment assumption, data in the coverage map

cannot be used forever. After a timeout limit, 70 entries at the linked list are

cov ?

deleted if the time of an entry is too old. Let the entry time be 7, and the current time

isT . Entry is deleted if

curr

T =T, >TO,,.
Moreover at each simulation time the coverage map is refreshed to decrease its size.
In Figure 22 and Figure 23 coverage map at time T1 and T2, T2 >T1, is shown. The
height value corresponds to coverage value of current grid, i.e. how many times that

the robot has visited a grid cell. Due to the timeout, the vertex value of the grid map

57



shown in the region 1 of Figure 22 are deleted at time T2 as shown in Figure 23. Red

line in the figures points the next wander point.

Value of 1'0,,, is important: If the it is selected too high then robot will

memorize the environment and dynamic environment assumption will fail. However
if it is too small then it will not use past coverage information and its performance
will approach to that of heuristic wander behavior. In this system it is set to a time

that is required to

Max Val: 82.00 Min Val: 0.00 .
Map Resoultion: 11.31 Next Wander Point

Figure 22, Coverage Map at Time T1

Max Val: 82.00 Min Val: D.00 / Next Wander POil’lt

Map Resoultion: 11.31

Figure 23, Coverage Map at Time T2

58



Obstacle map stores the information about the obstacle in the environment.
Its primary usage is to decrease the obstacle avoidance rate. Implementation is
similar to coverage map except that its resolution is different. Data structures are
same with that of coverage map. The entire obstacle map is also has following C++
deceleration:

CList<MAP_OBSTACLE_ELEMENT, MAP_OBSTACLE _ELEMENT> **MapObstacle;

Resolution is calculated as 2 07, where

p 1s discount factor 7, is obstacle detector sensor range.

’ ‘\‘
/
\

i Plops %
H obs H

\
H le——+—— Obstacle Map Grid
:
\

'
I
'
'
.

’
,
,

Figure 24 Obstacle map resolution calculation diagram

Another critical parameter is the timeout time, 7O for obstacle map

obs »

entry removal to satisfy dynamical environment assumption. It is set to370_ /2 .

Target map is used to store the location sensed targets. Concept behind the
target map implementation is the same as those of obstacle map and target map.

Resolution of this map is equal to resolution of coverage map but the timeout

time,7'0,,, issetto 70, /4.

7

3.2.3.5.1 Memory Requirements for Maps

Usage of maps increases the performance in terms of coverage and target
detection time with better obstacle avoidance but there is a main disadvantage:
memory allocation for maps. Memory space required for maps is determined by:

e Resolution of map

59



e Timeout time

Resolution of map depends on the sensorial range of the robot. High sensorial
range results in lower memory demand. By decreasing the values of above
parameters memory demand can be controlled but performance of the system can be
decreased. Total space required can be calculated at steady state. Robot should have

enough physical memory to meet the memory demand.

In Figure 25 normalized memory demand for three timeout values are shown.
After some time, each situation reaches a saturation point. Of course reaching

saturation will take different time for each case. For 7O, =3000amount of
memory needed at steady state is 1.5 times of that of 70O _, = 2000 and 3 times

of TO_,, =1000 .

Normalized Memory
A

70,,, =3000

0.45
70,,, =2000

0.30
70,,, =1000

0.15

Time
1 21, 3t "

Figure 25, Normalized memory requirement versus time for coverage map. Each line
corresponds to different timeout time.

3.2.3.5.2 Fusion of Maps Generating Next Wander Direction

Fusion of maps is based on the finding free or unvisited location in the

coverage and obstacle maps. The first step is searching the coverage and obstacle

60



maps for free grid cells. Of course, each location in the physical environment
corresponds to a cell in the map with limited resolution. Searching the coverage map
is achieved in an expanding radius search fashion, i.e. coverage map is searched
starting from the cells having distance (in the index sense) 1 and at each step, it is

increased by one.

In Figure 26, the search method is shown graphically. The robot location is
shown as red circle. Start point of the path is in circular shape whereas end point is
depicted as arrow. Search path having depth 1 is shown as “Depth 1”. Shape of the
search path can be square if the path does not intersect with the boundary. Depth 5

and Depth 6 is not in square shape because of the reasoning above.

To decide that a cell in the coverage map is free, corresponding cell in the
obstacle map should also be free. Search procedure is continued up to enough free
points are found in specified minimum search depth. If any free point is not found

then adaptive wander behavior should be disabled for the current simulation time.

Depth|6

Depth|5

Depth|1

Depth|{2

Depth| 3

Depth{4

Figure 26, Coverage map search path

Frequently, search of the maps generates more then one free cell. So a
decision should me made among these points. Decision making procedure is based
on optimizing following issues:

e Minimizing obstacle crash

61



e Minimizing the angle between current wander direction and next wander
direction
Depending on the above criterion some of the wander points are filtered out.
Some wander points should result in obstacle crash as shown in Figure 27.
Even if the wander point does not contain any obstacle but robot should avoid the
obstacle in its path. Obstacle avoidance will force the robot lose time and energy. In
some cases robot should generate a wander point which is absolutely unreachable as
shown in Figure 28. Robot should filter out this kind of wander points. So in any

case some kind of post obstacle crash check should be made.

————+ Wander Point

Next Wander Direction

Obstacle

{— Robot

Figure 27, Obstacle crash situation, partly reachable situation

— Wander Point

ya Next Wander Direction

Obstacle

{— Robot

Figure 28, Obstacle crash situation, absolutely unreachable situation

62



3.2.3.5.2.1 Obstacle Crash Check

Obstacle crash check is achieved finding density of obstacle in the region

defined by a rectangle whose corners formed by robot location and wander point
location. If obstacle density D, is higher than a threshold then wander point is

filtered out otherwise it is used.

In Figure 29 “Robot-Wander Point Rectangle” ( RWPR) is shown. Obstacle
density estimation is calculated within this rectangle in horizontal direction. For each
row in the RWPR obstacle presence is checked from obstacle map. If no obstacle is

present along the row then this row is said to be obstacle crash free row.

 Wander Point

Next Wander Direction

> Obstacle

Robot-Wander Point
Rectangle

{— Robot

Figure 29, Robot-Wander Point rectangle for obstacle crash check

But if an obstacle exists in a point in the row then this row is said to be obstacle crash
susceptible row. For each row above procedure is executed. If the ratio of the number
of “obstacle crash susceptible rows” and “total number of rows” exceeds a threshold
then wander point under consideration is filtered out. Depending on the value of this

threshold “Partly Reachable” wander points may or may not be filtered out.
In Figure 30 obstacle density for two different situations are shown. The first

case has obstacle density 0.57 since 4 of 7 rows are filled by obstacles. However in

second case there are 5 rows filled with obstacles.

63



D, =0.57 D, =0.71

Figure 30, Obstacle Density for two situations. Image at the left hand side has obstacle density
0.57 whereas right hand side situation has 0.71 obstacle density.

3.2.3.5.2.2 Angle Check

Another important criteria in the adaptive wander point generation is that
angle check algorithm. There can be wander point candidates. Some of them may be
filtered out by obstacle crash check. Remaining points are checked for angle test.
Logic behind angle test is that robot should not be turned with large angles relative to
its current direction. Large angle turn blockage will result in more continuous motion
and less dead-reckoning errors. In Figure 31 angles of wander point direction relative

to robot current direction is shown.

wi ‘.
yd
//‘
w3
< /
N )
a, L ) Robot
%3‘ (ll Robot Current
2 direction
w2 ‘

Figure 31, Wander point angle with respect to robot current direction

Proposed angle check is achieved as follows:

64



Set of wander point candidates points W = {w1 TWyseens WM}

For each point in set W, there is a set of angles A relative to robot current direction
A= {al,az,...,aM}

Final wander point candidates are selected whose angles are smaller than a threshold

angle awilhr .

3.2.3.5.2.3 Final Decision of Wander Point

The final phase of the adaptive wander point generation is that making a
decision between the wander points candidates filtered out by angle and obstacle
crash check. Decision is made heuristically, i.e. wander point is determined among
the candidate points randomly. This random nature is desired since it will allow robot
to wander more freely within some degree. Moreover above deterministic algorithm
becomes a little bit stochastic to filter out unconsidered situations. Below overall

algorithms are shown.

Algorithm, Adaptive Next Wander Direction Generation (without Target Map

fusion)

1. Generate set of free (unvisited) locations F = { Jis Sosreens fM} by searching

the coverage map and obstacle map up to a depth. If enough free cells are

found then stop the searching. If no free point is found then return.

2. Apply angle test for points in £ for an angle «Q,, 4. Generate a new set
formed by points that are passed angle check test. New set is “angled check

passed” set £, :{ﬁfl’ﬁfz,”_,ﬁf[{}’]{ <M

Where
M, =f,,us<M,d <M

65



3. Apply obstacle crash test for points inF, . Generate a new set formed by

points that are passed obstacle crash test. New set is “angle check passed

obstacle crash check passed” set £ = {ffl, s fIT } L<K

acpocp
ff, = ff,u<K,d <K

i.e. u and d are unique numbers.

4. Find the final wander point from set F, by selecting a point

randomly(uniform distribution), say P, = fff,

5. Estimate time, [,,, necessary to visit from robot current position, P to

adaptive wander point, £, . Estimated time will be

o _|p-2)]
est_m

E {v, } is the average speed of robot.

6. Wait 7, and continue from step 1

3.2.3.6 Communication Behavior

Since proposed multi-robot system is strongly a multi-robot system, some
kind of explicit communication is needed. Depending on the situation there may be
need of help of other agents in the environment, and then robot tries to gather

necessary number of agents with enough capabilities.

Each robot can only execute only one communication task. A communication
task is created by a communication requester agent in the environment. Requester
robot commands the robot to go a location in the environment. Communication

behavior is responsible for navigating through this communication task location

66



securely. Logic behind the communication behavior is the same as target reaching
behavior except that field force settings are different and there can be only one

communication task location.

Set of communication task contains only one active communication task, C = {c, }

Direction of attractive force for a communication event

P, : Robot position in 3D
Pc,. : Position of i"™ communication task in 3D
Over all force will be

- M
F.=21

i=0

3.2.3.7 Environment Monitor Behavior

Function of environment monitor behavior is collecting information from
environment and generating appropriate motor responses. Since robot has physical
constraint, it cannot achieve all the maneuvers. Physical constraints may be:

e Slope, robot cannot drive at a surface having big slope
e Water or mud level of soil

e Temperature or humidity of weather

Environment monitor behavior considers only slope constraints. Robot does

not navigate a region having a slope over a threshold level, «, ,. . Force magnitude

is computed using force parameter values from
Table 1. Calculation of net force is presented below.

Set of slope over limits detected by robot

S = {sl,sz,...,sT}

67



Direction of repulsive force for a detected slope over limit is

P P —F
- [R-A

P & . Robot position in 3D

])S. - i™ Slope over limit position in 3D

1

Overall repulsive force direction will be

- M
Fm:Zfi

i=0

3.2.4 Physical Situation Behavior

Primary function of physical situation behavior is detecting stuck conditions.
In case of physical stuck, target reaching, communication, and adaptive wander
behavior is inhibited. This behavior adds white noise to final response, the

maximum value of which is taken to be(10,10,10).

68



CHAPTER 4
Task Abstraction and Task Allocation Algorithm

Proposed system is based on executing tasks which can be resolved with
multi-agent effort, it is necessary to define task executed by robots clearly. At this
stage, a powerful abstraction is needed. Any task can be reduced into a well defined

execution of sequence of sub tasks. Abstraction encapsulates the definition and

execution of a task.

Task
Execution

Figure 32, Task Abstraction

4.1 Task Definitions

In this proposed system there are four different type of tasks:
e Uncorrelated Tasks
e Correlated Tasks
e Synchronously Correlated Tasks
e Sequentially Correlated Tasks
Any robot has a primary sensor and depending on the primary sensor, its role
differs. Moreover each robot is capable of sensing the nature of the task, i.e. whether

the task is uncorrelated, correlated, synchronously correlated or sequentially

correlated or not.

69



4.1.1 Uncorrelated Tasks

Uncorrelated task is a single task which can be resolved by a single robot.

There are two important parameters of an uncorrelated task ¢ .
t, = {r, K, A}

7 : Task Type
x : Number of robots necessary executing for task type 7
A : Task Execution time, constant for all subtasks
for uncorrelated tasks x is always equals to 1
e Type of task: Robot senses the type of task using its primary sensors. Type
determines which robot executes the task

e Task Time: Time is necessary for executing task

If a robot detects an uncorrelated task then it tries to execute it within task time.
Robot does not generate any communication event since it can execute task by itself.

Task symbol in simulator is shown below.

Figure 33, Uncorrelated task representation simulator. Red rectangle stands for task type 1 with
task time 1, whereas blue rectangle stands for task type 2 with task time 5.

Uncorrelated Task Execution Algorithm

1. Robot executes task in task time.
2. Robot switch to free-state

4.1.2 Correlated Tasks

Correlated task is composed of at least two different subtasks and these

subtasks are solved by different robots asynchronously at independent times.

70



t :{r, K,A}

T : Task Type
x : Number of robots necessary executing for task type 7, it is always 1. Because 1
robot can execute task in task execution time.

A : Task Execution time, constant for all subtasks

Separated tasks can be executed independently. Let a correlated task, T, be composed

of two tasks:

T ={t,ut,}

f, can be executed by robot 7 at time 7, in AT,

On the other hand

I, can be executed by robot r, at time 7, in AT,

If 7 finds the source of task first then it generates communication event to invite a

robot with type 2 based on task allocation protocol.

Correlated task execution does not require any kind of synchronization
between executions of separable tasks. In Figure 34 a correlated task is shown.

Relative height of different color rectangles shows the relative task time.

Task 1
Task Time: 4
Task 2
Task Time: 2

Figure 34, Correlated task representation in simulator. Correlated task is composed of
separable two subtasks: Taskl and Task2 with specified task time.

Correlated Task Execution Algorithm

1. Robot 7; separates the task into subtasks

T={tut,.Ut,}

71



2. Robot 7;sends communication request and distributes task
t,, 1<j<M,j+#i
to appropriate robots based on communication protocol.

3. Robot 7} executes task Z,, in task time

4. Robot switch to free-state.

4.1.3 Synchronously Correlated Tasks

Synchronously correlated task is used to define a task composed of at least
two different subtasks but execution of these subtasks is strictly synchronous at the

same time. Task execution processes is managed by the task manager. Manager

decides for:

e Communicating with other robots to invite to join task execution

e (Gathering enough number of robots with appropriate type
e Execution of task

e Release of task

Details of roles for the robot will be explained in detail in the communication

section.

A synchronously correlated task is represented as follows
T={t ot.ot,

Task T is composed of M subtasks <> stands for synchronous task execution.

A synchronously correlated subtask has three parameters.
t, = {T, K, A}

T : Task Type

x : Number of robots necessary executing for task type 7

A : Task Execution time, constant for all subtasks

72



Task 1
Task Time: 4

Task 2
Task Time: 2

Figure 35, Synchronously correlated task representation in simulator. Synchronously correlated
task is composed of separable two subtasks: Taskl and Task2 with specified task time.

In Figure 35 Synchronously correlated task representation is shown. Relative height

of different colored rectangle stands for relative task execution time.

Synchronously Correlated Task Execution Algorithm

1. Robot 7, separates the task into subtasks 7 = {tl L.t M}

2. Robot 7; sends communication request for tasks ¢, I1<j<M,j+#i

for number of robots jx based on communication protocol.

3. If enough number of robots is joined, robot 7; sends execute command for all
robots.

Robot 7; monitors the task execution process.
4. If all tasks are executed synchronously then robot 7; sends “go to free-state”

command for all robots. If an error occurred then 7; restarts the task from the

beginning of the error. If the task is not completed within a timeout time for
any reason then manager robot sends release command to all robots.

5. All robots switch to free-state.

4.1.4 Sequentially Correlated Tasks

73



Sequentially correlated task is used to define tasks requiring sequential
execution process. There is an order for task execution; for starting each task has to

wait the completion of its predecessor task

A synchronously correlated is represented as follows

T={t >t,.—>t]}

Task 7T is composed of L subtask — stands for sequential task execution.

A sequentially correlated subtask has for parameters.

t, = {z', K,A,Q}
T : Task Type

x : Number of robots necessary executing for task type 7
A : Task Execution time, constant for all subtasks

Q' Order of task.

Task 2, Task Time= 1, Task Order = 2

Task 3, Task Time= 1, Task Order = 3

E } Task 1, Task Time= 1, Task Order = 1

Figure 36 Sequentially correlated task representation in simulator. Synchronously correlated
task is composed of separable three subtasks: Taskl, Task2, Task3 with specified task time and
task order.

Sequentially Correlated Task Execution Algorithm

1. Manager robot 7; separates the task into subtasks as 7' = {t1 .. ZL} .

2. Robot 7;sends communication request for tasks ¢, 1<j<M, j#i

for number of robots 7 ;. based on communication protocol.

3. If enough number of robots is joined, robot 7;sends execute command in the

order of task execution for tasks, and monitors the execution of task. If

74



current task is completed successfully then robot sends execute command for
the next task. In case of any error, manager robot restarts the current task. If
task is not completed within a timeout then manager robot sends “release”

command to all robots and all robots switch to free-state.

4. All Robot switch to free-state

4.1.5 Task Combinations

Any task can be formed by a combination of uncorrelated tasks, correlated
tasks, synchronously correlated tasks, sequentially correlated tasks. Manager
robot senses the type of task and separates it accordingly. In our system, a robot can
sense only one type of task source, naturally it is expected that any robot in the
system cannot achieve task separation but for simulation purposes each robot knows
the type of the task and therefore how to decompose a task in to sub-tasks.

General form of set of task R is

v -

R:{TI,T

[\S)

s43

Where
T : Uncorrelated Task

: Correlated Task

T, : Sequentially Correlated Tasks

T, : Sequentially Correlated Tasks
Each task T is also a task and formed by a combination of other subtask. Execution

of set of task will from 7] to7, .

75



4.2 Task Allocation Algorithm (TAA) and Communication

Protocol

Task allocation is one of the central issues of any multi-robot system. It
determines how tasks are allocated among the participants of a robot/sensor network.
TAA can be very different depending on the system architecture If a centralized
system architecture is applied then completely different TAA is used as compared
with decentralized systems. Task allocation algorithm depends also on the
communication type and communication type is also dependent on task allocation

algorithm, i.e. TAA and communication type should be compatible.

4.2.1 Communication Protocol

In the proposed system within communication range, it is assumed that all
robots can communicate each other without any fault for exchanging information.
Important issue regarding communication protocol is the addressing of messages, i.e.
how messages will be distributed correctly to robots. In this system there are two
addressing modes:

e Explicit addressing

e Broadcast addressing
In explicit addressing mode, messages are sent to a specific robot whereas broadcast
addressing is used for sending message to robots within communication range.
Explicit addressing is used for node to node communication.
We provide here as an example of communication message structure as follows:

<Addressing Mode><Message ID><Robot ID>< Word Count><Word1>...<WordN><CS>

Table 2, Communication message structure

Addressing Mode Mode of addressing, explicit or broadcast addressing
Message ID Identification number of communication message
Robot ID Identification number of robot to message sent. This is

meaningful if addressing mode is explicit addressing.

Word Count Total number of words in the message including word count

and checksum.

76



Wordl Data Wordl1

WordN Data WordN

CS Checksum

4.2.2 Task Allocation Algorithm (TAA)

TAA is based on known decentralized market-based auction algorithm
described in [51] with some differences. Fitness calculation is completely different in
this thesis. It is assumed that robots live in a virtual liberal system. Actions of the
robots are based on their reliability and their fitness for tasks. Robots send their

requests and responses via a communication infrastructure.

There are two basic roles that a robot can have: the role of a manager or that
of a worker. The manager role is being manager of a multi-robot task, where
management covers:

e Distributing tasks to the workers according to defined criterion

e Starting task &Ending task

e Monitoring execution of task
A Worker is responsible for the execution of a specific task. Worker robots should do
following items:

e Execution of task

e Reporting of execution of task to manager

e Reporting its current status to manager

Roles of the robots are completely determined by a decentralized fashion. A
robot can be a manager or a worker at different times. A robot is free for accepting
its role, i.e. robot has not to be a worker or a manager even if it is requested. For
instance, a robot can choose wandering around the environment instead of answering

for a requested help depending on the requirements of requested help.

77



4.2.2.1 General Aspect of TAA algorithm

TAA has four phases:

e Task Request Phase

e Task Response Phase

e Task Acknowledge Phase

e Task Execution Phase

Task Request Phase Task Response Phase

Task Execution Phase Task Acknowledge Phase

Figure 37, Phases of task allocation algorithm

4.2.2.2 Task Request Phase

In this phase, manager robot evaluates the current task and generates
appropriate communication packet to request the help of other robots as worker

robots.

TAA is achieved according to the fitness of each robot. Fitness is the
minimum required reliability of robot to achieve the task. Each task has a fitness
value evaluated by manager robot. Since task in the proposed system is a linked list
of subtasks then each subtask has, value for different robots, a different or equal
fitness which is determined by the conditions evaluated by manager robot. Fitness

calculation is one of the important aspects in this TAA.
After the calculation of the fitness value for a task the manager robot

transmits a call for gathering enough number of robots for that task execution using

the communication infrastructure. It starts to send a task request packet (TRP) to a

78



range allowed by its communication hardware. Parameters of TRP, and their

explanations are given in Table 3.

Table 3, Communication task request packet parameters

Parameter Name

Explanation

Packetld

Unique packet ID of communication task request packet. Simulator

interprets the TRP according to its identification number.

Ownld

Unique identification number of manger robot requesting. A

response is sent to correct manager robot using this Ownld number.

OwnType

Type of manager robot’s primary sensor. It is used by the robots

candidates of being worker robot for request under consideration.

RequestedType

Type of robot’s primary sensor. If requested type and robot’s type is

identical then robot should respond the manger robot.

RequestedTaskType

Type of task, i.e. whether task is uncorrelated, correlated,
synchronously correlated or sequentially correlated. A robot request
a communication task if its type is identical to TaskType and its

fitness is enough.

Sourceld

Unique identification number of source for which the request is to be

generated. Simulator uses this parameter.

RequestTime

Time of request made. Request time is the time relative to manager
robot. In this system, it is assumed that robots are not time
synchronized. A robot synchronizes itself with manager robot with
this parameter by setting the value of a counter dedicated to time

synchronization to RequestTime value.

ExpirationTime

Time of expiration of request. Response made by worker robot
candidates is accepted only time before ExpirationTime. A robot
knows the expiration date and of course it will not make any

response.

OwnFitness

Fitness of the owner robot. Worker robot candidates use this

parameter before responding.

RequestedFitness

Required fitness of a worker robot candidate. Robots having fitness

value greater then this value can be a worker robot candidate.

OwnPosition

Position of manager robot in 3D environment. A worker robot
candidate knows the distance to the manger robot using this

parameter.

CommunicationRange

Range of communication hardware owed by manager robot.

79




For each subtask a TRP is generated and sent. After sending enough number
of request for each subtask then the manager robot gets the responses from the

worker robot candidates. The entire task request phase algorithm is listed below.

Task Request Phase Algorithm

1. Manager robot detects a task in general form shown below. Each task has

also subtasks.

U -

R = {Tl, 5

w

,T4,....,TL}

2. For each subtask of7,, 1<;<L calculate fitness, generate TRP and sent

TRP.

3. Evaluate responses within some time specified by expiration time. If no
response is received and a timeout value is not exceeded then decrease the
fitness value and re-announce the task, go to step 1. If enough responses are
received then go to step 4. If the expiration time is reached then release task
and go away from current location.

4. Switch to task acknowledge phase.

4.2.2.3 Task Response Phase

In this phase, response is generated for incoming task request packets. This
phase is only applicable for worker robots. In TRP, requested worker robot type
(RequestedType) and requested fitness (RequestedFitness) are specified. If the robot
type is identical to RequestedFitness and fitness is equal to RequestedFitness in TRP
then that robot can respond this TRP in case of no limiting conditions, i.e. that robot
may not be free then it cannot respond the incoming event even if it satisfies the

requirements of current TRP.

In this phase, a robot as a worker robot candidate generates a task response

packet (TRSP) and sends it. Parameters of TRSP and their explanations are given in

80



Table 4. A worker robot candidate can only respond in the form of one task respond
packet. A worker robot candidate is a resource in the manager robot side. A resource
cannot be shared by different manager robots having different positions. Moreover if
a worker robot candidate sends two response packets to two different manager robots
and if these manager robots acknowledge the response then of course there will be a
collision. The worker robot candidate should select one of the managers as a master.
There should be an additional re-acknowledge phase from worker robot candidate to
the manager robot. By limiting response packet generation count to one avoids this

problem and as well as any other problems.

Table 4, Task response packet parameters and their explanations

Parameter Name Explanation

Packetld Unique packet ID of communication task response packet. It is equal

to the identification number at corresponding TRP.

Ownld Unique identification number of worker robot candidate.

Managerld Identification number of manager robot whose TRP is received.

Simulator sends the response packet to correct robot by checking both

Packetld and ManagerId.
OwnType Type of worker robot candidate.
ResponseTime Time at which response is generated. This is necessary for

synchronizing with manager robot. A manager robot synchronizes
itself with worker robot candidate with this parameter by setting the
value of a counter dedicated to time synchronization to

ResponseTime value.

OwnFitness Fitness value of worker robot candidate relative to corresponding task
request packet.
OwnPosition Position of worker robot candidate in 3D environment.

Task Response Phase Algorithm

1. If robot is available for communication request then task request packets are
buffered into a linked list for some time. Let list of received task request

packet be L{TRP} shown below.

L{TRP} = {TRP,,TRP,,...,TRP, }

81



2. For each task request packet not expired in L{TRP}, generate a relative

fitness list as
L{F}={F,F,,..F,}
3. Find the maximum of fitness, F,,1 <k < N, in the fitness list L{F'} .

4. Generate and send task response packet for task request packet, TRF, .

4.2.2.4 Task Acknowledge Phase

This phase responses from worker robot candidates are evaluated and worker
robots are selected. After task request phase, manager robot waits for some time for
completion of task response phase. Within this time, worker robot candidates send
responses to manager robot. In task acknowledge phase, depending on the value of
fitness in the task response packets, received from worker robot candidates,

acknowledges are generated.

For a given task request packet, there will be a list of responses sent by
worker robot candidates. Manager robot acknowledges the response having the
maximum fitness. For each task or subtask only one worker robot candidate is
acknowledged. Since a worker robot candidate sends response to only one task
request then there will be no resource allocation conflict. In Table 5, description task

acknowledge packet (TAP) is given.

Table 5,Task acknowledge packet parameters and their explanations.

Parameter Name Explanation
Packetld Unique packet ID of communication task acknowledge packet.
TaskResponsePacketld Task response packet ID for which acknowledge is generated
Managerld Identification number of manager robot
WorkerRobotld Identification number of worker robot
AcknowledgeTime Time of acknowledge time. This time is used for synchronization
purposes.
ExpirationTime Time after which acknowledge is invalid. Worker robot should
reach to its destination pointed by task request packet

82



Task allocation among the worker robots are described below. Manager

robot’s task request packet list L{TRP} is shown below.
L{TRP} = {TRP, ,TRP,,....,TRP, }

For each element of this list, at least one response is received from the worker robot
candidates.

For each task request packet there will be a list of task response packets
L{TRSP}, = {TRSP,,TRSP,,....,TRSP; },1 < j<N

Where

S 1s the size of task response packet list L{TRSP}; for task request packet 7RP,

For each task request packet 7TRP,1<i< N in L{TRP}maximum of fitness value in

the task response packet list L{TRSP}.is found. A task acknowledge packet is

generated and sent for task response packet maximizing the fitness. Overall

acknowledge phase algorithm is described below.
Task Acknowledge Phase Algorithm

1. For manager robot’s task request packet list L{TRP}
L{TRP} = {TRPl,TRPz,...,TRPN }
and corresponding task response packet list
L{TRSP}, = {TRSPI,TRSPz,...,TRSPSj},1 <j<N

If for each task request packets in L{TRP} is responded by at least one worker
robot candidates then apply task allocation algorithm described above.
Otherwise clear all of the buffers and exit from task acknowledge phase
algorithm.
2. Generate and send task acknowledge packet to worker robots

3. Wait worker robots arrival for some time

83



4.2.2.5 Task Execution Phase

Task execution phase is the final phase of the task allocation algorithm. In
this phase worker robots inform the manager robot on their arrival to location.
Execution of task is started by the command of the manager robot if all of the worker
robots are in the region of task execution. Periodically worker robots report the
current status of the task execution. Once the task is completed then the manager
robot sends release command to all robots.

Overall task execution phase algorithm is described below.
Task Execution Phase Algorithm

1. For manager robot’s task acknowledge packet list L{TAP}
L{TAP} = {TAPI,TAPz,...,TAPN }
Received list of inform messages from worker robots L{TAIP}
L{TAIP} = {TA]PI,TA[PZ,...,TAIPP }

If for all elements in L{TAP}is matched with the elements in the
L{TAIP} one to one then all workers robots are in the vicinity of task
execution region. If one to one match is not achieved then some of workers
robots are missing then manager robot sends release command for all robots.

2. Send execute command for all robots.

3. Receive and evaluate the task execution report from the worker robots. If an
error occurred then send release command for all robots.

4. If all tasks are completed successfully then send release command for all

robots.

4.2.2.6 Complexity of Task Allocation Algorithm

The manger robot has to make many relative fitness calculations. The

complexity of the task allocation algorithm is the complexity of the task

84



acknowledge phase algorithm. In the worst case the manger will be obliged to make
n comparisons to evaluate the maximum fitness value of received response packets.
Complexity of task allocation for manager is O(n). On the other hand, worker robot

needs only calculate its fitness, so the complexity of task allocation for worker robot

(bidder) is O(1) [46].

4.2.2.7 Fitness Evaluation

The fitness calculation is an important issue of the task allocation algorithm.
Depending on the value, task allocation fairness can be affected, it is necessary to
define the criterion of fitness calculation. In this system, there is no single fitness
calculation but fitness is calculated relative to some conditions and we will consider

each of conditions separately in subsections 6.5.2.

The fitness value depends on the following items and all conditions stem for
those dependencies:
e Target reaching frequency
e Communication failure frequency
e Obstacle avoidance success frequency
e Obstacle avoidance failure frequency
e (Coverage

e Distance from task location

Target reaching frequency defines how frequent is the target reaching. If
time interval between target reaching is small then robot’s target detection procedure
1s working fine. Target reaching frequency includes tasks allocated via

communication.

Obstacle avoidance success and failure also shows the current status of the
robot’s obstacle detector sensors. If there are problems with these sensors then
obstacle avoidance, which has a deep impact on robot overall performance will not

be done accurately.

85



Communication failure frequency is also an important parameter.
Communication task failures show a problem about robots communication hardware,

or some cross-couplings with other structures.

Coverage is a valuable parameter since it shows how robot navigates, and its
physical situation such as motors. Coverage is computed using a time-varying
coverage map. High coverage value is always more preferable as compared with low

coverage values. This fitness measure enables fair task allocation.

Distance from a task location is used to describe effect of distance. Distance
is important since it means time and energy consumption. A worker robot candidate
will calculate its fitness by also taking into account its distance from the manager

robot.

4.2.2.7.1 Fitness Calculation

Fitness of the robot is determined by the sum of individual fitness values for
target reaching, target reaching frequency, obstacle avoidance success and failure
rate, communication task success and failure rate, coverage, distance from task
location. So it is necessary to develop a well defined fitness calculation for the above
parameters. For this purpose two different fitness function types are adopted. A
Function for type 1 is used to measure the fitness of success parameters:

e Target reaching frequency

e Obstacle avoidance success frequency

e (Coverage fitness

e Distance fitness
On the other hand a function for type 2 is used to measure the fitness of failure
fitness:

e Communication failure frequency

e Obstacle avoidance failure frequency

86



The reason behind the selection of two different fitness functions is the speed
of ascent or descent: error fitness functions should decrease more rapidly as

compared to success fitness functions.

4.2.2.7.2 Fitness Function for Success Situations

For target reaching frequency, obstacle avoidance success frequency,
coverage fitness, and distance fitness calculation the following fitness function is

proposed.

F(x)=u(x)F(1—¢ ") +u(-x)F(1-¢"")
where,
Fand, F, are boundary values, f, is increase ratel and f, are time constant or

increase rates.

X is defined as total number of events / time elapsed
F>0,F,<0
£,>0,1,>0

u(x)=1 x=>0
u(x)=0 x<0

The above fitness function is preferred since it is bounded, i.e.

u(t) is unit step function, i.e.

o < x < w
FISF()C)SF2

Moreover the rate of increase and decrease can be controlled by adjusting the values

of f, and f,.

87



Fitness Functions for F1 =10, F2 = -15 and Different fi Values
e SoErrecteecerrrrrree
| —f-p-0m |
; — f=p=008
: fl=p=004
e S T et : ‘
D___..___.___..__é.___.___..__..__J.___..__..___..__..___.___..__..__1.___..__..___.__J; __________________

z : :

& i i
]
TSSO S S S SS S NS S
15 i i i i
e -1 &0 1m0 180

®
Figure 38, Fitness functions for /; =10, F, =—15 and different increase rate values.

In Figure 38 different fitness functions are plotted for F, =10, F, =—15 and
different increase rate values. The Increase rates f, = f, = 0.08 generate the
maximum increase. However for f, = f, =0.04 the increase rate is slow as

compared to the first case. As a result, the introduction of this fitness function gives
the flexibility of adjusting
e Two limit values on both side of the fitness parameter axis

e Increase rates to reach boundary fitness values.

Selection of values F, F,, f,, f, is important issues among all these values

determine the performance of task allocation among robots, since task allocation is
made according to fitness values of robots as mentioned earlier. If a robot
overestimates its fitness then the manager robot will allocate the task for that robot.
Proper adjustment of these parameters will be achieved based on extensive

simulations. Selection of the fitness function parameters can be evaluated by making

some observations. For instance to select F, F,, f;, f, for target reaching, it is very

88



important to know the maximum number of targets that a robot can face statistically
in a bounded region. These values can be adaptively updated by the robots. Another
method can be based on selecting £, F, values large such that robot fitness function
never saturates. Control of rate of ascent and descent to boundary values is also

important. f,, and f, values can be selected in cooperation with F, F,such that

fitness parameter value reaching at 50% and 90% of boundary values should be

_ N
F(x):{Fl(l e M), xZO}

(1-e™), x<0

acceptable.

For positive values of fitness parameters, fitness parameter getting 0.5F and

0.9F are

. In2 . In(10
Xos = @) > Xo9 :L)
A A

For negative fitness values

Xo5 —_@, X0 :_ln(IO)
| S />

By choosing only x,;and x, 5, f;, f, values can be selected easily.

4.2.2.7.3 Fitness Function for Failure Situations

For the communication failure, and obstacle avoidance failure fitness

calculation the following function is proposed.

F (1) =u() ()

where F; is the maximum value of the fitness, f is the descent factor, ¢, is the time

of last failure event, and ¢ is time.

In this case £, is selected depending on the speed of descent. £, is selected to

obtain a half fitness within a time interval. A s is selected such that it satisfies the

following equality.

89



. F
Ff (to,s) = ?1

For this condition, value of / will be

_ In(2)

L t5s—t

Large descent factor means that effect of failure will be forgotten in a few seconds,

whereas high values means that effect of failure will continue very long time.

4.2.2.7.4 Parameters Settings

Parameter settings of fitness items are the central issue of fitness calculation.
In multi-robot system it is hard to find an objective function to represent the cost of
an action. Parameters are selected by prior estimates about environment and relative

importance of fitness items. In Table 6, parameters of different fitness items are
given. For all fitness functions, F2 is equal to zero, therefore x,,, x,, is not

meaningful for this case.

The unit of x, is number of target / time elapsed, F1 is a unitless parameter.

Table 6, Fitness items parameters

Fitness Functions Abbreviati | F1 g t

on
Target Reaching Frequency F,, 20 0.01
Communication Failure Frequency | F, p 50 NA £, +500

Obstacle Avoidance Success 0.20

!
W

3

Obstacle Avoidance Failure E,, 50 NA t,+ 100
Coverage F, 5 0.15
Distance from task location F, 5 25

The Target reaching frequency fitness is used to measure how frequent a

robot reaches targets. This fitness item is an additional fitness to target reaching

90



fitness. It is necessary because it shows the average target reaching. If the frequency
is high then robot finds its targets in a small amount of time and saves energy and
time.
Target reaching frequency = N

elep

N : Total Number of target reached up to current time

t,,, - Time elapsed since deployment of robot

The frequency of target reaching is computed by dividing the total number of
targets reaches to time elapsed from the beginning robot deployment. In this system,
it is assumed that average target detection time is 100 seconds. For this value, target
reaching frequency fitness reaches half of the maximum. As time goes on, the value

of this fitness item decreases.

The Communication failure frequency fitness is used to represent the
effect of communication task failures. Higher values of this fitness show that robot is
not successful in execution of communication tasks. In case of failure of a

communication task, robot is punished. Its overall fitness is decreased accordingly.

Whenever a communication failure takes place, the robot is temporally not
allowed to assigned task allocation for some time. This is achieved by adjusting the
F1 value of the robot greater than sum of maximum of other positive fitness

functions.

The sum of success fitness functions excluding distance fitness is F,, +

F,  +F =30. Since total fitness is calculated by subtracting failure fitness functions

oas

from success fitness functions, this kind of F1 setting will guarantee that the total
fitness is less than zero so that robot cannot make any communication, i.e. F1 > 30,

1.e. robot is punished so that it cannot get involved in a task allocation after the

occurrence of an communication error. ¢, is selected as 500 seconds. This means

91



that if success fitness functions is not greater than 25 (F1/2), the robot will not make

any task allocation within 500 seconds.

The Obstacle avoidance success fitness is used to monitor the obstacle
avoidance performance of the robot. A fitness function should exist to represent the
effect of the obstacle-dense region since it is difficult to navigate in obstacle dense
environments. If robot avoids obstacles, its fitness is increased the maximum
obstacle avoidance success fitness is set to5 and it is small compared to other fitness

values.

The obstacle avoidance fitness frequency is calculated by dividing the total

number of obstacles avoided by time elapsed.

Obstacle avoidance failure frequency fitness is important since it shows the
status of sensors used for obstacle avoidance or any other side sensors. In case of
obstacle avoidance failure, robot is punished since obstacle avoidance failure is an
unacceptable error. F1 value is selected such that when an obstacle avoidance error

is occurred then the robot cannot get involved in task allcoation. It is again selected
as 50, and 7, time is 100 seconds. Obstacle avoidance failure is forgotten more

rapidly as compared with communication failure fitness descent speed which is
because obstacle avoidance failures are considered as occurring more frequently as

compared to communication failures.

Coverage fitness is also important because it shows the ability of wandering
around the environment. Coverage fitness is estimated over temporal coverage, such
that a time varying coverage map is used. Temporal coverage is computed from the
position information belonging to the last 80 seconds of data. Map timeout is kept
small to increase the reactivity to short time events such as target reaching. A robot
making more target reaching will result in a decrease in coverage fitness, because
robot will loose time for execution of tasks. Coverage fitness function is
implemented to adjust the fairness of task allocation. While the robot’s target

reaching is increasing, its coverage fitness will decrease, and as a result, the sum of

92



success fitness functions will be adjusted. Moreover this fitness function also takes a

role in fault tolerance of robots.

Distance from task location is a measure of distance from a location. In a
communication task, if a robot is far from a task location then fitness of this robot is
decreased. Robots near the task locations are preferred to those far from the task
location. This is very logical since it leads to time and energy consumption reduction
if other fitness values are compatible. F1 value of this fitness function is taken as
small in order not to exaggerate the effect of distance from task location.
Exaggeration will result in poor fault tolerance.

The total fitness is sum of all fitness values.

F;uccess = F;rf + F;as + F;
Ffailure = Erf + F;af
Eotal = F;uccess —-F Jailure F, d

In Figure 39, Figure 40, and Figure 41 plot of each fitness functions are

shown. For failure case a single failure at 7, = 200 seconds is simulated.

Target Reaching Frequency Fitness Communication Failure Frequency Fithess
| T T

45 -

an -

35 b-f-

30

Fitness
Fitness
[\a]
th

e Hesseces !
o i i ] i i
a 0.0z 0.04 0.06 a 1000 2000 3000
Target Reaching Freguency Average Failure Frequency After Last Event

Figure 39, Target reaching frequency, and communication failure frequency fitness plot with
parameters in Table 6. At ty=200 seconds a communication failure is occurred.

93



Obstacle Avoidance Failure Fithess

Obstacle Lvoidance Success Fitness
T T

BT SRR | S e
40 ' '

35
a0

25

Fitness

20
15

L[] T S ooeees

BF------

n} i i
a 200 400 00 00
Awerage Failure Freguency After Last Event

Obstacles Avoidance Frequency

Figure 40 Obstacle avoidance success, and failure frequency fitness plot with parameters in
Table 6. At ty=200 seconds a obstacle avoidance failure is occurred.

Coverage Fithess Distance Fithess

& : : :

2 : :

Fitness
Fitness

150

n] i i i
u] 0.z 0.4 0.6 0.8

Temporal Coverage Distance frorm Task Location

Figure 41 Coverage & distance from a task location with parameters in Table 6

94



CHAPTER 5

Developed Simulation Environment

5.1 Introduction

A Simulation software (SS) is required to be implemented, and testing the
proposed cooperative multi-robot system architecture. For this purpose, we design a
visual simulator in Windows XP environment. SS is developed using Microsoft
Visual C++ 6.0 compiler using MFC’s (Microsoft foundation classes) single
document interface (SDI) model. Since object oriented approach is used, simulation
environment is quite modular. Moreover, it is easy to use the simulator with its
friendly graphical user interface (GUI). The reader is provided by a CD at the end of
this thesis to experiment with the generated simulator. Total number of codes of the
simulator exceeds 31.000 lines. The simulator is documented with Doxygen 1.4.3, a
software documentation tool which is also provided in the CD added to this thesis.
Matlab R13 is also used as a data analysis, and modeling tool to interpret simulation

results.

Although many simulation environments are based on 2D environment
model, implemented software is using 3D environment model. Robots are deployed
in a 3D environment. Usage of 3D environment enables the realistic physical
environment. Even if the proposed system does not cover dynamic model of robots,
user can easily integrate the physics of robot with the simulation environment. The

proposed system uses line of sight (LOS), and slope check in 3D environment.

3D infrastructure is designed using Microsoft’s DirectX technology. DirectX

offers a powerful 3D software development kit for users. DirectX 9.0 is used in this

95



simulator. Necessary transformations (rotation, translation, and scaling) are also done

with DirectX.

Robots are moving in a 3D base. Base is a 3D mesh structure defined by
triangular strips. Since it is not easy to design a 3D mesh manually, auxiliary
software is used. Discreet’s 3DS Max 6.0 software is an excellent 3D software for
mesh design. Meshes designed with 3DS Max 6.0 are exported to the DirectX
environment using an additional plug-in software. PandaDXExport6 is used to
convert 3DS Max 6.0 binary file to DirectX’s X file format. After loading designed
mesh to the simulator, it is preprocessed to increase efficiency in terms of
computational time. Mesh information in DirectX is represented with vertex buffers,
and index buffers, it is not suitable for fast search, and deployment operations. A

prepossessing is applied after loading the raw mesh information.

The main properties of this simulation software are:

e Modular object oriented software approach using MS Visual C++ 6.0, and
DirectX technology.

e Simulation is achieved over single thread.

e 32 bit floating point representation

e Friendly graphical user interface (GUI). User can easily modify, and monitor
system.

e 3D Environment. This type of model rarely used in many robot simulators.

e User can use this simulator as a software development kit. It is easy to add
new components, and environment models. Surface of moon can be
simulated. It is up to user’s programming talent.

e Realistic 3D environment model can be used to integrate the robot’s real
dynamics to the system. More realistic simulation may be achieved.

e Adding robots to the system with desired primary, and auxiliary sensors

e Modifying robot settings even in run time

96



e Adding uncorrelated, correlated, sequentially correlated, synchronously
correlated task to the environment

e Adding obstacles to environment. User can design complex environments
using obstacles. Inside of a factory or a very large terrain formed by houses or
small hills can also be modeled.

e Error simulations for fault tolerant analysis

Screen shoot of the simulation software is show in Figure 42. In this figure,
robots, tasks, obstacles are shown in 3D environments. In Figure 43, top view editor
of the simulator is shown. A top view editor is implemented since it is difficult to
deploy components in a 3D environment. Moreover, rendering object in 3D is time
consuming. Even if 3D rendering is disabled, user can monitor system using 2D

editor.

## 3D Cooperative Robot Simulator
i Wiew 3D Contral Metwark Effects

TR AEEZ PRI

X ALEEY:0.00 2 1119

Figure 42, 3D view of Simulator

97



M Top View Editor

File Edit “iew Simulation Render Statistics
: : ) S g 30,0
: . Commication Range a-.___\‘__‘_* 5] -
| | | Sldpe over Limits
sl | correlated tagk —>l b s 5
5 = 8 oz ORI Primary Sensge=r=—r 11 ... j
; ; Range : et | 1-10.0
TN TSN T RN S S A a A S 110.0
:uncorrelated 5 I 5
itask : e !
; Obstacles !
: : ¥ i !
. e, I W 1 30.0
i ! Sync. correlated task:
i ] £ 5 '
' *._uncorrelated ]
: task !
~Action Type | Sensor Type
I~ Tumnkeyboard Senzor Tepe |Light .:._j
récton —————  ~Object Type = B i‘é‘——
{3 Free Fun & Bobot : v :
O Add Dbject e LOS Senstive v Active
O Edit Object Obstacle Dims. |2 {2 {10
i Obstacle
&) Move .
Sceen. Coord: iM'Y]' 3251
Feal Time: 0.00 Met. Coord: (B3] -47.500 -43.800

Figure 43, Top View Editor of Simulator

98



5.2 Classes and Class Hierarchy of Simulation Environment

There are many classes implemented for satisfactory simulation. List of
classes and the class hierarch are shown in Figure 44. Classes can be categorized into
3 main categories:

e Environment, and DirectX classes
e Sensor network objects (robots, tasks, obstacles, communication) classes

e Display classes

Main application class, CMyDirect3DApp, is derived from
CDirectDevice which is devoted to DirectX device generation. The purpose of this
class is construction of 3D environment from 3D meshes. CSensorSoureNet class is
used to represent sensor network. This class implements a virtual sensor network
platform for the robots. All of robots, tasks, and obstacles are contained as attributes
in this class. Simulation of sensor network is achieved incrementally using this class.
CRobot is used to represent robots. It includes a complete description of a robot.
CSource is used to implement 4 different types of tasks. Obstacles are described
using CObstacle class. CCom class encapsulates all of list required for
communication. Moreover, it is used to implement communication protocol. There

are also classes, CEnvEditor, CTopEdit, CStats, implemented for display purposes.

There are other classes which is not included hierarch figure. Total

number of classes, and structures used in simulator is 171.

5.3 Flow of Simulation

There are 9 phases of simulation listed as below.
e Initialization & environment loading phase
e Deployment of objects phase

e Object Detection phase

99



e Behavioral evaluation and coordination phase
e Updates phase
e Robot status generation phase
e Task allocation phase
e Movement of robot in 3D environment phase
e Rendering phase
Classes and Class Hierachy
CSensorSoureNet CDirectDevice CEnvEditor

Implementation of
sensor network. All
robots, tasks, obstacles
are defined here

CRobot

\ 4

Implementation of
Robot

CSensor

Implementation of
Sensor

CSource

Implementation of
Task

CObstacle

\ 4

Implementation of
Obstacle

\ 4

CCom

Implementation of
Communication
Protocol and lists

\ 4

A 4

Implementation of
Environment Editor

CTopEdit

Base Class for DirectX
Device

C3DPlot
u s
: Implementation of
: 3D Plotter
é CMyDirect3DApp
Ly

Implementation of
Main Application

Implementation of
Top View Editor

CStats

CDirectLightViewTrans

Implementation of
DirectX Light and
transformation

Statistics of Sensor
Network

CMath

: CDirectMesh

Implementation of
DirectX Mesh

Implementation of
Math

Figure 44, Classes, and class hierarchy used in simulator

100




For each simulation instant these phases are executed. Flow of simulation is

given in Figure 45.

Other Simulation 3D Environment 3??5”0_‘3955'”91 Deployment of
Parameters > Loading > l\;wrr?nmen »{  Robots, Tasks, Obstacles
Settings eshes From File or using GUI
Object Detection
: Target Obstacle Particle
Locations Locations -
Other Robots Slope over limit
Locations Locations
A
Behavior Evaluation and Updates
Coordination
n Map Fitness Metric
Behavior Response Behavior d Updates Updates
Evaluation Coordination
A
Task Allocation Robot Status Generation
Task Request N Task Response Target Reaching
Phase Phase P Status
il
Task Acknowledge » Task Execution Error
Phase Phase Statuts
Robot Movement
> in
3D
y
Rendering
3D Render 2D Top View Plot

Figure 45 Flow of simulation for each robot

101



Initialization & environment loading phase: Global environment variables
such as simulation step size, environment size, limits are set to the desired values.

The 3D environment is loaded and preprocessed according to the simulation settings.

Deployment of objects phase: Robots, tasks, and obstacles are deployed to
the desired locations in the environment with desired settings. Objects can be

deployed either from files saved previously or from graphical user interface.

Object detection phase: At each simulation instant deployed robots detect
the objects in the environment. Detectable objects are targets, tasks, obstacle &

locations having excessive slope.

Behavior evaluation and coordination phase: Each robot makes its
behavior response evaluation using detected objects. Commands for actuators are
generated. Behavioral coordination is achieved depending on the control strategy.
Default robot control strategy is our proposed hybrid control architecture, but user
can set the control strategy of robots to the pure subsumption or motor schema

strategies.

Updates phase: Robot’s maps and fitness metrics are updated in this phase.
Updates phase is one of the time consuming phase because depending on the

resolution of maps, the size of the maps change considerably.

Robot status generation phase: Robot updates its status. Default status of
each robot is set to free. If a robot detects a task source then it switches its status to
from free to not-free state, and does not respond any help requests. Moreover, error

checks are made regarding the data consistency of robot.

Task Allocation Phase: If status generated in previous phase requires a task
allocation process then, task allocation process is started, and continued according to
task allocation algorithm. Response to a task allocation request is also made here for

worker robot candidates.

102



Movement of robot in 3D environment phase: Robot moves on the 3D
terrain along the specified direction with specified speed. In this phase the next
location of the robot is found in the 3D environment. If a crash condition, which is an

extraordinary error is occurred then it is reported.

Rendering Phase: 3D structures are rendered moreover top view editor is
updated. Since rendering is a quite time consuming process, for fast simulations, rate

of rendering can be decreased or it can be completely disabled.

5.4 Communication Medium

Messages coming from robots are transmitted over a virtual medium. Each
robot has a class “CCom” containing the linked lists for communication protocol,
and events. If a robot decides to call another robot for its help then it starts to
transmit the communication request, and adds a request package to its corresponding
communication request list. At each simulation instant, “CSensorSourceNet” class
analyzes the lists of the robots, queues, and sends to the other robots appropriately. If
robot A is in the communication range of robot B then, a message from robot B is
transmitted to the robot A. It the proposed system it is assumed that virtual

communication medium is perfect with infinite bandwidth.

5.5 Robot Sensorial Structure in Developed Simulator

Sensors have some limited ranges and limited accuracy. Depending on the
quality of sensor, accuracy and range may differ substantially. Auxiliary sensor range
is generally shorter than primary sensor ranges. Since sensors are not perfect, to
model the uncertainty some noise should be added on top of expected measurements.

In this simulation 5% of desired range is added as Gaussian noise.
S, =R+AR
AR ~ N(0.05R)

Where

103



S: : Real Sensor Range

R : Desired Sensor Range
AR : Gaussian Noise
There are three important concepts regarding sensors:
e Range of sensor
e Accuracy of sensor

e Line of sight (LOS) dependence

LOS dependence may differ for different sensors. LOS check algorithm is simple but
its computational complexity is high. LOS check is achieved by searching

intersection of LOS line and terrain.

In Figure 46, 2D polar plot of robot sensor range is given. Red line shows the
desired range, blue line show realistic range. In this case 10% percent noise added to
the desired range, 10 units. This range plot is given in 2D but in actual case, robot

lives in 3D world and real range plot will be a sphere added some noise on top of it.

Figure 46, 2D Noisy Range Drawing

104



CHAPTER 6

Experiments & Results

This part will cover the experiments on following issues

Motion control of robots

Coverage

Effect of communication

Single and multi-robot task execution

Effect of fitness calculation on fair and fault tolerant

6.1 Robot Motion Control of Robots

In this part, results will present the implementation of basic behaviors. This

part will include graphical illustrations of following behaviors:

Obstacle Avoidance Behavior
Robot Separation Behavior
Heuristic Wander Behavior

Other behaviors are not included because they will be discussed in more

detail in different sections.

6.1.1 Obstacle Avoidance Behavior

Obstacle avoidance behavior is one of the important behaviors. Performance

of this behavior affects the performance of the system directly. Obstacle avoidance

behavior is evaluated for different basic obstacle shapes which are convex, concave,

partially concave, strongly concave shapes. The avoidance algorithm is tested in

robots reaching a target while avoiding obstacles.



In Figure 47, obstacle avoidance path from a rectangular shaped obstacle is
shown. Actually rectangular shaped obstacles can be classified as partially concave
obstacles. It is clear that avoidance is successful. Figure 48 shows the path of
avoidance from partially concave shaped obstacle which is a difficult task to avoid.
The Proposed obstacle avoidance algorithm handles avoidance process successfully.
In Figure 49 and Figure 50, avoidance from concave and strongly concave shaped
obstacles are shown respectively. The most difficult avoidance situation is avoiding
from strongly concave shapes due. However the algorithm successfully avoided this

obstacle and reached the target successfully.

Our proposed method easily handles this kind of almost closed concave
shaped obstacles owing to its behavioral integration. Using wandering concept

together with other basic behaviors enables fast and secure avoidance.

_______________________________________________________________________

-50.0

-30.0

-10.0

$10.0

1 30.0

Figure 47, Final position of obstacle avoidance from rectangular shaped, convex obstacle.
Robot avoided obstacle successfully by following shown path.

106



50.0

30.0

10.0

-10.0

-30.0

h0.0

= =
= =
- Lar]

-50.0
-30.0
-10.0
10.0
30.0

_.
'
'
'
'
'
'
'
'
'
'
'
'

30.0

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
.
v
'
'
'
'
'
'
'
'
'
'
'
:
' '
' P oo o]

Lo S L M o e .
'
'
'
D
d
'
'
'
'
'
'
'
'
'
v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

e e e e ]
I R R R L e - e

dance from a partially concave obstacle. Robot avoided

i

obstacle successfully by following shown path.
10.0

-10.0

-30.0

following shown path.
107

dance from a concave obstacle. Robot avoided obstacle
by

i

successfully

Figure 48, Final position of obstacle avo

Figure 49, Final position of obstacle avo



300 -10.0 T0.0 30.0 L0.0
........................................................................ 50.0
"""""""""""""""""""""""""""""""""""""""""""" ' -30.0

Target
o & Robet
""""""""""""""""""""""""" robotpan | 1°0
F1e <
i @ :
lo)
&L B
........................... B g,
B S E
BB
B E
"""""""""""""""""""""""""""""""""""""""" 30.0

Figure 50, Final position of obstacle avoidance from a strongly concave obstacle. Robot avoided
obstacle successfully by following shown path.

6.1.2 Robot Separation Behavior Analysis

Robot separation behavior can be thought as obstacle avoidance behavior

because robot tries to avoid collision with other robots.

Figure 51 gives the initial positions of the robots and sources. A robot tries to
go to a target source having the same color, i.e. robot 1 will go to sourcel whereas
robot 2 will go to source2. In Figure 52, it is clear that robot separation is achieved.
In the separation region where robots detected existence of each other a repulsive
robot separation force is exerted between each other and robots pass at clear distance

from each other

108



- Source 1

e ¥ Robot2- po

Figure 51, Initial position of robots and sources

-30.0 -10.0 10.0 300

Sc—u‘:ce 1
|

¢ FRobot1

Raobot 1 Path

Ruhﬁt Separatiﬁn
"Region

Figure 52, Robots having initial positions shown in Figure 51 avoided collision each other in
robot separation region successfully.

6.1.3 Heuristic Wander Behavior Analysis

Heuristic wander behavior is used in conjunction with adaptive wander
behavior. In Figure 53, Figure 54, Figure 55, Figure 56, and Figure 57 paths (blue
curves) generated by heuristic wander behavior are shown for time intervals 0-100,
0-200, 0-300, 0-400, 0-900 respectively. These plots are given to show the path
generation of the heuristic wander behavior. Since this behavior generates the
wander direction randomly, robot passes at the same locations within some time

intervals which is not high.

109



As far as any wander behavior is concerned, coverage is an important
measure of the wander performance. In Table 7, the coverage versus time table is
tabulated. Even if it takes 300 seconds to reach 50% of entire terrain, it takes 900
seconds to cover the entire region because heuristic wander behavior implements a
random search strategy and naturally linear coverage with respect to time is not
guaranteed. Moreover, it can take very long times to cover the entire region 100

percent based on this kind of strategies.

Table 7, Coverage performance table of heuristic wander behavior

Time, seconds Coverage, %
100 27.55

200 55.76

300 76.543

400 82.71

900 100.00

Despite the coverage results, heuristic wander behavior increases the
reactivity in dynamic environment. Heuristic wander behavior helps avoiding
unexpected obstacles because it gives some degree of flexibility of movement. By
wandering around the environment based on random strategies increases the
probability of getting free in some regions filled with complex shaped obstacles.
Deterministic wander algorithm has many advantages but they may fail in highly
dynamic environments. In this system main wander algorithm is implemented by
adaptive wander behavior. Heuristic wander behavior is an auxiliary wander

behavior.

Heuristic wander behavior can be used for mapping purposes. In Figure 59,
the mapping of environments given in Figure 58 is shown where mapping is
achieved with collaboration of two robots. Robots have mapped the entire region

except for obstacles. The shape of the obstacles can be distinguished easily from the

110



mapping, although mapping is well beyond the scope of the heuristic wander

behavior.

6.2 Coverage

Coverage is one of the most important concepts in any kind of wander
algorithms. In this section, the performance of both heuristic and adaptive wander

algorithm will be discussed. Measure of coverage is defined as follows

GMxM

Where,C , : Total number of grid covered up to now, and G,, ,, : Total number of

grid of entire region.

--------------------------------------------------------------------------------------

1-30.0

_______________________________________________________________

: : “.‘Inma\ P;Josmcm of :
B e Robot [ [ R T X

------------------------------------------------------------------------------------

110.0

130.0

50.0

Figure 53, Robot path generated by heuristic wander behavior after 100 seconds from startup.

Coverage is 28 percent.

111



...................................................................................... o
"""""""""""""""""""""""""""""""""""""""""""" -30.0
S 4 initial PosItioR O | L g
| o Robot o . RLU
s 5
A T T T
""""""""" _ 3|]|]
______________________________________________________________________________________ 00

Initial Position of

Figure 55, Robot path after 300 seconds. Coverage is 77 percent.

112



"7}%{— ,b(

L 7

AT ="
1a ‘\ |

113



filled by obstacles.

on

f two robot mapping of a reg

, Initial situation o

58

Figure

Black curves are the path of the robots.

f two robots mapping.

tuation o

Figure 59, Final si

114



A sample coverage map is shown in Figure 60. In this case ¢ ,is 12, and total

number of grids are 81. Coverage is 15%, C:g =0.15

Figure 60, Coverage map

In Figure 61, the coverage performance of the heuristic wander behavior is
shown. Data is collected for 30 runs in an obstacle and target free environment.
Vertical axis corresponds to the required coverage time for which a robot covers 95%
of an entire 100x100 m” region. As shown in the figure, coverage time varies
between 4529 and 11243 system time. In real time these correspond to 452.9 and

1124.3 seconds respectively. Environment settings and results are listed in Table 8.

Table 8, Environment setting and simulation results of heuristic wander behavior

Environment Target and obstacle free
Simulation Frequency, Hz 10

Robot Primary Sensor Range, m 10

Robot Maximum Speed, m/sec 2.5

Region Dimension , m” 100x100

Maximum Coverage Time, sec. 1124.3

Minimum Coverage Time, sec. 452.9

Mean Coverage Time, sec. 704.3

1o of Coverage Time, sec. 242.1

Results shows that variance of coverage time of heuristic wander behavior is about
0.3 of average coverage time. In worst case, detection time of target will take 1124

seconds. Mean time is 704.3 seconds.

115




Table 9, Environment setting and simulation results of adaptive wander behavior

Environment Target and obstacle free
Simulation Frequency, Hz 10

Coverage Map Timeout Time, T0O cov » S€C. 200

Region Dimension , m’ 100x100

Maximum Coverage Time, sec. 818.2

Minimum Coverage Time, sec. 357.0

Mean Coverage Time, sec. 500.6

lo of Coverage Time, sec. 114.3

In Figure 61, the coverage performance of the adaptive wander behavior is
shown. In Table 9, the performance of the adaptive wander behavior is found to be
better than that of the heuristic wander behavior, about 50%. The mean coverage
time is 500.6 seconds which is lower than that of the heuristic wander about 200
seconds. In addition, standard deviation of coverage time is 114.3 seconds which is a

half that of the standard deviation of heuristic wander behavior.

In Figure 61 coverage time of heuristic and adaptive wander is given
conceptually. These results show that the adaptive wander behavior gives better
results than heuristic wander behavior in obstacle free regions. It is clear that
probability of detecting a target using adaptive wander behavior is higher than that of
heuristic wander behavior. This shows that design and implementation of adaptive

wander behavior is successful.

The performance of adaptive wander behavior is determined by the coverage
map timeout time,7O_,, which as mentioned earlier determines the required
memory space. Figure 62 gives, the time required for 95% entire region coverage

versus coverage map timeout time is shown. As 7O, is increased then required

cov
coverage time decreases. This is logical since robot has more data about covered &
uncovered cells to evaluate next wander point and it covers entire region in small

amount of time since robots try to wander to the locations previously uncovered.

After some timeout value (500sec) there is no effect of increasing 7O value.

cov

116



This is because of the saturation of coverage map, i.e. robot covers the entire region

before first timeout occurs in coverage map.

High timeout value of the coverage map requires large memory spaces to be
allocated. In Figure 63, memory allocation needed for 95% coverage is shown. When
changing the timeout in an increasing manner, beyond a certain value the memory
demand does not increase much this is because after that value of timeout, the robot
has already covered the entire region. Thus it is not needed to allocate unnecessary

memory space.

The selection of 7O, is important here. The selection criterion should be

based on the comparison between memory requirements for 95% coverage and the

steady state coverage. Steady state coverage map memory usage is the amount of
memory needed at least to contain all the data within time interval, 7O, . If for the

same coverage timeout value these memory requirements differ highly then choosing

the timeout value under consideration is not meaningful.

In Figure 63, the steady state memory allocation needed for different timeout
values is depicted. For 7O, = 500 seconds, 15 Kb memory should be allocated to

satisfy the above timeout value. But in Figure 63, we see that for 95% coverage 12
Kb memory is needed, 3Kb is wasted up. Above a certain value of the timeout value,

steady state memory requirements exceed the memory requirements for 95%

coverage value. So very high 7O, is not useful.

cov

In Figure 63, it is seen that memory requirements for 7O, up to the value

v
of 400 seconds is almost the same. But for 7O, , greater than 400 seconds, the
difference between steady state coverage and 95% coverage memory requirements

increases dramatically. Therefore it is logical to choose 7O _,, as 400 seconds.

ov

117



12000

I I
—=— Heuristic YWander Behavior
EE [ 1 O S B 1| = Adaptive Wander Behavior

10000

8000

5000

7000 -

Coverage Time

8000 -

S000

4000

—_— | | i i i

Mumber of Runs

Figure 61, Coverage time of both heuristic and adaptive wander behavior for various runs.

Coverage vs. Coverage map timeout time
QDD T T T T T T T T T

850

800

e |
[y}
[}

=]
]
[

[n]
=
=

Coverage time, sec

[y
o
[

500

450
o

400

1] 100 200 300 400 sS00 GO0 700 800 S00 1000
Coverage map timeout, sec

Figure 62, 95% Coverage for different coverage map timeouts, T Ocov . There is an inverse

proportionality between coverage time and T0 cov

118



Memory Requirememts of 95% Coverage and for Steady State Operation
SD T T T T T T T T T

—7 Steady State Momory Usage
—&— 95% Coverage Mermary Usage

L

]
]
T
i
'
'
'
'
'
-
'
'
'
'
'
'
L
'
'
'
'
'
'
'
T
'
'
'
'
'
'
=
'
'
'
'
'
'
H
'
'
'
'
'
'
L
'
'
'
'
]
s
'
'
'
'
'
'
'
5
'
'
'
'
'
'
v
'
'
'
'
'

Mermory Usage, Kh
m

_________________________

=
=

0 i i i i i i i i i
] 100 200 300 400 500 B0O0 700 800 900 1000
Coverage map timeout, sec

Figure 63, Memory usage at steady state and memory usage for 95% coverage. After TO cov =

400 seconds, difference between memory usage increases considerably. Appropriate 7' OCOV

value should be selected by considering this observation.

6.3 Target Reaching

Target reaching is an essential component of the proposed cooperative control
architecture for robot/sensor network. Target reaching behavior generated a motion
motor control input whenever a target is detected. In this section, the performance of

target reaching behavior in conjunction with system parameters will be discussed.

In Figure 64 and Figure 65, the target reaching in obstacle dense region is
shown. The aim of the robot is to reach the target depicted as red square at the same
time avoiding collision with many obstacles. In these cases both target reaching and
obstacle avoidance behaviors are active and the coordination between these

behaviors is done as described in the subsection state evaluation behavior 3.2.1.1.
The Environment in Figure 64 is filled by long and small rectangular

obstacles. Avoiding these kind of obstacles are easy and the robot is found to reach

the target easily without any collision. The environment in Figure 65 is filled by

119



large and small rectangular obstacles but depending on the robot direction to the
target, these obstacles form convex and concave shaped general obstacles. Avoiding
this kind of obstacles is relatively difficult using behavior based approach as
described in subsection Error! Reference source not found.. Because in behavior
based system reactivity is an important design constraints. Modules should be as
simple, and reactive as possible. Avoidance from complex shaped obstacles requires
careful design of behavior without degrading the simplicity of the system. Target

reaching is successful as shown in the figure.

-50.0 -30.0 -10.0 10.0

Target :

i-10.0

130.0

7

Robot Path © ! Robot ntial
' | H i Position

50.0

Figure 64, Target reaching in an environment filled by long and small rectangular obstacles.

{ Robot Initial |
: Paosition /

Figure 65, Target reaching in an environment filled by dense concave and convex shaped
obstacles.

120



In Figure 66 gives 8 targets distributed around the environment. The

corresponding average target reaching time versus coverage map timeout, 7O, is

in Figure 67. As T'O,,, increases, the average target reaching time is seen to

v
decrease. This result is compatible with results in coverage section. It is seen that as
we increase the map timeout value, then coverage time decreases. To reach all of
targets, robot should cover the entire terrain. Therefore, the coverage time and the

target reaching time are related with each other.

In Figure 68, target reaching time with respect to number of randomly
deployed targets is shown. Targets are deployed around the region uniformly using
uniform random number generation. The minimum distance between the sources is
adjusted to 10m. The average target reaching time increases almost linearly after 20
targets. Non-linearity up to 20 targets can be explained based on target density and
the nature of wander behaviors. In case of low target density (less than 20 targets for
this situation), robot non-linear effects of wander behavior becomes important,
because target detection rate is low for low target densities. To detect all targets, the
robot speeds much time for wandering, on the other hand for high target densities,
robot finds the targets without wandering much thus the random nature of the wander

behaviors becomes relatively less effective.

The average target reaching time with respect to randomly deployed robots is
shown in Figure 69 where the environment is filled with randomly deployed 25
targets. From 0 to 10 robots average target reaching time differs substantially, but
after this point, the rate of decrease of the average target reaching time does not

decrease much. This is because of two reasons:
e As the number of deployed robots increases then target reaching time

probability increases until a certain value beyond which probability does not

change much. So rate of decrease lessens.

121



e Reaching to the target takes some time because the robot should be very close
to be accepted as having reached it. But when the number of robot
deployment tends to infinity, zero target reaching is found because

everywhere, the terrain will be filled by robots.

For above 25 randomly distributed targets, the energy consumption of robots with
respect to number of deployed robots is shown in Figure 70. It is interesting that even
if the target reaching time is high, the energy consumption of 1 robot is the lowest,
i.e. we can deploy 1 robot in the environment instead of many robots if we are
aiming to decrease the energy consumption of the robots. Depending on the aim of
system, time or energy consumption can be optimized. Average target reaching time
versus energy plot for different number of robots is shown in Figure 71. Each
triangle in the plot corresponds to a triplet (energy/time/number of deployed robots).
If it is desired to operate at 670, 150 average energy consumption and average target
reaching time then 10 robots should be deployed in the region. These plots are

important because they give a statistical analysis of important constraints.

| -30.0

(-10.0

10.0

:30.0

50.0

Figure 66, Target distribution in 100x100 m’ region

122



Target reaching time ws. Coverage map timeout time

Target Reaching Time, sec
[y
=
(]

1] a0 100 150 200 250 300 350 400 450 500
Coverage Map Timeout, sec

Figure 67, Target reaching time with respect to T Ocov for regularly deployed 8 targets shown
in Figure 66.

Single rabot average target reaching time vs. randomly deployed targets
G000 I I I I I I I I |

540

500

450

400

350

300

Awerage target reaching time

250

200

150
0

g 10 15 20 25 3a 35 40 45 50
Murber of targets

123



Figure 68, Average target reaching time of single robot with respect to different number of

randomly deployed targets.

Multiple robot average target reaching time vs. 25 randomly deployed targets

[P S e o e e o e e e e e 5 i 3 G e e i e e

Y S S ST S S SPSISISIE

] LT S P (Y S PPy PP S S S PP P TS e

£ 5.0 011 0 1 0 1 1 0 0 50 505 5 0 1 5 0 50 50 0 0 0 ) 1 5 5 50 5 8 e 1 1 1 1 S 5 ) B B S B Y S S e e e e e S S e e

ittt il Sk Attt Sl At

L L P P P T St STt PPSPSPS S S S

IS

P

500

au} Auiyaeal 18file) afies

350 ke eee

300 p-- ;-

250 fo-e ko

200 f---- - -

150 e n-eo-

[=1]

s

g

50 promeeees
0

40

35

30

25

20

158

10

Mumber of Robots

Figure 69, Average target reaching time of different number of randomly deployed robots to

randomly deployed 25 targets.

Energy consumption plot with respect to randomly deployed robots aiming to reach 25 targets

TSI

R e e e e e e e kT

R e Ll L e E e e e e e EE L L L L L EEE L

e T T

e T e e TR

850

Il S

L N o

BO0 f--- -

BEO f--f-----

uoidnsuod ARlaus afesaay

00 |-feoee

40

35

30

25

20

14

10

Mumber of Robots

Figure 70, Average energy consumption of different number robots reaching to randomly

deployed 25 targets.

124



Energy consumption plot with respect to average target reaching time

850

800

780 F---

700

650

g00

Average energy consuption

550

500

P I N T SN S SN AR S N
0 =0 oo 150 2000 250 300 38500 400 450 S00
Tirne, sec

Figure 71, Average energy consumption of different number of robots with respect to time.
Each triangle corresponds to an energy-time-number of robots triplet.

So far, targets were deployed uniformly or very regularly in the
environments. One of the basic assumptions of this system is the dynamic
environment assumption. In the above cases dynamism is all around the
environment. In some cases, probability of existence of targets may be high in some
regions. System dynamism should include this kind of situations. We will analyze
the target reaching time when target is not deployed uniformly around the
environment. For some regions, density of target is high as compared to the other

regions.

In Figure 72, average target reaching time of single robot with respect

coverage map timeout, 7'O__ is given for 5 targets which are deployed randomly in

\
right quarter of the entire region. The plot is given with respect to 7’0, because
this parameter directly determines the reactivity to target deployment region. As

shown in this figure, for 70 300 and 400 seconds target reaching time is the

cov

minimum. As it increases beyond 400 seconds, average target reaching time gets

125



increased. This is because, once a robot has visited a region it takes a long time to

revisit it because of high timeout value. Low 1'O.,, values give the worst results

cov

because it forgets the past rapidly. For the system conditions listed in Table 8,

TO,,, can be selected as 270 < TO_, < 400 . This is compatible with target

cov

reaching time and memory requirements analysis.

Target reaching time of regionally deployed targets(5)

—7- Adaptive wander behavior enabled
—©&— Adaptive wander behavior disabled

//
@& -
@

w
[
o

w
N
o

w
=
o

w
o
o

Average target reaching time, sec

N
©
o

N
©
o

|
|
|
l l l l l
| | | | |
1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
Cowerage map timeout, sec

270
0

Figure 72, Target reaching time of a single robot with respect to T Ocov . If Adaptive wander is

enabled target reaching time decreases considerably in case of regionally deployed targets.
There is a local minima optimizing dynamic response to regionally target deployments.

6.4 Effect of Communication on Target Reaching

This section is devoted to the discussion on communication range effect on
target reaching time. Communication is a key aspect in task allocation. Usage of
communication enables an efficient multi-robot task solution. Despite its advantages,
there are many issues to be considered as drawbacks, for example the usage of
communication brings in an extra cost. There should be a measure of range in order
to optimize the communication cost. In some cases which will be emphasized in
below, increase of communication dose not increase the system performance

considerably.

126



Since multi-robot systems are highly non-linear systems, it is difficult to model
the entire system. There are many parameters affecting the system and also the
coupling effects of these parameters. Moreover, since behaviors in the architecture
contain randomness, it is difficult to develop appropriate models and we aim to
identify the model using an appropriate designed neural network using simulated

data.

There are parameters affecting communication performance and cost, these
are:
e Number of robots
e Number of targets
e Communication range of robots
e Primary sensorial range of robots

e Nature of task

Effective communication range can be found by making experiments for different
values of the above parameters. Communication range performance is evaluated
using total target reaching time (TAR), that is if 20 tasks are deployed, TAR is taken

as the total time elapsed to reach zero task in the environment..

Primary sensorial range is kept constant as 10 meters. For a constant number
of robots, targets numbers are changed. For each target number, TAR time is
obtained for communication ranges 0, 25, 50, 75, 125, 150 meters. For each range,
100 simulations are performed. Communication range 0 means no communication.
For 150 meters communication range, a robot can communicate with any robot in the
terrain. The upper limit is determined by the terrain size. In this case the terrain

syurface is 100x100 meter”.

Analysis of the Effect of Communication Range over Target Reaching Procedure

1. Repeated step 2 for number of robots 4 and 8. Deploy robots in the center.

127



2. Repeat step 3 for number of targets 5, 10, 15, 25, 30, 35. Distribute the target
randomly around the environment. Each target should not close to each other
less than robots sensorial range.

3. Repeat step 4 for communication ranges for 0, 25, 50, 75, 100, 125, and 150.

4. Simulate environment 100 times and measure the TAR time for each
simulation. Take the average of TAR times. This averaged time is saved.

Each simulation is continued up to all of the tasks are executed.

Analysis of the effect of the communication range over target reaching time
procedure is listed above. Targets are correlated tasks formed by two independent
sub-tasks. If a robot determines the existence of a correlated task, it executes a
suitable sub-task compatible with its primary sensors. Communication request is
generated for other sub-task, i.e. a robot having capability of solving this subtask is
invited to handle it. If 4 robots are to be deployed, robot team is divided into equal
two parts since there exist only 2 sub-tasks. Robots in the same team have the same

primary sensor.

128



Figure 73 A screen shot from simulation environment for 6 robots and 25 correlated tasks.
Communication range is 25 for each robot.

In Figure 73, initial screen shot of the simulation for 4 robots, 25 targets and
25m communication range is given. The range of primary sensors is 10m. Table 10

covers the information about the environment and simulation.

Table 10, Simulation and environment properties.

Environment Obstacle free
Simulation Frequency, Hz 10

Robot Primary Sensor Range, m 10

Robot Maximum Speed, m/sec 2.5

Region Dimension , m’ 100x100

In Figure 74, target reaching time (TRT) for 4 robots is shown. As the density
of task increases, increase in communication range does not increase the TRT. Up to
10 tasks increase of communication range decreases the TRT. But for tasks more
than 10 and less than 30, there is a limit in their effect to TRT changes: for these task

numbers, there is an optimum point around 50-75 meters communication range. As

129



the density of target increases beyond 30 then communication range increase does
not change the performance. In this case (4 robots) for 30 and 35 target numbers, it is
unnecessary to use communication. Since target density is so high, robots do not
need to communicate with each other. But for lowest task density, increase in
communication range directly affects the target reaching time. For 35 targets,

situation gets worse when communication range is increased.

The above discussion is also valid for simulation results of 8 robots shown in
Figure 75. But since the robot density is high, increase in the communication range
more rapidly saturates the TRT. After 15 tasks, communication range increase does
not result in a considerable TRT performance increase. Results clearly show that,
there is a limit to the communication range for creating an increase in TRT
performance. For low task densities, communication covering wide range of regions

is more preferable.

—=— Meural Metwork Estimates

— Experimental Data
TRT far 4 robots and 5 tasks TRT for 4 robots and 10 tasks
340

320

300¢-

TRT, sec
TRT, sec

260

260
ul

TRT, sec
TRT, sec

TRT, sec
TRT, sec

_________ R

500 2 i i
0 50 100 150 0 50 100 150

Communication Range, m Communication Range, m

Figure 74, Target reaching time (TRT) for 4 robots and different number of task and
communication ranges. Neural network estimates are also shown as red lines with more
resolution.

130



—=— MNeural Metwork Estimates
—= Experimental Data

TRT for 8 robots and 5 tasks

TRT for & robots and 10 tasks

190

160
180

170}----

TRT, sec
TRT, sec

TRT, sec
TRT, sec

TRT, sec
TRT, sec

280 i i i i
u] a0 100 150 u] 50 100 150

Commmunication Range, m Communication Range, m

Figure 75, Target reaching time (TRT) for8 robots and different number of task and
communication ranges.

6.4.1 Neural Network Implementation

A 4 layered neural network is designed using MATLAB R13 to estimate the
effect of communication range for different conditions. Inputs to the neural network
are number of robots, number of tasks and communication range. The output is

estimated target reaching time.

—>
Number of

Robots
LAYER 1 LAYER 2 LAYER 3 LAYER 4

15 Neurons 15 Neurons 15 Neurons 1 Neuron
e EE—

Number of
Sources

Target Reaching

Hyperbolic Hyperbolic Hyperbolic Logarithmic Ti
ime

tangent sigmoid | tangent sigmoid | tangent sigmoid sigmoid

e
Communication
Range

Figure 76, Implemented neural network architecture

131



In Figure 76, neural network structure is shown. There are two different non-
linearities are used: hyperbolic tangent sigmoid and logarithmic sigmoid functions.
Neural network is trained using data collected from simulations of 4 and 8 robots.
Neural network is trained with simulation data having a mean square error up to
0.0005, using Levenberg-Marquardt method. To avoid over training, the network is
trained using both training data and test data. In Figure 74, and Figure 75 both
experimental data and trained neural network estimates for these data are shown.

These plots show that the training of neural network give better results.

To test the performance of neural network, simulation results and neural
network outputs are compared in Figure 77. Described procedure is performed for 6
robots. Since neural network is not trained with 6 robots data, this experiment can be
used for comparative purposes. Even if the shapes of the curves are similar, the
neural network does not give correct experimental results. The reason behind
mismatch between results in experimental data, and neural network output, may be
due to the lack of simulation data or due to system nature. As mentioned earlier,
simulated system is highly stochastic and non-linear. Correct curve shape estimate is
a benefit. This information can also be used to decide upon increasing the range of

communication.

The 3D plot of Neural network TRT estimates for 2, 4, 6, and 8 robots are
shown in Figure 78, Figure 79, Figure 80, and Figure 81 respectively. X and Y axis
are corresponding to the number of targets (tasks), and communication range. Since
implemented model generated with neural network is highly non-linear, for some
input values sharp changes can exist. These plots are given to show fitted model is
meaningful because it does not have sharp changes, and compatible with the
experimental data. There are small deviations, hills, peaks in plots which are due to

the non-linear nature of fitted model.

132



—&~ Meural Network Estimated
TRT forB robots and 15 tasks | = Experimental Data

TAR, 5

140 L
0 50 100 150
Communication Range, m

Figure 77, Experimental data and expected neural network output for 6 robots.

]
L Com Range, m

Target Mumber

Figure 78, Neural network TRT estimates for 2 robots for different target numbers and

communication ranges

133



4 Rohots

1a0

Target Mumber Com Range, m

Figure 79 Neural network TRT estimates for 4 robots for different target numbers and

communication ranges

150

Target Mumber 0o

Com Range, m

Figure 80 Neural network TRT estimates for 6 robots for different target numbers and

communication ranges

134



2 Robots

150

Target Nurmber v o

Com Range, m

Figure 81 Neural network TRT estimates for 8 robots for different target numbers and

communication ranges

6.5 Task Allocation Performance Evaluation and Fault

Tolerance

In this section, the performance of task allocation algorithm (TAA) presented
in previous section will be analyzed. Task allocation process enables the robots to
solve tasks requiring cooperation of robots. Therefore the performance of task

allocation directly affects the performance of robots and task execution.

Task allocation is based on a performance criterion called fitness. Each robot
is capable of evaluating its own fitness described in fitness sections. This section will

cover the experimental results for
o Fair task allocation in obstacle dense, and obstacle free regions

e Selection of fitness functions

e Fault tolerance analysis

135



6.5.1 Fair Task Allocation

Fair task allocation is a performance criterion regarding selection of fitness
functions. Fair task allocation means that robots having no faults in bounded regions
should have equal probability for task allocation. If the fitness criterion is not
selected appropriately, fitness of some robots may become very high as compared to
others. As result, un-fair task allocation can be obtained for some robots. For
instance, in case of fair task allocation, if 5 robots are deployed in region then at
steady state it is expected that each robot should execute 20 percent of the total
executable tasks executed. In some un-fair allocation one robot may executes 40%,

and others 15% of the total tasks.

Fairness of task allocation can be measured using the following metric [48]:

_ |fi_:u’ fi>:u
£ 10, f<u

where

p,: Fairness of current robot

f; - Normalized number of task allocated for the robot under consideration
1 : Average number of normalized task allocation

Since f;, and x are normalized, both of them less than or equal to 1.

Total fairness, p, is

N
p= z p, » N is number of robot

i=1

The proposed fitness functions are found to eliminate the un-fair task
allocation situations based on the above metric. Results are tested both in obstacle

free and obstacle dense regions.

6.5.1.1 Task Allocation for 5 Robots, 5 tasks at Obstacle-Free Region

136



Task allocation performance evaluation is done for the test conditions
presented in Table 11. 5 robots are deployed in 100x100 m” environment to find and
to solve 2-robot synchronously correlated tasks, and uncorrelated tasks. As
mentioned earlier, the synchronously correlated task requires task allocation process;
where as uncorrelated task does not require any task allocation. In this test, 5 robots
are deployed on a terrain where three 2-robots synchronously correlated tasks, and
two 1-robot uncorrelated tasks exist. As robots execute the tasks, the number of tasks
decreases but this is not allowed. Task deployment strategy is based on keeping
target density constant in the environment. Whenever a task is finished then a new
task is created randomly in the region. In Table 12 fitness parameters of fitness

functions are given.

Table 11, Environment, robots, tasks, and simulation properties

Behavioral status

No behaviors are inhibited

Fitness evaluation status

All fitness functions are enabled

Environment Obstacle free
Simulation Frequency, Hz 10
Simulation time, sec 3600

Region Dimension , m” 100x100

Robots

5 robots, all robots are the same type.

Robots fault status

All robots are functioning perfectly

Robots’ initial position

At the center of region

Tasks

uncorrelated tasks

Task deployment Strategy

Task density is kept constant. Targets are randomly.

Target Density, targets/ m> 5/(100x100)
Robot main sensorial range, m 10
Communication range, m 50
Coverage map timeout, sec 400
Obstacle map timeout, sec 300

Table 12, Fitness parameters

137

3 2-robots synchronously correlated task, and 2




Fitness Item F1 F2 ng / tgj
Target reaching frequency 20 0 0.01
Communication failure frequency 10 0 0.01
Obstacle avoidance success frequency 5 0 0.2
Obstacle avoidance failure frequency 10 0 0.5
Coverage 5 0 0.15
Distance 5 0 25
Coverage fitness timeout, sec 80

In Figure 82, the fitness functions for different robots are shown. In this case,
the dominant fitness function is the target reaching frequency. But since all robots
are functioning perfectly, error fitness functions, communication failure, and obstacle
avoidance failure frequency are not activated. It is shown that robots execute task at

0.02 Hz, i.e. robots’ average target reaching time is 50 seconds.

Obstacle avoidance success frequency fitness functions are activated only at
the borders of the environment. Its contribution is very small as compared to the

other non-zero fitness functions.

Coverage fitness function is highly reactive for the coverage of robot. Since
fitness coverage map time out is set to 80 seconds, a target reaching will decrease
coverage fitness function since average target execution of a task is 30 seconds. This
fitness function is one of the tuning functions for fair task allocation process.
Therefore it fluctuates more rapidly. In Figure 82, distance fitness function is shown
as zero but this is not the case. Distance fitness function is evaluated relative to task
location. It is not meaningful to draw the fitness function with respect to time.

Distance function, and coverage function enables fair task allocation operation.

In Figure 83, number of tasks executed by each robot, total number of tasks
executed, percentage of task executed by different robots, and sum of fitness

functions excluding distance fitness functions are given with respect to time.

138



Sum of fitness functions excluding distance function is shown. It is clear that
number of targets reached by each robot is proportional to the sum of fitness
functions. For fair task allocation sum of fitness functions excluding distance fitness
should be close enough to each other. Since 5 robots are deployed, it is expected that
each robot should reach the 20% of the total targets reached. As shown in
Figure 83, each robot reaches nearly 20% of the total number of tasks reached.

Fairness of the task allocation is 0.020

Another important parameter is time of convergence to 20 percent task
allocations. In Figure 83, it is shown that after 750 seconds from the beginning, task

allocation percentage reaches almost steady state task allocation percentage.

There are fluctuations over sum of fitness functions. This is because of
fluctuations over coverage fitness function. Whenever a task is reached, coverage
fitness is decreased otherwise robots coverage fitness increases. Actually, these

fluctuations tune the sum of fitness functions for fair task allocation.

Another important aspect is the rate of task allocation/execution. In a normal
situation, it should be linear with respect to time. The first figure with dashed lines in
Figure 83 shows that task allocation rate is almost constant because total number of
target reaches increases linearly with time.

Simulation results show that task allocation is fair enough, and linear for
conditions on system and fitness parameters listed in Table 11, and Table 12

respectively.

139



Target Reaching Frequency Fithess

0 H H H
] 1000 2000 2000 4000
Ohstacle Avoidance Success Fithess

.\h- - :' -
N s s gl
0 1000 2000 3000
Coverage Fitness

4000

2000 3000

Tirne, sec

D 1
0 1000

4000

Communication Failure Frequecy Fitness
1

=)
oS

0.5

0 ! ! L

0 1000 2000 3000 4000
Ohstacle Avoidance Failure Fitness

mmmeebea-

'

'

'

'

'

'

'
R T,

'

'

'

'

'

'

'

'
[

'

'

'

'

'

'

'

|

0 1000 2000 3000
Distance Fithess

4000

2000 3000

Tirme, sec

1 H
0 1000 4000

Figure 82 Fitness functions of 5 robots in obstacle-free region for 5/(100x100) task/m* task
density.

140




---- Total number of tasks reached

Mumber of tasks reached by each rohot — H
Rz
4':":' T T T T T T T
: : : : : : — R3
: : : : : FURRA — R4
e e e A .
SN N S = S N

[ e
0 500 1000 1500 2000 2500 3000 3500 4000

Mormalized number of tasks reached

a 500 1000 1500 2000 2500 3000 3500 4000

um of fitness functions excluding distance fitness

0
1] a00 1000 1500 2000 2500 3000 3500 4000
Time, sec

Figure 83 Number of tasks reached statistics, and sum of fitness function excluding distance of
5 robots in obstacle-free region for 5/(100x100) task/m” task density.

141



6.5.1.2 Task Allocation for 5 Robots, 5 tasks at Obstacle-Dense Region

Simulation environment settings are same as listed in Table 11 except that
environment is filled with obstacles. Obstacle density is 10.5%. Obstacle distribution
is the same for each run. Fitness functions settings are also same with parameters

listed in Table 12.

Simulation results are shown in Figure 84, and Figure 85. Since the
environment is filled by obstacles, obstacle avoidance fitness functions is more
active for this case. Moreover coverage fitness function fluctuates much more than

that of obstacle-free case.

Discussion about for the case of obstacle-free environment with the same
number of robots, and tasks are valid for this case but convergence time to almost
20% steady state task allocation is increased because of obstacles in the environment.
It is nearly 1000 seconds. Results presented in Figure 85 show that fair task
allocation with linear characteristic is also obtained for this case. Total task

allocation fairness is 0.0217.

6.5.1.3 Task Allocation for 5 Robots, 10 tasks at Obstacle-Dense Region

The aim of this simulation is to investigate the task allocation performance

with respect to task density. In this case task density is doubled.

Simulation environment settings are same as with the setting listed in Table
11 except that environment is filled with obstacles, and task number is increased by
5. In this case robots are deployed in an environment having 8 2-robots
synchronously correlated, and 2 1-robot uncorrelated tasks are deployed. Again task
density is kept constant. Moreover, obstacle density is also10.5%. Fitness function
settings are also the same as in Table 12. Simulation results are shown in Figure 86,
and Figure 87. Almost perfect task allocation is obtained. Task allocation fairness is
0.0189. Since fairness metric is defined as bias in task allocation, the smaller this

value is the fairer becomes the task allocation. Time to 20 percent convergence time

142



is around 600 seconds. If these results are compared with 5 tasks case, it is clear that
convergence time is decreased and more satisfactory task allocation percentage is
obtained. This is clearly due to the increase in task density. High task density
increases the probability of reaching targets. In this case, robot competes less for

targets because it is not difficult to find a free-robot.

Target Reaching Frequency Fitness Communication Failure Freguecy Fitness
1 1 1 [—~«
| H H R2
(T N e — R3
|
I =i
0 : : : -
T
0 : : i K : i i
1] 1000 2000 3000 4000 1] 1000 2000 3000 4000
DObstacle Avaidance Success Fitness DObstacle Avaidance Failure Fitness
1 T T T
e s e S
0 : : S
T e e S
4 : : i

1 T T T
oE| N
0 Z E E -
T R
0 H H H -1 H H H
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time, sec Time, sec

Figure 84, Fitness functions of 5 robots in obstacle-dense region for 5/(100x100) task/m’ task
density

143



---- Total number of tasks reached

Mumber of tasks reached by each robot - S;
250 ! ! ! ! : ! . — R3
e
L e SRR RELELRE — R5
. i T s e
L L e e R eI R L L RLREERLEERELRE, .
o e

a 500 1000 1500 2000 2500 3000 3500 4000

Maormalized number of tasks reached

0 i i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000

=urm of fithess functions excluding distance fitness

0 i i i I i i i |
1] a00 1000 15800 2000 2500 3000 3500 4000
Tirme, sec

Figure 85 Number of tasks reached statistics, and sum of fitness function excluding distance of 5
robots in obstacle-dense region for 5/(100x100) task/m’ task density.

144



Target Heaching Frequency Fitness

D L L L
0 1000 2000 3000 4000

Chstacle Avoidance Success Fitness

D L L L
0 1000 2000 3000 4000

Coverage Fitness

1000

2000
Time, sec

3000 4000

Communication Failure Frequecy Fithess

R1
R
R3
R4
RS

1 T 1 1 —_—
T e e
O+
T S -
0 1000 2000 3000 4000
Dhstacle Avoidance Failure Fitness

1 T . T
e

o/ . S —
E| SR -
- H : H

0 1000 2000 3000 4000

Distance Fitness

1 ;

05 ________

q ; ; N
05 |
-1 : ' :

0 1000 2000 3000 4000

Time, sec

Figure 86 Fitness functions of 5 robots in obstacle-dense region for 10/(100x100) task/m’ task
density.

145




---- Total number of tasks reached
Mumber of tasks reached by each robot — R
400 a2
1 1 1 |—=m
: : : : : : I
300 oo R e e e el
]
' : e ' ' ' '
L S S e st
I | i i i i

a
a 500 1000 1500 2000 2500 3000 3500 4000

Maormalized number of tasks reached

1 """"" r--TTTT T r--TTTT T 5
' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
I:IB --------- e e === e e === e e === - e ] - - o
g ' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
= . S, SO
' ' ' ' ' ' ' '
1 1 1 1 1 1 1 1
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ! ! ! ! '
04p-------- F======-= F======-= F======-= T-------- T-------- T-------- T-------- 1
1 1 1 1 1 1 1 1
' ' ' ' ' ' ' '

02 =it ' ' ' S ;
R ! ! ! ! ! !

a
a 500 1000 1500 2000 2500 3000 3500 4000

=um of fitness functions excluding distance fitness

1]
1] s00 1000 1500 2000 2500 3000 3500 4000
Time, sec

Figure 87 Number of tasks reached statistics, and sum of fitness function excluding distance of 5
robots in obstacle-dense region for 10/(100x100) task/m’ task density.

146



6.5.2 Selection of Fitness Functions

Choice of fitness functions is very important because it directly determines
the fairness of task allocation, and fault tolerance. All of the proposed fitness
functions were active in fairness analysis experiments. In this subsection, only one
fitness function that of target reaching will be activated to observe its individual
effect of fitness function on fairness and the same analysis will be repeated for

coverage and distance fitness function.

It is not meaningful to analyze the obstacle avoidance success fitness function
because the robot may operate in obstacle-free regions. Other fitness functions,
communication failure, and obstacle avoidance failure functions are not suitable for

task allocation purpose alone. They are designed for fault tolerance.

Simulation environment settings are adjusted to be the same with setting

listed in Table 11 except that environment is filled with obstacles. Obstacle density is

10.5%.

6.5.2.1 First Fitness Analysis: Target Reaching Frequency

It is very meaningful to use target reaching frequency as a fitness parameter
for task allocation. In Figure 88, target reaching percentages are shown for this case.
By taking only target reaching frequency as fitness criterion, task allocation is not so
satisfactory. The task allocation percentages at the steady state are given in Table 13.
Almost 30% of all tasks are allocated to Robotl, whereas it is 13.5% for Robot4.
Total task allocation fairness is 0.0847. It is clear that fair task allocation is not
obtained as compared with the experimental results where all of the fitness functions

were enabled. Moreover the linearity at steady state of task allocation got worsen.

Simulation results show that, usage of target reaching frequency as fitness

function alone is not a good choice.

147



Table 13 Task allocation percentages for 5 robots when only target reaching frequency is

activated.
Robot Steady state task allocation percentage
Robotl 27
Robot2 21.5
Robot3 19.5
Robot4 18.5
Robot5 13.5

6.5.2.2 Second Fitness Analysis: Coverage

Coverage can also be used as task allocation fitness criterion for missions
requiring some search procedures. Coverage fitness has two important
characteristics:

e [t represents how good robots wander.

e [t gives information about how frequent target reaching is done.

If robot target reaching is very frequent then coverage fitness value decreases. This
gives a kind of fairness. If a robot reaches a target then its coverage fitness will

decrease but other robots coverage will remain relatively high.

In Figure 89, target reaching percentages is shown for this case. At steady
state, task allocation percentages are given in Table 14. Task allocation fairness is
0.0293. Task allocation results are fair enough as compared with the case only target

reaching frequency is activated. Task allocation linearity is also satisfactory.

Results show that coverage fitness can be used as fitness parameter but this is
only valid if all robots are functioning perfectly. In case of any fault, this parameter
will not filter out some kind of faults such as robots primary sensor errors or

communication errors.

148



Table 14 Task allocation percentages for 5 robots when only coverage fitness is activated.

Robot Steady state task allocation percentage
Robotl 22
Robot2 21
Robot3 20
Robot4 19
Robot5 18

6.5.2.3 Third Fitness Analysis: Distance

Distance to task location can also be used in a very simple manner as fitness
criterion allocating the task to the robot nearest to that task location. Of course this
simplicity can not do anything about the fault tolerance issue. In [48], and [51],

distance based metric evaluation is made

In Figure 90, target reaching percentages is shown for this case. In Table 15,
task allocation percentages are shown. Task allocation fairness is 0.0439. Task

allocation is almost fair, and task allocation rate is almost constant.
The fairness analysis of different metrics shows that only coverage metric

usage enables fairer task allocation as compared to using only target reaching, and

only distance fitness function.

Table 15 Task allocation percentages for 5 robots when only distance fitness is activated.

Robot Steady state task allocation percentage
Robotl 24
Robot2 21
Robot3 19
Robot4 18
Robot5 18

149



In Table 16, task allocation fairness metric for different fitness metrics are given.
Proposed fitness functions usage gives total 0.0217 task allocation fairness metric.
On the other hand, distance based fitness calculation gives 0.0439 fairness showing
that our proposed method enables almost 2 times fairer task allocation than distance
based fitness calculation method used in the literature. Usage of coverage, obstacle
avoidance and distance fitness measures at the same time enables fairer task

allocation.

Table 16 Task allocation fairness metric for different fitness metrics

Fitness Metric Fairness metric
Six fitness parameters are activated 0.0217
Distance 0.0439
Coverage 0.0293
Target reaching frequency 0.0847

150



| ---- Total number of tasks reached

Mumber of tasks reached by each robot

200

(E:1] SRR

1000 1500 2000 2500 3000 3500 4000

&00

Mormalized number of tasks reached

L e e e e e e |

1000 1500 2000 2500 3000 3500 4000

&00

=um of fithess functions excluding distance fitness

—mm e e =l oLl

0 1 5 0 £ o [ 0 5 0 e 1 0 0 £ (5 0 0 £ 0 5 0 e 5 £ 0 0 0 0 £ 0 0 £ 0 0 0 £ 1 0 £ 5 0 £ £ 1 1 1 £ 0 ) ) o e e o e e o 5 e e e e
]
'
'
'

1500 2000 2500 3000 3500 4000
Time, sec

1000

&00

Figure 88 Only target reaching frequency fitness function is activated. Number of tasks reached

statistics, and sum of fitness function excluding distance of 5 robots in obstacle-dense region for

5/(100x100) task/m’ task density.

151



---- Total number of tasks reached

— R1

Murnber of tasks reached by each robot =

20 : : : : : : | — Ra

N s R | —ra

200 F------e- posoeeees poeeeeees pommeeees R R et Ll — R5
] (S S S
00 bem b _______ _

a S00 1000 1500 2000 2500 3000 3500 4000

Maormalized number of tasks reached

a
a &00 1000 1500 2000 2500 3000 3500 4000

=um of fitness functions excluding distance fitness
25 T T S

1]
1] S00 1000 1500 2000 2500 3000 3500 4000
Time, sec

Figure 89 Only Coverage fitness function is activated. Number of tasks reached statistics, and
sum of fitness function excluding distance of 5 robots in obstacle-dense region for 5/(100x100)
task/m’ task density

152




— R1

R2
— R3
— R4
— R&

| ---- Total number of tasks reached

Mumber of tasks reached by each robot

200

T
1
+
'
'
'
!

-

-7

L e M

&00

160 fr-vnmn -

100 f--------

1500 2000 2500 3000 3500 4000

1000

Maormalized number of tasks reached

e e e e e e e e |

0B f-------
4

1000 1500 2000 2500 3000 3500 4000

&00

=um of fitness functions excluding distance fithess

e S 1 Y U U |

2B
15

10
5

1500 2000 2500 3000 3500 4000
Time, sec

1000

&00

Figure 90 Only Distance fitness function is activated. Number of tasks reached statistics, and

sum of fitness function excluding distance of 5 robots in obstacle-dense region for 5/(100x100)
task/m’ task density

153



6.5.3 Fault Tolerance Analysis

In this section fault tolerance of the proposed system will be analyzed. For

this purpose, an artificial error situation is simulated. Some of the deployed robots

are made not to functioning perfectly, i.e. they are corrupted partly or completely.

Consequently the following error situations are simulated:

e Target reaching errors

e Obstacle avoidance error

e Physical integrity error.

In case of above errors, task allocation to partly corrupted robots will be

analyzed. It is expected that fitness of this partly or completely corrupted robots

should be very low so that task allocation should not be made to them. In Table 17,

simulated fault types are given. Moreover, reasons, effect and simulation methods of

these faults are also given.

Table 17 Simulated fault types, and information about these faults

Fault Type

Main Reason

Effect

Simulation

Method

Target reaching

Fault in robot’s sensors

Robot cannot make
efficient target

Robot cannot lock

avoidance. It can crash

into obstacle and

destroy its physical

integrity. It can stuck

€rTors or communication . targets
reaching.
hardware
Obstacle avoidance | Fault in robot’s | Robot cannot make | Robot average
error secondary sensors efficient obstacle | speed is decreased

to 33% of average
speed of mnormal
robot while obstacle

avoidance behavior

problem

may fail to execute the

tasks.

and loose time. is active.
Physical errors Fault in robot motors or | Robot cannot move | Robot average
any kind of physical | appropriately.  Robot | speed is decreased

to 10% of average

speed

154




6.5.3.1 Target Reaching Errors

Target reaching error is simulated using communication errors. When a robot
is allocated to execute a task, it will not lock on to the task, and therefore it will make
communication faults. So communication failure frequency fitness function will be
activated. It is expected that the fitness of a robot having this kind of fault will

decrease as compared with other robots.

Simulation is done at obstacle-free environment. Simulation environment
settings are also same with setting listed in Table 11 except for task properties listed
in Table 18. In this error simulation, only one of deployed robots is defective. Target
reaching error simulation start time, and stop time are given in Table 19. After stop

time, robot begins to function again properly by not doing any faults.

Table 18 Robot, and task properties for target reaching error simulation

Robots 5 robots, all robots are the same type.

Robots fault status Robots are functioning perfectly except for Robotl
Robots’ initial position At the center of region

Tasks 3 2-robots synchronously correlated task

Task deployment Strategy Task density is kept constant. Targets are randomly.
Target Density, targets/ m” 3/(100x100)

Table 19, Target reaching fault simulation timing

Fault Simulation Method Start Time, sec Stop Time, sec Duration, sec

Robot cannot lock to task 1000 2000 1000

allocated via communication

In Figure 91 all of fitness functions are given. In Figure 92, target reaching
counts for each robot, and sum of fitness functions with respect to time are given.
Red line in each subplot belongs to the robot making target reaching error. It is
shown in Figure 91 that the faulty robot has made a target reaching error at time

1113 second. At that instant robot total fitness is reached to -28.5 excluding distance

155




fitness. Since task allocation algorithm requires that sum of fitness functions
excluding distance should be greater or equal to zero, this robot should not undergo
any task allocation. The robot should wait for the sum of fitness to exceed zero. As it
is shown in Figure 92, defective robot fitness reaches zero near time 2000. After

2000, no error is simulated so robot is functioning with no fault.

In Figure 92, in subplot 2, normalized task allocation for each robot is shown.
After the time communication error occurred, number of tasks allocated to defective
robot decreased considerably due to the decrease in fitness functions. Since tasks are
not allocated to the defective robot, task allocation linearity is not violated. In
Figure 92, time interval, where robot1 could not make any task allocation, is marked.
In this interval, the slope of task allocation line is decreased because effective
number of robots decreased to 4 from 5, i.e. the total number of task allocated is
decreased. After this time interval, robot 1’s fitness becomes greater than zero starts
again to get allocated tasks after time 1960 seconds. Above results shows that task

allocation is performed well in case of target reaching errors.

156



Target Reaching Frequency Fitness
20

15}

10

0 i
a 1000 2000 3000 4000

Obstacle Avoidance Success Fitness
14

1000 2000 3000 4000

Caverage Fithess

1000 2000 3000 4000
Time, sec

0
a

0.5

0.5

Cormrmunication Failure Fregquecy Fitness
50

40

30

20

10

0 '
1] 1000 2000 3000 4000
Ohstacle Avoidance Failure Fitness

1

_________________________________

0.4

-1 : : :
0 1000 2000 3000 4000

Distance Fitness

—————————————————————————————————

-r--------
e | Sy Sy S
| ey

1000 2000 3000
Time, sec

-1
0 4000

Figure 91 Fitness functions for all robots. Red line is belonging to defective robot making target

reaching errors.

157




— R1

R2
— R3
— R4
— R4

| ---- Total number of tasks reached

Hoooon

Mumber of tasks reached by each robat
I

1000 1500 2000 2500 3000 3500 4000

500

Mormalized number of tasks reached

S 5 S S |

e

0 1000 1500 2000 2500 3000 3500 4000

=0

Sum of fitness functions excluding distance fithess

30 - e

1500 2000 2500 3000 3500 4000
Time, sec

1000

a00

Figure 92 Number of tasks allocated, and sum of fitness functions for all robots. Red line is

belonging to defective robot making target reaching errors.

158



6.5.3.2 Obstacle Avoidance Errors

Obstacle avoidance error is simulated in a %10.5 obstacle filled environment.
Error is simulated by decreasing the average speed of the robot described in Table
17. Properties of robots and task are given in Table 20. In this case, average task

number is increased to 10.

Table 20 Robot, and task properties for obstacle avoidance error simulation

Robots 5 robots, all robots are the same type.

Robots fault status Robots are functioning perfectly except for Robotl
Robots’ initial position At the center of region

Tasks 10 2-robots synchronously correlated task

Task deployment Strategy Task density is kept constant. Targets are randomly.
Target Density, targets/ m” 10/(100x100)

Table 21 Obstacle avoidance fault simulation timing

Fault Simulation Method Start Time, sec Stop Time, sec Duration, sec

Robot average speed is 1000 2000 1000
decreased to 33.3%

Obstacle avoidance fault is simulated according to timing given in Table 21.
Fitness functions are given in Figure 93. Task allocation statistics and sum of fitness
functions are given in Figure 94. Red lines in the plots belong to the defective robot
(robot 1). Robotl has started to make obstacle avoidance error starting at time 1014.
At this point, robot 1’s overall fitness goes to -28.8. Since total fitness excluding
distance fitness is less than zero, this robot cannot be allocated any task. Robotl
continues to make obstacle avoidance error up to time 2000 but its fitness reaches
zero after 2168 seconds, i.e. even if there is no obstacle avoidance error after time
2000, due to the decaying effect therefore due to the transient effect of the obstacle

avoidance failure fitness function, the robot cannot make any task allocation for 168

159




seconds after error simulation is removed. This is the confidence interval. Since
robot did not make any errors, its fitness increases gradually, but it takes some time
to reach other robots having no fault.

Results for target reaching error are also valid for this case. Task allocation
linearity is preserved for time intervals in which error is simulated or not simulated.
Slope of total number of task allocation at error simulation interval is slightly less
than the slopes at other instants. It is clear that task allocation is done effectively in

case of obstacle avoidance faults.

Target Reaching Freguency Fithess Communication Failure Frequecy Fithess
1
— R
' ' ' Rz
05 b oo oo . — R3
s s s — Ra
— RS
D -
B ] U i
a . . . -1 . . .
a 1000 2000 3000 4000 a 1000 2000 3000 A000
Obstacle Avoidance Success Fithess Obstacle Avoidance Failure Fithess
50
40
30
20
10
0 : : ' o : -
a 1000 2000 3000 4000 a 1000 2000 3000 A000
Coverage Fithess Distance Fithess
1
[ R e EE B
D -
B ] U i
a . . . -1 . . .
a 1000 2000 3000 4000 a 1000 2000 3000 A000
Time, sec Time, sec

Figure 93, Fitness functions for all robots. Red line is belonging to defective robot making
obstacle avoidance errors.

160



— R

R2
— R3
— R4
— R4

| ---- Total number of tasks reached

Mumber of tasks reached by each robot

&00

_ _

i i

i i

i i

i i

R e

w i i i

o i i

1 - 1 1 1

1 0 1 1 1

T = P = Sy F--=-F

i i i

1 [ 1 1

' ' ' '

1 1 . 1 1

=" 1 5 1 1

g 1 "

o 1 ‘4 '

.n 1 —. 1

S = o i

... 2 2 N LT
=

<o T

L2

I

[} *

= .

---0© [

Z " i o

I 1 "

. X i i

Lol [N el

Lol [N el

1 1 1 1

o S e B e B

oo oa o O

m = m ™

BO0

1500 2000 2500 3000 3500 4000

1000

Mormalized number of tasks reached

m—————=l - ___4

——— === bL oL

e e e e e e e s |

0.4
0.2

1l 1000 1500 2000 2500 3000 3500 4000

a0

Sum of fitness functions excluding distance fithess

F N Y N O N |

1500 2000 2500 3000 3500 4000
Time, sec

1000

&00

Figure 94 Number of tasks allocated, and sum of fitness functions for all robots. Red line is

belonging to defective robot making obstacle avoidance errors.

161



6.5.3.3 Physical Errors

Physical errors include robot physical structural errors such as faults in

motors. These kinds of errors result in speed degradation.
Physical error is simulated in an obstacle-free environment. Error is

simulated by decreasing average speed of robot described in Table 17. Properties of

robots and task are given in Table 22.

Table 22 Robot, and task properties for obstacle avoidance error simulation

Robots 5 robots, all robots are the same type.

Robots fault status Robots are functioning perfectly except for Robotl
Robots’ initial position At the center of region

Tasks 3 2-robots synchronously correlated task

Task deployment Strategy Task density is kept constant. Targets are randomly.
Target Density, targets/ m” 10/(100x100)

Table 23 Physical fault simulation timing

Fault Simulation Method Start Time, sec Stop Time, sec Duration, sec

Robot average speed is 1000 2000 1000
decreased to 10%

Physical fault is simulated according to timing given in Table 23. Fitness
functions are given in Figure 95. Task allocation information and sum of fitness
functions are given in Figure 96. Red lines in the plots again belong to the defective

robot (robot 1).

Robot 1 starts to make this error beginning at time 1000. From this instant,
coverage fitness function decreases to almost zero. But the actual fitness drop is
obtained at instant 1615. Robot 1 makes a communication error because of a task
allocated to this robot. But since it did not reach the target point then its task

execution has failed. This communication error decreases the total fitness of robot 1

162



to -40, so it could not make any task allocation from then on. It is only after time
2910 that the robot fitness reaches zero and robotl can make task allocation. After
time 2000, coverage fitness again starts to increase taking normal values.

Number of allocated task is also linear for this case for each simulation
interval whether error simulation is active or not. This shows that task allocation is
performed well among the healthy robots. As presented in this case, physical errors
have serious deeper side effects affecting different fitness functions depending on the

type of error.

Target Reaching Frequency Fitness Communication Failure Frequecy Fitness
20 ; - ; 50
15 40
30
10 K
20
5 10
u] . : . a : : :

a 1000 2000 3000 4000 a 1000 2000 3000 4000
Obstacle Avoidance Success Fitness Obstacle Avoidance Failure Fitness
7 . . - 1

e = e ——
1 o --4
0.5 05fF------- [pessssas HoSESSas L]
u] . : . -1 . . :
a 1000 2000 3000 4000 a 1000 2000 3000 4000
Coverage Fithess Distance Fithess
(3] 1
S e ]
|:| --
O05F-n--mnn- Leceoo- U P
u] . : . -1 . . :
a 1000 2000 3000 4000 a 1000 2000 3000 4000
Time, sec Time, sec

Figure 95 Fitness functions for all robots. Red line is belonging to defective robot making
physical errors.

163



| ---- Total number of tasks reached

Jooo o 3500 4000

2500

Mumber of tasks reached by each robot

2000
Time, sec
164

1000 1500

|

5
belonging to defective robot making physical integrity errors.

= =
=2 - - qm - =2 : - r
' ' = : : : = : : :
: : = : : : = : : :
et - = - o T . | R
i il i ry] il ; i ry] ; il i
] ' ' ml ' ' ' ml ' ' '
=1 1 1 1 1 1 w 1 1 1
- : : : : : @ : : :
[ 1 1 1 1 1 1 1 1
' ' ] f] ' ' ' f] = ] ' '
S R ] L = - PR S At = | - .
' ‘ ‘ = . ‘ : : = o : :
' y oy o ' ' ' oy ' '
[} ' f ' ' ' = ' ' '
) ' ' = ' ' ' = , ' '
1 ' ' [} ' ' ' i 1 1
an ' ' % ' ' ' H ' ' '
s — : : = : : : o m : : :
- S % Femeer = o - - o TS § S | - .
= O L0 m L0 )
<c ‘ ‘ t o ‘ ‘ ‘ SRR : : :
e o : o : : : = ! : : :
2 N : I : : : 9. : : :
25 : g : : : =2 : : :
B : =2 S : : : =2 = : : :
- TSI PN T —— - e R 1 A [ e T -
) ' o v = @ v ' H = oo ' ' v
Z. ' 43 ' ] |m ' ' ' ' ] W ' ' '
; : . A4 3 : : i 2 i : ‘
r r pir— = o : : : - T : : :
S e T 2 TR Lo . H -2 S X R Lo
' ] ] ", ] ] [ ] ] ' — ] ] ]
: : Pl : = 2 : : : = o : : :
: : g ‘ = : : ‘ oo ‘ ‘ i
' ' ' I ' = ' ' ' @ ' ' '
' ' ' i ' v_UI ' ' ' = 1 ' ' '
1 1 1 ] 1 1 1 1 r -— 1 1 1
= = (=]
S e R SHN [ A R - e Y S e o PR 5 SO - Lo
\ ! . DT = . . ! \ = oo ! . .
: : : P - : : : : - = : : :
: : : o ‘ ‘ : ‘ = ‘ ‘ i
\ \ \ \ " \ \ \ \ o \ \ \
1 1 1 1 L] 1 1 1 1 1 1 1 1
1 1 1 1 T = 1 1 1 1 = 1 1 1 1
S e P Y I |1 R R m____13 P T S - Lo
: : : : i o : : : 3 o : : : :
1 1 1 1 1 1 1 1 1 1 1 1 1
R " " " = " " " "
i i i i T i i . I i i i i
1 1 1 1 1 1 — T T T 1 1 1 1
1 1 1 1 1 ] L 1 1 1 ] L 1 1 1
i T e T e Y e Y s oo o =+ [ o = o o o =
5= B = = = = b 2 5 i

o

-B0
Figure 96 Number of tasks allocated, and sum of fitness functions for all robots. Red line is




6.5.4 Fitness Summary

In sections from 6.5.1 to 6.5.3, fitness calculation of robots for task allocation
has been analyzed with extensive number of simulations. Fairness, and fault
tolerance are the main inherent issues of in fitness calculation. Moreover there is an
important parameter, linearity of task allocation with respect to time. It is expected
that, for constant number of robots, and task densities, the number of tasks allocated

or executed should be constant regardless of the simulation instant.

Usage of 6 fitness functions enables the robots to allocate tasks fairly, and
fault tolerantly. Fairness is tested for both obstacle-dense, and obstacle free regions
for various robot numbers, and task densities. Fairness metric for these case ranges
from 0.0189 to 0.0217. Results are satisfactory about fairness, and task allocation

linearity.

Moreover, selections of fitness functions are also important. If the usage of
fitness function is unnecessary it should be used. For this purpose, target reaching
frequency, coverage, and distance fitness functions are tested individually as an only

fitness functions.

For these cases, fairness metric is not as good as the cases in which all fitness
functions are enabled. Fairness of task allocation is almost 3 times less fair than those
of the case when all functions are enabled. Linearity of task allocation is not as linear
as expected. Moreover, fault tolerance will not be satisfied if these fitness functions

are used individually.

Fault tolerance analyses are held for three error situations:
e Target reaching error
e Obstacle avoidance error
e Physical integrity error
Simulation results show that these kinds of errors are filtered well: no task is

allocated for/ defective robots. If the task allocation to defective robots is inhibited,

165



the long time of operation is needed to reach fair task allocation. This is because of
fitness of defective robots gradually increases but it takes some time to reach other

robots’ fitness value. Fair task allocation requires more time in case of fault.

When an error has occurred, fitness functions (communication failure
frequency fitness, obstacle avoidance failure fitness) dedicated to error situations is
triggered. These fitness functions decreases more rapidly as compared with others.
Selection of parameters of fitness functions is important. Overestimation of these
parameters may worsen the fault tolerance. Decaying factors should be selected by

considering average target detection, and execution time.

166



CHAPTER 7

Conclusion, and Future Works

In this thesis, a hybrid behavior based architecture for a multi-robot system is

implemented. The thesis covers

e Designing a flexible, modular, scalable, as much as realistic 3D simulation
environment

e Designing a hybrid of both subsumption and motor schema architecture

e Implementation of external and internal behavior

e Implementation of task allocation based on the well known market based
auction algorithm

e Designing powerful task allocation metric allowing fair and fault tolerant task
allocation

e Extensive experiments for performance analysis both in low level (behavior

level) and high level (system level)

7.1 Simulation Environment

Simulation environment design is a challenging and time consuming work.
Existing simulation environments can be used instead of designing a new
environment. But this brings many limitations to the users. Many simulation
environments are not based on 3D environment modeling. Once a base simulation
environment is designed, it is not difficult to extend this environment to more
realistic levels. Main advantage of designing own simulation environment is that

every point of environment is open for designer. Designed environment are

167



satisfactory for simulation and test purposes except for realistic sensor, and robot

dynamical model.

7.2 Behavioral Architecture

Control and interaction of behaviors are achieved in a hybrid style. Behavior
coordination is based on both subsumption, and motor schema type. A layered
control strategy is implemented. One layer is devoted to subsumption type control,
and other is devoted to motor schema type control. Behaviors in the subsumption
layer deal with the complicated tasks. On the other hand, behaviors in motor schema

layer deal with tasks requiring reactivity.

Behaviors having relative priority with respect to each other reside in the
subsumption layer, whereas behaviors having equal priority reside in the motor
schema layer. These layers are coordinated cooperatively like in motor schema
architectures. The reason behind the hybrid architecture is to take advantage of
flexibility of controlling robots more accurately and effectively without violating

reactivity.

In classical subsumption architecture, behaviors do not know anything about
the state of each other. Behaviors are coordinated via lines (suppress, inhibits, and
reset lines) in a priority based style. This coordination enables incremental and
modular design. In complex systems this may not be easy. Because, there will be
need for interaction of some low and high level behaviors. To overcome this
difficulty, evaluators are introduced. In this thesis, evaluators can be used as

e Defining priorities of behaviors in run-time
e Defining loosely coupled coordination between behaviors in subsumption
layer and motor schema layer. Evaluator takes state of other behaviors as

additional input parameters

168



Introduced control architecture does not degrade modularity, and reactivity. It
gives an additional coordination mechanism, and flexibility. High, low, and equal
priority behaviors can be controlled effectively by additional information about state
of behaviors. Moreover, introduced system can be reduced to subsumption style

control if evaluators are disabled.

Motor control of robots as an evaluation of external behaviors is tested, and
simulation results are given sections from 6.1 to 6.3. Simulation results show that,

external behaviors are functioning well enough individually.

Obstacle avoidance behavior is one of the basic and most important
behaviors. Implementation of this behavior is very critical. For effective obstacle
avoidance both repulsive and tangential potential field forces are generated. These
two kinds of forces enable the robot to avoid obstacles more rapidly, and securely.
Obstacle avoidance behavior is tested for convex, concave, partially concave and
strongly concave shapes. Avoiding from strong concave obstacles is difficult using
potential field because there is a probability of falling into local minima. But the
implemented obstacle avoidance algorithm minimizes this probability with the help

of the behavior integration.

The main task of the robots is first finding tasks, and if multi-robot task
allocation is required then robot tries to gather enough number of other robots. So
detection phase of the tasks is the first thing that a robot should achieve. For this
purpose two kinds of behaviors are implemented:

e Heuristic wander

e Adaptive wander behavior

Searching environment by considering coverage is not a new idea. There are
graph based approaches generating optimal solutions. But these algorithms generate
sub-optimal solutions in dynamic environments. Advantages of adaptive wander
behavior with respect to existing methods are time-varying map usage for dynamic

environment assumption and computational simplicity.

169



It is assumed that the probability of occurrence of a task in any point of
terrain is equal. Due to the equality, robot may go to locations previously wandered
if enough time is elapsed. Adaptive wander behavior makes fusion of time varying
coverage map, and obstacle map to generate next wander point. This point generated

by this behavior is optimal or near optimal because

e [t is guaranteed that the next wander point is not visited previously within
coverage map timeout

e Path to the next wander point contains fewer obstacles, and then the robot
will undergo less obstacle avoidance. As a result of this, time, and energy is

saved.

Time varying maps are utilized in all maps used in adaptive wander behavior
implementation. The reasons behind this are to increase coverage, and adaptivity to
dynamic environment. Coverage is a good measure of wander behaviors. The
performance of two wander behaviors is tested in terms of coverage by changing the

parameters of the wander behaviors.

The performance of adaptive wander algorithm is tested by comparing the
coverage times of heuristic wander behavior. It is shown that adaptive wander

behavior is 50 percent better than heuristic one. The value of map timeout is critical

in terms of memory usage. As coverage timeout, ' O is increased, the coverage

cov »?
of the entire terrain decreases exponentially. But this increase brings considerable
memory requirements. Simulation results show that there is an optimum memory

requirement depending on the terrain dimensions. Analysis of memory requirements

for steady state, and 95% coverage gives that there is an optimum 7'O_, in terms

v

of memory usage. This is because for a given terrain dimensions, large 70, is not

v

necessary. For terrain size of 100x100 m2, 400 seconds 'O, is enough.

v

170



There are many side effects in implementing two kinds of wander behaviors

working together. In obstacle dense environments, adaptive wander behavior fails to

generate the next wander point, and then heuristic wander takes the wander control.

Since heuristic wander is more dynamic, it enhances the obstacle avoidance process.

Results show that implementation of wander behaviors are satisfactory. It is not

observed that a robot get stuck in the terrain. Adaptive wander behavior increases

coverage time considerably. Moreover memory usage can be optimized using the

simulator. Moreover, these behaviors help obstacle avoidance behavior indirectly.

Many experiments are done about target reaching time for various

environmental conditions, team and task sizes. The main results of these simulations

are that:

It is extremely difficult to model a multi-robot system. There are many

parameters to be considered for appropriate model.

In general, optimum operating points can be found by adjusting parameters

such as team size, main, sensorial range, and communication range.

If there is prior knowledge about the environment, different parameters
should be optimized. For instance, if approximate task density is known,
energy consumption of the robot team can be optimized. Number of robots
optimizing target reaching time, and energy consumption can be found using

the simulator.
Simulation can decrease unnecessary resource usage, i.e. if 20 meters
communication range is enough, 30 meter communication range will increase

cost considerably.

Communication cost is one of the major constraints in the system. In this

thesis, it is aimed to model the optimal communication range with respect to team

size, task density, and main sensorial range. Many experiments are done to optimize

171



target reaching time with respect to communication range with the different
parameters of are mentioned above. Simulation results are fed to a 4 layered neural
network to train it. This neural network is asked to compute an optimum
communication range for input data not uses for training. Even if the neural network
estimated the correct shape, the error between estimated and simulated result is high

for the time being.

7.3 Task Allocation and Description

Task allocation is the central issue in multi-robot systems. It affects
performance of the team directly. In this thesis, market based auction algorithm is
implemented. Task allocation algorithm is almost the same with MURDOCH

described in [51], except for fitness calculations.

Tasks are allocated to robots using their fitness values. In MURDOCH,
fitness of robots is determined by the relative distance to the task location. In this
work, there is a different method is developed calculating fitness. The main aims of
the new fitness functions are to obtain:

e A compact description of fitness of robot without dealing with the reasons
e Fair task allocation

e Fault-tolerant task allocation

There are two types of non-linear fitness functions, one for the success
conditions, and one for the failure conditions. Fitness functions are non-linear, and
time dependent functions. By using this non-linear fitness functions, following

benefits are obtained

e Rate of increase with respect to fitness function parameters is determined
e Upper bound for fitness values is specified
o Time effect is inserted. Fitness is not absolute, it is time-dependent. As time

goes on fitness function decreases.

172



Fitness are exponential functions, and more linear for small fitness parameters.
As parameters increase, fitness function goes to more non-linear region. Meaning of
this is that if a robot reaches 100 targets, and another has reached 105 targets, fitness

of these robots will differ slightly.

Fair task allocation is achieved with success fitness functions: target reaching
frequency, obstacle avoidance success frequency, coverage. Fault tolerant task
allocation is achieved using failure fitness functions: communication failure
frequency, obstacle avoidance failure frequency. In addition to these an
instantaneous distance fitness function is also used to measure the fitness relative to

task location.

In 6.5, effect of fitness functions on task allocation is analyzed. Results are
quite satisfactory. Task allocation fairness is higher than the results for auction based
task allocation algorithm given in [48], [51]. Three times fair task allocation is
achieved using introduced fitness functions. Fairness of task allocation is achieved

with coverage, and obstacle avoidance success frequency fitness functions.

Fault tolerance analysis is also satisfactory. To test the fault tolerance
analysis, three types of error situations are simulated:
e Communication errors
e Obstacle avoidance error

e Errors in the robots physical structure for instance faults in motors.

Task is not allocated to a robot having faults. Robot fitness decreases dramatically in
case of fault but if any other fault has not occurred, then fitness of the robot increases
exponentially with a specified time constant so that the robot can again be allocated

and execute tasks.
These fitness functions cover compact descriptions of success and failure

conditions. For instance, a robot can determine the obstacle avoidance error, but it

may not know the reasons of error. Fitness functions are intended to analyze the

173



results rather than reasons. Another beneficial side effect is the communication

demand reduction in case of errors.

Method of task description used in this simulator is also satisfactory. User
can define 4 different types of tasks. By nesting these 4 types of tasks, any task can
be obtained. But even if four types of task description exist in the simulator, nesting

is not implemented for the time being.

7.4 Future Works

All results are obtained using the simulator implemented. Physical robot
implementation is a meaningful and necessary future work. Proposed behavioral
control architecture should be tested with embodied robots. This is the final

validation of this thesis. Benefits of the simulator should not be forgotten.

Simulation environment can be developed further. Models of the sensors and
the environment can be enhanced to obtain more realistic simulations. Currently,
there is no physical model of the robot dynamics in the simulator. Robots are simply
assumed to be box shaped with perfect kinematics. Dynamical model of robots with

correct physical structure can be integrated with the simulation environment.

Motion control of the robot is achieved with potential fields. Magnitudes of
different force parameters are found using the simulator for safe operations. But
these values can be optimized further, or they can be updated in real time adaptively.
Fitness functions can also be improved in terms of convergence time to fair task
allocation. New paradigms can be developed in task allocation issues to decrease the
communication demand. Currently, auction based algorithms need high

communication resources.

Understanding the nature of intelligence as an ultimate goal of the multi-robot

system researches will never end. Many hot topics can be tackled in the future: If

174



robots do not perfectly fit to tasks that have to be achieved, relevance measures need
to be evaluated besides fitness such that fused relevance of many robots will make
that group fit for a task. Information need to be fused at different levels of resolution.

Security issues can be investigated like sensing enemy, surveillance.

175



REFERENCES

[1] Cao, Fukunaga, and Kahng , “Cooperative Mobile Robotics: Antecedents and
Directions” Autonomous Robots 4(1): 7-27, 1997.

[2] L.F. Akyildiz, W. Su*, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor
networks: a survey”, Computer Networks 38 393422, 2002

[3] N. Xu, “A Survey of Sensor Network Applications”, 2003

[4] T. Imielinski, S. Goel, “DataSpace: querying and monitoring deeply networked
collections in physical space”, ACM International Workshop on Data Engineering
for Wireless and Mobile Access MobiDE 1999, Seattle, Washington, 1999, pp. 44—
51.

[5] http://www.alertsystems.org

[6] C. Intanagonwiwat, R. Govindan, D. Estrin,” Directed diffusion: a scalable and
robust communication paradigm for sensor networks”, Proceedings of the ACM

Mobi-Com’00, Boston, MA, 2000, pp. 56—67.

[7] S. Meguerdichian, F. Koushanfar, G. Qu, M. Potkonjak,” Exposure in wireless
ad-hoc sensor networks”, Proceedings of ACM MobiCom’01, Rome, Italy, 2001, pp.
139-150.

[8] T. Arai, E. Pagello, and L. E. Parker “Guest Editorial: Advances in Multi Robot
Systems”, IEEE Transactions on Robotics and Automation 18(5): 655-661, 2002

[9] Parker, L. E., Current State of the Art in Distributed Robot Systems, Distributed
Autonomous Robotic Systems 4, Lynne E. Parker, George Bekey, and Jacob Barhen
(eds.), Springer, 2000: 3-12.

[10] R. Arkin, “Behavior Based Robotics™, The MIT Press, 1998.

[11] Brooks, R. A., "A Robust Layered Control System for A Mobile Robot”, IEEE
Journal of Robotics and Automation, Vol. 2, 1986

176



[12] Brooks, R. A., "Planning Is Just A Way Of Avoiding Figuring Out What To Do
Next", MIT Al Lab Working Paper 303, September 1987.

[13] R. Arkin, “Motor Schema-Based Mobile Robot Navigation”Internationa Journal
of Robotis Reasearch, 1989

[14] Mataric, M. J., "Situated Robotics", Invited contribution to the Encyclopedia of
Cognitive Science, Nature Publishing Group, Macmillan Reference Limited, Nov

2002

[15] Monica N. Nicolescu and Maja J. Mataric, “A Hierarchical Architecture for
Behavior Based Robots” In Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems Bologna, ITALY, July 15-19,
2002

[16] R. P. Bonasso, R. J. Firby, E. Gat, D. K. D. Miller, and M. Slack. Experiences
with an architecture for intelligent, reactive systems. Journal of Experimental and

Theoretical Artificial Intelligence, 9(2—-3):237-256, 1997.

[17] R. Arkin, Reactive robotic systems, The handbook of brain theory and neural
networks 793 — 796, 1998

[18] E. Gat., “On three-layer architectures”, Artificial Intelligence and Mobile
Robotics, pages 195-210. AAAI Press, 1998.

[19] R. Arkin and Tucker Balch, "AuRA: Principles and Practice in Review",
Journal of Experimental and Theoretical Artificial Intelligence, 9(2-3), pages 175-
189, April 1997.

[20] Arkin, R.C. and Balch, T Cooperative Multiagent Robotic Systems., in Artificial
Intelligence and Mobile Robots , D. Kortenkamp, R.P. Bonasso, and R. Murphy
(eds), MIT Press, 1998.

[21] Fukuda, T., Nakagawa, S., Kawauchi, Y., and Buss, M.,. Structure Decision for
Self Organizing Robots Based on Cell Structures - CEBOT. IEEE International

Conference on Robotics and Automation, Scottsdale Arizona, 1989.

[22] http://www.mein.nagoya-u.ac.jp/activity/2001 e/ads.html

177



[23] L. E. Parker, “ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation”, IEEE Transactions on Robotics and Automation, Vol. 14, No. 2, April
1998

[24] L. E. Parker. “Heterogeneous Multi-Robot Cooperation” PhD thesis, MIT EECS
Dept., 1994.

[25] L. E. Parker, “L-ALLIANCE: Task-Oriented Multi-Robot Learning in
Behavior-Based Systems, Advanced Robotic’’s, Special Issue on Selected Papers

from IROS '96, 11 (4) 1997: 305-322

[26] L. E. Parker, “Lecture Notes on Distributed Intelligence in Autonomous

Robotics”, University of Tennessee, Department of Computer Science, 2003.

[27] Holland, Melhuish “Stigmergy, Self-Organization, and Sorting in Collective
Robotics”, by, Artificial Life 5: 173-202, 1999.

[28] V. Kumar, F. Sahin “Foraging in Ant Colonies applied to the Mine Detection
Problem”, IEEE International Workshop on Soft Computing in Industrial
Applications, June 23-25 2003

[29] K. L. Doty, R. E. Van Aken. Swarm robot materials handling paradigm for a
manufacturing workcell. In IEEE ICRA, volume 1, pages 778—782, 1993.

[30] M. Mataric. Interaction and Intelligent Behavior. PhD thesis, MIT, EECS, May
1994.

[31] J. Deneubourg, S. Goss, G. Sandini, F. Ferrari, and P. Dario. “Selforganizing
collection and transport of objects in unpredictable environments”. Symposium on

Flexible Automation, 1990.

[32] D. McFarland. “Towards robot cooperation.” Proceedings of the Third
International Conference on Simulation of Adaptive Behavior, pages 440—444. MIT
Press, 1994.

[33] T. Haynes and S. Sen. “Evolving behavioral strategies in predators and prey” In
Gerard Weiss and Sandip Sen, editors, Adaptation and Learning in Multi-Agent
Systems, pages 113—126. Springer, 1986.

178



[34] P. Maes & R. A. Brooks “Learning to Coordinate Behaviors” , National
Conference on Artificial Intelligence, 1990

[35] L. P. Kaelbling, M. L. Littman, A W. Moore ‘“Reinforcement Learning: A
Survey” Journal of Artificial Intelligence Research, 1996.

[36] W. D. Smart, L Pkaelbling, “Effective Reinforcement Learning for Mobile
Robots” Journal of Artificial Intelligence Research, 2002

[37] K. H. Lowy, W. K. Leowy, M H. Ang, Jr.z “Action Selection for Single- and
Multi-Robot Tasks Using Cooperative Extended Kohonen Maps” Proc. 18th
1JCAI’03, pages 1505-6, Aug 9-15, 2003,

[38] C. Versino, L. M. Gambardella, “Learning Fine Motion by Using the
Hierarchical Extended Kohonen Map”, Proceedings ICONIP96, International

Conference on Neural Information Processing, 1996

[39] Pomerleau, D.A., “Efficient Training of Artificial Neural Networks for
Autonomous Navigation”, Neural Network Perception for Mobile Robot Guidance,

Kluwer Academic Publishers 1993
[40] Wyeth G., Neural Mechanisms for Training Autonomous Robots, 1997

[41] D. Floreano and F. Mondada. “Automatic creation of an autonomous agent:
Genetic evolution of a neural-network driven robot.” Proceedings of the Third
International Conference on Simulation of Adaptive Behavior, pages 421--430,

Cambridge, MA, 1994.

[42] K. R. Baghaei, A. Agah. “Task allocation and communication methodologies
for multi-robot systems” Autosoft — Intelligent Automation and Soft Computing

Journal, Vol. 9, No. 4, 2003

[43] B. P. Gerkey, M. J. Mataric, “A Formal Analysis and Taxonomy of Task
Allocatiom in Multi-Robot System”, Intelligent Journal of Robotic Research , July
2003.

[44] B. P. Gerkey, M. J. Mataric, “On Multi-Robot Task Allocation, PhD thesis,
Center for Robotics and Embedded Systems", University of Southern California, Los

Angeles 2003

179



[45] B. P. Gerkey, M. J. Mataric’, "A Formal Framework for the Study of Task
Allocation in Multi-Robot Systems", International Journal of Robotics Research,

23(9), Sep 2004, 939-954.

[46] B. P. Gerkey, M. J. Mataric’, “Multi-Robot Task Allocation: Analyzing the
Complexity and Optimality of Key Architectures”. IEEE ICRA 2003

[47] L. E. Parker, “Evaluating Success in Autonomous Multi-Robot Teams:
Experiences from ALLIANCE Architecture Implementations”, Journal of

Theoretical and Experimental Artificial Intelligence, 13, 2001

[48] Gage, A., and Murphy, R.R., "Affective Recruitment of Distributed
Heterogeneous Agents" Proceedings of the Nineteenth National Conference on

Artificial Intelligence, San Jose, CA, July 25-29, 2004, pp. 14-19.

[49] Smith, “The Contract Net Protocol: High-Level Communication and Control in
a Distributed Problem Solver", IEEE Transactions on Computers , 1980.

[50] R. Davis and R. G. Smith, “Negotiation as a metaphor for distributed problem
solving,” Artificial Intelligence, vol. 20, no. 1, pp. 63—109, 1983.

[51]B. P. Gerkey, M. J. Mataric “Sold! Auction Methods for Multi-robot
Coordination”, IEEE Transactions on Robotics and Automation, 18(5): 758-768,
October 2002.

[52] S. Botelho and R. Alami, “M+: A scheme for multi-robot cooperation through
negotiated task allocation and achievement,” in Proc. IEEE ICRA, May 1999.

[53] A. Cai, T. Fukuda, A. Arai, K. Yamada, and S. Matsumura, ‘“Path planning and
environment understanding based on distributed sensing in distributed autonomous
robotic system,” in 4th Int. Workshop on Advanced Motion Control Proceedings

(AMC °96-MIE), vol. 2, 1996,

[54] B. P. Gerkey and M. J. Mataric, “Pusher-watcher: an approach to fault-tolerant
tightly-coupled robot coordination,” in Proc. IEEE ICRA, 2002

[55] B. B. Werger and M. Mataric, “Broadcast of local eligibility for multi-target
observation,” in Distributed Autonomous Robotic Systems 4, L. E. Parker, G. Bekey,

and J. Barhen, Eds. Springer-Verlag, 2000, pp. 347-356.

180



[56] K.H Low, W. K. Leow, M. H. Ang, “Task Allocation via Self-Organizing
Swarm collations in Distributed Mobile Sensor Network™ In Proc. 19th AAAI-04,
pp. 28-33, Jul 25-29, 2004.

[57] L. Chaimowicz, M. F. M. Campos, V. Kumar, “Dynamic Role Assignment for
Cooperative Robots”, IEEE ICRA 2002

[58] Hwang, Y. Ahuja, N. “Gross Motion Planning: A Survey” ACM Computing
Surveys, 24(3)., 1992

[59] Latombe, J. C., “Robot Motion Planning” Kluwer Academic Publishers, Boston,
MA, 1991

[60] D. O. Popa, C. Helm, H. E. Stephanou, A. C. Sanderson, “Robotic Deployment
of Sensor Networks Using Potential Fields”, Proceedings of the 2004 IEEE

International Conference on Robotics & Automation , April 2004.

[61] B. H. Krogh, “A generalized potential field approach to obstacle avoidance
control,” in Robotics Research: The Next Five Years and Beyond, Society of

Manufacturing Engineers, 1984.

[62] G. A. S. Pereira, M. B. Soares, M. F. M. Campos, “A potential field approach
for collecting data from sensor networks using mobile robots”, Proceedings of the

IEEE/RJS International Conference on Intelligent Robots and Systems, 2004.

[63 JAndrew Howard and Maja J Mataric’, "Mobile Sensor Network Deployment
Using Potential Fields: A Distributed, Scalable Solution to the Area Coverage
Problem", Proceedings, 6th International Symposium on Distributed Autonomous

Robotic Systems (DARS), Japan, 2002

[64] S. S. Ge and Y. J. Cui, “New Potential Functions for Mobile Robot Path
Planning”, IEEE Transactions on Robotics and Automation, Vol. 16, NO. 5, October
2000

[65] Horner, D. P., Healey, A. J., "Use of Artificial Potential Fields for UAV
Guidance and Optimization of WLAN Communications", Proceedings of the IEEE
AUV2004 Conference, Maine, June 2004.

181



[66] Gage, D.W. "Command Control for Many-Robot Systems", AUVS-92, the
Nineteenth Annual AUVS Technical Symposium, Huntsville AL, 22-24 June 1992.

[67] Choset, H., “Coverage for robotics - A survey of recent results”, Annals of

Mathematics and Artificial Intelligence 2001.

[68] Balch, T. “The case for randomized search”, Work Shop in Sensor and Motion,
IEEE, ICRA, 2000

[69] B. Yamauchi, “Frontier-based approach for autonomous exploration,” in In
Proceedings of the IEEE International Symposium on Computational Intelligence,

Robotics and Automation, 1997, pp. 146—151.

[70] A. Zelinsky, “A mobile robot exploration algorithm,” in IEEE Transactions on
Robotics and Automation, vol. 8, 1992

[71] Gage, D. W., “Randomized search strategies with imperfect sensors”, SPIE
VIII, 1993

[72] Matalin, A. M., Sukhatme, G. S., “The Analysis of an Efficient Algorithm for
Robot Coverage and Exploration based on Sensor Network Deployment”

Proceedings of the 2005 IEEE ICRA, 2005

[73] Sameera, P. and Gaurav, S., “Constrained Coverage for Mobile Sensor
Networks”, IEEE ICRA, 2004

[74] J. H. Reif and H. Wang, .”Social potential fields: A distributed behavioral
control for autonomous robots”,. Robotics and Autonomous Systems, vol. 27, pp.

171.194, 1999.

[75] T. Balch and M. Hybinette, .”Social potentials for scalable multi-robot
formations” IEEE ICRA, 2000.

182



