

AWLP: BUILDING A CUSTOM WIRELESS ACCESS POINT

USING OPEN SOURCE SOFTWARE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALPTEKİN ÇAKIRCALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2005

Approval of the Graduate School of Informatics Institute

 Assoc. Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

 Assoc. Prof. Dr. Onur DEMİRÖRS

 Head of the Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Nazife BAYKAL

 Supervisor

Examining Committee Members

Prof. Dr. Semih BİLGEN METU / EE ________________

Assoc. Prof. Dr. Nazife BAYKAL METU / IS ________________

Dr. Altan KOÇYİĞİT METU / IS ________________

Assis. Prof. Dr. Y. Murat ERTEN TOBB ETU / CENG ________________

Assoc. Prof. Dr. Erol SAYIN METU / IE ________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Surname: Alptekin Çakırcalı

 Signature: _______________

 iv

ABSTRACT

AWLP: BUILDING A CUSTOM WIRELESS ACCESS POINT

USING OPEN SOURCE SOFTWARE

Çakırcalı, Alptekin

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Nazife BAYKAL

September 2005, 74 pages

Almost all commercially available wireless access devices are special

embedded systems with proprietary software that do not allow any modifications.

Modifications to these systems are only possible by firmware upgrades released by

manufacturers. However, release times of these firmware upgrades are unpredictable,

and they are usually for bug-fix purposes rather than being feature and capability

improvements. Thus, these devices fail to provide the needed flexibility. Ability to

provide timely custom solution that is well integrated into existing network

infrastructure is the key factor for a successful wireless access service implementation.

In this thesis work, the open source software called AWLP is designed, coded, tested,

 v

and released to public as a viable alternative for creating custom wireless access

device.

Keywords: Wireless Access Point, Open Source Software, Perl, 802.11, HostAP

 vi

ÖZ

AWLP: AÇIK KAYNAK KODLU YAZILIM KULLANARAK İHTİYACA ÖZEL

KABLOSUZ ERİŞİM CİHAZI YAPMAK

Çakırcalı, Alptekin

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Danışmanı: Doç. Dr. Nazife BAYKAL

Eylül 2005, 74 sayfa

Neredeyse tüm ticari kablosuz erişim cihazları, üzerinde değişiklik yapma

imkanı olmayan kapalı kaynak kodlu, özel üretim, gömülü sistemlerdir. Bu tür

cihazlar üzerinde değişiklik yapmak ancak üretici tarafından çıkarılan, bellenim tabir

edilen kapalı kodlu aygıt yazılımları ile mümkündür. Fakat üreticilerin bu bellenimleri

ne zaman çıkaracakları belirsizlik içermektedir. Bu bellenimler özellik ve kapasite

iyileştirmeye yönelik olmaktan ziyade hata gidermeye yöneliktir. Dolayısıyla, bu tür

cihazlar gerekli esnekliği sağlamada başarılı değillerdir. Başarılı bir kablosuz erişim

servis uygulamasının anahtarı mevcut ağ altyapısıyla iyi bütünleşebilen ihtiyaca özel

çözümleri vakitli bir şekilde geliştirebilmektir. Bu tez çalışmasında, özel kablosuz

erişim cihazları oluşturmak isteyenler için geçerli bir seçenek olma iddiası taşıyan

 vii

AWLP isimli açık kaynak kodlu bir yazılım tasarlanmış, kodlanmış, test edilmiş ve

yayınlanmıştır.

Anahtar Kelimeler: Kablosuz Erişim Noktası, Açık Kaynak Kodlu Yazılım, Perl,

802.11, HostAP

 viii

This thesis is dedicated to my family,

 For their support,

 For their love…

 ix

ACKNOWLEDGEMENT

This thesis is the result of three years of work on the subject. I would like to

express my gratitude in general to all people who have supported me directly or

indirectly, personally or technically during the process.

I express my sincere appreciation to Assoc. Prof. Dr. Nazife BAYKAL for her

confidence in me. Without her guidance, encouragement, and support, this thesis

would not be possible.

I have used computer and network equipments available in the Department of

Industrial Engineering, Middle East Technical University for development and testing

purposes throughout this study. I would like to thank all people in the department who

made this possible for me.

I would also like to thank Halil Özbey for his timely help on formatting issues

throughout the writing process.

 x

TABLE OF CONTENTS

PLAGIARISM.. iii

ABSTRACT.. iv
ÖZ ... vi

ACKNOWLEDGEMENT.. ix
TABLE OF CONTENTS... x

LIST OF TABLES.. xiii
LIST OF FIGURES.. xiv

LIST OF ABBREVIATIONS.. xv
CHAPTER

1. INTRODUCTION ... 1
1.1 Objective.. 2
1.2 Contributions ... 3
1.3 Structure .. 3

2. RELATED WORK .. 5
2.1 Pebble .. 6
2.2 m0n0wall ... 7

3. AWLP: Alptekin’s Wireless Linux Project ... 8

3.1 Features of AWLP.. 9
3.2 Screen Shots... 9
3.3 Operating System... 15
3.4 AWLP Content... 15

3.4.1 installer.sh, COPYING, and README... 16
3.4.1.1 ./installer.sh .. 16
3.4.1.2 ./COPYING.. 16
3.4.1.3 ./README... 16

3.4.2 Configuration Files ... 16
3.4.2.1 ./configfiles/dhcpd.conf... 16
3.4.2.2 ./configfiles/httpd.conf .. 17
3.4.2.3 ./configfiles/named.conf.. 17

 xi

3.4.2.4 ./configfiles/named.ca ... 17
3.4.2.5 ./configfiles/named.local ... 17
3.4.2.6 ./configfiles/localhost.zone.. 18
3.4.2.7 ./configfiles/ntp.conf ... 18
3.4.2.8 ./configfiles/rc.ntpd... 18
3.4.2.9 ./configfiles/oui_filtered.txt ... 18
3.4.2.10 ./configfiles/rc.dhcpd... 19
3.4.2.11 ./configfiles/rc.firewall .. 19
3.4.2.12 ./configfiles/rc.local .. 19
3.4.2.13 ./configfiles/rc.wlan0... 20
3.4.2.14 ./configfiles/rc.wlan0-pre .. 20
3.4.2.15 ./configfiles/.htaccess .. 20

3.4.3 Core Scripts.. 21
3.4.3.1 ./corescripts/engines1.pl .. 21
3.4.3.2 ./corescripts/engines2.pl .. 22
3.4.3.3 ./corescripts/error_messages.pl .. 23
3.4.3.4 ./corescripts/extras.pl... 23
3.4.3.5 ./corescripts/global_configuration.pl.. 24
3.4.3.6 ./corescripts/index.html ... 24
3.4.3.7 ./corescripts/index.pl ... 24
3.4.3.8 ./corescripts/radar.pl.. 24

3.4.4 Images ... 25
3.4.4.1 ./images/LinuxPowered.gif.. 26

3.4.5 Tagfiles .. 26
3.4.6 Tarballs .. 26

3.4.6.1 ./tarballs/hostap-driver-0.2.5.tar.gz .. 26
3.4.6.2 ./tarballs/hostap-utils-0.2.4.tar.gz... 26
3.4.6.3 ./tarballs/bridge-utils-1.0.4.tar.gz ... 26

3.4.7 index.pl .. 27
3.4.8 installer.sh.. 30

4. AWLP IN ACTION ... 36
4.1 System Requirements ... 36
4.2 Hardware Compatibility ... 37
4.3 Installation ... 37
4.4 Default Settings.. 38
4.5 Sample Setup ... 38
4.6 Performance Tests .. 40
4.7 Features Comparison.. 42

5. CONCLUSION .. 46
5.1 Fast Pace of Requirements Change ... 46
5.2 Building Custom AP with Open Source Software.................................... 47

6. FURTHER WORK.. 48

REFERENCES.. 51

 xii

APPENDICES
Appendix A. Slackware Packages.. 53

A.1. Slackware Software Series.. 53
A.2. Slackware Packages Selection for AWLP.. 54

Appendix B. AWLP File Structure.. 55
Appendix C. AWLP Configuration Variables... 56

Appendix D. AWLP Subroutines .. 63

 xiii

LIST OF TABLES

Table 1 – AWLP Default Settings .. 38
Table 2 – AWLP Sample Setup Hardware Configuration.. 39
Table 3 – Computer Configurations Used in Throughput Test 42
Table 4 – Pebble, m0n0wall and AWLP Feature Comparison 43

 xiv

LIST OF FIGURES

Figure 1 – AWLP, Wireless Menu.. 10
Figure 2 – AWLP, Encryption Menu .. 11
Figure 3 – AWLP, ACL Menu ... 11
Figure 4 – AWLP, Firewall Menu .. 12
Figure 5 – AWLP, Administration Menu.. 12
Figure 6 – AWLP, Clients Menu .. 13
Figure 7 – AWLP, Status Menu.. 14
Figure 8 – System Running AWLP .. 39
Figure 9 – Wood Enclosure for WLAN Equipment... 40
Figure 10 – AWLP Setup in Place .. 40
Figure 11 – Throughput Test Setup... 41

 xv

LIST OF ABBREVIATIONS

AAA Authentication Authorization Accounting

ACL Access Control List

AP Access Point

ASCII American Standard for Character Information Interchange

AWLP Alptekin's Wireless Linux Project

BASH Bourne-Again Shell

BIND Berkeley Internet Name Daemon

BSD Berkeley Software Distribution

BSS Basic Service Set

CD Compact Disc

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DTIM Delivery Traffic Indication Message

EAP Extensible Authentication Protocol

FQDN Fully Qualified Domain Name

HDD Hard Disk Drive

HEX Hexadecimal

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

GB Giga Byte

GNU GNU is Not Unix (a recursive abbreviation)

GPL General Public License

 xvi

Hz Hertz

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISA Industry Standard Architecture

IV Initialization Vector

ISM Industrial Scientific & Medical

LAN Local Area Network

MAC Medium Access Control

MB Mega Byte

Mbps Mega Bit Per Second

METU Middle East Technical University

NAT Network Address Translation

NIC Network Interface Card

NTP Network Time Protocol

OS Operating System

OUI Organizationally Unique Identifier

PCI Peripheral Component Interconnect

PERL Practical Extracting and Reporting Language

PHY Physical

PCMCIA Personal Computer Memory Card International Association

PRISM Programmable Radio - Industrial Scientific & Medical

PTR Pointer Record

RADIUS Remote Authentication Dial-In User Service

RAM Random Access Memory

RX Receiver

SGID Set Group ID

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

SSH Secure Shell

SSID Service Set Identifier

SUID Set User ID

 xvii

TX Transmitter

URL Uniform Resource Locator

VA Volt Amper

WAN Wide Area Network

WDS Wireless Distribution System

WEP Wired Equivalent Privacy

WECA Wireless Ethernet Compatibility Alliance

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

 1

CHAPTER 1

INTRODUCTION

IEEE (Institute of Electrical and Electronics Engineers) released 802.11

specifications [1], defining WLAN (Wireless Local Area Network) Medium Access

Control (MAC) and Physical (PHY) Layer, in 1997. This was followed by IEEE

802.11b specifications [2] in 1999, which brought data transfer rate improvement

from 2 Mbps to 11 Mbps. This was the year when several companies started to come

up with WLAN products, compliant with IEEE 802.11b specifications. For the past

couple of years, with dropping prices and wide range of products, WLAN technology

has started seeing main stream use in home and corporate network settings.

WLAN clients can operate in ad-hoc mode without requiring an Access Point (AP), a

special hardware and software combination that provides wireless network access to

clients. Ad-hoc mode is often used when an AP does not exist and clients would like

to share data over the air. If one or more of participating clients in ad-hoc network

have some form of Internet connection, this connection can be shared among others if

IP (Internet Protocol) settings are configured properly in clients. However, this type of

service providing is nothing but dependable so at least one AP is used to provide

stable and dependable wireless network access, and this type of setting is called

“Infrastructure Mode”. There are numerous AP alternatives in market today if one

needs to setup a wireless network. Of course, price and functionality varies greatly

among APs.

 2

AP is basically a special embedded computer system designed to do one thing;

provide wireless network access. The must-have features of an AP include an

integrated web server for configuration and management. SNMP (Simple Network

Management Protocol) is not unheard of, neither Telnet nor SSH (Secure Shell) but an

integrated web server is the de facto standard when it comes to configuring and

managing network-enabled embedded devices. Regardless of the configuration

method, a common thing for off-the-shelf APs is that they are closed-boxes, meaning

that one cannot alter the way they work. The question arises; why would anyone need

to change the way an AP works? The answer lies in the word “customization”.

Features provided by an AP do not always fulfill all needs, and requirements may

change quite often. For example, if there are handfuls of wireless clients, it is easy to

figure out which MAC address corresponds to which wireless client. However, when

number of wireless clients increase, you would like to enter this information into AP

configuration to keep track of them. Suppose, you are using ACL (Access Control

List) for restricting access to designated clients based on MAC address, and AP

configuration allows only MAC addresses to be entered. So, there is no chance to

enter a note like client OS (Operating System), anti-virus program installed, contact

information and other related information into the device configuration. Of course,

new requirements might be more complex than this example like implementing

802.1x [3] client or implementing a detailed statistics gathering on wired and wireless

interface of an AP. Most wireless device manufacturers release firmware upgrades in

binary form but they are usually for bug-fix purposes so chances of finding all issues

being addressed in a new firmware, if it ever comes out, are very slim. Custom

building a modular AP, in which different components of the system and their

interactions are configurable, is the solution to changing dynamic requirements.

1.1 Objective

Objective of the thesis is to build a modular, configurable, software-based AP

using hardware and software components available in market. For the sake of

completeness, and to prove that it is all possible, the open source software project

 3

called AWLP (Alptekin's Wireless Linux Project) has been developed. AWLP [4]

turns a PC (Personal Computer) with appropriate WLAN card into a full-featured,

web-managed wireless AP with gateway/router functions. http://awlp.sourceforge.net

is the URL (Uniform Resource Locator) that hosts AWLP software along with

installation instructions and documentation. Version 1.0 of AWLP was released on

December 25, 2004 under the GNU GPL (General Public License) version 2 [5].

In this thesis, detailed information about the design, implementation and inner

workings of AWLP are provided to support the following claims:

• Custom building an AP is the solution to changing dynamic requirements of

wireless networks;

• Building a custom AP using open source software is possible and practical.

1.2 Contributions

A wireless AP built with AWLP can be put to many uses just like an off-the-

shelf wireless access product. AWLP has a distinct advantage over off-the-shelf

wireless access products:

• It can be used to build wireless development, test and verification suites, and

platforms for researchers. Performance testing and analysis of an off-the-shelf

wireless device is limited to the capabilities and features of device itself. By

utilizing AWLP, however, researchers can create custom-tailored

development, test, and verification platforms that better suit their needs.

1.3 Structure

The remainder of this thesis will describe AWLP in details. Chapter 2 reviews

related work about building a custom wireless access device. Chapter 3 has extensive

coverage on software design, installation and implementation of AWLP. Usage details

of AWLP along with a real implementation example are provided in Chapter 4.

 4

Conclusions regarding advantages and limitations of building a custom wireless

access device using open source software are presented in Chapter 5. The last chapter,

Chapter 6, discusses possible further research in the subject. The typographic

conventions used in this thesis are:

• Italic

Italic is used for filenames, program and command names, directory names,

and URLs except when they are part of headings or subheadings.

• Constant width
Courier New (10 pt) is used for showing the output of commands.

 5

CHAPTER 2

RELATED WORK

To increase possibility and range of implementations, efforts to build custom

AP must consider storage size factor. So, choosing the right OS to build a custom AP

on top is the most important decision that will ultimately influence the rest of the

design. Linux and BSD (Berkeley Software Distribution) variants are the OS of choice

on building custom AP because of two reasons; they are free of charge, and it is

possible to strip-down unneeded programs and parts from OS as needed.

In order for a WLAN card to serve AP management functions, the wireless card must

support a special operation mode called “BSS (Basic Service Set) Master” - a feature

supported by only certain cards that have certain chipsets. List of drivers that work

with WLAN cards supporting “BSS Master Mode”, corresponding chipsets and URLs

for these drivers are given below:

• HermesAP Chipset: Hermes

http://www.hunz.org/hermesap.html

• HostAP Chipset: Prism 2/2.5/3

http://hostap.epitest.fi

• MADWiFi Chipset: Atheros

http://madwifi.sourceforge.net

 6

• Prism54 Chipset: Prism Frisbee/GT/Duette/Indigo

http://www.prism54.org

• wi(4) Chipset: WaveLAN/IEEE and Prism 2

http://www.daemon-systems.org/man/wi.4.html

HostAP driver can take care of AP management functions in the host computer. This

means that it will not require any special firmware for the wireless card. Special

firmware complicates matters because of possible licensing issues involved and

technical difficulties and risks associated with uploading them. HostAP driver is

released under GNU GPL version 2. HostAP stands from the rest due to its well-

maintained code, documentation and support. However, it has a major limitation; it

can only support IEEE 802.11b compliant wireless cards, IEEE 802.11a [6] and IEEE

802.11g [7] are not supported. AWLP uses HostAP driver so it can support IEEE

802.11b only.

When design goals and features of AWLP are considered, there are two similar

software; Pebble [8] distribution and m0n0wall [9] firewall package. Details about the

two are given below along with a brief comparison with AWLP. Of course, these are

not the only open source wireless AP projects but we will limit our discussion to these

two because they have a certain level of acceptance. There are even open source AP

projects that derived from Pebble and m0n0wall. For example, the project called

pfSense, hosted at http://www.pfsense.org, is derived from m0n0wall. Pebble-Voyage

project, hosted at http://www.voyage.hk, is derived from Pebble as the name implies.

2.1 Pebble

Pebble is a small read-only distribution based on GNU/Linux Debian [10] that

turns a host machine into wireless AP. Pebble has been developed and maintained by

Terry Schmidt, and has been hosted by NYC (New York City) Wireless, an advocacy

group for wireless community networking, at http://www.nycwireless.net/pebble.

Pebble distribution includes HostAP, Prims54 and MADWiFi drivers, thus it can

support not only IEEE 802.11b compliant wireless cards but also newer IEEE 802.11g

 7

compliant cards with certain chipsets. Pebble has its disadvantages and limitations as

well:

• It is a read-only distribution, thus it requires another host with storage space to

transfer and store any log file if needed.

• It does not come with a web server. Thus, it does not have a built-in web-

based management. Configurations are to be done using SSH connection.

• As pointed out by Terry Schmidt in README file of Pebble distribution, it

does not have a good documentation, and there is no future plan for it, neither.

2.2 m0n0wall

m0n0wall is an embedded firewall software package developed by Manuel

Kasper based on FreeBSD [11]. It is an actively maintained and well-documented

software package, hosted at http://www.m0n0.ch/wall. m0n0wall has concentrated on

firewall features but added support later for wireless interface and wireless

management functions. It uses wi(4) driver that comes with FreeBSD. Like HostAP,

wi(4) driver works with IEEE 802.11b complaint cards only, thus cards supporting

IEEE 802.11a or IEEE 802.11g cannot be used. Unlike Pebble, m0n0wall has web-

based configuration interface. m0n0wall has been designed as a viable alternative to

commercial firewall products, thus it contains various firewall related features like

NAT (Network Address Translation), DNS (Domain Name System), DHCP

(Dynamic Host Configuration Protocol), etc. Most of these features are also needed by

an AP, thus it has a clear advantage in this perspective. AWLP has advantages over

m0n0wall by providing configuration option for wider set of wireless parameters.

AWLP has also advantages in statistic gathering, display and status display. However,

I must accept that m0n0wall is more widely known and accepted than AWLP in many

respects, this is especially true for features related to firewall functionality.

 8

CHAPTER 3

AWLP: Alptekin’s Wireless Linux Project

The idea behind AWLP was to develop an open source software that would

turn a PC with appropriate WLAN card into a modular, customizable, web-managed

AP, whose features are comparable to those of its commercial counterparts. Since

almost all commercial alternatives are closed-boxes with proprietary software that do

not allow any modifications, customizability and modularity are the major strength of

AWLP. Installing AWLP on target platform requires considerable effort. Thus,

documentation is provided. The documentation is crucial not just during the

installation phase but also during operation and customization.

AWLP files and documentation are hosted at http://awlp.sourceforge.net by

SourceForge.net [12], which provides free hosting services for open source code and

applications. The initial release of AWLP - version 1.0 - was made public on

December 25, 2004. Considerable amount of effort was put during design and test

phases to make it a stable release. The project's website contains all necessary

information and instructions to deploy an AP using AWLP. Documentation in the

website focuses on getting AWLP to work. This chapter and this thesis in general,

however, focus on explaining purpose and operation of each AWLP component.

 9

3.1 Features of AWLP

• Written in Perl

• Option to trim-down non-critical OS parts for reduced storage

• Password protected web-based management

• 40-bit and 104-bit WEP (Wired Equivalent Privacy) Keys

• Firewall with editable outgoing port list

• Caching DNS server

• DHCP server

• IP masquerading with NAT

• NTP (Network Time Protocol) server for time synchronization

• Access Control List for authentication control

• Client SNR (Signal-to-Noise Ratio) and bandwidth usage radars

• Detailed client statistics and client management features

3.2 Screen Shots

Screen shots shown below were taken from AWLP sample setup (Refer to

Figure 8). As can be seen from left part of these screen shots, there are 7 (seven)

different menus. These menus give name to the following figures:

 10

Figure 1 – AWLP, Wireless Menu

 11

Figure 2 – AWLP, Encryption Menu

Figure 3 – AWLP, ACL Menu

 12

Figure 4 – AWLP, Firewall Menu

Figure 5 – AWLP, Administration Menu

 13

Figure 6 – AWLP, Clients Menu

 14

Figure 7 – AWLP, Status Menu

 15

3.3 Operating System

The choice of OS for AWLP is GNU/Linux Slackware [13], which is known

for its stability. Version 1.0 of AWLP is designed to be installed on version 10.0 of

Slackware. Slackware has hundreds of packages that contain various binaries,

configuration files, documentation files, etc. Each package does one or more thing,

and contains one or more files. For example, if “cdrtools” package is chosen,

necessary binaries and configuration files are installed to use CD (Compact Disc)

writer device on the host system. While some of these packages are required, some of

them are recommended, and others are optional. By choosing right packages during

installation phase, you will have an OS that does what you need without any extra

features and tools that might have consumed unnecessary space and memory

otherwise. The packages are divided into software series for categorization. Appendix

A.1, retrieved from http://www.slackware.org, contains a list of these series with their

descriptions. AWLP has a directory named tagfiles, which contains text files that

specify which package to install and which package to skip for each of the series.

Appendix A.2 has a list of Slackware packages that will be installed if tagfiles

directory of AWLP is used during Slackware installation.

3.4 AWLP Content

AWLP is written in Perl, a widely accepted, cross-platform, open source

interpreted programming lanugage. The installation script of AWLP, installer.sh, is

written in Bash (Bourne-Again Shell). AWLP software also contains various

configuration files in ASCII (American Standard for Character Information

Interchange) text.

Compressed tarball of AWLP version 1.0 can be found at “Download” section of

AWLP’s website. There are five subdirectories inside the archive, each containing

various files. List of these files and their relative paths can be found in Appendix B.

Descriptions of these files are given in subsequent sections.

 16

3.4.1 installer.sh, COPYING, and README

installer.sh, COPYING, and README files reside in the root directory of

AWLP.

3.4.1.1 ./installer.sh

This Bash script is responsible for setting up and configuring AWLP.

Understanding how AWLP works is possible by understanding installer.sh first, so a

detailed description of installer.sh is provided in Section 3.4.8.

3.4.1.2 ./COPYING

AWLP is released under GNU GPL version2. This file contains the related

license information.

3.4.1.3 ./README

In addition to author and license information, README file has system

requirements, hardware compatibility and installation sections. It should be read prior

to AWLP installation.

3.4.2 Configuration Files

Files under configfiles directory are configuration files for various services

such as DNS, HTTP (Hyper Text Transfer Protocol), DHCP, etc.

3.4.2.1 ./configfiles/dhcpd.conf

AWLP starts DHCP service on host machine to give IP leases to wireless

clients. dhcpd.conf is the configuration file that gives directives to DHCP service.

Default lease time is set to 1 day (86400 seconds). IP lease range is between 10.0.0.10

and 10.0.0.254. Router, DNS and NTP server addresses are set to 10.0.0.1. IP lease

 17

range can be altered without any problem as long as it is in the same private “A” class.

However, changing gateway, DNS and NTP server addresses will require various

changes on several other configuration files.

3.4.2.2 ./configfiles/httpd.conf

AWLP has web-based management. Apache Web Server [15] is HTTP

daemon being used by AWLP. httpd.conf is the configuration file containing various

directives to customize the behavior of Apache Web Server.

3.4.2.3 ./configfiles/named.conf

AWLP starts DNS service on host system to answer domain name queries

from connected clients. AWLP uses BIND (Berkeley Internet Name Daemon) [15] as

the DNS daemon. named.conf is the configuration file for BIND. AWLP needs a

caching-only DNS, so named.conf has directives accordingly. This caching-only DNS

server is made to answer queries from IP addresses within private “A” block only.

Thus, queries from outside of this block are discarded.

3.4.2.4 ./configfiles/named.ca

This is a required file for the operation of DNS server. named.ca contains IP

addresses of 13 global root name servers.

3.4.2.5 ./configfiles/named.local

This file contains PTR (Pointer) records for reverse lookup operation of DNS.

Since this is a caching-only DNS, it contains only one PTR record as default, which is

“localhost”.

 18

3.4.2.6 ./configfiles/localhost.zone

localhost.zone contains records for forward lookup DNS operation. However,

since this is only caching-only DNS, it does not contain any records. When clients

make queries, DNS server resolves IP addresses of FQDNs (Fully Qualified Domain

Names) with the help of root name servers (Refer to Section 3.4.2.4).

3.4.2.7 ./configfiles/ntp.conf

AWLP starts NTP service to synchronize time with global time servers and to

provide time synchronization service to its connected clients. ntp.conf is the

configuration file for NTP service. The global time servers contained in ntp.conf file

are:

• ntp-1.cso.uiuc.edu

• a.ntp.alphazed.net

• ntp0.cornell.edu

• ntp3.theinternetone.net

3.4.2.8 ./configfiles/rc.ntpd

rc.ntpd is the file responsible for stopping, starting, and restarting NTP service

with appropriate control switches and options.

3.4.2.9 ./configfiles/oui_filtered.txt

IEEE controls MAC addresses of physical devices in organizational level.

IEEE has a file called oui.txt [16], which contains first 24-bit portion of MAC address

and the corresponding information such as name, address, phone for each

organization. By looking at this file and first 24-bit of MAC address of device in

question, it is possible to tell the manufacturer of a given network card. oui_filtered.txt

is the trimmed-down version of oui.txt for AWLP. Parts that get trimmed include

 19

additional information about organizations like address, phone, etc. AWLP searches

within oui_filtered.txt file to find names of manufacturers for clients in question.

3.4.2.10 ./configfiles/rc.dhcpd

Slackware has various startup files under /etc/rc.d directory. These startup

files, if their permissions are set properly, start various services like DNS, HTTP, etc.

However, not all services have startup files by default. For these services, appropriate

startup files are created that are responsible for starting, stopping and restarting

services. DHCP service is one of them. For AWLP to start DHCP service on host

machine, rc.dhcpd is copied to /etc/rc.d directory by installer.sh during installation.

3.4.2.11 ./configfiles/rc.firewall

Firewall that comes with AWLP is incoming-blocked and outgoing-

configurable. iptables is the name of command for firewall software in Linux variants.

rc.firewall is the configuration file containing directives to iptables firewall program.

When list of allowed outgoing ports is updated through AWLP's web-based

management interface, corresponding section in rc.firewall also gets updated in order

to preserve changes through system restarts.

3.4.2.12 ./configfiles/rc.local

rc.local file usually comes empty with default Linux installations. It allows

custom commands to be executed and custom services to be started at startups.

rc.local file in AWLP does the following things in order:

• Starting cardmgr daemon if it is not already started

• Starting SSH server if it is not already started

• Pre-configuring WLAN interface

• Starting NTP daemon if it is not already started

 20

• Starting DHCP server if it is not already started

• Starting DNS server if it is not started, and restarting it if already started

• Loading and activating firewall rules

• Configuring WLAN interface

3.4.2.13 ./configfiles/rc.wlan0

rc.wlan0 contains lines of commands to bring up the wireless interface.

“AWLP, Wireless Menu” (refer to Figure 1) makes it possible to change SSID

(Service Set Identifier), channel number, WEP keys, etc. These changes are stored in

rc.wlan0 so that they are preserved between system startups.

3.4.2.14 ./configfiles/rc.wlan0-pre

IP configuration of wireless interface needs to be set for other network

services to function properly. However, clients should be blocked until all related

services such as DHCP, DNS get started. This is achieved by blocking client

authentication first, then configuring IP setting of wireless interface in rc.wlan0-pre.

rc.local (refer to Section 3.4.2.12) calls rc.wlan0-pre as the third step, and it calls

rc.wlan0 as the very last step to start allowing wireless clients.

3.4.2.15 ./configfiles/.htaccess

AWLP’s web-based management interface is password-protected to prevent

unauthorized use. When an attempt is made to use this interface, a simple dialog box

with realm of authentication shows up, asking for username and password. .htaccess

file contains this realm along with directives to look for .htpasswd file, which contains

valid username and password pairs for logon. HTTP daemon basically checks

.htaccess file under requested directory for authentication directives each time a

password-protected page is requested. AWLP does not contain .htpasswd file but this

file is created on-the-fly by installer.sh.

 21

3.4.3 Core Scripts

corescripts directory contains file and scripts that are essential to operation of

AWLP.

3.4.3.1 ./corescripts/engines1.pl

This include file contains subroutines essential to operation of AWLP. The list

of subroutines is given below. More information about these subroutines along with

their input and output specifications are provided in Appendix D.

• proc_get_client_mac_list

• proc_get_client_mac_details

• proc_get_prism2_parameters

• set_prism2_parameter

• proc_get_AP_stats

• proc_get_AP_debug

• proc_get_debug

• add_mac_to_acl

• remove_mac_from_acl

• kick_station_from_AP

• ACL_status

• is_MAC_in_ACL

• ACL_policy_modify

• WDS_add_MAC

• WDS_remove_MAC

• Card_Identification

 22

• Card_Port_reset

• Encryption_control

• check_daemon_status

• Logon_Security_control

• get_uptime_info

• get_card_manufacturer_info

• get_memory_usage_info

• get_disk_usage_info

• get_dhcpd_lease_info

• iwconfig_parser

• ifconfig_parser

• AP_Wireless_manage

• AP_LAN_manage

• System_reboot

3.4.3.2 ./corescripts/engines2.pl

This include file contains eight subroutines that are auxiliary in nature; they

are not as critically important to operation of AWLP as those of engines1.pl. Below is

the list of subroutines contained in this file.

• sort_ClientFlags_byvalue

• sort_OperationRates_bykey

• sort_OpenPorts_byportnumber

• find_ISM_channel_number

• convert_dec_to_binary

 23

• convert_binary_to_dec

• find_broadcast_address

• show_date_time

3.4.3.3 ./corescripts/error_messages.pl

This include file contains error messages. Error codes are represented as array

indices, error messages and their descriptions are represented as array members.

3.4.3.4 ./corescripts/extras.pl

Any functionality not covered by index.pl and radar.pl are handled by

extras.pl. Conversion from ASCII to hexadecimal, hexadecimal to ASCII, showing

DHCP lease table, checking AWLP updates, listing error messages are covered by

extras.pl. It has “Action1” form variable that determines action to be taken. Values of

“Action1” are listed below with description of things accomplished within each part:

• “ASCIItoHEX” - ASCII to Hexadecimal Conversion Tool

• “HEXtoASCII” - Hexadecimal to ASCII Conversion Tool

• “DHCPLeaseTable” - DHCP Lease Table

This part is responsible for showing DHCP lease details. The details include

lease duration, IP number, MAC address, and host name if specified by client.

Subroutine calls made within this part is listed below:

¾ get_dhcpd_lease_info

¾ proc_get_client_mac_details

• “CheckUpdates” - Check for Updates

In this part, system call is made to check the URL defined by configuration

variable CHECK_FOR_UPDATES_URL (refer to Appendix C). This system

call is:

 24

¾ system("wget -q -t 1 -T 15 -O ${CHECK_FOR_UPDATES_PATH}

${CHECK_FOR_UPDATES_URL}")

• “ErrorCodesList” - Error Codes List

Throughout AWLP management interface, error messages are shown with

error codes. This part of extras.pl lists all error messages with their codes and

descriptions.

3.4.3.5 ./corescripts/global_configuration.pl

This is just an include file containing various configuration variables.

Understanding these configuration variables is essential to understanding how AWLP

operates, thus description of variables along with their default values are given in

Appendix C.

3.4.3.6 ./corescripts/index.html

This is the welcoming HTML (Hyper Text Markup Language) page for

AWLP management interface. It has static content giving information about AWLP

such as the copyright and author information.

3.4.3.7 ./corescripts/index.pl

This Perl script is the one that is being called when an “AWLP Management”

link is clicked inside the welcoming page. It is the most important script of AWLP

with over 1500 lines of code. It calls various subroutines that are defined in engine1.pl

and engine2.pl. Refer to Section 3.4.7 for a detailed description of things

accomplished within index.pl.

3.4.3.8 ./corescripts/radar.pl

In order to keep the size of index.pl reasonable, radar.pl is used. It is

responsible for drawing SNR and bandwidth usage graphics. The links to radar.pl

 25

were given inside “Status Menu” (refer to Figure 7) of AWLP management interface.

It has a form variable called “Action1” that controls action to be taken by the script.

“Action1” values are:

• “SNRRadar” - Client SNR Radar

This part is responsible for drawing SNR graph of connected clients. SNR

(Signal-to-Noise Ratio) tells us the quality of wireless link between host

machine and client. SNR_RADAR_REFRESH_INTERVAL (refer to

Appendix C) configuration variable in global_configuration.pl determines

how many seconds will elapse before SNR graph gets refreshed. The default is

10 seconds. Subroutine calls made within this section are:

¾ proc_get_client_mac_list

¾ proc_get_client_mac_details

• “BWRadar” - Bandwidth Radar

Monitoring bandwidth usage is very important to understand usage patterns

and bandwidth requirements. This part is responsible for drawing bandwidth

usage graph of connected clients. BW_RADAR_REFRESH_INTERVAL

configuration variable defines the refresh period for the bandwidth usage

graph. The default value is 5 seconds. Subroutine calls made within this

section are:

¾ proc_get_client_mac_list

¾ proc_get_client_mac_details

3.4.4 Images

Images directory is here for organizing all image files. However, as of version

1.0 of AWLP, there exists only one image file.

 26

3.4.4.1 ./images/LinuxPowered.gif

The welcoming page, index.html (refer to Section 3.4.3.6), contains a Linux

logo. LinuxPowered.gif is this image file.

3.4.5 Tagfiles

tagfiles directory contains tag files for each Slackware software series (refer to

Appendix A.1) defining which packages to install and which packages to skip. tagfiles

directory and its content are copied to a floppy disk manually before starting

installation, and is later used during Slackware setup.

3.4.6 Tarballs

During AWLP installation, hostap-driver and hostap-utils tarball packages,

which are parts of HostAP, are extracted, compiled, and installed.

3.4.6.1 ./tarballs/hostap-driver-0.2.5.tar.gz

It is version 0.2.5 of hostap-driver; the most important part of HostAP

software. It is the driver that makes WLAN card to work as AP.

3.4.6.2 ./tarballs/hostap-utils-0.2.4.tar.gz

It is version 0.2.4 of hostap-utils, which is part of HostAP software providing

various utilities to manage wireless interface.

3.4.6.3 ./tarballs/bridge-utils-1.0.4.tar.gz

It is version 1.0.4 of bridge-utils software, which makes bridging between two

or more interfaces in same host possible without requiring a special hardware. AWLP

is designed to work as a wireless access gateway. One might need to make

modifications to turn it into AP only device without any gateway functions. bridge-

 27

utils software [17] will be needed in such a scenario, thus it gets also installed,

although functionality it provides are not utilized by default.

3.4.7 index.pl

index.pl with its calls to subroutines defined in engines1.pl and engines2.pl is

the core of AWLP management interface. To control its actions, index.pl is called with

“Action1”, “Action2” and “Action3” form variables. There is different “Action1”

value for each menu in the management interface of AWLP (refer to Section 3.2).

These different values are listed below with their corresponding menu names and their

functionality:

• “Wireless” - Wireless

This part is responsible for turning up and down wireless interface, listing IP

configuration for wireless and wired interfaces, listing and changing wireless

parameters such as SSID, channel number, operation speed, etc. Following

subroutines are called within this part:

¾ AP_Wireless_manage

¾ set_prism2_parameter

¾ ifconfig_parser

¾ iwconfig_parser

¾ find_ISM_channel_number

¾ proc_get_prism2_parameters

• “Firewall” – Firewall

Function of this part is to modify allowed outgoing port list. It has a simple

protocol type selection box, port number text box, and submit button. System

call made within this part is:

¾ system("/etc/rc.d/rc.firewall")

 28

• “Administration” - Administration

This part has two main functions; changing system logon security and

restarting the system. Managing AWLP through its interface requires a basic

authentication to prevent unauthorized access. In this section, changing

authentication realm, username and password are made possible. Two

subroutines are called within this part.

¾ Logon_Security_control

¾ System_reboot

• “ShowClients” - Clients

Several subroutine calls are made within this part, which are listed below, in

order to provide information about clients connected. This information

includes MAC addresses of clients, details about IP leases and statistics about

the connection. Option to kick a station from AP and adding/removing MAC

address from ACL are also provided by this part.

¾ kick_station_from_AP

¾ remove_mac_from_acl

¾ add_mac_to_acl

¾ proc_get_client_mac_list

¾ proc_get_client_mac_details

¾ get_dhcpd_lease_info

¾ get_card_manufacturer_info

• “ShowACL” – Access Control List

This part makes changing MAC policy and updating ACL possible. MAC

policy can be either “open”, “deny” or “allow”, whereas ACL contains a list of

MAC addresses. MAC policy is enforced on MAC addresses listed in ACL.

Subroutine calls made within this section are listed below:

¾ ACL_policy_modify

 29

¾ add_mac_to_acl

¾ kick_station_from_AP

¾ proc_get_client_mac_list

¾ ACL_status

• “ShowEncryption” - Encryption

This part allows encryption algorithm and WEP keys to be changed.

Encryption algorithm can be either “WEP” or “none”. WEP keys can be either

10-digit hexadecimal or 24-digit hexadecimal. With 24-bit IV (Initialization

Vector), 10-digit hexadecimal corresponds to 64-bit, and 24-digit hexadecimal

does correspond to 128-bit WEP key. List of subroutine calls made within this

part is given below:

¾ Encryption_control

¾ proc_get_client_mac_list

¾ kick_station_from_AP

• “ShowStatus” - Status

This part is responsible for outputting status information. It includes current

date and time, disk usage and memory usage information, wired and wireless

interface information and statistics, and network daemons status. Subroutines

calls within this part are given below:

¾ show_date_time

¾ get_uptime_info

¾ get_disk_usage_info

¾ get_memory_usage_info

¾ iwconfig_parser

¾ ifconfig_parser

¾ Card_Identification

 30

¾ get_card_manufacturer_info

¾ check_daemon_status

3.4.8 installer.sh

installer.sh script has been divided into commented sections, each doing

different things to accomplish the final goal, setting up AWLP on host system. These

sections in execution order are listed below:

• “Defining project name, project relative path, project version, default

authentication username and password, hostap-driver version, hostap-utils

version, bridge-utils version”: These definitions will be later used in the script

while compiling programs, and while copying necessary scripts and

configuration files.

• “Defining required Slackware pages”: Existence of these packages will be

later checked by installer.sh based on this definition.

• “Defining required program paths”: These programs are required to copy files,

compile source files and configure network settings. Existence of these

programs will be later checked by installer.sh. If the required Slackware

packages are installed, then these programs will be in place, therefore this

section provides an extra control mechanism.

• “Defining packages to be removed”: In order to compile auxiliary programs

(hostap-driver, hostap-utils, bridge-utils), some Slackware packages (kernel-

source, automake, etc.) are required. However, after successfully compiling

these auxiliary programs, these packages are no longer needed to run AWLP.

They will be required, however, if you need to compile another source file

later on. If you have enough disk space, that is around 1GB or more, then there

is no need to remove these packages. Later in installer.sh, you will be given

option to remove these defined packages from host machine.

 31

• “Outputting project name and version along with author and copyright

information”: In this phase of execution, installer.sh displays the project name,

version, author and copyright information to visually convey the message that

the installation has just been started.

• “Marking the time for elapsed installation time”: Time has been marked to

calculate elapsed time for the installation.

• “Fetching installation directory”: The directory where installer.sh script is run

gets saved into a scalar variable. The path of this directory will be later used by

installer.sh.

• “Checking the user running installer.sh”: The installation script, installer.sh, is

designed to do several things like compilation, package removals, permission

and owner settings of various files, and other tasks that require administrative

privileges. In order for installer.sh to accomplish these tasks, user running

installer.sh must be the user “root”. If not, insaller.sh aborts execution with an

error message.

• “Checking /var/log/packages”: Information about the Slackware packages

installed are stored under /var/log/packages directory. In order to check the

existence of these packages, it is imperative that /var/log/packages directory

exists with read and execute permissions for the user “root”. If there is a

problem, execution gets aborted.

• “Checking if the required Slackware packages are installed”: In this section,

the packages are checked to make sure they are installed. If there are any

missing packages, execution is aborted with an error message containing the

list of missing packages.

• “Checking the required program paths”: Required programs that were defined

previously are checked in this section to detect any missing one. If one or more

paths are found missing, execution is aborted with an error message containing

the list of missing programs paths.

 32

• “Gathering installation options”: The installation script, installer.sh, goes to an

interactive mode in this section to gather installation options. There are three

installation options:

¾ Removing non-critical packages to save space

¾ Trimming down documents and manuals to save space

¾ Stripping down the Perl package to bare minimum to save space

For each of these three questions, you can answer “Y” or “N”. If you type

anything other than “y” or “Y”, it will be treated as “N”. These installation

options are here to save disk space. Therefore, if you have around 1 GB of or

more disk space, you are advised to answer “N” to all the questions.

• “Confirming installation options”: Selections to the three aforementioned

installation options are confirmed in this section to prevent any mistakes. If

answered “Y” to the confirmation question, the actual compilation, copying,

configuring phases will get started.

• “Installing hostap-driver, hostap-utils, bridge-utils”: hostap-driver and hostap-

utils are crucial to the operation of AWLP but bridge-utils is installed just in

case bridging function rather than routing function is needed between wireless

and wired interfaces.

• “Adding /bin/false and /dev/null to /etc/shells”: For the security of the system,

it is required that home directory and default shell of some users are set to

/dev/null and /bin/false respectively. In order to do this, /bin/false and /dev/null

shall be listed in /etc/shells file.

• “Creating the user and group apache”: For AWLP’s web-based management

interface, HTTP daemon is needed. For AWLP, it is Apache Web Server. The

user and group “apache” is created in this section for this daemon to be

running as.

• “Copying and setting permissions for configuration files”: The configuration

files (refer to Section 3.4.2) are needed to be copied over. They require

 33

changes in ownership and permission for HTTP daemon to modify the content

of these files. These configuration files are listed below along with

permissions and owner information in Unix/Linux style.

-rwxrwx--- root apache /etc/dhcpd.conf

-rwxrwx--- root apache /etc/apache/httpd.conf

-rw-r--r-- root root

 /var/named/caching-example/localhost.zone

-rw-r--r-- root root /var/named/caching-example/named.ca

-rw-r--r-- root root /etc/named.conf

-rw-r--r-- root root /var/named/caching-example/named.local

-rw-r--r-- root root /etc/ntp.conf

-rwxrwx--- root apache /etc/awlp/oui_filtered.txt

-rwx--x--- root root /etc/rc.d/rc.dhcpd

-rwxrwx--- root apache /etc/rc.d/rc.firewall

-rwxr-x--- root apache /etc/rc.d/rc.local

-rwxrwx--- root apache /etc/rc.d/rc.ntpd

-rwxrwx--- root apache /etc/rc.d/rc.wlan0

-rwxrwx--- root apache /etc/rc.d/rc.wlan0-pre

• “Copying .htaccess, and creating .htpasswd files”: These two files along with a

couple of directives in httpd.conf (refer to Section 3.4.2.2) are the core of

authentication mechanism of AWLP’s web-based management interface.

• “Setting up permissions on various commands”: For AWLP’s management

interface, HTTP daemon needs certain permission on some commands. Some

of the permission changes involve “suid” and “guid” bits to be set as well.

Some of these commands are standard Linux commands, and some of them

come with hostap-driver and hostap-utils. These commands along with their

permissions and owner information in Unix/Linux style are listed below:

-rwsr-x--- root apache /usr/local/bin/prism2_param

-rwsr-x--- root apache /usr/local/bin/hostap_crypt_conf

-rwsr-x--- root apache /usr/sbin/dhcpd

-rwsr-x--- root apache /sbin/iwpriv

-rwsr-x--- root apache /sbin/iwconfig

-rwsr-x--- root apache /sbin/ifconfig

 34

-rwsr-x--- root apache /bin/ps

-rwsr-x--- root apache /sbin/halt

-rwsr-x--- root apache /usr/bin/htpasswd

-rwsr-x--- root apache /sbin/cardctl

-rwsr-x--- root apache /usr/sbin/iptables

-rwsr-x--- root apache /sbin/modprobe

-rwx--x--- root root /etc/rc.d/rc.bind

-rwx--x--- root root /etc/rc.d/rc.dhcpd

-rwxr-xr-x root root /etc/rc.d/rc.hotplug

-rwx--x--- root root /etc/rc.d/rc.httpd

-rwxr-xr-x root root /etc/rc.d/rc.inetd

-rwxr-xr-x root root /etc/rc.d/rc.pcmcia

-rwxr-xr-x root root /etc/rc.d/rc.sshd

-rwxr-xr-x root root /etc/rc.d/rc.wireless

• “Removing optional Slackware packages”: While defining the installation

options, one of the questions was about removing non-critical Slackware

packages. If “Y” was chosen, the Slacware packages that were defined

previously get removed in this section.

• “Trimming down documents and manuals”: If “Y” was chosen for the second

installation option, some documents and manual pages are removed to save

disk space. The commands to remove these documents and manuals are given

below:

rm -rf /usr/doc/*

rm -rf /usr/man/*

rm -rf /usr/share/locale/*

rm -rf /var/www/icons/*

rm -rf /var/www/htdocs/*

• “Stripping down the Perl package”: If “Y” was given as the answer to the third

installation question, the Perl package, which is around 35 MB, is stripped

down to bare minimum (approx. 1 MB) to save disk space.

 35

• “Copying core scripts and setting their permissions”: These scripts are what

really make AWLP. These scripts along with their permission and ownership

information are listed below in Unix/Linux style:

-rwxr-xr-x root apache /var/www/cgi-bin/awlp/engines1.pl

-rwxr-xr-x root apache /var/www/cgi-bin/awlp/engines2.pl

-rwxr-xr-x root apache

 /var/www/cgi-bin/awlp/error_messages.pl

-rwxr-xr-x root apache

 /var/www/cgi-bin/awlp/global_configuration.pl

-rwxr-xr-x root apache /var/www/htdocs/index.html

-rwxr-xr-x root apache /var/www/cgi-bin/awlp/index.pl

-rwxr-xr-x root apache /var/www/cgi-bin/awlp/radar.pl

-rwxr-xr-x root apache /var/www/cgi-bin/awlp/extras.pl

• “Copying Linux logo”: The management interface of AWLP has a welcoming

screen with a Linux logo. The image file of this logo (refer to Section 3.4.4.1)

gets copied over in this section.

• “Doing elapsed time calculation”: Once reached to this point, it means that the

installation has actually finished. Elapsed time calculation gets carried out in

this phase of the execution.

• “End of successful installation”: A message is shown along with project name,

version and the time it took to complete the installation. After 5 seconds, the

host machine gets rebooted. Once it is rebooted, it starts running AWLP.

 36

CHAPTER 4

AWLP IN ACTION

In order to run AWLP on a host, you do not have to know all the details of

AWLP as it was discussed in previous chapters. You can simply install and start using

it on a host system as long as the system meets the requirements for AWLP. Hardware

compatibility is another issue since HostAP driver can only work with certain WLAN

cards. Moreover, AWLP runs on GNU/Linux Slackware so choosing other peripherals

such as NIC (Network Interface Card), graphic display card will require compatibility

with Linux. Installing AWLP is straight-forward and easy but preparing a host system

for AWLP installation requires considerable effort. Once AWLP is successfully

installed, it starts running with pre-configured parameters. However, these parameters

can be changed later on through the management interface. It is imperative to field test

software after its release to observe its reliability and performance. All these issues

will be discussed in subsequent sections of this chapter.

4.1 System Requirements

AWLP can run even on Intel [18] 486 processors but systems with these

processors usually lack PCI (Peripheral Component Interconnect) slots. This, in turn,

makes it extremely difficult to find compatible WLAN cards and 10/100 Mbps

ethernet cards for ISA (Industry Standard Architecture) slots. For this reason, systems

with Intel Pentium series (> 75 Mhz) CPU (Central Processing Unit) or above such as

Pentium II, III, IV series are recommended. Anything below than 64 MB of RAM

 37

(Random Access Memory) has tendency to become a bottleneck. Therefore, the

minimum recommended RAM figure is set to 64 MB but it is possible to run it with

32 MB albeit with degraded performance. In order to successfully install all needed

Slackware packages (refer to Appendix A.2), 786 MB of storage space is needed.

While installing Slackware, swap space also needs to be setup for virtual memory. In

Linux systems, swap space is configured to be twice the size of installed RAM. Thus,

an HDD (Hard Disk Drive) with at least 1 GB of storage would be ideal.

4.2 Hardware Compatibility

AWLP is designed to act as a wireless access gateway. So, it needs a WAN

(Wide Area Network) interface connected directly to Internet or intranet. For this

purpose, it requires an ethernet card compatible with Linux. The most crucial

component, however, is WLAN card. For compatibility with HostAP driver, it must

have Prism 2/2.5/3 chipset. Wireless cards with these chipsets are listed under

“Hardware Compatibility” section of AWLP website - http://awlp.sourceforge.net.

This online section also contains PCI to PCMCIA (Personal Computer Memory Card

International Association) converters that are known to work with Linux. Depending

on whether the choice of WLAN card is PCMCIA type and availability of PCMCIA

slot on host system, a PCI to PCMCIA converter might also be needed.

4.3 Installation

Installing AWLP consists of three steps that should be followed in order. The

first step is to custom install Slackware version 10.0 with tag files provided in AWLP.

This will make sure that only needed packages will be installed. The second step is to

upgrade Slackware packages. Slackware team releases package upgrades mostly for

bug-fix purposes. Upgrading Slackware packages ensures that known problems that

might affect the operation of AWLP get fixed. The third and the final step is to install

AWLP. To accomplish this, AWLP package should be extracted from its compressed

tarball, and installer.sh script should be run. It takes about couple of minutes for

installer.sh to finish execution depending on how fast the system is. After installer.sh

 38

completes, the system gets rebooted automatically, and AWLP starts running.

Detailed step by step installation instructions are provided under “Installation” section

of AWLP website – http://awlp.sourceforge.net.

4.4 Default Settings

After the system reboot, followed by end of AWLP installation, the system

starts serving wireless clients with pre-configured settings.

Table 1 contains these default settings. These settings can be changed later on using

AWLP’s web-based management interface.

Table 1 – AWLP Default Settings

SSID AWLP

Channel 6

Beacon Interval 100 ms

DTIM (Dynamic Traffic Indication Message) Period 10

Maximum Inactivity 600 seconds

Authentication Auto

Encryption Algorithm WEP

Encryption Key AWLP1

4.5 Sample Setup

As the System Administrator of Department of Industrial Engineering at

METU (Middle East Technical University), one of my duties includes maintaining

WLAN service in the department. A custom-made wood enclosure (refer to Figure 9)

with 300 VA power supply and two 8 dbi omni-directional antennas were in place. D-

 39

Link [19] DWL-6000AP access point was originally in use. I took off this AP, and put

a system running AWLP. Hardware configuration of this system is detailed in

Table 2, and Figure 8 contains a still image of the system. There are more than 30

WLAN equipped portable computers registered and configured to use WLAN service

of the department. This AWLP setup (refer to Figure 10) had been running for 27

consecutive days without any problems as of this writing. No support calls were made

about the issue. This showed us that the change was transparent to users.

Table 2 – AWLP Sample Setup Hardware Configuration

CPU Pentium MMX 200 MHz

RAM 80 MB

HDD Fujitsu M1636TAU (1.28 GB)

Ethernet Card Realtek 8139D

WLAN Card Senao 2511 CDPLUS EXT2

PCI-PCMCIA Ricoh Co Ltd RL5c475

Figure 8 – System Running AWLP

 40

Figure 9 – Wood Enclosure for WLAN Equipment

Figure 10 – AWLP Setup in Place

4.6 Performance Tests

In 2004, IEEE 802.11T Task Group was formed to standardize wireless test

methods and metrics. However, as of this writing, there is no deliverable by the group

to be used as a guideline. Therefore, we turned our attention to benchmarking efforts

by 802.11 chipset manufacturers. Our test setup, depicted in Figure 11, was based on

the throughput test setup used in the white paper “802.11 Wireless LAN Performance”

[20] by Atheros Communications [21], a reputable developer of semiconductor

systems for wireless communications products.

 41

 A B

 C

Figure 11 – Throughput Test Setup

In the setup, version 2.1 of the network performance benchmark software called

Netperf [22] is used. Computer A runs server component of Netperf and wireless

client C runs client component of Netperf. System C is placed within 2 meters of

system B with line of sight to avoid any degraded performance. Details about

computer systems A, B, and C are given in Table 3.

Although, theoretical maximum application-level throughput for Transmission

Control Protocol (TCP) for IEEE 802.11b is 5.9 Mbps as pointed out by the white

paper, various outside factors reduces this number; Humidity, temperature, Radio

Frequency (RF) complications such as reflection, diffraction, scattering result in lower

throughput. Differences in RF circuitry design and 802.11b implementation

techniques by different vendors result in varying throughput rates.

UTP CAT-5 Crossover

100 Mbit/sec

 42

Table 3 – Computer Configurations Used in Throughput Test

A PIV 1.8GHz, 512MB RAM

Windows 2000 Pro

B 1)- D-Link DWL-6000AP

2)- HP Compaq Evo N1015v (AMD 1.66GHz, 256MB

RAM, Senao 2511 CDPLUS EXT2 – 802.11b PCMCIA)

C HP d330ut (PIV 2.66GHz, 512MB RAM)

Windows XP Pro

D-Link DWL-650+ (802.11b - PCMCIA)

Results of our tests are close to each other, thus they are not shown in a graph. With

128-bit encryption (WEP) in effect, D-Link DWL-6000AP has 4.39 Mbps. With the

same key-length (128-bit), AWLP, m0n0wall and Pebble have 4.49 Mbps, 4.48 Mbps,

4.49 Mbps throughputs respectively. The same WLAN card being used for testing

AWLP, m0n0wall, and Pebble is the most important contributor factor for these close

results. D-Link DWL-6000AP’s slightly less throughput can be explained by different

WLAN card used in this embedded system, and relatively scare resources of RAM in

this system when compared to 256MB of RAM in computer system B-2.

4.7 Features Comparison

The most distinguishing features and components of Pebble, m0n0wall and

AWLP are compared as shown in Table 4.

 43

Table 4 – Pebble, m0n0wall and AWLP Feature Comparison

 Pebble m0n0wall AWLP

OS GNU/Linux

Debian 3.0r1

FreeBSD 4.10 GNU/Linux

Slackware 10.0

File System

Mounting

· read-only · read-only

· read-write

· read-write

WLAN Driver · MadWifi
· HostAP

· Prism54

· wi [4] · HostAP

IEEE 802.11 802.11b/g 802.11b 802.11b

WPA No No No

Captive Portal Yes Yes No

Firewall iptables 1.2.6a ipfw iptables 1.2.10

DNS Djbdns Dnsmasq 1.18 bind 9.2.3

Perl Perl 5.6.1 N/A Perl 5.8.4

Web Server N/A mini_httpd 1.19 apache 1.3.31

SSH Server openSSH 3.4 N/A openSSH 3.8.1

Documentation Limited Adequate Adequate

(Comprehensive with
this thesis)

Modification
Capability

Read-only mounting
complicates
modification efforts.

Purposefully
limited by
developer.

Not limited.

As can be seen from Table 4, Pebble is designed for embedded systems with read-only

mounting. It is based on old version (3.0r1 – July, 2002) of GNU/Linux Debian. It has

 44

rich WLAN driver support, and the only one to support IEEE 802.11g standard

therefore. Although with slightly outdated versions, it has pretty much all necessary

components except web server, thus configuration has to be done manually instead of

through a web-based interface. Developer Terry Schmidt declares he will not work on

documentation, so there is only README file accompanying the software. Lack of

documentation is possibly the greatest setback for researchers trying to build WLAN

test and development platforms. Moreover, read-only mounting complicates

modification and data acquisitions efforts since Pebble cannot write to any local

storage device.

m0n0wall is designed to be a viable alternative for commercial firewall products.

Thus, its firewall features are stronger. It is based on FreeBSD 4.10. It is the latest

version (May, 2004) along the 4-STABLE branch. This branch does not have as wide

hardware support as the 5-STABLE branch. Thus, m0n0wall suffers from hardware

compatibility when it comes to supporting different network cards and other relevant

peripheral components. It has both read-only and read-write mounting options, which

makes it possible to install on an embedded platform or on a regular PC with local

storage. It does have a web-based management, made possible by integrated web

server – mini_httpd. The biggest drawback of m0n0wall for researchers is that system

modification capability is purposefully limited by the developer. Custom console is in

effect to prevent shell access and to force users to web-based management interface

instead.

AWLP is based on relatively new version and latest stable branch (10.0 – June, 2004)

of GNU/Linux Slackware. This results in definite advantage over the rest for hardware

and peripheral compatibility. Versions of software components it has are also

relatively new. Although, its shortcomings along with possible solutions to those are

mentioned in detail in Chapter 6, it is important to point out that AWLP lacks captive

portal and WPA support. Moreover, it can support only HostAP driver, thus

supporting WLAN cards operating with IEEE 802.11g standards is not possible at this

point. Comprehensive documentation by taking the thesis into account, modification

capability with standard Slackware software package management tools accompanied

 45

with shell access and combined with file system read-write mounting option are

AWLP’s greatest strength over Pebble and m0n0wall.

 46

CHAPTER 5

CONCLUSION

This thesis has shown a new way of building and deploying a wireless access

device using open source software. All source code and related documentation to

build a wireless access device were made public at http://awlp.sourceforge.net as an

open source project. Features, content, implementation, details, tests, advantages and

limitations of AWLP were discussed in this document along with related background

information. Comparisons with other similar open source software were also included.

5.1 Fast Pace of Requirements Change

Almost all commercially available wireless access devices are closed-boxes,

meaning that you will not be able to alter the way they work in any other way than it is

allowed by the system. Most manufacturers are releasing firmware upgrades time to

time to fix known bugs, and sometimes to improve product features. However,

increasing number of wireless clients and increasing need of more versatile

management, authentication and security functions are causing change in requirements

at a much faster pace than can be answered by improvements of new firmware. The

thesis supports the argument that building a custom AP is the solution to these

dynamic changes in requirements.

 47

5.2 Building Custom AP with Open Source Software

This thesis is the material proof that building a custom AP requires a great deal

of control on configuring OS and various interacting programs and tools. Microsoft

[23] offers “Platform Builder” for developers to create customized OS based on

“Windows CE” for embedded devices. However, flexibility provided with Linux is

superior to that of Microsoft. Licensing and cost of licensing is another issue when

using proprietary software, whereas it is free with an open source OS such as Linux.

Open source software can be modified and customized. Proprietary software, on the

other hand, is basically a black-box not allowing necessary level of customization

primarily due to commercial constraints and motives. This thesis demonstrates that

building a custom AP is possible and practical using open source software.

On May 19th of 2005, an online introductory article with the title “Build a Wireless

Gateway with Perl” is published about AWLP by O'Reilly Media, Inc., a reputable

publisher among computer professionals. This article can be reached online at the

following URL: http://www.perl.com/pub/a/2005/05/19/wireless_gw.html.

 48

CHAPTER 6

FURTHER WORK

It has been shown that AWLP is a viable alternative for setting up wireless

access service using a dedicated PC. Result of throughput tests (refer to section 4.6)

shows us that AWLP has the same level of performance as competing solutions;

m0n0wall and Pebble. It is well documented. It comes pre-configured; it immediately

starts serving wireless clients after installation. However, it lacks some advanced

features. These lacking features and further work that can be carried out are detailed

below:

• MadWifi and Prism54 support

Most WLAN cards coming out nowadays are IEEE 802.11b/g compliant.

These cards cannot be used in AWLP to turn PC into a wireless access device

since AWLP has only HostAP driver, which works with wireless LAN cards

that have Prism 2/2.5/3 chipset. These cards support IEEE 802.11b only.

MadWiFi and Prism54 provides “BSS Master” mode feature that allows

WLAN cards with certain chipsets, which are IEEE 802.11g compliant, to act

as AP. MadWiFi and Prism54 drivers can be incorporated into AWLP to make

it 802.11g compliant.

• 802.1x client support

Most modern off-the-shelf wireless access devices have 802.1x client support,

by which clients can be authenticated against a RADIUS (Remote

Authentication Dial-In User Service) server. RADIUS takes care of AAA

 49

(Authentication Authorization Accounting) tasks. AWLP lacks 802.1x client

support. AWLP can do authentication by means of ACL and by sharing WEP

keys. Jouni Malinen has developed, and has been maintaining hostapd; a

daemon that implements IEEE 802.1X/WPA/WPA2/EAP/RADIUS

Authenticator. hostapd can be downloaded from HostAP site –

http://hostap.epitest.fi. It can be incorporated into AWLP to support client

authentication using 802.1x.

• Lack of WPA/WPA2 support

Weakness in protection provided by WEP has forced researchers to find an

alternative in wireless data security and integrity. Wi-Fi alliance, previously

named WECA (Wireless Ethernet Compatibility Alliance), is a non-profit

industry association working to promote WLANs and compatibility between

IEEE 802.11 compliant wireless products. Wi-Fi alliance has an alternative to

WEP; it is called WPA (Wi-Fi Protected Access). WPA2 is the second version

of WPA. Although more secure than WEP, WEP is still being widely used but

it will eventually be replaced by WPA. Necessary modifications can be made

in AWLP to support WPA/WPA2 capable clients.

• Lack of captive portal

Number of wireless hotspots, where wireless service is provided to mobile

clients for a fee, has been in increase since the last couple of years. With the

help of captive portal feature, all outgoing traffic of a client is blocked and all

HTTP requests are redirected to a special web page until clients authenticate.

Payment methods are incorporated into this authentication step to collect any

applicable fees. AWLP does not have an integrated captive portal. Open

source community has a possible solution; NoCatAuth [24] is a popular

authenticating captive portal written in Perl. Open source captive portal

alternatives can be evaluated and incorporated into AWLP.

It is important to point out that AWLP incorporates and uses several programs, tools,

commands and features to do its tasks. These programs, tools and commands are

orchestrated by AWLP code and configuration files. If new programs and features are

 50

to be added to AWLP, necessary effort needs to be spent to preserve the harmony

among these components. The fact that AWLP is open source software provides

definite advantages for researchers and developers as they can see and modify 100%

of AWLP source code. We hope that documentation, manuals, and the thesis will be

great help to them.

 51

REFERENCES

[1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, IEEE Std 802.11-1997. (1997). LAN/MAN Standards Committee
of the IEEE Computer Society.

[2] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications: Higher-Speed Physical Layer Extension in the 2.4 GHz Band,
IEEE Std 802.11b-1999. (1999). LAN/MAN Standards Committee of the IEEE
Computer Society.

[3] Port-Based Network Access Control, IEEE Std 802.1x-2001. (2001). LAN/MAN
Standards Committee of the IEEE Computer Society.

[4] Çakırcalı, Alptekin. (2004). AWLP: Alptekin’s Wireless Linux Project.
http://awlp.sourceforge.net

[5] GNU General Public License version 2. (1991). Free Software Foundation, Inc.
http://www.gnu.org/licenses/gpl.html

[6] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications: High Speed Physical Layer in the 5 GHz Band, IEEE Std
802.11a-1999. (1999). LAN/MAN Standards Committee of the IEEE Computer
Society.

[7] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications: Further Higher Data Rate Extension in the 2.4 GHz Band, IEEE
Std 802.11g-2003. (2003). LAN/MAN Standards Committee of the IEEE
Computer Society.

[8] Schmidt, Terry. (2004). Pebble. Retrieved June 10, 2005, from
http://www.nycwireless.net/pebble

[9] Kasper, Manuel. (2003). m0n0wall. Retrieved June 10, 2005, from
http://www.m0n0.ch/wall

 52

[10] Murdock, Ian. (1993). Debian: The Universal Operating System.
http://www.debian.org

[11] The FreeBSD Project. (1995). FreeBSD. http://www.freebsd.org

[12] Open Source Technology Group, Inc. (1996). SourceForge.net.
http://www.sourceforge.net

[13] Slackware Linux, Inc. (1993). The Slackware Linux Project.
http://www.slackware.org

[14] The Apache Software Foundation. (1995). Apache: HTTP Server Project.
http://httpd.apache.org

[15] Internet Systems Consortium, Inc. (1996). BIND: Berkeley Internet Name
Daemon. http://www.isc.org/sw/bind

[16] IEEE, Inc. OUI: Organizationally Unique Identifier. Retrieved December 2004,
from http://standards.ieee.org/regauth/oui/oui.txt

[17] Hemminger, Stephen. (2004). Linux Ethernet Bridging. Retrieved December
2004, from http://bridge.sourceforge.net

[18] Intel Corporation. http://www.intel.com

[19] D-Link Corporation. http://www.dlink.com

[20] Atheros Communications, Inc. (2003). 802.11 Wireless LAN Performance.
Retrieved August 2005, from
http://www.atheros.com/pt/whitepapers/atheros_range_whitepaper.pdf

[21] Atheros Communications, Inc. http://www.atheros.com

[22] Rick Jones. Netperf. http://www.netperf.org

[23] Microsoft Corporation. http://www.microsoft.com

[24] Erle, Schuyler. (2001). NoCatAuth. Retrieved June 12, 2005, from
http://nocat.net

 53

APPENDICES

APPENDIX A. SLACKWARE PACKAGES

A.1. Slackware Software Series

A The base system. Contains enough software to get up and running and
have a text editor and basic communication program.

AP Various applications that do not require the X Window System.
D Program development tools. Compilers, debuggers, interpreters, and

man pages are all here.
E GNU emacs.
F FAQs, HOWTOs, and other miscellaneous documentation.
GNOMEThe GNOME desktop environment.
K The source code for the Linux kernel.
KDE The K Desktop Environment. An X environment which shares a lot of

look-and-feel features with the MacOS and Windows. The Qt library,
which KDE requires, is also in this series.

KDEI The KDE internationalization package series.
L Libraries.
N Networking programs. Daemons, mail programs, telnet, news readers,

and so on.
T teTeX document formatting system.
TCL The Tool Command Language. Tk, TclX, and TkDesk.
X The base X Window System.
XAP X Applications that are not part of a major desktop environment (for

example, Ghostscript and Netscape).
Y Games

 54

A.2. Slackware Packages Selection for AWLP

A sysklogd KDE tcpdump
aaa_base syslinux − tcpip
aaa_elflibs sysvinit wget
bash tar KDEI wireless-tools
bin util-linux −
bzip2 T
coreutils AP L −
dcron sudo glib
devs glib2 TCL
e2fsprogs D glibc −
elvis autoconf glibc-i18n
etc automake gnet X
findutils bin86 libtermcap −
floppy binutils mhash
gawk ccache pcre XAP
getty-ps gcc popt −
glibc-solibs kernel-headers readline
glibc-zoneinfo libtool startup-notification Y
grep m4 zlib −
gzip make
hdparm nasm N
hotplug perl apache
kernel-ide pkgconfig autofs
kernel-modules bind
lilo E dhcp
minicom − dhcpcd
mkinitrd dnsmasq
module-init-tools F gnupg
openssl-solibs − inetd
pciutils iproute2
pcmcia-cs GNOME iptables
pkgtools − mod_ssl
procps ntp
sed K openssh
shadow kernel-source openssl
slocate pine

 55

APPENDIX B. AWLP FILE STRUCTURE

./ ./corescripts/ ./tagfiles/
installer.sh engines1.pl a/tagfile
COPYING engines2.pl ap/tagfile
README error_messages.pl d/tagfile

extras.pl e/tagfile
./configfiles/ global_configuration.pl f/tagfile
dhcpd.conf index.html k/tagfile
httpd.conf index.pl l/tagfile
localhost.zone radar.pl n/tagfile
named.ca t/tagfile
named.conf ./images/ tcl/tagfile
named.local LinuxPowered.gif x/tagfile
ntp.conf xap/tagfile
oui_filtered.txt y/tagfile
rc.dhcpd
rc.firewall ./tarballs/
rc.local hostap-driver-0.2.5.tar.gz
rc.ntpd hostap-utils-0.2.4.tar.gz
rc.wlan0 bridge-utils-1.0.4.tar.gz
rc.wlan0-pre
.htaccess

 56

APPENDIX C. AWLP CONFIGURATION VARIABLES

$PROJECT_NAME = "AWLP"
Name of the project.

$PROJECT_RELATIVEPATH = "awlp"
This variable helps to construct full paths of AWLP specific
folders (i.e., /var/www/cgi-bin/awlp).

$PROJECT_VERSION = "1.0"
Project version.

$WirelessInterfaceName = "wlan0"
When hostap-driver is installed with the help of installer.sh , Slackware
identifies wireless interface as wlan0 by default. Just in case things might
change in future, name of wireless interface is made configurable with this
variable.

$WiredInterfaceName = "eth0"
When Slackware is installed, and it detects a wired interface, it names it as
eth0 . Just in case there might be more than one wired interface, name of wired
interface is made configurable with this variable.

$ProcWLANDir = "/proc/net/hostap/${WirelessInterfaceName}/"
Full path of directory under /proc that contains various dynamic information
about status of wireless interface.

$PRISM2_PARAM_PATH = "/usr/local/bin/prism2_param"
Full path of prism2_param command that comes with hostap-utils .

$HOSTAP_CRYPT_CONF_PATH = "/usr/local/bin/hostap_crypt_conf"
Full path of hostap_crypt_conf command that comes with hostap-utils .

 57

$IWPRIV_PATH = "/sbin/iwpriv"
Full path of iwpriv command that comes with hostap-driver.

$IWCONFIG_PATH = "/sbin/ifconfig"
Full path of ifconfig command that comes standard with Linux.

$UPTIME_PATH = "/usr/bin/uptime"
Full path of uptime command that comes standard with Linux.

$FREE_COMMAND_PATH = "/bin/free"
Full path of free command that comes standard with Linux.

$FREE_COMMAND_SWITCHES = "-o"
The switch to free command. get_memory_usage_info subroutine uses free
command with this switch to obtain memory usage information.

$DF_COMMAND_PATH = "/bin/df"
Full path of df command that comes standard with Linux.

$DF_COMMAND_SWITCHES = "-T -h -l --no-sync"
The switch to df command. get_disk_usage_info subroutine uses df
command with this switch to obtain disk usage information.

$CARDCTL_PATH = "/sbin/cardctl"
Full path of cardctl command that comes with pcmcia card services (cardmgr)
for Linux.

$STANDARD_SHELL = "/bin/bash"
Full path of default shell on the host machine.

$IEEE_OUI_FILTERED_PATH = "/etc/${PROJECT_RELATIVEPATH}/
 oui_filtered.txt"

Full path to the filtered version of IEEE OUI (Organizationally Unique Identifier)
file.

 58

$CHECK_FOR_UPDATES_PATH = "/tmp/CheckForUpdates.txt"
Full path to the file that will temporarily contain result while checking AWLP
updates site.

$CHECK_FOR_UPDATES_URL = "http://www.cakircali.com/cgi-bin/
 AWLP_CheckUpdates.pl"

URL for checking AWLP updates.

$HTACCESS_CONFIG_PATH = "/var/www/cgi-bin/
 ${PROJECT_RELATIVEPATH}/
 .htaccess"

Full path to .htaccess file that controls HTTP authentication.

$HTPASSWD_CONFIG_PATH = "/var/www/cgi-bin/
 ${PROJECT_RELATIVEPATH}/
 .htpasswd"

Full path to .htpasswd file that contains valid username and password pairs
for HTTP authentication.

$RCWLAN_PATH = "/etc/rc.d/rc.${WirelessInterfaceName}"
Full path of the file that initializes wireless interface.

$FIREWALL_CONFIG_PATH = "/etc/rc.d/rc.firewall"
AWLP comes with a firewall feature. This variable defines the full path for the
firewall configuration file.

$DHCPD_LEASES_PATH = "/var/state/dhcp/dhcpd.leases"
/var/state/dhcp/dhcpd.leases file contains details on IP leases given by
DHCP service.

@PRISM2_PARAM_LIST = ('beacon_int', 'dtim_period', 'antsel_rx',
 'antsel_tx', 'ap_max_inactivity',
 'ap_bridge_packets', 'max_wds',
 'autom_ap_wds', 'ap_auth_algs',
 'host_encrypt', 'host_decrypt',
 'ieee_802_1x', 'wds_type', 'basic_rates',
 'oper_rates', 'hostapd')

This array contains the list of valid PRISM2 parameters.

 59

@ISM_FREQ_MIDPOINTS = (2.412, 2.417, 2.422, 2.427, 2.432, 2.437,
 2.442, 2.447, 2.452, 2.457, 2.462, 2.467,
 2.472)

This array contains midpoint frequencies for the first 13 channels of IEEE
802.11b.

%WELL_KNOWN_
 PORTS

= (7 => 'Echo', 13 => 'Daytime', 20 => 'FTP-Data',
 21 => 'FTP-Control', 22 => 'SSH', 23 => 'Telnet',
 25 => 'SMTP', 37 => 'Time', 42 => 'WINS',
 43 => 'Whois', 53 => 'DNS', 67 => 'BOOTP
 Server', 68 => 'BOOTP Client', 69 => 'TFTP',
 79 => 'Finger', 80 => 'HTTP', 110 => 'POP3',
 113 => 'Authentication', 115 => 'sFTP',
 119 => 'NNTP', 123 => 'NTP', 137 =>
 'NETBIOS Name', 138 => 'NETBIOS Datagram',
 139 => 'NETBIOS Session', 143 => 'IMAP',
 161 => 'SNMP', 443 => 'HTTPS', 445 => 'SMB',
 531 => 'IRC', 554 => 'RTSP', 1521 => 'Oracle
 SQL', 1645 => 'RADIUS Authentication',
 1646 => 'RADIUS Accounting', 2049 => 'NFS',
 3306 => 'MySQL', 8080 => 'HTTP-Alternate')

AWLP's firewall has port-based outgoing filter. This hash contains port number-
name pairs for well known ports such as FTP, HTTP, POP3, etc.

$PRISM2_MAX_WEP_KEYS = 4
Most wireless cards allow up to 4 (four) WEP keys to be defined. This
configuration variable defines this value.

$PRISM2_PARAM_MAX_VALUE = 100000
Maximum value for any PRISM parameter.

$MAX_CHANNEL_NUMBER = 13
Laws and regulations allow 11 channels to be used in the US for 2.4 GHz ISM
band. Europe allows 12nd and 13th channel to be used in the same band, 14th
channel is allowed in Japan. This variable defines the maximum channel
number, which is to be set based on location.

 60

$BEACON_INT_MIN_VALUE = 10
Minimum value for beacon interval. It defines the interval in milliseconds for
each consecutive beacon frame.

$BEACON_INT_MAX_VALUE = 1500
Maximum value in milliseconds for beacon interval.

$DTIM_PERIOD_MIN_VALUE = 1
Minimum value for DTIM period. It defines how many beacon frames will
elapse before sending beacon frame that contains DTIM.

$DTIM_PERIOD_MAX_VALUE = 100
Maximum value for DTIM period.

$AP_MAX_INACTIVITY_MIN_VALUE = 60
Minimum value in seconds before a client is kicked out from AP due to
inactivity.

$AP_MAX_INACTIVITY_MAX_VALUE = 1800
Maximum value for the inactivity timeout.

$SNR_RADAR_MAXIMUM_WIDTH = 200
SNR radar is displayed in a separate window. This configuration variable defines
maximum width for this window in pixels.

$SNR_RADAR_REFRESH_INTERVAL = 10
This configuration variable defines the refresh interval of SNR radar in
seconds.

$BW_RADAR_MAXIMUM_WIDTH = 200
Bandwidth radar is displayed in a separate window. This configuration variable
defines maximum width for this window in pixels.

$BW_RADAR_REFRESH_INTERVAL = 5
This variable defines the refresh interval of bandwidth radar in seconds.

$DHCP_LEASE_TABLE_REFRESH_INTERVAL = 60
This variable defines the refresh interval for DHCP lease table window.

 61

$ALLOWED_OUTGOING_PORTS_MAX_NUMBER = 100
Maximum number of outgoing ports that can be opened in the firewall.

$ALLOWED_OUTGOING_PORTS_INCREMENT_VALUE = 5
Number of empty text boxes for new ports in the firewall configuration page.

$LOGON_SECURITY_REALM_MIN_LENGTH = 3
AWLP management page has password-protected authentication. While
changing realm of this authentication, this variable sets the minimum length for
it.

$LOGON_SECURITY_REALM_MAX_LENGTH = 50
Maximum number of characters for the authentication realm.

$LOGON_SECURITY_USERNAME_MIN_LENGTH = 3
This variable sets minimum character limit for the authentication username.

$LOGON_SECURITY_USERNAME_MAX_LENGTH = 12
Maximum number of characters for the authentication username.

$LOGON_SECURITY_PASSWORD_MIN_LENGTH = 3
This variable sets minimum character limit for the authentication password.

$LOGON_SECURITY_PASSWORD_MAX_LENGTH = 12
Maximum number of characters for the authentication password.

$DF_CAPACITY_ALARM_LEVEL = 90
AWLP management shows status information of the system including free disk
space. If used disk space percentage is greater than or equal to this value for a
partition, its detail will be shown in color red instead of black.

$MAIN_SCRIPT_NAME = "index.pl"
Name of the script responsible for outputing main window.

$RADAR_SCRIPT_NAME = "radar.pl"
Name of the script responsible for outputing radar pages; SNR radar,
bandwidth radar.

 62

$EXTRAS_SCRIPT_NAME = "extras.pl"
Name of the script responsible for outputting pages that contains functionalities
such as ASCII to hexadecimal conversion, error codes list.

$CHARACTER_SET = "UTF-8"
Character set to be used while outputing dynamically generated HTML
pages. The default value is UTF-8 for easily displaying most of
international characters.

$MAIN_TITLE = "${PROJECT_NAME} - Alptekin's Wireless Linux Project"

Title of the main window of AWLP's web-based management interface.

 63

APPENDIX D. AWLP SUBROUTINES

Subroutines that were defined in engines1.pl and engines2.pl are listed below

with input, output specifications and descriptions. In Perl, a scalar variable has “$”

prefix, an array has “@”, and a hash has “%”. These prefixes are used in subroutine

definitions in this section to describe types of input and output arguments. For

example, “@ = &subroutine_name($, $)” implies us that this subroutine accepts two

scalar variables, and return an array. If an input argument is conditionally required, it

is suffixed with “?”. If there is more than one alternative for output type of subroutine,

they are separated by “|”. “$ | % = &subroutine_name($, $?)” implies that first input

argument is required, and second one is optional. Subroutine returns either a scalar or

a hash value.

Input - Full path of directory where client information is held.
Output - Array of MAC addresses.
Desc This subroutine gets list of wireless clients by using ls command on

the directory specified as the input argument. This directory resides
under /proc directory, and contains information about connected clients.
The subroutine returnes MAC addresses of connected clients in an
array.

@ = &proc_get_client_mac_list($)

 64

Input - MAC address of client in question.
- Full path of directory where client information is held.

Output - Hash containing details and statistics for given MAC address.
Desc Under /proc directory, there exists a file for each MAC address

associated with AP. These files have the same name as their associated
MAC addresses. This subroutine parses out the corresponding file to
get detailed information and statistics about the client in question. The
subroutine returns the result in a hash.

% = &proc_get_client_mac_details($, $)

Input - Full path of prism2_param command that comes with hostap-utils .
- Name of wireless interface (i.e., wlan0).

Output - Hash containing wireless card configuration parameters.
Desc This subroutine uses prism2_param command that comes with hostap-

utils to get values of parameters listed in PRISM2_PARAM_LIST
configuration array, that is defined in global_configuration.pl . The
parameters in this array are specific to wireless nature of AP such as
beacon interval, DTIM period, etc.

% = &proc_get_prism2_parameters($, $)

Input - Full path of prism2_param command.
- Name of wireless interface (i.e., wlan0).
- Parameter name whose value is to be set.
- New value of the parameter to be set.

Output - Scalar variable containing output of prism2_param command,
 which is 0 (zero) if parameter setting operation is succeeded.

Desc The subroutine makes sure that parameter to be set is greater than or
equal to 0 (zero), and it is less than or equal to
PRISM2_PARAM_MAX_VALUE configuration variable.

$ = &set_prism2_parameter($, $, $, $)

Input - Full path of directory in which the file with AP statistics resides.
Output - Hash containing statistics about AP.
Desc This subroutine gathers statistics about AP by simply parsing the content

of stats file that resides in the directory specified by the input argument.

% = &proc_get_AP_stats($)

 65

Input - Full path of directory where the file with AP debug information
 resides.

Output - Hash containing information about the operation of AP.
Desc The subroutine reads and parses out the content of ap_debug file,

which resides in the directory specified by the input argument. It contains
couple of configuration variables such as authentication method in use,
maximum inactivity timeout, and other information regarding the state of
AP rather than detailed debug information as the name of the subroutine
might imply.

% = &proc_get_AP_debug($)

Input - Full path of directory where the file about debug information
 resides.

Output - Hash containing debug information about the operation of
 the device.

Desc The subroutine reads and parses out the content of debug file just like
proc_get_AP_debug subroutine does. The content of debug file is
slightly more comprehensive than ap_debug file but basically contains
parameter-value pairs about the state of the device.

% = &proc_get_debug($)

Input - Full path of iwpriv command that comes with hostap-driver .
- Name of wireless interface.
- MAC address to be added to ACL.

Output - Scalar variable containing output of iwpriv command, which
 is 0 (zero) if the operation succeeds.

Desc The subroutine uses iwpriv command with addmac switch to add
given MAC address to ACL.

$ = &add_mac_to_acl($, $, $)

Input - Full path of iwpriv command that comes with hostap-driver .
- Name of wireless interface.
- MAC address to be removed from ACL.

Output - Scalar variable contaning output of iwpriv command, which is
 0 (zero) if the operation succeeds.

Desc The subroutine uses iwpriv command just like add_mac_to_acl
subroutine with only one difference; it uses delmac switch instead to
remove given MAC address from ACL.

$ = &remove_mac_from_acl($, $, $)

 66

Input - Full path of iwpriv command that comes with hostap-driver .
- Name of wireless interface.
- MAC address to be kicked from AP.

Output - Scalar variable contaning output of iwpriv command, which is
 0 (zero) if the operation succeeds.

Desc The subroutine uses iwpriv command with "kickmac" switch to kick
given station from AP. In most cases, station that was kicked will
attempt to re-associate and re-authenticate immediately, and it will
succeed if it is not blocked through ACL.

$ = &kick_station_from_AP($, $, $)

Input - Full path of directory where ap_control file resides.
Output - Hash containing MACPolicy , MACEntries , MACList keys.
Desc The subroutine parses out content of ap_control file , which resides

under /proc . This file contains details about the status of ACL.

% = &ACL_status($)

Input - Full path of directory where ap_control file resides.
Output - Scalar variable with values, 1 (one) or 0 (zero).
Desc The subroutine uses a regular expression to extract given MAC address

from ap_control file. If MAC address is found in ap_control file, 1
(one) is returned as the result otherwise, 0 (zero) is returned.

$ = &is_MAC_in_ACL($, $)

Input - Full path of iwpriv command.
- Name of wireless interface.
- Variable to control modification to be made to ACL policy.

Output - Scalar variable, which is 0 (zero) if the operation succeeds. If there is a
problem, it will be a non-zero value.

Desc The subroutine uses iwpriv command with maccmd switch to change
ACL policy. The third input argument, which is a scalar variable, defines
the modification to ACL policy:
 0 - Change the ACL policy to "open".
 1 - Change the ACL policy to "allow".
 2 - Change the ACL policy to "deny".
 3 - Flush MAC address control list
 4 - Kick all authenticated clients

$ = &ACL_policy_modify($, $, $)

 67

Input - Full path of iwpriv command.
- Name of wireless interface.
- MAC address to be added to WDS.

Output - Scalar variable containing output of iwpriv command, which is 0
 (zero) if the operation succeeds.

Desc The subroutine uses iwpriv command with wds_add switch to add
given MAC address to WDS (Wireless Distribution System).

$ = &WDS_add_MAC($, $, $)

Input - Full path of iwpriv command.
- Name of wireless interface.
- MAC address to be removed from WDS.

Output - Scalar variable containing output of iwpriv command, which is
 0 (zero) if the operation succeeds.

Desc The subroutine uses iwpriv command with wds_del switch to remove
given MAC address from WDS.

$ = &WDS_remove_MAC($, $, $)

Input - Full path of cardctl command that is part of cardmgr daemon.
Output - Scalar variable containing output of cardctl command with ident

switch.
Desc This subroutine captures output of cardctl command with ident switch.

This output, if command succeeds, contains information about PCMCIA
card(s) in the system, either connected directly or through a PCI-
PCMCIA converter.

$ = &Card_Identification($)

 68

Input - Full path of cardctl command.
- Name of wireless interface.
- An integer to control the state of wireless card.

Output - Scalar variable containing output of cardctl command with reset
 switch.

Desc This subroutine uses cardctl command with reset switch to change the
state of wireless card in the system. Just like Card_Identification
subroutine, this subrotine can reset only PCMCIA cards either
connected directly or through a PCI/PCMCIA converter. The third
input argument defines the state:
0: perform soft reset of the card
1: perform COR reset
2: perform port reset
3: disable port 0
4: enable port 0

$ = &Card_Port_reset($, $, $)

Input - Full path of hostap_crypt_conf command that comes with
 hostap-utils .
- Name of wireless interface.
- Scalar variable defining action to be taken:
 SetDefaultKey: Setting default WEP keys
 ListDefaultKeys: Listing WEP keys
(Arguments below are required if the third one is set to
"SetDefaultKey")
- Name of encryption method (i.e., WEP).
- Number index of WEP key to be set.
- WEP key to be set.
- Scalar variable defining if WEP key to be set is the default TX key.

Output - Depending on the third input argument, it is either a scalar variable
 containing output of hostap_crypt_conf command or a hash
 containing WEP keys.

Desc This is the subroutine for configuring WEP keys. The subrotine uses
hostap_crypt_conf command that comes with hostap-utils .
Depending on value of the third input argument, this subroutine either
lists WEP keys or sets WEP keys defined through four additional input
arguments.

$ = &Encryption_control($, $, $, $?, $?, $?, $?)

 69

Input - Daemon name to be checked:
 dhcpd : DHCP Server
 dhcpcd : DHCP Client
 ntpd : Network Time Server
 httpd : HTTP Server
 named : DNS Server
 sshd : SSH Server
 syslogd : Syslog Server
 cardmgr : PCMCIA Card Manager Server
 crond : Cron Daemon
- Name of wireless interface.

Output - Hash containing status of daemon in question.
Desc The subroutine uses ps command with "-ealf" switch to capture list of

running processes. Based on the first input argument, the subroutine
searches this process list. Regardless of the daemon being sought is
found or not, a hash with Code and Info keys are returned. If daemon
is found to be working, value of Code key is set to 1 (one) otherwise, it
is set to 0 (zero).

% = &check_daemon_status($, $)

Input - Full path of .htaccess file.
- Full path of .htpasswd file.
- Scalar variable defining action to be taken:
 0: Lists logon security info except for password.
 1: Sets logon security info as specified by additional arguments.
(Arguments below are required if the third one is set to "1")
- Authentication realm to be set.
- Authentication username to be set.
- Authentication password to be set.

Output - It is a scalar variable containing output or a hash containing
authentication realm and username depending upon the third input
argument.

Desc This subroutine modifies content of .htaccess and .htpasswd files,
which control the authentication process. Depending on the third input
argument, this subroutine either lists authentication settings or sets them
with values specified by additional input arguments.

% | $ = &Logon_Security_control($, $, $, $?, $?, $?)

 70

Input - Full path of uptime command that comes with Linux.
Output - Hash containing uptime and load average info of the host machine.
Desc This subroutine uses Linux standard uptime command to get elapsed

time since the host machine has been started. The subroutine also parses
out average load information from output of uptime command.

% = &get_uptime_info($)

Input - Full path of oui_filtered.txt file.
- MAC address in question.

Output - Scalar variable containing manufacturer information for given
 MAC address.

Desc The subroutine searches oui_filtered.txt file for given MAC address,
and returns organization information corresponding to this MAC
address.

$ = &get_card_manufacturer_info($, $)

Input - Full path of free command that comes standard with Linux.
- Switch to be used with free command.

Output - Array containing lines of memory and swap space usage
 information.

Desc The subroutine uses Linux standard free command to get memory and
swap space usage information. For calling script to easily format the
output, the subroutine returns the result in an array, each array member
containing a line.

@ = &get_memory_usage_info($, $)

Input - Full path of df command that comes standard with Linux.
- Switch to be used with df command.

Output - Array containing lines of disk space usage information
Desc A call to Linux standard df command is made within this subroutine to

get disk space usage information. For calling script to easily format the
output, this subroutine returns the result in an array, each array member
containing a line.

@ = &get_disk_usage_info($, $)

 71

Input - Full path of the file that contains DHCP lease info.
- String to be sought in the lease file.
- Variable to specify search and list methods to be used:
 0: Search by MAC
 1: Search by IP
 2: List all DHCP leases

Output - Hash containing relevant DHCP lease information.
Desc Based on the third input argument, this subroutine either searches for

given string or lists all DHCP lease information. While searching, the
third input argument defines whether string to be sought is a MAC
address or an IP address. The subroutine uses content of dhcpd.leases
file, which contains all DHCP lease information.

% = &get_dhcpd_lease_info($, $, $)

Input - Full path of iwconfig command.
- Name of wireless interface.

Output - Hash containing several key-value pairs about wireless card
 configuration.

Desc The subroutine uses iwconfig command to get detailed information
about wireless interface on the host machine.

% = &iwconfig_parser($, $)

Input - Full path of ifconfig command that comes standard with Linux.
- Name of wired or wireless interface (i.e., eth0 , wlan0)

Output - Hash containing several key-value pairs about the interface.
Desc The subroutine uses ifconfig command to get detailed information

about the interface in question.

% = &ifconfig_parser($, $)

 72

Input - Full path of iwconfig command.
- Name of wireless interface.
- Variable to specify action to be taken by the subroutine:
 MasterMode: Changes the wireless card to "Master" mode
 MonitorMode: Changes the wireless card to "Monitor" mode
 SetSSID: Sets SSID of the wireless card
 SetChannel: Sets channel number of the wireless card
(One of the arguments below is required depending on the third input
argument)
- New SSID of the wireless card.
- New channel number of the wireless card.

Output - Scalar variable containing result of iwconfig command.
Desc This subroutine manages wireless card on the system with the help of

iwconfig command. Setting the mode of a wireless network card helps
to put the card into AP mode or put into passive monitor mode.
Switching between these two modes helps to activate and de-activate
AP function.

$ = &AP_Wireless_manage($, $, $, $?, $?)

Input - Full path of ifconfig command.
- Name of either wired or wireless interface (i.e., eth0 , wlan0).
- Variable to specify action to be taken by the subroutine:
 TurnUp: Turns the interface up
 TurnDown: Turns the interface down
 Restart: Turns the interface down, then turn it back up
 SetIPConfig: Sets IP configuration of the interface
(Arguments below are required if the third input argument is set to
"SetIPConfig")
- IP number of the interface.
- Netmask of the interface.
- Broadcast address of the interface.

Output - Scalar variable containing output of ifconfig command.
Desc The subroutine uses ifconfig command that comes standard with Linux

to turn up and down the wired or wireless interface. If the third input
argument is set to "SetIPConfig", the subroutine modifies IP
configuration for the interface using the additional input arguments
provided.

$ = &AP_LAN_manage($, $, $, $?, $?, $?)

 73

Input - None. (There is no input argument for this subroutine)
Output - Scalar variable containing output of reboot command.
Desc This subroutine simply calls reboot command that comes standard with

Linux. reboot initiates an immediate restart on the host machine.

$ = &System_reboot()

Desc This is a special type of subroutine that helps to sort string values.
$ = &sort_ClientFlags_byvalue()

Desc This is a special type of subroutine that sorts operation rates.
$ = &sort_OperationRates_bykey()

Desc This is a special type of subroutine that sorts port numbers, which are
integers ranging from 0 to 65535.

$ = &sort_OpenPorts_byportnumber()

Input - Mid-point frequency (in GHz) of channel in question.
Output - Scalar variable containing channel number.
Desc iwconfig command lists wireless card operating frequency but it does

not explicitly list channel number associated. The subroutine finds
channel number given mid-point frequency.

$ = &find_ISM_channel_number($)

Input - Decimal number to be converted into binary.
- Length of binary digits (i.e., 8).

Output - Scalar variable containing resultant binary number.
Desc This subroutine converts given decimal number into binary number. The

result is returned as a string in the length specified as the second input
argument.

$ = &convert_dec_to_binary($, $)

Input - Binary number to be converted into decimal.
Output - Scalar variable containing resultant decimal number.
Desc This subroutine simply converts given binary number into decimal.

$ = &convert_binary_to_dec($)

 74

Input - IP number in dotted format (i.e., 192.168.0.1).
- Netmask value in dotted format (i.e., 255.255.255.0).

Output - Scalar variable containing broadcast address in dotted format (i.e.,
 192.168.0.255).

Desc This subroutine finds broadcast address given IP number and netmask.

$ = &find_broadcast_address($, $)

Input - Integer controlling output format of date and time to be shown.
Output - Scalar variable containing date and time information.
Desc This subroutine uses date command that comes standard with Linux.

date command is run with various switches in order to attain the desired
output format.

$ = &show_date_time($)

