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ABSTRACT

3-D HUMANOID GAIT SIMULATION USING
AN OPTIMAL PREDICTIVE CONTROL

OZYURT, Gokhan
M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. M. Kemal OZGOREN

August 2005, 129 pages

In this thesis, the walking of a humanoid system is simulated applying an optimal
predictive control algorithm. The simulation is built using Matlab and Simulink
softwares. Four separate physical models are developed to represent the single
support and the double support phases of a full gait cycle. The models are three
dimensional and their properties are analogous to the human’s. In this connection,
the foot models in the double support phases include an additional joint which
connects the toe to the foot. The kinematic relationships concerning the physical
models are formulated recursively and the dynamic models are obtained using the

Newton — Euler formulation.

The computed torque method is utilized at the level of joints. In the double
support phase, the redundancy problem is solved by the optimization of the
actuating torques. The command accelerations required to control the gait are

obtained by applying an optimal predictive control law.

The introduced humanoid walker achieves a sustainable gait by tuning the

optimization and prediction parameters. The control algorithm manages the

v



tracking of the predefined walking pattern with easily realizable joint
accelerations. The simulation is capable of producing all the reaction forces,
reaction moments and the values of the other variables. During these
computations, a three dimensional view of the humanoid walker is animated
simultaneously. As a result of this study, a suitable simulation structure is
obtained to test and improve the mechanical systems which perform bipedal
locomotion. The modular nature of the simulation structure developed in this

study allows testing the performance of alternative control laws as well.

Keywords: Bipedal locomotion, humanoid walking, gait simulation, optimal

predictive control.



0z

EN iYIi ONGORULU BiR DENETIM KULLANILARAK
UC BOYUTLU INSANSI YORUYUS BENZETIMIi

OZYURT, Gokhan
Yiiksek Lisans, Makina Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. M. Kemal OZGOREN

Agustos 2005, 129 sayfa

Bu tezde, bir en iyi Ongoriilii denetim algoritmasi uygulanarak insansi bir
sistemin yiirliylis benzetimi yapilmistir. Benzetim, Matlab ve Simulink
yazilimlar1 kullanilarak olusturulmustur. Tam bir yliriiyiis dongiisiiniin tek destek
ve ¢ift destek evrelerini temsil etmek amaciyla dort ayri fiziksel model
gelistirilmistir. Modeller {i¢ boyutludur ve 06zellikleri insaninkilerle benzer
sekildedir. Bu baglamda, c¢ift destek evrelerindeki ayak modelleri, ayak
parmaklarini ayaga baglayan ilave bir eklem icermektedir. Fiziksel modellerle
ilgili kinematik iliskiler yenilemeli olarak ifade edilmis ve dinamik modeller

Newton — Euler formiilasyonu kullanilarak elde edilmistir.

Eklemler diizeyinde, ‘“hesaplanan tork yontemi” kullanilmistir. Cift destek
evresindeki artiksillik sorunu, eyletim torklarmin eniyilenmesi ile ¢Oziilmiistiir.
Yiiriiyiisii denetlemek icin gereken komut ivmeleri ise en iyi ongoriilii denetim

uygulanarak olusturulmustur.

Tanitilan insans1 yirilyiicli, eniyileme ve Ongdrme parametreleri ayarlanarak,

stirdiirelebilir bir yiirliylisii basarmistir. Denetim algoritmasi, dnceden belirlenmis

vi



yuriiylis bi¢iminin rahatga gerceklestirilebilir eklem ivmeleri ile izlenmesini
basariyla saglamaktadir. Benzetim, biitiin tepki kuvvetlerini, tepki momentlerini
ve diger degiskenlerin degerlerini ortaya koyabilmektedir. Bu calismanin bir
sonucu olarak, iki bacakli hareket gerceklestiren mekanik sistemlerin sinanmasi
ve gelistirilmesi i¢in uygun bir benzetim yapisi elde edilmistir. Bu calismada
gelistirilen benzetim yapisinin birimsel niteligi, baska denetim kurallarinin

basarimlarini da sinamaya izin vermektedir.

Anahtar Kelimeler: iki bacakli hareket, insansi yiiriiyiis, yiiriiyiis benzetimi, en

1yl Ongoriilii denetim.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Human gait and bipedal locomotion have been investigated by many scientists for
decades. Many researchers from different branches of science have carried out
numerous studies on this challenging subject. Parallel to these studies, in the last
twenty years, many developments have been realized in the bipedal walking
machines and several humanoid robots have been manufactured. Both in the
design and also in the improvement of these robots, simulation has been widely
used as a powerful technique to answer “what if” questions. Also, the gait
simulations help us for a better understanding of how humans walk normally or
pathologically. Another application area of human gait simulation studies comes

out in the design and pre-test stages of lower limb orthotic and prosthetic devices.

Since, it is the basic concept of the thesis, the general definition of simulation
should be stated first of all. According to Robert E. Shannon, simulation is
defined as the process of designing a model of a real system and conducting
experiments with this model for the purpose of understanding the behavior of the

system and /or evaluating various strategies for the operation of the system [1].

As expressed in the above definition; a model which resembles the human body
is designed at the beginning of a gait simulation study. Then, a control algorithm
is incorporated to imitate the human gait. Later, the control algorithm and the
model are tested by many simulational experiments. They are modified to
accomplish the objectives of the simulation study. Finally, the outcomes are
obtained to use for various purposes.

Maybe, the most interesting one of these purposes is the humanoid robot projects.

The advances in technology seem to make humanoid robots a part of every day



life. However, it is obvious that the definition of humanoid robots has to be done

before talking about them. There are two points of view:

1. The firstis to call a robot a “humanoid robot’ if he looks humanoid, which
means that he has a structured body similar to a human being: An upright
body with two legs (preferable with knee joints and the right proportions)

and two arms, hands with five fingers and a head on top of all.

2. The other, more academic point of view is to define a robot as
‘humanoid’, if he can act like a human being. The emphasis here lays
more on the possible actions of a robot, and less on his outer appearance
and structure. If he can achieve typical ‘humanoid’ tasks in a normal
‘humanoid’ environment, he can be called humanoid, no matter how

many arm joints he has or how many legs he uses [2].

As it is remarked in the second paragraph, a humanoid robot has to act like a
human being. Probably, the most typical human act is the bipedal locomotion. It
can be defined as the ability to translate the body by two legs and maintain a
rhythmic stepping. Bipedal walking in a humanoid style makes humanoid robots
more advantageous than other mobile robots.

The world’s infrastructure has been designed to be human-accessible. Stairways,
ladders and devices proportional to average human size are all put in place to
make humans’ lives more comfortable [3]. Especially, wheeled robots are
helpless in these kinds of situations. For instance, they are unable to step over

obstacles or move on uneven surfaces contrary to bipedal walkers.

All these reasons make humanoid gait simulation an attractive and ongoing
research area. In the future, by the rapidly growing capabilities of computers,
more complicated models are going to be established and new control strategies

are going to be performed in these simulations.
1.2 Description and Phases of Human Gait

In order to simulate bipedal walking and applying it on a mechanical model; first,
the normal human gait should be examined and its determinants should be



identified. The term, gait, is used as the manner of walking, rather than the
motion itself. The human gait is a cyclic motion and the basic components of the
gait cycle are stance and swing. The entire period during which the foot is on the
ground is the stance phase. The swing phase begins when the foot is lifted from

the floor until the heel contacts again with the ground. The normal gait cycle is

illustrated in Figure 1.1.
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Figure 1.1 The normal gait cycle [4]

The elapsed time to complete a gait cycle is divided into 100 equal parts and the
gait events are designated by this percentage. As seen in the Figure 1.1, the right
heel contact with the ground is assigned as O percent and the next contact of the
same heel is assigned as 100 percent. Each gait cycle consists of two periods of
the single support phase and two periods of the double support phase. The gait
cycle, can be further broken down into eight sub-phases. In Figure 1.2, these sub-

phases are illustrated.
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Phase-1 Phase-2 Phase-3 Phase-4
Phase-5 Phase-6 Phase-7 Phase-8

Figure 1.2 The phases of human gait [5]

Phase-1 Initial Contact: This is the moment when the red foot just touches the
floor. Normally, the heel is the first part of the foot to touch the ground. The hip
is flexed, the knee is extended, and the ankle is dorsiflexed to neutral.

Meanwhile, the blue leg is at the end of terminal stance.

Phase-2 Loading Response: This is the double stance period which begins when
the foot contacts the floor and continues until the other foot is lifted for swing.
Body weight is transferred onto the red leg. The blue leg is in the pre-swing

phase.

Phase-3 Mid Stance: This phase is the first half of the single support interval. It
begins with the lifting of the blue foot and continues until body weight is aligned
over the supporting foot. The red leg advances over the red foot by ankle
dorsiflexion while the hip and knee extend. The blue leg advances in its mid-

swing phase.



Phase-4 Terminal Stance: This part of the human gait begins when the red heel
rises and continues until the heel of the blue foot hits the ground. Body weight
progresses beyond the red foot as increased hip extension puts the leg in a more
trailing position.

Phase-5 Pre-Swing: This is the second double stance interval in the gait cycle. It
begins with the initial contact of the blue foot and ends with red toe-off. Ground
contact by the blue leg causes the red leg to increase ankle plantar flexion,
increase knee flexion, and decrease hip extension. Transfer of body weight from
ipsilateral to opposite limb takes place.

Phase-6 Initial Swing: It begins when the foot is lifted from the floor and ends
when the swinging foot is opposite the stance foot. The red leg is advanced by
increased hip flexion and increased knee flexion. The ankle only partially
dorsiflexes to ensure ground clearance. The blue leg is in mid-stance.

Phase-7 Mid Swing: This phase continues from the end point of the initial swing
and continues until the swinging limb is in front of the body and the tibia is
vertical. Advancement of the red leg is accomplished by further hip flexion. The
knee is allowed to extend in response to gravity while the ankle continues

dorsiflexion to neutral. The blue leg is in late mid-stance.

Phase-8 Terminal Swing: It begins when the tibia is vertical and ends when the
foot touches the floor. Limb advancement is completed by knee extension. The
hip maintains its flexion and the ankle remains dorsiflexed to neutral [5].

1.3 Previous Studies on Humanoid Gait

In many universities and research centers, scientists have been involved in the
humanoid gait subject. While, some of them have studied on a specific part of the
problem, some have introduced full simulations and even produced prototypes of
humanoid walkers. Therefore, this survey covers not only the humanoid gait
simulation studies but also the more specific ones which are related or
contributing to the area of humanoid gait. In addition, some prominent humanoid

robots which can realize walking in a human like style are also presented.



In the literature, the simulations of normal human gait or the simulations of
bipedal robots differ by many attributes they have. Some of these attributes are
the models, the methods or the goals of the simulations. The number of segments
which constitute the simulation model, the degree of freedom and the complexity
increases according to the resemblance to the ones of a human being. In this
sense, researchers have tried many alternatives. Skelly and Chizeck presented a
3-dimensional computer model of sustained bipedal walking. In this study, it is
intended to be used as a development tool for walking controllers. The direct
dynamic simulation has 8 segments, 19 degrees of freedom and is driven by
prescribed joint moment and stiffness trajectories. Limited feedback in the form
of a proportional-derivative controller provides upper body stability and allows
walking to be sustained indefinitely. The foot is approximated by an ellipsoid and
foot-to-floor contact is modeled by a spring and damper activated by the

penetration of the foot into the floor [6].
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Figure 1.3 Simulation of bipedal walking by M.M.Skelly and C.J.Chizeck

In another study, Gilchrist and Winter used a nine-segment 3-dimensional model,
including a two part foot. In this computer simulation, the resultant joint moments
of a gait analysis were used as driving moments. The system description, initial

conditions and driving moments were taken from an inverse dynamics analysis of



a normal walking trial. Torsional, linear springs and dampers were used at the hip
joints to keep the trunk vertical. The knee and ankle joints were also limited to
prevent nonphysiological motion. Dampers at other joints were required to ensure

a smooth and realistic motion [7].

In one of the gait simulations, the model was built in ADAMS environment. For
the gait stabilization, a simple closed loop control algorithm was introduced. The
net torques (generated in the way that enables realization of the gait patterns) are

applied to a mechanical system and the direct problem of dynamics is solved [8].

Figure 1.4 Superimposed frames from stable walk animation [8]

In order to reduce the complexity of the biped simulations, 2-dimensional models
are preferred instead of 3-dimensional ones [9], [10], [11]. In the University of
New Hampshire a biped simulator, called WALK, was developed incorporating a
model of this kind. This simulator is designed to facilitate the evaluation of
bipedal walking algorithms. Also, a neural network algorithm was applied on the
model [12].

In some of the studies, the muscles and the skeleton of human being was included
in the simulation models. Giinther and Ruder proposed a 2-dimensional, eleven-
segment musculoskeletal model of the human body. Human walking was
synthesized by numerical integration of the coupled muscle-tendon and rigid

body dynamics [13].



In another study, the body was modeled as a 10-segment, 23 degree-of-freedom
(dof) articulated linkage. As in the above study, each leg was actuated by 24
muscles. The head, arms, and torso (HAT), was modeled as a single rigid body
and actuated by six stomach and back muscles. Each foot was modeled using two
segments: a hind foot and the toes. The interaction between each foot and the
ground was modeled by using five spring-damper units distributed under the sole
of the foot [14]. The foot model and particularly the interaction between the
ground and the foot are the key features of the gait simulations. The performance
of the simulations and the closeness of the results to the ideal are directly related
to these features. Moreover, they determine the shape of transitions between the

phases of gait.

As in the present thesis study; some researchers have applied optimal control
algorithms on the simulations. This is performed in several ways like optimizing
the gait pattern, energy or stability [15]. In this connection; Granata, Brogan and
Sheth proposed a bipedal walking control algorithm that simultaneously solves
for movement trajectory and joint torques. In the technique they used, a
constraint-based space-time optimization algorithm was utilized to compute the

optimal movements and torques [16].

Another example of this kind of studies was achieved by Denk and Schmidt. In
this study, corresponding control torques allowing straight ahead walking with
pre—swing, swing, and heel-contact phases are derived by dynamic optimization
using a direct collocation approach. The computed torques minimize an energy
based, mixed performance index. Zero moment point (ZMP) and friction
conditions at the feet ensuring postural stability of the biped, as well as bounds on
the joint angles and on the control torques, are treated as constraints. The
resulting biped motions are dynamically stable and the overall motion behavior is

remarkably close to that of humans [17].

However, some control algorithms were insufficient. In the study of Nicholls,
various simple control techniques were tried. Proportional control and
proportional plus integral control systems were implemented to modify the trunk

motion in order to compensate lower limb movement. Simple control systems



allowed the robot to balance sufficiently while standing. However, these control

systems were insufficient to stabilize the robot while walking [18].

In some other studies, not the full gait cycle but a period of it (e.g. the single
support phase) or a special case is discussed. The study of Potkonjak and
Vukobratovic is an example of these studies. They suggest a deductive approach
that starts by considering a completely general problem. The general
methodology is explained and the feasibility is supported by applying the general
model to two illustrative examples: first, a well-known situation, the single-
support phase of a biped motion and second, a completely different problem,

gymnastic exercise on a horizontal bar [19].

Especially, in the last decade, by the financial support of industry, successful
humanoid walkers were produced after the simulation studies. The first two
legged robot of practical size was developed by Kato and et al. [20]. Since then,
much research in this field has improved the performance of walking robots.
ASIMO (Advanced Step in Innovative MODbility) is one of the most sophisticated
bipedal robots in the world [21]. It is the closest robot yet, to replicate the natural
walking motion of humans. ASIMO can walk flexibly under real time conditions
by Honda’s “i-walk” (intelligent walk) technology. The company developed its

first robot to walk on two legs in 1986.

Figure 1.5 ASIMO stepping down the stairs



Another humanoid walking robot, which is as talented as ASIMO, is HRP-2.
Hirukawa and co-workers developed a software platform, called OpenHRP, for
humanoid robotics which consists of a dynamic simulator and motion control
library, for humanoid robots. Using OpenHRP and humanoid robots HRP-1S and
HRP-2P, they showed the comparisons between the simulations and experiments

at various aspects [22].

Figure 1.6 HRP-2 walking

In the MIT Leg Laboratory, a seven link planar bipedal robot, called Spring
Flamingo was controlled to walk using a simple algorithm. In this study, a
kneecap is used to prevent the leg from inverting and a compliant ankle is used to

naturally transfer the center of pressure along the foot and help in toe off [23].

As an important feature of the present thesis, the addition of toe joints to the
models extends the capabilities humanoid walkers. Hence, more realistic
simulations are accomplished. Effectiveness of toe joints is discussed in [24].
Feet with toe joints are developed for humanoid H6. An experiment of the whole-
body action in which knees are contacting to the ground is carried out to show the

usefulness of toe joints for such actions. Then walking pattern generation system
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is extended to use toe joints. Using this extended system, maximum speed of
knee joints can be reduced at the same walking speed, and 80% faster walking

speed is achieved on humanoid H6.

Both in the humanoid robot studies and in the other research areas related to
bipedal locomotion, in order to identify the characteristics of the motion and to
realize a stable walking, several methods are proposed in the last decades. Also,
these methods serve as benchmarks for gait patterns. One of them is the ZMP
(Zero Moment Point) method. This point is first named by Borelli in 1680 as the
ground support point [25]. Vukobratovic and Juricic renamed Borelli’s support
point, the Zero Moment Point and discussed its applicability for legged machine
control. They defined the ZMP as the “point of resulting reaction forces at the
contact surface between the extremity and the ground” [26]. The ZMP may also
be defined as the point on the ground at which the net moment due to inertial and

gravitational forces has no component along the horizontal axes [21].

Another method is the application of the FRI (Foot Rotation Indicator). The FRI
point was introduced by Goswami in 1999. It is a point on the foot-ground
contact surface, within or outside the support base, where the net ground reaction
force would have to act to achieve a zero moment condition about the foot with
respect to the FRI point itself [27]. Certainly, these methods are helpful for the
identification of biomechanical movement strategies. Therefore, the development
of these methods is going to contribute to the control systems of the legged

robots.
1.4  The Objective and Scope of the Thesis

The aim of the present study is to investigate the bipedal locomotion on a 3-
dimensional mechanical model that imitates the lower limbs of a human being.
For this reason, a computer simulation is developed which includes a control
algorithm to achieve a desired sustainable gait. In the control algorithm, mainly,
two methods are employed. These methods are the optimization and the
prediction. The simulation covers both the single and the double support phases

of a full gait cycle. These phases are also divided into two subphases for the left

11



and the right foot. In order to enhance the performance of the simulated
humanoid walker, the foot is composed of two segments which are connected by
a toe joint. The ease of modification of the simulation is determined as one of the
objectives of the study. Therefore, a suitable software environment is selected to
access each part of the simulation easily. By this way, the progress of the study in

the future and upgrade of the simulation happen to be possible.

In chapter 2, four mechanical models, designed to simulate each phase of
humanoid walking is presented. The dimensions and the inertial properties of the
links are given. The general conventions used in the study are also declared in
this chapter.

Chapter 3 covers all the kinematic and dynamic equations used in the
simulations. A recursive formulation is used to obtain the position, velocity and
acceleration expressions of each link. In addition to these expressions, the
constraint equations correspond to the double support phase models are
emphasized. The dynamic equations of the models are derived using the Newton
— Euler formulation. The direct dynamic solution procedure of these equations is
expressed. The computed torque control method is utilized to find the necessary
actuating torques for the realization of desired joint accelerations. Because of the
redundancy in the double support phase, a special optimization process
accompanies the computed torque control algorithms of the double support phase
simulation models. In this simulation study, an optimal predictive control
algorithm is applied to humanoid gait. Application of this algorithm distinguishes
the present study from the previous ones. The optimal predictive control
algorithms for both the double and the single support phase models are also
presented in chapter 3.

In chapter 4, the software environment which the simulation is built in and the
simulation configuration parameters are introduced. Matlab®, which is a very
useful technical computing software and Simulink® are used throughout the
simulation study. In this chapter, the subsystems which constitute the simulation
model and the operation principles of these subsystems are mentioned. Also,

chapter 4 includes the generation of desired walking paths.
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In chapter 5, the results of the simulations are presented. The torque values which
provide the locomotion of the humanoid walker and the optimization weighting
factors assigned in the optimal predictive control parts are discussed. The
possible ways of improving the results are also stated in this chapter.

In chapter 6, the recommendations for future work and the summary of the study

are given.
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CHAPTER 2

PHYSICAL MODELING OF A HUMANOID WALKING SYSTEM

In this chapter, the physical characteristics of the simulation models are
presented. Two different linkage systems are proposed demonstrating different
phases of human gait. One of these systems is designed for the single support
phase and the other one for the double support phase. Each system is used twice
during a full gait cycle, once for the right leg and once for the left leg. The
common features of the models are given below and details of them are explained

in the consequent sections.
i. The models are three dimensional.

Although, it were possible to investigate the motions in three separate
orthogonal planes and considering these motions independent of each
other, this method is not appropriated. In the study, the motions are

examined regarding the true three dimensional space.

ii. All the joints used in the models are revolute joints and have actuating
torques. For modeling the toe, one joint; for the ankle, two joints; for the

knee, one joint and for the hip, two joints are used.

iii. At the joints, the frictional and damping effects are assumed to be
negligible.

iv. The HAT (head + arms + trunk) is assumed to be rigidly connected to
pelvis and they form a single link (body-1).

v. Each model consists of 6 rigid bodies:

Left foot flat single support model: Body-6, 4, 1, 5, 7 and 11.
Right foot flat single support model: Body-7, 5, 1, 4, 6 and 10.
Left foot flat double support model: Body-6, 4, 1, 5, 7 and 11.
Right foot flat double support model: Body-7, 5, 1, 4, 6 and 10.
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The assignment of these bodies to the limbs is given in Table 2.1.

Table 2.1 The assignment of the model segments

Body-1: HAT + pelvis
Body-4: Left thigh Body-5: Right thigh
Body-6: Left shank Body-7: Right shank
Body-10: Left foot Body-11: Right foot
Body-12: Left toe Body-13: Right toe
vi. The joint angles are defined in such a way that they rotate about either x-

Vii.

direction or y-direction. Therefore, the popular Denavit — Hartenberg
convention is not used in this study. Mass centers, body frames and general
appearance of the model are illustrated in Figure 2.1. In this figure and in
the other parts of the study,

U, is the unit vector along x-axis,
U, is the unit vector along y-axis,
Uy is the unit vector along z-axis.

The body frames of the models are located at the joints at the proximal end
of the links and their orientations are the same when the joint angles are
zero. This assent is shown in Figure 2.2. The proximal means near to the
mass center of body-1 and the distal means away from the mass center of
body-1.
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Figure 2.1 General schematic appearance of the humanoid walker

As it may have been noticed, the numbers 2, 3, 8 and 9 are not associated with
body names. Because, the links 2, 3, 8 and 9 have no mass and they are virtual in
fact. For example, the right hip joint is modeled as a Hooke’s joint composed of

two perpendicular revolute joints. Proximal one of them is along the x-direction
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and distal one is along the y-direction. By assuming a virtual link of zero length
(link-3) between these revolute joints, the kinematic and kinetic relations are
expressed easily and simply in the analysis. This assumption is illustrated on
Figure 2.2.

Figure 2.2 Right hip joint assembly

Also, throughout the study, odd numbers are employed for the right and even

numbers are employed for the left leg segments, variables and parameters.

In order to define the joint variables, it is preferred to use the symbols and indices
indicated in Table 2.2. Further, the positive sign conventions of these angles
according to the right hand rule are explained in Table 2.3 and illustrated in
Figure 2.3a and Figure 2.3b.
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Table 2.2 The assignment of the joint variables

. left hip roll angle

6, : right hip roll angle

- left hip pitch angle

6, : right hip pitch angle

. left knee angle

@, :right knee angle

. left ankle pitch angle

6, : right ankle pitch angle

o - left ankle roll angle

6,, : right ankle roll angle

, - lefttoe angle

6,5 : right toe angle

Table 2.3 The joint angle convention
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Figure 2.3a Positive sign convention for first axis rotations
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Figure 2.3b Positive sign convention for second axis rotations

At each joint between two links, there exist a total of three reaction forces, two
reaction moments and one actuating torque. The actuating torque at a joint has the
same index number with the joint variable of that joint. In Figure 2.4, the
actuating torques, directed positively according to the right hand rule, are

indicated on the proposed model, when the joint angles are zero.
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Figure 2.4 The actuating torques

2.1 Definitions of Model Parameters

For kinematic and kinetic analyses, some parameters like mass, inertia tensor
components, link dimensions, etc. are required. These parameters determine the
dynamic characteristics of a mechanical system. According to anthropometric
data [29], these parameters are expressed as a fraction of body height and mass.
In this study, to simulate a humanoid walking in a resemblance as close as

possible to an actual human being, these fractions which define the aspects of the
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models are used without any variation. This is provided by modeling the human

legs in three dimensional space as actually it is.

The toes are assumed to be massless, because they never move individually. In
the swing phase, the toe moves together with the foot and in the stance phase, it is
assumed to be fixed on the ground. Moreover, the toes are too light compared to

the other segments. So, their masses are incorporated to their feet.

In this study, the gait of a humanoid walker that has a mass of 56 kg and a height
of 1.60 m is simulated. However, by initializing different values for total body
mass and height at the beginning of simulations, the other parameters can be
automatically changed. The parameters for the humanoid walker investigated in

this study are presented in the tables 2.4, 2.5, 2.6 and shown in Figure 2.7.

Table 2.4 The mass of the bodies

m =56 kg

m, =0.678m =37.968 kg

m, =0.1m=5.6 kg m; =0.1m=5.6 kg

mg =0.0465m = 2.604 kg | m; =0.0465m = 2.604 kg

my, =0.0145m =0.812 kg | m,, =0.0145m =0.812 kg

It is possible to consider that these values include the mass of the electric motors,

batteries and other equipments which constitute a real humanoid walker.

The inertia tensor components of the bodies were calculated by using a
commercial CAD software, Solidworks®. The solid models of each body were
designed keeping their original mass and lengths constant. The solid model of
body-1 looks like a rectangular box. The legs were modeled as cones and the foot
has a triangular shape. All the inertia tensors were taken at the center of mass to

use in Euler equations. In Table 2.5, the inertia tensor components are given.
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Table 2.5 The inertia tensor components

|, =1.5139
Body-1 Iyy =1.2851
1, =0.3594
|, =0.07679 l, =0.07679
Body-4 |yy =0.07679 Body-5 |yy =0.07679
1,, =0.00977 1,, =0.00977
I, =0.03465 I, =0.03465
Body-6 1, =0.03465 Body-7 1,, =0.03465
1, =0.00208 1, =0.00208
I, =0.00049 I, =0.00049
Body-10 |yy =0.00361 Body-11 |yy =0.00361
|, =0.00384 1, =0.00384
All values are in kg.m?

Table 2.6 The lengths of the bodies

h=1.60 m

8 =0.191h =0.3056 m

a =0.5a, =0.1528 m

a, =0.53, =0.1528 m

a, =0.245h=0.392 m

a; =0.245h =0.392 m

ag = 0.246h =0.3936 m

a, =0.246h =0.3936 m

¢, =0.53, =0.1528 m

¢, =0.5a,=0.196 m

C; =0.58; =0.196 m

Cs = 0.58; =0.1968 m

¢, =0.5a; =0.1968 m

There are two different foot models used in the simulations. When the foot

swings in the air during the single support phase, it’s modeled as a single body.
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On the other hand, during the double support phase, foot model is composed of
two parts, connected to each other by a revolute joint. In Table 2.7, the

dimensions related to the foot models are given.

Table 2.7 The lengths associated with the feet

a,, =0.039h =0.0624 m | a,, =0.039h =0.0624 m

d,, =0.152h=0.2432 m | d;; =0.152h=0.2432 m

Cip =0.333d,, =0.081 m | ¢, =0.333d,, =0.081 m

cloy:Om clly:Om

C,p, = 0.666a,, =0.0415 m | c,,, =0.666a,, =0.0415 m

2.2  Single Support Phase

The first phase of the gait cycle is the single support phase in which the body
moves forward on one foot while the other foot swings in the air. For the right
foot flat period, this phase starts with the left toe-off and ends with the left heel
strike. During this phase, the left foot moves upward by a certain amount for
ground clearance and it also moves a little sideway to avoid collision with the
right leg segments. At the end of this phase, the left foot takes back its starting
position in the y and z directions, but now it is in front of the body. In Figure 2.5,
the model of this phase is shown when the right foot is on the ground and the left

foot is moving forward just after the “right foot flat double support phase”.
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Figure 2.5 The right foot flat single support phase model

This model is composed of six bodies. These are the right shank, the right thigh,
the HAT, the left thigh, the left shank and the left foot. The major factor which
distinguishes this phase from the double support phase is the absence of the toe
joints. The single support phase model forms an open kinematic chain, starting

from the right ankle and ending at the heel point of the left foot.

In the model of this phase, the bodies are actuated by ten joint torques.

24



During the right foot flat single support phase, the right foot sole is flat on the
ground and it is assumed to be fixed. For this reason, neither body-13 nor body-
11 have any effect on this phase of gait. However, the left foot is important in the
dynamics of walking. It is modeled as a single body attached to the left shank
(body-6) by the ankle joint assembly and the toe is neglected. The left foot model

in the right foot flat single support phase is shown in Figure 2.6.

Figure 2.6 The left foot model in right foot flat single support phase

2.3  Double Support Phase

The second phase of the gait cycle is the double support phase. This phase starts
at the instant when both feet get in contact with the ground flatly. After this
initiation, while one foot rotates around its toe joint, the collateral one stays at
rest. Actually, double support phase starts with the heel strike of swinging leg.
Although, the foot rotates for a short while around the contact point on the heel,
this period is not modeled. Because, after the heel strike, the foot becomes flat in
an indeed negligibly short time and modeling the system in this short period
requires a more complicated third kind of linkage representation, which is not
worth the effort.
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In a gait cycle, the double support phase occurs twice, once for the right leg and
once for the left leg. The right and left legs only exchange their roles but they
perform the same motions and can be simulated by the same model. In
accordance with these explanations, the model of “the right foot flat double

support phase” is illustrated in Figure 2.7.

Figure 2.7 The right foot flat double support phase model
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This model has 6 bodies: the right shank, the right thigh, HAT, the left thigh, the
left shank, and the left foot. These bodies are driven by eleven torques at the
joints.

Since this model is for the “right foot flat double support phase”, the right toe
joint (with variable 0,3) is not used. It’s obvious that if it were the “left-foot flat
double support phase”, then the left toe joint (with variable 61,) would become

unnecessary.

In this model, the left foot is connected to the ground by its toe joint and the right
foot is fixed to the ground with its whole body. Therefore, the right leg moves on
the right ankle, while, the left leg moves on the the left toe joint. Figure 2.8
illustrates the left foot model for the “right foot flat double support phase”.

Figure 2.8 The left foot model in right foot flat double support phase

The system in the double support phase has eleven revolute joints but only five
degrees of freedom in space. The reason of this deficiency in DOF is the closed
kinematic chain formed due to both feet being grounded. In the following section,
this fact is handled in detail.
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2.3.1 Kinematic Constraints

During the double support phase, both feet are on the ground. This forms a closed
linkage system. Since, the DOF of the three-dimensional space is six; there must
be six scalar constraint equations which cause this loop closure. There are two
ways to write the position of the origin O, of the body-1 frame with respect to a
point on the ground. For instance, during the “right foot flat double support
phase”, the position of the origin O; can be first derived by starting from the right
heel point (A;1) and second, from the left toe joint origin (Oy2). These two points
are stationary on the ground as it is mentioned before. Moreover, the orientation
of body-1 with respect to the earth frame must be the same in whichever the way
it is expressed. Thus, the six scalar constraint equations of the double support

phase in the position level are obtained as described below.

In both of the double support phase models, considering the position of the origin

O, , the three of the constraints in vector form are;
P6, = Po, (2.1)

In the “right foot flat double suppport phase”:

ﬁ(r)l = Pp, +ayUs + "317(:(11 7)Ug + a5C(11 5)u3 +a re L) 1)

Po, = Po, + alOC(12 10)_ + leC(12 10)u +ag c )U3 + a4C(12 4)u3 + alc(lz’l)U2

o

and in the “left foot flat double support phase”:

ﬁgl ta,C (1311)u3+d11C(1311)u1+a7C(13 7)u3+a5C(13 5)u3+a1C(131)

o

0 = ﬁAm +ayol; + aGC(10 6)u +a, ci 4)u +a icee 1)

Considering the orientation of body-1, the other three of the constraints can be
expressed by means of orthonormal matrices™ as in Equation (2.2) for the “right
foot flat double suppport phase” and in Equation (2.3) for the “left foot flat
double suppport phase”:

* An orthonormal matrix (i.e. whose inverse is equal to its transpose) has 3 independent and 6
dependent parameters. So, Equation (2.2) leads to 3 scalar constraint equations.
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¢y _ Rz 2.2)

Qo _ A3y (2.3)

These two orientation matrices associated with body-1 are obtained as shown in

the equations (2.4) through (2.7) by the exponential rotation matrices [28].

CULY) _ o065 0, (646, +65) =00, (2.4)
CU2) _ 00,0, 000 o0, (6,+6,+0,) o ~0,0, (2.5)
6(10,1) _ e—Uﬂm e—az(98+96+94)e70192 (2.6)
6(13,1) — o 00 g0 g0 (6,46, +6,) =06, (2.7)
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CHAPTER 3

MATHEMATICAL MODELING AND CONTROL STRUCTURE

This chapter covers the kinematic and dynamic equations of four simulation
models corresponding to four phases of gait, the control methodology, the
computed torque control method, the use of optimization and prediction
algorithms, the nominal paths of swinging feet and other mathematical

explanations about the simulation study.

The equations which describe the mathematical modeling are presented for each
of the four phases. The kinematic and dynamic equations of the right and left
single support phases or double support phases resemble each other. Only, the
indices of variables and physical parameters shift in a consistent manner. In this
connection, presenting the equations of the right and left-foot flat phases one by

one may be found excessive but it is useful to point out the distinctions clearly.

In the kinematics part, the position, velocity and acceleration expressions are
derived recursively. Thus, compact equations are obtained instead of lengthy
ones. This has also made the error checking operations easier. The positions of
the body frame origins are calculated to demonstrate the silhouette of the walking
model, while the mass center locations are computed to be incorporated in the

dynamic equations.

The dynamic equations of the models are derived using the Newton - Euler
formulation. There are several reasons of choosing this method. Firstly, these
equations exhibit the dynamic relations of a body in an easily realizable way.
Secondly, the reaction forces and moments at the joints are obtained as the by-
products of this method. These reactions have a great importance both in the
investigation of humanoid gait and in the design of a possible bipedal walking
robot. Lastly, the derivation of the Newton-Euler equations of a system of bodies

in the 3 dimensional space is rather simple, compared to Lagrange formulation.
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In this chapter, after the kinematic and dynamic equations are presented, the
application of the computed torque method is discussed and the necessary
manipulations on the Newton-Euler equations are explained. At the end of the
chapter, the optimal predictive control (OPC) algorithms for each phase are stated

and the corresponding equations are attained.
3.1 Kinematic Equations

The following sections contain the expressions of the position, velocity and
acceleration of the body frame origins and the mass centers. In addition, the
recursive process to get the orientation matrices, angular velocities and angular
accelerations of the bodies is stated. All of the matrix representations of these
vectorial kinematic quantities are expressed in the earth fixed frame unless the
contrary is indicated. Further, these expressions are derived one by one for the
four separate models. Before that, the commonly used position vectors in all the

four models (?i'j) are defined. These vectors are used as moment arms in the

Euler equations. They are represented in the body fixed frames where they appear
constant. They are directed from the mass center of the body to the joint origins.
Two of these position vectors are illustrated in Figure 3.1.

QOq, Or> 0"

Figure 3.1 The position vectors ?7,5 and ?m
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These position vectors are given below as a complete list:

oy 2 1
11 _ _
bz = 51(1,1)3 = 3 dy,0; - 3 A 1U3

- - 1 2
11 _ _
by 7= E1(1,7) = 3 dy, 0 +§ A 1U3

—( - _
14 = fl(,Z =aU; —CUs

- _ _
15 = 51(5? =—a U, —CU;

— - 1, 2 _
loe = &%03 = _§d10U1 +§a10u3 (3.1)
7.=7% 24 g1 @
1012 = f1012 = 3 Oaoth 580l

3.1.1 Kinematic Equations of the Left Foot Flat Single Support Phase

In both of the single support phase models, while one foot swings forward, the
other foot is assumed to be fixed on the ground. Thus, for the “left foot flat
single support” phase, the left foot (body-10) is flat on the ground and the right
foot (body-11) swings in the air. The models of the single support phases are
linkages with open kinematic chains. For this reason, there is no constraint on the
linkage. The recursion process for the derivation of kinematic expressions starts
with the constant values of the left heel point (Ai) and ends at the right heel
point (As1). This results in quite long expressions especially for the kinematics of
the links near the end point. The orientation matrices of the model segments with

respect to the left foot (body-10) which is grounded flatly are as follows:
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6(10,8) _ e7'31910

6(10,6) _ e Ubog0b

6(10,4) — e 0o g0 (6,+6,)

6(10,2) — o 0o g0 (6,+0,+0,)

6(10,1) — o W g0 (6+0,+0,) o= 00

C03) _ o6 40, (6;+6;+0,) =06, 16 (32)
6(10,5) _ e—ﬁﬂm e—az(98+96+94) 9—01(02—93)60295

6(10,7) _ e—aﬂm e—az(H8+95+94)e—a1(92—.93) eﬂz(95+6’7)

C109) _ o0l o=, (6+6,+0,) =0, (6,6;) o0 (65+6,+6;)

é(lO,ll) _ e*Gﬁm efﬂz(98+6’6+64)efﬂl(é'fHS)el]z(05+6'7+6’9)eﬂl<911
In numerous equations, some combinations of these orientation matrices are
needed. Some typical examples of such combinations are given below:

6(1018) — e_ﬁlelo

c66) o ) o
 COV=E e, G102 _ gm9EEaEEEE2)

C64) _ 00,0

é (412) — e762g4

-1

2) 6(6’4) — 676266 then, 6(4’6) — el]296 — 6(6’4)[ — 6(6'4)
3) Since C1Y = C™Y jn the “left foot flat double support phase”, then

QBDALI0) _ A(1310) _ 7

where; 1 is the 3x3 identity matrix

4)e"’u; =1, cos 0+ (0T, )sing , i ]

5) Tle’? =7t cosH+(U-LT-)tsim9 i #
J J 171 !

6) e”n=n

7) e"f=ne

8) m=e"”n = m=e"fe"”
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For more details about the algebra of exponential rotation matrices, see [28].

Starting from the left fixed point Oy (the left ankle origin), the position vectors

of the link origins of this model are given below:

Po, = Po,

Po = Po, +! é(lo,l)LTz

Po, = Po +a1'é(10 1)62

Po, = Po,

Po, = Po, ~ %6(10'5)_3

Po, = Po, = 37(3(10 7)Us

_ou = _og

Pa, = Po, — 3116(10’11)% (3.3)

The positions of the mass centers are obtained by using the previously found
positions of the link origins. These are presented with respect to the origin on the

ground in the next group of equations.

Ps = Po, —C,C ),
Ps = Po, —c4é(10’4)U3

P = o, +e.CE,

R (3.4)
Py = 505 —CSC(lo’S)lT3
P7 = Po, _C7é(10'7)U3
P = ﬁou - CA:(m'll)zlm
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The angular velocities of the links are calculated recursively as other kinematic

elements of the models:

Wy = _gloLTl

@ = @, — 0,C 09T,
@, = @, — 6,10,
@, = @, -6,C1,
W =W, = ézé(lo'z)ﬁl
@, = @ +6,C",

@, = @, + 6,C1°,
@, = a5 +6,C40,
@, = @, + 6,47,

— — 3 ~(10,9)—
Wy = 0 + ‘9110( )Ul

The velocities of the link origins are obtained by using the angular velocities:

Vo, = 0

VOB - VOlO

T ~ A~(10,6)+
Vo, = Vo, +a50,C U,

Vo, = Vo, +2,,C**9,
Vo, = Vo,

Vo, =Vo, —a3C 0,

Vo, = Vo —aj C 0T,

\705 = \703

Vo, =Vo, — asd)sé(lo's)as

T ~ ~10,7);r
Vo, =Vo, = 8;@&;CT"Uy

(3.5)

(3.6)



The angular accelerations of the links in the “left foot flat single support phase”

are listed as shown below:

ag = _6"'10L_'1

a, = @ - 5,09, - 6,3, 00,
a, = a, - 6,400, - 6,3, "%,
a, = a, - 6,9, - 6,,C 4V,
a, = @, - 6,2y, - 6,m,C W2y,
@, = a, + 6,490, + 6,5,C40Vg,
@, = @, + 6,1V, + 6,0, L,
@, = @ + 0,090, + 6,0, 4%,

(3.7)

=0y + éllc(lo’g)ul + ‘9115’90(10'9)@

The accelerations of the link origins are as follows:

(3.8)
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In the equation group (3.9), the accelerations of the mass centers are given:

2 =a_02

3 =17, +cl[o?l+a)f](§(lol>u

o (3.9)
3_ 3

8y =38y — [5‘11 + ‘?)121] C(lo'll)?n,?
3.1.2 Kinematic Equations of the Right Foot Flat Single Support Phase

During this phase of gait, only the right foot (body-11) is stationary on the ground
and the left foot (body-10) swings in the air. This model is just the mirror image
of the previous single support model. The orientation matrices of both left and
right leg segments with respect to right foot (body-11) are as follows:

6(11,9) _ e—Uﬂn

6(11,7) _ e 0000

6(11,5) — o Ul g=0(6:+6))

6(11,3) PR e—uz(99+97+95)

6(11,1) _ o 00 g=02 (646, +0) =00,

CAL2) _ o 00, o0, (0y+0,+05) o 0,6; 16, (3.10)
6(11,4) — e 0 e—az(eg+97+95)e—a1(93—92) U020,

CUL8) _ =06 50 (6:+6,+0,) =0, (60,-6,) o (6,46 )

CUL8) _ o001 =0 (60h+0,46,) =0, (6,-6,) 1, (6,46, +6y)

é (11110) — e_alem efaz (H9+€7+95)e7'~]1(93*92 )eaz (94 +06+98 )ealglo
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The position vectors of the link origins are derived in the equation group (3.11).

Po, = Po,
Po, = Po, +2,C™7E,
ﬁos _ ﬁo7 N 856(11'5)173
_03 = _05

o, = Po,
Po, = Po, — 346(11'4)%
Po, = Po, — aeé(ll G)Us
_om = 508

0, (3.11)

The position vectors of the mass centers are attained in the following equations:

P7 = Po, _076(1117)U3

Ps = Po, _Csé(ll’S)U:s

P, = Po +c,CM™a
1 = Po, +C 3 (3.12)

Ps = Po, _046(1114%73

EG = ﬁos —CGCA(ll’6)U3

Py = Eom _é(ll’lo)?lo,e
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The angular velocities of the links are acquired by the joint velocities.

_9 —911U1

W5 = (07 — ‘976(11’7%72

@, = @, + 6,C M,
@ = @, + G,C 100,

— — ) ~(11,8)—
a’lo:a)s"‘eloc( )Ul

The velocities of the link origins are derived below:

Vo =0

11
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The equation group (3.15) denotes the angular accelerations of the links.

oy = _"9'11‘71

& = @ - 59T, — G,3,C 19,
& - @ 6,647y, ~6,5,00 g,
& = &, 6,609,  4,5,609,

— = AW o~ AL (3.15)
a, =a,+6,C VU + 6,0,C 70,
a, = @, + 6,20, + 6,0,C 20,
@ = @, + 6,C 10, + 6,5,C T,
8y = @y + 6,C 0T, + 6,0,C 000,
Qg = Og + éloé(ll'g)al + 910‘7’86(11'8)@
Next, the accelerations of the link origins are introduced.
J— g :6
a4, =dy +2; :0'27 + &)72}(3(”'7)%
= = [~ ~2 1 A(L5)r
8o, = %, + 3| @+ @k |CMu,
8, =2,
| - 2T ALY (3.16)
8o, =, +a | @ +af |C*,
do, = 3o,
= _&5 ~ | ~2 6(11,4)—
do, =8p, | Ay t @ Us
= = ~ ~2 | A(1L6)r
a010 = a 8
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The accelerations of the mass centers are computed by the following expressions

during the “right foot flat single support phase”:

3 = Ao,
8 =8, +¢ | & +af |CH
5,2, (3.17)
a, =28y —C, [074 + f]C(lM)U?,
36 =3, ~Cg [dG + ~g]c(116)l7
g =g

= = ~ ~2 | A~(11,10)75
do =8g, _[0‘10 +a)10]C( )510,6

3.1.3 Kinematic Equations of the Left Foot Flat Double Support Phase

During this phase, the left foot (body-10) and the right toe (body-13) are
stationary on the ground. This causes a closed kinematic chain as described in
Chapter 2. For this reason, the kinematic expressions corresponding to the right
leg segments are derived starting from the right stationary point and the kinematic
expressions correspond to the left leg segments are derived starting from the left
stationary point. In the “left foot flat double support phase”, the origin O3 is the
right stationary point and the origin Oy is the left stationary point. By writing in
this way, the kinematic equations become more compact. Actually, it also makes
the representation of the constraint equations easier. As the first kinematic
expressions, the orientation matrices of the right leg segments with respect to the
right toe (body-13) are presented below:
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6(13,11) _ e—ﬂz%

6(13,9) _ e—ﬂz% e7|11011

6(13,7) _ e—ﬂzé’me—ﬁﬂu e—azag
(3.18)

6(13,5) — o Ublag0by e—u2(99+97)

6(13,3) _ e—azam e—Uﬂu e—az(99+97+95)

é 131 _ e—ﬂz913 e—ﬂﬂu e—az(99+97+95) e—aleg

Since, the left toe angle (,,) is zero during the left foot flat double support

phase, C#1 s equal to the identity matrix and the orientations of the left leg
segments can be written with respect to the left foot (body-10) instead of the left
toe (body-12).

6(10,8) _ 67'31010

6(1016) — e_u1‘91o e_az‘gs

6(10,4) — e_alalo e—02(98+96) (3'19)
6(10,2) — e_ﬁlelo e_ﬁz(94+96+93)

é 101) _ e_al‘glo e_az (04 +05+04 )6*0192

At this point, it must be declared that;
6(13,1) _ 6(10,1) (3.20)

It was noted in the previous chapter that Equation (3.20) results three scalar

constraint equations of the “left foot flat double support phase”.

Starting from the right stationary point O3, the positions of the link origins of

this model are given below:

Po, = Po, + ¢l (=00 +ay,005)
EAM = ﬁom _6(13'11)(111‘71

QW)

3 (3.21)

Po, = Po, +3;
o A(135)—
Po, = Po, +a5C( )us

Po, (right) = Po, + a{é(13’1)172
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Starting from the left stationary point Oy, the position of the origin of link-1 is

also obtained same as the version expressed in terms of the right leg variables:

506 — ﬁom + aﬁé(lo,ﬁ)u3

Po, = Po, +2,L", (3.22)
Po, (left) = B, ~aC*a,

The constraint equation ties up the two sides as
Po, (right) = pg, (left) = Py, (3.23)

The position vectors of the mass centers with respect to the origin on the ground
are as follow:

P = ﬁou _6(13’11)711,7

~ = A137)
P, =P —C L5

! ' 3.24
Ps = Po, —6(13'5)?5,1 e
Py (right) = Po, (right) + clé(l3’1)U3
Ps = ﬁoe _6(10’6)%,4
P, = Po, ~C47,, (3.25)

P, (left) = Py, (left)+ c,C"Yg,

The angular velocities of the links during the “left foot flat double support phase”

are arranged in the following order:
= =065,
— = ) ~(131Y)
@y = @y, —6,CHHI,

B

. A (3.26)
@5 = @, - 6,7,

0y = W5 — 9'56(13,5)U2
@, (right) = @, - ,C*9,
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Wy = _éloLTl

@, = @ — 6,40,

@, = @, — 6,C09, (3.27)

@, = @, — 6,C0V0,

@, (left) = @, — 6,C“*2q,
At this point, the first part of the velocity level kinematic constraints of the
double support models arises. Of course, the body-1 can have only one angular
velocity whether the recursion starts from left or right. This implies the following

angular velocity constraint equation, which embeds three scalar equations:
@ (right) = &, (left) = & (3.28)

Below are the velocities of the link origins:

Vo, =Vo, +a,0,C"71, (3.29)

V, =V, +a,0,C%"0, (3.30)

Vo, (left) =, —a1&C 00,

Hence, the last three scalar constraint equations at the velocity level of this phase

arise as

Vo, (right) =g, (left) =V, (3.31)
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The angular accelerations of the links in the “left foot flat double support phase”

are listed as follows:
511 = _913U2
- = b ~AA31)—~ A5 ~ A@1311)—
ag =ay; —6,C U —6,a,C Uy

qs = &, — 9‘76(13,7)U2 _ 97@6(13'7>Uz (3.32)
0y = s — 9'56(13,5)U2 _ 6"5 5)56(13,5>U2

& (right) = @, - 6,597 — 4,5, %9,

g = _9iorh

Oy = Oy — 98(“;(10,8)52 _ 9'8 a~)8(3(1o,8)Uz

0y =g~ é66(10,6)52 - 9667)66(10’6)U2 (3.33)

aTy=a,- Q'9'4(“:(1o,4)ﬁ2 _ 945)46(10’4)U2

& (1eft) = @, 6,602, - 0,5,C0

At this point, the first part of the acceleration level kinematic constraints of the
double support models arises. The following angular acceleration constraint

equation embeds three scalar equations:
a (right) = &, (left) = & (3.34)

After this, the accelerations of the link origins are derived:

8, =8+ [a7 + @ }6(13'7)% (3.35)
o
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8o, =g, +3 [075 + cbg]é(m's)%
8, =80, +| &+ @] |CUg, (3.36)
3o, = 9o,

Finally, the accelerations of the mass centers are presented:

a3 =0

8y, =8 — [0711 + 5’121} 6(13,11)%1,13

dy = 4o,

_7=§og—[077+ ~2]C(137)€ (3.37)
8 =8, | @+ @k |CH7

a (right)=a, —| @ + ’“2}(3(13’1)?175

8 =3=0

8, =8, —| @+ |CT

= [+ 52|07 @39

3 (left) =2, - [071 + @} } ceovy,,

The last three acceleration level constraint equations can be derived either by

ag or bya,. In the simulations, the acceleration of the origin of body-1 was

utilized. That is,

8, (right) =&, (left)=a,, (3.39)

3.1.4 Kinematic Equations of the Right Foot Flat Double Support Phase

Through this phase of gait, the right foot (body-11) and the left toe (body-12) are
attached to the ground rigidly. Hence, a closed kinematic chain similar to the
“left-foot flat double support phase” occurs and brings six scalar constraint

equations at each of the position, velocity and acceleration levels. Once more, the
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double support model is examined kinematically beneath but this time the left
foot sole is fixed. As happened in the single support phase, the “right foot flat
double support phase” model is the mirror image of the “left foot flat double
support phase” model. The derivation of the kinematic equations starts with the
orientation matrices of the left leg segments with respect to the left toe (body-12).

These orientation matrices are,

é (1210) _ o=0:6,

é (1218) — e_ﬂz‘gm e761010

é (12,6) = e*uzeu e_l]1'91o e_azgs
R (3.40)
C (12,4) _ 6762012 e_alglo e_l]z (G5+65)

é (122) _ 6762012 e_alglo e_l]z (G5 +05+6,)

é (21 _ e*'jzau e_al‘gm e_uz (G5 +05+6, )6*0192

Since, the right toe angle (6,3) is zero during the “right foot flat double support

phase”, C®1 s equal to the identity matrix and the orientations of the right leg
segments can be written with respect to the right foot (body-11) instead of the
right toe (body-13).

é(ll,g) — e_ﬂl‘gu
6(1117) — e_algue_azeg
6(1115) — e_ljlenefuz(gfr@) (341)
6(11,3) — e 00 e—az(05+97+99)
é(ll,l) — e_algue_ﬂz(95+97+99)e—0193
At this point, it must be declared that;
cl2d) — gy (3.42)

It was noted in the previous chapter that Equation (3.40) results three scalar

constraint equations of the “right foot flat double support phase”.

Starting from the left motionless point Oy, the position vectors of the link origins

of this model are given below:
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Po, = Po +aeé(12'6)l73 (3.43)

Starting from the right stationary point Oy, the position vector of the origin of

link-1 is also obtained same as the preceding one:
507 = ﬁon + a7é(11,7)U3
Po, = Po, + asé(llys)% (3.44)
Po, (right) = B, +a/C™ i,

The three constraint equations are represented in column matrix form as

P, (right) = B, (left) = By, (3.45)

The position vectors of the mass centers in the “right foot flat double support

phase”, with respect to the origin on the ground are as follow:

Py = 5010 _6(12’10)z10,6

Ps = ﬁoﬁ _6(1216)%,4

3.46
Py = 504 _6(1214)24,1 ( )
P, (Teft) = P, (left) +c,C™>Y,
P = 507 _6(11'7)@,5
Ps = ﬁos _6(11,5)?5’1 (3.47)

Py (right) = P, (right)+ clé(ll'l)ﬁ3

48



The angular velocities of the links during this phase are listed by the following

equations:
@ = _élzﬁz
Uy = Dy — ‘9.106(12’10%71
By = @, — 986(12,8)U2 -
5, = @, - 6,600 (349
0, = Wy — ‘9-46(12’4)62
@, (left) = @, — 6,C** 2,
Wy = _911U1
0; =0y — égé(ll'g)az
@, = @, — 0,C 7L, (3.49)

@, (right) = @, - 6,C* 91,

These angular velocity calculations end up with three scalar velocity constraint

equations shown below:

@ (right) = &, (left) = &, (3.50)

The velocities of the link origins are presented as follows:

Vo, =0

Vo, =Vo, + 5)106(12'10) (_dloUl + a10U3)

Vo, =Vo,

Vo =V +2,@C%0, (3.51)
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Vo, =Vo, =0
Vo, =V, +2;,,CH 7,

Vo, =Vo, +as@C o, (3.52)
Vo, =Vo,

Vo, (right) =V, +a/&C ",
The last three scalar constraint equations at the velocity level come arise as

Vo, (right) =g, (left) =, (3.53)
The angular accelerations of the links in the “right foot flat double support phase”
can be obtained in the consequent manner:

Qg = _‘912U2
- = 4 ~01210)=— 5 ~ A~(1210)—
ag =55 —0,,C U, — 6,0@,,C U

&, = O — éﬁé(lz,e)ﬁz ~ 6, (bsé(lz,e)az (3.54)
&y =0, — 9’46(12,4)52 -0, @46(12*4)@

a, (left) = @, — 6,C 49, - 6,m,C“I,

ag = _éllﬁl

&y = Qg — 9’9(5(11,9)U2 _ 99 a~)9(§(11,9)U2

05 =07 — é7é(11'7)l72 - 970376(11’7)U2 (3.55)

@, = @ — 6.CH9, — 6,5,C M9,

& (right) = @, - 6,649, - 6,6,6049,

The next expression carries out three of six scalar constraint equations

corresponding to acceleration level.

a (right) = o, (left) = & (3.56)
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The, the accelerations of the link origins are obtained.

a, =0

golo - golz + |:0(10 + &)120:|CA(12 10 ( d10u1 + a10u3)

& s 5010

o, =dg, +ag [as + & ]C(lz 6)u (3.57)

_on = 509 =0

8, =8, +a;| & + a3} |CH G

8, =, +ag| @+l |CHu, (3.58)
do, = 3o,

ao, (right) =ag, +a [al + @ ] (111)u

As the final kinematic expressions, the accelerations of the mass centers are

presented.
ay =0
a9 =3, —[0710 +a)10]c(12 g
=%,
8 =g, —| &g+ |C* YTy, (3.59)
8, =3, -| @, +a; |CPV7,
al(IEft) =3, _[dl"'@l }C(lzl)f
ay; = gy =0
RN P R
3, =a, _[ s + ~2}(§(11,5)£ (3.60)
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The last three scalar acceleration level constraint equations can be derived using
the above equation groups. The following expression includes these last three

scalar constraint equations of the “right foot flat double support phase”.
8, (right) =&, (left)=a, (3.61)

During this simulation study, all the above kinematic equations are converted into
Matlab® codes and written in m-files. For each of the models, the kinematic
expressions are collected into one separate m-file. So, a total of four m-files are
developed for the kinematic expressions.

3.2 Dynamic Equations

The dynamic equations are essential mainly in two parts of the simulation. The
first one of these parts is the plant which demonstrates the state of the model at
any instant producing the joint accelerations, the reaction forces and the reaction
moments. This can also be called as the direct dynamics solution. The second part
comprises the computed torque algorithm which produces the required joint

torques for the desired motion.

In this study, the Newton — Euler formulation was used to generate the dynamic
equations. Therefore, 3 scalar Newton equations correspond to translation and 3
scalar Euler equations correspond to rotation were derived for each body. The
body fixed frames were chosen as the resolution frames for every body in these
equations. For this reason, the velocities and the accelerations found in the
previous sections must be multiplied by the appropriate transformation matrices

to alter their resolution frames.

The reaction forces and moments between the bodies are also obtained by the
help of Newton — Euler equations. According to the “Newton’s Third Law of
Motion”, the following relations are used in the dynamic equations:

and
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The reaction forces and the reaction moments are different at each one of the four
models. These reactions are considered in the dynamic equations of that model
and computed by the direct dynamic solution. In Figure 3.2, some sample
reactions are illustrated. The convention used in the indices can be realized better
by the reactions between body-5/body-7 and body-7/body-10.

Figure 3.2 Representation of some reaction forces and moments

53



Another key subject about the dynamic equations is the gravitational acceleration
vector. As any other term of the equations, they are also resolved in the body

fixed frames. The details of these vectors are given below.

gs® = —gC®%g, (3.62)

g0 = gé(lo’O)U3

o =,

In these expressions, “0” stands for the earth fixed frame and “g” (gravity) is
taken as 9.81 m/s’.

Moreover, the Euler equations and the inertia tensors are expressed about the
mass centers. Hence, there appear no moment terms in the Euler equations due to

the weights of the bodies.

In the following sections, the Newton — Euler equations belonging to each phase
were presented for the aim of plant’s explanation. The solution of these equations
is discussed for four different simulation models. In advance, the computed
torque algorithm is clarified by the related modifications of these Newton — Euler

equations.
3.2.1 Newton-Euler Equations of the Left Foot Flat Single Support Phase

In this phase, the model is composed of 6 bodies, which are connected to each
other by 10 joints. 36 scalar Newton — Euler equations belong to these bodies are

given in matrix form starting from the left shank (body-6):

Body-6:
ma® =R} + FLY +mg® (363

2(6)=(6) , ~(6)3(6)=(6) _ p7(6) . p7(6) .7 E®6).,7 E6
IPa® + o IP o) = Ml(O,)G + Mz(t,e) +€6,4F21,% +£6,10F§0?6 (3.64)
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ma® = CUOE® | E 4 m,g®

1(4) =(4 ~(4) 7(4) =(4 2 (4,6) 7 (6 1 (4) 7 ~(4,6)=(6
a0+ {300 =~ CEOMY WY 7, CUOF )

~ =4
+£4,1F§,4)

Body-1:
ma? =R -CHIEY + mg®
T =@ ~(1) 7(1) =@ 7 (1 L4 5 =@
IPE) + 60305 =M -COME -7, F ()
7 ~ALAYHEG
-1, LR
Body-5:
ma® =COURY - R +myg®
1(5) =(5 ~(5) 7(5) =(5 G @ 705, 7 ~AGHE®A
3P0 + 03050 = MY -+ 75, COIF
—15,F )
Body-7:
maf? =COIRS - F + m g
() =(7 ~(7) 7(7) =(7 2(7.5) 7 (5 7 (7 % A5 E(G
30+ o3 = CUINY - Mf) + 7, LOIFY)
~ =(7
_67,11F7,1)1
Body-11:

=(11 J(AL7) = (7 —(11
m11a1(1 ) =Cl )F7(,1)1 + mllg( )

1(11) =(11 ~(11) 7(11) =(11 S@AL7) \7 (7 y S(AL7) = (7
‘]1(1 )al(l ) +a)1(1 )‘]1(1 )‘01(1 ) =Cl )M§,1)1+£11,7C( )F(7,1)1

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

There are totally 36 unknowns in these equations for direct dynamics purposes. In

Table 3.1, these unknowns are shown.
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Table 3.1 The unknowns in the left foot flat single support phase

Number of
Types of unknowns Names of unknowns
unknowns
Joint Accelerations 60,64,65,6,,6,,0,,6,0,,6,,0,, 10
Reaction Forces Foa Fig R RS RS R 18
6 6 6 4
Reaction Moments Ml(o?ﬁz, thgx, M‘(Ms)z’ M1('4)Z’ 8
M ME MES M

In the “left foot flat single support phase”, the number of dynamic equations is
equal to the number of unknowns. Hence, the solution is available using the

Newton — Euler equations.

The matrix inversion method is used to find these unknowns. For both of the

single support phase models, a 36 by 36 coefficient matrix (f“) is build. For this
purpose, the coefficients are detached from the unknowns in each of the 36 scalar

dynamic equations and they are sorted properly in the matrix, . It is a hard
process to examine 10 unknown joint accelerations in every acceleration term of
the dynamic equations and the coefficients of 26 unknown reaction components.
For a better demonstration, this coefficient matrix is illustrated by a table in the
Appendices. In the m-files corresponding to the “left foot flat single support
phase” dynamic equations, these coefficients are written in detail.

The remaining part of the dynamic equations is the position and velocity relevant
known terms. For the solution, they are collected into a column matrix. This
column matrix also includes 10 actuating torque values which come from the

computed torque control block.
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As a result, 36 Newton — Euler equations of the “left foot flat single support

phase” model are represented in the following form.

1>

(3.75)

(36x36) (36x1)

=<l (=T
Il

(36x1)
where

T is the coefficient matrix

is the vector of unknowns

< <

K is the vector of knowns

Thus, the direct dynamics solution is accomplished via the following equation

unless the coefficient matrix is singular.

=T'K (3.76)

i [E=TE

At every step of simulation, the elements of I' and K matrices are calculated
again with the new joint variables and actuating torques. Then, the coefficient
matrix is inverted and 36 unknown parameters are obtained. This process iterates

until the next simulation phase.
3.2.2 Newton-Euler Equations of the Right Foot Flat Single Support Phase

The left foot (body-10) swings in the air through this phase, while the right foot
(body-11) is stationary on the ground. The dynamic equations are derived using
the Newton — Euler formulation. Since this model has six bodies, again, 36 scalar
equations of motion are written to find the unknown joint accelerations and
reactions. The dynamic equations of the “right foot flat single support phase” are

given below in matrix form starting from the right shank (body-7):
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Body-7:

7 7 B (7
a( )= F1(1; + Fs(,7) +m7g( )

IMaED 1+ GMINGD =MD, + M +

~No
o\t

N

(S
T

o1~

~Z
+
=

~

-

[
T

=~

'~

u~

Body-5:
ma® = -C®7 D +FQ +mgg®

5 5 (5) 7(5) =(5 (5.7 (7 Vit ~(5,7)E(7
3O + GO IOF = -CEMME) + M -7, ,CENED)

mal =-Ff -CHIEY +mg®
1) =@ ~(1) 7)) =@ 7 (1 N VIO =
3P+ 6030 =N - CEIMY 7, F)
2% A5 =G
-1, LR

Body-4:
a4 — CUDEW _E@ —(4

JOa® + a®IOa® = CONY M +7, CUIEY
7 4
iRy

Body-6:
=(6 2(6,4) = (4 =(6 —(6
ma = COIF ~FG +mg®
7(6) =(6 ~(6) 7(6) =(6 2(6,4) 07 (4 7 (6
i®a® + o0 IPa® = COMMEY ML,
% ABGHEMB) T =(6
+£6,4C( )Fg,e)s_fe,lo':g,l)o
Body-10:

10 10,6 6 10
M3 0 = CLOOE®) | m 500

10)J (10) —(10) _ C(lO G)M (6) + E C(lO G)F(G)

7(10) —(10) , ~(
Jio qp + @y Wy 6,10 6,10
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(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)
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There are 36 unknowns in these equations. These are presented in Table 3.2.

Table 3.2 The unknowns in the right foot flat single support phase

Number of
Types of unknowns Names of unknowns
unknowns
Joint Accelerations 61,6,.,6,,0,0,,6,,0,,05,6,, 6, 10
Reaction Forces R F7 RS R R RS 18
7 7 7 5
| Mi Me7 MEY Mg,
Reaction Moments D2 nn (% a2 np (6)2 8
Ml4 ! M4,6 ! M4,6 ! M6,10

The operations are performed in the same way as the previous single support

phase. After that, in the next part of the simulations, the resulting joint

accelerations are integrated once to get the joint velocities and once again to get

the joint angular displacements.

3.2.3 Newton-Euler Equations of the Left Foot Flat Double Support Phase

As mentioned in Chapter 2, the “left foot flat double support phase” model

includes 6 bodies which are connected to each other by 11 joints. Below, 36

scalar Newton — Euler equations of these bodies in matrix form starting from the

right foot (body-11) are given:

Body-11:
~(1 2(1113) =(13) . =(11 a1
mllal(l )= )Fl(l,lg + F7(,11) + mng( )
A0 =(11) . ~1D) 311 =11 2(1113) 57 (13) . w7 (10
‘]1(1 )al(l ) +a)1(1 )‘]1(1 )0’1(1 )= ! )M1(1,1)3 + M§,1£

~ 2(11,13) = (13 ~ =(11
- €11,13C( )F1(1,1% + 0117 I:7(,11)
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= 2(711) = = —
m,al”) = CUMELY L FD 4 m g™

1) =(7 ~(7) 7(7) =(7 S(711) 7 1 7 (7
300 + 3030 = -CTIMED MG

y J(7T1Y) =) |, =7
_f7,11C( )F7(,11)+€7,5Fg,7)
Body-5:
mal® - -COTED 4D +mg®
2(5) =) , ~(5)36)=5 VIO IEVIG
a0 PP = COMY 4
> A~AGNNED , 7 6
_€5,7C( )Fg,7)+£5,1|:£,5)
Body-1:
ma® = FY ~CEIE® 4 g
0= . ~103I0)=C AWE) A (B) ALy (4
J0F0 1 G0 i0a0 = CEINO _CEON®
~ AWBEG) T =@
—€1’5C( )F£,5)+f1,4|:51,)1
Body-4.
m,al® = CUDED 4 E@ 4 m,g®
S + a9 -y M
~ AGDEWD T (4
— 14, CHIFG +7,6F ()
Body-6:

(6 26.4)EM) | E6 (6
meas” = —C! )Fe(,4) + Fl(o,zs +mgg®

1(6) =(6 ~(6) 7(6) =(6 \1 (6 2(6,10) p7 (10
SO + 00 =M - OO

7 ~BHEW@) |7 = (6)
—le,CFg 4+ Le10F 0%

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

When the joint angles, the joint velocities and the actuating torques are known,

totally 42 unknowns remain in these equations. In Table 3.3, these unknown

variables are shown with their numbers:
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Table 3.3 The unknowns in the left foot flat double support phase

Number of
Types of unknowns Names of unknowns
unknowns
Joint Accelerations | 65,6,,,6,,6,,0,0,,0,,6,,05,6,,6,, 11
Reaction Forces EW) EMY E(D) EG) EW EMA) E(6) 21

1113 7 711" 57715 " 4117 6,4 106"

13 13 11 7 7
ReaCtion Moments M:El,l)3x’ M:El,l); ' M g,l]).z ' M éj)x ’ M é,7)z ’ 10
5 1 4 4 6
Ml(,s)z : MHZ : MéA)X, M((M)z, Ml(o,)ez

As it may have been noticed, the number of equations is not sufficient to solve for
42 unknowns. However, there are several constraint equations for double support
phases obtained at the kinematics part. The acceleration level constraint equations
of the “left foot flat double support phase” model can be used in the solution. So,
adding these 6 scalar constraint equations, a total of 42 equations exist in order to

find 42 unknowns. These equations are recalled below:

a (right) = &, (left) = & (3.101)

8, (right) =&, (left)=a, (3.102)

As in the single support phases, the matrix inversion method is used to find the
unknowns in the double support phases. Differently, for the double support
phases, a 42 by 42 matrix is constructed. The elements of this large matrix are the
coefficients of the unknown variables of this phase. The coefficients of unknown
accelerations are rather difficult to sort, because there exist so many & terms in
six different @ and ¢; expressions. This coefficient matrix is illustrated by a table
in the appendices and every coefficient are expressed in the m-files correspond to

the “left foot flat double support phase” dynamic equations.
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On the other hand, all the known terms of each equation, which includes #’s and
0’s were gathered and put into column matrix form. This column matrix has also
the actuating torque values in its rows. The introduced form of dynamic equations

is shown below:

r

(42x42)

_K (3.103)

(42x1)

< Ty <«

(42x1)

By this way, a linear system of equations, each row representing an independent

equation, happens to be reached. The solution is obtained via the following

equation unless I' is singular.

=T7'K (3.104)

=l [T

At every step of simulation, these resultant accelerations are integrated
numerically and are turned back to the plant as the computed joint angles and the

joint velocities.
3.2.4 Newton-Euler Equations of Right Foot Flat Double Support Phase

During the “right foot flat double support phase”, the right foot (body-11) and the
left toe (body-12) are assumed to be fixed to the ground. The derivation of the
dynamic equations and the solution method in this phase are similar to the
previous double support phase. The difference occurs in the indices. There are 36
scalar Newton — Euler equations, coming from 6 bodies, and 6 scalar constraint
equations from the kinematics. Totally, 42 scalar equations of motion are
obtained to be employed both in the plant block and in the computed torque
control block of the simulations. Below, the Newton — Euler equations in matrix
form are sorted from body-10 to body-7:

Body-10:
a5 = _C(loylz)'fl(ol,ﬂ + Fig +myeg? (3.105)
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2(10)=(10) | ~(10) 3 (10) —(10 2(1042) 7 (12) . p7 (10
31(0 )0‘1(0 )‘"a’l(o )31(0 )a’l(o )= ! )Ml(O,l)Z + Mé,l(J)

~ 2(1012)=12) , 5 =10
- flo,lzc( )Fl(o,l)z + ZlO,GFB(,lo)
Body-6:
mal® = -CORED + FID g
7(6) =(6 ~(6) 7(6) =(6 2(6,10) \ 7 (10 7 (6
319 + o3P =S + (Y
~ 2(6,10) =(10 ~ =(6
_fe,loc( )FG(,ZLO) + £6,4FELE)S
Body-4.
m,a? = CHOF® L F® 4+ m,g®
5070+ 63O = CNE 4 M
~ AWGB)E®.) 5 =@
_f4,6C( )th,e)s+f4,1':£,4)
Body-1:
=1 =1 2(1L4) (4 —(1
ma = Fs(,l) ~C )F1$4) +mg?
1) =@ ~(1) 7)) =(1 S(1,4)p7 (4 ~(1,5) 07 (5
‘]1( )0{1()+a)1()J1( )wl() el )Mfy4)_c( )M1(’5)
v ALYEWB) , 7 @
_€1,4C( )Fizl)—l'gl,SFg,i
Body-5:
m5§5(5) _ _6(5,1) |E5(? n |E7(’Eé) n msg(S)
7(5) =(5 ~(5) 7(5) =(5 71 (5 GO 7 AGLEQR
a0+ o030l = WG ~CENMG T CEIFY)
~ =6
+£5’7F$’%
Body-7:

=(7 (7,5 (5 =(7 —(7
maf? =-COIE 4 R} mg?

JOg"

~(7) 7(7) =(7 7 (7 S(711) 07 (11
0400300 =M -COPMEY

~  ATBE®G) . (7
_57,5C( )F(7,&)3+€7,11F§1,)7
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(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)



The number of unknown variables in this phase is 42. These unknowns are
tabulated in Table 3.4.

Table 3.4 The unknowns in the right foot flat double support phase

Number of
Types of unknowns Names of unknowns
unknowns
Joint Accelerations |  6.,,6,,,6;,65,6,,6,,0,,65,6,,6,,6, 11
: =(12) =(10) =(6) =(4) =(1) =(5) &=(7
Reaction Forces | F02), LY E EW W ES) £, 21
12 12 10 6 6
Reaction Moments Ml(ol)zx, Ml(o'l)zz ' Mé'lo)z ’ M£’2X1 thgz, 10
4 1 5 5 7
My MEE M M My

Utilizing these 42 scalar equations, the coefficient matrix is created. The
coefficient matrix table can be examined in the Appendices. In order to find the
unknown variables, the 42 by 42 coefficient matrix is inverted and multiplied
from left by the vector of knowns. Consequently, the joint accelerations, the
reaction forces and the reaction moments are acquired at the same time by a

single operation as it happens in each of the four direct dynamics solutions.

Up to here, the kinematic expressions of the simulation models and the equations
of motion were developed and shown. The unknown variables of each phase were
emphasized and the solution method was mentioned. As a part of this study, these
expressions, equations and matrix representations were converted into Matlab®

code in m-files. Then, these m-files were embedded in the simulation blocks.

In the next section, the generation of the required torque values and the control
algorithm used to achieve bipedal walking are explained for both the double and

the single support phases.
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3.3  Computed Torque Control Method

As a matter of fact, a well-developed control algorithm is required to keep the
human model in the desired posture (usually upright position), to satisfy some
gait parameters like stride length, cycle time or speed and also to perform all
these things in an energy-efficient way. Naturally, as it is observed in human
beings’ gait, this algorithm must contain feedback of joint states to form an

operational closed loop.

The first part of this control algorithm is the computation of the torque values
which appear in the vector of knowns in direct dynamics solutions. The computed
torque control method is utilized for this purpose. It is commonly used in robotics
applications. The primary process of this method is to get the dynamic equations

in the form shown below.

M (T)3+B(q.§)=A(@)T (3.117)
In this equation, M is the mass matrix, Bis the bias vector and A is the

coefficient matrix of the actuating torques. Hence, one can solve this equations

system for T, taking G as the vector of command accelerations (G =0). If

det(A) # 0, the solution is obtained as
T‘=Z\‘1(|\7| U+ I§) (3.118)

As it happens at the initial state of simulation, if det(A)zo, then the pelvis

origin may be moved a negligibly small distance in the y-direction to avoid
singularity. Although, it is advantageous by some means to use the Newton —
Euler formulation for deriving equations of motion, some additional operations
are required to put them into the form expressed in Equation (3.114). In order to
get this form, the reaction forces and the reaction moments in the dynamic
equations must be allocated and they must be kept apart. For this purpose, a
partitioning procedure has been developed. This procedure and the application of
the computed torque control method to humanoid gait simulation are explained in

two separate parts for the single and the double support phases.
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3.3.1 Computed Torque Control Method for the Single Support Phase

The single support phase models are open linkage systems. In these models,
while one foot is stuck on the ground, the other foot moves freely. There are ten
joints and obviously ten actuating torques in these models. As the result of this
method, the actuating torques are generated by using the command accelerations
coming from the controller block. The resultant torques are sent to the plant block
as an input vector. The application of the computed torque control method
necessitates the elimination of the reaction forces and the reaction moments in the
dynamic equations. The following process explains the computed torque control

method for the single support phases.

Formerly, the matrix representation of the dynamic equations was in the structure

seen in Equation (3.116).

A

r

(3636)

=K (3.119)

(36x1)

< <

(36x1)

The matrices in this structure are divided into suitable partitions shown below to

remove the reaction forces and the reaction moments.

where

|
I
1
< T
| I—
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A ~ A

The coefficient matrix (I") is divided into sub-matrices: 611, I512 Dy, D,y . Dy is

a 10x10, '512 Is a 10x26, f)21 Is a 26x10 and 1522 IS a 26x26 sub-matrix. The

next two equations can be derived easily from the structure shown above.

Dllq_+ 12IS El AT

(3.120)
D,,d +D,,P+b, = AT (3.121)

The vector of the reactions in the second equation can be extracted as
=67 (AT -B,-5,) (3122)

The following equations are obtained, substituting Equation (3.122) into (3.120).
Dy, + D12D£21(A2f_ D21a_k_)2)+51 =AT

(6 -D, D2_21D21)q+(l:_11 > 221b) (A1_|512|52_21A )T

Here, the coefficients can be re-named as

M :(611_ IS12[32_21[321)
B= (61 - 6126521@)

A=(A-D,D;A;)
Hence, the reaction forces and the reaction moments in the dynamic equations
have been removed. Besides, the Newton — Euler equations have been re-
organized to suit the computed torque control method. There is a critical point in

the derivation of these expressions. If the 26x26 sub-matrix 622 ” happens to be
singular, this method is useless. Incidentally, it has been experienced that if the
partitioning is not made properly, [322 turns out to be singular. Therefore, in

order to have a non-singular “D,, ” matrix, some rows of the primary coefficient

matrix T are interchanged together with consistent changes in K . For this aim, a

short program was written in Matlab®. This program tries several alternative row
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interchanges randomly and selects one of the non-singular arrangements.
3.3.2 Computed Torgue Control Method for the Double Support Phase

For the double support phase models, this method covers the optimization of
actuating torques in addition to the re-arrangement of the Newton — Euler
equations. This is because the double support phase models are closed linkage
systems. Only, five of the eleven joint variables are independent. There are
obviously eleven actuating torques in the double support phase models and they
are redundant. For this reason, the actuating torques of the double support phase
models are to be determined according to an optimization criterion. This
optimization procedure and the computation of these eleven actuating torque

values are summarized below. The optimization problem can be defined as

follows.
Minimize

J =%T_ WT (3.123)
subject to

AT =MT+B=C (3.124)

The solution to this problem can be obtained by augmenting J as
lewos , 7t(m_ AT
I = TWT +1 (C - AT) (3.125)

where

A is the vector of the Lagrange multipliers,
W = diag[w, | is the weighting matrix,
w, is the weighting factor of the k™ actuating torque.

Moreover, inserting the angular velocities into the weighting matrix makes it not

only a torque optimization but also a power optimization. The coefficient

matrices (f“) of the double support phase models had been previously found in
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dynamic equations section. Hence, they are available to generate the mass
matrices of this method. However, their size was 36 by 42 without the 6 scalar
constraint equations. In a similar manner described for the single support phase,
these coefficient matrices must be divided into suitable partitions to eliminate the
vector of reactions and to obtain the desired structure. As recalled, the dynamic

equations excluding the constraint equations were in the form shown below.

N

r

(36x42)

=K

(36x1)

< m <

(42x1)

At this stage, it is converted into the form given by Equation (3.114). One can use

the following procedure for this aim.

where

'511 Is a 5x11, [312 Is a 5x31, [321 isa31x1land [322 is a 31x31 sub-matrix. The

expression above can be divided into the next two equations.
Dy, +Dy,P+h = A (3.126)

D, +Dy,P +b, = AT (3.127)

P =Dy (AT - Dyuli-by) (3.128)

Then, substituting Equation (3.128) into Equation (3.126), the following
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equations are obtained:

A=(A~-Dy,D,4,)

(3.129)

(3.130)

As a result, the reaction forces and moments in the dynamic equations are thus

eliminated. Besides, the Newton — Euler equations are transformed into a new

arrangement that is suitable for computed torque control method. Nevertheless,

there is a critical point in the derivation of these expressions, similar to the single

support phase. They are valid while the 31x31 sub-matrix “ [322 ” is not singular.

In order to satisfy this condition, some rows of the primary coefficient matrices

(f“) are interchanged with consistent changes in K. For this aim, a short

program, similar to the previous one, was written in Matlab®.

After this, the optimization procedure continues in the way shown below.

A _35
ol

WT =A'Z = T=W1AJ

MW*N@:C

z:@W4Nf6

T =W A (AWAY) T C

(3.131)

(3.132)

(3.133)

(3.134)

(3.135)

Finally, according to the given command accelerations, the eleven actuating
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torques required in the double support phases are ready to be calculated at every

step of the simulations.

Throughout the simulation, an optimal predictive control algorithm generates the
vector of command accelerations (U) for the use of computed torque control

block. This algorithm is explained in the next section.
3.4  Optimal Predictive Control (OPC) Algorithm

In this thesis, an optimal predictive control algorithm is proposed to manage the
desired motion of the humanoid model with minimum control effort as well as
minimum deviation from the desired motion. The optimization process provides
the ability to adjust the control stiffness of the system. In other words, the user
can obtain a simulation which meets his priorities by altering the weighting
factors in the optimization. For instance, preferring greater weighting factors for
the angular accelerations results in an increase in the tracking error but rather low

torque values.

As the second feature of the control algorithm, the future values of the actual
state variables are predicted. This prediction is achieved by using the Taylor
series expansion. Since, the joint accelerations are used as the output of the

controller, Taylor expansion is made to the second order.

In the optimal predictive control algorithm, the controlled variables are the errors
between the desired and the predicted future values of the position and velocity
of O1, Ao, A1 and G; in the X, y and z-directions. So, the general performance
measure is constructed as follows with the addition of joint accelerations to avoid

extreme control effort.

J :%[E(t+At)—ﬁ*(t+At)T H

+%[\7(t+At)—V* (t+At)T RV (t+At)-v" (t+At)]+

1

p(t+At)-p’ (t+At)]
(3.136)
ts‘q

N |~
O

In the expression of J,

P(t+At) is the predicted position vector at time t+At,
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V (t+At) is the predicted velocity vector at time t+ At

%

P (t+At) is the desired position vector at time t+At,

V' (t+At) is the desired velocity vector at time t+ At ,

and

A

H,R,S are the position, velocity and acceleration related weighting
factor matrices, respectively.

At is the prediction time range that indicates how far the algorithm predicts. As

At gets longer, the error between the predictions and the real values gets larger

because of the truncated expansion. On the other hand, smaller At values cause

larger control effort. This means that At must be determined carefully to

accomplish the desired simulation goals in a satisfactory manner.
The predicted position vector is obtained as shown below:

1

p(t+At)= ﬁ(t)+§(v(t)+v(t+At))At (3.137)
where

v(t)=J(a(1)d() (3.138)
and

V(t+At)=J(q(t+At))[d(t)+3(t)At] (3.139)

Equation (3.139) expresses also the predicted velocity vector. The two different

Jacobian matrices in the equations (3.138) and (3.139) are defined as

5(q(t))={%} " =J (3.140)
g=q(t

=J (3.141)

J(q(tmt)):j(mqﬂt){@ )

oq i|q:q(t)+let
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The second Jacobian matrix is designated as J p» because it is calculated by the

predicted joint angles not by the present joint angles. Then, substituting the
equations (3.138) and (3.139) into equation (3.137), the predicted position vector
is obtained as

pltea)=p() - H@E S(@oanarin)se i

The aim in the optimal predictive control algorithm is to find the joint
accelerations which minimize the performance measure given by Equation

(3.136). The process starts with the equation below:

a—‘.l =0 (3.143)

o

The solution is straight forward if one organizes Equation (3.143) in the

following form:

GG+K=0 (3.144)
where

G =S at'3yAT, + ACILRI, +§ (3.145)
and

K %Atzjtpﬁfﬁmj;fz‘z (3.146)
where

fizE(t)+%(j+jp)q(t)At—ﬁ*(t+At) (3.147)

L =3, (1)g(t)-v" (t+At) (3.148)
Finally,

§=-G'K (3.149)

Hence, the joint accelerations which minimize the performance measure are
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obtained and they are sent to the computed torque block as the command

accelerations.

Two different types of the aforesaid algorithm are presented in the ongoing
sections. First type is derived for the double support phase and the second one is
for the single support phase. Like some other parts of the simulation, in the
optimal predictive control part, the difference between the left and right foot flat
models is only the shifting of indices. Therefore, the procedure was not repeated

for the left and right foot flat models of the same phase.
3.4.1 Single Support Phase OPC Algorithm

During the single support phase, the goal is to move the body forward on one foot
while the other swings in the air. In this phase, the desired position and velocity
of the origin O; and the mass center G; of body-1 and the heel point of the
swinging foot are taken as the reference values. By controlling both the points O;
and G;, not only the desired location but also the desired orientation of HAT is
achieved. Since, the “right foot flat single support phase” model is preferred to

demonstrate, the positions of O, G1 and Ajo are derived as follows:

Po, = Pa, +ayll +a,e e 00, + age Mg (%14,

(3.150)

+ a{e*l]ﬂu 6702(99 +6; +65)e_l]16'3 UZ

Oy+6;)—

—Uﬂlle—ﬂ U3

6, = P, + a0 +ae i, + age We
' ' (3.151)

+ e g 10+ 0)g-00, (aft, + o)

Oy+6;)—

ﬁAio = EAM + a.lll.T3 + a7e—51911e—5299 Ug + ase—l]ﬂlle—uz( L|3

~0,(6:-6,) J0,0,

% (3.152)

—G,6,, e—a2(99+a7+95)U2 —a, e_algn e—az(99+97+95)

_61(93 _'92)

€ €

+a,.€

. —0,60,, o~ (6, +0,+06;)
age e

0,(6,+65 ) —
e e2 4 6u3

(i 011efﬁz(6’9+67+65)efﬂl(93762)eﬁz(04+96+98)

—ae "

L]1'910 L
e ol

The functions that would be optimized at the position level of the single support
phase are:
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S
Uy Po,
ST
Py u, po1
P2 -
Us Po,
Ps i
p, | | Y Pa
— —t—
P=|Ps |=|UzPa,
—t—
Ps U3 Pa,
p7 Utﬁ
1 PG
Pg t !
| Py | | Y2Pg
—t—
| UsPg, |
The Jacobian matrix J is represented as
Po,  Po,  Po, P Py Po  Po  Po P P
o6, o6y, o0, a6, o0; o0, o0, o0, by a0,
| Pa Pa, Pa, Pa, P, Pay, Pa, Pa, Pa, Pa,
o0 o0, o0 00, o0, 0. 0, a0, o0y o0
11 9 7 5 3 2 4 6 8 10
Pg,  Pg Pg  Pg Ps Pg Pg Ps P Pg
o6, o6y, o0, o6, o0; o0, o6, 0, by a0,
where
apol — _a7e’01911ale’6209 Ug _ asefﬂﬁnale_GZ(HQ*'H?)U?) _ a{e*l]ﬂguule_%(eg*'g?ﬂgs)e’aﬁa UZ
a0,
o 06, 0 46, —a - 46, L g
e :—a7e ulglle u299u2u3_a5e ulglle u2(69+07)u2u3_a{e ulglle u2(09+67+05)u2e l'1193uz
20,
Po, - a ot efﬂz(t99+197)u~ 0, - air ot e702(09+07+95)l]2 e_a193U2
00,
Po, —a o 0 e*ﬁz(99+¢97+95)l]2 L) U,
a0;
Po, _ _alrefalane—az(ag+€7+95)e—ala3 0,0,
20,
aﬁol _ aﬁol _ 5ﬁol _ 5501 _ 5ﬁol _0
20, o0, o0y o0y o0,
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ap 4.6, —
Ai a e llu e 2 9u3 ase 1 llu e ( aie 1 llu e ( +€ +9 )e u€3u2
6911
0,6, (99+¢97+6’5) 7[]1(93792) 0,0, —~ —0,6,; ¢ 7[]2(99+497+95) 7[]1(93792) UZ(HA+96)—
+a, e U e [S] €U +age ue e e Us
" aioefalauale—uz(aﬁaﬁﬁs)e—al(ae—ﬁz)e 2(6,+6;+6, )e X 1°U
apAio — 0,0 0,(6,+6; ) U, (Gp+6,+65) 1 =0y
-, e 0 “e 1) U3 a5e t “e 2U3 aie Y “e u,e 2
20,
+ a4e—l]10uefﬂz(99+97+n95)azefﬂl(@fﬁz)e[]294 U3 + a6e—ﬂlgllefﬂz(99+97+95)Uzefﬂl(@fﬂz)eﬂz(94+496)U3
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3
o0
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Be, 40, ~0,(0+0,40,) -G8, (af L ot
—t =g e U,e "0, (a/U, +¢,U,
20s
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H1 — _p 00 (6+0,16)g ulgsuluz(aiuz +C1u3)
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P, B P, ~ Pg, ~ P, ~ P, ~
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In the single support phase models, the following weighting matrices are used:
H =diag[h, hy,h, by, b, g, by g, g
R :Atzdiag[rl,rz,rg, N4 T5: 15, 17, 15, r9]
S = 4At*diag[s;,S,, 53,54, 55, S+ S7. 55+ 59, S0 |

As the result of the proposed algorithm, ten command accelerations are computed
in an optimal way. These are 6,,,6,,6,,6;,6,,6,,6,,6;,6,,8,, for both the right

and the left foot flat single support phases. After this, they are sent to the

computed torque block.
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3.4.2 Double Support Phase OPC Algorithm

As mentioned before, during the double support phase, the goal is to move the
body forward while both feet are attached to the ground. In this phase, the desired
position and velocity of body-1’s origin O; and the mass center, G1, of the same
body are taken as the reference values. Thus, the location and the orientation of
HAT are controlled. Since the “right foot flat double support phase” model is

preferred, the position vectors with respect to the earth fixed frame are derived as:

_u1911e_a 09+€7)_

299 U3 + ase_aleuefaz(

Po = Pa +8,U;+8.€ 0
o AR N : (3.154)
+ aire_uﬂu e_u2(99+97+‘95)e—0103 Uz
_Gl — ﬁAu + a:[lUS + a7e—'31911e*0269U3 + ase—ﬁlelle—ﬂz(99+(97 )U3
i (64046 —a (3.155)
e g 10+ 0)g 00, (alr u, + C1U3)
Functions that would be optimized at the position level are
| TGP,
Py atp
p2 2 MO,
—t—
U3 Po
p=| | e (3.156)
Pa| | TP,
Ps ul P
[Pel |
| U3 Pg, |

The Jacobian matrix J is represented as

Po, P, Py Pg

o0, o6y, o6, o0, 00,
Ps, P Ps Pg

|00, by o0, o0y o,

iy
Il

where
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20,
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20,
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P, . . .
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P 00, -, 00, (00 ) e 00 oy (Go+0,+0,) i — _
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20,
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_1:_e ulglle u2(09+07+65)u2e u193u2(a{u2+clu3)

20;

P, » . .

aF:1 — _e—U1911e_Uz(‘99+‘97+€5)e*U193l]1U2 (a{UZ + CIUS)
3

The weighting matrices used in the double support phase models are

H =diag[h, hy, hy, by, hs, hg ]
R = At?diag [, 1, 1,1, s, 1|
S = 4At*diag[s,,s,, S, 54,5

As the result of the proposed algorithm, five command accelerations, belong to
the right leg joints, are generated minimizing the performance measure. These

joint accelerations are 6,,6,,6,,6;,6; for the “right foot flat double support

phase and 6,,,6;,6;,6,,6, for “the left foot flat double support phase”. Different

than the single support phase, six command accelerations remain unknown. In the
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double support phase models, the six scalar constraint equations of the
acceleration level provide these unknown accelerations. At the end, total of
eleven acceleration commands happen to be computed and available for use in

the computed torque control block.

The Matlab® codes, developed for the optimal predictive control algorithm are

written in four separate m-files for each of the four models.
3.5 Inverse Kinematics

As it may have been noticed, there are many distinctions between the single
support and the double support models. Mainly, the double support model is a
closed linkage while the single support model is an open linkage. Naturally, the
motion of the double support model is constrained as a result of the closed
linkage. This means the double support model may be unable to achieve every
motion which is possible for the single support model. This causes a major
difficulty in the transition from the single support phase to the double support
phase. Neither the joint variables nor the joint velocities of the single support
model can be carried on as the initial joint variables of the double support model.
Another reason of this event is the immediate flattening of the landing foot just
after the heel strike. Because of these two subjects, the initial joint variables of

the double support model must be determined again.

Obviously, it is unnatural to define a single posture which is assigned as the
initial state of every double support phase. In this study, it is aimed to maintain a
natural gait as far as possible. For this purpose, the deviation of the joint variables
during the transition is reduced by utilizing an inverse kinematic solution. Since
two double support models are incorporated in the simulation, there are two
similar inverse kinematic solutions; one for the left foot flat double support model
and one for the right foot flat double support model. Only the expressions
corresponding to one of these solutions are presented because the procedures are
identical. Hence, the right foot double support model has been selected for the

presentation of the inverse kinematic analysis.
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For the inverse position analysis, the position of the origin of body-1 with respect
to the heel points are taken from the past single support model. However, the
orientation of body-1 cannot be carried on because the right leg has only 5 joints
to maintain that orientation. Because of this deficiency, the inverse kinematic
solution gives inexact results. If there were a joint for yaw motion at the hip, this
would not be a problem. In order to overcome this problem, the orientation of

body-1 about y-axis is neglected. Therefore, the orientation matrix is defined as

C = e+t (3.157)
and the position vector from the point A;; to O; becomes

T = Do, — P, —ayls—a;Cl, (3.158)

Using these known values, the joint angles of the right leg are obtained as

described below.
=a,C*" g, +a, Mg, (3.159)

“Wh from the left

multiplying both sides by e
% = a0 00, + ae M%)y, (3.160)

multiplying both sides by U§ from the left

ne" T =0 (3.161)

(13 cos 0, ~ U sin g, )T =0 (3.162)

cosé,,r, =sing,r, (3.163)
Hence

0, =atan2(oy o) , o =F1 (3.164)

Then, going back to orientation matrix

e—ﬂz(€9+07+05)e—l]163 — eaﬂué — é* (3165)
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Pre-multiplying by T,
mle %% =giC”

—t —t o _ =t A
U, cos &, +U; sing; =U,C

A

cosd; =C,,

sing, =C;,
Hence

0, =atan2(C;4,C;, )
Since,

Oy + 0, + 05 = ¢,

multiplying Equation (3.165) by U, from the right

e g, =C'G,
U, cosd +,5ing, =C'T,
cosg, =C};
sing, =CJ,
Hence
¢ =atan2(C3;,Cy, )

Going back to Equation (3.160)

T =gy
T =a,e %0, + ae %),
—0,(Gy+6,)

L =a,ue %0, + ae
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(3.172)
(3.173)
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(3.175)

(3.176)

(3.177)

(3.178)

(3.179)



I’ =-a,sing, —azsin(6, + ;)
and

62(09+97)U3

ry = a,Use %0, + a;lse”
I, =@, Cos 6, +a;cos (6, +0;)

Square the equations (3.180), (3.182) and adding them
2 = aZsin® 6, + 2a5a, sin 6, sin (6, + 0, )+ a2 sin® (6, + 6,)
r;? = aZ cos” G, + 2a5a; oS G, C0s (6, + 6, ) +aZ cos® (G, + 6, )

*2 *2 2 2
L+ =a;+a; +2a;a,c0s6,

$2 %2 2 2
h+th -8, &
2a;a;,

sing, =o,\1-& |, o, =71

cosd, =

=§7

Hence

o, :atanz(aﬂ/l—?,é)

Re-arranging the equations (3.180) and (3.182)
a,siné, +a;sin g, cos &, +a; cos Gy sin &, = —r;°

a, Cos G, +a; c0sH, cos b, —a  sinb,sind, =r,

Treating sing, & cosé, as if independent and solving as linear equations

(a; +ascosd,)  -assing, Mcosaﬂz{ ; }

a; sin o, (a; +ascosd;) || sin, | |-’
Determinant of the coefficient matrix is

A=(a, +a.5c0597)2 +(a55in6?7)2
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(3.184)

(3.185)

(3.186)

(3.187)

(3.188)

(3.189)

(3.190)

(3.191)



If A#0;

—(a, +a-cosé, ), —a.siné,r;
sing, = (2 +2 7A)1 BIMIE _ e (3.192)

(a; +a5cosé; )1y —agsino,r’

COS Gy = A =1y (3.193)
Hence

Gy = atan2(7,, & ) (3.194)
and

O =dy—(6,+6,) (3.195)

Thus, the joint angles 6,,,6,,6;,06;,0, are obtained to maintain a similar posture

of the past left foot flat single support model. The joint angles of the left leg

(6,.65.65,0,,6,) are obtained using the same procedure. The orientation matrix

is equal to the one, given in Equation (3.157). However, the position vector is

from the point A to O;.
7= Do, — P, — a0 +3Cl, (3.196)
The sign ambiguities in the inverse solution are specified as shown below to
attain the desired configuration.
Oy =07 =0y =05 =1

After the joint angles are obtained by the inverse position analysis, the joint
velocities are to be found. The solution procedure starts with the derivation of the

Jacobian matrix. It is built to get the right leg joint velocities as described below.
V=34 (3.197)
where

V is the 6x1 column matrix which includes the components of the linear

and angular velocity of body-1,
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J is the 6x5 Jacobian matrix,
g is the column matrix including 6,,,6,,6;,065,0,
— _a7c“:(11,09)616(09,07)U3 . asé(11,09)01(3(09,05)U3 . alré(n,og)a 6(09’01)LT2

‘]21 - .

Jzz _ _a7é(11,07)U1 _ asé(ll'os)lTl _ al.ré(11,03)azé(03,01)U2

323 _ _615(“:(11,05)(I1 _ alré(11,03)026(03,01)LTZ

_ _alré(11,03)azé(03,01)U2

J25 = —aﬂl:é(ll’Ol)Ug

_ —6(11'07)LT2

_ _é(n,os)lT

_ Qo
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Since, the number of the right leg joints is deficient, equation (3.197) is solved by

using the pseudo-inverse of the Jacobian matrix.

g=JW (3.198)

Thus; 6,,, 6,, 6,, 6;, 6, are obtained. The left leg joint velocities 6,,, &,y, 65,
6, 0,, 9, are acquired by the constraint equations (3.48) and (3.51) which have

been derived in section 3.1.4.

As a result, the deviation of the joint variables during the transition from the
single support phase to the double support phase is reduced as far as possible by

utilizing this inverse kinematic solution.
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CHAPTER 4

SIMULATION ENVIRONMENT

The physical and mathematical models, the resultant expressions of the applied
methods for both direct and inverse dynamic solutions and also the control
algorithm used in the simulation were introduced in the previous chapters. After
this analysis, in order to simulate the gait of a humanoid walker, the mathematical
expressions are to be translated into a programming code and they must be
computed effectively. For this purpose, Matlab® software and one of its add-in

tools, Simulink® were preferred because of their superior features.

Matlab® is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment
where problems and solutions are expressed in familiar mathematical notation.
Simulink® is a software package for modeling, simulating, and analyzing

dynamic systems [30].

Employing these tools in the thesis study provided many benefits. First of all,
such a programming environment permits the user to gain full control over the
simulation. The restrictions which must be admitted are at a minimum number.
Therefore, the user becomes able to edit every part of the simulation freely. In
this connection, each part of the presented humanoid gait simulation is accessible
and re-configurable. For instance, another researcher can upgrade the control

algorithm partially while keeping the rest of the simulation the same.

The detailed usage of Matlab® and Simulink® will be described in the following
sections. Also, in this chapter, the main structure and the subsystems of the
Simulink® model will be presented. Moreover, the simulation configuration

parameters will be discussed in a detailed manner.
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The Simulink® models built for this study are hierarchical. They are organized
using the bottom-up approach. In this approach, many blocks constitute a
subsystem and at a higher layer, these subsystems are collected in a larger
subsystem. At the top layer, the main system model includes all the subsystems
and the Simulink® blocks. By this way, the organization of the simulation
becomes comfortable and compact block diagrams are attained. This feature also

makes the simulation structure more realizable.

As it happens in every simulation platform, some parameters are to be determined
before the program runs. These parameters refer to two different types of
parameters in this study. The first one is the configuration parameters of
Simulink® software. These are determined according to the characteristics of the
simulated dynamic system. The second type of parameters is directly related to
the built model. For this study, the mass and height of the humanoid walker, the
weighting factors used in the optimization, the prediction time range (At) and
similar internal constants like gravitational acceleration are this kind of

parameters.

In the proposed simulation model, “fixed-step” type, “odel” continuous solver is
used because the model has continuous states. By this solver, numerical
integration is performed to compute the values of these continuous states. The
integration technique preferred is Euler’s method (odel). The integration
techniques used by the fixed-step continuous solvers trade accuracy for
computational effort. Since, the accuracy is satisfied by the effective control
algorithm, the shortest computation time is aimed in this study. Therefore, the
least complex integration method was chosen. Furthermore, this “fixed-step” type
solver computes the simulation's next time by adding a fixed-size time step to the
current time. The fixed step size was chosen as 0.01 seconds after a lot of trials.
Although, the computation time increases with smaller step sizes than 0.01, no
valuable enhancement occurs in the simulation. Besides, the stop time of
simulation is not critical. It may run forever for the proposed model. Of course, a
minimum period is needed to complete a full gait cycle.
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For the simulation presented in the thesis, the mass and height of the humanoid
walker were taken as 56 kg and 1.60 m. The gravitational acceleration (g) is
indicated as 9.81 m/s® in the necessary m-files of the model. The rest of this kind

of configuration parameters will be mentioned in the relevant sections.
41  The Main System of the Simulink® Model

As it may have been remembered, the full gait cycle was divided into four
successive phases. The model of each phase is constructed in a subsystem and the
integrity of these four models is achieved in the main system. At this top-layer,
the phase selector subsystem provides the transitions from the model of one phase
to the model of another phase. In Figure 4.1, the main system and its subsystems

are illustrated.

3-D HUMANOID GAIT SIMULATION USING
AN OPTIMAL PREDICTIVE CONTROL ALGORITHM

p_O1 p_A1l0 p_Al1l Jangles | |Jvelocities timel time2 time3 time4
—> Outl & P{In1
p_A10 out2
Inl n
¢ out3 —— T1
Out4 —
p_All 1P Left Foot-Flat Double Support
Phase Selector v Pp|Inl
] > T
T2
i gl
Left Foot-Flat Single Support
p_OL b v (i1
n
] T3

Right Foot-Flat Double Support

I:l Jangles v Pp{In1
Il
T4
|:| Jvelocities
Right Foot-Flat Single Support

Figure 4.1 The main system (top-layer) of the Simulink® model
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In the main system, the phase selector subsystem has a critical importance for the
proper operation of the simulation model. It decides the current phase of gait
comparing the positions of the origin O; (body-1’s frame origin), Aip and Aj; (the
heel points of the left and the right foot). Internal structure of the phase selector

subsystem is shown in Figure 4.2.

=] Gait_simulation/Phase Selector i =] S

File Edit “iew Simulation Format  Tools  Help

NeHE&| 2R < r al [Nomal = OF b [2

it {1
p_Al0z Out
U1 i3
p_ Az oz }
elseif {1
p_A10x pluz elzelfi..] At
In1 p_Al s Outz
Put ey
+ elseif [
elzelfi..]
Addz ug Dut1
If1 Outa
Addi ]
elseif {1
Outd
Ready |100% | | jode1 g

Figure 4.2 The phase selector subsystem

In the conditional block (If1), there are four “if expressions” employing 6 inputs.

These inputs are as defined below:
ul is the z component of Ajp
u2 is the z component of Ay
u3 is the x component of Ay
u4 is the x component of A;;
u5 is u3 minus the x component of O;

u6 is u4 minus the x component of O;
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The four conditional statements are as follows:

1. Iful<=0.001 & u3>u4 & u5>0.02then Outl.
2. Ifu5<=0.02 & u2>0.001 then Out2.
3. Ifu2<=0.001 & u4>u3 & u6>0.02 then Out3.
4. Ifu6<=0.02 & ul>0.001 then Out4.

The explanation of the first statement is that IF the left heel is above the ground
0.001 m or less AND it is in front of the right heel AND the distance between Ajg
and O; in the x-direction is greater than 0.02 m THEN the “left foot flat double
support phase” is the current phase. Similarly, in the third expression, it is stated
that IF the right heel is above the ground 0.001 m or less AND it is in front of the
left heel AND the distance between Aj; and O; in the x-direction is greater than
0.02 m THEN the “right foot flat double support phase” is the current phase. The
second statement expresses that IF the distance between Ay and O; in the x-
direction is less than or equal to 0.02 m AND the right heel is above the ground
more than 0.001 m THEN the “left foot flat single support phase” is the current
phase. Similarly, the fourth expression states that IF the distance between A;; and
01 in the x-direction is less than or equal to 0.02 m AND the left heel is above the
ground more than 0.001 m THEN the “right foot flat single support phase” is the
current phase. By this way, the transitions from one phase model to another one
are achieved successfully. As every part of the simulation, these statements can
also be modified for different desired walking patterns.

The main system includes four more subsystems. Each one of these subsystems
includes the blocks of four separate phases. During the simulation process, they
are enabled one after the other by the phase selector subsystem. These four
subsystems take the name of the phase which they simulate. These are:

1. The left foot flat double support subsystem
2. The left foot flat single support subsystem
3. The right foot flat double support subsystem

4. The right foot flat single support subsystem
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The internal structure, the running procedure and other properties of these

subsystems will be explained in separate sections.

Moreover, in the main system, there are nine “data store memory blocks”. They
are used to store some variables. These are the coordinates of the points O;, A1
and A;1, the joint angles, the joint velocities and the timer data. The “data store
read blocks”, at any layer, access the “data store memory blocks” and transmit
data to the relevant block. In a similar manner, the “data store write blocks”, send
data from any layer to the “data store memory blocks” at the top-layer. Hence, the
continuity is provided in the simulation. Four timer memory blocks are placed in
the main system. Each one of them is associated to a single phase model. For
instance, when the “left foot flat single support phase” subsystem is enabled,
“time2” memory block starts to store the phase time of this subsystem from zero
to the end of the phase and at the end, it resets to zero by the subsystem “T2”.
The internal view of the “T2” subsystem is shown in Figure 4.3. This procedure
runs independent of the simulation time and it is required to set the initial values

of the starting phase.

7] Gait_Simulation,/ T2 ==
File Edit Miew Simulation Format Tools  Help
D|E"NE§|.;’5E:1‘IE|QE|P llB |N|:|rmal j|
ifful ~= 13
(ot
I else
If 1
else 1 it}
Out1 Ot 1
If Action If Action
Subsystem Subsystem
Merge —.-IZl
Merge Scope
Ready [100%, | | lode1 g

Figure 4.3 The “T2” phase time reset subsystem
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Furthermore, some common subsystems are present both in the double support
phase subsystems and in the single support phase subsystems. These are the

integration subsystem, the trigger subsystem and the timer subsystem.

The integration subsystem contains many integration blocks. The function of this
subsystem is to compute the joint velocities and the joint angles by integrating the
joint accelerations at each step due to the specified solver. Also, the initial values
of these variables are assigned in the integration subsystem by external signals. In
order to follow the signal lines in this subsystem easily, several multiplexer and
de-multiplexer blocks are used and the integration blocks belonging to a joint are
grouped together. In Figure 4.4, the internal structure of these groups can be
examined. Here the input port 1 is the joint acceleration, 2 is the initial joint
velocity and 3 is the initial joint angle. The output port 1 is the angular
displacement and 2 is the angular velocity. Besides, a trigger signal (input port 4)
is generated to reset the initial values of the integration blocks at the beginning of

each phase. One of the four integration subsystems is shown in Figure 4.5.

In :Fl—

E * Outz?

) N2 ntegrator F:F%

trg E o Out1
In3 Integratard

Figure 4.4 Internal structure of a joint’s integration subsystem
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The trigger subsystem, shown in Figure 4.6, generates the trigger signal at the
beginning of the phase. Hence, the integration process starts with the latest joint
variables. Without this subsystem, the values at the beginning of the simulation
would be initialized at every run of a phase model. Therefore, a proper gait could
not be carried out. In this subsystem, if the phase time (not the simulation time) is

zero, the output signal is “1”; else it is “0”.

ifiul == 07
COrpu ¥
else :
In4 - it}
else 1
Ourt1 -
If Action
Subsystem Merge
If Action Outl
Subsystem Merge

Figure 4.6 The trigger subsystem

The timer subsystem is an essential subsystem. Since, the simulation is performed
phase by phase; the instants of start and stop of a phase acquire very much
importance. At the beginning of a phase (i.e. when the phase time is zero), the
last position values of Oy, Ajp and Ay; points are sent from the previous phase
model to the current one as the initial values. Also, at the end of the phase, the
phase time must be reset for a next run. For this reason, a particular timer other
than the default clock block which shows the simulation time was built. By this
subsystem, it becomes also possible to operate the trigger subsystem and the
reference input subsystems of both the double and single support phase models.

In Figure 4.7, the timer subsystem is illustrated.

After the explanation of these common subsystems of the simulation, the four
subsystems of the single and the double support phases are presented in the

following sections.
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Figure 4.7 The timer subsystem

4.2  The Single Support Phase Subsystems

The main system of the simulation model includes two single support phase
subsystems. One of them contains the “left foot flat single support phase” model
and the other one contains the “right foot flat single support phase” model. The
only difference between these subsystems is in the contents; otherwise their
structures are the same. In the Figure 4.8 and 4.9, these Simulink subsystems are

illustrated.

These subsystems are enabled when the phase selector subsystem sends them a
signal of “1”. Then, the timer subsystem starts to count the phase time. At the
first step, when the phase time is zero, the trigger subsystem resets the initial
values in the integration subsystem and the initials of the model are assigned
from the data store memory blocks of p_O1, p_A10, p_All in the top layer.
Meanwhile, the reference input subsystem of the single support phase model

starts running using the phase time data.

The reference input subsystem contains the position and velocity components of
point O; (origin of body-1’s frame) and the heel point of the swinging foot. It is
possible to change these reference values according to the desired gait. In this
subsystem, the prediction time range (At) is specified and the desired future
values of the references happen to be obtained in this manner. The reference

input subsystem is illustrated in Figure 4.10.
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Figure 4.10 The reference input subsystem of the single support model

It may have been noticed in Figure 4.10 that a straight line, 80 cm above the
ground is described as the desired path of origin O;. The desired velocity is
specified as 0.2 m/s in this direction and the prediction time range is specified as
0.02 seconds. The desired paths of the left heel point (Aj) in the “right foot flat
single support phase” and the right heel point (A11) in the “left foot flat single
support phase” are the same. These paths are determined by the eigth order

polynomials given by the following equations:

P, (u)=-5.69535e11u° + 1.49367e110u’ —1.60087€10u°

X
+ 8.91429e8u° — 2.67406e7u* + 0.00039e9u’ (4.1)
—0.00165e6u” + 4.83u

P, (u)=-1.39834e11u® +3.37575e10u’ —3.21689e9u°

z
+1.51404e8u° —3.59123e6u* + 4.15695e4u° (4.2)
—390u? +4.43u +35.45

These polynomials depend on the position of O; point in the x-direction, not on
time. Hence, a synchronous motion between the HAT and the swinging foot is
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achieved. Since, the desired velocity of O; point is constant during the single
support phase; it becomes easy to specify the relation between the phase time (t)

and the independent variable of the polynomials (u). This relation is expressed as:

The reference paths of the heel points are defined according to some criteria.
Firstly, the path should be smooth and differentiable. So, the swinging foot
becomes able to perform a continuous motion. Secondly, the maximum height of
the foot from the ground is adjusted for a normal gait. In the determination of
these desired paths, an extra attention was paid to the heel contact of the swinging
foot. It is aimed to generate the least possible impact during the landing of foot.
Hence, the desired paths are designed to achieve a soft touch on the ground. In
the optimal predictive control algorithms of the single support phase models, the
desired velocity components of the heel points are also required together with the
desired position components. Therefore, the desired velocity values of the heel
points are obtained by differentiating the above polynomials once. The

polynomials representing the velocities are given below:

P, (u)=-4.5563e9u’ + 1.0456e9u® —9.6052e7u° + 4.4571e6u’

X (4.4)
-0.10696e6u° + 1164.9u% —3.3059u + 4.8294

P, (u)=-1.1187e9u’ + 2.363e8u® —1.9301e7u® + 7.5702e5u*

Z
(4.5)
-1.4365e4u° + 124.71u% - 0.77474u + 4.4318

During the simulation, total of twelve desired values enter the optimal predictive
control (OPC) subsystem, in this phase. This subsystem generates the ten
command accelerations of the joints. In the OPC subsystem, a Matlab function
block is placed and an m-file which contains the algorithm described in Chapter 3
is embedded in this block. The optimization weighting factors used in this
subsystem have a great influence on the humanoid gait. These factors were
decided by the trial-and-error procedure. During this procedure, the minimization

of the heel point position error was kept prior to the minimization of the position
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error of body-1. Also, having lower actuating torques was another emphasized

criterion.

After that, all the command accelerations enter the computed torque subsystem.
The computation algorithm for the required single support phase actuating
torques was introduced in Chapter 3. This algorithm is employed by the m-file in
the Matlab function block of the computed torque subsystem. As the output of
this subsystem, ten actuating torque values are obtained and they are sent to the
humanoid model subsystem (the plant). Similar to the previous subsystems, an m-
file is embedded in the Matlab function block of the plant. The m-file
representing 36 Newton — Euler equations produces the joint accelerations using
3 input vectors: the actuating torques, the angular displacements and the angular
velocities. Moreover, the reaction forces and the reaction moments are obtained

as the other outputs of this subsystem.

The joint angles and the joint velocities become available, after the integration of
the joint accelerations. Then, the cascaded loops are closed and the simulation
runs another step. This cycle continues until the condition of the next phase is
satisfied.

The forward kinematics subsystems of the single support phases compute the
kinematic expressions given in Chapter 3 using the joint variables. Hence, all the
kinematic information about each link of the humanoid walker comes out. Also,

this subsystem visualizes the humanoid walker by generating a 3D plot.

The initial values of the joint variables in the integration subsystem of the single
support phase models are assigned directly from the memory blocks. Hence, the
values of the last double support phase joint variables can be used as the initials
of the new single support phase. This property assures the continuity of the
humanoid gait when passing from the double support phase to the single support

phase.

Up to here, the common features of the two single support phase subsystems are
explained. However, there are some distinctions between the two. Firstly,

separate m-files are utilized in the Matlab function blocks of the left foot flat and
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the right foot flat single support subsystems. For instance, the m-file,
“Torquer_SS_right.m” is used in the computed torque control subsystem of the
“right foot flat double support phase”, while; the m-file, “Torquer_SS_left.m” is
used in the computed torque control subsystem of the “left foot flat double
support phase”. Secondly, the Goto/From blocks exchange for the left foot flat
and the right foot flat periods. While; the initial position data of the right heel
point (Aj1) are used in the OPC subsystem of the “right foot flat double support
phase”, in the left foot flat one, the initial position data of the left heel point (Asp)

are used.
4.3  The Double Support Phase Subsystems

Two double support phase subsystems are built for the simulation. One of them
contains the “left foot flat double support phase” model and the other one
contains the “right foot flat double support phase” model. The structure of these
subsystems is identical, but their contents are different. The common features of
these two subsystems are presented over one of them and the distinctions are
emphasized. The subsystems of the left and the right foot flat double support
phases can be examined in Figure 4.11 and 4.12.
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Similar to the single support phase models, these subsystems are enabled by the
phase selector subsystem. Firstly, the timer subsystem starts to count the phase
time. The trigger subsystem resets the initial values in the integration subsystem
at the first step and the initials of the model are assigned. In the meantime, the
reference input subsystem of the double support phase model starts running using

the phase time data.

These parts of the double support phase subsystems are identical with the single
support phase subsystems. But, the difference comes to place at the reference
input subsystem. The reference input subsystems contain only the position and
velocity components of point O; (origin of body-1’s frame) in this phase. It is
possible to change these reference values according to the desired gait. In this
subsystem, the desired future values of the references are obtained by providing
the sum of the phase time and the prediction time range (At). The reference input

subsystem of the double support phase subsystems is illustrated in Figure 4.13.

In2

e B |

Outl

Figure 4.13 The reference input subsystem of the double support model

While, the desired height of the origin O, from the ground is same as it was in the

single support phase (80 cm), the desired velocity in the x-direction is increased
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to 0.6 m/s. Also, the prediction time range is increased and specified as 0.05
seconds. The reason of these changes is the desire to have a faster walking. By
altering these parameters, the walking speed and the control stiffness can be
adjusted. However, these changes effect the next single support phase and
certainly the parameters of that phase must be updated together with the

optimization factors.

During the simulation, the desired values are handled by the optimal predictive
control (OPC) subsystem. This subsystem generates the five command
accelerations of the joints at the flat foot side. In the OPC subsystem, a Matlab
function block is placed and an m-file (Optimal DS _leftm or
Optimal_DS_right.m) which contains the algorithm described in Chapter 3 is
embedded in that block. After that, the remaining six command accelerations are
calculated from the six scalar constraint equations and added to the preceding five
command accelerations. So, total of eleven command accelerations are acquired

to drive eleven joints.

Then, all the command accelerations enter the computed torque subsystem. The
algorithm of the computation of required double support phase actuating torques
was introduced in Chapter 3. The weighting factors in the optimization procedure
of computed torque algorithm are carried out by trial-and-error method. The main
goal of these trials was to reduce the ankle joint accelerations while keeping the
tracking error tolerable. However, in order to realize different goals, one can
select different weightings. This algorithm is employed by the m-file in Matlab
function block of the computed torque subsystem. As the output of this
subsystem eleven actuating torque values are obtained and they are sent to the
humanoid legs model subsystem (the plant). Similar to the previous subsystems,
an m-file is embedded in the Matlab function block. The m-file representing 36
Newton — Euler equations and 6 scalar constraint equations produces the joint
accelerations using the vector of the actuating torque, the angular displacement
and the angular velocity inputs. Moreover, the reaction forces and the reaction
moments are obtained as the bi-products of this formulation as in the single

support phase.
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After the integration of the joint accelerations, the simulation runs the next step.

This cycle continues until the condition of the next phase is satisfied.

The forward kinematics subsystems of the double support phases compute the
kinematic expressions given in Chapter 3. As a result, the positions, velocities
and accelerations of each link of the humanoid walker become available. As a

second task of this subsystem, the humanoid walker is visualized by a 3D plot.

The last subsystems of the double support phases are the inverse kinematics
subsystems. In the single support phase subsystems, there is no need for such an
inverse kinematics effort. However, the transition from the single support phase
to the double support phase arises a vital problem at the beginning of the new
phase. Since, the double support models are closed linkage systems; they cannot
accomplish every motion generated by the single support models. For this reason,
the last joint variables produced by a single support model cannot be used as the
initial joint variables in the integration subsystem of a double support model. In
addition to this, just after the heel of the swinging foot touches the ground at the
end of a single support phase, the sole of that foot flattens immediately. This also
makes the initial joint variables of a double support phase different than the last
values of the ended single support phase. However, this deviation is minimized
by finding the initial joint variables from the inverse kinematics solution.
According to the last position and velocity of points O;, Aip and Ajj, the
necessary joint variables are computed by both the constraint equations and the
inverse kinematic equations. This subsystem takes the required inputs directly
from the relevant top-layer data store memory blocks. By this way, although a
discontinuity occurs at the joint variables, they deviate a little during the

transition.

The differences between the two double support phase subsystems are the same
as in the single support phase subsystems. The m-files utilized in the Matlab
function blocks of the left foot flat and the right foot flat double support
subsystems are different. Also, the Goto/From blocks shift for the left foot flat
and the right foot flat periods.
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CHAPTER 5

RESULTS AND DISCUSSION

The results of gait simulation using the humanoid model which imitates a subject
of 56 kg mass and 1.60 m height is presented in this chapter. The initial posture
of the humanoid walker is specified in such a manner that the simulation starts
with the left foot flat double support model. Actually, the initial kinematic
parameters are not so critical. The simulation is able to start from any non-
singular configuration employing the suitable one of four models corresponding

to four phases of gait.

The desired gait pattern for the humanoid model is established by defining the
trajectories of 4 points: O (the origin of body-1), G; (the mass center of body-1),
Aio (the left heel point) and Ay; (the right heel point). In this study, the desired
trajectories of O; and G; are given as two straight lines parallel to each other
along x-direction. By the optimal control algorithm, the model generates natural
oscillations about these lines like a human being without any enforcement. Also,
the desired orientation of HAT is determined as a result of this method.

In the presented study, body-1 has two different velocities on these lines in the
single and double support phases. As in ideal gait of human, it is faster during the
double support phase. The desired velocities of both O; and G; points are 0.6 m/s
in the double support phase and 0.2 m/s in the single support phase. These
velocities are specified after so many trials to reach an optimum value with lower

actuating torques.

In the single support phases, the desired paths of Ajg and Az points are specified
by the polynomials presented in chapter 4. Thus, for the swinging foot, it is aimed
to realize a step of 0.4 m length and a maximum height of 6 cm over the ground.
These desired paths are also designed giving serious attention to reduce the

impact which occurs when the heel strike.
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These reference values can be modified due to desired humanoid gait. As an
improvement, instead of the pre-defined paths, it is possible to use a high-level

controller which generates appropriate paths for walking.

With these reference values, two successive full gait cycles are simulated. This
motion takes 1.77 seconds and each of the four phases occurs twice. The
reference and actual position values of point O; in X, y and z diections are plotted
in figure 5.1. Then, the reference and actual position values of point G; can be
investigated in figure 5.2. the oscillations from the desired paths can be reduced
by tuning the optimization weighting factors. The elapsed time for this run of
simulation is 12.67 seconds on a desktop computer with 1.6 MHz processor and
512 Mb RAM. This value is quite good for such a complicated simulation. In
figure 5.3, the side view of the humanoid model during the gait is illustrated as
snapshots. Also, the front view can be examined in figure 5.4.

Trajectory of Point O1
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Figure 5.1 Trajectory of point O,
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Trajectory of point G1
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Figure 5.2 Trajectory of point G;

The resultant joint angles of the simulation are presented in the figures 5.5 and
5.6. The continuity of the joint angles during the transition from the double
support phase to the single support phase may be noticed in these figures.
However, some unavoidable deviations occur at the end of the single support

phases. This phenomena has been explained in section 3.5.
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Figure 5.5 Right leg joint angles
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Figure 5.6 Left leg joint angles
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The actuating torques necessary to accomplish the desired gait are presented in
the figures 5.7 through 5.14. These torques are associated with the second gait
cycle because in the first gait cycle, the humanoid model is at rest initially. This
makes the starting torques higher. However, in the second gait cycle, the inertial
effects are included. Obviously, the joint torques generated in the double support
phases are smaller than the single support torques. The reason of this is the
sharing of HAT’s weight between two legs. In the single support phase, whole
load is on one leg and naturally this requires higher actuating torques at the joints
of this leg.

joint torque (m)

I
|
|
|
| | |
1 1 1
| | |
+ I -+
| | |
| | |
| | |
‘ ‘ ‘ 1 1 1
| | | | | |
| | | | | |
1 1 1 1 1 1
0.9 0.92 0.94 0.96 0.98 1 1.02 1.04
time (s)

Figure 5.7 Left leg joint torques in the left foot flat double support phase
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Figure 5.8 Right leg joint torques in the left foot flat double support phase
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Figure 5.9 Left leg joint torques in the right foot flat double support phase
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Figure 5.10 Right leg joint torques in the right foot flat double support phase
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Figure 5.11 Left leg joint torques in the left foot flat single support phase
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Figure 5.12 Right leg joint torques in the left foot flat single support phase
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Figure 5.13 Left leg joint torques in the right foot flat single support phase
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Figure 5.14 Right leg joint torques in the right foot flat single support phase

These torque values are effected by the desired walking speed, the prediction
time range and the optimization weighting factors. It is possible to obtain lower
actuating torques or smaller tracking errors using different values for these
parameters. Adding structural elements like springs and dampers into the models
may reduce these actuating torques. Furthermore, specifying the desired paths in
such a manner that makes use of the inertial effects for the benefit of humanoid

model, lower torques may be required to sustain the gait.

Although, the simulation is capable of producing all reactions which occur at the
joints, only the ground reaction forces are presented. For instance, the knee joint
or the hip joint of a humanoid walker can easily be designed using the joint
reactions in the strength analysis. In figures 5.15 through 5.18, the ground
reaction forces of four models in the second gait cycle of simulation are

illustrated.
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Figure 5.16 Ground reaction forces
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Figure 5.18 Ground reaction forces in the right foot flat single support phase
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CHAPTER 6

SUMMARY AND CONCLUSION

In this study, a 3-dimensional computer simulation of a humanoid walking
system was developed and the optimal predictive control algorithm was applied

on this system. Matlab and Simulink softwares were used for the computations.

Firstly, the physical models were designed with the aim of imitating a humanoid
system. Four different models were used in the simulations; two models for the
single support phase and two models for the double support phase. These phases
were divided into two as the left foot flat single/double support phase and the
right foot flat single/double support phase. Each of these models was composed
of six rigid bodies. The masses and the lengths of these bodies were determined
according to the anthropometric data. Thus, it was tried to obtain a mechanical
system which resembles the human being. However, it was well known that a
realistic simulation of walking of the human being requires more complicated
models. The inertia tensors of the bodies were calculated by the help of
Solidworks software. In the double support phase models, the foot was designed
including a toe joint which enhances the transition from the double support phase
to the single support phase. However, the transition from the single support phase
to the double support phase was modeled neglecting the rotation of the landing
foot around the heel. Also, the foot sole of the stance leg was assumed to be fixed
on the ground. Ten revolute joints in the single support phase models and eleven

revolute joints in the double support phase models connected the rigid bodies.

Secondly, the kinematic equations were derived recursively and the dynamic
equations of four models were obtained using the Newton — Euler formulation.
All the coefficients of the unknown terms in these equations were separated and
arranged in the coefficient matrices due to the solution procedure of the required

unknowns.
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The closed loop control system which was used in the simulations was composed
of two parts: The computed torque control part and the optimal predictive control
part. Although, the Lagrange formulation is suitable to employ with the computed
torque control method, using some simple matrix manipulations, the Newton —
Euler equations were converted into the same suitable form for the computed
torque control method. Also, in the computed torque algorithm of the double
support phases, a torque optimization was realized because of the redundancy. As
the second part of the control system, a novel application of optimal and
predictive control algorithms on the bipedal locomotion was introduced. By the
optimal predictive control algorithm, the humanoid gait was sustained in a stable
and re-configurable manner. Different desired humanoid gaits can be achieved by
modifying the optimization weighting factors and the prediction time ranges. This
property of the present study creates many alternatives for future work.

After that, all the mathematical expressions, solution methods and the control
algorithms were imposed in user-defined Matlab functions in m-files. The
Simulink model of the system was built and the m-files were incorporated in the
subsystems of this simulation model. As the result of many trials, the

optimization weighting factors were specified according to the desired gait.

At the end, the simulated humanoid gait of the proposed mechanical system was
investigated by the actuating torque curves and other plots. In addition, an
animation of the gait was generated.

Although, this study covers quite a lot of problems in the simulation of humanoid
gait, in order to improve it the following future works are recommended. These
works can also be considered as the suggestions to achieve a gait which is more
similar to the gait of a human being.

1. The hip joint assemblies can be made spherical by adding a revolute joint
along z-direction to each hip. Thus, the humanoid system attains a

cornering ability and the yaw motion of the HAT becomes possible.

2. In the performance measures used in the optimal control parts, some other

optimization functions corresponding to the mechanical energy can be
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employed in addition to the present optimization functions. Hence, taking
the advantage of gravity and inertial effects, an energy efficient

locomotion can be accomplished.

The desired paths of the pelvis, the left and the right foot can be
determined by an additional high level controller. This controller can be
designed using neural networks and fuzzy logic. During the gait, this
control system can make decisions of correct movements. The knowledge

base can be built using the gait analysis data of a human being.

The HAT and the pelvis can be connected by an actuated two DOF joint
at the waist. Thus, the unbalance can be compensated by appropriate
motions of torso. This can also improve the stability and reduce excessive

torque values.

. A further model can be added to the present ones to examine the short
interval just after the initial contact of the heel. For this purpose, a foot
model which can rotates around the contact point under its heel can be

designed.

Elasticity can be added to the joints in order to increase walking

efficiency.
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APPENDIX A

COEFFICIENT MATRIX OF THE RIGHT FOOT FLAT SINGLE
SUPPORT PHASE
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APPENDIX B

COEFFICIENT MATRIX OF THE RIGHT FOOT FLAT SINGLE
SUPPORT PHASE (AFTER ROW SHIFTING)
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APPENDIX C

COEFFICIENT MATRIX OF THE LEFT FOOT FLAT DOUBLE
SUPPORT PHASE
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