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ABSTRACT

ADAPTATION OF TURBULENCE MODELS

TO A NAVIER-STOKES SOLVER

GURDAMAR, Emre

M.S., Department of Mechanical Engineering
Supervisor  : Prof. Dr. Mehmet Haluk AKSEL
Co-Supervisor: Dr. Ali Ruhsen CETE

September 2005, 151 pages

This thesis presents the implementation of several two-equation turbulence
models into a finite difference, two- and three-dimensional Navier-Stokes
Solver. Theories of turbulence modeling and the historical development of
these theories are briefly investigated. Turbulence models that are defined
by two partial differential equations, based on k-w and k-¢ models, having
different correlations, constants and boundary conditions are selected to be
adapted into the base solver. The basic equations regarding the base
Navier-Stokes solver to which the turbulence models are implemented
presented by briefly explaining the outputs obtained from the solver.
Numerical work regarding the implementation of turbulence models into the
base solver is given in steps of non-dimensionalization, transformation of
equations into generalized coordinate system, numerical scheme,

discretization, boundary and initial conditions and limitations. These sections

iv



of implementation are investigated and presented in detail with providing

every steps of work accomplished.

Certain trial problems are solved and outputs are compared with
experimental data. Solutions for fluid flow over flat plate, in free shear, over
cylinder and airfoil are demonstrated. Airfoil validation test cases are
analyzed in detail. For three dimensional applications, computation of flow
over a wing is accomplished and pressure distributions from certain sections

are compared with experimental data.

Keywords: Turbulence, Turbulence Modeling, Two-Equation Turbulence
Models



Oz

TEDIRGINLIK MODELLERININ IKi BOYUTLU BIR NAVIER-STOKES
COZUCUSUNE UYARLANMASI

GURDAMAR, Emre
Yuksek Lisans, Makina Muhendisligi Bolumu
Tez Yoneticisi : Prof. Dr. Mehmet Haluk AKSEL
Ortak Tez Yoneticisi: Dr. Ali Ruhsen CETE

Eylul 2005, 151 sayfa

Bu tez cesitli iki-denklemli tedirginlik modellerinin, sonlu farklar, iki ve ¢
boyutlu Navier-Stokes ¢doziclsune eklenmesini sunmaktadir. Tedirginlik
modellerinin teorileri ve bu teorilerin tarihsel gelisimi 6zetle incelenmistir.
Farkli bagintilar, sabitler ve sinir sartlari igeren, iki denklemli tanimlanmis k-
w ve k-¢ bazh tedirginlik modelleri secilmis ve temel ¢ézlclye eklenmistir.
Modellerin eklendigi Navier-Stokes ¢ozucunin temel denklemleri ve ¢iktilar
sunulmus kisaca aciklanmigtir. Tedirginlik modellerinin uygulanmasindaki
kullanillan sayisal c¢alisma, birimsizlestirme, genel kordinat sistemine
donustirme, numerik sema, ayriklastirma, sinir ve ilk sartlar ve
sinirlandirmalar olarak adimlar halinde verilmistir. Bu adimlar detayh olarak,

ve her adimda yapilan galismalar gosterilerek incelenmis ve sunulmustur.

Cesitli deneme problemleri yapilmis ve deneysel veri ile dogrulanmistir. Dz

levha Uzerinde akis, serbest akis ve silindir ve kanat kesiti Uzerinden akiglar
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icin ¢ozumler gosterilmistir. Kanat kesit dogrulama denemeleri detaylica
incelenmistir. Ug boyutlu uygulamalar igin érnek olarak bir kanat secilmis ve

basing dagilimlari deneysel veri ile karsilagtiriimigtir.

Anahtar Kelimeler: Tedirginlik, Tedirginlik Modellemesi, iki-Denklemli
Tedirginlik Modelleri
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CHAPTER 1

INTRODUCTION

One of the most important tasks in the discipline of engineering is the
optimization of the designs according to certain variables. Since the
population of our earth is growing faster than the growth of resources, one
optimization parameter appears as the need to serve many people in the
shortest time and the most cost effective way. Also during these services,
companies are trying to profit from the products they sell. As a
consequence, new designs are obliged to compensate the capital that is
spent on the design and production stages, in a short time. Today, mankind
is continuously developing high technologies in all aspects of engineering.
The results of these developments allow engineers to design products that
are huge in size and beneficial in use which provides the necessary
compensation of money. A good example for this situation is the design of
passenger and cargo planes which should be planned such that they would
have as many passengers and carriages as possible, with which the safety
constraints should not be violated. Then, any tiny modification that would
result in a useful way is important for the manufacturer. To obtain these
modifications, the designers are trying many different configurations of
different sizes. The design steps are perhaps repeated many times to have
these different configurations. The design procedures, of course, possess a
very important step of testing the built prototype which would be very
expensive for such a machine. As a result the need of a decrease in the
number of test cases shows up as a great demand by the manufacturers.
The decrease could not be a result of an arbitrary decision; on the contrary,

it must be an educated determination. The function of CFD (Computational
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Fluid Dynamics) could be seen more clearly in that step that which basically
serves in different manners; as an analysis tool that is done on the early
design stage, an elimination mechanism of different configurations on the
test stage or an information provider for cases which are nearly impossible

to test.

Developments in computer technology have led to many drastic changes in
computation times and memory capabilities. These changes enabled the
engineers to refer to CFD more frequently than before. Also the types of
problems increased; turbulent flows, heat transfer and icing problems,
particle tracing and direct numeric simulation applications appeared to be
solved. By the help of parallel computing the computation loads could be
shared into several different CPU’s. Computer capabilities as such give us to

solve two more equations for the turbulence models.

Turbulence, of which theory will be briefly examined in the oncoming
chapters, could be defined as a flow phenomenon basically caused by a
presence of a wall or a shear layer between two flows in which diffusion of
every property of a fluid is tremendously enhanced. Statistical methods
could be applied to simulate turbulence however; the computation
capabilities are not so developed to solve a direct numerical simulation
solution of a half wing of an airplane. Then the need for modeling this
chaotic phenomenon appears. Although it is illogical to represent a case like
turbulence in two partial differential equations but for a finite space based
problem description, it appears to be quite accurate for a prediction of a

“turbulent viscosity”.

Implementation of several two-equation turbulence models to a finite

difference based Navier-Stokes solver is the main motivation for this thesis



work. Two-equation turbulence models based on k-w and k-¢ with different

constants, correlations and boundary conditions are investigated.

Base solver named as LANS2D that will be introduced briefly in the following
sections, is searched through the documents of TAI library and papers
regarding the LU-ADI algorithm written by the authors of the base solver.
Since turbulence models to be implemented are treated isolated from the
progress of the base solver during a computation step, research for
numerical scheme to construct a self working turbulence model solver is
appeared to be the challenge. Literature survey regarding the turbulence
models are accomplished by taking the needs for limitations and corrections
into consideration. Many different references are searched and the ones that

are directly used in this work are included in the references.

Definitions of turbulence and properties are introduced in the following
section with giving the basic differences between turbulence models. This
section searches for an answer to the need for turbulence modeling. Then
the properties of the base solver are presented. Brief history of turbulence
modeling is also included in this chapter. Numerical framework that the base
of the coding steps appears in the sequent chapters involves non-
dimensionalization, numerical scheme, discretization, boundary and initial
conditions with some limitations. Complete implementation steps are given
in this section with showing the intermediate steps in the appendix sections
in detail. The results of the test cases for flat plate, free shear, cylinder and

airfoil applications are also given with an additional wing computation.



CHAPTER 2

THEORY AND TURBULENCE MODELING

2.1 Turbulence, Definition and Properties

For ages, mankind tried to understand the natural events around and tried to
find an explanation for them. When it is insufficient to clarify, these events
were referred to as god given. Today many natural phenomena could be
represented by scientific methods through cause and effect relationships.
On the other hand most of them are still not "defined” and "understood”
completely. One of the most important undefined cases is the turbulence.
Today scientists are trying to develop equations of turbulence flow with the
help of experimental techniques to solve this problem. Although this
phenomenon is not completely solved and mentioning about its theory is
certainly some kind of a dilemma, there are certain explanations of
turbulence that are given by the pioneers of this subject. About five hundred
years ago, Leonardo da Vinci (1452 — 1519) described turbulence and told

his first observations as,

Observe the motion of the surface of the water, which resembles that
of hair, which has two motions, of which one is caused by the weight
of the hair, the other by the direction of the curls; thus the water has
eddying motions, one part of which is due to the principal current, the

other to random and reverse motion. [1]



Another description of Da Vinci gives a remarkably modern description with

a sketch of turbulent flow,

...the smallest eddies are almost numberless, and large things are
rotated only by large eddies and not by small ones, and small things

are turned by small eddies and large. [2]

Figure 2.1 Leonardo da Vinci Sketch of turbulence

Von Karman quotes G. I. Taylor in 1937 by defining turbulence as;

an irregular motion which in general makes its appearance in fluids,
gaseous or liquid, when they flow past solid surfaces or even when
neighboring streams of the same fluid flow past or over one
another.[3]

A more precise definition of turbulence has been made by Hinze that gives

the basic characteristics in words as follows;

Turbulent fluid motion is an irreqular condition of the flow in which the

various quantities show a random variation with time and space
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coordinates, so that statistically distinct average values can be
discerned. [4]

Bradshaw adds the statement that turbulence has wide range of scales.
More recent explanations of turbulence include several definitions that are

describing turbulence in a more deterministic way such as

Turbulence is any chaotic solution to the 3-D Navier-Stokes equations
that is sensitive to initial data and which occurs as a result of
successive instabilities of laminar flows as a bifurcation parameter is

increased through a succession of values. [5]

All of these definitions are quite successful in describing the turbulent flow
but they are not sufficient to define the turbulence phenomena with all its
characteristics. As mentioned before, defining all the characteristics of
turbulent flow is still not possible though; some fundamental properties could
be listed. The following particularities of turbulent flow are the blending of

references [6] and [7].

Turbulence definitions address to an irregular motion which in general
makes its appearance in fluids when they flow past solid surfaces or even
when neighboring streams of the same fluid past or over one another.
Therefore, the instabilities occurring in the flow cause laminar flow to turn
into turbulent flow. Any solid surface projecting towards the flow streamlines
is a source of disturbance for the turbulent flow to initiate. If a flow past over
a flat plate is investigated, the fully turbulent region does not appear directly
after the laminar part. There always appears a transition section which is the
region where instabilities in laminar flow start. The flow in this region could

be described neither as laminar, nor as turbulent. These instabilities occur

6



due to highly complex fluid-fluid and fluid-solid interactions. If one looks into
this phenomenon from partial differential equations point of view, Navier-
Stokes equations that are representing the viscous fluid flow produce
instabilities due to the non-linear viscous and inertial terms in these

equations.

The most frequently word group used in defining turbulence is “random
fluctuations” that is referred to fluctuations of all variables transported within
the flow namely, density, velocity, energy, pressure and so forth. When the
randomness of a variable appears in a definition, statistical methods
should be involved in. The values of variables within a turbulent flow could
be interpreted by averaging them by several means such as in time and in

space.

Turbulence is a continuum process. When it comes to a point to measure
turbulence elements, length scale appears as a dimensional property. The
length scales of eddies which will be explained in the following paragraphs,
emerges much larger than the molecular length scale. This enables one to
treat turbulence as a continuum phenomenon. Then, one can conclude that

Navier-Stokes equations have all the physics of turbulence.

There are primarily two parts for the mechanism of turbulence. One is the
small eddies and the other is the large eddies. If it is appropriate to say that
the “responsibilities” of these two eddies are different such that as
turbulence decays it transfers kinetic energy from large eddies to smaller
ones. This could be referred to as a cascade process. The large eddies
transport turbulence form one location to another, in other words the large
eddies direct the turbulent flow depending upon the upstream history. This is

the main reason why the turbulent flow is considered to be smarter than the



laminar flow because it remembers from where it comes and decides where

to go.

The turbulence mechanism decays without an energy input. In other
words, a turbulent flow must be driven by the presence of a wall or any other
disturbance present in the flow domain; otherwise, turbulent flow turns into
laminar. The large eddies should be fed by a mechanism of mechanical
energy input to gain kinetic energy to continue turbulence process. As large
eddies grow, small eddies dissipate this kinetic energy to thermal energy.
This is the dissipation mechanism of turbulent flow named as, turbulent

viscosity.

Here appears another frequently used term, viscosity, in other words
momentum diffusion. The latter word is the one that describes the viscosity
better. In turbulent flow, diffusion of the momentum and other properties of
flow increase tremendously. Enhanced diffusivity is another property,
probably the most important, of turbulent flow. Diffusion of every property is

increased in several orders of magnitude than the one in laminar flow.



2.2 Turbulence Modeling

It is convenient to start with asking the famous question of “why do we need
turbulence modeling?” Two different approaches to the answer of this
question could be of concern. One includes the physical answer, whereas

the other looks into the problem in a more mathematical manner.

A fluid flow could be described in several ways. It could be either,
compressible or incompressible, viscous or inviscid, in the same manner,
either laminar or turbulent. If the last two definitions of flow are investigated
in detail, certain parameters to decide on the type of flow whether it is
laminar or turbulent could be found. Perhaps one of the most important
parameter is the Reynolds number. For different types of flow (namely, flow
in a pipe, flow over a flat plate etc.) different Reynolds numbers of transition
from laminar to turbulent flow are defined. Another important parameter is
the roughness. Through a pipe with a rough surface, it is detected that the
flow gets turbulent in a shorter distance where as this length is larger in a
smoother pipe. Such observations show that the descriptions of laminar or
turbulent cases are types of a flow, not a fluid. If they were a property of a
fluid, it is possible to measure the quantities of them; “how turbulent or how
laminar a fluid is?” So here comes the answer to the question about the
reason for modeling turbulence; since the presence of a turbulent media is a

property flow, it should be modeled.

On the other hand, from a mathematical point of view, the turbulent motion
could be included into the Navier-Stokes equations. It is mentioned that,
statistical methods are used to average the fluctuating properties of flow in
the turbulent case. Certain averaging techniques such as time, spatial and
ensemble averaging are used to obtain the mean values of these properties.

Homogenous turbulence, that is the averaged turbulent flow uniform in all

9



directions, spatial averaging is used where as, for stationary turbulence

which, on the average, does not vary with time, time averaging is used. But

ensemble averaging is the most suitable averaging for flows decaying in
time [6]. For the flows that engineers mostly deal with, time averaging is
used. Time averaging yields an average and a fluctuating part for a certain
variable. These parts could be represented as the part of the instantaneous

parameter, say velocity.

u(x,t)=U, (x)+u(x,t) (2.1)

Here u,(x,t) is expressed as the instantaneous velocity with, U,(x); average

and u/(x,t) fluctuating part.

Figure 2.2  Time averaging

If this instantaneous velocity term given in Equation ( 2.1 ) is added into the
Navier-Stokes equations so called Reynolds Averaged Navier-Stokes
(RANS) equations are obtained.

W, Y P s )

]
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The quantity —p-u; -u;

is known as the Reynolds-stress tensor. There

arises the problem of finding the value of Reynolds stress tensor in order to
determine the mean-flow properties of the turbulent flow. The mean flow
variables could be solved (or computed) in the same manner as Navier-

Stokes equations but the last term of RANS must be modeled.

2.3 Brief History of Turbulence Modeling and Turbulence
Models

As already have mentioned, turbulence phenomenon starts to being
investigated since Leonardo da Vinci. But until year 1877, any significant
progress on neither theory nor modeling had occurred. At that year
Boussinesq proposed an idea on the theory of turbulence that, turbulent
stresses are linearly proportional to mean strain rates. Following
Boussinesq’s proposal, in 1894 Osborne Reynolds conducted the first
notable experiments on turbulence and transition events. The experiments
had resulted in that only physical parameter for a smooth and
incompressible flow appears to be the Reynolds number. Reynolds stated
turbulence as a highly random phenomenon that no movement of any
particle could be determined previously. By these years, deterministic
(referring to events that have no random or probabilistic aspects but proceed

in a fixed predictable fashion) approaches to turbulence started to emerge.

Further progress was obtained by Prandil’s discovery of boundary layer in
1904. In 1925, “mixing length theory” has been evolved suggesting the
computation of eddy viscosity by means of mixing lengths which is analogue
to mean free path of a gas. Further researches like von Karman and Taylor
had contributed to turbulence studies. This mixing length theory which was

first appeared as an idea of Prandtl, became the basic turbulence models
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named as algebraic or zero-equation turbulence models. The following

correlations are the relations for algebraic models.

oo, v 1y o, v
Xy /uT dy 2 P mix " mix dy
du
V. ~cons-| . .——
mix mix dy (23)
o _1 2.9U
T mix dy

(Most popular algebraic models of turbulence are Cebeci-Smith [22] and

Baldwin-Lomax [21] turbulence models.)

After these improvements on turbulence and turbulence modeling, Prandtl,
postulated a model for the eddy viscosity in which the eddy viscosity is
dependent on the kinetic energy of turbulent fluctuations, k. It was the first

introduction of one-equation turbulence model.

Kinetic energy per unit mass is described and related to the Reynolds stress

tensor as,

(24)

Implementation of this relation into Reynolds Stress Tensor Equation (this
work is shown in detail and explained in [6, page 36-39]) resulted in a

transport equation for the turbulent kinetic energy,
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ok ok au, 0 ok 1) 1 (5
b TR LA _f.(ui.ui U _f.(P-uj (2.5)
ot OX; OX;  pissiFation  OX; X, L—/ P
- 0 TURBULENT
SUBSTANTIAL PRODUCTION MOLECULAR PRESSURE
DERIVATIVE DIFFUSION TRANSPORT DIFFUSION

Each term has a different meaning regarding the turbulent flow. Production
term could be regarded as the mechanism of kinetic energy of the mean flow
turning into turbulent kinetic energy where as Dissipation appears to be the
term describing the turbulent kinetic energy dissipated as thermal energy.
Last three diffusion terms could be explained as the turbulent energy
diffusion by fluid’s natural molecular transport, diffusion by turbulent
fluctuations and turbulent transport from pressure and velocity fluctuations in
the order of appearance. The recent results of Direct Numerical Simulation
(DNS) enables the diffusion terms to be treated as i-[(v+v/ )ﬁJ
OX; Ok ) 0X,

(Most popular one equation turbulence models could be listed as, Baldwin-
Barth [23] and Spalart-Almaras models [13] )

The turbulence models listed up to here do not involve a length scale. Since

the turbulent viscosity includes a velocity and a length scale (on dimensional
grounds, the kinematic viscosity v appears to be in m% that is the product

of a velocity and a length scale), the models without involving a length scale

are regarded as incomplete.

Kolmogorov introduced the first complete turbulence model by presenting a

time scale known as the rate of dissipation of energy in unit volume and time

and represented as “w”. The absent length scale is provided by k% where

k- is analogue to the dissipation rate “¢”. This success of additional

equation showed up as the introduction of two-equation turbulence
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models. Since the dissipation term in the “k” equation is evaluated by

another transport for “w”, the model is complete. Second equation appears

as,

ow ow , O ow

— 4+y. —=-4. +—" . — .
a e T [UVT aij (26)

Later Wilcox had modified the Kolmogorov’s w equation and formed new

correlations [6]

Today k-w and k-g& turbulence models gained a great success in
engineering applications of internal and external flows. The rest of the thesis

will be about several two equation models and applications of them.

Other studies of turbulence modeling became very popular since the
computational capabilities of computers have been continuously increasing
in the recent years are being developed in great amounts. DNS applications
are not only being studied extensively in universities but also provide
important data and knowledge on turbulent flows. LES studies are also very
popular for simulating large scales of turbulence where meteorology science

uses.

The movements in the study of turbulence are described by Chapman and
Tobak [5] in Figure 2.3.
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CHAPTER 3

BASE SOLVER

In this study, several turbulence models are adapted to a thin layer Navier-
Stokes code which was developed by Kozo Fuijii and Shigeru Obayashi. The
results of this code were published in [24]. The original solver uses a Lower
Upper — Alternating Directions Implicit (LU-ADI) solver and an algebraic
turbulence model of Baldwin-Lomax. The original code has two versions for
2D and 3D problems named as LANS2D and LANS3D. LANS is an acronym
for LU-ADI Navier-Stokes.

Many different versions of LANS is present in certain forms. The present
version includes convergence acceleration with variable time stepping and
contains several upwind schemes. LANS2D and LANS3D are finite
difference based codes which are designed to solve transonic flow over an
airfoil and a wing. The governing equations regarding LANS2D will be

investigated.

Turbulence models are added into these codes as separate modules by
implementing initial and boundary conditions in appropriate subroutines. The
turbulent viscosity is introduced into the code at each computational step by

simply adding it to laminar viscosity.
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ﬂtotal =/J+,u-|- (31 )

3.1 Governing Equations

Navier-Stokes equations of conservative and vectorized form appear as

follows:

0Q , 9E  oF _ 9E,  OF, (32)

ot oX oy 0X oy

The left hand sideof this equation represents the explicit form of the
substantial derivative of variable Q while the right hand side stands for the

diffusion terms. These vectors can be given as;

p p-v p-u
Q= p-u E- pl:\/ E- ,0'U2+p
PV PV +p p-u-v
e v-(e+p) u-(e+p)
_ 0 _
Tx
EV = X
kY a(p (33)
u- +V- 4+ — = =
] Txx Txy H (k _1j 6X (p}_
_ 0 _
Txy
F, = T,
Xy yy ﬂ k—l ay p |




In Cartesian coordinates, it would be quite difficult to discretize the equations
in a finite difference scheme due to the complexity of the geometry of the
computational domain. Therefore, generalized coordinates are used to

transform equations into the computational domain as shown in Figure 3.1.

E=&(xxt)

t=7

e T
o n=nixy) —
v T

Figure 3.1 Coordinate transformation for finite difference scheme

After this transformation, Equations ( 3.2 ) and ( 3.3 ) become,

+ = +
P p-U p-V
A 1 pup .u- . - u-v .
Q== CE_L pul+sp| g 11 pUuVan.p (3.4)
J p-V J p-v-U +§y-p J p.V.V+77y.p
€ U-+p)-&-p V-(e+p)-n-p
1 ~
EV:F.(gx.EV+§V'FV)’ F :_'(nx'Ev"'ny'Fv)
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3.2 Input and Output Files

Mach number, Reynolds number and angle of attack which represent the
flow conditions are the basic input parameters and the solution method is
selected in the input file. Central differencing upwind biased schemes with
determination of turbulence models are avaliable for selection in the input
section. The smoothing parameters and secondary inputs such as number
of iterations, time step values, smoothing steps are also included. During the
implementation of turbulence models, several input parameters are added to
the original input file such as, a parameter for the selection of spatial
discretization scheme to be used in turbulence models, limitation activation,

initial distribution flag and a transition point if necessary.

A structured C-Grid for airfoil geometry must be introduced by specifying the

dimensions of the grid and the start and end points of body geometry.

\
05 I n
[

-05 \ o

. W T L
-0.5 0 05 1 1.5
X

Figure 3.2  C-Grid for airfoil input for LANS2D
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Output files regarding the converged solution are the residual graphs of flow

variables including turbulence model quantities, field variable outputs, C,,
C, and C,, values with C, versus x/c values. Flow over a NACA0012 profile

having properties of Mach number of 0.5 with 2.0 angle of attack degrees
and 9*10° Reynolds number is analyzed. Residuals of flow variables and
load coefficient values are given in Figures 3.3 and 3.4. Coefficient of
pressure distribution along the surface of the airfoil is given in Figure 3.5.

Contours of pressure and mach number is visualized in Figures 3.6 and 3.7.

/
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e, W v ~
P \NE ]
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500 1000 1500 2000

iterations

Figure 3.3  Residual graph of conservative flow variables

The execution of the modified code can be terminated when C,, C, and
C, convergence is achieved. User can either input a convergence criterion

or simply follow residual drops in the residual graphs of C,, C, and C,_ .
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Figure 3.5

Distribution of flow variables could be obtained such as density, velocity,

local Mach number, energy, pressure, turbulent kinetic energy, dissipation,

viscosity and so forth.
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Figure 3.7  Contours of Mach number
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CHAPTER 4

MODEL IMPLEMENTATION

The base solver which is mentioned in Chapter 3, included an algebraic
turbulence model. This turbulence model was quite effective for the
engineering problems concerning with the flow over an airfoil. However,
there were several complications regarding this turbulence model. The
mixing length and outer-inner region definitions are not well defined in
junctions of two solid walls or not efficient for the free shear problems as in
the wake of an airfoil. For this reason a turbulence model which solves

transport equations was emerged.

Wilcox k-w turbulence model was the first two equation turbulence model to
be introduced to the code. After this turbulence model is implemented into
the code, the others can be easily implemented since only model constants
and correlations are to be changed. However, for Menter BSL method this

situation is a little bit different

Following sections include the model equations, constants and correlations
with the numerical framework, which includes all the steps of implementation

form non-dimensionalization to limitations of turbulence model variables.

23



4.1 Model Equations and Correlations

The model equations and correlations, implemented to the base solver are

introduced in this section. The general form of model equations will be in the

form of,

oX oX 0 . oX

—+U. - —=P(X)-D(X)+—- +o0 - — )
ot ! ax,. (X) (X) axj {(V o VT) 8xj] (4.1)

To be consistent with general CFD applications, the conservative form of the
variables are used. The conservative form brings many advantages for
shock capturing [8] and definitions of momentum in the Navier-Stokes

equations.

4.1.1 Wilcox k-w turbulence model

After Kolmogorov’s proposal of second equation for dissipation, turbulence
model of k-w has been modified many times by several researchers. From
the results of DNS solutions, certain correlations and definitions are found.
However the most robust turbulence model for eddy viscosity with two-
equations appears to be the k-w model. After the works of F.R. Menter,
implementation of boundary conditions became much more simple and

suitable also for the unstructured finite volume computations.

The following formulation with correlations and constants is named as
Wilcox k-w after D.C. Wilcox. [8]

Conservative form of the model equations can be given as,
24



ot x oy
(4.2)
8(/0-a))+5(,0'u.a))+a(p.v~a)):P(U_Dw +a[(,u+'UTJaa)]+a[(ﬂ+ﬂTjaa)J
a X oy X o,) o) o o,) &
where turbulent viscosity is defined as,
K
fr=p— (43)
w
The production and dissipation terms are introduced in form of,
P =14 'QZ, D, :ﬂ'~p-k-a),
(4.4)

P,=¢-p-Q°, D,=4 p-a

. . o au oV
Here, Q is the magnitude of vorticity which is defined as 2= 5—& . The

constants applied to this formulation could be listed as follows:

ﬂ=0075, ﬁ':cy =0,09, ’ 0k=2'o’ O'w=20

2
K
§=—ﬁ -, k=041
C,U Ga)' C,u
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4.1.2 Chien k-g turbulence model

The present model appears as a low Reynolds number model, so that no
effort is required for implementing the wall functions. Only simple boundary

conditions for k and ¢ are specified. This model can be given as [10].

(4.6)
op-e) olpue) dpve) p 0 [(y%]a]a (@,%Jaj
ot oX oy o,) x) & o) o
Turbulent viscosity is defined as,
k2
p =C, -, — (4.7)
£
The production and dissipation terms are implemented by using,
P =u - D =p-e+D,
) (4.8)

The D and E terms appearing in the destruction terms of k and ¢ are in

modifications due to changes in boundary conditions of €. Details of these
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boundary conditions are given in Section 4.2.5. D and E for Chien k-¢

turbulence model are as follows:

b= 204X
y

& y*
E=-20-u-—-exg -
“y ;{ 2-0)

As it is seen in Equation ( 4.9 ) the E term includes the definition of y*. This

(4.9)

definition is valid only for wall bounded flows since the wall shear stress is
used to calculate this term. The model is not applied in the wake region of a
C-Grid for an airfoil.

The model constants appear as,

2
Eeot) ] f,=1.0-exp(-0.0115-y")

f,=1.0, f, =1.0—0.22-exp[—[

(4.10)

poke/
C,=009, C,=135,C,=180, 0, =10, o, =13, Re, =—~L&
Y7,

4.1.3 Abid k-g turbulence model

Another k-¢ turbulence model is implemented to eliminate y* term in the
auxiliary terms. However, if the other k-¢ turbulence models are investigated,

it can be seen that, there is a wall distance dependence for every k-¢
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turbulence model. Defining a wall distance for the wake side is much more

applicable than correlating a y* value. The model is implemented in the

following form [8].

Defining turbulent viscosity by,

k2
tr=C (4.12)

The production and destruction terms can be given as follows:

Po=p-Q°, D =p-s+D,
(4.13)

2
'E’ Dg:CgZ' fng__l_E

Pg:Cel'fl'Qz'luT k

Due to the boundary condition for €, D and E terms appear to be zero.

(4.14)

m
Il
o
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Constants and correlations for this model are as,

Re
f =10, f, :{1.0—exp[— 12" H
_p-k-d

f, =fi+4-(Re,*” )| tanh(0.008Re, ), Re, = p

2
P'ké
C,=009,C, =145, C,=183, 0, =10, 0, =14, Re, =— L&

7,

4.1.4 Menter Baseline (BSL) turbulence model

(4.15)

Menter's works [16] have shown that for turbulent flow calculations

accomplished by standard k-w models, the turbulent viscosity values differ in

a great amount due to the changing values of free stream values of k and w.

For k-€ models this dependence removes.

F.R. Menter modified the standard k-w and k-€¢ models and correlated them

in a single formulation by a blending function where the k-w model is

activated near the solid wall surfaces while k-¢ is activated for the free shear

and free stream regions.

The formulation appears with a blending function of F; as,

a(p'k)+a(p'u’k)+a(p'v'k):Pk—Dk+a~[[ﬂ+ﬂTJ-akJ+a-((ﬂ+#TJ-

ot ox oy ox
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dp-a) dpu-a) dpva) p 0 (( w} 6&“%}&0}
a X b X x) oy o,)
20p(10 |:) 10(61(80)+6k6wJ
o (X X & &

The last term for the w equation is the cross diffusion term which is
frequently neglected by the modelers since its effect is not so significant. It is

provided here in order to complete the transfer from k-w to k- model.

Definition of turbulent viscosity is the same as Wilcox k-w model,

L =p— (4.17)

and production and destruction terms appear as,

P = o3 D =4 pko,
(4.18)
P,=¢-p-Q° D,=fp-of

Definitions of constants have to be modified since different turbulence
models are applied for different regions in Menter BSL model. The
manipulation of these constants are given in [11] with other zonal two

equation turbulence models of Menter.

Here the blending function of F; plays an important role for the definition of

model constants. For this constant, the following pattern is used,

30



¢p=F-4+@00-F) 4, (4.19)

Whiled and ¢, in the above equation represents k-w and k-¢ models,

respectively. Then for standard k-w model,

B, =0.075, g~ =009, o, =05, 5, =05,

A 2 (4.20)

K:O41, é/l = ﬂ' — O

wl'ﬁ

whereas for standard k- model,

B, =00828, B =009, o, =10, 5,, =0.856,

5 2 (4.21)

Vi O ’ﬁ;

k=041, §, =

At this point, the reader should be careful about the definitions of o’s. At the
blending stage by using Equation ( 4.19 ), the values of o given by
Equations ( 4.20 ) and ( 4.21 ) should be used whereas, reciprocals of this

blended values should be implemented to model equations ( 4.16 ).

In order to demonstrate this, assume that the value of F; is calculated as

0.6. Then for that value of F;, [ is calculated as,
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B=F B +(L0-F)-f, =06-0.075+(L0—0.6)-0.0828= 007812

The other constants could be calculated in a similar manner.

p= Fl'ﬁ1+(1-O_F1)'ﬁ2
g = Fl'é,l—i_(l'o_':l)'é,Z
1
T 0, +LO0-F) 0,)
1
F,-0,+10-F)0o,,)

(4.22)

%

Calculation of blending function F; appears to be a little challenging;
however modification from the Wilcox k-w model to Menter BSL model
simply includes implementing the blending function definition to model
constants. Once F; is defined, enforcing this term to zero or one, transforms

model directly to k-¢ or k-w models.

argl:min[max( k. 500-u J'4'p'a‘”2'k}

0.09-@-y p-y> @) CD,, -y’
F, :tanh(argl“) (4.23)
CDkw max| 2 P O_wz'l' %a_a)_kﬁa_w ;10‘20
w \ox x oy oy

4.2 Numerical Framework

Computation based operations for physical problems are quite challenging

since the partial differential equations of type hyperbolic, elliptic and
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parabolic types to be discretized spatially and temporarily. It is expected to
get more accurate results as the computational grid describing physical
domain gets finer but numerical problems occur with the difficulty of
precision and memory levels. For this reason an attentive numerical

framework must be accomplished.

Numerical framework includes; a non-dimensionalization study that turns the
variables into variables with normalized values, a generalized coordinate
transformation which makes it possible to evaluate derivatives with respect
to the physical space coordinate axes, description of a numerical scheme to
solve the governing partial differential equations iteratively, a discretization
method to interpret the matrix formation for the solution bands,
implementation of boundary and initial conditions and, at last, a limitation

section that appears as the most tricky part of the model implementations in.

4.2.1 Non-Dimensionalization

In the field of computational engineering dealing with thermo fluid sciences,
problems have to be classified properly in order to implement a solution
technique. Classifications such as incompressible, compressible, turbulent,
laminar etc. flow require a common property which shows its character
properly. There are certain dimensionless numbers that represent the flow
field and enable one to define the problem type some of which are Reynolds
Number (Re) and Mach Number (M) that enable one to evaluate the flow
characteristics. Due to these facts, in CFD applications the derivations of the
equations start with a non-dimensionalization. The non-dimensionalization
decrease the numerical errors since the variables are generally normalized

by their corresponding free stream values. The non-dimensionalized
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variables are given in [8]. These non-dimensionalized variables can be given

as,
K @ [, & i, p a
k:~_2= = -~ ~2 &= ~ ~4 p:"'_a u:“'_
0 oo'aoo oo'aoo poo aoo
(4.24)
P X 1 t-a Q-L
P: ~2 X:~_, ILl:“-ia t: ~OO= Q: -~ :
poo.aoo LR /’loo LR aoo

k-w turbulence models that are investigated in this study, namely, Wilcox k-
w and Menter BSL Models, posses same kind of k equation description. The
results of the following non-dimensionalization work are given in [8]. The
terms given in tilde (~), are the dimensional values while the others
represent the non-dimensional forms given in Equation ( 4.24 ). The non-
dimensionalization for the models and constants are represented in

Appendix A.

The non-dimensionalized k equation for models of Wilcox k-w and Menter

BSL Models, appears as,

(a(p-k) Ldpuk) +8(p-V~k)j:

a o Y

oot oS 2)2) £ 2 2)

k-w turbulence models mentioned in the previous section differ only in w

(4.25)

e

equation. The difference occurs because of the Cross Diffusion term in the
Menter BSL Model.
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For Wilcox k-w turbulence model, non-dimensionalized w equation appears

as,

(a(p-w)ﬁ(ﬂuw)ﬁ(p-vw)}

a X Y

foeore( -5 25

For Menter BSL turbulence model with an addition of the cross diffusion

(4.26)

term, this equation becomes,

(a(p-w)ﬁ(ﬂuw)ﬁ(nvw)}

a o Y

R e T i

Re
+2'P‘(1_F1)'%z _1'(5&_8(0+6k.8a))

o X x & o

Similar work could be applied to k-¢ turbulence models. The results of non-
dimensionalizations are given directly without presenting the intermediate

steps in Appendix A.

For Chien k-¢ turbulence model and Abid k-¢ turbulence model, the k

equation becomes;

(8(p~k)+é‘(p~u-k)+5(p-V-k))

Joo oz b)3) 52}
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The term D given by Equations ( 4.9 ) and ( 4.13 ) for Chien k-¢ turbulence
model and Abid k- turbulence model, becomes
LY

2 )

y

D=2.0-u D =0.0

The non-dimensional € equation of appears as;

[6(p~£)+6(p~U-8)+6(p-V-8)J

a x oy

& & (Re ’ 0 oe
:licflflgz’u-rk_c"zfzpk[,vle +E+(@(([ﬂ+i]@(]+

With ‘E’ terms of are given as follows

e y*
E=-20-u-—-exp| — , E=0.0
H y? p( 2.0}

for Chien k-¢ and Abid k-¢ models, respectively.

As described before, there are auxiliary parameters either used in the
turbulence model equations or used as an output. Computation of these
parameters is being done once in each iteration step. Non-
dimensionalization regarding the variables used is presented in the

Appendix A.
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4.2.2 Transformation to Generalized Coordinate System

Finite difference applications require the representation of space derivatives
by Taylor series expansion in terms of the values in the neighboring nodes.
However these spatial derivatives are with respect to the independent
variables of space coordinates x and y. The solution line directions are not
always perpendicular or parallel to these coordinates. As a result, a

coordinate transformation is required.

The following relations are used to transform the derivatives of time and

space.

r=t, E=£&(xy,t)n=n(x y,t)
0,=0,+¢,:0,+n,-0,

8x :§x '6§+77x '677

Oy =6y -0, +1,-0

(4.30)

n

The relation between metrics of the transformation appears to be [9]

éx =J .y77’ gy =-J 'Xq’ ét :_Xr'égx_yr'ézy

77X=—J~y§,77y=J'X5, ==X =Y. "7y (4.31)

1
-1
J ST Yy

The transformation of equations into generalized coordinates is given in

Appendix B. The results of transformation are presented here:
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Main Solution Equation

Q oF oG M_(eH oK
—t ot =C" —+M (4.32)
or 0 on Rel\o& on

k- w Turbulence Models

Q—l p-k 1 p-U-k 1 p-V-k
J |p-o J | pU o J |pV- o
ok |
67 ur | 2
hol ) o¢
J 2 2 Mt 0w
+ . _|_ —_
&, éy)[u |5
ok |
. (n, +77y2)'(ﬂ+g_T =
K=3- k 8’7 (4.33)
2 2 /JT (4]
+ . + «—_
e, e )22
) , Re i
1 /’lT'Q —ﬂ .p.k.a).M_
M:F- »Z, | for Wilcox k-w formulation
Re
;.p.QZ_ﬂ.p.wz.(M_j
R 2
. ﬂT.Qz_ﬁ’.p.k.w.( eJ
M:_. 0
J

2
Re ] +2.p-1-F) 0, i(%@_a)+%8_a)]

for Menter BSL formulation
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k- € Turbulence Models

in p-k :i‘p-U-k G:l p-V-k
J | p-¢ J |p-U-¢ J |pV-¢
2 2 My | Ok
+ + —
H_ll(fx & M) 5
1 2 2 Hr | Og
+ + —
(678 )2
2 My | ok
+ + —
Kzi.(nx n )| w o
J 2 M o€
+ + —
(7 +n, )| # )
Re
QF - J— =20 u-—
o pg[Mw] Hy (4.34)
1 £ g® [ Re ’
M:j' C, f-Q 'K_Csz'fz'p'?'[M_wJ
£ y*
2.0 4= exp| -
i Hogr e 2.0} |

for Chien k-& formulation

2
Re
My Qz—pg(M—j

0

J ) & 2 (Re )
C. f-Q ':UT'E_ng'fz'P'?' 'V

for Abid k-& formulation

4.2.3 Numerical Scheme

The numerical computations of compressible Navier-Stokes equations are

improved with the introduction of many finite difference schemes among
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which the most successful ones appeared to be ADI and Approximate
Factorization. The equations of turbulence models are similar to the Navier-
Stokes equations in terms of the nature of variables such as convection,
diffusion, production and destruction with their representation of derivatives.
Since these equations have similar representations, the numerical scheme
and solution procedures that are used for Navier-Stokes calculations could
also be used for turbulence model equations as suggested by Beam and
Warming [12].

In the two-dimensional turbulence models, the main solution equations could
be represented as follows, including second derivatives of diffusion terms K
and H,

Q , FQ), Q) Mw[6H(Q,Qg)+aK(Q,Qn)+M(Q)j

= 4.35
ot o0& on Re o0& on ( )
The time differencing formula appears as;
. @-At O ., At 0., ¢ n-1
AQ" = —AQ"+— —Q"+—-A
Q 1+¢ ot Q 1+¢ 8tQ 1+¢ Q (4.36)

with the definitions of time discretization given by
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Q"=Q(n-At) AQ"=Q™-Q" (4.37)

The constants @ in the time differencing formula ( 4.36 ), appears as control
parameters of the numerical scheme. The degree of error and the implicit /

explicit behavior of the scheme is controlled by these constants.

Table 4.1 Partial List of Schemes [3]

0 ® Scheme Degree of Error
0 0 Euler, explicit O(At2)
0 -0.5 Leapfrog, implicit O(At3)
0.5 0 Trapezoidal, implicit O(At3)
1 0 Euler, implicit O(At2)
1 0.5 3 point backward, implicit  |O(At3)

Before expanding the main solution equation ( 4.35 ) the following
representations for non-dimensional variables can be introduced to simplify

the notation.

The scheme given in Equation ( 4.36 ) will be studied in parts as,

AQ”:Q'AT-EA Ny At _iQn_'_ ¢ _AQn—l
1+¢ oOr 1+¢ 0r °  1+4
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Term 1 in the above equation can be expanded as

%AQ” :%(—AF”+AH*n)+%(—AG”+AK*n)+AM*n (4.38)

while term 2 can be given as
a n a n N a n P #N
24 :%(_F H )+a_(_G LK )M (4.39)

If Equations (4.38 ) and ( 4.39 ) are added to Equation ( 4.36 ), the following

form can be obtained.

AQn = 94T .(i(_AF“ +AH*”)+£(_AG" +AK*n)+AM*n]

1+¢ (0& on (4.40)
+ A7 -(i(—F”+H*n)+i(—G”+K*n)+M*nJ+L-AQ”1
1+¢ \ 0& on 1+¢

Variables described in the n™ time level are known and the values at the
time level n+1 are desired. As described in Equation ( 4.40 ) AQ" is to be

found in order to find (n+1)" value of Q, which is given by Equation ( 4.37 ).

The variables that are represented with a change (A-delta) operator in front
of them are dependent on the changes in Q. These change variables are

formed as;
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aQ

. (OF) A
-] e

Fn+1 — Fn +(ﬁj '(le_Qn)

The term representing the derivative of F with respect to Q is known as the
Jacobian term. All of these change terms could be found by using this

representation as:
AF" =(§J -AQ" =A"-AQ"
Q

% n
AG"=| = | -AQ"=B"-AQ"
(aQ ° o

o (oHY H ) : : 0 :
AH™" = AQ" + ‘AQ."=U"-AQ" +R"-AQ." =(U-R.)"-AQ" +—(R-AQ)
o) (2 bRy oo L

o (oY oK) 0
AK™ = -AQ" + AQ "=V".AQ"+S"-AQ "=(V-S |'-AQ" +—(S-AQ)"
[aQ] Q [8%} Q, Q Q" =v-s,]-AQ 5829
(oM7Y
AM™ = -AQ"=C"-AQ"
&
After derivations of these Jacobian terms, Equation ( 4.40 ) becomes;
(o 02 |
[—(—A+U—R§)”+—2R“]-AQ”
. 0-Ar |\ 0§ ¢
Q- 1+¢ 0 ok
+(—(—B+V—Sn)”+—28”j~AQ”+C”«AQ” (4.41)
| \on on ]
B i(—F“+H*”)+i(—en+|<*”)+|v|*” +i-AQ”*1
1+¢ \0& on 1+¢
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If Jacobian terms are separated and collected in left hand side of the

13 ”

equation the following equation is obtained. The “e” operator in this
expression has a function of distribution AQ" term into the spatial

derivatives.

O-At | O . 0 (5 n_a_zn_n. n
{1+ o .[[a—é:(A—U+R§) " J{an(s V+s,) oS ] C }} AQ" =

ﬂ.(ﬁ(_pn _,_H*")_,_i
1+¢ \ O& on

(—G” +K*n)+M*nJ+ﬁ¢¢-AQ“

The above equation could be approximately factored by neglecting the cross

derivatives as

+
1+¢ \on n’
i 0-At 0 n 82 n n_
_1+ g -[a—g(A—WRg) —8—52R H'AQ = (4.42)
ﬂ. g_ n N i_ n * * i n-1
" (ag( F"+H )+877( G"+K ) M J g Q

By this factorization, the equation could be solved in two steps. The main
difference between approximate factorization and ADI could be explained
such that the former one solves an equation in two steps where the latter

solves an equation twice in alternating directions.
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2
1+ 987 [ 93 yys ) -2 5" cn|leaqQ"™ =RHS"
. 1+¢ |07 7
i 2
+‘91 AT.(;(A—U +R.J _aa _ R"ﬂoAQ" = AQ"®
L e Lo g (4.43)
ai(—F“+H*n)+
RHS"zlAT- ; +1L-AQ“-l
o —(—G”+K"n)+M*n o
on

Jacobian calculations for k-w models of Wilcox and Menter and k-¢ models
are given in Appendix C. The resultant form of iterative schemes with
corresponding matrices is given in the next three pages as a compact set of

equations.
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2
AL i(B—V+s - 625"—C” e AQ"® = RHS"
1+¢ " an

on
6-Ar (0 -k ®
1+ 228 Z(A-U +R,) —=_R" ||+ AQ" = AQ"
RHs" = A7 -(i(—F"+H*”)+i(—G”+K*”)+M*”j+l-AQ“1
1+¢ | 0& on 1+¢
k-w Models

-k ‘U -k V -k
Q:i. p F:i- p G:i- p
J | p-w J|lpU o J|lpV .o

ok 2 | O
2yet ey Bl M +1 '(/JJr j—
’ _Mco i (gx égy) H o, ) 0 K*:Mw.i. ( y) Oy
"Re J (2. o\ Lm0 Re J o2\t
g p e ) 2 . O
I Re ?]
Q*-ppko|—
Mo 1 Hr Bp ij
M= Re J Re )’
e
pQ=fpo M_]
L ©/ Equation set (4.44)
(Wilcox k-w)
Re2
4 E-f ko
_M1 M, (Menter BSL)
ReJ
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ko, *
n Moo J 677 _— =
V"= . ’ n
Re 0 T y on
Re J ®

-B- a)(ReJ 0
M, M (Menter BSL)

C'=—2=.
Re 1 (& oo & oo Re
0 —2-p-(1-F === -20-
pl-F)c [ i j ﬁw[Mj

k-¢ Models

.k U -k V -k
Q:l. P le. P Gzl. P
J | p-e J | p-U-¢ J |pV- ¢

(Abid k-¢)

Equation set (4.45)
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f=—
Re ay Re 0 Fg }/p 8§
0 L. _\/p
i J o oc ]
XA
e (/o I - 0
: 0 M k oS
VnZMw‘ \] 677 S:_ao p , S”:_
Re o3 Re 0 Fg-% on
;A
L N/
C.-f .zo.lf.gf_zo. H C -f .k:.gf_&a 2
Cn_Moo ' c p_yz uoH 2 M, (Chlen k-s)
- e' 2 2 .
C,-f-F.C,-f +ng.f2.§. Re ~20.C,-f,-%- Re) 50 A oxb Y
ut K2 (M, kM, oy X 20
2 2
Cu-f#-Z.O-E-QZ—Z.O- £ —Cy-fu-kz-Qz—[ReJ .
cn M. & Py £ M. ) | (Abid k-g)
Re ¢ (Re) ¢ (Re)
Csl'fl'Qz.CH'fH_’_CsZ.f2.k2'('vlocj _2'0'C£2'fZ.E' Mix)
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4.2.4 Spatial Discretization

The effort presented up to this point is the steps of numerical framework to
have the solution equations ready for the spatial discretization. As described
before it is necessary to discretize the derivatives of governing equations
need to be discretized with respect to solution points. The discretization of
equations with respect to the solution nodes of the computational domain is
presented in this section. At first, it would be better to give the domain

representation.

1 k+1 141 k+1
L i L ]
ik
1.k ik Lk
L . 2 L ]
| k-1
. . )
-1 k-1 i+ k-1

Figure 4.1 Domain representation for a solution node

Primary solution point is the node having index of (j,k). Neighboring nodes
could be listed as, (j+7,k), (-1,k), (k+7) and (j,k-1) which are used to
evaluate derivative terms. The other nodes given in Figure 4.2 but not listed
here are the secondary neighboring nodes that are used in computation of
second derivatives which are generally appearing in the boundary conditions

or cross derivative terms of approximate factorization.

49



There are certain aspects of discretization that must be carefully
investigated such as the discretization of convection terms. The convection
terms in the model equations should be evaluated using the “upwind”
schemes. Another important concept is the discretization of the diffusion
terms. These terms occupy second derivatives of variables and inclusion of
secondary neighboring grid points is necessary for an ordinary
discretization. Certain solution methods could be applied to avoid these

problems.

Discretization of the convection terms is carried out by adding a second
order dissipation into central differencing. This is equivalent to a first order

upwind scheme is shown in [14].

Plus-minus flux splitting method of Steger-Warming is used for the

representation of the dissipative property of upwind schemes.

A=T AT =T (A + A A=A + A (4.46)
Ai;\ :AA i‘AA‘
2

The vectors of convective terms could be represented as:

F=AAQ=(A"+A )-AQ=F"+F" (4.47)
G=B-AQ=(B"+B )-AQ=G"+G"

Defining the backward and forward difference operators as such,
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Vbu_ :—

Uik AZ (4.48)
Afu_ _ Uj+1,k _uj,k

&gk Aé:

Steger-Warming plus-minus flux splitting vector represented as,

A

e a0 P oM Ao F oA
F*=A".AQ= AQiZAQ_ZAQiZ

N | >

By rewriting the flux derivatives using the first order differencing operators of
backward and forward differencing the following derivation for convective

term discretization is achieved.

VIF"+ALF"
vg[g-AQ+§.AQ]+AQ{%-AQ—§.AQJ
Soveeal) e (ve-al) iaaQ)
{5§~F—ﬁ-(A§V§)-N-AQ}
{5§-F—ﬁ-(A§V§)-F}

It can be seen that the upwind scheme could be written in the form of central

difference term, (5, -F ), with an added dissipation term (—ZL-(A{;Vg)-|F|)

A
into it. The detailed work for this approach is given in [14]. It is advised that
this kind of upwind discretization should be applied for subsonic regimes.
For supersonic regimes, standard upwind schemes of Steger-Warming, Roe

or van Leer could be applied.
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When it comes for the diffusion discretization, a standard application would

result in,
¢i+2 _¢i ¢| _¢i—2
rC.- -T ..
) -(F.é‘ ¢) = (F'é‘é '¢)i+1_(r'§¢ ‘¢)i—1 _ - Siv2 —Si B S-S,
’ : i (§i+1 _gi—l) (§i+1 _gi—l)
2.k 1.k ik Lk j+2.k

Figure 4.2  Standard diffusion discretization nodes

where 5. represents the first derivative with respect to & that is % £ It can

easily be seen that for a standard application of the second derivative, the
solution points included in the derivative term, extends up to two node

neighborhood of the primary solution node.

If imaginary solution nodes between the primary nodes say, i+1/2 and i-1/2,

are employed, the diffusion discretization can be represented so,

¢ 1 _¢i ¢i _¢i—1
-6, ¢)s -0, ¢) s T T
55'(F'§é'¢)i = 1 2 2 _ 2 §i+11 Si 2 5~ (4.49)
E’(fnl_égi-l) E‘(gm_fi_l)
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1.k ik Lk
L L

112 k #1412 k

Figure 4.3  Diffusion discretization with imaginary solution nodes

The solution nodes then lay within the given primary solution node and its

primary neighbors as shown in Figure 4.2.

The details of the discretization are presented in Appendix D in full detail.

The discretized equations can be given as,

& sweep

|j,k—1

. B'k— " B * * * n ®
{—t . J'2 Lot 5 —t 'VnKR_t 'SnKR —t 'SJkl:l'AQJvkl

+[I+t*-

B, +1" Ve +t -, +2:1" S, —t"-C}, AQ", "

B

* B',k+l * j,k+1 * * * ®
{t 'JT_t 'JT_t 'VnKP +1 'SqKP —t 'Sj,k+1 'AQ?,kﬂ

=RHS

z_t** .

Fiae = Fiax N |F|j+1,k _2'|F|j,k _|F|j—1,k Lt LHC
2 2

-t

Gj,k+1 _Gj,k—l + [|G|j,k+l - 2'|G|j,k _|G|j,k—l]+t** K*
2 2

+1t7 M7k +L-AQ?;1
1+¢ ’
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n sweep

- A,.;,k e AI,-Z_l,k Uyt Rt R,lk}-q,lk
;[I +t*- A|j'k +t"-U, +t7 R, +2-t*-Rj'k]-qjyk

t* -%—t*- A|"2*“< —t"-Ug +t" Ry —t*-RHk}qu
;AQ?,k®

The vectors given in the previous set of equations are fully identified in
Appendix D. For a certain solution band, the discretized equations form a
block tri-diagonal matrix. The solution of such a system could be obtained by

a tri-diagonal matrix solver. [15]

4.2.5 Boundary and Initial Conditions

During the computation of the discretized equations, certain conditions for
the boundaries that are not included in the tri-diagonal matrix should be
given explicitly at each iteration step. These boundary nodes are included in
the solution as the boundary conditions. For the problems investigated by
using turbulence models, there are certain correlations for different types of
boundary types. The representations of physical domains with the

boundaries are presented in Figures 4.4 to 4.7.

Boundary conditions are be tabulated as in Table 4.2
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Table 4.2 List of Boundary Condition types

Boundary Condition Types

S1 | Wall type BC

S2 | Wake type BC (upper surface)

S3 | Wake type BC (lower surface)

S4 | Outlet type BC (lower side)

S5 | Outlet type BC (upper side)

S6 | Symmetry type BC

11 | Initial Condition

E o F E
2=
" e Y T~y n
n=nxyt)
n ss| . " s5
t=T —
S6 81 / \\ 7
A B D 56 381
y A B D
L
Figure 4.4  Boundary condition types for flat plate
3 E ) F E
&=&xn
I e ! T~ 1
n=nxyt) -
" sl L T (0 S5
=T —
" el I )
A D ) 1
y A D
L
Figure 4.5 Boundary condition types for free shear
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IZe ™
n=mxyt) —_
s1 C s2 e s3 2
B 3 t=T —
/ \_\ 1
N 1
B Cc

Figure 4.6  Boundary condition types for cylinder

/ = e = x(xy.t)

o t=th) — F E

/ = Y M
/ $5
/ M=MENE)
" a2 J s, $5
1 B S3 A L =T T
JT
sS4 £g3 S1 52

) A B c D
T, F

X

Figure 4.7 Boundary condition types for airfoil

The boundary condition types could be summarized as above. The labels
starting with the character S denotes the boundary conditions whereas the
ones starting with | is refers to initial conditions. Boundary conditions are
updated at each step of the computation while the initial conditions of are

introduced at the first iteration.
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4.2.5.1 Wall boundary condition, S1

Wall boundary conditions for a Navier-Stokes solver would be easier to
manipulate since no slip boundary conditions are applied. Since turbulent
kinetic energy is defined as Equation ( 2.4 ), if no velocity appears on the
wall surface, the fluctuations of its components will also be null. Then the
wall boundary condition for k is simply zero. However it is not so easy to
implement the boundary condition for w on wall. There are many studies on
different types of boundary conditions and the one, which is appeared to be
more extensively used, is applied given in [8]. With these two boundary
conditions for the turbulent variables, the resulting boundary condition for

turbulent viscosity becomes,

Hijq =0
with (4.50)
kjy1 =0
- 60- 1;, 60-11,, (MY
a)jvl == T 2 = 2 ’ R
Pj,z'ﬂ'dj,z Pj,z'ﬁ'dj,z €

Menter's studies have shown that a boundary condition related to the
magnitude of vorticity at the wall with multiplication of a constant gives

results similar to the boundary condition given by the above equation.

K. = (4.51)
., =1000-Q

-

N

S7



This application makes the model more robust since it is not necessary to

calculate the wall distance for the first grid point.

For k-w models the wall boundary conditions are generally given in a form
similar to the above equations. However, the implementation of Boundary
Condition for ¢ is different for different k-¢ turbulence models. Two k-¢
models are investigated and the difference of these models appear at the
very early stage of the model representations, in Equations (4.9 ) and

( 4.14 ). On the other hand the boundary condition for k, as expected,
remains same as the boundary conditions in k-w models since the definition

of k is related to the velocity fluctuations.

ﬁtj,l =0

with

- 452
0 (452)
£,

=0 Chienk-¢

s 20, [a\/_J 2. u,z{a\/_J 1_(ij2Abidk_g

M p, | on P, L on Re
The boundary condition for Abid k-€ model is taken from reference [8]

4.2.5.2 Wake boundary conditions, S2, S3

Actually, a wake phenomenon is a free shear problem. However, due to the
structure of the C-Grid, the wake regions appear as a boundary condition.

This boundary condition is simply applied as a permeable boundary
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condition which serves as a continuity region from upper side of the wake to
lower side. The application of this boundary condition for a variable, say

turbulent kinetic energy, appears as,

_ Kupper

ak kwake

-
k lower

Figure 4.8 Representation of wake boundary

k  +k

k __ “upper lower

_ @ + a)lower _ gupper + glower
wake 2 ’ -

(4.53)

The implementation of wake boundary condition for w and € appeared to be
insufficient to transport the strength of these parameters from the wall
boundary to free shear regions as in the case of cylinder and airfoll

problems. Some remedies for this problem is presented in Section 4.2.6.

4.2.5.3 Outlet boundary conditions, S4, S5

There are certain boundary condition types for outlet conditions. The most
extensive used one for the turbulence models is the extrapolation boundary
condition. This boundary condition stands for the situation where the outer
boundaries of the domain are sufficiently far away that every variable for the
boundary node is just the same as the variable at the node adjacent to the

boundary.
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ky Kot

Figure 4.9 Representation of outlet boundary

k, =k (4.54)

4.2.5.4 Symmetry boundary condition, S6

Since the flow approaches the flat plate with a zero angle of attack, the flow
appears to be symmetric with respect to the first horizontal grid line. The
symmetry condition can be implemented by setting the derivatives with

respect to normal direction to zero. Hence,

up

Figure 4.10 Symmetry boundary representation

k (4.55)

symm — up

4.2.5.5 Initial Condition, I1

The initial conditions for the turbulence model variables are used as,

k,=9.0-10"°, », =1.0-10°, ¢, =1.0-107", g, =9.0-10"
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The flow initialization could be applied in a different way to speed up the
development of the boundary layer. However, this application of initial
conditions was found to be unnecessary since initialization with free stream
conditions is enough to develop a boundary layer. The artificial boundary

layer correlations can be given as,

kIC:ma((go,—Cl-d2 +C, -d)
C, 'klc
@ =max-12444+054—~=—
\ad (4.56)

¢, -1 vai-10%e

) tmax:_c\ﬁ 'Smaxz +CZ 'Smaﬂ Smaxzzcé:l' Cl :458’ g =16¢

max

For k-w turbulence models the above correlations are applied where as for
k- models,

K, =min(zk4, max(zk1,min(zk2, zk3)))
o,. =min(ep4, max(epl, min(ep2,ep3)))

kl=k,, epl=¢,

Zk2 — 10—471.d+0.47 ep2 — 10—555-d—6 ( 457 )
Zk3 — 10737.5-d—3.7 ep3 — 107230.(1,9_2

zk4 =6.7-d, ep4d = min(1.1020 11013333«1_9.8)

The correlations above are referenced from [8].
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4.2.6 Limitations and Improvements

Limitations during the computation of turbulence models are employed to
keep turbulence variables as poisitive and to contribute the progress of the
computation steps. These limitations should not affect the general structure
of the solution and should be applied in an accurate amount. Otherwise,

limitations would yield incorrect solutions.

The limitations applied in this study could be summarized as follows,

1) Production Limitation: For the k-w models, the production term of k
variable, P should not be greater than twenty times the destruction of the

same variable, Dy. [11]

P, <20-D, (4.58)

2) Destruction Positivity: The destruction terms are included into the left

side (Jacobian term) only if its contribution is positive. [8]

| pw R o poRe) )
-t =B a)[M—J JSO, - po [MJ J—O

—t*-—2.0-,b’-a)-[l\j—ej }so, N —F‘-—Z.O-ﬂ-w-[&J
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3) Turbulence Parameters Positivity: k, w, € and u; values are not

allowed to have negative values. Several applications for this limitation are

tested. These applications could be listed as follows,

a) If any computed value appears to be negative, the computed values

are assigned to their corresponding values at the last time step.

k nJrlcorr = k n+l - Ak n

1 1
a)m corr =a)”+ —Aa)”

(4.60)

$n+lcorr = $n+1 - A&'n

n+l

n
My cor = [y

When this approach is used, the replaced variables tend to get negative
values continuously

b) The negative values can be replaced by the corresponding linearly
interpolated value from the neighboring grid points

K= Kik +Kjax
o=
! 2

o = Wiy T O
o=
! 2

(4.61)

e = Eiax T &€k
o=
! 2

0o = Mg T Hejay
=
ik 2

The results of this application appeared to be significant and this strategy is
used for limitation.
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C) Assigning free stream values to the nodes having negative values

appears to be a third approach for having positive turbulent variables.

k =k

]

W=

o0

(4.62)

E=¢&

0

lth = /’ltoo

Among the three approaches the latter one found to be the worst for
negative values problem.. This limitation appeared to be insufficient and for

some cases, it directs the computation to incorrect solutions.

4) Turbulent Viscosity Limitation: The non-dimensional turbulent

viscosity is not allowed to take values larger than 100.000 [8].

u, <10° (4.63)
5) f, Limitation: For k-¢ models, the greatest value for f, is one [10],
that is

f, <1 (4.64)

6) Cross Diffusion Improvement: k-w turbulence model equations are
derived from k-¢ turbulence model by primarily using a transformation of

¢=C, -k-o. This transformation brings a cross diffusion term into the w

equation. This term is not so significant for the near wall regions whereas it
is appears significant for the wake, free shear and mixing flows. The effect of

this term appears as an increase in the production term in the w equation.
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Model equation of w sometimes referred as deficient without this cross
diffusion term, however some scientists refer the cross term as insignificant

term. In this study this term is included into the model just enable k-w model

to be more efficient.

CROSSDIFFUSION

There are certain methods to implement the cross diffusion term. These are

as follows

a) This term could be included into the equations directly. Current

application includes the insertion of the cross diffusion term into the

destruction term of w as,

o

_ﬁ.qu._.(@_k.@_wﬁ_k.@_w}
k ox ox oy oy
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o ok dw K Ow )
_ﬂ+2.—2. -t — — | |lw
k-o oX ox oy oy

After non-dimensionalization,

o

_ﬁ+2.—.

K-w?

(ak oo ok amj_(MwT (4.65)

oX Ox oy oy Re

b) Cross diffusion term is applied to increase the production of w term.
Increasing the production term of w means that the turbulent viscosity will
decrease. Decreasing the k production is identical to increasing the
destruction of k. This method accomplishes the implementation of cross

diffusion effect by decreasing the k production term. [6].

, Re

Dkz—ﬂ a)[M—mj

B'=p-1;

B =0.09 (4.66)
1, <0

, ) Ak 1 & oo

fﬁ: 1+680/{k >0 ZkE_Sa_a_
1+400- 42 & @ OX; OX,

7) w and g, Wake Transportation: The above limitations are sufficient for
the computations including a wall boundary. However, it is observed that for
free shear applications such as the wake region of the airfoil problem, w

does not rise sufficiently so result in an increase in the turbulent viscosity.
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This problem appears as errors due to negative pressure. Reason to this
problem defined as the increase in w parameter at the wall and deficiency in
convecting this value towards the free shear regions. The aspect ratio of the
cells at the very beginning of the wake section is not suitable for the solution
of a free shear problem appearing in that region. This problem occurs due to
the structure of the C-Grid.

In viscous flow solutions, boundary layer has a great importance in the
solution. For turbulent flows y* at the first grid point from the wall boundary
should not have a value greater than 1. That value is obtained by giving a

first grid point distance of nearly 5-10°° units. This wall distance continues in
the chord wise direction. At the trailing edge, the aspect ratio appears to be
in the order of 100 (Figure 4.11) whereas near to the outlet boundary, the
cell aspect ratios reach up to a million (Figure 4.12). This kind of grid

distribution is not suitable for a solution of free shear flow.
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Figure 4.11 Trailing edge of the airfolil
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Figure 4.12 Outlet boundary in the C-Grid

Certain ideas to increase the production of w appeared during this study.
One of them is the derivation of a function which evaluates the cell aspect

ratio and increases the production of w.

P,=f:P,
f=f(AR,,,®)
a b
AR _AR+AR, ' a_a’+h’
2 2 2.ab

The AR term represents the aspect ratio of the cell. a and b shown in Figure
4.13.
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a | |

Figure 4.13 Cell dimensions

Similar problems are encountered with for the k-€ models.

During the computations of test cases, an easier method to overcome this
problem is obtained. In this method, w and ¢ values at the wake boundaries
are simply being multiplied by a constant that can be adjusted by the user.
This constant could vary between 5 to 100. This improvement is an artificial
one with no logical contribution to the solution, whereas it provides a quick
and easy solution for the wake transformation problem. However after this
implementation, the C-Grid is converted to O-Grid which eliminates the
aspect ratio problem so that no artificial increase in w and ¢ is required. The

grid properties is presented in Figures 4.14, 4.15 and 4.16.
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Figure 4.14 O-Grid for airfoil
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CHAPTER 5

RESULTS AND DISCUSSIONS

The implemented turbulence models are verified by using the flow over a flat
plate and results are compared with the available experimental data. Later
on, the computational capability of the code is tested by using the free shear
flow, flow over a cylinder problems without comparing with the experimental

data and numerical results.

The greatest motivation for the development of this code is to handle the
airfoil test cases. Extensive validation of turbulence models with
experimental data is presented in this section. A three-dimensional

application for the flow over a ONERA M6 wing is also considered.

5.1 Flat Plate

Turbulence models of Baldwin-Lomax, Wilcox k-w, Menter BSL and Chien k-
¢ are tested for this case. The experimental data obtained from [10] although
original work for data collection was carried out by Coles [17]. The test case
a Mach number of 0.2and a free stream Reynolds Number of 2.28x10". As
discussed in the Section 4.2.5 angle of attack is taken as zero degrees. The
static pressure and temperature are taken as 1 atm. and 21.3 °C

respectively.
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A structured 150x80 grid with wall boundaries starting from 30" node is used
in computations. First grid point distance of 10® and same distance from the
beginning of the wall boundary is used. The structured grid for this test case

is given in Figure 5.1.

Y
[F3]
LI I L L

Figure 5.1  Structured, 150x80 grid for the flat plate

Residuals of variables are calculated by using;

ZTQm—l _Qn
RES = 2
nnode

where nnode stands for the number of nodes appear in the domain. Wilcox
k-w and Menter BSL turbulence models appeared to have the fastest
convergence properties among the others which can be seen from Figures
5.2, 5.3 and 5.4. It is assumed that the convergence is achieved when the
residual drops by 3 orders. Convergence is obtained for Wilcox k-w and

Menter BSL turbulence models after 6000 iterations while 6500 iterations
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are required for Baldwin-Lomax turbulence model. The longest convergence

period is obtained from Chien k-¢ that has a value of 9500 iterations.

MENTER ESL

— — - WILCOX K-OMEGA
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1 Y —nome= BALDWIN-LOMAX
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Figure 5.2  Residual Drops versus iteration steps.
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Figure 5.4 Residual Drops of € & w versus lteration steps
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Experimental data obtained from [10] represents the turbulent boundary
layer characteristics by figuring out k™, u”™ versus y* graphics. Derivations
of k™, u™ and y" parameters are given in Appendix A, Auxiliary Definitions

section.

For the u™ versus y* graph, typical velocity profile for a turbulent boundary

layer is compared with the computed values by plotting in Figure 5.5. The
turbulent boundary layer profiles posses a viscous sub layer of profile that

obeys to the correlation given in Equation 5.1. This viscous sub-layer is

considered to be valid up to y* values of 10.

=y’ (5.1)

Log layer for which a correlation derived by von Karman is as follows:

1
u"==Inly" )+C
_infy)

C =5 for smooth surfaces (5.2)

x =0.41 Karman’s constant
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Figure 5.5 Turbulent velocity profile results
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Figure 5.6  Dimensionless turbulent kinetic energy versus y”*

For the velocity profiles in turbulent boundary layer, the results of Wilcox k-w
and Menter BSL models appeared to be nearly the same. Since the flat plate
problem is simply a wall bounded problem, it is expected to get the k-w
characteristics of Menter BSL model to be dominant. The results of these
two models appeared to be the best among the other models that are plotted
in Figure 5.5. In Figure 5.6, Chien k-¢ achieved the closest prediction for
determining the peak point of the dimensionless turbulent kinetic energy.
However, the free stream value of k™ predicted by the Wilcox k-w and

Menter BSL models appear to be the closest ones to the theoretical values.

Among all of the turbulence models, the experimental bounds for k™ values

are almost never exceeded.
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The transition location from laminar to turbulent region is the primary criteria
for the coefficient of friction. In the application of the turbulence models,
transition location is not introduced explicitly. In fact transition location is
predicted by the solver. The calculation of coefficient of friction, Cr is given
in Appendix A.

10 10° 10° 10* 10° 10° 10’ 10°

3 LAMINAR
10 BLASIUS
POWER LAWY

¢  EXPERIMENTAL [18]
— = = BALDWWN-LOMAY
=+ =+= CHIENK-EPS
—_—— = WILCOX K-OMESA

10~

10 ks

; - 10
10

Figure 5.7  Coefficient of Friction versus local Reynolds Number

The experimental data is avaliable in reference [18] and it is collected from

the works of Wieselsberger, Gebers, Froude, Kempf, Schoenherr.

In Figure 5.7, friction coefficient is compared with theoretical and analytical
solutions related to laminar and turbulent flows. The transition location is
best captured by Chien k-g, where as the transition style is not similar to the

experimental transition regime. On the other hand, k-w models determine
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transition in a similar manner with experimental data but the location of
transition could not be determined accurately. Experience on computation of
turbulent models showed that the transition location could be tuned by
adjusting the production term of turbulent kinetic energy. However this non-
physical method is not applied in this study.

Two different locations of the domain are chosen for the comparison of the
velocity profiles. One of the locations is close to the leading edge where
turbulent viscosity assumes its freestream values and other one is the fully

turbulent region.
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Figure 5.8  (a) Laminar and (b) Turbulent velocity profiles

5.2 Free Shear

The investigation of this test case is performed in order to see whether the
wake resolution could be obtained by grid refinement in the solution domain.
The grid dimensions are not so logically decided since this test case is a

numerical experiment. A 1001x501 grid is used with the domain dimensions
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of 5 units by 2.5 units. The grid sizes are equal in both directions of x and y

with values of 1e-3.
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3.2467 E-03

0 2 4
X
Figure 5.9  Turbulent viscosity contours

The free stream Mach numbers on the upper and lower sides are 0.24 and
0.2, respectively. These values correspond to pressure and suction sides of
an airfoil at the trailing edge. The turbulent viscosity contours is shown from

Figure 5.9.

5.3 Cylinder

C-Grid version of the original code is adapted to an O-Grid by changing
some of the boundary conditions. The details of boundary conditions are

given in Section 4.2.5.

Grid has 300 nodes around the cylinder and 40 nodes in normal direction.

First grid distance of 5x10°® units is used.
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The first trial of this application is evaluated in flow having a Mach number
0.5 and a Reynolds number of 5x10° over a cylinder. The wake resolution for

the O-Grid is accomplished which was not possible for the C-Grid.

Wake cut for the domain is remained at the right side of the cylinder that no
important turbulent flow development occurs. The results showed that for a
wake grid formation of acceptable aspect ratios for the grid cells, the
computations do not need any limitations regarding the increase in w values

in the wake that is explained in Section 4.2.6.

The results are not compared with the available experimental data since the
aim of this test case is to adapt the code to handle O-Grids and to

investigate wake properties of the O-Grid.

Turbulent viscosity values increase in the regions of vortical flows as shown

in Figure 5.10.
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Figure 5.10 Turbulent viscosity contours
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5.4 Airfoil

Extensive literature survey to obtain experimental data for this application
was done and significant turbulent flow data to compare the accuracy of

turbulence models were obtained.

Three distinct airfoil profiles of NACA0012, RAE2822 and NACAG63-2-415
are tested with different flow conditions. A grid dependence test regarding
the changes in the pressure coefficient distribution with refinement of grids in
the boundary layer direction is presented. Visualization of laminar and
turbulent velocity profiles with momentum thickness of the boundary layer is
compared with the available data. Contours of turbulent kinetic energy,
turbulent viscosity, production and destruction terms for k term are
presented in Appendix E. Lift, drag and moment coefficients are compared
with the experimental results for the NACA63-2-415 test case.

The results for NACA0012 and RAE2822 have taken from Maksymiuk and
Pulliam’s work [19]. The data for lift, drag, moment coefficients of NACAG3-
2-415 obtained from Abbott and Doenhoff [20].
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5.4.1 NACAO0012

First test case for the flow over airfoil posses the properties of 0.7 Mach

number with 1.86 degrees of Angle of attach and a Reynolds number of

9.0x10°
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Figure 5.11 C, distribution for different turbulence models

05

-05

Computations with all of the turbulence models gave approximately the

same results as shown in Figure 5.11. The jump in the leading edge suction

side is investigated in detail. Grids used in computation have dimensions of

219x65 and initial grid node distance from the wall is 5x107 units.
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Figure 5.13 NACAO0012, C-Grid closer view
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The raise in coefficient of pressure could be a result of the decrease in the
velocity in that region. The decrease in the velocity is because of excess
total viscosity. Viscosity damps the velocity field so that the resultant velocity
decreases. This kind of damping could be removed only if correct transition

locations from laminar to turbulent can be given.

Adjustment of initial grid spacing from the wall has an important effect on the
turbulent viscosity contours. The finer grid spacing results in a larger
turbulent boundary layer and early transition. Several grids with different
initial grid spacing are tried and the results are shown in Figure 5.14. As the
grid is refined near the solid boundary, turbulent viscosity production is
increased. This production of viscosity enables the accurate determination of
the pressure distribution in turbulent regions at the trailing edge. However,
the prediction of pressure distribution at the suction surface of the leading
edge, where laminar boundary layer is expected, appears to be poor. The
computation of coarsened grid near the solid boundary will result in a better

pressure coefficient prediction of leading edge and a worse one in trailing

edge. The y" values are given in Figure 5.15, which shows that primary rule

for turbulence model calculations that the first grid point should have a y*

value of nearly 1, is violated in the coarsened grid.
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Figure 5.15 y" values for the first grid point from the wall
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The results for C, and C, compared to the experimental values are

tabulated against the experimental values in Table 5.1.

Table 5.1 C,, C, results for different turbulence models

C, C,

Experimental 0.254 0.0083
Baldwin-Lomax 0.303 0.0081
Chien k-eps 0.309 0.0052
\Wilcox k-omega 0.305 0.0077
Wilcox k-omega 0.309 0.0073
(deln=1e-5)

|Menter BSL 0.300 0.0074

The best prediction of lift coefficient is obtained by Menter BSL. However the
other results for lift coefficient are also in a good agreement with the
experimental data. Drag coefficient prediction is obtained most accurately by

Baldwin-Lomax model.

Second test case for the flow over the NACAOO012 airfoil has 0.55 Mach
number with 9.86 degrees of Angle of attach and a Reynolds number of
9.0x10°

Figure 5.16 represents the comparison of pressure coefficient computations
in which the best solution is obtained from k-w based models of Menter and
Wilcox where Chien k-¢ is failed to predict the pressure coefficients

accurately.

For the load computations, in Table 5.2, Menter BSL model takes the lead to

detect the coefficients of lift and drag most accurately.
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Table 5.2 C,, C, results for different turbulence models

C, C,
Experimental 0.988 0.0362
Baldwin-Lomax 1.0427 0.0613
Chien k-eps 1.047 0.0561
\Wilcox k-omega 1.0459 0.0616
|Menter BSL 0.961 0.0580
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Figure 5.16 C, distribution for different turbulence models

5.4.2 RAE2822

Transonic airfoil case of RAE2822 is carried out to compare the pressure

coefficients. Velocity distributions in laminar and turbulent regions are

another comparison data for turbulence models.
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RAE2822 test case is carried out with the properties of 0.725 Mach number
with 2.92 degrees of Angle of attach and a Reynolds number of 9.0x10°

Table 5.3 C,, C, results for different turbulence models

C, Cq
Experimental 0.747 0.0123
Baldwin-Lomax 0.822 0.0163
Chien k-eps 0.849 0.0153
Wilcox k-omega 0.841 0.0168
[Menter BSL 0.814 0.0155
Abid k-eps 0.790 0.0151
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Figure 5.17 C, distribution for different turbulence models
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From Figure 5.17, the shock location is accurately determined by Wilcox k-w
since the peak point is captured and a steep decrease in pressure is
detected in a good agreement with the experimental data. The over
estimation of pressure coefficient in the leading edge regions of suction side
is due to the excess increase in the turbulent viscosity. This problem could
be solved by inputting the transition location explicitly or having a

mechanism of obtaining transition location accurately.

The laminar and turbulent velocity profiles are compared with experimental
data in Figures 5.18 and 5.19. For turbulent velocity profile Abid k-¢ is the
turbulence model that has good results whereas for laminar one, Baldwin-

Lomax appeared to be successful.
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Figure 5.18 Laminar velocity profile at x/c=0.319
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Figure 5.19 Turbulent velocity profile at x/c=0.95

The best friction coefficient detection is achieved by Chien k-¢ turbulence
model before the shock region while the worst prediction is obtained by the
Baldwin-Lomax model. The sudden drop of friction coefficient due to shock
presence is seen in Figure 5.20 near the x/c location of 0.5 on the suction

side.
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Figure 5.20 Friction Coefficient

Outputs of turbulent viscosity and dimensionless turbulent kinetic energy are
observed in Figures 5.21 and 5.22. Wilcox k-w appeared to produce highest
turbulent viscosity. The other models except Baldwin-Lomax behave in a

similar manner near to the peak points of turbulent viscosity values which

are obtained at y* having a value of 2x10°.

An interesting discussion could be the difference between the turbulent
viscosity values of Menter BSL and Wilcox k-w models. Actually, they both
involve the same equations with the same constants and correlations near
the boundary. But due to the transition from k-w to standard k-¢ model, the
peak values of the turbulent viscosities differ from non-dimensional value of
1300 to 1850. Figure 5.25 represents the transition of the two models in
Menter BSL. It is important to note that transition occurs close to a y* value
where highest turbulent viscosity is achieved.
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Baldwin-Lomax algebraic turbulence model produces negative turbulent

viscosity values that have no physical meaning.
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Figure 5.21 Turbulent Viscosity distribution on x/c=0.9

For the non-dimensional turbulent kinetic energy values, the peak points are
resolved near regions of highest turbulent viscosity where y* values are
close to 1x10°. Chien k-, Abid k-e, Wilcox k-w and Menter BSL models

could be given in increasing order of highest k" values.
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Figure 5.23 Turbulent Velocity Profiles on x/c=0.9
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Turbulent velocity profiles given in Figure 5.23, presents the defect of the
log-law layer due to the adverse pressure gradient effects occurring in the
suction side of trailing edge. Abid k-¢ shows a good agreement with the

theoretical descriptions of viscous sub-layer and log-law region.
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Figure 5.24 f, values for Chien and Abid k-¢ on x/c=0.9

Due to the different boundary conditions, f, term appears to be in different

characteristics near the wall region in Figure 5.24. Since ¢ boundary
condition of Chien is zero, it would cause a high increase in turbulent
viscosity, then logarithmic behavior could be achieved by manipulating

turbulent viscosity with f, parameter.
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Figure 5.25 F, value transition for Menter BSL on x/c=0.9

Figure 5.25 shows the parameter F,, which manipulates the transition from
k-w to k-¢. The transition occurs at a location where y* is 2000. At the outer
regions, parameter F, is equal to zero which stands for the standard k-¢

model where as k-w model is activated in regions close to the wall.

Contours of pressure, turbulent viscosity and pressure, destruction terms of
turbulent kinetic energy for all turbulence models are visualized in the figures

in Appendix E.
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5.4.3 NACA63-2-415

The purpose of this test case is mainly the detection of the location of the
stall point, prediction of the maximum C, values and obtaining the lift, drag

and moment curves. Computations are done for -16 to 20 degrees with

angle of attack increments of 2 degrees. Flow conditions of Mach number of

0.3 and Reynolds number 9x10° is used in computations.

M=0.3, Re=9e+6, AoA=-16..20,+2

The C, values corresponding to different angle of attacks are plotted in

Figure 5.26. Several computations are done by varying grid spacings in a

direction normal to solid boundary.
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The linear behavior of C, versus angle of attack is obtained in every

turbulence model. However, stall points are worth investigating in detalil
since the grid refinement in direction normal to the boundary layer changes
the prediction success in a significant sense, as shown in Figure 5.27. In
Figure 5.28, the stall point is detected by Wilcox k-w model (with initial grid
distance of approximately 2x10® which corresponds to y* values not more
than 1) more accurately than the other models. In Figure 5.28, for the drag

prediction refined grid of Wilcox k-w gives good predictions of C,-C, data.

Predictions of C,, appeared to be poor as can be seen from Figure 5.29.
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Figure 5.27 C, versus AoA, Stall point detailed
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5.5 Wing

5.5.1 ONERA M6 Wing

The flow over ONERA M6 Wing with a Mach number of 0.8395 and angle of
attack of 3.06 degrees is tested. Reynolds number of 1.172 * 10" is used. C-
O Grid type mesh is used with dimensions of 161 nodes in chordwise, 36
nodes in spanwise and 50 nodes to the outer boundary is used. First grid
point is taken as 10 by considering the grid refinement test in NACA0012
case represented in Figure 5.14. A 4 (lambda) shock formation is observed
along the wing. The contours of pressure and turbulent viscosity are
visualized in the Figures 5.30, 5.31 and 5.32.

Figure 5.30 C, contours
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Figure 5.31 C, contours Left — Lower side, Right — Upper side

TMU: 10 110 210 310 410 510 610 710 810 910 1010 1110 1210 1310 1410 1510 1610 1710 1810

Figure 5.32 ONERA M6 WING, Turbulent Viscosity Contours
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Johnson-King and Baldwin-Lomax results are provided from Kaynak, Cete
and Sener’s work [25]. Figures from Figure 5.33 to Figure 5.37 represent the

coefficient of pressure distributions around the airfoil on several spanwise

locations.
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Figure 5.33 ONERA M6 WING, C, distribution, y/b=0.44
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Figure 5.34 ONERA M6 WING, C, distribution, y/b=0.65
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CHAPTER 6

CONCLUSION

In this study, several turbulence models based on k-w and k-¢ are
implemented into a Navier-Stokes solver. During implementation stages, to
adopt the significant step is to understand the base solver in detail and
adapting the turbulence models into it. It was very difficult to implement a
module that works independent of the solver. On the other hand, the module
should take some values of flow and grid and deliver turbulent viscosity

values for solution nodes.

For external flows over airfoils and wings, implementation of k-w based
models are appeared to be easier than implementation of k-¢ based models.
As described in Chapter 4, k-¢ models have more correlations that are

included in computations of turbulent viscosity than k-w models. These
correlations require the computations of y*, Rex and Re; values, which

require the information of wall shear stress and distance to wall properties of
solution nodes. Computations of these properties in absence of any wall
surface, appears to be meaningless. No such correlations appear in the
formulation of k-w models which makes the implementation of these models
much simpler. However boundary condition implementation for w is a
challenging subject on which many studies had been done and due to the
simplicity in implementing the boundary condition for ¢, k-¢ models could be

preferred.
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Analysis stages involve the interpretation of load values for different flow
conditions on different airfoils. One should select a proper airfoil profile to
construct a wing, which would be used for specific purposes. The load
outputs obtained from computations will be a first indication of design

decisions that are the predictions of C, distributions, C,, C, andC,, values.

The experience gained from the computations of flow over an airfoil shows
that for resolving accurate distributions of pressure of coefficient, one should
avoid a finer grid in the direction normal to the wall boundary, since excess
turbulent viscosity formation is obtained. Other solution could be
implementing of transition detection or introducing transition locations as an
input, explicitly to the solver. Since the present work does not involve the
transition detection, it is important to recommend a first grid point distance
from the wall in the orders of 10°. On the other hand, for calculations of the
load parameters of lift, drag and moment coefficients, this wall distance

should be smaller since Figure 5.27 shows better results of predictions in

smaller y* values for the first grid point. This value is generally obtained with

an initial grid distance of 10°. The y* value of the first grid point is around 1

in this case which gives better predictions of load parameters especially in
the stall conditions. For these computations, a model of blended k-w and k-¢

model, Menter BSL model could be recommended.

For 3D applications, only Wilcox k-w model is investigated. In the presence
of the results for the outputs mentioned above, the next model to be
implemented appears as the Menter BSL model. In the recent years,
Spalart-Almaras one-equation turbulence model of one-equation kind has
gained success in external aerodynamic applications. The implementation of

this model could also be another topic for future work.

On the other hand, solving one or two additional partial differential equations

addition to the Navier-Stokes equations, for a high number of nodes
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comparing with 2D airfoil grids could sometimes be more costly than solving
algebraic equations. However, due to capability of solving a domain without
considering any algebraic correlations involving wall distance or inner and
outer layers, interpreting partial differential equations appear as a better

solution in parallel and multi-block computing.

On a Pentium P4, 3.06 GHz. machine, the computation time for the use of k-
w models in a case of flow passing over NACAO012 airfoil with Mach
number of 0.7 and angle of attack 1.79 calculated as nearly 600 seconds for
a C type grid of 139x65 nodes, however this computation time rose up to
twice itself for k-¢ models since lower time step values should be used in
order to get convergence. It would be appropriate to say that k-w models

appear to be more robust than k-¢ models.

The results of the current completed project are being used in TAI for
analysis and validation purposes. Further studies on Wilcox k-w model will
be handled in the following developments. Tunings and certain corrections
will be implemented to have a better turbulence model that accurate

transition detection and compressibility correction would be applied.

Further studies in wing computations and implementation of turbulence
models into multi-block and chimera versions of the base solver are the

main targets for future.
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APPENDIX A

Non-Dimensionalization steps for turbulence model equations

k equation for Wilcox k-w and Menter BSL turbulence models

Production Term
~ o~ 0 -3l
k:%.gzz%.gz.{”az } (A1)
LR
Destruction Term
N e P ’ /500'5;2
D =g pk-o=p pko = (A2)
Diffusion Term
9 || g+t XK1, 9 gt XK
X o) X) oy oy )
0 0 &)\ [z, -a (A3
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Total Derivative Term
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Replacing non-dimensionalized variables into the original equation,
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w equation for Wilcox k-w and Menter BSL turbulence models

Production Term
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Destruction Term
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Diffusion Term
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Cross Diffusion Term (Only in Menter BSL Model)
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Then the following form is used as the non-dimensional w equation
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Auxiliary Definitions
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APPENDIX B

Transformation of turbulence model equations to generalized

coordinates

As an example to the model equations, k equation of k-w turbulence model
will be transformed into generalized coordinates. This equation will be

investigated in several parts.

i e ol G e [

|. Total Derivative Term

dp-k), dpuk) dlov-k)_alpk), . dpk),  dpk)
a ox Y or e " o
Apuk)  dpuk)
+&, oc +1), on
Olpvk), - dpvk)
+§y oc +1, on

After applying the well known Chain Rule and dividing the total derivative

equation to Jacobian term the following form is obtained,
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grouping whole equation such that;

1,(0(p~k)+5(p~U~k)+5(p~V-k)):

I et ox oy
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The second group of terms in the right hand side of the equation is

analytically zero. Grouping same derivatives,
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Defining contravariant velocities,

U=¢ +S6,-u+é, v

V=n +n-Uu+n, v (B.1)

Then,

j_[a(p.k)+a(p-u.k)ﬁ(p-v-k)j: 0 [pkj 6(%?'“"‘}@(%"\/*] (B.2)

ot OX oy J on J
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1. Diffusion Term
Ot | KO ) K
X [(‘HGJ 6xj+ay H‘”(;J ayJ
0 Fo|lg K 0 & R | I N (PIC SN S
éxaé:|:[ﬂ+o_kj (fx a§+77x anj:|+77x 677|:[ﬂ+0'kj (fx a§+77x a]]}:|
R P S 8 | A 7 R S
[ Lt R G

k

Performing a similar derivation as in total derivative term and dividing into
Jacobian below expression is obtained,

el {-2)3]
a—i{%( M@ R ]

k

+i l é: - ak +&. /u+ﬂ v ak y ak
on| J zf J 85 877
If cross derivatives (0, -0, ) are neglected
10 p) k) 0 | K
a2 s 23]
al&l & & i) k| o|n’ p) & n/ 4y | oK
%L-[ﬂ et (ot ]ag}w“‘” e M

Then the diffusion term appears as such,

) 25 {2) %]

Z;E .(§X2+§y2)'[#+2}§;};h'(77x2+77y2)'[ﬂ+§f].5‘} (B.3)
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1ll. Production and Destruction Terms

There are no derivative terms to be processed in the computation scheme,
so no explicit transformation in necessary for these terms. But it is important
not to forget that the total derivative and diffusion terms are divided into
Jacobian term. In order to satisfy the equality production and destruction

terms must be divided into Jacobian term.

P D,
'S B.4
: (B4)

Tv
Collecting equations, the transformed k equation could be obtained as,

(52 2 222).
T ol on\ 3 )

0

or\ 3

P B 0L (2, P2 TGS G SRS | i .S
R R G e R B

One can obtain similar transformed equations of € and w variables. These

(B.5)

equations pairs for k-w and k-¢ models could be written in vectorial form to
have a suitable form for numerical scheme. The resulting forms for

turbulence model equations are;

Main Solution Equation

0Q oF oG _M,[(oH oK
or " of on Reloc on

(B.6)
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k- w Turbulence Models

Q_l. Pk o1 p-U-k g1l pV-k
J |po J|pU o J|pV-o
2 2 My | oK 2 M | oK
+ . +_ Fyp— + . +_ RN
H=L. e+ )Lﬂ “kj 0¢ K=t b2+, )Lﬂ ‘Tkj on
J 2 2 M ow J 2 M ow
g e ) 22 e )20
2 , Re ’
/’lT'Q —ﬂ .p.k.a). [
1 M.,
MZF' 2
g.p.QZ_Ig.p.Q)Z.[&]
- Mw -
Applicable for Wilcox k- w formulation.
I Re ’
ﬂT.QZ—ﬁ’.p.k.a).(_j
M= L. M.,
J Re ) 1 (k 00 ok oo
00’ —-B-0-* | —| +2.-0-1-E) o — | =. sz
£op ﬂpw(Mw] Pl 1)0‘”2a)axaxayay

Applicab_le for Menter BSL formulation.

k- € Turbulence Models

Q:l. Pk F_1. p-U-k G_1. pV -k
J | p-e J |p-U-¢ J |pV-¢
dyptan ) 2 (g i) 2

H=1_. I F I[’“-Fcr]ﬂf K=l_lj? +r I[’“_'-g-]a,?
J 3 3 3 J 3
'§'+9""-[#+§—] £ A '-[#+§—]-£
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Applicable for Chien k-¢ formulation

2
Re
My Qz—pg(M—j

C,- fl.QZ.ﬂT.__

&

k

Applicable for Abid k-¢ formulation
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APPENDIX C

Calculation of Jacobian terms for Turbulence Models

Recalling the equation that is factored form of the solution for turbulence
model Equations, (4.43)

2
O-A7 [ 0 (g yys P-2 s cn|leaQ™ =RHS"
1+4 (o "o

0 At (a
+ .

n 62 nlle no_ n®
o g(A-umé) 37 R H AQ" = AQ (C.1)

RHS" =1A+T¢-(%(—F” +H*n)+%(—6” +K*")+M*nJ+ﬁ.AQ“

Jacobian Calculation for k-w Models

o a(P.u-%j a(p.u-%) Q) 500
An:(aan aiQ:; 87(21 _ 6(%’%] 8(,0%) ) an1 anl :|:U O:|
xQ % gg 7Ves) o7 oU-Q,) aU-Q,)

A7) A7) |

SERH
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oG,

oQ,
oG,

0Q,

-3
Q

SEEHE
aQ 0V

oG,

oQ,
oG,

Q,

27%) 7
%) )
272)) 7o)
EGA G

(V Ql) a(V Ql)
o0Q, Q, Y
ov-Q,) av-Q,)| o v
o0Q, Q,

Jacobians of convection terms could easily be calculated while derivation of

diffusion Jacobians are challenging since it involves second spatial

derivates.

In order to save space in derivations of Jacobians of diffusion terms, such

definitions are made;

r, =(2 +§f)-(y+

Then,

oH™

_|
oH™;

0Q,

2

Hy

58 €%

r, =g +§y2)-[u+

Hi

O-(u j

T, k)]
J

. Re PE Re o0&
o || A7%) A7)

oH" a( . aa)j a( . T, awj
0Q, Re o0& Re J o¢

Lo ]

A7)

This Jacobian term will be examined in four parts;
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LS Ql'
) Re J PE Y 77@&23 o
B oQ, Re J Re J /P Qo
L a(%)jg\/lm L3 (8Q1j M, L (/p) Mo Ly 0
Re J o Re J /P acloQ ) Re J Re J /P o&

Since the expressions inside the “0” operators has independent vector
representations namely, (Q; and Q), term 2 and 3 has zero values. Similar

derivation for term 4 appears as;

M, T, .a(%))
o

Re J

Then the Jacobian term appears as

e N I
R

The Jacobian named, R that is derived from the second derivative part of the

diffusion term appears as

123



OH™
Rh oH™ | _| 9Q
0Q; oH™;
0Q;,
Here Q, is
a(p-k)
_1] o
=7 dp-0)
¢

oH™
0Q,
oH ",
Q,

In a similar fashion to the first diffusion term

OH "1
— anl
OH "2
0Q,

oH "1
aQéz
OH "2
anz

(M. T &
Re J o0&

o))

|

Mm.n.akj‘

Re J o0&

pV/

MFaa)
ReJ&f

a(/) ' %y

{

MF&a)
ReJ6§

pV/

This term will also be studied in 4 parts.
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15 term

o e ) [ 0
(Rejafj Re Re

p V / a(ﬂ'%% B 3%5

| e Re J 1 (/Oj P ag le (%))

Re +M°°.£.J

e : 8Q/§ e s

M. L

Re J /P
As described in previous derivation of Jacobian, the expressions inside the
“0” operators has independent vector representations namely, (Q; and Qy),
term 2 and 3 has zero values. Similar to previous expression, 4™ term could

be derived as;

M, T, j
Re J /P
Then,
n 1_‘k J
R | N /A (C5)
oQ, Re 0 F_a,y '
J P

The other Jacobians of diffusion will be written directly by taking the

derivations of Equations ( C.4 ) and ( C.5 ) as a base.
After making some necessary definitions,

R

4]
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_ s j _
o wd)
aQ Re 5(%}
0 L \/r
i J on |

(C.7)

n ré J
Sn_(aK*J R

oQ Re | o L.
! J%J

The source matrix M and its Jacobian matrix C, differ in representations for
Wilcox k-w and Menter BSL models.

The derivation of Jacobians of source matrix which includes the destruction
and production terms of variables includes the determination of the stability
of the models. In the source Jacobian term matrix C, the treatment explicit
and implicit representations of production and destruction terms will be
investigated. Also by equating the inverse diagonal elements of 4x4 matrix C
to zero, one can get a solution of uncoupled formulation of turbulence

models.

If the M matrix for Wilcox k-w is written in terms of vectors Qs and Q- then,

2
Re p ok p-k Re
Q' -ppko LR.or-p. L2 .
Mool M, #r Fep (Mmj M, |J o P M,
" J Re Re) | Re o* (Re)
Q’_43. 2, P .or_pg PP
cp B-po (MJ ¢ ] B 3 M.
Pk 2 2
o) J , pk pro J [ Re , J [ Re
M| po o -p JJ"(M 2.3.0"- 5.9
_M, ] pM. )| M, |3 Q M.
Re 2 Re :
g“BQZ—ﬂ p*-0® J [ Re gpQZ_ﬂszi Re
J JZ p Mw J p ,\/loC



Then Jacobian term could be derived as,

oM, oM,
(MYl o,
oQ oM, oM,
2Q, aQ,
P g good(RY] {29 0 go.o 2 (Re)
a[J GRS [MH a{J AR (MU
M, 2Q, 2Q,
Re 2 2
P.or_p.o2. [ Re P.or_p.o2.d | Re
5[§ 3 Q" -4-Q, - {MJJ 5{5 3 Q" -4-Q, - (MJJ
I 2Q, 2Q, |
Pl pao d(RY £ Q o g 3 (Re)
M, 7" ﬂlep[MJ 1o " ﬂQllp(MJ
R 2
° 0-0 0—2.0-/3’-Q2-J-(Re}
L p M,
Ko Re k ., ., . (ReY
M
Re Re 2
0 —20-/3-@-(ij
Q| ReY k ., . (ReY
R
R e : (C8)
oQ Re Re
0 —2.0-/3-0).(Mj

If the production terms are represented in explicit form, the expressions

derived from the production terms drop from the source Jacobian matrix.

Re

L.

0

0

2
Re
M j

o0

Re

e
3

—2.0-ﬂ-w~(—

o

The following expression represents implicit production terms but an

uncoupled formulation.
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Cn: © .,

Re

0

Re

—2.0-ﬂ-a)-{

v

0

A third representation of source Jacobian forms by taking production terms

explicit and an uncoupled formulation.

Cn: © .,

Re

_ﬂr.w.(&

0

M

o0

:

0

Re

—2.0-ﬂ-a)-[

0

v

These differences in Jacobians are investigated in the work of Spalart and
Allmaras [13]. The investigations of them have shown that, regarding the
positivity of source terms is achieved when the production terms are taken
explicit while destruction terms treated as implicit which is called as the third
strategy. The last appearance of source Jacobian term is used in the

implementation.

For Menter BSL model the source term source Jacobian C appears as,

2
M _ﬂ,'w'(l\?ﬁ} 0
e ’
e
0 —2-p-(1—|:1)-awz-12-(8"-8“’+ak-a“’J
w

Re )
oo (®)

Above representation of source Jacobian term is advised in [11, page 6].
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Jacobian Calculation for k-€ Models

The core structure of two equation models could be regarded in a similar
fashion whereas the source terms and Jacobians of these source terms
appear in complete difference. The boundary conditions also differ in great

amount. At this point only the source Jacobian calculations will be

presented.
_ 2 .
Mg PE[REL 50 ﬁ
L J R y
Re b & p & (Re i J y*
C, f-&F.~L.2— C, f,- == — | =20 -y =5 -ex
J kK J kM, 20)|
_ y 2 ) .
Cutup e.p_FP¢. Re 20 ﬁ
M, J J M, y’
a Re C pkz 2 +
C, f, Q.M.E_Cﬂ f,-2.5. Rel 5o /2]~ex y
I k J ok (M, y 20
- , _
p ok 2 p-K
2 e[ Re
c, f, .-~ (—] ~20-u- /;’
Y pe J M, Py
——® J
Re p2 & ,
P&
.....p_'k_..JZ.E_,ﬁ y
C, f,-(%-C,-f, C, 1, p [Mj 20- 1 pvEEe aer
i J ]
-~ , oY ;
C,,'f#'Q—l'QZ—Qz'(—eJ —2.0'y-—Q12
:% Q, M. Py
Re 2 2 ¥
Cgl'fl'Qz'C - f Q ng.fz.Q_z. & -2.0 '&Z'GX _y
i o Q M, p-y 2.0
oM, oM,
Cn: aM* = 6Ql 6Q2
oQ oM, oM,
Q  Q,
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M aQ Q
Re Jd(Re . Q [y d(Re . Q [V
{Qj'fl'd'(},'fy'q—ca' fz.Q.[MJ _zgﬂl)yz.e{p%] %‘fl'd'g‘fy‘q—ca'fz'a‘ @ _goﬂpyz.e{pEOJ
L XQ Q il
_ , ,
c, f,20- 2.7 20 4 —C/,~fy~le-Qz—(Rej
=%. Q2 p.y Q2 Mao
Re 2 2 2 "
C, f,-0*-C .fl+C€2.fz.Q722. Re —2.0-C52~f2~%~ Re _2_0.%@( ¥
I t Q° (M, . (M, Py 20
- 2 ,
" cﬂ.f#-z.o.K-Qz—z.o.Lz —cﬂ.f#-kz-Qz—(hF;eJ
—® € Py & »
- Re 2 2 2 "
C, f,-Q2-C .fI+CSZ.f2.%. Re ~20-C,-f,-%- Rel .. ﬂz-ex ¥y
I u kM, kM, oy 20

As described in Turbulence models section, the D and E terms for Abid k-¢
model is zero. Dropping these terms form the source Jacobian matrix

developed for Chien k-¢ model gives the matrix for Abid k-¢.

2 2
c,-t,20502 20 #_ ¢, 1, qr | R
n __ Moc . & py & Mw
Re e? [ Re ? ¢ [ Re ?
Cﬂ-fl-QZ~C#-fﬂ+C52-f2-k2-[ij “20C ety
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APPENDIX D

Discretization of Turbulence Model equations

& sweep
0-At | 0O . 0° ®
1+ |1—(B-V+S | - S"-C"||eAQ" =RHS"

The following notations are presented due to simplicity in derivations,

n®

t* _HAT

Y 4=4Q

The discretization work will be accomplished in 6 steps,

0 ok
1+t"-| —\B-V+S | ———S"-C" =RHS"

g+t 5™ (B-q)}-t"-5,-(V-q)+1"-5,-(S,-a}-t"-57-(S-q)-t"-(C-q)= RHS"
\.I/ %/_/

2 3 4 5 6

1) aj

2) £ . upvind -(B-q):t* ) (B'q)j,kﬂ _(B'q)j,k—l _t. QB"q),’,m_z'qB"q)J‘,k _QB"q)J‘,H
" 2 2

I .ol 3/ )
F(Pq .
J on

M
Re © J/ .
7 %)
on |

0
J
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ol (/p qu 0
877 3
— _t* . Moo
Re
; oln A2e)
on| 3 on
I 3/ 3. |
1_6% a) 3 Lk'_a% a)
J on J on
j‘kJ% j.k—% 0
=—t*-M°° An
R
i L;.a(%‘%) . L,;,a(%‘%)
J on J on
Jk% j,k—%
L ° An i
(an=1
RO ORENE
=t .Rg. J i‘k% P ik \P ik J j.k—% P ik \P ik
0 ~
T J I, T J T J
M, ||l 19 R T 1] 1q I . 4., 0
=t Re {[ J jihi [p]j,kJrl] ok H( J jj,k+;+( J jj,k;] [pjj,kjl ql]vk-{[ J ]j,k; [pjj,kli ok
O ~

If the matrix is divided into three parts with respect to discretization indices,

(

F!
J

J

3.0
pkees NPk

l—w

[

wj

o1
K+
J +2

(@)

{2
,0 . k+1

1—\!
J

[

j. 1
K+
] +2

Ui kn

L,

o=
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5. 1) °
M, [V it Wi
U Re r J i
o (5.0
| J i,kf% P j,k—l_

Vikr

=t '(_VnKP O TV Ak Vs 'qj',k—l)
0

3 ()
M, & %(Fk'%)'ql

Re on 0

I I
P P

0

4)t°-5,-(s,-q)=t"

52
M n

r r!
o eral)os

Similar approach regarding the indices is done for this matrix formation,

=t". M., NPk Pk P Jika .
L p j.k+1 p ik ;0 k-1 |
Sk
Lt M . P Jika P Jika ' ’ U
i
L P jok+1 P k=1 |
Sr]KP
_t* M. PJika \PJjka
. . ’ ' 'qj,k—l
oo BLAS
L P J.k+1 P jok-1 ]
SnKR:SnKP
=t '(SUKP Qi t SnK 0k _SnKR 'qj',k—l)
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5) ~t '55 '(S 'q):_t* '(Sj,k+1'qj,k+1_2'sj,k m +Sj,k—1'qj,k—1)

6) -t '(Cj,k 'qj,k)

Right hand side discretization

”_ﬂ. i_ n *N i_ n l «N L n-1
RHS “1ig (65( F"+H )+677(G +K )+M j+1+¢ AQ (D.2)
= At
1+¢
RHS“=—t**~§“”WindF+t**-5§H*—t**-5;pWi"dG+t**-5,7K*+t**-M*+—¢ ~AQn_l
N S— — 1 T 1+¢
1 2 3 4 —

1) —t* L GUPnd g Fj+1,k - Fj—l,k Lt _[|F|J+1k _2'|F|j,k _|F|j—l,k

2 2
N
ok K gk Mw \] ag
R U
1 oe
. - )
(ka '(kj+1,k_kjk)_ Jk] (kjk_kj—l,k)
¢ M, J+ok ok
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3) —t* LSuewind g g Gj,k+l _Gj,k—l Lt '|:|G|j,k+1 _2'|G|j,k _|G|j,k—1
n

2 2
LIS
sk * _ sk MCX) \] 877
4) t -5,7K =t 'Re 5,7 F_; 8_0)
J 0n
F - _
(Tk] 1 (kj k+1 kjk)_(Tk] L '(kj,k _kj,k—l)
_ M, e i3
B Re ’ I
(Tj . '(wj,k+1_a)1k)_( 3 j . (a)Jk _a)j,k—l)
Jk+5 j,k—E

5)t™-M%j«

6) 1+ AQj, -

n sweep

0-At | © w0
1+¢ '{_(A_U—’_Rﬁ) _852

= R”HoAQ" —AQ" (D.3)

0.-Ar (0 . 92 o
1L (A-U+R. ) -2 _R" ||eq=AQ"
At (A.q)-t*-5, (U -q)+t" -5, (R, -q)-t"-5%-(R-q)= AQ"”

2 3 4 5

~{Q

The following notations are presented due to simplicity in derivations,
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0-At

T 144 1=AQ

1) a;,

2) g (n-q)=t A Vs

(A'q)j+1,k _(A'q)j—l,k _t '|:QA.q)j+1,k _Z'QA"q),’,k _QA'q)ij}
2

_ {3 j i}
&M 0
M, 0|3  o¢

Re of - a(\]p.qzj

0 ~ r 7/

J

S CRCA N CRUNCISCRORNE

Dividing the matrix into three parts,
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(5),.15) o
* MOO J i%,k P j+Lk
=t E r ] Qi
o (5.0
J j%,k P j+1k
Ugp
(5),. (5. G) °
. M J j+%,k J j—%,k Pk
+t - —=
i ° 5., (5)., 1)
i J j+%,k J j—%,k P ,k_
U,
(5.6 o
. M J ik \PJjak
e 2 r J ik
o (5.0
| J j—%,k P ik |
Uar
:t*'(_ugJP'qj+1,k+U§J'qj,k_UgJR'qj—Lk)
0
“lr. ) 0
. *Mwaag(k%))ql
t -55-(R§-q):t e O 5
Re 0¢& 0 —(F }/jq
af w p 2
4) T I
o[ (?k]'ql”{?kj‘(s‘f% ’
Re T r
0 5;(7”j-q2+5§(7”)5§q2
EIRCRCT
e M, P Jiak P Jix P Jiak
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" ° ). %)
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+t*~—M°° . P/ i P/ sk Qi
P j+Lk P j+Lk |
Rap
t*' Moo . p j+Llk p j-Lk

4-Re . (r] (FJ i
,0 j+Lk ,D j+lk |

Rg’JR :Rg'JP

=t '(R@P Ok Ry -0 —Rag 'qj—l,k)

5) ~t '552 '(R'q):_t* '(Rj+1,k 'qj'+1,k -2 Rj,k 'qj',k + Rj—l,k 'qj—l,k)

& sweep
I % B',kfl % |"k,1 * % *
-t 12 -t 12 U Ve S =t S0 U
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t 'JT_t et 'VqKP +t 'SqKP —t ‘Sj,k+1 “Ujka
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2 2
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2

Gj,k+1 _Gj,k—l N [|G|j,k+l - 2'|G|j,k _|G|j,k—1]+t** K
2

+t7 Mk -i-L-AQ?;1
1+¢ '
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n sweep

A A : :
—t*. levk —t". le'k U =1 Ry —t 'Ri—lyk]'qi‘l’k
+[| +1°- A|j,k +t Uy +U Ry +2:-7 Rj,k]'qjvk
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®
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APPENDIX E

Contour results for RAE2822 M=0.725, AoA=2.92 case

ABID K-EPS
i 7
| Level Cp
. 15 0991252
B 14 0.842164
= d ! 12 0893076
1 12 0.543980
11 0.3949
B 10 0.245812
L 9 0.095724
i 7 6 -0.052364
7 0201452
B a & 6 -0.35054
05 & 5 0499628
| 5 7 4 DB4B7I1E
3 0797804
- I 2 0946392
B 4/_\1 5 1 -1.09598
[ 9 //—ﬁi 3
0 142 q—_—_““‘m\
i 5
- ]
-05F g
= 9
ml L L l L L L l L L L l L L L L l L L L L l L L
-05 0 0.5 1 1.5

Figure 0.1 C, contours, Abid k-¢
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0.5

-05

CHIEN K-EPS

Level

15
14
13
12
1
10

— PRI L P MO0 00O

Cp

0.986578
0.833369
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0527852
0.374344
0.221835
0.0538265
-0.084182
-0.23718
-0.390193
-0.543207
-0.E9E216
-0.843224
-1.00223
-1.18524

Figure 0.2 C, contours, Chien k-¢

BALDWIN-LOMAX

05

-05

Level
15
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13
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1
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— b e (0D Q0O

-0.067339
-0.218285
-0.36923

-0.520176
0B71122
-0.822067
-0.973013
-1.12396

Cp
0.98928
0.638335
0.667359
0.536444
0.3854598
0.234552
0.083506565

Figure 0.3  C, contours, Baldwin-Lomax
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0.5
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Level
15
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= k) MO 00

0.0796174
-0.232017
-0.384417
-0.536816
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-0.841615
-0.994015
-1.14641

Cp
0.987179
0.83478
0.66238
0.529981
0.377581
0.225182
0.0727821

Figure 0.4 C, contours, Wilcox k-w

MENTER BSL

B 7
- |

Level
15
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1
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= kI e (0D 00O

-0.0654085
0.216109
-0.366809
-0.517509
-0.665209
-0.818909
-0.969609
-1.12031

Cp
0.989492
0.838792
0.688092
0.537392
0.396692
0.235992
0.0852916

Figure 0.5 C, contours, Menter BSL
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Figure 0.8  u; contours, Baldwin-Lomax
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Figure 0.9  u, contours, Wilcox k-w
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Figure 0.10 4, contours, Menter BSL
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Figure 0.11 k contours, Abid k-¢
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Figure 0.12 k contours, Chien k-¢
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Figure 0.13 k contours, Wilcox k-w
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Figure 0.14 k contours, Menter BSL
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Figure 0.15 k production contours, Abid k-¢
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Figure 0.16 k production contours, Chien k-
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Figure 0.17 k production contours, Wilcox k-w
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Figure 0.18 k production contours, Menter BSL
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Figure 0.19 k destruction contours, Abid k-
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Figure 0.20 k destruction contours, Chien k-¢
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Figure 0.21 k destruction contours, Wilcox k-w
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Figure 0.22 k destruction contours, Menter BSL
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