
 
 
 

PERFORMANCE METRICS FOR  
FUNDAMENTAL ESTIMATION FILTERS 

 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

KORAY AKÇAY 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

ELECTRICAL AND ELECTRONIC ENGINEERING 

 
 
 
 
 

SEPTEMBER 2005 



Approval of the Graduate School of Natural and Applied Sciences 
 
 
 
 
 

Prof. Dr. Canan ÖZGEN 
Director 

 ii

 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 
 
 
 
 

 
 

Prof.Dr. İsmet ERKMEN 
Head of Department 

 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
 
 

      Prof. Dr. Mustafa KUZUOĞLU 
       Supervisor 
 
Examining Committee Members  
 
Prof. Dr. Mübeccel DEMİREKLER (METU,EE) 

 

Prof. Dr. Mustafa KUZUOĞLU (METU,EE) 

 

Prof. Dr. Kemal LEBLEBİCİOĞLU (METU,EE) 

 

Prof. Dr. Gönül Turhan SAYAN (METU,EE) 

 

Elif YAVUZTÜRK (MSc.)  (ASELSAN) 



 iii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 
 
 
 
      Name, Last Name: Koray AKÇAY 
 
      Signature      : 

 
  



 iv

ABSTRACT 
 
 

PERFORMANCE METRICS FOR  
FUNDAMENTAL ESTIMATION FILTERS 

 
 
 

Akçay, Koray 

M.Sc., Department of Electrical Electrnoics Engineering  

Supervisor      : Prof. Dr. Mustafa Kuzuoğlu 

 

September 2005, 86 pages 
 

 
This thesis analyzes fundamental estimation filters – Alpha-Beta Filter, Alpha-Beta-

Gamma Filter, Constant Velocity (CV) Kalman Filter, Constant Acceleration (CA) 

Kalman Filter, Extended Kalman Filter, 2-model Interacting Multiple Model (IMM) 

Filter and 3-model IMM with respect to their resource requirements and 

performance. In resource requirement part, fundamental estimation filters are 

compared according to their CPU usage, memory needs and complexity. The best 

fundamental estimation filter which needs very low resources is the Alpha-Beta-

Filter. In performance evaluation part of this thesis, performance metrics used are: 

Root-Mean-Square Error (RMSE), Average Euclidean Error (AEE), Geometric 

Average Error (GAE) and normalized form of these. The normalized form of 

performance metrics makes measure of error independent of range and the length of 

trajectory. Fundamental estimation filters and performance metrics are implemented 

in MATLAB. MONTE CARLO simulation method and 6 different air trajectories 

are used for testing. Test results show that performance of fundamental estimation 

filters varies according to trajectory and target dynamics used in constructing the 

filter. Consequently, filter performance is application-dependent. Therefore, before 

choosing an estimation filter, most probable target dynamics, hardware resources 

and acceptable error level should be investigated. An estimation filter which 

matches these requirements will be ‘the best estimation filter’. 

Keywords: Estimation Filters, Error Analysis, Performance Metrics 
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ÖZ 
 
 

TEMEL KESTİRİM SÜZGEÇLERİ İÇİN  
PERFORMANS ÖLÇÜTLERİ 

 
 
 
 

Akçay, Koray 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü  

Tez Yöneticisi          : Prof. Dr. Mustafa Kuzuoğlu 

 
 

Eylül 2005, 86 sayfa 
 

Bu çalışma, temel kestirim süzgeçleri: Alpha-Beta, Alpha-Beta-Gamma, Sabit Hız 

Kalman, Sabit İvne Kalman, İleri Kalman Süzgeci (EKF), 2-model Etkileşimli 

Çoklu Model ve 3-model Etkileşimli Çoklu Model Süzgeçlerini, kaynak 

gereksimleri ve performanslarına göre incelemiştir. Kaynak gereksinim kısmında, 

kestirim süzgeçleri işlemci kullanım, hafıza ihtiyacı ve karmaşıklıklarına göre 

değerlendirilmiştir. En iyi sonucu veren süzgeç Alpha-Beta Süzgeci olmuştur. 

Çalışmanın performans inceleme kısmında Etkin Değer (RMS) Hata, Ortalama 

Euclidean Hata, Geometrik Ortalama Hata ve bunların normalize edilmiş halleri 

kullanılmıştır. Hata hesaplamalarının normalize edilmesi, hataların menzil ve iz 

boyundan bağımsız hale gelmesini sağlamaktadır. Kestirim süzgeçlerinin modelleri  

ve hata hesaplamaları MATLAB ortamında gerçeklenmiştir. Testler için MONTE 

CARLO yöntemi ve 6 farklı hava hedefi izi kullanılmıştır. Test sonuçlarından, 

süzgeç  performanslarının, temel kestirim süzgeçlerini oluştururken kullanılan hedef 

dinamiği ve hedef izlerine göre değiştiği gözlemlenmiştir. Sonuç olarak, süzgeç 

performansı uygulamaya bağımlıdır. Böylelikle bir kestirim süzgeci seçmeden önce, 

hedeflerin olası hareket dinamikleri, sistemin kaynakları ve kabul edilebilir hata 

payları ile ilgili bir çalışmanın yapılması gerekmektedir. Bu ihtiyaçlara cevap 

verecek kestirim süzgeci uygulamaya uygun en iyi süzgeç olacaktır.   

Anahtar Kelimeler: Kestirim Süzgeçleri, Hata Analizi, Performans Ölçütleri 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
Predicting future has always been an interesting subject to human being for ages. 

While some went after fortune tellers, others tried to figure out the future from past. 

Certainly, landing on moon was not achieved by clairvoyants; estimation theory 

was ready there to put spacecraft into its orbits with some degree of accuracy. In the 

world of estimation theory, one must keep in mind the fundamental assumption that 

there is always an estimation error. While dealing with our chaotic cosmos, even 

keeping the estimation in a considerable neighborhood of true value is enough. 

However, what is the measure of accuracy? Which estimation method is better than 

others? What is meant by ‘better’? In this thesis, these questions are tried to be 

answered. 

 

Before going further it is essential to give some definitions. One of the most popular 

application areas of estimation theory is tracking. Tracking is the estimation of the 

state of a moving object (target), based on measurements [1]. To simplify the 

tracking problem, there are three basic items: measurement, estimation (filters) and 

update. Measurement is acquired via sensors by receiving signals from the 

environment. There is always a certain degree of measurement error due to sensors 

(system) and environment. Depending on this observation, the next measurement is 

estimated. Estimation is the process of inferring the value of a quantity of interest 

from indirect, inaccurate and uncertain observations [1]. Next state of the target is 

estimated with some degree of accuracy, therefore the whole tracking system 

parameters must be updated with the true value of estimation. Updating the whole 

tracking system (including estimation filters) makes it ready for the next 

measurement with lower estimation error, assuming that the dynamics of the target 

remain as it has been estimated. However, in a tracking system the dynamics of a 
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target can only be a model of the real life, as it is in all engineering areas. Therefore, 

we must be assured that there is always an estimation error to be taken into account. 

Estimation Error is the deviation from the estimatee value of the estimated 

quantity. Estimatee is the quantity to be estimated. There are several methods for 

error analysis. The aim of this thesis is to define an error term more meaningful and 

useful to compare and evaluate estimation filters (or systems with estimation 

filters).   

 

In the second chapter, a brief background knowledge about Estimation, Tracking, 

and Filtering is given. In Filtering sub-section, fundamental estimation filters (in 

simple-to-complex order) 

• Alpha-Beta Filter, 

• Alpha-Beta-Gamma Filter 

• Kalman Filter 

• Extended Kalman Filter 

• Interacting Multiple Model Filter  

are discussed.   

 

In the third chapter, error analysis of estimation filters is discussed. The following 

Error measure methods are covered 

• Root-mean-square Error 

• Average Euclidean Error 

• Geometric Average Error 

• Normalized Error 

Besides, Error Measures for Video Trackers is discussed. 

 

In the fourth chapter, Resource Analysis of Filters: Memory Usage, CPU Usage, 

and Complexity of Filters are investigated. When implementing an estimation filter 

in an embedded hardware one must consider the requirements of filter despite of 

limited resources of hardware. 
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In the fifth chapter, the results of simulations are discussed. Test trajectories used in 

simulations and Error vs. Filter Constructers are demonstrated here.  

 

In the sixth chapter, suggestions and conclusions on filters and error analysis are 

given. 
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CHAPTER 2 
 
 

ESTIMATION FILTERS 
 
 

2.1 Estimation 
‘Estimation is the process of inferring the value of a quantity of interest from 

indirect, inaccurate and uncertain observations’ [1]. 

 

As a mathematical concept, the inevitability of measurement errors had been 

recognized since the time of Galileo Galilei (1564-1642). The first method dealing 

with these errors and forming an optimal estimate from noisy data is the method of 

least squares by Carl Freidrich Gauss (1777-1855). 

 

One of the greatest discoveries in the history of statistical estimation theory is 

Kalman Filtering by Rudolf Emil Kalman (1930 - …). It has great value of 

controlling complex dynamic systems such as aircraft, ships, or spacecraft. For 

these applications, it is not always possible to measure every variable that you want 

to control. Kalman Filter provides a means of inferring the missing information 

from noisy measurements. In the following chapters, details of Kalman Filtering 

will be given. 

 

The fundamentals of Kalman Filtering depends on The Theory of Probability, so it 

is worth to give brief historical milestones in this branch of mathematics. The 

Italian Giroloma Cardano (1501-1576) stated that the accuracies of empirical 

statistics tend to improve with the number of trials. Then, general treatments of 

probabilities were followed by Blaise Pascal (1623-1662), Pierre De Fermat 

(1601-1655), and Christian Huygens (1629-1695). James Bernoulli (1654-1705) 

(considered to be the founder of probability by some historians) gave the first 

rigorous proof of the law of large numbers. Thomas Bayes (1702-1761) derived the 

famous rule for statistical inference. Abraham de Moivre (1667-1754), Pierre Simon 



Marquis de Laplace (1749-1827), Adrien Marie Legendre (1752-1833), and Carl 

Freidrich Gauss (1777-1855) continued development into the nineteenth century. In 

the nineteenth and twentieth century, the probabilities began to take on more 

meaning as physically significant attributes. James Clerk Maxwell (1831-1879) 

established the probabilistic treatment of natural phenomena as a scientific 

discipline. Andrei Nikolaevoich Kolmogorov (1903-1987) and H. Ya Khinchin 

worked on the theory of random processes and the foundations of probability theory 

on measurement theory. Norbert Wiener (1894-1964) was the first working on the 

theory of optimal estimation for systems involving random processes. [2] The 

lifelines of important names in the history of probability theory are shown in 

Figure-2.1.1  
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Figure-2.1.1 Founder’s Lifelines of the Probability and Estimation Theory [2] 

 
 
 
When talking about estimation, one of the confusing topics is decision. Decision is 

the selection of one (the best choice) of a set of discrete alternatives [1]. Estimation 

is interpreted as the possibility of not making a choice but obtaining some 

conditional probabilities of the various alternatives.  
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In an estimation problem, the variable to be predicted can be either a parameter 

(target signal-to-noise ratio (SNR), radar cross section (RCS), intensity of target and 

so forth) or the state of a dynamic system (position, velocity, acceleration and so 

forth). In Figure 2.1.2 a block diagram of state estimation is illustrated. Estimator 

only has the knowledge of measurements which are affected by the error sources in 

the form of noises. The estimator uses 

• The changes in system dynamics 

• The probabilistic characterization of the random factors 

• The prior information 

With this information, the estimator produces next state and state uncertainties. 

Next measurement and current state estimate are used to obtain the next prior 

information. 
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Figure 2.1.2 Block diagram of State Estimation 

 
 
 

2.2 Tracking 
Tracking is the estimation of the state of a moving object (target) based on 

measurements [1]. Measurements can be taken by one or few active or inactive 

sensors at fixed locations or on moving platforms. 

  

A Sensor is a device that observes the environment by reception of signals. Active 

sensors (such as radars) emit energy into the environment and search for reflected 
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energy, while passive sensors (such as cameras) search for energy emitted from the 

target(s) [3].  

 

Sensors at fixed locations deal only with the dynamics of the target, while sensors 

on moving platforms has to take the dynamics of the moving platform into account 

which makes the tracking  problem more complex. 

 

Tracking is an element of a wider system that performs surveillance, guidance, 

obstacle avoidance, etc. Besides using all tools from estimation, tracking requires 

extensive use of statistical decision theory. In Figure 2.2.1 a block diagram of a 

typical tracking system is illustrated. 

 

A typical multi target tracking system has the following common blocks [4]: 

• Tracking Filters: The role of a tracking filter is to carry out recursive target 

state estimation. The most common tracking filters are the fixed coefficient 

filters (alpha-beta, alpha-beta-gamma), the Kalman Filter and the Extended 

Kalman Filter (EKF). In the next section, details of these filters are given. 

• Maneuver handling logic: Target motion can change suddenly, and the 

tracker must adapt itself to changes in dynamics of target motion. Dynamic 

models can be stationary, constant velocity, constant acceleration, etc. 

Tracking system has to recognize changes and must choose the most 

suitable dynamic model among others. 

• Gating and data association: In a multi target environment, the tracking 

system has to decide which measurement belongs to which track in order to 

identify the origin of measurement. 

• Track life management:  Track status is typically defined in terms of three 

life stages: tentative, confirmed and deleted track. By a tentative target it is 

meant that a track has been initiated but not associated with any existing 

track. In a confirmed track, measurements are consistent and associated with 

an existing track. If for a certain time no track update is performed, than the 

track is deleted. 
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Figure 2.2.1 Block diagram of typical Tracking System 

 
 
 
2.3 Filtering 
Commonly, a filter is a physical device for removing unwanted fractions of 

mixtures. In electronics the term “filter” was first applied to analog circuits that 

filter (attenuate unwanted frequencies) electronic signals. In Estimation Theory, 

filtering is the estimation of the current state of dynamic system. Here, the phrase 

‘filtering’ is used for obtaining the ‘best estimate’ from noisy data which amounts 

to ‘filtering out’ the noise. 

 

Below, five fundamental filters in practical tracking problems (Alpha-Beta Filter, 

Alpha-Beta-Gamma Filter, Kalman Filter, Extended Kalman Filter, and Interacting 

Multiple Model – IMM Filtering) are discussed in historical - also simple to 

advanced - order.   

 

2.3.1 Alpha-Beta Filter 

The Alpha-Beta Filter is the simplest constant-gain tracking algorithm. The tracker 

has poor performance, but requires a very low computational load. The Alpha-Beta 
 8



Filter is used in tracking systems where position measurement updates are available 

and the state vector consists of positions and velocities. The value of the gain is 

preset for handling straight-line motion or turning motion. When the gain is set to 

compensate for turning motion in a target, the straight-line performance will suffer 

somewhat which is the trade-off for most filters below.  

 

The structure of the Alpha-Beta Filter is based on the error estimation of a position 

vector measurement. For example, if we suppose that the velocity of the X variable 

is constant, we can predict (prediction phase) the position at time sample k+ 1. 

)(*)()1( kVTkXkX p +=+     (2.3.1.1)  

However, if the target maneuverability is not null we can update (update phase) this 

prediction by adding a percentage of the error. 

[ ])1()1()1()1( +−+++=+ kXkzAlphakXkX pp  (2.3.1.2)  

where, )1( +kz is the position measurement and Alpha is the first tracking 

parameter. The same principle is used to attenuate the velocity noise. This new 

updated velocity will be used for next prediction. 

[ ])1()1()/()()1( +−++=+ kXkzTBetakVkV p  (2.3.1.3) 

 
 
 

+ +

Z-1

Filtered 
Position

+

+
Filtered 
Velocity

Z-1

Predicted 
Position

Position

Alpha

Beta/T T

+ +

Z-1

Filtered 
Position

+

+
Filtered 
Velocity

Z-1

Predicted 
Position

Position

Alpha

Beta/T T

 
 

Figure 2.3.1.1 Block diagram of Alpha-Beta Filter 
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2.3.2 Alpha-Beta-Gamma Filter 

Alpha-Beta-Gamma Filter is similar to Alpha-Beta Filter but acceleration is 

included into the state vector besides position and velocity. Only a few summations 

and multiplications are added, so it also requires a very low computational load 

similar to the Alpha-Beta Filter. Still only position update is needed. 

 

As in the Alpha-Beta Filter, the structure of Alpha-Beta-Gamma Filter is based on 

the error estimation of a position vector measurement. Suppose that the acceleration 

of the X variable is constant, we can predict (prediction phase) the position at time 

sample . 1+k

2/))(*()(*)()1( 2 kATkVTkXkX p ++=+   (2.3.2.1)  

However, if there is a maneuver, we can update (update phase) this prediction by 

adding a percentage of the error. 

[ ])1()1()1()1( +−+++=+ kXkzAlphakXkX pp   (2.3.2.2)  

where, is the position measurement. The same principle is used for the 

velocity and acceleration noise, these new values are used for the next prediction.  

)1( +kz

[ ])1()1()/()()1( +−++=+ kXkzTBetakVkV p   (2.3.2.3) 

[ ]))1()1((*)/)*2(()()1( 2 +−++=+ kXkzTGammakAkA p (2.3.2.4) 
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Figure 2.3.2.1 Block diagram of Alpha-Beta-Gamma Filter 

 
 
 
2.3.3 Kalman Filter 

R.E. Kalman published his paper on recursive solution to the discrete-data linear 

filtering in 1960, which is relatively recent although its root is as far back as C.F. 

Gauss (1777-1855). Since that time, Kalman Filter has been applied in many 

diverse areas like military, aerospace, nuclear plant, economics (even it is not 

successful in economics) etc. 

 

The Kalman filter is a multiple-input, multiple-output digital filter that can 

optimally estimate, in real time, the states of a system based on its noisy outputs [7]. 

Here optimal means an algorithm that minimizes chosen error criteria. Since the 

filter is recursive, it does not require all previous data to be kept in storage. This 

makes it easier to implement Kalman Filter by hardware. The Kalman Filter 
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supports estimations of past, present and future states even when the precise nature 

of the modeled system is unknown. 

 

The fundamental assumption about the Kalman Filter is that the state is evaluated 

with a known linear system equation which means that the filter is not designed to 

handle maneuvering targets.  

 
 
 

System

Sensors

System error

Measurement error

Controls

Observed Meas. Kalman
Filter

Optimal estimate 
of system state

System

Sensors

System error

Measurement error

Controls

Observed Meas. Kalman
Filter

Optimal estimate 
of system state

 
 

Figure 2.3.1 Typical Kalman Filter Application [9] 

 
 
 

In dynamic systems, the state equations are expressed in matrix form. For example, 

1+nX =   (2.3.3.1) nXH ×

where       

⎥
⎦

⎤
⎢
⎣

⎡
=

n

n
n x

x
X

&
      (2.3.3.2)  

and  

H =    (2.3.3.3) ⎥
⎦

⎤
⎢
⎣

⎡
1     
T    

     
0
1

represents state transition matrix for the constant velocity target. 

It is now simpler to give the random system dynamics model. Specifically, it 

becomes 
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nnn UXHX +×=+1   (2.3.3.4) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

n
n u

U
0

      (2.3.3.5) 

is the dynamic model noise vector. 

We now express the trivial measurement equation in matrix form. It is given by 

nnn NXFY +×=   (2.3.3.6) 

where  

][
[ ]
[ ] matrixt measuremen         

errorn observatio       
matrixn observatio      0    1

nn

nn

yY
vN

F

=
=
=

  (2.3.3.7) 

Equation 2.3.3.6 is called the observation system equation. This is because it relates 

the quantities being estimated to the parameter being observed, which are not 

necessarily to be the same. The parameters and  (target range and velocity) are 

being estimated (tracked) while only target range is observed. As another example, 

one could track a target in rectangular coordinates (x,y,z) and make measurements 

on the target in spherical coordinates (R,

nx nx&

θ ,φ ). In this case the observation matrix 

F  would transform from the rectangular coordinates being used by the tracking 

filter to the spherical coordinates in which the radar makes its measurements.  

nnnn XHX ,,1
~~ ×=+    (2.3.3.8) 

where 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

nn

nn

nn x

x
X

,

,

, ~

~
~

& (2.3.3.9) 

 

 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+

+

+
nn

nn

nn x

x
X

,1

,1

,1 ~

~
~

&        (2.3.3.10) 
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This is called the prediction equation, because it predicts the position and velocity 

of the target at time n+1 based on the position and velocity of the target at time n, 

the predicted position and velocity being given by the state vector. Putting into 

matrix form yields 

)~  - (   ~~
1,1,, −− ××+= nnnnnnnn XFYKXX   (2.3.3.11) 

This is called the Kalman Filtering equation because it provides the updated 

estimate of the present position and velocity of the target. Since only position and 

velocity are involved, this called Constant Velocity Kalman Filter. If acceleration 

is added to the dynamic model, then the filter will be a Constant Acceleration 

Kalman Filter. In Constant Velocity model, the response of the filter is faster then 

Constant Acceleration model. However, although the response of the constant 

velocity filter is faster, the rate of overshooting in the changes is much more than 

the Acceleration model. In this work, both Constant Velocity and Constant 

Acceleration Kalman Filters are implemented.  

 

The matrix  is a matrix giving the tracking-filter constants  It is 

given by 

nK .    and   nn hg

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

T
h
g

K n

n

n   for the two-state alpha-beta or Kalman filter equations. This 

form does not however tell us how to obtain  In Kalman filter 

application  is obtained from 

.    and   nn hg

nK

[ ] 1
1,1,

~    ~ −
−− ××+××= T

nnn
T

nnn FPFRFPK   (2.3.3.12) 

where predictor equation   

    ~~
1,1, n

T
nnnn QHPHP +××= −−    (2.3.3.13)  

and dynamic model noise covariance 

[ ] [ ]    T
nnnn UUEUCOVQ ==    (2.3.3.14) 

[ ]1,1,1,1,
~~)~(~

−−−− == nn
T

nnnnnn XXEXCOVP   (2.3.3.15) 

   (2.3.3.16)    )()( T
nnnn NNENCOVR ==

 14



[ ]   )~(~
2,11,11,1 −−−−−− ××−== nnnnnnn PFKIXCOVP  (2.3.3.17)  

 

Covariances apply as long as the entries of the column matrices 

zero mean. Otherwise they have to be replaced by

nn NU  and have 

[ ] [ ]nnnn NENUEU −−  and , 

respectively.  

 

Physically, the matrix nnP ,1
~

−  is an estimate of our accuracy in predicting the target 

position and velocity at time n based on the measurements made at time n-1. Here, 

1,
~

−nnP  is the covariance matrix of the state vector 1,
~

−nnX . To get a better feeling for 

nnP ,1
~

− , let us write it out for our two-state 1,
~

−nnX .  

)~~()~(
1,1,1,

T
nnnnnn XXEXCOV
−−− =  =  E  ( ][ 1,1,

1,

1, ~  ~
~

~
−−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
nnnn

nn

nn
xx

x

x
&

 ) 

 

=    
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−−

−−

−

)~(

)~~(
              

         )~~(

)~(
2

1,

1,1,

1,1,

2
1,

nn

nnnn

nnnn

nn

xE

xxE

xxE

xE
&

&

&
   

   =   1,
~

−nnP              (2.3.3.18) 

 

[ ]
[ ]
[ ]2

v

2 )(

)(

σ=

=

==

n

T
nnnn

vE

vvENCOVR

     (2.3.3.19) 

 

The matrix  gives the accuracy of the radar measurements. It is the covariance 

matrix of the measurement error vector . For two-state filter, where it is assumed 

that 

nR

nN

xv σσ  and  are the root-mean-square of  and , the assumption is that the 

mean of  is zero. 

nv nx

nv
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The matrix  , which gives the magnitude of the target trajectory uncertainty or the 

equivalent maneuvering capability, is the covariance matrix of the dynamic model 

driving noise vector, that is, the random-velocity component of the target trajectory. 

To get a better feeling for , let us evaluate it for our two-state Kalman filter, that 

is, for  .  

nQ

nQ

nU

 

][

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

==

)(

0       
      

0
0

)     0
0

(

)(

2
n

n
n

T
nnnn

uE

u
u

E

UUECOVUQ

      (2.3.3.20) 

 

The prediction covariance matrix 1,
~

−nnP  is obtained from the covariance matrix of 

the filtered estimate of the target state vector at time n-1 given by 1,1
~

−− nnP . The 

filtered estimate covariance matrix 1,1
~

−− nnP  is in turn obtained from the previous 

prediction covariance matrix 2,1
~

−− nnP .  

 

Above equations allow us to obtain the filter weights     

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

T
h
g

K n

n

n   at successive 

observation intervals. The observation matrix is given by equation 2.3.3.7 and the 

filter coefficient matrix is given by equation 2.3.3.12. The covariance matrix for 

the initial a priori estimates of the target position and velocity given by  allows 

initiation of the tracking equations given by equation 2.3.3.13. First equations 

2.3.3.14 and 2.3.3.15 is used to calculate (assuming that n=0 is the time for the 

first filter observation).  

nK

1,0 −P

0H
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In Kalman Filtering, we can simply think that there are two stages: Time Update 

and Measurement Update. In Time Update, prediction of the next observation is 

calculated. In Measurement Update, the items of Time Update are corrected. In 

literature Time Update is called Predictor and Measurement Update is called as 

Corrector. Below is the summary of Kalman Filtering in two stage form. 

 
 
 

 
Figure 2.3.1 Summary of Kalman Filter [6] 

 
 
 

2.3.4 Extended Kalman Filter – EKF 
The fundamental assumption about the Kalman Filter is that it is based on linear 

system equations where it expects linear measurements. This assumption makes 

Kalman Filter weaker for observations from non-linear target dynamics. In most 

cases due to the nature of sensors and target dynamics, the measurements are non-

linear. Extended Kalman Filter (EKF) solves this problem. The aim of EKF is to 

estimate the state under the conditions of non-linear measurement processes and/or 

non-linear target dynamics. The extended Kalman filter (EKF) is a Kalman filter 

that linearizes the dynamic system about the current mean and covariance. 
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The nonlinear transformation may introduce bias to the solution, the covariance 

calculation is not necessarily accurate, and the EKF can diverge if the initial 

conditions are inaccurate. So it is crucial to use a coherent filter or take first few 

measurements to initialize the EKF.  

 

Linearization of the estimation around the current estimate using the partial 

derivatives of the process is just like a Taylor series expansion [6]. Let us begin 

with a state vector  be defined as the state vector of a non-linear stochastic 

difference equation 

nRx∈

),,( 111 −−−= kkkk wuxfx   (2.3.4.1) 

Let  nRz∈  be the measurement vector 

),( kkk vxhz =    (2.3.4.2) 

where  and kw kv   are the random variables that represent the process and 

measurement noise. Assume  and  have zero mean.  kw kv

To estimate a process with non-linear state and measurement relationships, new 

governing equations are obtained via a linearization of equations 2.3.4.1 and 

2.3.4.2, 

111 )~(~
−−− +−+≈ kkkkk WwxxAxx  (2.3.4.3) 

kkkkk VvxxHzz +−+≈ )~(~   (2.3.4.4) 

where 

 • and are the actual state and measurement vectors, kx kz

• kx~ and kz~ are the approximate state and measurement vectors from 

equations 2.3.4.1 and 2.3.4.2, 

 •  is an a posteriori estimate of the state at step k, kx̂

 • The random variables  and  represent the process and measurement 

noise  

kw kv

 • A is the Jacobian matrix of partial derivatives of with respect to x,  f

[ ]
[ ]

[ ]
)0,,ˆ( 11, −−∂

∂
= kk

j

i
ji ux

x
f

A   (2.3.4.5) 
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 • W is the Jacobian matrix of partial derivatives of with respect to w, f

 [ ]
[ ]

[ ]
)0,,ˆ( 11, −−∂

∂
= kk

j

i
ji ux

w
f

W   (2.3.4.6) 

 • H is the Jacobian matrix of partial derivatives of with respect to x, f

 [ ]
[ ]

[ ]
)0,~(, k

j

i
ji x

x
h

H
∂

∂
=      (2.3.4.7) 

 • V is the Jacobian matrix of partial derivatives of with respect to v, f

 [ ]
[ ]

[ ]
)0,~(, k

j

i
ji x

v
h

V
∂

∂
=    (2.3.4.8) 

In the notation, the time step subscript k is not used with the Jacobians A, W, H and 

V even though they are in fact different at each time step. 

 

New notations for the prediction error and the measurement residual are as follows: 

   kkx xxe
k

~~ −≡     (2.3.4.9) 

      (2.3.4.10) kkz zze
k

~~ −≡

Using 2.3.4.9 and 2.3.4.10 we can write governing equations for an error process as  

kkkx xxAe
k

ε+−≈ −− )~(~
11   (2.3.4.11) 

kxz kk
eHe η+≈ ~~    (2.3.4.12) 

where kε and kη  represent new independent random variables having zero mean 

and covariance matrices  and . TWQW TVRV

 

Let us use the actual measurement residual in equation 2.3.4.10 and a second 

(hypothetical) Kalman filter to estimate the prediction error

kze~

kxe~ given by equation 

2.3.4.11. This estimate, call it , could then be used along with equation 2.3.4.9 to 

obtain the a posteriori state estimates for the original non-linear process as 

kê

kkk exx ˆ~ˆ +=     (2.3.4.13) 

The equations 2.3.4.11 and 2.3.4.12 have approximately the following distributions 

[ ]T
xxx kkk

eeENep ~~,0(~)~(   (2.3.4.14) 
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),0(~)( T
kk WWQNp ε   (2.3.4.15) 

),0(~)( T
kk VVRNp η   (2.3.4.16) 

Given these approximations and letting the predicted value of be zero, the 

Kalman filter equation that is used to estimate is 

kê

kê

kzkk eKe ~ˆ =      (2.3.4.17) 

By substituting Equation 2.3.4.15 back into Equation 2.3.4.13 and making use of 

Equation 2.3.4.10 we see that we do not actually need the second (hypothetical) 

Kalman filter: 

 )~(~~~ˆ kkkkzkk zzKxeKxx
k

−+=+=  (2.3.4.18) 

Equation 2.3.4.18 can now be used for the measurement update in the extended 

Kalman filter, with kx~ and kz~ coming from equations 2.3.4.1 and 2.3.4.2, and the 

Kalman gain coming with the appropriate substitution for measurement error 

covariance. 

kK

 

As in the linear Kalman Filter, there two stages of the EK filter: Time Update and 

Measurement Update. and are the process Jacobians at step k, and  is the 

process noise covariance at step k. h comes from Equation 2.3.4.2, and V are the 

measurement Jacobians at step k, and 

kA kW kQ

kH

kR  is the measurement noise covariance at 

step k. Below is the summary of Extended Kalman Filter. 
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Figure 2.3.4.1 Summary of Extended Kalman Filter [3] 

 
 

 
2.3.5 Interacting Multiple Model Filter – IMM Filter 

The Interacting Multiple Model filter is used to predict the current state of the target 

whose behavior pattern changes with time using two or more dynamic models. For 

example, if the target is expected to travel with constant velocity for a while and 

then with a non-zero acceleration, the type of Kalman Filters (dynamic models) can 

be Constant Velocity Kalman Filter and Constant Acceleration Kalman Filter. The 

number of dynamic models used is dependent on the application.  

 

In IMM filtering, multiple state equations are used for individual dynamic models. 

A Markov transition matrix is used to specify the probability to use one of the target 

dynamics. The values of Markov transition matrix are chosen according to target. 

For example, if the target is a cargo airplane, then most of time it will travel with 

constant velocity, which means that the probability to be in the constant velocity 

model will be higher. If the target is a fighting airplane, then the percentage of 

maneuvering in time will be higher, which means the probability to be in the turn 

model should be taken accordingly. 
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There are four fundamental steps in IMM Filter algorithm [1]:  

• Interaction: In this step the previous cycle mode-conditioned state estimates, 

covariance and the mixing probabilities are used to initialize the current cycle of 

each mode-conditioned filter 

• Mode-conditioned filtering: Calculation of the state estimates and covariance, 

conditioned on a mode being in effect, as well as the mode likelihood function 

(r parallel filters) 

• Probability evaluation: Computation of the mixing and the updated mode 

probabilities 

• Overall state estimate and covariance (for output only): Combination of the 

latest mode-conditioned state estimates and covariance. 

 

Below is IMM filter implemented for two dynamic models [1]: 

 
 
 

 

 
Figure 2.3.5.1 Summary of IMM Filter [1] 

 
 
 

 22



 23

In this thesis, 2-model and 3-model IMM Filters are implemented. In 2-model IMM 

Filter, Constant Velocity and Constant Acceleration Kalman Filters are used. In 3-

model IMM Filter, besides filters in 2-model IMM Filter, stationary target model is 

added, which can be applicable to land targets. 

 



CHAPTER 3 
 
 

ERROR ANALYSIS 
 
 
 
Error is deviation from the true value of the measured quantity. In this thesis, the 

general definition is used in a specific form: Estimation Error is deviation from 

the estimatee value of the estimated quantity. Estimatee is the quantity to be 

estimated. The n-dimensional estimatee, its estimation, and estimation error are 

denoted by X , X̂ , and X~ . Estimation error for each term is  

[ ] ( ) ))ˆ()ˆ(ˆ(~ 222
nnnnnn zzyyxxnX −+−+−=   (3.1) 

as shown figure below. 
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Figure 3.1 Estimation Error Vector 

 
 
 

In error analysis, results turn out to be more precise and dependable if a large 

amount of data is processed. So it is crucial to repeat tests again and again with 
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Monte-Carlo simulations. Here the total number of independent Monte-Carlo 

simulations is denoted by M.  

 

3.1 Root Mean Square Error - RMSE  

∑ ∑
= =

==
M

i

M

i
iii XX

M
X

M
XRMSE

1 1

2
1'2

12

2
)~~1()~1()~(  (3.1.1) 

 

Root-Mean-Square Error (RMSE) is a widely used measure of estimation accuracy. 

The popularity of RMSE comes from the fact that is it is older than the other 

methods discussed below. RMSE is finite-sample approximation of the standard 

error [ ]XXE ~~ ' , which is closely related with standard deviation. [11] Standard 

deviation is an important parameter for probabilistic analysis, so RMSE is.  

 

It is clear that smaller RMSE means a more accurate estimator. 

 

3.2 Average Euclidean Error – AEE 

∑ ∑
= =

==
M

i

M

i
iii XX

M
X

M
XAEE

1 1

2
1'

2
)~~(1~1)~(  (3.2.1) 

Average Euclidean Error (AEE) arises from Euclidean distance or Euclidean norm 

[11]. AEE is finite-sample approximation of mean error [ ]
2

~XE , which is in other 

words mean deviation. Since mean deviation is never larger than standard deviation, 

AEE is never larger than RMSE. 

  

Again, smaller AEE means a more accurate estimator. 

 

3.3 Geometric Average Error – GAE  

M

ii
M
i XXXGAE

1
2

1'
1 )~~()~( ⎥⎦

⎤
⎢⎣
⎡∏= =   (3.3.1) 

It is obvious that geometric average is never larger than arithmetic average, which is 

never larger than the RMS value, GAE≤AEE≤RMSE. [11] GAE is useful to see the 
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existence of instantaneous large error. This is helpful to analyze the behavior of 

filter with a maneuvering target. The estimation error increases when a straight 

moving target begins to maneuver instantly, since it takes time for filter to update 

its parameters. 

 

Smaller GAE means a more accurate estimator. 

 

3.4 Normalized Error 
In a radar tracking system, one of the main error sources is measurement error, 

stemming from the sensor itself. To simplify the discussion, let us consider a two-

dimensional case of measurement from a sensor where ‘r’ and ‘a’ stands for range 

and azimuth angle respectively: 

 
 
 

 

a

r

x

y
target

sensor a

r

x

y
target

sensor

Figure 3.4.1 Sensor Measurement Vector 

 
 
 

 In cartesian coordinate; 

( )arx cos=     (3.4.1) 

( )ary sin=     (3.4.2)   

assuming there is error both on range and angle measurement (r + Δr) and (a + Δa).  

( ) ( )aarrxx Δ+Δ+=Δ+ cos   (3.4.3) 
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( ) ( )aarryy Δ+Δ+=Δ+ sin   (3.4.4) 

Taking equation 3.4.3 and using trigonometric identities,  

( )[ ]aaaarrxx Δ−ΔΔ+=Δ+ sinsincoscos   (3.4.5) 

for small Δa using Taylor series expansion; 

( ) 1
2

1cos
2

≈
Δ

+≈Δ
aa      (3.4.6) 

( ) aaaa Δ≈
Δ

−Δ≈Δ
!3

sin
3

    (3.4.7) 

Putting Equations 3.4.6 and 3.4.7 into Equation 3.4.5 

( )[ aaarrxx ]Δ−Δ+=Δ+ )(sincos     (3.4.8)   

araraaararxx ΔΔ−Δ+ΔΔ−=Δ+ )(sin)(cos)(sincos  (3.4.9) 

Where  

arx cos=     (3.4.10) 

aarrax ΔΔ−Δ=Δ )(sin)(cos  (3.4.11) 

0)(sin ≈ΔΔ ara    (3.4.12) 

As seen in equation 3.4.11, for small aΔ  and rΔ , dominant figure in measurement 

error is proportional to range. To make error measure independent of trajectory, 

each error must be normalized with the range where error is calculated. Normalized 

error at sample i in a trajectory is given by 

i

i
i r

x
ne

~
=   (3.4.15)  

NE is n dimensional normalized error of a trajectory. NE is applicable to RMSE, 

AEE, and GAE error measures. Instead of X~ , NE can be put into related equations. 
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Besides normalizing error measures, it can be helpful to make error analysis 

independent of trajectory length. Making error analysis independent of trajectory, 

we gain the possibility of using error measure as specification of a tracking system.  

For this, each normalized error analysis results can be divided into total number of 

samples for each Monte Carlo simulation (let us take number of samples: ‘k’) as 

shown below. 

kMXRMSENormalizedXSErmalizedRMgthIndepNoTrajectLen /)~()~( = (Eq.3.4.16) 

kMXAEENormalizedXErmalizedAEgthIndepNoTrajectLen /)~()~( =       (Eq.3.4.17) 

kMXGAENormalizedXErmalizedGAgthIndepNoTrajectLen /)~()~( =      (Eq.3.4.18) 

 

3.5 Error Measures for Video Trackers 
When dealing with video tracking, one will find himself in the 2D world. In most 

video tracking systems, there two phases: Detection and Tracking. In detection 

period, where image processing methods are used, probable targets are figured out. 

In tracking period, where estimation filters are at work, one or few of probable 

targets’ next position are estimated. Therefore, in finding error measures for video 

trackers, we have to take into account both image processing and estimation filter.  

 

Most of the time, the gravity centre of target’s 2D image is ordered to track. In 

minor cases, the edge of a target is the interest of tracking filters. From this point of 

view, center of gravity of target image will be used as reference data to find out 

estimation error. To find out the center of gravity of the target, one needs the exact 

placement of target image in a series of frames, which is called ‘Ground Truth’. 

To simplify the problem, it is enough to take the quadrangle window (‘Ground 

Truth Window’) frame that each edge touches to the target. Ground truth of the 

target is shown in Figure 3.5.1 
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Target’s center of gravity 
(Ground Truth)

Estimation output

Estimation errorGround Truth Window

Target’s center of gravity 
(Ground Truth)

Estimation output

Estimation errorGround Truth Window

 

Fig. 3.5.1 Ground Truth and Ground Truth Window 

 
 
 

3.5.1 Probability of Detection 

In video tracking systems, it is essential that estimation falls in Ground Truth 

Window.  Estimation is used to place detection window where target will be found 

out in the next frame. If estimation is out of Ground Truth Window, then detection 

window should be placed where another irrelevant target takes place. Probability of 

estimation being in the Ground Truth Window is called ‘Probability of Detection’.  

 

Sometimes Probability of Detection is used to define how accurate that target is 

distinguished from the background in the detection phase of video tracking. 

However, taking video tracking -detection and tracking phases- as a whole system, 

detection and estimation errors are evaluated together.  Probability of detection is 

the best when it is 100%. Specification of a video tracking system, can be given in 

terms of Probability of Detection. 

          

Probability of     = (Number of frames that estimation falls in Ground Truth 

Detection   Window / number of total frames under test) x 100 

 29



3.5.2 Degree of Vicinity 

Another essential item in video tracking error analysis is how close estimations are 

to Ground Truth, which can be called as ‘Degree of Vicinity’. Here again both 

detection and estimation errors are evaluated together. In some cases, it is 

acceptable to track a target with a constant deviation. This constant deviation can be 

large enough to put estimation out of the Ground Truth Window. In such a case, 

system itself can assign a constant to take estimation in Ground Truth Window.  

Every system is designed with a limit before braking down, so it is crucial to know 

the closeness of estimation to ground truth before giving up track. 

Let us call error between estimation and Ground Truth as error and diagonal length 

of Ground Truth Window as diagonal. Degree of Vicinity can be formulized as 

2
1

2

2 ⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ∑ diagonal

errorDoV  (3.5.2.1) 

As it can be guessed, smaller DoV means a better video tracker system. 
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CHAPTER 4 
 
 

RESOURCE ANALYSIS 
 
 
 
When implementing any algorithm into hardware, there are resource requirements 

in terms of memory and processing power. One must take these into account, when 

choosing the processor platform and amount of memory. Another issue about 

hardware implementation is the complexity of algorithm related to the size of 

Programmable Logic Cell Arrays.   

 

However, the hardware implementation of an algorithm must be considered as a 

part of system itself, not stand alone. For example, in a multi-target tracking system, 

the amount of memory requirement increases geometrically as the number of targets 

increases. Besides, if there is a real time requirement of the system, then all 

resources must be revised again, e.g. parallel processing.  

 

As mentioned before, five fundamental estimation filters and their variations are 

investigated in this thesis:  

• Alpha-Beta 

• Alpha-Beta-Gamma 

• Kalman – Constant Velocity 

• Kalman – Constant Acceleration 

• Extended Kalman Filter 

• 2-model IMM Filter  

• 3-model IMM Filter 

In the next sub-sections; the memory requirement, processing power, and algorithm 

complexity of above filters are discussed for single target tracking with one sample 

estimation. 
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4.1 Memory Requirement 
The memory requirements of filters are examined in relation to the number of  

constant, variable and temporal values used in the algorithms.  

• Constants: These values are used without any change during execution of 

algorithm 

• Variables: These values change from one data set (e.g. estimation) to the 

other. 

• Temporal: These values are intermediate values which are not directly 

related to filter constructers 

In the table below, memory requirements are given for estimation filters. When 

evaluating filters by their memory requirements, total constants and total variables 

are summed up to find out total memory needs. As its is guessed the memory 

requirements of filters increase in the following order: Alpha-Beta, Alpha-Beta-

Gamma, Kalman – Constant Velocity, Kalman – Constant Acceleration, Extended 

Kalman Filter, 2-model IMM Filter and 3-model IMM Filter. 

 

 

 

Table 4.1.1 Memory Requirements of Fundamental Estimation Filters 

Estimation 

Filter 
Constants 

Tot.

cons.
Variables 

Tot. 

var. 
Temp.

Alpha-Beta 
alpha  : 1x1 

beta    : 1x1 

T        : 1x1 

3 
position : 3x (1x1) 

velocity : 3x (1x1) 
6 12 

Alpha-Beta-

Gamma 

alpha   : 1x1 

beta     : 1x1 

Gamma  : 1x1 

T         : 1x1 

T^2     : 1x1 

5 
position       : 3x (1x1) 

velocity       : 3x (1x1) 

acceleration : 3x (1x1) 

9 24 
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Kalman – CV 

meas. noise      : 1x1 

meas. mat.       : 2x1 

state transition : 2x2 

pro. noise cov. : 2x2 

11 

state predic.          :3x (1x2) 

state predic.cov.  : 3x (2x2) 

filter gain             : 3x (1x1) 

state estimate       : 3x (2x1) 

state cov.             : 3x (2x2) 

meas. predic.       : 3x (2x1) 

45 141 

Kalman – CA 

meas. noise       : 1x1 

meas. mat.        : 3x1  

state transition  : 3x3 

pro. noise cov.  : 3x3 

22 

state predic.         :3x (1x3) 

state predic. cov. : 3x (3x3) 

filter gain            : 3x (1x1) 

state estimate      : 3x (3x1) 

state cov.             : 3x (3x3) 

Meas. Predic.      : 3x (3x1) 

84 411 

EKF 
meas. noise     : 1x1 

state transition : 3x3 

pro. noise cov. : 3x3 

19 

state predic.         : 3x (1x3) 

state predic. cov. : 3x (3x3) 

filter gain             : 3x1  

state estimate       : 3x (3x1) 

state cov.             : 3x (3x3) 

Meas. Predic.       : 3x (3x1) 

meas. mat.            : 9x9 

165 447 

IMM – 2-

model 

meas. noise      : 2x (1x1) 

meas. mat.       : 2x (3x1)  

state transition : 2x (3x3) 

pro. noise cov. : 2x (3x3) 

trans. prob.      : 4x (1x1) 

46 

state predic.      :2x3x (1x3) 

state predic.cov:2x3x (3x3) 

filter gain         : 2x3x (1x1) 

state estimate   : 2x3x (3x1) 

state cov.         : 2x3x (3x3) 

meas. Predic.   : 2x3x (3x1) 

mode prob.      :2 

170 242 

IMM – 3-

model 

meas. noise     : 2x (1x1) 

meas. mat.       : 2x (3x1)  

state transition : 2x (3x3) 

pro. noise cov. : 2x (3x3) 

trans. prob.      : 9x (1x1) 

51 

state predic.      :3x3x (1x3) 

state predic.cov:3x3x (3x3) 

filter gain         : 3x3x (1x1) 

state estimate   : 3x3x (3x1) 

state cov.         : 3x3x (3x3) 

meas. Predic.   : 3x3x (3x1) 

mode prob.      :3 

255 363 
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Figure 4.1.1 Memory Requirements of Fundamental Estimation Filters 

 
 
 
4.2 CPU Usage  
When implementing any algorithm in hardware with real-time requirement, one of 

the primary questions to be answered is ‘Is this hardware fast enough to handle this 

algorithm?’ Answer to this question may be found in two ways:  

• Each arithmetic operator to be executed in algorithm can be counted, 

number of operators gives total CPU usage. In a conventional CPU, each 

type of arithmetic operator lasts differently, i.e. division lasts longer than 

summation. 

•  Another method to find out CPU usage is to put algorithm into CPU, and 

measure CPU time. In this thesis, this method is used, algorithms are 

implemented in MATLAB. Codes below are used to calculate CPU time in 

MATLAB [12]. 

 34
… 
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cputime;  

);  

CPU usage of estimation filters investigated in this thesis are examined below. For 

The Alpha-Beta filter is taken as basis to compare the CPU usage of estimation 

filters. Below is CPU usage of estimation filters discussed in this thesis. The results 

are gathered from six different trajectories and several Monte Carlo simulations.  

t = 

surf(peaks(40)

e = cputime-t 

e =     0.4667 

… 

CPU time calculation, the execution priority of the MATLAB is made ‘Realtime’ to 

avoid CPU being blocked by other application. During simulations, the 

configuration of PC is Pentium M Centrino 1300MHz CPU and 512MB RAM.  

 
 
 

 
Figure 4.2.1 Making MATLAB a Real-time Application in Windows OS 
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or 

ATLAB to distinguish from each other. 

r implementation and again resolution of 

ATLAB. While implementing both filters, same filter constructers are used, 

odel IMM filter.  

 
Figure 4.2.2 CPU Usage of Estimation Filters 

 

It can be seen that Alpha-Beta and Alpha-Beta-Gamma filters’ CPU usage are close 

to each other. The order of CPU usage for these filters is 10-4, which is very low f

M

 

Constant Velocity and Constant Acceleration Kalman filter’s CPU usage are also 

close to each other. This is because of thei

M

except zeros are put into matrices since Constant Velocity Kalman filter does not 

use these values. However, it is still acceptable that CPU usage of these two filters 

is close to each other. 

 

As expected, the CPU usage of other filters are arranged in ascending order as EKF, 

2-model IMM and 3-m
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les 

 

 

 

. When the sizes of matrices increase by r rows and c columns 

(i.e. ), the number of operations to multiply two matrices will 

incre

 
 
 

4.3 Algorithm Complexity  
Algorithm Complexity is somehow a qualitative measure which depends on 

implementation of the algorithm. In this thesis, Algorithm Complexity is defined 

as the density of intermediate calculations and the number of matrices and variab

used in the algorithm.  

Let us assume that an algorithm will be implemented on a Programmable Logic 

Cell Array (PLCA). As the number of the intermediate calculations increases, the

area used on a PLCA will increase. As an example, we multiply two matrices with

size aa×

)()( cara +×+

ase by crcbcar −++ 222 .However, the number of cells in both matrices 

increases by +r

 

In such a qualitative evaluation, it is bet pare algorithm complexities of 

he lowest density of intermediate calculation is 

ediate calculation; however the number of matrices and 

ariables in CA Kalman filter is larger than matrices in CV Kalman filter. The 

ously, 3-mode

 this discussion, th

Alpha-Bet amma, CV Kalman, CA Kalman, EKF, 2-model IMM 

nd 3-model IMM. 

22 −c .  2

ter to com

filters with each other one by one. T

in Alpha-Beta filter, which is followed by Alpha-Beta-Gamma filter. Since each 

parameter and coordinate value is calculated separately, the number of matrices and 

variables used in both filters are nearly same. CV and CA Kalman filters have the 

same number of interm

v

construction of EKF is nearly the same as the CA Kalman filter, however there are 

linearization operations which add extra variables and intermediate calculations. 2-

model IMM filter has more intermediate calculation than EKF.  As the number of 

models used in IMM filter increases, number of intermediate operations ramp up.  

Obvi l IMM filter has much more operations than any of the filters 

above. From e filter complexity increases in the following order: 

Alpha-Beta, a-G

a
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Figure 5.1 Simulation User Interface 

 

CHAPTER 5 
 
 

SIMULATIONS 
 
 
 
MATLAB is chosen as the simulation tool, because of its flexibility in 

mathematical environment. In the simulations, estimation filters discussed in 

Chapter 2 are implemented. For error analysis, error measures in Chapter 3 (except 

section 3.5) are coded. A user interface is designed to change inputs to the filters 

and to monitor the outputs. In order to test implemented filters, benchmark 

trajectories given in the literature [13] are used.   
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By the simulation user interface, trajectory data as measurement 

ata and the number of Monte Carlo simulations. When the RUN button is pressed, 

e chosen trajectory is fed to all estimation filters implemented: Alpha-Beta, 

Alpha-Beta-Gamma, CV Kal 2-model IMM and 3-model 

M filters. The results collected from filter output and trajectory data are used to 

alculate error metrics: RMSE, AEE, GAE and normalized error (trajectory length 

.1 Trajectory Test Data 
 this thesis 6 different trajectories are used which are taken from Blair,W.D., 

atson,G.A., Kirubarajan, T., and Bar-Shalom,Y., et al, “Benchmark for Radar 

 the user can choose 

d

th

man, CA Kalman, EKF, 

IM

c

independent normalized error). The elapsed time of each filter is displayed 

individually.  The user can examine the error distribution of each filter separately. 

The mean and variance of the error distributions are also displayed. The results of 

filters can be displayed together with the trajectory. 

 

5
In

W

Allocation and Tracking in ECM” [13].  

5.1.1 Trajectory – 1 
The target flies with constant speed of 290 m/s at an altitude of 1.26 km for the first 

60 s. Then, it turns with 2 g acceleration and flies with constant speed for another 

30 s. Then, it turns with 3 g and flies to its final range. This trajectory simulates a 

large aircraft. The trajectory is shown below: 
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Figure 5.1.1.1 Trajectory – 1 

 
 

5.1.2 Trajectory – 2 
The target flies with constant speed of 305 m/s at an altitude of 4.57 km for the first 

60 s. Then, it turns 2/π with 2.5 g acceleration and descends to 3.05 km. Then, it 

turns with 4 g and flies to its final range with constant speed of 305 km/s. This 

trajectory represents a small maneuverable commercial jet. The trajectory is shown 

below: 
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Figure 5.1.2.1 Trajectory – 2 

 
 
 

5.1.3 Trajectory – 3 
The target flies with constant speed of 457 m/s for the first 30 s. Then, it turns 4/π  

with 4 g acceleration and it flies with a constant speed for another 30 s. Then, it 

with 4 g and decreases its speed to 274 m/s. With this speed it flies to its turns 2/π

final range. This trajectory represents a medium bomber. The trajectory is shown 

below: 



 
Figure 5.1.3.1 Trajectory – 3 

 
 
 

5.1.4 Trajectory – 4 
The target flies with constant speed of 251 m/s at an altitude of 2.29 km for the first 

30 s. Then, it turns 4/π with 4 g acceleration and flies with constant speed for 

another 30 s. Then, it turns with 6 g and ascends to 2.9 km. It flies with constant 

speed to its final destination. This trajectory again represents a medium bomber. 

The trajectory is shown below: 

 42
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Figure 5.1.4.1 Trajectory – 4 

 

ectory with acceleration at an altitude of 1.5 km. For the 

 
 

5.1.5 Trajectory – 5 
The target begins its traj

first 30 s it flies with constant acceleration. Then, it turns with 5 g and flies with 

constant speed for another 20 s. Then, it turns with 7 g and flies with constant speed 

for 30 s. After flying with constant speed, it turns with 6 g. After reaching at 

altitude of 4.45 km, it flies with a constant speed horizontally. This trajectory 

represents a fighter. The trajectory is shown below: 
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Figure 5.1.5.1 Trajectory – 5 

nal destination. This trajectory 

represents a fighter, too. The trajectory is shown below: 

 
 
 

5.1.6 Trajectory – 6 
The target flies with constant speed of 426 m/s at an altitude of 1.55 km for the first 

30 s. Then, it turns with 7 g and flies with constant speed for another 30 s. Then, it 

turns with 6 g and descends until altitude of 0.79 km. It flies with a constant speed 

for 30 s and then it turns with 6 g. Another constant speed flight is performed until 7 

g turn. Then it flies with constant speed to its fi



 
Figure 5.1.6.1 Trajectory – 6 
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e of each filter.  

 

One another useful information for error analysis is the distribution of error. The 

frequency of each error value is put on plot where y-coordinate is repetition number 

of error and x-coordinate is value of error, yielding the Error Distribution. Mean 

and variance of Error Distribution are helpful statistical information for error 

analysis. 

 

 

5.2 Simulation Results 
Each trajectory is fed to estimation filters as measurement data and estimation 

results of estimation filters are collected in separate arrays. From trajectory data and 

estimation filter’s results, the error at each sample is calculated. By using error at 

each sample, error measures are calculated according to methods discussed in 

Chapter 3 (except subsection 3.5). Besides, elapsed time to process a trajectory by 

an estimation filter is calculated to find out the CPU usag
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In order to make simulation results more trustable, Monte Carlo simulation method 

is used. Each trajectory is fed to the estimation filters several times with different 

random noise added to the original data. Each result is taken individually to 

calculate error measures. There is a trade-off between time consumption and 

reliability of tests conducted. Here, the degree of the Monte Carlo is 3, which means 

that the trajectory data is fed to estimation filters 3 times with different random 

noise each time.  

 

5.2.1 Trajectory – 1 

he first trajectory is fed to the filters, and the above results are obtained. As can be 

an maneuverable motion. CA Kalman filter is as bad as Alpha-Beta and 

lpha-Beta-Gamma filters, because it is sensitive to acceleration but it is not 

successful for motion with constant velocity. 2-model IMM is better than CA 

 
  Figure 5.2.1.1 Simulation Results for Trajectory-1 

 
 
 
T

seen, EKF gives the best result, where lowest error value means that the estimation 

filter output is closest to the measurement data. Actually, this is as expected since 

EKF is more sensitive to maneuverable behavior and accelerated turn. CA Kalman 

filter is worse than CV Kalman filter, due to the fact that  constant velocity motion 

is more th

A
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IMM filter uses CP Kalman model which causes to increase error 

te. 

 

the average elapsed time in ascending order are: Alpha-

e to 

 
 
 

Kalman and CV Kalman filters, which is acceptable since 2-model IMM has the 

flexibility of both CA Kalman and CV Kalman filters. With this approach, it is 

expected that 3-model IMM should give better results than 2-model IMM. Besides 

CV Kalman and CA Kalman filters, Constant Position (CP) Kalman filter is used as 

third model. Since trajectory-1 is a moving target, in some cases (even the 

probability of being in CP Kalman model or change into CP Kalman model is kept 

smaller) 3-model 

ra

The filters according to 

Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-

model IMM. The elapsed time for Alpha-Beta filter seems to be zero, this is du

the fact that the minimum sensible resolution is smaller than elapsed time. 

 
Figure 5.2.1.2 Error Distribution of Alpha-Beta Filter Output 

 
 
 
Error distribution of Alpha-Beta filter shows that most of error terms are gathered 

around 0.0603 with variance 0.0001.  
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ilter’s, 

athered around 0.0604 with variance 0.0001. Variance is a little higher, since 

lpha-Beta-Gamma reacts to changes slower than the Alpha-Beta filter, in case of 

maneuvering target. 

 
 
 

 

 
 
 

 
Figure 5.2.1.3 Error Distribution of Alpha-Beta-Gamma Filter Output 

 
 
 

Error distribution of Alpha-Beta-Gamma filer is nearly same as Alpha-Beta f

 

g

A

 

Figure 5.2.1.4 Error Distribution of CV Kalman Filter Output 
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rror distribution values of CV Kalman filter are smaller than those of both filters 

above. Mean is 0.0448 with variance of 0.0003. While error metric decreases, 

variance increases. The estimated results are closer to the exact trajectory, however 

the reaction of filter to changes of target maneuver is slower.    

 
 
 

 
 
 

he mean of CA Kalman filter error distribution is 0.0563 with variance of 0.0005, 

 

-

sed, 

m

E

 
Figure 5.2.1.5 Error Distribution of CA Kalman Filter Output 

 

T

which is larger than any of the values above. CA Kalman model is assuming that

most of the time target moves with acceleration, which is not the case for trajectory

1. Variance is larger, because of the fact that the degree of the filter is increa

eaning slower reaction to maneuver.  
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 the 

m  

measure artesian 

and spherical coordinate systems.  

 

 
Figure 5.2.1.7 Error Distribution of 2-model IMM Filter Output 

 
Figure 5.2.1.6 Error Distribution of EKF Output 

 
 
 

The error distribution of EKF output is interesting compared to the others. Mean is 

0.0315 with variance 0.00009. It seems that all error terms are close to a  single 

point. This shows that there is a bias on error, which means that if we subtract

ean value from all error terms, the EKF estimation will be much closer to the

 

ment data. The source of this bias is the transformation between C
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Mean of 2-model IMM filter’s error distribution is 0.0328 with variance 0.00016. 

The means of the 2-model IMM filter’s error distribution (0.0315) and EKF’ error 

distribution are very close to each other, while error metrics RMSE, AEE and GAE 

are slightly different. This shows that it may not be proper to use mean of error 

terms directly. It is useful to put them in a meaningful format to examine. 

 
 
 

 
 
 

he error distribution of 3-model IMM filter output’s mean is 0.0401 and variance 

ial 

 
Figure 5.2.1.8 Error Distribution of 3-model IMM Output 

 

T

is 0.00019.  The mean and variance are larger than 2-model IMM filter’s, because 

of 3rd model (Constant Position model), which is much applicable to terrestr

targets.  



5.2.2 Trajectory – 2 
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  Figure 5.2.2.1 Simulation Results for Trajectory-2 

 
 
 
As in Trajectory-1, the order of filters in terms of error metrics are as follows : 

Alpha-Beta,

model IMM and EKF. Also the order of the filter process elapsed time is the same 

as above, however time is increased. This is because of the increase in target 

 

 Alpha-Beta-Gamma, CA Kalman, CV Kalman, 3-model IMM, 2-

maneuver.  
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Figure 5.2.2.2 Error Distribution of Alpha-Beta Filter Output  

 
 

d 0.00014 of 

ariance. 

 
Figure 5.2.2.3 Error Distribution of Alpha-Beta-Gamma Filter Output 

 
 
 

 
The error distribution of Alpha-Beta filter has mean of 0.0632 an

v
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The mean and variance of Alpha-Beta-Gamma filter output are very close to Alpha-

Beta filter output error distribution mean and variance values. However, the slower 

reaction of Alpha-Beta-Gamma filter is still applicable, variance is slightly larger. 

 

igure 5.2.2.4 Error Distribution of CV Kalman Filter Output 

 
 
 

 

 
Figure 5.2.2.5 Error Distribution of CA Kalman Filter Output 

 
 

 
F

CV Kalman filter output error distribution has smaller mean (0.0460) but larger

variance (0.00033) values.  

 



 
As in trajectory-1, trajectory-2 has also constant velocity motion most of time, 

which decreases performance of the CA Kalman filter. Mean is 0.0574 and variance 
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 0.00056. 

possible to subtract mean (0.0339) from all error terms 

to remove biasing. 

 
 
 

 
Figure 5.2.2.7 Error Distribution of 2-model IMM Filter Output 

is

 
 

Figure 5.2.2.6 Error Distribution for EKF Output 

 
 
 

Error distribution of EKF output is the same as before, error terms are collected 

around one value. It is still 
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, respectively. 

Figure utput 

 – 3 

 

 
 

The mean and variance of 2-model IMM filter output error distribution is 0.0336 

and 0.00017

 
 

 5.2.2.8 Error Distribution of 3-model IMM Filter O

 
 
 

The mean is 0.0418 and the variance is 0.00022, which are larger than above. 

5.2.3 Trajectory

 
 Figure 5.2.3.1 Simulation Results for Trajectory-3 
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ers form worse to better is: Alpha-Beta, Alpha-Beta-

Gamma, CA Kalman, CV Kalman, 3-model IMM, EKF and 2-model IMM. The 

roles of 2-model IMM filter and EKF seems to be changed, however in Figure 

5.2.3.6 there is still bias on EKF output error terms. If this biasing is canceled out, 

then EKF will give the best result. The value of biasing is related to the coordinate 

transformation, and the cancellation value should be defined during this 

transformation. 

 
 
 

 
Figure 5.2.3.2 Error Distribution of Alpha-Beta Filter Output  

 
 
 

The mean and variance of Alpha-Beta-Gamma filter output error distribution are 

0.0927 and 0.00015, respectively. 

 
 
 

For this trajectory, 2-model IMM filter gives the best result in terms of error 

metrics. The order of filt
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Alpha-Beta-Gamma Filter Output 

 
 
 

For trajectory-3, the mean and variance values of Alpha-Beta-Gamma are nearly 

same as in Alpha-Beta. 

 
 
 

 
ribution of CV Kalman Filter Output 

 
 
 

The mean and variance of CV Kalman filter output’s error distribution is 0.0563 

and 0.00039, respectively. 

Figure 5.2.3.3 Error Distribution of 

Figure 5.2.3.4 Error Dist
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Figure 5.2.3.5 Error Distribution of CA Kalman Filter Output 

 of CV Kalman filter output’s error distribution is 0.0658 

nd 0.00067, respectively.  

 

 
Figure 5.2.3.6 Error Distribution of EKF Output 

 
 
 

The mean and variance

a
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Bias on error terms is still effective, to cancel biasing mean value can be subtracted 

 
Figure 5.2.3.7 Error Distribution of 2-model IMM Filter Output 

he error distribution of 2-model IMM filter has mean of 0.0431 and variance of 

.00019. 

Figure 5.2.3.8 Error Distribution of 3-model IMM Output 

from error terms. 

 

 

 
 
 

T

0

 
 

 
 
 



The error distribution of 3-model IMM filter has mean of 0.0601 and variance of 

0.00037. 
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5.2.4 Trajectory – 4 

 
  Figure 5.2.4.1 Simulation Results for Trajectory-4 

For trajectory-4, 2-model IMM gives the best estimate. This time EKF fails to be 

the best not because of the biasing, but also because of some big error terms. 

Results of other filters are as before. Elapsed time result is also the same as before. 
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Figure 5.2.4.2 Error Distribution of Alpha-Beta Filter Output  

The mean and variance of Alpha-Beta filter output error distribution are 0.0529 and 

0.00014, respectively. 

 
 
 

 
Figure 5.2.4.3 Error Distribution of Alpha-Beta-Gamma Filter Output 

 
 
 

The mean and variance of Alpha-Beta-Gamma filter output error distribution are 

nearly the same as Alpha-Beta results. 
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Figure 5.2.4.4 Error Distribution of CV Kalman Filter Output 

The error distribution of CV Kalman filter has mean of 0.0431 and variance of 

0.00019. 

 
 
 

 
Figure 5.2.4.5 Error Distribution of CA Kalman Filter Output 

 
 
 

The error distribution of CV Kalman filter output has mean of 0.0431 and variance 

of 0.00019. 

 
 
 



 64

 

at there are some big error terms that affect the variance value. Actually, 

e mean of EKF output error distribution is 20% larger than the mean of 2-model 

M filter output error distribution, while RMSE of EKF is 3.5 times larger than 

 
 
 

 
Figure 5.2.4.7 Error Distribution of 2-model IMM Filter Output 

 
 

 

Figure 5.2.4.6 Error Distribution of EKF Output 

The mean of the error distribution of EKF output is 0.0518 with variance 0.0167. It 

is clear th

th

IM

RMSE of 2-model IMM. RMSE emphasizes  big error terms; it prevents big error 

terms being canceled by small terms. This shows the benefit of using RMSE instead 

of mean. 
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The error distribution of CV Kalman filter output has mean of 0.0312 and variance 

of 0.00016. 

 

istribution of CV Kalman filter output has mean of 0.0361 and variance 

5.2.

 

 
Figure 5.2.4.8 Error Distribution of 3-model IMM Filter Output 

 
 
 

The error d

 

of 0.00020. 

 

5 Trajectory – 5 
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  Figure 5.2.5.1 Simulation Results for Trajectory-5 

psed time performance of filters stays the same. In EKF, results show 

that there is still biasing. 

 
 
 

 
Figure 5.2.5.2 Error Distribution of Alpha-Beta Filter Output  

 
Figure 5.2.5.3 Error Distribution of Alpha-Beta-Gamma Filter Output 

 

For trajectory-5, the most successful filter is again the 2-model IMM, followed by 

the EKF. Ela
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Figure 5.2.5.4 Error Distribution of CV Kalman Filter Output 

 

 
Figure 5.2.5.5 Error Distribution of CA Kalman Filter Output 
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Figure 5.2.5.8 Error Distribution of 3-model IMM Filter Output 

 
 

Figure 5.2.5.6 Error Distribution of EKF Output 

 
Figure 5.2.5.7 Error Distribution of 2-model IMM Filter Output 
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5.2.6 Trajectory – 6 

 
  Figure 5.2.6.1 Simulation Results for Trajectory-6  

 
 
 
In trajectory-6, the best estimate is given by the 2-model IMM filter, while CV 

Kalman is the second best filter. 3-model IMM filter follows CV Kalman filter. If 

biasing on EKF results are removed, the ranking can be changed in favor of EKF. 

Ranking with respect to filter process elapsed time is the same as above. 

 

 
Figure 5.2.6.2 Error Distribution of Alpha-Beta Filter Output  

 



 
Figure 5.2.6.3 Error Distribution of Alpha-Beta-Gamma Filter Output 
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Figure 5.2.6.4 Error Distribution of CV Kalman Filter Output 

t 
 

Figure 5.2.6.5 Error Distribution of CA Kalman Filter Outpu



 71

 
Figure 5.2.6.6 Error Distribution of EKF Output 

 
Figure 5.2.6.7 Error Distribution of 2-model IMM Filter Output 

 

 
Figure 5.2.6.8 Error Distribution of 3-model IMM Filter Output 
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5.3 Er
The selection of measurement noise covariance and process noise covariance 

matrices has direct effect on performance of estimation filters: CV Kalman, CA 

Kalman, EKF and IMM filters.  

 

However, process noise covariance is adaptive during the filtering operation, until it 

finally converges to a constant matrix in CA Kalman, CV Kalman and EKF. It will 

be seen from the coming up simulation results that the initial condition of process 

noise covariance is important, although it becomes stable regardless of 

measurement data. In IMM filtering it stays adaptive during the complete process. 

Process noise covariance matrix changes according to the target model used to 

construc

 

The situation for the measurement noise covariance matrix is different. It stays 

constant during the whole filtering process, which means that the initial choice is 

important. 

 

The four figures given below illustrate the relation between RMSE and 

measurement noise covariance matrix coefficient. As the measurement noise 

covariance matrix coefficient is changed, trajectory measurement data are fed to 

filters for each measurement noise covariance matrix coefficient. The output of the 

filter is collected

ror vs. Filter Constructers 

t the filter.  

 to produce RMSE values individually.  
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Figure 5.3.1 RMSE vs. CV Kalman Filter Meas. Noise Cov. Matrix Coef. 

 
The main aim is to make the RMSE value as small as possible, so for measurement 

noise covariance matrix coefficient, the value around 1 and 3 is suitable for all 

trajectories if CV Kalman filter will be used. 
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For E 

value for all trajectories. For some trajectories it is around 2, however for some 

trajectories it is around 9.  

 
Figure 5.3.2 RMSE vs. CA Kalman Filter Meas. Noise Cov. Matrix Coef. 

 
 
 

 

 CA Kalman filter, there is no single range of values that decreases the RMS

 



 
Figure 5.3.3 RMSE vs. EKF Meas. Noise Cov. Matrix Coef. 
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variance matrix coefficient according to a single result 

will degrade the error performance of  the other trajectories. 

 

For EKF, measurement noise covariance matrix coefficient can be chosen between 

3.5 and 5. Only one trajectory shows that 1 is suitable to choose, however adjusting 

the measurement noise co
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Figure  Coef. 

SE and process noise 

ovariance matrix. Trajectories are fed to filters for different process noise 

covariance matrix coefficient. Each curve shows the results for a different 

trajectory. 

 

5.3.4 RMSE vs. 2-model IMM Filter Meas. Noise Cov. Matrix

 
 
 

For 2-model IMM filter, measurement noise covariance matrix coefficient can be 

chosen between 3 and 5.  

 

The four figures given below show the relation between RM

c



 
Figure 5.3.5 RMSE vs. CV Kalman Filter Proc. Noise Cov. Matrix Coef. 
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point according to the used target model regardless of 

easurement data. Process noise covariance matrix coefficient can be chosen 

.  

For CV Kalman filter, process noise covariance matrix is adaptive during filtering, 

until it reaches a stable 

m

between 10 and 20. Since process noise covariance matrix reaches a stable point 

regardless of measurement data, its best value can be found without measurement 

data and initial condition can be chosen according to this value while filter is 

constructed

 



 
 

Figure 5.3.6 RMSE vs. CA Kalman Filter Proc. Noise Cov. Matrix Coef. 

 
 
 

For CA Kalman filter, a single process noise covariance matrix coefficient is not 

possible, since for each trajectory minimum RMSE value has appeared at different 

values. As in the case of measurement process noise covariance matrix, CA Kalman 

is not a robust filtering method, which yields different results for different 

trajectories.  
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Figure 5.3.7 RMSE vs. EKF Proc. Noise Cov. Matrix Coef. 

 
 
 

For EKF, process noise covariance matrix can be chosen between 3 and 5. 
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Figure  Coef. 

uring all 

filtering operation. This is because of the adaptive structure of IMM filtering. In 

IMM filtering, which model is used with what percentage, is decided according to 

the measurement data. The percentage of the model being used, determines process 

noise covariance matrix structure. However, still the initial condition is effective on 

RMSE value. For this simulation case, process noise covariance matrix coefficient 

can be chosen between 2 and 9. 

5.3.8 RMSE vs. 2-model IMM Filter Proc. Noise Cov. Matrix

 
 
 

In 2-model IMM filter case, process noise covariance matrix is adaptive d
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CHAPTER 6 
 
 

CONCLUSION 
 
 
 
In this thesis, the performance of 7 fundamental estimation filters is examined. 

These are: 

• Alpha-Beta 

• Alpha-Beta-Gamma 

• CV Kalman 

• CA Kalman 

• EKF 

• 2-model IMM 

 

Estimation filters are investigated with re ard to performance metrics and resource 

e discussed.  

 

RMSE and AEE are finite-sample approximation of standard error and mean error, 

respectively [11]. AEE has a physical meaning while RMSE is a statistical term. 

The physical meaning of AEE is the average distance between estimation and 

measurement. RMSE is directly related to standard deviation. GAE prevents that 

small errors are suppressed by large errors. In a radar system case, the order of the 

error is related to range or in a video tracker system the order of error is related to 

• 3-model IMM 

g

requirement. 

 

The aim of defining performance metrics is to put the error information in a more 

usable and easily understandable format. In this thesis, four types of  performance 

metrics (RMSE, AEE, GAE and normalized from these) for general estimation 

filters and two types of  performance metrics (Probability of Detection and Degree 

of Vicinity) for video trackers, ar
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the size of the target. Therefore ful to normalize error terms to 

ake error metric independent of range or target size. 

Implementing an estimation f ssible by either software or 

ardware or both. In all cases, it is essential to plan what kind of hardware is needed 

 run software or what kind of hardware is to be implemented. If there is real-time 

ore crucial.  

 

Res r n estimation filter can be defined in terms of  CPU 

usa  s and complexity. In this thesis, fundamental estimation filters 

are im  MATLAB environment. In order to make an objective 

com  implementation the filter part of the MATLAB code is kept as 

sim rder to measure the CPU usage of an estimation filter, CPU 

tim f er is recorded. However, it is assured that there is no other 

task disturbing CPU. Estimation filters arranged in order according to their CPU 

alman, CA Kalman, EKF, 2-model IMM and 3-model IMM. 

, it is more meaning

m

 

ilter into a system is po

h

to

requirement and besides other tasks are pending, then managing the resources 

becomes m

ou ce requirements of a

ge, memory need

plemented in

parison, during

ple as possible. In o

e o  estimation filt

usage is similar to the historical appearance of filters: Alpha-Beta, Alpha-Beta-

Gamma, CV K

 

In order to understand memory needs; variables, constants and intermediate 

variables in MATLAB code of each filter are counted. Each cell of matrices is taken 

as an individual memory element. The result again exhibits a parallelism with the 

historical picture: Alpha-Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF, 

2-model IMM and 3-model IMM. 

 

Complexity of an estimation filter is defined as the density of intermediate 

calculations and variables. Estimation filters are examined according to their 

complexity, and the result is not surprising (from less to more): Alpha-Beta, Alpha-

Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-model IMM. 
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 is needed. However, it is not 

fficient to work with a single trajectory, since each filter may be successful for a 

e to fit the target trajectory and during this time it swings 

round measurement data.  Alpha-Beta-Gamma filter behaves in a similar way as 

re inaccurate, then EKF will diverge. To reduce 

e probability of EKF to diverge, it is recommended to begin with a robust filter 

el 

M and 3-model IMM filters are implemented. In 2-model IMM filter, CV and 

CA Kalman filters are used and its success can be seen from simulation results. 

Evaluation of estimation filters according to their performance metrics is quite 

subtle. For trustable results, a set of measurement data

su

specific scenario. Alpha-Beta filter is the simplest estimation filter with constant 

gains. Because of its simplicity, it is very suitable for real-time applications. 

However, as it is seen from the simulation results that Alpha-Beta filter gives the 

worst results. Alpha-Beta filter is not fast enough to respond to changes when there 

is maneuver. It takes tim

a

the Alpha-Beta filter, except that it responds to acceleration on target motion. This 

makes Alpha-Beta-Gamma filter more sensitive to maneuver.  

 

CV Kalman filter is better than both of the filters above. However, it is more 

complex and uses more resources. CV Kalman filter is also better than CA Kalman 

filter. This is because of the acceleration terms in CA Kalman filter. Acceleration 

part of the CA Kalman filter makes it slower to give response to the maneuvering 

target. When estimations proceed, it takes longer for CA Kalman filter to fit back to 

the trajectory.  

 

All the above filters process each Cartesian coordinate variation individually, which 

make these filters weaker in spherical motions. In EKF, this problem is solved by 

linearizing measurement function around the measurement. Therefore, in most of 

cases, EKF will give the best result, assuming that the divergence problem of EKF 

is solved. If the initial estimates a

th

(like Kalman filter), use this period to initialize the EKF then continue with EKF.   

 

The best filter all among the others is IMM filter, which gives flexibility to change 

target dynamic model according to the measurement data. In this thesis, 2-mod

IM
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error level should be 

vestigated. An estimation filter which matches these requirements will be ‘the 

Although, 3-model IMM filter has more alternative dynamic models than the 2-

model IMM filter, it gives the worse results. This is because of dynamic models 

used in the 3-model IMM: CV Kalman, CA Kalman and Constant Position (CP) 

Kalman. Since trajectories are chosen from aircrafts, CP Kalman is not suitable for 

this kind of targets. CP Kalman model is chosen consciously to show that increase 

in resource requirements or complexity does not always imply the best 

performance. 

 

An estimation filter can be called ‘the best estimation filter’ only with respect to a 

particular application.  Therefore, before choosing an estimation filter, most 

probable target dynamics, hardware resources and acceptable 

in

best estimation filter’. 
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