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ABSTRACT 

 

 

GÖDEL’S METRIC AND ITS GENERALIZATION 

 

 

Özgören, Kıvanç 

M. S. Department of Physics 

Supervisor: Prof. Dr. Atalay Karasu 

 

September 2005, 34 pages 

 

In this thesis, firstly the original Gödel’s metric is examined in detail. Then a more 

general class of Gödel-type metrics is introduced. It is shown that they are the 

solutions of Einstein field equations with a physically acceptable matter distribution 

provided that some conditions are satisfied. Lastly, some examples of the Gödel-

type metrics are given. 
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ÖZ 

 

 

GÖDEL METRİĞİ VE GENELLEMESİ 

 

 

Özgören, Kıvanç 

Yüksek Lisans Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Atalay Karasu 

 

Eylül 2005, 34 sayfa 

 

Bu tezde, öncelikle orijinal Gödel metriği ayrıntılı şekilde incelenmektedir. 

Ardından genel bir sınıf olarak Gödel-tipi metrikler tanıtılmaktadır. Belirli koşullar 

sağlandığında, bunların, Einstein alan denklemlerinin fiziksel olarak kabul edilebilir 

bir madde dağılımı için olan çözümleri olduğu gösterilmektedir. Son olarak Gödel-

tipi metrikler hakkında bazı örnekler verilmektedir.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

The Gödel’s metric is first introduced by Kurt Gödel in 1949 [1]. It has an 

importance because it is one of the solutions of the Einstein field equations with a 

homogeneous matter distribution. However, it is not an isotropic solution. For a 

homogeneous and isotropic matter distribution, General Relativity (without a 

cosmological constant) gives cosmological models such that the universe will either 

expand forever or collapse onto itself depending on its density. To avoid this, 

Einstein put a cosmological constant to the equations and obtained a static universe 

which is called as Einstein’s static universe. The Gödel’s metric is another 

stationary solution of the Einstein field equations with the same stress-energy tensor. 

However, the Gödel universe has some interesting properties such as it contains 

closed timelike or null curves (but not geodesics [3]). 

 

Following the Gödel’s paper, lots of papers were published on this subject. Two of 

the most importants are the followings: In 1980, Raychaudhuri and Thakura [6] 
investigated the homogeneity conditions of a class of cylindrically symmetric 

metrics to which the Gödel’s metric belongs. In 1983, Rebouças and Tiomno [7] 

made a definition for the Gödel-type metrics in four dimensions and examined their 

homogeneity conditions. In addition to these, in 2003, Ozsvath and Schucking [9] 

investigated the light cone structure of the Gödel universe. 

 

In this thesis, firstly, the original paper [1] of Gödel will be examined in detail in 

chapter 2. Some calculations which are not shown there will be given. Moreover, the 
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computer plots of some simple geodesics of the Gödel universe will be presented in 

appendix B. 

 

In chapter 3, a general class of Gödel-type metrics will be introduced. In literature, 

some metrics that show some of the characteristics of Gödel’s metric are already 

called as Gödel-type metrics. So a general definition of Gödel-type metrics will be 

done. The key ingredient of this definition will be a ( 1−D )-dimensional metric 

which acts as a background to the Gödel-type metrics [2]. 

 

In chapter 4, the metrics with flat backgrounds will be examined. It will be shown 

that they are the solutions of the Einstein-Maxwell field equations for a charged dust 

distribution provided that a simple equation is satisfied which is the source-free 

Euclidean Maxwell’s equation in 1−D  dimensions. Similarly, the geodesic 

equation will turn out to be the Lorentz force equation again in 1−D  dimensions.  

 

In chapter 5, the metrics with non-flat backgrounds will be examined. Again it will 

be shown that the Einstein tensor may correspond to a physically acceptable matter 

distribution if the ( 1−D )-dimensional source-free Maxwell’s equation is satisfied.  

 

Lastly, some examples of the Gödel-type metrics will be given in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

 

CHAPTER 2 

 

 

GÖDEL’S METRIC 

 

 

The new solution [1] introduced by Kurt Gödel to the Einstein field equations is for 

an incoherent (i.e. homogeneous) matter field at rest in a four-dimensional manifold 

M such as Einstein’s static universe. It has some interesting properties and 

philosophical meaning which will be stated later. But firstly, it is better to describe 

how it satisfies the Einstein field equations. 

 

2.1 The Original Solution 

 

In accordance with the sign convention used in this thesis, the Gödel’s metric 

defined in [1] can be written as 

 







−+−+−= 20

2
3

2
2

2
2
1

2
0

22 1

1

2
2

dxdxedxdx
e

dxdxads
x

x

           (2.1) 

in a four-dimensional manifold. Here 0x , 1x , 2x  and 3x  are local coordinates and a 

is a real constant. This can also be written in the following form: 

   







++++−= 2

3
2
2

2
2
1

2
20

22

2
)(

1

1 dxdx
e

dxdxedxads
x

x .           (2.2) 

So the metric is: 





















−−

−−

=

1000

020

0010

001

11

1

2

2

xx

x

ee

e

agµν , 3,2,1,0, =νµ .           (2.3) 

As a note, here and upto the end of this chapter, the Greek indices run from 0 to 3.  
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The determinant of the metric can be found as 2128 x
eag −=  and the inverse of the 

metric can be obtained from µ
ναν

µα δ=gg  (where µ
νδ  is the Kronecker delta) as 

 





















−

−

=
−−

−

1000

0202

0010

0201

1
11

1

22 xx

x

ee

e

a
g µν .            (2.4) 

Now the Christoffel symbols can be calculated from the following relation: 

[ ]µνσµσννσµ
ρσ

µν
ρ gggg ∂−∂+∂=Γ

2

1
.            (2.5) 

Note that only 12
021

x
eag −=∂  and 122

221
x

eag −=∂  are nonzero. So it is quite easy 

to find and compute the nonzero Christoffel symbols: 

1)(
2

1
021

02
01

0 =∂=Γ gg , 

[ ]
2

)()(
2

1 1

221
02

201
00

12
0

x
e

gggg =∂+∂=Γ , 

2
)(

2

1 1

021
11

02
1

x
e

gg =−∂=Γ ,              (2.6) 

2
)(

2

1 12

221
11

22
1

x
e

gg =−∂=Γ , 

1)(
2

1
021

22
01

2 x
egg

−−=∂=Γ . 

The Ricci tensor can be obtained directly from: 

     αµ
ν

νρ
α

αν
ν

µρ
α

νρ
ν

µµρ
ν

µρ ΓΓ−ΓΓ+Γ∂−Γ∂= vR .            (2.7) 

This equation can be simplified by using the fact that 0
ρνρ

ν δ=Γ . Furthermore, only 

1∂  produces nonzero results. Then the equation reduces to: 

      αµ
ν

νρ
α

µρµρµρ ΓΓ−Γ+Γ∂= 11
1R  .            (2.8) 

Now it is easy to compute the nonzero components of the Ricci tensor: 

      110
2

20
1

20
1

10
2

00 =ΓΓ−ΓΓ−=R , 

      1
10
0

02
1

10
2

22
1

02
1

02
1

102
x

eR =ΓΓ−ΓΓ−Γ+Γ∂= ,           (2.9) 

      12
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1

12
0

12
0

02
1

22
1

22
1

122
x

eR =ΓΓ−ΓΓ−Γ+Γ∂= . 
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So the Ricci tensor in the matrix form is 





















=

0000

00

0000

001

11

1

2xx

x

ee

e

Rµν .           (2.10) 

The Ricci scalar can be calculated from here which turns out to be a constant: 

 
2

1

a
gRRR −=== µν

µν

µ

µ .           (2.11) 

 

For an incoherent matter field at rest, the stress energy tensor is given as [5] 

          νµµν ρ uuT = ,            (2.12) 

where ρ  is the density of the matter field and )0,0,0,1( au =µ  is the unit vector in 

the direction of 0x  lines. So 

)0,,0,( 1xaeaguu −−== µν
ν

µ            (2.13) 

and 

µνµν ρρ Ra
ee

e

aT
xx

x

2

2

2

0000

00

0000

001

11

1

=





















= .          (2.14) 

The Einstein field equation (with a cosmological term Λ ) is: 

       µνµνµνµν πTgRgR 8
2

1
=Λ+−            (2.15) 

So, it can easily be seen that the above equation is satisfied if πρ812 =a  and 

πρ421 2 −=−=Λ a . 

 

2.2 Properties of the Gödel Universe 

 

The manifold M that is defined by the Gödel’s metric has the following properties: 

 

First of all, M is homogeneous (i.e. all points of M are equivalent to each other) 

since it admits the following transformations seperately: 
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  i) 000 bxx +=′ ; 

 ii) 111 bxx +=′  , 1

22
b

exx
−=′ ;           (2.16) 

iii) 222 bxx +=′ ; 

iv) 333 bxx +=′ , 

where 0b , 1b , 2b  and 3b  are some constants. 

 

Furthermore, M is rotationally symmetric. If proper coordinates are used (which are 

given in appendix A), the metric can be converted to the following form: 

       [ ]dtrddrrdzdrdtads ϕϕ 222422222 sinh22)sinh(sinh4 −−−++−= .  (2.17) 

Here r, ϕ  and t are cylindrical coordinates in subspaces constz = . So the rotational 

symmetry can be seen easily since the metric µνg  does not depend on the angular 

coordinate ϕ . 

 

In M, there is not any absolute time coordinate. In other words, the worldlines are 

not everywhere orthogonal to a one-parameter family of three-dimensional 

hypersurfaces (because otherwise a co-moving Gaussian coordinate system can be 

constructed in which an absolute time coordinate can be defined [5]). To prove this 

statement, suppose the contrary: Suppose that there exists such a family defined as 

        0)( =− λµxF ,            (2.18) 

where F  is a fixed function and λ  is the parameter. If a vector µdx  is entirely in 

this surface, then 0=∂= µ
µFdxdF . This means Fµ∂  is normal to the surface. So 

any vector field µv  that is orthogonal to these family of surfaces can be written in 

terms of Fµ∂  as 

Flv µµ ∂= ,            (2.19) 

where l is an arbitrary scalar function. If a completely antisymmetric tensor 

    [ ] [ ])()()(
!3

1
νµµνγµγγµνγννγµνγµµνγ vvvvvvvvvvva ∇−∇+∇−∇+∇−∇=∇=  

        (2.20) 
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is introduced, it can be calculated that 0=µνγa  for Flv µµ ∂= . However, for the 

case of Gödel’s solution, )0,,0,( 1xaeau −−=µ  and µνγa  is not identically zero: 

    µνγµνγ ε12

6

1 x
eaa −= ,           (2.21) 

which completes the proof. 

 

Another property of M is that it contains closed timelike circles. So it is possible to 

travel in the Gödel universe and arrive to the starting point of the voyage. It is also 

possible to travel into the past. Remember that the Gödel’s metric in cylindrical 

coordinates is 

        [ ]dtrddrrdzdrdtads ϕϕ 222422222 sinh22)sinh(sinh4 −−−++−= . (2.22) 

Now, as an example of a closed timelike curve, take the one defined by Rr = , 

0== zt . Then (2.22) becomes 

      22422 )sinh(sinh4 ϕdrrads −−= .          (2.23) 

It can be seen from here that if 0sinhsinh 24 >− RR  or )21ln( +>R , the curve is 

timelike. However, keep in mind that this curve is not a geodesic. Actually there is 

not any closed timelike geodesics in the Gödel universe [3]. So some acceleration is 

needed to follow the curve defined above. 

 

Lastly, in the Gödel universe, the matter rotates with an angular velocity of πρ2 . 

To prove this, lets intoduce the following vector which is defined in terms of µνγa : 

       µνγ

βµνγ
β ε

a
|g|

=Ω .            (2.24) 

In a flat space with the usual coordinates, it can be seen that βΩ  is twice the angular 

velocity (see [5] for more details). Calculating βΩ  for the Gödel’s metric gives 

)2,0,0,0( 2a . So the angular velocity is 

      πρ2
2

2

1
2

=
a

a .            (2.25) 
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It can be asked how the entire universe can rotate and with respect to what it rotates. 

Suppose a test particle is thrown in the 1x  direction. If there is no external force on 

it, it must follow a straight line. However, in the Gödel universe, this is not the case; 

it follows a circular path. The tangent to this path can be called as “the compass of 

inertia”. So the bulk matter in the Gödel universe rotates with respect to it.  

 

2.3 Philosophical Considerations 

 

First of all, Gödel’s solution permits travelling into the past. Although such a 

voyage would be extremely long, this breaks the causal structure of the spacetime 

and brings some paradoxes such as the one that a person can go back and kill 

himself. 

 

Secondly, it was longly belived that an inertial frame is determined by the distant 

stars (in other words, the bulk matter of the universe). Some philosophers like Mach 

went one step forward and argued that the inertial forces in an accelerated frame 

may arise from the relative accelerated motions of bulk matter in the universe with 

respect to that frame. Although Einstein found this idea useful, after the discovery of 

General Relativity, it turned out that this idea is not correct. Nevertheless, it is 

expected that the compass of inertia is determined by the bulk matter of the universe 

and they should not rotate relative to each other. However, this is not the case in the 

Gödel’s solution. 

 

Lastly, it is expected that the matter distribution in the universe should determine its 

structure uniquely. However, for the same stress-energy tensor, there are two 

solutions namely Gödel’s solution and Einstein’s static universe. So it can be said 

that General Relativity does not fit to this expectation unless the cosmological 

constant is not used or some boundary conditions are imposed. 
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CHAPTER 3 

 

 

GÖDEL-TYPE METRICS 

 

 

In this chapter, the Gödel-type metrics will be defined as a general class in a D-

dimensional manifold. But to be able to generalize the Gödel’s metric, the first thing 

to do is to investigate some of its mathematical characteristics. 

 

First of all, it can be seen from (2.3) that the metric µνg  (which was defined in a 

4=D  dimensional manifold) can be written as νµµνµν uuhg −= , where µνh  is a 

degenerate DD ×  matrix with rank equal to 1−D  such that 00 =µh . (Here and at 

the rest of this thesis, the Greek indices run from 0 to 1−D  and the Latin indices 

run from 1 to 1−D .) Actually, any metric can be written in this form if µu  is a unit 

vector such that 1−=µ
µuu  and taken as 00 uu µµ δ−= . Secondly, the Ricci tensor 

was obtained as 2auuR νµµν =  where a is a real constant. This leads the Ricci 

scalar to be a constant and the Einstein tensor to correspond to a physically 

acceptable source. Also, it can be seen that 00 =∂ µνg  which is another important 

property. Now, by considering these facts, lets try to define the Gödel-type metrics. 

 

3.1 Definition of the Gödel-Type Metrics 

 

Let M be a D-dimensional manifold with a metric of the form 

      νµµνµν uuhg −= .             (3.1) 

In this thesis, the metrics of this form will be called as Gödel-type metrics if the 

following conditions are satisfied: 
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i) µνh  is a degenerate DD ×  matrix with rank equal to 1−D  such that 0=µkh . 

Here kx  is a fixed coordinate and k can be chosen as 10 −≤≤ Dk . 

ii) µνh  is a metric of a ( 1−D )-dimensional Riemannian manifold which can be 

thought as a “background” from which the Gödel-type metrics arise. 

iii) µνh  does not depend on the fixed coordinate ( 0=∂ µνhk ). 

iv) µu  is a timelike unit vector such that 1−=µ
µuu . 

v) µu  is chosen as kk uu µµ δ−= . 

vi) µu  does not depend on the fixed coordinate ( 0=∂ µuk ). 

 

Also, some other conditions on µνh  and µu  will be clarified in the next chapters 

when the Einstein tensor is forced to correspond to a physically acceptable source. 

Moreover, throughout this thesis, the fixed coordinate will be taken as 0x . Then 

0uuk =  and 0u  will be taken as 10 =u . 

 

If the literature is investigated, it can be found that there are some classifications of 

the metrics similar to the Gödel-type metrics defined above. For example, Geroch 

[10] took || α
αµµ ξξξ=u  (where µξ  is a Killing vector field to start with) and 

reduced the vacuum Einstein field equations to a scalar, complex, Ernst-type non-

linear differential equation and developed a technique for generating new solutions 

of vacuum Einstein field equations from vacuum spacetimes. Also, (3.1) looks like 

the Kerr-Schild metrics ( νµµνµν η ll−=g  where µ
l  is a null vector) and the 

metrics used in Kaluza-Klein reductions in string theories [11]. However, there are 

some major differences between these metrics and the Gödel-type metrics [2]. 
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CHAPTER 4 

 

 

GÖDEL-TYPE METRICS WITH FLAT BACKGROUNDS 

 

 

In this chapter, the simplest choice for µνh  will be examined that is  

  ijijh δ= ,              (4.1) 

where ijδ  is the ( 1−D )-dimensional Kronecker delta symbol. (Note that it can be 

written as 00 νµµνµν δδδδ −=  in D dimensions.) Then it is easy to see that 

0=∂ µναh .              (4.2) 

The inverse of the metric can be found as 

       )()()1( α
µαν

α
ναµνµ

βα
αβµνµν uhuuhuuuuuhhg +++−+= ,           (4.3) 

where µνh  is the ( 1−D )-dimensional inverse of µνh  (i.e. µ
ανα

µν δ=hh ). Now it is 

possible to calculate the Christoffel symbols: 

      )(
2

1
αβσσαβσβα

µσ
αβ

µ gggg ∂−∂+∂=Γ  

   )(
2

1
βασασββσα

µσ uuuuuug ∂+∂−−∂=  

   )(
2

1
ασββσασβααβσσαββασ

µσ uuuuuuuuuuuug ∂+∂+∂−∂−∂−∂−=  

   [ ])()()(
2

1
αββασσαασβσββσα

µσ uuuuuuuuug ∂+∂−∂−∂+∂−∂= .     (4.4) 

At this point, lets introduce µννµµν uuf ∂−∂=  which will be very useful in the 

remaining calculations. Then (4.4) can be written as 

    )(
2

1
)(

2

1
αββα

µ
α

µ
ββ

µ
ααβ

µ uuufufu ∂+∂−+=Γ ,           (4.5) 

where αβ
µα

β
µ fgf = . 
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Before continuing further, lets give some useful identities which can be derived by 

using the newly introduced tensor µνf . Firstly, µνf  is an antisymmetric tensor so  

νµµν ff −= .              (4.6) 

Secondly,  

 0000 =∂−∂= µµµ uuf ,             (4.7) 

which leads 

    0== ν
µ

µµν
µ fufu .             (4.8) 

Now lets look the covariant derivative of µu : 

  )(
2

1
)(

2

1
αββα

µ
µα

µ
ββ

µ
αµβαµαβ

µ
βαβα uuuufufuuuuuu ∂+∂++−∂=Γ−∂=∇  

 αβαββααββαβα fuuuuu
2

1
)(

2

1
)(

2

1
=∂+∂=∂+∂−∂= ,            (4.9) 

which means the vector field µu  satisfies the Killing vector equation, 

     0=∇+∇ αββα uu ,           (4.10) 

and is a Killing vector. Furthermore, (4.9) leads 

 0
2

1
==∇ αβ

β
βα

β fuuu ,           (4.11) 

and 

 0
2

1
==∇ αβ

α
βα

α fuuu .           (4.12) 

So the vector field µu  is tangent to a geodesic curve. 

 

By using these, the Ricci tensor can be obtained from: 

    ρν
σ

σµ
ρ

ρσ
σ

µν
ρ

σν
σ

µµν
σ

σµν ΓΓ−ΓΓ+Γ∂−Γ∂=R .         (4.13) 

This can be simplified since 

 0)(
2

1
)(

2

1
=∂+∂−+=Γ αββα

α
α

α
ββ

α
ααβ

α uuufufu .         (4.14) 

Then (4.13) becomes 

ρν
σ

σµ
ρ

µν
σ

σµν ΓΓ−Γ∂=R .           (4.15) 
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The first term can be calculated as 

    [ ])(
2

1
)(

2

1
µννµ

σ
σµ

σ
νν

σ
µσµν

σ
σ uuufufu ∂+∂∂−+∂=Γ∂  

      [ ])()()(
2

1
µννµσ

σ
µ

σ
νσν

σ
µσ uuufufu ∂+∂∂−∂+∂=  

      )(
2

1
µννσµ

σ
νµµσν

σ juufjuuf −∂+−∂= ,          (4.16) 

where α

µαµ fj ∂=  and the second term of (4.15) is 

       





∂+∂−+=ΓΓ )(

2

1
)(

2

1
σµµσ

ρ
σ

ρ
µµ

ρ
σρν

σ
σµ

ρ uuufufu  

   





∂+∂−+ )(

2

1
)(

2

1
ρννρ

σ
ρ

σ
νν

σ
ρ uuufufu  

[ ))((
4

1
ρ

σ
νν

σ
ρσ

ρ
µµ

ρ
σ fufufufu ++=  

   ))(( νρρνσµµσ
σρ uuuuuu ∂+∂∂+∂+  

   ))(( ρ
σ

νν
σ

ρσµµσ
ρ fufuuuu +∂+∂−  

   ]))(( σ
ρ

µµ
ρ

σνρρν
σ fufuuuu +∂+∂−  

[ ρ
σ

σ
ρ

νµν
σ

σ
ρ

ρµρ
σ

µ
ρ

νσν
σ

µ
ρ

ρσ ffuuffuuffuuffuu +++=
4

1
 

   ])()( νρρνµ
ρ

µσσµν
σ uufuuf ∂+∂+∂+∂+  

[ ])()(
4

1 2
νρρνµ

ρ
µσσµν

σ
νµ uufuuffuu ∂+∂+∂+∂+−= ,         (4.17) 

where αβ
αβ fff =2 . By combining these two quantities, the Ricci tensor can be 

obtained: 

    )(
2

1
µννσµ

σ
νµµσν

σ
µν juufjuufR −∂+−∂=  

   [ ])()(
4

1 2
νρρνµ

ρ
µσσµν

σ
νµ uufuuffuu ∂+∂+∂+∂+−−  

2

4

1

2

1

2

1
)(

2

1
fuuufufjuju νµνσµ

σ
µσν

σ
µννµ +∂+∂++−=  
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   )(
4

1
)(

4

1
νρρνµ

ρ
µσσµν

σ uufuuf ∂+∂−∂+∂−  

νσµ
σ

µσν
σ

νµµννµ ffffuufjuju
4

1

4

1

4

1
)(

2

1 2 −−++−=  

νµµννµνσ

σ

µ uufjujuff 2

4

1
)(

2

1

2

1
++−= .           (4.18) 

Then the Ricci scalar can be found easily: 

        µ
µµν

µν jufgRR −== 2

4

1
.           (4.19) 

The Einstein tensor is 

µνµνµν RgRG
2

1
−=  

       







−−++−= σ

σ
µννµµννµνσ

σ

µ jufguufjujuff 22

4

1

2

1

4

1
)(

2

1

2

1
. (4.20) 

This tensor should be equal to the stress-energy tensor of a physically acceptable 

source. To be so, µj  should be something like µµ kuj =  where k is a constant. But 

it can be seen that 00 =j  while 00 ≠u . So 0=k  which means 0=µj . Then (4.20) 

becomes 

22

8

1

4

1

2

1
fguufffG µννµνσ

σ

µµν −+= .          (4.21) 

The Maxwell energy-momentum tensor for µνf  is given as 

2

4

1
fgffT f

µννσ

σ

µµν −= .           (4.22) 

Hence, 

νµµνµν uufTG f 2

4

1

2

1
+= ,           (4.23) 

which implies that (3.1) is the solution of a charged dust field with density 

42f=ρ   provided that 0=µj . Since 00 =j  already and µj  does not depend on 

0x , this means 

        0=∂=
j

iji fj ,            (4.24) 
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which is the flat ( 1−D )-dimensional Euclidean source-free Maxwell’s equation. 

Note that j

if  can be written as 

          kj

ik

j

i gff = ,            (4.25) 

where kjkjkj hg δ==  in this case. Hence  

ij

j

i ff = ,             (4.26) 

and (4.24) becomes 

0=∂ ijj f .            (4.27) 

This means that the Gödel-type metrics with the conditions given at the beginning of 

this chapter are the solutions of Einstein field equations with a matter distribution of 

a charged dust with density 42f=ρ  provided that the above equation is satisfied. 

 

4.1 Geodesics 

 

Now lets investigate the geodesics of this case. The geodesic equation is given as 

    0=Γ+ βα
αβ

µµ xxx &&&& ,           (4.28) 

where a dot represents the derivative with respect to an affine parameter τ . 

Substituting (4.5) to this equation gives 

       0)(
2

1
)(

2

1
=∂+∂−++ βα

αβ
βα

βα
µβα

α
µ

β
βα

β
µ

α
µ xxuxxuuxxfuxxfux &&&&&&&&&& . (4.29) 

Here α  and β  are dummy indices so this can be written as 

0)( =∂−+ β
αβ

αµβα
β

µ
α

µ xuxuxxfux &&&&&& .          (4.30) 

Using the fact that 

α
β

β

αβ
αβ ux

x

u
xu &&& =

∂

∂
=∂ ,           (4.31) 

the geodesic equation becomes 

      0=−+ α
αµβα

β
µ

α
µ uxuxxfux &&&&&& .           (4.32) 

Contracting this with µu  gives  

0=−+ α
αµ

µ
βα

β
µ

αµ
µ

µ uxuuxxfuuxu &&&&&& ,          (4.33) 

and since the second term vanishes, 
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      0=+ α
αµ

µ uxxu &&&& ,            (4.34) 

which implies 

    econstxu −== .µ
µ & .           (4.35) 

Remembering that 10 =u , this can be written as 

        exux i

i −=+ &&
0 .            (4.36) 

Furthermore, if (4.35) is substituted to (4.32): 

          0=−− α
αµβ

β
µµ uxuxefx &&&&& .           (4.37) 

Since µµ δ 0−=u , this can be written by replacing µ  with i as 

       0=− β
β xefx ii
&&& .            (4.38) 

Lastly by using 00 =if , the following equation is obtained: 

       0=− j
j

ii xefx &&& .            (4.39) 

This is the ( 1−D )-dimensional Lorentz force equation for a charged particle with 

the charge/mass ratio e. Contracting this by ix&  and using (4.26) gives 

        0==−=− iiji

ij

iiji
j

iii xxxxefxxxxefxx &&&&&&&&&&&&& .          (4.40) 

So another constant of motion is found as 

      2. lconstxx ii ==&& .           (4.41) 

Since 

222)( elxuxxhxxg −=−= µ
µ

νµ
µν

νµ
µν &&&&& ,          (4.42) 

the nature of the geodesics necessarily depends on the sign of 22 el − . 
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CHAPTER 5 

 

 

GÖDEL-TYPE METRICS WITH NON-FLAT BACKGROUNDS 

 

 

In chapter 4, the simplest choice for ijh  ( ijijh δ= ) was examined. Now lets see what 

will happen if ijh  is not determined at the beginning. Again the inverse of the metric 

is given by (4.3) but the new Christoffel symbols are: 

   )(
2

1~
αβσσαβσβα

µσ
αβ

µ gggg ∂−∂+∂=Γ  

)(
2

1
)(

2

1
βασασββσα

µσ
αβσσαβσβα

µσ uuuuuughhhg ∂+∂−−∂+∂−∂+∂= . 

                   (5.1) 

Note that the second term is equal to the αβ
µΓ  given by (4.5). If µσg  is substituted 

from (4.3), 

     [ ])()()1(
2

1~
ρ

µρσ
ρ

σρµσµ
γρ

ργµσ
αβ

µ uhuuhuuuuuhh +++−+=Γ  

      αβ
µ

αβσσαβσβα Γ+∂−∂+∂ )( hhh .             (5.2) 

The terms of µσg  containing σu  vanish. Then 

       αβ
µ

αβσσαβσβαρ
σρµµσ

αβ
µ Γ+∂−∂+∂+=Γ )))(((

2

1~
hhhuhuh  

    αβ
µ

αβ
ρ

ρ
µ

αβ
µ Γ+Γ+Γ= ˆˆ uu ,              (5.3) 

where αβ
µΓ̂  are the Christoffel symbols of µνh  given by 

 )(
2

1ˆ
αβσσαβσβα

µσ
αβ

µ hhhh ∂−∂+∂=Γ .            (5.4) 

The covariant derivative associated with αβ
µΓ̂  can be defined as 

 µαβ
µ

αβαβ uuu Γ−∂=∇ ˆˆ ,             (5.5) 
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so (5.3) can also be written as 

         )ˆˆ(
2

1
)(

2

1ˆ~
αββα

µ
α

µ
ββ

µ
ααβ

µ
αβ

µ uuufufu ∇+∇−++Γ=Γ .           (5.6) 

Lastly, the covariant derivative associated with αβ
µΓ

~
 can be defined as 

 µαβ
µ

βαβα uuu Γ−∂=∇
~~

,             (5.7) 

and can be calculated by using (5.3) as 

         αβαβ
µ

µαβ
ρ

ρ
µ

µαβ
µ

µβαβα fuuuuuuu
2

1
)ˆˆ(

~
=Γ+Γ+Γ−∂=∇ ,           (5.8) 

which means µu  is still a Killing vector. Also it is still tangent to a geodesic curve 

since 

         0
~

=∇ βα
α uu .              (5.9) 

Using these results, the Ricci tensor can be calculated from: 

    ρν
σ

σµ
ρ

ρσ
σ

µν
ρ

σν
σ

µµν
σ

σµν ΓΓ−ΓΓ+Γ∂−Γ∂=
~~~~~~~

R .         (5.10) 

However, now 0
~

≠Γ αβ
α . By using (5.3), 

     αβ
α

αβ
ρ

ρ
α

αβ
α

αβ
α Γ+Γ+Γ=Γ ˆˆ~

uu .          (5.11) 

Since 0=Γ αβ
α  and 0ˆ =Γ αβ

ραu , 

          αβ
α

αβ
α Γ=Γ ˆ~

.            (5.12) 

Substituting (5.12) and then (5.3) to (5.10) gives 

 ρν
σ

σµ
ρ

ρσ
σ

µν
ρ

σν
σ

µµν
σ

σµν ΓΓ−ΓΓ+Γ∂−Γ∂=
~~ˆ~ˆ~~

R  

        ( ) σν
σ

µµν
σ

σµν
ρ

ρ
σ

σµν
σ

σ Γ∂−Γ∂+Γ∂+Γ∂= ˆˆˆ uu  

σβ
σ

µν
β

σβ
σ

µν
ρ

ρ
β

σβ
σ

µν
β ΓΓ+ΓΓ+ΓΓ+ ˆˆˆˆˆ uu  

σµ
β

βν
σ

σµ
β

βν
γ

γ
σ

βν
σ

σµ
β ΓΓ−ΓΓ−ΓΓ− ˆˆˆˆˆ uu  

σµ
ρ

βν
σ

ρ
β

σµ
ρ

βν
γ

γρ
σβ

βν
σ

σµ
ρ

ρ
β ΓΓ−ΓΓ−ΓΓ− ˆˆˆˆˆ uuuuuuuu  

σµ
β

βν
σ

σµ
β

βν
γ

γ
σ

βν
σ

σµ
β ΓΓ−ΓΓ−ΓΓ− ˆˆ uu .           (5.13) 

After some cancelations: 
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 [ ] σβ
σ

µν
β

σµ
β

βν
σ

µν
σ

σµν
ρ

ρ
σ

σµνµν ΓΓ+ΓΓ−Γ∂+Γ∂+= ˆ)ˆ(ˆ~
uuRR  

σµ
β

βν
γ

γ
σ

βν
σ

σµ
ρ

ρ
β

βν
σ

σµ
β

σµ
β

βν
σ ΓΓ−ΓΓ−ΓΓ−ΓΓ− ˆˆˆˆ uuuu ,      (5.14) 

where µνR̂  is the Ricci tensor of µνh  and the terms in the bracket give µνR  which is 

given in (4.18). By rearranging the dummy indices and using 2α
µ

αβ
µβ fu −=Γ , 

the above equation simplifies to 

      





++−+= νµµννµνσ

σ

µµνµν uufjujuffRR 2

4

1
)(

2

1

2

1ˆ~
 

    σν
β

β
σ

µσµ
β

β
σ

νσβ
σ

µ
β

νν
β

µ Γ−Γ−Γ++ ˆ
2

1ˆ
2

1ˆ)(
2

1
fufufufu  

 )ˆˆ(
2

1

4

1

2

1ˆ 2
σβ

σ
ν

β
σν

β
β

σ
νµνµνσ

σ

µµν Γ+Γ−−+++= ffjuuufffR  

    )ˆˆ(
2

1
σβ

σ
µ

β
σµ

β
β

σ
µν Γ+Γ−−+ ffju .            (5.15) 

Now lets define µj
~
 as 

      σβ
σ

µ
β

σµ
β

β
σ

µ
σ

σµ
σ

σµ Γ+Γ−∂=∇= ˆˆˆ~
ffffj .          (5.16) 

Since µ
σ

σ

σ

µσµ ffj −∂=∂= , the Ricci tensor becomes 

  νµµννµνσ

σ

µµνµν uufjujuffRR 2

4

1
)

~~
(

2

1

2

1ˆ~
++++= ,         (5.17) 

and the Ricci scalar is 

   µ
µ jufRR
~

4

1ˆ~ 2 ++= .           (5.18) 

By setting 0
~

=µj  again, the Einstein tensor can be found as 

22

8

1ˆ
2

1

4

1

2

1ˆ~
fgRguufffRG µνµννµνσ

σ

µµνµν −−++= ,         (5.19) 

and in terms of fTµν  given by (4.22), it can be written as 

           RguufTRG f ˆ
2

1

4

1

2

1ˆ~ 2
µννµµνµνµν −++= ,          (5.20) 

or 

     νµµνµνµνµν uuRfTRhRG f








+++−= ˆ
2

1

4

1

2

1ˆ
2

1ˆ~ 2 .         (5.21) 
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Now lets turn back to 0
~

=µj . This equation means 

)(ˆ)(ˆ~
βν

αβµν
αβν

αβ
α

µν
ν

µν fhhfhhjh ∇=∇=  

           0)(ˆ)(ˆ)( =Γ+Γ+∂= βν
αβρν

αρ
µ

βν
ρβµν

αρ
α

βν
αβµν

α fhhfhhfhh . (5.22) 

Here, the last term vanishes and using hh 2ˆ
ραρ

α ∂=Γ  gives 

      0
2

1
)()( =∂+∂ h

h
fhhfhhh ρβν

ρβµν
βν

αβµν
α ,         (5.23) 

or 

 0)( =∂ βν
αβµν

α fhhh .           (5.24) 

Using 00 =µh  and 00 =µf , this can be written as 

   0)( =∂ kl

jlik

i fhhh .           (5.25) 

Note that, this is the source-free Maxwell equation in 1−D  dimensions. If this 

equation is satisfied, the Einstein tensor may correspond to a physically acceptable 

stress-energy tensor depending on the suitable choice of µνh . 
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CHAPTER 6 

 

 

SOME EXAMPLES OF THE GÖDEL-TYPE METRICS 

 

 

In this chapter some examples of the Gödel-type metrics will be presented. 

 

6.1 The Original Gödel’s Metric as a Gödel-type Metric 

 

First of all, lets represent the original Gödel’s metric as a Gödel-type metric and see 

which conditions does it satisfy. Remember that the Gödel’s metric was: 

    





















−−

−−

=

1000

020

0010

001

11

1

2

2

xx

x

ee

e

agµν .            (6.1) 

Furthermore, lets take 1−=a  for simplicity. Since µµ δ 0−=u , it can be found that 

)0,,0,1( 1xeugu == ν
µνµ  and 

          





















=

0000

00

0000

001

11

1

2xx

x

ee

e

uu νµ .             (6.2) 

If the metric is written in the form of νµµνµν uuhg −= , it can be seen that 

           



















=

1000

0200

0010

0000

12x
e

hµν .             (6.3) 

Its determinant is 212x
eh =  and inverse is 
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

















=
−

1000

0200

0010

0000

12x
e

h µν .             (6.4) 

Note that these satisfies (5.25): 

  0))(22()()( 111 22
112

2211
1 =−∂=∂=∂ − xxx

kl

jlik

i eeefhhhfhhh .      (6.5) 

So it can be concluded that (5.25) is one of the conditions for (3.1) to be a Gödel-

type metric. 

 

6.2 An Example with a Flat Background 

 

In chapter 4, µνh  was taken as ijijh δ=  and a condition on µu  was searched for such 

that the resultant Einstein tensor corresponds to a physically acceptable matter 

distribution. Then it was found that  

 0=∂ iji f .              (6.6) 

Now lets take iu  in the form of 

j

iji xQu = ,              (6.7) 

and check if it satisfies the above equation. Here, ijQ  is an antisymmetric tensor 

with constant components. Substituting this to (6.6) gives 

          [ ] 0)2()()()( =−∂=−∂=∂−∂∂ ijiijjii

k

ikj

k

jkii QQQxQxQ ,           (6.8) 

which means iu  satisfies (6.6). For the remaining part, lets take 4=D  and let the 

only nonzero component of ijQ  be 12Q . Then 

   )( 2112
12

00
0 dxxdxxQdxdxudxudxu i

i −+=+=µ
µ ,           (6.9) 

or in cylindrical coordinates, 

  φρµ
µ dQdtdxu 2

12−= .           (6.10) 

Substituting this to (3.1): 

        22
12

22222 )( φρφρρ dQdtdzddds −−++= .          (6.11) 

Now consider the curve defined as 
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 },,|),,,{( 000 zzttztC ==== ρρφρ .          (6.12) 

Then (6.11) becomes 

        22
0

2
12

2
0

2 ))(1( φρρ dQds −= .           (6.13) 

From here, it can be seen that this spacetime contains closed timelike and null 

curves for ||1 120 Q≥ρ . 

 

6.3 An Example with a Non-flat Background 

 

In chapter 5, ijh  was not choosen at the beginning and naturally it was found that the 

Einstein tensor of µνg  explicitly depends on the Ricci tensor and scalar of ijh  in the 

following way: 

    νµµνµνµνµν uuRfTRhRG f








+++−= ˆ
2

1

4

1

2

1ˆ
2

1ˆ~ 2 .         (6.14) 

Depending on ijh , ijR̂  may be very complex and may not allow the Einstein tensor 

to correspond any physically acceptable matter distribution. However, if ijh  is 

choosen as a metric of a ( 1−D )-dimensional Einstein space (i.e. ijij khR =ˆ  where k 

is a constant), then 

 kDhkhR ij

ij )1(ˆ −== ,           (6.15) 

and the Einstein tensor becomes 

      νµµνµνµν uukfTkg
D

G f








+++







 −
= 2

4

1

2

1

2

3~
,          (6.16) 

which describes a charged perfect fluid with pressure 

       kDp )3(
2

1
−= ,            (6.17) 

and density 

 kDf )1(
2

1

4

1 2 −+=ρ .           (6.18) 
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Note that 0<k  (for 4≥D ) in order to have a positive pressure. Now lets choose 

4=D  as before. According to [4] (see appendix D of it), if ijh  is choosen as a 

conformally flat metric (i.e. ijij eh δψ2=  where ψ  is a smooth function), then 

       ))(())((ˆ ψψδδψψψδδψ lk

kl

ijjilk

kl

ijjiijR ∂∂−∂∂+∂∂−∂−∂= .       (6.19) 

At this point, to simplify the calculations, lets assume that ψ  is a function of only 

one of the coordinates; )()( 3 zx ψψψ == . In addition to the equation above, the 

Einstein space condition implies 

        ijij keR δψ2ˆ = .            (6.20) 

Hence, the following equations can be obtained from the above ones: 

ψψ 22 ke=′′− ,  (for 3== ji )          (6.21) 

  ψψψ 22)( ke=′−′′− ,  (for 3≠= ji )          (6.22) 

where a prime denotes the derivative with respect to z. Combining these two 

equations, 

        
2

k
e

−
=′ ψψ ,            (6.23) 

and ψ  can be obtained here as 

     
2)(

2
ln

azk +

−
=ψ ,           (6.24) 

where a is an integration constant. So this means 

      ijij
azk

h δ
2)(

2

+

−
= .           (6.25) 

Remember that all of these calculations are meaningful if (5.25) is satisfied which 

can be simplified to the following form: 












+

−

−

+

−

+
∂=∂ kl

jlik

ikl

jlik

i f
azk

azkazk
fhhh

63

22

)(

8

2

)(

2

)(
)( δδ  

  0))(( =+∂= iji faz .            (6.26) 

 To solve this equation, lets assume 3),,( ii zyxsu δ= . Then 

   ssf jiijij ∂−∂= 33 δδ .           (6.27) 
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When 3=j , (6.26) gives  

     0))(( =∂+∂ saz
ll

,    2,1=l .         (6.28) 

When 3≠j , it gives  

     0))((3 =∂+∂ saz
l

.           (6.29) 

So it can be seen that s can be choosen as 

 
az

b
zszyxs

+
== )(),,( ,           (6.30) 

where b is another constant. Substituting these into (3.1), the line element in 

cylindrical coordinates can be found as 

           
2

2222

2

2 )(
)(

2









+
+−++

+

−
= dz

az

b
dtdzdd

azk
ds φρρ .         (6.31) 

Again considering the curve C defined by (6.12), (6.31) becomes 

     
2

0

22
02

)(

2

azk

d
ds

+

−
=

φρ
.            (6.32) 

So this spacetime contains no closed timelike curves since 0<k . 
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CHAPTER 7 

 

 

CONCLUSION 

 

 

As a summary, at the beginning, the original Gödel metric was introduced, and at 

the rest of the thesis, it was tried to be generalized. Starting with a general metric 

form (3.1), the conditions needed to call this metric as a Gödel-type metric were 

investigated. It turned out that if (5.25) is satisfied and the background geometry is 

an Einstein space or at least if its Ricci scalar is constant, the metric becomes a 

solution to the Einstein field equations with a physical matter distribution. 

 

The Gödel-type metrics introduced in this thesis can also be used in obtaining exact 

solutions to various supergravity theories and some examples can be found in [2]. 

Remember that ku  was chosen as a constant in chapter 3 and for this case, the 

Gödel-type metrics were found to be the solutions of the Einstein-Maxwell field 

equations. Then, for the case of non-constant ku , it is expected that they are the 

solutions of the Einstein-Maxwell dilaton 3-form field equations. In fact, it is shown 

in [12] that the conformally transformed Gödel-type metrics can be used in solving a 

rather general class of Einstein-Maxwell-dilaton-3-form field theories in 6≥D  

dimensions. 
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APPENDIX A 

 

 

GÖDEL’S METRIC IN CYLINDRICAL COORDINATES 

 

 

According to (2.2) Gödel’s metric is given as 

    







++++−= 2

3
2
2

2
2
1

2
20

22

2
)(

1

1 dxdx
e

dxdxedxads
x

x .         (a1.1) 

It can be converted to 

        [ ]dtrddrrdzdrdtads ϕϕ 222422222 sinh22)sinh(sinh4 −−−++−=   (a1.2) 

if the following transformations are made: 

         rre
x 2sinhcos2cosh1 ϕ+= ,           (a1.3) 

 rex
x 2sinhsin21

2 ϕ= ,           (a1.4) 

 
2

tan
22

2

2
tan 20 ϕϕ re

tx −=






 −
+ ,   where   

222

20 π
<

− tx
,         (a1.5) 

   zx 23 = .            (a1.6) 

If these equations are differentiated: 

          rdrrdrdrdxe
x 2coshcos22sinhsin2sinh21
1 ϕϕϕ +−= ,         (a1.7) 

      rdrrddxexdxe
xx 2coshsin222sinhcos2122
11 ϕϕϕ +=+ ,        (a1.8) 

ϕ
ϕϕϕϕ

d
e

dre
dtdxdtx r

r








++−=







 −
+















 −
++

−
−

2
tan1

22
tan2

22

2

222

2

2
tan1 2

2
2002 , 

                  (a1.9) 

dzdx 23 = .          (a1.10) 

Substituting (a1.4) and (a1.7) to (a1.8) gives 

rrdrrddx 2sinhsin2e2coshsin222sinhcos2e 11 -x
2

x ϕϕϕϕ −+=  

             )2coshcos22sinhsin2sinh2( rdrrdrdr ϕϕϕ +− .        (a1.11) 

After some cancelations: 
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ϕϕϕϕ rddrrdrdx 2sinh2sin222cosh2sinhcos2e 2
2

2x1 ++= . (a1.12) 

And its square is: 

242222222
2

4 2sinh2sin82cosh2sinhcos21 ϕϕϕϕ rddrrdrdxe
x ++=  

    23 2cosh2sinhcos42cosh2sinhcossin8 ϕϕϕϕϕ rdrdrrdr ++  

    ϕϕ rdrd2sinhsin8 2+ .           (a1.13) 

From (a1.7): 

   22222222
1

2 2coshcos42sinhsin2sinh41 rdrrdrdrdxe
x ++= ϕϕ  

       22 2cosh2sinhcos82sinhsin4 rdrrrdrd ϕϕϕ +−  

       ϕϕϕ rdrdr 2cosh2sinhcossin4− .         (a1.14) 

So  

  222222222
2

42
1

2 2coshcos42sinhsin2sinh4
2

1
11 rdrrdrdrdxedxe
xx ϕϕϕ ++=+  

 22222 2cosh2sinhcos2cosh2sinhcos8 ϕϕϕ rdrrdrr ++  

 232422 2cosh2sinhcos22sinhsin4 ϕϕϕϕ rdrrddr +++ .

              (a1.15) 

Note that 

        22 )2sinhcos2(cosh1 rre
x ϕ+=  

   rrrr 2sinhcos2cosh2sinhcos22cosh 222 ϕϕ ++=  

   )cos2cosh(cos2cosh2sinhcos2)2sinh1( 2222 ϕϕϕ −+++= rrrr  

   ϕϕϕ 2222 sin2coshcos2cosh2sinhcos22sinh +++= rrrr .       (a1.16) 

Combining these two results: 

22222222
2

2
2
1 coshsinh442sinh4

2

1

ϕϕ rdrdrrddrdx
e

dx
x

+=+=+ .  (a1.17) 

From (a1.9): 

      )22(

2
tan

2
tan12

2
tan24

222

2

0 dtd

ee

ddr

dx
rr

+−+

+









++−

=
−

ϕ
ϕ

ϕ
ϕϕ

       (a1.18) 

Note that 
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2

cos
2

sin)2sinh2(cosh2sinh2cosh
2

tan 22222 ϕϕϕ −− −++=+ rrrree rr  

















−+= − rr 2sinh

2
sin

2
cos2cosh

2
cos 222 ϕϕϕ

 

1

2
cos 2 x

e
ϕ−=             (a1.19) 

Then 

  )22(
2

sin
2

cos2
2

cos
2

sin24 11 22
0 dtdeddrdxe

xx +−+







++−= ϕϕ

ϕϕϕϕ
 

  )22)(2sinhcos2(cosh2sin22 dtdrrddr +−+++−= ϕϕϕϕ .    (a1.20) 

Using this and (a1.12), 

  )22)(2sinhcos2(cosh22
2

0
11 dtdrrddxedxe
xx +−++=+ ϕϕϕ  

         ϕϕϕ drrdr )12(cosh22cosh2sinhcos2 2 −++  

      dterdede
xxx 111 22cosh22 ++−= ϕϕ .       (a1.21) 

Dividing this by 1xe  gives 

     dtrddtdrdxedx
x 2sinh222)12(cosh2 2

20
1 +=+−=+ ϕϕ .      (a1.22) 

And its square is: 

          dtrddtrddxedx x ϕϕ 22242
20 sinh284sinh8)( 1 ++=+ .       (a1.23) 

Substituting this result and (a1.17) to (a1.1): 

      [ dtrddtrdads ϕϕ 222422 sinh284sinh8 −−−=  

    ]22222 4coshsinh44 dzrdrdr +++ ϕ         (a1.24) 

and using 1sinhcosh 22 += rr , the desired result is obtained: 

      [ ]dtrddrrdzdrdtads ϕϕ 222422222 sinh22)sinh(sinh4 −−−++−= . (a1.25) 

 

 

 

 

 

 



 

31 

 

 

APPENDIX B 

 

 

GEODESICS OF THE GÖDEL UNIVERSE 

 

 

In this appendix, the simplest geodesics of the Gödel universe will be given which 

are the null geodesics passing through the origin. According to appendix A, Gödel’s 

metric in cylindrical coordinates is given as 

       [ ]dtrddrrdzdrdtads ϕϕ 222422222 sinh22)sinh(sinh4 −−−++−= .  (a2.1) 

Simply the Lagrangian can be taken as 

         trrrzrtL &&&&&& ϕϕ )(sinh22)sinh(sinh 2224222 −−−++−= ,         (a2.2) 

where a dot denotes the derivative with respect to an affine parameter λ . Here the z 

coordinate can be omitted because it has nothing to do with the following 

calculations. The Euler-Lagrange equations are  

       0=
∂

∂
−

∂

∂

t

L

t

L

d

d

&λ
,            (a2.3) 

       0=
∂

∂
−

∂

∂

ϕϕλ

LL

d

d

&
.            (a2.4) 

The Euler-Lagrange equation for r is too complicated and will not be used so it is 

not given above. The above ones give the following equations: 

 art 2)(sinh222 2 =+ ϕ&& ,           (a2.5) 

btrrr 2)(sinh22)sinh(sinh2 224 =+− &&ϕ           (a2.6) 

where a and b are some constants. For the geodesics that passes through the origin 

(i.e. 0=r ), it can be seen that b must be equal to zero. Furthermore, for the null 

geodesics, the following equation holds: 

   0)(sinh22)sinh(sinh 222422 =−−−+− trrrrt &&&&& ϕϕ .         (a2.7) 
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Combining this with (a2.6) while taking 0=b : 

0)(sinh2 222 =−+− trrt &&&& ϕ .          (a2.8) 

 

As a summary, the following equations are in hand: 

   art =+ ϕ&& 2sinh2 ,           (a2.9) 

  ( ) 0sinh2sinhsinh 224 =+− trrr &&ϕ .        (a2.10) 

0sinh2 222 =+− trrt &&&& ϕ ,         (a2.11) 

From (a2.9) and (a2.10) 

        ϕ&
2

cosh 2 r
a = .          (a2.12) 

From (a2.9) and (a2.11) 

02 =− tar && .          (a2.13) 

Combining (a2.9), (a2.12) and (a2.13) 

r
r

d

dr 2sinh1
2

cosh
−=

ϕ
.         (a2.14) 

From (a2.10) 

       
2

sinh1 2 r

d

dt −
=

ϕ
.         (a2.15) 

Using these two results 

      
r

r

dt

dr

2sinh1

cosh

−
= .         (a2.16) 

 

If these three equations are plotted by a computer (by defining ϕcosrx =  and 

ϕsinry = ), the following figures can be obtained (the units are the geometrized 

units in which 1== cG  as usual): 
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Fig 1: r vs ϕ      Fig 2: y vs x 
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Fig 3: t vs x     Fig 4: t vs y 
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Fig 5: 3-dimensional view  

 

It can be seen that, when a light signal is sent in the +x direction, it follows nearly a 

circular path and comes back to its source after a certain time from the –x direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


