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Abstract

COMPARATIVE STUDY OF RISK MEASURES

Zehra Eks.i

M.Sc., Department of Financial Mathematics

Supervisor: Prof. Dr. Hayri Körezlioğlu

August 2005, 109 pages

There is a little doubt that, for a decade, risk measurement has become one

of the most important topics in finance. Indeed, it is natural to observe such a

development, since in the last ten years, huge amounts of financial transactions

ended with severe losses due to severe convulsions in financial markets. Value

at risk, as the most widely used risk measure, fails to quantify the risk of a

position accurately in many situations. For this reason a number of consistent

risk measures have been introduced in the literature. The main aim of this

study is to present and compare coherent, convex, conditional convex and some

other risk measures both in theoretical and practical settings.

Keywords: coherent risk measures, conditional convex risk measures, convex

risk measures, generalized coherent risk measures, value at risk.
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Öz

KARS. ILAS.TIRMALI RİSK ÖLC. ÜMLERİ

Zehra Eks.i

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hayri Körezlioğlu

Ağustos 2005, 109 sayfa

Şüphesiz ki risk ölc.ümü finans sektöründe son yılların en tartıs.ılan konusu

haline gelmis.tir. Finans piyasalarındaki artan is.lem hacmi ve son on yılda

meydana gelen finansal krizlerin risk konusuna olan ilginin artmasındaki rolü

büyüktür. Risk hesaplarında en sık kullanılan ölc.üm olmasına rağmen Riske

Maruz Değer’in ( RMD ), birc.ok durumda, tatmin edici sonuc.lar vermediği

gözlemlenmis.tir. Bu durum literatürde yeni risk ölc.ümlerinin tanımlanmasına

sebep olmus.tur. Bu c.alıs.manın temel amacı, literatürde RMD ölc.ümüne alter-

natif olarak ortaya c.ıkmıs. olan tutarlı, konveks ve kos.ullu konveks risk ölc.ümlerini

incelemek ve kars.ılas.tırmaktır.

Anahtar Kelimeler: konveks risk ölc.ümleri, kos.ullu konveks risk ölc.ümleri, riske

maruz değer, tutarlı risk ölc.ümleri.
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Jale Körezlioğlu for their valuable help.

I acknowledge my indebtedness and express my thanks to İrem Yıldırım for
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Chapter 1

INTRODUCTION

There is a little doubt that, for a decade, risk measurement has become

one of the most important topics in the finance area. Indeed, it is natural to

observe such a development, since in the last ten years, huge amounts of finan-

cial transactions ended with severe losses due to severe convulsions in financial

markets. This stimulated investors to seek better risk quantification methods

to maximize the portfolio return and prevent underestimation of risk. Besides,

day after day, regulators want to make sure that financial institutions are able

to quantify and manage their risk properly and effectively.

When dealing with a problem, the first thing to do should be defining it

adequately. However, there is not a unique definition of risk, making the risk

measurement problem more complicated to struggle with. Therefore, for bet-

ter solutions, one should understand the intuition behind this concept at least.

There are various types of financial risks such as market risk, credit risk, liq-

uidity risk, operational risk, model risk, etc. This study will mainly focus on

the market risk which might be defined as the change in the value of a portfolio

due to unexpected changes in market rates such as interest rates, equity prices,

exchange rates, etc.

When we concentrate on the market risk the immediate figure that we en-

counter is Value at Risk (VaR). This is a widely used risk measure in financial

markets due to its simplicity in application and interpretation. However it has
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some deficiencies which creates contradictions with the traditional portfolio the-

ory. This has provided a motivation for researchers to develop new models that

are consistent with the portfolio theory. The premise of the models which is

coherent risk measures was introduced by Artznear, Delbaen, Eber and Heath

in 1997. In their context, coherence of a risk measure symbolizes its consis-

tency with economic intuition. With this innovation, there arose an increasing

trend to develop new risk measures. Convex risk measures is one of them and a

recently developed one is conditional convex risk measures. These are all aca-

demically acquiescenced measures of risk in terms of their consistency with the

finance theory.

The aim of this study is to present different types of risk measures and

compare them in terms of their underlying theory and practical performance.

Second section will be preliminaries including the main mathematical defini-

tions and theorems. In the third chapter, after reviewing the VaR measure,

coherent, generalized coherent, convex and conditional convex risk measures

are introduced by reviewing their whole underlying theory. The fourth chapter

includes more of coherent risk measures that are created mostly for application

purposes. In the following chapter an implementation to the Turkish Stock

Market data is given. Then, the conclusion follows.

2



Chapter 2

PRELIMINARIES

First of all, it is appropriate to introduce the definitions and theorems which

are commonly used throughout the study. Definitions and theorems given in

this part are mainly taken from [DuSc58], [KHa01], [Ro70], [Dud89], [FS02b].

Definition 2.1. Metric

Given a set X, a metric for X is a function d from X ×X into {x ∈ R : x ≥ 0}

such that

1. for all x, d(x, x) = 0,

2. for all x and y, d(x, y) = d(y, x)

3. for all x, y and z, d(x, z) ≤ d(x, y) + d(y, z)

4. d(x, y) = 0 implies x = y,

then d is called a metric. (X, d) is called a metric space.

Definition 2.2. Cauchy Sequence

A sequence {Xn} in a space S with a metric d is called a Cauchy Sequence if

lim
n→∞

sup
m≥n

d(xm, xn) = 0.

Definition 2.3. Complete Metric Space

The metric space (S, d) is complete iff every Cauchy sequence in it converges.
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Definition 2.4. Compactness

Let X be a set and A a subset of X. A collection of sets whose union includes

A is called a cover of A. Then the topological space is compact iff every open

cover has a finite subcover.

Theorem 2.1. If (K, T ) is a compact topological space and F is a closed

subset of K, then F is compact.

Theorem 2.2. If (K,T ) is compact and f is continuous from K into another

space L, then L is compact.

Definition 2.5. Continuity

Given a topological spaces (X, T ) and (Y,U), a function f from X into Y is

called continuous iff for all U ∈ U , f−1(U) ∈ T .

Theorem 2.3. A convex function finite on all of Rn is necessarily continuous.

( To learn more about convex analysis see, [Ro70]. )

Definition 2.6. Finitely Additive Set Functions

A set function is a function defined on a family of sets, and having values

either in a Banach Space, which may be the set of real or complex numbers,

or in the extended real number system, in which case its range contains one of

the improper values +∞ and −∞. A set function µ defined on a family τ of

sets is said to be finitely additive if τ contains the void set ∅, if µ(∅) = 0

and if µ(A1 ∪ A2 ∪ ... ∪ An) = µ(A1) + µ(A2) + ...µ(An) for every finite family

{A1, A2, ...An} of disjoint subsets of τ whose union is in τ . Thus all such sums

must be defined, so that there can not be both µ(Ai) = −∞ and µ(Aj) = +∞

for some i and j.

Definition 2.7. Countably Additive Functions

Let µ be a finitely additive, real valued function on an algebra A. Then µ

is countably additive iff µ is continuous at ∅, that is µ(An) → 0 whenever

An ↓ ∅ and An ∈ A.

Definition 2.8. Sigma Algebra

Given a set X, a collection A ⊂ 2X is called a ring iff ∅ ∈ A and for all A and
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B in A, we have A ∪ B ∈ A and B \ A ∈ A. A ring A is called an algebra

iff X ∈ A. An algebra called a σ-algebra if for any sequence {An} of sets in

A,
⋃

n≥1 An ∈ A.

Definition 2.9. Measurable Space

A measurable space is a pair (X,Y) where X is a set and Y is a σ-algebra of

subsets of X.

Definition 2.10. Measure, Measure Space

A countably additive function µ from a σ-algebra Y of subsets of X into [0,∞]

is called a measure. Then (X,Y , µ) is called a measure space.

Definition 2.11. Atom

If (X,Y , µ) is a measure space, a set A ∈ Y is called an atom of µ iff 0 <

µ(A) < ∞ and for every C ⊂ A with C ∈ Y , either µ(C) = 0 or µ(C) = µ(A).

Definition 2.12. Total Variation

The total variation of a finitely additive set function µ is defined as:

sup{
n∑

i=1

|µ(Ai)| | A1, ..., An disjoint sets in F , n ∈ N}

Theorem 2.4. Let X be the space of all bounded measurable functions on

(Ω,F) and ba(Ω,F) denote the space of all finitely additive functions with

finite total variation. The integral

l(F ) =

∫

Fdµ F ∈ X

defines a one to one correspondence between continuous linear functional l on

X and finitely additive set functions µ ∈ ba(Ω,F).

( For the proof of theorem, see [FS02b, p:395]. )

Definition 2.13. Probability Measure, Probability Space

A measurable space (Ω,Y) is a set Ω with a σ-algebra Y of subsets of Ω. A

probability measure P is a measure on Y with P (Ω) = 1. Then (Ω,Y , P ) is

5



called a probability space. Members of Y are called events in a probability

space.

Definition 2.14. Random Variable

If (Ω,A, P ) is a probability space and (S,B) is any measurable space, a measur-

able function X from Ω into S is called a random variable. Then the image

measure P ◦ X−1 defined on B is the probability measure which is called the

law of X.

Definition 2.15. Bayes Formula

Let A and B two events on A, then the conditional probability of A given B is

equal to

P (A|B) :
P (A ∩ B)

P (B)

and this is a specific representation of Bayes formula for the case of two events.

Definition 2.16. Absolutely Continuous Probability Measures

Let P and Q be two probability measures on measurable space (Ω,F). Q is

said to be absolutely continuous with respect to P , if for A ∈ F ,

P (A) = 0 =⇒ Q(A) = 0.

Theorem 2.5. (Radon-Nikodym)

Q is absolutely continuous with respect to P on F if and only if there exists an

F measurable function ϕ ≥ 0 such that

∫

FdQ =

∫

FϕdP

for all F -measurable functions F ≥ 0.

The function ϕ is called the Radon-Nikodym derivative of Q with respect to P

and we write dQ

dP
:= ϕ.

Definition 2.17. Seminorm, Norm

Let X be a real vector space. A seminorm on X is a function ‖ . ‖ from X into

[0,∞[ such that

6



1. ‖ cx ‖= |c| ‖ x ‖ forr all c ∈ R and x ∈ X

2. ‖ x + y ‖≤‖ x ‖ + ‖ y ‖ for all x, y ∈ X

A seinorm is called norm iff ‖ x ‖= 0 only for x = 0.

Definition 2.18. Lp Spaces

Let X be a random variable defined on (Ω,F , P ), then the following norms are

defined as

‖X‖p = (EP |X|p)
1

p = [

∫

Ω

|X|pdP ]
1

p for 0 ≤ p < ∞

and for p=∞

‖X‖∞ = ess.sup|X|.

where

ess.sup := sup{x ∈ R+ | P{|X| > x} > 0}

Lp(Ω,F , P ), or just Lp, denotes the real vector space of equivalence classes of

all random variables X on (Ω,F ,P), which fulfill ‖X‖p < ∞.

For p≥ 1, ‖.‖ is the so called Lp-norm of the vector space Lp. We call the

elements of Lp p-integrable random variables or functions on (Ω,F , P ).

Definition 2.19. Banach Space

If X is a vector space and ‖ . ‖ is a norm on it, then (X, ‖ . ‖) is called a

normed linear space. A Banach space is a normed linear space which is

complete, for the metric defined by the norm.

Theorem 2.6. Completeness of Lp

For any measure space (Ω,F , P ) and 1 ≤ p ≤ ∞, (Lp(Ω,F , P ), ‖ . ‖p) is a

Banach space.

Theorem 2.7. Dominated Convergence Theorem

Let {Xn, n ∈ N} be a sequence of extended real random variables. If {Xn, n ∈

N} converges and if there is an integrable positive extended real random variable

7



T such that for all n ,|Xn| ≤ T , then

E( lim
n→∞

Xn) = lim
n→∞

E(Xn)

( For the proof of the theorem see, [KHa01, p:110] )

Definition 2.20. Topology, Base for a Topology

Given a set X, a topology on X is a collection F of subsets of X (in other

words, F ⊂ 2X) such that

1. ∅ ∈ F and X ∈ F .

2. For every U ∈ F and V ∈ F we have U ∩ V ∈ F

3. For any U ⊂ F , we have
⋃
U ∈ F .

A base for a topology F is any collection U ⊂ F such that for every V ∈

F , V =
⋃
{U ∈ U : U ⊂ V }.

Definition 2.21. Topological Vector Space

A linear space E which carries a topology is called a topological vector space

if every singleton {x} for x ∈ E is a closed set, and if addition is continuous

from E × E and multiplication by scalars is continuous from R × E.

Definition 2.22. Convex Hull

If A is a subset of the linear space X, the set Co(A), called the convex

hull of A, is the intersection of all convex sets containing A; If X is a lin-

ear topological space, the set C̄o(A) called closed convex hull of A, is the

intersection of all closed convex sets containing A. Hence Co(A) is the set

of all convex combination of points of A. We have Co(αA) = αCo(A) and

Co(A + B) = Co(A) + Co(B).

Definition 2.23. Locally Convex Spaces

A topological vector space is called a locally convex space if its topology has

a base consisting of convex sets.

8



Remark 2.1. Any Banach space is locally convex.

Theorem 2.8. Separating Hyperplane Theorem

Suppose A and B are non empty convex subsets of Rn, that A is open and that

the intersection of A with the interior is empty. Then there exists a non-zero

vector v ∈ Rn and a constant c such that:

A ⊆ {x ∈ Rn | v′x > c}

B ⊆ {x ∈ Rn | v′x ≤ c}

Theorem 2.9. Separation Theorem

Being any two distinct convex sets in a topological vector space E , B and C,

one of which has an interior point, can be separated by a nonzero, continuous

linear functional l on E i.e.

sup
y∈C

l(y) ≤ inf
z∈B

l(z)

In fact this theorem is a special case of the separating hyperplane theorem.

( For the details of theorem, see [Dud89, p:150]. )

Theorem 2.10. Hahn-Banach

Suppose that B and C are two non empty, disjoint, and convex subsets of a

locally convex space E. Then, if B is compact and C is closed, there exists a

continuous linear functional l on E such that

sup
x∈C

l(x) < inf
y∈B

l(y)

This theorem is also one variant of the separating hyperplane theorem.

Definition 2.24. Dual of a Locally Convex Space

On a locally convex space E, the collection

E ′ := {l : E → R | l is continuous and linear}

9



separates the points of E, i.e for any two distinct points x, y ∈ E there exist

some l ∈ E ′ such that l(x) 6= l(y). The space E ′ is called the dual space of E

Theorem 2.11. Bipolar Theorem

For E and F being duals and X ⊂ E, then X◦◦ is the σ(E,F )-closure of ab-

solutely convex hull of X. In other words, the bipolar theorem states that the

bipolar of a subset of locally convex space equals its closed convex hull.

10



Chapter 3

RISK MEASURES

In finance we are often exposed to risk whenever we take financial positions.

Therefore, we have to measure the riskiness of our position to decide if it is

acceptable or not. So, what is a risk measure? A risk measure is a measure

that assigns a value to the risk of a position generally with a pre-determined

probability. To understand this definition, first of all one should understand the

concepts of risk and measure.

Although in the finance literature there is not a unique definition for risk,

it is commonly accepted that risk has two components.

• exposure, and

• uncertainty

For the better understanding of the risk concept, let us examine the following

example which was given in [Hol03, p:21]:

If we swim in shark-infested waters, we are exposed to bodily injury

or death from a shark attack. We are uncertain because we do not

know if we will be attacked. Being both exposed and uncertain, we

face risk.

Measure is an operation that assigns value to something and the interpretation

11



of this value is a metric. After understanding the intuitive meaning, we will

continue with the mathematical definition of a risk measure.

Definition 3.1. Financial Position

Let Ω be a fixed set of scenarios. A financial position is described by a mapping

X : Ω → R

where X(w) is the discounted net worth of the position at the end of the trading

period if the scenario w ∈ Ω is realized.

Definition 3.2. Risk Measure

Let G represents the set of all positions, that is a set of all real valued functions

on Ω, then a risk measure ρ is any mapping from the set of all random variables

in to real line, ie.

ρ : G → R

For a decade, risk measurement has become a very popular concept in the

finance area. Hence a vast number of risk measures were proposed in literature.

In this chapter, the static risk measures which are Value-at-Risk, coherent risk

measures, generalized coherent risk measures and convex conditional risk mea-

sures will mainly be introduced and compared. VaR is the most popular risk

measure in practice. Besides, it is one of the oldest risk measures. Thus, it is

appropriate for the structure of this study to begin with VaR measure. After

this, coherent, generalized coherent, convex and conditional convex risk mea-

sures will be considered which were introduced as alternatives to VaR since it

has some deficiencies which can not be accepted by the finance theory. Before

starting, it is beneficial to remind the reader that financial activities consist of

a variety of risks such as market risk, credit risk, liquidity risk, operational risk,

model risk, etc. This research will mainly focus on market risk.

12



3.1 Value-at-Risk

In the late 1970’s and 1980’s, many major financial institutions started to

work on models to measure risk. They did so for their internal risk measurement

purposes since as firms became more complex, it was becoming increasingly

difficult and important to measure the total financial risk they are exposed

to. The term Value-at-Risk(VaR) did not enter finance literature until the

early 1990s because firms developed their risk models for internal purposes and

they did not publish their models to outsiders. For this reason, tracing the

historical development of VaR measures is difficult. Whilst, most firms kept

their models secret, in October 1994, JP Morgan decided to make its Risk

Metrics system available on internet so outside users could access the model

and use it for their risk management purposes. As the VaR was introduced

to the market, software suppliers who had received advanced notice started

promoting compatible software. Timing for the release of this document and

software was excellent, because the last few years and the following of couple

years witnessed the declaration of huge financial losses of some rooted firms.

The following part is taken just to give an idea and longer list can be found in

Holton’s book [Hol03].

In February 1993 Japan’s Showa Shell Sekiyu oil company declared a

USD 1050 MM loss from speculating on exchange rates. In 1994 the

most considerable loss was reported by California’s Orange County.

Finally, the dominance of VaR in the market became inevitable by the approval

of the limited use of VaR measures for calculating bank capital requirements

in 1996 by the Basle Committee. Thus VaR has become the most widely used

financial risk measure.
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3.1.1 Definition and Properties of VaR

In financial terms VaR is the maximum potential loss in the value of a

portfolio given the specification of normal market conditions, the time horizon

and statistical confidence level α.The basic concept was nicely described in

[Do02,p:10] as:

Value at risk is a single, summary, statistical measure of possible

portfolio losses. Specifically, value at risk is a measure of losses due

to normal market movements. Losses greater than the value at risk

are suffered only with a specified small probability. Subject to the

simplifying assumptions used in its calculation, value at risk aggre-

gates all of the risks in a portfolio into a single number suitable for

use in the boardroom, reporting to regulators, or disclosure in an

annual report. Once one crosses the hurdle of using a statistical

measure, the concept of value at risk is straightforward to under-

stand. It is simply a way to describe the magnitude of the likely

losses on the portfolio.

After giving the brief history and financial definition of VaR, it is appropriate

to focus on the mathematical representation and properties of a VaR measure.

Definition 3.3. Quantiles

Let X be a random variable on (Ω,F,P) and α ∈ (0,1) then the α-quantile of

the random variable X is any real number q with the property

P [X ≤ q] ≥ α and P [X < q] ≤ α (3.1.1)

The set of all α-quantiles of X is an interval [q−
α (X) , q+

α (X)], where

q−α (X) := inf{x | P [X ≤ x] ≥ α} (3.1.2)
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and

q+
α (X) := inf{x | P [X ≤ x] > α} = sup{x | P [X < x] ≤ α} (3.1.3)

Definition 3.4. Value at Risk

For a fixed confidence level α ∈ (0,1) and a financial position X, the Value at

Risk at level α is defined as:

V aRα(X) := −q+
α (X) = q−1−α(−X) = inf{m | P [X + m < 0] ≤ α} (3.1.4)
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Figure 3.1: VaR estimation in the case of discontinuous distribution

For the case where the distribution of returns are continuous, we have

q−α (X) = q+
α (X) and realizing the related VaR figure in the distribution plot

is easier. However, in the discrete case which implies the existence of jumps

in the distribution, it is a little more complicated to determine the VaR figure
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directly. VaR estimates for such cases seem like the ones in Figure 3.1. From

the equation (3.1.4) it can be interpreted that V aRα(X) is the smallest amount

of capital which, if added to the position X, keeps the probability of a negative

outcome below the level α. Although VaR is capable of measuring the worst

loss which can be expected with probability (1-α), it fails to address how large

this loss can be if the α probability events occur.

Proposition 3.1. VaR has the following properties;

1. V aRα is translation-invariant, i.e

V aRα(X + c) = V aRα(X) − c c ∈ R

2. V aRα is positively homogenous, i.e

V aRα(cX) = cV aRα(X)

whenever c>0.

3. V aRα is monotonic, i.e if

X1 ≥ X2

then

V aRα(X1) ≤ V aRα(X2)

4. V aRα is comonotone additive, i.e, if X1 and X2 are comonotone

then

V aRα(X1 + X2) = V aRα(X1) + V aRα(X2)

Proof: 1. It is obvious that q+
α (X+c) = q+

α (X)+c and VaR is defined as

-q+
α (X), from these observations, condition 1 follows.

2. Due to the statistical properties of quantiles, as in (1), the result is obvious.

3. If we have two positions X1 and X2 such that X1 > X2 under all set of

scenarios then;
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V aRα(X1) = inf{m | P [X1 + m < 0] ≤ α} < inf{n | P [X2 + n < 0] ≤ α}

= V aRα(X2)

4. Let X1 = f(U) and X2 = g(U) with U uniform on[0, 1] and f monotonically

increasing,then V aRα(X1) = f(α). Similarly V aRα(X2) = g(α) and therefore

V aRα(X1 + X2) = f(α) + g(α) = V aRα(X1) + V aRα(X2) 2

Remark 3.1. Let V be a real vector space. A real-valued function f on V is

called subadditive if

f(X + Y ) ≤ f(X) + f(Y ) ∀ X,Y ∈ V (3.1.5)

The fourth property in Proposition 3.1 implies that VaR is not sub-additive

because the total risk of two portfolios is not less than the summation of the

risks of the two portfolios. The financial interpretation of this result is that VaR

does not encourage diversification. This is a big contradiction between VaR

and portfolio theory. Föllmer and Schied in [FS02b, p:180] gave the following

numerical example to show how VaR penalizes diversification.

Consider an investment into two defaultable corporate bonds, each

with return r̃ > r, where r ≥ 0 is the return on a riskless investment.

The discounted net gain of an investment w>0 in the ith bond is

given by

Xi =







w in case of default
w(r̃−r)

1+r
otherwise

If a default of the first bond occurs with probability p ≤ λ, then

P [X1 −
w(r̃ − r)

1 + r
< 0] = P [default] = p ≤ λ

Since in Definition 3.3 we defined the VaR of a portfolio at confidence

level α as

V aRα(X) = inf{m | P [X + m < 0] ≤ α}
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V aRλ(X1) becomes

V aRλ(X1) = −
w(r̃ − r)

1 + r

which is always less than zero.

Since the VaR at the level λ is a negative number we can say that

the position X1 is acceptable in the sense that it does not carry a

positive risk.

Now let us see what will happen to the VaR of the portfolio in the

case of diversification. Assume that the initial portfolio diversified

by investing the amount w/2 into each of the two bonds. Also

assume that the two bonds default independently of each other, each

of them with probability p. Now the new position we take equals to

Y := (X1 + X2)/2. In this example we have the following sample

space

Ω = ({d, d}, {d, nd}, {nd, d}, {nd, nd})

where d indicates the occurrence and nd indicates the non-occurrence

of default. With this set of information we can write the cumulative

distribution function of the random variable Y as:

P [Y ≤ y] =







−w p2

w(r̃−r)
2(r+1)

− w
2

p(2 − p)

w(r̃−r)
r+1

1

Here, the probability that Y is negative is equal to the probability

that at least one of the two bonds defaults: p(1−p)+p(1−p)+p2 =

p(2 − p). If for instance we take p=0.009 and λ=0.01 and use these
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values in the distribution function above we find;

V aRλ(Y ) = −
w(r̃ − r)

2(r + 1)
+

w

2

This is definitely a positive number which shows that VaR may

strongly discourage diversification: it penalizes quite drastically the

increase of the probability that something goes wrong, without re-

warding the significant reduction of the expected loss conditional on

the event of default. To show this, let us calculate the expected loss

of both diversified and non-diversified portfolios conditional on the

event of default. The expected loss from the first portfolio on the

event of default is equal to:

E[X1|default] = −w

To find the conditional expectation of the second portfolio under

the condition of default, firstly one should calculate the conditional

probabilities. By using the famous Bayes Formula ( see Preliminar-

ies, Def: 2.15 ) one can find the following conditional probabilities

easily;

P [{d, n} | d] = P [{n, d} | d] =
(1 − p)

(2 − p)

P [{d, d} | d] =
p

(2 − p)

After finding the probabilities, conditional expectation of the ran-

dom variable Y can be calculated as:

E[Y | d] = 2.
(1 − p)

(2 − p)
.
w(r̃ − r)

2(1 + r)
+

p

(2 − p)
.(−w) > −w = E[X1 | d]

As we expect, in the case of diversification there is a reduction in

the expected loss conditional on the event of default. Thus, one

can conclude that optimizing a portfolio with respect to VaR may

lead to a concentration of the portfolio in one single asset with a
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sufficiently small default probability, but with an exposure to large

loss.

Remark 3.2. Let V be a real vector space and C a convex set in V. A real-

valued function f on C is called convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) (3.1.6)

for every x and y in C and 0 ≤ λ ≤ 1.

In the risk minimization process we need the risk surface to be convex,

since only if the surface is convex we will have a unique minimum. Hence

the risk minimization process will always pick up a unique optimal solution

[AcT02a]. For the risk surface to be convex one necessary condition is that

the risk measure should satisfy the convexity property. Positive homogeneity

and sub-additivity together ensure the convexity of a function. Although VaR

is positively homogenous, it is not subadditive in general so it fails to satisfy

the convexity property. Thus, the risk surface generated by the VaR measure

is not convex. This is another problem arising from the fact that VaR is not

sub-additive.

Proposition 3.2. Consider Value at Risk as a measure of risk on the linear

space X := L2(Ω,F,P). For a random variable X ∈ X with normal distribution

N(m,σ2), its VaR at level α is given by

V aRα(X) = −m + σΦ−1(1 − α) (3.1.7)

where Φ−1 indicates the inverse of the standard normal distribution function Φ;

(Φ ∼ N(0, 1)). Now let us consider a Gaussian subspace X0, i.e., a linear space

X0 ⊂ X consisting of normally distributed random variables. For X1, X2 ∈

X0 and γ ε [0, 1], the convex combination X := γX1 + (1 − γ)X2 belongs to

X0, and so it is normally distributed with mean

m = γm1 + (1 − γ)m2 (3.1.8)
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and standard deviation

σ(X) ≤ γσ(X1) + (1 − γ)σ(X2) (3.1.9)

and its Value at Risk satisfies

V aRα(X) = −m + σ(X)Φ−1(1 − α)

≤ γV aRα(X1) + (1 − γ)V aRα(X2) (3.1.10)

Note that the equation (3.1.10) is the description of usual Risk Metrics VaR.

The inequality sign indicates that V aRα satisfies the convexity property if it is

restricted on the Gaussian subspace X0 and if α belongs to (0, 1
2
].

Proof: Let us prove (3.1.8), (3.1.9), (3.1.10) in turn. If X1 and X2 are two nor-

mally distributed random variables with X1 ∼ N(m1, σ1) and X2 ∼ N(m2, σ2)

and X := γX1 + (1 − γ)X2 then;

E[X] = m = E[γX1 + (1 − γ)X2] (3.1.11)

= γE[X1] + (1 − γ)E[X2]

= γm1 + (1 − γ)m2

which proves (3.1.8)

Let ρ be the correlation coefficient of X1 and X2,

ρ =
σ(X1, X2)

[σ(X1)σ(X2)]
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then,

σ2(X) = σ2(γX1 + (1 − γ)X2)

= γ2σ2(X1) + (1 − γ)2σ2(X2) + 2γ(1 − γ)σ(X1)σ(X2)ρ (3.1.12)

≤ γ2σ2(X1) + (1 − γ)2σ2(X2) + 2γ(1 − γ)σ(X1)σ(X2)

= (γσ(X1) + (1 − γ)σ(X2))
2

Thus the inequality in (3.1.9) is proved.

Now we are ready to prove (3.1.10).

V aRα(X) = V aRα(γX1 + (1 − γ)X2)

= −m + σ(X)Φ−1(1 − α)

where m and σ2(X) are defined on equations (3.1.11), (3.1.12) respectively. We

have;

V aRα(Xi) = −mi + σ(Xi)Φ
−1(1 − α)

and since VaR is positively homogenous we can write;

V aRα(γX1) + V aRα((1 − γ)X2) = γV aRα(X1) + (1 − γ)V aRα(X2)

so the equation becomes;

= γ(−m1 + σ(X1)Φ
−1(1 − α)) + (1 − γ)(−m2 + σ(X2)Φ

−1(1 − α))

= −m + Φ−1(1 − α)[γσ(X1) + (1 − γ)σ(X2)]

by using the information on equation (3.1.9) and making the assumption that

Φ−1(1 − α) ≥ 0, which means that α ∈ (0, 1
2
], we can complete the last part
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of the proof.

V aRα(X) = γV aRα(X1) + (1 − γ)V aRα(X2)

= −m + Φ−1(1 − α)[γσ(X1) + (1 − γ)σ(X2)]

≥ −m + σ(X)Φ−1(1 − α)

= V aRα(γX1 + (1 − γ)X2)

Therefore V aRα does satisfy the axiom of convexity if restricted to the Gaussian

space an if α belongs to (0, 1
2
]. 2 Embrechts et. al.

extended this property and stated that VaR is subadditive in the case in which

the joint distribution of returns is elliptic. They also added that in such cases

a VaR minimizing portfolio coincides with the Markowitz variance-minimizing

portfolio [EMS99, p:72]. So it can be concluded that VaR gives accurate results

only when the computationally simpler variance can also do.

After examining the mathematical properties of VaR and realizing its failures

in the sequel it is appropriate to summarize these weaknesses one by one. In

general VaR is not an adequate risk measure, since:

1. By definition, VaR depends on the reference probability. Thus, an explicit

probability on sample space Ω is used to construct it. This makes VaR a

model dependent measure of risk. Therefore, it fails to assess the risk of

a position in a situation of uncertainty, in the case where no probability

measure is known a priori.

2. It can not measure the losses beyond pre-specified probability.

3. It is not subadditive in terms of position, thus portfolio diversification may

lead to an increase of risk and this problem prevent us to allocate economic

capital to different business units effectively. Moreover, its nonadditivity

by risk variable prevents to add up the VaR of the different risk sources

( for instance, for a convertible bond, VaR is not simply the sum of its

interest rate and equity VaR ).

23



4. It is not convex, so it is impossible to reach one unique global minimum

in optimization problems.

5. It is not consistent because it may give conflicting results at different

confidence levels.

6. There may arise some computational difficulties in VaR estimations.

7. Since it is a quantile-based variable it is affected by large statistical error,

in particular when the chosen probability level is very small [AcNSi01].

In spite of these serious problems, VaR is a widely used risk measure due

to the fact that it measures downside risk, it is a single number that represents

risk level and it is easy to interpret.

As stated above, although it is not an adequate measure, VaR is widely

used for quantifying financial risk. For this reason, in the following subsection

different types of VaR computation methods will be introduced briefly for the

readers who are more interested in the application.

3.1.2 VaR Estimation Methods

This section deals with some of the most popular methods that are used

in the estimation of VaR. To begin with, there are 3 main approaches to VaR

estimation which are parametric, non-parametric and simulation approach.

i. Parametric Models

In this approach, firstly it is required to specify explicitly the statistical

distribution from which our data observations are drawn. After specifying the

distribution the second task is estimating the parameters that fit the data to the

pre-specified distribution. Then, fitting curves through the data, we can read

the VaR estimate from the fitted curve. In this procedure the crucial points are
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analyzing the data carefully and determining the best statistical distribution

which applies to our data set.

When fitting theoretical distributions to our data set, we can consider two

kinds of fitting procedures, conditional and unconditional. If we fit a distribu-

tion conditionally this means we are thinking that the chosen distribution is

able to explain the behavior of our whole data set. Whereas in the conditional

fit, we first adjust our data set and then fit the distribution to the adjusted

data set. By standardizing the data set we are able to eliminate the seasonal,

holiday and volatility effects from the data set so that the data might fit the

chosen distribution better.

Normal, Student-t, Lognormal and Extreme Value distributions are the mostly

used statistical distributions in the parametric approach. All these procedures

are widely used since they supply clear formula for VaR estimates. The estima-

tion procedure for all cases are the same: first fit the data to the distribution

then use the estimated parameters in the given VaR formula. For interested

readers detailed information about these procedures is given in the very pre-

cious study of Dowd [Do02].

The parametric approach has both advantages and disadvantages. One of

the advantages of this approach is that it is easy to use since it gives rise to

straightforward VaR formulas. The second important advantage is that the

model enables us to use the additional information coming from the assumed

distribution function, so it is not too data hungry. The main weakness of

this approach is that it depends on parametric assumptions, therefore setting

unrealistic assumptions may lead to serious problems.

ii. Non-Parametric Models

Contrary to the parametric approach, non-parametric models do not assume

any underlying theoretical distribution and use an empirical distribution of

prices. They are only based on the assumption that the near future will look

sufficiently like the past so one can use the historical data to forecast the risk
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over the near future. The first and the most popular non-parametric approach

is historical simulation(HS) which is a histogram-based approach. In HS, the

procedure is quite easy: if you have N number of profit/loss data, rank them

in ascending order, then the VaR value for the confidence level α is equal to

the(N.α)th highest loss value. Two important properties of this method is that

it gives equal weight to all past observations and it assumes i.i.d distributed

observations. These may cause some serious problems if we are faced with some

seasonality, volatility effects and extreme observations in our data set. To show

this problem, Dowd in [Do02,p:61] gave the following example:

It is well known that natural gas prices are usually more volatile

in winter than in the summer so a raw HS approach that incorpo-

rates both summer and winter observations will tend to average the

summer and winter observations together. As a result, treating all

observations as having equal weight will tend to underestimate true

risk in the winter, and overestimates them in the summer. What

we should do is to give more weight to winter observations if we are

estimating a VaR in winter.

As a response to this problem, Boudoukh et. al.introduced the Age-weighted

Historical Simulation in which the ith observation is weighted with the factor

λi−1 where λ is the exponential rate of decay and lies on [0,1] [BRW98]. Af-

ter weighting all data set one can estimate the VaR value by applying the HS

method to the adjusted data set. Although this model is better than the tradi-

tional HS model, it is not able to capture the recent changes in volatility.

Hull and White suggested the Volatility-weighted Historical Simulation (FHS)

in [HW98]. They argued that weighting the observations with their volatility

estimates is a better way for producing risk estimates that are sensitive to cur-

rent volatility estimates. The procedure they suggested is first to estimate the

volatility for each observation by using GARCH or EWMA models, then cal-

culate a weighting factor for the ith day by dividing the last days’ volatility

estimate to the ith days’. After this, multiply each observation with its weight-
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ing factor. Finally apply HS to this new volatility -adjusted data set. Empirical

results indicates that this approach gives better results than HS.

Another alternative solution to the volatility problem is the Filtered His-

torical Simulation first proposed by Barone-Adessi in [BaGV99]. This model

is different from the ones mentioned up to here. The models mentioned above

necessitate sacrificing the benefits of non-parametric models to cope with the

volatility problem, because for performing these models one has to deal with

GARCH specification procedure which does not coincide with the logic of the

non-parametric approach. Dowd described the properties of the FHS model in

[Do02, p:65] very clearly:

FHS combines the benefit of the HS with the power and flexibility

of conditional volatility models such as GARCH. It does so by boot-

strapping returns within a conditional volatility framework, where

the bootstrap preserves the non-parametric nature of HS, and the

volatility model gives us a sophisticated treatment of volatility.

From the theoretical aspect this model is a little more complicated than the

others but in practice it is easy to apply. For interested readers, [Do02, p:65]

would be a guide for understanding the theory and application steps of FHS.

In general the majority of the historical simulation methods are conceptually

simple and easy to apply. Besides they have a wide range of application area

since they can be applied to all kinds of data, e.g., fat-tailed,leptokurtic, etc.

These are all advantages of the approach. Of course, it has some disadvantages

too. First of all, these methods are data hungry implying that they necessitate

large amount of observed data. Thus, they may not be applicable for new market

instruments. However, using large numbers of data may also create problems

since current market observations may be drawn out by the observation of

older examples. This may create lags in the adjustment process of the model

to current market conditions. In short, when we are dealing with these models

we face the problem of appropriate sample size. Finally, this approach may

underestimate the VaR since it makes no allowance for the possible events that
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might occur but did not occur in the past.

iii. Simulation Models

In VaR estimation Monte Carlo Simulation Methods are very popular since

they are applicable to any position with any degree of complexity. The first

and the crucial task in the Monte Carlo risk estimation process is choosing

a suitable model to describe the behavior of return data. The second step

is simulating this model and finding a value at the end of each trial. After

repeating this process sufficiently, we obtain a simulated distribution and this

distribution is assumed to converge to the true but unknown distribution of

returns. We can then use this distribution to estimate VaR. When dealing

with highly correlated multiple risk factor positions, accompanying MCS with

variance reduction techniques, such as Principle Component Analysis, might be

a more powerful way to estimate risk. Readers who are interested in variance

reduction techniques may consult [GHSh00].

MCS models have also some advantages and disadvantages. The most seri-

ous disadvantage is that the estimation process might be too time consuming.

One of the advantages of these models is the ability of the models to handle

complications like fat-tails, non-linearity, path-dependency, multiple risk fac-

tors, etc. Another advantage is that there is plenty of software available for this

method and once the appropriate procedures have been set up it is both very

easy to use and modify.

In the next section, Coherent Risk Measures, one of the strongest alterna-

tives to VaR, will be introduced.

3.2 Coherent Risk Measures

The deficiencies of VaR which were mentioned in the previous section led

many researchers to seek alternative risk measures to quantify financial risk.
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In 1997, with the publishing of the article of [ADEH97] finance literature met

with the concept of coherent risk measures (CRM). In this context the co-

herence of a risk measure symbolizes its consistency with economic intuition.

After this improvement in the risk measurement area, in 1999, with the arti-

cle entitled ’Coherent Measures of Risk’ [ADEH99], four scholars introduced

the entire theory of coherent risk measures for finite probability spaces without

complete market assumption to the finance literature. Later on, the theory of

CRM was extended to general probability spaces by Delbaen in [D00]. This

section includes the review of coherent risk measures both for finite and general

probability spaces by taking the studies of the four authors as a main building

block.

The theory of coherent risk measures relies on the idea that an appropriate

measure of risk is consistent with the finance theory and it inherits the regula-

tor’s perspective. Previous studies defined financial risk in terms of changes in

the value of a position between two dates but [ADEH99] argues that because

risk is related to the variability of the future value of a position, it is better to

consider future values only. Thus, risk is a random variable and there is no need

to take the initial costs into consideration. They state that for an unacceptable

risk two things could be done. The first alternative is changing the position, the

other is looking for some commonly accepted instruments when added to the

current position makes the future value of the initial position acceptable. Thus,

they implicitly define the risk of a portfolio as the amount of the reference

instrument such that when we add this amount to our portfolio the position

we hold becomes acceptable to a regulator.After this brief introduction let us

continue with the assumptions and mathematical background of CRM.

Let Ω be the set of states of nature and assume for now that it is finite

and all possible states of the world at the end of the period is known. Thus

this assumption implies that we know the number of possible events that may

occur and there is a finite number of events. However, be careful that the

probabilities of the various states may be unknown or not subject to common

agreement. Now consider a one period economy starting at time 0 and ending in
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date T, in which the net-worth of any portfolio is denoted as a random variable

X which takes the value X(ω) as the state of nature ω occurs. Also assume

that markets at date T are liquid. Let G represents the set of all risks, that is,

the set of all real valued functions on Ω. Since Ω is finite, G can be identified

with Rn, where n=card(Ω). L+, denotes the cone of non-negative elements in

G and L− denotes its negative.

Definition 3.5. Coherent Risk Measure

A risk measure ρ is coherent if it satisfies the following four axioms:

1. Translation Invariance: ρ(X + αr) = ρ(X)−α for all X ∈ G,

α ∈ R.

2. Monotonicity: ρ(X) ≤ ρ(Y ) if X ≥ Y a.s.

3. Positive Homogeneity: ρ(λX) = λρ(X) for λ ≥ 0.

4. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y ∈ G.

In addition, in the article [ADEH99], Artzner et. al. introduced the following

property although it is not a determinant of coherency.

5. Relevance: ρ(X) > 0 if X ≤ 0 and X 6= 0.

Translation invariance axiom implies that by adding a fixed amount α to

initial position and investing it in reference instrument, the risk ρ(X) decreases

by α. Also, this condition ensures that the risk measure and returns are in

the same unit, namely, currency. The second axiom, monotonicity postulates

that if X(ω) ≥ Y (ω) for every state of nature ω, Y is riskier because it has

higher risk potential. From the point of view of an investor, the risk assessment

of a financial position appears as a numerical representation of preferences.

However from the point of view of a regulator, risk measure is viewed as a capital

requirement, thus a specific monetary purpose comes into play. Monotonicity
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property with translation invariance assures that ρ is a monetary measure of

risk.

Positive homogeneity axiom means that risk is linearly increasing with the

size of the position. This condition may not be satisfied in the real world since

markets may not be liquid. Illiquidity of markets implies that increasing the

amount of position may create extra risk. However the liquidity assumption

stated above ensures the validity of this axiom for this model. The subadditivity

axiom implies that the risk of a portfolio is always less than the sum of the

risks of its subparts. This condition ensures that diversification decreases the

risk. Subadditivity together with positive homogeneity implies the convexity of

the risk measure which is an important property in the portfolio optimization

process. Relevance, although a necessary, but not sufficient condition for co-

herency, tells us that a position having zero or negative ( at least for some state

of nature ω ) future net worth has a positive risk. This axiom ensures that the

risk measure identifies a random portfolio as risky [JP02].

Definition 3.6. Acceptance set

An acceptance set basically represents the set of acceptable future net worths.

ADEH argue that all sensible risk measures should be associated with an ac-

ceptance set that satisfies the following conditions:

1. The acceptance set A contains L+

2. The acceptance set A does not intersect the set L−− where

L−− = {X | for each ω ∈ Ω , X(ω) < 0}

2’. The acceptance set A satisfies A ∩ L− = 0

3. The acceptance set A is convex.

4. The acceptance set A is a positively homogenous cone.
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The properties stated above indicate that a reasonable acceptance set ac-

cepts any portfolio which always has positive return (L+), whereas it does not

contain a portfolio with sure loss (L−−). More stronger axiom 2’ states that

the intersection of the non positive orthant and acceptance set contains only

the origin. Convexity of the acceptance set indicates that linear combination

of acceptable portfolios is again acceptable so contained in acceptance set. The

last property indicates that an acceptable position can be scaled up or down in

size without losing its acceptability.

Definition 3.7. Acceptance set associated to a risk measure

The acceptance set associated with a risk measure ρ is the set Aρ defined by

Aρ = {X ∈ G : ρ(X) ≤ 0}

Definition 3.8. Risk measure associated to an acceptance set

Given the total rate of return r on a reference instrument, the risk measure

associated to the acceptance set A is the mapping from G to R denoted by ρA,r

and defined by

ρA,r = inf{m | m.r + X ∈ A}

Definition 3.8 implies that the risk measure composed by an acceptance set

is the minimum amount of capital such that when added to a position, it makes

the position acceptable. Notice that if the amount ρ(X) is negative this means

the cash amount −ρ(X) can be withdrawn from the position with preserving

the acceptability. By the way, risk measurement process pursue the following

route: portfolio X is given, the regulator defines the acceptance set A, then the

risk measure ρ determines the minimum amount of capital that must be added

to X to satisfy the regulator. Thus they define a measure of risk by describing

how close or far a position is from acceptability.

In their study [ADEH99], Artzner et. al. stated and proved two propositions

to show that a coherent risk measure is consistent with finance theory and

the regulator’s perspective. Now let us concentrate on these propositions and

related proofs.
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Proposition 3.3. If the set B satisfies the four properties given in Definition

3.6, then the risk measure associated to B, ρB,r, is coherent. Moreover the

acceptance set induced by a risk measure ρB is the closure of B. (AρB,r
= B)

Proof: Let us first show that ρB,r is coherent. To show this, one has to prove

that ρB,r satisfies the coherency axioms in Definition (3.5)

1. As a first task, we have to show that ρB,r is a finite number. Let ‖X‖

indicates the supremum norm of the random variable X, then,

−‖X‖ ≤ X ≤ ‖X‖ holds for all X ∈ G. For ‖X‖ + X ≥ 0, we have
‖X‖

r
.r + X ≥ 0. Suppose there exists a scalar m ∈ R such that m > ‖X‖

r
, then

the strict inequality m.r + X > 0 holds. This means that m.r + X ∈ L+.

Therefore it is contained in B. Also, m.r + X > 0 implies that ρ(X) < m.

Knowing that m > ‖X‖
r

and ρ(X) < m, one can conclude that ρ(X) ≤ ‖X‖
r

.

Similarly for X−‖X‖ ≤ 0 we have X− ‖X‖
r

.r ≤ 0. Now suppose m < − ‖X‖
r

then,

m.r + X < 0 and contained in L−−. This means m.r + X /∈ B, implying that

it is not acceptable. Unacceptability of m.r + X demonstrates that ρ(X) > m.

Knowing this with m < − ‖X‖
r

indicates that ρ(X) ≥ − ‖X‖
r

. Therefore we can

conclude that ρB,r is a finite number.

2. Secondly we have to show that ρB,r(X) satisfies translation invariance. The

inequality inf{p | X + (α + p).r ∈ B} = inf{q | X + q.r ∈ B} − α proves that

ρB,r(X + r.α) = ρ(X) − α, and translation invariance axiom is satisfied.

3. The next task is to show that the risk measure satisfies the monotonicity

axiom. Assume we have two position X and Y such that X ≤ Y and X+m.r

∈ B for some m ∈ R. Let us write Y + m.r = X + m.r + (Y − X) and keep in

mind that Y ≥ X. The first axiom of Definition 3.6 states that an acceptance

set contains the nonnegative elements. Thus Y −X ∈ B. Therefore Y + m.r =

X + m.r + (Y −X) ∈ B. Let qx = {m|mr + X ∈ B} and qy = {m|mr + Y ∈ B}

be two sets. Then,

qx = {m|mr + X ∈ B} ⊂ qy = {m|mr + Y ∈ B}
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holds since position Y is closer to the acceptance set than X. Therefore

inf qx = ρB,r(X) ≥ inf qy = ρB,r(Y )

holds. Thus the monotonicity axiom has been proved.

4. Let m be any number such that m ∈ R. If m > ρB,r(X), then for each

λ > 0 we have λ.X + λ.m.r ∈ B. This is because of the fact that m > ρB,r(X)

so X + m.r ∈ B. Besides, B is a convex set and a positively homogenous cone

so it contains the position λ.X + λ.m.r. Since λ.X + λ.m.r ∈ B, by using the

Definition 3.7 we can conclude that ρB,r(λ.X) ≤ λ.m. On the other hand, if

m < ρB,r(X), then for each λ > 0 we have λ.X+λ.m.r /∈ B, and this proves that

ρB,r(λ.X) ≥ λ.m. Therefore, we conclude with ρB,r(λ.X) = λ.ρB,r(X) implying

the positive homogeneity of the risk measure ρB,r.

5. The last axiom that should be satisfied is subadditivity. Let X and Y be two

positions, m, r two real numbers and α ∈ [0, 1]. Then, the following arguments

are true due to the fact that B is a positively homogenous cone.

If X + m.r ∈ B −→ αX + α.m.r ∈ B

If Y + n.r ∈ B −→ (1 − α)Y + (1 − α)m.r ∈ (B)

Besides, the convexity of B ensures that

α.X + (1 − α).Y + α.m.r + (1 − α).m.r ∈ B

Now take α = 1
2
, then 1

2
[(X + Y ) + (m + n).r] ∈ B then by the positive

homogeneity property of B, [(X + Y ) + (m + n).r] ∈ B. Now define {s|(X +

Y )+s.r ∈ B} which indicates the set of numbers that make the position (X+Y)

acceptable when added to it. It is obvious that {s|(X + Y ) + s.r ∈ B} ⊃

{m|X + m.r ∈ B} + {n|Y + n.r ∈ B}. When we take infimum on the sets

above we can conclude that ρB,r(X + Y ) ≤ ρB,r(X) + ρB,r(Y ) which proves the

subadditivity property for the risk measure.

6. For each X ∈ B, ρB,r(X) ≤ 0 hence X ∈ AρB,r
. Proposition 3.4 and points
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(1) through (5) ensures that AρB,r
is closed, which proves AρB,r

= B 2

Proposition 3.4. If a risk measure ρ is coherent, then the acceptance set Aρ

is closed and satisfies the axioms of Definition 3.6 above. Moreover ρ = ρAρ,r

Proof: Let us show one by one that the acceptance set of a coherent risk

measure satisfies the axioms of Definition 3.6.

1. Subadditivity and positive homogeneity ensures that ρ is a convex function

on G, and continuous, since for α ∈ [0, 1] we have ρ(α.x+(1−α).y) ≤ α.ρ(X)+

(1 − α).ρ(Y ). This implies that Aρ = {x | ρ(X) ≤ 0} is closed. Moreover if

X,Y ∈ Aρ i.e ρ(X) ≤ 0 and ρ(Y ) ≤ 0, then ρ(α.X + (1 − α).Y ) ≤ 0. Thus

Aρ is convex. If ρ(X) ≤ 0 and λ > 0, then ρ(λ.X) = λ.ρ(X) ≤ 0. Therefore

if X ∈ Aρ, then λ.X ∈ Aρ, implying positive homogeneity property of Aρ.

Consequently Aρ is a closed, convex and positively homogenous cone.

2. Positive homogeneity and continuity of ρ implies that ρ(0) = 0, because:

if λn > 0 ↓ 0 as n → ∞, then λXn → 0, thus ρ(limn→∞ λnX) = limn→∞ λXρ(x)

By monotonicity, if X ≥ 0, then ρ(X) ≤ ρ(0) = 0. Therefore L+ is contained

in Aρ.

3. Let X be in L−− with ρ(X) < 0. Monotonicity of ρ implies that ρ(0) < 0, this

is a contradiction. If ρ(X) = 0, then we find α > 0 such that X + α.r ∈ L−−.

Translation invariance of ρ provides ρ(X+α.r) = ρ(X)−α < 0, a contradiction.

Hence ρ(X) > 0 that is X/∈ Aρ. This proves that Aρ does not contain L−−.

4. To prove the second part of the proposition, let δ be any number with

ρAρ,r
(X) < δ for each X. Then X+δ.r∈ Aρ. Hence ρ(X+δ.r) ≤ 0. By translation

invariance ρ(X) − δ ≤ 0, then ρ(X) ≤ δ. Therefore ρ(X) ≤ ρAρ,r
(X), hence

ρ ≤ ρAρ,r
.

5. Now for each X, let δ > ρ(X), then ρ(X + δ.r) < 0 and X + δ.r ∈ Aρ, hence

ρAρ,r
≤ 0. By translation invariance ρAρ,r

≤ δ and so ρAρ,r
(X) ≤ ρ(X), that is

ρAρ,r
≤ ρ. This proves that ρAρ,r

= ρ. 2

These two propositions prove that there is a one to one correspondence

between the coherent risk measures and regulator’s manner on risk perception.

In addition to these two fundamental propositions there is a complementary
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one, which shows the relation between relevance axiom and the axiom 2’ of the

Definition 3.6

Proposition 3.5. If a set B satisfies the axioms 1,2’,3 and 4 in Definition

3.6, then the coherent risk measure ρB,r satisfies the relevance axiom. If a

coherent risk measure ρ satisfies the relevance axiom, then the acceptance set

AρB,r
satisfies the axiom 2’ of Definition 3.6

Proof: 1. If X ≤ 0 and X 6= 0, then we know that X ∈ L− and since X 6= 0,

by axiom 2’, X /∈ B, which means ρB,r(X) > 0.

2. For X ∈ L− and X 6= 0 relevance axiom provides ρ(X) > 0 and X /∈ B 2

After these propositions, let us continue with the representation theorem for

the most general coherent risk measure.

Proposition 3.6. Given the total return r on a reference investment, a risk

measure ρ is coherent if and only if there exists a family P of probability mea-

sures on the set of states of nature, such that

ρ(X) = sup{EP [−X/r] | P ∈ P}

Proof: i) The if part of the proof is obvious and basically depends on the

properties of supremum function.

1. Let α ∈ R, then

ρ(X + α.r) = sup{EP [−
(X + α.r)

r
] | P ∈ P}

= sup{EP [−
X

r
− α] | P ∈ P}

= sup{EP [−
X

r
] | P ∈ P} − α

= ρ(X) − α

Which proves that ρ has the translation invariance property.

2. Let X,Y ∈ G such that X ≥ Y , then sup{EP [−X
r

] | P ∈ P} ≤ sup{EP [−Y
r

] |

P ∈ P}. This implies monotonicity.
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3. Let λ be any number such that λ > 0, then

ρ(λ.X) = sup{EP [−
(λ.X)

r
] | P ∈ P}

= sup{λEP [−
X

r
] | P ∈ P}

= λ sup{EP [−
X

r
] | P ∈ P}

= λρ(X)

Therefore ρ is positively homogenous.

4. Let X,Y ∈ G, then ρ(X + Y ) = sup{EP [− (X+Y )
r

] | P ∈ P}, ρ(X) + ρ(Y ) =

sup{EP [−X
r

] | P ∈ P} + sup{EP [−Y
r

] | P ∈ P}. And it is obvious from the

equations above that ρ(X + Y ) ≤ ρ(X) + ρ(Y ). Thus, the subadditivity of ρ

follows.

ii) Now suppose ρ is coherent, let M be the set of all probability measures

on Ω and define

Pρ = {P ∈ M | ∀ X ∈ G, EP [−
X

r
] ≤ ρ(X)}

We have to show that

ρ(X) = sup
P∈Pρ

{EP [−
X

r
]}

1. The set of probabilities M is a compact set in Rn where n=card(Ω). In fact

M = {P ∈ Rn | ∀ ω, P (ω) ≥ 0,
∑

ω

P (ω) = 1}

This is a closed subset of the unit ball in Rn which is compact. Therefore M is

compact.

2. Given X∈ R, EP [−X
r

] is a continuous mapping from M in to R. We know

that the image of a continuous mapping of a compact set is again compact.

Thus {EP (−X
r
| P ∈ M) is compact in R. This implies that {E[−X] | P ∈

M ∩ {a ∈ R : a ≤ ρ(X)}} is compact because the closed subset of a compact
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metric space is again compact. Therefore ρ(X) = sup{EP [−X] | P ∈ Pρ}. This

concludes the proof. 2

To sum up, according to ADEH the risk value ρ(X) of a future net worth X

can be determined coherently by applying the following steps:

• Compute, under each test probability P ∈ P , the average of the future

net worth X of the position, in formula EP [−X
r

],

• Take the maximum number of all numbers found above, which correspond

to the formula ρ(X) = sup{EP [−X
r

] | P ∈ P}.

Being inspired from the study [ADEHKu02] of Artzner et. al. this repre-

sentation result might also be interpreted as follows: For any acceptance set,

there exists a set P of probability distributions, called generalized scenarios (

simply speaking, a set of loss values and their associated probabilities ) or test

probabilities, on the space Ω of states of nature, such that a given position with

future random value denoted by X, is acceptable if and only if:

For each test probability P ∈ P , the expected value of the future

net worth under P, i.e EP [−X
r

] is non-positive.

Up to know we assumed that Ω, the set of states of nature, is finite. We

worked on the set of risks G which is identified with RΩ. In fact, by doing so

we restricted the number of values that our position may take in the date T.

In other words we restricted the number of scenarios that may become true

with the boundaries of our mind, our experiences. However we should admit

that in such a place as the world we live in, nothing is impossible. To take

this fact into account, in his study [D00], Delbaen extended the definition of

coherent risk measures to general probability spaces by removing the finiteness

assumption of Ω and show how to define such a measure on the space of all ran-

dom variables. The following part of this section will refer to this fundamental

article of Delbaen. Before starting the underlying theory of this approach it
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is appropriate to give some information on the mathematical background and

notation.

Given a probability space (Ω,F , P ), the σ -algebra F describes all the events

that become known at the end of the observation period. The measure P de-

scribes in what probability events might occur. In finance such probabilities are

not objective. Thus may differ among agents, institutions, etc. However it is

argued that the class of negligible sets and consequently the class of probability

measures that are equivalent to P remain the same. This can be expressed by

stating that only the knowledge of the events of probability zero is important.

So we need an agreement on the possibility that events might occur, not on the

actual value of the probability [D00].

It might be useful to refresh our minds and remember the definitions of

some special Lp spaces that will be used in this part ( For detailed explanation

see, Preliminaries Def: 2.18 ). With L∞ we mean the space of all equivalence

classes of bounded real valued random variables. The space L0 denotes the space

of all equivalence classes of real valued random variables and L1 is the space of

all equivalence classes of integrable random variables. Since we only have the

knowledge of the events of probability zero, to define a risk measure we need

spaces of random variables such that they remain the same when we change

the underlying probability to an equivalent one. L0 and L∞are two natural

spaces of this kind. Therefore mainly these two will be considered throughout

this subsection. Other notations that will be used in this part are as follows:

(L1)′ represents the dual space ( see, Preliminaries Def: 2.24 ) of L1 and is

equal to L∞. (L∞)′ indicates the dual of L∞ which is equal to the Banach

space ba(Ω,F , P ) of all bounded finitely additive measures ( see, Preliminaries

Def:2.6) µ (S) on (Ω,F) with the property that P (A) = 0 → µ(A) = 0. Finally

as a remark, a positive element µ ∈ ba(P ) such that µ(1) = 1 is called a finitely

additive probability measure.

In his study, Delbaen firstly extended the set G to L∞(Ω,F , P ) with respect

to a fixed probability measure P on a measurable space (Ω,F), then to allow
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infinitely high risks, which means something like a risk that cannot be insured,

he defined the risk measure on L0 since this space consists of all equivalence

classes of both bounded and unbounded real valued random variables. Finally,

in this part, the rate of return for the reference instrument is assumed to be

zero. Now we are ready to review the theory of coherent risk measures on

general probability spaces.

Definition 3.9. A mapping ρ : L∞(Ω,F , P ) → R is called a coherent risk

measure if the following properties hold.

1. If X ≥ then ρ(X) ≤ 0.

2. Subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

3. Positive homogeneity: for λ ≥ 0 we have ρ(λX) = λρ(X).

4. For every constant function we have that ρ(α + X) = ρ(X) − α.

The interpretation of these axioms are similar to ones stated in the previous

part. Here the only difference is that this model assumes no interest rate.

Theorem 3.1. Suppose that ρ : L∞(P ) → R is a coherent risk measure. Then

there is a convex σ(ba(P ),L∞)-closed set Pba of finitely additive probabilities,

such that

ρ(X) = sup
µ∈Pba

Eµ[−X]

Proof: The set C = {X | ρ(X) ≤ 0} is clearly a convex and norm closed

positively homogenous cone in the space L∞(P ). The polar set Co = {µ | ∀X ∈

C : Eµ[X] ≥ 0} is also a convex cone, closed for the weak∗ topology on ba(P).

All elements in Co are positive since L∞
+ ⊂ C. This implies that for the set

Pba, defined as Pba = {µ | µ ∈ C and µ(1) = 1}, we have Co = ∪λ≥0λPba. The

duality theory, more precisely, the bipolar theorem ( see, Preliminaries Thm:

2.11 ), then implies that C = {X | ∀µ ∈ Pba : Eµ[X] ≥ 0}. This means that
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ρ(X) ≤ 0 if and only if Eµ[X] ≥ 0 for all µ ∈ Pba. Since ρ(X − ρ(X)) = 0 we

have that X + ρ(X) ∈ C and for all µ in Pba we find that Eµ[X + ρ(X)] ≥ 0.

This can be reformulated as

sup
µ∈Pba

Eµ[−X] ≤ ρ(X)

Since for arbitrary ε > 0, we have ρ(X+ρ(X)−ε > 0), we obtain X+ρ(X)−ε /∈

C. Therefore there is a µ ∈ Pba such that Eµ[X + ρ(X) − ε] < 0 which leads

to the opposite inequality and hence to:

ρ(X) = sup
µ∈Pba

Eµ[−X]

2

The previous theorem shows that coherent risk measures can be represented

in terms of finitely additive probabilities. The financial importance of this rep-

resentation is that any coherent risk measure can be obtained as the supremum

of the expected loss Eµ[−X] over a set P of generalized scenarios [FrR02]. Be-

sides, from the proof of the previous theorem it is seen that there is a one to

one correspondence between coherent risk measure ρ, weak∗ closed convex sets

of finitely additive probability measures Pba ⊂ ba(P ) and ‖.‖∞ closed convex

cones C ⊂ L∞ such that L∞
+ ⊂ C. The relation between C and ρ is given by

ρ(X) = inf{α | X + α ∈ C}

Here, the set C represents the set of acceptable positions.

If µ is a purely finitely additive measure, the expression ρ(X) = Eµ[−X]

gives a coherent risk measure. This functional that is represented by a finitely

additive measure cannot be directly described by a σ-additive probability mea-

sure. This requires an additional hypothesis. After the characterization of a risk

measure in terms of finitely additive probabilities Delbaen gave the representa-

tion of coherent risk measures in terms of σ-additive probabilities by adding

a continuity property ( called the Fatou property ). This property is equiva-
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lent to the hypothesis that the acceptable positions {X ∈ L∞ : ρ(X) ≤ 0} is

σ(L∞,L1)-closed.

Definition 3.10. A coherent risk measure ρ : L∞ → R is said to satisfy

the Fatou property if ρ(X) ≤ lim inf ρ(Xn), for any sequence, (Xn)n≥1 ⊂ L∞,

uniformly bounded by 1 and converging to X in probability.

Theorem 3.2. For a coherent risk measure ρ on L∞, the following properties

are equivalent:

1. There is an L1-closed, convex set of probability measures Pσ,

all being absolutely continuous with respect to P and such that for

X∈ L∞:

ρ(X) = sup
Q∈Pσ

EQ(−X)

2. The convex cone C = {X | ρ(X) ≤ 0} is weak∗, i.e σ(L∞(P ),L1(P ))

closed.

3. ρ satisfies the Fatou property.

4. If Xn is a uniformly bounded sequence that decreases to X a.s.

then ρ(Xn) tends to ρ(X).

For the proof of the theorem, see [D00].

After characterizing the risk measure ρ in terms of σ-additive probabilities,

the next task is to extend the domain of a coherent risk measure defined on

L∞ to  Lo of all equivalence classes of measurable functions. There is a well

known negative result that if the space (Ω,F , P ) is atomless, then there is

no real-valued coherent risk measure ρ on Lo which means that there is no

mapping ρ : Lo → R such that the coherency properties hold. For the proof

see [D00, p:16]. This is a problem and the solution given is to extend the risk

measure in such a way that it can take the value +∞ but it cannot take the

value −∞. The former (+∞) means that the risk is so high that no matter
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what amount of capital is added, the position will remain unacceptable. The

latter implies that the position is so safe that an arbitrary amount of capital

could be withdrawn without endangering the company. Since regulators and risk

managers are conservative it is normal to exclude the latter situation. Therefore

it is economically reasonable to extend the range of the coherent risk measures.

Definition 3.11. A mapping ρ : Lo → R ∪ {+∞} is called a coherent risk

measure if

1. If X ≥ then ρ(X) ≤ 0.

2. Subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2).

3. Positive homogeneity: for λ ≥ 0 we have ρ(λX) = λρ(X).

4. For every constant function we have ρ(α + X) = ρ(X) − α.

For the construction of a coherent risk measure, the first idea could be to

define it as

sup
Q∈Pσ

EQ[−X]

but this does not work because the random variable X may not be integrable

with respect to Q ∈ Pσ due to the fact that X is defined on Lo. We can try the

following to ensure that X is integrable for the measure Q ∈ Pσ:

sup{EQ[−X] | Q ∈ Pσ; X ∈ L1(Q)}

In the definition above, the set over which supremum is taken depends on the

random variable X. This poses problems when we try to compare risk measures

of different positions in a portfolio optimization process. Therefore we need

another definition.

Definition 3.12. For a given, closed convex set, Pσ, of probability measures,
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all absolutely continuous with respect to P and n ≥ 0 we define ρ as:

ρ(X) = lim
n→+∞

sup
Q∈Pσ

E[−(X ∧ n)]

In the Definition 3.12 the idea is to truncate the random variable X from

above by n. This means that firstly the possible future wealth up to level n is

taken into account. Then by using the supremum of all expected values the risk

measure is calculated. Finally n is let to go to infinity. In this process, high

future values play a role, but their effect only enters through a limit procedure.

By doing so a conservative viewpoint is followed. Notice that in Definition 3.12

we have to ensure that ρ(X > −)∞ for all X ∈ Lo. This is achieved by the

following theorem.

Theorem 3.3. The following properties are equivalent:

1. For each X ∈ Lo we have ρ(X) > −∞.

2. Let φ(X) = −ρ(X), for each f ∈ Lo
+ we have

φ(X) = lim
n

inf
Q∈Pσ

EQ[f ∧ n] < +∞

3. There is a γ > 0 such that for each A with P [A] ≤ γ we have

inf
Q∈Pσ

Q[A] = 0

Proposition 3.7. The hypothesis of Theorem 3.3 is satisfied if for each non-

negative function f ∈ Lo, there is Q ∈ Pσ such that EQ(f) < ∞

Theorem 3.4. The properties in Theorem 3.3 are also equivalent with:

4. For every f ∈ Lo
+ there is Q ∈ Pσ such that EQ[f ] < ∞.

5. There is a δ > 0 such that for every set A with P [A] < δ,
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we can find an element Q ∈ Pσ such that Q[A] = 0.

6. There is a δ > 0, as well as a number K such that for every

set A with P [A] < δ, we can find an element Q ∈ Pσ such that

Q[A] = 0 and ‖dQ

dP
‖∞ ≤ K

For the proof of the previous two theorems see [D00, p:18]

After talking about the theory of coherent risk measures both for finite and

general probability spaces, we will observe risk measures globally to see the

advantages and disadvantages of each. The first advantage of this system is

that the way it defines risk coincides with the regulator’s perspective since it is

a monetary measure of risk and satisfies subadditivity.

A coherent risk measure defines the risk of a portfolio as a cash requirement

that makes the position acceptable to a regulator. Thus it implicitly assumes

that the firm has already made its capital budgeting decision and does not allow

the portfolio composition to change. This situation may be seen as a problem

when we look at the risk assessment problem from a firm’s perspective. Besides,

allowing only the usage of risk-free assets to make a position acceptable may

oblige a firm to hold too much regulatory capital, because adding capital may

not be the efficient way of reducing risk. Taking this fact into account, Jarrow

et. al. represents the generalized coherent risk measures in [JP02] to make

coherent risk measures more consistent with a firm’s perspective. In the next

section we will focus on this measure in detail.

ADEH made the following interesting remark in their study [ADEH99]

Remark 3.3. Model risk can be taken into account by including into the set

P a family of distributions for the future prices, possibly arising from other

models.

The remark above indicates that when we use coherent risk measures we are

able to quantify the model risk in the risk assessment process. This is another
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advantage of coherent risk measures. However, as stated before, coherent risk

measures fail to consider the liquidity risk arising from the fact that markets

may not be liquid on the date T. In [FS02a], Föllmer et. al. introduce the

Convex Risk Measures as a solution to this problem. In this context we will

also consider convex measures of risk in one of the following sections.

Generally in financial markets there is a tendency to perceive the coherence

of a risk measures not as a necessity but as an optional property. This is because

coherent risk measures do not seem easy to apply as VaR. This may be seen as

the disadvantage of coherent risk measures when compared with VaR. However,

comparing VaR with coherent risk measures does not make sense due to the fact

that VaR has failures that can not be accepted by finance theory.

3.3 Generalized Coherent Risk Measures

Risk management display differences when we look at the problem from dif-

ferent perspectives. From a regulator’s perspective, the problem is to determine

the amount of capital the firm must add to its initial position to make it ac-

ceptable. In this process, the regulator takes the firm’s portfolio composition

as fixed, thus implicitly assumes that the firm has already made its decision on

capital budgeting. However, from a firm’s perspective, the goal in risk man-

agement process is to choose the portfolio composition so as to maximize its

return, subject to any regulatory capital requirement. Coherent risk measures of

ADEH approach the problem from the regulator’s perspective. To bring firm’s

perspective in to the discussion of coherent risk measures, in [JP02], Jarrow et.

al. introduce Generalized Coherent Risk Measures as the ’minimum quantity

invested in any marketable security such that the original portfolio, along with

the modified security, becomes acceptable’. This section will mainly refer to

this article.

Suppose there is a single time period. The future net worth of any portfolio

is denoted as the random variable X on the space Ω. The space Ω is not
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necessarily finite. In the case where Ω is infinite there is also a given sigma

algebra F and a probability measure P defined on F . Let G be the space

of all random variables. G is identified with Rn, where n = card(G). A risk

function ρ maps the random variables, G, into the non-negative real line. There

introduced a norm‖ . ‖ on the space of random variables G to provide a tool for

characterizing two similar portfolios. Such a norm is induced in an economy by

investors’ preferences.

Definition 3.13. Generalized Coherent Risk Measures

A generalized coherent risk measure satisfies the following five axioms:

1. Subadditivity: ρ(X1 +X2) ≤ ρ(X1)+ρ(X2) for all X1, X2 ∈ G.

2. Monotonicity: ρ(X1) ≤ ρ(X2) if X1 ≥ X2.

3. Positive Homogeneity: ρ(λX) = λρ(X) for λ ≥ 0.

4. Relevance: ρ(X) > 0 iff x ≤ 0 and X 6= 0.

5. Shortest Path: If Hρ is defined as

Hρ ≡ {X ∈ G : ρ(X) = 0}.

For each X ∈ G there exists a portfolio X∗ ∈ Hρ such that

a) it is the point of shortest distance,‖ X −X∗ ‖, from X to the set

Hρ, and

b) for any scaler 0 ≤ λ ≤ ρ(X),

ρ(X + λ.u) = ρ(X) − λ
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where u is the unit vector in the direction (X∗ − X), i.e.,

u =
X∗ − X

‖ X∗ − X ‖

The properties (1-4) and their interpretations are the same as those in the

definition of coherent risk measures of ADEH. The key difference is the short-

est path axiom. The shortest path may be interpreted as the efficient way

(investment) of reducing risk. SP axiom implies that the risk of a position is

the distance ‖ X − X∗ ‖, which is the minimum re-balancing of the original

portfolio X needed such that the resulting portfolio X∗ belongs to the accep-

tance set. This SP axiom characterizes the difference between the firm’s and

the regulator’s perspective. It induces the firm’s perspective since the asset

added to the portfolio (u) need not be capital, it may be a derivative instru-

ment or an insurance contract instead. Note that if u = r in the shortest path

axiom, then SP axiom turns out to be the translation invariance axiom and the

generalized coherent risk measure reduces to the coherent risk measure. Also,

an immediate consequence of this axiom is that, by adding an amount equal

to ρ(X) along the shortest path, the risk of the portfolio reduces to zero, i.e.

ρ(X + ρ(X)u) = ρ(X) − ρ(X) = 0.

Remark 3.4. For any portfolio with X ≥ 0, we have ρ(X) = 0. This is because

of the fact that, for an acceptable position we do not need any re-balancing on

the initial portfolio. Therefore the shortest distance is equal to zero. Mathe-

matically speaking, by using positive homogeneity and monotonicity we have;

2ρ(X) = ρ(2X) ≤ ρ(X) → ρ(X) ≤ 0.

Since we defined ρ(X) as the minimum distance, it cannot take negative values.

Thus ρ(X) = 0 follows.

Definition 3.14. Acceptable Set

The set of acceptable portfolio holdings A ⊂ G has the following three proper-

ties:
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1. X ∈ A if and only if X ≥ 0.

2. A is a convex set.

3. A is closed under multiplication by λ ≥ 0 (i.e. it is a positively

homogenous cone)

Definition 3.15. Induced Acceptance Set

The acceptance set induced by ρ equals

Aρ = {X ∈ G : ρ(X) = 0}.

Notice that although the acceptance set axioms are very similar to those used

by ADEH, the definition of the acceptance set induced by a generalized coherent

risk measure ρ is different from the one induced by a coherent risk measure.

This difference arises due to the fact that the two measures are constructed

from different starting points. One can understand the reason of this difference

by considering Remark 3.4 again.

Definition 3.16. Induced Risk Function

The risk function induced by the acceptance set A equals

ρA(X) = inf{‖ X − X ′ ‖ : X ′ ∈ A}.

The following two propositions relate the properties of a risk measure to the

corresponding acceptance set, and vice versa.

Proposition 3.8. If acceptance set B satisfies the axioms in Definition 3.14,

then the induced risk measure ρB in Definition 3.16 is a generalized coherent

risk measure. Moreover AρB = B

Proof: First assume that acceptance set B satisfies the axioms in Definition

3.14.
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Let X and Y ∈ G and X∗, Y ∗ respectively be the closest portfolio on the accep-

tance set B under the given norm, i.e., X∗ = arg inf{‖ X − X ′ ‖: X ′ ∈ B} and

Y ∗ = arg inf{‖ Y − Y ′ ‖: Y ′ ∈ B}. By definition

ρB(X) =‖ X − X∗ ‖

ρB(Y ) =‖ Y − Y ∗ ‖

Now consider the portfolio (X + Y ) and let (X + Y )∗ be the closest acceptable

portfolio for (X + Y ). Notice that X∗ + Y ∗ belongs to the acceptance set B

because set B is convex and positively homogenous. Since (X+Y )∗ is an element

of B and it is the optimal one we have

‖ X + Y − (X + Y )∗ ‖≤‖ X + Y − (X∗ + Y ∗) ‖,

By definition of ρB and triangle inequality

ρB(X + Y ) ≤‖ X −X∗ + Y − Y ∗ ‖≤‖ X −X∗ ‖ + ‖ Y − Y ∗ ‖= ρB(X) + ρB(Y )

This proves the subadditivity for ρB.

To show the monotonicity, suppose X ≤ Y and consider a random variable

Y −X. Since Y −X ≥ 0 we have Y −X ∈ B. Since Y = X + Y −X, subaddi-

tivity of ρB implies ρB(Y ) ≤ ρB(X) + ρB(Y −X). We know that ρ(Y −X) = 0

since it is contained in B. By using this information ρB(Y ) ≤ ρB(X) follows.

For the positive homogeneity, consider a risk X and a scalar λ ≥ 0. Then

λρB(X) = λ ‖ X − X∗ ‖=‖ λX − λX∗ ‖≥‖ λX − (λX)∗ ‖= ρB(λX)

since λX∗ is in the acceptance set (remember that the acceptance set is a

homogenous cone) but need not be the optimal one in terms of minimizing the

distance of portfolio λX to the acceptance set. Now to indicate the reverse
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direction, define ρB(λX) =‖ λX − (λX)∗ ‖= λ ‖ X − (λX)∗

λ
‖≥ λρB(X) since

1
λ
(λX)∗ is an element of B but need not be the optimal one. Thus the equality

ρB(λX) = λρB(X) is proved.

Now consider X ∈ G such that X � 0. To prove the relevance property it

must be shown that ρB(X) > 0. Contrarily suppose that ρB(X) = 0 implying

that X ∈ B. The first axiom of B guarantees that X ≥ 0 for any X ∈ B,a

contradiction. Thus X � 0.

Set HρB is defined as the set of random variables such that ρB(X) = 0. Thus

set HρB is the same as B. To show the shortest path axiom for ρB one has to

show that for every X there exists a point X∗ ∈ B such that there is a linear

reduction in risk along the path X−X∗. B is a closed convex set and assume X

is a point outside this set, then by the Separating Hyperplane Theorem ( see,

Preliminaries, Thm: 2.8 ) there exists a point X∗ on the boundary of B such

that ‖ X − X∗ ‖ is the unique minimum distance of X from B. Suppose λ is

a scaler and u is the unit vector in the direction X∗ − X. X + λ ∗ u is a point

along the path of minimum distance and thus ρB(X +λu) =‖ X +λ∗u−X ‖ =

‖ X −X∗ ‖ − ‖ λ∗u ‖=‖ X −X∗ ‖ −λ = ρB−λ. This proves the SP property.

Now let B satisfy the properties of an acceptance set and X ∈ B. Then by

Definition 3.16 ρB(X) = 0. Therefore, by Definition 3.15 X ∈ AρB . From the

other direction one can get the equation in a similar way. Thus the equality of

B and AρB follows. 2

Proposition 3.9. If a risk measure ρ is a generalized coherent risk measure,

then the acceptance set induced by ρ is closed and satisfies the acceptance set

axioms in Definition 3.14. Moreover ρ = ρAρ
.

Proof: To show that X ∈ Aρ iff X ≥ 0 assume ρ(X) satisfies the axioms

of the Definition 3.13. Subadditivity and positive homogeneity ensures that ρ

is a convex function on the set of random variables. Thus it is a continuous

function. Notice that the set ρ(X) = 0 is closed. Therefore Aρ is an inverse

image of a closed set under continuous mapping. Thus it is a closed set.

Assume X ∈ Aρ, so ρ(X) = 0. Now assume that X ≥ 0 is not true. Thus,
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by the relevance axiom we must have ρ(X) > 0, a contradiction. Hence we

must have X ≥ 0. For the inverse implication, assume X ≥ 0. One has to show

that X ∈ Aρ. Remember that for X ≥ 0, ρ(X) = 0. Thus X ∈ Aρ.

To show that Aρ is convex, let X1, X2 ∈ Aρ with ρ(X1) and ρ(X2) both

equal to zero. Then,

ρ(λX1 + (1 − λ)X2) ≤ ρ(λX1) + ρ((1 − λ)X2) = λρ(X1) + (1 − λ)ρ(X2) = 0.

This indicates that λX1 + (1 − λ)X2 ∈ Aρ. Thus Aρ is convex.

Let X ∈ Aρ. Therefore ρ(λX) = λρ(X) = 0. Consequently λX ∈ Aρ for

λ ≥ 0. This proves that Aρ is a positively homogenous cone.

Finally let us show that ρ(X) = ρAρ
(X). Let X ∈ Aρ, then by definition

ρ(X) = 0. Thus ρAρ
= 0 as well. Now consider X /∈ Aρ and, letX∗ be a

random variable as defined in the shortest path axiom. Thus X∗ is on the

boundary of set Aρ such that ρAρ
(X) =‖ X − X∗ ‖. Define u as the unit

vector in the direction of X∗ − X. Notice that X+ ‖ X − X∗ ‖ u ∈ Aρ

implying that ρ(X+ ‖ X − X∗ ‖ u) = 0. By the shortest path axiom we have

ρ(X)− ‖ X − X∗ ‖= 0 i.e. ρ(X) =‖ X − X∗ ‖= ρAρ
(X). This completes the

proof. 2

Remark 3.5. Under the ADEH framework only the risk free asset is allowed to

be added to the original portfolio to produce an acceptable portfolio. Thus the

risk of a portfolio is measured as the distance from an acceptable portfolio along

the path of the riskless rate. However, generalized coherent risk measures quan-

tify the risk as the distance along the shortest path. Therefore it immediately

follows that ρADEH
A (X) ≥ ρA(X).

3.4 Convex Risk Measures

As stated in previous sections, coherent risk measures may fail to be an

adequate measure to quantify the risk of a position in the case of illiquid market
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conditions. In such a market condition there may arise an additional liquidity

risk if a position is multiplied by a large factor. Taking this fact into account

Föllmer et all. introduced convex risk measures by setting the weaker property

of convexity instead of the conditions positive homogeneity and subadditivity.

First of all, Föllmer et. al. represent convex risk measures for a finite set Ω in

the study [FS02a]. Then, in [FS02c] they characterize the risk measures in a

situation of uncertainty, without referring to a given a priori measure. Finally,

financial positions are modelled as the functions in space L∞ with respect to a

fixed probability measure P on a measurable space (Ω,F). In this section all

of these three cases will be overviewed by considering the studies of Föllmer et.

al.

Let Ω be a fixed set of scenarios. A discounted financial position is denoted

by the mapping X : Ω → R and X is the linear space of functions on a given

set Ω of possible scenarios. Assume that X contains all constant functions and

is closed under the addition of constants. Also, assume that there is no priori

probability measure given in the set Ω.

Definition 3.17. Convex Measure of Risk

ρ : X → R is called a convex measure of risk if it satisfies the following condi-

tions for all X,Y ∈ X .

1. Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ), for

0 ≤ λ ≤ 1.

2.Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y ).

3.Translation Invariance: If m ∈ R, then ρ(X +m) = ρ(X)−m.

Convexity indicates that the risk of a diversified position λX + (1 − λ)Y

is less or equal to the weighted average of the individual risks. Therefore,

convex risk measures support portfolio diversification. Notice that convexity

is equivalent to subadditivity when we assume positive homogeneity. Thus, a
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convex measure of risk is coherent if it satisfies positive homogeneity. Although

in some situations it is convenient not to insist on it, assume for now that

ρ satisfies the normalization property, which means ρ(0) = 0. This property

enables us to interpret the quantity ρ(X) as a ’margin requirement’.

Let A ⊂ X represents acceptable positions, Aρ represents the acceptance set

induced by the risk measure ρ and ρA is the quantitative risk measure induced

by the acceptance set A. In the following two propositions, one can see the

correspondence between the convex risk measures and its acceptance sets.

Proposition 3.10. Suppose ρ : X → R is a convex measure of risk with

associated acceptance set Aρ. Then ρAρ
= ρ. Moreover, A := Aρ satisfies the

following properties:

1. A is non-empty, convex and satisfies the following property:

inf{m ∈ R | m ∈ A} > −∞

2. If X ∈ A and Y ∈ X satisfies Y ≥ X, then Y ∈ A

3. If X ∈ A and Y ∈ X , then

{λ ∈ [0, 1] | λX + (1 − λ)Y ∈ A}

is closed in [0, 1].

Proof: i) To show that ρAρ
(X) = ρ(X) for all X, first recall that

ρAρ
(X) = inf{m | m + X ∈ Aρ}

then from the definition of Aρ

ρAρ
(X) = inf{m | ρ(m + X) ≤ 0}
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finally, the translation invariance of ρ implies that

ρAρ
= inf{m | ρ(X) ≤ m} = ρ(X)

ii) 1. Firstly we will prove that A is non-empty. It is previously assumed that

X contains the constants therefore translation invariance implies ρ(0 + ρ(0)) =

ρ(0) − 0 ≤ 0, thus 0 ∈ A. To see the convexity of A,let X,Y ∈ A, then

ρ(X) ≤ 0 and ρ(Y ) ≤ 0. Since ρ is convex ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 −

λ)ρ(Y ) ≤ 0 for λ ∈ [0, 1]. Therefore ρ(λX + (1 − λ)Y ) ∈ A which proves the

convexity of A. Now assume that inf{m ∈ R | m ∈ A} = −∞. This implies

the existence of a position such that whatever amount drawn from the position

is not able to make the final net worth unacceptable. This is not compatible

with finance theory.

2. Let X ∈ A and Y ∈ X satisfying Y ≥ X, then by monotonicity ρ(Y ) ≤

ρ(X). Since X ∈ A, ρ(X) ≤ 0. Thus one can conclude that ρ(Y ) ≤ 0, Y ∈ A.

3. Only taking finite values and being convex ensures the convexity of the

function λ → ρ(λX + (1 − λ)Y ). Therefore the set of λ ∈ [0, 1] such that

ρ(λX + (1 − λ)Y ) ≤ 0 is closed. 2

Proposition 3.11. Let A 6= ∅ be a convex subset of X which satisfies the

property 2 of Proposition 3.10 and denote by ρA the functional associated to

the acceptance set A by ρA(X) := inf{m ∈ R | m + X ∈ A}. If ρA(0) > −∞

then,

1. ρA is a convex risk measure.

2. A is a subset of AρA . Moreover, if A satisfies property 3 of

the Proposition 3.10, then A = AρA .

Proof: 1. Let α ∈ R, then ρA(X) := inf{m ∈ R | m + X ∈ A} and

ρA(X + α) := inf{m ∈ R | m + X + α ∈ A} = inf{m − α ∈ R | m + X + α −

α ∈ A} = ρA(X) − α. This shows that ρA satisfies the translation invariance

property. Let, X,Y ∈ X such that X ≤ Y , then as in 3 of proof of Proposition
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3.3 ρA(X) := inf{m ∈ R | m + X ∈ A} ≥ inf{m ∈ R | m + Y ∈ A} := ρA(Y ),

implies the monotonicity. To indicate the convexity property, suppose that

X,Y ∈ X and m, n ∈ R are such that m+X and n+Y ∈ A. If λ ∈ [0, 1], then

the convexity of A implies that λ(m + X) + (1 − λ)(n + Y ) ∈ A. Therefore,

by the translation invariance of ρA, 0 ≥ ρA(λ(X + n) + (1 − λ)(Y + n)) =

ρA(λX + (1 − λ)Y ) − (λm + (1 − λ)n), and the convexity property for ρA

follows. Now we will show that ρA takes only finite values. Fix Y in A. For

X ∈ X given, there exists a finite number such that m + X > Y because

X is assumed to be the linear space of bounded positions. m + X ∈ A, so

ρA(X + m) = ρA(X) − m ≤ ρA(Y ) ≤ 0 by monotonicity and the translation

invariance. Thus ρA(X) ≤ m < ∞. To show that ρA > −∞ for arbitrary

X ∈ X ,take m′ such that X+m′ ≤ 0, then by monotonicity ρA(X+m′) ≥ ρA(0)

and by translation invariance ρA(X) ≥ ρA(0) + m′ > −∞. This concludes the

proof of the first part.

2. Assume that A satisfies the closure property in Proposition 3.10. We have

to show that X /∈ A implies that ρA(X) > 0. To this end take m > ρA(0). By

property 3 of Proposition 3.10, there exists an ε ∈ (0, 1) such that εm + (1 −

ε)X /∈ A. Thus,

εm ≤ ρA((1 − ε)X) = ρA(ε.0 + (1 − ε)X)

≤ ερA(0) + (1 − ε)ρA(X)

Hence

ρA(X) ≥
ε(m − ρA(0))

1 − ε
> 0,

and property 2 follows. 2

After realizing the correspondence between convex risk measures and their

acceptance sets, we are ready to concentrate on the structure theorems of convex

risk measures for different cases. Firstly we will consider the case in which X is

the space of all real-valued functions on some finite set Ω. Then we will review

the case in which financial positions are modelled in the space of all bounded
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measurable functions on a measurable space (Ω,F) without referring to a given

priori measure. The final case will be the one in which X is identified with

L∞(Ω,F , P ) under the assumption that we have a probabilistic model given by

a probability measure P on (Ω,F).

Theorem 3.5. Suppose X is the space of all real-valued functions on a finite set

Ω and P is the set of all probability measures on Ω. Then ρ : X → R is a convex

measure of risk if and only if there exists a ”penalty function” α : P → (−∞,∞]

such that

ρ(Z) = sup
Q∈P

(EQ[−Z] − α(Q)).

The function α satisfies α(Q) ≥ −ρ(0) for any Q ∈ P .

Proof: i) To prove the ’if’ part of the theorem, one has to show that for

each Q ∈ P the functional

X → EQ[−X] − α(Q)

is convex, monotone and translation invariant.

1. Let X,Y ∈ X and λ ∈ [0, 1], then

EQ[−(λX + (1−λ)Y )]−α(Q) ≤ λ(EQ[−X]−α(Q)) + (1−λ)(EQ[−Y ]−α(Q))

Thus, convexity for the functional follows.

2. For X,Y ∈ X such that X ≤ Y

EQ[−X] − α(Q) ≥ EQ[−Y ] − α(Q)

indicating the monotonicity property.

3. For m ∈ R

EQ[−(X + m)] − α(Q) = EQ[−X] − α(Q) − m

proves the translation invariance property.
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After proving the convexity, monotonicity and translation invariance for the

functional, we can conclude that

ρ(Z) = sup
Q∈P

(EQ[−Z] − α(Q))

also satisfies convexity, monotonicity and translation invariance because these

three are preserved under the operation of taking suprema.

ii) To prove the converse part, for Q ∈ P , α(Q) is defined by

α(Q) := sup
X∈X

(EQ[−X] − ρ(X)) (3.4.13)

Then it is claimed that

α(Q) = sup
X∈Aρ

EQ[−X] (3.4.14)

Notice that function (3.4.14) represents the minimum acceptable amount for

the acceptance set Aρ. In the equation (3.4.14) denote the righthand side by

α̂(Q). By using the definition of Aρ, it can be found that

α(Q) ≥ α̂(Q) (3.4.15)

To establish the converse inequality, take an arbitrary X ∈ X and recall that

X ′ := ρ(X) + X ∈ Aρ. From the definitions of α(Q) and α̂(Q) the following

inequality holds for all X ∈ X .

α̂(Q) ≥ EQ[−X ′] = EQ[−X] − ρ(X)

α̂(Q) ≥ sup
X∈X

(EQ[−X] − ρ(X)) = α(Q) (3.4.16)

Equation (3.4.15) together with (3.4.16) shows that α(Q) = α̂(Q) and proves

the claim.
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Now fix some Y ∈ X and take α(.) as in the equation (3.4.13), then

EQ[−Y ] − ρ(Y ) ≤ sup
X∈X

(EQ[−X] − ρ(X)) = α(Q)

Thus

ρ(Y ) ≥ EQ[−Y ] − α(Q).

Taking the supremum preserves the inequality. Therefore

ρ(Y ) ≥ sup
Q∈P

(EQ[−Y ] − α(Q)) (3.4.17)

Now take m ∈ R such that

m > sup
Q∈P

(EQ[−Y ] − α(Q))

Then one has to show that m ≥ ρ(Y ) or, equivalently, m + Y ∈ Aρ. Suppose

that the inverse is true and m + Y /∈ Aρ. Since ρ is by definition a convex

function on the space RΩ and only takes finite values, ρ is continuous ( see

Preliminaries, Thm:2.3 ). Hence Aρ = {ρ ≤ 0} is a closed convex set. (Notice

that here we are using the assumption that Ω is finite, in order to obtain the

closedness of the acceptance set Aρ)

Since Aρ is a convex set, by using the separation theorem ( see, Preliminaries

Thm: 2.9 ), one can find a linear functional l on RΩ such that

β := sup
X∈Aρ

l(X) < l(m + Y ) =: γ < ∞ (3.4.18)

The axioms of monotonicity and normalization imply that

ρ(X) ≤ ρ(0) for X ≥ 0.
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Thus if X ∈ X satisfies X ≥ 0, then λX + ρ(0) ∈ Aρ for all λ ≥ 1, and hence

γ > l(λX + ρ(0))

Since l is a linear functional we have

γ > λl(X) + ρ(0)

Taking λ ↑ ∞ yields that l(X) ≤ 0. Thus it follows that l is a negative

functional. Assume that l(1) = −1, then by using the assumption one can

define the probability measure Q ∈ P as

Q[A] := l(−IA)

Then the equation EQ[−X] = l(X) holds for X ∈ Aρ. By using the equations

(3.4.14) and (3.4.18)

α(Q) = sup
X∈Aρ

EQ[−X] = β

but

EQ[−Y ] − m = l(m + Y ) = γ > β = α(Q)

which implies

ρ(Y ) > m

which is a contradiction to the choice of m. Therefore, we must have m+Y ∈ Aρ

and thus, m ≥ ρ(Y ) 2

Remark 3.6. Theorem 3.5 above includes the structure theorem for coherent

risk measures as a special case. ρ will possess the property of positive homo-

geneity, i.e., ρ will be a coherent measure of risk, if and only if the penalty

function α(Q) only takes values 0 and +∞. In this case, the theorem above

implies the representation of coherent risk measures in terms of the set

Q = {Q ∈ P | α(Q) = 0}
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From now on assume that X is the linear space of all bounded measur-

able functions on a measurable space (Ω,F). M1 := M1(Ω,F) indicates

the class of all probability measures on (Ω,F). Moreover the larger class M1,f

represents all finitely additive and non-negative set functions Q : F → [0, 1]

which are normalized to Q[Ω] = 1. Here, risk measures are characterized in

a situation of uncertainty without referring to any probability on (Ω,F) given

a priori. In this case, firstly, convex risk measures are represented by finitely

additive set functions. Later on, a criteria which guarantees that a measure of

risk can be represented in terms of σ-additive probability measures is obtained.

Let α : M1,f → R ∪ {+∞} be any functional which is bounded below and

which is not identically equal to +∞, then for each Q ∈ M1,f the functional

X → EQ[−X] − α(Q)is convex, monotone and translation invariant on X , and

these properties are preserved when taking the supremum over Q ∈ M1,f . Thus

ρ(X) := sup
Q∈M1,f

(EQ[−X] − α(Q)) (3.4.19)

defines a convex risk measure on X such that

ρ(0) = − inf
Q∈M1,f

(α(Q))

Theorem 3.6. Any convex measure of risk ρ on X is of the form

ρ(X) = max
Q∈M1,f

(EQ[−X] − αmin(Q)), X ∈ X , (3.4.20)

where the penalty function αmin is given by

αmin(Q) := sup
X∈Aρ

EQ[−X] for Q ∈ M1,f

Moreover, αmin is the minimal penalty function which represents ρ, i.e., any

penalty function α for which (3.4.19) holds satisfies α(Q) ≥ αmin(Q) for all

Q ∈ M1,f
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Proof: As a first step, it will be shown that

ρ(X) ≥ sup
Q∈M1,f

(EQ[−X] − α(Q)) ∀ X ∈ X

Recall that X ′ := ρ(X) + X ∈ Aρ. Also recall that

αmin(Q) := sup
X∈Aρ

EQ[−X]

Therefore, αmin(Q) ≥ EQ[−X ′] = EQ[−X] − ρ(X), then

αmin(Q) ≥ EQ[−X] − ρ(X)

and

ρ(X) ≥ EQ[−X] − αmin(Q) (3.4.21)

Now, as a second step, for a given X, some QX ∈ M1,f will be constructed such

that

ρ(X) ≤ EQX
[−X] − αmin(QX)

which, in view of the previous step, will prove the representation (3.4.20). By

the translation invariance property it is sufficient to prove this only for X ∈ X

with rho(X) = 0. Moreover, the normalization assumption, ρ(0) = 0 is still

valid. Therefore such an X is not contained in the convex set

B := {Y ∈ X | ρ(Y ) < 0}

Since ρ is normalized, B contains the open ball

B1(1) = {Y ∈ X | ‖Y − 1‖ < 1}

This ensures that B has a non-empty interior. It is known that ρ(X) = 0 and

ρ(Y ) < 0 then, by monotonicity, Y > X. Since B is a convex set with non-
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empty interior and Y > X is known, one can apply the separation theorem,

which yields a non-zero continuous functional l on X such that

l(X) ≤ inf
Y ∈B

l(Y ) := b. (3.4.22)

This implies that we are able to separate the space of positions X into the sets

of acceptable and unacceptable positions.

Now, the claim is that, l(Y ) ≥ 0 if Y ≥ 0. The translation invariance of ρ

implies that ρ(1 + λY ) = ρ(λY ) − 1. Besides, from monotonicity, for λ > 0,

ρ(Y ) > ρ(λY ) is true. It is assumed that ρ(Y ) < 0 for Y ∈ B. Putting all

these together, one can conclude that ρ(λY ) − 1 < 0, and so 1 + λY ∈ B for

any λ > 0. Therefore, by using (3.4.22) and the linearity of l

l(X) ≤ l(1 + λY ) = l(1) + λl(Y ), ∀ λ > 0

This proves the claim since the equation above could not be true if l(Y ) < 0.

The second claim is that l(1) > 0. Since l does not vanish identically and B

contains the unit ball, there must be some Y ∈ B1(0) such that 0 < l(Y ) =

l(Y +)− l(Y −). The previous claim implies that l(Y +) > 0 and since we choose

Y from B1(0), l(1 − Y +) ≥ 0. Hence l(1) = l(1 − Y +) + l(Y +) > 0. By the two

preceding steps and Theorem 2.4 of Preliminaries, there exists some QX ∈ M1,f

such that

EQX
[Y ] =

l(Y )

l(1)
forall Y ∈ X . (3.4.23)

In the equation above, to define the expectation, l is normalized by dividing it

into l(1).

Aρ = {Y | ρ(Y ) ≤ 0} and B = {Y | ρ(Y ) < 0}, so it is clear that B ⊂ Aρ, and

so

αmin(QX) = sup
Y ∈Aρ

EQX
[−Y ] ≥ sup

Y ∈B
EQX

[−Y ] = −
b

l(1)
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On the other hand, Y + ε ∈ B for any Y ∈ Aρ and each ε > 0. This shows that

αmin(QX) = −
b

l(1)
(3.4.24)

By using (3.4.23)and (3.4.24),

EQX
[−X] − αmin(QX) = −

l(X)

l(1)
+

b

l(1)
=

1

l(1)
(b − l(X)) ≥ 0

Here, the righthand side of the equation is non-negative, since l(1) > 0 is proved

previously and (b− l(X)) ≥ 0 due to (3.4.22). Remember that in the beginning

of the proof X were chosen such that ρ(X) = 0 Thus

EQX
[−X] − αmin(QX) ≥ 0 = ρ(X) (3.4.25)

Therefore (3.4.25) together with (3.4.21) indicates that

ρ(X) = EQ[−X] − αmin(Q)

which concludes the proof of representation (3.4.20).

Finally, let α be any penalty function for ρ. Then for all Q ∈ M1,f and X ∈ X

ρ(X) ≥ EQ[−X] − α(Q)

and hence

α(Q) ≥ sup
X∈X

(EQ[−X] − ρ(X))

≥ sup
X∈Aρ

(EQ[−X] − ρ(X)) (3.4.26)

≥ αmin(Q)

This shows that α dominates αmin. 2

Remark 3.7. a. If we take α = αmin in (3.4.26) we obtain an alternative
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formula for αmin:

αmin = sup
X∈X

(EQ[−X] − ρ(X))

b. If ρ is defined by ρ = ρA for a given acceptance set A ⊂ X , then the

predetermined acceptance set A determines αmin:

αmin(Q) = sup
Q∈Q

EQ[−X], for all Q ∈ M1,f

In fact, this is because of the fact that X ∈ A implies ε + X ∈ Aρ for all ε > 0.

The following corollary gives the representation of coherent risk measures in

terms of the minimal penalty function.

Corollary 3.1. The minimal penalty function αmin of a coherent risk measure

only takes values 0 and +∞. In particular,

ρ(X) = max
Q∈Qmax

EQ[−X], X ∈ X ,

for the set

Qmax := {Q ∈ Mf,1 | αmin(Q) = 0}

Proof: Recall that the acceptance set of a coherent risk measure is a cone.

Thus the minimal penalty function satisfies

αmin(Q) = sup
X∈Aρ

EQ[−X] = sup
λX∈Aρ

EQ[−λX] = λαmin(Q)

For all Q ∈ M1,f and λ > 0. Thus, αmin can only take values 0 and +∞. 2

After representing convex risk measures in terms of finitely additive set

functions, in [FS02c] Föllmer et. al. introduced the situation in which a convex

risk measure of risk admits a representation in terms of σ-additive probability

measures. In such a case a convex measure of risk can be represented by a

penalty function α which is infinite outside the set M1 = M1(Ω,F):

ρ(X) = sup
Q∈M1,f

(EQ[−X] − α(Q)). (3.4.27)
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A representation in terms of probability measures is closely related with the con-

tinuity properties of ρ. The following lemma shows that a convex risk measure

that can be represented in the form (3.4.27) is continuous from above.

Lemma 3.1. A convex measure of risk ρ which admits a representation (3.27)

on M1 is continuous from above in the sense that

Xn ↘ X =⇒ ρ(Xn) ↗ ρ(X) (3.4.28)

Moreover,if (Xn) is a bounded sequence in X which converges pointwise to

X ∈ X , then

ρ(X) ≤ lim inf
n↑∞

ρ(Xn) (3.4.29)

Proof: Firstly, assume Xn is a bounded sequence converging pointwise to X,

then the dominated convergence theorem ( see, Preliminaries Thm: 2.7) states

that

EQ[ lim
n→∞

Xn] = lim
n→∞

EQ[Xn]

then

EQ[X] = lim
n→∞

EQ[Xn]

Thus as n tends to infinity we have

EQ[Xn] → EQ[X] for all Q ∈ M1.

Hence

ρ(X) = sup
Q∈M1

(lim
n↑∞

EQ[−Xn] − α(Q))

≤ lim inf
n↑∞

sup
Q∈M1

(EQ[−Xn] − α(Q))

= lim inf
n↑∞

ρ(Xn)

which proves (3.4.29).
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To show the equivalence of (3.4.28) and (3.4.29), first assume that (3.4.29)

holds. By using monotonicity of ρ, ρ(Xn) ≤ ρ(X) for each n if Xn ↘ X, and so

ρ(Xn) ↗ ρ(X) follows. Now to prove the inverse implication assume continuity

above. Let (Xn) be a sequence in X which converge pointwise to X. Define a

sequence Ym such that Ym := supn≥mXn, Xn ∈ X . Then clearly Ym decreases

to X. Thus, by monotonicity ρ(Xn) ≥ ρ(Yn). When we take the infimum the

equation preserved. Therefore by using the condition (3.4.28)

lim inf
n↑∞

ρ(Xn) ≥ lim
n↑∞

ρ(Yn) = ρ(X)

2

In the following proposition Föllmer et. al. give a strong sufficient condi-

tion, continuity from below, that guarantees the concentration of any penalty

function on the set M1 of probability measures.

Proposition 3.12. Let ρ be a convex measure of risk which is continuous from

below in the sense that

Xn ↗ X ⇒ ρ(Xn) ↘ ρ(X)

and suppose that α is any penalty function on M1 representing ρ. Then α is

concentrated on the class M1 of probability measures, i.e.,

α(Q) < ∞ ⇒ Q is σ additive.

However, continuity from below in this strong form might be too restrictive

in many situations. Therefore, to obtain a weaker version, Föllmer et. al.

discussed the problem in a topological setting. They made the assumption that

Ω is a Polish space, i.e., a separable topological space admitting a complete

metric, and F is the σ-field of Borel sets. For the rest of the discussion and

proof of Proposition 3.12, see [FS02b, p:171].

In the last case for the representation of convex risk measures, X is identified
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with L∞(Ω,F , P ) under the assumption that P is a probability measure given

a priori on (Ω,F). In this situation, it is naturel to think ρ such that

ρ(X) = ρ(Y ) if X = Y P − a.s. (3.4.30)

Lemma 3.2. Let ρ be a convex measure of risk that satisfies (3.4.30) and which

is represented by a penalty function α as

ρ(X) := sup
Q∈M1

(EQ[−X] − α(Q)).

Then α(Q) = +∞ for any probability measure Q which is absolutely continuous

with respect to P .

Proof: If Q ∈ M1(Ω,F) is not absolutely continuous with respect to P ,

then from the definition of absolute continuity (see Preliminaries, Def: 2.16),

there exists A ∈ F such that Q[A] > 0 but P [A] = 0. Let X ∈ Aρ, then define

Xn := X − nIA. We have X − nIA = X P a.s., then ρ(Xn) = ρ(X). Therefore

Xn is contained in Aρ. Hence

α(Q) ≥ αmin(Q) ≥ EQ[−Xn] = EQ[−X] + nQ[A] → ∞ as n ↑ ∞

2

After this Lemma, it is appropriate to conclude this section with the repre-

sentation theorem of convex risk measures on L∞.

Theorem 3.7. Suppose X = L∞(Ω,F , P ),P is the set of probability measures

Q � P , and ρ : X → R is a convex measure of risk. Then the following

properties are equivalent.

1. There is a penalty function α : P → (−∞,∞] such that

ρ(X) = sup
Q�P

(EQ[−X] − α(Q)) ∀X ∈ X
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2. The acceptance set Aρ associated with ρ is weak∗-, i.e.,σ(L∞(P ),L1(P ))-

closed.

3. ρ posses the Fatou property: If the sequence (Xn)n∈N ⊂ X

is uniformly bounded, and Xn converges to some X ∈ X in proba-

bility, then ρ(X) ≤ lim infn ρ(Xn).

4. If the sequence (Xn)n∈N ⊂ X decreases to X ∈ X , then ρ(Xn) →

ρ(X)

For the proof of the theorem see [FS02a, p:436]

It is seen that convex risk measures are superior in terms of their awareness

of liquidity risk. With this property convex risk measures get a lead among the

risk measures we reviewed up to now. However, similar to other risk measures

convex measures assume full and symmetric information among all agents of the

market. This seems unrealistic since there is a discrepancy between the amount

of information that the agents have. In the next section we will become familiar

with a new measure of risk which takes account of the existence of asymmetric

information in financial markets.

3.5 Conditional and Convex Conditional Risk

Measures

Risk measures we reviewed up to this section assume that every agent in the

market has full information. However in the real market condition this is not

the case. In order to deal with situations of partial or asymmetric information,

Bion-Nadal introduced the concept of conditional risk measures. Throughout

this section the theory of conditional risk measures will be reviewed by taking

the study [BN04] as a reference.
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To begin with, in [BN04], partial information is defined as a situation where

the set of financial positions is a linear space X of bounded maps on a space

Ω, and where the investor does not have access to all maps defined on Ω, but

only to the measurable maps relative to the σ-algebra F . Here F represents all

accessible information. Conditional risk measures has been defined under both

partial and complete uncertainty. With partial uncertainty, the situation

is implied in which the investor has access to partial information represented

by the σ-algebra F and a probability measure is given on this σ-algebra F (

implying that the agent knows at least which events of F are of null probability

). On the other hand, the case of complete uncertainty represents the situation

in which one does not know which probability is the ’good one’ even on the

σ-algebra F . The main aim in defining conditional risk measures is to reach a

robust representation for convex conditional risk measures. Here we will first

consider the definition and properties of conditional risk measures under partial

uncertainty and then continue with the complete uncertainty case. In the sequel,

the representation theorems for convex conditional risk measures for the related

case will be given.

Let Ω represents the states of nature. A financial position is described by a

bounded map defined on the set Ω. X represents the linear space of financial

positions. Consider a σ-algebra F on the space Ω. Then (Ω,F) is a measurable

space. εF indicates the set of all bounded real valued (Ω,F) measurable maps.

Let P be a a priori given probability on F , then the aim is to define a notion

of a risk measure conditional to (Ω,F , P ).

Definition 3.18. Conditional Risk Measure under Partial Uncertainty

A mapping

ρF : X → L∞(Ω,F , P )

is called a risk measure conditional to (Ω,F , P ) if it satisfies the following

conditions:

1. Monotonicity: For all X,Y ∈ X if X ≤ Y , then ρF(Y ) ≤

ρF(X) P a.s.
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2. Translation Invariance: For all Y ∈ εF , for all X ∈ X ,

ρF(X + Y ) = ρF(X) − Y P a.s.

3. Multiplicative Invariance: For all X ∈ X , for all A ∈ F ,

ρF(XIA) = IAρF(X) P a.s.

The interpretation of the first two properties are similar to the ones we

considered in the previous sections. The new property, multiplicative invariance,

evokes the property of conditional expectation.

Lemma 3.3.

1. Any conditional risk measure is Lipschitz continuous with a Lipschitz con-

stant equal to 1 from (X , ‖ . ‖) to L∞(Ω,F , P ), i.e.

‖ ρF(X) − ρF(Y ) ‖ ≤‖ X − Y ‖,∀X,Y ∈ X

2. The restriction to εF of any risk measure conditional to (Ω,F , P ) is equal to

the negative of the identity,i.e., −id P a.s.

For the proof of Lemma see [BN04, p:7]

Definition 3.19. The F - acceptance set of a risk measure ρF conditional to

the probability space (Ω,F , P ) is

AρF = {X ∈ X | ρF(X) ≤ 0 P a.s}

The following two propositions indicate the correspondence between a con-

ditional risk measure and a F -acceptance set.

Proposition 3.13. The acceptance set A = AρF of the risk measure ρF has

the following properties:
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1. A is non empty, closed with respect to the supremum norm and

has a

hereditary property : for all X ∈ A, for all Y ∈ X , if Y ≥ X, then

Y ∈ A.

2. Bifurcation property: for all X1, X2 ∈ A and for all B1, B2

disjoint sets ∈ F , X = X1I{B1} + X2I{B2} is in A.

3. Positivity: Every element F -measurable of A is positive P

a.s

4. ρF can be recovered from A

ρF = essinf{Y ∈ εF | X + Y ∈ A}

Proof: 1. By the multiplicative invariance property we have ρF(0) = 0.

Therefore by definition of A, 0 ∈ A. Thus it is non empty. To show the

closedness let X ∈ X −A and ε > 0 such that P ({ω ∈ Ω | ρF(X)(ω) > ε}) > 0.

Let O = {Y ∈ X |‖ ρF(Y ) − ρF(X) ‖< ε}. O is an open subset of (X , ‖ . ‖)

because ρF is Lipschitz continuous as stated in Lemma 3.3. Moreover O is

contained in X − A. So X − A is clearly open. Then its complement, A, is

closed. Hereditary property is an overt consequence of monotonicity. Indeed,

for X ∈ A ρF(X) ≤ 0 from the definition of A. Now let Y ∈ X such that

Y ≥ X. By the monotonicity of ρF , ρF(Y ) ≤ ρF(X) ≤ 0. Thus Y ∈ A.

2. From the multiplicative invariance

ρF(XiI{Bi}) = ρF(Xi)I{Bi}

and ρF(0) = 0, then for X1, X2 ∈ A we have ρF(X) = ρF(X1)I{B1}+ρF(X2)I{B2}

which is clearly contained in A.

3. From Lemma 3.3 we have ρF(X) = −X P a.s. Then from the definition of

A we have X ≥ 0 for X ∈ A
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4. Let X ∈ X and BX = {f ∈ εF | X + f ∈ A}. From the translation in-

variance we have ρF(X + ρF) = 0, so ρF(X + ρF(X)) ∈ A. As a consequence,

ρF(X) ∈ BX . On the other hand, for every f ∈ BX , ρF(X +f) = ρF(X)−f ≤ 0

P a.s → ρF(X) ≤ f P a.s.. This guarantees that BX has a minimal element

which is equal to ρF(X) P a.s. Therefore

ρF(X) = essinf{f ∈ εF | f + X ∈ A}

2

Proposition 3.14. Let A be a F - acceptance set. For all X ∈ X consider the

set

BX = {Y ∈ εF , X + Y ∈ A}

Then ρF(X) = essinfBX is a risk measure conditional to the probability space

(Ω,F , P ).

For the proof see [BN04, p:9]

From the previous two propositions we see that a conditional risk measure

can be defined directly or it can be defined from a F -acceptance set. From the

definition of BX in Proposition 3.14 it is seen that to make a position acceptable

we add another position to the initial one. In other words, a risk measure of a

position X conditional to the σ-algebra F is implicitly defined as the minimal

F - measurable map (implying another position ) which added to the initial

position X makes the position acceptable. This is different from the cases we

saw on coherent and convex risk measures; instead, it is similar to the situation

in generalized coherent risk measure since in the latter, to remove the risk of

a position, an agent is allowed to hold not only the risk free asset but various

other kinds of assets.

Definition 3.20. Convex Conditional Risk Measures

A risk measure defined on X conditional to the probability space (Ω,F , P ) is
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called convex if for all X,Y ∈ X , for all 0 ≤ λ ≤ 1,

ρF(λX + (1 − λ)Y ) ≤ λρF(X) + (1 − λ)ρF(Y ) P a.s

Definition 3.21. Continuity From Below

A convex conditional risk measure is continuous from below if:

For all increasing sequence Xn of elements of X converging to X, the decreasing

sequence ρF(Xn) converges to ρF(X) P a.s..

After this introductory part we will continue with the representation theorem

of convex conditional risk measures in the case of partial uncertainty.

Assume that there is a σ-algebra G such that X is the set of all bounded

measurable functions on the measure space (Ω, ‖ . ‖). Let F be a sub-σ-algebra

of G. M1,f represents the set of all finitely additive set functions Q : G → [0, 1]

such that Q(Ω) = 1.

Theorem 3.8. Let ρF be a convex risk measure conditional to probability space

(Ω,F , P ). Assume that ρF is continuous from below, then for all X ∈ X

ρF(X) = essmaxQ∈M(EQ(−X | F) − α(Q))

where α(Q) = esssupY ∈AρF
EQ(−Y | F) and

M is a set of probability measures on (Ω,G) whose restriction to F is equal

to P . Here ρF(X) = essmaxQ∈M(EQ(−X | F) − α(Q)) means that ρF(X) is

the esssup and that this ess sup is attained for one Q ∈ M. Before the proof

of the theorem the following lemma will be given for the sake of clarity in some

parts of the proof.

Lemma 3.4. Let P be a finitely additive set function on F ; P : F → [0, 1]

such that P (Ω) = 1. For each X ∈ X there is a finitely additive set function

QX on G such that the equality

EQX
(ρF(X)IB) = EQX

(−XIB) − sup
Y ∈AρF

EQX
(−Y IB)
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is satisfied and such that the restriction of QX to F is equal to P .

For the proof of the Lemma (3.4) see [BN04, p:17]

Proof: ( Theorem 3.8) 1. Firstly it will be verified that for all X ∈ X , for

all B in F and for all Q absolutely continuous with respect to P , the inequality

EQ(ρF(XIB)) ≥ EQ(−XIB) − sup
Y ∈AρF

EQ(−Y IB). (3.5.31)

holds.

For all X ∈ X , ρF(ρF(X) + X) = ρF(X) − ρF(X) = 0 due to the transla-

tion invariance property. So ρF(X) + X ∈ AρF . Then supY ∈AρF
EQ(−Y ) ≥

EQ(−(X + ρF(X))). Therefore, obviously the equation (3.5.31) holds for all

Q ∈ M1,f and for all B ∈ F .

2. As a second step it will be proved that there exist a finitely additive set

function QX satisfying the equation:

EQX
(ρF(XIB)) = EQX

(−XIB) − sup
Y ∈AρF

EQ(−Y IB). (3.5.32)

Showing this for the case ρF(X) = 0 is satisfactory since when ρF(X) 6= 0

one can get the result by replacing X with X + ρF(X). Therefore showing the

equation

EQX
(−XIB) = sup

Y ∈AρF

EQX
(−Y IB)

becomes equivalent to showing (3.5.32).

Consider now the convex hull ( see Preliminaries, Def: 2.22 ) C̃ of {(Y −

X)IB; ρF(Y ) < 0 P a.s.; B ∈ F and P (B) 6= 0}

i) Firstly it will be shown that C̃ does not contain 0. For this aim, assume

that there are λi ≥ 0;
∑n

i=1 λi = 1 and
∑n

i=1 λi(Yi − X)IBi
= 0. Choose

J ⊂ {1, 2, ...n} such that B̃ = ∩i∈JBi 6= ∅ and such that ∀j ∈ {1, 2, ...n} − J ,

B̃ ∩ Bj = ∅, then
∑

i∈J

λi(Yi − X)IB̃ = 0 (∗)

In fact from its representation the expression (∗) above appears like an element
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of the convex hull C̃. Now let Ỹ =
∑

i∈J λi(Yi)
∑

i∈J λi
.

It is clear from the convexity of ρF that ρF(Ỹ ) < 0. From the expression (∗)

we have
∑

i∈J

λi(Yi)IB̃ =
∑

i∈J

λi(X)IB̃

Therefore we have Ỹ IB̃ = XIB̃ so ρF(Ỹ IB̃) = ρF(XIB̃) = 0 which is a contra-

diction because we found above that ρF(Ỹ ) < 0. Therefore 0 is not contained

in C̃.

ii) Now it will be proved that C̃ is non empty.

C̃ contains the open ball

B1(1 − X) = {Y ∈ X ; ‖ Y − (1 − X) ‖< 1} (∗∗)

For Y ∈ B1(1 − X) by setting Y = Z − X in (∗∗) one can get B1(1) = {Z ∈

X ; ‖ Z − 1 ‖< 1} indicating that Z ∈ B1(1). Therefore Z is positive. Thus,

by the second property in Lemma 3.3 ρF(Z) = −Z < 0. Therefore C̃ is non

empty.

From (i), 0 does not belong to C̃, and from (ii) the interior of C̃ is non empty

so by the separation theorem ( see, Preliminaries Thm: 2.9 ) there exists a non-

zero continuous functional L on X such that; 0 = L(0) ≤ L(Z) for all Z ∈ C̃.

Therefore for all Y such that ρF(Y ) < 0 and for all B ∈ F . ∀Y ∈ AρF ,∀ε >

0, ρF(Y + ε) < 0 by monotonicity. Hence by continuity of L,

0 ≤ L((Y − X)IB) ∀Y ∈ AρF (3.5.33)

Now ∀Y ≥ 0,∀λ > 0, ρF(1 + λY ) < 0. Then (1 + λY − X) ∈ C̃ which

indicates that L(1 + λY − X) = L(1) + λL(Y ) − L(X) ≥ 0. This implies that

∀Y ≥ 0, L(Y ) ≥ 0. Thus L is a linear functional. Then it follows that L(1) > 0.

Hence by Theorem 2.4 of Preliminaries, there exists a unique QX ∈ M1,f defined

by EQX
(Y ) = L(Y )

L(1)
for all Y ∈ X . Thus from this equality and (3.5.33)

0 ≤ EQX
((Y −X)IB) → EQX

(−XIB) ≥ EQX
(−Y IB) ∀Y ∈ AρF ,∀B ∈ F(I)
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The inequality (3.31) becomes supY ∈AρF
EQ(−Y IBρF(X) ≥ EQ(−XIB)(II) for

X s.t ρF(X) = 0. (I) together with (II) proves that ∀X ∈ X there exist a

finitely additive set function QX satisfying the equation:

EQX
(ρF(XIB)) = EQX

(−XIB) − sup
Y ∈AρF

EQ(−Y IB)

3. In the third step it will be proved that QX is a probability measure i.e. that

QX is σ-additive.

Let P be a probability measure on (Ω,F) and X ∈ X . From Lemma 3.4, there

is a finitely additive set function QX such that the inequality (3.5.32) holds for

all B ∈ F and such that the restriction of QX to F is equal to P .

Consider an increasing sequence (An)n∈N of elements of G whose union is

equal to Ω. Then it must be shown that QX(An) converges to 1. Now apply

equality (3.5.32) to B = Ω and get

EP (ρF(X)) = EQX
(−X) − α(QX)

where α(QX) = supY ∈AρF
EQX

(−Y ) and X and ρF(X) are bounded so α(QX)

is finite. Let λ > 0. Then apply inequality (3.5.31) to λIAn

EQX
(λIAn

) ≥ −EP (ρF(λIAn
)) − α(QX)

As n tends to infinity, ρF(λIAn
) tends to ρF(λ) = −λ so

lim inf
n→∞

λEQX
(IAn

) ≥ lim
n→∞

(−EP (ρF(λIAn
)) − α(QX))

lim inf
n→∞

EQX
(IAn

) ≥ 1 −
α(QX)

λ

As λ tends to ∞, lim infn→∞ EQX
[IAn

] = lim infn→∞ QX(An) ≥ 1. Which proves

that QX is a probability measure.

4. In this final step it will be proved that the probability measure QX is

absolutely continuous with respect to a priorly given P .
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Let A in F such that P (A) = 0. For all Z ∈ C̃, for all β ∈ R, Z + βIA =

Z P a.s.. Apply the inequality EQX
(Z) ≥ 0 to Z +βIA for all β ∈ R. Then to

satisfy the inequality EQX
(Z) + βEQX

(IA) ≥ 0 for all β, QX(A) = 0 indicating

that for A ∈ F such that P (A) = 0, QX(A) = 0, which is the definition of

absolute continuity. This ends the proof of this step and also the proof of the

theorem. 2

From now on we will consider the case of complete uncertainty, the case

where no probability is given. As in the other case, a financial position is

described by a bounded map defined on the set Ω of scenarios. X is the linear

space of financial positions, F represents a σ-algebra on Ω. εF denotes the

set of all bounded real valued (Ω,F) measurable maps. In this case, it is not

assumed that a probability measure is given nor that there is any consensus on

which F -measurable sets should be null sets. In this situation, a risk measure

conditional to the σ-algebra F is defined as the mapping defined on X with

values in εF which satisfies the conditions of monotonicity, translation invariance

and multiplicative invariance for all X ∈ X .

Definition 3.22. Conditional Risk Measure under Complete Uncertainty

A mapping

ρF : X → εF

is called a risk measure conditional to σ-algebra F if it satisfies the following

conditions:

1. Monotonicity: For all X,Y ∈ X if X ≤ Y , then ρF(Y ) ≤

ρF(X)

2. Translation Invariance: For all Y ∈ εF , for all X ∈ X ,

ρF(X + Y ) = ρF(X) − Y

3. Multiplicative Invariance: For all X ∈ X , for all A ∈ F ,

ρF(XIA) = IAρF(X)
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Definition 3.23. The acceptance set of a risk measure ρF is

AρF = {X ∈ X | ρF(X) ≤ 0}

Proposition 3.15. The acceptance set A = AρF of a conditional risk measure

ρF satisfies the following properties.

1. A is non empty, closed with respect to the supremum norm and

has a

hereditary property : for all X ∈ A, for all Y ∈ X , if Y ≥ X, then

Y ∈ A.

2. Bifurcation property: for all X1, X2 ∈ A and for all B1, B2

disjoint sets ∈ F , X = X1I{B1} + X2I{B2} is in A.

3. Positivity: Every F -measurable element of A is positive.

4. ρF can be recovered from A

ρF = inf{Y ∈ εF | X + Y ∈ A}

The proof of the proposition is very similar to that of Proposition 3.13 and

can be found in [BN04, p:14].

Now we will conclude this section with the representation theorem for the

convex conditional risk measures that are continuous from below.

Theorem 3.9. Let ρF be a convex risk measure conditional to F . Assume that

ρF is continuous from below then:

1. For all X ∈ X for every probability measure Q on (Ω,G)

ρF(X) ≥ EQ(−X|F) − α(Q) Q a.s

α(Q) = esssup{Y ∈AρF
}(EQ(−Y |F)) Q a.s.
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2. For all X ∈ X , for every probability measure P on (Ω,F) there

is QX in M1(G,F , P ) such that

ρF(X) = EQX
(−X|F) − α(QX) P a.s.

where M1(G,F , P ) is the set of all probability measures Q on (Ω,G)

such that the restriction of Q to F is equal to P . 3. For all X ∈ X ,

a continuous from below convex conditional risk measure ρF(X) can

be represented as follows:

ρF(X) = inf{g ∈ εF ;∀Q ∈ M1(Ω,G), g ≥ (EQ[−X | F ]

− esssup{Y ∈AρF
}EQ(−Y | F)) Q a.s.}

The theorem can be proved in a similar way with the proof of Theorem 3.8.

It can also be found in [BN04, p:18].
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Chapter 4

MORE RISK MEASURES

In the previous chapter it is observed that there is no unique definition of

risk. Indeed, the concept of risk is defined implicitly by the characterizations

of possible ways to measure it. Because of this, coherence axioms become the

key defining properties of a consistent risk measure. Although in the literature

a number of coherent risk measures has been introduced as alternatives, many

practitioners think that coherence axioms belong to some ideal world and in-

sist on using VaR. This is because it is easy to apply and interpret. However

this may be dangerous and may cause irreversible losses in non-normal market

conditions due to reasons we reviewed in the previous chapter. For this reason,

being familiar with coherent measures and learning more of their advantages

is an important issue. As a result of this, in this chapter the alternative risk

measures of VaR will be discussed and evaluated in terms of their consistency

and applicability. An important example for a risk measure of this kind is

the Worst Conditional Expectation (WCE) introduced in [ADEH99]. Further-

more Conditional Value at Risk (CVaR) by Uryasev and Rockafeller in [RoU00]

and Expected Shortfall(ES) by Acerbi et al. in 2001 [AcNSi01] are other well

known examples. In addition, a recently developed measure of risk will also be

introduced within this chapter.
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4.1 Worst Conditional Expectation

One of the famous coherent risk measures in the literature is the worst

conditional expectation and this section will review the definition and some

properties of this measure. Suppose the confidence level α is given and we

assume that the return of our data follows a particular distribution. Now we

can produce a set of possible loss values whose probability assort with the given

distribution. We then look for the maximum expected loss incurred in this set

of scenarios. This gives us a risk measure. This is the informal definition of the

WCE. In the well known study [ADEH99], ADEH prove that this measure is

coherent and give the formal definition of the measure as:

Definition 4.1. Worst Conditional Expectation

Let (Ω,A, P ) be a probability space and X a random variable which represents

the random loss of a position on this probability space. Assume E[X−] < ∞.

Then

WCEα(X) = − inf{E[X|A] : A ∈ A, P [A] > α}

is the worst conditional expectation at level α of X.

At first glance, we note that WCE is always finite under the assumption that

E[X−] < ∞. As such, let q+
α is the upper quantile as defined in equation (3.1.3),

then limt→∞P [X ≤ q+
α +t] = 1 implying that there is an event A = {X ≤ q++t}

with P [A] > 0. Therefore E[X|A] < ∞.

Secondly, from the definition of WCE, the subadditivity of WCE is obvious,

i.e. for random variables X and Y ∈ X

WCEα(X + Y ) ≤ WCEα(X) + WCEα(Y ).

Moreover, Theorem 6.10 in [D00] says that WCE is the smallest coherent

risk measure that dominates VaR. Besides, WCE depends on X through only

its distribution in the condition that the probability space is atomless (for the

definition of atom see Preliminaries), or rich enough.
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All properties we enumerated above are very suitable to the concept of

coherency and make WCE a theoretically reasonable measure of risk. However,

it may not be a practical risk measure since it may fail to operate under the

condition that the probability space is not rich enough. In such a situation

infimum may not be attained. Thus the coherency of WCE may disappear. This

observation might be an incentive for academicians to introduce new measures

which are both coherent and applicable. One of such measures is the Conditional

Value at Risk.

4.2 Conditional Value at Risk

The conditional value at risk, which is able to quantify the dangers beyond

VaR, was first introduced by Rockafeller et. al. in [RoU00]. This measure

attracts the interest of researchers and practioners since, as we will see through

this section, it is both coherent and applicable in many situations.

Let X be again a random variable on (Ω,A, P ) representing the loss of a

position and α be the given confidence level. The conditional value at risk

CV aRα is defined for the first time in [URY2000] as the solution of an opti-

mization problem

CV aRα(X) := inf{a +
1

1 − α
E[X − a]+} : a ∈ R

where the function [Y ]+ = max(0, Y ). After that, Uryasev and Rockafeller

proved that the infimum above is attained by choosing a = V aRα(X). Then

the usual definition of CV aRα becomes:

Definition 4.2. Conditional Value at Risk

Conditional value at risk of a position X in the given confidence level α is equal

to the conditional expectation of X given that X ≥ V aRα(X), i.e.

CV aRα(X) = E[X | X ≥ V aRα(X)]
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Alternative equivalent representations are given in [P00] as:

CV aRα(X) = E[X | X ≥ F−1(α)]

=
1

1 − α

∫ 1

α

F−1(v)dv

=
1

1 − α

∫ ∞

F−1(α)

udF (u)

where F (u) = P [X ≤ u] and F−1(u) is the right continuous inverse of the

distribution function F .

It is indicated in [P00] that CV aRα, in the context of the Definition 4.2

satisfies the coherency axioms. In fact this is true only for continuous loss

distributions. For distributions with possible discontinuities, which is always

the situation in scenario models used in applications, we need another definition

for CV aRα which satisfies the coherence axioms.

Uryasev and Rockafeller derived the representation of CV aR which is coher-

ent in the case of discontinues loss distributions. First of all, in such situations

there arise upper and lower CVaR values which are defined in [RoU01] as:

Definition 4.3. CV aR+
α , CV aR−

α

The upper α-CVaR associated to X is the value:

CV aR+
α = E[X | X > V aRα(X)]

whereas the lower α-CVaR of the loss is the value:

CV aR−
α = E[X | X ≥ V aRα(X)]

In general we have CV aR− ≤ CV aR ≤ CV aR+. The equality holds only in

the case of continuous loss distributions. In the presence of discreteness CV aR

value differs from CV aR+ and CV aR− values which are lack of coherence. As a

small note, the term tail-VaR is suggested for CV aR− by ADEH in [ADEH99].

Rockafeller and Uryasev gave the representation of CV aR as a weighted sum
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of V aR and CV aR+
α in Proposition 6 of [RoU01]. CVaR with this representation

is coherent and applicable in general. Proof of coherency axioms can be found

in [RoU01].

Proposition 4.1. Conditional Value at Risk satisfies the following decomposi-

tion.

For λ = P [X≤V aRα(X)]−α

1−α
∈ [0, 1]

CV aRα = λV aRα(X) + (1 − λ)CV aR+
α

Besides its coherency, the applicability of CVaR seems to make it one of

the most challenging rivals for the VaR measure. As a tool in portfolio opti-

mization, due to its convexity property, CVaR has many preeminent properties.

Optimization problems using the CVaR objective suggest unique global solu-

tions. Details of optimization methodology and optimization shortcuts offered

by CVaR is available in [P00] and also in [RoU01].

The CVaR is not lacking criticism either. For instance, on the basis of

extensive numerical comparison, it is concluded that the CVaR is not consistent

with increasing tail-thickness [Pe03].

4.3 Expected Shortfall

The term expected shortfall might be used to define different measures of

risk. In fact in the literature there is a confusion on this concept. To make

it clear, it is pointed out that this study used this term in the context of its

definition in [AcNSi01]. Acerbi et. al. has shown in [AcT02a] that a coherent

alternative for VaR arises as the answer to a simple question on a specified

sample of worst cases of a distribution. In this section we will see what the

question is and how the expected shortfall is constructed as an answer to this

question.

From now on, suppose X is the random variable describing the future value of

85



the profit or loss of a portfolio on some fixed time horizon T from today and

α = A% ∈ (0, 1) will be a number which represents the sample of worst cases,

then the question arising in [AcT02a] is:

What is the expected loss incurred in the A% worst cases?

In fact, for continuous loss distributions Artzner et. al. had already given

an answer to this question by introducing tail-VaR or equivalently the Tail

Conditional Expectation.

TCEα(X) = −E{X | X ≤ qα}

where qα represents the α- quantile value.

This measure is basically the conditional expected value of losses below the

VaR value and coherent for continuous distributions. However this statistic fails

to be the answer of the question when we consider more general distributions.

This occurs because of the fact that for distributions with jumps, the event

{X ≤ qα} may happen to have a probability larger than A%, thus larger than

the pre-specified percentage for the worst cases. So, what should the definition

of a measure that answers the question above for more general cases be?

Suppose α is the (1−(given confidence level)) (for instance if you are working

on the 95%confidence level take α = 1− 0.95 = 0.05). Let n be a large number

of observations {Xi}i=1,...,n of the random variable X and w = [n.α] = max{m |

m ≤ n.α,m ∈ N} is an approximate value for the number of A% worst cases

in the sample. Now define the ordered statistic X1:n ≤ ... ≤ Xn:n by sorting the

sample in ascending order, then the least w worst cases can be represented by

{X1:n, ..., Xw:n}. Assume that Xw:n is the naturel estimator for qα
n . In [AcNSi01]

the naturel estimator for the expected loss in A% worst cases is given by:

ES(α)
n (X) = −

∑w

i=1 Xi:n

w
(4.3.1)
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whereas as the naturel estimator of TCE the following expression is given:

TCE(α)
n (X) = −

∑n

i=1 XiI{Xi≤Xw:n}
∑n

i=1 I{Xi≤Xw:n}

(4.3.2)

It is clearly seen from the equations above that ES answers the question of

’average of least A% outcomes’. However TCE represents the ’average of all

losses that are greater than or equal to the VaR value’.

The subadditivity of the estimator ESn can be proved easily, i.e.,

ES(α)
n (X) = −

∑w

i=1(X + Y )i:n

w

= −
∑w

i=1
(Xi:n+Yi:n)

w

= ES
(α)
n (X) + ES

(α)
n (Y )

Now let us continue with the expansion of the definition of ES
(α)
n ,

ES(α)
n = −

∑w

i=1 Xi:n

w
= −

∑n

i=1 Xi:nI{i≤w}

w

= −
1

w
[

n∑

i=1

Xi:nI{Xi:n≤Xw:n} −
n∑

i=n

Xi:n(I{Xi:n≤Xw:n} − I{i≤w}
︸ ︷︷ ︸

)]

The term indicated under the brace indicates Xi values that are equal to the

quantile value. Therefore we can rearrange the expression as:

−
1

w
[

n∑

i=1

XiI{Xi≤Xw:n} − Xw:n

n∑

i=n

(I{Xi:n≤Xw:n} − I{i≤w})]

Dividing and multiplying the expression by n yields

−
n

w
[
1

n

n∑

i=1

XiI{Xi≤Xw:n} − Xw:n(
1

n

n∑

i=n

I{Xi≤Xw:n} −
w

n
)]

If the equality

lim
n→∞

Xw:n = qα (4.3.3)
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holds with probability 1, then

lim
n→∞

ES(α)
n (X) = −

1

α
(E[XI{X≤qα}] − qα(P [X ≤ qα] − α)) (4.3.4)

The equation (4.3.3) may not be hold in general since, in the case of non-unique

quantiles, the ordered statistic X[n.α]:n may not converge to qα. So should we

conclude that the equation (4.3.4) is not the answer for the question which arose

at the beginning of the section. The answer is no since Acerbi et. al. proved

the following proposition in [AcT02b]. This proposition indicates that ES (α) is

the naturel answer to the question and equation (4.3.4) holds in general.

Proposition 4.2. Let α ∈ (0, 1) be fixed, X a real random variable with

E[X−] < ∞ and {Xi}{i=1,...,n} is an independence sequence of random vari-

ables with the same distribution as X. Then with probability 1

lim
n→∞

∑[nα]
i=1 Xi:n

[nα]
= −ES(α)(X)

By the way Acerbi et. al. gave the definition of the expected shortfall as

follows:

Definition 4.4. Expected Shortfall

Let X be the profit loss of a portfolio on a specified time horizon T and let

α = A% ∈ (0, 1) some specified probability level. The A% expected shortfall of

the portfolio is defined as

ES(α)(X) = −
1

α
(E[XI{X≤qα}] − qα(P [X ≤ qα] − α)

In the definition above, the expression qα(P [X ≤ qα] − α) has to be inter-

preted as the exceeding part to be subtracted from the expected value E[XI{X≤qα}]

when {X ≤ qα} has a probability larger then α = A% [AcT02a]. With this

definition, the expected shortfall is coherent and the proof of the coherency ax-

ioms can be found in [AcT02b]. Besides, expected shortfall is proved to be an

insensitive risk measure in terms of changing confidence levels. This is because
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ESα is continuous with respect to the confidence level α. This property is also

examined and proved by using an alternative definition of the expected shortfall

in the study [AcT02a].

4.4 Distorted Risk Measures

Risk measures we investigated in this section up to now are dealing with

the losses exceeding the given α-quantile values. In his study [We02], Wang

argues that working only the values below VaR may cause to ignore the useful

information in a large part of the loss distribution. Because of this, in the

portfolio optimization process these kinds of measures may fail to reflect the

risk differentials in alternative strategies. In this section we are going to review

the concept of distorted risk measures in general and concentrate on the WT

measure which is a specific type of distorted risk measures.

Definition 4.5. Distorted Probability Measure

Let g : [0, 1] → [0, 1] be an increasing function with g(0) = 0 and g(1) = 1. For

a random variable X with cumulative distribution function F(x), the transform

F ∗(x) = g(F (x))

defines a distorted probability measure where ’g’ is called the distortion function.

Remark 4.1. For F and F ∗ to be equivalent probability measures, g : [0, 1] →

[0, 1] must be continuous and one-to-one.

Definition 4.6. Distorted Risk Measure

Let X be a random variable representing profit or loss of a portfolio with cu-

mulative distribution function F(x) and g be the distortion function, then the

expression

E∗(X) = −

∫ 0

−∞

g(F (x))dx +

∫ ∞

0

[1 − g(F (x))]dx

defines a distorted risk measure.
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The risk measure defined above simply represents the expected value of X

under the distorted probability F ∗(x).

Remark 4.2. Any differentiable distortion function ’g’ gives a coherent risk

measure.

Wang recommended the usage of the following special distortion

g(u) = Φ[Φ−1(u) − λ]

which is known as Wang Transform [Wang]. Here Φ is the standard normal

cumulative distribution. The transformed and empirical cumulative distribu-

tions for an observed loss data set is visualized in the Figure 4.1. After this,
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Figure 4.1: Wang CDF vs Empirical CDF

Wang defined the corresponding distorted risk measure which is differentiable

and one-to-one, thus coherent.
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Definition 4.7. WT-Measure

1. For a pre-specified security level α, let λ = Φ−1(α).

2. Apply the Wang Transform: F ∗(x) = Φ[Φ−1(F (x)) − λ].

3. Set the capital requirement to be the expected value under F ∗.

WT (α) = E∗[X]
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Chapter 5

AN IMPLEMENTATION ON

ISE-100 INDEX

The main usage of the risk measures given in previous chapters is to deter-

mine a risk capital level which would be enough to prevent the position from

ending with a high loss in case of significant downside movement in the market.

Therefore it is reasonable to investigate the performance of risk measures in

terms of their ability to capture market movements. This chapter is mainly

constructed for this purpose and includes the performance comparison of VaR,

ES and WT measures by employing Turkish Stock Market data. It is known

that VaR is the most widely used risk measure in financial markets. As it has

been expressed in section (3.1.2) there are various methods to compute VaR.

Although it may be impractical in some situations, the Monte Carlo Simulation

method is one of the most accepted one. Thus, this method will be included in

VaR and ES estimations.

Concussions in financial markets has been evidence that asset prices can

display extreme movements beyond those represented by the normal distribu-

tion. So the risk measurement techniques such as VaR failed to estimate risk

in a correct manner. This happened because of the fact that normal distribu-

tion, which is the main underlying block of nearly all VaR methods, is unable

to assign reasonable probabilities to extreme events. Indeed, it is well known

that returns on financial assets typically exhibit higher than normal kurtosis
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as expressed in both higher peaks and fatter tails that can be found in normal

distribution. In other words the tails of the normal distribution are too thin to

capture the extreme losses. At that point, in the literature, one of the solutions

suggested for this problem is the Extreme Value Theory. Therefore, in this

chapter EVT will be one of the methods used in the estimation of VaR and ES.

Another characteristic of the financial data is that they show volatility clus-

tering. Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

models are able to capture this property of financial data. Besides, by using the

t-GARCH model we are able to estimate the implied volatility of fatter tailed

data. This is a motivation for this study to include the t-GARCH method in

the risk estimation process.

As has been expressed, the main aim of this chapter is to compare the

relative performances of ES and VaR, which are computed under Monte Carlo

Simulation Method, Extreme Value Theory and t-Garch technique, and WT

measure for the Turkish Stock Market. This chapter consists of three sections.

The first section is on the methodology, the following one includes data analysis

and application. Finally, results and comparison section concludes.

5.1 Methodology

At the beginning it is appropriate to emphasize some properties of the fi-

nancial data series. In particular, it is well known that returns on financial

assets typically exhibit higher than normal kurtosis as expressed in both higher

peaks and fatter tails. This is because the normal distribution curve assumes

complete randomness. However, in real life, when prices are falling investors

continue to sell which causes the price to fall faster. Therefore share prices

see the extremes a lot quicker than the normal distribution suggests. Hence,

assuming normality will result with systematic under estimation of riskiness of

portfolio and increase the chance of having a hit. To get ride of such kind of

problems, tails of the distribution must be modelled and a well known method
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in this area is using the Extreme Value Theory (EVT).

There are many kinds of methods for applying EVT. In this study a para-

metric model based on the Generalized Pareto Distribution (GPD) will be used

for modelling the tail of the loss distribution. In GPD there are two param-

eters: ξ called the shape parameter and σ called the scale parameter of the

distribution. The most relevant case for risk management purposes is ξ > 0

since in this case GPD is heavy tailed. The interested reader should consult

[EmKM97], [E01] and [E00b] for the whole theory of EVT and the extensive

list of the references.

In practice, our preliminary aim is to estimate the parameters; to do this

firstly we have to choose a sensible threshold level u. However, here there

is a dilemma since choosing u is basically a compromise between choosing a

sufficiently high u so that the asymptotic theorem can be considered to be es-

sentially exact and choosing a sufficiently low u so that we have enough material

to estimate the parameters. Many solutions are suggested in [EmKM97] to this

problem. After determining u a second task is to estimating the parameters

with an appropriate method. As can be perceived our final aim is to estimate

the tail VaR and Expected Shortfall of the finance data by using EVT. In [E00b]

the formula for TVaR and ES are given as

V aRp = u +
σ

ξ
((

n

Nu

)−ξ − 1)

ESp = V aRp +
σ + ξ(V aRp − u)

1 − ξ
=

V aRp

1 − ξ
+

σ − ξu

1 − ξ

Here p is the confidence level, n is the total number of observations, Nu is the

number of observations over threshold level and ξ,σ are estimated parameters

of GPD. In this study the procedure expressed above is applied step by step

and the following section reveals the results of all steps in detail.

The second technique used in VaR and ES estimation is t-GARCH model.

This model enables the derivation of conditional volatility estimates. In this

study t-GARCH VaR and ES are estimated by applying the following steps.
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First of all, the data is tested in terms of its appropriateness to this model.

For this aim partial autocorrelations and autocorrelations are examined. The

second step is model specification which is made by using the Ljung-Box test.

Test results reveal that t-GARCH(1,1) is the most appropriate model for the

selected data set. After this step one day ahead implied volatility is estimated

by taking window length of 400 days. Finally, estimated parameters are used

in VaR and ES computations.

Monte Carlo Simulation method is also used in ES and VaR estimations.

About this method detailed information has already given in section (3.1.2). To

summarize basically, asset prices are assumed to follow a random walk model

and in each trial of simulation 3000 random numbers are drawn from the normal

distribution. In this way we simulated a distribution for the one day ahead

values of the return data. This distribution was then used to estimate the

required risk figures.

Finally the WT measure which was introduced in section (4.4) is computed

by using the corresponding Wang Transform formula. Here there is an im-

portant point to be careful about: in the WT formula we need the empirical

cumulative distribution function of the data set. This task can be successfully

achieved in Matlab since there is a command which calculates ’the Kaplan-

Meier, or empirical, estimate of the cumulative distribution function ’ of the

given data set.

After estimating risk measures with corresponding methods, for testing pur-

poses, graphical investigation and statistical tests are applied to the results.

This constitutes a criteria to compare the risk measures.

5.2 Data and Application

Since it includes extreme valued data, a volatile market provides a suitable

environment to compare the relative performance of different risk modelling. As

an emerging market, the Turkish stock market is obviously a good candidate.
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ISE became operational in 1985. With the capital account liberalization in

1989 foreign investors are allowed to trade in ISE. From that date ISE-100

index, which consists of the top 100 stocks in terms of transaction volume

and liquidity, experiences several severe downturns. And most recent ones are

financial crises in 2001 and 11th September.

The data set is the daily closing values of the ISE-100 index from January

2nd, 1990 to August 12th, 2005. It is gathered from the web page of the Cen-

tral Bank of the Republic of Turkey (www.tcmb.gov.tr), then divided into two

parts. The first part is from January, 2nd 1990 to March, 24th 2005 and used as

historical data for parameter estimation. The rest of the data is used to test the

out of sample forecasting performance of the models. To apply MC, t-GARCH

and WT, program files that are generated in Matlab are used. Naturally, in

this generating process the theory of these models is considered in all steps to

prevent inconsistency. However, GPD application is a little more complicated

and necessitates more detailed work. It consists of three main steps:

1. Data analysis,

2. Determination of threshold level,

3. Parameter estimation and VaR, ES computations.

Firstly, in order to get an idea of the distribution of the historical data, kur-

tosis is computed. For our data set, the corresponding kurtosis value is 8.2671.

A kurtosis higher than 3 indicates a deviation from the normal distribution.

The higher the kurtosis, the higher the peak of density and higher the tails of

the distribution. However, only checking kurtosis is not sufficient to conclude

that the data set is heavy tailed. In addition, it has to be investigated graph-

ically. This investigation is done through the QQ-plot of the data set versus

normal distribution. If the parametric model fits the data well, the graphs must

have the linear form. In other words the more linear the QQ-plot the more ap-

propriate the model in terms of its fitness. Moreover QQ-plot makes it possible
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to determine how well the selected model fits the tails of the emprical distribu-

tion. Thus, the graph makes it possible to compare various estimated models

to choose the most appropriate one. In the Figure 5.1 empirical data is plotted
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Figure 5.1: QQ-plot(normal distribution)

against normally distributed data set which has equal mean and standard devi-

ation values with the data set. It can be seen that data fits normal distribution

at the center but significantly deviates in the tails as expected. There is a curve

towards the top of the right end and to the bottom of the left end indicating

higher values at the right tail and lower returns at the left, emphasizing that

the data is fat tailed.

The second task is determining the threshold level, is a crucial step in ex-

treme value theory applications. The higher the threshold level, the better

asymptotic features of the theory works. However, increasing the number of

observations means including more data from the center which creates bias in
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the parameters. On the other hand, choosing a high threshold level makes the

estimators more volatile since we are left with fewer observations. In this study

two graphical methods are used to estimate threshold level.

Mean Excess Plot : A mean excess function is the sum of the excesses over

the threshold level ”u” divided by the number of observations which exceeds

the threshold u. Figure 5.2 shows the values of mean excess functions for

each threshold level. To determine the threshold level we need to find the

interval where the mean excess function takes a positively sloped linear form

since positively sloped straight line above a certain threshold u is an indication

that the data follows GPD with positive shape parameter ξ. Looking to the

Figure 5.2 threshold level for our data set is between 0.09 and 0.095 since in

this interval there is a linear positive trend.
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Figure 5.2: Mean Excess Plot
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Hill Plot: Hill Estimator is used to compute tail index α.

1

α̂
=

1

k
Σk

i=jlnXj,n − lnXk,n

Where k → ∞ is the number of exceedances and n is the sample size. Hill

plot is composed of Hill estimators for each threshold level u or, in the given

context, k. A threshold level is selected from Figure 5.3 where shape parameter

ξ is fairly stable. For the logarithmic returns in the figure threshold level seems

to lie in the interval [8%−9%]. This corresponds to the number of observations

310-325. Checking the QQ -plots of GPD’s constructed for each threshold level,

it is seen that 8.7 is the best value for the threshold level.
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Figure 5.3: Hillplot

Thirdly, parameters are estimated in MATLAB according to the procedure

given in the previous section. Shape parameter ξ is estimated as 0.1302 and

estimated location parameter σ is equal to 0.0184. Using these parameter esti-
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mations VaR and ES are computed for two different confidence levels, 95%, 97%.

Afterwards, VaR and ES are estimated by using the other specified methods for

the confidence levels 95%, 97%. Results for corresponding VaR and ES values

are given in Table 5.1 and Table 5.2 respectively.

95% 97%
EVT 0.0454 0.0559
MC 0.0499 0.0576

t-GARCH(1,1) 0.0418 0.0478

Table 5.1: VaR Results

95% 97%
EVT 0.0681 0.0802
MC 0.0637 0.0684

t-GARCH(1,1) 0.0524 0.0576

Table 5.2: ES Results

Finally WT measure is estimated by applying the mentioned procedure and

for confidence levels 95% , 97% the values 0.0593 and 0.0713 are found respec-

tively.

5.3 Results and Performance Comparison

Values given in the previous section cannot help us to evaluate the meth-

ods or to make a relevant comparison. To achieve this goal, forecast power

of the models must be compared. For this reason, second part of the data

set (24.03.2005-12.08.2005) is used. For each of the given 100 days VaR, ES

and WT values are estimated respectively by making one day ahead forecasts.

Afterwards, risk levels given by VaR, ES and WT are compared with the ob-

served data. Firstly, results are compared by using graphical representations.

Forecasted values for 95% confidence level and observations can be seen in the

figures below. First lines on the top of the figures are ES forecasts. The lines

in the middle represent the VaR values. In Figure 5.4 both VaR and ES follow
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Figure 5.4: GPD VaR, ES Estimates vs Observed Data

stable paths. ES sees no hit but VaR has one hit in the tested period. However,

being more conservative ES offers higher risk based capital allocation than VaR.

The performance of the t-GARCH technique is demonstrated in Figure 5.5. t-

GARCH VaR is the best in enveloping the movements of losses. Like VaR, ES

has a good performance. Whilst following the path of observed data t-GARCH

ES has two and VaR has three hits through the estimation period. In the case

of MCS, as illustrated in Figure 5.6, both VaR and ES have small fluctuations

parallel to the movements of observed data. Moreover they do not have any

hits. Finally, Figure 5.7 represents the relative performance of the WT measure

for the given period. WT is stable throughout the estimation period and sees

no hit. Besides it is nearly as conservative as ES causing the burden of holding

too much capital from the perspective of financial institutions.

When we consider the general of these results, we realized that with one

method or another, ES is more reliable risk measure than VaR in terms of having
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Figure 5.5: t-GARCH VaR, ES Estimates vs Observed Data

smaller number of hits. Although GPD seriously overestimates the risk in terms

of both ES and VaR, it must be remembered that the tested period is quite

stable and there is no significant movement in losses. Remembering whole past

crisis, it is natural for GPD to offer a high risk capital. Of course optimizing risk

capital is important but measuring the seriousness of underestimation is more

important. There are various backtests dealing with this issue. For instance,

Kupeic backtest looks to the frequency of underestimation of risk for the given

confidence level (.95). According to these backtest results, the observation

frequency of failures in WT is 0, in t-GARCH, 0.0300, in GPD, 0 and finally

in MC 0 again for VaR values. When ES is considered, the Kupeic backtest

gives 0 for all of the four measures. This result supports the superiority of ES

to VaR.

Another backtest concerning the frequency of tail losses is the Lopez back-

test. A loss function is defined as a function taking value 1 if observed loss
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Figure 5.6: MCS VaR, ES Estimates vs Observed Data

exceeds the VaR value and 0 otherwise and then the expected value of this

loss function is found. Then according to the expected value, risk measure is

scored. The higher the expectation, the lower the score and the less reliable

the corresponding risk measure. For WT model this score value is 0.5. If VaR

is considered, GPD has the score of 0.32 whereas MC has 0.5. t-GARCH has

the lowest score with the value 0.08. When we look at the ES values, GPD and

MC methods are in the first rank with score 0.5. t-GARCH technique has again

the lowest score, 0.18. Considering these results one can eliminate t-GARCH

models from the comparison and be left with the other three methods. Among

the three models WT has the advantage that it is easily applicable. From this

point of view, GPD is a bit complicated and this complication may contain

model risk. Although MC is not complicated it is a time consuming method.

When we deal with these measures in terms of their consistency, WT and GPD

estimates are more consistent and MC estimates are more volatile. That is to
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say, while EVT and WT methods suggest banks hold stable amounts, the MC

model implies a drastically everyday changing capital. Finally, in the case of

multivariate risk sources, EVT method might became painful which is a dis-

advantage. MC method is superior to others in the case of multivariate asset

portfolios. To sum up, deciding which method to use among these three de-

pends on the preferences of the agent. However, according to results, choosing

ES rather than VaR would be a sensible decision in risk measurement.
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Figure 5.7: WT Estimates vs Observed Data
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Chapter 6

CONCLUSION

Risk management has gained popularity in last the decade due to the in-

creasing convulsion in financial markets. In the risk measurement process VaR,

as a measure of market risk, is the most popular method in spite of its deficien-

cies. There is a common view in the market that alternative risk measures are

useful in a theoretical setting since the underlying assumptions are unrealistic.

However, using VaR may cause dangers. Thus, alternative risk measures should

also be considered. In this study, risk measures that are introduced as consis-

tent alternatives to VaR are compared in terms of their theoretical setting and

applicability. It is concluded from the application part that Expected Shortfall,

one alternative for VaR, is superior to VaR in terms of its capacity to capture

risk accurately for the given data set. Besides, WT Measure also provides satis-

factory results in risk estimation process. To sum up, in the future, VaR seems

to be used only as a benchmark to evaluate the capacity of various consistent

risk measures.
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