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Prof.Dr.Kemal Leblebiciog̃lu (METU, EEE DEPT)
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abstract

PARALLEL IMPLEMENTATION OF THE BOUNDARY

ELEMENT METHOD FOR ELECTROMAGNETIC

SOURCE IMAGING OF THE HUMAN BRAIN

Ataseven, Yoldaş

B.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof.Dr.Nevzat Güneri Gençer

September, 2005, 103 pages

Human brain functions are based on the electrochemical activity and

interaction of the neurons constituting the brain. Some brain diseases are

characterized by abnormalities of this activity. Detection of the location

and orientation of this electrical activity is called electro-magnetic source

imaging (EMSI) and is of significant importance since it promises to serve

as a powerful tool for neuroscience. Boundary Element Method (BEM) is a

method applicable for EMSI on realistic head geometries that generates large

systems of linear equations with dense matrices. Generation and solution of

these matrix equations are time and memory consuming due to the size of

the matrices and high computational complexity of direct methods. This

study presents a relatively cheap and effective solution the this problem and

reduces the processing times to clinically acceptable values using parallel

cluster of personal computers on a local area network. For this purpose,

a cluster of 8 workstations is used. A parallel BEM solver is implemented

that distributes the model efficiently to the processors. The parallel solver

for BEM is developed using the PETSc library. The performance of the
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solver is evaluated in terms of CPU and memory usage for different number

of processors. For a 15011 node mesh, a speed-up efficiency of 97.5% is

observed when computing transfer matrices. Individual solutions can be

obtained in 520 ms on 8 processors with 94.2% parallellization efficiency.

It was observed that workstation clusters is a cost effective tool for solving

complex BEM models in clinically acceptable time. Effect of parallelization

on inverse problem is also demonstrated by a genetic algorithm and very

similar speed-up is obtained.

Keywords: Boundary Element Method, Electromagnetic Source Imaging,

Brain, Parallel Processing.
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öz

İNSAN BEYNİNİN ELEKTROMANYETİK KAYNAK

GÖRÜNTÜLEMESİNDE SINIR ELEMANLARI

YÖNTEMİNİN PARALEL UYGULAMASI

Ataseven, Yoldaş

Lisans, Elektrik ve Elektronik Mhendislig̃i Bölümü

Tez Yöneticisi: Prof.Dr.Nevzat Güneri Gençer

Eylül 2005, 103 sayfa

İnsan beyninin faaliyetleri, beyni oluşturan sinir hücrelerinin etkileşimi

ve elektro-kimyasal aktivitelerine dayanır. Beynideki bazı bozukluklar ve

hastalıklar da bu aktivitelerin bozuklug̃u ile karakterize edilir. Bu aktivitenin

yerini ve yönünü belirlemeye elektromanyetik kaynak görüntüleme (EKG)

denir ve sinirbilim için güçlü bir araç olacag̃ından oldukça önemlidir. Sınır El-

emanları Yöntemi (SEY), EKG için uygulanabilen, büyük ve yog̃un denklem

takımları yaratan bir yöntemdir. Bu denklem takımlarının oluşturulması ve

çözülmesi, denklem takımlarının büyüklüg̃ü ve dog̃rudan yolların işlem

gücü gereksinimi nedeniyle uzun işlem süreleri ve büyük bellekler gerek-

tirir. Bu çalışma, mevcut probleme ucuz ve verimli bir çözum sunmakta

ve işlem sürelerini klinik olarak kabul edilebilir deg̃erlere indirmektedir.

Bu amaçla, 8 bilgisayarlı bir bilgisayar kümesi kurulmuş ve kullanılmıştır.

Kullanılan modeli işlemcilere verimli bir şekilde dag̃ıtan bir paralel çözücü

geliştirilmiştir. Çözücünün başarımı, çeşitli sayıda işlemciler için işlemci ve

bellek kullanımı bakımından incelenmiştir. 15011 dügümlü bir ag̃da, 8 işlemci

kullanıldıg̃ı zaman transfer matrislerinin hesaplanmasında 97.5% verimlilik
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gözlenmşitir. Bir tek cözümü alma süresinde 8 işlemci ile 94.2% hızlanma

verimi ile 520ms sürede çözüm alınması saglanmıştır. Bilgisayar kümelerinin

karmaşık BEM modellerinde çözüm almak için ucuz ve etkili bir arac oldugu

gözlenmiştir. Paralelleştirmenin geri problem üzerindeki etkisi bir genetik

algoritma ile gösterilmiş ve ileri problem çözümleri için çok benzer hızlanma

sonuçları alınmıştır.

Anahtar sözcükler: Sınır Elemanları Yöntemi, Elektromanyetik Kaynak

Görüntüleme, Beyin, Paralel İşleme.
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öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

list of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

list of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

chapter

1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Summary . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Objective of the Study . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Significance of the Study . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 7

2 forward problems of emsi . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Discretizations . . . . . . . . . . . . . . . . . . . . . . 10

x



2.2.2 Linear Equations . . . . . . . . . . . . . . . . . . . . . 13

2.3 Solutions of the Linear Equations . . . . . . . . . . . . . . . . 16

2.3.1 Direct Methods . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . 17

2.4 Complexity for Phases of BEM . . . . . . . . . . . . . . . . . 21

3 parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The Marvin Cluster . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Parallel Libraries and Iterative Solvers . . . . . . . . . . . . . 24

3.3 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 the inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Chromosomes and Generations . . . . . . . . . . . . . 34

4.2.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Cross-over . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Boundary Cross-over . . . . . . . . . . . . . . . . . . . 35

4.2.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.6 Eliticism . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.7 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . 37

4.2.8 Summary of Algorithm Parameters . . . . . . . . . . . 38

5 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Used Head Models . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Measures of Performance . . . . . . . . . . . . . . . . . . . . . 47

5.3 Assessment of Accuracy . . . . . . . . . . . . . . . . . . . . . 48

5.4 Performances of the KSMs . . . . . . . . . . . . . . . . . . . . 53

5.5 Speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.1 Tests on The Genetic Algorithm . . . . . . . . . . . . . 57

xi



5.6.2 Localization Accuracy . . . . . . . . . . . . . . . . . . 59

5.6.3 Solution Times . . . . . . . . . . . . . . . . . . . . . . 65

6 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 The Forward Problem . . . . . . . . . . . . . . . . . . . . . . 68

6.2 The Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Factors Affecting The Computation Time . . . . . . . . . . . . 71

6.4 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A discretizations and isoparametric mapping . . . . . 82

B gauss-legendre quadrature and numerical inte-

gration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C algorithms for used krylov subspace methods 88

C.1 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

C.2 Bi-CGSTAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C.3 CGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C.4 TFQMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

C.5 CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C.6 CGNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

D construction of the athlins cluster . . . . . . . . . . . . 93

D.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D.2 Software Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D.2.1 Installing the Operating System . . . . . . . . . . . . . 95

D.2.2 Network Setup . . . . . . . . . . . . . . . . . . . . . . 96

D.2.3 MPI Installation . . . . . . . . . . . . . . . . . . . . . 98

D.2.4 BLAS Installation with ATLAS . . . . . . . . . . . . . 99

xii



D.2.5 LAPACK Installation . . . . . . . . . . . . . . . . . . . 99

D.2.6 Inserting ATLAS Routines in LAPACK . . . . . . . . . 100

D.3 PETSc Installation . . . . . . . . . . . . . . . . . . . . . . . . 100

D.3.1 Sample Makefile . . . . . . . . . . . . . . . . . . . . . . 102

xiii



list of tables

2.1 Properties of some KSMs that are applicable to dense matrices 20

4.1 Default (used) genetic algorithm parameters for a 12294-noded

mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Solution times for various KSMs using different number of

processors (for mesh 2) . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Efficiency of various phases of the BEM implementation . . . 54

5.3 Mean localization error MLE (mm) and mean orientation error

MOE (degrees) for EEG experiments . . . . . . . . . . . . . . 58

5.4 Mean localization error MLE (mm) and mean orientation error

MOE (degrees) for MEG experiments . . . . . . . . . . . . . . 58

5.5 Localization accuracy for x-directed dipoles. All units are in

mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Localization accuracy for y-directed dipoles. All units are in

mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Localization accuracy for z-directed dipoles. All units are in

mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1 Local coordinates and weights for Gauss-Legendre quadrature

with 13 points . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiv



list of abbreviations

ATLAS Automatically Tuned Linear Algebra Software

atol Absolute Tolerance (used in KSMs)

BEM Boundary Element Method

BiCG Bi-conjugate Gradients

BiCGSTAB Bi-conjugate Gradients Stabilized

CSF Cerebrospinal Fluid

CGNE Conjugate Gradients on Normalized Equations

CR Conjugate Residuals

CGS Conjugate Gradients Squared

CISC Complex Instruction Set Computing

CPU Central Processing Unit

BLAS Basic Linear Algebra Subprograms

EEG Electroencephalography

EMSI Electromagnetic Source Imaging

FDM Finite Difference Method

FEM Finite Element Method

FP Forward Problem

FSB Front Side Bus

GMRES Generalized Minimal Residual

I/O Input-Output

IP Inverse Problem

xv



IPA Isolated Problem Approach

KSM Krylov Subspace Method

LAN Local Area Network

LAPACK Linear Algebra Package

MEG Magnetoencephalography

MPI Message Passing Interface

NMR Nuclear Magnetic Resonance

OS Operating System

PC Personal Computer

PETSc Portable, Extensible Toolkit for Scientific Computation

PVM Parallel Virtual Machine

RAM Random Access Memory

RDM Relative Difference Measure

RISC Reduced Instruction Set Computing

rsh Remote Shell

rtol Relative Tolerance (used in KSMs)

SIMD Single Instruction, Multiple Data

SNR Singal-To-Noise Ratio

TFQMR Transpose-free Quasi-minimal Residual

xvi



chapter 1

introduction

1.1 General Overview

The electrical activities in the brain generate electrical potentials on

the scalp surface and magnetic fields near the scalp. Electroencephalogra-

phy (EEG) and Magnetoencephalography (MEG) use electrodes and SQUID

magnetometers to sense these fields. In Electro-magnetic Source Imaging

(EMSI), the ultimate goal is to determine the distribution of these activities

using the EEG and MEG measurements [1], [2], [3], [4]. The forward problem

(FP) of EMSI is defined as calculating the electric potentials/magnetic fields

on/near the scalp surface, given the electrical activities in the brain [5]; and

the inverse problem (IP) is defined as finding the electrical activities from

these measurements. It is apparent that, accurate results require accurate

modeling [6], [7], [8]. Since analytical solutions for the FP are not available

for realistic head models, numerical methods are used. Boundary Element

Method (BEM) is a numerical method that solves the electric/magnetic field

on the boundaries of different conductivity regions [8], [9], [7], [6], [10].

The BEM discretizes the corresponding integral equations on the conduc-

tivity boundaries to form a linear system of equations. The system matrix

for the potential solutions is a dense matrix with no positive-definiteness or

symmetry. When a detailed realistic head model is used, the dimensions of

the resulting system matrix increase. Therefore, application of computation-

ally expensive direct matrix solution methods is not feasible for solving the

BEM matrix equations. Furthermore, only a limited set of iterative solution

techniques can be applied due to the lack of positive definiteness and sym-
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metry. If the number of unknowns (nodes) is increased in order to improve

the accuracy, computation time and memory requirement increase quadrati-

cally. Therefore, computational complexity is a limiting factor in the forward

problem solutions using large BEM meshes. In order to avoid long processing

times and to prevent running out of memory, even the recent studies to use

coarse meshes for realistic models [11], [12], [13]. The purpose of this study

is to present a scalable parallelization scheme using a Beowulf cluster in both

the system matrix generation and the FP solutions. The advantages of such

a system are twofold: speeding up the FP calculations and elimination of

memory limitations.

The IP is an optimization problem to be solved for optimum localization

of the source, based on successive FP solutions. Thus, the solution time for

the FP is the determining factor for IP solution time. For faster FP solutions,

Akalın-Acar and Gençer used an accelerated BEM formulation, which cal-

culates only the specific rows of the system matrix inverse that correspond

to measurement nodes [12]. This approach reduces the FP solution to a

matrix-vector multiplication for a specific source configuration. Even for the

accelerated BEM, the computation times required for generation of coefficient

and transfer matrices are long. The studies on speeding up EMSI are limited

and parallel processing was attempted only for the Finite Element Method

(FEM) implementations [14], [15], [16]. Although parallel implementation of

the BEM was performed for various engineering problems [17], [18], [19], it

has not been applied for EMSI.

Memory is another factor that prevents the use of detailed BEM head

models. An increase in the number of nodes in a BEM mesh will increase

the system matrix size exponentially. Consequently, the number of nodes is

limited by the available memory of the computer used. If a realistic head

model with high number of nodes will be used, required memory may exceed

the available system resources. Parallelization solves this problem since the

available memory can be extended by a factor of the number of personal

computers (PCs) in a cluster.
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Parallel FP solution can be implemented using direct (Gauss elimination

based) or iterative approaches. The direct implementations are generally

based on matrix factorization [17]. Iterative methods are divided into two

main groups: stationary methods and Krylov subspace methods (KSMs)

[20]. It has been shown that, for the BEM, there are efficient robust iterative

KSMs which are better than Gauss-based methods in complexity [21] and

thus in processing time. They are also superior to stationary methods in

convergence rate. For this purpose, basic KSMs sacrifice applicability to all

kinds of matrices. Yet, there are modified KSMs that are applicable to all

types of matrices and much faster than stationary methods. In this study,

the performance of these methods are tested and the most efficient method,

namely the Generalized Minimal Residual (GMRES) method is used for the

BEM system solutions.

To solve the system of equations, the Portable, Extensible Toolkit for

Scientific Computation (PETSc) [22] is employed which allows the use of

almost all KSMs in the literature. PETSc is a high performance scientific

computations library that uses the Message Passing Interface (MPI) frame-

work [23]. While PETSc is focused on sparse matrix operations, solvers for

dense matrices are also available.

As the computational platform, a workstation cluster of 8 computers

is used. Such a cluster of workstations, communicating over a local area

network (LAN) is called a Beowulf cluster. Beowulf clusters are cheap and

easy to build. They are constructed using readily available off-the-shelf PC

hardware and are flexible for future modifications. [24].

This work introduces parallel processing for the forward and inverse prob-

lems of electromagnetic source imaging with BEM and reports the improve-

ment in the performance with parallelization for 3-layer spherical and real-

istic head models (meshes). A parallel PC cluster of 8 computers is con-

structed over Gigabit Ethernet and various scientific computation and par-

allel processing libraries are installed to construct a parallel processing en-

vironment. The code is developed for forward and inverse problems using

3



a high-level library (PETSc) and C++ programming language. A simple

genetic algorithm with real valued chromosomes is used for inverse problem

solutions and tested on spherical and realistic head models.

1.2 Literature Summary

There are a number of approaches to solve the forward problem of BEM.

The simplest one is to model the head as a sphere [25], [26],[27] or as con-

centric spherical shells [28]. Improvements to this approach also exist [7].

However, it is apparent that accurate results necessitate accurate (i.e. realis-

tic) modeling [6], [8]. Such models are patient dependent and disable generic

analytical solutions. Therefore, the studies that use realistic head models

are generally based on more complex numerical methods [12], [10]. Spherical

models are used for testing proposed methods since analytical solutions are

available for such models [26].

The geometry of the head can be approximated by a patient-independent

model [29], [30] or extracted from the output of an imaging device such as

MRI or CT [12], [31], [32], [33]. The resultant numerical model is a mesh

composed of nodes and their connection information (elements). Different

element types [12], [11] are possible to describe the mesh. For acceptable

accuracy in the results, the mesh is required to have sufficient number of

nodes [12], [34]. In the BEM, the EMSI problem is reduced to a linear system

of equations defined by an integral equation [25]. The corresponding system

matrices are general dense matrices. Consequently, the studies mentioned

thus far -including the recent ones- generally use moderate number of nodes

(less than 10000) in their BEM models.

There are two main groups of methods for the solution of the BEM equa-

tions: direct (Gaussian elimination based) methods and iterative methods.

Direct methods are generally based on matrix factorization [17]. Iterative

methods are; old-fashion stationary methods (Jacobi, SOR, etc) and well-

known Krylov Subspace Methods (KSMs) [20].
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In the literature, KSMs are used for EMSI with BEM [35], [36]. It is

known that, for BEM, there are efficient robust iterative methods, which are

better than the Gauss-based methods in complexity, and so the processing

time [36], [21]. KSMs are also superior to stationary methods in convergence

rate [20]. However, basic KSMs sacrifice applicability to all kinds of matrices.

Yet, there are modified KSMs (such as GMRES, BiCGSTAB, CGS, CR, etc.)

applicable to general matrices and much faster than stationary methods.

Even with KSMs, solutions are time consuming due to large system matrices

and the need for many matrix-vector products.

Akalın and Gençer [12] proposed an accelerated BEM, which calculates

only the specific rows of the system matrix inverse (with KSMs) that cor-

respond to the measurement points (EEG/MEG). Such an approach will

reduce the forward problem solution to matrix-vector multiplications, reduc-

ing the inverse problem solution time significantly. This method is based on

constructing the selected rows of the system matrix inverse by solving the

forward problem for a fixed number (number of electrodes) of times.

Even for accelerated BEM, matrix fill, transfer matrix calculation and

forward problem solution time on a fast computer for a moderate number

of nodes is large [12]. If the number of nodes is increased due to accuracy

considerations, computation times increase exponentially. Therefore, com-

putational complexity is a limiting factor for BEM mesh sizes.

Parallelization of the BEM is a way to reduce computation time, which

is quite long due to computational complexity of the methods and size of the

problems. Parallel solution can implement a direct (Gauss-based) or indirect

(iterative) approach. Parallelization of the BEM has examples in various

engineering problems [19], [17], [18]. However, it is not used for the EMSI

of the human brain except for generating head models [37] and some FEM

applications [15].

There are various widely used open source high performance scientific

computation libraries that can be accessed through The Internet. These

libraries range from low level (inter-processor communication) [23], [38], to
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high level (distributed data types, parallel solvers, etc.) [22], [39], [40] and

built on top of each other (a higher level library uses the routines of the lower

level library routines to perform lower level tasks). Although most of them

are developed using FORTRAN, C interfaces are also provided for high-level

libraries (with little loss in performance).

When FP solution is available, the next step is the solution of the IP. IP

of EMSI with BEM cannot be solved by deterministic optimization methods

since many local minimums are possible due to limited number of detectors.

There are various studies on the IP which are focused on different topics of

IP [41], [27], [10]. However, they ignore the need for a global optimization

method except [42]. Genetic algorithm is used in [42] for EMSI with BEM

and reported to provide excellent localization accuracy.

Evolutionary (genetic) algorithms are widely used in many engineering

problems that necessitate obtaining the global minimum in the existence of

many possible local minimums [43], which is the case for IP of EMSI with

BEM [42]. For that, it is classified to be a global optimization method.

1.3 Objective of the Study

This study aims at:

1. Constructing a high performance scientific computation platform using

a Beowulf class computer cluster with personal computers.

2. Implementing the accelerated BEM approach in the Beowulf cluster to

speed up the forward problem of the EMSI.

3. Implementing a real coded Genetic Algorithm in the Beowulf cluster

to speed up the inverse problem of the EMSI.
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1.4 Significance of the Study

This work contributes to two major aspects of the EMSI: forward and in-

verse problems. A parallelization scheme is proposed to solve the FP of EMSI

using the accelerated BEM. The proposed scheme is scalable and promises

to be faster for increased number of processors. It is effective in matrix

storage and filling, calculation of the inverse matrix’s selected rows and in-

dividual solutions (matrix-vector products). Consequently, it provides faster

solutions for the forward problem of the BEM. A global optimization algo-

rithm, namely the Genetic algorithm is adopted to solve inverse problem in

the parallel platform. The parallel forward problem solver is directly used

for fitness function calculations. Thus, the speed up in the forward problem

calculations is directly reflected to the inverse problem calculations. The pro-

posed parallelization scheme allows the usage of very accurate head models

in clinical applications.

1.5 Outline of the Thesis

In this thesis study, a general overview of the forward problem with the

accelerated BEM approach will be presented in Chapter 2. The proposed

parallelization scheme is described in Chapter 3. In Chapter 4, Genetic

Algorithm adopted for the inverse problem is introduced. The results of the

parallelization for both forward and inverse problem solutions are reported

in Chapter 5.
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chapter 2

forward problems of emsi

Brain functions are generated by regional collective activity of neurons.

Although the activity of a single neuron is not likely to be detected outside

the head, the neural activity within a small region can be distinguished in

EEG/MEG recordings due to the current density created by neurons in that

region. The current density ~Jp within a differential volume element dv can be

modeled as a current dipole ~p (~p = ~Jpdv). The activity within larger regions

can also be modeled as current dipoles [5].

Figure 2.1: A current dipole p in an inhomogeneous volume conductor V

bounded by surface S, σ(x,y,z) is the conductivity distribution function of

the volume conductor, φ is the potential distribution in V and B is the

magnetic field near S.
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If the region of interest has a layered structure with different average

conductivity values for each region, BEM is applicable for calculating the

potential distribution φ on S.

2.1 Formulation

The BEM is a frequently employed numerical method for the solution of

the forward problem of EMSI. It is based on finding the electric potentials on

the tissue boundaries of head using the boundary conditions for the electric

field. The sources inside the brain that generate these potentials are assumed

to be dipolar [5]. The electric potential φ and the magnetic field ~B due to a

dipole source ~p in a piecewise homogeneous volume conductor can be found

using the following integral equations [44]:

σ̄φ(~r) = g(~r) +
1

4π

L
∑

k=1

(

σ−

k − σ+

k

σ−

i + σ+

i

)
∫

Sk

φ(~r ′)
~R

R3
· d~Sk(~r

′), (2.1)

~B(~r) = ~B0(~r) +
µ0

4π

L
∑

k=1

(

σ−

k − σ+

k

)

∫

Sk

φ(~r ′)
~R

R3
× d~Sk(~r

′). (2.2)

Here, ~R = ~r − ~r ′ is the displacement vector between the field point ~r

and the source point ~r ′ and R is the magnitude of ~R. Sk are the boundaries

that lie between two different conductivity regions having conductivity values

σ−

k for the inner layer and σ+

k for the outer layer. σ̄ denotes the average

conductivity of inner and outer layers of the field point. The potential at

any point ~r on a boundary has two major parts: the field generated by the

dipole (primary source) in an unbounded medium (g and ~B0), and the field

generated by surface currents (secondary sources) at the boundaries of layers

having different conductivities. The terms g and ~B0 are given as:

g(~r) =
1

4πσ0

~p · ~R

R3
, (2.3)
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~B0(~r) =
µ0

4π

~p× ~R

R3
, (2.4)

where µ0 is the permeability of vacuum and σ0 is unity.

Since the magnetic field can be obtained directly form the potential dis-

tribution, in the remaining part of this text, only potential distribution will

be mentioned to avoid duplication. Magnetic field considerations will be

mentioned wherever needed.

The above formulation is computationally suitable, since the surface in-

tegrals can be numerically approximated by discretizing the surfaces with

elements and interpolation over each element.

2.2 Methodology

To compute the secondary terms in (2.1) and (2.2) numerically, the

boundary surfaces are approximated by meshes composed of nodes and el-

ements. The surface integrals are computed over these elements [45], [46],

[47], [44].

2.2.1 Discretizations

Although analytical solutions exist for simple head models based on the

concentric spheres model [26], [28], realistic models are superior in accuracy

even if the model is slightly evolved to a realistic one [6],[7]. Complicated

nature of the surfaces in the realistic head models makes the analytical cal-

culation of the integrals in (2.1) and (2.2) impossible. To overcome this

difficulty, numerical methods are widely used for the FP and the IP [25],

[10], [11], [42].

Any finite surface integral can be represented by the sum of surface in-

tegrals on all surface patches constituting that surface. If that surface can

be represented by a collection of surface elements and if the integration on

each element is approximated by a finite sum, then the surface integral can
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be computed on each element, and we can numerically solve (2.1) and (2.2)

for Φ and ~B as long as we have the primary source (dipole) information [25].

The most widely used surface element type is the triangle [9],[34],[10].

The surfaces are approximated by a mesh with triangular loops. Accuracy of

such an approximation for representing the surface is strictly dependent on

the surface shape and the number of elements used in the mesh (Figure 2.2)

The approximation of the surface can be done using higher order

(quadratic, cubic) elements instead of triangular (first order ≡ linear) el-

ements. In these cases, the elements are again triangle-originated, but not

necessarily planar (see the Appendix A for details). Higher order elements

can provide better accuracy in the numerical calculations, especially for the

cases with curved surfaces, even with less number of elements [25], [11].

The surface integral on each element also necessitates an approximation.

Although, there are piecewise constant field approximations in the early lit-

erature, for the EMSI, the field distribution cannot be accepted constant over

an element unless the element size is very small (i.e. number of elements is

high) [15]. Generally, the most commonly used field distribution approxima-

tion is obtained by a linear interpolation, in which, the field at every point

on the element is approximated by a linear combination of field values at

the nodes (vertices) [6], [10], [48]. For higher order elements, higher order

interpolations are possible [25], [11]. The higher order interpolations provide

more accurate approximations for fast varying field patterns. For the inter-

polations of all degree, the field at any point on an element is represented

in terms of the field values at nodes. For that, a local domain is defined, at

least implicitly [25]. The node coordinates are fixed in the local domain and

every point on the local domain element is mapped to the real domain by

the interpolation (shape) functions, the local coordinates of that point and

the real domain node coordinates.

In this study, the head is modeled using realistic and spherical three-layer

BEM meshes representing brain, skull and scalp with second order elements.

The BEM formulation used in this study is described by Tanzer and Gençer
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Figure 2.2: Spherical shell approximations using different number of linear

elements. Surface modeling accurately increases from (a) to (e).

[25] and further refined by Akalın-Acar and Gençer [12]. The formulation uses

triangular elements. The interpolation of coordinates and surface potentials

over the element is performed using shape functions which map a triangular

element defined in a local coordinate space to the actual element. Such a

mapping is called isoparametric since both the position and the potentials are

approximated using the same shape functions (see Appendix A). The order

of the shape functions determine the order of the mesh. Linear, quadratic

and cubic shape functions require three, six and ten nodes for each element,

respectively. Quadratic elements provide a good balance between accuracy

and mesh complexity [25].

After the interpolation functions are described, the surface integral over

the element must be approximated by a finite sum. For that, Gauss-Legendre

quadrature [49] with 13 points is used (see Appendix B).
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Using the above approximations, we obtain the following discrete equation

set [25]:

φi = gi +
1

2π

K
∑

k=1

{

(

σ−

k − σ+

k

σ−

i − σ+

i

) Mk
∑

j=1

(

1

2

gp
∑

l=1

φlωl

~Rl

R3
· ~nlGl

)}

(2.5)

This equation gives the potential at the ith node by summing the contri-

butions of K boundaries. Note that the kth boundary has Mk patches and

Mk may be different for every boundary. Here, gi is the field created by

the dipole in an unbounded case given by (2.3), gp is the number of Gauss-

Legendre quadrature points (13 in this study), φl is the potential at the lth

Gauss-Legendre point, ωl is the weight for that point, nl is the normal and

Gl is the Jacobian due to transformation from the local domain to the global

domain. See the Appendix A and Appendix B for the details.

2.2.2 Linear Equations

As explained in section 2.2.1, the surface integral on each element is ap-

proximated as a weighted sum of potentials at sample points on the element.

These sample points are selected in the local domain according to Gaussian

quadrature [49] and the electric potential at each sample point is expressed

in terms of node potentials using interpolation functions (see Appendix B).

If the field point is close to an element, the gaussian integration over that

element does not provide acceptable accuracy in the solutions. A recur-

sive integration scheme, in which the element of integration is divided into

subelements is implemented to reduce this effect [11]. After processing every

element, equation (2.1) can be expressed as a system of linear equations with

N unknowns where N is the number of nodes in the BEM mesh.

Φ = g + CΦ. (2.6)

In this equation, g and Φ are N×1 vectors representing the electric poten-

tial due to primary sources and total electric potential at nodes, respectively.
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Defining A = (I − C), the matrix equation becomes,

AΦ = g. (2.7)

where A is an N × N matrix which represents the head geometry and con-

ductivity distribution.

To eliminate the singularity in A, a single deflation is performed on the

matrix [50], [9]. The deflated A becomes:

A = I −

(

C −
1

N
U

)

(2.8)

Here, U is an N×N matrix with all entries equal to unity. Deflation can

be considered as taking the average of node potentials as the reference.

The low conductivity of the skull causes numerical errors in the forward

problem solutions. The Isolated Problem Approach (IPA) is implemented to

overcome this problem [9], [8]. In this approach, first the brain-skull interface

is isolated from other layers (brain inside and air outside) and this problem

is solved for the given dipole. Obtained potentials are used to modify the

actual equation. This is done by replacing the right-hand-side of (2.7) with

a corrected one that includes the effect of skull conductivity:

h =
σ+

3

σ−

3

g −
2σ+

3

σ+

3 + σ−

3

ΦIPA (2.9)

Here, ΦIPA is a vector containing the IPA solutions for brain-skull in-

terface nodes and zero elsewhere. σ+

3 and σ−

3 denote the skull and brain

conductivities, respectively.

Therefore, two distinct matrices must be generated and two linear systems

must be solved for forward problem solutions. IPA matrix (let us call it As)

could be extracted directly from A. Since the outer conductivity of the brain-

skull interface (conductivity of the skull) is replaced by air conductivity for

the isolated problem, the entries of A matrix must be transferred to the As

matrix by appropriate scaling.
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Note that, both As and A remains the same for different dipole orienta-

tions. Changing dipole location and/or orientation changes only the right-

hand-side of the equation system since the dipole information is inserted only

to g as seen in (2.1) and (2.3).

For the magnetic field, equation (2.2) leads to another linear system of

equations:

B = B0 + HΦ (2.10)

where B is an N × 1 vector keeping the radial component of the magnetic

field. (MEG coils are assumed to be placed radially). H is a similar matrix

generated from (2.2). Hence, the solution of the forward problem is reduced

to solving a linear system of equations.

Inverting the system matrix A is a time-consuming task since A is dense

and large. Furthermore, A−1 is not completely needed for the inverse prob-

lem. Rather, the rows of A−1 that correspond to electrode positions is suffi-

cient. Therefore, when iterative methods are used, forward problem solution

can be modified to compute the electric potential at the measurement nodes

only [12]. For this purpose, the Accelerated BEM method developed by

Akalın-Acar and Gençer is implemented [12]. The Accelerated BEM method

computes transfer matrices for EEG and MEG and uses these matrices to

solve the forward problems using simple matrix-vector multiplications. The

method also includes formulations for using IPA when there are arbitrary

number of layers inside and outside the skull compartment [13]. After com-

puting the transfer matrices for the electric field (E) and for the magnetic

field (M), the set of equations for the forward problem solution on a three-

layer head model becomes:

Φe = E

(

1

σ3

g −
2σ2

σ2 + σ3

A−1

s g0

3

)

(2.11)

B = B0 + M

(

1

σ3

g −
2σ2

σ2 + σ3

A−1

s g0

3

)

+ H3A
−1

s g0

3 (2.12)
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where Φe represents the electrode potentials, σ2 and σ3 are the skull and

brain conductivities, respectively. A−1
s is the inverse of the coefficient matrix

for the isolated model, g0
3 is the right hand side for the isolated model, H3 is

the sub-matrix of H matrix corresponding to the nodes of the isolated model.

2.3 Solutions of the Linear Equations

There are various methods to solve linear systems of equations. They are

classified using two main types, namely direct and iterative methods.

2.3.1 Direct Methods

The most straightforward methods for solving linear systems of equations

are based on Gaussian elimination and are called direct methods. Direct

methods are applicable to all kinds of linear systems. As long as a system

of equations has a unique solution, direct methods guarantee finding that

solution for exact arithmetic. However, direct methods are computationally

very expensive. Gaussian elimination based Matrix inversion is O(n3).

If the system is to be solved successively for varying right-hand sides,

more efficient direct methods are applicable. The most commonly used di-

rect method is the LU decomposition [51], in which A is represented by a

multiplication of an upper and a lower triangular matrix as:

A = LU (2.13)

LU decomposition complexity is again O(n3). However, once the LU

decomposition is obtained for a system matrix, system could be solved for

varying right-hand-sides in O(n2) time by back-substitution (Ly=b, Ux=y).

This is same with the solution complexity after matrix inversion (matrix-

vector multiplication). Storage needs for LU decomposition is again same

with matrix inversion. The major advantage for LU decomposition appears

in finite precision arithmetic since back-substitution provides better accuracy
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than multiplication with the system matrix inverse [52]. However, accelerated

BEM is not applicable with LU decomposition, since the system solutions

necessitate the entire decomposition.

For large BEM equations, direct methods are inappropriate due to their

high computational complexity (O(n3)). Furthermore, the entire matrix in-

verse is not needed. There is no way to construct only the selected rows of

the inverse matrix by direct methods other than calculating the entire inverse

or a very naive approach (Calculating LU decomposition in O(n3) time and

then calculating E in O(mn2) time by solving m equations using LUxi = bi).

At this point, as long as the matrix is well-conditioned, iterative methods

have considerable advantage since E can be constructed in O(mn2) time

without the need for a complete inversion or LU decomposition.

2.3.2 Iterative Methods

Iterative methods are based on making an initial guess for the solution

and then improving this guess in successive steps. There are various iterative

methods for the solution of linear equation systems.

One type of iterative methods covers stationary iterative methods [20].

These methods have a general form:

xk+1 = Gxk + c (2.14)

Here, xk+1 is the next iterate (guess), xk is the current guess, c and G

are a constant vector and a matrix, respectively. G and c are chosen so that

the function g(x) = Gx + c is stationary at the solution point x. That is, if

xi = x, then xi+1 = x. The general approach is to split the system matrix

A or its preconditioned version (the right hand side will also be modified in

such a case). Common examples to this family of methods are:

1. The Jacobi Method:

xk+1 = −D−1(L + U)xk + D−1b (2.15)
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2. The Gauss-Seidel method:

xk+1 = −(D + L)−1Uxk + (D + L)−1b (2.16)

3. Successive Over-Relaxation:

xk+1 = (D + ωL)−1((1 − ω)D− ωU)xk + ω(D + ωL)−1b (2.17)

In above methods, D is the diagonal, L is the strictly lower triangular

and U is the strictly upper triangular part of the system matrix. ω in (2.17)

is a relaxation parameter such that 1 < ω < 2.

If we reconsider (2.14). Since g(x) is stationary at the solution point x,

we have

x = Gx + c (2.18)

Subtracting (2.14) from (2.18) we get

ek+1 = Gek (2.19)

Where ek and ek+1 are the errors for kth and kth
i+1 iterates, respectively.

Equation (2.19) shows that the performance of the stationary methods are

strictly dependent on the spectrum of G. If G has large eigenvalues, the error

along corresponding eigenvectors may decay slowly, even diverge. Therefore,

for many ill-conditioned matrices, the stationary methods may have very

slow convergence or no convergence at all. Preconditioners may provide or

improve the convergence for such matrices.

As apparent from (2.19), the stationary iterative methods tend to reduce

the high-frequency (i.e., oscillatory) components (corresponding to small

eigenvalues) of the error rapidly, but reduce the low-frequency (i.e., smooth)

components of the error much more slowly, which produces poor asymptotic

rate of convergence. For this reason, such methods are also called smoothers.

Another widely used family of iterative methods is Krylov Subspace Meth-

ods (KSMs) [20]. The idea behind the KSMs is similar to that of the steepest
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descent algorithm. The difference is that the KSMs proceed using a set of

basis vectors for the solution space (rather than a blind, gradient-directed

way) and use these vectors as search directions for the solution. These basis

directions are generally determined at each step using the residual and the

previous search direction vector(s).

The Krylov subspace is defined as:

Kk = span(r0,Ar0,A
2r0...A

k−1r0) (2.20)

All KSMs generate basis directions to span this space and eliminate the

error along a basis vector at every iteration. The difference among them is in

how they construct the basis vector set. Since the basis vectors are required

to be linearly independent, KSMs converge at most in N steps (for exact

arithmetic), where N is the dimension of the solution space. The reader is

invited to refer to [53] for the proof that (2.20) is a space that contains the

solution of interest (which is beyond the scope of this study).

The most popular KSM is the Conjugate Gradients (CG) method [54].

The theory behind the CG method is based on the calculus of variations:

For any symmetric and positive-definite matrix A, the quadratic function

Q(x) = 1

2
xTAx + xTb is minimized for x that satisfies Ax = b. Therefore,

solving the system Ax = b is converted to an optimization problem for which

the residual (b − Axi) is to be minimized. Although this method requires

positive-definite and symmetric matrices (which is not the case for BEM

matrices), it is presented here to provide the basic idea behind KSMs:

d0 = r0 = b − Ax0

αi =
rT
i
ri

dT

i
Adi

xi+1 = xi + αiAdi

ri+1 = ri − αiAdi

βi+1 =
r
T

i+1
ri+1

rT
i
ri

di+1 = ri+1 + βi+1di

(2.21)
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As seen in (2.21), CG method generates search directions that are A-

orthogonal (i.e., dT

i
Adi+1 = 0). Additionally, the error is minimal over

the space spanned by the search directions used so far, since the line search

parameter α can be determined analytically. Therefore, the CG method pro-

vides an impressive convergence performance (especially for well-conditioned

matrices), although it is applicable only for positive-definite and symmetric

matrices. For ill-conditioned matrices, preconditioners may provide consid-

erable improvement in convergence.

Modifications to CG also exist to cover generalized cases. All KSMs are

based on the idea behind CG method. They differ in how the basis set for

the Krylov subspace is generated. For the solution of BEM equations, we

need methods that are applicable to general (i.e., not positive-definite or

symmetric) matrices. The algorithms for tested KSMs through thesis work

are presented in Appendix C. Here we present the characteristic properties

of applied methods in table 2.1 [21].

Table 2.1: Properties of some KSMs that are applicable to dense matrices

Algorithm Convergence Number of Number of Needed

depends on matrix-vector operations memory space

products

CGNE ATA 2i 2i n2 + 6n

CGS 1

2
A 2i 2i n2 + 11n

BiCG A 2i 2i n2 + 10n

BiCGSTAB 1

2
A 2i 4i n2 + 10n

GMRES(∞) A i i
2
(i+ 2) n2 + (i+ 5)n

The major difference in algorithm complexity for iterative methods is
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that the main criteria is the convergence rate since the total number of op-

erations is strictly dependent on the number of iterations performed for con-

vergence. It is also apparent from the table that the GMRES method has

significant advantages since it requires only i matrix-vector multiplications

and its convergence is dependent on A only, although its needed memory

space is also dependent to the number of iterations. This drawback is elimi-

nated by restarting the algorithm after some number of iterations.

The there are two different measures for the KSMs for stopping iteration

due to convergence: absolute error tolerance (atol) and relative error toler-

ance (rtol). atol is the maximum acceptable value of residual vector norm.

rtol is the maximum acceptable ratio of residual norm at any an iteration

over the initial residual norm. The values for atol and rtol are 10−50 and

10−5, respectively (for all of our experiments, convergence is detected by the

KSMs due to rtol. Although these values provide safe operation, it is ob-

served that, the results are not affected when rtol is increased to 10−2, while

the operations are fastened). The matrix fill time for the selected rows of

system matrix inverse could be fastened by changing these error tolerances,

as long as they are safe.

2.4 Complexity for Phases of BEM

The first step in the FP solutions is to obtain the coefficient matrix A

of the BEM equation (2.7). Matrix filling complexity is straightforward for

single processor case, since matrix is filled using a standard algorithm. For

every field node (row of A), every element in the mesh is visited for surface

integration. On every element, the surface integral is approximated by a

weighted sum of potentials at the Gauss-Legendre quadrature points. The

potential at a Gauss-Legendre quadrature point is represented in terms of

element’s node potentials using the interpolation functions and contribution

of each node is then added to its column in matrix A. The number of floating

point operations (flops) is proportional to N ×E×Ngp ×Nnpe ×Cint, where
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N is the total number of nodes, E is the total number of elements, Ngp is the

number of Gauss-Legendre points, Nnpe is the number of nodes per element

and Cint is the complexity of recursive integration.

Once the coefficient matrix A is obtained, the transfer matrix E is cal-

culated by solving a matrix equation of size N × N for m different right

hand sides. In this stage, the total number of matrix-vector multiplications

is m × it where it denotes the number of iterations depending on the mesh

size and the KSM used.

In this study, we preferred to use a single library (PETSc) for all matrix

operations and linear equation solutions. Thus, the inverse of the coeffi-

cient matrix As in the isolated problem equation is obtained again using

the GMRES implementation of PETSc. Using a single library for computa-

tions prevents useless input/output operations and additional code for data

compatibility problems. The computational complexity of calculating A−1

s

is 2N2 ×Nmv ×m, where N is the number of nodes and Nmv is the number

of matrix-vector multiplications.

As given in equation (2.11), the accelerated BEM approach reduces to

simple matrix-vector multiplications. Once E and A−1

s
are obtained, the

main computational load of the FP solution shifts to IPA solutions.

Magnetic field calculations is very similar except an additional matrix-

vector multiplication at each FP solution, as given in 2.12. This brings flops

proportional to m×Nbr where Nbr is the number of the nodes on the brain-

skull interface [12]. Note that, the same coefficient matrix A is used for the

computation of M.

In this study, various KSMs that are applicable to general dense ma-

trices are tested and the fastest method (GMRES) is used for the solution

of the BEM equations. These methods are introduced in Appendix C for

completeness and providing a basis for interpretation of the results.
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chapter 3

parallelization

BEM matrices are dense and large. Since finer meshes provide more

accurate results, BEM implementers need their meshes as fine as possible.

The limiting factor is the computational resources. There are two main

limitations: computational power, so time; and available memory.

For a mesh of 15000 nodes, the resulting system matrix will be 15000 ×

15000. For both forward and inverse problems, it is certain that, at least

matrix-vector multiplications (which are O(n2)) are unavoidable. If the en-

tire matrix inverse is to be calculated, the cost is O(n3). And as presented in

3.2, each iterative solution performs at least i×n× (2n− 1) operations. The

overall cost is higher for the inverse problem. For each forward problem so-

lution (as a part of inverse problem solver), we need a matrix-vector product

with a matrix of size m×N , where N is the total number of nodes and m is

the number of detectors. Since inverse problem has an under-determined na-

ture, global optimization methods (such as the evolutionary methods), which

necessitate many cost function evaluations (i.e. matrix-vector multiplica-

tions), are required. Furthermore, for each forward problem, IPA solutions

are needed to correct right-hand side of the equation system. This, in fact

is the dominant computational load of the inverse problem iterations (cost

function evaluation).

For a 15000 noded mesh, the memory need for a double precision BEM

matrix is 1.8GB. If the CSF-Skull interface has 5000 nodes, then another

200MB is needed for the matrix that will be used to solve the isolated prob-

lem. Though, these two matrices are not needed at the same time.

These facts constitute the basis of the motivation for high performance
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computing through parallel processing for the EMSI of human brain by the

BEM. The main consideration in parallelization is to provide a cheap, ef-

ficient and scalable parallelization scheme. For that, a parallel cluster of 8

personal computers is constructed on a fast local area network and a scalable

single-instruction-multiple data (SIMD) code is developed using a number of

scientific computation libraries.

3.1 The Marvin Cluster

For parallel processing, the parallel computing cluster at the Brain Re-

search Laboratory is used. The cluster named Marvin was built in 1996

and consisted of four dual processor workstations, and a single processor

controller workstation. Eight single processor nodes has been added to the

cluster through the thesis work.

Figure 3.1 illustrates the present configuration of the cluster. The older

dual processor nodes are called Nodelins and the eight new nodes are called

Athlins. The four Nodelin workstations have dual PIII 933Mhz processors,

for a total of eight nodes. They are connected to each other over a 100Mb/s

Ethernet switch. The Athlin nodes are each AMD Athlon XP 1.83GHz work-

stations, connected to each other over a gigabit Ethernet switch. All cluster

nodes are running under the Linux operating system, and the controlling

workstation is running under FreeBSD, and provides access to the cluster

nodes.

3.2 Parallel Libraries and Iterative Solvers

The most popular parallel communication libraries are Message Passing

Interface (MPI) [23],[55] and Parallel Virtual Machine (PVM) [38]. These

libraries provide basic inter-processor communication and parallel I/O rou-

tines.

Basic linear algebra libraries are: Basic Linear Algebra Subprograms
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Figure 3.1: The Marvin cluster structure. The cluster is composed of two

groups: athlins have single AMD 2500+ (1833MHz) processors on each PC,

nodelins have dual PIII (933MHz) processors on each PC.

(BLAS) [56], [57], Basic Linear Algebra Communication Subprograms

(BLACS) [58], and Parallel Basic Linear Algebra Subprograms (PBLAS)

[59]. The latter two libraries are derivatives of BLAS and provide same fam-

ily of operations, namely the basic (low level) linear algebra routines (matrix

and vector operations). Although they can be used for application devel-

opment, the programmer needs to implement many functions for real world

applications.

BLAS performance can be tuned according to used hardware configu-

ration (processor type and speed, data bus and RAM speed, etc.) For that

Automatically Tuned Linear Algebra Subprograms (ATLAS) [60], [61] library

is available. This library is run once and provides optimized BLAS routines.

ATLAS provides significant improvement in performance, especially for dense

matrix operations.
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There are intermediate level libraries to complete missing operations in

basic linear algebra libraries. Most commonly used one is Linear Algebra

Package (LAPACK) [62], [63]. Lapack is an extension package to BLAS

providing higher level linear algebra routines.

High-level scientific computation libraries can be classified into two main

groups: Direct solvers (Scalable Linear Algebra Package (ScaLAPACK) [39]

[64], Parallel Linear Algebra Package (PLAPACK) [40]) and iterative solvers

(Portable, Extensible Toolkit for Scientific Computations (PETSc) [22], [65],

AztecOO [66], High performance preconditioners (Hypre) [67]). The latter is

a larger family. Both families use the low-level inter-processor communication

and the basic linear algebra libraries. The direct solvers are focused on

dense systems and the iterative solvers are focused on sparse systems caused

by numerical methods such as Finite Element Method (FEM) and Finite

Difference Methods (FDM). However, the iterative solvers provide the data

types, operations and applicable solvers for dense matrices. There is no

iterative solver library that is focused on dense matrices; therefore, one must

use these solvers to use the iterative methods on dense matrices.

The details on these libraries are vast and the user is invited to refer to

the references for further information.

The computation nodes of The Marvin Cluster have the following tools

and libraries for parallel processing, and numerical operations:

• Message Passing Interface (MPI) [23].

• Parallel Virtual Machine (PVM) [38].

• Basic Linear Algebra Subprograms (BLAS)

• Linear Algebra Package (LAPACK) [62].

• Portable, Extensible Toolkit for Scientific Computation (PETSc)] [22].

• Octave (an interactive numerical computation environment similar to

MATLAB.) [68]
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In this work, the PETSc library is used for all tasks, including matrix fill

(A and As), construction of E (using iterative solvers), and matrix-vector

operations. PETSc uses MPI, BLAS, and LAPACK. The library is written

in C and provides;

1. Parallel matrix and vector data types,

2. All necessary parallel matrix and vector operations,

3. Almost all KSMs in literature (both for sparse and dense matrices)

PETSc library requires a number of lower level libraries installed on the

system. The procedure for a complete PETSc installation is:

1. Configuring and installing MPI,

2. Configuring and running ATLAS (at the end, an optimized BLAS is

available),

3. Configuring and installing LAPACK using optimized BLAS,

4. Configuring and installing PETSc.

The main limitations of PETSc in the BEM application are the available

matrix distribution type and transposition. PETSc provides only row-wise

distribution for matrices (column-wise distribution is more efficient in matrix-

vector multiplications). Matrix transposition is not possible for very large

matrices (library runs out of memory), which is the case for BEM matri-

ces. This second draw-back can be eliminated by constructing the transpose

directly, but matrix distribution limitation reduces the speed-up in matrix

fill and individual forward problem solutions slightly (refer to chapter 6 for

details).
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3.3 Data Partitioning

The aim of using a parallel cluster is not only to reduce computation time

but to combine the memory resources of the nodes. This allows the solution

of problems that can not be solved using a single workstation. When distrib-

uting the problem into the cluster, the following resources are considered:

The mesh data (i.e., the node coordinates and elements used for comput-

ing the BEM coefficient matrix) are not memory consuming. For a mesh of

even 105 nodes and 105 elements, the total size of mesh information is below

5 MB. Hence, the complete mesh information can be kept on each processing

node. Additionally, the BEM system matrices are dense, in other words,

every node’s contribution to any other node must be computed. Therefore,

keeping mesh information on every processor provides faster processing for

matrix filling.

The BEM coefficient matrix, A, is distributed among processors as blocks

of rows. On Athlins and Nodelins, since these clusters are homogeneous, each

processor keeps an equal number of successive rows. And each processor

computes the terms of its rows only. Such matrix filling strategy minimizes

inter-processor communication time since processors do not send any matrix

information during matrix assembly, except some status check data. For

the problems where number of nodes is much larger than the number of

processors, such a matrix filling scheme will provide a speed up very near to

the number of processors.

We implement a modified filling scheme for matrix A as AT is used in

finding the selected rows of A−1. Since the matrix transposition is an expen-

sive process, we preferred to construct AT directly. Such matrix filling is not

straightforward for row-based matrix distribution since in such a scheme,

instead of field nodes, source nodes are distributed among the processors.

Contribution of source nodes to the potential at a field node is obtained

through surface integrals. Thus, for efficient computation, more complicated

filling scheme is applied. This scheme is based on the effort to parse the
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elements efficiently:

for every field node Nf

set every element as ’not visited’

for every locally owned source node Ns

for every element E that Ns belongs

if element is not visited

for every gauss point gp of the element

for every node Ne of the element

if Ne is a locally owned source node

calculate and add contribution of Ne

end if

end Ne

end gp

Mark E as ’visited’

end if

end E

end Ns

end Nf

Alternative schemes are also possible (transposed version of usual matrix

filling with column based matrix distribution), but not with PETSc library.

Speed-up in filling the system matrix A strictly depends on the mesh

representation, since the matrix is column-wise distributed and the transpose

of the matrix is directly computed. That is, nodes are distributed among the

processors as secondary sources, not the field points. To prevent inefficient

element visits during matrix filling, the mesh information must be preserved

so that the nodes of each element take close indices. The elements must also

be ordered so that the neighboring elements have close indices. We obtain

such mesh representation by a simple method: 1)the nodes of each boundary
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are sorted according to their z-coordinates, 2) the new indices are updated

in the element data, and 3) the elements are sorted according to the indices

of their nodes. Finally, the meshes of different boundaries are merged. Note

that, such re-ordering process would not be necessary if column-wise matrix

distribution were available.

Distribution of E among the processors is similar. However, since these

rows are calculated by iterative solvers, the solution is kept on a distributed

vector after the calculation of each row. The inverse problem necessitates

successive matrix-vector multiplications using E and for faster matrix-vector

multiplications, this matrix must also be distributed among processors. In

our work, each row of E is collected from every processor and stored by the

appropriate processor. This choice for matrix storage does not bring signif-

icant additional communication burden (compared to column-wise distribu-

tion) in matrix vector multiplications, as long as the number of detectors, m,

is larger than the number of processors, Nnp. The ratio Nnp/m determines

the communication burden (for a fixed cluster) in the speed-up. If this ratio

is increased significantly, communication burden will increase linearly and be

more effective. For such a case, column-wise matrix distribution will be more

beneficial.

For solving the matrix equations, iterative solvers of PETSc [22] are used.

PETSc library provides both parallel data types and Krylov Subspace Meth-

ods (KSMs) compatible with these data types. Although the details and

theory of these methods are beyond the scope of this study, we feel the ne-

cessity of reporting their performance for the BEM in electro-magnetic source

imaging, in the results chapter.
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chapter 4

the inverse problem

The inverse problem of the EMSI is defined as finding the source(s) within

the brain that cause(s) the measured (EEG/MEG) data. There are about

1010 of neurons in the brain, and there are many activities at the same

time (related to senses, abstract functions, etc.) and even the simplest tasks

are performed as a combined activity of these neurons. It is not possible

to detect the activity of a single neuron using EEG/MEG measurements.

Instead, certain activities are assumed to be performed by a small regions

(foci) and the combined activity in a small region is approximated (modeled)

as a (resultant) current dipole and the field is accepted to be created by this

point source [5].

Furthermore, there is more than one active region at a certain instant.

Hence, the measured field will be a combined resultant field. Thus, for ac-

curate localization, multi-dipole models should be applied. Still, for certain

experiments (such as EEG/MEG measurements with auditory or visual stim-

uli), the background activity (noise) can be suppressed by averaging over

repetitive measurements. Single dipole model (or limited number of dipoles)

may be acceptable for such experiments.

If the number of dipoles is limited, the resultant field can be calculated

using superposition (solving the forward problem after adding up the indi-

vidual right hand sides for each dipole with quasi-static assumption).

On the other hand, for the inverse problem, the available field data is

limited by the number of electrodes (measurement points). Fortunately, we

can still determine the source with a trial-and-error scheme using (2.9) and

the measurement data. However, gradient-based optimization schemes are
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not appropriate for this purpose, since the problem is underdetermined with

many possible local optimums. For that reason, global optimization methods

such as clustering, simulated annealing and evolutionary algorithms must be

applied [43].

Global optimization algorithms provide the opportunity to reach global

minimum with the cost of high computational complexity (many cost func-

tion evaluations) since they include randomness in the search for the optimum

point (i.e., there are useless cost function evaluations). The need for global

optimization methods makes parallelization more valuable for the BEM in-

verse problem solutions.

In this study, a basic genetic algorithm is developed and used for EEG

inverse problem solutions. The developed algorithm can be used for single

and multiple dipole models. Better methods are possible as in [69].

4.1 Problem Definition

For the inverse problem, available information is:

• geometry (mesh),

• conductivity distribution,

• measurement data ( left-hand-side of (2.9) )

• the dipole is located within the brain,

• the dipole satisfies (2.9).

For cost function evaluation, an error measure is needed. The data to

be compared are the measurement vector, Φm and the calculated potentials

vector, Φc due to the guess for the dipole. There are various error measures

in the literature. Most common ones are; RDM, RDM*, MAG [8]. These

error measures are based on L2 norm. To summarize, they are:
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RDM =
‖Φm − Φc‖

‖Φm‖
× 100% (4.1)

RDM∗ =

∥

∥

∥

∥

Φm

‖Φm‖
−

Φc

‖Φc

∥

∥

∥

∥

(4.2)

MAG =
‖Φc‖

‖Φm‖
(4.3)

With these information and error measures, a formal definition for the

inverse problem of EMSI with BEM on a 3-layer spherical head model (for

simplicity) is:

Minimize RDM (or RDM* or MAG),

Subject to:

‖~Rp‖ − Rb ≤ 0

where, ~Rp is the dipole position vector, Rb is the radius of the innermost

(brain) layer. For realistic head models, ~R must be an element of the set

that contains all position vectors inside the brain layer.

RDM* measures the topological accuracy and ignores dipole strength by

normalizing the field, where MAG measures accuracy in field strength and

ignores topological accuracy. RDM measures the accuracy in both topology

and field strength. However, it is not as precise as RDM* when only topology

is concerned (assume dipole strength is known) and MAG when only strength

is concerned (assume topology is known). More clearly; a false located dipole

may be found as the optimum point in the inverse problem if it compensates

the error due to its location by another error in its magnitude, or vice versa.

However, our results show that for most cases, RDM has the best performance

among these three measures.

4.2 Methodology

The genetic algorithm is implemented and tuned. The choice for genetic

algorithm is due to the results presented in [42] as it appears to be the most
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robust method. The developed algorithm may be used for different number

of dipoles (the code supports up to 10 dipoles). The developed algorithm

is a genetic algorithm with real coded chromosomes. The user is allowed to

change algorithm parameters through command line options.

4.2.1 Chromosomes and Generations

Each generation is composed of 20 chromosomes, each having 10 dipoles.

Each dipole is represented by three (double precision) real position (x,y,z)

and three (double precision) real orientation (px, py, pz) variables resulting

to a chromosome length of 60. The choice for how many dipoles are taken

into account is left as a user choice. For the results provided here, single

dipole model is used.

4.2.2 Fitness Function

RDM is chosen as the fitness measure since it accounts for both field

strength and topology. And since smaller RDM must correspond to better

fitness, 1/RDM is used as the fitness function.

4.2.3 Cross-over

Two chromosomes are randomly selected with roulette wheel selection

(figure 4.2) from the parent generation. Each chromosome is assigned to a

probability equal to the ratio of its fitness to total fitness of all chromosomes.

Then a random number is generated between 0 and 1 as a marker (represented

as arrow in figure 4.2) and corresponding chromosome is chosen as a parent.

Two parents cannot be the same. Then, a random positive integer index

(say, rind) is generated. And the two new chromosomes are created using

this index and a random real value a (0 ≤ α ≤ 1) as in figure 4.1. For every

pair, crossover is performed (with a probability of 95%) or the parents are

directly copied to the new generation (with a probability of 5%).
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Figure 4.1: Cross-over

4.2.4 Boundary Cross-over

Since α is between 0 and 1, for successive generations, above mentioned

cross-over scheme will result in an averaging effect, which may cause the

algorithm to lose its probabilistic nature, and fail. To avoid such an effect,

boundary cross-over is used as follows: at every 20 generations, the worst two

chromosomes are replaced by two extreme chromosomes (which are located

randomly near the innermost surface and have random amplitude near the

maximum allowed value)

4.2.5 Mutation

After each cross-over, mutation is performed over the children pairs. Mu-

tation is implemented as adding or subtracting a small real number (up to 3%

of innermost radius for position entries and up to 5% of maximum dipole am-

plitude for orientation entries) from each chromosome entry (variable) with

a mutation probability (default value is 20%). Default mutation probability

is determined experimentally and kept relatively high with respect to con-

ventional mutation probability values (which is mostly below 5%). This high

probability is reasonable since the chromosomes are real coded and short, and
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Figure 4.2: Roulette wheel selection example.

the mutation changes the entries slightly (unlike the mutations over binary

coded chromosomes).

4.2.6 Eliticism

Eliticism provides memory to the genetic algorithm and avoids the algo-

rithm to behave as a random search. For every generation, the best chromo-

somes (those having highest fitness values) are passed to the next generation

without any modification. This will provide the algorithm to move towards

the global optimum. Since the cross-over is determined due to fitness values

of the chromosomes, the elite eliminate weak seeds. However, if the number

of elite is kept high, the algorithm will behave conservative, the convergence

will be very slow or the maximum number of generations is reached before
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the global optimum is obtained, probably when a local optimum is at hand.

The default choice for the number of elite is determined experimentally to

be 2 (10% of the number of chromosomes).

4.2.7 Stopping Criteria

The algorithm is stopped when a maximum number of generations is

reached, or a satisfactory fitness is obtained for a chromosome at some gen-

eration before the maximum number of generations is reached. Determining

the stopping criteria is in fact a challenge, since the accuracy in forward

problem solutions are limited and varying with dipole position. Hence;

i) The algorithm may stop before the global optimum is reached if the

satisfactory fitness is kept less than the maximum accuracy for an acceptable

dipole position; or the maximum number of generations is given to be smaller

than the number that is necessary to reach the global optimum.

ii) The algorithm may continue to the useless trials for better dipoles (even

if the global optimum is reached) if the maximum number of generations

is too high and the satisfactory fitness is unreachable (due to the forward

problem accuracy limitation) for original (or minimum error) dipole position.

Case (i) leads to errors in localization accuracy, and case (ii) leads to

large computation time (since each fitness function evaluation costs at least

two matrix-vector multiplications). Unfortunately, there is no way to avoid

this problem since forward problem accuracy is varying with varying dipole

positions and orientations. Forward problem accuracy is changing not only

with dipole depth and orientation, but also with its position with respect

to electrode distribution (there are no electrodes on face or bottom part of

the head) and how fine the mesh is. Still, improvements may be obtained if

an initial guess is available for dipole position (the brain region for certain

activities is known a priori) and if the algorithm parameters are arranged

accordingly.
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4.2.8 Summary of Algorithm Parameters

The forward problem accuracy is dependent on many parameters, most

of which are strictly determined by the unknown; dipole information. As

the forward problem accuracy is taken to be the fitness measure, there is no

apparent method for tuning the genetic algorithm parameters. The parame-

ters below are determined by many trials. Still, for some positions, these

parameters will result in localization errors worse than the limitations of the

forward problem.

For mesh 2, if the satisfactory fitness is increased to 1000 (i.e., 0.1% RDM)

and the maximum number of generations is increased to 5000, the algorithm

is guaranteed to behave according to the forward problem limitations for a

single dipole case (refer to chapter 5) with a high computational cost. Finer

the mesh, higher the required satisfactory fitness (forward problem solutions

are better for finer meshes).
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Table 4.1: Default (used) genetic algorithm parameters for a 12294-noded

mesh.
Number of elite: 2

Number of parents used in cross-over 20

Cross-over probability 0.95

Satisfactory fitness (100/RDM) 300

Boundary cross-over period 20

Minimum extreme dipole radius

(boundary cross over) 0.9 × innermost radius

Actual dipole amplitude 5 × 10−6 A.m

Maximum dipole amplitude 6 × actual dipole amplitude

Minimum extreme dipole amplitude

(boundary cross over) 0.75 × max dipole amplitude

Maximum number of generations 2000

Mutation probability 0.20

Location perturbation (for mutation) 0.03 × innermost radius

Amplitude perturbation (for mutation) 0.05 × max dipole amplitude
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chapter 5

results

In this section, first the accuracy of the BEM solutions implemented

by the parallel code and platform are presented. Then, the computer re-

sources required to solve forward problems with realistic head models are

discussed. Next, the performance of parallel KSMs used in the transfer ma-

trix calculations are compared. Finally, the speed-up measures obtained by

parallelization of different BEM phases are presented.

5.1 Used Head Models

For the forward and the inverse problems, four head models (meshes) are

used:

1. Mesh 1: 1536 elements, 3078 nodes, spherical Rush & Driscoll head

model [70]

2. Mesh 2: 6144 elements, 12294 nodes, spherical Rush & Driscoll head

model

3. Mesh 3: Realistic head model with 7499 elements, 15011 nodes (figures

5.1, 5.2, 5.3),

4. Mesh 4: Realistic head model with 14999 elements, 29799 nodes (figures

5.4, 5.5, 5.6).

Spherical meshes are generated from an octahedron iteratively by keeping

the mesh as uniform as possible. Realistic meshes are generated from seg-

mented 3-D NMR images of Dr. Zeynep Akalin Acar’s head using an adaptive
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skeleton climbing code. For both spherical and realistic models, initially, a

mesh of linear elements is obtained. Then, a new node is placed at the center

of every element edge and that node is pulled to its actual position (sphere

surface for spherical models and the nearest node of an extremely fine mesh

for realistic models).

Each of these four meshes has layers containing equal (spherical meshes)

or very similar (realistic meshes) number of nodes and elements.

Figure 5.1: Scalp of mesh 3 (units are in mm).
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Figure 5.2: Skull of mesh 3 (units are in mm).
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Figure 5.3: Cortex of mesh 3(units are in mm).
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Figure 5.4: Scalp of mesh 4 (units are in mm).
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Figure 5.5: Skull of mesh 4 (units are in mm).
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Figure 5.6: Brain of mesh 4 (units are in mm).
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Figure 5.7: Electrode locations for an 256 electrodes system. These locations

are used in both FP and IP solutions for mesh 3 and mesh 4.

5.2 Measures of Performance

For accuracy computations, error is calculated using RDM (4.1) and

RDM∗ (4.2). MAG (4.3) is not preferred since it provides very limited in-

formation and RDM gives sufficient information for the main factors (dipole

position and strength) affecting MAG.
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For parallelization performance, two measures are used: speed-up and

speed-up efficiency. Speed-up for n processors is defined as:

speed− up =
execution time for 1 processor

execution time for n processors
(5.1)

Speed-up efficiency for n processors is defined as:

eff =
speed− up

n
× 100% (5.2)

If single processor execution time is not available (which is the case for

BEM on big meshes), (5.1) and (5.2) are obviously modified to include the

ratio of the number of processors for compared cases.

The speed-up efficiency is a more meaningful measure than speed-up for

parallelization performance. It provides information about the scalability of

the parallelization. If efficiency is dropping fast with increased number of

processors, the scalability is weak. Although it is called as efficiency, values

over 100% (superlinear efficiency) are possible in some cases (mainly due to

processor cache scaling). Thus, the speed-up efficiency is not a real efficiency

measure. Still, it provides valuable information for the gain of parallelization.

5.3 Assessment of Accuracy

The adopted BEM implementation has already been tested in [25] and

[12]. The parallel version of this approach is also tested with a spherical

3-shell Rush & Driscoll model [70]. In this model, the radii of the brain,

skull and scalp surfaces are 8 cm, 8.5 cm and 9.2 cm and the correspond-

ing conductivities are 0.2 S/m, 0.0025 S/m and 0.2 S/m, respectively. The

accuracy for tangentially and radially oriented dipoles at varying depths are

tested with the analytical solutions [26]. The results are in good agreement

with the ones presented for a single processor [12].

To demonstrate the dependence of forward problem accuracy on the ac-

curacy in the model, a simple experiment is performed with meshes 1 and
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2. Even for a spherical mesh (which has a smooth geometry that can be

modeled accurately by small number of quadratic elements) accuracy is de-

pendent on the accuracy of the model, especially for tangential dipoles (figure

5.8). Although accuracy for deep radial dipoles may seem to be less affected

by model accuracy, the improvement is vital, especially for shallow radial

dipoles, as it is presented in the following sections.

Figure 5.8: Dependence of error in forward problem solutions to accuracy in

model (mesh). Electrodes are uniformly distributed and at the same places

for both cases.

The accuracy for tangentially and radially oriented dipoles at varying

depths (in upper hemisphere, on z-axis) and different electrode distributions

over mesh 2 is presented in figure 5.9. Since accuracy is independent of the

number of processors used (there is no precision loss in the network), the
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results are taken with 8 processors only. RDM is used as the error measure.

RDM* leads to very similar results with those obtained by RDM. Accuracy

is poor for radially oriented shallow dipoles.

Figure 5.9: Forward problem accuracy with different electrode distributions.

In the tangential case (figure 5.10b), the dipole is perpendicular to ~R

and the dot product vanishes for N1 resulting in a zero field no matter how
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close the node is. As dipole approaches N1, although the dot product ~p · ~R2

increases, ‖ ~R2‖ does not tend to zero. Thus, the primary field (g) remains

smooth over the element. When the field variation is smooth near the di-

pole, second order elements with 13-point Gauss-Legendre quadrature can

approximate the field with sufficient accuracy. The tangential dipole may be

directed to some other node of the same element, but for most cases, R for

this node is not intolerably small.

Figure 5.10: Dipole orientation: (a) Radial dipole just below a node, (b)

Tangential dipole just below a node.

If the tangential dipole is very close to a node and directed towards an-

other ”far” node that does not share an element with the near node, the

error will remain small since i) R3 will be large, ii) the dot product and R for

the nodes of the elements owning that ”far” node will be similar, so the field

variation will be smooth and second order elements with 13-point Gauss-

Legendre quadrature will successfully approximate the field on the element

owning that node.
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On the other hand, for near tangential dipoles, since both nominator

(~p · ~R) and denominator (R3) are both small, accuracy is dependent on the

precision. Furthermore, if the dipole is slightly moved in the tangential plane

(i.e. the dipole direction changes towards the node), the angle between and

~p and ~R2, so their dot product will change rapidly. For such a case, error is

expected to be larger.

Unlike the tangential orientation case, accuracy for radially directed

dipoles is quite poor, especially, when the dipole is near (just below) the

brain-skull interface. This is due to the fast varying behavior of the field

near the dipole. Although the RDM is large for these cases, this error mainly

comes from the electrodes that are near the dipole while the errors are mod-

erate at other nodes. Since A is diagonally dominant, field value at a node is

mainly determined by the dot product in (2.3) at that node. Thus, the field

variation over an element is sharp if this dot product is changing fast among

element nodes.

When the dipole is normal-directed and very near to the innermost sur-

face, ~p · ~R varies very rapidly over the closest elements. This is because ~R

and ~p are aligned for the closest node while they are almost perpendicular

for ”far” nodes of the element (figure 5.10a). As the dipole approaches N1,

the decrease in ‖~R1‖ causes a cubic increase in g at N1. On the other hand,

α approaches π/2, resulting in a zero dot product at N2. Therefore, R3

term in the denominator amplifies (2.3) significantly for near dipoles while

this effect is not apparent for relatively far nodes of the element (the dot

product is small and R is larger). Such a fast change may not be accurately

approximated by Gauss-Legendre quadrature with 13 points on a quadratic

element. The error is most effective for the elements in the innermost surface

that are close to the dipole. The error in approximating the field distribu-

tion over these elements is reflected strongly to the nearest measurement

nodes through the integrals in (2.3) and (2.4). The R3 term in the integral

suppresses this effect for further measurement nodes. Additionally, the field

peaks at the nearest elements (and their nodes), so the RDM is dominated
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by this approximation error.

5.4 Performances of the KSMs

In this section, the computation times for various KSMs are explored

for different number of processors. For this purpose, first the BEM system

matrix and the right-hand-side (required for calculation of 256 rows of E)

are calculated for mesh 2. Then, the same matrix equation is solved by each

KSM for different number of processors. Table 5.1 presents average solution

times for various KSMs. The relative residual error tolerance (the ratio to

terminate iterations: rtol = ‖ri‖/‖r0‖, ri is the residual for ith iterate) is

taken as 10−5.

Table 5.1: Solution times for various KSMs using different number of proces-

sors (for mesh 2)

Procs GMRES Bi-CGSTAB CGS TFQMR CR CGNE

1 93.16 112.29 124.36 114.62 151.16 1120.01

2 42.87 45.86 50.51 50.21 66.91 469.82

3 41.45 48.75 49.85 49.42 65.55 462.18

4 20.57 25.36 24.71 24.57 34.18 248.97

5 17.09 20.43 16.44 16.67 22.49 169.24

6 16.48 20.46 19.70 16.98 23.98 157.94

7 12.50 14.39 14.47 13.31 19.50 147.69

8 10.99 13.10 13.18 13.16 18.11 137.02

It is observed that, the GMRES method has the best performance among
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the tested KSMs. This is an expected result since GMRES is generally the

most robust method for dense matrices. It generates orthogonal basis vec-

tors for the Krylov subspace with no need for calculating the actual residual

and requires single matrix-vector multiplication per iteration. Precondition-

ing does not improve the convergence time (the BEM matrices are well-

conditioned). These results are consistent with the ones reported in [36]. In

the rest of this study, all results are obtained using the GMRES method with

rtol = 10−2 (rtol choice changes the number of iterations before convergence,

not the speed-up).

In the computation process of E, a non-zero initial guess for each row (ei)

greatly improves the convergence. This is due to the diagonally dominant

characteristic of A (and A−1). Selecting the initial guess as the right-hand

side vector is observed to be useful.

5.5 Speed-up

The performance in the parallelization of various stages (filling the

system matrix, construction of the transfer matrix E, solution of the

isolated problem, computation of the modified right hand side vector g′

and obtaining the potential distribution by Eg′) are presented in figures

5.11,5.12 and 5.13 for the spherical and two realistic head models.

Table 5.2: Efficiency of various phases of the BEM implementation

Mesh As fill A−1

s
A fill E Single FP

computation computation solution

Mesh 2 65.8% 131.5% 66.4% 127.9% 117.4%

Mesh 3 65.6% 96.6% 95.3% 97.5% 94.2%

Mesh 4 67.7% - 91.2% 85.8% 98.7%
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Figure 5.11: Matrix filling speed-up for As and A.

When the FP solutions are obtained using large number of nodes with a

single processor, computation time and memory requirements increase (even

a 1.5 GB of RAM is not sufficient). For a mesh of 30 000 nodes, for exam-

ple, the system matrix contains 900 million double precision entries which

corresponds to a memory need of 7.2GB. Computer memory requirement of

that amount can only be supported by five or more processors of the Athlins

cluster, since each computer has only 1.5GB of RAM. Thus, to report on

speed-up for incremental number of increase in the number of processors (2

to 8 for Athlins) first a three-layer concentric sphere model with a mesh of

12294 nodes is used.

The performance of parallelization is also tested for two realistic head

models. The two meshes (mesh 1 and mesh 2) has 14999 and 7499 second

order elements (with equal number of elements for every boundary) with

15011 (mesh3), 29799 (mesh 4) nodes, respectively. In both models, numbers

of elements and nodes are very similar for each layer.

For the spherical (12294 noded) and a realistic (15011 noded) meshes,
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Figure 5.12: Speed-up for computation of E and A−1

s
.

the speed-up assessment for filling A and E matrices is made by taking

the two processors experiment as the basis instead of the one with single

processor experiment, since the swap space usage in single processor case

causes slow operation. Thus, the calculated speed-up will not be realistic if

single processor case is taken into account.

The speed-up and efficiency varies for different phases of the FP solution

process. As expected, efficiency drops for increased number of processors.

The efficiency values for the spherical and realistic models are presented in

table 5.2.

The As matrix filling efficiencies get their values at the transition from

single processor to two processors case (the library switches to parallel mode)

and remain very close to these values for increased number of processors.

The time required to obtain A−1
s is quite long with KSMs, especially

for realistic meshes. Inversion with direct methods or computing the IPA

solution with an iterative solver would be more reasonable.
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Figure 5.13: Speed-up for single FP calculation.

5.6 The Inverse Problem

Localization accuracy for inverse problem is tested with mesh 2. Meshes

3 and 4 are used to test processing times, since no analytical solution is at

hand for realistic meshes.

5.6.1 Tests on The Genetic Algorithm

The developed genetic algorithm is tested for 3-shell Rush&Driscoll model

using the analyitcal solutions for the electric potentials and the magnetic

field. The conductivity values are taken as 0.2 S/m, 0.0025 S/m 0.2 S/m

for scalp, skull and brain layers, respectively. A grid of 213 points is used

for the tests. At each test point, 8 different dipole orientations are used.

The dipoles are taken in the x-z plane for the electric potentials and in the

tangential plane for the magnetic field. The algorithm is run for 128 and 256

upper hemisphere electrodes and SNR values of 15dB and 20dB as well as

the noise-free case.The total number of runs is 20448.
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The noise-free simulations provide perfect localization errors (below

0.1mm) for all locations. For noisy cases, the localization accuracy is im-

proved with increased number of electrodes/sensors and higher SNR for both

electric potential and magnetic field experiments. Localization using the

magnetic field measurements is observed to be very sensitive to the noise.

The genetic algorithm necessitates many generations (≈30000) for meaning-

ful results with the MEG simulations while 2000 generations suffice for the

EEG. With the inverse problem algorithm that is used in this study, the

electric potential experiments provide more robust solutions for localization.

Table 5.3: Mean localization error MLE (mm) and mean orientation error

MOE (degrees) for EEG experiments

Number

of electrodes MLE(15dB) MOE (15dB) MLE(20dB) MOE (20dB)

128 4.026 2.090 2.239 1.170

256 2.937 0.995 1.668 0.559

Table 5.4: Mean localization error MLE (mm) and mean orientation error

MOE (degrees) for MEG experiments

Number of

sensors MLE(15dB) MOE (15dB) MLE(20dB) MOE (20dB)

128 2.089 3.566 1.456 2.631

256 0.972 2.199 0.614 1.276
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5.6.2 Localization Accuracy

Figure 5.14 shows the minimum forward problem error points for radially

and tangentially oriented shallows dipoles on the z-axis. The experiment

for generating these plots is performed as follows: For 4 different locations

on the z-axis, analytical solutions for radial/tangential dipoles are taken as

the reference and the error between these analytical solutions and forward

problem solutions for correctly oriented near dipoles are calculated. The

motivation is to obtain primitive information for the relationship between

the inverse problem localization errors and the dipole orientation.

There is a significant difference in error pattern behavior for radial and

tangential dipoles. As apparent from the graphs, for shallow radial dipoles,

the inverse problem may converge to some false locations since better accu-

racy can be obtained there.

Note that, this is a 1-D experiment (dipoles are forced to be on z-axis

and correctly oriented), hence minimum error may be obtained for some

other point in 3-D space and different dipole orientation. Still, the global

minimum can be expected to be only slightly different (near and with similar

orientation). The error pattern gets smoother for deeper dipoles, so it is not

likely that inverse problem will converge to the exact location.

As a matter of fact, these expectations are verified by corresponding in-

verse problem solutions. The obtained inverse problem localization errors

after 2000 generations for radial dipoles are: 2.92mm, 1.66mm, 1.45mm,

1.57mm for R=7.8cm, 7.5cm, 7.2cm and 6.9cm, respectively. For tangential

dipoles, obtained values are perfect: 0.1mm, 0.01mm, 0.06mm, and 0.19mm,

respectively.
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Figure 5.14: Error plots for false dipole positions and true dipole amplitudes.

Note that, this simple experiment is performed to connect forward prob-

lem accuracy considerations to inverse problem. Since electrode distribution

is not uniform over the surface, localization errors will not be the same for

dipoles at different positions (even if these positions have the same distance

from the innermost surface), as seen in figures 5.7, 5.15 and 5.16.
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Figure 5.15: Two tangential and two radial dipoles located near the inner-

most sphere with uniform upper-hemisphere electrode distribution.

The main drawback of the significant difference between the patterns for

radial and tangential dipoles (figure 5.14) is that the stopping criteria for

inverse problem become complicated. To guarantee correct localization, the

algorithm must be run with highest possible satisfactory fitness and maxi-

mum possible number of generations.

It must also be noted that for real-world applications, detectors are not

uniformly distributed around head surface (figure 6.16). Rather, they are

placed around the upper part of the head. Hence, dipole localization errors

will be different for sources at different regions of the head.

The localization accuracy of genetic algorithm on the numerical model

is tested using mesh 2 for the noise-free case. The electrode positions are

arranged such that, no electrode is placed on the facial region (figure 5.16).

When the numerical method is used for the solutions, fitness function cal-

culations require expensive matrix-vector multiplications. Thus, the results
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Figure 5.16: Electrode positions for mesh 2 and 243 electrodes. Units are in

meters. No electrodes are placed in front since there are no electrodes on the

face.

for the numerical method are taken on a more sparse grid (35 points) in the

x-z plane with three major orientations (for x,y and z-directed dipoles). The

results are presented in the tables 5.5, 5.6, 5.7:

The localization accuracy is worst for the x-directed dipoles that are on

the x axis and near the innermost surface. In this region no electrodes are

present and the dipole is radial. Since there no electrode is present at the

points where the potential is strongest, the genetic algorithm attempts to fit

the far electrodes’ potentials, which are weak. The approximation errors on

the nearest elements are felt less in the fitness. Consequently, the fitness is
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weakly related to the correct localization and the error resulting approxima-

tion error is larger than other cases. When x-directed dipole is placed near

the z-axis, it has a strong tangential component which forces the algorithm

to converge to the correct location even for the shallow case.

The y-directed dipoles are always tangential since the dipole is placed on

the x-z plane. The potential approximation error is small even for the nearest

elements when the dipole is near the innermost boundary. Thus, the lack of

electrodes near the x-axis does not affect the localization error significantly.

Table 5.5: Localization accuracy for x-directed dipoles. All units are in mm

z x

11 22 33 44 55 66 77

77 0.395 - - - - - -

66 0.241 0.063 0.248 0.515 - - -

55 0.054 0.179 0.558 1.253 1.064 - -

44 0.119 0.356 0.920 1.759 2.572 1.649 -

33 0.129 0.400 0.920 1.948 4.220 4.884 -

22 0.184 0.387 0.669 1.496 3.315 4.553 -

11 0.083 0.347 0.539 3.035 2.349 3.85 6.226

The z-directed dipoles behave differently. They have strong radial com-

ponents when they are near the z-axis. Thus, at these positions, the localiza-

tion error for z-directed dipole is higher than both x-directed and y-directed

dipoles. However, unlike radial x-directed dipoles case, the electrodes are

dense near the z-axis. Therefore, the localization error never reaches to that

of an x-directed radial dipole. When the z-directed dipole is near the x-

axis, it is has a strong tangential component. However, its radial component
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Table 5.6: Localization accuracy for y-directed dipoles. All units are in mm

z x

11 22 33 44 55 66 77

77 0.138 - - - - - -

66 0.061 0.060 0.304 0.103 - - -

55 0.092 0.078 0.021 0.183 0.136 - -

44 0.103 0.069 0.056 0.064 0.105 0.424 -

33 0.060 0.024 0.139 0.080 0.049 0.181 -

22 0.053 0.059 0.019 0.065 0.166 0.117 -

11 0.041 0.070 0.043 0.258 0.208 1.160 0.749

causes a localization error, which is more than y-directed (fully tangential)

dipole case.

Localization accuracy for realistic meshes is not reported here due to

the unavailable analytical solutions. Still, inverse problem can be solved on

these meshes using numerical solutions of the forward problem (for the actual

dipole position and orientation) as the measurement data. Obviously, for

noise–free experiments, the algorithm is expected to converge to the actual

position. These experiments are performed to report solution times and

speed-up for the inverse problem. There are many possible experiments that

can be performed for the inverse problem. Again, it is clear that, no new

information other than figure 5.13 can be obtained for speed-up through

these experiments.

64



Table 5.7: Localization accuracy for z-directed dipoles. All units are in mm

z x

11 22 33 44 55 66 77

77 2.496 - - - - - -

66 1.517 1.201 1.070 1.272 - - -

55 1.347 1.147 0.790 0.140 0.838 - -

44 0.870 0.669 0.246 0.528 1.738 4.476 -

33 0.350 0.147 0.293 1.047 2.335 4.602 -

22 0.270 0.201 0.471 1.067 2.087 3.971 -

11 0.246 0.150 0.319 0.778 1.419 2.652 3.571

5.6.3 Solution Times

For testing the speed-up in the inverse problem, it is not necessary to

perform the same experiments on different number of processors, since the

number of generations necessary to converge to the global minimum is not

dependent to the number of processors. Hence, the comparison for the av-

erage time required to complete the computations for a single generation on

different number of processors is sufficient.

In fact, the single solution speed-up (figure 5.13) gives the necessary in-

formation for the speed-up without performing any inverse problem experi-

ments. Nevertheless, we have verified its results with single generation com-

putation times in the inverse problem solution and connected it to the total

time required to localize a single dipole. The processing time for mesh 2 and

2000 generations takes about 48 minutes on 8 processors.

For mesh 3 and mesh 4, the algorithm is tested for radial and tangential

dipoles for 10 different positions (figure 5.18). Same locations are used for

mesh 4. For the forward problem solutions in the fitness function calculation,

IPA equations are solved iteratively. Experiments show that, for mesh 3,
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Figure 5.17: Average processing time for one generation.

2000 generations (corresponding to 346.7 minutes of processing time on 8

processors) suffices for tested dipole locations. This number is observed to

be the same (corresponding to 2130 minutes of processing time) for mesh 4.

Again, for less number of processors, solution times are in agreement with

figure 5.13. Thus, the speed-up efficiency values for the FP in figure 5.13 are

also valid for the IP.
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Figure 5.18: Dipole locations used for IP on realistic models. Units are in

mm.
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chapter 6

conclusions

This study introduces a parallel processing approach to speed up the the

forward problem solutions and to enable the usage of dense meshes for EMSI

of the human brain. The accelerated BEM proposed for faster FP solutions

[12] was implemented using a parallel PC platform. A Beowulf cluster was

developed with 8 processors. The PETSC library allowed the use of KSMs

in the solution of resultant dense matrix equations. The solution times were

compared for various KSMs. The shortest solution time was obtained using

the GMRES algorithm. It was observed that parallelization provides faster

operation with a considerable speed-up in the matrix fill, transfer matrix

calculation and obtaining solutions for a specific source configuration. Thus,

it also enables faster inverse problem solutions.

6.1 The Forward Problem

The first income of parallelization is the memory scaling. For all of the

three meshes used in this study, swap space usage is unavoidable on a sin-

gle processor of Marvin even under Linux operating system that consumes

very small portion of RAM. Parallelization immediately solves this problem.

However, although parallelization provides the opportunity to work on dense

meshes, the number of nodes in the model could be increased only by the

square root of the cluster size (number of PCs in the cluster). For the 30K

mesh, it is observed that, for Marvin cluster (1.5GB RAM/processor) the

number of processors must be more than 5 for proper operation.

The second advantage of parallelization is the speed up it provides. The
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use of a parallel PC platform is vital for the calculation of the system matrix

A, and the transfer matrix E. Our experiments show that, parallelization

provides a speed-up efficiency of 66.4% for 12K mesh, 95.3% for 15K mesh

and 85.8% for 30K mesh, for filling A. The efficiency values for computation

of E are 127.9%, 97.5% and 85.8%, respectively.

Once E is calculated, the time gained for a single forward problem solution

is not important as the forward problem solution can be obtained in short

time using even a single processor. However, to obtain E, the available

memory of the single processor should be sufficient for storing A and this is

not possible if the number of nodes in the mesh is large.

The inversion of the IPA matrix with iterative solvers is expensive, espe-

cially for dense meshes. Thus, we preferred to perform IPA solutions itera-

tively instead of taking the inverse of As. For the forward problem solutions,

this choice increases the single solution time (from 32ms to 84ms for the mesh

2 and from 41ms to 520 ms for the mesh 3). The inversion of As may take

hours depending on the matrix. Thus, the choice for solving the IPA equa-

tion iteratively is cheaper than taking the inverse of As by iterative methods

if the number of right-hand-sides is less than a few thousands. If available,

use of direct inversion and LU factorization are definitely better choices for

IPA solutions.

The speed-up for the FP solution for a single dipole (with Eg′) is directly

reflected to the inverse problem solution, in which many FP solutions are

performed. Thus, the speed-up in a single FP solution is also critical. For

single FP solution, obtained speed-up efficiencies are: 117.4%, 94.2% and

98.7% on mesh 2, mesh 3 and mesh 4 respectively.

6.2 The Inverse Problem

In this study, a simple genetic algorithm is implemented in parallel. The

parellel part of the algorithm is in fitness function evaluations, which includes

FP solutions and is the main computational load. If the IPA matrix is
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small enough to be stored on a single processor’s RAM, the parallelization

of the genetic algorithm can be implemented using the traditional genetic

algorithm parallelization (dividing the population into processors), in which

each chromosome is handled by a single processor.

The algorithm is tested on a grid of 213 points in the first quadrant of x–z

plane for the spherical model, with analytical solutions for two different spa-

tial SNR as well as the noise-free case. The noise-free case provides very accu-

rate localization results for all locations (below 0.1mm error). The magnetic

field calculatione necessitates significantly more generations for convergence

compared to the electric potential calculations.

For noisy cases, it is observed that an increase in SNR or number of

sensors/electrodes enhances both orientation and localization accuracy. With

improved SNR and increased number of electrodes/sensors, the localization

error decreases from 4.026mm (15dB, 128 electrodes) to 1.668mm (20dB,

256 electrodes) for EEG and from 2.089mm (15dB, 128 sensors) to 0.614mm

(20dB, 256 sensors) for MEG. Similarly, the orientation errors decrease from

2.090 (15dB, 128 electrodes) degrees to 0.559 (20dB, 256 electrodes) degrees

for EEG and 3.566 degrees (15dB, 128 sensors) to 1.276 degrees (20dB, 256

sensors) for MEG.

Although this study reports the speed-up for a simple genetic algoritm,

in the literature, the EMSI IP solutions with genetic algorithms are gener-

ally performed as hybrid methods, in which a deterministic (gradient-based)

method is coupled to the genetic algorithm. This approach compensates the

slow convergence of the genetic algorithm near the global optimum. Thus,

the computation time can be further reduced by the utilization of hybrid

methods.

The numerical experiments show that the localization error is significant

(up to 6.226mm) for the cases where the dipole is radial and shallow, and

there are no near electrodes (e.g. facial region). Localization error is also

larger for radially oriented shallow dipoles than tangentially oriented shallow

dipoles. As explained in chapter 5, this is due to the topological differences
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in the field for the two cases as well as the nature of the numerical approxi-

mations.

6.3 Factors Affecting The Computation Time

The first and obvious factor that affects the computation time is the num-

ber of nodes and elements used in the head model. A better approximation

(i.e., increased number of nodes and elements) neccessitates larger matrices.

As the matrix size increases, both the number of floating point operations

per matrix–vector multiplication and the condition number of the system ma-

trix increases. Consequently, the convergence of the iterative solver becomes

slower.

Another critical point for the usage of KSMs is rtol. Computation times

can be reduced by changing the value for rtol. If a good initial estimate of the

solution is available, the residual error takes a small value at the first iteration

(e.g. 102 for a 30000×30000 system). We observed that rtol values up to

10−2 provide sufficient accuracy in FP solutions for many cases. The iterates

saturate after 10−2 is satisfied for rtol and hence, further iterations become

inefficient. Furthermore, especially for the realistic models, depending on the

characteristics of the resultant matrix, choosing small rtol (e.g. 10−5) may

prevent the KSM convergence. The answer for the question “How accurate

must the transfer matrix be?” is also a determining factor for the choice of

rtol, since the accuracy is already limited by the geometric approximation.

Although rtol changes the computation time, it does not effect the speed-up

since it determines the number of KSM iterations before convergence and

the number of iterations is not related to the the number of processors. The

effect of rtol needs further investigation, especially for its effect in the inverse

problem accuracy.

In this study, second order elements are used in the models. Second

order elements require second order interpolation functions, which becomes

the main computational load in matrix filling. However, if the number of
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elements in the mesh is large, the benefits of using second order elements can

also be questioned. If linear elements are used, the number of the elements in

the head mesh can be increased (by a factor of four) using the same number

of nodes with the quadratic model. Although this will increase the number

of element visits in matrix filling, each visit to an element will be cheaper.

Note that, the speed–up is not expected to be affected by the element type.

The effect of element order (for accuracy and processing time) should be

investigated in future studies.

The proposed parallelization scheme is independent of the number of

processors, i.e, faster operation is possible if more processors are used. In

fact, BEM implementation is not sufficiently fast for accurate models even

with 8 processors. Theoretically, the speed-up is expected to saturate after a

specific number of processors. However, in Beowulf practice, the number of

processors is always much less than the number of nodes and elements. Con-

sequently, over a fast network, increased number of processors will provide

further improvement in speed-up, with small loss in speed-up efficiency.

6.4 Future Studies

There are excessively many topics for future research on the subject.

These include:

• Extension of the computational power of The Marvin Cluster by adding

new processing units to fasten operations.

• Usage of hybrid methods that use both stationary/direct methods and

KSMs for faster solutions of the BEM equations.

• Investigation of the effects of element order and type when the number

of elements is high.

• Case studies for the inverse problem (algorithms, source models, noise

levels, electrode/sensor distribution, etc).
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appendix A

discretizations and

isoparametric mapping

In this study, the isoparametric mapping, presented in [25] is applied.

The surfaces that are dealt with for BEM are irregular and hence, discrete

models are used for approximating the field on the surfaces. There are various

element types and orders for approximation of surfaces by meshes. The order

of the element is defined by the order of interpolation functions and the

number of nodes per element varies with element degree. The widely used

element types are triangle and modifications of triangle to obtain higher order

approximations for surface and field over the element. Most commonly used

mesh structure is based on triangular (linear) surface elements. However, it

is shown that higher order elements can provide significant improvements in

approximating curved surfaces and the field on these surfaces.

Since the approximated geometries are not regular, elements are not iden-

tical in a mesh. Hence, to be able to define each point on an element, a generic

mapping is defined. In this mapping, a local isosceles right triangle with unit

perpendicular edges is used as the “generating element” in a fictitious local

domain with local coordinates ζ and η (figure A.1). The global coordinates

of any point on an element are defined by its match in the local domain and

global coordinates of element nodes. The mapping from the local domain to

the global domain is done through interpolation (shape) functions. A shape

function has the form: N(ζ, η). If there are n nodes per element, n shape

functions can be defined (one per element node). The global coordinates

(xp,yp,zp) of a point p, which has a match (ζ , η) in the local domain is given
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by:

xp =

n
∑

i=1

Ni(ζ, η)xi , yp =

n
∑

i=1

Ni(ζ, η)yi , zp =

n
∑

i=1

Ni(ζ, η)zi

where, xi, yi and zi are the global coordinates of the ith node of the element,

and Ni is the interpolation function for that node.

The elements of first three degree and their interpolation functions are

presented below:

Figure A.1: Elements (on the right) and their local domain models for first

three degrees: (a) linear, (b) quadratic, (c) cubic elements.

linear element:

N1(ζ, η) = ζ

N2(ζ, η) = η

N3(ζ, η) = 1 − ζ − η

(A.1)
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quadratic element:

N1(ζ, η) = ζ(2ζ − 1)

N2(ζ, η) = 4ηζ

N3(ζ, η) = η(2η − 1)

N4(ζ, η) = 4η(−η − ζ + 1)

N5(ζ, η) = ζ(2ζ + 4η − 3) + η(2η − 3) + 1

N6(ζ, η) = 4ζ(−ζ − η + 1)

(A.2)

cubic element:

N1(ζ, η) = 4.5ζ2(ζ − 1) − ζ

N2(ζ, η) = η(13.5ζ2 − 4.5ζ)

N3(ζ, η) = ζ(13.5η2 − 4.5η)

N4(ζ, η) = 4.5η2(η − 1) − η

N5(ζ, η) = η(−13.5η2 + 18η − 13.5ζη + 4.5ζ − 4.5)

N6(ζ, η) = η(−13.5η2 − 22.5η + 13.5ζ2 + 27ζη − 22.5ζ + 9)

N7(ζ, η) = −4.5ζ3 − 4.5η3 + 9ζ2 + 9η2 − 13.5ζ2η − 13.5η2ζ

+ 18ζη − 5.5ζ − 5.5η + 1

N8(ζ, η) = 13.5ζ3 − 22.5ζ2 + 27ζ2η − 13.5ζη2 − 22.5ζη + 9ζ

N9(ζ, η) = −13.5ζ3 + 18ζ2 − 13.5ζ2η + 4.5ζη − 4.5ζ

N10(ζ, η) = −27ζ2η − 27η2ζ + 27ζη

(A.3)

If the field distribution over the element (potential or magnetic field for

BEM case) are also approximated using the same interpolation functions

and field values at nodes, the mapping is said to be isoparametric. i.e., for

example a point p (on the element) has a local domain match (ζ,η), the

potential field value φp at that point is approximated by:

φp =
n
∑

i=1

Ni(ζ, η)φi

where, φi is the potential value at ith node of the element.

Isoparametric mapping provides a generic field approximation approach

for elements of all degree.
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appendix B

gauss-legendre quadrature

and numerical integration

Surface integrals that cannot be calculated analytically can be approxi-

mated by weighted sums of sample points taken on the surface. Accuracy

in the calculations is dependent on the number of sample points used, and

their distribution. The methodology to determine the sample points is; to

determine the number sample points considering the computational load it

brings, and then to find the distribution that accurately approximates the

highest possible order polynomial for the integration.

Gauss-Legendre quadrature is basically a choice for sample points. In

this study, Gauss-Legendre quadrature for 13 points, which is presented in

[49] is used. The reader is invited to refer to this text for details.

Gauss-Legendre quadrature is used for matrix filling and hence, no real

integration is performed. Rather, for each element, the field at a sample

point is approximated by the interpolation functions and node potentials,

and the share (in integration) of the element (secondary source) in the field

value (at a field point) is distributed to the columns of A (in the field point’s

row) corresponding to nodes of that element through interpolation functions.

As mentioned in Appendix A, an isosceles triangle in the local domain

is used as a seed for irregularly shaped surface elements and the quadrature

points are defined on this local element. Used sample points are shown below

and their numerical values (local coordinates) and weights are as follows:

Using the discretizations and mapping presented in Chapter 1 and Ap-

pendix A, we convert the surface integral on a surface Sk to its local form:
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Table B.1: Local coordinates and weights for Gauss-Legendre quadrature

with 13 points

Sample point (j) ζ η Weight (wj)

1 0.0651301029 0.0651301029 0.0533472356

2 0.8697297941 0.0651301029 0.0533472356

3 0.0651301029 0.8697297941 0.0533472356

4 0.3128654960 0.0486903154 0.0771137608

5 0.6384441885 0.3128654960 0.0771137608

6 0.0486903154 0.6384441885 0.0771137608

7 0.6384441885 0.0486903154 0.0771137608

8 0.3128654960 0.6384441885 0.0771137608

9 0.0486903154 0.3128654960 0.0771137608

10 0.2603459660 0.2603459660 0.1756152574

11 0.4793080678 0.2603459660 0.1756152574

12 0.2603459660 0.4793080678 0.1756152574

13 0.3333333333 0.3333333333 -0.1495700444

Figure B.1: Gauss-Legendre quadrature with 13 points on local element.
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∫

Sk

φ(~r ′)
~R

R3

~Sk(~r
′) =

N
∑

i=1

∫

1

0

∫

1−η

0

φ(~r ′)
~R

R3
· ~nGdζdη (B.1)

where, N is the total number of surface patches (elements) that constitute

Sk and G is the Jacobian due to the transformation from global domain to

local domain, which is given by :

G =

∥

∥

∥

∥

∂~r′

∂ζ
×
∂~r′

∂η

∥

∥

∥

∥

For discretizing the integration in the local domain, we use a summation

using Gauss-Legendre quadrature:

∫

1

0

∫

1−η

0

f(ζ, η)dζdη ≈
1

2

gp
∑

j=1

f(ζj, ηj)ωj (B.2)

Here, gp is the number of quadrature points, (ζj,ηj) is the local coordi-

nates of jth quadrature point, and ωj is its weight. The values presented in

table B.1 is used in this study.

After this point, the integration over surface Sk is converted to a summa-

tion:

∫

Sk

φ(~r ′)
~R

R3
d~S(~r ′) =

N
∑

i=1

1

2

gp
∑

j=1

φ(ζj, ηj)ωj

~R(ζj, ηj)

R(ζj, ηj)3
·~n(ζj, ηj)G(ζj, ηj) (B.3)

We can approximate (through shape functions) the position vector (so

the normal) and potential field at (ζj,ηj) by node coordinates and potentials,

respectively. i.e., the field and position of a sample point is a summation

of “contributions of nodes”. Hence, the integration on Sk is converted to a

weighted sum of node potentials on Sk. Now we can represent the integration

in (2.1) as a matrix equation, as in the equation (2.7).
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appendix C

algorithms for used krylov

subspace methods

There are various forms of KSMs. We present one example for each

used method. In the following algorithms, vectors are written in bold italic,

algorithm control statement (“for”, “end”, etc.) are written in italic, matrices

are written in bold and other variables are written in regular fonts. The

system to be solved is Ax = b.

C.1 GMRES

q1= b/||b||

for m = 1, 2, 3, . . .

v = Aqm

for i = 1,. . . ,m

h im = qT
i v

v = v – h imq i

end

hm+1,m = ||v ||

qm+1 = v/hm+1,m

find y to minimize ||Hmy - ||b||e1||

x = Qmy

end

GMRES algorithm [71]
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Here, Hm is an upper Hessenberg matrix of size (m+1) × m which is

constructed using previous search directions. The minimization problem is

solved using QR factorization over Hm.

C.2 Bi-CGSTAB

Choose initial guess x 0, r 0 = b - Ax 0, v 0 = p0 = 0

Choose r 0’ such that (r 0’ )
Tr 0 6= 0

ρ0 = α0 = η0 = 1

for n = 1, 2, 3. . .

ρn = (r 0’ )
Trn−1

βn = (ρn/ ρn−1)( αn−1/ ηn−1)

pn = rn−1 + βn(pn−1 − ηn−1vn−1)

vn = Apn

αn = ρn/ (r 0’ )
Tvn

sn = rn-1-αnvn

tn = Asn

ηn = tT
nsn/tT

n tn

x n = x n−1 + αnpn + sn

Stop if x n converged

rn = sn − ηntn

end

Bi-CGSTAB algorithm [72]
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C.3 CGS

Choose initial guess x 0, r 0 = b – Ax 0

Choose r’0 such that, rT
0 r 0’ 6= 0, ρ0 = rT

0 r 0’

β−1 = ρ0; p−1 = q0 = 0

for i = 0, 1, 2. . .

u i = r i + βi−1qi

p i = u i + βi−1(q i + βi−1p i)

solve p’ from Kp’ = p i

v’ = Ap’

αi = ρi/(v’ Tr’ 0)

q i+1 = u i − αiv’

solve u’ from Ku’ = u i + q i+1

x i+1 = x i + αi u’

if x i+1 is accurate enough, stop

r i+1 = r i − αiAu’

ρi+1 = rT
i+1r’ 0

if ρi+1 = 0 method fails to converge!

βi = ρi+1/ρi

end

CGS algorithm with preconditioner K [73]
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C.4 TFQMR

Choose initial guess x 0, w 1=y1 = r 0 = b - Ax 0, v 0 =Ay , d 0=0

τ0 = ||r 0||, v’0 = 0, η0 = 0.

Choose r’ 0 such that r’ 0 6=0

ρ0 = r′0
Tr 0

for n = 1, 2, 3. . .

σn−1 = r′0
Tvn−1

αn−1 = ρn−1/ σn−1

y2n = y2n−1 − αn−1vn−1

for m=2n-1,. . . 2n

wm+1 = wm – αn−1Aym

v’m = ||wm+1||/τm−1, cm = 1/
√

1 + v′m
2

τm = τm−1v’mcm, ηm = cm2αn−1

dm = ym + (v’m−1ηm−1/αn−1)dm−1

xm = xm−1 + ηmdm

if xm converged, stop.

end

ρn = r′0
Tw 2n+1

βn = ρn/ρn−1

y2n+1 = w 2n+1 + βny2n

vn =Ay2n+1 + βn(Ay2n + βnvn−1)

end

TFQMR algorithm [74]
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C.5 CR

Choose initial guess x 0, r 0 = b – Ax 0, p0 = r 0

for j = 0, 1, 2. . .

αj = rT
j Ar j/(Apj)

TApj

x j+1 = x j + αjpj

r j+1 = r j – αjApj

if x j+1 is accurate enough, stop

βj = (rT
j+1Ar j)/r

T
j Ar j

pj+1 = r j+1 + βjpj

Apj =Ar j + βjApj

end

CR algorithm [75]

C.6 CGNE

Choose initial guess x 0, v 0 = r 0 = b-Ax 0, δ0 = ||r 0||
2, ψ−1 = 0

for n = 1, 2, 3. . .

δn’ = ||vn||
2

ωn = δn/δn’

x n+1 = x n + vnωn

rn+1 = rn – Avnωn

if ||rn+1|| is sufficiently small, stop

δn+1 = ||rn+1||
2

ψn = -δn+1/δn

vn+1 = ATrn+1 - vnψn

end

CGNE algorithm [76]
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appendix D

construction of the athlins

cluster

The construction of Athlins cluster has two phases: 1)Hardware setup,

2)Software setup. The details of these phases are presented below:

D.1 Hardware Setup

The hardware setup starts with the selection of the hardware components

that are suitable for parallelization purposes. The most important parts are

the Central Processor Units (CPUs), RAMs and the Motherboards (Main

boards). These three parts also constitute the main expense of cluster con-

struction.

Today’s CPUs have two alternatives for CPU producers: Advanced Micro

Devices Corp. (AMD) and Intel Corp. These producers provide a variety of

CPUs dedicated for various applications. During CPU selection the following

properties are important:

• CPU clock speed: CPUs operate faster with increased clock speed

as long as the clock speed is fully utilized by the CPU.

• CPU architecture and instruction sets: CPU architecture (i.e,

the instruction set) determine the number of clock cycles spent per

operation (addition, multiplication, looping, etc.). AMD is known to

provide reduced instruction set computing (RISC) CPUs which has
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significant advantage compared to complex instruction set computing

(CISC) CPUs of Intel.

• CPU cache: CPU cache is the memory that is embedded in the CPU.

Generally, there are two levels of caches: level–1 (L1) and level–2 (L2)

caches. L1 caches operate at the same frequency (clock speed with the

processor) and are generally smaller in size (typical PC CPUs have a

few hundred KB L1 cache). L2 caches are larger in size (up to a few

MB), but slower than L1 caches although they are faster than RAMs.

Since both L1 and L2 caches are faster than RAMs, larger cache sizes

improve CPU performance.

• CPU Front Side Bus (FSB) speed: FSB is the data bus between

the processor and the RAM. FSB is always slower than the CPU clock

speed and thus, the performance is limited by FSB speed. Currently,

Intel CPUs support up to 800MHz FSB speed while ADM CPUs have

relatively slower FSB speed. However, as long as today’s RAM speed

limitations are concerned, there is no significant difference between

AMD and Intel CPUs since both support the upper limit for RAM

speeds (except for some expensive RAMs).

The processors selected for Athlins cluster are AMD XP 2500+

(1833MHz) processors. Each processor has 128KB L1 cache and 512KB

L2 cache.

Selection of RAM is not very complicated. Due to large memory needs,

the RAM size per PC should be kept as large as possible. Additionally, the

RAM speed must be kept as much as possible. Athlins cluster has 1.5 GB of

RAM per PC, each of which operate at 333MHz.

Selection of the motherboard is again relatively simple. The key point is

the FSB speed supported by the motherboard. If this speed is high, further
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modifications of the cluster will be possible. The motherboards of the Athlins

cluster support up to 400MHz FSB speed.

The Athlins cluster is constructed over a 1000MB/s Ethernet with a com-

patible Ethernet switch and Ethernet adapters on the PCs.

D.2 Software Setup

The construction of the cluster is done by installing and configuring the

software used in the platform. The steps for constructing a fully functional

scientific computation cluster that provides the PETSc library is as follows:

1. Installing the operating system,

2. Setting up the network,

3. Configuring and installing the MPI library (version: mpich-1.2.5.2),

4. Configuring and installing BLAS library by running ATLAS (version:

ATLAS-3.6.0),

5. Configuring and installing LAPACK library with installed BLAS (ver-

sion: LAPACK-3.0 + updates at May 21, 2001),

6. Configuring and installing PETSc library (version: petsc-2.2.0) with

installed MPI, BLAS and LAPACK.

The details of these steps are presented in the following sections. Testing

phases are complicated and omitted here. However, performing the tests

is strongly recommended. The interested reader should refer to manuals of

these libraries.

D.2.1 Installing the Operating System

The operating system (OS) is selected to be Linux. Linux is a flexible

and open-source OS, which is also user friendly and easy to configure. On
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the Athlins cluster, the Mandrake 10.0 Linux distribution is installed. The

graphical interface is installed, but configured such that it is not started at

the OS start-up. This is to prevent unnecessary RAM usage. Necessary

driver for the Ethernet devices is also installed manually.

D.2.2 Network Setup

The MPI library is used with remote shell (rsh), in which the processing

nodes are accepted to be trusted agents. For that, the cluster uses a closed

network which cannot be accessed directly from The Internet. Instead, the

gateway (Marvin) is used. Marvin has two Ethernet devices; one is for The

Internet connection and the other is for accessing the closed network.

The configuration of the Athlins nodes for network setup is as follows:

Every user’s home directory is kept on Marvin under

/home/linux/username. This avoids synchronization problems. For

that, the file /etc/fstab is modified on each processor to be as:

/dev/hde1 / ext3 defaults 1 1 # determined by OS

none /dev/pts devpts mode=0620 0 0 # determined by OS

none /proc proc defaults 0 0 # determined by OS

/dev/hde7 /usr ext3 defaults 1 2 # determined by OS

/dev/hde5 swap swap defaults 0 0 # determined by OS

master:/home/linux /home nfs defaults 0 0 # home dir.

master:/home/export/opt /opt nfs defaults 0 0

During OS installation, rsh is selected to be installed and run at start-up.

A number of files are modified for network setup:

/etc/sysconfig/network

HOSTNAME=<computer name> # computer1, computer2, etc.

NETWORKING=yes
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GATEWAY=10.0.0.1

/etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0

BOOTPROTO=none

IPADDR=10.0.0.41 # 42 for computer2, etc.

NETMASK=255.0.0.0

NETWORK=10.0.0.0

BROADCAST=10.255.255.255

ONBOOT=yes

/etc/hosts and /etc/hosts.equiv

10.0.0.1 master

10.0.0.41 computer1

10.0.0.42 computer2

#... ...

/etc/pam.conf or /etc/pam.d/rsh

# the line that says

# rsh auth required pam rhosts auth.so.1

# is replaced with:

rsh auth sufficient pam rhosts auth.so.1

/etc/securetty

rsh # this is added in a separate line if not existent.

/home/username/.rhosts (/home/linux/username/.rhosts on Mar-

vin)

master

computer1

computer2
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#...

D.2.3 MPI Installation

Assuming the MPI archive is extracted under

/usr/local/mpich-<version>/ directory, the installation is done as

follows:

In /usr/local/mpich-<version>/, first the configuration script is run

by

./configure --with--device=ch p4

--prefix=/usr/local/mpich-<version>/ch p4

--with-common-prefix=/usr/local/mpich-<version>

Installation:

make

make install

For directly calling mpirun (the binary for running MPI commands) as

a Linux command, this file must be copied to appropriate locations:

cp /usr/local/mpich-<version>/bin/mpirun /usr/bin

cp /usr/local/mpich-<version>/bin/mpirun /usr/local/bin

After the installation, the machine names of the cluster must be inserted

into the machines file:

/usr/local/mpich-<version>/ch p4/share/machines.LINUX

computer1:2

computer2:2
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computer3:2

# ...

The number after the colon states the number of processors of the com-

puter.

D.2.4 BLAS Installation with ATLAS

Assuming the ATLAS archive is extracted under /usr/local/ATLAS/,

the installation is done as follows:

In /usr/local/ATLAS/ directory,

make

After obeying the suggestions of ATLAS,

make install arch=<your architecture name>

At the end of installation, the optimized libraries of ATLAS will be under

/usr/local/ATLAS/lib/<your arch name>/

D.2.5 LAPACK Installation

Assuming the LAPACK archive is extracted under /usr/local/LAPACK/,

the installation is done as follows:

cp /INSTALL/make.inc.LINUX ./make.inc

This file should be modified (the line in which the BLASLIB is stated)

as
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BLASLIB=/usr/local/ATLAS/lib/<your arch name>/libf77blas.a

/usr/local/ATLAS/lib/<your arch name>/libatlas.a

After that, the library is installed (without any tests) using

make install lib

D.2.6 Inserting ATLAS Routines in LAPACK

ATLAS provides all BLAS routines in addition to some LAPACK

routines. For inserting these optimized binaries to the LAPACK library one

should perform:

cd /usr/local/LAPACK

mkdir tmp

cd tmp

ar x ../<lapack ARCH>.a

cp <your ATLAS LAPACK library path> ../liblapack.a

ar x ../liblapack.a

ar r ../liblapack.a *.o

cd ..

rm -rf tmp

mv /usr/local/ATLAS/lib/<your arch name>/liblapack.a

/usr/local/ATLAS/lib/<your arch name>/liblapack original.a

cp liblapack.a /usr/local/ATLAS/lib/<your arch name>

D.3 PETSc Installation

Assuming the PETSc archive is extracted under

/usr/local/petsc-<version>/, the installation is done as follows:
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export PETSC ARCH=linux

export PETSC DIR=/usr/local/petsc-<version>

cd /usr/local/petsc-<version>/bmake/linux/

The file /usr/local/petsc-<version>/bmake/linux/packages should

be modified:

#For static linking use (recommended):

#BLASLAPACK LIB = -Wl,-Bstatic

-L$/usr/local/ATLAS/lib/<your arch name>/lib -llapack -lf77blas

-latlas

# For dynamic linking use:

BLASLAPACK LIB = -L$/usr/local/ATLAS/lib/<your arch name>

-llapack -lf77blas -latlas

MPI HOME = /usr/local/mpich-<version>

MPI LIB = ${CLINKER SLFLAG/usr/local/mpich-<version>/lib

-L/usr/local/mpich-<version>/lib -lmpich -lpmpich

/usr/local/mpich-<version>/lib/libfmpich.a

The usage of static libraries is recommended for PETSc. Static libraries

provide faster operation. For installing PETSc with static libraries, one

must modify /usr/local/petsc-<version>/bmake/linux/petscconf.h

by replacing

#define PETSC USE DYNAMIC LIBRARIES 1

with

#undef PETSC USE DYNAMIC LIBRARIES

Although this modification seems to be conflicting with the configuration

made in the packages file, it is not the case. The library is correctly installed.

In /usr/local/petsc-<version>/bmake/linux/petscconf.h, the dele-

101



tion of all occurrences of “-lfrtbegin” may be necessary in some cases.

In /usr/local/petsc-<version> directory, the installation is performed

using:

make BOPT=g all # debugging libraries

make BOPT=g c++ all # debugging libraries with C++ bindings

make BOPT=O c++ all # optimized libraries with C++ bindings

make BOPT=O all # optimized libraries

Tests are performed by:

make BOPT=O c++ testexamples

make BOPT=O c++ testfortran

The user must also set the PETSC DIR as required. This can be done

by editing one of the .bashrc, .bash profile, .shrc, etc. files depending

on the used shell. In bash shell, this can be done by adding two lines to the

.bash profile as:

PETSC DIR=/usr/local/petsc-<version>

export PETSC DIR

D.3.1 Sample Makefile

Here, a simple and useful makefile is presented. The makefile is used

with one of the four options which are:
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make BOPT=g MyProgram

make BOPT=O MyProgram

make BOPT=g c++ MyProgram

make BOPT=O c++ MyProgram

A simple makefile is as follows:

# Makefile******************************

# make file based on the minimum given in the manual

ALL:MyProgram

CFLAGS = -Wall -Wshadow

FFLAGS =

CPPFLAGS =

FPPFLAGS =

MYPROGRAM SRC = MyProgram.c

MYPROGRAM OBJ = ${MYPROGRAM SRC:c=o}

include ${PETSC DIR}/bmake/common/base

MyProgram: ${MYPROGRAM OBJ} chkopts

${CLINKER} -o $@ ${MYPROGRAM OBJ} ${PETSC LIB} -lz

-L/usr/local/ATLAS/lib/<your arcitecture name>/ -lcblas -latlas

# END Makefile ************************
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