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ABSTRACT

GODEL’S METRIC AND ITS GENERALIZATION

Ozgéren, Kivang
M. S. Department of Physics
Supervisor: Prof. Dr. Atalay Karasu

September 2005, 34 pages
In this thesis, firstly the original Godel’s metric is examined in detail. Then a more
general class of Godel-type metrics is introduced. It is shown that they are the
solutions of Einstein field equations with a physically acceptable matter distribution

provided that some conditions are satisfied. Lastly, some examples of the Gddel-

type metrics are given.

Keywords: Gddel-type metrics, Einstein-Maxwell field equations
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GODEL METRIiGi VE GENELLEMESI

Ozgéren, Kivang
Yiiksek Lisans Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Atalay Karasu

Eylil 2005, 34 sayfa

Bu tezde, oOncelikle orijinal Godel metrigi ayrintili sekilde incelenmektedir.
Ardindan genel bir sinif olarak Godel-tipi metrikler tanitilmaktadir. Belirli kosullar
saglandiginda, bunlarin, Einstein alan denklemlerinin fiziksel olarak kabul edilebilir
bir madde dagilimi icin olan ¢6ziimleri oldugu gosterilmektedir. Son olarak Godel-

tipi metrikler hakkinda bazi 6rnekler verilmektedir.

Anahtar kelimeler: Godel-tipi metrikler, Einstein-Maxwell alan denklemleri
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CHAPTER 1

INTRODUCTION

The Godel’s metric is first introduced by Kurt Godel in 1949 [1]. It has an
importance because it is one of the solutions of the Einstein field equations with a
homogeneous matter distribution. However, it is not an isotropic solution. For a
homogeneous and isotropic matter distribution, General Relativity (without a
cosmological constant) gives cosmological models such that the universe will either
expand forever or collapse onto itself depending on its density. To avoid this,
Einstein put a cosmological constant to the equations and obtained a static universe
which is called as Einstein’s static universe. The Godel’s metric is another
stationary solution of the Einstein field equations with the same stress-energy tensor.
However, the Gddel universe has some interesting properties such as it contains

closed timelike or null curves (but not geodesics [3]).

Following the Godel’s paper, lots of papers were published on this subject. Two of
the most importants are the followings: In 1980, Raychaudhuri and Thakura [6]
investigated the homogeneity conditions of a class of cylindrically symmetric
metrics to which the Gddel’s metric belongs. In 1983, Reboucas and Tiomno [7]
made a definition for the Gédel-type metrics in four dimensions and examined their
homogeneity conditions. In addition to these, in 2003, Ozsvath and Schucking [9]

investigated the light cone structure of the Godel universe.

In this thesis, firstly, the original paper [1] of Godel will be examined in detail in

chapter 2. Some calculations which are not shown there will be given. Moreover, the



computer plots of some simple geodesics of the Godel universe will be presented in

appendix B.

In chapter 3, a general class of Godel-type metrics will be introduced. In literature,
some metrics that show some of the characteristics of Godel’s metric are already
called as Godel-type metrics. So a general definition of Godel-type metrics will be
done. The key ingredient of this definition will be a (D —1)-dimensional metric

which acts as a background to the Godel-type metrics [2].

In chapter 4, the metrics with flat backgrounds will be examined. It will be shown
that they are the solutions of the Einstein-Maxwell field equations for a charged dust
distribution provided that a simple equation is satisfied which is the source-free
Euclidean Maxwell’s equation in D—1 dimensions. Similarly, the geodesic

equation will turn out to be the Lorentz force equation again in D —1 dimensions.
In chapter 5, the metrics with non-flat backgrounds will be examined. Again it will
be shown that the Einstein tensor may correspond to a physically acceptable matter

distribution if the ( D —1)-dimensional source-free Maxwell’s equation is satisfied.

Lastly, some examples of the Gédel-type metrics will be given in chapter 6.



CHAPTER 2
GODEL’S METRIC

The new solution [1] introduced by Kurt Gddel to the Einstein field equations is for
an incoherent (i.e. homogeneous) matter field at rest in a four-dimensional manifold
M such as Einstein’s static universe. It has some interesting properties and
philosophical meaning which will be stated later. But firstly, it is better to describe

how it satisfies the Einstein field equations.
2.1 The Original Solution

In accordance with the sign convention used in this thesis, the Goddel’s metric

defined in [1] can be written as

2x

ds® = a{—dxé +dx] - 62

dx; +dx; —2e™ dxodxz} (2.1)

in a four-dimensional manifold. Here x,, x,, x, and x, are local coordinates and a

is a real constant. This can also be written in the following form:

2x
ds* = az[— (dx, +e"dx,)” +dx] + 62

dx; + dxf} . (2.2)

So the metric is:

-1 0 -e" 0
0 1 0 0
=q° , ,v=0]123. 2.3
ur —e" 0 —e™/2 0 # @3)
0 0 0 1

As anote, here and upto the end of this chapter, the Greek indices run from 0 to 3.



The determinant of the metric can be found as g = —a®e*" /2 and the inverse of the

metric can be obtained from g““g,, =0/ (where 0/ is the Kronecker delta) as

1 0 -2 0
1 0 1 0 0
W=— . 24
8 Td e 0 2e 0 @9
0 0 0 1
Now the Christoffel symbols can be calculated from the following relation:
=197 ¢ +3.g. -3 2. ]
Hv _Eg ,ugvo' + vgya - o‘g,uv . (25)

Note that only 9,g,, =—a’e" and 9,g,, =—a’e™™ are nonzero. So it is quite easy

to find and compute the nonzero Christoffel symbols:
1

I =Eg02(alg02) =1,

1 e
M= [e" @80+ 8" @8] =

Flo =28 (D80 = 5 26)
2x,
M =g (-0,8m) =
o = %gzz (0,8,)=—€".
The Ricci tensor can be obtained directly from:
R, =04 =0, +T%pl ey =TI a. 2.7)

This equation can be simplified by using the fact that I'",, = 52 . Furthermore, only
d, produces nonzero results. Then the equation reduces to:
R, =0, + T =T %Il o (2.8)
Now it is easy to compute the nonzero components of the Ricci tensor:
Ry =-T 020 =T 2010 =1,
Ry, =0T+ —T'nl P10 =Tl =", (2.9)

R,=0T"n+T"n —Teuln —T’ule =",



So the Ricci tensor in the matrix form is

1 0 e" 0
O 0 0 O
R = . 2.10
olen 0 e 0 ( )
O 0 0 O
The Ricci scalar can be calculated from here which turns out to be a constant:
” 1
R=Rﬂ”=RﬂVg” =—a—2. (2.11)

For an incoherent matter field at rest, the stress energy tensor is given as [5]
T, =pu,u,, (2.12)
where p is the density of the matter field and u* =(1/a,0,0,0) is the unit vector in

the direction of x,, lines. So

u, =u"g,, =(-a0,—ae",0) (2.13)
and
1 0 e" 0
O 0 0 O
T, =pa’ =pa’R,, . 2.14
uv pa ex] 0 ele 0 pa uv ( )
O 0 0 O

The Einstein field equation (with a cosmological term A) is:

yZ uv

1
R V—ERgﬂV+AgﬂV=87ZT (2.15)

So, it can easily be seen that the above equation is satisfied if a* =1/8zp and

A=—-1/2a" =—4np.
2.2 Properties of the Godel Universe
The manifold M that is defined by the Gédel’s metric has the following properties:

First of all, M is homogeneous (i.e. all points of M are equivalent to each other)

since it admits the following transformations seperately:



i) x; =x,+b,;

i) x{ =x,+b, , X, =x,e™; (2.16)
iii) x; = x, +b,;
iv) x; =x; +b;,

where b,, b,, b, and b, are some constants.

Furthermore, M is rotationally symmetric. If proper coordinates are used (which are

given in appendix A), the metric can be converted to the following form:

ds® = 4a*[-de® +dr? +dz* — (sinh* r —sinh® r)d@® — 24/2 sinh® rdexdt). (2.17)
Here r, ¢ and t are cylindrical coordinates in subspaces z = const . So the rotational
symmetry can be seen easily since the metric g, does not depend on the angular

coordinate @ .

In M, there is not any absolute time coordinate. In other words, the worldlines are
not everywhere orthogonal to a one-parameter family of three-dimensional
hypersurfaces (because otherwise a co-moving Gaussian coordinate system can be
constructed in which an absolute time coordinate can be defined [5]). To prove this

statement, suppose the contrary: Suppose that there exists such a family defined as
F(x*)-A1=0, (2.18)
where F is a fixed function and A is the parameter. If a vector dx” is entirely in

this surface, then dF =9 ,Fdx" =0. This means d ,F is normal to the surface. So
any vector field v, that is orthogonal to these family of surfaces can be written in
terms of d , F as

v,=00,F, (2.19)
where / is an arbitrary scalar function. If a completely antisymmetric tensor

1
a,, = v[ﬂVyvv] = g[vﬂ(Vyvv —Vvvy)+vv(Vﬂv}, —Vyvﬂ)+v},(Vvvﬂ —Vﬂvv)]

(2.20)



is introduced, it can be calculated that a,, =0 for v, =10 . F . However, for the

case of Godel’s solution, u, =(-a,0,—ae™ ,0) and a,,, is not identically zero:

1
a,,=——ae"e (2.21)

uvy 6 vy

which completes the proof.

Another property of M is that it contains closed timelike circles. So it is possible to
travel in the Godel universe and arrive to the starting point of the voyage. It is also
possible to travel into the past. Remember that the Godel’s metric in cylindrical
coordinates is
ds*> =4a’ [— dt’ +dr’ +dz* —(sinh* r —sinh® r)dp® — 2+/2 sinh? rd(pdt]. (2.22)
Now, as an example of a closed timelike curve, take the one defined by »=R,
t =z=0.Then (2.22) becomes
ds®> = —4a*(sinh* r —sinh’® r)d@* . (2.23)
It can be seen from here that if sinh* R —sinh® R >0 or R > In(1+ V2 ), the curve is

timelike. However, keep in mind that this curve is not a geodesic. Actually there is
not any closed timelike geodesics in the Godel universe [3]. So some acceleration is

needed to follow the curve defined above.

Lastly, in the Godel universe, the matter rotates with an angular velocity of 2./7p .

To prove this, lets intoduce the following vector which is defined in terms of a,,, :
ehr

=—aqa,,,.
\/@ur

In a flat space with the usual coordinates, it can be seen that Q7 is twice the angular

QF (2.24)

velocity (see [5] for more details). Calculating Q7 for the Gddel’s metric gives

(0,0,0,\/5/612) . So the angular velocity is

a%if =2\/np . (2.25)
a



It can be asked how the entire universe can rotate and with respect to what it rotates.
Suppose a test particle is thrown in the x, direction. If there is no external force on

it, it must follow a straight line. However, in the Godel universe, this is not the case;
it follows a circular path. The tangent to this path can be called as “the compass of

inertia”. So the bulk matter in the Godel universe rotates with respect to it.

2.3 Philosophical Considerations

First of all, Godel’s solution permits travelling into the past. Although such a
voyage would be extremely long, this breaks the causal structure of the spacetime
and brings some paradoxes such as the one that a person can go back and kill

himself.

Secondly, it was longly belived that an inertial frame is determined by the distant
stars (in other words, the bulk matter of the universe). Some philosophers like Mach
went one step forward and argued that the inertial forces in an accelerated frame
may arise from the relative accelerated motions of bulk matter in the universe with
respect to that frame. Although Einstein found this idea useful, after the discovery of
General Relativity, it turned out that this idea is not correct. Nevertheless, it is
expected that the compass of inertia is determined by the bulk matter of the universe
and they should not rotate relative to each other. However, this is not the case in the

Godel’s solution.

Lastly, it is expected that the matter distribution in the universe should determine its
structure uniquely. However, for the same stress-energy tensor, there are two
solutions namely Gddel’s solution and Einstein’s static universe. So it can be said
that General Relativity does not fit to this expectation unless the cosmological

constant is not used or some boundary conditions are imposed.



CHAPTER 3

GODEL-TYPE METRICS

In this chapter, the Gddel-type metrics will be defined as a general class in a D-
dimensional manifold. But to be able to generalize the Godel’s metric, the first thing

to do is to investigate some of its mathematical characteristics.

First of all, it can be seen from (2.3) that the metric g,, (which was defined in a

D =4 dimensional manifold) can be written as g,, =h,, —u,u,, where &, is a

uv
degenerate DX D matrix with rank equal to D —1 such that 4, =0. (Here and at

the rest of this thesis, the Greek indices run from 0 to D —1 and the Latin indices
run from 1 to D —1.) Actually, any metric can be written in this form if «* is a unit
vector such that u ,u” =—1 and taken as u* =-4;' Ju, . Secondly, the Ricci tensor
was obtained as R,, =u,u, / a® where a is a real constant. This leads the Ricci

scalar to be a constant and the Einstein tensor to correspond to a physically

acceptable source. Also, it can be seen that d,g,, =0 which is another important

property. Now, by considering these facts, lets try to define the Godel-type metrics.
3.1 Definition of the Godel-Type Metrics

Let M be a D-dimensional manifold with a metric of the form
gﬂ‘,:hﬂv—uﬂuv. 3.1
In this thesis, the metrics of this form will be called as Godel-type metrics if the

following conditions are satisfied:



1) h,, is a degenerate Dx D matrix with rank equal to D —1 such that 4, =0.

Here x* is a fixed coordinate and k can be chosenas 0<k < D—1.

i) £, is a metric of a (D —1)-dimensional Riemannian manifold which can be

thought as a “background” from which the Godel-type metrics arise.

iii) %, does not depend on the fixed coordinate (9, L =0).
iv) u* is a timelike unit vector such that u u* =—1.
v) u* is chosen as u* =—&/ Ju, .

vi) u, does not depend on the fixed coordinate (d,u, =0).

Also, some other conditions on /4, and u, will be clarified in the next chapters

when the Einstein tensor is forced to correspond to a physically acceptable source.
Moreover, throughout this thesis, the fixed coordinate will be taken as x°. Then

u, =u, and u, will be taken as u, =1.

If the literature is investigated, it can be found that there are some classifications of

the metrics similar to the Gddel-type metrics defined above. For example, Geroch
[10] took u” =¢&* / VIEYE, | (where & is a Killing vector field to start with) and

reduced the vacuum Einstein field equations to a scalar, complex, Ernst-type non-
linear differential equation and developed a technique for generating new solutions

of vacuum Einstein field equations from vacuum spacetimes. Also, (3.1) looks like

the Kerr-Schild metrics (g,, =7,, —¢,¢, where (* is a null vector) and the

metrics used in Kaluza-Klein reductions in string theories [11]. However, there are

some major differences between these metrics and the Godel-type metrics [2].

10



CHAPTER 4
GODEL-TYPE METRICS WITH FLAT BACKGROUNDS

In this chapter, the simplest choice for %, will be examined that is

hy =3, (4.1)

ij
where é_'u is the (D —1)-dimensional Kronecker delta symbol. (Note that it can be
written as 8, = 8,, —8,,0,, in D dimensions.) Then it is easy to see that
d,h, =0. (4.2)
The inverse of the metric can be found as

g" =h" + (14 hPugup i u” +ut (W u) +u” ("uy),  (43)

where 7" is the (D —1)-dimensional inverse of 4, (ie. h*'h,, =0}). Now it is

possible to calculate the Christoffel symbols:
l 4o
Fﬂ’lﬂzggﬂ (aagaﬁ+aﬁg6a_aagaﬂ)

- %g’“’(—aauauﬂ —aﬁuaua +80uauﬂ)

1
_ uo
= Eg (1,0 4ty =10 Uy =10 gy, — 1,0 g, +1U,0 Uy + 10 U, )

_1

2g’“’[ua(80uﬁ =0 g, ) +uy(d,u, —0,u,)—u,(d,u, +8ﬁua)]. 4.4

At this point, lets introduce f,, =d,u, —d,u, which will be very useful in the

remaining calculations. Then (4.4) can be written as
F”a,g=%(uaf”/3+uﬁf”a)—%u”(aauﬁ+aﬁua), 4.5)

where f“p=g"f ;.

11



Before continuing further, lets give some useful identities which can be derived by

using the newly introduced tensor f,, . Firstly, f,, is an antisymmetric tensor so

y7i%

Juw ==Fou- (4.6)
Secondly,
fﬂozaﬂuo—aouﬂzo, 4.7)
which leads
u“f,, =u,f" =0. (4.8)

Now lets look the covariant derivative of u 0

o

1 1
Vg =0,u, =T opu, =0 ,u, —Euﬂ(uaf”/; +uﬁf”a)+5u#u”(8auﬁ +04u,)

=aauﬂ—%(aauﬁ.+aﬁua):%(aauﬁ+aﬂua)=%fa , (4.9)
which means the vector field u* satisfies the Killing vector equation,
Vg +Vu,=0, (4.10)
and is a Killing vector. Furthermore, (4.9) leads
uﬁvauﬁ=%uﬁ =0, (4.11)
and

o 1 22
u Vauﬁzgu ap =0 (4.12)

So the vector field u” is tangent to a geodesic curve.

By using these, the Ricci tensor can be obtained from:
This can be simplified since
I = %(uaf”’/; +uﬁf“a)—%u“(aauﬁ +04u,)=0. (4.14)

Then (4.13) becomes
Rllv :ao_ra,uv —Fpaﬂro-pv. (415)

12



The first term can be calculated as
o 1 o o 1 o
o, I' ,,V:Eaa(uﬂf v+u, f ,,)—an[u (aﬂuv+avuﬂ)]
1 (e (e o
=E[aa(u/¢f V)+aa(uvf /‘)_u aa(aﬂuv+avuﬂ)]
1 o . o .
:E(f vOgt, —u,j, + fud u, —u,j,), (4.16)
where j, :aafj and the second term of (4.15) is
T2 ol g0 =| S, /7 1, 17 0) 2”@ 1, +
oul ” pv = E(uaf wtu,f 0)_5” (D u, +9,u,)
1 o (e 1 o a a
E(upf V+uvf P)_Eu ( puv+ vup)

1
=l v, ), 7, g 0)
+u’u® (9, u, +9,u,)0,u,+0,u,)
—uf (D u, +0 u ) u, v +u,f)
—u’ (@, u, +9 ,u,)u, [’ u +l/lﬂfp0')]
1
zz[uaupfp,lf"v+u(,uvfpﬂf"p +uu, fPof v +uu, [P f)
+f @y +u,) + fPu@u, +9 u,)]
2%[—u#uvf2 + 70 u, +0,u,)+ [Pu(d,u, +8puv)], (4.17)

where 2= f% fop- By combining these two quantities, the Ricci tensor can be

obtained:

l , - .
R,uv :E(f Vaau,u —Uu,ly +f ﬂaauv _uv]ﬂ)
—i[—uﬂuvf2 + 17 (@ u, +0,u,)+ fPu(u, +8puv)]

U R 1. 1
:—E(Mﬂjv+uvjﬂ)+5f vaguﬂ+5f ﬂaguv+zuﬂuvf2

13



1. 1
_Zf V(aﬂua+ao’u/4)_2fp/‘(avup+apuv)

1. oL 1 1 ., l
=_5(uﬂ]v+uv],u)+2f2u,uuv_Zf v ,ua_Zf /“fva
1 s 1 . . | 4
_Ef,u fva_E(uﬂ.]V-i_uvj,u)-i_Zf uﬂuv‘ ( 18)
Then the Ricci scalar can be found easily:
v 1o .
R=R,g" :Zf —-u’j,. (4.19)
The Einstein tensor is
_ 1
G,uv _R,uv _ERg/zv
1 & 1 . . 1 1 1 o -
:Ef,u fVU_E(uy]v+uv]ﬂ)+Zf2uyuv _Eg,uv(Zfz —u ]o‘}(420)

This tensor should be equal to the stress-energy tensor of a physically acceptable

source. To be so, j, should be something like j, = ku, where k is a constant. But
it can be seen that j, =0 while u, # 0. So k=0 which means j, =0. Then (4.20)

becomes

1 1 1
G,uv =§f,u fVO' +Zf2u,uuv _gg,uv]p2 . (421)

The Maxwell energy-momentum tensor for f,, is given as

. - 1
T,L{V :f,u fvo_zgyvfz' (422)
Hence,
Lprylpe 4.23
G,uv _E yv+Zf uu,, ( . )

which implies that (3.1) is the solution of a charged dust field with density

p=f> / 4 provided that j, =0. Since j, =0 already and j, does not depend on

X, , this means

ji=9,f =0, (4.24)

14



which is the flat (D —1)-dimensional Euclidean source-free Maxwell’s equation.

Note that £’ can be written as

1

1 =18 (4.25)
where g¥ = 1" = 8% in this case. Hence
=1, (4.26)
and (4.24) becomes
d,f,=0. (4.27)

This means that the Godel-type metrics with the conditions given at the beginning of

this chapter are the solutions of Einstein field equations with a matter distribution of

a charged dust with density p = f* / 4 provided that the above equation is satisfied.

4.1 Geodesics

Now lets investigate the geodesics of this case. The geodesic equation is given as

¥ +T %% =0, (4.28)
where a dot represents the derivative with respect to an affine parameter 7.
Substituting (4.5) to this equation gives

i+ %(ua FUpxexP tu, fraxi? —%u”(aau 5X%7 40 4u,x°%7) = 0. (4.29)

Here @ and [ are dummy indices so this can be written as

X tu, xR —ut 3% (0 u,x")=0. (4.30)
Using the fact that
Ju
O u xf =—<x% =4, 431
LY a a)C'B o ( )

the geodesic equation becomes
¥ u, f*px %P —ut 5%, =0. (4.32)
Contracting this with u, gives

w5 g [ px 5P —uut 5%, =0, (4.33)

and since the second term vanishes,

15



u, i +x%, =0, (4.34)
which implies
u,x" = const.= —e. (4.35)
Remembering that u, =1, this can be written as
X' +ux =—e. (4.36)
Furthermore, if (4.35) is substituted to (4.32):
¥ —ef " pxP —ut %%, =0. (4.37)
Since u* =-0,, this can be written by replacing ¢ with i as
¥ —ef'px? =0. (4.38)
Lastly by using /o =0, the following equation is obtained:
i —ef ;3 =0. (4.39)
This is the (D —1)-dimensional Lorentz force equation for a charged particle with
the charge/mass ratio e. Contracting this by X' and using (4.26) gives
% —ef xR =x'% —e l.jic"ic-" =x'%¥ =0. (4.40)
So another constant of motion is found as
X% =const.=1". (4.41)
Since
g X" x" = hy XX —(u, X)) =17 e’ (4.42)

the nature of the geodesics necessarily depends on the sign of /> —e”.

16



CHAPTER §

GODEL-TYPE METRICS WITH NON-FLAT BACKGROUNDS

In chapter 4, the simplest choice for 4, (4, = é_‘i/.) was examined. Now lets see what
will happen if 4, is not determined at the beginning. Again the inverse of the metric

is given by (4.3) but the new Christoffel symbols are:
~ 1

Fﬂﬂ/” :Egﬂa(aagaﬁ +aﬂgaa _aagaﬂ)
= L gt @ b, 43, — D) gt (<0~ yuu, +0
_Eg ( a’top Bloa o aﬂ) Eg ( auouﬁ ,Buoutl ouauﬁ’)'

(5.1)
Note that the second term is equal to the I'“ 45 given by (4.5). If g’ is substituted

from (4.3),
T#up zé[f_z‘“’ +(—1+}_z”7upu;,)u"u" +u”(l_l“pup)+u"(5"pup)]
(0 ohop +0 ghyy =0 hyy) + T . (5.2)
The terms of g“’ containing u° vanish. Then
[“p = %(/7 “O e u (P u))0 yhos +0 gy =0 ghys) + T ap
=T e +u"u TP ap + T ap, (5.3)
where I'“4s are the Christoffel symbols of %, given by

. |
Fﬂaﬁ' = Ehﬂ (aahoﬁ +aﬁh(m —aahaﬁ). (54)

The covariant derivative associated with I“4s can be defined as

A A

Vo, =0 u, T opu,, (5.5)

17



s0 (5.3) can also be written as
~ . 1 1 . .
r'uaﬁ :rﬂaﬁ +5(uaf”/)’ +uﬂf”a)—5u”(vauﬂ +Vﬂua). (56)

Lastly, the covariant derivative associated with [* 45 can be defined as
Vg =0, T opu,, (5.7)

and can be calculated by using (5.3) as

~ A A 1
Vo =041y —(u, " ap +u,uu,l' o +Mﬂrﬂaﬂ)25 s> (5.8)

a

which means u* is still a Killing vector. Also it is still tangent to a geodesic curve

since
UV, =0, (5.9)
Using these results, the Ricci tensor can be calculated from:
Ry =007 =0,0% + 17wl —T ol “pv . (5.10)
However, now I % #0. By using (5.3),

~

T =T +u“u, T s + T (5.11)
Since I'%s =0 and u“I 7o =0,
T%;s =1"%;. (5.12)
Substituting (5.12) and then (5.3) to (5.10) gives
Ry 29,5 —9, 1% + T 0l o ~ T2l
=3, 1%+, U, B )+, T =3 e
+ 17wl op +uu 17 0T o5 + T 108
. N Y —uauyfyﬁvfﬁgﬂ P
—uﬂupprﬂfaﬁy —uﬁu”upuyfyﬁvfpaﬂ —uﬁuprgﬂvfpaﬂ
~T70l % —uu I 5T o =T 5T (5.13)

After some cancelations:
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~ A

R,uv = R,uv + [aa(uaupfpyv) + ao.ra,uv - Fgﬁvrﬂaﬂ ]+ Fﬁﬂvfgaﬂ
—rgﬂvfﬁaﬂ —Fﬁaﬂfoﬂv —uﬁupfpayraﬁv —u”uyf‘yﬂvl—‘ﬂg,, . (514)

where R v 18 the Ricci tensor of £, and the terms in the bracket give R, which is

given in (4.18). By rearranging the dummy indices and using u”T* a5 = — f* a/ 2,

the above equation simplifies to

~ | 1. oy, ]
R/zv R,uv+|:5fy fva_E(uy]V+uv.],u)+Zf2u,uuv:l

1 O RV B
+E(uﬂfﬁv +uvfﬁﬂ)r Uﬁ_auvf ﬁrﬂo;u_guﬂf ﬁrﬂo—v
_ fay 1 o 1 2 1 . o "ﬁ ,B "o.
_R/IV+Ef/1 fva+Zf u,uuv+5u,u(_]v_f ﬂF °'V+f v O'ﬂ)

1 . o T o
+E“v(_]u_f s o +fﬂ/1r op) - (5.15)

Now lets define 7” as

Tu=VofTu=0,fu— [Tt [Pl 0p. (5.16)
Since j, =d,f,” =—0,f 4, the Ricci tensor becomes
O 1 o~ o~ 1.,
Rﬂv—Rﬂv+5fﬂ fm+5(uﬂjv+uvjﬂ)+zf u,u,, (5.17)

and the Ricci scalar is
~ o~ 1 ~
R:R+Zf2+u'u]ﬂ. (518)

By setting 7/1 =0 again, the Einstein tensor can be found as

~ - 1 & 1 1 |
Gyv :R,uv+5fy fvo+Zf2u,uuv_Eg,uvR_gg,uvaD (519)
and in terms of T’ Af? given by (4.22), it can be written as
~ s L, 1, 1 .
G/‘V_R/“V+ET#V+Zf uﬂuv—EgWR, (520)
or
~ s 1 o1 1 ., 14
G/tv_Ruv_Eh,uvR_‘_ET,uv—i_ Zf +ER uﬂuv. (521)
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Now lets turn back to 7,1 = 0. This equation means
}7”‘/7\/ = Eﬂv%a(gaﬁfﬁv) = 60{(}7!“/}70{ﬁf‘ﬁ1/)
=0, (W h? [ )+ T (W h?” fo, )+ T 0 (W R f4,)=0.(5.22)
Here, the last term vanishes and using 1“4, =0 ,h/2h gives

.

VRO (1 f4,)+ (R R £,) 7

9,h=0, (5.23)

or
A, (W hfs)=0. (5.24)
Using 7*° =0 and f,,, =0, this can be written as
o, (h*h"'\hf,)=0. (5.25)
Note that, this is the source-free Maxwell equation in D—1 dimensions. If this

equation is satisfied, the Einstein tensor may correspond to a physically acceptable

stress-energy tensor depending on the suitable choice of 7, .
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CHAPTER 6

SOME EXAMPLES OF THE GODEL-TYPE METRICS

In this chapter some examples of the Godel-type metrics will be presented.

6.1 The Original Godel’s Metric as a Godel-type Metric

First of all, lets represent the original Godel’s metric as a Godel-type metric and see

which conditions does it satisfy. Remember that the Godel’s metric was:

-1 0 —e" 0

0 1 0 0
=a’ . 6.1
S —e" 0 —e™/2 0 1
0 0 0 1

Furthermore, lets take @ =—1 for simplicity. Since u* =-0;', it can be found that

u,=g,u" =(1,0,e",0) and

1 0 e* 0
0 0 0 O
u,u, = 6.2

e 0 ™ 0 (62)

0 0 0 O
If the metric is written in the form of g, =h,, —u u, , it can be seen that

00 0 0

101 0 0 63)

w0 0 e/2 0 '

00 O 1

2x

Its determinant is 4 = ¢* /2 and inverse is
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- (6.4)

S O = O
()
- o O O

Note that these satisfies (5.25):
3, (N k' Nhf,)=9,(h"h2hf,)=09,2¢7" \Je* [2(-e"))=0. (6.5)

So it can be concluded that (5.25) is one of the conditions for (3.1) to be a Godel-

type metric.

6.2 An Example with a Flat Background

In chapter 4, &, was taken as h; = é_‘v and a condition on u,, was searched for such

14

that the resultant Einstein tensor corresponds to a physically acceptable matter
distribution. Then it was found that
d.f, =0. (6.6)
Now lets take u, in the form of
u, = Qi].xj , (6.7)
and check if it satisfies the above equation. Here, O, is an antisymmetric tensor
with constant components. Substituting this to (6.6) gives
3.[0,(0,x-9,0,:39]=0,0,-0)=03,(20)=0, (69
which means u, satisfies (6.6). For the remaining part, lets take D =4 and let the
only nonzero component of O, be O, . Then
u,dx" = uydx’ +u,dx’ =dx’ + Q, (x*dx' —x'dx?), (6.9)
or in cylindrical coordinates,
u, dx” =dt-Q,p°do. (6.10)
Substituting this to (3.1):
ds’ =dp* + p’d¢* +dz° —(dt — O, p*de)’. (6.11)

Now consider the curve defined as
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C={(t,p,09,2)|t=ty,p=pPy,z2=2,}. (6.12)

Then (6.11) becomes
ds® = p(1-(0,,)* pA)d¢’. (6.13)
From here, it can be seen that this spacetime contains closed timelike and null

curves for p, 21/|Q,, |.

6.3 An Example with a Non-flat Background

In chapter 5, 7, was not choosen at the beginning and naturally it was found that the
Einstein tensor of g, explicitly depends on the Ricci tensor and scalar of 4, in the

following way:

~ A 1 I 1 1 »
G =Rﬂv—EhﬂVR-FET/';V+(Zf2+ERjuﬂuv. (614)

uv
Depending on 7, Iéij may be very complex and may not allow the Einstein tensor
to correspond any physically acceptable matter distribution. However, if 4, is

choosen as a metric of a (D —1)-dimensional Einstein space (i.e. Iéij = kh, where k

is a constant), then

R=khi].h’7 =(D-Dk, (6.15)
and the Einstein tensor becomes
~ 3-D 1., 1
G, Z(Tjkg’” +5T;}fv +(Zf2 +k]uﬂuv, (6.16)
which describes a charged perfect fluid with pressure
p:%(S—D)k, (6.17)
and density
p—lf2+l(D—1)k (6.18)
4 2 ' '
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Note that £ <0 (for D >4) in order to have a positive pressure. Now lets choose

D=4 as before. According to [4] (see appendix D of it), if 4, is choosen as a

conformally flat metric (i.e. i, = ez"’é_'i]. where ¥ is a smooth function), then
R;=-0,0,¥=6,6"0,0,y+0@¥)0,¥)-8,6"Q¥)Q,¥). (6.19)

At this point, to simplify the calculations, lets assume that y is a function of only

one of the coordinates; ¥ =w(x’)=w(z). In addition to the equation above, the

Einstein space condition implies

R, =ke™3,. (6.20)

Hence, the following equations can be obtained from the above ones:
-2y =ke”, (fori=j=3) (6.21)
-y - (W)’ =ke™, (fori=j#3) (6.22)

where a prime denotes the derivative with respect to z. Combining these two

equations,

v =e |—, (6.23)

[ -2
y=In et (6.24)

where « is an integration constant. So this means
—_— — 2 S
" k(z+a)?

and ¥ can be obtained here as

(6.25)

Remember that all of these calculations are meaningful if (5.25) is satisfied which

can be simplified to the following form:

Tk Tl _ k(z+a)2 Sik k(z+a)2 <l -8
0,(h™"h Jﬁfk,)—a,-( — 0 =0 ,/k3(z+a)6fk,J

=3.(z+a)f,;)=0. (6.26)

To solve this equation, lets assume u, = s(x, y,z)é_'f. Then

f;,=670,5-69,s. (6.27)
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When j =3, (6.26) gives

d,((z+a)d,s)=0, (=12. (6.28)
When j #3, it gives
d,((z+a)d,s)=0. (6.29)
So it can be seen that s can be choosen as
s(x,y,z)=s8(z) = b , (6.30)
z+a

where b is another constant. Substituting these into (3.1), the line element in
cylindrical coordinates can be found as

2 _2
§T = ———
k(z +a)’

(dp* + p*d¢’ +dzz)—(dt+ b
zZ

+a

dz] . (6.31)

Again considering the curve C defined by (6.12), (6.31) becomes

2 _ —2,030'(/72

ds” = -
k(z, +a)

(6.32)

So this spacetime contains no closed timelike curves since £ < 0.

25



CHAPTER 7

CONCLUSION

As a summary, at the beginning, the original Gédel metric was introduced, and at
the rest of the thesis, it was tried to be generalized. Starting with a general metric
form (3.1), the conditions needed to call this metric as a Godel-type metric were
investigated. It turned out that if (5.25) is satisfied and the background geometry is
an Einstein space or at least if its Ricci scalar is constant, the metric becomes a

solution to the Einstein field equations with a physical matter distribution.

The Godel-type metrics introduced in this thesis can also be used in obtaining exact
solutions to various supergravity theories and some examples can be found in [2].
Remember that u#, was chosen as a constant in chapter 3 and for this case, the
Godel-type metrics were found to be the solutions of the Einstein-Maxwell field
equations. Then, for the case of non-constant u,, it is expected that they are the
solutions of the Einstein-Maxwell dilaton 3-form field equations. In fact, it is shown
in [12] that the conformally transformed Godel-type metrics can be used in solving a
rather general class of Einstein-Maxwell-dilaton-3-form field theories in D >6

dimensions.
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APPENDIX A

GODEL’S METRIC IN CYLINDRICAL COORDINATES

According to (2.2) Godel’s metric is given as

2x
e

ds> =a’| —(dx, +e"dx,)” +dx; + a2 +dx? |. (al.1)

It can be converted to
ds* =4a’ [— dt’ +dr’ +dz* — (sinh* r —sinh® r)dp® — 2+/2 sinh? rd(pdt] (al.2)

if the following transformations are made:

e =cosh2r + cos @sinh 2r, (al.3)
x,e" = V2 sin @sinh 27, (al.4)
-2t ) -2t
tan(g + XO—J e tan 2 , Wwhere *o <z , (al.5)
2 22 2 W2 | 2
X, =2z. (al.6)

If these equations are differentiated:

e"'dx, =2sinh 2rdr — sin ¢sinh 2rd @ + 2 cos ¢ cosh 2rdr , (al.?)

e'dx, + x,e"dx, = J2 cos @sinh 2rdp + 2+/2 sin @cosh 2rdr, (al.8)

-2t dx, —2dt -2
{1+tan2[£+ all ﬂ(%+ all j:—Zezr tan%alr+e7[l+tan2 Ejd%

2 22 ) 2 22
(al.9)
dx, =2dz. (al.10)
Substituting (al.4) and (al.7) to (al.8) gives
eMdx, = V2 cos @sinh 2rd g + 22 sin @cosh2rdr —e™ V2 sin @sinh 2r
(2sinh 2rdr — sin @sinh 2rd¢ + 2 cos ¢ cosh 2rdr) . (al.11)

After some cancelations:

28



e™dx, = V2 cos @sinh 27 cosh 2rd g + 2+/2 sin odr + /2 sinh? 2rde. (al.12)
And its square is:
e*dx] =2cos” gsinh’ 2r cosh’ 2rd@* +8sin” gdr’® + 2sinh* 2rd ¢’
+ 8sin @ cos @sinh 27 cosh 2rd gdr + 4 cos @sinh® 2r cosh 2rd @’
+8sin @sinh’ 2rdrd . (al.13)
From (al.7):
e’ dx! =4sinh’ 2rdr’® +sin” @sinh’ 2rd@® + 4 cos” cosh 2rdr’
— 4sin @sinh® 2rdrd g + 8 cos @ sinh 2 cosh 2rdr®
—4sin @ cos @ sinh 27 cosh 2rdrd ¢ . (al.14)
So

e*dx; +%e4x‘ dx? =4sinh’ 2rdr’® +sin” @sinh’ 2rd@® + 4cos” g cosh” 2rdr?

+ 8cos @sinh 27 cosh 2rdr* + cos® @sinh® 2r cosh® 2rdg*
+4sin® gdr® +sinh* 2rd@* + 2 cos gsinh’ 2r cosh 2rdp’.
(al.15)
Note that

e* = (cosh2r + cos @sinh 2r)*
= cosh” 2r + 2 cos @sinh 27 cosh 27 + cos® @sinh® 2r
= (1+sinh’ 27) + 2 cos @sinh 27 cosh 27 + (cos” @cosh” 2r — cos® @)

=sinh’ 2r + 2 cos @sinh 2 cosh 27 + cos® @ cosh® 2r +sin” @. (al.16)

Combining these two results:

2x

x> + e2 dx? =4dr* +sinh® 2rd@* = 4dr* + 4sinh® r cosh® rdg>. (al.17)
From (al.9):
—42 tan%dr + \/5(1 +tan’ ¢jd¢
dx, = +(—2do+2d1) (al.18)
e’ +e* tan’ L4
Note that
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2 ¢ 29
2

e’ +e ¥ tan’ % = cosh 27 + sinh 27 + (cosh 27 — sinh 27) sin> By cos
= cos2 2| cosh2r +| cos? £ —sin> £ |sinh 2~
2 2 2

—cos2 Lo (al.19)
2
Then

e'dx :—4\/§sin£cos£dr+\/§ cos’ L +sin? 2 d¢+ex‘(—\/5d¢)+2dt)
’ 22 2 2

= —2/2 sin gdr +~/2d @ + (cosh 27 + cos @sinh 2r)(—/2d @+ 2dt) . (al.20)
Using this and (al.12),
e"dx, +e"dx, = \/Ed¢ + (cosh 27 + cos @sinh 2r)(—\/§d(0 + 2dt)
++/2 cos @sinh 27 cosh 2rd ¢ + \/E(cosh2 2r-1)de
=—2e"dp +2e" cosh2rdp+2e” dt . (al.21)
Dividing this by e™ gives
dx, +e"dx, =~/2(cosh2r —\)d@+2dt = 24/2 sinh® rdp+2dt . (al.22)
And its square is:
(dx, +e"dx,)* =8sinh* rde* +4dt” + 8+/2 sinh? rd gt . (al.23)
Substituting this result and (al.17) to (al.l):
ds® = a* |- 8sinh* rdg? — 4ds* — 842 sinh? rd gt
+4dr” +4sinh? rcosh® rdg’ +4dz" | (al.24)

and using cosh’® » =sinh’®  + 1, the desired result is obtained:

ds® = 4a2[— dt* +dr® +dz* —(sinh* r —sinh® r)d ¢’ —2+/2 sinh? rdgodt]. (al.25)
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APPENDIX B

GEODESICS OF THE GODEL UNIVERSE

In this appendix, the simplest geodesics of the Godel universe will be given which
are the null geodesics passing through the origin. According to appendix A, Godel’s

metric in cylindrical coordinates is given as
ds® = 4a*[-d® +dr? +dz* — (sinh* r —sinh® r)d@® — 242 sinh® rdgadt. (a2.1)
Simply the Lagrangian can be taken as
L=—*+7> + 2> —(sinh* r —sinh® )’ — 24/2(sinh> r)¢¥, (a2.2)
where a dot denotes the derivative with respect to an affine parameter A . Here the z

coordinate can be omitted because it has nothing to do with the following

calculations. The Euler-Lagrange equations are

ia—L,—a—L:o, (a2.3)
dA of ot
ia—L_—a—L:O. (a2.4)
dAd¢ Jdo

The Euler-Lagrange equation for r is too complicated and will not be used so it is

not given above. The above ones give the following equations:
2i +2+2(sinh? r)@ = 2a, (a2.5)
2¢(sinh* 7 —sinh? r) + 24/2(sinh?® )i = 2b (a2.6)
where a and b are some constants. For the geodesics that passes through the origin

(i.e. ¥=0), it can be seen that » must be equal to zero. Furthermore, for the null

geodesics, the following equation holds:

— i 47> —(sinh* r —sinh® r)@* — 2+/2(sinh® r)@ = 0. (a2.7)
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Combining this with (a2.6) while taking 5 =0:
—i? 472 —J2(sinh® 1)@i = 0. (a2.8)

As a summary, the following equations are in hand:

i++2sinh’ rg=a, (a2.9)
(sinh* 7 —sinh® )p+ /2 sinh> 7i = 0. (a2.10)
i2 =% +/2sinh? rgi =0, (a2.11)

From (a2.9) and (a2.10)

cosh?r |
a= Q.

a2.12
N (a2.12)
From (a2.9) and (a2.11)
PP —at=0. (a2.13)
Combining (a2.9), (a2.12) and (a2.13)
dr _ coshr L inh? | (a2.14)
dp 2
From (a2.10)
— 1 2
A _1zsinhtr (a2.15)
do V2
Using these two results
dr _ coshr (a2.16)

dt - J1-sinh?r
If these three equations are plotted by a computer (by defining x=rcos¢ and

y =rsing@), the following figures can be obtained (the units are the geometrized

units in which G = ¢ =1 as usual):
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Fig 5: 3-dimensional view

It can be seen that, when a light signal is sent in the +x direction, it follows nearly a

circular path and comes back to its source after a certain time from the —x direction.
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