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Abstract

DECOMPOSITION TECHNIQUES IN ENERGY RISK

MANAGEMENT

Oktay Sürücü

M.Sc., Department of Financial Mathematics

Supervisor: Assist. Prof. Dr. Esma Gaygısız

September 2005, 109 pages

The ongoing process of deregulation in energy markets changes the market from

a monopoly into a complex one, in which large utilities and independent power

producers are no longer suppliers with guaranteed returns but enterprisers which

have to compete. This competence has forced utilities to improve their efficiency.

In effect, they must still manage the challenges of physical delivery while operating

in a complex market characterized by significant volatility, volumetric uncertainty

and credit risk. In such an environment, risk management gains more importance

than ever.

In order to manage risk, first it must be measured and then this quantified risk

must be utilized optimally. Using stochastic programming to construct a model

for an energy company in liberalized markets is useful since it provides a generic

framework to model the uncertainties and enable decisions that will perform well.

However, the resulting stochastic programming problem is a large-scale one and

decomposition techniques are needed to solve them.

Keywords: Energy markets, risk management, stochastic programming, decom-

position techniques.
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Öz

ENERJİ RİSKİ YÖNETİMİNDE DEKOMPOSİZYON

TEKNİKLERİ

Oktay Sürücü

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Esma Gaygısız

Eylül 2005, 109 sayfa

Enerji marketlerinde hala devam etmekte olan özelleştirme süreci, bu marketlerin

monopol yapısını daha kompleks hale dönüştürmektedir. Önceden kazançları

garanti olan büyük şirketler ve bağımsız enerji üreticileri bu değişimle birlikte

rekabet halinde olan girişimcilere dönüşmektedirler. Bu rekabet, şirketlerin ver-

imliliklerini artırmalarına zorlamaktadır. Fiziksel sevkiyatın yanı sıra; büyük

volatilite, hacimsel belirsizlik ve kredi riskiyle tanımlanan bir markette yer al-

manın zorluklarıyla da mücadele etmektedirler. Böyle bir ortamda risk yönetimi

evvelkinden çok daha fazla önem kazanmaktadır.

Riski yönetebilmek için ilk olarak riskin ölçümü yapılmalı ve bundan elde

edilen risk miktarı en uygun şekilde kullanılmalıdır. Özelleştirilmiş bir mar-

kette yer alan bir enerji firmasının modelini oluştururken stokastik programlama

kullanması, bu yöntemin belirsizlikleri modellemede iyi olmasından ve iyi sonuç

vermesinden dolayı doğru bir adım olacaktır. Fakat ortaya çıkacak problemin

genişliği sonuca ulaşmak için dekomposizyon tekniklerini gerekmektedir.

Anahtar Kelimeler: Enerji piyasaları, risk yönetimi, stokastik programlama, dekom-

posizyon teknikleri.
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Chapter 1

Introduction

In the world of business, all firms face a variety of risks, which affect their

financial performance and valuation. To stay alive and to improve itself, a firm

should consider these risks in depth. At this point, risk management for firms in

all business becomes a major subject. This is also supported by the recent surveys,

which showed that risk management is ranked by financial executives as one of

their most important objectives. The first step to manage risk is to quantify it via

risk measures in order to be able to adjust the portfolios of firms in a convenient

way. The choice of the risk measure is a crucial factor, since it determines in

which way extreme losses are avoided. However, only knowing the amount of

risk is not enough. In order to manage risk, quantified risk must be utilized

optimally. Firms generally measure their risk relative to their portfolios. In risk

management they either maximize expected return of their portfolio subject to

constraints on risk of it or minimize risk of the portfolio subject to constraints

on expected return of it.

When an energy company in liberalized markets is considered, risk manage-

ment becomes much more vital, since the company operates in a much more

complex market, where there is high volatility in terms of commodity prices and

traded volumes. Moreover lacking liquidity, tremendous volatility, non-normal

distributions and market incompleteness are further characteristics of energy mar-
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kets that differs it from financial markets. Being a major energy market, the

electricity market especially distinguishes itself by the transmission constraints

and the non-storability of electricity. Because of these characteristics that dif-

fer energy markets form financial ones, the risk management ideas developed for

financial markets are not directly applicable to them.

Beside this, a portfolio for an energy company may include the generation

facilities it owns other than financial instruments e.g. nuclear, hydro, wind,

gas and thermal plants. To be able to fulfill its obligations, which may be the

contracts that it sold, the company may add some other contracts (contracts of

other companies) to its portfolio from an energy market. Hence, the resulting

portfolio needs additional attention in term of risk management.

Portfolios of energy firms can be modelled via stochastic programming, since

it provides a generic framework to model these uncertainties and enable decisions

that will perform well in the general case. In stochastic programming uncer-

tain data is assigned a probability distribution and a mathematical programming

model is formed, whose successful solution will yield a decision that will outper-

form decisions based on deterministic data.

The size of a stochastic programming problem grows proportionally to the

number of possible realizations of the uncertain parameters. Since the decisions

are taken under uncertainty, it is usually advantageous to consider numerous pos-

sible scenarios over a large number of time periods. Thus, the resulting stochastic

program is a large-scale one and the solution of it is intractable. The only means

available to solve them is via decomposition. Decomposition refers to the strat-

egy of breaking up a large, difficult-to-solve problem into smaller, easier-to-solve

problems, such that the solutions to the decomposed problems can be used to

2



obtain the solution to the larger problem.

This thesis aims to study decomposition techniques to solve large scale stochas-

tic programming models constructed in order to manage risk of a firm in energy

markets.

In Chapter 2, detailed information about energy markets is introduced. In

particular, causes for deregulation, its effects on these markets and the charac-

teristics of energy prices are provided.

In Chapter 3, the subject of risk management, including risk measures and

risk management via optimization, is discussed with the aim of applying it to

energy markets.

In Chapter 4, four examples of energy models are presented in order to show

the structure of these models and to see how they can be solved.

In Chapter 5, stochastic programming, by which optimization problems under

uncertainty are modelled, and decomposition techniques that help to solve large

scale stochastic programming problems are introduced.

Finally, the conclusion is given in Chapter 6.
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Chapter 2

Energy Markets

Energy is one of the major vital points for business. The reason for this is the

extensive usage of it, which gives birth to the construction of markets for energy.

Energy markets all around the world are in change due to deregulation, causing

these markets to change exceedingly. To have a meaningful understanding, the

characteristics of energy markets before and after deregulation are considered in

this chapter.

Before deregulation, energy markets were monopoly markets, in which there

were no or little freedom for market consumers to chose their electricity suppliers,

for example. There were only one or few market players who could directly

influence the market, due to this monopoly structure of the markets. Thus, risk

management was often reducible to pure price risk management and at least the

major utilities were able to transfer the realized economic losses ultimately back

onto the consumer base. As a consequence, risk management issues demanded

less management attention in companies. The basic structure of an electricity

market before deregulation is shown in Figure 2.1.

Deregulation, one of the primal objective of which is to introduce competi-

tion in the wholesale market, takes place in energy markets in many parts of the

world. The changes in electricity markets were initiated by a realization that gen-

eration and distribution functions need not be monopolies, a feeling that public

4



Figure 2.1: Electricity market participants structure before deregulation.

service obligations are no longer necessary, the cost reduction potential of com-

petition, increased fuel availability and fuel supply stability, the development of

new technologies in power generation and information technology [23].

According to Lai [23], the competitive generation coming with deregulation

has four main advantages; cost saving, development of spot market, standardiza-

tion of market and innovation.

After deregulation, the structure of the markets has changed. There are many

market players, and consumers are able to chose their suppliers according to

their needs. Figure 2.2, which shows the electricity market participants structure

of Australia after deregulation, illustrates this situation. So, large utilities and

independent power producers are no longer suppliers with guaranteed returns but

enterprisers which have to compete. For example, a new management act became

law in Germany on 29 April 1998. Now, German industry as well as private

householders have the possibility of choosing their energy supplier for electricity

5



Figure 2.2: Market participants structure after deregulation (Australia).

and gas [27]. This competence has forced utilities to improve their efficiency. In

effect, they must still manage the challenges of physical delivery while operating

in a complex market characterized by significant volatility, volumetric uncertainty

and credit risk.

With deregulation, many energy markets have been established all around

the world and some major ones are introduced below. When it comes to the

situation in Turkey, to stabilize wholesale prices, a transition period program has

being applied until the period when energy prices will be totally determined in a

competitive environment. Two main scopes of this program are to guarantee the

safety of supply by giving opportunity to powerful firms to enter the market and

to grant enough time to market participants, so that they can accommodate the

competitive environment. At the end of this transition period, it will be possible

to establish a energy exchange, where the prices are totally determined by the

market, as in developed countries [4].
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2.1 Major Energy Markets

International Petroleum Exchange (IPE, London, UK)

A group of energy and futures companies founded the IPE in 1980 in London

and the first contract, for Gas Oil futures, was launched the following year.

Now, it is Europe’s leading energy futures and options exchange. The IPE

provides a highly regulated marketplace where industry participants use

futures and options to minimize their price exposure in the physical energy

market. Over $8 billion daily in underlying value is traded on the IPE [44].

New York Mercantile Exchange (NYMEX, New York,USA)

The New York Mercantile Exchange is the world’s largest physical com-

modity futures exchange and the preeminent trading forum for energy and

precious metals. The wide array of trading markets provided by the Ex-

change include futures and options contracts for crude oil, gasoline, heating

oil, natural gas, electricity, gold, silver, copper, aluminum, and platinum;

futures contracts for coal, propane, and palladium; and options contracts

on the price differentials between crude oil and gasoline, crude oil and heat-

ing oil, Brent and West Texas Intermediate crude oil, and various futures

contract months (calendar spreads) for light, sweet crude; Brent crude;

gasoline; heating oil; and natural gas [40].

Tokyo Commodity Exchange (TOCOM, Tokyo, Japan)

The Tokyo Commodity Exchange was established in 1984 and in 1999,

future trading on gas oil was started. Now, it has 10 listed commodities for

futures trading including gasoline, kerosene, gas oil and crude oil [41].
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Singapore Exchange (SGX, Singapore, Singapore)

Singapore Exchange Limited (SGX) is Asia-Pacific’s first integrated secu-

rities and derivatives exchange and was established in 1999, following the

merger of two established and well-respected financial institutions - the

Stock Exchange of Singapore (SES) and the Singapore International Mon-

etary Exchange (SIMEX). Besides security products, derivative products

including energy futures are traded in this exchange [42].

Nordic Power Exchange (Nord Pool, Norway)

Norway was the first of the Nordic countries to deregulate its power markets.

The Energy Act of 1990, formed the basis for deregulation in the other

Nordic countries. Nord Pool was established in 1993, and is owned by the

two national grid companies, Statnett SF in Norway (50%) and Affärsverket

Svenska Kraftnät in Sweden (50%). It is the world’s only multinational

exchange for trading electric power [43].

After the constructions of energy markets, the prices are no longer determined

by the regulator, but by the market according to demand and supply. There is

no correlation between quantity and price. For example, on Nord Pool, the

Norwegian power exchange, for one hour more than 100 MWh was treated for a

price of over 160 Norwegian crowns. Some hours later, it was possible to achieve

prices of less than 50 Norwegian crowns [27]. Thus, in a deregulated market, the

monetary expenses are determined by volatility of energy prices on the spot and

future exchanges. This forces the energy supplier as well as purchaser to learn

the characteristics of energy prices and act in a purposeful manner in the market

in order to safeguard favorable power prices. Thus, constructing a portfolio of

8



power contracts is a vital way to cope with unexpected market movements and

so to reduce the magnitudes of the risk. In this way, financial instruments, earlier

familiar from financial markets, have also appeared in these markets, such as

different types of swap, option, and combination of these instruments. A major

characteristic of energy derivative products is that a number of them cannot be

found in any other markets. For example, various volumetric options, which have

been developed to manage risk associated with meeting the demand in natural

gas or power, have no parallel in financial markets.

The main characteristic of energy sources like electricity, oil and gas is that

their volatility in terms of commodity prices and traded volumes, which is shown

in Figure 2.3. Especially electricity has exhibited enormous price volatility, which

is followed by natural gas and petroleum. This high volatility results in risk for

both suppliers and consumers. Some of the main reasons why there is such

enormous price volatility are:

• the imbalance between supply and demand: demand for energy in the mar-

ket changes very rapidly, for example the need for electricity is high during

summer due to cooling problems;

• political incidents;

• scarcity of energy sources: energy sources like oil and gas come only from

some part of the world;

• storage problems: unlike other physical commodity, energy can be stored

only in limited quantities;

• weather conditions: this is crucial to produce energy, for example, for a

9



Figure 2.3: Average daily price per MWh in NOK (Norwegian krone) at Noor
Pool

hydro plant to produce energy rain is the vital point.

Due to this high volatility of energy prices, the energy industry has been

considered as boom-bust business. Institutional investors’ holdings of energy

stocks have shrunk from 30% in the late 1980s to only 6.5% in 2000, which is the

result of highly unstable nature of energy sector earnings [21]. This high volatility

causes risk management to step into the energy business.

Although the discipline of financial engineering has developed, many tech-

niques for financial markets including commodity markets, most of these tech-

niques should not be simply applied to power markets because of the inherent

differences between energy and any other commodity (see Table 2.1).

The number of fundamental price drivers in energy markets are much more
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Issue In Money Markets In Energy Markets

Maturity of market Several decades Relatively new
Fundamental price drivers Few, simple Many, complex
Impacts of economic cycles High Low
Frequency of events Low High
Impact of storage and delivery; None Significant
the convenience yield
Correlation between short High Low, split personally
and long-term pricing
Seasonality None Key to natural gas

and electricity
Regulation Little Varies from little to

very high
Market activity (liquidity) High Low
Market centralization Centralized Decentralized
Complexity of derivative contracts Relatively simple Relatively complex

Table 2.1: Differences between money and energy markets [29].

than in the money markets. For example, unlike in money markets, the supply

side in energy markets concerns how to get the actual commodity besides the

storage and transfer problems. Each of energy participants deals with a different

set of fundamental drivers, which affect the behavior of energy markets, indeed

they cause extremely complex price behavior [29].

The impact of economic cycles, which can be measured by mean reversion, is

high in money markets, whereas it is low in energy markets. Mean reversion is the

process of a market returning its equilibrium level. Unlike energy markets, money

markets exhibit relatively weak mean reversion and the rate of mean reversion

appears to be related to economic cycles. Hence, it is possible to introduce the

state of economy to financial models by means of mean reversion. However, the

mean reversion in energy markets appears to be related to the time in which the

supply side of the market can react to events, or in which the events go away [29].

11



In energy markets, there are also two supply drivers, production and storage,

and they do not exist in money markets. When considering long-term effects,

expectations of market production capacity and cost need to be considered in

the long run. However, the technological improvements of drawing gas from the

ground, for example, can not be obtained from historical data, but the expectation

of it may be expressed by knowledgable traders in determining forward prices [29].

One of the reason why energy markets have much higher volatility than money

markets is the storage limitations. Electricity represents the extreme case of this

limitation issue. In fact, electricity can not be stored. It is possible for electricity

prices to reach levels in multiples of mean price levels. This may happen if all the

plants reach their maximum baseload and there is still need for electricity [29].

The correlation between short and long-term pricing is low in energy markets.

In fact, energy prices show a split personality, which is due to storage problems.

Pilipović, in his book ”Energy Risk” [29], states that: ”Short-term forward prices

reflect the energy currently in storage, while long-term forward prices exhibit the

behavior of future potential energy, i.e., energy in the ground.”

The usage of derivative contracts for industrial users is to keep plants running.

For example, a factory manager protects himself from paying the cost of shutting

down and restarting the factory in case there is high prices or lack of available

supply, by using derivative contracts. In this context, the net benefit minus the

cost for contracts may be defined as the convenience yield, which has a significant

role in energy markets.

Seasonality is another major subject in energy markets, especially for natural

gas and electricity, whereas it is irrelevant for money markets. For example,

heating oil is consumed highly during winter, which leads prices to show great

12



increase at that season and to return to their mean level during summer. An

example of energy asset which peaks during summer is electricity, due to its

widely usage for air conditioners at that season.

Energy markets are in the process of deregulation all around the world, and

continue to evolve in terms of theoretical sophistication, contract complexity and

standardization. Since they are relatively new markets, they suffer from lack of

historical price information, as well as relatively small volumes of market activity,

which is referred to as an illiquid market [29].

Unlike money markets, energy markets are highly decentralized, thus price

depends on location. For example, a megawatt of electricity is priced according to

delivery point, whereas the price of a stock in a money market is same everywhere.

Another difference between money and energy markets is the complexity of

derivative contracts. Needs of end users makes energy contracts to exhibit a com-

plexity of price averaging and customized characteristics of commodity delivery.

Thus the use of derivatives to hedge, which is introduced in the next chapter, is

also difficult and complex.

Summary

With the introduction of deregulation, energy markets have turned from

monopoly markets to free markets. Electricity, for example, is no longer just

a basic commodity to the public but also a trading commodity with the elec-

tricity market entering the picture. The main advantage of deregulation energy

markets is the increase in the choice of suppliers to the consumers. Market compe-

tition will cause the suppliers to provide quality services and competitive pricing.

The consumer of electricity, for example, will be expecting lower electricity bills

13



with the competitive pricing from the retailers and spot market. Prices are no

longer determined by the regulator, but by the market and especially electricity

shows enormous price volatility, which result in risk for both suppliers and con-

sumers. Furthermore, when an energy company which produces energy through

its hydro plants are considered, the risks that it deals with are plenty; weather

risk, volume risk, generational risk, etc. Thus, a great deal of attention should be

given to risk management in energy markets. However, the strategies from money

markets cannot be used in energy markets, due to their characteristic differences

explained in this chapter. This forces a risk manager to be much more careful

in energy markets. The next chapter concentrates mainly on the subject of risk

management, including risk measures and risk management via optimization.
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Chapter 3

Risk Management

Uncertainty, which means that what will happen is not known exactly, plays

a very important role in the world of finance, as it does everywhere. Since uncer-

tainty is involved, there is a possibility for a trader or for a firm to loose a great

deal of money, beside gaining a lot. A rational decision maker would like to take

some actions in order to avoid losing, which is done by risk management.

To be able to manage risk, it should be measured first. The choice of the

risk measure is a crucial factor, since it determines in which way extreme losses

are avoided. In section 3.1 risk measures; variance, semi-variance, Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR) are introduced. Risk management

is the process of achieving the desired balance of risk and return through partic-

ular trading strategies. This balance is achieved via using optimization, where

either expected return is maximized given a risk level or risk is minimized given

expected return. Section 3.2 deals with risk management via optimization.

3.1 Risk Measures

A risk measure, say ρ, is a mapping between the space X of random variables

and a non-negative real number, i.e., ρ : X → R+ ∪ {0}. For example, consider

two assets whose returns are X1 and X2, and their correspondence risk measures

15



are ρ1 = ρ(X1) and ρ2 = ρ(X2). It is possible to compare these assets according

to their respective risk value through ρ1 and ρ2.

Any acceptable risk measure, ρ, must satisfy the following properties:

• Positive homogeneity: ρ(λx) = λρ(x) for all random variables x and all

positive real numbers λ.

• Subadditivity: ρ(x + y) ≤ ρ(x) + ρ(y) for all random variables x and y.

It can be proved that any positively homogeneous functional ρ is convex if and

only if it is subadditive (ρ(λx + (1− λ)y) ≤ ρ(λx) + ρ((1− λ)y) = λρ(x) + (1−
λ)ρ(y)).

Furthermore, if the following properties are satisfied:

• Monotonicity: x ≤ y implies ρ(x) < ρ(y) for all random variables x and y;

• Transitional invariance: ρ(x + αr) = ρ(x) − α for all random variables x

and real numbers α, and all riskless rates r,

then ρ is a coherent risk measure, which is introduced by Artzner et al. [3].

Through this section, risk measures that can be used in the energy sector will

be introduced and discussed whether they are appropriate or not. The first risk

measure to be considered is variance.

3.1.1 Variance

The mean-variance portfolio problem (Markowitz [25]) is the standard portfo-

lio optimization approach in the traditional financial markets. In this approach,

the portfolio variance is minimized subject to constraint on the expected return.
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The variance of a random variable Y is defined as follows

V := p1(y1 − E)2 + p2(y2 − E)2 + ... + pN(yN − E)2,

where Y is assumed to have finite number of values y1, y2, ... , yN and the proba-

bility that Y = yi is pi (i = 1, 2, ... , N). Furthermore, the notation E stands for

the expected value of Y , which is defined as follows

E := p1y1 + p2y2 + ... + pNyN .

The return on a portfolio consisting of M assets is a weighted sum of M

random variables, R1, R2, ... , RM . Let µi be the expected return of Ri and hi

the weight of the of i-th asset in the portfolio such that
∑M

i=1 hi = 1. Then, the

expected return of the portfolio is

E =
M∑
i=1

hiµi

and the variance is

V =
M∑
i=1

M∑
j=1

σijhihj,

where σij is the covariance between i-th and j-th assets and defines as

σij := E{ [Ri − E(Ri)] [Rj − E(Rj)] }.

The advantage of using the variance for describing the risk component of a

portfolio, is the simplicity of the computation. However, variance is inappropri-

ate to describe the risk of low probability events and mean-variance decisions are
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usually not consistent with the expected utility approach, unless returns are nor-

mally distributed. Furthermore, variance is a symmetric measure, i.e., variance

includes both up and down deviations from the expected return of the portfolio.

Rational investors are interested in minimizing downside risk, since only downside

risk is relevant to an investor. In this point, many asymmetric risk definitions

are made.

3.1.2 Semivariance

One of the most commonly used downside risk measure is semivariance, which

has two types, as below-mean semivariance (SVm), in which the returns that are

greater than the expected return are excluded, and below-target semivariance

(SVt), in which the returns that are greater than a target return are excluded.

In mathematical notations,

SV m =
1

K

K∑
t=1

max[0, (E −Rt)]
2,

SV t =
1

K

K∑
t=1

max[0, (tar −Rt)]
2,

where K is the number of observations, E is the expected return (mean), tar is

the target rate of return and Rt is the asset return during time period t.

The main disadvantage of semivariance over variance is its computational

tractability, since the semivariance optimization models using a semicovariance

require twice the number of data inputs than the variance model.

Another famous non-symmetric risk measure is Value-at-Risk (VaR), which

is widely used in portfolio optimization.
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3.1.3 Value-at-Risk

It is defined to be the maximum loss of a portfolio over a given period of time,

with a given level of confidence, i.e., V aRβ of a portfolio is the lowest amount α

such that, with probability β, the loss will not exceed α in a given period of time.

Let the random variable l(x, y) ∈ R be the loss function of a decision variable

x ∈ Rn, which can be seen as a portfolio, and the random vector y ∈ Rm, which

stands for uncertainties that can affect the loss, with distribution p(y). The V aRβ

associated with x and any specified probability level β ∈ (0, 1) is given by

V aRβ(x) := min{α ∈ R :

∫

l(x, y)≤α

p(y)dy ≥ β}.

Figure 3.1: Calculating VaR from portfolio loss distribution
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This definition of VaR is equivalent to the following one:

V aRβ(X) = qβ(−X),

where qβ(X) is the β-quantile of X and defined as follows

qβ(X) := inf{x ∈ R : P [X ≤ x] ≥ β}.

VaR satisfies all the conditions to be a coherent risk measure, but subaddi-

tivity, hence it is not a coherent measure of risk. In fact, the notion of coherent

risk measures is introduced by Artzner et al. [3] as a response to the deficiencies

of VaR. Subadditivity condition is satisfied by VaR for the special case where

the joint distribution of return is elliptic. Indeed, VaR is not an acceptable risk

measure because of its following properties:

• the losses exceeding VaR are not measured,

• at different confidence levels, conflicting results may be provided,

• it is not sub-additive, which means it is not a coherent risk measure (this

lack of property implies that portfolio diversification may lead to an increase

of risk, which is totally wrong),

• it is not convex, so it is impossible to use VaR in optimization problem,

• sensitive when applied to discontinuous distributions,

• it has many local extremes leading to unstable VaR ranking [35].

Despite of these problems, VaR is widely used. The reasons for this are:
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• it is a compact representation of risk level,

• it applies to any financial instrument and it is expressed in the same unit

of measure, namely in lost money,

• it measures downside risk.

In the search for a suitable alternative to value-at-risk, Conditional Value-at-

Risk has been characterized as the smallest coherent risk measure to dominate

value-at-risk.

3.1.4 Conditional Value-at-Risk

CVaR, developed by Rockafellar and Uryasev [30], is closely related to VaR

and defined as the expected value of the losses exceeding VaR, for continuous

distributions. For general distributions, including discrete distributions, CVaR is

defined as the weighted average of VaR and losses strictly exceeding VaR, i.e.,

CV aRβ is the conditional expectation of losses above V aRβ. In mathematical

notations,

CV aRβ(x) :=
1

1− β

∫

l(x, y)≥V aRβ(x)

l(x, y)p(y)dy,

where again l(x, y) is the loss associated with the decision vector x ∈ Rn and the

random vector y ∈ Rm, and p(y) is the underlying probability distribution of y.

Rockafellar et al. [30] showed that the above definition for CVaR can be

characterized by the following convex optimization problem:

CV aRβ(x) = min
(x,α)∈X×R

Lβ(x, α),
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Figure 3.2: Calculating CVaR from portfolio loss distribution.

where Lβ(x, α) is given by

Lβ(x, α) := α +
1

1− β

∫

y∈Rm

[l(x, y)− α]+p(y)dy,

where

[ t ]+ :=





t, if t > 0 ;

0, otherwise.

The above integration can be approximated by sampling the probability dis-

tribution of y according to its density p(y), say y1, y2, ..., yK . Then, the corre-

sponding approximation to Lβ(x, α) is given by

L̃β(x, α) := α +
1

K(1− β)

K∑

k=1

[l(x, yk)− α]+.

Unlike VaR, CVaR is sub-additive and convex. Moreover, it satisfies all the

condition to be a coherent risk measure. Due to these powerful properties of it,
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CVaR is the most widely used risk measure in energy markets.

Summary

Variance is one of the simplest risk measures used in financial markets. How-

ever, it is inconvenience when describing the risk of low probability. Furthermore,

its property of being symmetric causes risk managers to look for another mea-

sure, since they are interested in minimizing only the downside risk. Semivari-

ance, which is a modified version of variance, is a downside risk measure, but it is

difficult to compute. Another famous and simple downside risk measure is Value-

at-Risk (VaR). But it is also not a suitable measure to use in energy markets.

First of all, according to VaR, portfolio diversification may lead to an increase of

risk due to its lack of sub-additivity property. Since it is not sub-additive, it is

also not convex, thus not coherent. Moreover, VaR may provide conflicted results

at different confidence levels. Another major disadvantage of VaR is that it does

not measure the losses exceeding itself, i.e., the losses that might be seen in the

tail. A suitable alternative for VaR may be Conditional Value-at-Risk (CVaR),

which is a coherent risk measure. CVaR also quantifies the losses that might be

seen in the tail. Unlike VaR, CVaR is convex, so it can be used in optimization

problems.

Next section deals with risk management via optimization, in which the quan-

tified risk by a risk measure is either the objective function to be minimized or a

constraint to be satisfied.
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3.2 Risk Management via Optimization

In the world of finance, all firms construct their own portfolios and adjust

it according to their risk perspectives. A Risk managers considers the available

assets and decide which ones to buy and to sell. While doing that, he takes the

probability of losses into consideration. Different risk measures can be used to

quantify losses. The choice of the risk measure depends on the advantages and

disadvantages of it in the business that the company does.

In general, portfolio analysis is mainly the process of measuring and achieving

the desired risk and return. In classical portfolio theory, there are mainly three

subjects to consider: expected return of the portfolio, the risk in that return,

and the quantity of each instrument in that portfolio. The latter is the choice

variable. Portfolio optimization is simply the search for a vector of quantities of

instruments that satisfies a number of constraints and optimizes the objective.

When optimizing a portfolio, the objective is either to minimize the risk subject

to a constraint on the expected return or to maximize the expected return subject

to a constraint on the risk level.

The main feature of portfolio optimization models is the uncertainties they

involve. These uncertainties concern the future level of interest rates, yields of

stock, exchange rates, inflation, future demand, liabilities, weather conditions,

production dispatch, etc..

In this section, different optimization models to manage risk are considered.

The first model, best hedge, is an example of hedging for an electricity company.

In this example, the concept of hedging and some derivatives are given firstly

in order to make the following model understandable. After this example opti-
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mization models to manage risk using risk measures variance, Value-at-Risk and

Conditional Value-at-Risk are given.

3.2.1 Hedging in Electricity Markets

In a competitive electricity market, some generators selling their power in

spot markets face the risk of insufficient spot prices to cover generation costs.

On the other hand, consumers face the risk of price variability. Finally, power

marketers sell electricity to both wholesale and retail consumers, often at fixed

prices. Marketers who buy on the spot market face the risk that the spot market

price could substantially exceed fixed prices specified in contracts. Electricity

futures and other electric rate derivatives help electricity generators, consumers,

and marketers hedge price risk in a competitive electricity market. Other electric

rate derivatives include options, price swaps, basis swaps and forward contracts.

Futures and options are traded on an exchange where participants are required

to post margins to cover potential losses. Other hedging instruments are traded

in the ”over-the-counter” (OTC) market [33].

Futures contracts are firm commitments to make or accept delivery of a spec-

ified quantity and quality of a commodity during a specific month in the future

at a price agreed upon at the time the commitment is made. The buyer, known

as the long, agrees to take delivery of the underlying commodity. The seller,

known as the short, agrees to make delivery. Only a small number of contracts

traded each year result in delivery of the underlying commodity. Instead, traders

generally offset (a buyer will liquidate by selling the contract, the seller will liq-

uidate by buying back the contract) their futures positions before their contracts

mature. The difference between the initial purchase or sale price and the price of
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the offsetting transaction represents the realized profit or loss.

There are two types of options, calls and puts. A call gives the holder, or

buyer, the right but not the obligation to buy the underlying commodity at a

specific price up to a certain time. A put gives the holder the right, but not the

obligation to sell the underlying commodity at a specific price up to a certain time.

A call is purchased when the expectation is for rising prices; a put is bought when

the expectation is for neutral or falling prices. Furthermore, options on future

contracts are also available, where the underlying commodity is a specified future

contract.

The basic idea of hedging is to reduce price risk by taking opposite positions

in the spot and derivatives markets at the expense of potential reward. For

example, a trader, who takes short position in spot market for electricity, should

take long position in futures market. When the spot price increases, the profit of

the trader will decrease in the spot market, but his profit in the futures market

will increase, since future prices exhibit same direction of movement with spot

prices. Consequently, his loss from the spot market is decreased due to his gain

from the futures market. With a perfect hedge, the loss and the gain are equal,

so the total loss is zero. However, perfect hedges are not achievable in electricity

markets due to heavily incompleteness characteristic of them. Instead, one may

try to find the best possible hedge, which is a hedge that minimizes the risk,

under some constraint on the expense of potential reward. Being an appropriate

one for electricity markets, CVaR can be used as the measure of risk. Now, the

optimization problem is to find the hedge that minimizes the risk, in terms of

CVaR under the constraint that the expected return is greater or equal to some

threshold R, which is put in order to assure that the expense of reward is not too
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high. The mathematical expression of the problem is as follows:

min
x,z,α

α +
1

K(1− β)

K∑

k=1

zk,

subject to zk ≥ l(x, yk)− α, zk ≥ 0, k = 1, ..., K, (3.2.1)

− 1

K

K∑

k=1

l(x, yk) ≥ R,

where x ∈ Rn, z ∈ RK and α ∈ R. The contracts to be hedged xh are held fixed

and the other contracts x/xh are the decision variables to be chosen, such that

the best hedge is found.

The best hedge is actually a small scale portfolio optimization, where typically

only a part of the whole portfolio is considered, namely, the contracts that are

to be hedged. In the following subsections optimization models to manage risk,

where the whole portfolio is in consideration, are introduced.

3.2.2 Mean-Variance Portfolio Optimization

Markowitz [25] developed mean-variance model for portfolio optimization in

1952. He minimized the portfolio variance subject to a constraint on the expected

return in his model, which is:

Minimize
M∑
i=1

M∑
j=1

σijmimj,

subject to
M∑

j=1

rjmj ≥ γM0, (3.2.2)

M∑
j=1

mj = M0,

0 ≤ mj ≤ uj, j = 1, 2, ... ,M,
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where M is the number of assets in the portfolio, σij is the covariance between

i-th and j-th asset, mi is the amount of money invested in the i-th asset, ri is the

expected return of the i-th asset, γ is a parameter representing the minimal rate

of return required by the investor, M0 is the initial wealth and uj is the maximum

amount of money which can be invested in the j-th asset. Markowitz [25] used

this single stage model to derive an efficient frontier where every portfolio on

the frontier maximizes the expected return for a given variance or minimizes the

variance for a given expected return. This is usually called the EV criterion

where E is the expected return and V is the variance of the portfolio.

The generalization of this model to multi-period is studied by Duan Li et al.

[24]. They again minimized the portfolio variance subject to a constraint on the

expected return and an additional constraint on the reallocation of the wealth

among the assets at the beginning of each time period.

3.2.3 Portfolio Optimization via VaR

There are also many examples of portfolio optimization models that maxi-

mizes expected return given a level of risk in literature. Kleindorfer et al. [22]

considered multi-period VaR constrained portfolio optimization and its applica-

tion to the electric power sector. They stated that: ”The impact of multi-period

risk constraints covering a period on decisions affecting cash flows during shorter

periods of time is important for energy management since accounting periods are

typically longer than the operational periods over which trading decisions must

be taken”. For this reason, they used an approach, which they called as equally

weighted or uniform disaggregation. In this approach, they take the annual VaR

and apply it equally to sub-intervals of the year, which gives the VaR for a day,
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for example, as V aR/365. Furthermore, to capture the multi-period pooling ef-

fect of daily decisions they assumed that the annual cashflows are the sum of

365 daily cashflows and that each of these daily cashflows is normally distributed

with mean µd and standard deviation σd. Then, the typical VaR constraint has

the following structure:

Pr{Xt ≥ −V aRd} = γ = Pr{Y =
365∑
t=1

Xt ≥ −V aRa},

where Xt denotes the daily cashflow, γ is the risk parameter and Y is the annual

cashflow from the portfolio. V aRd and V aRa are defined as

V aRd := z(γ)σd − µd, V aRa := z(γ)σa − µa

with

σd =
σa√
365

, µd =
µa

365
,

where z(γ) is the z-score of the standardized normal random variable.

They also relaxed the normality assumption of VaR to adapt other distri-

butions with fat-tail characteristics and introduced regularity assumption. This

regularity assumption states that for any specified parameter vector (µ, σ, γ),

where µ is the mean, σ is the standard deviation of the return function (Π) and

γ is the confidence level for VaR, there is a real number h(µ, σ, γ) such that

Pr{Π ≤ µ − h(µ, σ, γ)} = 1 − γ. If this regularity assumption is satisfied, then

the portfolio‘s VaR is

V aR(Π) = h(µ(Π), σ(Π), γ)− µ(Π).
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The portfolio considered here is constructed with the available instruments in the

market, such as puts, calls, forward, etc., denoted by Q and the random variable

for demand at time t by Dt and the random variable for spot price at time t

by Pt. Using these assumptions and notations the VaR-constrained problem for

T -period can be stated as follows

maximize E{Π(Q,D, P )} = E
{ T∑

t=1

Πt(Q, Dt, Pt)
}

= µ(Q,D, P ) (3.2.3)

subject to
T∑

t=1

E
{

Πt(Q,Dt, Pt)
}

+ V aR0 ≥ h(µ((Q, D, P )), σ((Q,D, P )), γ),

where σ(Q,D, P ) =
(
V AR

[ ∑N
t=1 Πt(Q,Dt, Pt)

])1/2
and V aR0 is the desired an-

nual constrained VaR level at confidence level γ. After constructing the problem

as above, Kleindorfer et al. [22] characterize the efficient frontier for such prob-

lems.

3.2.4 Portfolio Optimization via CVaR

Doege et al. [13] constructed an optimization model using the risk measure

Conditional Value-at-Risk (CVaR). The main structure of this model is as follows:

maximize E[−l(x, Y )]

subject to CV aRβ(x) ≤ C, (3.2.4)

x ∈ X.

The random variable l(x, Y ) denotes the loss function of a portfolio x and a

given random vector Y representing the future values of stochastic variables.
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Furthermore, C is the given upper bound of CVaR and X is the set of all feasible

portfolios. Here, CVaR is calculated using the loss function, therefore C can be

viewed as an upper bound on the loss function in this context. If J scenarios are

generated with realizations w1, ... , wJ of the random variable Y , the above model

is equivalent to the following one:

maximize − 1

J

J∑
j=1

l(x,wj)

subject to α +
1

(1− β)J

J∑
j=1

zj ≤ C,

zj ≥ l(x,wj)− α j = 1, 2, ... , J,

α ∈ R, x ∈ X, zj ≥ 0 j = 1, 2, ... , J.

The above problems of optimization under uncertainty can be reformulated

as stochastic programming models.

Summary

Portfolio optimization, which is mainly the process of measuring and achiev-

ing the desired risk and return, is the main objective of risk management. While

optimizing a portfolio the measure by which risk is quantified should be carefully

chosen. The choice depends on the advantages and disadvantages of the mea-

sure in the business that the company does. In this chapter, different type of

optimization models for different choices of risk measures are presented.

In the next chapter, four examples of energy models, which are constructed

to optimize the portfolios of some energy companies, are introduced.
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Chapter 4

Examples of Risk Management

Models in Energy Markets

In this chapter, four examples of optimization models in energy markets are

provided. The first example, introduced by Sen et al. [31], considers a power

optimization model that is intended as a decision aid for scheduling and hedging

(DASH) in the wholesale power market. The methodology used by Sen et al. [31]

is based on a stochastic programming model that selects portfolio positions that

perform well on a variety of scenarios generated through statistical modelling

and optimization. Sen et al. [31] used nested column generation decomposition

method to solve the resulting large scale optimization problem.

The second example, in which the problem of a supplier is considered, is

given by Takriti et al. [36]. Since demand is not known in advance, the supplier

constructs several demand forecasts and associates a set of possible probability

measures with these forecasts. Considering the worst-case probability distribu-

tion, he then maximizes the expected profit. The resulting problem is a minimax

problem and is solved by branch-and-cut technique.

The third example considers a model for the problem of portfolio optimization

of energy contracts under point of view of a generating company and is given by

Marzano et al. [26]. In this model, Conditional Value-at-Risk is used as a risk
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measure and added to the constraint set of the problem to limit the risk acceptable

by the company.

In the last example, which was introduced by Guigues et al. [17], Value-at-

Risk approaches are applied on the problem of yearly electric generation manage-

ment. The same notations as in these four papers are used here for convenience.

4.1 Example I

In the example by Sen et al. [31], decision aid for scheduling and hedging

(DASH) model for power portfolio optimization is introduced. Sen et al. [31]

state that: ”this model provides a tool that helps decision-makers coordinate

production decisions with opportunities in the wholesale power market.”

The model is constructed in such a way that the financial traders reevaluate

their power portfolio, including contracts from electricity and gas markets, at

the start of each month. Furthermore, while prices in the electricity market

vary on an hourly basis, time is partitioned into two, as on-peak period, which

cover sixteen hour a day, and off-peak period for the rest eight hour. Another

assumption made is that the forward contracts are monthly, so that planning for

period t refers to some month t in the future. Although, the time scale for spot

prices can be hourly, for computational ease, the spot market is treated on a daily

basis, allowed to fluctuate according to the on-peak and off-peak periods.

For scenario generation procedures, forward prices for the preceding year are

available as hourly quotes which are transformed into on-peak and off-peak av-

erage prices. The notation πτκe is used for forward prices, where π is the price

and τ ∈ {1, 2, ..., 52}, κ ∈ {1, 2, ..., N} (N denotes the last week in which delivery
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will happen) and e ∈ {on, off} denotes the contract week, delivery week and

segment, respectively. For example, π1,8,on is the price ($/MWh) on January 7th

(i.e., end of first week) for on-peak power delivery starting on March 1st. How-

ever returns are used to predict prices, i.e., rτ,κ,e = πτ+4,κ,e−πτ,κ,e

πτ,κ,e
, where τ + 4

denotes the next month’s contract, because of the assumption that there are four

weeks in a month. Now, a discrete scenario tree may be formed by grouping

returns into subsets for each period and modelling the return process as one that

allows probabilistic transitions from one subset to another, over time. For ease

of computation, two subsets in each period are considered, which are high and

low return states. A sampling based procedure which is guided by the recent

observations of the return series is adopted to assign high and low values for the

return states. The nominal value which is assigned to each state is the median of

the corresponding group of that period. Not to overlook extreme events, a combi-

nation of medians and extreme values is used. The precise manner, in which one

or the other is chosen depends on a heuristic guided by market conditions prior to

running the model. Whenever heuristic produces two nodes that are represented

by medians, equal conditional probabilities are used and whenever it produces an

extreme value for one path, a conditional probability of 1
4

is associated with that

path.

Another assumption made on gas and electricity returns is that they are per-

fectly correlated so that a scenario obtained from the electricity forward return

tree generates a similar scenario from the gas forward return tree [31]. Although

forward prices are arranged on a monthly basis, spot prices must be modelled on

a daily basis, as on-peak and off-peak prices. The following formulation is used

for spot prices during a delivery month: rp
e,d,τ,w = rf

e,t,w + σe,tzd,t,w, where w is
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the node number of the forward scenario tree, σe,t is the standard deviation of

spot returns and rf
e,t,w is the daily equivalent of the forward return on node w for

month t.

With these settings, the model formulation is presented in two parts, which

are the financial problem and generation costing problem.

4.1.1 The Financial Problem

In this section, the notation used is introduced, after which constraints for

this problem are presented.

Notations

• α : maximum liquidity limit coefficient,

• T : number of periods,

• P : regulated power price,

• Jt : the number of segments in period t,

• ξ : {on-peak, off-peak},

• He : hours of one on/off peak segment (He = 16h for e =on-peak and

He = 8h for e =off-peak),

• p(j) : peak status (on/off) of segment j,

• Y L0te : power forward in long position for delivery period t, peak e held

initially,
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• Y S0te : power forward in short position for delivery period t, peak e held

initially,

• Y G0t : gas forward for delivery period t held initially,

• PTt : profit target for period t,

• PPτte : price of energy forward for delivery period t, peak e at contract

period τ ,

• PGτt : price of gas forward for delivery period t, at contract time τ ,

• PStj : price of energy in spot market in period t, segment j,

• Dtj : electricity demand in period t, segment j,

• FPτte : power forward for delivery period t, peak e, signed at contract period

τ ,

• FP
+(−)
τte : power forward in long (short) position for delivery period t, peak

e, signed at contract period τ , an upper bound is imposed on this variable,

• FGτt : gas forward in long position for delivery period t, signed at contract

period τ ,

• Y Pτte : total power forward for delivery period t, peak e held at contract

period τ ,

• Y P
+(−)
τte : total power forward in long(short) position for delivery period t,

peak e held at contract period τ ,

• Y Gτt : total gas forward for delivery period t held at contract period τ ,
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• SPtj : power exchanged with spot market in period t, segment j (positive

for purchase and negative for sale),

• ZPte : total power forward cost for delivery period t, peak e,

• ZGt : total gas forward cost for delivery period t,

• Ctj : total generation cost in period t, segment j.

Constraints

FPτte = FP+
τte − FP−

τte, (4.1.1)

Y Pτte = Y P+
τte − Y P−

τte, (4.1.2)

Y P+
τte = Y P+

(τ−1)te + FP+
τte, (4.1.3)

Y P−
τte = Y P−

(τ−1)te + FP−
τte, (4.1.4)

Y Gτt = Y G(τ−1)t + FGτt, (4.1.5)

∑

t∈[τ,T ]

FP+
τte = α

∑

t∈[τ,T ]

Y P+
(τ−1)te, (4.1.6)

∑

t∈[τ,T ]

FP−
τte = α

∑

t∈[τ,T ]

Y P−
(τ−1)te, (4.1.7)

ZPte =
Jt

2

∑

τ∈[1,t]

PPτte FPτte He t ∈ {1, 2, ..., T}, (4.1.8)

ZGt =
∑

τ∈[1,t]

PGτt FGτt t ∈ {1, 2, ..., T}, (4.1.9)
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∑

j∈[1,Jt]

[(Dtj P − SPtj PStj)Hp(j) − Ctj]−
∑

e∈ξ

ZPte ≥ PTt t ∈ {1, 2, ..., T},

(4.1.10)

where τ ∈ {1, 2, ..., T}, t ∈ {τ, τ + 1, ..., T}, e ∈ ξ for all the constraints above, if

any other specification is not indicated.

Constraint (4.1.3) balances power forward in long position, (4.1.4) in short

position and (4.1.5) balances gas forward, all at period τ . Constraint (4.1.6) puts

limit on maximum liquidity for long position and (4.1.7) for short position, so

they provide a way to control the extent to which a portfolio is allowed to change

from one period to the next one. Constraints (4.1.8) and (4.1.9) gives the total

power and gas cost for delivery period t, respectively. Finally, constraint (4.1.10)

controls the monthly profit target. If this last constraint cannot be satisfied, a

penalized objective function is used, which is done by including the target within

the objective function via a penalty term.

4.1.2 The Generation Problem

In addition to the previous ones, some new notation is used for the generation

problem.

Notations

• I : the set of generators,

• d : index of day,

• j(d) : indices of the two segments associated with day d,

• t(d) : the period associated with day d,
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• ML : maximum acceptable daily loss,

• Gas : the set of gas generators,

• Coal : the set of coal generators,

• Nuc : the set of nuclear generators,

• CPt : coal price for period t,

• NPt : nuclear fuel price for period t,

• Qi : maximum generation capacity of generator i,

• qi : minimum generation capacity of generator i,

• Li : minimum up time requirement for generator i,

• li : minimum down time requirement for generator i,

• Fi(x) : consumption function of fuel for generation of x due to generator i

(Fi(x) = ai + bix, where ai and bi are parameters),

• Witj : scheduled outage (Witj = 0, if outage is scheduled in period t, segment

j for generator i; otherwise Witj = 1),

• w̄itj : forced outage (w̄itj = 0, if outage is forced in period t, segment j for

generator i; otherwise w̄itj = 1),

• TGtj : total generated power in period t, segment j,

• Gitj : power generated by generator i in period t,segment j,
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• Uitj : operation decisions for generator i in period t, segment j (Uitj = 1, if

generator i is on in period t, segment j; Uitj = 1, otherwise),

• SGtj : consumption of gas in period t, segment j,

• SCtj : consumption of coal in period t, segment j,

• SNtj : consumption of nuclear fuel in period t, segment j,

Constraints

Y Ptte + SPtj + TGtj = Dtj, (4.1.11)

Y Gtt =
∑

j∈[1,Jt]

SGtj, (4.1.12)

SGtj =
∑

i∈Gas

Fi(Gitj), (4.1.13)

SCtj =
∑

i∈Coal

Fi(Gitj), (4.1.14)

SNtj =
∑

i∈Nuc

Fi(Gitj), (4.1.15)

Ctj =
ZGt

Jt

+ NPt SNtj + CPt SCtj, (4.1.16)

TGtj =
∑
i∈I

Gitj, (4.1.17)

qi Uitj ≤ Gitj ≤ Qi Uitj, (4.1.18)

Uitj − Uit(j−1) ≤ Uitτ τ ∈ {j + 1, ..., min(j + Li − 1, Jt)}, (4.1.19)

Uit(j−1) − Uitj ≤ 1− Uitτ τ ∈ {j + 1, ..., min(j + li − 1, Jt)}, (4.1.20)
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Uitj ≤ Witj, (4.1.21)

Uitj ≤ w̄itj, (4.1.22)

∑

j∈j(d)

[(Dtj P − SPtj PStj)Hp(j) − Ctj]−
∑

e∈ξ ZPte

Jt/2
+ ML ≥ 0 ∀d, t = t(d),

(4.1.23)

where t ∈ {1, 2, ..., T}, j ∈ {1, 2, ..., Jt}, e = p(j), i ∈ I for all the constraints

above.

Constraint (4.1.11), where Y Ptte involves an exchange of electricity (i.e., the

net physical amount of electricity exchanged) in month t, stands for the demand-

generation-forward-spot relationship, (4.1.12) gives total gas consumption for pe-

riod t. Constraints (4.1.13), (4.1.14) and (4.1.15) show the gas, coal and nuclear

fuel consumption for period t, segment j, respectively. Constraint (4.1.16) gives

the generation cost for period t, segment j, (4.1.17) gives the total generated

power and (4.1.18) the operating range for each generator. Minimum up- and

low-time requirements are given in constraints (4.1.19) and (4.1.20), respectively.

(4.1.21) stands for the scheduled and (4.1.22) for the forced outage. Finally,

(4.1.23) is the maximum daily loss constraint, which is imposed in order to provide

a measure of risk control on the decisions. When the target ML is unattainable,

the model may become infeasible. In such instances, the user may include such

a measure within a penalized objective function for generation problem. Thus,

the two constraints, (4.1.10) and (4.1.23), are risk constraints, which are based

on profit targets and failure to meet these targets determines the extent of loss.

The objective function for the generation problem is as follows

max
∑
t,j

[(Dtj P − SPtj PStj)Hp(j) − Ctj]−
∑
t,e

ZPte. (4.1.24)
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This objective function is scenario dependent, thus it reflects the profit/loss of the

spot market activity, as well as the cost of power generation under one scenario.

By weighting scenarios by their respective probabilities, one can maximize the

overall expected profit, which is the complete objective function.

To solve this stochastic programming model, Sen et al. [31] decomposed

this programm into interrelated optimization problems which are motivated by

a nested column generation (i.e., Dantzig-Wolfe) type method. The autors made

several experimental tests to study the robustness of the approach. The exper-

imental evidence suggests that the stochastic programming approach provides

a powerful and robust tool for scheduling and hedging in wholesale electricity

markets.

4.2 Example II

The example given by Takriti et al. [36] considers a power producer that is

interested in selling its short-term excess capacity in the form of firm contracts

as the producer. In a firm contract, the maximum amount of power C, known

as capacity, that can be delivered during a single time period is specified. The

buyer of the contract has the right but not the obligation to consume an amount

of power in the range [0, C] for each time period. The producer charges an initial

fee, which is for issuing the contract and reserving the needed capacity. This

initial fee is a function of the reserved capacity and is denoted by r̄. According

to the total consumption of power over the contract duration, the producer gets

another charge, which is known as energy charge and denoted by f(dt), where t

is the time period and dt is the demand at that period. Excess capacity that the
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producer is willing to sell is often a result of the conservative planning of electric-

power generators in anticipation of existing demand obligations, also known as

the native load. The producer’s problem consists of selecting bids to maximize its

profit given the uncertain nature of the native load as well as that of demand of

the received bids. Demand uncertainty is modelled by scenarios, which represent

possible future demand patterns. While remaining feasible for each scenario,

an optimal production schedule is calculated by minimizing the average cost of

operating the system. Due to lack of historical data, to construct the scenario

tree and assign the associated probabilities with its nodes, expert opinions, which

may differ greatly from one to another, are needed. For example, assume that

the problem is to maximize the expected profit over three future scenarios. The

associated probabilities for the three scenarios according to the first expert is

p1 ≥ p2 ≥ p3, and according to the second one is p2 ≥ p1 and p2 ≥ p3. Then,

the set of feasible probabilities can be identified as p1 = p2 = π and p3 = 1− 2π,

where π is a parameter satisfying 1/3 ≤ π ≤ 1/2. Alternatively, p ∈ P , where

P = {(p1, p2, p3) : p1 = p2 = π, p3 = 1 − 2π, 1/3 ≤ π ≤ 1/2}. What left after

that is the choice of set of probabilities. As mentioned in subsection 5.3.2, in

minimax stochastic programs, the worst set of probabilities are considered, i.e.,

the probability distribution (on future load scenarios) that causes the expected

profit to be at its minimum. To solve the problem, a decomposition-based branch-

and-cut strategy, which extends the standard mixed-integer programming branch-

and-cut algorithm by using a cutting-plane scheme to approximate the minimax

objective function in each iteration, is proposed.
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4.2.1 The Model

It is assumed that there are J contracts that the producer is dealing with

and each of them has a capacity requirement of Cj, j = 1, 2, ..., J . As mentioned

before r̄j is the initial fee and fj(djt) is the payment received by producer, where

djt is the quantity of the commodity delivered during time period t. It is further

assumed that djt ≤ Cj, since the usage of power that exceeds the capacity results

in severe financial penalties. Another assumption is that the number of scenarios

is the same for all contracts and is equal to K. The notation dk
jt is used to

denote the sampled demand of contract j at time t. The producer expects to

receive a payment of rj, which is the sum of the present revenue of r̄ and the

expected future revenue of
∑K

k=1 pk

∑T
t=1 fj(d

k
jt). The producer is assumed to

have I generating units, and the production of generator i at time period t is

denoted by yk
it i = 1, 2, ..., I, t = 1, 2, ..., T . With these settings, the stochastic

programming model is

maximizexj ,yk
it

J∑
j=1

rjxj −
K∑

k=1

pk

T∑
t=1

I∑
i=1

gk
it(y

k
it)

subject to
I∑

i=1

yk
it = dk

0t +
J∑

j=1

dk
jtxj, t = 1, ..., T, k = 1, ..., K,(4.2.25)

xj binary, yk ∈ Y k, k = 1, ..., K,

where xj is a binary variable indicating whether contract j is to be accepted

xj = 1 or rejected xj = 0. The function gk
it(y

k
it) is the cost of producing yk

it

units of power and is assumed to be convex. The first constraint of the above

problem is to balance supply and demand, where dk
0t represents the native load.

Furthermore, yk ∈ Y k denotes the constraints imposed on the production vector,
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under scenario k. For example, the production of the operating generator i at

time period t cannot exceed or go below its capacity range, i.e., qk
it ≤ yk

it ≤ Qk
it,

where [qk
it, Q

k
it] is the operating range of unit i.

The model in (4.2.25) is a two-stage stochastic program. The first stage

decisions determine the set of contracts to be chosen by assigning xj the value 0

or 1. The second stage decisions determine an optimal production strategy yk
it in

response to the demand dictated by the contracts. The model (4.2.25) assumes

a known probability, i.e., pk, k = 1, 2, ..., K are known with complete certainty.

As mentioned earlier, a minimax approach is applied to this two-stage stochastic

program, which is explained in the following subsection.

4.2.2 Minimax Stochastic Programming

The general form of minimax stochastic programming is

min
x
{cT x + h(x) | x ∈ X ∩ {0, 1}J}, (4.2.26)

where h(x) := maxp

{ ∑K
k=1 pkQk(x) | (p1, ..., pk) ∈ P

}
and

Qk(x) = min
y

{ T∑
t=1

I∑
i=1

gk
it(y

k
it) | Dy = hk + Tkx, y ∈ Y k

}
.

By defining h(x), in which the probabilities that yield maximum expected cost

are obtained, the minimax approach is applied to a two-stage stochastic program.

The convexity of g yields Qk(x) to be convex and finite valued for all x ∈
X. Therefore, the function h(x) is also convex and finite valued over X. The

feasible solutions of (4.2.26) are denoted by x1, x2, ..., xM ; i.e., X ∩ {0, 1}J =
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{x1, x2, ..., xM}. With the help of the property of h(x) being convex, the problem

(4.2.26) can be reformulated into the following linear program:

min
x,θ
{cT x + θ | x ∈ X ∩ {0, 1}J , (x, θ) ∈ S}, (4.2.27)

where S = {(x, θ) | h(xm) + ∂h(xm)T (x− xm), m = 1, 2, ..., M} and ∂h(xm) is a

subgradient of h evaluated at (xm). That is, S is represented using a set of linear

constraints, which are binding at all integer solutions xm. A linear relaxation for

(4.2.27) is

min
x,θ
{cT x + θ | x ∈ X ∩ [0, 1]J , (x, θ) ∈ S̄}, (4.2.28)

where S̄ is defined using a set of valid cuts for S; i.e., S ⊆ S̄. A lower bound on

the value of (4.2.27) is obtained by solving (4.2.28). Cuts may be added at any

point in the branch-and-bound process in order to tighten the approximation S̄,

as long as they are embedded to all nodes in the tree. Here, binding cuts are

added at integer nodes that violate S so that the approximation is exact. As for

the root node, it is started without any cuts in the system; i.e., S̄ = RJ+1, and

Benders’ decomposition, which is introduced in the next chapter, is used to solve

the model. The description of the algorithm is provided in the next subsection.

Branch-and-cut algorithm for solving (4.2.27) [36]

Step 0 Set S̄ to RJ+1 and θ ← −∞. Solve the linear relaxation (4.2.28) as

follows

Step a Choose a solution x̃ ∈ X ∩ [0, 1]J and p ∈ P .

Step b For each scenario k, solve the second-stage problem and determine
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the optimal objective value Qk(x̃).

Step c Evaluate h(x̃) = maxp{
∑

k Qk(x̃)pk | p ∈ P}. Construct a new cut

θ ≥ h(x̃) + ∂h(x̃)T (x− x̃) and add it to S̄.

Step d If Q ≈ h(x̃) or if the maximum number of cuts is reached, go to

Step f.

Step e Solve the first-stage problem (4.2.28) and determine a new x̃ and

θ. Go to Step b.

Step f This is the end of the root node iteration. Note that S̄ contains valid

cuts which are added during the solution process. In order to begin

the branch-and-bound procedure, define L to be the set of unfathomed

problems. Set L so that it has a single element, L0, which is the linear

problem defined by (4.2.28). Set x1 ← x̃, n to 1, m∗ to −1, and z̄ to

∞. As it will become clear, n represents the number of nodes in the

tree, m∗ points to the optimal node, and z̄ serves as an upper bound

on the optimal objective value of (4.2.27). Proceed to Step 1.

Step 1 If L is empty, terminate and declare xm∗
to be an optimal solution for

(4.2.27).

Step 2 Select a problem m from L. Denote the linear program corresponding to

this problem by Lm. If Lm is infeasible, set L ← L−Lm, and go to Step 1.

Step 3 Let (xm, θm) be an optimal solution and zm be the optimum value for

problem Lm. If zm ≥ z̄, set L ← L− Lm and go to Step 1.

Step 4 If xm /∈ {0, 1}J , create two new problems Ln and Ln+1, by fixing a non-

integer element of xm to 0 and 1, respectively. Set L ← L−Lm, increment
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n by 2, and go to Step 1.

Step 5 Solve the second-stage problems and calculate a new probability measure

as in Step b and Step c above. If cT xm + h(xm) < z̄, set z̄ ← cT xm + h(xm)

and m∗ ← m.

Step 6 If θm = h(xm), set L ← L − Lm and go to Step 1. Otherwise, update

the set S̄ by adding a binding cut at (xm, θm); i.e., S̄ ← S̄ ∩ {(x, θ) | θ ≥
h(xm) + ∂h(xm)T (x− xm)}, to all problems Lm, ..., Ln−1. Set L ← L−Lm.

Go to Step 1.

According to Takriti et al. [36], the numerical results obtained with the above

algorithm shows that large instances of problems with a finite set of probability

distributions can be solved by this approach, with a speed-up ratio of 20-2000

times.

4.3 Example III

An energy company, which looks for a model to optimize its portfolio, is

considered in this example, which was introduced by Marzano et al. [26]. In this

model, the expected value of the net remuneration is maximized subject to the

limit on the Conditional Value-at-Risk acceptable by the company. The model is
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as follows:

maximize Ew(f(x,w))

subject to C ≤ α +
1

(1− β)S

S∑
s=1

us,

us ≤ 0, s = 1, ..., S (4.3.29)

us ≤ f(x,w)− α, s = 1, ..., S

+ some other bounds

In this model, CVaR is calculated by using return function, therefore, C is a

lower bound for CVaR here. In other words, C is an lower bound for the return

function.

The generating company, considered in this example, sells energy through

bilateral contract and is obligated to provide energy to the buyer for the price

established in the contract. The net remuneration of the company at time t is:

NR = p x + πt(Gt − x)− Ct Gt

= (p− πt) x + (πt − Ct) Gt,

where p x is the incoming cashflow for the energy sold through the contract (p is

the price on the contract and x is the amount of contracted energy), πt(Gt − x)

is the revenue or expense in the wholesale energy market (πt is the spot price at

time t and Gt is the amount of the generator dispatch) and lastly CtGt is the

production cost of generating Gt amount of energy (Ct is the unit production

cost). The remark that should be made here is that the wholesale and contracts

are assumed to be made in the same submarket in this setting, otherwise the spot
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price πt in the submarket where wholesale is made would be different than the

spot price in the submarket where contracts are made. For simplicity, this case

is ignored in this example.

If T is the time period for which the problem is considered and there are I

submarkets, N contracts and S states then the present value of net remuneration

per scenario s is

PV (NRs) =
I∑

i=1

N∑
n=1

T∑
t=1

1

(1 + τ)t−1

(
( pn − πi,s

t ) xn + (πi,s
t − Ct) Gi,s

t

)
.

In some time intervals t, xn will be zero, if that contract‘s validation period has

not started or has finished in that time interval. Rearranging terms of the above

expression yields

PV (NRs) =
N∑

n=1

θs
n xn + γs,

= θsT

x + γs, (4.3.30)

where

θs
n =

I∑
i=1

T∑
t=1

1

(1 + τ)t−1
( pn − πi,s

t ), γs =
I∑

i=1

T∑
t=1

1

(1 + τ)t−1
(πi,s

t − Ct) Gi,s
t

and θsT
= [θs

1, θ
s
2, ... , θ

s
N ], x = [x1, x2, ..., xN ]T .
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The expected value of the present value of net remuneration is

E[PV (NRs)] =
1

S

S∑
s=1

PV (NRs)

=
1

S

S∑
s=1

[
θsT

x + γs

]
(4.3.31)

=
1

S

S∑
s=1

θsT

x +
1

S

S∑
s=1

γs

= ΘT x + Γ,

where Θ := 1
S

∑S
s=1 θs and Γ := 1

S

∑S
s=1 γs.

Now, the model (4.3.29) is equivalent to the following one

maximize ΘT x + Γ

subject to C ≤ α +
1

(1− β)S

S∑
s=1

us,

us ≤ 0, ∀s (4.3.32)

us ≤ θsT

x + γs − α, ∀s

+ some other bounds.

Introducing a new variable δs = θsT
x+ γs−α, the above model can be rewritten
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as

maximize ΘT x + Γ

subject to C ≤ α +
1

(1− β)S

S∑
s=1

us,

us ≤ 0, ∀s (4.3.33)

us ≤ δs, ∀s

δs = θsT

x + γs − α,

+ some other bounds.

While modelling the problem for the company, new contracts that are available

for the company is ignored. Introducing the notation y for these, say M , new con-

tracts that the company sells during the planning time period into the problem,

the present value of the net remuneration (4.3.30) takes the following form

PV (NRs) =
N∑

n=1

θs
n xn +

M∑
m=1

ρs
mys

m + γs,

= θsT

x + ρsT

ys + γs, (4.3.34)

where

ρs
m :=

I∑
i=1

T∑
t=1

1

(1 + τ)t−1
( pm − πi,s

t )

and ρsT
= [ρs

1, ρ
s
2, ... , ρ

s
M ], y = [y1, y2, ..., yM ]T .

And the new form of the expected value of the present value of net remuner-
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ation, which was stated in equation (4.3.31), is

E[PV (NRs)] =
1

S

S∑
s=1

PV (NRs)

=
1

S

S∑
s=1

[
θsT

x + ρsT

ys + γs

]
(4.3.35)

=
1

S

S∑
s=1

θsT

x +
1

S

S∑
s=1

ρsT

ys +
1

S

S∑
s=1

γs

= ΘT x +
1

S

S∑
s=1

ρsT

ys + Γ.

The model (4.3.33) takes the following form:

maximize ΘT x +
1

S

S∑
s=1

ρsT

ys + Γ

subject to C ≤ α +
1

(1− β)S

S∑
s=1

us,

us ≤ 0, ∀s (4.3.36)

us ≤ δs, ∀s

δs = θsT

x + ρsT

ys + γs − α,

+ some other bounds.

Marzano et al. [26] used Benders decomposition to solve the above stochastic

programming problem and obtained coherent results as expected.
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4.4 Example IV

The example which was given by Guigues et al. [17], is an optimization

problem for an electrical yearly power management. The company owns electric

generation plants, which are nuclear, thermal and hydroelectric power generator

plants. In addition to these, demand side management contracts are modelled

as a virtual plant called EJP. The objective of the problem is to minimize the

production cost over a yearly horizon, to fulfill operating constraints of generation

units and the equilibrium between production and demand at each time step.

Guigues et al. [17] state that: ”the challenge is to ensure robustness of computed

optimal production and marginal value face to various uncertainties like customer

demand but also water inflows or plants unavailability.” In this paper, first a large

scale numerical optimization is formulated and solved using Lagrangian relaxation

to provide marginal costs on a scenario tree. Then, to compute local feedbacks

these marginal costs are used. The robustness of these local feedbacks is shown to

be enhanced by a Value-at-Risk (VaR) approach for modelling uncertainties. In

the following subsections, the model, the VaR approach and then the application

of this approach to the model are introduced.

4.4.1 The Model

The random inputs of the model are the customer’s demand, the unavailability

of the thermal units and the quantity of natural water inflows. With the help of

representation of the random inputs an events as Markov chains, the optimization

problem can be formulated as a finite horizon discrete time stochastic control

problem on a scenario tree, which represents the behavior of the random inputs
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and states. The objective is to minimize the average production cost along this

scenario tree. The variable xl
n stands for the states of the plant production unit

l at node n and ul
n is introduced for the commands applied to this plant. The

formulation of the problem is as follows

min
u

∑

l∈L

∑
n∈O

πnC l
n,p(x

l
n(p), ul

n(p))

subject to
∑

l∈L

P l
n,p(x

l
n(p), ul

n(p)) = Dn(p), ∀n ∈ O, ∀p ∈ Pn (4.4.37)

(xl
·(·), ul

·(·)) ∈ Xl, ∀l ∈ L.

The notations used in the above problem are:

• L is the set of plants and O is the set of the nodes,

• πn is the probability to be at node n,

• Pn is the set of time subdivisions associated to node n,

• xl
n(p) is the state of plant l at node n and time subdivision (p),

• ul
n(p) is the control variable of plant l at node n and time subdivision (p),

• P l
n,p(x

l
n(p), ul

n(p)) is the production of plant l in the state xl
n(p) when com-

mand ul
n(p) is applied to this plant at node n and time subdivision (p),

• Dn(p) is the customer demand at node n and time subdivision (p),

• C l
n,p(x

l
n(p), ul

n(p)) is the production cost when command ul
n(p) is applied to

unit l in the state xl
n(p),

• Xl is the functional set of constraints on the control and state variables of

plant l.
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The model above can be reformulated as a linear optimization problem by intro-

ducing cost vectors ci and coupling matrices Ai for i = 1, 2, 3, 4 as follows:

min cT
1 ut + cT

2 un + cT
3 xh + cT

4 xe

subject to (ut, un, uh, ue) ∈ T ×N ×H(xh)× E(xe), (4.4.38)

A1ut + A2un + A3uh + A4ue = d ∈ RD,

where

• ut is the control variable of classical thermal plants with T as the set of

constraints for the thermal plants subsets,

• un is the control variable of nuclear thermal plants with N as the set of

constraints for the thermal plants subsets,

• xh is the state variable of hydraulic plants with uh as the control variable

and dynamics described by uh ∈ H(xh),

• xe is the state variable of EJP contracts with ue as the control variable and

dynamics described by ue ∈ E(xe),

• d ∈ RD is a fixed vector corresponding to the realization of the demand at

the different nodes of the scenario tree.

When the following settings are made

u := (ut, un, uh, ue) ∈ U = T ×N ×H(xh)× E(xe),

f l(u, xh, xe) := cT
1 ut + cT

2 un + cT
3 xh + cT

4 xe,

Au := A1ut + A2un + A3uh + A4ue,
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the model (4.4.38) takes the following form

min
u∈U

f l(u, xh, xe)

subject to Au = d given ∈ RD. (4.4.39)

For a set of independent scenarios, in which different evolutions of the random

inputs (demand, inflows for hydro reservoirs and outages of the thermal units) are

applied, a generation schedule and its cost are determined. However, the output

of the above problem is optimal only on the trajectory of each reserve, so it gives

a local optimum. Thus this model needs to be strengthened by introducing a

more reliable model of uncertainty on the scenarios. Guigues et al. [17] state

that a robust counterpart with the following properties:

1. reduce the volatility of the simulated costs over a continuum set of reason-

able scenarios,

2. reduce the number of extreme case optimal strategies (parsimonious use of

water reservoir that might not be nearly empty for a long time),

3. reduce the number of very high cost optimal strategies

can be formulated by a Value-at-Risk setting.
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4.4.2 The Value-at-Risk Approach

The VaR calculation model considered here is the following:

maximize γ

subject to P (f(r(w), x) ≥ γ) ≥ 1− ξ, (4.4.40)

x ∈ X, g(x) ≥ 0,

where f(r(w), x) is a concave income functional depending on a random function

r(w) and x ∈ X ⊂ Rn is deterministic variable. Furthermore, ξ ∈ (0, 1) is the

confidence level and g(x) is the additional constraint on x.

Guigues et al. [17] show that if f(r(w), x) is taken to be as c(w)T x, then the

VaR calculation model (4.4.40) is equivalent to

maximize c(w)T x

hboxs.t. x ∈ X, g(x) ≥ 0, (4.4.41)

where the uncertainty set chosen for the random vector c(w) is the ellipsoid

{x ∈ Rn : (x− Ew[c(w)])T Γ−1(x− Ew[c(w)]) ≤ κ2(ξ)},

where Γij = cov(ci(w), cj(w)) and κ(ξ) is a risk factor depending on the assump-

tions on the distribution:

κ(ξ) =





Φ−1(1− ξ) > 0 if f(r(·), x) is Gaussian,
√

1−ξ
ξ

if f(r(·), x) ∈ L1
R ∩ L2

R.
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So, VaR approach can be used to calibrate a variance penalty term for a maxi-

mization of a random functional.

This approach is applied to the power generation model in two steps, first on

the uncertainty on the demand and next on the unavailability of thermoelectric

plants. To begin with, the dual problem of (4.4.39) is considered, which is

max
λ∈RD

θ(λ) = max
λ∈RD

[θd(λ) + θT (λ) + θN(λ) + θH(λ) + θJ(λ)]

= max
λ∈RD

[θd(λ) + θ̃(λ)], (4.4.42)

where the partial dual functions are:

θd(λ) = λT d,

θT (λ) = inf
ut∈T

(c1 − AT
1 λ)T ut,

θN(λ) = inf
un∈N

(c2 − AT
2 λ)T un, (4.4.43)

θH(λ) = inf
uh∈H(xh)

cT
3 xh − λT A3uh,

θJ(λ) = inf
ue∈E(xe)

cT
4 xe − λT A4ue.

The objective function in the dual problem is grouped into two as [θd(λ) + θ̃(λ)],

where θd stands for the customer’s demand and θ̃ for the states of the thermal,

nuclear and hydro plants.

As mentioned above, first the uncertainty on the demand is handled. To do

that, d is supposed to belong to a given uncertainty set Ξ, which is the ellipsoid

given by

Ξ = Ξ(d̄, Γ, κ) = {x ∈ RD | (x− d̄)T Γ−1(x− d̄) ≤ κ2(ξ)},
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where d̄ = Ew[d(w)], Γ is the covariance matrix given by Γij = cov(di(w), dj(w))

and the risk factor κ(ξ) depends on the assumptions made on the distribution of

demand. So, problem (4.4.39) is now equivalent to

minimizeu∈U f l(u, xh, xe)

subject to Au = d ∈ Ξ. (4.4.44)

Solving (4.4.44) by duality amounts to solve maxλ θR(λ), where

θR(λ) = min
u∈U, d∈Ξ

f l(u, xh, xe) + λT (d− Au)

= θT (λ) + θN(λ) + θH(λ) + θJ(λ) + min
d∈Ξ

λT d.

Furthermore, mind∈Ξ λT d = φΞ(λ), where φΞ is the support function of the un-

certainty set Ξ and it is given by:

φΞ(λ) := λT d̄− κ(ξ)
√

λT Γλ.

The convention made about the demand, i.e., d ∈ Ξ, allows one to use VaR

approach on the problem (4.4.42). So θ(λ) in (4.4.42) can be replaced with

θ̃(λ) + γ∗(λ), where

γ∗(λ) = max γ

= P (λT d(w) ≥ γ) ≥ 1− ξ. (4.4.45)

From (4.4.40) and (4.4.41), this VaR approach, which be denoted by V aRFA,

reduces to maxλ θR(λ).
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After the uncertainty of demand, the VaR approach will now be applied on

the unavailability of thermoelectric plants. To construct the model, let αj,l(t)

denote the probability that thermal group j of thermal unit l works at time step

t and U t
j,l the random variable such that U t

j,l = 1 if group j works at time step t,

otherwise U t
j,l = 0. The groups are regularly checked and repaired every m0 time

steps, if necessary. The assumption made here is that between two consecutive

checking dates the availability of the units is not changing. The probability

αj,l(tk) depends on the past evolution of the availability of the group j. If at time

step tk−1, the group was out of work, then there is a big probability (say 1− βl
1

with βl
1 small) that it works at time step tk and a small probability βl

1 that it

is still out of work at time step tk. Another assumption made here is that the

longer the group has been working without failure, the more likely it can break

down at the next time step. Thus, there is a decreasing function of m, βl
2(m)

such that for any group j of unit l,

P (U tk
j,l = 1 | group j was working from tk−m to tk−1) = βl

2(m).

If the state process of a given group is an homogenous Markov chain where the

state space is {F,W} and F stands for failure state, W for working state, then

βl
2(m) = βl

2 is fixed and corresponds to the probability for a group of unit l to

work on a given period knowing that it was working the period before. The

transition matrix for the group of unit l is then given by

Pl =




βl
1 1− βl

1

1− βl
2 βl

2


 .
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Thus, the probability αj,l(tk) is given for k ≥ 1 by

αj,l(tk) = pl
F (j)P k

l (1, 2) + pl
W (j)P k

l (2, 2),

where pl
W (j) = 1 − pl

F (j) and pl
W (j) is the probability that group j of unit l

works at the first time step. Another assumption, that for a given unit l, either

all the groups are working or all the groups are out of work at the first time step,

is made for the simplicity. Therefore, αj,l(tk) is j-independent and αl(tk) denote

the probability that a group of unit l works at time tk. Furthermore, the scenario

tree can be partitioned in subtrees such that the root node and the leaves nodes of

a given subtree respectively correspond to time step tk and tk+1 for some k ∈ N.

Thus, the unavailability rates at different nodes of any subtree of this partition

are the same for a given unit. Let O := ∪m
k=1Ok be such that Ok are the nodes

of the k-th subtree Sk in this partition. Let Tk := {(j, p) | j ∈ Ok, p ∈ Pj}. Then

the dual thermal subproblem is

min
∑

l

m∑

k=1

(c1lk − λk)
T utlk

subject to 0 ≤ utlk ≤ τl(k)τ l
T (k)P l

maxdk,

where

• P l
max is the maximal available power of thermal unit l,

• utlk = (utljp)(j,p)∈Tk
,

• c1lk = (c1ljp)(j,p)∈Tk
,

• λk = (λj,p)(j,p)∈Tk
,
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• dk = (dj,p)(j,p)∈Tk
,

• τ l
T (k) gives the programmed unavailability rates for unit l and the time

subdivision of the set Tk,

• τl(k) is the unavailability rate of unit l for the nodes of the set Ok.

The random term in this formulation, τl(k), is in the right hand side of the

constraint set as it is the general case for stochastic optimization problems. To

transform the random term in to the objective, the setting ũtlk := utlk

τl(k)
is made.

With this definition the problems takes the following form:

min
∑

l

m∑

k=1

τl(k)(c1lk − λk)
T ũtlk

subject to 0 ≤ ũtlk ≤ τ l
T (k)P l

maxdk.

The application of the VaR approach on the thermal plant cost/revenue balance

with a given confidence level 0 < ξ < 1 results in the following problem

min γ

subject to P (
∑

l

∑

k

τl(k)(c1lk − λk)
T utlk ≤ γ)1− ξ, (4.4.46)

0 ≤ utlk ≤ τ l
T (k)P l

maxdk,

which is denoted by V aRBenef representing the problem as maximization of the

benefits or equivalently minimization of the losses. Now, the unavailability rates,

τl(k), needs to be modelled. To do that let P̄ l
max be the maximal power of a group

in unit l; then, the theoretical maximal power available on thermal unit l is given

by P l
max = nlP̄

l
max. Thus, the maximal power available of unit l for nodes of the
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set Ok is given by

P̃ l,k
max :=

nl∑
j=1

U tk
j,lP̄

l
max = nlP̄

l
max

∑nl

j=1 U tk
j,l

nl

= P l
maxτl(k).

From the above hypothesis, nlτl(k) follows the binomial law B(nl, αl(t(k))). Then,

nlE[αl(t(k))] = E[nlαl(t(k))] = nlαl(t(k)),

thus,

E[αl(t(k))] = αl(t(k)).

Furthermore,

n2
l V ar[αl(t(k))] = V ar[nlαl(t(k))] = nlαl(t(k))

(
1− αl(t(k))

)
,

thus,

V ar[αl(t(k))] =
αl(t(k))

(
1− αl(t(k))

)

nl

.

When defining the random variable Xl,k as
∑

l,k τl(k)(c1lk − λk)
T utlk, the expec-

tation and variance of it will be as follows

E[Xl,k] =
∑

l,k

αl(t(k))(c1lk − λk)
T utlk,

V ar[Xl,k] =
∑

l,k

uT
tlk Qlk utlk,

with the matrix

Qlk :=
αl(t(k))

(
1− αl(t(k))

)

nl

(c1lk − λk)(c1lk − λk)
T .

64



Finally, the VaR approach applied to the problem (4.4.46) will result in the

following problem:

minimize
∑

l,k

αl(t(k))(c1lk − λk)
T utlk + κ(ξ)

√∑

l,k

uT
tlk Qlk utlk

subject to 0 ≤ utlk ≤ τ l
T (k)P l

maxdk, (4.4.47)

where κ(ξ) =
√

1−ξ
ξ

.

The summary of what is done until now is as follows: The model for the

problem is constructed (4.4.39), whose dual is (4.4.42). To solve it, VaR approach

is applied to the dual problem in two steps, firstly, for the demand part and,

secondly, for the thermal plant part. The first one resulted in the following

problem V aRFA

max
λ

θR
d (λ) + max

λ
(θT + θN + θH + θJ)(λ)

with

θR
d (λ) := Ew(d(w))T λ− κ(ξ1)

√
λT Γλ,

where ξ1 is the confidence level for V aRFA. The second one resulted in the

following problem V aRBenef

max
λ

θd(λ) + max
λ

θR
T (λ) + max

λ
(θN + θH + θJ)(λ)
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with

θR
T (λ) := min

∑

l,k

αl(t(k))(c1lk − λk)
T utlk + κ(ξ2)

√∑

l,k

uT
tlk Qlk utlk

0 ≤ utlk ≤ τ l
T (k)P l

maxdk,

where ξ2 is the confidence level for V aRBenef . Finally, the combination of these

two subproblem is the following mixed problem

max
λ

θR
mix(λ) = max

λ
θR

d (λ) + max
λ

θR
T (λ) + max

λ
(θN + θH + θJ)(λ).

Guigues et al. [17] use the dual problem to approximate primal solutions

and estimate marginal prices, since numerical simulations have shown that the

duality gap is generally quite small. Applying state decomposition method for

the dual function and making necessary adaptations for the regularized problems,

the optimization problems became solvable. Using three different trees results for

all the methods are obtained and discussed by Guigues et al. [17].
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Summary

The examples of energy models introduced in this chapter show that the

uncertainties involved in the business of energy are plentiful and stochastic pro-

gramming is a appropriate approach to construct a model for a energy company.

This is due to its success despite the complex features of energy markets, such

as non-normal returns, the involvement of production assets, non-storability of

electricity, complex contracts, etc. In such an environment, using multistage

planning programs, which can often be formulated as linear programs with a

dynamic matrix structure, is a wise choice. So, the resulting problem is a mul-

tistage stochastic linear program. The size of the equivalent deterministic form

of multistage stochastic problems can be so large as to appear intractable. In

this case, decomposition methods for solving stochastic programs come into play.

Stochastic programming and decomposition methods will be introduced in the

following chapter.
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Chapter 5

Stochastic Programming and

Decomposition Techniques

Problems of optimization under uncertainty are characterized by the necessity

of making decisions without knowing what their full effects will be. Such problems

appear in many areas of application, such as transportation, energy industry,

finance, nuclear engineering. For example, an electrical utility has to decide each

day how much power to produce without yet knowing the demand, which may

depend on weather and season in which a decision is made. Longer range decisions

may concern the amount of coal to purchase or the kinds of contracts set up with

other utilities.

The uncertainties in a problem have to be represented in such a manner that

their effects on present decision making can properly be taken into account. They

may often be modelled as random variables to which the theory of probability

can be applied.

A framework for modelling optimization problems that involve uncertainty is

stochastic programming, which takes a probabilistic approach to uncertainty. It

was first formally introduced in the 1950’s as a branch of mathematical program-

ming by the seminal work of Dantzig [11] and Beale [5]. The goal in stochastic

programming is to find some policy that is feasible for all the possible data in-
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stances and maximizes or minimizes the expectation of some function of the

decision and the random variables.

Stochastic programming models can be classified into two as two-stage and

multistage stochastic programming models. In two stage models only the present

and the next period decisions are considered. However, most practical decision

problems involve a sequence of decisions, rather than two stage, that react to

outcomes that evolve over time. These problems can be modelled as multistage

stochastic programming problems, which is the extended version of two-stage

models to multistage.

The optimization models constructed as stochastic programming problem are

large scale models, and decomposition techniques are needed to solve them. De-

composition refers to the strategy of breaking up a large, difficult-to-solve problem

into two or more smaller, easier-to-solve problems, such that the solution to the

decomposed problems can be used to obtain the solution to the original problem.

Stochastic programming and decomposition methods are the main subject of

this chapter.

5.1 Two-Stage Stochastic Programs

The most widely applied and studied stochastic programming models are two-

stage stochastic programs. In two-stage stochastic program, the decision maker

takes some action in the first stage called as first-stage decisions, after which a

random event occurs affecting the outcome of the first-stage decisions. A recourse

decision can then be made in the second-stage that compensates for any bad

effects that might have been experienced as a result of the first-stage decisions.
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The optimal policy from such a model is a single first-stage policy and a collection

of recourse decisions (a decision rule) defining which second-stage action should

be taken in response to each random outcome. As an example of a two-stage

stochastic program, the farming example in [7] can be considered, where a farmer

tries to make an optimal decision on the amounts of various crops to plant. The

yields of the crops vary according to the weather. In other words, the farmer

must decide on the amounts before knowing the yields. This decision is made in

the first stage. After the realization of the random events (here, the yields), a

recourse decision can be made in the second stage, which is a sale and purchase

decisions of products in this example.

The classical two-stage stochastic programming problem with fixed recourse,

can be stated as

minimize z = cT x + Eξ[min q(w)T y(w)]

subject to Ax = b,

T (w)x + Wy(w) = h(w), (5.1.1)

x ≥ 0,

y(w) ≥ 0.

In this model, the decision variables of the first stage are comprised in the

vector x ∈ Rn1 . Corresponding to x are the first stage vectors and matrices c, b,

and A, of sizes n1 × 1, m1 × 1 and m1 × n1, respectively. In the second stage, a

number of random events w ∈ Ω may be realized. For a given realization w, the

second stage problem data q(w), h(w) and T (w) become known, where q(w) is

n2 × 1, h(w) is m2 × 1, and T (w) is m2 × n1. The matrix T is usually referred
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to as the technology matrix and the matrix W of size m2 × m2 as the recourse

matrix, which is assumed to be fixed here in order to be able to characterize the

feasibility region in a convenient manner for computation. Otherwise, there may

be some difficulties, which are in detail examined in [7].

The stochastic components of the second-stage data is a vector ξT (w) =

(q(w)T , h(w)T , T1(w), ..., Tm2(w)) with N = n2 + m2 + (m2 × n1) components,

where Ti(w) is the i-th row of T (w). Let Ξ ⊆ RN be the support of ξ, i.e., the

smallest closed subset in RN such that P{ξ ∈ Ξ} = 1. As mentioned, after the

realization of w, q(w), h(w) and T (w) become known. Then, the second stage

decisions y(w) must be taken. Here, the notation y(w) does not indicate that y

is a function of w, but the decisions y are typically not the same under different

realizations of w. The second stage decisions are chosen so that the constraints

of the above model hold almost surely, i.e., for all w ∈ Ω, except perhaps for sets

with zero probability.

The objective function of (5.1.1) contains a deterministic term cT x and the

expectation of the second stage objective q(w)T y(w) taken over all realizations

of the random event w. For each w, the value y(w) is the solution of a linear

program. To stress this, the notion of deterministic equivalent program may be

used. For a given realization w, let

Q(x, ξ(w)) := min{q(w)T y | W y = h(w)− T (w)x, y ≥ 0}

be the optimal value of the second stage problem, which is a well-defined extended

real valued function: it takes the value +∞ if the feasible set of the second-stage

problem is empty, and the value −∞ if the second-stage problem is unbounded
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[32]. Defining the expected value of Q(x, ξ(w)) as recourse function, which is

Q(x) := EξQ(x, ξ(w)),

the deterministic equivalent program will be as follows:

minimize z = cT x +Q(x)

subject to Ax = b, (5.1.2)

x ≥ 0.

If every solution x that satisfies the first-period constraints, Ax = b, is also

feasible for the second stage, the stochastic program is said to have relatively

complete recourse. A special type of relatively complete recourse may often be

identified from the structure of W . This form, called complete recourse, holds

when there exists y ≥ 0 such that Wy = t for all t ∈ Rm2 . Complete recourse

is often added to a model to ensure that no outcome can produce infeasible

results. A special type of complete recourse that offers additional computational

advantages is simple recourse. In a simple recourse problem W = [I,−I], where

y and q are divided correspondingly as (y+, y−) and (q+, q−).

In the case of discrete distributions, there is a finite number of realizations

ξT
k = (qT

k , hT
k , T1k, ..., Tm2k) (k = 1, 2, ..., K), called scenarios, with the correspond-

ing probabilities pk. Then, the recourse function will be: Q(x) :=
∑K

k=1 pk Q(x, ξk),

where

Q(x, ξk) = min{qT
k yk | W yk = hk − Tkx, yk ≥ 0}.
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Consequently, (5.1.1) becomes

minimize z = cT x +
K∑

k=1

pkq
T
k yk

subject to Ax = b,

Tkx + Wyk = hk, k = 1, 2, ..., K, (5.1.3)

x ≥ 0,

yk,≥ 0 k = 1, 2, ..., K.

Summary

Problems under uncertainty concerning only the present and the next period

can be modelled via two-stage stochastic programming, which provides the deci-

sion maker optimal first-stage decisions and a recourse decision for each random

outcome. After taking the first stage decision, a random event occurs affect-

ing the outcome of the first-stage decisions. And according to this outcome the

corresponding recourse decision is then taken.

5.2 Multistage Stochastic Program

Most practical decision problems involve a sequence of decisions, rather than

two stage, that react to outcomes that evolve over time. Such problems are

therefore called multistage stochastic programming problems.

The multistage stochastic linear program with fixed recourse has the following
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general form:

minimize z = (c1)T x1 + Eξ2

[
min c2(w)T x2(w2) + ... + EξH [min cH(w)T xH(wH)]...

]

subject to W 1x1 = h1,

T 1(w)x1 + W 2x2(w2) = h2(w),

... (5.2.4)

TH−1(w)xH−1(wH−1) + WHxH(wH) = hH(w),

x1 ≥ 0; xt(wt) ≥ 0, t = 2, 3, ..., H,

where c1 and h1 are known vectors, of sizes n1 × 1 and m1 × 1, respectively,

ξt(w)T = (ct(w)T , ht(w)T , T t−1
1 (w), ..., T t−1

mt
(w)) is a random Nt-vector and each

W t is a known matrix in Rmt×nt . The decisions x depend on the history up

to time t, which is indicated by wt. Here, again it is supposed that Ξt is the

support of ξt. At each stage, realizations of some random variables occur and

corresponding decisions are made; i.e., the following sequence of actions ia taken:

decision x1,

observation ξ2,

decision x2,

...

observation ξH ,

decision xH .

The objective is to design the decision process in such a way that the expected
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value of the total cost is minimized while the optimal decisions are allowed to be

made at every time period t = 1, 2, ..., H.

The deterministic equivalent form of this problem in terms of a dynamic

program can be described as follows. At the last stage, H, the values of all

problem data are already known and the values of the earlier decision vectors,

x1, x2, ..., xH−1, have been chosen. Therefore, the problem is a simple linear pro-

gramming problem, which is

QH(xH−1, ξH(w)) = min cH(w)T xH(w)

subject to WHxH(w) = hH(w)− TH−1(w)xH−1,

xH(w) ≥ 0.

Letting Qt+1(xt) := Eξt+1 [Qt+1(xt, ξt+1(w))] for all t, one obtains the recursion

for t = 2, 3, ..., H − 1,

Qt(xt−1, ξt(w)) = min ct(w)T xt(w) +Qt+1(xt)

subject to W txt(w) = ht(w)− T t−1(w)xt−1, (5.2.5)

xt(w) ≥ 0,

where xt is used to indicate the state of the system. Other state information

in terms of the realizations of the random parameters up to time t should be

included if the distribution of ξt is not independent of the past outcomes.
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The value sought is:

minimize z = c1T
x1 +Q(x1)

subject to W 1x1 = h1, (5.2.6)

x1 ≥ 0.

Summary

Since most problems under uncertainty involve not only two stages but finitely

many of them, the extension of two-stage stochastic programming to multistage

should be used to model this kind of problems. In multistage stochastic program-

ming models the same logic in two-stage is used, where the decision maker takes

some action in a period, observes the realization of the random variable and takes

the next action according to this realization. This process continues until the last

period.

In stochastic programming, the expectations depend on the probability distri-

bution of the scenario used, in short they depend on scenarios. So, scenarios are

important subjects for stochastic programming and are considered in the next

subsection.

5.2.1 Scenarios

When dealing with problems under uncertainty, scenario trees are of great

importance, which is also the case in stochastic programming models. A scenario

tree is composed of different scenarios, which are sets of representative outcomes

of the random events. Figure 5.1 shows an example of a scenario tree for a 3-stage
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Figure 5.1: Scenario tree.

stochastic program. Numbers along the arcs represent conditional probabilities of

moving from one node to the next. There are two possible outcomes for a random

event (node 1 and node 2) at t = 2 with probabilities 0.75 and 0.25, respectively.

In other words, c2, h2 and T 1 are assumed to have the realization described by

node 1 (2), with probability 0.75 (0.25) at t = 2. Likewise, there are three

possibility for node 1 and two for node 2 at t = 3. A scenario consists of a complete

path from the root node, which represents the present or a part of the problem

that is known, to a single leaf node. Thus, there are five different scenarios in

this example. Since the numbers along arcs represent conditional probabilities,

the probability of a scenario is the product of conditional probabilities of the

corresponding nodes, e.g., the probability of the scenario ending with node 3 is

0.75× 0.30 = 0.225.

Scenario trees give one the flexibility to choose which scenarios need to be

considered and their relative importance. Since stochastic programs are dealing

with problems under uncertainty, the more possibility of future values the model

involves, the more robust solutions are found. Thus, there is a great number of

scenarios in stochastic programs, which makes it harder to solve.
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5.3 Robust and Minimax Approach

Decision making under uncertainty is a difficult job due to the unknown

events of the future, namely uncertainty. As mentioned until now in this chapter,

stochastic programming is a useful approach to model the problems under uncer-

tainty. However, even stochastic programming models may give solutions which

are in fact not optimal. To strengthen stochastic programming, robust and mini-

max approaches can be considered. Robust models replaces the expectation term

in the stochastic programming models by a term that accounts for both mean

and variability. Minimax approach tries to strengthen stochastic programming

models by considering the worst case probability distribution that maximizes the

cost.

5.3.1 Robust Models

As mentioned previously, two-stage stochastic optimization models minimize

the sum of the costs of the first stage and the expected cost of the second stage. A

potential limitation of this approach is that it does not account for the variability

of the second stage costs and might lead to solutions where the actual second

stage costs are unacceptably high. In order to resolve this difficulty, one may

try to be more conservative and to reach a compromise between the mean and a

risk associated with variability of Q(x, ξ). This may be done by adding the term

κV ar[Q(x, ξ)] to the objective of the optimization problem, where the coefficient

κ ≥ 0 represents a compromise between the expectation and variability of the

objective. On the other hand, adding that term destroys the convexity and second

stage optimality of two-stage linear program (5.1.1) [32].
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For simplicity, the assumption that there is a finite number of scenarios is

made here. The problem (5.1.1) takes the following form after adding the term

κV ar[Q(x, ξ)] to its objective function:

minimize cT x + ψ(Q(x, ξ1), ..., Q(x, ξK))

subject to Ax = b, (5.3.7)

where

ψ(z) :=
K∑

k=1

pkzk + κ
[ K∑

k=1

pkz
2
k − (

K∑

k=1

pkzk)
2
]
.

Now, the objective function above is not convex and the second stage optimal-

ity does not hold. To eliminate these undesirable properties, the function ψ(z)

may be changed to a componentwise nondecreasing function. This is a function

ψ(z) : RK → R, which satisfies: if z ≥ ź, then ψ(z) ≥ ψ(ź) for any z, ź ∈ RK .

According to the proposition given by Ruszczyński et al. [32], if the function ψ(z)

is componentwise nondecreasing, then the second stage optimality holds for prob-

lem (5.3.7) and the optimal value for this problem is the same with the optimal

value for the following problem (whenever this problem is feasible):

minimize cT x + ψ(qT
1 y1, ..., q

T
k pK)

subject to Ax = b, (5.3.8)

Tkx + Wkyk = hk,

x ≥ 0, yk ≥ 0, k = 1, 2, ..., K.

Moreover, if ψ(z) is convex, then the objective function of problem (5.3.7) is also
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convex.

For ψ(z) :=
∑K

k=1 pkzk, problem (5.3.8) coincides with problem (5.1.3). An-

other possibility is to use a separable function ψ(z) :=
∑K

k=1 ψk(z) with one of

the following two choices of function ψ(z):

ψ(z) := pkzk + κpk(zk − α)+, (5.3.9)

ψ(z) := pkzk + κpk[(zk − α)+]2, (5.3.10)

for some κ ≥ 0 and α ∈ R. For either choice of ψk, the corresponding ψ(z) is

componentwise nondecreasing and convex. If the parameter α in (5.3.10) is equal

to E[Q(x, ξ)] and the distribution of Q(x, ξ) is symmetrical around its mean, then

ψ(Q(x, ξ1), ..., Q(x, ξK)) = E[Q(x, ξ)] +
κ

2
V ar[Q(x, ξ)].

5.3.2 Minimax Approach

Probability distributions of uncertain parameters are never known exactly

and can be estimated at best. However, as estimation comes into play, there

may be several different distributions, which are all subjective. One way to deal

with this problem is to construct a finite set of probability distributions, say

S := {P1, P2, ..., Pl}, and to assign probability ρi to each Pi, i = 1, 2, ..., l. Then,

one obtains the unique distribution P :=
∑l

i=1 ρiPi, which is an average over

possible distributions Pi. However, again a choice of probabilities ρi is subjective.

Another way to deal with this problem is to hedge against worst distribution

by using minimax approach for the main problem. The minimax approach for a
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two-stage stochastic problem is

min
x
{cT x + max

p

{ K∑

k=1

pkQk(x) | (p1, p2, ..., pk) ∈ P}},

where Qk(x) is the second stage problem.

As seen from this section, multistage stochastic programs are among the most

intractable in numerical computations. Not only does the size of the problem

grow as a function of the number of the scenarios (states), but also the problem’s

structure is difficult to take the advantage of due to numerical instability. That is

the reason why decomposition became an important issue in the area of stochastic

programming.

5.4 Decomposition

Decomposition refers to the strategy of breaking up a large, difficult-to-solve

problem into two or more smaller, easier-to-solve problems, such that the solution

to the decomposed problems can be used to obtain the solution to the original

problem.

There is an extensive literature on decomposition techniques. Works on this

subject has been appearing since the publication of the first papers by Dantzig

and Wolfe [10] and Benders [6], whose methods are basically given in this chapter.

Ho and various co-authors (Ho and Manne [18], Ho and Loute [19]) wrote

a series of papers about Dantzig-Wolfe decomposition, showing that the method

terminates with the optimal dual variables and describing ways to recover the

optimal primal variables.
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Benders decomposition was studied by Abrahamson [1], Wittrock [39] and

Scott. If this method is used, the optimal primal decision variables are obtained

directly, but the dual variables will have to be recovered later.

The earliest attempt to solve stochastic programs by decomposition was by

Van Slyke and Wets [37]. They developed a method, usually referred to in the

literature as the L-Shaped method, is a form of Benders decomposition. This

method was designed for two-stage linear stochastic programs with discrete ran-

dom variables and finite number of realizations. Birge [8] and Gassmann [16]

extended the method to multi-stage, known as Nested Benders’ decomposition.

The algorithms of L-shaped method and Nested Benders’ decomposition are given

in this chapter.

5.4.1 Benders Decomposition

Benders decomposition was derived in 1962 by J.F. Benders [6] as a technique

for solving mixed integer programs. In 1969, Van Slyke and Wets [37] realized

that Benders decomposition could be applied to large stochastic programs with a

dual angular structure, and they introduced what is called the L-shaped method

to obtain exact solutions for these types of problems.

The basic idea of this method is to solve the problems of the following form

minimize Z = cT x + fT y

subject to Ax = b, (5.4.11)

−Bx + Dy = d,

x ≥ 0, y ≥ 0,
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which can be partitioned into two problems as follows

minimize Z = cx + z(x)

subject to Ax = b, (5.4.12)

x ≥ 0,

and

minimize z(x) = fT y

subject to Dy = d + Bx, (5.4.13)

y ≥ 0.

The assumption made here is that the problem (5.4.11) has a finite optimal

feasible solution, (x∗, y∗).

The dual of (5.4.13) is

maximize z(x) = πT (d + Bx) (5.4.14)

subject to πT D ≤ fT ,

where π is the dual multiplier corresponding to (5.4.13). Assume that the feasible

region of (5.4.14) has p extreme points and q extreme rays and let

πj, j = 1, 2, ..., p be the extreme points and

πj, j = p + 1, p + 2, ..., p + q be the extreme rays.

According to the assumption made, the problem (5.4.11) is feasible, therefore the
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dual problem (5.4.14) is also feasible with respect to the duality theorem. Thus

πjT
(d + Bx) ≤ 0, j = p + 1, p + 2, ..., p + q.

Now, the dual problem can be written as

z(x) = max
j=1,...,p

πjT
(d + Bx)

Let

zj(x) := πjT
(d + Bx), j = 1, 2, ..., p;

then

zj(x) ≤ z(x) ∀x, j = 1, 2, ..., p.

Hence, problem (5.4.11) is equivalent to the following full master problem:

minimize Z = cT x + θ

subject to Ax = b,

x ≥ 0, (5.4.15)

θ ≥ πjT
(d + Bx), j = 1, 2, ..., p

0 ≥ πjT
(d + Bx), j = p + 1, p + 2, ..., p + q.

The original problem (5.4.11) can now be divided into two as master problem

and subproblem.
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Master problem looks as follows:

minimize cT x + θ

subject to Ax = b, (5.4.16)

−Gkx + αθ ≥ gk, k = 1, 2, ...,

x ≥ 0,

where Gk+1 = π(x̂k)T B, gk+1 = π(x̂k)T d, k is the number of cuts and

α = 1, if π ∈ {πj, j = 1, 2, ..., p}
α = 0, if π ∈ {πj, j = p + 1, p + 2, ..., p + q}
Subproblem look as follows:

z(x̂k) = min fT y

subject to Dy = d + Bx̂k, (5.4.17)

y ≥ 0.

The lower and upper bounds for zk are cT x̂k + θ̂k and cT x̂k + z(x̂k), respectively.

Benders decomposition starts with solving the master program with k = 0, which

is

minimize cT x + θ

subject to Ax = b,

x ≥ 0,

and the master problem (5.4.16) at k > 0 to obtain x̂k, θ̂k, and thus zk
LB. Solving
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the subproblem, one gets z(x̂k) and thus zk
UB. Then, if zk

UB − zk
LB ≤ TOL the

algorithm is terminated and x̂k is declared to be the optimal solution, where TOL

is the given tolerance. Otherwise, a new constraint of type −Gkx + αθ ≥ gk is

added to the master problem at k = k + 1, and the new master problem with

an additional constraint is solved. This procedure continues until the optimal

solution is found.

Benders decomposition was first applied to stochastic programs with a dual

angular structure (see Figure 5.2) by Van Slyke and Wets [37]. The method

they developed, L-Shaped method, was designed for two-stage linear stochastic

programs with discrete random variables and finite number of realizations.

Figure 5.2: Dual angular structure of a two-stage stochastic program.
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L-Shaped Method

The basic idea of the L-Shaped method is to approximate the nonlinear term

in the objective of two-stage stochastic problems (the recourse function). The as-

sumption that the random vector ξ has finite support is made. Let k = 1, 2, ..., K

index its possible realizations and let pk be their probabilities. Under this as-

sumption, the deterministic equivalent program is (5.1.3), as shown previously,

where one set of second-stage decisions, yk, is associated to each realization ξ,

i.e., to each realization of qk, hk and Tk. The structure of the constraints set of

this problem is shown in Figure 5.2. This structure has given rise to the name,

L-Shaped method for the following algorithm.

L-Shaped Algorithm [7]

Step 0: Set r = s = ν = 0.

Step 1: Set ν = ν + 1. Solve the following linear program

minimize z = cT x + θ (5.4.18)

s.t. Ax = b,

Dlx ≥ dl, l = 1, 2, ..., r, (5.4.19)

Elx + θ ≥ el, l = 1, 2, ..., s, (5.4.20)

x ≥ 0, θ ∈ R.

If this problem is infeasible, then (5.1.3) is infeasible and the algorithm ter-

minates. Unboundedness can be resolved by the procedure in [37]. Other-

wise, let (xv, θv) be an optimal solution. If no constraint (5.4.20) is present,
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θv is set equal to −∞ and is not considered in the computation of xv.

Step 2: For k = 1, 2, ..., K solve the linear program

minimize w′ = eT ν+ + eT ν− (5.4.21)

s.t. Wy + Iν+ − Iν− = hk − Tkx
v, (5.4.22)

y ≥ 0, ν+ ≥ 0, ν− ≥ 0.

where eT = (1, 2, ..., 1), until, for some k, the optimal value w′ > 0. If

(5.4.21) is unbounded, so is (5.1.3) and the algorithm terminates. Other-

wise, let σν be the associated simplex multipliers and define

Ds+1 = (σν)T Tk (5.4.23)

and

ds+1 = (σν)T hk (5.4.24)

to generate a constraint (feasibility cut) of type (5.4.19). Set r = r +1, add

to the constraint set (5.4.19), and return to Step 1. If for all k, w′ = 0, go

to Step 3.

Step 3: For k = 1, 2, ..., K solve the linear program

minimize w = qT
k y (5.4.25)

s.t. Wy = hk − Tkx
ν ,

y ≥ 0.
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Let πν
k be the simplex multipliers associated with the optimal solution of

Problem k of type (5.4.25). Define

Et+1 =
K∑

k=1

pk(π
ν
k)T Tk, (5.4.26)

et+1 =
K∑

k=1

pk(π
ν
k)T hk. (5.4.27)

Let wν := et+1 − Et+1x
ν . If θν ≥ wν , stop; xν is an optimal solution.

Otherwise, set s = s + 1, add to the constraint set (5.4.20), and return to

Step 1.

First, r, s and ν are set equal to zero in Step 0. In Step 1, ν is increased by one and

become 1. Now r = 0, s = 0, ν = 1. The linear program (5.4.18) in Step 1, which

has only one constraint, is solved. There are no constraints of the type (5.4.19)

and (5.4.20), since r = 0 and s = 0. If this problem is infeasible, then (5.1.3)

is infeasible and the algorithm terminates. Unboundedness can be resolved by

the procedure in [37]. Otherwise, the optimal solution for this problem (x1,−∞)

may be the optimal solution for the main problem (5.1.3). To check this, firstly

the feasibility of (x1,−∞) is checked. This is done in Step 2 by solving (5.4.21),

which tests whether hk−Tkx
ν belongs to posW for k = 1, ..., K. If not, this means

that for some k, hk−Tkx
ν /∈ posW . Then, there must be a hyperplane separating

hk − Tkx
ν and posW . Such a hyperplane, say {x|σx = 0}, is determined by its

normal, σ, which must satisfy σT t ≤ 0 for all t ∈ posW and σT (hk − Tkx
ν) > 0.

In Step 2, this hyperplane is obtained by taking σ for the value σν of the simplex

multipliers of the subproblem (5.4.21) solved in Step 2. If this subproblem is

unbounded, so is (5.1.3) and the algorithm terminates. Otherwise, an optimal
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solution w′ for (5.4.21) is obtained.

By duality, w′ being strictly positive is the same as σT (hk − Tkx
ν) > 0.

Furthermore, (σν)T W ≤ 0 is satisfied because σν is an optimal simplex multiplier

and, at the optimum, the reduced cost associated with y must be non-negative.

Hence, σν has the desired property.

If the solution of the linear program (5.4.21) is zero (w′ = 0) for all states,

it means that the point (x1,−∞) is in the feasible region of the main problem

(5.1.3). Otherwise (if w′ > 0 for at least one state), the point (x1,−∞) is not in

the feasible region, thus not optimal. In this case, this solution is cut off from

the feasible region by feasibility cut. Feasibility cut is introduced by constructing

Ds+1 and ds+1. This cut is added to the constraint set (5.4.19) and r is increased

by 1, i.e., r becomes 1. After that, one must return to Step 1 and solve the

problem (5.4.18) with the new added constraint. This process is done until a

feasible solution is found (i.e., w = 0 for all states).

Then what must be done is to check whether this feasible solution is optimal.

Solving (5.1.2) is equivalent to solve

minimize cT x + θ

subject to Q(x) ≤ θ, (5.4.28)

x ∈ K1 ∩K2,

where K1 := {x|Ax = b, x ≥ 0} and K2 := {x|Q(x, ξ) < +∞}. To check the

optimality, the feasible solution xν is substituted to its place in the constraint

set of the linear program (5.4.25) in Step 3 and solved repeatedly for each states
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k = 1, 2, ..., K, yielding optimal simplex multipliers πν
k . From duality, for each k,

Q(xν , ξk) = (πν
k)T (hk − Tkx

ν).

Moreover, by convexity of Q(x, ξk), it follows from the subgradient inequality that

Q(x, ξk) ≥ (πν
k)T hk − (πν

k)Tkx.

Taking the expectation of these two relations yields

Q(xν) = E(πν)T (h− Txν) =
K∑

k=1

pk(π
ν
k)T (hk − Tkx

ν)

and

Q(x) ≥ E(πν)T (h− Tx) =
K∑

k=1

pk(π
ν
k)T hk − (

K∑

k=1

pk(π
ν
k)T Tk)x.

By θ ≥ Q(x), it follows that a pair (x, θ) is feasible for (5.4.28) only if θ ≥
E(πν)T (h − Tx), which corresponds to (5.4.20) where El and el are defined in

(5.4.26) and (5.4.27).

If (xν , θν) is optimal for (5.4.28), then Q(xν) = θν . This happens when

θν = E(πν)T (h− Txν), which justifies the termination criterion in Step 3. So, it

is the optimal solution if θ ≥ Q(x). Otherwise, if θν < Q(x), a new constraint of

type (5.4.20) is generated and added to the constraint set of the problem (5.4.18).

Now, s is set to s + 1. After that, one must return to Step 1 and continue this

process until θν ≥ Q(x), which gives the optimal solution of the main problem

(5.1.3).
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Figure 5.3: Example of the process of the L-Shaped decomposition algorithm [20].

The example in Figure 5.3 can be useful in understanding the L-Shaped de-

composition algorithm. The five first solutions and cuts are shown. The initial x̂1

was chosen arbitrarily. Cuts 1 and 2 are feasibility cuts and the rest optimality

cuts. θ̂1 = θ̂2 = θ̂3 = −∞.
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In Step 3 of the L-Shaped method, a single cut is generated (optimality cut).

However, it is possible to generate several cuts (one cut for each realization in

the second stage), instead of one. The multicut version of the L-Shaped method

is given below.

Multicut Version [7]

Step 0: Set r = ν = 0 and sk = 0 for all k = 1, 2, ..., K.

Step 1: Set ν = ν + 1. Solve the following linear program

min z = cT x +
K∑

k=1

θk (5.4.29)

s.t. Ax = b,

Dlx ≥ dl, l = 1, 2, ..., r, (5.4.30)

El(k)x + θk ≥ el(k), l(k) = 1, 2, ..., s(k), k = 1, 2, ..., K, (5.4.31)

x ≥ 0.

Let (xν , θν
1 , ..., θ

ν
K) be an optimal solution of the above problem. If no con-

straint (5.4.31) is present for some k, θν
k is set equal to −∞ and is not

considered in the computation of xν .

Step 2: As before.

Step 3: For k = 1, 2, ..., K solve the linear program (5.4.25). Let πν
k be the

simplex multipliers associated with the optimal solution of Problem k. If

θν
k < pk(π

ν
k)T (hk − Tkx

ν), (5.4.32)
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define

Es(k)+1 := pk(π
ν
k)T Tk,

es(k)+1 := pk(π
ν
k)T hk,

and set s(k) = s(k) + 1. If (5.4.32) does not hold for any k = 1, 2, ..., K,

stop; xν is an optimal solution. Otherwise, return to Step 1.

Numerical experiments show that with this multicut version, the number of iter-

ations is reduced. Furthermore, the multi cut approach is expected to be more

effective when the number of realizations K is not significantly larger than the

number of first-stage constraints m1 [7].

The L-Shaped method can be also extended to the multistage method pre-

sented in the next section.

Nested Benders’ Decomposition Method

For multistage problems, an appropriate horizon length, H, is difficult to

determine. The horizon should be distant enough for present decisions to reflect

the future accurately, but short enough to allow for efficient computation. It has

been shown that, under appropriate conditions, finite horizon solutions can be

found that are close to an infinite horizon optimum [8].

The general multistage problem (5.2.4) can be modelled as a dynamic program

with stages 1, 2, ..., H and states yt = T txt for t = 1, ..., H − 1. The following
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problem is an equivalent form of (5.2.4):

ς(yt−1,ξt

) = min (ct)T xt + zt+1(yt)

subject to W txt = ξt + yt−1, (5.4.33)

T txt = yt,

xt ≥ 0,

where zt(yt−1) := Eξt [ς(yt−1,ξt
)]. When t = H, then TH = 0 and zH+1(0) = 0.

The extension of problem (5.4.18) to the multistage is the following

minimize (ct)T xt + θt (5.4.34)

s.t. W txt = ξt + T t−1xt−1,

Dt
lx

t ≥ dt
l , l = 1, ..., r, (5.4.35)

Et
l x

t + θt ≥ et
l , l = 1, ..., s, (5.4.36)

xt ≥ 0.

Figure 5.4 is an example of a three period problem with two realizations of

the random vector in each period. There are 4 scenarios in period three. Each

period-three scenario has an ancestor scenario in period two and each period-two

scenario has two descendant scenarios in period three.

In general, the random vector for scenario j in period t is represented by ξt
j

for j = 1, 2, ..., Kt. The relaxation of (5.4.34) for period t and scenario j after rt
j
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Figure 5.4: Stages and decisions for a three-period problem [8].

constraints (5.4.35) and st
j constraints (5.4.36) being added is

minimize (ct)T xt
j + θt

j (5.4.37)

s.t. W txt
j = ξt

j + T t−1xt−1
a(j), (5.4.38)

Dt
l,jx

t
j ≥ dt

l,j, l = 1, 2, ..., rt
j, (5.4.39)

Et
l,jx

t
j + θt

j ≥ et
l,j, l = 1, 2, ..., st

j, (5.4.40)

xt
j ≥ 0,

where a(j) is the ancestor scenario of j in period t − 1, and xt−1
a(j) is the current

solution of the a(j) scenario problem in period t− 1.
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Nested Benders’ Decomposition Algorithm [8]

Step 0: Solve (5.4.37) for t = 1 where θ1 = 0, r1 = s1 = 0, and (5.4.38) is

replaced by

W 1x1 = h1.

Set θt
j = 0 and rt

j = st
j = 0 in problem (5.4.37) for all t and scenarios j at t.

Step 1: If the period 1 problem is infeasible, then the problem is infeasible.

Otherwise, let x̄1 be the current optimal solution of (5.4.37) for t = 1. Use x̄1 as

an input in (5.4.38) for t = 2. Solve (5.4.37) for t = 2 and all ξ2
j (j = 1, 2, ..., K2).

If any period two problem is infeasible, then add a feasibility constraint

(5.4.39) for t = 1, resolve for t = 1, and return to Step 1.

Otherwise, let t = 2 and go to Step 2.

Step 2: a) Let the current period t optimal solution be x̄t
j for j = 1, 2, ..., Kt.

Solve (5.4.37) for t + 1 and all j = 1, 2, ..., Kt+1 using the appropriate ancestor

solution x̄t
j in (5.4.38).

b) If any period t + 1 problem is infeasible, add a feasibility constraint to the

corresponding ancestor period t problem and resolve that problem.

If the period t problem is infeasible, let t = t− 1.

If t = 1, go to Step 1.

Otherwise, return to Step 2a.

Otherwise, return to Step 2a.

Otherwise, all period t + 1 problems are feasible.

If t ≤ T − 2, let t = t + 1 and return to 2a.

Otherwise (t = T − 1), remove any remaining θτ
j = 0 restrictions for all peri-

ods τ and scenarios j at τ and, for each of these, let the current value of θτ
j be

97



θ̄τ
j = −∞. Go to Step 3.

Step 3:a) Find Et
l,j and et

l,j for a new constraint (5.4.40) at each scenario t prob-

lem (5.4.37) using the current period t+1 solutions. The vector Et
l,j is calculated

as −∑
d(j) πt+1

d(j)T
t and et

l,j =
∑

d(j) πt+1
d(j)ξ

t+1
d(j) where d(j) scenarios are the descen-

dants of j and πt+1
d(j) is an optimal dual vector in the d(j) descendant problem.

b) If some j satisfies

θ̄t
j < et

l,j − Et
l,jx̄

t
j, (5.4.41)

then add the new constraint (5.4.40) to each period t problem (5.4.37) for which

(5.4.41) holds. Solve each period t problem (5.4.37). Use the resulting solutions

(x̄t
j, θ̄

t
j) to form (5.4.38) for the corresponding descendant period t + 1 problems

(5.4.37) and resolve each period t + 1 problem (5.4.37).

If t < T − 1, let t = t + 1 and go to Step 2a.

Otherwise, return to Step 3a.

Otherwise, θ̄t
j = et

l,j − Et
l,jx̄

t
j for all scenario j at t.

If t > 1, let t = t− 1 and return to Step 3a.

Otherwise, the current solutions x̄τ
j , τ = 1, 2, ..., H form an optimal solution

of (5.2.4).

Summary

Benders decomposition is a widely used major technique to solve mixed in-

teger programs. Van Slyke and Wets [37] applied this technique to stochastic

programming problems with a dual angular structure and because of the angular

structure of the constraint set it is named as L-shaped method. The extension

of L-shaped method to multistage is done by Birge [8] and Gassmann [16] and
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named as the Nested Benders decomposition.

5.4.2 Dantzig-Wolfe Decomposition

Another important decomposition technique is Dantzig-Wolfe decomposition

developed by Dantzig and Wolfe [10]. Dantzig-Wolfe decomposition is related

to Benders decomposition in that it is equivalent to performing Benders decom-

position on the dual of some linear program. As Benders decomposition is an

iterative procedure in which a new row is added to the master program after

every iteration, Dantzig-Wolfe decomposition is an iterative procedure in which a

new column is added to the master program after every iteration. Dantzig-Wolfe

decomposition can be applied to problems with block angular structure.

The basic idea of this method is to solve the problems of the following form

minimize Z = cT
1 x1 + cT

2 x2 (5.4.42)

subject to A1x1 + A2x2 = b,

B1x1 = b1,

B2x2 = b2,

x1,≥ 0 x2 ≥ 0,

where A1, A2, B1 and B2 are matrices with sizes m × n1,m × n2,m1 × n1 and

m2 × n2, respectively. Furthermore, c1, c2, x1 and x2 are vectors of sizes n1 ×
1, n2 × 1, n1 × 1 and n2 × 1, respectively.
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For the sake of simplicity, it is assumed that

S1 := {x1|x1 ≥ 0, B1x1 = b1}

and S2 := {x2|x2 ≥ 0, B2x2 = b2}

are bounded. Let W1 := {x11, x12, ..., x1K1} and W2 := {x21, x22, ..., x2K2} be the

sets of all extreme points of the convex polyhedron S1 and S2, respectively. So,

any point x ∈ Sj can be written as x =
∑Kj

k=1 λjkxjk, where
∑

k λjk = 1 and

λjk ≥ 0 (k = 1, 2, ..., K; j = 1, 2). Furthermore, let

Pjk = Ajxjk

fjk = cT
j xjk

for k = 1, 2, ..., Kj and j = 1, 2. Then, the following full master program is

equivalent to (5.4.42)

minimize

K1∑

k=1

f1kλ1k +

K2∑

k=1

f2kλ2k (5.4.43)

subject to

K1∑

k=1

P1kλ1k +

K2∑

k=1

P2kλ2k = b,

K1∑

k=1

λ1k = 1,

K2∑

k=1

λ2k = 1,

λ1k ≥ 0, k = 1, 2, ..., K1,

λ2k ≥ 0, k = 1, 2, ..., K2.
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This master program is completely equivalent to the original. It has only m + 2

rows, compared to the m + m1 + m2 rows of the original problem. It also has as

many columns as the sum of the numbers of extreme points of polyhedrons S1

and S2, i.e., K1 +K2 columns. To solve this full master program, simplex method

can be used. Simplex method basically looks to the extreme points of the feasible

set one by one to check whether it is the optimal solution. However, in our case,

the number of extreme points (K1 + K2) may be very large. Instead of checking

all these points, a technique called column generation is used. In this technique,

rather than tabulating all columns, columns are created to enter the basis as they

are needed.

Since the master program has m+2 equation constraints, a feasible basis will

consist of m + 2 columns, that is, these columns are linearly independent, and

the unique solution of the constraint equations obtained by setting to zero those

variables associated with all other columns is nonnegative. If the simplex method

is used in performing the calculations, there will also be the m+2 vector of prices

(π; π̂), the m-vector π associated with the first m constraints and the 2-vector

π̂ = (π̂1, π̂2) with the remaining two. The inner product of the price vector with

any column of the basis must be equal to the cost associated with that column;

in the case of master program this relation can be written as

πP1k + π̂1 = f1k,

πP2k + π̂2 = f2k.

One step of the simplex method iteration for solving the master program would

be performed as follows: find a column of the constraint matrix whose reduced
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cost is negative, that is, for which

fjk − πPjk − π̂j < 0, (5.4.44)

where j=1,2. Add this column to the current basis, and delete one column from

the basis in such a way that the new basis is still feasible. If no column satisfying

the above inequality can be found, then the current solution solves the master

problem. Otherwise, the simplex method gives the appropriate rules for the

removal of a column from the basis and for the calculation of the new prices

associated with the new basis, with which the next iteration step can begin.

Dantzig-Wolfe Decomposition Algorithm

Step 1: Assume that an initial basic feasible solution for the master program

is available, with basis matrix B and simplex multipliers (price vectors) (π, π̂).

Using the simplex multipliers, solve the following subproblems

minimize zj = (cj − πAj)xj

subject to Bjxj = bj,

xj ≥ 0, j = 1, 2,

obtaining solutions xj(π) = (x̂1, x̂2) and optimal objective values (ẑ1, ẑ2).

Step 2: Compute

θj = ẑj − π̂j,

for j = 1, 2. If for all j, θj ≥ 0, then the solution is optimal for the master

program. Thus, the algorithm is terminated.

Otherwise (θj < 0), form the new column as

(
Ajxj(π)

1

)
.

102



Add this column to the basis and form a new basis and new prices using the rules

of simplex method and return to Step 1.

Dantzig-Wolfe Decomposition Applied to Stochastic Programming

Dantzig-Wolfe decomposition can be applied to problems with block angular

structure (see Figure 5.5). Once observed that the desired structures for Dantzig-

Wolfe decomposition and Benders decomposition are duals of each other, Dantzig-

Wolfe decomposition approach can be derived from the L-shaped method by

taking duals [7].

Figure 5.5: Block angular structure of a two-stage stochastic program.

Dantzig-Wolfe Algorithm for Stochastic Programming Models [7]

Step 0: Set r = s = ν = 0.

Step 1: Set ν = ν +1 and solve the linear program in (5.4.45), which is the dual
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of (5.4.18).

maximize ζ = ρT b +
r∑

l=1

σldl +
s∑

l=1

πlel (5.4.45)

s.t. ρT A +
r∑

l=1

σlDl +
s∑

l=1

πlEl ≤ cT , (5.4.46)

s∑

l=1

πl = 1, (5.4.47)

σl ≥ 0, l = 1, 2, ..., r, πl ≥ 0, l = 1, 2, ..., s.

Let the solution be (ρν , σν , πν) with a dual solution, (xν , θν).

Step 2: For k = 1, 2, ..., K solve (5.4.48).

maximize w = πT (hk − Tkx
ν) (5.4.48)

s.t. πT W ≤ qT .

If any infeasible problem (5.4.48) is found, stop and evaluate the formulation. If

an unbounded solution with extreme ray σν is found for any k, then form new

columns Dr+1, dr+1 and set r = r + 1, then return to Step 1.

If all problems (5.4.48) are solvable, then form new columns Es+1 and es+1 as

in (5.4.26) and (5.4.27). If es+1 − Es+1x
ν − θν ≤ 0, then stop; (ρν , σν , πν) and

(xν , θν) are optimal in the original problem (5.4.18). If es+1 − Es+1x
ν − θν > 0,

set s = s + 1, and return to Step 1.

See Dantzig and Thapa [12] for a deeper treatment of Dantzig-Wolfe decomposi-

tion.

Summary

Dantzig-Wolfe decomposition, which is a useful technique for solving stochas-

tic programming models, is closely related to Benders decomposition in that it

is equivalent to performing Benders decomposition on the dual of some linear

program.
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Chapter 6

Conclusion

In this work, risk management for an energy company in deregulated markets

is considered. To form an adequate background the characteristics of energy

markets, changes in them and risk management are considered. Different types

of models constructed for energy companies in order to manage risk are studied,

which showed that stochastic programming is an appropriate approach for these

models. Finally, decomposition techniques to solve resulting large-scale stochastic

programming models are introduced.

Future work for this thesis should further consider the models constructed so

far, and construct a stochastic programming model for an energy company. The

model should be solved using decomposition techniques and the results should be

interpreted.
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[29] Pilipović, D., Energy Risk: Valuing and Managing Energy Derivatives, New

York: McGraw-Hill, 1998.

[30] Rockafellar, R. T., and Uryasev, S., Optimization of conditional value-at-

risk , Journal of Risk 2, 2000, pp. 21-41.

[31] Sen, S., Yu, L., and Genc, T., A stochastic programming approach

to power portfolio optimization, Stochastic Programming E-Print Series,

http://www.speps.info, 2003.
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