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Supervisor

Examining Committee Members

Prof. Dr. Hayri KÖREZLİOĞLU
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Assist. Prof. Dr. Kasırga YILDIRAK

Dr. Coşkun KÜÇÜKÖZMEN



Abstract

COHERENT AND CONVEX MEASURES OF RISK

İrem Yıldırım

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Hayri Körezlioğlu

September 2005, 77 pages

One of the financial risks an agent has to deal with is market risk. Market

risk is caused by the uncertainty attached to asset values. There exit various

measures trying to model market risk. The most widely accepted one is Value-

at-Risk. However Value-at-Risk does not encourage portfolio diversification

in general, whereas a consistent risk measure has to do so. In this work, risk

measures satisfying these consistency conditions are examined within theoretical

basis. Different types of coherent and convex risk measures are investigated.

Moreover the extension of coherent risk measures to multiperiod settings is

discussed.

Keywords: market risk, Value-at-Risk, coherent risk measures, convex risk mea-

sures, multi period dynamic model.
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Öz

UYUMLU VE KONVEKS RİSK ÖLÇÜMLERİ

İrem Yıldırim

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hayri Körezlioğlu

Eylül 2005, 77 sayfa

Piyasadaki oyuncuların maruz kaldığı finansal risklerden birisi de piyasa

riskidir. Piyasa riski yatırım araçlarının gelecekte alabileceği değerlerin belirsi-

zliğinden kaynaklanır. Bu riski belirlemeye çalışan pek çok model yapılmıştır.

Bunların en yaygın olarak kullanılanı Riske Maruz Değerdir (RMD). Ancak tu-

tarlı ölçülerin portföy çeşitlendirmesini desteklemesi beklenirken, RMD bunu

yapmaz. Bu çalışmada bu tür tutarlılık koşullarını sağlayan risk ölçümlerinin

teorik altyapısı ve uyumlu ve konveks risk ölçü çeşitleri incelenmiştir. Ayrıca

uyumlu risk ölçülerinin çoklu döneme genişletilmesi araştırılmıştır.

Anahtar Kelimeler: piyasa riski, Riske Maruz Değer, uyumlu risk ölçüleri, kon-

veks risk ölçüleri, o̧oklu dönem dinamik model.
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Chapter 1

INTRODUCTION

The most important question for an agent entering the market with an expec-

tation of financial gain, is ”how bad can it be?”. Because in financial markets

it is known that higher return is always related to higher risk. Therefore, the

question arising first is what the market risk is. Unfortunately, defining and

evaluating market risk is a hard work because risk is a qualitative element.

However market risk can be defined as the degree of uncertainty of future net

worths. When we use this definition, arising question is how can we measure

this ”degree of uncertainty”. A market risk measure, trying to determine the

degree of uncertainty, is the additional capital required to cover possible losses.

According to this statement, we need to estimate the ”possible losses” in order

to measure the market risk of a financial position.

For decades many researchers have been trying to formalize an answer to mea-

sure the market risk. As a result there is a vast amount of literature in this field

of study. Two most widely known tools used to formalize the market risk are

Greeks, measuring the sensitivity of assets to market movements, and Value-

at-Risk (VaR). Although Leavens did not unequivocally present VaR model, he

can be regarded as the pioneer of early VaR studies. This is due to the fact that

Leavens published the first and the most comprehensive study about the ben-

efits of portfolio diversification in 1945. Markowitz(1952) and later Roy(1952)

followed Leavens by publishing the same VaR measures independently. William
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Sharpe proposed the Capital Asset Pricing Model in 1963. Thirty years after

this, the committee formed by JP Morgan for a study on derivatives used the

term Value-at-Risk firstly in a report published in 1993. In October 1994 JP

Morgan proposed a new system called Risk Metrics. It was a free computer sys-

tem providing risk measures for 400 financial instruments. Moreover following

the approval of the limited use of VaR measures for calculating bank capital

requirements in 1996 by the Basle Committee, VaR became the most widely

used financial risk measure.

VaR is the maximum amount of loss that can be observed for a given confidence

level in the determined time interval. For instance, if it is said that VaR of a

position at 95% confidence level is 1000, this means that in 95 days out of 100

you can expect to face a loss lower than 1000. VaR is basically a quantile esti-

mation for a determined probability distribution. For a continuous distribution

with a given confidence level α

V aRα(X) = F−1(α)

,where F−1 is the inverse cumulative distribution function of losses of portfolio

X. Also there is another formulation offered by Artzner, Deldean, Eber and

Heath (ADEH). Since the original definition in [ADEH99] uses profit distri-

bution, differently from the previous formulation we need a minus sign at the

beginning. Moreover, this time since we have to work with the left of the graph,

α should be taken as 0.05.

V aRα(X) = −inf(x|P (X ≤ x) > α)

The graphical representation gives a better insight. For instance in Figure 1.1

VaR at α confidence level is q+
α . Unfortunately this definition of VaR does not

encourage portfolio diversification. This means risk assigned to a composite

portfolio can be higher than the sum of VaR numbers of the separate portfo-

lios. An explanatory example can be found in [FS02b]. Such inconsistencies
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Figure 1.1: Value-at-Risk

of VaR motivated researchers to formalize better measures of risk. Some of

them offered modifications and extensions in Value-at-Risk while others were

offering alternative ways for financial risk calculation. The first line of research

was started by Artzner, Deldean, Eber and Heath (ADEH) in 1997 with the

article entitled ”Thinking Coherently ”. The major contribution of these schol-

ars is the introduction of ”Coherent Risk Measures” in 1999. These papers

introduced the consistency conditions which should be satisfied by a sensible

risk measure. Since VaR is not a coherent risk measure in the given context,

new risk measures that both satisfy these consistency conditions and as easy to

compute as VaR are constructed. Conditional Value at Risk (CVaR) by Urya-

sev and Rockafeller in 1999 and Expected Shortfall (ES) by Acerbi et. al. in

2000 are two examples. Both of these measures work with the α percent worst

cases and take an expectation on these worst losses. After these, Artzner et.

al. extended coherent risk measures to multiperiod setting in 2002. Another

important contribution in this area was made by Föllmer and Schied in 2002

with the introduction of ”Convex Risk Measures”. These measures drop the
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positive homogeneity axiom of coherent risk measures, which assumes a linear

relation between the size of a position and it’s risk level. After these in 2004

Bion-Nadal introduced conditional convex risk measures which integrates the

asymmetric information theory in risk measurement.

In Chapter 2 theoretical basis of coherent, convex and conditional convex risk

measures will be given. Unfortunately having strong mathematical basis is not

enough for these measures to compete with VaR. Due to this fact coherent

and convex risk measures formalized for application purposes will be discussed

in Chapter 3. Lastly the extension of coherent risk measures to multiperiod

dynamic setting will be given in the Chapter 4.
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Chapter 2

COHERENT, CONVEX AND

CONDITIONAL CONVEX RISK

MEASURES

Freddy Delbean, Chair of Financial Mathematics of ETH Zürih, says in one

of his speeches that making a definition of risk is extremely complicated if not

impossible, but a theory is needed to make decisions to deal with the availability

of money under uncertainty. He continues by saying people told them it was

not possible to represent financial risk by just one number. However a yes or no

answer is needed under uncertainty. As an answer coherent risk measures were

formulated.

Definition 2.1. A measure of risk is a mapping from X into R i.e.

ρ : X → R

The risk measures that will be investigated in this chapter are the results of an

ambitious work to reach more compatible results with the financial environment.

As said in the previous chapter, no matter how advanced the techniques used

in its computation are, VaR suffers from not being a convex mapping (unless

asset returns are assumed to be normally distributed). It is obvious that a risk

measure, which does not encourage portfolio diversification is in contradiction

5



with the entire related financial literature starting from the portfolio theory of

Markowitz.

Deficiencies of VaR motivated ADEH to construct a new model said to satisfy

some consistency conditions determined by the authors. In the first section

of this chapter the line of reasoning for this model will be given. Afterwards

Föllmer and Schied formed convex measures of risk, which also reflect the liq-

uidity risk in the financial markets. Section two will introduce these models. A

relatively new contribution was done by Bion-Nadal. Convex risk measures were

evolved by the addition of asymmetric information theory in financial markets.

These conditional convex risk measures will constitute the last section of this

chapter.

2.1 Coherent Measures of Risk

When an investor, a manager or a supervision agency has to decide whether

to take a specific position in the market or not, he evaluates possible portfolio

returns that can be faced under different scenarios. This is done to decide

whether the position is acceptable or not. Therefore there must be a boundary

or a minimum return level requirement for a position to be acceptable. After

defining the boundary condition, portfolios satisfying this condition will be said

to compose the acceptance set. When a position is labelled as unacceptable,

an investor can totally give this option up or by adding some risk free asset to

the portfolio, he can make it acceptable. The cost of acquiring this risk free

asset is used to measure the risk of a given portfolio. The aim of this chapter

is to explain the risk measure satisfying the consistency conditions defined by

ADEH and answering the question of how much additional capital is needed to

make the position acceptable. This will be done in two parts; firstly, the set

of possible states of world at the end of the period will assumed to be finite

and secondly, it will be assumed that it is infinite. Throughout the paper the

risk free rate of return is assumed to be zero, so risk free investment is the cash

6



added to the portfolio.

2.1.1 Coherent Risk Measures when Ω is Finite

In this subsection it will be assumed that all possible states of world are known.

However the probabilities of occurrence for these states are not. The set of

possible states of world at the end of the period is denoted by Ω and it is

assumed to have a finite number of elements. X represents all real valued

functions on Ω. If card(Ω)= n, X can be identified with R
n.

Definition 2.2. A risk measure ρ is a coherent risk measure if it satisfies

1. Monotonicity: For all X and Y ∈ X ; if X ≤ Y , ρ(X) ≥ ρ(Y ).

2. Translation Invariance: For all X ∈ X and for all real numbers α;

ρ(X + α) = ρ(X) − α.

3. Positive Homogeneity: For all λ ≥ 0 and for all X ∈ X ; ρ(λX) = λρ(X)

4. Subadditivity: For all X1, X2 ∈ X ; ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

Monotonicity implies that if a portfolio has higher returns for all possible states

of nature relative to another portfolio, risk associated to this portfolio is natu-

rally lower. Translation invariance assures that a risk measure is expressed in

currency terms by saying that when α amount of cash is added to the portfolio

as a risk free investment, the risk of the portfolio decreases by the same amount.

Positive homogeneity implies that there is a linear relation between the position

size and the associated risk of the portfolio. Lastly subadditivity says that a

merger does not create extra risk.

Definition 2.3. Acceptance set associated to a risk measure ρ is

Aρ = {X ∈ X | ρ(X) ≤ 0}.

7



Definition 2.4. Coherent risk measure associated to an acceptance set is

denoted by

ρA(X) = inf{m | (m + X) ∈ A}.

Proposition 2.1. If a set B satisfies the following conditions,

1. B contains the cone of non-negative elements in X , L+,

2. B does not intersect with the set L−−, where

L−− = {X | for each ω ∈ Ω, X(ω) < 0},

3. B is convex,

4. B is a positively homogenous cone,

associated risk measure, ρB is coherent. Moreover AρB = B̄.

Proof: 1) When ‖ ‖ represents supremum norm, − ‖ X ‖≤ X ≤‖ X ‖ for

all X ∈ X . Since ‖ X ‖ +X ≥ 0, there is a real number m>‖ X ‖. Then

m + X ∈ L+. Therefore ρ(X) ≤‖ X ‖. On the other hand X− ‖ X ‖≤ 0. If

m < − ‖ X ‖, then m + X /∈ L+ and ρ(X) ≥‖ X ‖. As a result ρB(X) is a

finite number.

2) There exists real numbers p, q such that inf{p | X + (α + p) ∈ B} = inf{q |

X + q ∈ B} − α for ∀α ∈ R. Therefore ρB(X) satisfies translation invariance.

3) For X,Y ∈ X ; but not in B, by property 3 if X + m, Y + n ∈ B, then

α(X + m) + (Y + n) ∈ B, where α ∈ [0, 1]. Take α = 1/2, by property 4 if

1/2(X + Y + m + n) ∈ B then (X + Y + m + n) ∈ B. Since {s : (X + Y ) + s ∈

B} ⊃ {m : X + m ∈ B} + {n : Y + n ∈ B}, ρB(X + Y ) ≤ ρB(X) + ρB(Y ). This

means ρB satisfies subadditivity.

4) For a real number m; if m > ρB(X), then for each λ > 0, λX + λm ∈ B.

Therefore ρB(λX) ≤ λm. If m < ρB(X), then for each λ > 0, λX +λm /∈ B and

ρB(λX) ≥ λm. Therefore ρB(λX) = λρB(X). As a result ρB satisfies positive

8



homogeneity.

5) If X(ω) ≤ Y (ω) for all ω ∈ Ω and X + m ∈ B, then also Y + m ∈ B.

Y + m = X + m + (Y − X). Since Y − X ≥ 0, by the property 1 Y − X ∈ B.

{m : m + X ∈ B} ⊂ {m : m + Y ∈ B} therefore ρB(X) ≥ ρB(Y ) and satisfies

monotonicity.

6) For each X ∈ B, ρB(X) ≤ 0 since X ∈ L+ and ρB satisfies monotonicity

and positive homogeneity. Proposition below assures that AρB is closed, which

proves that AρB = B̄.

Proposition 2.2. If ρ is a coherent risk measure, then Aρ is closed and satisfies

properties 1-4 of Proposition 1.1. Moreover ρ = ρAρ
.

Proof: 1) From subadditivity and positive homogeneity, ρ(αX + (1 − α)Y ) ≤

αρ(X) + (1 − α)ρ(Y ) for α ∈ [0, 1]. This implies that ρ is a convex function.

Hence it is continuous. Therefore Aρ = {X | ρ(X) ≤ 0} is closed. If X,Y ∈ Aρ;

i.e. ρ(X) ≤ 0, ρ(Y ) ≤ 0, ρ(αX +(1−α)Y ) ≤ 0. Therefore αX +(1−α)Y ∈ Aρ.

If ρ(X) ≤ 0 and λ > 0, then ρ(λX) = λρ(X) ≤ 0 and λX ∈ Aρ. Therefore Aρ

is a closed convex positively homogenous cone.

2) From positive homogeneity ρ(0) = 0. If X(ω) ≥ 0 ∀ω ∈ Ω, then ρ(X) ≤ 0

by monotonicity. Therefore L+ ⊃ Aρ.

3) Let X ∈ L−− and ρ(X) < 0. However monotonicity of ρ implies that

ρ(X) ≥ 0 since X < 0; this is a contradiction. If ρ(X) = 0 for α such that

α > 0 and X + α ∈ L−−, then ρ(X + α) = ρ(X) − α < 0. This is also a

contradiction. Hence ρ(X) > 0, X /∈ Aρ. This means L−− ∩ Aρ = ∅.

4) ρAρ
(X) = inf{m ∈ R | m + X ∈ Aρ}. In other words ρAρ

(X) = inf{m ∈

R | ρ(X) ≤ m}. Therefore ρAρ
(X) = ρ(X).

In order to see the relation between coherent risk measures and acceptance

sets, the illustration from [K04] is given in Figure 2.1. In this illustration it

is assumed that Ω has only two elements. That is Ω = {ω1, ω2}. Two axes

represent different values of X1(ω) and X2(ω). X1 = X1(ω1), X2 = X2(ω).

Two cases are given in the figure; when X ∈ A and when X /∈ A.

9
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Figure 2.1: Coherent Measures of Risk

Remark: Convexity of an acceptance set means that the portfolio at the global

minimum can be found. This property is important for the optimization used

for portfolio selection. Not having a convex acceptance set, VaR cannot assure

a global minimum.

According to [ADEH99] any coherent risk measure arises as the supremum of

expected negative returns (losses) for some collection of generalized scenarios

or probability measures on Ω.

Proposition 2.3. A risk measure is coherent if and only if there exists a family

P of probability measures on Ω such that:

ρ(X) = sup{EP [−X] | P ∈ P}.
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Proof: First part of the theorem is obvious. If ρ(X) = sup{EP [−X] | P ∈ P},

then:

i) If X(ω) ≤ Y (ω) for ∀ω ∈ Ω, then EP [−X] ≥ EP [−Y ] for ∀P ∈ P . This

implies monotonicity.

ii) For any constant α; EP [−(X+α)] = EP [−X]−α for ∀P ∈ P . Taking the

supremum preserves the inequality and translation invariance of ρ(X) follows.

iii) For a real number λ > 0; EP [−(λX)] = λEP [−X] for ∀P ∈ P . This

implies positive homogeneity.

iv) For X,Y ∈ X ; sup{E[−(X + Y )] | P ∈ P} ≤ sup{E[−X] | P ∈

P} + sup{E[−Y ] | P ∈ P}. This gives subadditivity.

Conversely, let M denotes the set of all probability measures on Ω. Define Pρ

as

Pρ = {P ∈ M : ∀X ∈ X , E[−X] ≤ ρ(X)}

,where ρ is assumed to be a coherent risk measure. The set of probabilities

M is a compact set in R
n, where n = card(Ω), since it is a closed subset of

unit ball in R
n, which is compact. In fact M = {P ∈ R

n : ∀ω; P (ω) ≥ 0 and
∑

P (ω) = 1}. Given X ∈ X , E[−X] is continuous from M into R, due to the

fact that a continuous image of a compact set {E[−X] : P ∈ M} is compact

in R. This implies {E[−X] : P ∈ M} ∩ {a ∈ R : a ≤ ρ(X)} is compact since a

closed subset of a compact metric space is compact. Therefore

ρ(X) = sup{EP [−X] | P ∈ Pρ}.

2.1.2 Coherent Risk Measures when Ω is Infinite

Assuming that possible states of nature are finite is not compatible with daily

financial market conditions. In reality nothing is impossible, even a plain crash-

ing into the Twin Towers of New York. Observing a market movement equal

to the one caused by this accident is nearly zero in statistical terms. Therefore

11



restricting possible states of the world only to a finite list of asset prices cannot

give a helpful sight of the risk associated to the position held. When the size of

a position is millions of dollars, no one wants to think that there can be possi-

bilities that are skipped. Due to these facts, extending coherent risk measures

to infinite Ω is a necessity.

This part is based on [D00] that aims to extend the notion of coherent risk

measures into arbitrary probability spaces. The finite dimensional space R
Ω

representing X is replaced with the space of all bounded measurable functions

L∞(Ω,F , P ), where P is an a priori given probability measure. This P does not

mean every agent has a common view on the distribution of portfolio returns,

but there exists a common view about the null sets.

Other notations that will be used throughout this section are: L1(Ω,F , P ) rep-

resenting all integrable real random variables, L∞ = (L1)′ meaning L∞ is the

dual of L1 (Appendix, A2). (L∞)′ = Banach space ba(Ω,F , P ) of all bounded

finitely additive measures (Appendix, A1) M on (Ω,F) which are absolutely

continuous with respect to P .

Definition 2.5. A mapping ρ : L∞(Ω,F , P ) → R is called a coherent measure

of risk if it satisfies the following conditions:

1. If X ≥ 0, then ρ(X) ≤ 0.

2. Subadditivity: For all X1, X2 ∈ X ; ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

3. Positive Homogeneity: For all X ∈ X and λ ≥ 0; ρ(λ + X) = λρ(X).

4. For all X ∈ X and every constant function a; ρ(X + a) = ρ(X) − a.

Theorem 2.1. Suppose that ρ : L∞(Ω,F , P ) → R is a coherent measure of

risk. There is a convex σ(ba(Ω,F , P ), L∞(Ω,F , P )) (Appendix, A3) closed set

Pba of finitely additive probabilities such that:

ρ(X) = sup
M∈Pba

EM[−X]
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,where ba(Ω,F , P ) refers to all bounded, finitely additive measures M on (Ω,F)

which are absolutely continuous with respect to P . M ∈ ba(Ω,F , P ) is a

finitely additive probability measure if M(1) = 1.

Proof: 1) C = {X | ρ(X) ≤ 0} is clearly a norm (supremum norm) closed

positively homogenous cone in L∞. Moreover L∞
+ ⊂ C.

2) The polar set Co = {M : ∀X ∈ C; E[X] ≥ 0} (Appendix, A4) is also a convex

cone closed for weak∗ topology on ba(Ω,F , P ). (Appendix, Remark) Indeed

let M1,M2 ∈ Co and EM1 [X] ≥ 0, EM2 [X] ≥ 0. For 0 ≤ α ≤ 1

EαM1+(1−α)M2 [X] = α

∫

Ω

XdM1 + (1 − α)

∫

Ω

XdM2

Since this expression is non negative, Co is convex. For λ ≥ 0 and
∫

Ω
XdM ≥ 0;

∫

Xd(λM) = λ
∫

XdM. Therefore if M ∈ Co, then λM ∈ Co. Moreover by

the Proposition 9 of [RR73](Appendix, A4), Co is absolutely continuous and

σ(ba(Ω,F , P ), L∞(Ω,F , P )) closed.

3) All elements in Co are positive since L∞
+ ⊂ C. By the Proposition 9 of

[RR73], Co ⊂ (L∞
+ )o ⊂ (L∞

+ )′ = ba(Ω,F , P ). By definition (L∞
+ )o = {M | ∀X ∈

L∞
+ , EM ≥ 0}. Therefore Co contains only positive measures. This implies that

for the set Pba = {M | M ∈ Co and M(1) = 1} since Co is a positive cone

Co =
⋃

λ≥0 λPba.

4) According to the bipolar theorem in [Sch73] (Appendix, A5); C = {X | ∀M ∈

Pba, EM[X] ≥ 0}. Indeed by the Robertson polar theorem (Co)o =
⋂

Po
ba. C

is a convex set containing 0, by the bipolar theorem C = Po
ba = {X | ∀M ∈

Pba, EM[X] ≥ 0}.

5) The steps above imply that ρ(X) ≤ 0 if and only if EM ≥ 0 for all M ∈ Pba.

X + ρ(X) ∈ Aρ. Therefore for ∀M ∈ Pba, EM[X + ρ(X)] ≥ 0. As a result

supM∈Pba
EM[−X] ≤ ρ(X).

6) For an arbitrary ε > 0, ρ(X + ρ(X) − ε) > 0 and X + ρ(X) − ε /∈ Aρ.

Therefore there is an M ∈ Pba such that EM[X + ρ(X) − ε] < 0, which leads

to opposite equality.

13



As a result

ρ(X) = sup
M∈Pba

EM[−X].

The relation between C and ρ is given by ρ(X) = inf{α | X + α ∈ C}.

In the theorem above the representation of the coherent risk measures is given

in terms of finitely additive probability measures. In order to extend this to

σ-finite probability measures extra conditions are needed.

Definition 2.6. A risk measure ρ is said to satisfy Fatou property if ρ(X) ≤

lim inf ρ(Xn) for any sequence, (Xn)n≥1, of functions uniformly bounded by 1

and converging to X in probability.

Theorem 2.2. For a coherent risk measure ρ, the following are equivalent:

1. There is an L1(Ω,F , P ) closed convex set of probability measures Pσ, all

being absolutely continuous with respect to P and such that for X ∈ L∞ :

ρ(X) = sup
Q∈Pσ

EQ[−X].

2. The convex cone C = {X | ρ(X) ≤ 0} is σ(L∞(P ), L1(P )) closed.

3. ρ satisfies the Fatou property.

Proof: 2⇒3 If C is σ(L∞(P ), L1(P )) closed, then ρ satisfies the Fatou property.

If (Xn) is an increasing sequence converging to X in probability and ‖ Xn ‖≤ 1

(where ‖ ‖ is supremum norm) for all n and ρ(Xn) decreases to some limit a,

then Xn + ρ(Xn) ∈ C. Since C is σ(L∞(P ), L1(P )) closed, limit X + a is in C.

This implies ρ(X + a) ≤ 0, so ρ(X) ≤ a.

3⇒2 If ρ satisfies the Fatou property, then C is σ(L∞(P ), L1(P )) closed.

According to [G73]; if E = L1(µ), where µ is finitely countable measure, and

H a convex subset of dual E ′ = L∞(µ), H is weakly closed (i.e. H is closed

for bounded sequences converging almost everywhere). Let (Xn)n ≥ 1 be a
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sequence in C, bounded by 1 and converging to X in probability. Since C is a

convex cone, it is sufficient to check C ∩ B1 is closed in probability, where B1 is

the closed unit ball in L∞. By the Fatou property ρ(X) ≤ liminfρ(Xn) ≤ 0.

Therefore X is also in C.

2⇒1 This part is parallel to the proof of Theorem 1.1.

Let C = {X | ρ(X) ≤ 0}. It is a norm closed cone in L∞. Moreover L∞ ⊂ C.

By the second property C is σ(L∞(P ), L1(P )) closed.

The polar set of C, Co = {f | f ∈ L1 and EP [fX] ≥ 0 for all X ∈ C} is

also a convex cone closed for σ(L1(P ), L∞(P )). Indeed, for f1, f2 ∈ Co and

EP [f1X ≥ 0] and EP [f2X ≥ 0]; if 0 ≤ α ≤ 1, EP [αf1X + (1 − α)f2X] =

αEP [f1X] + (1 − α)EP [f2X] ≥ 0. Therefore Co is a convex set. For λ ≥ 0 and

EP [fX] ≥ 0; EP [λfX] = λEP [fX] ≥ 0. Therefore Co is a positively homo-

geneous cone. Again by [RR73], Co is absolutely convex and σ(L1(P ), L∞(P ))

closed.

Since P is a probability measure and L∞
+ ⊂ C, Co has only positive elements.

For the set Pσ which is defined as Pσ = {f | dQ = dPf defines a prob−

ability measure and f ∈ Co}.

Since Co is a positively homogenous cone, Co =
⋃

λ≥0 λPσ. By the bipo-

lar theorem; C = Po
σ = {X | ∀f ∈ Pσ : EP [fX] ≥ 0}. Equivalently,

C = Po
σ = {X | ∀Q ∈ Pσ : EQ[X] ≥ 0}. This implies that ρ(X) ≤ 0 if

and only if EQ[X] ≥ 0 for all Q ∈ Pσ. Given that for every X; X + ρ(X) ∈ Aρ.

Then EQ[X + ρ(X)] ≥ 0 and supQ EQ[−X] ≤ ρ(X).

For an arbitrary ε > 0, ρ(X +ρ(X)− ε) > 0 and X +ρ(X)− ε /∈ Aρ. Therefore

there is an M ∈ Pσ such that EM[X + ρ(X) − ε] < 0, which leads to the

opposite equality.
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1⇒2 According to the Fatou lemma in [KHa01], let Xn be a sequence of

extended real random variables and X be an integrable extended real ran-

dom variable. If Xn ≤ X equivalently −Xn ≥ −X, then for each Q ∈ Pσ

liminf E[−Xn] ≥ E[lim inf(−Xn)] ≥ E[−X]. When Xn is taken as a sequence

uniformly bounded by 1 and tending to X in probability,the above inequality

gives the Fatou property.

Remark: All of the possible positions used in this section are assumed to be

bounded. This means that although there are some possible states of the world

in Ω considering extreme scenarios, our positions do not take +/ −∞ values.

In order to consider such a situation instead of L∞, L0 should be used. L0 is

the space of all real valued random variables. When X is a very risky position,

there will not be enough capital to make this portfolio acceptable. In this case

ρ will be +∞. However when L0 is used, situations that can lead to ρ = −∞

should be avoided. Since there is no positions still being acceptable, after an

infinite amount of capital is drawn out.

2.2 Convex Measures of Risk

The coherent risk measures of ADEH were a milestone in quantifying the risk of

a position. Although there are many other measures for quantifying risk, consis-

tency conditions brought by the coherent risk measures are so widely accepted

that most of the risk measures are evaluated with respect to these conditions.

The convex risk measures proposed by Föllmer et. al. is an example. It forms a

theoretical framework going one step further in terms of reflecting real market

conditions. Main idea is that the positive homogeneity axiom of coherent risk

measures assumes that the risk of a financial position is linearly related to its

size. For instance, if the size of a portfolio is doubled, the associated risk is

twice the risk of the original portfolio. Föllmer et. al. argue that such an as-

sumption ignores liquidity risk in financial markets. If the market cannot assure

liquidity, the risk exposure of the portfolio grows faster than its volume. When
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the liquidity risk is taken as 0 in convex risk measures, the resulting measure

will be coherent. Therefore, coherency is a special case of convex risk measures.

Ω represents the set of possible states of the world. A financial position de-

noted as X : Ω → R. X belongs to the class X of financial positions, where

X is taken as the linear space of bounded functions on Ω. X is assumed to

include all constants and closed under the addition of constants. There is no

probability measure given a priori.

Definition 2.7. Mapping ρ : X → R is a convex risk measure if it satisfies

1. Monotonicity: For all X,Y ∈ X ; if X ≤ Y , ρ(X) ≥ ρ(Y ).

2. Translation Invariance: For all X ∈ X ; if m ∈ R, then ρ(Y + m) =

ρ(Y ) − m.

3. Convexity: For all X,Y ∈ X ; ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y )

for any λ ∈ [0, 1].

Convexity property says that diversification decreases the risk of the portfolio.

Remark: When a risk measure satisfies positive homogeneity, convexity im-

plies subadditivity. Take λ = 1/2,

ρ(1/2(X + Y )) ≤ ρ(1/2X) + ρ(1/2Y ).

By positive homogeneity

1/2ρ(X + Y ) ≤ 1/2(ρ(X) + ρ(Y )).

Remark: Convex risk measure ρ(X) is said to be normalized if ρ(0) = 0.

Then ρ(X) is the amount of money invested in risk free asset to make position

X acceptable.
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Any risk measure ρ : X → R implies its own acceptance set.

Aρ = {X ∈ X | ρ(X) ≤ 0}.

For any class of acceptable positions A, a convex set measure ρ can be defined

as:

ρ(X) = inf{m | m + X ∈ A}.

The following propositions summarizing the relation between acceptance set

and risk measure, are parallel to the ones given for coherent risk measures.

Proposition 2.4. Suppose ρ : X → R is a convex risk measure with associated

acceptance set Aρ. Then ρAρ
= ρ. Moreover,

1. Aρ is a non empty set satisfying

inf{m ∈ R | m ∈ A} ≥ −∞. (1.1)

2. Hederitary Property: If X ∈ Aρ and Y ∈ X , satisfying Y ≥ X, then

Y ∈ Aρ.

3. If X ∈ A and Y ∈ X , then {λ ∈ [0, 1] | |λX + (1 − λ)Y ∈ A} is closed in

[0,1].

4. ρ is a convex measure of risk if and only if A is convex.

Proof: The first part of the proof is similar to the fourth step in proof of

Proposition 1.2. For the properties of Aρ;

1) 0 ∈ X , ρ(0 + ρ(0)) = ρ(0) − 0 ≤ 0. Therefore, 0 ∈ Aρ. Since X : Ω → R for

∀X ∈ X ; if ρ(X) = −∞, ρ(X −∞) ≤ 0. This means that although an infinite

amount of money is drawn from the portfolio it is still riskless. Such a portfolio

does not exist.

2) If X ∈ Aρ, ρ(X) ≤ 0. If Y ≥ X for all ω ∈ Ω by monotonicity ρ(Y ) ≤

ρ(X) ≤ 0, then Y ∈ Aρ.
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3) The function λ → ρ(λX +(1−λ)Y ) is continuous since it is convex and takes

only finite values. Hence set of λ ∈ [0, 1], such that ρ(λX + (1 − λ)Y ) ≤ 0, is

closed.

4) For X,Y ∈ A, by the convexity of ρ, ρ(λX + (1 − λ)Y ) ≤ 0. Hence λX +

(1−λ)Y ∈ A. This means A is a convex set. The converse part of the property

follows Proposition 1.5 given below.

Proposition 2.5. Assume A 6= ∅ is a convex subset of X , satisfying hederitary

property and inequality (1.1). If ρA = inf{m ∈ R | m + X ∈ A}, then

1. ρA is a convex measure of risk.

2. A is a subset of AρA . Moreover if A satisfies the third property of Propo-

sition 1.4, then A = AρA .

Proof: 1) If X,Y ∈ X , then X + ρA(X) and Y + ρA(Y ) ∈ A. From the

convexity of A, λ(X + ρA(X)) + (1− λ)(Y + ρA(Y )) ∈ A. Therefore λρA(X) +

(1 − λ)ρA(Y ) ≥ ρA(λX + (1 − λ)Y ) gives the convexity of ρA. For portfolio

X; ρA(X) = inf{m ∈ R | m + X ∈ A}. If positive k amount of cash is added

to the portfolio, ρA(X + k) = inf{m − k ∈ R | m − k + (X + k) ∈ A}. Hence

translation invariance follows. If Y ≥ X for all ω ∈ Ω, then ρA(X) = inf{m ∈

R | m + X ∈ A} ≥ inf{m ∈ R | m + Y ∈ A} = ρA(Y ), means that ρA satisfies

the monotonicity condition. To show that ρA takes only finite values, fix some

Y of non empty set A. For every X ∈ X , there exists a finite number m with

m+X > Y since X and Y are bounded. By monotonicity ρ(m+X) ≤ ρ(Y ) ≤ 0.

By translation invariance ρ(X) ≤ m. To show ρA(X) > −∞, take m′ such that

X + m′ ≤ 0. ρ(X + m′) ≥ ρ(0) −∞. Therefore ρ(X) > −∞.

2) AρA = {X | inf{m ∈ R | m + X ∈ A} ≤ 0} ⊇ A. Let A satisfy the third

property of Proposition 1.5. It must be shown that if X /∈ A, then ρA > 0.

Take m > ρA(0), ρA(0) − m < 0, ρA(m) < 0. There exists an ε ∈ [0, 1] such

that εm+(1− ε)X /∈ A. Thus ρA(εm+(1− ε)X) ≥ 0, ρA((1− ε)X)− εm ≥ 0,

εm ≤ ρA(1 − ε)X) = ρA(ε0 + (1 − ε)X) ≤ ρA(0) + (1 − ε)ρA(0). As a result

ρA(X) ≥ ε(m−ρA(0))
1−ε

> 0.
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2.2.1 Convex Risk Measures when Ω is Finite

Theorem 2.3. Suppose X is the space of all real valued functions on a finite

set Ω. Then ρ : X → R is a convex measure of risk if and only if there is a

penalty function α : P → (−∞,∞] such that

ρ(Z) = sup
Q∈P

(EQ[−Z] − α(Q)).

The function α satisfies α(Q) ≥ ρ(0) for any Q ∈ P for any Q ∈ P .

Proof: The if part: For each Q ∈ P ; the risk function is defined as

ρ : X → EQ(−X) − α(Q).

This expression is: 1) Convex : λX+(1−λ)Y → EQ[−(λX+(1−λ)Y )]−α(Q) ≤

λEQ[−X − α(Q)] + (1 − λ)EQ[−Y − α(Q)]. This inequality is preserved when

the supremum is taken.

2)Translation invariant : X + k → EQ[−(X + k) − α(Q)] = EQ[−X] − k −

α(Q).

3) Monotone: If X ≤ Y , EQ[−X]−α(Q) ≥ EQ[−Y ]−α(Q). Taking supre-

mum preserves the inequality.

For the converse implication, define α(Q) for Q ∈ P as

α(Q) = sup
X∈X

(EQ[−X] − ρ(X)).

Then claim that α(Q) = supX∈Aρ
EQ[−X]. Since Aρ ⊆ X , supX∈X (EQ[−X] −

ρ(X)) ≥ supX∈Aρ
EQ[−X]. To show the converse inequality take an arbitrary

X and say X ′ = X + ρ(X) ∈ Aρ. Then

sup
X∈Aρ

EQ[−X] ≥ EQ[−X ′] = EQ[−X] − ρ(X),
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sup
X∈Aρ

EQ[−X] ≥ sup
X∈X

(EQ[−X] − ρ(X)).

This proves the claim. Note that the assumption of Ω being finite has not been

used yet.

Fix some Y ∈ X and take α as defined above. Then

EQ[−Y ] − ρ(Y ) ≤ sup
X∈X

(EQ[−X] − ρ(X)),

ρ(Y ) ≥ EQ[−Y ] − α(Q),

ρ(Y ) ≥ sup
Q∈P

(EQ[−Y ] − α(Q)).

To establish the inverse inequality, take m ∈ R such that

m > sup
Q∈P

(EQ(−Y ) − α(Q)).

It must be shown that m ≥ ρ(Y ) or equivalently m+Y ∈ Aρ. This will be done

by contradiction. Suppose that m+Y /∈ Aρ. By definition being convex function

on R
n, where n = card(Ω), ρ takes only finite values. Moreover according to

Rockafeller’s Convex Analysis 1, ρ is continuous. Here ρ(X) ≤ 0 forms a convex

set Aρ. By the separation theorem (Appendix, A6)a linear functional can be

found such that

β : sup
X∈Aρ

l(X) < l(m + Y ) =: γ < ∞

claiming that l follows a negative linear functional. Indeed normalization and

monotonicity axiom imply that ; ρ(0) = 0 and ρ(X) ≤ ρ(0) for X ≥ 0. Thus

if X ∈ X satisfies X ≥ 0, then λX + ρ(0) /∈ Aρ for all λ ≥ 1. Hence

γ > l(λX + ρ(0)) = λl(X) + ρ(0). As λ ↗ ∞ inequality holds only if l(X) ≤ 0.

Without loss of generality it can be assumed that l(1) = −1. Then Q(A) :=

l(−IA) defines a probability measure Q ∈ P . Furthermore l(X) = EQ[−X] for

1From [Ro70]; Corollary 10.1.1: A convex function finite on all of R
n is necessarily con-

tinuous.
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∀X ∈ Aρ. Taking the supremum of both sides preserves equality;

sup
X∈Aρ

l(X) = sup
X∈Aρ

EQ(−X).

By definition β = α(Q). But EQ[−Y ] − m = l(m + Y ) = γ > β = α(Q). This

is a contradiction, so m ≥ ρ(Y ) and m + Y ∈ Aρ.

2.2.2 Convex Risk Measures when Ω is Infinite

When Ω is infinite, X , the space of possible financial positions, is taken to be

the linear space of all bounded measurable functions on a measurable space

(Ω,F). The line of reasoning is as follow; firstly since integration is well de-

fined on a finitely additive, non-negative set function on the given linear space

([DuSc58], III.2 of 6), the representation theorem will be constructed on these.

Next the theory will be extended in order to pass to the σ finite (Appendix,A1)

probability measures. Such a representation can be examined under two differ-

ent assumptions; there may either be an a priori probability measure on (Ω,F)

which means that X = L∞(Ω,F , P ), in other words between the agents there is

at least a common view on which events are not likely to occur. Or there may

be complete uncertainty, no probability measure in advance given.

Necessary notations for this part are:

• M1,f = M1,f (Ω,F): The class of all finitely additive probability measures

on F that are normalized to 1 i.e. Q(Ω) = 1.

• M1 = M1(Ω,F): The class of all probability measures on (Ω,F).

• α : M1,f → R∪{∞}: The penalty function which is not identically equal

to ∞.

Definition 2.8. When there is no a priori given probability measure, for each
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Q ∈ M1,f ; ρ is defined as follows

ρ = sup
Q∈M1,f

(EQ[−X] − α(Q)) (1.2).

When defined like this, ρ is

1. Monotone: If X ≤ Y , then for each Q; EQ[−X]−α(Q) ≥ EQ[−Y ]−α(Q).

Taking the supremum preserves inequality, then ρ(X) ≥ ρ(Y ).

2. Translation invariant : m ∈ R, EQ[−(X + m)] − α(Q) = EQ[−X] − m −

α(Q). When the supremum is taken, ρ(X + m) = ρ(X) − m.

3. Convex : ρ(λX +(1−λ)Y ) = supQ∈M1,f
(EQ[(−λX +−(1−λ)Y )]−α(Q))

= supQ∈M1,f
(λ(EQ[−X] − α(Q)) + (1 − λ)(EQ[−Y ] − α(Q)))

≤ λ supQ∈M1,f
(EQ[−X] − α(Q)) + (1 − λ) supQ∈M1,f

(EQ[−Y ] − α(Q))

= λρ(X) + (1 − λ)ρ(Y )

It must be stated that there is no unique α. A penalty function characterizes

the risk measure ρ it belongs. Therefore it is said that ρ is represented by α on

M1,f .

Theorem 2.4. For any convex risk measure defined as (1.2) the penalty func-

tion, αmin, given as

αmin(Q) = sup
X∈Aρ

EQ[−X] for all Q ∈ M1,f

is the minimal penalty function representing ρ. That is any penalty function α

for which (1.2) holds, α(Q) ≥ αmin(Q) is satisfied for all Q ∈ M1,f .

Proof: From the representation given in (1.2), for all Q ∈ M1,f ; ρ(X) ≥

EQ[−X] − α(Q). Therefore, α(Q) ≥ supX∈Aρ
(EQ[−X] − ρ(X)). If X ∈ Aρ,

ρ(X) ≤ 0. Hence α(Q) ≥ supX∈Aρ
EQ[−X]. As a result, α(Q) ≥ αmin(Q) for

all Q ∈ M1,f .
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Remark: Coherent risk measures can be given as a special case of convex

risk measures represented by the penalty function α, when α is defined as:







0 if Q ∈ Q

+∞ otherwise

,where Q ⊂ M(1,f). Hence supQ∈Q(EQ[−X] − α(Q)) = supQ∈Q EQ[−X].

The next step in [FS02c] is representing a convex risk measure using σ-finite

probability measures instead of finitely additive non-negative set functions. This

is done by constructing a penalty function α taking infinite values when Q /∈

M1(Ω,F). Hence, ρ(X) = supQ∈M(1,f)
(EQ[−X] − α(Q)), where α(Q) = ∞ if

Q /∈ M1(Ω,F). As a result

ρ(X) = sup
Q∈M1

(EQ[−X] − α(Q)). (1.3)

This kind of representation is closely related with certain continuity properties

given in [FS02b] as follows.

Lemma 2.1. A convex risk measure ρ, represented as (1.3) is continuous from

above in the sense that

Xn ↘ X =⇒ ρ(Xn) ↗ ρ(X). (1.4)

This condition is also equivalent to; if Xn is a bounded sequence in X converging

pointwise to X ∈ X , then

ρ(X) ≤ lim inf
n↗∞

ρ(Xn). (1.5)

Proof: Firstly (1.5) holds if ρ can be represented in terms of probability mea-

sures. The dominated convergence theorem says that, if {Xn, n ∈ N} converges

if and only if there is an integrable extended random variable X such that ∀n
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| Xn |≤ X, then

E[ lim
n→∞

Xn] = lim
n→∞

E[Xn],

E[X] = lim
n→∞

E[Xn],

E[Xn] → E[X] as n → ∞.

This implies for each Q ∈ M1 EQ[Xn] → EQ[X] as n → ∞. Hence

ρ(X) = sup
Q∈M1

( lim
n→∞

EQ[−Xn − α(Q)]),

EQ[−Xn − α(Q)] ≤ sup
Q∈M1

( lim
n→∞

EQ[−Xn − α(Q)]),

lim
n→∞

(EQ[−Xn − α(Q)]) ≤ lim inf
n→∞

sup
Q∈M1

(EQ[−Xn − α(Q)]),

sup
Q∈M1

( lim
n→∞

(EQ[−Xn] − α(Q))) ≤ lim inf
n→∞

sup(EQ[−Xn] − α(Q)),

= lim inf
n→∞

ρ(Xn).

To show the equivalence of (1.4) and (1.5), we will firstly assume that (1.5)

holds. For each n; if Xn ↘ X, then ρ(X) ≥ ρ(Xn). As a result ρ(Xn) ↗ ρ(X).

If (1.4) holds (i.e. (Xn) is a bounded sequence in X , converging to X), then

define Ym = supn≥m Xn ∈ X . This implies Ym decreases P a.s. to X. Since

ρ(Xn) ≥ ρ(Yn), by monotonicity, (1.4) yields that

lim inf
n↗∞

ρ(Xn) ≥ lim
n↗∞

ρ(Yn) = ρ(X).

The above lemma says that if ρ is concentrated on probability measures, it

satisfies continuity from above. A stronger condition, continuity from below,

says that if all increasing sequences in X are continuous from below, then ”any

penalty function” is concentrated on M1.

Proposition 2.6. Let ρ be a convex measure of risk which is continuous from
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below in the sense that

Xn ↗ X ⇒ ρ(Xn) ↘ ρ(X)

and α a penalty function on M1, representing ρ. Then,

α(Q) < ∞ ⇒ Q is σ additive.

Proof: The proof this proposition can be found in [FS02b] pg 169.

If there exists a specified probabilistic model on (Ω,F), X becomes L∞(Ω,F , P ).

Then it can be considered that

ρ(X) = ρ(Y ) if X = Y P a.s. (1.6)

Lemma 2.2. Let ρ be a convex measure of risk satisfying (1.6) and represented

by α(Q). Then for any probability measure which is not absolutely continuous

with respect to P , α(Q) = ∞.

Proof: If Q ∈ M1(Ω,F) is not absolutely continuous with respect to P , then

there exists an A ∈ F such that Q(A) > 0, where P (A) = 0. Take any X ∈ Aρ

and define Xn = X − nIA. Then ρ(Xn) = ρ(X) since X − nIA = X P a.s.

Therefore Xn ∈ Aρ for n ∈ N .

α(Q) ≥ αmin(Q) ≥ EQ[−Xn] = EQ[−X] + nQ(A) → ∞ as n → ∞

This means that if probability measures absolutely continuous with respect to

P are denoted by M1(P ), ρ of any X ∈ L∞ can be represented by penalty

functions restricted to M1(P ).

ρ(X) = sup
Q∈M1(P )

(EQ[−X] − α(Q))
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2.3 Convex Conditional Risk Measures

In each section of this chapter an assumption that is not compatible with real

market conditions are dropped. Conditional convex risk measures integrates

the asymmetric information theory, which has an important place in financial

literature, to the theory of measuring financial market risk. There are various

kinds of agents in the market: managers, low scale investors, supervisors, banks,

funds and so on. Assuming that all these have access to the same information

set is not realistic. Differentiation of the information sets that each investor

has access to is called asymmetric information. When trying to model risk this

difference should be considered. The theoretical structure of this integration

was created by Bion-Nadal in her article dated June 2004. This section is based

on this paper, [BN04].

The integration is carried out by using the conditional expectation, where the

condition represents all accessible information. As it was already defined, X

represents the set of financial positions, (which is) the linear space of bounded

maps on Ω. But from now on the investor does not have full information on the

entire σ-algebra of Ω. As a result he does not have access to all maps defined on

Ω, but only to measurable maps defined on σ algebra F (which is not equal to

σ(Ω)). And the risk measure is formed as the conditional expectation of X ∈ X

given the σ algebra F .

Different from the previous sections, in this section risk measures will not be

investigated when Ω consists of finite number of scenarios. Instead of this,

restriction is done in terms of σ-algebra by assuming the entire σ-algebra is not

known. Representation theorems for conditional convex risk measures will be

given in two subsections; firstly under the assumption that there is complete

uncertainty (i.e. no given probability measures); secondly assuming partial

uncertainty, there exists an a priori given probability measure on the measurable

space (Ω,F).
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2.3.1 Convex Conditional Risk Measures Under Com-

plete Uncertainty

The necessary building blocks for this subsection are the linear space X of

financial positions where a financial position is a bounded map defined on Ω

and sub-sigma algebra F on Ω. Then (Ω,F) consists a measurable space and EF

denotes the set of all bounded real valued measurable maps on (Ω,F). There

is no common view on which sets of F are null sets. In other words, there is no

base probability given.

Definition 2.9. A mapping ρF : X −→ EF is called a risk measure conditional

to the σ-algebra F if it satisfies the following:

1. Monotonicity : For all X,Y ∈ X ; if X ≤ Y , then ρF(Y ) ≤ ρF(X).

2. Translation Invariance: For all X ∈ X and Y ∈ EF ; ρ(X+Y ) = ρ(X)−Y .

3. Multiplicative Invariance: For all X ∈ X and for all A ∈ F ; ρ(XIA) =

IAρF(X).

Remark: Contrary to the previous sections, in conditional risk measures, the

risk of a position is not described with a single number but with a (Ω,F) mea-

surable map. The risk measure of a position X conditional to σ algebra F is

the minimal F measurable map, which, added to the initial position X, makes

the position acceptable. This is a different from adding a determined level of

cash which brings the same risk free return under each scenario. It can be said

that conditional convex risk measures prevent the investor from holding an idle

amount of capital to make the position acceptable.

Remark: The interpretation of first two properties , monotonicity and trans-

lation invariance, are the same as in the previous sections. Multiplicative in-

variance assures that if a position is acceptable when the whole σ algebra F is

considered, then it is acceptable through each and every subset of F .
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Definition 2.10. A risk measure conditional to σ algebra F is a convex risk

measure conditional to σ algebra F if it satisfies

• Convexity: For all X,Y ∈ X and λ ∈ [0, 1]; ρF(λX + (1 − λ)Y ) ≤

λρF(X) + (1 − λ)ρF(Y ).

Definition 2.11. The acceptance set for a conditional risk measure is defined

as

AρF = {X ∈ X | ρF(X) ≤ 0}.

Proposition 2.7. The acceptance set A = AρF of a convex conditional risk

measure ρF

1. is non-empty, closed with respect to the supremum norm and has a heder-

itary property: for all X ∈ A and for all Y ∈ X if Y ≥ X, then Y ∈ A

2. satisfies the bifurcation property: for all X1, X2 ∈ A and for all disjoint

B1, B2 ∈ F

X = X1IB1 + X2IB2

is in A.

3. Every F measurable element of A is positive.

4. ρF can be recovered from A

ρF(X) = inf{Y ∈ EF | X + Y ∈ A}.

Proof: For the proof of this proposition [BN04], pg 7.

For the rest of this section it will be assumed that there is a σ algebra G such

that X is the set of all bounded measurable functions on the measurable space

(Ω,G) and F is a sub-sigma algebra of G. M1,f denotes the set of all finitely

additive set functions. Q : G → [0, 1] such that Q(Ω) = 1.
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Theorem 2.5. Let ρF be a convex risk measure conditional to F . Then, for

all X ∈ X there is QX ∈ M1,f , such that for all B ∈ F

EQX
[ρF(XIB)] = EQX

[−XIB] − sup
Y ∈AρF

EQ[−Y IB]. (1.7)

For all X ∈ X , for all Q ∈ M1,f and for all B ∈ F

EQ[ρF(XIB)] ≥ EQ[−XIB] − sup
Y ∈AρF

EQ[−Y IB]. (1.8)

Proof: For all X ∈ X , ρF(ρF(X) + X) = ρF(X) − ρF(X) = 0. So for

ρF(X) + X ∈ AρF . Then for all Q ∈ M1,f

sup
Y ∈AρF

EQ[−Y ] ≥ EQ[−X − ρF(X)].

Putting a condition preserves the inequality for all B ∈ F .

sup
Y ∈AρF

EQ[−Y IB] ≥ EQ[−XIB] − EQ[ρF(X)IB].

This gives us the inequality (1.8). It is enough to prove the equality (1.7) for

ρF(X) = 0. If ρF(X) 6= 0, by replacing X by X + ρF(X), the same result

can be reached. To begin, consider the convex hull C of {(Y − X)IB, ρF(Y ) ≤

0 and B ∈ F} (i.e. the smallest convex set containing {(Y − X)IB, ρF(Y ) ≤

0 and B ∈ F}).

STEP 1: Prove that C ∩ {0} = ∅

Assume that (there are) λi ≥ 0; Σn
i=1λi = 1 and Σn

i=1λi(Yi −X)IBi
= 0. Choose

J ⊂ {1, 2, ..., n} such that B̃ = ∩i∈JBi 6= ∅ and such that ∀j ∈ {1, 2, ..., n} − J ,

B̃ = ∩Bj = ∅.

It is given that λ1(Y1 −X)IB1 + ... + λn(Yn −X)IBn
= 0. This is the definition
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of the convex hull and, moreover, I∩i∈JBi
is not identically 0. Therefore

λ1(Y1 −X)IB1−B̃ + λ1(Y1 −X)IB̃ + ... + λn(Yn −X)IBn−B̃ + λn(Yn −X)IB̃ = 0

Σn
i=1λi(Yi − X)IBi−B̃ + Σn

i=1λi(Yi − X)IB̃ = 0

Σn
i=1λi(Yi − X)IBi−B̃ + Σi∈Jλi(Yi − X)IB̃ = 0

The condition that ρF(Y ) ≤ 0 and ρF(X) = 0 gives that for all Y ≥ X

and λi ≥ 0, where i = 1, ..., n, the above equation is satisfied if both of the

summations are equal to 0.

Let Ỹ = Σi∈JλiYi

Σi∈Jλi
= λ1Y1

Σi∈Jλi
+ ... + λnYn

Σi∈Jλi
If λi

Σi∈J
= ki, then Σi∈Jki = 1. From

the convexity of ρF , ρF(Ỹ ) < 0. On the other hand Ỹ IB̃ = XIB̃ so ρF(Ỹ IB̃) =

ρF(XIB̃) = 0. This is a contradiction. Therefore the convex hull C does not

contain {0}.

STEP 2: C contains the open ball B1(1−X) = {Y ∈ X ; ‖ Y − (1−X) ‖< 1}.

Indeed if Y ∈ B1(1−X), ‖ Y −X−1 ‖< 1. Call Y +X = Z, then ‖ Z−1 ‖< 1.

We can define B1(1) as follows; B1(1) = {Z ∈ X ; ‖ Z −1 ‖< 1}. Because of the

supremum norm given, −1 < Z − 1 < 1. By monotonicity ρ(2) < ρ(Z) < ρ(0).

Since ρ(0) = 0, ρ(Z) < 0. Recalling Y = Z − X the claim follows.

STEP 3: Prove the existence of QX ∈ M1,f such that ∀B ∈ F EQX
[−XIB] =

supY ∈AρF
EQX

[−Y IB].

From step 1, 0 does not belong to C and C is a non-empty set. As a consequence

of the Separation Theorem in Appendix A6, there exists a non-zero continuous

linear functional l on X , such that 0 = l(0) ≤ l(Z) for all Z ∈ C. 0 ≤

l((Y −X)IB) for all Y satisfying ρF(Y ) < 0 and for all B ∈ F . For all Y ∈ AρF

and ∀ε > 0; ρ(Y + ε) < 0. Hence by the continuity of l,

0 ≤ l((Y − X)IB) ∀Y ∈ AρF . (1.9)
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Now for ∀Y ≥ 0 and ∀λ > 0, ρF(1 + λY ) < 0. Therefore (1 + λY − X) ∈ C

and l(1 + λY − X) = l(1) + λl(Y ) − l(X) ≥ 0. To verify this inequality for

every λ > 0, l(Y ) must be greater than or equal to 0. This means that l

is a positive functional. Therefore l(1) > 0. From Appendix A7, there is a

unique QX ∈ M1,f defined as EQX
(Y ) = l(Y )/l(1) for all Y ∈ X . From (1.9),

EQX
(−XIB) ≥ EQX

(−Y IB) for all B ∈ F and ∀Y ∈ AρF . This implies

EQX
[−XIB] ≥ sup

Y ∈AρF

EQX
[−Y IB].

From the inequality (1.8), EQX
[−XIB]−supY ∈AρF

EQX
[−Y IB] ≤ EQX

[ρF(X)IB].

Since ρF(X) = 0, EQX
[ρF(X)IB] = 0. This provides

EQX
[−XIB] ≤ sup

Y ∈AρF

EQX
[−Y IB].

This ends step 3 and the proof.

Like the previous section, next step is making the necessary transformations to

define ρF in terms of σ finite probability measures.

Definition 2.12. A convex conditional risk measure is continuous from below if

for all increasing sequence Xn of elements of X converging to X, the decreasing

sequence ρF(Xn) converges to ρF(X).

Theorem 2.6. Let ρF be a convex risk measure conditional to F . Assume that

ρF is continuous from below. Then for all X ∈ X , for every probability measure

P on (Ω,F); there is a QX in M1(G,F , P ) such that

ρF(X) = EQX
[−X | F ] − α(QX) P a.s.

,where M1(G,F , P ) is the set of all probability measure Q on (Ω,G) such that

the restriction of Q to F is equal to P .

Proof: The following lemma will be used in the proof of this theorem.
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Lemma 2.3. Let P be a finitely additive set functions on F and P : F → [0, 1]

such that P (Ω) = 1. For each X ∈ X there is a finitely additive set function

QX on G such that the equality (1.7) is satisfied and such that the restriction

of QX to F is equal to P .

Proof: Define ρ̃(X) = EP [ρF(X)], then ρ̃(X) is a convex measure of risk. So

for all X ∈ X , there is a QX in M1,f such that

ρ̃(X) = EQX
[−X] − sup

Y ∈Aρ̃

EQX
[−Y ] (1.10)

and for all Z ∈ X

ρ̃(Z) ≥ EQX
[−Z] − sup

Y ∈Aρ̃

EQX
[−Y ] (1.11).

Since X is bounded, from the equality (1.10), supY ∈Aρ̃
EQX

[−Y ] is a real num-

ber. It will be denoted by α(QX). If Z = βIB for all β ∈ R in (1.11),

EP [ρF(βIB)] ≥ EQX
[−βIB] − α(QX).

From multiplicative invariance ρF(βIB) = ρF(β)IB. Then, ρF(ρF(β) + β) = 0.

Since ρ(0) = 0, by monotonicity ρ(0) = −β. Therefore

EP [−βIB] ≥ −βQX(B) − α(QX),

P (B) − β ≥ −βQX(B) − α(QX).

As a result, 0 ≥ α(QX) ≥ β(P (B) − QX(B)) for all β ∈ R and B ∈ F . This

inequality is satisfied for all β only if P (B) = QX(B) for all B. This means

that the restriction of QX to F is equal to P . Then (1.10) can be written as

EQX
[ρF(X)] = EQX

[−X] − sup
Y ∈Aρ̃

EQX
[−Y ].
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Since AρF is contained in Aρ̃,

EQX
[ρF(X)] ≤ EQX

[−X] − sup
Y ∈AρF

EQX
[−Y ].

Moreover, from theorem (1.5), the converse inequality also holds. Then

EQX
[ρF(X)] = EQX

[−X] − sup
Y ∈AρF

EQX
[−Y ]. (1.12)

Now assume that there is an F measurable set B such that inequality (1.8) is

strict for QX . There is a Y0 ∈ AρF such that

EQX
[ρF(X)IB] > EQX

[−XIB] − EQX
[−Y0IB].

Let Y = Y0IB + (X + ρF(X))IΩ−B. From bifurcation property Y ∈ AρF .

Furthermore

EQX
[ρF(X)IB] > EQX

[−XIB] − EQX
[−Y IB] − EQX

[−Y IΩ−B] + EQX
[−XIΩ−B]

+ EQX
[ρF(X)IΩ−B]

This contradicts (1.12). So QX satisfies equality (1.7) for all B ∈ F and the

restriction of QX to F is equal to P .

Con’t of the proof : Let P be a probability measure on (Ω,F). Let X ∈ X ; from

lemma 1.3 there exists a finitely additive set function QX such that equality

(1.7) is satisfied for all B ∈ F and the restriction of QX to F is equal to P . It

remains to prove that QX is a probability measure on (Ω,G).

Let (An)n∈N be an increasing sequence in G and
⋃

n∈N An = Ω. Then it must

be proved that QX(An) converges to 1. Applying equality (1.7) to B = Ω;

EP [ρF(X)] = EQX
[−X] − α(QX)

34



where α(QX) = supY ∈AρF
EQX

[−Y ] and X and ρF(X) are bounded. Therefore

α(QX) is finite.

Let λ > 0. Apply inequality (1.8) to λIAn
,

EQX
[λIAn

] ≥ −EP [ρF(λIAn
)] − α(QX).

As n tends to infinity, ρF(λIAn
) tends to ρF(λ) = −λ. Therefore

lim inf
n→∞

λEQX
[IAn

] ≥ lim
n→∞

(−EP [ρF(λIAn
)] − α(QX)),

lim inf
n→∞

EQX
[IAn

] ≥ 1 −
α(QX)

λ
.

As λ goes to infinity, lim infn→∞ EQX
[IAn

] = lim infn→∞ QX(An) ≥ 1. This ends

the proof.

Convex risk measures conditional to F have representations in the following

form, when they are continuous from below.

ρF(X) = inf
g∈εF

{∀Q ∈ M1(Ω,G), g ≥ EQ[−X | F ]−esssupY ∈AρF
EQ[−Y | F ] Q a.s.}

,where M1(Ω,G) is the set of probability measures on (Ω,G). Under such a

representation the penalty function equals to

α(Q) = esssupY ∈AρF
EQ[−Y | F ] Q a.s.

2.3.2 Convex Conditional Risk Measures Under Partial

Uncertainty

In this part again Ω represents the infinite set of possible scenarios. A financial

position is a bounded map on this set. X is the linear space of financial positions.

σ algebra F represents all the accessible information for the investor. εF is the

set of all bounded real valued (Ω,F) measurable maps. Unlike the previous
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part, there exists a probability measure P on F . The aim is to define a risk

measure conditional to (Ω,F , P ).

Definition 2.13. A mapping ρF : X → L∞(Ω,F , P ) is called a risk measure

conditional to probability space (Ω,F , P ), if it satisfies the following conditions.

1. Monotonicity: For all X,Y ∈ X ; if X ≤ Y , then ρF(X) ≥ ρF(Y ) P a.s.

2. Translation Invariance: For all Y ∈ εF and for all X ∈ X ; ρF(X + Y ) =

ρF(X) − Y P a.s.

3. Multiplicative Invariance: For all X ∈ X and for all A ∈ F ; ρF(XIA) =

IAρF(X) P a.s.

Definition 2.14. A risk measure defined on X , conditional to the probability

space (Ω,F , P ) is called convex if for all X,Y ∈ X and for all λ ∈ [0, 1];

ρF(λX + (1 − λ)Y ) ≤ λρF(X) + (1 − λ)ρF(Y ) Pa.s.

Definition 2.15. The F acceptance set of a risk measure conditional to prob-

ability space (Ω,F) is

AρF = {X ∈ X | ρF(X) ≤ 0 Pa.s.}.

Proposition 2.8. Let ρF be a risk measure conditional to the probability space

(Ω,F , P ) with acceptance set A = AρF . Then A satisfies the properties 1 and

2 of proposition 1.7 (A is a closed non-empty set satisfying hederitary and

bifurcation properties). Furthermore it satisfies

3. Positivity: Every F measurable element of A is positive Pa.s.

4. ρF can be recovered from A;

ρF(X) = essinf{Y ∈ εF | X + Y ∈ A}.

Proof: 3. As an easy consequence of translation invariance and multiplicative

invariance the restriction of any risk measure conditional to (Ω,F , P ), to εF is
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equal to −identity Pa.s. As a result of this property for all F measurable X,

ρF(X) = −X Pa.s. and by the definition of A positivity follows.

4. Let X ∈ X . Denote BX = {f ∈ εF | X +f ∈ A}. Therefore ρF(X +f) ≤

0 Pa.s., by translation invariance ρF(X) = essinf{Y ∈ εF | X + Y ∈ A}.

Definition 2.16. A convex risk measure is continuous from below if for all in-

creasing sequence, Xn of elements of X converging to X, the decreasing sequence

of ρF(Xn) converges to ρF(X) Pa.s.

Theorem 2.7. Let ρF be a convex risk measure conditional to probability space

(Ω,F , P ). Assume that ρF is continuous from below, then for all X ∈ X

ρF(X) = essmaxQ∈M(EQ[−X | F ] − α(Q))

,where α(Q) = esssupY ∈AρF
EQ[−Y | F ]. M is a set of probability measures on

(Ω,G) where restriction to F is equal to P .

Proof: The line of reasoning is similar to the proof of theorem 1.1 and can be

found in [BN04] pg 21.
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Chapter 3

EXAMPLES OF COHERENT

AND CONVEX RISK

MEASURES

At the beginning, it was said that the reason for VaR to be so widely used

is its simplicity in interpretation and easiness in application. If the main goal

is finding a risk measure better than VaR, constructing perfect mathematical

models, evaluating every possibility, would not mean much, if it cannot be used

by the agents in the market. In the previous chapter it is assumed that an

agent works with all possible distribution functions. The strong theoretical

foundations given in the previous chapter are very important to ensure that we

are on the right track. However, less complex, more practical specifications are

needed to approximate the risk of a position when observed market data is the

only input. Such examples will be given in this chapter. Some of these examples

are still suffering from complications in application but others are strong rivals

for VaR.
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3.1 Expected Shortfall:

Like stated before, VaR only answers the question of what the maximum loss

with α% confidence level is. In other words, in α of hundred observations, a

loss higher than VaR would not be observed. If this interpretation is rephrased,

VaR is the minimum loss that an investor can face in 100 − α days out of 100

[AT02a]. Value at Risk cannot tell the investor what he should expect under

the worst scenarios.

Given that portfolio returns are represented by random variable X on prob-

ability space (Ω,G, P ), E[X] denotes the expectation of X under the given

probability distribution P ; under the assumption that E[X−] < ∞. P is the

probability distribution of the historical returns. One of the answers to the

above question is the Tail Conditional Expectation(TCE). Through the rest of

this part VaR is defined as:

V aRα(X) = − sup{x | P (X ≤ x) ≥ α}.

Definition 3.1. Let X be a random variable representing the profit of the port-

folio (positive values for profit and negative values for losses). For a determined

confidence level α; TCE is defined as

TCEα(X) = −E{X | X ≤ −V aRα}.

This measure gives us the mean loss under scenarios leading losses higher than

or equal to V aRα. But this measure is not coherent in general, since it fails to

satisfy the subadditivity axiom as given in [D00]. Moreover, if the distribution

is discontinuous, then {X ≤ −V aRα} can have probability higher than (1−α).

Therefore, the outcome can be higher than our worst case expectation and does

not answer our question. Such a situation is shown in Figure 3.1.

Expected shortfall (ES) is constructed as a solution for all problems stated
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above. [AT02a] explains it in the context of the following example. Take a

large number of observations {xi}{i=1,...,n} of random variable X. Sort them in

ascending order as x1:n ≤ x2:n ≤ ... ≤ xn:n. Then approximate number of

(1 − α)% elements in the sample by w = [n(1 − α)] = max{m | m ≤ nα,m ∈

N}. The set of (1 − α)% worst cases is represented by the least w outcomes

{x1:n ≤ x2:n ≤ ... ≤ xw:n}. Then a natural estimator for 1 − α quantile xα is

xα
(n)(X) = xw:n

and

ESα
n (X) = −

∑n

i=1 xi:n

w

In order to understand the difference in this setting TCEα
n is given as

TCEα
n (X) = −

∑n

i=1 xiI{xi≤xw:n}
∑n

i=1 I{xi≤xw:n}

Subadditivity of ES can be seen as

ESα
n (X + Y ) = −

∑n

i=1(x + y)i:n

w

≤ −

∑n

i=1(xi:n + yi:n)

w

= ESα
n (X) + ESα

n (Y ).

As can easily be seen in the Figure 3.2, giving the cumulative probability dis-

tribution of losses (i.e. positive values for the losses and negative values for the

profits) when VaR is taken at 95 percent confidence level, for a discontinuous

distribution ES uses only points {c, d}, while TCE is found through {a, b, c, d}.

So TCE is always smaller than or equal to ES.

When the number of observations go to infinity, the result given above is ex-

tended by using the following definition.

Definition 3.2. Let X be a random variable and α be a specified probability
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Figure 3.1: Loss distribution of a portfolio

level. Then ES is defined as;

ESα
n (X) = −

1

(1 − α)
(E[XI{X≤xα}] − xα(P (X ≤ xα)) − (1 − α))

,where xα = limn→∞Xw:n.

The first term on the right hand side is equal to TCE, the second term creates

the difference between TCE and ES when the distribution is not continuous at

(1−α) level. That is the exceeding part which has to be subtracted from TCE

when {X ≤ xα} has a probability larger than (1 − α), otherwise it disappears.

Remark: As it is discussed an insurance against the uncertainty of net worth

of the portfolio, firm could or often would be regulated to hold an amount of

riskless investment. This amount is named as risk capital. From a financial

perspective this low return investment is a burden. So it is important to opti-

mize this amount and fairly allocate it. To do this management should answer,

how much of this risk capital is due to each of the departments. Answering this

question risk capital can be allocated coherently. Moreover such an allocation
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Figure 3.2: VaR and other related points in the loss distribution

provides a basis for the performance comparison.

In [We02] an allocation method for risk capital is said to be coherent if:

1. the risk capital is fully allocated to the portfolios, in particular,each port-

folio can be assigned a percentage of the total risk capital,

2. no portfolio’s allocation is higher than if they stood alone, (Similarly for

any coalition of portfolios and coalition of fractional portfolios.)

3. a portfolio’s allocation depends only its contribution to risk within the

firm,

4. a portfolio that increases its cash position will see its allocated capital

decreases by the same amount.
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3.2 Worst Conditional Expectation:

TCE was not the only alternative offered by ADEH for (1 − α)% worst cases.

As a coherent alternative, worst conditional expectation was also given.

Definition 3.3. The worst Conditional Expectation(WCE) at specified confi-

dence level α is

WCEα(X) = − inf{E[X | A] : A ∈ A, P (A) > 1 − α}.

Although definition of WCE can be interpreted similar to ES, it is a little more

complicated. WCE depends not only on the distribution of X but also on the σ

algebra G. Moreover it assumes that the investor has coplete information on the

probability space. We are still working with the given probability distribution

but now we also need to know all A ∈ G. For an infinite Ω this can be a little

impractical.

3.3 Conditional Value at Risk:

Conditional Value at Risk (CVaR) is a coherent system constructed by Rock-

afeller and Uryasev, to quantify dangers beyond VaR. This structure is mainly

an optimization problem, solved through linear programming techniques. For

continuous distributions, CVaR at a given confidence level is the expected loss;

given that loss is greater than or greater or equal to VaR at that level. Moreover

if the distribution is continuous, TCE=ES=CVaR. CV aR+ represents expected

loss greater than VaR at level α and CV aR− represents expected loss greater

than or equal to VaR at level α, equal to TCE. CVaR will be defined as a

weighted average of CV aR+ and VaR and CV aR− ≤ CV aR ≤ CV aR+.

Definition 3.4. When X is a random variable representing loss of a portfolio
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on the given probability space (Ω,G, P ),

CV aR =
P (X ≤ V aRα) − α

1 − α
V aRα +

1 − P (X ≤ V aRα)

1 − α
CV aR+

or equivalently

CV aR =
1

1 − α

∫ 1

α

F−1(u)du

=
1

1 − α

∫ ∞

F−1(α)

udF (u)

,where F−1 is the inverse distribution function of X.

Confirmation of the coherence of CVaR can be found in [P00].
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Figure 3.3: Loss distribution of portfolio X

In the figure below, showing the cumulative distribution function of the losses

of portfolio X, there are two jumps. The first is at loss level x1. A jump

means that the probability of observing a loss of x1 is equal to (B+ − B−).
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Value-at-Risk for the confidence level a is equal to V aRa in the figure by defi-

nition. CV aR+ is equal to the conditional expectation of the ”A” part of the

distribution. CV aR− is equal to the conditional expectation of part ”A+B”.

P (X ≤ V aRα) − α is a+ − a. 1 − P (X ≤ V aRα) is 1 − a+. This means expec-

tation of the part ”A” is taken conditional to (1 − a) instead of (1 − a+). The

rest is taken from V aRa.

Being a coherent risk measure CVaR has a convex acceptance set, which means

every optimum is global. Therefore, it is generally used in portfolio opti-

mization. When asset returns are given as ε = (ε1, ..., εk) for k assets and

x = (x1, ..., xk) is the amount of investment in those k assets, total portfo-

lio return will be −X = εT x. The aim is minimizing CVaR under the given

constraint (expected return of the portfolio exceeds a determined level). The

problem can be formalized as follows;

minx CV aRα(X)

subject to εT (X) ≥ µ

xT 1 = 1

x ≥ 1

3.4 Coherent Risk Measures Using Distorted

Probability

In all the examples given above, risk measures are constructed on the worst

cases. But a good measure should consider the entire distribution. Accord-

ing to [W02]; considering only the worst cases creates a disincentive for risk

management. When an agent uses ES, for instance, he not only ignores the

distribution of losses less than a determined quantile but also cannot see ex-

treme low frequency and high severity losses since ES is only a mean value.

To overcome these deficiencies a risk measure, based on the mean value under

distorted probability, will be offered.
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In this setting, the end of the period loss is represented by X and it has cumula-

tive distribution F (x). In order to reflect real market conditions this distribution

is assumed to be discontinuous.

Definition 3.5. Let g : [0, 1] → [0, 1] be an increasing function with g(0) = 0

and g(1) = 1. The transform F ∗(x) = g(F (x)) defines a distorted probability

distribution where g is called a distortion function.

Definition 3.6. A family of distortion risk measures using the mean-value

under the distorted probability F ∗(x) = g(F (x))

ρ(X) = E∗[X] = −

∫ 0

−∞

g(F (x))dx +

∫ ∞

0

(1 − g(F (x)))dx

is a coherent risk measure when g is a continuous mapping.

The first argument is the expected profit under F ∗ and the second argument is

the mean of losses under F ∗. Therefore all information contained in the original

distribution can be used depending on ”g”.

After constructing the model, the crucial point is choosing the distribution

function. [W02] recommends the following transformation.

g(u) = φ(φ−1(u) − λ)

,where φ is a standard normal cumulative distribution. Then

F ∗(x) = φ(φ−1(F (x)) − λ)

Definition 3.7. For a loss variable X with distribution F , a new risk measure

for capital requirement is defined as follows;

1. For a preselected confidence level α, let λ = φ−1(x),

2. F ∗(x) = φ(φ−1(F (x)) − λ),
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3. Set the capital requirement to be the expected value under F ∗

WT (α) = E∗[X].

Example: Consider a portfolio X with the loss distribution given in the first

two columns of the table below. For the confidence level 0.95, expected shortfall

of this portfolio is 6.2. On the other hand, the risk measure based on the dis-

torted probabilities given in the third column, again at 0.95 confidence level, is

5.36. (For this example WT is smaller than ES, but this can change for different

distributions.) Furthermore, for comparison, in Figure 3.3 both f(x) and f ∗(x)

are shown. In the figure f ∗ is represented by * and for f ♦ is used.

x f(x) f ∗(x)

-5.5 0.01 0.00010507

-5 0.05 0.0016707

-4 0.09 0.0076707

-3 0.13 0.023353

0 0.19 0.063602

1 0.21 0.13966

2 0.15 0.21998

4 0.11 0.2781

5 0.04 0.25684

7 0.02 0.0090228

3.5 Convex Risk Measures Based on Utility

Until now coherent risk measures depending only on probability distributions

have been discussed. In this section risk will be measured also in terms of

subjective utility functions. Convex risk measures based on utility are formed by

Föllmer et. al. They say that when X represents the returns of a given portfolio,
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Figure 3.4: Comparison of f(x) with f ∗(x)

from an investors point of view, risk is related to losing money. Therefore it is

related to X−. The risk of facing a loss is called as shortfall risk. In order to

find this risk, a loss function is used. This is a function giving the amount of

disutility that is caused by a given loss level.

Definition 3.8. A function l : R → R is called a loss function if it is increasing,

not identically constant and has the form

l(x)) = −u(−x)

,where u(x) is an increasing, concave and continuous utility function.

It is assumed that the investor knows his loss function and in the given proba-

bility space (Ω,G, P ) he measures the risk of a position with the expected loss.

Then it is natural to define the set of acceptable positions with a predetermined

disutility level, x0.

A = {X ∈ X | E[l(−X)] ≤ x0}
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Using this acceptance set a convex risk measure, having the representation (1.3),

can be formalized. An example, given in [FS02b], is discussed below.

Example: If the loss function is given as l(X) = ex and x0 = 1,

ρ(X) = inf{m ∈ R | EP [e−m−X ≤ 1]}.

To find the infimum take

EP [e−m−X ] = 1,

e−mEP [e−X ] = 1,

log EP [e−X ] = log(em).

Therefore ρ(X) = log EP [e−X ]. For a convex risk measure given as

ρ(X) = sup
Q∈M1(P )

(EQ[−X] − α(Q)),

α(Q) ≥ supX∈X (EQ[−X]− ρ(X)) ≥ αmin(Q) from Theorem 1.4, where M1(P )

is the set of probability measures that are absolutely continuous with respect

to P . When α(Q) = αmin(Q), the above inequality becomes an equality. As a

result

αmin(Q) = supX∈X (EQ[−X] − log EP [e−X ]).

In order to identify αmin(Q), the supremum of the following must be found.

∫

−X
dQ

dP
dP − log

∫

e−XdP

Suppose Y ∈ L2

∫

−(X + δY )
dQ

dP
dP − log

∫

e−(X+δY )dP
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Differentiate with respect to Y

∫

−Y
dQ

dP
dP −

1
∫

e−(X+δY )dP

∫

−Y e−(X+δY )dP = 0

∫

−Y [
dQ

dP
−

1
∫

e−XdP
e−X ]dP = 0

The above equation is satisfied for all Y ’s if the argument inside the brackets is

0.
dQ

dP
−

1
∫

e−XdP
e−X = 0

dQ

dP
=

e−X

∫

e−XdP

And it follows that

log

∫

e−XdP = −X − log
dQ

dP

When expectation with respect to Q is taken,

EP [
dQ

dP
log

dQ

dP
] = EQ[−X] − log EP [e−X ] = αmin(Q)

This means our minimal penalty function is defined in terms of relative entropy

(Appendix, A8). For each loss function, following the above way, minimal

penalty function can be found. Also there exists a common formulation.

Theorem 3.1. For any convex loss function l, the minimal penalty function is

given by

αmin(Q) = inf
λ>0

1

λ

(

x0 + E[l∗(λ
dQ

dP
)]
)

,where Q ∈ M1(P ) and l∗ is the conjugate function i.e. l∗(z) = supx ∈ R(zx −

l(X)).

The proof of this theorem can be found in [FS02b].

Example: Take

l(x) =







1
p
xp if x ≥ 0

0 otherwise
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where p > 1. Then

l∗(z) =







1
q
zq if x ≥ 0

+∞ otherwise

For a given x0 > 0

αmin(Q) = inf
λ>0

1

λ

(

x0 + E[
1

q
(λ

dQ

dP
)q]

)

=
x0

λ
+

∫

1

q
λq−1(

dQ

dP
)qdP (2.1)

Let ϕ = dQ

dP
and differentiate (2.1).

−
x0

λ2
+ (q − 1)λq−2

∫

1

q
ϕqdP = 0

As a result , the infimum is attained for

λQ =
(

x0
q

q − 1
EP [(

dQ

dP
)q]

)
1
q .
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Chapter 4

MULTI PERIOD COHERENT

RISK MEASURES

In the first two chapters the financial decision process is based on one period

models. However, generally agents do not see an investment decision as a one

period action. Considering this, another approach, treating risk measurement

as a dynamic process consisting of risk evolving over several periods of uncer-

tainty, was developed. In this kind of setting the availability of new information

through the process makes revaluation in locked-in positions possible. In other

types of positions intermediate actions such as cash inflows or outflows is an-

other option. For instance when intermediate action is a possibility, insolvency

time through the process can be determined and by the injection of necessary

amount of cash this liquidity problem can be solved. This kind of liquidity

injection strategy works, if there are more favorable dates and events after this

insolvency time. On the other hand, if agents are working in locked-in positions,

i.e. investment decisions are given at the beginning, as time passes, positions are

revaluated in the light of the new information. As a result in the decision phase

this revaluation process should also be considered by the agents. As such, it can

be understood that multiperiod risk measurement is slightly different from one

period models. In this chapter the multiperiod decision process is investigated

in terms of coherent risk measures. For this, we will first present the necessary

assumptions and notations. Following this, dynamic consistency, a necessary
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feature of dynamic risk measurement, will be investigated. The chapter will end

with an example.

4.1 Assumptions and Notations

Working with an elementary model it is assumed that:

1) Agents are working with locked in positions.

2) There are T periods of uncertainty; working in discrete, time date is shown

as t = 0, 1, . . . , T .

3) Ω represents the finite set of states of the world.

4) A denotes a finite set of events at each t. (Such a setting makes it easier to

use trees, for instance, in a binomial tree model A = {up, down})

5) Ω is the set of all sequences (α1, . . . αT ), αi ∈ A. These sequences are called

full histories.

6) A collection of sequences (α1, . . . ατ ) of length τ (1 ≤ τ ≤ T ) compose

Ωτ . Ω′
τ =

⋃

1≤τ≤T Ωτ is the set of all sequences of length at most τ .(Ω′
τ = Ω′)

Ω′′ = Ω′
T−1 Both Ω′′ and Ω′ are called partial histories. Ω0 represents the initial

state of the economy. The situation at the initial time is represented by the

sequence of zero length which consists of a single element 0.

7) For ω = (α1, . . . αT ) ∈ Ω; the τ restriction of ω is ωτ = (α1, . . . ατ ). If ω′ ∈ Ω′

is ancestor of ω ∈ Ω i.e. ω′ = ωτ , then it is said that ω′ � ω.

8) All possible full histories following the partial history ω ′ ∈ Ω′ are represented

by

F (ω′) = {ω ∈ Ω | ω′ � ω.}

From another point of view Ft represents observed history up to the time t.

9) Fτ is the σ algebra generated by the sets F (ωτ ) with ωτ ∈ Ωτ .

10) X denotes the set of possible portfolios. For each X ∈ X , X : Ω → R.

However, this time X must be seen as a value process, X = (Xt)0≤t≤T . Moreover

Xt is an Ft-adapted process.
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Remark: X = (Xt)0≤t≤T is a function on the product space {0, 1, . . . , T} × Ω

and it is constant for each date in any full history having the same partial

history ωt.

Xt(ω
1) = Xt(ω

2) as long as ω1 and ω2 ∈ Ft.

In this chapter instead of risk measure ρ, risk adjusted value φ will be used. It’s

definition will again be given in terms of acceptable positions.

Definition 4.1. A coherent acceptance set of value processes is a closed convex

cone of X with vertex at the origin, containing positive orthant and intersecting

the negative orthant only at the origin.

Definition 4.2. A coherent risk adjusted value associated to a coherent cone

Acc is

φ(X) = sup{m | X − m ∈ Acc}.

As can easily be seen, risk adjusted value is only the negative of risk measure ρ.

It gives the largest amount of capital that can be subtracted from the position

and still leave it acceptable. Such a conversion is used to simplify calculations.

In [Rie04], a dynamic risk adjusted value φ = (φt)t=0,...,T , where φt : (X)×Ω →

R, is said to satisfy

1. Independence of the past: For all X,Y ∈ X and for all t ∈ [0, T ]; if

Xs(ω) = Ys(ω) for all s ≥ t and for all ω ∈ Ω, then φt(X) = φt(Y ).

2. Monotonicity: For X,Y ∈ X ; if X ≥ Y then φ(X) ≥ φ(Y ).

3. Translation Invariance (with respect to predictable income streams): If z

is an Ft measurable constant cash inflow at date τ ≥ t, then

φt(X + z) = φt(X) +
z

(1 + r)τ−t
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,where r is the risk free rate of return. (In our setting it is assumed to be

0).

If it is assumed that bygones are bygones, it is natural that past payments

should not affect the risk level of future payments. In multiperiod setting risk

adjusted value is translation invariant with respect to the predictable future

cash additions. Adding amount z at date τ for all ωτ is equal to adding present

the value of z to the position today.

Moreover, a dynamic risk adjusted value is coherent if it satisfies

1. Homogeneity: For all X ∈ X and t = 0, . . . , T ; φt(λX) = λφt(X), where

λ ≥ 0.

2. Superadditivity: For all X,Y ∈ X and t = 0, . . . , T ; φt(X +Y ) ≥ φt(X)+

φt(Y ).

4.2 Dynamic Consistency and Recursivity of

Dynamic Coherent Risk Adjusted Values

In a multiperiod setting the acceptability of a position should not be considered

simply as a function of the position itself but also as a function of the available

information. Therefore, the decision process must be consistent in terms of

information flow. That means that if a position is acceptable in period t+1,

then it must also be acceptable on date t, since information set at t+1 already

includes the information provided by Ft. This property is summarized under

the heading ’dynamic consistency’ as follows.

Definition 4.3. A coherent risk adjusted value defined on X ×Ω is said to be

dynamically consistent if

φt+1(X) = φt+1(Y ) for all ωt+1 then φt(X) = φt(Y )
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for all t = 0, . . . , T and all positions X,Y ∈ X .

Dynamic consistency is provided by a consistent set of probability measures.

Consistency in terms of probability measures are related being a product type

probability measure which will be introduced below. However in order to de-

fine the consistency of probability measures, we will firstly give the necessary

notations.

Let P be any probability measure on (Ω,FT ) assigning P (ω) ≥ 0 for each ω ∈ Ω.

Then the marginal probability of a sequence ω′ ∈ Ω′ is

P (ω′) =
∑

ω′�ω

P (ω) = P (F (ω′)). (A)

(In a tree framework this is the probability of getting to the node representing

ω′.) The conditional probability of realization of ω ∈ Ω, given a sequence

ω′ ∈ Ω′ such that ω � ω′, is

P (ω | ω′) =
P (ω)

P (ω′)
.

A single period density (i.e. probability of ω′ followed by α in the next period)

is

P s(α | ω′) =
P (ω′α)

P (ω′)
. (B)

Then

P (ω | ω′) =
P (ω′α)

P (ω′)

P (ω)

ω′α

= P s(α | ω′)P (ω | ω′α).
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The conditional expectation is

E(X | ω′) =
∑

ω�ω′

P (ω | ω′)X(ω)

=
∑

α∈A

P s(α | ω′)
∑

ω�ω′

P (ω | ω′α)X(ω)

= EP s
ω′

E[X | ω′α].

Using all of these, given a collection P of probability measures on Ω,

φt(X) = inf
P∈P

EP [X | ωt]. (3.1)

When risk adjusted value is defined as equation (3.1), it is easy to verify that

it satisfies the conditions of coherency.

If P is given as a collection of probability measures on Ω , for each partial

history ω′ ∈ Ω′′ a collection of single period probability measures can be found

by

Ps(ω′) = {P s(· | ω′) | P ∈ P with P (ω′) > 0}.

Conversely if for each ω′ ∈ Ω′′ a collection of single period measure Ps(ω′) is

given, then the family {Ps(ω′)}ω′∈Ω′′ defines a collection of probability measures

on Ω by

P = {P | P s(· | ω′) ∈ Ps(ω′) for all ω′ ∈ Ω′′ such that P (ω′) > 0}.

This generated probability measure has the form

P : (α1, . . . , αT ) →
T

∏

t=1

P s
t (αt).

Starting with a given set of probability measures, P is the same as the prob-

ability collection gathered by firstly finding single-period probability measures

and then generating probability measures as described above. This equivalence

is valid if P is a collection of product type probability measures.
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Definition 4.4. A collection of probability measures P on Ω is said to be a

product type if

P = {P | P s(· | ω′) ∈ Ps
ω′ for all ω′ ∈ Ω′′ such that P (ω′) > 0.}

(In [ADEHKu02] this product type construction of probability measures is given

as the ”Stability by Pasting” property.) This property means that any compo-

sition of single period probability measures is still in P .

Product type measures are closely related to the recursivity of the risk mea-

surement. By recursivity it is meant that

φ(X | ωt) = inf
P∈P

EP [φ(X | ωt+1) | ωt]

Actually working with product type probability measures is equivalent to the

recursivity property of the risk measure.

φt(X) = inf
P∈P

EP [X | ωt]

Using product type measures, this conditional expectation is minimized by find-

ing the single period probability measures minimizing expected value at each

date. Afterwards these single period measures are combined to reach mini-

mizing probability measure. The solution offered by the recurrence relation is

exactly the same: step by step resolution of the uncertainty.

For the coherent multiperiod acceptability measures the properties of dynamic

consistency and representability by a product type probability measures are

equivalent. Representability by product type probability measures for a risk

adjusted value in equation (3.1) means that it has the property of dynamic

consistency. Because if a risk measure can be represented by product type

probability measures, it has the recursivity property. This means that accept-

ability of Xt, given the history up to t ωt, is determined in terms of values of
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φ(X | ωt+1). This also the main argument of dynamic consistency.

4.3 An Example

In this section a simple theoretical example will be explored in order to illustrate

the notations and definitions of the first two sections. Our three period (t =

0, 1, 2, 3) model will be given as a trinomial tree. For the investigated portfolio

X, there are three possible movements in each period. This means

A = {up,middle, down}.

Then the set of all possible sequences are given as

Ω = {uuu, uum, uud, umu, umm, umd, udu, udm, udd,muu,mum,mud,mmu,

mmm,mmd,mdu,mdm,mdd, duu, dum, dud, dmu, dmm, dmd, ddu, ddm, ddd}

Our random variable X, which is the portfolio value process, is represented by

a tree in the Figure 4.1. Since we are working with locked-in positions, it is

assumed that the investor cannot take an intermediate action. Therefore our

main concern is the final portfolio values at t = 3. Only a revaluation of the

portfolio by using the risk adjusted value process is allowed. The final portfolio

values are given in the table below.

X3(uuu) X3(uum) X3(uud) X3(umu) X3(umm)

23634,75 23516,34 23472,44 23464,46 23437,79

X3(umd) X3(udu) X3(udm) X3(udd) X3(muu)

23293,21 23215,57 23176,7 23150,06 23132,59
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X3(mum) X3(mud) X3(mmu) X3(mmm) X3(mmd)

23075,58 23049,51 23008,07 23006,45 22943,67

X3(mdu) X3(mdm) X3(mdd) X3(duu) X3(dum)

22931,37 22799,16 22679,88 22625,44 22618,03

X3(dud) X3(dmu) X3(dmm) X3(dmd) X3(ddu)

22615,99 22566,4 22560,87 22544,28 22486,2

X3(ddm) X3(ddd)

22168,87 22104,69

Table 4.1: Final portfolio values

It is assumed that agents foresee only three possible scenarios or, in other words,

three possible probability distributions. First, one assumes all states have an

equal probability of 0.0370; second, one assumes asset values will be distributed

normally and, according to the last scenario, asset prices will be determined by

the t distribution. Using the formula (A), probability distributions on Ω′ can

also be found. Moreover, using formula (B), all of the single period probability

measures can be found. For instance

P2(u | u) =
P2(uu)

P2(u)
=

0.0411

0.2321
= 0.1771

It is easier to see these single period probability measures on a trinomial tree.

Single period probabilities for the normal distribution are shown in Figure 4.2.

When this process is repeated for the other two distributions, single period

probability measures for P1 and P3 are calculated. Trees for these two distribu-
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P1 P2 P3

P (uuu) 0.0370 0.0047 0.0057
P (uum) 0.0370 0.0135 0.0079
P (uud) 0.0370 0.0230 0.0218
P (umu) 0.0370 0.0248 0.0358
P (umm) 0.0370 0.0249 0.0378
P (umd) 0.0370 0.0286 0.0397
P (udu) 0.0370 0.0349 0.0453
P (udm) 0.0370 0.0388 0.0482
P (udd) 0.0370 0.0391 0.0493
P (muu) 0.0370 0.0478 0.0505
P (mum) 0.0370 0.0483 0.0555
P (mud) 0.0370 0.0484 0.0560
P (mmu) 0.0370 0.0497 0.0562
P (mmm) 0.0370 0.0500 0.0569
P (mmd) 0.0370 0.0501 0.0573
P (mdu) 0.0370 0.0503 0.0562
P (mdm) 0.0370 0.0504 0.0492
P (mdd) 0.0370 0.0502 0.0430
P (duu) 0.0370 0.0500 0.0409
P (dum) 0.0370 0.0496 0.0391
P (dud) 0.0370 0.0459 0.0379
P (dmu) 0.0370 0.0424 0.0344
P (dmm) 0.0370 0.0397 0.0331
P (dmd) 0.0370 0.0357 0.0232
P (ddu) 0.0370 0.0261 0.0161
P (ddm) 0.0370 0.0207 0.0024
P (ddd) 0.0370 0.0126 0.0006

Table 4.2: Possible probability distributions

tions are given in Appendix A9.

Under the assumption that we are working with product type probability mea-

sures, any combination of these single period probability measures are still in

P . Every point in the tree represents a node. Except the last nodes every node

has a single period probability distribution, giving the conditional probability

distribution for that node. So, for instance, the single period probability dis-

tribution for node u can be take from P1, for another node d, a single period
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P1 P2 P3

P (uu) 0.1110 0.0411 0.0354
P (um) 0.1110 0.0782 0.1132
P (ud) 0.1110 0.1127 0.1429
P (mu) 0.1110 0.1445 0.1620
P (mm) 0.1110 0.1498 0.1705
P (md) 0.1110 0.1509 0.1484
P (du) 0.1110 0.1455 0.1178
P (dm) 0.1110 0.1178 0.0907
P (dd) 0.1110 0.0594 0.0190
P (u) 0.3330 0.2321 0.2915
P (m) 0.3330 0.4453 0.4809
P (d) 0.3330 0.3226 0.2276

Table 4.3: Probability distributions on Ω′

probability distribution can be determined by P3 and so on. Actually minimiza-

tion through P determines the combination that minimizes the expected value

of the portfolio X.

The last step is to find the risk adjusted value at t=0. Using the recursivity

of φ, single period probability measures giving the minimum expected value

at each non-final node will be determined. For instance, to find the minimum

expected value at node uu;

P1(u | uu) × X3(uuu) + P1(m | uu) × X3(uum) + P1(d | uu) × X3(uud)

= 0.333 × 23634, 75 + 0.333 × 23516, 34 + 0.333 × 23472, 44

= 23517.64

P2(u | uu) × X3(uuu) + P2(m | uu) × X3(uum) + P2(d | uu) × X3(uud)

= 0.114 × 23634, 75 + 0.328 × 23516, 34 + 0.558 × 23472, 44

= 23505.23
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P3(u | uu) × X3(uuu) + P3(m | uu) × X3(uum) + P3(d | uu) × X3(uud)

= 0.161 × 23634, 75 + 0.2232 × 23516, 34 + 0.6158 × 23472, 44

= 23508.37

The normal distribution (P2) gives the minimum expected value conditional to

the node uu. When this process is repeated for the other non final nodes, we

end up with

φ(X) = 22847.9

The product probability distribution for the given Ω is

{0.00323,0.0093,0.0158,0.02855,0.02864,0.033,0.03514,0.03912,0.0395,0.0494,

0.0494,0.0494,0.0494,0.0494,0.0494,0.0494,0.0494,0.0494,0.3226,0.3226,0.3226,

0.3226,0.3226,0.3226,0.3226,0.3226,0.3226} respectively. It’s composition is also

shown in the Figure 4.3.
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Figure 4.1: Value Process X
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Figure 4.2: Single Period Probabilities of P2
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Figure 4.3: Product Probability Distribution
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Chapter 5

CONCLUSION

In this work we reviewed risk measures, trying to model the market risk and

determine the capital level required to cover possible losses. Since VaR does

not encourage portfolio diversification, coherent risk measures were developed.

Afterwards convex and conditional convex risk measures followed. Although

these have stronger mathematical foundations than VaR, they can be a little

complicated in application. Different types of consistent risk measures, easy to

apply and interpret, are needed. Some alternatives like expected shortfall, con-

ditional value at risk and risk measures using distorted probability measures are

examined to handle this problem. Moreover, since financial decisions are not

a one period process, multiperiod extensions are more realistic. Only dynamic

models only for coherent risk measures are presented in this work.

As a further real data applications of convex risk measures would be considered.

Furthermore, penalty functions of the convex risk measures can be formulated

using the disutility function l. Such a formulation takes into account the level

of risk aversion of an agent and combines the real world probabilities with sub-

jective utility functions. Another subject can be investigating the conditional

convex risk measures when the intermediate action is a possibility. When the

insolvency time is estimated, best action, like an option contract or an insur-

ance agreement can be made. The extension of multiperiod dynamic models to

infinite set of states of world is another necessity for consistent risk measures to
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be widely accepted. Also the integration of the asymmetric information theory

into the multiperiod setting is a promising area of study.
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APPENDIX

A1.Finitely Additive and σ Finite Measures: Let (Ω,F) be a measurable

space. A mapping µ : F → R is called a finitely additive set function if µ(∅) = 0

and if it satisfies the following.

Whenever Ai are disjoint, Ai ∈ F for i=1,...,n and for

A =
n

⋃

i=1

Ai ∈ F ′

;

µ(A) =
n

∑

i=1

µ(Ai).

M1,f (Ω,F) denotes the set of finitely additive set functions µ : F → [0, 1]

which are normalized to µ(Ω) = 1. The total variation of a finitely additive set

function µ is defined as

‖µ‖var := sup{
n

∑

i=1

|µ(Ai)| | Ai are disjoint sets in F}.

The space of all finitely additive measures µ whose total variation is finite is de-

noted ba(Ω,F). Furthermore the space X of all bounded measurable functions

on (Ω,F) is a Banach space if endowed with the supremum norm. M1,f (Ω,F)

is contained in ba(Ω,F) denotes the integral of a function F ∈ X with respect

to Q ∈ M1,f (Ω,F) by

EQ[F ] =

∫

FdQ.

A measure µ is said to σ finite, when for all F ∈ F ; µ(F ) < ∞.

A2.Duality: If X is a topological vector space over R, all continuous linear

mappings from X into R constitute the dual of X and are denoted by X ′. That

is, for every x ∈ X and f ∈ X ′; f(x) ∈ R. Moreover, the value of the linear
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form f at point x is denoted as < x, f >.

A3.Weak and Weak* Topology: Let (X,X ′) is a dual pair. For any f ∈ X ′

the functional defined by

pf (x) = |f(x)| = | < x, f > | for all x ∈ X

is a seminorm on X. The coarsest topology on X, making all those seminorms

continuous, is the weak topology and is denoted by σ(X,X ′).

Dually, for any x ∈ X, we define a seminorm qx on X ′ by

qx(f) = |f(x)| for all f ∈ X ′.

The coarsest topology on X ′, making all these seminorms continuous, is the

weak* topology and is denoted by σ(X ′, X).

Remark: Although mathematical definitions of the dual space, weak and

weak* topologies are given above, they need some further interpretation. Every

normed vector space X is, by using the norm to measure distances, a metric

space and hence a topological space. This topology on X is also called the

strong topology. The weak topology on X is defined using the continuous dual

space X ′. This dual space consists of all linear functions from X into R which

are continuous with respect to the strong topology. The weak topology on X

is the weakest topology (the topology with the fewest open sets) such that all

elements of X ′ remain continuous. Explicitly, a subset of X is open in the weak

topology if and only if it can be written as a union of (possibly infinitely many)

sets, each of which being an intersection of finitely many sets of the form f−1(U)

with f in X* and U an open subset of R. Moreover weak topologies are convex.

The dual space X ′ is a normed vector space by using the norm ||f || = sup||x||≤1|f(x)|.

This norm gives rise to the strong topology on X ′. Weak* topology on X ′ is the
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weakest topology such that for every x ∈ X, the substitution map φx : X ′ → R,

defined as φx(f) = f(x) for all f ∈ X ′, remains continuous. Subsets of X ′,

which are closed for σ(X,X ′), are called weak* closed.

A4. Polar Sets: Let (X,X ′) be a dual pair. If C is a subset of X, the polar

of C is denoted by Co and is the subset of X ′ satisfying the properties given

below.

1. Co is absolutely convex and σ(X ′, X) closed.

2. If C ⊂ B, then Bo ⊂ Co.

3. If λ 6= 0, then (λA)o = ( 1
|λ|

Ao).

4. (
⋃

α Aα)o =
⋂

α Ao
α.

A5. Bipolar Theorem: Let < X,X ′ > be a duality. For any subset C ⊂ X,

the bipolar M oo is the σ(X,X ′) closed convex hull of C ∪ {0}. (That is the

smallest convex set containing C ∪ {0}.)

A6. Separation Theorem: In a topological vector space X, any two disjoint

convex sets B and C, one of which has an interior point, can be separated by a

non-zero continuous linear functional l on X, i.e.

l(x) ≤ l(y) for all x ∈ C and all y ∈ B.

A7. The integral

l(F ) =

∫

Fdµ, F ∈ X ,

defines a one-to-one correspondence between continuous linear functionals l on

X and finitely additive set functions µ ∈ ba.

A8. Relative Entropy: Relative entropy of Q with respect to P is

ε(Q,P ) = EQ[ln
dQ

dP
] = EP [

dQ

dP
ln

dQ

dP
]
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where P and Q are two equivalent probability measures (their null sets are

same) on (Ω,F). If a strictly convex function f(x) = xlnx is introduced,

ε(Q,P ) = EP [f(
dQ

dP
)].

Relative entropy is a convex functional of Q. Due to Jensen’s inequality ε(Q,P ) ≥

0 with ε(Q,P ) = 0 if and only if dQ

dP
= 1 a.s. Shortly, relative entropy measures

the difference between two probability measures.

A.9 Single Period Probability Measures for P1 and P3:
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Figure 1: Single period probability measures for P1
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Figure 2: Single period probability measures for P3
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Manuscript, Université Louis Pasteur (2003).

[BN04] Bion-Nadal J., Conditional Risk Measure and Robust Representation

of Convex Cnditional Risk Measures, Ecole Polytechnique, Centre de
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