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ABSTRACT

PERFORMANCE METRICS FOR
FUNDAMENTAL ESTIMATION FILTERS

Akcay, Koray
M.Sc., Department of Electrical Electrnoics Engineering

Supervisor  : Prof. Dr. Mustafa Kuzuoglu

September 2005, 86 pages

This thesis analyzes fundamental estimation filters — Alpha-Beta Filter, Alpha-Beta-
Gamma Filter, Constant Velocity (CV) Kalman Filter, Constant Acceleration (CA)
Kalman Filter, Extended Kalman Filter, 2-model Interacting Multiple Model (IMM)
Filter and 3-model IMM with respect to their resource requirements and
performance. In resource requirement part, fundamental estimation filters are
compared according to their CPU usage, memory needs and complexity. The best
fundamental estimation filter which needs very low resources is the Alpha-Beta-
Filter. In performance evaluation part of this thesis, performance metrics used are:
Root-Mean-Square Error (RMSE), Average Euclidean Error (AEE), Geometric
Average Error (GAE) and normalized form of these. The normalized form of
performance metrics makes measure of error independent of range and the length of
trajectory. Fundamental estimation filters and performance metrics are implemented
in MATLAB. MONTE CARLO simulation method and 6 different air trajectories
are used for testing. Test results show that performance of fundamental estimation
filters varies according to trajectory and target dynamics used in constructing the
filter. Consequently, filter performance is application-dependent. Therefore, before
choosing an estimation filter, most probable target dynamics, hardware resources
and acceptable error level should be investigated. An estimation filter which
matches these requirements will be ‘the best estimation filter’.

Keywords: Estimation Filters, Error Analysis, Performance Metrics
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Oz

TEMEL KESTIRIM SUZGECLERI ICIN
PERFORMANS OLCUTLERI

Akcay, Koray
Yiiksek Lisans, Elektrik-Elektronik Miihendisligi Bolimii

Tez Yoneticisi : Prof. Dr. Mustafa Kuzuoglu

Eyliil 2005, 86 sayfa

Bu calisma, temel kestirim siizgecleri: Alpha-Beta, Alpha-Beta-Gamma, Sabit Hiz
Kalman, Sabit Ivne Kalman, Ileri Kalman Siizgeci (EKF), 2-model Etkilesimli
Coklu Model ve 3-model Etkilesimli Coklu Model Siizgeclerini, kaynak
gereksimleri ve performanslarina gore incelemistir. Kaynak gereksinim kisminda,
kestirim siizgegleri islemci kullanim, hafiza ihtiyaci ve karmasikliklarina gore
degerlendirilmistir. En iyi sonucu veren siizge¢ Alpha-Beta Siizgeci olmustur.
Calismanin performans inceleme kisminda Etkin Deger (RMS) Hata, Ortalama
Euclidean Hata, Geometrik Ortalama Hata ve bunlarin normalize edilmis halleri
kullanilmigtir. Hata hesaplamalarinin normalize edilmesi, hatalarin menzil ve iz
boyundan bagimsiz hale gelmesini saglamaktadir. Kestirim siizge¢lerinin modelleri
ve hata hesaplamalart MATLAB ortaminda ger¢eklenmistir. Testler igin MONTE
CARLO yontemi ve 6 farkli hava hedefi izi kullanilmistir. Test sonuglarindan,
siizge¢ performanslarinin, temel kestirim siizgeclerini olustururken kullanilan hedef
dinamigi ve hedef izlerine gbre degistigi gézlemlenmistir. Sonug olarak, siizgeg
performansi uygulamaya bagimlidir. Boylelikle bir kestirim siizgeci segmeden dnce,
hedeflerin olast hareket dinamikleri, sistemin kaynaklari ve kabul edilebilir hata
paylan ile ilgili bir ¢alismanin yapilmasi gerekmektedir. Bu ihtiyaglara cevap
verecek kestirim siizgeci uygulamaya uygun en iyi stizge¢ olacaktir.

Anahtar Kelimeler: Kestirim Siizgegleri, Hata Analizi, Performans Olgiitleri
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CHAPTER 1

INTRODUCTION

Predicting future has always been an interesting subject to human being for ages.
While some went after fortune tellers, others tried to figure out the future from past.
Certainly, landing on moon was not achieved by clairvoyants; estimation theory
was ready there to put spacecraft into its orbits with some degree of accuracy. In the
world of estimation theory, one must keep in mind the fundamental assumption that
there is always an estimation error. While dealing with our chaotic cosmos, even
keeping the estimation in a considerable neighborhood of true value is enough.
However, what is the measure of accuracy? Which estimation method is better than
others? What is meant by ‘better’? In this thesis, these questions are tried to be

answered.

Before going further it is essential to give some definitions. One of the most popular
application areas of estimation theory is tracking. Tracking is the estimation of the
state of a moving object (target), based on measurements [1]. To simplify the
tracking problem, there are three basic items: measurement, estimation (filters) and
update. Measurement is acquired via sensors by receiving signals from the
environment. There is always a certain degree of measurement error due to sensors
(system) and environment. Depending on this observation, the next measurement is
estimated. Estimation is the process of inferring the value of a quantity of interest
from indirect, inaccurate and uncertain observations [1]. Next state of the target is
estimated with some degree of accuracy, therefore the whole tracking system
parameters must be updated with the true value of estimation. Updating the whole
tracking system (including estimation filters) makes it ready for the next
measurement with lower estimation error, assuming that the dynamics of the target

remain as it has been estimated. However, in a tracking system the dynamics of a



target can only be a model of the real life, as it is in all engineering areas. Therefore,
we must be assured that there is always an estimation error to be taken into account.
Estimation Error is the deviation from the estimatee value of the estimated
quantity. Estimatee is the quantity to be estimated. There are several methods for
error analysis. The aim of this thesis is to define an error term more meaningful and
useful to compare and evaluate estimation filters (or systems with estimation

filters).

In the second chapter, a brief background knowledge about Estimation, Tracking,
and Filtering is given. In Filtering sub-section, fundamental estimation filters (in
simple-to-complex order)

e Alpha-Beta Filter,

e Alpha-Beta-Gamma Filter

e Kalman Filter

e Extended Kalman Filter

e Interacting Multiple Model Filter

are discussed.

In the third chapter, error analysis of estimation filters is discussed. The following
Error measure methods are covered

e Root-mean-square Error

e Average Euclidean Error

e Geometric Average Error

e Normalized Error

Besides, Error Measures for Video Trackers is discussed.

In the fourth chapter, Resource Analysis of Filters: Memory Usage, CPU Usage,
and Complexity of Filters are investigated. When implementing an estimation filter
in an embedded hardware one must consider the requirements of filter despite of

limited resources of hardware.



In the fifth chapter, the results of simulations are discussed. Test trajectories used in

simulations and Error vs. Filter Constructers are demonstrated here.

In the sixth chapter, suggestions and conclusions on filters and error analysis are

given.



CHAPTER 2

ESTIMATION FILTERS

2.1 Estimation
‘Estimation is the process of inferring the value of a quantity of interest from

indirect, inaccurate and uncertain observations’ [1].

As a mathematical concept, the inevitability of measurement errors had been
recognized since the time of Galileo Galilei (1564-1642). The first method dealing
with these errors and forming an optimal estimate from noisy data is the method of

least squares by Carl Freidrich Gauss (1777-1855).

One of the greatest discoveries in the history of statistical estimation theory is
Kalman Filtering by Rudolf Emil Kalman (1930 - ...). It has great value of
controlling complex dynamic systems such as aircraft, ships, or spacecraft. For
these applications, it is not always possible to measure every variable that you want
to control. Kalman Filter provides a means of inferring the missing information
from noisy measurements. In the following chapters, details of Kalman Filtering

will be given.

The fundamentals of Kalman Filtering depends on The Theory of Probability, so it
is worth to give brief historical milestones in this branch of mathematics. The
Italian Giroloma Cardano (1501-1576) stated that the accuracies of empirical
statistics tend to improve with the number of trials. Then, general treatments of
probabilities were followed by Blaise Pascal (1623-1662), Pierre De Fermat
(1601-1655), and Christian Huygens (1629-1695). James Bernoulli (1654-1705)
(considered to be the founder of probability by some historians) gave the first
rigorous proof of the law of large numbers. Thomas Bayes (1702-1761) derived the

famous rule for statistical inference. Abraham de Moivre (1667-1754), Pierre Simon
4



Marquis de Laplace (1749-1827), Adrien Marie Legendre (1752-1833), and Carl
Freidrich Gauss (1777-1855) continued development into the nineteenth century. In
the nineteenth and twentieth century, the probabilities began to take on more
meaning as physically significant attributes. James Clerk Maxwell (1831-1879)
established the probabilistic treatment of natural phenomena as a scientific
discipline. Andrei Nikolaevoich Kolmogorov (1903-1987) and H. Ya Khinchin
worked on the theory of random processes and the foundations of probability theory
on measurement theory. Norbert Wiener (1894-1964) was the first working on the
theory of optimal estimation for systems involving random processes. [2] The
lifelines of important names in the history of probability theory are shown in

Figure-2.1.1

Cardano Legendre
Galileo Gauss
Pascal Markojv
Huygens Cholgesky
Newtdn Wiener

Bernoulli Kolmogoroy

Bayes Kalman

Laplage Bierman
1500 1600 1700 1800 1900 2000

Figure-2.1.1 Founder’s Lifelines of the Probability and Estimation Theory [2]

When talking about estimation, one of the confusing topics is decision. Decision is
the selection of one (the best choice) of a set of discrete alternatives [1]. Estimation
is interpreted as the possibility of not making a choice but obtaining some

conditional probabilities of the various alternatives.



In an estimation problem, the variable to be predicted can be either a parameter
(target signal-to-noise ratio (SNR), radar cross section (RCS), intensity of target and
so forth) or the state of a dynamic system (position, velocity, acceleration and so
forth). In Figure 2.1.2 a block diagram of state estimation is illustrated. Estimator
only has the knowledge of measurements which are affected by the error sources in
the form of noises. The estimator uses

e The changes in system dynamics

e The probabilistic characterization of the random factors

e The prior information
With this information, the estimator produces next state and state uncertainties.

Next measurement and current state estimate are used to obtain the next prior

information.
System Error Measurement Prior
Source Error Source Information
Dynamic Measurement State State estimate
System System Estimator | State Uncertainties
Figure 2.1.2 Block diagram of State Estimation
2.2 Tracking

Tracking is the estimation of the state of a moving object (target) based on
measurements [1]. Measurements can be taken by one or few active or inactive

sensors at fixed locations or on moving platforms.

A Sensor is a device that observes the environment by reception of signals. Active

sensors (such as radars) emit energy into the environment and search for reflected

6



energy, while passive sensors (such as cameras) search for energy emitted from the

target(s) [3].

Sensors at fixed locations deal only with the dynamics of the target, while sensors
on moving platforms has to take the dynamics of the moving platform into account

which makes the tracking problem more complex.

Tracking is an element of a wider system that performs surveillance, guidance,
obstacle avoidance, etc. Besides using all tools from estimation, tracking requires
extensive use of statistical decision theory. In Figure 2.2.1 a block diagram of a

typical tracking system is illustrated.

A typical multi target tracking system has the following common blocks [4]:

e Tracking Filters: The role of a tracking filter is to carry out recursive target
state estimation. The most common tracking filters are the fixed coefficient
filters (alpha-beta, alpha-beta-gamma), the Kalman Filter and the Extended
Kalman Filter (EKF). In the next section, details of these filters are given.

e Maneuver handling logic: Target motion can change suddenly, and the
tracker must adapt itself to changes in dynamics of target motion. Dynamic
models can be stationary, constant velocity, constant acceleration, etc.
Tracking system has to recognize changes and must choose the most
suitable dynamic model among others.

e (ating and data association: In a multi target environment, the tracking
system has to decide which measurement belongs to which track in order to
identify the origin of measurement.

e Track life management: Track status is typically defined in terms of three
life stages: tentative, confirmed and deleted track. By a tentative target it is
meant that a track has been initiated but not associated with any existing
track. In a confirmed track, measurements are consistent and associated with
an existing track. If for a certain time no track update is performed, than the

track is deleted.



l Measurement

: g Target State
: n i : Estimates
Vs sensor | %, Slgnal_ i Data-
| Processing || Processing | Estimate
| 1 | uncertainities
Noise '
Environment Sensor Sensor Tracking

Figure 2.2.1 Block diagram of typical Tracking System

2.3 Filtering

Commonly, a filter is a physical device for removing unwanted fractions of
mixtures. In electronics the term “filter” was first applied to analog circuits that
filter (attenuate unwanted frequencies) electronic signals. In Estimation Theory,
filtering is the estimation of the current state of dynamic system. Here, the phrase

“filtering’ is used for obtaining the ‘best estimate’ from noisy data which amounts

to ‘filtering out’ the noise.

Below, five fundamental filters in practical tracking problems (Alpha-Beta Filter,
Alpha-Beta-Gamma Filter, Kalman Filter, Extended Kalman Filter, and Interacting
Multiple Model — IMM Filtering) are discussed in historical - also simple to

advanced - order.

2.3.1 Alpha-Beta Filter

The Alpha-Beta Filter is the simplest constant-gain tracking algorithm. The tracker

has poor performance, but requires a very low computational load. The Alpha-Beta
8



Filter is used in tracking systems where position measurement updates are available
and the state vector consists of positions and velocities. The value of the gain is
preset for handling straight-line motion or turning motion. When the gain is set to
compensate for turning motion in a target, the straight-line performance will suffer

somewhat which is the trade-off for most filters below.

The structure of the Alpha-Beta Filter is based on the error estimation of a position
vector measurement. For example, if we suppose that the velocity of the X variable
is constant, we can predict (prediction phase) the position at time sample k+ 1.

X, (k+1)=XK)+T *V (k) (2.3.1.1)
However, if the target maneuverability is not null we can update (update phase) this
prediction by adding a percentage of the error.

X(k+1)= X, (k+1)+ Alphaz(k + 1) - X , (k +1)] (2.3.1.2)
where, z(k +1)is the position measurement and Alpha is the first tracking
parameter. The same principle is used to attenuate the velocity noise. This new

updated velocity will be used for next prediction.

V(k+1)=V (k) +(Beta/T)|z(k + 1) - X ,(k+1)] (2.3.1.3)

Position ( + . o) , Filtered
Position
Alpha 3
Z-l
(D |
Predicted \T/ .
iti N Y _ Filtered
Position ,(> o + > Velocity
Beta/T T
Z-1

Figure 2.3.1.1 Block diagram of Alpha-Beta Filter



2.3.2 Alpha-Beta-Gamma Filter

Alpha-Beta-Gamma Filter is similar to Alpha-Beta Filter but acceleration is
included into the state vector besides position and velocity. Only a few summations
and multiplications are added, so it also requires a very low computational load

similar to the Alpha-Beta Filter. Still only position update is needed.

As in the Alpha-Beta Filter, the structure of Alpha-Beta-Gamma Filter is based on
the error estimation of a position vector measurement. Suppose that the acceleration
of the X variable is constant, we can predict (prediction phase) the position at time
sample K +1.

Xp(k+1)=X(k)+T*V(k)+(Tz*A(k))/2 (2.3.2.1)
However, if there is a maneuver, we can update (update phase) this prediction by
adding a percentage of the error.

X(k+1)= X, (k +1)+ Alpha|z(k + 1)~ X , (k + 1) (2.3.2.2)
where, z(k +1) is the position measurement. The same principle is used for the

velocity and acceleration noise, these new values are used for the next prediction.

V(k+1)=V (k) +(Beta/T)|z(k +1) = X, (k +1)] (2.3.2.3)

Ak +1) = AKK) +[(2*Gamma) /T 2) * (z(k +1) - X , (k +1))| (2.3.2.4)

10



Filtered

Position ( + > :C\ > »

Position

Alpha :

Z-l

/;\4 |
Predicted / )  Filtered
Position 4»> A + l > Velocity

T

Beta/T
Z-l
o) , Filtered
N Acceleration
(2*Gamma)/T"2
(Tr2)12
Z-l

Figure 2.3.2.1 Block diagram of Alpha-Beta-Gamma Filter

2.3.3 Kalman Filter

R.E. Kalman published his paper on recursive solution to the discrete-data linear
filtering in 1960, which is relatively recent although its root is as far back as C.F.
Gauss (1777-1855). Since that time, Kalman Filter has been applied in many
diverse areas like military, aerospace, nuclear plant, economics (even it is not

successful in economics) etc.

The Kalman filter is a multiple-input, multiple-output digital filter that can
optimally estimate, in real time, the states of a system based on its noisy outputs [7].
Here optimal means an algorithm that minimizes chosen error criteria. Since the
filter is recursive, it does not require all previous data to be kept in storage. This

makes it easier to implement Kalman Filter by hardware. The Kalman Filter
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supports estimations of past, present and future states even when the precise nature

of the modeled system is unknown.

The fundamental assumption about the Kalman Filter is that the state is evaluated
with a known linear system equation which means that the filter is not designed to

handle maneuvering targets.

! System error

l

Obsé:rved Meas. | Kalman| Optimal estimate
5 Filter of system state

Sensors

Measurement error |

Figure 2.3.1 Typical Kalman Filter Application [9]

In dynamic systems, the state equations are expressed in matrix form. For example,

X, =HxX, (2.3.3.1)

where
Xn
X, = { } (2.3.3.2)
X

and

1T
H =
{o J (2.3.3.3)

represents state transition matrix for the constant velocity target.
It is now simpler to give the random system dynamics model. Specifically, it
becomes

12



X, =HxX +U, (2.3.3.4)

where
0
U, = L } (2.3.3.5)

is the dynamic model noise vector.
We now express the trivial measurement equation in matrix form. It is given by

Y, =FxX, +N, (2.3.3.6)
where

F=[1 0] observation matrix
N, =[v,] observation error (2.3.3.7)
Y. =y, ] measurement matrix
Equation 2.3.3.6 is called the observation system equation. This is because it relates

the quantities being estimated to the parameter being observed, which are not
necessarily to be the same. The parameters X, and X, (target range and velocity) are
being estimated (tracked) while only target range is observed. As another example,
one could track a target in rectangular coordinates (X,y,z) and make measurements

on the target in spherical coordinates (R,&,¢). In this case the observation matrix

F would transform from the rectangular coordinates being used by the tracking

filter to the spherical coordinates in which the radar makes its measurements.

X =HxX_ | (2.3.3.8)
where
~ in ,n
X, = (2.3.3.9)
’ Xn ,n

~ yml,n
Xovin =| (2.3.3.10)
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This is called the prediction equation, because it predicts the position and velocity
of the target at time n+1 based on the position and velocity of the target at time n,
the predicted position and velocity being given by the state vector. Putting into

matrix form yields

~

Xow=Xony +Kox(Y, - FxX, ) (233.11)

This is called the Kalman Filtering equation because it provides the updated
estimate of the present position and velocity of the target. Since only position and
velocity are involved, this called Constant Velocity Kalman Filter. If acceleration
is added to the dynamic model, then the filter will be a Constant Acceleration
Kalman Filter. In Constant Velocity model, the response of the filter is faster then
Constant Acceleration model. However, although the response of the constant
velocity filter is faster, the rate of overshooting in the changes is much more than
the Acceleration model. In this work, both Constant Velocity and Constant

Acceleration Kalman Filters are implemented.

The matrix K, is a matrix giving the tracking-filter constants g, and h, . It is

9,
given by K =|h | for the two-state alpha-beta or Kalman filter equations. This

T
form does not however tell us how to obtain g, and h . In Kalman filter

application K is obtained from

B T 5 T 1!

Ky =P xF [Rn + FxB, xF" ] (2.3.3.12)
where predictor equation

D _ D T

Puny = HFp xHE 4G, (2.33.13)
and dynamic model noise covariance

T

Q,=Cov[u,]=Eu,u,"| (2.3.3.14)

B, =COV(X,, )=E[X, X nnt ] (2.3.3.15)

R, =COV(Nn)=E(NnNnT) (2.3.3.16)
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~

I:)n—l,n—l = CO\/(%n—l,n—l) = [I - Kn X F]X P

n-1,n-2

(2.3.3.17)

Covariances apply as long as the entries of the column matrices U and N, have
zero mean. Otherwise they have to be replaced byU, —E[U,]Jand N, —E[N, ],

respectively.

Physically, the matrix ISn is an estimate of our accuracy in predicting the target

-1,n

position and velocity at time n based on the measurements made at time n-1. Here,

~

P, 18 the covariance matrix of the state vector X nnt - TO get a better feeling for

FN’,H,n , let us write it out for our two-state X ol -

. o X
cov(X,, )=EX,, X, )= E {; }[% %))

n,n—1

~ ~

~ 2
E(Xn,n—l ) E(Xn,n—lxn,n—l)
< ~ N 2
E(Xn,n—lxn,n—l) E(Xn,n—l )

- B (2.3.3.18)

R, =COV[N,]=E(v,v ")
- [Ew, ) (23.3.19)

o]

The matrix R, gives the accuracy of the radar measurements. It is the covariance
matrix of the measurement error vector N, . For two-state filter, where it is assumed

that o, and o, are the root-mean-square ofv, and X, the assumption is that the

mean of V,, is zero.
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The matrixQ, , which gives the magnitude of the target trajectory uncertainty or the
equivalent maneuvering capability, is the covariance matrix of the dynamic model
driving noise vector, that is, the random-velocity component of the target trajectory.
To get a better feeling for Qh let us evaluate it for our two-state Kalman filter, that

is, for U, .

Q,=COVU, =EU,U_ ")

= E(B }[0 ) (2.3.3.20)
o 0
{0 E(u,’)

The prediction covariance matrix P, , is obtained from the covariance matrix of

~

the filtered estimate of the target state vector at time n-1 given byP _, .

The

~

filtered estimate covariance matrix P

-1n 18 1n turn obtained from the previous

prediction covariance matrix P, ,.

Above equations allow us to obtain the filter weights K =| h, at successive

observation intervals. The observation matrix is given by equation 2.3.3.7 and the

filter coefficient matrix K, is given by equation 2.3.3.12. The covariance matrix for
the initial a priori estimates of the target position and velocity given by P, _, allows

initiation of the tracking equations given by equation 2.3.3.13. First equations

2.3.3.14 and 2.3.3.15 is used to calculate H,(assuming that n=0 is the time for the

first filter observation).
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In Kalman Filtering, we can simply think that there are two stages: Time Update
and Measurement Update. In Time Update, prediction of the next observation is
calculated. In Measurement Update, the items of Time Update are corrected. In
literature Time Update is called Predictor and Measurement Update is called as

Corrector. Below is the summary of Kalman Filtering in two stage form.

m&t‘i uwrement Update (Correct™)

(11 Compute the Kalman gain

Time Update (“Predict™)

(1) Project the state ahead K. = P'H';'[ HP H';' +R]_]
" & BT Tk - k ’
&, = A%, +Bu,
N (2) Update estimate with measurement 2
{2} Project th covariance ahead G = B SN
1J‘f‘-‘- *m‘”—“"dﬂd‘_"'ffd Xp = A+ 'ﬁ'k[-"'k H.Ik_]
Pk = A Pk_ ]‘4! +Q (31 Update the error covariance

Py, = (I-K.H)P,

\

Figure 2.3.1 Summary of Kalman Filter [6]

Initial estimates for X, ) and Py

2.3.4 Extended Kalman Filter - EKF
The fundamental assumption about the Kalman Filter is that it is based on linear

system equations where it expects linear measurements. This assumption makes
Kalman Filter weaker for observations from non-linear target dynamics. In most
cases due to the nature of sensors and target dynamics, the measurements are non-
linear. Extended Kalman Filter (EKF) solves this problem. The aim of EKF is to
estimate the state under the conditions of non-linear measurement processes and/or
non-linear target dynamics. The extended Kalman filter (EKF) is a Kalman filter

that linearizes the dynamic system about the current mean and covariance.

17



The nonlinear transformation may introduce bias to the solution, the covariance
calculation is not necessarily accurate, and the EKF can diverge if the initial
conditions are inaccurate. So it is crucial to use a coherent filter or take first few

measurements to initialize the EKF.

Linearization of the estimation around the current estimate using the partial
derivatives of the process is just like a Taylor series expansion [6]. Let us begin
with a state vector X € R" be defined as the state vector of a non-linear stochastic
difference equation

X, = F(X,U W, ) (2.3.4.1)
Let z e R" be the measurement vector

z, =h(x.,v,) (2.3.4.2)
wherew, and v, are the random variables that represent the process and
measurement noise. Assume W, and v, have zero mean.

To estimate a process with non-linear state and measurement relationships, new
governing equations are obtained via a linearization of equations 2.3.4.1 and
2342,

X, =X, +AX,, — X)) +Ww,_, (2.3.4.3)

z, ~7, + H(x, — X, )+ Vv, (2.3.4.4)
where

* X, and z, are the actual state and measurement vectors,

* X,and 7, are the approximate state and measurement vectors from

equations 2.3.4.1 and 2.3.4.2,

* X, 1s an a posteriori estimate of the state at step k,
* The random variablesw, andv, represent the process and measurement

noise

* A is the Jacobian matrix of partial derivatives of f with respect to x,

81:[i] ”
Aij = ) (R_p5U;50) (2.3.4.5)
j
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* W is the Jacobian matrix of partial derivatives of f with respect to w,
af[i] "
Wiij) = a\N—[j](Xk—l ,Uyy,0) (2.3.4.6)

* H is the Jacobian matrix of partial derivatives of f with respect to x,

y onyy My o
il = k>
OX;)

0) (2.3.4.7)
* V is the Jacobian matrix of partial derivatives of f with respect to v,
ah[,

[i]
In the notation, the time step subscript k is not used with the Jacobians A, W, H and

Vi = = (%,.0) (2.3.4.8)

V even though they are in fact different at each time step.

New notations for the prediction error and the measurement residual are as follows:
€, =X —X (2.3.4.9)

€, =2,-7, (2.3.4.10)

Using 2.3.4.9 and 2.3.4.10 we can write governing equations for an error process as

B~ AX, —% )+ é (2.3.4.11)

Xy

g, ~Heg_+7, (2.3.4.12)

where ¢, and 7, represent new independent random variables having zero mean

and covariance matrices WQW " and VRV " .

Let us use the actual measurement residual€, in equation 2.3.4.10 and a second
(hypothetical) Kalman filter to estimate the prediction error€, given by equation

2.3.4.11. This estimate, call ité, , could then be used along with equation 2.3.4.9 to
obtain the a posteriori state estimates for the original non-linear process as

X =X, +6€, (2.3.4.13)
The equations 2.3.4.11 and 2.3.4.12 have approximately the following distributions

P&, )~N(0,Ef, & ] (2.3.4.14)
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p(&,) ~ N(O,WQW ") (2.3.4.15)

pP(7,)~ N(O,VRV ") (2.3.4.16)
Given these approximations and letting the predicted value of €, be zero, the
Kalman filter equation that is used to estimate &, is

& = K&, (2.3.4.17)
By substituting Equation 2.3.4.15 back into Equation 2.3.4.13 and making use of
Equation 2.3.4.10 we see that we do not actually need the second (hypothetical)
Kalman filter:

X=X +K&, =X +K,(z,-7Z,) (2.3.4.18)
Equation 2.3.4.18 can now be used for the measurement update in the extended
Kalman filter, with X, and Z, coming from equations 2.3.4.1 and 2.3.4.2, and the

Kalman gain K, coming with the appropriate substitution for measurement error

covariance.

As in the linear Kalman Filter, there two stages of the EK filter: Time Update and

Measurement Update. A, and W, are the process Jacobians at step k, and Q, is the
process noise covariance at step k. h comes from Equation 2.3.4.2, H, and V are the
measurement Jacobians at step k, and R, is the measurement noise covariance at

step k. Below is the summary of Extended Kalman Filter.
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Measurement Update (“Correct™)

Time Update (“Predict™) (1) Compute the Kalman gain

(1) Project the statc shead | K, = P.HI(HPH] +V RV
Y= A _youg_ . 0) {2) Update estimate with measurement 2,

{23 Progect the ermor covartance ahead ’ih = ‘{h + K.":[ - Jrl "ih 0]

Pﬁ = AP _ A : + W00y H: {3 Update the error covariance

P, = (I-K.H, )P,

[nitial estimates for &, _, and P,

Figure 2.3.4.1 Summary of Extended Kalman Filter [3]

2.3.5 Interacting Multiple Model Filter — IMM Filter

The Interacting Multiple Model filter is used to predict the current state of the target
whose behavior pattern changes with time using two or more dynamic models. For
example, if the target is expected to travel with constant velocity for a while and
then with a non-zero acceleration, the type of Kalman Filters (dynamic models) can
be Constant Velocity Kalman Filter and Constant Acceleration Kalman Filter. The

number of dynamic models used is dependent on the application.

In IMM filtering, multiple state equations are used for individual dynamic models.
A Markov transition matrix is used to specify the probability to use one of the target
dynamics. The values of Markov transition matrix are chosen according to target.
For example, if the target is a cargo airplane, then most of time it will travel with
constant velocity, which means that the probability to be in the constant velocity
model will be higher. If the target is a fighting airplane, then the percentage of
maneuvering in time will be higher, which means the probability to be in the turn

model should be taken accordingly.
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There are four fundamental steps in IMM Filter algorithm [1]:

e Interaction: In this step the previous cycle mode-conditioned state estimates,
covariance and the mixing probabilities are used to initialize the current cycle of
each mode-conditioned filter

e Mode-conditioned filtering: Calculation of the state estimates and covariance,
conditioned on a mode being in effect, as well as the mode likelihood function
(r parallel filters)

e Probability evaluation: Computation of the mixing and the updated mode
probabilities

e Overall state estimate and covariance (for output only): Combination of the

latest mode-conditioned state estimates and covariance.

Below is IMM filter implemented for two dynamic models [1]:

Ak =k — 1), Pk — 1k —1) 22k -1k - 1), Pk -1k -1

Interaction/mixing — el — 1|k — 1)

Mk — 1k — 1), POk — 1k — 1) &k — 1)k — 1), Pk — 1k — 1)

1 Filter i i Filter i
(k) — M, | Aqg(k) (k) — M | Aalk)
#(k[E), PY(E|k) 2 k&Y, PRk
As (k) — M"j;dz;‘;bjnbé““‘ L (k) 1 (k{k), P (k[k) | State estimate | Lo
A1l \ 2200 PRLILY : — Tl
Aa(k) - mixing probability |— p(k) & (klke), P "i"li" and CE?arI?nce - PUE|E)
caleulation p(k) —|  combination

Figure 2.3.5.1 Summary of IMM Filter [1]
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In this thesis, 2-model and 3-model IMM Filters are implemented. In 2-model IMM
Filter, Constant Velocity and Constant Acceleration Kalman Filters are used. In 3-
model IMM Filter, besides filters in 2-model IMM Filter, stationary target model is
added, which can be applicable to land targets.
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CHAPTER 3

ERROR ANALYSIS

Error is deviation from the true value of the measured quantity. In this thesis, the
general definition is used in a specific form: Estimation Error is deviation from
the estimatee value of the estimated quantity. Estimatee is the quantity to be

estimated. The n-dimensional estimatee, its estimation, and estimation error are

denoted by X, X , and X . Estimation error for each term is

X[n]= (R =%, S + 9 = ¥0)* + (2, —2,)%) (3.1)

as shown figure below.

N

R et o

(i,z,i)
(x%,Y,2) /estimate
o

estimatee

Figure 3.1 Estimation Error Vector

In error analysis, results turn out to be more precise and dependable if a large

amount of data is processed. So it is crucial to repeat tests again and again with
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Monte-Carlo simulations. Here the total number of independent Monte-Carlo

simulations is denoted by M.

3.1 Root Mean Square Error - RMSE

RMSE()?)z(ﬁiH)?iHE)y: ﬁii;ii)% G.1.1)

Root-Mean-Square Error (RMSE) is a widely used measure of estimation accuracy.
The popularity of RMSE comes from the fact that is it is older than the other

methods discussed below. RMSE is finite-sample approximation of the standard
error\/E|)? X |, which 1is closely related with standard deviation. [11] Standard

deviation is an important parameter for probabilistic analysis, so RMSE is.

It is clear that smaller RMSE means a more accurate estimator.

3.2 Average Euclidean Error — AEE

AEE(X) =ﬁi”%”z _ ﬁjﬂ;(i;%i)% 3.2.1)

Average Euclidean Error (AEE) arises from Euclidean distance or Euclidean norm

[11]. AEE is finite-sample approximation of mean error EM)? sz’ which is in other

words mean deviation. Since mean deviation is never larger than standard deviation,

AEE is never larger than RMSE.

Again, smaller AEE means a more accurate estimator.

3.3 Geometric Average Error - GAE
)}
GAE(X) = [H?‘l(i;ii)%w 3.3.1)

It is obvious that geometric average is never larger than arithmetic average, which is

never larger than the RMS value, GAESAEE<RMSE. [11] GAE is useful to see the
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existence of instantaneous large error. This is helpful to analyze the behavior of
filter with a maneuvering target. The estimation error increases when a straight
moving target begins to maneuver instantly, since it takes time for filter to update

its parameters.

Smaller GAE means a more accurate estimator.

3.4 Normalized Error

In a radar tracking system, one of the main error sources is measurement error,
stemming from the sensor itself. To simplify the discussion, let us consider a two-
dimensional case of measurement from a sensor where ‘r’ and ‘a’ stands for range

and azimuth angle respectively:

sensor | {3 X

Figure 3.4.1 Sensor Measurement Vector

In cartesian coordinate;
X = rcos(a) (3.4.1)
y =rsin(a) (3.4.2)
assuming there is error both on range and angle measurement (r + Ar) and (a + Aa).

X+ AX = (r + Ar)cos(a + Aa) (3.4.3)
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y + Ay = (r + Ar)sin(a + Aa) (3.4.4)
Taking equation 3.4.3 and using trigonometric identities,

X+ AX = (r + Ar)[cos acosAa—sinasin Aa] (3.4.5)

for small Aa using Taylor series expansion;

2
cosAa~1+ % ~1 (3.4.6)

(aa)
3!

sinAa ~ Aa— ~ Aa 3.4.7)

Putting Equations 3.4.6 and 3.4.7 into Equation 3.4.5
X+ Ax = (r + Ar )cosa — (sin a)Aa] (3.4.8)

X+ AX =rcosa—r(sinAa)Aa+ (cosa)Ar —(sina)ArAa (3.4.9)

Where
X=Trcosa (3.4.10)
AX = (cos@)Ar —r(sin Aa)Aa (3.4.11)
(sina)ArAa =0 (3.4.12)

As seen in equation 3.4.11, for small Aa and Ar, dominant figure in measurement
error is proportional to range. To make error measure independent of trajectory,
each error must be normalized with the range where error is calculated. Normalized
error at sample i in a trajectory is given by

X

ne, = (3.4.15)

NE is n dimensional normalized error of a trajectory. NE is applicable to RMSE,

AEE, and GAE error measures. Instead of X , NE can be put into related equations.

. ~ 1 Y 2 Y L \ A
NormallzedRMSE(X)=(MZ||NEi||2) 2 :WZ NE,NE;)"> (3.4.13)
i=1 i=1
. ~ 1 1 & : Y
NormalizedAEE(X) :MZ”NEi”z :MZ(NEiNEi) 2 (3.4.14)
i=1 i=1

NormalizedGAE(X ) = [H?ﬁl (NENE, )" r” (3.4.15)
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Besides normalizing error measures, it can be helpful to make error analysis
independent of trajectory length. Making error analysis independent of trajectory,
we gain the possibility of using error measure as specification of a tracking system.
For this, each normalized error analysis results can be divided into total number of
samples for each Monte Carlo simulation (let us take number of samples: ‘k’) as

shown below.

TrajectLengthindepNormalizedRMSE (X ) = NormalizedRMSE(X)/kM (Eq.3.4.16)
TrajectLengthindepNormalizedAEE(X ) = NormalizedAEE(X)/kM  (Eq.3.4.17)

TrajectLengthindepNormalizedGAE(X) = NormalizedGAE(X)/kM  (Eq.3.4.18)

3.5 Error Measures for Video Trackers

When dealing with video tracking, one will find himself in the 2D world. In most
video tracking systems, there two phases: Detection and Tracking. In detection
period, where image processing methods are used, probable targets are figured out.
In tracking period, where estimation filters are at work, one or few of probable
targets’ next position are estimated. Therefore, in finding error measures for video

trackers, we have to take into account both image processing and estimation filter.

Most of the time, the gravity centre of target’s 2D image is ordered to track. In
minor cases, the edge of a target is the interest of tracking filters. From this point of
view, center of gravity of target image will be used as reference data to find out
estimation error. To find out the center of gravity of the target, one needs the exact
placement of target image in a series of frames, which is called ‘Ground Truth’.
To simplify the problem, it is enough to take the quadrangle window (‘Ground
Truth Window’) frame that each edge touches to the target. Ground truth of the

target is shown in Figure 3.5.1
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Target's center of gravity
(Ground Truth)

Estimation output

Ground Truth Window Estimation error

Fig. 3.5.1 Ground Truth and Ground Truth Window

3.5.1 Probability of Detection

In video tracking systems, it is essential that estimation falls in Ground Truth
Window. Estimation is used to place detection window where target will be found
out in the next frame. If estimation is out of Ground Truth Window, then detection
window should be placed where another irrelevant target takes place. Probability of

estimation being in the Ground Truth Window is called ‘Probability of Detection’.

Sometimes Probability of Detection is used to define how accurate that target is
distinguished from the background in the detection phase of video tracking.
However, taking video tracking -detection and tracking phases- as a whole system,
detection and estimation errors are evaluated together. Probability of detection is
the best when it is 100%. Specification of a video tracking system, can be given in

terms of Probability of Detection.

Probability of = (Number of frames that estimation falls in Ground Truth

Detection Window / number of total frames under test) x 100
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3.5.2 Degree of Vicinity

Another essential item in video tracking error analysis is how close estimations are
to Ground Truth, which can be called as ‘Degree of Vicinity’. Here again both
detection and estimation errors are evaluated together. In some cases, it is
acceptable to track a target with a constant deviation. This constant deviation can be
large enough to put estimation out of the Ground Truth Window. In such a case,
system itself can assign a constant to take estimation in Ground Truth Window.
Every system is designed with a limit before braking down, so it is crucial to know
the closeness of estimation to ground truth before giving up track.

Let us call error between estimation and Ground Truth as error and diagonal length
of Ground Truth Window as diagonal. Degree of Vicinity can be formulized as

2\ 2
DoV =| 3| (3.5.2.1)

diagonay
2

As it can be guessed, smaller DoV means a better video tracker system.
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CHAPTER 4

RESOURCE ANALYSIS

When implementing any algorithm into hardware, there are resource requirements
in terms of memory and processing power. One must take these into account, when
choosing the processor platform and amount of memory. Another issue about
hardware implementation is the complexity of algorithm related to the size of

Programmable Logic Cell Arrays.

However, the hardware implementation of an algorithm must be considered as a
part of system itself, not stand alone. For example, in a multi-target tracking system,
the amount of memory requirement increases geometrically as the number of targets
increases. Besides, if there is a real time requirement of the system, then all

resources must be revised again, e.g. parallel processing.

As mentioned before, five fundamental estimation filters and their variations are
investigated in this thesis:

e Alpha-Beta

e Alpha-Beta-Gamma

e Kalman — Constant Velocity

e Kalman — Constant Acceleration

e Extended Kalman Filter

e 2-model IMM Filter

¢ 3-model IMM Filter
In the next sub-sections; the memory requirement, processing power, and algorithm
complexity of above filters are discussed for single target tracking with one sample

estimation.
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4.1 Memory Requirement
The memory requirements of filters are examined in relation to the number of
constant, variable and temporal values used in the algorithms.
e Constants: These values are used without any change during execution of
algorithm
e Variables: These values change from one data set (e.g. estimation) to the
other.
e Temporal: These values are intermediate values which are not directly
related to filter constructers
In the table below, memory requirements are given for estimation filters. When
evaluating filters by their memory requirements, total constants and total variables
are summed up to find out total memory needs. As its is guessed the memory
requirements of filters increase in the following order: Alpha-Beta, Alpha-Beta-
Gamma, Kalman — Constant Velocity, Kalman — Constant Acceleration, Extended

Kalman Filter, 2-model IMM Filter and 3-model IMM Filter.

Table 4.1.1 Memory Requirements of Fundamental Estimation Filters

Estimation Tot. ) Tot.
) Constants Variables Temp.
Filter cons. var.

alpha : Ix1
position : 3x (1x1)
Alpha-Beta beta : 1xI 3 ) 6 12
velocity : 3x (1x1)

T : 1x1
alpha : 1x1
Alpha-Beta- beta :1x1 position 1 3x (1x1)
Gamma : 1x1 5 ivelocity  :3x(1x1) 9 24
Gamma T :1x1 acceleration : 3x (1x1)
™2 :1x1
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state predic. :3x (1x2)
meas. noise  : 1x1 state predic.cov. : 3x (2x2)
meas. mat. 1 2x1 filter gain 1 3x (1x1)
Kalman - CV N 11 _ 45 141
state transition : 2x2 state estimate :3x (2x1)
pro. noise cov. : 2x2 state cov. :3x (2x2)
meas. predic. :3x (2x1)
state predic. :3x (1x3)
meas. noise s 1x1 state predic. cov. : 3x (3x3)
meas. mat. : 3x1 filter gain :3x (1x1)
Kalman — CA N 22 ‘ 84 - 411
state transition : 3x3 state estimate  : 3x (3x1)
pro. noise cov. : 3x3 state cov. :3x (3x3)
Meas. Predic.  :3x (3x1)
state predic. :3x (1x3)
state predic. cov. : 3x (3x3)
meas. noise  : 1x1 filter gain 1 3x1
EKF state transition : 3x3 19 istate estimate  :3x (3x1) { 165 447
pro. noise cov. : 3x3 state cov. 1 3x (3x3)
Meas. Predic. 1 3x (3x1)
meas. mat. 1 9x9
state predic.  :2x3x (1x3)
meas. noise  : 2x (1x1) state predic.cov:2x3x (3x3)
IMM — 2- meas. mat. 1 2x (3x1) filter gain 1 2x3x (1x1)
state transition : 2x (3x3) - 46 Sstate estimate :2x3x (3x1) - 170 - 242
model pro. noise cov. : 2x (3x3) state cov. 1 2x3x (3x3)
trans. prob.  :4x (1x1) meas. Predic. :2x3x (3x1)
mode prob.  :2
state predic.  :3x3x (1x3)
meas. noise  : 2x (1x1) state predic.cov:3x3x (3x3)
IMM — 3- meas. mat. : 2x (3x1) filter gain : 3x3x (1x1)
state transition : 2x (3x3) : 51 Sstate estimate :3x3x (3x1) : 255 363
model pro. noise cov. : 2x (3x3) state cov. : 3x3x (3x3)
trans. prob.  : 9x (1x1) meas. Predic. : 3x3x (3x1)

mode prob. 3
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Memory Requirements
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Figure 4.1.1 Memory Requirements of Fundamental Estimation Filters

4.2 CPU Usage

When implementing any algorithm in hardware with real-time requirement, one of

the primary questions to be answered is ‘Is this hardware fast enough to handle this

algorithm?’ Answer to this question may be found in two ways:

Each arithmetic operator to be executed in algorithm can be counted,
number of operators gives total CPU usage. In a conventional CPU, each
type of arithmetic operator lasts differently, i.e. division lasts longer than
summation.

Another method to find out CPU usage is to put algorithm into CPU, and
measure CPU time. In this thesis, this method is used, algorithms are
implemented in MATLAB. Codes below are used to calculate CPU time in
MATLAB [12].
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t = cputime;
surf(peaks(40));
e = cputime-t
e= 0.4667

CPU usage of estimation filters investigated in this thesis are examined below. For
CPU time calculation, the execution priority of the MATLAB is made ‘Realtime’ to
avoid CPU being blocked by other application. During simulations, the
configuration of PC is Pentium M Centrino 1300MHz CPU and 512MB RAM.

E indows Task Manager |;”§”X|
Fle Cptions Yiew ShutDown  Help

| Applications | Processes | performance || Networking | Users |

Image Name User Mame CPU | Mem Usage
WINWORD, EXE 00

MATLAE.EXE i 2 iln}

taskmar.exe ¢ EndProcess

RMATHCHK.ExE EndProcess Tree

ALG ERE

iPodService.exe e

Raoamsve exe Set Priority v | ® Realtime
SWCHOST.EXE =

RoamMar, exe

MATLAB.EXE Abovehlormal
Regstve.exe SYSTEM Normal
CTFMON . EXE Koray Belowhormal
MDM.EXE SYSTEM
matlabserver. exe SYSTEM
KaWSWC EXE SYSTEM 5,592 K
iTunesHelper . exe Koray 6,720 K
HPCMPMGR, EXE Karay 9,380 K
EXPLORER.EXE Koray 3,184 K
SPO0ISY.FRF SYSTFM manak ¥

Shaw pracesses from allusers Erd Process

Processes: 44 CPU Usage: 48% Commit Charge: 300408K [ 7401

Lo

14 start = e = & report | O rep...

Figure 4.2.1 Making MATLAB a Real-time Application in Windows OS

The Alpha-Beta filter is taken as basis to compare the CPU usage of estimation
filters. Below is CPU usage of estimation filters discussed in this thesis. The results

are gathered from six different trajectories and several Monte Carlo simulations.
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It can be seen that Alpha-Beta and Alpha-Beta-Gamma filters’ CPU usage are close
to each other. The order of CPU usage for these filters is 10, which is very low for
MATLAB to distinguish from each other.

Constant Velocity and Constant Acceleration Kalman filter’s CPU usage are also
close to each other. This is because of their implementation and again resolution of
MATLAB. While implementing both filters, same filter constructers are used,
except zeros are put into matrices since Constant Velocity Kalman filter does not
use these values. However, it is still acceptable that CPU usage of these two filters

is close to each other.

As expected, the CPU usage of other filters are arranged in ascending order as EKF,

2-model IMM and 3-model IMM filter.

CPU Usage

N N

& & o F & F

& (o > o < <
N O & & v >
W & ° S ©
2 A N N\
&
?\

Figure 4.2.2 CPU Usage of Estimation Filters
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4.3 Algorithm Complexity

Algorithm Complexity is somehow a qualitative measure which depends on
implementation of the algorithm. In this thesis, Algorithm Complexity is defined
as the density of intermediate calculations and the number of matrices and variables

used in the algorithm.

Let us assume that an algorithm will be implemented on a Programmable Logic
Cell Array (PLCA). As the number of the intermediate calculations increases, the
area used on a PLCA will increase. As an example, we multiply two matrices with
sizeaxa. When the sizes of matrices increase by r rows and c¢ columns

(i.e.(a+r)x(a+c)), the number of operations to multiply two matrices will

increase by 2ar + 2bc + 2rc —c .However, the number of cells in both matrices

increases by 2r +2c—-2.

In such a qualitative evaluation, it is better to compare algorithm complexities of
filters with each other one by one. The lowest density of intermediate calculation is
in Alpha-Beta filter, which is followed by Alpha-Beta-Gamma filter. Since each
parameter and coordinate value is calculated separately, the number of matrices and
variables used in both filters are nearly same. CV and CA Kalman filters have the
same number of intermediate calculation; however the number of matrices and
variables in CA Kalman filter is larger than matrices in CV Kalman filter. The
construction of EKF is nearly the same as the CA Kalman filter, however there are
linearization operations which add extra variables and intermediate calculations. 2-
model IMM filter has more intermediate calculation than EKF. As the number of
models used in IMM filter increases, number of intermediate operations ramp up.
Obviously, 3-model IMM filter has much more operations than any of the filters
above. From this discussion, the filter complexity increases in the following order:
Alpha-Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM
and 3-model IMM.
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CHAPTER S

SIMULATIONS

MATLAB 1is chosen as the simulation tool, because of its flexibility in
mathematical environment. In the simulations, estimation filters discussed in
Chapter 2 are implemented. For error analysis, error measures in Chapter 3 (except
section 3.5) are coded. A user interface is designed to change inputs to the filters
and to monitor the outputs. In order to test implemented filters, benchmark

trajectories given in the literature [13] are used.

RUM simulation 3 times

Nomalzed  Ava time
it BAE En in ser.

dphabets  [3478  [347 [34ms oo [ o

dphabetgems | 34768 [3476e  [3474  [oooa0 [T
KemanCv  [23085  [23me  [23088 o002 023
KalmanC4 727656 [z7ege B [H]

S
-
—
S—

~ ] EKF 23 2.3561 2.3561 0.0023 0.431
a0 IMM - 2 Model 1724 1724 1724 0.0020 0561
MM - 3 Model 23777 23777 23777 0.0031 0932

40

Choose s siectoly  [Trajeclay 5+ Plot

Choossafiter  [alphaBeta = Plot ] mean
0.067133

valiance

0000645476

# of enar

il L . . L
0.2 0.2 04 0.6 Iz} 1 12

value of enar

Plat abs. ermor hist. of Kalman-C& hd

T - e :
14 start cTEeE o = & report T report_... <) MATLAB B Dilkara...

Figure 5.1 Simulation User Interface
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By the simulation user interface, the user can choose trajectory data as measurement
data and the number of Monte Carlo simulations. When the RUN button is pressed,
the chosen trajectory is fed to all estimation filters implemented: Alpha-Beta,
Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-model
IMM filters. The results collected from filter output and trajectory data are used to
calculate error metrics: RMSE, AEE, GAE and normalized error (trajectory length
independent normalized error). The elapsed time of each filter is displayed
individually. The user can examine the error distribution of each filter separately.
The mean and variance of the error distributions are also displayed. The results of

filters can be displayed together with the trajectory.

5.1 Trajectory Test Data

In this thesis 6 different trajectories are used which are taken from Blair,W.D.,
Watson,G.A., Kirubarajan, T., and Bar-Shalom,Y., et al, “Benchmark for Radar
Allocation and Tracking in ECM” [13].

5.1.1 Trajectory -1
The target flies with constant speed of 290 m/s at an altitude of 1.26 km for the first

60 s. Then, it turns with 2 g acceleration and flies with constant speed for another
30 s. Then, it turns with 3 g and flies to its final range. This trajectory simulates a

large aircraft. The trajectory is shown below:
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Figure 5.1.1.1 Trajectory — 1

5.1.2 Trajectory -2
The target flies with constant speed of 305 m/s at an altitude of 4.57 km for the first

60 s. Then, it turns 7 /2 with 2.5 g acceleration and descends to 3.05 km. Then, it
turns with 4 g and flies to its final range with constant speed of 305 km/s. This
trajectory represents a small maneuverable commercial jet. The trajectory is shown

below:

40



4575
as7f. T

4585

z (k)

485 ) -

4886 T

4865 T
25

¥ (km) o (km}

Figure 5.1.2.1 Trajectory — 2

5.1.3 Trajectory — 3
The target flies with constant speed of 457 m/s for the first 30 s. Then, it turns 7/ 4

with 4 g acceleration and it flies with a constant speed for another 30 s. Then, it
turns 7 /2 with 4 g and decreases its speed to 274 m/s. With this speed it flies to its
final range. This trajectory represents a medium bomber. The trajectory is shown

below:
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Figure 5.1.3.1 Trajectory — 3

5.1.4 Trajectory — 4
The target flies with constant speed of 251 m/s at an altitude of 2.29 km for the first

30 s. Then, it turnsz /4 with 4 g acceleration and flies with constant speed for
another 30 s. Then, it turns with 6 g and ascends to 2.9 km. It flies with constant
speed to its final destination. This trajectory again represents a medium bomber.

The trajectory is shown below:
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Figure 5.1.4.1 Trajectory — 4

5.1.5 Trajectory -5
The target begins its trajectory with acceleration at an altitude of 1.5 km. For the

first 30 s it flies with constant acceleration. Then, it turns with 5 g and flies with
constant speed for another 20 s. Then, it turns with 7 g and flies with constant speed
for 30 s. After flying with constant speed, it turns with 6 g. After reaching at
altitude of 4.45 km, it flies with a constant speed horizontally. This trajectory

represents a fighter. The trajectory is shown below:
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Figure 5.1.5.1 Trajectory — 5

5.1.6 Trajectory -6
The target flies with constant speed of 426 m/s at an altitude of 1.55 km for the first

30 s. Then, it turns with 7 g and flies with constant speed for another 30 s. Then, it
turns with 6 g and descends until altitude of 0.79 km. It flies with a constant speed
for 30 s and then it turns with 6 g. Another constant speed flight is performed until 7
g turn. Then it flies with constant speed to its final destination. This trajectory

represents a fighter, too. The trajectory is shown below:
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Figure 5.1.6.1 Trajectory — 6

5.2 Simulation Results
Each trajectory is fed to estimation filters as measurement data and estimation

results of estimation filters are collected in separate arrays. From trajectory data and
estimation filter’s results, the error at each sample is calculated. By using error at
each sample, error measures are calculated according to methods discussed in
Chapter 3 (except subsection 3.5). Besides, elapsed time to process a trajectory by

an estimation filter is calculated to find out the CPU usage of each filter.

One another useful information for error analysis is the distribution of error. The
frequency of each error value is put on plot where y-coordinate is repetition number
of error and x-coordinate is value of error, yielding the Error Distribution. Mean
and variance of Error Distribution are helpful statistical information for error

analysis.
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In order to make simulation results more trustable, Monte Carlo simulation method
is used. Each trajectory is fed to the estimation filters several times with different
random noise added to the original data. Each result is taken individually to
calculate error measures. There is a trade-off between time consumption and
reliability of tests conducted. Here, the degree of the Monte Carlo is 3, which means
that the trajectory data is fed to estimation filters 3 times with different random

noise each time.

5.2.1 Trajectory -1

RMSE AEE Gag  OTEeed e
alphabeta | 35288 [3.449 (332 [ooms [ o

aphabetagama | 35311 | 3.4498 | 3.3651 | 0.0018 | 0.0044

Kaman-Cyv | 27833 | 2.7206 | 26534 | 0.0014 | 019
KamanCé  [35231 (34420 (33873 |00018 | 0.1933

EKF  [Tg7as (18322 [17e7¢  [oooos [4smd

I - 2 Model 5 0235 [1.9769 [1.9270 | 00010 | 0.5306
M - 3 Model | 2.4453 | 23903 [23ms  |o0m4 [ 08843

Figure 5.2.1.1 Simulation Results for Trajectory-1

The first trajectory is fed to the filters, and the above results are obtained. As can be
seen, EKF gives the best result, where lowest error value means that the estimation
filter output is closest to the measurement data. Actually, this is as expected since
EKF is more sensitive to maneuverable behavior and accelerated turn. CA Kalman
filter is worse than CV Kalman filter, due to the fact that constant velocity motion
i1s more than maneuverable motion. CA Kalman filter is as bad as Alpha-Beta and
Alpha-Beta-Gamma filters, because it is sensitive to acceleration but it is not

successful for motion with constant velocity. 2-model IMM is better than CA
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Kalman and CV Kalman filters, which is acceptable since 2-model IMM has the
flexibility of both CA Kalman and CV Kalman filters. With this approach, it is
expected that 3-model IMM should give better results than 2-model IMM. Besides
CV Kalman and CA Kalman filters, Constant Position (CP) Kalman filter is used as
third model. Since trajectory-1 is a moving target, in some cases (even the
probability of being in CP Kalman model or change into CP Kalman model is kept
smaller) 3-model IMM filter uses CP Kalman model which causes to increase error

rate.

The filters according to the average elapsed time in ascending order are: Alpha-
Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-
model IMM. The elapsed time for Alpha-Beta filter seems to be zero, this is due to

the fact that the minimum sensible resolution is smaller than elapsed time.

200
150 + i mmear
0.0602517
# of emrar 100 + -

vanance

0.0001 3333
50 ¢ .

I:I 1 1 1 1 1 1
-0.2 1] 0.2 0.4 0.6 0.8 1 1.2

walue of emar

Figure 5.2.1.2 Error Distribution of Alpha-Beta Filter Output

Error distribution of Alpha-Beta filter shows that most of error terms are gathered

around 0.0603 with variance 0.0001.
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Figure 5.2.1.3 Error Distribution of Alpha-Beta-Gamma Filter Output

Error distribution of Alpha-Beta-Gamma filer is nearly same as Alpha-Beta filter’s,
gathered around 0.0604 with variance 0.0001. Variance is a little higher, since
Alpha-Beta-Gamma reacts to changes slower than the Alpha-Beta filter, in case of

maneuvering target.

140
120 - .
et
100 - .
0.0443047
80 .
H# of emor i

BO L J vanance
40t J 000031 735
20t .

D 1 | 1 1 1

02 a 0z 0.4 0B 0.8 1 12

value of error

Figure 5.2.1.4 Error Distribution of CV Kalman Filter Output
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Error distribution values of CV Kalman filter are smaller than those of both filters
above. Mean 1s 0.0448 with variance of 0.0003. While error metric decreases,
variance increases. The estimated results are closer to the exact trajectory, however

the reaction of filter to changes of target maneuver is slower.

120
100 -
mean
a0 1 0.0562759
# of emror GO0 | . )
warlance
40 ¢ 1 [nooosaear?
20F -
D 1 1 1 1 1
-0z 1] 0.z 0.4 0.6 0.8 1 1.2

value of error

Figure 5.2.1.5 Error Distribution of CA Kalman Filter Output

The mean of CA Kalman filter error distribution is 0.0563 with variance of 0.0005,
which is larger than any of the values above. CA Kalman model is assuming that
most of the time target moves with acceleration, which is not the case for trajectory-
1. Variance is larger, because of the fact that the degree of the filter is increased,

meaning slower reaction to maneuver.
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Figure 5.2.1.6 Error Distribution of EKF Output

The error distribution of EKF output is interesting compared to the others. Mean is
0.0315 with variance 0.00009. It seems that all error terms are close to a single
point. This shows that there is a bias on error, which means that if we subtract the
mean value from all error terms, the EKF estimation will be much closer to the
measurement data. The source of this bias is the transformation between Cartesian

and spherical coordinate systems.
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Figure 5.2.1.7 Error Distribution of 2-model IMM Filter Output
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Mean of 2-model IMM filter’s error distribution is 0.0328 with variance 0.00016.
The means of the 2-model IMM filter’s error distribution (0.0315) and EKF’ error
distribution are very close to each other, while error metrics RMSE, AEE and GAE
are slightly different. This shows that it may not be proper to use mean of error

terms directly. It is useful to put them in a meaningful format to examine.

200
160 F i mean
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Figure 5.2.1.8 Error Distribution of 3-model IMM Output

The error distribution of 3-model IMM filter output’s mean is 0.0401 and variance
is 0.00019. The mean and variance are larger than 2-model IMM filter’s, because
of 3™ model (Constant Position model), which is much applicable to terrestrial

targets.
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5.2.2 Trajectory -2

RMSE AEE Gag  OTEeed e

aphabeta | 36919 | 36078 | 35186 | 0.0020 |0
aphabetagama | 36344 | 36088 | 35195 [0.0020 [ 0.0088
Kaiman-Cy | 28442 | 27778 | 27073 | 0.0015 | 0.3203
KamanCé  [35758 (34976 (34026 |00013 | 037
EKF  [7gser 19512 [190%  [oooo [os7El
MM - 2Madel '3 o703 | 2.0225 [1era [ooon [osn3
MM - 3Modsl | 25807 (24323 [zsms  [ooms | 1863

Figure 5.2.2.1 Simulation Results for Trajectory-2

As in Trajectory-1, the order of filters in terms of error metrics are as follows :
Alpha-Beta, Alpha-Beta-Gamma, CA Kalman, CV Kalman, 3-model IMM, 2-
model IMM and EKF. Also the order of the filter process elapsed time is the same
as above, however time is increased. This is because of the increase in target

mancuver.
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Figure 5.2.2.2 Error Distribution of Alpha-Beta Filter Output

The error distribution of Alpha-Beta filter has mean of 0.0632 and 0.00014 of

variance.
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Figure 5.2.2.3 Error Distribution of Alpha-Beta-Gamma Filter Output
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The mean and variance of Alpha-Beta-Gamma filter output are very close to Alpha-
Beta filter output error distribution mean and variance values. However, the slower

reaction of Alpha-Beta-Gamma filter is still applicable, variance is slightly larger.
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Figure 5.2.2.4 Error Distribution of CV Kalman Filter Output

CV Kalman filter output error distribution has smaller mean (0.0460) but larger

variance (0.00033) values.
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Figure 5.2.2.5 Error Distribution of CA Kalman Filter Output
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As in trajectory-1, trajectory-2 has also constant velocity motion most of time,
which decreases performance of the CA Kalman filter. Mean is 0.0574 and variance

15 0.00056.
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Figure 5.2.2.6 Error Distribution for EKF Output

Error distribution of EKF output is the same as before, error terms are collected
around one value. It is still possible to subtract mean (0.0339) from all error terms

to remove biasing.
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Figure 5.2.2.7 Error Distribution of 2-model IMM Filter Output
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The mean and variance of 2-model IMM filter output error distribution is 0.0336

and 0.00017, respectively.
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Figure 5.2.2.8 Error Distribution of 3-model IMM Filter Output

The mean is 0.0418 and the variance is 0.00022, which are larger than above.

5.2.3 Trajectory -3

RMSE AEE VI

slphabeta | 53734 | 5.2513 | 51217 [ 0.0023 | 0.0022
aphabetsgama | 5.3718 | 5.2503 | 51207 | 0.0022 | 0.009
KalmanCy | 3.4644 | 3.3865 | 3.3038 |oom4 | 03z
KamanCa  ["4.1001 |40084  [3amr [00017 | 0.3273

EKF [32882 | 21943 | 31181 | 0.0mz | 0.8643
IMM - 2Madel [ 6108 [ 28517 [2.4893 | 0.0011 | 0.9145
MM-3nedel 36223 [ama4 [aassm [ooois 169

Figure 5.2.3.1 Simulation Results for Trajectory-3
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For this trajectory, 2-model IMM filter gives the best result in terms of error
metrics. The order of filters form worse to better is: Alpha-Beta, Alpha-Beta-
Gamma, CA Kalman, CV Kalman, 3-model IMM, EKF and 2-model IMM. The
roles of 2-model IMM filter and EKF seems to be changed, however in Figure
5.2.3.6 there is still bias on EKF output error terms. If this biasing is canceled out,
then EKF will give the best result. The value of biasing is related to the coordinate

transformation, and the cancellation value should be defined during this

transformation.
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Figure 5.2.3.2 Error Distribution of Alpha-Beta Filter Output

The mean and variance of Alpha-Beta-Gamma filter output error distribution are

0.0927 and 0.00015, respectively.
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Figure 5.2.3.3 Error Distribution of Alpha-Beta-Gamma Filter Output

For trajectory-3, the mean and variance values of Alpha-Beta-Gamma are nearly

same as in Alpha-Beta.
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Figure 5.2.3.4 Error Distribution of CV Kalman Filter Output

The mean and variance of CV Kalman filter output’s error distribution is 0.0563

and 0.00039, respectively.
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Figure 5.2.3.5 Error Distribution of CA Kalman Filter Output

The mean and variance of CV Kalman filter output’s error distribution is 0.0658

and 0.00067, respectively.
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Figure 5.2.3.6 Error Distribution of EKF Output
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Bias on error terms is still effective, to cancel biasing mean value can be subtracted

from error terms.
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Figure 5.2.3.7 Error Distribution of 2-model IMM Filter Output

The error distribution of 2-model IMM filter has mean of 0.0431 and variance of
0.00019.
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Figure 5.2.3.8 Error Distribution of 3-model IMM Output
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The error distribution of 3-model IMM filter has mean of 0.0601 and variance of

0.00037.

5.2.4 Trajectory — 4

RMSE AEE gap  omelied Ao fme

aphabeta | 31174 | 30465 | 2.9714 00011 o
aphabeta-gama | 31195 | 3.0473 | 2.9720 [ 0.0011 | 0.0088
Kalman-Cv [ 26670 | 25071 | 2.5435 | 0.0009 | 0.3243
KalmanCa [ 34342 (23571 [3.2763 oooz | 03273
EKF [71088. | B.9707 | B.8197 00023 | 08716
It -2 Model 4 9371 [1.8343 [1.8503 | 0.0007 | 0915
MM - 3Madel | 22270 | 21754 | 21228 | 0.0005 | 1.7463

Figure 5.2.4.1 Simulation Results for Trajectory-4

For trajectory-4, 2-model IMM gives the best estimate. This time EKF fails to be
the best not because of the biasing, but also because of some big error terms.

Results of other filters are as before. Elapsed time result is also the same as before.
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Figure 5.2.4.2 Error Distribution of Alpha-Beta Filter Output

The mean and variance of Alpha-Beta filter output error distribution are 0.0529 and

0.00014, respectively.
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Figure 5.2.4.3 Error Distribution of Alpha-Beta-Gamma Filter Output

The mean and variance of Alpha-Beta-Gamma filter output error distribution are

nearly the same as Alpha-Beta results.
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Figure 5.2.4.4 Error Distribution of CV Kalman Filter Output
The error distribution of CV Kalman filter has mean of 0.0431 and variance of

0.00019.
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Figure 5.2.4.5 Error Distribution of CA Kalman Filter Output

The error distribution of CV Kalman filter output has mean of 0.0431 and variance

0f 0.00019.
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Figure 5.2.4.6 Error Distribution of EKF Output
The mean of the error distribution of EKF output is 0.0518 with variance 0.0167. It
is clear that there are some big error terms that affect the variance value. Actually,
the mean of EKF output error distribution is 20% larger than the mean of 2-model
IMM filter output error distribution, while RMSE of EKF is 3.5 times larger than
RMSE of 2-model IMM. RMSE emphasizes big error terms; it prevents big error

terms being canceled by small terms. This shows the benefit of using RMSE instead

of mean.
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Figure 5.2.4.7 Error Distribution of 2-model IMM Filter Output
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The error distribution of CV Kalman filter output has mean of 0.0312 and variance

0f 0.00016.
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Figure 5.2.4.8 Error Distribution of 3-model IMM Filter Output

The error distribution of CV Kalman filter output has mean of 0.0361 and variance

01 0.00020.

5.2.5 Trajectory -5

RMSE AEE T
slpharbeta | 4.3202 | 4.8087 | 4.6303 | 0.0023 | 0.0011
aphabetagama | 4.9160 | 4.8073 | 4.6890 | 0.0023 | 00101
Kalman-CV | 32661 | 31914 A E | 0.0015 | 0.317
KamanCé [ 339068 G (37204  |00018 | 0.3306
EKF  [3250 31738 [3o915  [ooma [ o9l
MM - 2Madel 5 4315 [ 23765 (23182 | 0.0011 | 0.9146
MM - 3Model | 3.3622 | 3.2856 | 3.2042 | 0.008 | 1.8053
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Figure 5.2.5.1 Simulation Results for Trajectory-5
For trajectory-5, the most successful filter is again the 2-model IMM, followed by
the EKF. Elapsed time performance of filters stays the same. In EKF, results show
that there is still biasing.
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Figure 5.2.5.2 Error Distribution of Alpha-Beta Filter Output
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Figure 5.2.5.3 Error Distribution of Alpha-Beta-Gamma Filter Output

66



120 - - . T . .

100 | e
mean
a0 T 0.053315
# of erar 6O | . )
Yarance

40 1 [ 0ooo3adza
20F .

D 1 1 1 1 1

-0.2 0 oz 0.4 1N 5] n.a 1 1.2

wvalue of emor

Figure 5.2.5.4 Error Distribution of CV Kalman Filter Output
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Figure 5.2.5.5 Error Distribution of CA Kalman Filter Output
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Figure 5.2.5.6 Error Distribution of EKF Output
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Figure 5.2.5.7 Error Distribution of 2-model IMM Filter Output
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Figure 5.2.5.8 Error Distribution of 3-model IMM Filter Output
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5.2.6 Trajectory -6

RMSE AEE T

aphabeta | 5.0231 | 4.9040 | 4.7681 | 0.0023 |0
aphabetagama | 5.0200 | 4.9072 | 4.7863 | 0.0023 | 0.0045
Kaman-Cy | 33310 | 22572 | 21789 | 0.0015 | 0.1866
KamanCé [ 39254 38983 (38060 | 00018 | 0.1906
EKF  [3gorr (37988 [3es2  [ooos [ oeam
MM - 2Madel 5 4733 [ 24179 | 2.3591 | 00011 | 0.5306
MM - 3Madel | 3.4234 | 3.3452 | 3.2623 | 0.0018 | 0.8875

Figure 5.2.6.1 Simulation Results for Trajectory-6

In trajectory-6, the best estimate is given by the 2-model IMM filter, while CV
Kalman is the second best filter. 3-model IMM filter follows CV Kalman filter. If
biasing on EKF results are removed, the ranking can be changed in favor of EKF.

Ranking with respect to filter process elapsed time is the same as above.
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Figure 5.2.6.2 Error Distribution of Alpha-Beta Filter Output
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Figure 5.2.6.3 Error Distribution of Alpha-Beta-Gamma Filter Output
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Figure 5.2.6.4 Error Distribution of CV Kalman Filter Output
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Figure 5.2.6.5 Error Distribution of CA Kalman Filter Output
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Figure 5.2.6.6 Error Distribution of EKF Output
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Figure 5.2.6.7 Error Distribution of 2-model IMM Filter Output
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Figure 5.2.6.8 Error Distribution of 3-model IMM Filter Output
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5.3 Error vs. Filter Constructers
The selection of measurement noise covariance and process noise covariance

matrices has direct effect on performance of estimation filters: CV Kalman, CA

Kalman, EKF and IMM filters.

However, process noise covariance is adaptive during the filtering operation, until it
finally converges to a constant matrix in CA Kalman, CV Kalman and EKF. It will
be seen from the coming up simulation results that the initial condition of process
noise covariance 1is important, although it becomes stable regardless of
measurement data. In IMM filtering it stays adaptive during the complete process.
Process noise covariance matrix changes according to the target model used to

construct the filter.

The situation for the measurement noise covariance matrix is different. It stays
constant during the whole filtering process, which means that the initial choice is

important.

The four figures given below illustrate the relation between RMSE and
measurement noise covariance matrix coefficient. As the measurement noise
covariance matrix coefficient is changed, trajectory measurement data are fed to
filters for each measurement noise covariance matrix coefficient. The output of the

filter is collected to produce RMSE values individually.
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Figure 5.3.1 RMSE vs. CV Kalman Filter Meas. Noise Cov. Matrix Coef.

The main aim is to make the RMSE value as small as possible, so for measurement
noise covariance matrix coefficient, the value around 1 and 3 is suitable for all

trajectories if CV Kalman filter will be used.
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Figure 5.3.2 RMSE vs. CA Kalman Filter Meas. Noise Cov. Matrix Coef.

For CA Kalman filter, there is no single range of values that decreases the RMSE
value for all trajectories. For some trajectories it is around 2, however for some

trajectories it is around 9.
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Figure 5.3.3 RMSE vs. EKF Meas. Noise Cov. Matrix Coef.

For EKF, measurement noise covariance matrix coefficient can be chosen between
3.5 and 5. Only one trajectory shows that 1 is suitable to choose, however adjusting
the measurement noise covariance matrix coefficient according to a single result

will degrade the error performance of the other trajectories.

75



RMSE

oo d
T

| | 1 1 1 1 1
1 1.5 2 25 3 35 4 4.5 5
Ik 2 model - Measurement Moise Covariance Matrix Coefficient

0.2

Figure 5.3.4 RMSE vs. 2-model IMM Filter Meas. Noise Cov. Matrix Coef.

For 2-model IMM filter, measurement noise covariance matrix coefficient can be

chosen between 3 and 5.

The four figures given below show the relation between RMSE and process noise
covariance matrix. Trajectories are fed to filters for different process noise
covariance matrix coefficient. Each curve shows the results for a different

trajectory.
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Figure 5.3.5 RMSE vs. CV Kalman Filter Proc. Noise Cov. Matrix Coef.

For CV Kalman filter, process noise covariance matrix is adaptive during filtering,
until it reaches a stable point according to the used target model regardless of
measurement data. Process noise covariance matrix coefficient can be chosen
between 10 and 20. Since process noise covariance matrix reaches a stable point
regardless of measurement data, its best value can be found without measurement
data and initial condition can be chosen according to this value while filter is

constructed.
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Figure 5.3.6 RMSE vs. CA Kalman Filter Proc. Noise Cov. Matrix Coef.

For CA Kalman filter, a single process noise covariance matrix coefficient is not
possible, since for each trajectory minimum RMSE value has appeared at different
values. As in the case of measurement process noise covariance matrix, CA Kalman
is not a robust filtering method, which yields different results for different

trajectories.
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Figure 5.3.7 RMSE vs. EKF Proc. Noise Cov. Matrix Coef.

For EKF, process noise covariance matrix can be chosen between 3 and 5.
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Figure 5.3.8 RMSE vs. 2-model IMM Filter Proc. Noise Cov. Matrix Coef.

In 2-model IMM filter case, process noise covariance matrix is adaptive during all
filtering operation. This is because of the adaptive structure of IMM filtering. In
IMM filtering, which model is used with what percentage, is decided according to
the measurement data. The percentage of the model being used, determines process
noise covariance matrix structure. However, still the initial condition is effective on
RMSE value. For this simulation case, process noise covariance matrix coefficient

can be chosen between 2 and 9.
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CHAPTER 6

CONCLUSION

In this thesis, the performance of 7 fundamental estimation filters is examined.
These are:

e Alpha-Beta

e Alpha-Beta-Gamma

e (CV Kalman
¢ CA Kalman
e EKF

e 2-model IMM
e 3-model IMM

Estimation filters are investigated with regard to performance metrics and resource

requirement.

The aim of defining performance metrics is to put the error information in a more
usable and easily understandable format. In this thesis, four types of performance
metrics (RMSE, AEE, GAE and normalized from these) for general estimation
filters and two types of performance metrics (Probability of Detection and Degree

of Vicinity) for video trackers, are discussed.

RMSE and AEE are finite-sample approximation of standard error and mean error,
respectively [11]. AEE has a physical meaning while RMSE is a statistical term.
The physical meaning of AEE is the average distance between estimation and
measurement. RMSE is directly related to standard deviation. GAE prevents that
small errors are suppressed by large errors. In a radar system case, the order of the

error is related to range or in a video tracker system the order of error is related to
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the size of the target. Therefore, it is more meaningful to normalize error terms to

make error metric independent of range or target size.

Implementing an estimation filter into a system is possible by either software or
hardware or both. In all cases, it is essential to plan what kind of hardware is needed
to run software or what kind of hardware is to be implemented. If there is real-time
requirement and besides other tasks are pending, then managing the resources

becomes more crucial.

Resource requirements of an estimation filter can be defined in terms of CPU
usage, memory needs and complexity. In this thesis, fundamental estimation filters
are implemented in MATLAB environment. In order to make an objective
comparison, during implementation the filter part of the MATLAB code is kept as
simple as possible. In order to measure the CPU usage of an estimation filter, CPU
time of estimation filter is recorded. However, it is assured that there is no other
task disturbing CPU. Estimation filters arranged in order according to their CPU
usage is similar to the historical appearance of filters: Alpha-Beta, Alpha-Beta-

Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-model IMM.

In order to understand memory needs; variables, constants and intermediate
variables in MATLAB code of each filter are counted. Each cell of matrices is taken
as an individual memory element. The result again exhibits a parallelism with the
historical picture: Alpha-Beta, Alpha-Beta-Gamma, CV Kalman, CA Kalman, EKF,
2-model IMM and 3-model IMM.

Complexity of an estimation filter is defined as the density of intermediate
calculations and variables. Estimation filters are examined according to their
complexity, and the result is not surprising (from less to more): Alpha-Beta, Alpha-

Beta-Gamma, CV Kalman, CA Kalman, EKF, 2-model IMM and 3-model IMM.
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Evaluation of estimation filters according to their performance metrics is quite
subtle. For trustable results, a set of measurement data is needed. However, it is not
sufficient to work with a single trajectory, since each filter may be successful for a
specific scenario. Alpha-Beta filter is the simplest estimation filter with constant
gains. Because of its simplicity, it is very suitable for real-time applications.
However, as it is seen from the simulation results that Alpha-Beta filter gives the
worst results. Alpha-Beta filter is not fast enough to respond to changes when there
is maneuver. It takes time to fit the target trajectory and during this time it swings
around measurement data. Alpha-Beta-Gamma filter behaves in a similar way as
the Alpha-Beta filter, except that it responds to acceleration on target motion. This

makes Alpha-Beta-Gamma filter more sensitive to maneuver.

CV Kalman filter is better than both of the filters above. However, it is more
complex and uses more resources. CV Kalman filter is also better than CA Kalman
filter. This is because of the acceleration terms in CA Kalman filter. Acceleration
part of the CA Kalman filter makes it slower to give response to the maneuvering
target. When estimations proceed, it takes longer for CA Kalman filter to fit back to
the trajectory.

All the above filters process each Cartesian coordinate variation individually, which
make these filters weaker in spherical motions. In EKF, this problem is solved by
linearizing measurement function around the measurement. Therefore, in most of
cases, EKF will give the best result, assuming that the divergence problem of EKF
is solved. If the initial estimates are inaccurate, then EKF will diverge. To reduce
the probability of EKF to diverge, it is recommended to begin with a robust filter
(like Kalman filter), use this period to initialize the EKF then continue with EKF.

The best filter all among the others is IMM filter, which gives flexibility to change
target dynamic model according to the measurement data. In this thesis, 2-model
IMM and 3-model IMM filters are implemented. In 2-model IMM filter, CV and

CA Kalman filters are used and its success can be seen from simulation results.
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Although, 3-model IMM filter has more alternative dynamic models than the 2-
model IMM filter, it gives the worse results. This is because of dynamic models
used in the 3-model IMM: CV Kalman, CA Kalman and Constant Position (CP)
Kalman. Since trajectories are chosen from aircrafts, CP Kalman is not suitable for
this kind of targets. CP Kalman model is chosen consciously to show that increase
in resource requirements or complexity does not always imply the best

performance.

An estimation filter can be called ‘the best estimation filter’ only with respect to a
particular application. Therefore, before choosing an estimation filter, most
probable target dynamics, hardware resources and acceptable error level should be
investigated. An estimation filter which matches these requirements will be ‘the

best estimation filter’.
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