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ABSTRACT 
 

 
DIRECT NUMERICAL SIMULATION OF LIQUID FLOW IN A 

HORIZONTAL MICROCHANNEL 

 

 

Kükrer, Cenk Evren 

M.S., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. İlker Tarı 

August 2005, 115 Pages 
 
 

Numerical simulations of liquid flow in a micro-channel between two horizontal 

plates are performed. The channel is infinite in streamwise and spanwise 

directions and its height is taken as 43.1 10−× m, which falls within the dimension 

ranges of microchannels. The Navier-Stokes equations with the addition of 

Brinkman number (Br) to the energy equation are used as the governing 

equations and spectral methods based approach is applied to obtain the required 

accuracy to handle liquid flow in the microchannel. It is known for 

microchannels that Br combines the effects of conduction and viscous dissipation 

in liquids and is also a way of comparing the importance of latter relative to 

former. The present study aims to simulate the unusual behavior of decreasing of 

Nu with increasing Re in the laminar regime of microchannels and to show that 

Br can be introduced to explain this unexpected behavior. Consequently, it is seen 

at the end of the results that secondary effect of the Br is observed for the single-

phase convective heat transfer. Therefore, a laminar flow of a liquid in a 

microchannel shows different characteristics compared to a similar flow in a 

macrochannel. To observe the differences, three different cases are run over each 

of a range of Reynolds numbers: one with no axial conduction assumption that 

corresponds to a case similar to macrochannel flow, another case with axial 

conduction included in the energy equation to simulate one of the main 
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differences and lastly a case with the inclusion of Br number in the governing 

equations.  

 

A similar study is made for natural convection with the same numerical set-up for 

the same three cases. Formation of Rayleigh-Benard cells are observed for the 

critical numbers widely accepted in the literature.  The results are compared with 

each other to see the effects of axial conduction and Br inclusion, in addition to 

Ra for natural convection.  

 

Keywords: Microchannel flow, DNS, forced convection, horizontal channel 

heated from below, Brinkman number, natural convection and Rayleigh-Benard 

cells. 
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ÖZ 
 
 

SIVI AKIŞKANLARIN DÜZLEMSEL MİKRO KANALDA DOĞRUDAN 

SAYISAL SİMÜLASYONU 

 

 

Kükrer, Cenk Evren 

Yüksek Lisans, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Ast. Prof. Dr. İlker Tarı 

Ağustos 2005, 115 Sayfa 

 
 

İki düzlemsel plaka arasında oluşan mikro kanallarda bulunan sıvı akışkanların 

sayısal simülasyonu yapılmıştır. Kanal uzunluk ve genişlik olarak sonsuz boyutta 

olup yüksekliği mikro kanalların boyutsal aralığına da giren 43.1 10−× metredir. 

Brinkman sayısının eklenmesi ile birlikte Navier-Stokes denklemleri ana 

denklemler olarak kullanılmış ve mikro kanalda sıvı akışını gerekli doğrulukta 

modelleyebilmesi için spektral metodu temel alan bir yaklaşım kullanılmıştır. 

Brinkman sayısının mikro kanallarda iletim ve viskozite etkilerini birleştirdiği ve 

aynı zamanda birbirleri arasında önemsel karşılaştırma yapmaya yaradığı 

bilinmektedir. Bu çalışmada, mikrokanallarda, laminar bölgede, artan Reynolds 

sayısı ile beklenmeyen sekilde düşen Nusselt sayısının davranışı simüle edilmeye 

çalışılmış ve Brinkman sayısının ortaya konulması ile açıklanabilmesi 

hedeflenmiştir. Bu nedene bağlı olarak tek-fazlı iletim ısı transferi için Brinkman 

sayısının ikincil etkisi gözlemlenmiştir. Farklı bir deyişle, mikro kanallardaki ile 

makro kanallardaki laminar akış farklılık göstermektedir. Farklılıkları 

gözlemlemek için, belirli aralıkta olan Reynolds sayılarında üç farklı durum 

incelenmiştir: makro kanallardakine benzer duruma denk gelen eksensel yönde ısı 

iletimi içermeyen durum, bir diğer durum olarak eksensel iletimin enerji 

denklemine en önemli farklılığı simule etmesi için eklenmiş hali ve son olarak 

Brinkman sayısının ana denklemler içine dahil edilmesi.  
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Benzer çalışma aynı sayısal düzenek kullanılarak her üç durum için doğal 

konveksiyon için yapılmıştır. Literatürde de kabul görmüş olan kritik değerler 

için Rayleigh-Benard hücre oluşumu gözlenmiştir. Sonuçlar Brinkman sayısının 

ve eksensel iletimin etkilerini görmek için birbirleriyle karşılaştırılmıştır.  

 

Anahtar Kelimeler: Mikro kanallarda akış, DNS, zorlu taşınım, alttan ısıtmalı 

düzlemsel kanal, Brinkman sayısı, doğal konveksiyon, Rayleigh-Benard hücresi. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

Among the novel methods for thermal management of high heat fluxes, 

microchannels are the most effective when there is less space available for heat 

removal. Therefore, microchannels and microchannel heat exchangers are 

expected to become an integrated part of some Microelectromechanical systems 

(MEMS) as well as miniaturized mechanical systems. Owing to this trend, there 

is a newly generated interest in Computational Fluid Dynamics (CFD) 

simulations of microflows. As in macrochannel simulations, usually heat transfer 

accompanies the flow. In microchannel convective heat transfer, mainly due to 

small domain and low velocities, there seems to be significant differences with 

the macrochannel case.  

 

Microstructure technology has many practical applications in many fields when 

compared with conventional channels; namely: 

 

• Bioengineering, 

• Bio-technology, 

• Aerospace and 

• Mini-heat exchangers. 

 

This technology may provide new tools for examining physical phenomena more 

closely. Consequently, the thermal phenomena, often considered very difficult to 

investigate because of small length scales, might now be explored.  

 

The classification of channels according to their hydraulic diameters (Dh) can be 

summarized as: 
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Conventional Channels  :       Dh > 3 mm 

Minichannels                  :       3 mm >Dh > 200 mµ  

Microchannels                :       200 mµ  > Dh >10  mµ  

Transitional Channels     :       10  mµ  > Dh > 0.1 mµ  

Nanochannels                  :       0.1  mµ > Dh 

 

The characteristic length for the channel used in this present work is 
43.1 10 mµ−× . The reason for using this dimension is because this is the only 

experimental data we have in the literature, which has the conditions same as 

ours. 

 

A large number of recent investigations study the fundamentals of the 

microchannel flow. The researchers compare the flow and heat transfer 

characteristics of microchannels to conventional channels. However, many 

authors observe different behavior in different experimental as well as numerical 

studies. Therefore, there is still a need for a consensus in the heat transfer 

characteristics of microflows especially for the laminar region. 

 

Because natural convection is an unexplored topic in microchannels, there is no 

application of it in the literature. However, for macrochannels, natural convection 

systems can be found in atmospheric physics, geophysics, astrophysics, or 

anytime there is a stratification of fluids. Interest in Rayleigh-Rayleigh-Benard 

system is inspired by its applications in modeling convection in the earth’s 

mantle, and solidification of crystals surrounded by fluid. 

 

1.1 Motivation 

 

Microfluidic systems are becoming more and more important today. There are 

many applications of microfluidic devices that make our lives easier and 

healthier. Three main examples for the applications are as follows: 
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1. Lab-on-chip systems: It will replace bigger machines at hospitals; 

therefore affects the human living standards directly. 

 

2. MEMS: MEMS research is wide spread, especially for applied research 

on fluid flow and heat transfer at microscales. Some past analytical and 

experimental results for the flow and heat transfer characteristics in 

microchannels are remarkably different from those for conventional 

channels, like the variation of the friction factor, the heat transfer 

coefficient and the early transition from laminar to turbulent flow.  

 

3. Microchannel heat exchangers: They can be used to achieve higher heat 

transfer coefficients, higher thermal efficiency and a lower required fluid 

mass flow rate. They are widely used in condensers for automobile air-

conditioning and will be used in evaporators and domestic air-

conditioning. 

 

Therefore, microflow is a promising subject. There is a need for numerical 

investigations in the literature and this is the main motivation of this study.  

 

1.2 Governing Equations 

 

Navier-Stokes (N-S) Equations are used widely in the literature as the governing 

equations for microchannel flows. In this study, a spectral method based 

approach is applied to obtain the required accuracy in the solution of N-S 

equations for liquid flows in microchannels. For a numerical simulation to be 

successful, the physics of the problem should be very well understood and most 

of the attention should be given to the formulation. The governing equations for 

fluid motion, used throughout this study, are the N-S Equations, which are 

accepted as the most accurate way of modeling the fluid motion under certain 

flow conditions for conventional channels. They can also be applied for the 

investigation of the flow and heat transfer in microchannels, which is, however, 

not the case for nanochannels. 
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The computer code designed, tested and used for this work is a 3-D solver for a 

fluid flow problem between two parallel plates, which are modeled as Lx by Lz 

plates with periodic boundary conditions in both directions. The channel spans 

from y = -1 to y = 1 in the normal direction and is filled with liquid. The 

geometry of the problem is given in Figure 1.1. 

 

 

 

Figure 1.1. The Geometry of the Problem 

 

 

The channel walls are maintained at specified temperatures. The rotational form 

of N-S Equations is solved using a spectral methods based approach. Three 

different cases are investigated:  

 

• with axial-conduction  

• without axial-conduction  

• with the introduction of Br into energy equation are simulated. 

 

Navier-Stokes Equations for incompressible flow without viscous dissipation: the 

continuity, momentum and energy equation are: 

  

0U∇ ⋅ =  (1.1) 
 

x y  
 z

2xL π=

2zL π=  

Ly=2 
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2U U p U gT
t

ω ν β∂
+ × = −∇ + ∇ +

∂
 (1.2) 

 

2T U T T
t

α∂
+ ⋅∇ = ∇

∂
 (1.3) 

 

With viscous dissipation energy equation becomes: 

 

2( )Tc c U T k T
t

ρ ρ∂
+ ⋅∇ = ∇ + Φ

∂
 (1.4) 

 

where viscous dissipation term is: 

 
2

12
2

u
y

µ
⎡ ⎤⎛ ⎞∂

Φ = ⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
 (1.5) 

 

( , , , )U u v w t=  is the velocity field at location ( , , )X x y z= , t  is time, p  is the 

pressure, and ,  and α ν β  are thermal diffusivity, kinematic viscosity, and the 

thermal expansion coefficient, respectively. T  is the fluid temperature, g  is the 

gravitational acceleration, and Uω = ∇× is the vorticity. 

 

The velocity field boundary conditions are: 
 

                   ( , , , )      0         at       y= 1
   

U x y z t = ±  (1.6-a) 

 
( , , , )       ( , , , )x zU x mL y z nL t U x y z t+ + =  (1.6-b) 

 

      0         at       y= 1u
x

∂
= ±

∂
 (1.6-c) 

 

        0         at       y= 1w
z

∂
= ±

∂
 (1.6-d) 

 

Therefore, from continuity equation: 
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      0         at       y= 1v
y

∂
= ±

∂
    (1.7) 

 

The boundary conditions for the temperature field are: 
 

    ( , , , )    ( , , , )   x zT x mL y z nL t T x y z t+ + =  (1.8-a) 
 

1 ( , , , )    ( , )    at   y=1T x y z t T x z=  (1.8-b) 
 

2( , , , )    ( , )    at   y=-1T x y z t T x z=  (1.8-c) 
 

The details of the solution of the governing equations are discussed in Chapter 3.  

 

1.3 Weighted Residual Method 
 

The numerical method used for the present study, a spectral method, belongs to a 

subgroup of weighted residual methods (WRM). WRM assumes that a solution 

can be approximated analytically or piecewise analytically. In general a solution 

to a Partial Differential Equation (PDE) can be expressed as a superposition of a 

set of basis functions: 

 

1
( , ) ( ) ( )

N

j j
j

T x t a t xφ
=

= ∑  (1.8) 

 

For the choice of the weight functions, aj, three common techniques are used. 

Therefore, the method of calculation for aj determines the type of spectral method 

as: 

 

• Galerkin, 

• Galerkin–Tau, or 

• Collocation. 
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The type used in this work is the collocation method. It ensures the residual to be 

zero at the nodal point by using the Dirac delta functions based on a set of nodal 

points as the weight functions. 

 

1.3.1 Spectral Methods 

 

The numerical method used for the solution of the governing equations 

throughout the thesis is a spectral method. The characteristic feature of spectral 

methods and the intention for using them as the numerical method for this study 

could be stated as follows: 

 

• It is a global approximation approach. 

• The main point of using spectral methods is to try to find a solution to a 

differential equation by the help of a series of known, smooth functions, 

which covers the whole domain. 

• The key point for the spectral methods is the trial functions, which are 

used in the truncated series expansion. They are generally selected as 

infinitely differentiable global functions. Trigonometric polynomials, 

Chebyshev polynomials and Legendre polynomials are commonly used as 

the trial functions. 

• The “Fourier Spectral Method” is the name coming from the usage of 

trigonometric polynomials as the trial function for the solution of the 

problem. 

  

Chebyshev polynomials used in this work for the solutions of one of the 

directions are also interpreted as a Fourier cosine expansion with a modification. 

  

Spectral methods have many advantages compared to other WRMs such as: 

 

• Spectral accuracy: The use of spectral methods is advantageous because 

of the fact that the addition of a few terms to sufficient number of 
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coefficients of the expansion improves the accuracy and also the error 

decreases exponentially. An example may be the comparison between 

Finite Element Method (FEM) and spectral method. FEM is a low-order 

approximation method. It generally uses first or second order polynomial 

approximations. Fluid flow problems, like the one in this work, require 

high resolution and accuracy. This is where FEM loses its attractiveness. 

• Pseudospectral methods employ spectral space only to determine spatial 

derivatives (much more efficient),  

 

Some disadvantages of Spectral Methods are as follows: 

 

• They are for global approximations and hence one has problems when 

dealing with geometries that have irregular domains. Problems with 

complex domains can be solved with the Finite Element Method, which 

has local trial functions. Since the problem domain can be divided into 

triangles or quadrilaterals, the complex domain geometry is not a 

problem anymore, when one can combine these shapes to form any 

domain.  

• It does not have any variable grid resolution, which other local 

approximation methods (finite difference, finite volume and finite 

element) have. 

 

The present study is intended to work on convective heat transfer in 

microchannels by direct numerical simulation. The thesis begins with a broad 

literature review of microchannels, Chapter 2, and continues with Chapter 3 by 

explaining a pseudospectral method in detail as the solution technique, spectral 

methods. Chapters 4 and 5 show the results for forced and natural convection 

respectively, for the liquid flow through a microchannel. The last chapter gives 

the conclusions drawn from the study. 
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CHAPTER 2 
 
 

LITERATURE SURVEY 
 

 

The interest in flow and heat transfer in microchannels has increased rapidly 

during the last decade. In general, there also seems to be a shift in the focus of 

published articles, from descriptions of the manufacturing technology to 

discussions of the physical mechanisms of flow and heat transfer.  

 

The previous studies on fluid flow in microchannels are summarized under two 

headings: forced convection in microchannels and natural convection in 

microchannels. 

 

2.1 Forced Convection in Microchannels 

 

2.1.1. Experimental and Numerical Studies 

 

Due to the growing interest in micron size devices and systems, there has been a 

great amount of fluid flow and heat transfer studies to understand the governing 

principles and the physics of the flow in microchannels. 

 

Peng and Peterson published several papers about single-phase flow in micro 

channels. In one of their articles [1], they investigate convective heat transfer and 

flow friction for water flow in microchannel structures. Single-phase forced 

convection heat transfer of water through small rectangular channels with the 

hydraulic diameter of 0.133-0.367 mm and different geometric configurations are 

investigated by experiments and their Re ranges over 50-4000. Experiments are 

done using water as the working fluid with an inlet temperatures between 20-

45oC and velocities between 0.2-12 m/s. Boundary conditions are simulated as 

three surfaces with uniform heat flux except the top surface which is insulated. 
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The authors reach the conclusion that because of the liquid temperature 

variations, f and Re varied along the length of the plate and the transition Re 

number decreases as the hydraulic diameter (Dh) decreased. Moreover, 

geometrical parameters like Dh, height to width ratio of the microchannel, the 

ratio of the hydraulic diameter to microchannel center to center distance, Dh / Wc, 

have important effects on heat transfer and flow characteristic. For laminar flow 

of water in twelve different microchannels, a correlation is found. They 

demonstrate that the laminar heat transfer can be improved by increasing the Dh 

or decreasing Wc. In another paper by the same authors [2], they indicate a 

decrease in Nu with increasing Re, where the flowing fluid used in the 

experiments are water and methanol which have velocities and temperatures 

ranging between 0.2-2.1 m/s, 11-28 oC and 0.2-1.5 m/s, 12-20 oC respectively. 

Their conclusion is for Re<400, Nu depends on important parameters other than 

Re. The authors observe that the heat transfer coefficient becomes larger as the 

liquid temperature decreases or velocity of flow increases and microchannel size 

has an important role in determination of the flow mode and heat transfer 

dynamics. Their conclusion is that h varies with Tw because of the small size of 

the channel and for similar flow rates and velocities heat transfer regimes may be 

different for different microchannels with different sizes. Moreover they 

proposed that “The range of transition zone, and heat transfer characteristics of 

both the transition and laminar flow regimes are strongly affected by the liquid 

temperature, liquid velocity, microchannels size, and, hence are not only 

determined by Re.” 

 

Wang and Peng [3] experimentally investigate the liquid forced-convection heat 

transfer through microchannels. Experiments are done to investigate the single-

phase forced convection of both deionized water and methanol flowing through 

rectangular microchannels. Free convection effects are neglected and only forced 

convection applies with a Re range of 70-4000 and 200-3000 for water and 

methanol, respectively. Their conclusion about transition and laminar regime is 

that the heat transfer characteristics in microchannels are quite obscure and 

highly complicated when compared to macrochannel cases. Liquid temperature, 
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velocity and size of the microchannel affect directly the heat transfer 

characteristics in the laminar regime. 

 

Tuckermann and Pease [4, 5] demonstrate that the heat transfer coefficient of 

laminar flow through microchannels may even be greater than that of turbulent 

flow of conventional size channels. Moreover, Wu and Little [6], Pfahler et al. 

[7] and Choi et al.[8] demonstrate that the heat transfer and flow characteristics in 

microchannels and microtubes differ from the experimental results of 

conventionally sized channels. Generally, heat transfer is enhanced as liquid 

temperature decreases and velocity increases and rise of heat transfer coefficient 

with surface temperature is bounded by the microchannel size reduction. For an 

extremely small channel, the heating creates a large change in liquid temperature. 

It is seen in the experiments that for water flow the Reynolds number is doubled 

with respect to inlet at the exit. Variation in heating rate or wall temperature 

causes Reynolds number deviations. Wu and Little [6] find that transition to 

turbulence is at lower Reynolds numbers in microchannels than conventionally 

sized channels. Results of their work indicate that while Re>1500 and 

700<Re<1500, data generally falls close to a straight line, for Re<700 the 

relationship is quite obscure between Nu and Re. They find a correlation with an 

empirical constant different than conventional case (Dittus-Boelter equation) by 

modifying the known equation 4/5 1/30.023Re PrNu = by changing the constant 

value (0.023 to 0.00805). With the help of the experimental data they point out 

that fully developed turbulent flow is induced about 1000<Re<1500 for liquid 

flow in microchannels. 

 

Peng and Wang [9] also experimentally investigate the heat transfer in flat plates 

with rectangular microchannels. In these experiments, methanol was used as a 

working fluid in rectangular shaped parallel microgrooves. Average liquid 

temperature and velocity varied between 14-19 oC and 0.2-1.5 m/s respectively. 

They conclude that how liquid temperature or subcooling affects the occurred 

transition is not clear. In addition to this, for both large-scale and microchannel 

structures, the flow velocity, temperature and degree of subcooling are the most 
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crucial parameters for heat transfer. The increase in flow velocity enhances the 

heat transfer. Also the inlet velocity alters the wall heat flux. The authors 

conclude that liquid velocity, liquid subcooling, liquid properties and geometry of 

microchannels have important influence on the heat transfer performance, cooling 

characteristics and liquid flow. Microchannel dimensions with the heat addition 

process causes a large liquid temperature change and the result of a large liquid 

temperature change is a significant alteration in thermophysical properties of the 

liquid. Moreover, variations of heating rate or wall temperature cause Re to 

change from 700-1000 at the inlet to 1800-2000 at the outlet. 

 

Tso and Mahulikar [10] show the importance of the inclusion of Brinkman 

number in the heat transfer correlation for laminar flow in microchannels. 

 
2
muBr

k T
µ=
∆

 (2.1)

 

 The authors conclude that the relation between Nu and Re is very complicated in 

laminar and transition regimes and Nu may be function of other variables besides 

Re. They propose that Br can be a solution for the unexpected decrease of Nu 

with increase of Re in the laminar regime and no change in the transition regime. 

They think that viscous dissipation decides the fundamental limit to the reduction 

of the microchannel dimension and therefore Br is the measure of that limit. They 

indicate an important conclusion that Br is very important in the laminar regime 

because of the fact that the steep velocity and temperature gradients are 

maintained in microchannels, and the relative effect of viscous dissipation should 

be important. When comparing this concept with macrochannels, it is obvious 

that Br has no relevance in conventionally sized channels because for obtaining 

the same gradients large velocities are required which leads to turbulent flow, 

hence flattened gradients. One of the most important conclusions of their work is 

that when Br has values close to 0.25, the effect of cooling the fluid is offset by 

viscous dissipation and wall heat transfer has no effect after this specific point. 
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Finally, they propose that the significance of Br is expected to diminish for low 

values of Br. 

 

The same authors also demonstrate experimental verification of the role of 

Brinkman number in microchannels by using the local parameters in another 

paper [11]. There are two test specimens and heat flux and mass flow rate are the 

parameters varied. Constant wall heat flux condition exists during each 

performed experiment. Attention is paid to the distinction between conventionally 

sized channels and microchannels due to the fact that Nu should increase as Re 

increases in large channels but not in microchannels. In the laminar regime 

unusual behavior can be explained by correlating with Brinkman number in 

addition to Pr, Re and dimensionless geometrical parameters. For this unusual 

behavior, the reported correlations do not fit with the experimental data. During 

former experiments in the literature, Tw is not measured axially with the flow to 

calculate the local Nu variation for correlating it with local Re, which changes 

with local Tf. Therefore the motivation is to correlate in laminar flow regime with 

Br for parameters taken locally and along the flow. The authors propose that a 

universal correlation with Br can be made for different velocities, if the data from 

the experiments are taken locally along the flow with constant heat flux boundary 

condition. Low values of Br are insufficient to affect fluid temperature directly. 

Br is changed along the flow. The cause for this is mainly the reduction in 

viscosity, and the increase in fluid temperature. So the result is drawn that the 

change in Br along the flow affects the temperature gradient along the flow. 

However, the variation of Br does not affect the flow due to changes in viscosity 

in conventionally sized channel because the gradients are not steep. The ratio of 

the fluid temperature gradient at the wall and wall-fluid temperature difference 

determines heat transfer coefficient. The authors claim that the temperature 

profile changes for a fully-developed flow and these variations in the temperature 

profile along the flow are captured by the variations in Br. In contrast to 

conventionally sized channels, the velocity profile is changing in microchannels 

along the steady, incompressible flow even though the flow is fully-developed, 

though the mean velocity is constant still. Another important conclusion drawn 
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by the author is that the temperature and velocity gradients in microchannels are 

steep in the laminar regime and this steep temperature gradient over the cross-

section causes the viscosity to vary substantially. 

 

Peng and co-workers [1, 2, 3, 9, 12, 13] obtain heat transfer coefficients 

increasing with Reynolds number for a laminar single-phase flow with water in 

microchannels, while a constant heat transfer coefficient is expected for 

macrochannels. Nevertheless, the heat transfer coefficient in the turbulent flow 

region is found to be predicted by a modified Dittus-Boelter equation. Moreover, 

their work demonstrates that the transition Reynolds number ranged from 200 to 

700.  

 

Yang and Webb [14] show that with a turbulent horizontal liquid flow of R-12 in 

rectangular mini-channels the Petukhov correlation given by Incropera and 

DeWitt [15] is in good agreement with their heat transfer results.  

 

Garimella et al. [16] study developing flows in mini-channels and found a 

transition Reynolds number between 800 and 2000 for the heat transfer 

coefficient, which is relatively high when compared to microchannel work in the 

literature. Transition to turbulence is visible at Re=2000 approximately. 

According to the authors the results are in good agreement with the conventional 

tubes both in laminar and turbulent region. A local, global and an averaged heat 

transfer coefficients are calculated. In the turbulent region global Nu is in 

agreement with Gnielinski [17] correlation, which is modified for thermal entry 

length effect. For 500<Re<2000, Shah and London [18] correlation for thermally 

developing flow is in agreement with the results. Nu slightly increases with Re. It 

is investigated and explained as the flow possibly does not reach a steady state 

profile. For Re<500 the results are smaller than the Shah and London correlation 

and the interpretation is that longitudinal conduction happens with heat flux 

constant heating. 
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Tunç and Bayazıtoğlu [19] solve the transient heat convection problem in their 

study. In a circular microchannel for hydrodynamically fully developed and 

thermally developing flow conditions with constant wall temperature by the 

integral transform and Laplace transform techniques, they solve the problem 

analytically. The authors investigate the effects of slip velocity, temperature jump 

and viscous heating. For their specified conditions, the results show that the 

viscous heating effects increase the Nusselt number. They reach the conclusion 

that at early stages the viscous heating is not significant because the temperature 

difference between the fluid and the wall at the beginning is the main driving 

force for heat transfer. At later stages of the flow the authors state that the values 

become closer and viscous dissipation becomes significant.   

 

In another paper of Tunç and Bayazıtoğlu [20], the authors study the convective 

heat transfer for gaseous flow for steady state, hydrodynamically developed 

laminar flow in microtubes with uniform temperature and uniform heat flux 

boundary conditions by integral transform technique. Two important conditions 

are included in their study, which are namely, temperature jump at the wall and 

viscous heating within the medium. With a fixed Br number and for uniform 

temperature case, at specified axial lengths the effect of viscous heating is studied 

for developing region, reaching the fully developed Nusselt number. For both of 

the cases with fluid being heated or cooled, the effect of viscous heating is 

investigated. They show the combined effects of Brinkman number, Knudsen 

number, which is one of the most important parameters for gaseous flow and 

Prandtl number on the heat transfer. For the effect of temperature jump on the 

Nusselt number, the authors reach the conclusion that when only the velocity slip 

condition is included and temperature jump condition on the wall are not 

considered, the Nusselt number increases with increasing Knudsen number, 

which states that the velocity slip has a positive effect on the Nusselt number. 

 

Xu et al [21] state that the mechanisms of flow and heat transfer in microchannels 

are still not understood clearly and there is little experimental data and theoretical 

analysis available in the literature to fully understand the mechanisms. They 
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assume that, as the dimensions of flow channels approach the micro-level, 

viscous dissipation could be too significant to be neglected due to a high velocity 

gradient in the channel. However, the authors admit that no evidence and analysis 

is presented to verify such an explanation. After analyzing the effects of the 

viscous dissipation on the characteristics of the liquid flow in microchannels, the 

authors conclude that the effects become significant and influence the 

temperature, pressure and velocity distributions in the flow. It is strongly pointed 

out that the relationships between the average friction factor and the Reynolds 

number change when the hydraulic diameter of the microchannel is very small. 

The viscous dissipation effects are brought about by rises in the velocity gradient 

as hydraulic diameter reduces for constant Reynolds number. 

 

For gaseous flow, Guo and Li [22] point out the larger surface to volume ratios 

for microchannels and microdevices. Consequently, they suggest that the factors 

related to surface effects have more impact to microscale flow and heat transfer. 

The authors conclude their work as: (1) The physical mechanisms for the size 

effect on the microchannel flow and heat transfer can be divided into two 

classifications: The gas rarefaction effect and the variations of the predominant 

factors influence the relative importance of various phenomena on the flow and 

heat transfer as the characteristic length decrease, even if the continuum 

assumption is still valid. (2) The size effect on the flow and heat transfer in 

MEMS should be largely attributed to the variation of the predominant factors in 

the flow and heat transfer processes. Due to a large surface to volume ratio, 

factors related to surface effects have more impact to the flow and heat transfer at 

small scales. Among these are: (a) surface friction induced flow compressibility, 

which makes the fluid velocity profiles; (b) surface roughness, which is likely 

responsible for the early transition from laminar to turbulent flow and the 

increased friction factor and Nusselt number; (c) the importance of viscous force 

in natural convection, which modifies the correlation between Nu and Ra for 

natural convection in a microenclosure; and (d) other effects, which include 

channel surface geometry, surface electrostatic charges, and axial heat conduction 
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in the channel wall. All these factors may cause the flow and heat transfer 

behaviors in microchannels differ from that at conventional scales. 

 

Mala and Li [23] study experimentally the water flow through microtubes with 

diameters ranging from 50 to 254 mµ . For the material of the microtubes, fused 

silica and stainless steel are used. To analyze the flow, pressure drop and flow 

rates are measured. The experimental results indicate significant departure of 

flow characteristics from the predictions of the conventional theory for 

microtubes with smaller diameters. For microchannels the authors indicate that 

the experimental results are in rough agreement with the conventional theory and 

for lower Re, the required pressure drop is approximately the same as predicted 

by the Poiseuille flow theory. Nevertheless, as Re increases, there is a significant 

increase in pressure gradient compared to that predicted by the Poiseuille flow 

theory which means the friction factor is higher than for the conventional 

approach. Their results indicate material dependence of the flow behavior due to 

different surface roughnesses. The authors propose the roughness-viscosity model 

to interpret their experimental data. They define two viscosity parameters namely, 

dynamic and roughness viscosity and suggest that the additional momentum 

transfer caused by the increase due to roughness can be accounted for by 

introducing this roughness-viscosity parameter.  

 

Li et al. [24] perform a number of experiments to investigate the heat transfer 

characteristics of water flowing through trapezoidal silicon microchannels. The 

channels have a hydraulic diameter ranging from 62 to 169 mµ . The authors 

solve a conjugate heat transfer problem involving simultaneous determination of 

the temperature field in both the solid and the fluid regions. The experimental 

results are compared with the numerical predictions and a significant difference is 

seen. The comparison results indicated that the experimentally determined 

Nusselt number is much lower than that given by the numerical analysis. This 

difference may be due to the effects of surface roughness of the microchannel 

walls. Based on a roughness-viscosity model established in their previous work, a 
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modified relation, which accounts for the roughness-viscosity effects is proposed 

to interpret the experimental results. By using the roughness-viscosity model, a 

good agreement between the experimental data and the predictions from the 

modified relationship is found by the authors. 

 

Sobhan and Garimella [25] make a good review of the literature. A compilation 

and analysis of the results from investigations on fluid flow and heat transfer in 

microchannels and minichannels and microtubes in the literature is presented in 

their review, with experimental results and theoretical predictions. The authors 

demonstrate and discuss the anomalies and deviations from the behavior expected 

for conventional channels, both in terms of the frictional and heat transfer 

characteristics. Their comparative study points to differences between the flow 

and heat transfer in microchannels and conventional size channels. Moreover, the 

authors show that the information in the literature does not point to reasons for 

unusual trends seen in microchannel flows. They agree that there is no evidence 

that continuum assumptions are violated for the microchannels, most of which 

have hydraulic diameters of 50 mµ  or more and analysis based on Navier-Stokes 

and energy equations would be expected to model the phenomena observed as 

long as the experimental conditions and simulations are made correctly. The 

authors think that the difference may be due to entrance and exit effects, 

differences in surface roughness in the different microchannels investigated, 

nonuniformity of channel dimensions, nature of the thermal and flow boundary 

conditions, and errors in instrumentation, measurement, and measurement 

locations. Given the diversity in the results in the literature, a reliable prediction 

of the heat transfer rates and pressure drops in microchannels is not currently 

possible for design applications such as microchannel heat sinks. 

 
Palm [26] makes a broad review about heat transfer in microchannels. For single-

phase flow he concludes that there seem to be no general agreement for the 

diameters that classical theory can be applied for determining friction factors and 

heat transfer coefficients in microchannels. The author points out that several 

authors have shown that transition from laminar to transition and turbulent flow 
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starts at lower Reynolds numbers than expected for larger hydraulic diameters 

and that the critical Reynolds number decreases with decreasing hydraulic 

diameter and the reported friction factors are both above and below predictions of 

classical laminar theory. Moreover, it is seen that the deviations are in most cases 

smaller than thirty percent, although deviations of more than a hundred percent 

can be seen in the literature. One of the main points seen in the work is that for 

the heat transfer there are several reports indicating slightly higher Nusselt 

numbers in turbulent flow than expected from the conventional theory 

correlations. However, in laminar flow both higher and lower Nusselt numbers 

have been reported. The author suggest that there can be many reasons for these 

deviations: surface roughness effects, entrance effects, changing fluid properties 

(such as viscosity), electric double-layer effects, transport effects and slip flow. 

The deviations in experimental results can be caused by the difficulties in 

accurately determining hydraulic diameters and fluid and surface temperatures in 

microchannels.  

 

For evaporation the author concludes that flow boiling is governed mainly by 

nucleate boiling mechanisms in the diameter range below 4 mm. Below a 

specified hydraulic diameter the data of Peng and co-workers show a new 

phenomenon, fictitious boiling. The characteristic for this phenomenon is that no 

bubbles are detected, but the heat exchange and temperature differences are as in 

nucleate boiling.   

 

And for condensation in microchannel flows he states that very little data are 

available in the literature concerning condensation inside microchannels and 

thought that surface tension effects should be expected to be more dominant, 

while the influence of gravity is expected to be smaller than for larger tubes. 

 

Koo and Kleinstreuer [27] study the effects of viscous dissipation on the 

temperature field and ultimately on the friction factor using dimensional analysis 

and experimentally validated computer simulations. Water, methanol and iso-

propanol are used as the working fluids in different conduit geometries. The 
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authors demonstrate that for microconduits, viscous dissipation is a strong 

function of the channel aspect ratio, Reynolds number, Eckert number, Prandtl 

number and conduit hydraulic diameter. Consequently they think ignoring 

viscous dissipation could affect accurate flow simulations and measurements in 

microconduits. The authors show that by comparing the magnitude of each term 

in the governing heat transfer equation, the viscous dissipation effect on the 

friction factor is found to increase as the system size decreases. For the viscous 

dissipation term to be important for water flow in a tube the hydraulic diameter 

should be less than 50 mµ  and it should definitely be taken into consideration for 

all experimental and computational analyses. The important non-dimensional 

parameters for seeing the obscure characteristic of viscous dissipation are the 

Reynolds number and the Brinkman number (from another point of view, the 

Eckert number and the Prandtl number). Viscous dissipation effects may be very 

important for fluids with low specific heat capacities and high viscosities, even in 

relatively low Reynolds number flows. The authors think that because of the fluid 

temperature variations, the effect of viscosity change on viscous dissipation is 

found to be measurable for flows with a small hydraulic diameter. Moreover, 

especially for liquids as the fluid temperature increases the viscous dissipation 

effect decreases. The aspect ratio of a channel, namely height vs. width, plays an 

important role in viscous dissipation. The authors observe that as the aspect ratio 

deviates from unity, the viscous dissipation effect increases. One of the most 

important conclusions of the authors is that viscous dissipation increases rapidly 

with a decrease in channel size and hence should be considered along with 

imposed boundary heat sources and ignoring the viscous dissipation effect could 

ultimately affect friction factor measurements for flows in microchannels. 

 

Morini et al. [28] performed a theoretical study calculating the temperature 

distribution in the cross-section of a rectangular duct, under the conditions of 

Newtonian and incompressible fluid, fully developed steady-state laminar flow. 

They solve the governing equations resorting to the finite Fourier transform. The 

temperature distributions are demonstrated and the results compared with the 
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literature. The viscous dissipation is responsible for a power generation that for a 

particular Brinkman number allows the wall heat flux to vanish. The authors 

study the effects of viscous dissipation and wall heat flux. They show that as the 

Brinkman number increases, the bulk temperature increases, the wall temperature 

gradient decreases and the temperature gradient goes to zero on the duct 

perimeter; therefore the authors conclude that as Brw tends to infinity, the Nusselt 

number tends to zero. It is observed in the work that the temperature gradient at 

the walls decrease when the Brinkman number increase. Even though the authors 

thought that for a constant value of Br, the viscous dissipation power increases as 

the duct thickness decreases, one can not clearly see the effect of the viscous 

dissipation from the results. 

 

Larrode et al. [29] study the influence of rarefaction on heat transfer in circular 

tubes. They try to identify the similarities with the classical Graetz problem with 

a spatial rescaling factor sρ , which is a measure of rarefaction through its 

dependence on the Knudsen number. They find that heat transfer depends both on 

the degree of rarefaction and on the surface accommodation coefficients and the 

temperature jump at the wall, ignored in recent investigations, is found to be of 

essential importance in the heat transfer analysis. The authors work with a novel 

uniform asymptotic approximation to high-order eigenfunctions. The authors 

show that heat transfer depends on two parameters: the product vKnβ , which is a 

measure of the degree of rarefaction, and β  which is a function of the surface 

accommodation coefficients. Determining the effect of the temperature jump at 

the wall is essential for them in the heat transfer analysis. Their results agree with 

previous results to some extent on increased heat transfer when the temperature 

jump at the wall is neglected, however, with a limitation. One of the most 

important conclusions drawn from their work is that the heat transfer was found 

to increase or decrease with increasing rarefaction depending on whether β <1 or 

β >1, respectively and for a given Kn heat transfer decreases with increasing β . 

Their results are interpreted by noting that under slip-flow conditions gradients at 

the wall are smaller than in continuum flow due to the velocity slip and the 



 22

temperature jump. In addition to that the authors develop a new uniform 

asymptotic approximation to the eigenfunctions of the Graetz problem, a 

weighted asymptotic approximation, which gives improved results. The 

asymptotic expressions are used to determine the heat transfer close to the 

entrance, a region where rarefaction effects are found to be more obscure and 

important. 

 

Tselj et al. [30] work experimentally and perform a numerical analysis to 

evaluate heat transfer characteristics of water flowing through triangular silicon 

micro-channels with hydraulic diameter of 160 mµ  in the range of Reynolds 

number from 3.2 to 64. They demonstrate that the bulk water temperature does 

not change linearly along the channel. Both water and heated surface 

temperatures do not change monotonously and there are significant changes in 

the temperature gradient in the flow direction. The authors think that the 

nonmonotonous behavior of fluid and heated wall temperatures is due to high 

values of axial heat fluxes in the silicon wafer. Their experimental results of 

temperature distribution on the heated wall agree with the numerical predictions. 

The authors have an interesting but important proposal that the behavior of the 

Nusselt number along the channel has a singular point and at this specific point, 

the difference between the temperatures on the wall and the bulk water becomes 

negative and the flux changes the sign and are directed from the fluid to the wall. 

Consequently, the singular point shifts closer to the channel outlet with an 

increase of the Reynolds number. The authors use the conventional Navier–

Stokes and energy equations as their governing equations and they thought that 

under conditions of their study the dissipation effects can be neglected. 

 

Koo and Kleinstreuer [31] observe liquid microchannel flows experimentally and 

results of numerical experiments concerning channel entrance, wall slip, non-

Newtonian fluid, surface roughness, viscous dissipation and turbulence effects on 

the friction factor. They classify the numerical findings in three groups. Flow 

instabilities, viscosity changes as the causes of deviations from the conventional 
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flow theory for macrochannels and the third group devoted to studies that have no 

measurable differences between micro and macro fluid flow behaviors. They 

point out that based on numerical friction factor analyses, the entrance effect 

should be taken into account for any microfluidic system and it is definitely a 

function of channel length, aspect ratio and the Reynolds number. The authors 

agreed on a general fact that the wall slip effect is negligible for liquid flows in 

microconduits. Significant surface roughness effects are a function of the Darcy 

number, the Reynolds number and cross-sectional configurations. They think that 

channel-size effect on viscous dissipation turns out to be important for conduits 

with hydraulic diameter less than a hundred µm. They propose that conventional 

theory, selectively augmented with auxiliary models, can readily predict 

benchmark experimental results for liquid flows in microconduits.  

 

A modified Graetz methodology is studied by Kuznetsov et al. [32] to investigate 

the thermal development of forced convection in a circular duct filled by a 

saturated porous medium. They hold walls at constant temperature, and include 

the effects of longitudinal conduction and viscous dissipation. The so-called 

Brinkman model is employed. The analysis leads to expressions for the local 

Nusselt number, as a function of the dimensionless longitudinal coordinate and 

other parameters such as: Darcy number, Péclet number (Pe), Brinkman number. 

They investigate the effect of adding an axial conduction term and a viscous 

dissipation term to the thermal energy equation for the problem of forced 

convection in a duct of circular cross- section. The authors observe that in the 

absence of viscous dissipation, the developing Nusselt number varies little with 

the Darcy number but increases as Pe decreases. Even a small amount of viscous 

dissipation causes a substantial increase in the value of the Nusselt number for 

the case of constant-temperature boundary conditions. And they point out 

strongly that it is not so for the case of constant-flux boundary condition. 

 

In another paper of Kuznetsov et al. [33], they work on fully developed forced 

convection in a parallel plate channel filled by a saturated porous medium, with 

boundary conditions of uniform temperature or at uniform heat flux, with the 
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effects of viscous dissipation and flow work included and solving analytically. 

The Brinkman model is employed. The analysis is connected to expressions for 

the Nusselt number, as a function of the Darcy number and Brinkman number. 

After investigating the effect of various models for the effect of viscous 

dissipation the authors see that for small Darcy numbers, the difference between 

these models is negligible, but for larger Darcy number the difference is 

substantial. 

 

An analytical study made by Morini [34] deals with a rigorous solution for the 

temperature field and the Nusselt numbers in the fully developed thermal region 

of rectangular ducts, wherein a laminar fully developed velocity profile occurs. 

The boundary condition of their work is a constant wall heat flux with a constant 

peripheral wall temperature. The author presents the results in terms of 

temperature profiles and Nusselt numbers, considering all the possible 

combinations of heated and adiabatic walls of the rectangular cross section and a 

comparison with the numerically evaluated Nusselt numbers found in literature is 

made. 

 

Dhir et al. [35] study both single-phase forced convection and subcooled and 

saturated nucleate boiling experiments in small rectangular channels using FC-84 

as test fluid. Their set up has a hydraulic diameter 0.75hD =  mm and the 

experiments are performed with the channels oriented horizontally and uniform 

heat fluxes applied at the top and bottom surfaces. The parameters that are varied 

during the experiments included the mass flow rate, inlet liquid subcooling, and 

heat flux. The authors calculate the heat transfer coefficients for both single-

phase forced convection and flow boiling based on the measured temperatures, 

pressure drops, and the overall energy balance across the test section in addition 

to the single- and two-phase pressure drop across the channels. They end up with 

correlations developed for two-phase flow pressure drop under subcooled and 

saturated nucleate boiling conditions, for subcooled flow boiling heat transfer and 

for saturated flow boiling heat transfer. 
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One of the benchmark papers summarizing the previous works is the study of 

Ameel et al. [36]. The authors make a broad review of the past literature and 

summarized their work. They point out that slip flow gas data indicate for 

microchannel flow an approximate 60% reduction in f at the same Re compared 

to conventional channel flows and recent available data for other types of flows 

are inconclusive because of the fact they appear both above and below the 

theoretical works. The authors agree on the fact that there is a need for additional 

experimental investigations over a wider Re spectrum but with much attention 

paid to well-characterized dimensions, surface roughness and thought that 

conventional theory correlations can made good estimations for microflows to 

some extent.  

 

Weisber et al. [37] focus on the heat exchangers mainly used for cooling of 

electronic chips. They use water as their working fluid and tried to eliminate the 

approximations used in previous studies. The important part of their work is to 

solve the heat transport problem both in solid and liquid by neglecting the axial 

conduction in solid and the liquid. Their Reynolds number is relatively low 

(around 100) which falls within the limit of the laminar region that is widely 

accepted by many researchers of this subject. Their investigation concludes that 

their results are in rough agreement with experimental observations except for 

some special cases. 

 

Beşkök et al. [38] investigate mixed electroosmotic pressure driven flows of T-

junction geometry as well as straight channels by comparing their numerical 

work with analytical results. Their work includes solving the Navier-Stokes and 

Poisson-Boltzman equations with the help of h/p type spectral element method. 

The author dealt mainly with electrokinetic forces. They investigate materials 

with very strong and negligible electroosmotic effects in straight channels and 

show that T-junction acts as an electroosmotically-actuated microvalve. 
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2.1.2 Importance of Brinkman Number and Axial Conduction in the 

 Literature 

 

The importance and definitions of Brinkman number in microchannels can be 

found widely in the literature. In this section, the definitions and relative 

importance of Br, hence viscous dissipation term, compared to other terms in 

Navier-Stokes equations is presented. Tso and Mahulikar have several studies 

concerning this crucial non-dimensional number of microflows. 

 

Brinkman number represents the relative importance of viscous heating to fluid 

conduction. This dimensionless number is not widely seen in conventionally 

sized channels because the variation of viscosity is generally negligible as a result 

of smaller length-to-diameter ratios. The definition of T∆ also changes from one 

author to another because of the difference in formulations. The one used in our 

study is the difference between the lower wall and the upper wall which is arising 

from our formulation. 

 

The effects of the Brinkman number can be grouped into two based on its order 

of magnitude. Relatively low values of Br (less than unity) are far from affecting 

fluid temperature due to viscous dissipation which is called as secondary effect of 

Br in the study of Tso and Mahulikar [11]. However, when Br is higher (more 

than unity) it affects the fluid temperature directly as a result of the higher values 

of the viscous dissipation term in the energy equation. This effect of the higher 

values of the Br is called primary effect of Br [11]. 

 

In the laminar regime Br is an important parameter. There exists steep velocity 

and temperature gradients which cause viscous dissipation term to be crucial even 

if it is not the case for turbulent and transition regimes. 

 

One of the reasons of deviation of microflows from macroflows is mentioned in 

the literature as axial conduction. It is neglected in the energy equation of the 

flow through conventionally sized channels because of its low order of magnitude 
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[39]. For laminar flow in microchannels the Reynolds number is kept within the 

range 80-300 in the present study. Therefore the flow is low Reynolds number 

flow which indicates that axial conduction is very crucial. As it can easily be 

recognized in the literature [40], as Reynolds number goes to infinity, which 

means high Eckert number, the importance of axial conduction becomes weaker 

and weaker which is generally the case in conventionally sized channels because 

of high transition Reynolds numbers.  

 

2.2 Natural Convection in Microchannels 

 

Unfortunately, there seems to be no literature about heat transfer with free 

convection in microchannels. Consequently, the present work is the very first 

work investigating this phenomenon and would help to understand the studies, 

which will be done in the future.  

 

The only literature related to natural convection in microchannels is the work of 

Guo and Li [45]. The authors review the size effects on microscale single-phase 

fluid flow and heat transfer. Their work is actually for gaseous flow. They think 

that due to the larger surface to volume ratio for microchannels, factors related to 

surface area have more impact to the microscale flow and heat transfer. 

Additionally, they believe the importance of viscous force in natural convection 

modifies the correlation between Nu and Ra for natural convection in a 

microenclosure and, other effects, such as the axial heat conduction in the 

channel wall, the channel surface geometry, and measurement errors as well, 

could lead to different flow and heat transfer behaviors from that at conventional 

scales. 

 

In our bottom heated channel, it is expected to observe Rayleigh-Benard cells 

after a certain critical Rayleigh Number (Ra) is exceeded. 
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2.2.1 Rayleigh-Benard Cells 

 
For Rayleigh-Benard cells to form, one should consider a thin layer of liquid 

between two large parallel plates. The properties of the system are homogeneous 

if the system is in equilibrium, with the liquid and the two plates at the same 

temperature and the liquid motionless. The bottom plate is heated slowly. The 

heat will pass from the bottom plate to the liquid and will be transferred through 

the liquid to its upper layer by conduction. In thermal conduction there is no bulk 

motion of the liquid but rather a greater thermal motion of the molecules that 

causes the transfer of heat from the warmer layers to adjacent cooler layers. 

However, if temperature of the bottom layer is increased, a stage is reached 

where the liquid bouyancy overcomes its viscosity, which means the internal 

friction that opposes movement, and begins to undergo bulk motion. The critical 

non-dimensional number, Ra, has a value of 1708 [15], which results in a 

transport of heat by convection currents. What is known is that the currents are 

not random but rather they lead to the formation of patterns. Often one first sees 

small convection cells (Rayleigh-Benard cells). In this example, the driving force 

is temperature; that is, temperature differences, or the transport of heat by a 

medium, can cause non-equilibrium structure formation on macroscopic scales. 

When viewed from above the cells form striped patterns, thus breaking the 

symmetry of the uniform state. As the temperature is raised, rolls can also appear 

in a perpendicular direction so that viewed from above one has square shaped 

structures. 

 

One of the most important conclusions is that the formation of Rayleigh-Benard 

cells in laboratory experiments depend not just on the convection, but also mainly 

on surface tension.  It is not just the difference in Rayleigh numbers that counts. 
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CHAPTER 3 

 
 

SPECTRAL METHOD SOLUTION OF N-S 

 

 

As is mentioned in the previous chapters, the governing equations for the fluid 

motion are the Navier-Stokes equations (N-S). In this chapter, the work for 

formulating the problem will be shown. The numerical work presented here for 

the solution of Navier-Stokes equations was first formulated by Kim, Moin and 

Moser [41]. Breuer originated the spectral integration method for the Helmholtz 

system and developed the algorithm for the solution. Zhang and Tangborn [42] 

had developed and tested the N-S solver used in this work. And one can reach the 

details of the formulation of the problem by investigating the Zhang’s work [42]. 

However, most of equations used in this work are taken from Tarı’s study [43]. 

 

3.1 Geometry, Domain and Assumptions 

 

The physical geometry of the problem presented in this work (see Figure 1.1) is a 

parallel plate channel where the fluid, which is water, fills the entire channel. The 

infinite walls are modeled as Lx by Lz plates with periodic boundary conditions at 

the boundaries in both streamwise (x) and spanwise (z) directions. The vertical 

distance between two parallel plates is determined as Ly. For the work presented, 

Ly ranges from y = -1 to y = 1 so that Ly = 2. Buoyancy forces are involved for 

the problem at hand because of the temperature difference between the two 

parallel plates. The flow of the water is assumed to be incompressible and 

pressure gradients only exists in the x-direction. Boussinesq approximation is 

applied which results in ignoring the variations of all fluid properties other than 

the density, and the density variations only change the gravitational force. 
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3.2 Formulation of N-S 

 

The governing equations for the incompressible flow without viscous dissipation 

are given in Eqns. 1.1-1.3. 

 

However, with viscous dissipation the energy equation becomes Eqn. 1.4 with 

Eqn. 1.5, which is the viscous dissipation term. 

 

The velocity field boundary conditions are given in Eqns. 1.6a-d and 1.7a-c. The 

boundary conditions for the temperature field are Eqns. 1.8. 

 

For obtaining the non-dimensional form of the Equations 1.1-3 some definitions 

are made. Namely, and  U L are used, respectively for the characteristic velocity 

and length scales of the problem at hand. We used the channel height H as a 

length scale. The non-dimensional temperatures are obtained using 

max minT T T∆ = − , which represents the maximum temperature difference, and 

mT Tθ = − , where mT  is the mean temperature of the lower wall. The non-

dimensional representation can be written as: 

 

* UU
U

=  (3.1-a)

* XX
X

=  (3.1-b)

* Ut t
X

=  (3.1-c)

* 1
T

θ θ=
∆

 (3.1-d)

*
2

pp
Uρ

=  (3.1-e)

 

Hence, the non-dimensional N-S without viscous dissipation becomes:  

 
* 0U∇⋅ =  (3.2)
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*
* * * 2 * *

* 2

1
Re Re Pr

U RaU p U
t g

ρω θ∂
+ × = −∇ + ∇ +

∂
 (3.3)

 
*

* * 2 *
*

1
Re Pr

U
t
θ θ θ∂

+ ⋅∇ = ∇
∂

 (3.4)

 

With the viscous dissipation term, only the energy equation changes: 

 
2 2* *

* * 2 *
2* *( . )U du UU U

t T c dyX X

θ µθ α θ
ρ

⎛ ⎞∂
+ ∇ = ∇ + ⎜ ⎟∂ ∆ ⎝ ⎠

 (3.5)

 

Dividing all the terms by U  we get:  
 

22* *
* * 2 *

2* *

1 ( . ) U duU U
t dyX U T cU X

θ α µθ θ
ρ

⎛ ⎞∂
+ ∇ = ∇ + ⎜ ⎟∂ ∆ ⎝ ⎠

 (3.6)

 

Inserting the non-dimensional length coming from the Laplacian operator: 
 

22* *
* * 2 *

2 2* *

1 1. U duU
t dyX X T cUU X X

θ α µθ θ
ρ

⎛ ⎞∂
+ ∇ = ∇ + ⎜ ⎟∂ ∆ ⎝ ⎠

 (3.7)

 

which results in: 
 

22* *
* * 2 *

* *

1 1.
Re Pr

U duU ct Tk dyU X
k

θ µθ θ ρ
⎛ ⎞∂

+ ∇ = ∇ + ⎜ ⎟∂ ∆ ⎝ ⎠
 (3.8)

 
2* *

* * 2 *
* *

1.
Re Pr Re Pr

Br duU
t dy
θ θ θ

⎛ ⎞∂
+ ∇ = ∇ + ⎜ ⎟∂ ⎝ ⎠

 (3.9)

 

where 

 
3

L g TRa β
αυ

∆
=  (3.10)
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Re LU
υ

=  (3.11)

 

Pr υ
α

=  (3.12)

 

And the fourth dimensionless number is the Brinkman number, which has been 

defined by Eqn. 2.1. 

 

All variables after this point of the thesis will be denoted without an asterisk 

because everything will be non-dimensional. 

 

3.3 Solution of N-S by Using Spectral Methods 

3.3.1 Reformulation of the Problem 
 
Writing the non-dimensional form of the N-S in a reformulated way, we obtain: 

 

2
1

1=- +h + u
Re

u p
t x

∂ ∂
∇

∂ ∂
 (3.13)

 

2
2 2

1=- +h +
Re Re Pr

v p Rav
t y

θ∂ ∂
∇ +

∂ ∂
 (3.14)

 

2
3

1=- +h + w
Re

w p
t z

∂ ∂
∇

∂ ∂
 (3.15)

 

0u v w
t t t

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (3.16)

 
2

21=-
Re Pr Re Pr

Br duu v w
t x y z dy
θ θ θ θ θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ + + ∇ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (3.17)

 

where ih  includes the convective terms, defined as 
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( )1
2i ijk j k j j

j

h u w u u
x

ε ∂
= −

∂
 (3.18)

 

Applying the differential operator to ih , the symmetric term will drop and we 

can rewrite ih  as: 

 

1    ( 2)z yh v wω ω= −  (3.19)
 

2     x zh w uω ω= −  (3.20)
 

3     y xh u vω ω= −  (3.21)
 

where , ,x y zω ω ω  are the vorticity components in ,x y  and z  directions. We can 

define them as: 

 

  =  x
w v
y z

ω ∂ ∂
−

∂ ∂
 (3.22)

 

  =  y
u w
z x

ω ∂ ∂
−

∂ ∂
 (3.23)

 

  =  z
v u
x y

ω ∂ ∂
−

∂ ∂
 (3.24)

 

Since the buoyancy force acts in the y-direction and the pressure gradient only 

exists in the x-direction, we can represent the non-linear terms in a different 

manner: 

 

1 1  =  pH h
x

∂
−

∂
 (3.25)

 

2 2 2  =  
Re Pr

RaH h −  (3.26)
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3 3 =  H h  (3.27)
 

1 2 3H    ( , , )H H H=  (3.28)
 

The fluid velocity governing equation can be written as: 

 

2U 1H U
Ret

∂
= + ∇

∂
 (3.29)

 

taking the curl of the equation: 

 

21( U) H ( U)
Ret

∂
∇× = ∇× + ∇ ∇×

∂
 (3.30)

 

21( i+ j+ k) H ( i+ j+ k)
Rex y z x y zt

ω ω ω ω ω ω∂
= ∇× + ∇

∂
 (3.31)

 

where 

 

3 32 1 2 1H i+ j+ kH HH H H H
y z z x x y

⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂ ∂⎛ ⎞∇× = − − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠
 (3.32)

 

We can create a second order differential equation for the normal component of 

the vorticity as: 

 

21
Reg

G h G
t

∂
= + ∇

∂
 (3.33)

 

where 

 

31
g

HHh
z x

∂∂
= −

∂ ∂
 (3.34)

 

yG ω=  (3.35)
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Taking the second derivative of the normal component of velocity in the 

governing equation: 

 

2
2

1
Re

v H v
t

∂
= + ∇

∂
 (3.36)

 
2

2vh H= ∇  (3.37)
 

Combination of continuity and momentum equations: 

 

31 2HH H
x z y

∂∂ ∂
+ = −

∂ ∂ ∂
 (3.38)

 

so vh  can be rewritten as: 

 
2 2

31
22 2v

HHh H
x z y x z

⎛ ⎞ ∂∂∂ ∂ ∂ ⎛ ⎞= + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.39)

 

The fourth order differential equation can be solved by dividing into two second 

order equations. First, a few definitions should be made: 

 
2v∇ = Φ  (3.40)

 

therefore the set of equations become: 

 

21
Revh

t
∂Φ

= + ∇ Φ
∂

 (3.41)

 
2v∇ = Φ  (3.42)

 

   0  at  y= 1v = ±  (3.43-a)

0  at  y= 1v
y

∂
= ±

∂
 (3.43-b)
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In this system, four boundary conditions are satisfied as follows: 

 

1 1 2 2pv v c v c v= + +  (3.44)
 

where the particular solution pv and the two homogenous solutions 1v  and 2v  

satisfy 

 

21
Re

p
p vh

t
∂Φ

− ∇ Φ =
∂

 (3.45)

 

0  at  y= 1pΦ = ±  (3.46)
 

2
p pv∇ = Φ  (3.47)

 

0  at  y= 1pv = ±  (3.48)
 

21
1

1 0
Ret

∂Φ
− ∇ Φ =

∂
 (3.49)

 

1 0  at  y=1Φ =  (3.50-a)

1 1  at  y=-1Φ =  (3.50-b)
 

2
1 1v∇ = Φ  (3.51)

 

1 0  at  y= 1v = ±  (3.52)
 

22
2

1 0
Ret

∂Φ
− ∇ Φ =

∂
 (3.53)

 

2 1  at  y=1Φ =  (3.54-a)

2 0  at  y=-1Φ =  (3.54-b)
 

2
2 2v∇ = Φ  (3.55)
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2 0  at  y= 1v = ±  (3.56)
 

Solving the above equations, 1c  and 2c  are chosen to satisfy the above boundary 

conditions: 

 

1 2
1 2 0  at  y= 1pv v vv c c

y y y y
∂ ∂ ∂∂

= + + = ±
∂ ∂ ∂ ∂

 (3.57)

 

21
Revh

t
∂Φ

= + ∇ Φ
∂

 (3.58)

 
2v∇ = Φ  (3.59)

 

21
Reg

G h G
t

∂
= + ∇

∂
 (3.60)

 

0vf
y

∂
+ =

∂
 (3.61)

 
2

21
Re Pr Re PrT

Br duh
t dy
θ θ

⎛ ⎞∂
= + ∇ + ⎜ ⎟∂ ⎝ ⎠

 (3.62)

 

u wf
x z

∂ ∂
= +

∂ ∂
 (3.63)

 

u wG
z x

∂ ∂
= −

∂ ∂
 (3.64)

 

31
g

HHh
z x

∂∂
= −

∂ ∂
 (3.65)

 
2 2

31
22 2v

HHh H
x z y x z

⎛ ⎞ ∂∂∂ ∂ ∂ ⎛ ⎞= + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.66)
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-Th u v w
x y z
θ θ θ⎛ ⎞∂ ∂ ∂

= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3.67)

 

and the boundary conditions can be written: 

 

   0  at  y= 1v = ±  (3.68-a)

0  at  y= 1v
y

∂
= ±

∂
 (3.68-b)

 

0  at  y= 1G = ±  (3.69-a)
1  at  y=1θ θ=  (3.69-b)

2  at  y=-1θ θ=  (3.69-c)
 

and, lastly, the periodic boundary conditions in x  and z directions. 

 

3.3.2 Series Expansion 

 

The readily driven equations can be solved with the help of the spectral method. 

The series expansion will be a Fourier series in the streamwise (x) and spanwise 

(z) directions, and Chebyshev polynomial expansion in the normal (y) direction. 

So the solution becomes: 

 

0
U ( , , , ) exp[2 ( )] ( )

y

x z

N

l
j N k N l x z

jx kzu j k l t i T y
N N

π
< < =

= +∑ ∑ ∑  (3.70)

 

0
( , , , ) exp[2 ( )] ( )

y

x z

N

l
j N k N l x z

jx kzj k l t i T y
N N

θ θ π
< < =

= +∑ ∑ ∑  (3.71)

 

where ( ) cos( arccos )lT y l y=  is the Chebyshev polynomial of degree l  and 

,x yN N  and zN  are the number of intervals in spatial discretization.  and  

symbols above a variable indicate that the variable is in Fourier space and 

Chebyshev space, respectively. 

 



 39

3.3.3 Temporal Discretization  

 

Crank-Nicholson and Adams-Bashforth are the methods used for temporal 

discretization. With discretization, the θ  equation without viscous dissipation 

becomes: 

 
1 2 1 2

13 1 1 ( )
2 2 Re Pr 2

n n n n
n n
T Th h

t
θ θ θ θ+ +

−− ∇ − ∇
= − +

∆
 (3.72)

 

and with viscous dissipation: 

 
1 2 1 2

1 23 1 1 ( ) ( )
2 2 Re Pr 2 Re Pr

n n n n
n n
T T

Br duh h
t dy

θ θ θ θ+ +
−− ∇ − ∇

= − + +
∆

 (3.73)

 

these can be written as: 

 

2 1 1 1 22 Re Pr 2 Re Pr3Re Pr Re Prn n n n n n
T Th h

t t
θ θ θ θ+ + −∇ − = − + − ∇ −

∆ ∆
 (3.74)

 

2 1 1 1 22RePr 2RePr3RePr RePr 2n n n n n n
T Th h B

t t
θ θ θ θ+ + −∇ − = − + −∇ − −

∆ ∆
 

(3.75)

 

1  at  y=1θ θ=  (3.76-a)

2  at  y=-1θ θ=  (3.76-b)
 

So G equations become: 

 
1 2 1 2

13 1 1 ( )
2 2 Re 2

n n n n
n n
g g

G G G Gh h
t

+ +
−− ∇ − ∇

= − +
∆

 (3.77)

 

2 1 1 1 22 Re 2 Re3Re Ren n n n n n
g gG G h h G G

t t
+ + −∇ − = − + − ∇ −

∆ ∆
 (3.78)

 

0  at  y= 1G = ±  (3.79)
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and similarly equation for v  becomes: 

 

2 1 1 1 22 Re 2 Re3Re Ren n n n n n
v vh h

t t
+ + −∇ Φ − Φ = − + − ∇ Φ − Φ

∆ ∆
 (3.80)

 

0  at  y= 1pΦ = ±  (3.81-a)
2 1 1n n

p pv + +∇ = Φ  (3.81-b)
0  at  y= 1pv = ±  (3.81-c)

 

2 1 1
1 1

2 Re 0n n

t
+ +∇ Φ − Φ =

∆
 (3.82)

 

1 0  at  y=1Φ =  (3.83-a)

1 1  at  y=-1Φ =  (3.83-b)
2 1 1

1 1
n nv + +∇ = Φ  (3.83-c)

1 0  at  y= 1v = ±  (3.83-d)
 

2 1 1
2 2

2 Re 0n n

t
+ +∇ Φ − Φ =

∆
 (3.84)

 

2 1  at  y=1Φ =  (3.85-a)

2 0  at  y=-1Φ =  (3.85-b)
2 1 1

2 2
n nv + +∇ = Φ  (3.85-c)

2 0  at  y= 1v = ±  (3.85-d)
 

Second order accuracy is obtained by these temporal discretizations. 

 

3.3.4 Spatial Discretization 

 
 The grid points in the x and z directions are defined as: 

,        0,1,..., 1x
i x

x

iLx i N
N

= = −  (3.86)
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,       0,1,..., 1z
k z

z

kLz k N
N

= = −  (3.87)

 

The grid points in y direction are defined as Chebyshev-Gauss-Lobatto points: 

 

cos( ),        0,1,...,j y
y

jy j N
N
π

= =  (3.88)

 

The whole set is solved in Fourier-Chebyshev space. We denote the Fourier 

coefficients of  θ  as θ  and the Chebyshev coefficients as θ . Second derivative 

with respect to y is denoted as 2D . The equations of θ  become: 

 
1 1 1

2 2 2 2RePr( )
n n n

TD RHS
t

θ α β θ θ
+ + +

− + − =
∆

 (3.89)

 
1

2 2 2 2RePr3RePr RePr ( )
n n n n n
T TTRHS h h D

t
θ α β θ θ

−
= − + − + + −

∆
 

(3.90)

 
1 1

2 2RePrn n

TRHS
t

θ θ
+ +

∇ − =
∆

 (3.91)

 

1
2 2 2 22RePr3RePr RePr ( ) 2 ( )

n n n n n
T TT

duRHS h h D Br
t dy

θ α β θ θ
−

=− + − + + − −
∆

 
(3.92)

 

and the boundary conditions are: 

 

1  at  y=1θ θ=  (3.93-a)

2  at  y=-1θ θ=  (3.93-b)
 

α  and β  are the wave numbers in x and z directions, respectively. Also another 

parameter κ is defined as: 
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2 2κ α β= +  (3.94)
 

and both of the energy equations become: 

 
1 1

2 2 , 12Re Pr( )
n n

n n
TD RHS

t
θ κ θ

+ +
−− + =

∆
 (3.95)

 

The equation above is a second order equation in Fourier-Chebyshev space that 

has to be solved with respect to each α  and β . 

 

For the other equations, exactly the same procedure we followed for θ  should be 

followed. Therefore, they become: 

 
1 1

2 2 , 12 Re( )
n n

n n
gD G G RHS

t
κ

+ +
−− + =

∆
 (3.96)

 

0  at  y= 1G = ±  (3.97)
 

1
2 2 2 2 Re3Re Re ( )

n n n n n

g ggRHS h h D G G G
t

α β
−

= − + − + + −
∆

 (3.98)

 
1 1

2 2 , 12 Re( )
n n

n n
p p vD RHS

t
κ

+ +
−Φ − + Φ =

∆
 (3.99)

 

0  at  y= 1pΦ = ±  (3.100)
 

1
2 2 2 2 Re3Re Re ( )

n n nn n

p p pg ggRHS h h D
t

α β
−

= − + − Φ + + Φ − Φ
∆

 (3.101)

 
11 1

2 2
nn n

pp pD v vκ
++ +

− = Φ  (3.102)
 

1

0  at  y= 1
n

pv
+

= ±  (3.103)
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1 1
2 2

1 1
2 Re( ) 0

n n

D
t

κ
+ +

Φ − + Φ =
∆

 (3.104)

 

1 0  at  y=1Φ =  (3.105)

1 1  at  y=-1Φ =  (3.106)
11 1

2 2
11 1

nn n

D v vκ
++ +

− = Φ  (3.107)
1

1 0  at  y= 1
n

v
+

= ±  (3.108)
 

1 1
2 2

2 2
2 Re( ) 0

n n

D
t

κ
+ +

Φ − + Φ =
∆

 (3.109)

 

2 0  at  y=1Φ =  (3.110-a)

2 1  at  y=-1Φ =  (3.110-b)
11 1

2 2
22 2

nn n

D v vκ
++ +

− = Φ  (3.110-c)
1

2 0  at  y= 1
n

v
+

= ±  (3.110-d)
 

The transformations between physical space and Fourier-Chebyshev space is 

done by the help of a real Fast Fourier Transform (FFT). Using FFT causes no 

problem in Chebyshev space because Gauss-Lobatto points are chosen in y-

direction, which leads the discrete Chebyshev expansion become a simple cosine 

series. 

 

FFT used in this work is a real transform. The complex coefficients of a function 

in Fourier space are split into two real sets of data and solved separately. 

 

3.4 Spectral Integration of N-S 

 

The equations derived above are second order differential equations in Fourier-

Chebyshev space, which can also be written in generic form that is second order 

equation with two boundary conditions: 

 

( )  where  [ 1,1]f y yθ δθ′′ − = ∈ −  (3.111)
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1  at  1yθ θ= = −  (3.112-a)

2  at  1yθ θ= =  (3.112-b)
 

Using a Chebyshev-Tau method, we want the solution of: 

 

0

( ) ( )
y

y

N

N j j
j

y a T yθ
=

= ∑  (3.113)

 

with boundary conditions 

 

( ) 1
0

1
yN

j
j

j

a θ
=

− =∑  (3.114)

 

2
0

yN

j
j

a θ
=

=∑  (3.115)

 

Generally, the system is solved directly for θ  by constructing a spectral 

differentiation matrix, using the recurrence relations of Chebyshev 

differentiation. Since, the matrix is ill-conditioned, it has to be reformed. An 

integral equation had been constructed by solving ( )yθ ′′  rather than θ  itself. 

This approach had been investigated by Greengard [44] and proven to be more 

accurate than the spectral differentiation method as the number of points 

increases. 

 

Define: 

 

( )yθ σ′′ =  (3.116)
 

( )yσ  and ( )f y  represented by truncated Chebyshev polynomial expansions it is 

obtained that: 
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0

( ) ( )
yN

j j
j

y b T yσ
=

= ∑  (3.117)

 

0

( ) ( )
yN

j j
j

f y f T y
=

= ∑  (3.118)

 

Our original equation becomes: 

 

1 0
1 1

( ) [ ( ) ] ( )
y t

y d dt C y C f yσ δ σ τ τ δ δ
− −

− + + =∫ ∫  (3.119)

 

2 1 1

( ) ( )
y yN t

j j
j

a T y d dtσ τ τ
= − −

=∑ ∫ ∫  (3.120)

 

0 0 0( )a T y C=  (3.121)
 

1 1 1( )a T y C y=  (3.122)
 

Coefficients{ } { },j ja b and{ }jd represent ,θ θ′′ andθ ′ respectively. Finally,{ }jc  

represents constants, namely, 0 12, 1c c= =  for 0, 0jj c> =  for yj N> . 

 

The recurrence relation for Chebyshev first integration is: 

 

1 1 1 1
1 ( )
2j j j j jd c b c b

j − − + += −  (3.123)

 

and second integration: 

 

1 1 1 1
1 ( )
2j j j j ja c d c d

j − − + += −  (3.124)

                                            

The help of Eq. (3.123) and (3.124) gives us the following relation: 
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1 1
2 2 2 2

1 [ ( ) ( )]
2 2( 1) 2( 1)

j j
j j j j j j j j j

c c
a c b c b c b c b

j j j
− +

− − + += − − −
− +

 (3.125)

 

Using equation (3.119) we obtain: 

 

1 2 1 1 1 2
2 2[ ( ) ]

2 2( 1) 2 1 1 2( 1)
j j j j j j j

j j j j i

c c c c c c c
b b b b f

j j j j j
δ − − − + + +

− +− − + + =
− − + +

 (3.126)

 

1 2 1 1 1 2
2 2

1 [1 ( )]
4 ( 1) 4 1 1 4 ( 1)

j j j j j j j
j j j i

c c c c c c c
b b b f

j j j j j j j
δ

δ δ− − − + + +
− +− + + + − =

− − + +
 (3.127)

2,3,..., yj N=   
 

1 2

4 ( 1)
j j

j

c c
p

j j
δ − −= −

−
 (3.128)

 

1 11
4 1 1

j j j
j

c c c
q

j j j
δ − +⎛ ⎞

= + +⎜ ⎟− +⎝ ⎠
 (3.129)

 

1 2

4 ( 1)
j j

j

c c
r

j j
δ + += −

+
 (3.130)

 

the general form of the equations becomes: 

 

2 2 ,        2,3,...,j j j j j j j yp b q b r b f j N− ++ + = =  (3.131)
  

by considering the boundary conditions defined by Eqn. 3.114 and Eqn. 3.115 

they can be rewritten 

 

( ) 1 0 1
2

1   at  y 1
yN

j
j

j

a C C θ
=

− − + = = −∑  (3.132)

 

1 0 2
2

 at  y 1
yN

j
j

a C C θ
=

+ + = =∑  (3.133)
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also, can be written as 

 

1 2
0

2

 (even)
2

yN

j
j

C a θ θ
=

+
+ =∑  (3.134)

 
1

2 1
1

2

 (odd)
2

yN

j
j

C a θ θ−

=

−
+ =∑  (3.135)

 

by using the relation (3.125) for replacing ja  in the boundary conditions above 

with jb  we have 

 

( ) ( ) ( ) ( )1 1
0 2 2 2 2

2

1 2

1
2 2 1 2 1

  (even)
2

yN
j j

j j j j j j j j
j

c c
C c b c b c b c b

j j j

θ θ

− +
− − + +

=

⎡ ⎤
+ − − −⎢ ⎥− +⎣ ⎦

+
=

∑
 (3.136)

 

( ) ( ) ( ) ( )1 1
1 2 2 2 2

2

2 1

1
2 2 1 2 1

  (odd)
2

yN
j j

j j j j j j j j
j

c c
C c b c b c b c b

j j j

θ θ

− +
− − + +

=

⎡ ⎤
+ − − −⎢ ⎥− +⎣ ⎦

−
=

∑
 (3.137)

 

With these two more boundary conditions which form the top row of the 

matrices we get the even system 

 

2 4 6

0 0 0

2 2 2

2 2 2

1 ... ...

0 ... ... 0
0 0 ... 0

0 0
0

0

0 0

y

y y y

y y

N

N N N

N N

t t t t

p q r
p q r

p q r

p q
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

y

o

o

j

N

c

b

b

b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

=

1 2

2

2

y

o

j

N

f

f

f

f

θ θ+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.138)

0, 2,4,..., yj N=   
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and the odd system 

 

1 3 5 1

1 1 1

3 3 3

3 3 3

1 1

1 ... ...

0 ... ... 0
0 0 ... 0

0 0
0

0

0 0

y

y y y

y y

N

N N N

N N

t t t t

p q r
p q r

p q r

p q

−

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

1

3

1y

j

N

c

b

b

b

b −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

=

2 1

1

3

1

2

y

j

N

f

f

f

f

θ θ

−

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.139)

1,3,5,..., 1yj N= −   
 

An important point here is that the cases of 0j = and 1j =  are not included in 

definitions for jp , jq and jr . This problem can be solved by comparing equation 

(3.121) and the matrices above. In addition to that, jt  can be found by Eqns. 

(3.138) and (3.139). jp , jq and jr  are defined in Eqns. (3.128) to (3.130). For 

0j = and 1j = cases: 

 

o o ob C fδ− =  (3.140-a)

1 1 1b C fδ− =  (3.140-b)
 

so  

 

,      q 1,      r 0o o op δ= − = =  (3.141-a)

1 1 1,      q 1,      r 0p δ= − = =  (3.141-b)
 

Using spectral integration method the system formed has 3yN +  equations and 

3yN +  unknowns which contains jb and two constants oC  and 1C . As seen from 

above the whole system is split into odd and even matrices where we know the 

right-hand side function. The matrices are tridiagonal except the top row which is 

derived from the boundary conditions shown above. First the system is solved 
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for jb . These are actually the coefficients ofθ ′′ . Then the Chebyshev integration 

is carried out twice over jb to get ja , which are actually the coefficient ofθ . oC  

and 1C , which are the integration constants, had been determined in the matrix 

solver. They are the zeroth and first coefficients of θ  meaning actually oa and 1a . 

 

3.5 Computational Procedure 

 

Here we will give brief information about N-S solver. Before the beginning of 

each and every time step, we have the data from previous time step, namely 

 

,      q 1,      r 0o o op δ= − = =  (3.142-a)

1 1 1,      q 1,      r 0p δ= − = =  (3.142-b)
 

All the data above are in Fourier space. All mathematical expressions are done in 

physical space so with the help of inverse FFT we convert all the initial values to 

physical space and calculate the non-linear terms as follows 

 

1 z y
pH v w
x

ω ω ∂
= − −

∂
 (3.143)

 

2 2Re Prx z
RaH w uω ω θ= − +  (3.144)

 

3 y xH u vω ω= −  (3.145)
 

( )TH u v w
x y z
θ θ θ∂ ∂ ∂

= − + +
∂ ∂ ∂

 (3.146)

 

Transforming back to Fourier space and for each value of 2 2 2κ α β= + and 0κ ≠ , 

 

1 3gh i H i Hβ α= −  (3.147)
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since  

 
2 2

1 3
22 2( ) ( )v

H Hh H
y x z x z

∂ ∂ ∂ ∂ ∂
= − + + +

∂ ∂ ∂ ∂ ∂
 (3.148)

 

We transform the results above back to Fourier-Chebyshev space to consolidate 

the RHS for each equation. 

 

For G-equation: 

 
1

2 2 2 Re3Re Re ( )
n n n n

g ggRHS h h D G G
T

κ
−

= − + − + +
∆

 (3.149)

 

where 
1n

gh
−

, 2
n

D G and 
n

G are obtained from the previous time step. 

 

v-equation: for this special case, the Chebyshev derivative of the first part of 

vh with respect to y should be taken, and after that obtain vh by adding the second 

part to it.  

 
1

2 2 2 Re3Re Re ( )
n nn n

p pv vvRHS h h D
T

κ
−

= − + − Φ + + Φ
∆

 (3.150)

 

where 
1n

vh
−

, 2
n

pD Φ and 
n

pΦ are obtained from the previous time step. 

 

θ -equation:  

 
1

2 2 2 Re Pr3Re Pr Re Pr ( )
n n n n

T TTRHS h h D
T

θ κ θ
−

= − + − + +
∆

 (3.151)

 

where 
1n

Th
−

, 2
n

D θ and 
n

θ are obtained from the previous time step. 
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And at this point, the system can be solved by the vertical solver in Fourier-

Chebyshev space. The technique used for this is exactly the method we 

mentioned in the previous section, namely, spectral integration. Vertical solver 

gives us the solutions of , , , , , ,u G G f θ θ
′ ′

Φ . By the help of these data obtained, 

we can find the other variables needed for the solution. 

 

We know from continuity 

 

i u i w vα β ′+ = −  (3.152)
 

and from the definition of G 

 

i u i w Gβ α− =  (3.153)
 

 which gives us 

 

2 ( )iu v Gα β
κ

′= −  (3.154)

 

2 ( )iw v Gβ α
κ

′= +  (3.155)

 

also 

 

2 ( )x
i Gω α β

κ
′= + Φ  (3.156)

 

2 ( )z
i Gω β α

κ
′= − Φ  (3.157)

 

from the temperature equation 
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x
θ αθ∂

=
∂

 (3.158)

 

z
θ βθ∂

=
∂

 (3.159)

 

Separation of real and imaginary parts of the coefficients in Fourier space is an 

important point to be taken care of. All the data in the form of Fourier 

coefficients should be divided into two sets of real data and the calculations 

should be based on these two sets of data. An example for this can be: 

  

1 3gh i H i Hβ α= −  (3.160)
 

but when we are doing this operation what we really want to calculate is 

 

1 1 3 3( ) ( )g r im r imh i H iH i H iHβ α= + − +  (3.161)
 

which is for the negative wave number. For positive wave number the 

combination is just the conjugate 1 1r imH iH− . Separating the real and imaginary 

parts we get 

 

1 3gr im imh H Hβ α= − +  (3.162)
 

1 3( )gim r rh i H Hβ α= −  (3.163)
 

treating these two data sets separately and calling the same function, vertical 

solver, in the computer program twice to handle the solution of real and 

imaginary parts in Fourier-Chebyshev space. 

 

For 0κ = , we can solve the equations directly because for this case everything is 

real even in Fourier space. One can easily see for this case 
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0i u i w Gβ α− = =  (3.164)
 

and by the help of continuity equation and the boundary conditions 

 

0v =  (3.165)
  

Solving the momentum equations in x-direction and z-direction directly 

 

2
1

1
Re

u H D u
t

∂
= +

∂
 (3.166)

 

2
3

1
Re

w H D w
t

∂
= +

∂
 (3.167)

 

Therefore passing through the same temporal discretization procedure, the 

equations to be solved in Fourier-Chebyshev space is: 

 
11 1

2 2
1 1

2 Re 2 Re3Re Re
n nn n n n

D u u H H D u u
T T

−+ +

− = − + − −
∆ ∆

 (3.168)

 
1 1 1

2 2
3 3

2 Re 2 Re3Re Re
n n n n n n

D w w H H D w w
T T

+ + −

− = − + − −
∆ ∆

 (3.169)

 

these equations are for the case 0α = and 0β = which are solved exactly the way 

described above for 2 0κ ≠  case. 

 

Here at the end of each loop in the code we have ended up having the velocity 

and temperature fields, which are in Fourier space and dumped into the specified 

files with their physical values. This is done exactly for each loop so for the next 

loop we have any information needed for the calculation of RHS of each equation 

mentioned above. The loop continues until the specific time reached namely tend. 
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CHAPTER 4 

 
 

RESULTS AND DISCUSSION FOR FORCED CONVECTION 

IN MICROCHANNELS  

 

 

Brinkman number (Br) is introduced in N-S solver through the addition of 

viscous dissipation term widely neglected in conventional channels. Brinkman 

number is generally neglected for conventional channels in low viscosity and low 

speed flows for short lengths. However, Brinkman number is significant for long 

macrochannels. This is due to the fact that; length over diameter ratio is large in 

microchannels. By making a simple analogy, it is easily seen that Brinkman 

number may become important for flows in microchannels and may be 

responsible for the observed unusual behavior between Nu and Re. 

 

Brinkman number represents the relative importance of viscous heating to fluid 

conduction and in this study the effect of Brinkman number on single phase heat 

transfer analysis of hydrodynamically and thermally developed laminar flow of a 

viscous fluid through horizontal parallel plates is analyzed. The generally 

neglected viscous dissipation term is inserted in the energy equation. The 

momentum and energy equation is solved by spectral methods. The top and 

bottom plates are at prescribed dimensionless temperatures given by Ra. In both x 

and z directions, velocity components and temperature have periodic boundary 

conditions. 

 

A horizontal channel that is infinite in streamwise and spanwise directions is 

considered. The channel height is taken as 3.1×10-4 m which falls within the 

dimension ranges of microchannels. The selected computational domain 

represents a section in the middle of a very long and wide microchannel. The 
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geometry of the problem considered in this section is shown in Figure 1.1. The 

coordinate system is located at the center of the parallel plates. 

 

4.1. Fully Developed Velocity Distribution 

  

The velocity profile at the upstream boundary is prescribed as a parabolic one and 

it stays parabolic throughout the length of the channel. Figure 4.1 indicates the 

velocity profile throughout the channel. 

 
 
 

Figure 4.1. Fully developed laminar velocity profile inside a microchannel 
between parallel plates 

 

 

In microchannel flows, transition to turbulence occurs much earlier than 

Re=2300. The selected range of Re (80-300) corresponds to laminar flow. The 

plates bounding the channel are also considered as smooth. 

 

4.2. Heat Transfer Analysis 

 

For heat transfer analysis the following steps are followed: As a first step to solve 

the energy equation, Eqns. 1.4 is used for the energy equation with viscous 

dissipation. Eqn. 1.5 is the simplified version of the viscous dissipation term as it 

is the form widely accepted in the literature for conventional channels [39]. Eqn. 
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1.8 are used as the boundary conditions for the temperature field mentioned in 

Chapter 1.   

 

By making the energy equation non-dimensional with the help of the equations 

written in Chapter 3, we ended up with Eqn. 3.9: 

 
2* *

* * 2 *
* *

1.
Re Pr Re Pr

Br duU
t dy
θ θ θ

⎛ ⎞∂
+ ∇ = ∇ + ⎜ ⎟∂ ⎝ ⎠

 

 

Where Brinkman number is defined as: 

 
2

UBr
k T
µ

=
∆

 

 

After obtaining the temperature profile, the local heat transfer coefficient and Nu 

number are found by, 

 
*

max min( ) mT T T Tθ= − +  (4.1)
 

where 

 
* *( )yθ θ=  (4.2)

 

and 

 

max minT T T∆ = −  (4.3)
 

*T T
y y

θ∂ ∂
= ∆

∂ ∂
 (4.4)

 

*

1 1y y

T T
y y

θ

=− =−

⎛⎛ ∂ ∂
⎜= ∆⎜⎜ ⎜∂ ∂⎝ ⎝

 (4.5)  
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*

*
1 1y y

T T
y L y

θ

=− =−

⎛⎛ ∂ ∆ ∂
⎜=⎜⎜ ⎜∂ ∂⎝ ⎝

 (4.6)  

 

and Nu number can be written by utilizing the equations above: 

 

hLNu
k

=  (4.7)

 

where local heat transfer coefficient is found by using: 

 

1( )x
m w y

k Th
T T y =−

⎛ ∂
= ⎜⎜− ∂⎝

 (4.8)  

 

where mU  is given in Table 4.1 and  mT  is: 

 
1

1
. .

.m
m

T u dy
T

U L
−=
∫

 
(4.9)  

 

 

Introducing dimensionless quantities into the Eqn. 4.7, the Nusselt number is 

determined  for constant wall temperature as: 

 

*

1 w my

TNu
y T T

θ

=−

⎛ ∂ ∆
⎜=
⎜ ∂ −⎝

 (4.10)

 

4.2.1. Test cases for numerical experimentation 

 

The test cases by selecting working fluid as liquid water are shown in Table 4.1. 

The independent parameters are Re, mean flow velocity, um and channel height, 

L, which is constant. From the definition of Re=(um L)/ν , the kinematic viscosity 

is obtained and and by using a table lookup, bulk temperature is estimated. The 
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rest of the columns in Table 4.1 are obtained using this temperature value. As a 

result Br values come out as very small but in a similar range with the ranges 

considered by some other studies in the literature. Since velocity and Re values 

are very low, natural convection may also be important, thus Ra is also calculated 

and used. 

 

Therefore, we followed exactly the same procedure with Tso and Mahulikar [10] 

to obtain the other necessary numbers. They foundν  and fT is found accordingly. 

After these critical points all of the other properties of water flowing inside the 

channel are found by interpolation. However to determine the Ra number, we do 

need to fix an additional non-dimensional number which is our crucial Brinkman 

number. By using this non-dimensional number T∆  is found followed by finding 

the Ra number. 

 

In this work, three different cases (no-axial conduction, with axial conduction and 

Br included in the energy equation) with 12 different sets of data (see Table 4.1), 

making a total of 36, are inspected. The reason for choosing these data is due to 

the lack of experimental data for our parallel plate microchannel numerical 

experimentation case. We use a parallel logic with Tso and Mahulikar [10] for 

obtaining the parameters but follow a different way with our geometry and 

putting the natural convection effect into our work, resulting in mixed convection 

in parallel plate microchannel.  

 

Our Re ranges over 80-300, which is widely accepted as laminar region in the 

literature. One of the important parameters, which has smaller values compared 

quantitatively with macrochannel case numbers, is the value of Ra. The reason 

for this is the small characteristic length due to the nature of the problem. 

Increasing Ra to its macro case values brings our temperature between two walls 

to impossible to reach values. 
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Table 4.1 Selected cases for the simulation runs 

 
Re ν × 107 Tf k Pr ∆T Br × 105 Ra 
(--) (m2 s-1) (K) (W m-1 K-1) (--) (K) (--) (--) 

Case 1  Um = 0.25 m s-1  L = 3.1×10-4 m   
80 9.688 294.736 0.601 6.736 3.548 2.8333 25.219
87 8.908 298.576 0.607 6.129 5.048 1.8109 38.007
97 7.99 303.142 0.614 5.415 10.74 0.7532 87.448
107 7.243 308.364 0.622 4.851 15.876 0.4559 138.72

Case 2  Um = 0.29 m s-1  L = 3.1×10-4 m   
93 9.667 294.839 0.601 6.719 3.059 4.4115 21.773
100 8.99 298.172 0.606 6.193 3.457 3.5956 25.859
116 7.75 304.818 0.617 5.234 4.363 2.4100 36.297
124 7.25 308.315 0.621 4.856 6.705 1.4541 58.544
136 6.61 312.788 0.628 4.373 7.27 1.2091 68.008

Case 3  Um = 0.76 m s-1  L = 3.1×10-4 m   
250 9.424 296.034 0.603 6.531 2.303 39.1 16.676
273 8.63 299.946 0.609 5.913 4.049 20.133 31.176
300 7.853 304.096 0.616 5.312 4.936 14.853 40.678

 

4.2.2. Numerical Solution 

 

The rotational form of Navier-Stokes equations (N-S) is solved using a spectral 

methods based approach. Three different cases are considered: i) with axial-

conduction; ii) without axial-conduction; and iii) with the introduction of Br. 

 

4.3 Numerical Verifications 
 

4.3.1 2D vs. 3D 
 

The Navier-Stokes solver used in this study is originally designed for 3D 

simulations. However, when the flow is laminar and the bottom plate is heated 

uniformly, there is no spanwise flow thus the layers of 3-D simulation results 

were identical leading to absolute 2-D behavior. After observing this behavior, all 

presented results were obtained from 2-D runs.  
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Figure 4.2 Re=80 dimensionless velocities (3D) 

 

 
For verification of this phenomenon two different runs are made to see that the 

velocity component in spanwise direction is zero in addition to the same results 

of u and v for 2D and 3D runs shown in Figures 4.2 and 4.3. The data are taken in 

the middle of the channel both for 2D and 3D runs. It is observed that the results 

are repeating themselves in all slices in z direction. 
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Figure 4.3 Re=80 dimensionless velocities (2D) 

 
 

4.3.2 Grid Independency 
 
The only way to establish grid independent solutions is to setup a model with a 

finer mesh (a larger number of collocation points) and analyze it to see if there 

are major differences in velocity and temperature fields. In 2-D case 128 and 64 

points in y and x directions, respectively, is selected (128x64 grid).  

 

To show the grid independency for Re=300 case, a run with 256x128 grid was 

tried and no difference is observed with the coarser grid results. However, for 

64x32 grid, as it is shown in Figure 4.4, it is obvious that the mesh is not suitable 

for simulating the flow in correct manner. Similar results are also obtained for the 

temperature fields. Consequently, it is concluded that 128x64 is the necessary and 
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sufficient mesh for the work at hand. Therefore, the Figures 4.5 and 4.6 support 

the choice made. 
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Figure 4.4 Re=300, dimensionless velocities for 64x32 mesh 
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Figure 4.5 Re=300, dimensionless velocities for 128x64 mesh 

 

 
The next step followed after determining the mesh is finding the appropriate time 

scale dt. Obtaining the diffusion time scale goes parallel with finding the 

adequate mesh. We began with dt=0.01 and 64x32 mesh. After applying same dt 

to 128x64, it is observed that after dimensionless time t=101.6, the results appear 

as “not a number” at all of the velocity files, which means that this dt cannot 

catch up a finer mesh, namely 128x64. dt=0.005 is applied for 128x64 and 

dt=0.0025 for 256x128 mesh. Consequently, selecting 128x64 as our mesh, we 

automatically determine dt=0.005 as a diffusion time scale. 
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Figure 4.6 Re=300, dimensionless velocities for 256x128 mesh 

 
 

4.4. Results and Discussion 

 

To show the effects of Brinkman number and axial conduction, the energy 

equation is solved numerically by spectral methods including the axial 

conduction and viscous dissipation terms. The dimensionless temperature 

distribution, streamlines and the Nu number are determined as a function of 

dimensionless axial coordinate for different Re, Ra and Brinkman number values. 

As it could be seen from Table 4.1, the values of Re for the test cases are ranging 

in 80-300 with corresponding Br values for the cases with viscous dissipation. 

The selected Reynolds numbers are adapted from [10] and within the range of 

laminar regime for microchannels.  
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Br =0 is the case without viscous dissipation. 

 

For each Re case in Table 4.1, three different runs: 1) with axial conduction; 2) 

with no-axial conduction; and 3) with the introduction of Br, are performed. 

There was no observable difference among the results of these three runs when 

the results are drawn using contour plots except Re=80, 87 and 97 cases.  
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Figure 4.7 Re=300 streamline contours at t*=200 with 128x64 resolution. 

 
 

As a representative result, Figure 4.7 shows Re=300 streamline results for all 

three different cases at t*=200. It is seen here that the streamlines are straight 

lines as expected from conventional channels. And the effect of axial conduction 

and viscous dissipation is not observed from contour plots. Figure 4.8 shows 

temperature field contours for the same cases. 
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Figure 4.8 Re=300 temperature contours at t*=200 with 128x64 resolution. 

 
 

Re=80 case with no-axial conduction gave interesting results. To improve the 

resolution at that Re, the runs are repeated with 256x128 collocation points. 

Figure 4.9 shows comparison of no-axial and Br streamline results at t*=200. 

Figure 4.10 is for the same cases, to show temperature fields. Although not as 

strong, similar behavior is also observed for Re=87 and 97 cases. 
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Figure 4.9. Comparison of Re=80 no-axial conduction and Br (streamline) results  

at t*=200 with 256x128 resolution. 
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Figure 4.10. Comparison of Re=80 no-axial conduction and Br temperature 

contours at t*=200 with 256x128 resolution. 

 
 

The streamline contours close to the plates in Figure 4.9 indicates that no-axial 

conduction case shows a pattern similar to Rayleigh-Benard convection cells 

appearing due to thermal instability resulting from bottom heated arrangement. 

The time role of change of u and v velocities at the middle of the channel is 

shown in Figure 4.11. As can be seen, the cell formation starts around t*=115. 

This behavior is most probably due to the increased importance of natural 

convection after removal of the conduction term from the energy equation. 
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Figure 4.11. Time change of u and v velocities at the middle of the channel for 

 Re=80 no-axial conduction case 

 
 

For this instability case, the progression of streamline contours over time is 

shown in Figure 4.12. As can be seen, at t*=100, a very similar result to all other 

Re case results is obtained.  
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Figure 4.12. For Re=80 no-axial conduction case, streamline contours at 

 t*=100, 120 

 
 

At t*= 160 and 300, the traces of partially formed convection cells can be seen, 

Figure 4.13. 

 

Consequently, we can draw an important conclusion for the case of “no-axial 

conduction included in the energy equation” from Figures 4.12-14. In Re=80, 87 

and 97 no-axial conduction runs, partially formed convection cells are observed. 

These structures are not present in the runs with axial conduction and in the runs 

with Br for those Reynolds numbers. This unusual behavior shows that axial 

conduction plays an important role in low Re liquid flows and it should be 

included in formulations for low Re microchannel simulations. This observation  

matches the similar conclusions  drawn for conventional channels in the literature 

[32]. 
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Figure 4.13. For Re=80 no-axial conduction case, streamline contours at 

 t*=160, 300 

 
 

The axial conduction term becomes negligible at high Reynolds numbers due to 

the fact that the Peclet number is sufficiently large so that longitudinal (axial) 

conduction could be neglected. However, our numerical experiments are 

performed for relatively small Re (therefore Pe). This is why the we did observe 

the effect of axial conduction term clearly for lower values (as it is seen from 

Figure 4.12, t*=160 and 300), but did not see any effect for higher values of Re.   

 

Similar behavior is even better observed in Figures 4.14-15, showing temperature 

contours. 
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Figure 4.14. For Re=80 no-axial conduction case, temperature contours at 

 t*=100, 120. 
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Figure 4.15. For Re=80 no-axial conduction case, temperature contours at 

 t*=160 and 300. 

 
 

4.4.1 Comparison of the results with literature 

 

The best way to compare the results of the present work with the literature is to 

observe the variation of the results in terms of known non-dimensional terms, 

namely Nu, Br and Re. There is very limited data in the literature for us to 

compare the results of this study. The present work is for parallel plate 

microchannel and includes natural convection for a completely fully developed 

flow. Most of the experimental results contain entrance effects, like the one we 

compare our results with which can easily be a potential cause of the deviation of 

temperature field from the pure numerical results when entrance and fully 

developed regions are considered together. Moreover, another cause for the 

deviation of numerical studies from experimental works can be the impossibility 

of introducing surface roughness to simulated geometries that seems to be the 

y

y
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main obstacle in front of having quantitative comparisons. In microchannels, 

relative roughness becomes very high due to the small hydraulic diameter. 

 

At this point, the present study tries to show the pure effect of the small values of 

Brinkman number on the microchannel flow. The selection of very low Brinkman 

numbers reduces the importance of viscous dissipation, thus temperature 

variations become very small. The Br values used for the present study are lower 

when compared with the works in the literature [20]. The lower values affect the 

single-phase convective heat transfer at the temperature gradient level, which is 

identified here as the secondary effect of Br. The results obtained in the selected 

range qualitatively matches with the experimental results [10].  

 

Even for these lower values, it is seen in the work of Tso and Mahulikar [10] that 

the unusual behavior of Nu in the laminar regime through the flow of liquids in 

microchannels could be explained by correlating Nu with a Brinkman number 

besides Re and Pr such as: 

 
0.62 1/3.Re Pr dNu A Br=  (4.11)  

 

where A and d are constants.  

 

However, for the present work, the power of Re should have a different value due 

to different boundary conditions and different cross-section of the channel. The 

origin of Eqn. 4.11 is the work of Peng and Peterson [1]. For the value of the 

power of Br, the authors purposed that additional data is needed for a universal 

correlation 

 

The cases and corresponding non-dimensional numbers are summarized in Table 

4.2. The values for Nusselt are within the ranges for Nu given in the literature. 

Original values for the selected case presented in Table 4.2 can be seen in the 
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work of Peng and Wang [3]. They investigated the phenomena for a broader 

range of Re.  

 
 
Table 4.2 Numerical experimentation cases with corresponding non-dimensional 

numbers 

 
  Br Re Nu Pr Nu/Pr1/3 Nu/(Re0,62*Pr1/3) 
Case 1 Um = 0.25 m s-1  L = 3.1*10-4 m  

1 2.8333x10-5 80 1.85271 6.736 0.981 0.0648 
2 1.8109x10-5 87 1.8195 6.129 0.994 0.0624 
3 7.5320x10-6 97 1.80622 5.415 1.029 0.0603 
4 4.5590x10-6 107 1.79958 4.851 1.063 0.0587 

Case 2 Um = 0.29 m s-1  L = 3.1*10-4 m  
5 4.4115x10-5 93 1.99216 6.719 1.056 0.0635 
6 3.5956x10-5 100 1.9656 6.193 1.07 0.0616 
7 2.4100x10-5 116 1.94567 5.234 1.121 0.0588 
8 1.4541x10-5 124 1.93903 4.856 1.145 0.0577 
9 1.2091x10-5 136 1.92575 4.373 1.178 0.056 

Case 3 Um = 0.76 m s-1  L = 3.1*10-4 m  
10 3.9100x10-4 250 3.22730 6.531 1.727 0.0563 
11 2.0133x10-4 273 3.18745 5.913 1.763 0.0544 
12 1.4853x10-4 300 3.16753 5.312 1.815 0.0529 

 

 

The first step to be followed is to investigate whether the same observation can be 

made with the other researchers: If the correlation is of the form of Eqn. 4.11, the 

graph of 0.62 1/3/(Re Pr )Nu vs. Br should definitely show a linear form on a log-log 

scale.      

 

We observed that the correlation is of the form of Eqn. 4.11 and the plot of 

[ 0.62 1/3/(Re Pr )Nu ] vs. Br shows a linear form on a log scale. The plots for the 

three cases are shown in Fig. 4.16. The numerical results for the individual cases 

show the same behavior as the experimental data shown in [10] and follow a 

linear relation and are positively sloped, justifying the positive exponent of Br for 

the case of fluid heated being considered. From the graphs the data for the 
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separate cases appear to have a better linear trend than if all the individual points 

combined. An important conclusion that can be drawn here is; the trend is a 

straight line for each individual data set which supports the correlation of the 

laminar forced flow convection with Br, in addition to Re and Pr. 
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Figure 4.16 Plot of 0.62 1/3/(Re Pr )Nu vs. Br 
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Figure 4.17 Plot of 0.62 1/3/(Re Pr )Nu vs. Br, Tso and Mahulikar [10] 

 
 

Comparing the numerical results in detail with [10], we observe that Tso and 

Mahulikar observe the same trend. As it can be seen in Figure 4.17 that 

experimental data points for individual cases follow a linear relation, just as the 

case for numerical results, and again the best fits are positively sloped. Therefore, 

our numerical results match with the experimental data, if Figures. 4.16 and 4.17 

are compared and the positive exponent of Br is proved to be valid for both 

experimental and numerical studies that support Eqn. 4.11.   
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Figure 4.18 Plot of 1/3/(Pr )Nu vs. Re 

 

 

Figure 4.18 shows variation of 1/3/(Pr )Nu with Re. There is an increase in the 

value of 1/3/(Pr )Nu with an increase in Re. This trend is seen for the three 

individual cases. The results qualitatively agree with Sieder-Tate correlation used 

for conventionally-sized channels with viscosity variation and all individual cases 

give positive slopes, which is an expected result. And the slope of the individual 

cases ranges between 0.29-0.45 where 0.33 is expected, which in this case is well 

predicted by the numerical solution. 
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Figure 4.19 Plot of 1/3/(Pr )Nu vs. Re, Tso and Mahulikar [10] 

 

 

From the results of [10], Tso and Mahulikar observed that 1/3/(Pr )Nu  decreased 

except for two points. Their result is not parallel with the Sieder-Tate equation. 

This behavior is unexpected when conventionally sized channels are considered. 

According to Eqn. 4.11, the slope is expected to be positive. Our results predict 

qualitatively this number where slight difference is normal because of different 

numerical experimental set-up between literature and the present work. However, 

it is observed clearly from Figure 4.19 is that, even though the best fit for all the 

points combined gives a positive slope, individual cases give unexpected negative 

values. 
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Figure 4.20 Plot of Nu vs. Re 

 
 

Figure 4.20 shows variation of Nu with Re. It is seen that Nusselt number is 

decreasing with increasing Reynolds number for all three cases, which is an 

unexpected result when conventional channels are considered, since for 

conventional channels, the average Nu should increase with increase in average 

Re over the length, due to Nu increase in the thermal entry length. 

 

It is also shown in [10] that the unusual behavior of Nu decreasing with 

increasing Re for the case of fluid heated in microchannels is not only a 

characteristic of a thermally-developing flow in microchannels. 
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When compared with Figure 4.21 it is concluded that Tso and Mahulikar 

observed the same behavior of Nu decreasing with increasing Re in the their 

experimental study 
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Figure 4.21 Plot of Nu vs. Re, Tso and Mahulikar [10] 

 
 

Since Br shows the relative importance of viscous dissipation, it plays different 

roles for the cases of fluid heated and cooled. For the fluid being heated, the 

exponent d of Br in the Eqn. 4.11 should be positive, because the 2Vµ  term also 

tends to increase the coolant temperature and so the Nusselt number. At a 

constant velocity, Re increases due to reduction in the coolant viscosity because 

of the temperature rise of the fluid simulated by taking different Re into 

consideration for the same case. So, the 2Vµ  term decreases and 
0.62(Re )dBr decreases. At this point it can be seen that the unusual behavior of 
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decreasing of Nu with increasing Re in the laminar regime of microchannels is 

explained.  
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Figure 4.22 Plot of Nu vs. Br 

 



 83

Br

2x10-5 2x10-410-5 10-4

N
u

3x10-1

4x10-1

5x10-1

6x10-1

7x10-1

8x10-1

9x10-1

1

Case 1 

Case 2 

Case 3 

Figure 4.23 Plot of Nu vs. Br, Tso and Mahulikar [10] 

 
 

Figures 4.22 shows the fact that in the laminar regime, numerical data for Nu 

correlates well with the Brinkman number in addition to Re, Pr shown in the Eqn. 

4.11, therefore explaining the unusual behavior by having a positive linear trend. 

The linear trend is seen easier on the log-log scale than on a linear scale shown in 

Figure 4.24.  

 

This dependence of Nu by Br is also observed physically by the authors of [10]. 

Therefore, we observe same trend in both Figures 4.22 and 4.23. The data points 

of individual cases show the same positive linear trend just as the results of the 

present numerical study. 
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Figure 4.24 Plot of Nu vs. Br on a linear scale 

 
 

As it is mentioned in [10], this dependence of Nu to Br is the answer to the 

observation made by Wang and Peng [3]. For Re<700 they investigated this 

unexpected behavior and reach the conclusion that Nu appeared to be a function 

of some other unknown variations besides Re. This unusual behavior is explained 

in the studies of Tso and Mahulikar [10, 11]. We also observe a similar behavior 

which is seen in the experimental study given in [11]. Figures 4.23 and 4.25 show 

the results in log-log and linear scales, respectively. 



 85

Br

0,0000 0,0001 0,0002 0,0003 0,0004

N
u

0,25

0,35

0,45

0,55

0,65

0,75

0,85

0,30

0,40

0,50

0,60

0,70

0,80

Case 1 

Case 2 

Case 3 

  

Figure 4.25 Plot of Nu vs. Br on a linear scale, Tso and Mahulikar [10] 

 
 

The exponents shown in Eqn. 4.11 are expected to be different from the work of 

Tso and Mahulikar [10] due to two main and important reasons:  

 

1) Boundary conditions: The boundary condition for [10] is constant heat flux but 

it is constant wall temperature in this work.  

 

2) Geometry of the microchannel: channel with rectangular cross-section for [10] 

but parallel plate channel for the present work. It is widely accepted by the 

authors of the previous studies [3, 46] that the geometric parameters significantly 

affect the flow and hence the convective heat transfer. Therefore, observing such 

a difference in quantity is something expected.   
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The general trends and unusual behaviors found in experimental work are well 

simulated and observed in this work. For liquid flow in microchannels, dissolved 

gases in the liquid or gases absorbed on the surface may have considerable 

impact on the flow and heat transfer characteristics. As such gases accumulate in 

the corners of non-circular channels, the wetted perimeter will be reduced and the 

fluid velocity will increase as the actual flow cross-section is reduced. The 

smaller perimeter reduces the friction while the large velocity increases the 

friction. This may also be a cause for the slight difference between experimental 

and numerical works which is widely seen in literature [45]. 

 

It is seen in the above results that Nu is well correlated with the Br even if the 

value of Br is very small. At this specific point one important question arises: Are 

there any differences between the linear trends shown in Nu vs. Br plot for all 

orders of magnitude of Brinkman number? 
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Figure 4.26 Plot of Nu vs. Br for Re=80. 
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Figure 4.26 demonstrates the answer of the question above. It is easily seen in the 

figure that Nu seems to be constant for low values of Br. After the value of 310− , 

the effect of Br on Nu is more obviously seen. The physics behind this 

phenomenon is the difference between primary and secondary effects of Br. It is 

accepted in the literature [10,11] that when the Br is very large, it affects directly 

due to the effect of viscous dissipation, even for a constant value of Br along the 

flow, and this effect is called the primary effect of Br.  
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Figure 4.27 Plot of Nu/ (Re0.62Pr1/3) vs. Br for Re=80.  

 
 

The secondary effect of Br is hard to observe in the numerical experimentation 

since it is closely related with the variations in the coolant properties which in 

return cause the variation in Br in microchannels. However, it is hard to simulate 

this phenomenon in numerical experimentation. And this is a difficulty faced by 

many authors in most of the numerical work for gases in the literature [19, 20].  
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Figure 4.27 is definitely another clear observation of Nu correlating with Br for 

laminar flow in microchannels. It is seen from the figure that the correlation 

between Nu with Br independent of Re and Pr is getting stronger when Br has 

higher values. The primary effect of Br could also be seen from this graph by 

making an analogy with the literature [10]. 
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CHAPTER 5 

 
 

NATURAL CONVECTION IN MICROCHANNELS  

 

 

The numerical set-up used in the present work is naturally unstable because of its 

top-heavy arrangement. This is the very first work done on the literature about 

natural convection in microchannels. 

 

Because of the temperature difference between the top and bottom plates an 

inverse density gradient occurred due to the fact that the fluid is lighter at the 

bottom than the top because the channel is heated from below. Because of the top 

heavy arrangement it is a potentially unstable flow. The fluid tends to get a new 

place to overcome this natural weakness coming from its arrangement. 

Nevertheless, its own viscosity again restricts this tendency taken by the fluid. 

Consequently, it is expected when the temperature gradient exceeds a certain 

value for the instability to occur, which makes Rayleigh number very important 

for the case at hand.  

 

In the late 19th century, Rayleigh and Benard studied the thermal instability in 

fluids. There are two very important outcomes of its work:  

• The fluid must achieve a specified critical temperature gradient before the 

instability can be observed. 

• Passing that critical gradient one can observe a stationary cellular 

character. The cells have structure very similar to a series of vortices. 

 

After Benard’s observations, Rayleigh demonstrated a non-dimensional number 

(Ra) that expresses the sufficient condition for the onset of the instability. The 

critical Ra for the onset of convection is accepted to be 1708. Heat conduction is 

the major mode of heat transfer below this specific limit. However, above this 
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critical number the dominant mode of heat transfer is convection and the flow 

consist of two dimensional rolls which have nearly square cross-section and 

counter-rotating. These rectangular cross-section rolls are well known to be 

Rayleigh-Benard cells. However, it should be mentioned that the flow becomes 

complicated as the flow exceeds the critical value more than one order of 

magnitude. What is observed after this high order of magnitude Ra is that the 

flow becomes 3D and the rolls should be investigated in 3D, and the 

characteristic shape is hexagonal in nature. When Ra takes a value higher than the 

values mentioned, the flow becomes turbulent and oscillatory eventually.  The 

value of this second critical Ra depends strongly on the geometry and Prandtl 

number. And it is observed in the literature [43] that with increasing Ra, the 

stability of the cells decreases. 

 

Because of the restricting nature of the microchannels we do not expect Ra to 

exceed the critical value, 1708. Additionally, for microchannels it is physically 

impossible to reach this 2nd critical value, where the flow becomes 3D, because of 

the small characteristic length. 

 

In the vertical direction the rolls of the Rayleigh-Benard cells augment the net 

heat transfer. The reason is the difference between pure conduction and 

convection. When Ra is less than the critical value, the mode of heat transfer is 

conduction. 

 

We expect the cells to be 2D for q=sinx case, which means a periodically heated 

lower wall, but the solver is also run in 3D for verification and observation. 

According to this, it is expected from the natural convection in microchannels not 

to reach turbulence because of this geometrical restriction. 

 

The geometry of the problem used for the natural convection is the same as used 

for forced convection cases, Figure 1.1.  
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Because natural convection is investigated in this chapter, one can easily guess 

that there should be no initial velocity, consequently no initial velocity profile. 

 

5.1 Heat Transfer Analysis  

 

The basic solution used for obtaining the results for natural convection in 

microchannels is the same method used in Chapter 4. Three cases 1) Axial 

conduction included 2) No-axial conduction and 3) Br number inserted into the 

energy equation are investigated. 

 

5.1.1 Numerical Formulation  

 

The selected cases by selecting working fluid as liquid water are: a small value of  

Ra=25.219 and a large value of Ra=2000. A reversed procedure is followed 

compared to the forced flow procedure described in Chapter 4, here we start with 

the knowledge of Ra. Since we have no data about natural convection in 

microchannels in the literature, we rely on the non-dimensional numbers of 

conventional channels. Since our channel is numerically simulated in Chapter 4 

by using the properties and the characteristic length, we can adapt the same 

methods for the natural convection. At this specific point we have a problem due 

to the size restriction of the microchannel. This restriction arises because when 

we want to use Ra=2000 with such a small characteristic length of a 

microchannel we should either have an extremely large temperature difference 

between the plates or we should alter the gravitational acceleration value. The 

former is physically impossible because of the small channel height. However, 

we can simulate the latter assuming a centrifugally generated acceleration.  

 

In order to simulate real life conditions of flow in microchannels, we also 

investigated the flow both in 2D and 3D for Ra=25.219. This number is chosen 

because of the reasons arising from the conditions of Chapter 4. It simulates a 

real life condition without a centrifugal effect and a reasonable temperature 

difference between two walls of the channel. Although we know that for 
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conventional channels such kind of small value of Ra means heat transfer by 

conduction, the case might be different for microchannels. With the help of 

artificial temperature field disturbance created by the program we are able to 

simulate cell formations. The disturbance simulates the property variations that 

occur naturally in real life conditions. It is inserted into the computer code by 

altering the non-dimensional temperature field by a certain value only at some 

specific collocation points. 

 

For the numerical experimentation, first we decide which non-dimensional 

numbers we should use within the limits of the conventional channel critical 

values. Therefore, some of the numbers should have been fixed to obtain the 

others. Hence, the three numbers fixed are: Ra , Br and characteristic length L. At 

this point we followed exactly the same procedure but in reverse with Tso and 

Mahulikar [10] to obtain the other necessary numbers. All the necessary property 

values of water are assumed to be the same as the properties of case 1 with Re=80 

case in Table 4.1. After these critical points, our gravitational acceleration is 

adjusted according to these conditions at hand. The value for using Ra=2000 is 

777.184 m2/s, which is approximately 77.7g. This value of G is acceptable since 

one can see machines with 1000g in commercial markets. And it is generally 

accepted that it is the term gravitational acceleration times density that is 

responsible for phenomena of convection. 

  

For natural convection again three different concepts with different cases are 

inspected. The reason of choosing these data is the lack of experimental data for 

our parallel plate microchannel numerical experimentation case for natural 

convection in microchannels. 
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5.2 Numerical Verifications 
 

5.2.1 Grid Independence 
 

Like the study done in Chapter 4, the only method to determine grid 

independence is to setup a model with a finer mesh (a larger number of 

collocation points) and analyze it to see if there are major differences in velocity 

and temperature fields. First the case with 64 and 32 points in y and x directions, 

respectively, is selected (64x32 grid). To show the grid independence for the 

same case, a run with 128x64 grid was tried and no difference is observed with 

the coarser grid results. Same results are obtained for the temperature fields. The 

results for the streamline contours are shown in Figure 5.1. Consequently, it is 

concluded that 128x64 or 64x32 are both sufficient meshes for the work at hand 

and 64x32 is chosen as the numerical experimental mesh. 
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Streamline contours for Axial conduction included case Ra=2000, at t=4, 64x128

Figure 5.1. Streamline contours for 32x64 mesh and 64x128 mesh 
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5.2.2 Diffusion Time Scale Determination 

 

After determining the experimentation mesh the next step is finding the time 

scale, dt. We began with dt=0.001 and 64x32 combination. After obtaining the 

results, the code is rerun for the same conditions and mesh except that this time 

the time scale is inserted as dt=0.0001. It is seen in Figure 5.2 that the diffusion 

time scale can be taken as dt=0.001 during the numerical experimentation for 2D 

simulations since the results for both of these two configurations are the same. 
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Figure 5.2. Time change of velocity at node [2] [0] [1] for 310−  and 410−  

 
 

5.3 Results and Discussion for 2D 

 

5.3.1 Effect of Br for Natural Convection 

 

For the three different cases investigated. From Figures 5.3-5.4, it is observed 

from the streamline contour plots that there is not a significant difference between 
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the case with axial conduction inclusion and Brinkman number inserted into the 

energy equation because of the nature of the Brinkman number definition. For the 

reason of the importance of gravitational acceleration times density for 

convection in Rayleigh-Benard cells, it is widely accepted that the heat release 

due to viscous dissipation is negligible for conventional channels which supports 

our conclusion for microchannels. Therefore, we conclude that although Br is 

very important for forced convection we do not have this strong effect seen in 

natural convection. Moreover, the case of “no-axial conduction” shows the same 

behavior with the other two cases. 
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Figure 5.3. Streamline contours for axial conduction included, Br and No-axial 

conduction included case 
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Temperature contours for axial conduction included case, Ra=2000, at t=4
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Temperature contours for Br inserted into energy equation, Ra=2000, at t=4

Figure 5.4. Temperature contours for axial cond. included and Br cases 

 
 

5.3.2 Effect of Ra on Natural Convection in Microchannels 

 

Due to the restrictive nature of the microchannels, two specific Rayleigh numbers 

are selected for the natural convection, 25.219 and 2000. The reason to select 

both of these cases is mentioned above. Therefore, after observing for both Ra 

numbers the formation of Rayleigh-Benard cells, a comparison should be made 

between these two specific numbers for the same test case, which in this case Br 

inclusion into the energy equation. Figure 5.5 shows the difference between these 

results. The results indicate that the difference between Ra=25.219 and 2000 is 

that the cells have a tendency to consolidate, which can be observed from the 

figure. In Figure 5.5, for Ra=25.219 shows a regular pattern with separate cells. 
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However, for Ra=2000 shows the indication of unification for seen from the two 

cells formed at the entrance side of the channel. 
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Streamline contours for Br inserted into energy equation, Ra=2000, at t=4

Figure 5.5. Streamline contours for Ra=25.219 and Ra=2000 

 
 

5.4 Results and Discussion for 3D 

 

When the channel is heated from the bottom uniformly 3D structures are 

expected to form. The motivation for the 3D work is arising basically from the 

widely accepted literature for conventional channels. We tried to see if the 

physics of the Rayleigh-Benard cells for 2D and 3D are the same for micro cases 

as well.  
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Actually, the observed roll pattern is just one of the possibilities. Among the cells 

observed experimentally under varying conditions, the following two types of 

cells are mostly found: 

 

Two-dimensional rolls: A particularly simple pattern occurs when all the 

quantities depend on only one of the horizontal direction, say x. In this case, the 

cells are infinitely elongated and it is more appropriate to call them rolls, shown 

in Figure 5.6 a. 

 

 

 
Figure 5.6. Schematic diagram of convection cells  a)Two dimensional rolls  b) 

Hexagonal l- and g-cells 

 
 

Hexagonal cells: This system is a superposition of three roll sets with wave 

vectors having the same modulus k. A hexagonal cell is called an l- or a g- cell 

depending on the sign of the velocity (i.e., on whether the fluid ascends or 

descends in the central part of the cell). g-cells are usually observed in the gases 

and l-cells are seen often in the liquid, shown in Figure 5.6 b. 
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5.4.1 Effect of Br, Ra and axial conduction for natural convection 

 

For 2D cases inclusion of Br into energy equation does not affect the flow for 

natural convection. We intended to be sure about the physical system because of 

the 3D nature of the Rayleigh-Benard cells mentioned above. Consequently, three 

cases are compared with each other for the same Ra. And also the effect of 

different Rayleigh numbers for the same test case is investigated. 
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Figure 5.7. 3D Streamline contours for axial conduction included case  

 
 
For comparison of the three cases, we compare axial conduction and Br inserted 

into energy equation case and saw that there are no significant differences 
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between these two important cases for natural convection in microchannels for 

3D uniformly heated channel. Figures 5.7 and 5.8 show this similarity of these 

two cases by the help of streamline contour plots. Note that the cells formed are 

hexagonal in nature. 
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Figure 5.8. 3D Streamline contours for Br included in energy eqn. case 

 
 

However, when it comes to no-axial conduction case, very interesting but obscure 

behavior of the fluid is observed. The most important conclusion drawn from the 

numerical results is the 2D behavior of the cells on the contrary to the case for the 
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energy equation with axial conduction term. We see only two dimensional rolls in 

Figure 5.9 like the one seen in Figure 5.6 a. The number of the cells also alters 

from two to four. 
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Figure 5.9. 3D Streamline contours for no-axial conduction case 

 

 
Another observation can be visualized by drawing the plots of non-dimensional 

temperature results and slicing the plot for the fluid layers to investigate the 

diffusion of heat into the fluid, Figure 5.10. Figures 5.11 and 5.12 shows also this 

phenomenon by first slicing it first at y=-1 then at y=-0.25. 

  

The slices show the 3D nature of the problem. We see the effect of axial 

conduction from the Figures 5.11 and 5.12. The 3D nature of the cells is seen in 

Figure 5.10 for other two cases. 
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Figure 5.10. Dimensionless temperature sliced at y=-0.25 for axial conduction 

included case 
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Figure 5.11. Dimensionless temperature sliced at y=-1 for  

no-axial conduction included case 
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CHAPTER 6 

 
 

CONCLUSION 

 

 

The purpose of this study was to simulate laminar liquid flow in a microchannel 

that is heated from below, using DNS and to observe different characteristics of 

the flow compared to the macrochannel case. There is no similar work for liquids 

through parallel plate microchannels in the literature, most probably due to the 

difficulties associated with introduction of Br in Navier-Stokes equations. Using 

its definition, Eqn. 2.1, Brinkman number is introduced into the energy equation. 

The spectral methods based Navier-Stokes solver is modified to include this 

modification. Due to the nature of Spectral Methods solutions, the solver can only 

be used for the aforementioned simple geometry. The geometry represents a fully 

developed middle section of an infinitely long and infinitely wide channel 

between two parallel horizontal plates.  The formulation allows only prescribed 

constant properties as well as a prescribed Reynolds number. Therefore, the 

computer code is not suitable for including property variations that were observed 

in some of the experimental studies. The same limitation is also present for the 

numerical studies in the literature that are for gas flow through microchannels. 

However, as it is stated in [10], for the experimentation with constant wall 

temperature boundary condition, choosing a constant Br along the flow could be 

a reasonable approximation. Therefore, by changing Br from one run to the other, 

its effects can be observed. 

 

The selection of very low Brinkman numbers in the present study reduces the 

importance of viscous dissipation, thus temperature variations become small. The 

results obtained in the selected range qualitatively matches with the experimental 

results in the literature. There are very limited data in the literature to compare 

the results of this study. The present work is for parallel plate microchannel and 
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includes natural convection for a completely fully developed flow. Many of the 

experimental results contain entrance effects which may easily be the cause of the 

deviation of temperature field from the pure numerical results when entrance and 

fully developed regions are considered together. At this point, the present study 

tries to show the pure effect of the smaller Br number on the microchannel flow 

numerically. Considering this aim, it is seen at the end of the results that 

secondary effect of the Br is observed for the single-phase convective heat 

transfer at the temperature gradient level. It is definitely not the case for the 

primary effect of Br which directly affects the temperature field with its relatively 

higher values in the energy equation. This may easily be seen for gaseous flow 

for constant heat flux case [20]. Another reason for the differences between 

experimental and numerical values can be the fact that it is impossible to 

introduce surface roughness to our simulated geometry that seems to be the main 

obstacle in front of having quantitative comparisons with the experimental 

results. Some authors have suggested that the deviations from macroscale theory 

that have been observed may be due to the large relative roughness of the 

microchannel walls. In microchannels, relative roughness becomes very high due 

to the small hydraulic diameter. Moreover, during the micromachining process, 

the channels become hybrid, with two distinct materials and roughness values, 

making direct comparison of the microchannel data with traditional theory and 

numerical work problematic as it is stated in [47]. 

 

Regardless of lack of enough experimental data for comparing with the numerical 

results correctly, our aim is to simulate the unusual behavior of decreasing of Nu 

with increasing Re in the laminar regime of microchannels and to show that Br 

can be introduced to explain this strange behavior numerically. We know that 

since Br shows the relative importance of viscous dissipation, it plays different 

roles for the cases of fluid heated and cooled. For the fluid being heated, the 

exponent d of Br in the Eqn. 4.11 should be positive, because the 2Vµ  term also 

tends to increase the coolant temperature and so the Nusselt number. At a 

constant velocity, Re increases due to reduction in the coolant viscosity because 
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of the temperature rise of the fluid simulated by taking different Re into 

consideration for the same case with constant mean velocity. Therefore, the 2Vµ  

term reduces and 0.62(Re )dBr decreases. This is the explanation of the decrease of 

Nu [2,3] in spite of the increase in values of Re, which is just the opposite of the 

behavior seen in conventional channels when entrance effects are taken into 

consideration. 

 

According to the results observed from the case “Br inserted into the energy 

equation”, the following conclusions are drawn: 

 

• For the case of fluid heated, the exponent of Br in Eqn. 4.11 is positive 

and the results are in agreement with the experimental results [10], 

• Analysis with the inputs from the literature shows that besides Re, Pr and 

geometrical parameters, Nu correlates with Br in the form of Eqn. 4.11. 

This correlation is investigated in this numerical work and we observed 

that when simulating the flow through microchannels numerically, 

importance should be given to the effect of viscous dissipation, therefore 

Br. 

• The unusual behavior of Nu decreasing with Re increasing in the laminar 

regime, especially less than Re<700, can be explained by Br numerically. 

• The Brinkman number correlates the convection in spite of its relatively 

low values. Therefore, the same observation with [32] is drawn: Even a 

small amount of viscous dissipation causes an increase in the values of Nu 

for the numerical set-up with the walls maintained at constant wall 

temperature. However, when the values of Br get much smaller, the 

correlation between Nu and Br cannot be observed anymore. 

• When Br is large, it affects Tf directly due to the effect of viscous 

dissipation, even for a constant value of Br along the flow. 

• More data are required to obtain a universal correlation even though 

comparison with limited data in the literature supports the inclusion of Br. 
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For “no-axial conduction” runs, in Re=80, 87 and 97, partially formed convection 

cells are observed. These structures are not present in the runs with axial 

conduction and in the runs with Br for those Reynolds numbers. That unusual 

behavior shows that axial conduction plays an important role in low Re liquid 

flows and it should be included in formulations for low Re microchannel 

simulations. This observation perfectly matches with the other similar 

conclusions in the literature [32]. The axial conduction term becomes negligible 

at higher values of Re (higher Pe). 

 

Considering natural convection in microchannels; this work is the very first work 

in the literature. Therefore, the critical numbers are chosen generally according to 

conventional channels. However, because of the strong effect of size of 

microchannels on Ra for the flow through microchannels, we cannot run the 

computer  code for higher magnitudes.  

 

The conclusions drawn for natural convection in microchannels can be expressed 

as follows: 

 

• There is not a significant difference between the “axial conduction 

inclusion” and “Brinkman number inserted into the energy equation” 

cases for periodically heated lower wall configuration. The results from 

the temperature contours also support the conclusion. 

• With the help of artificial temperature field disturbance created by the 

program we were able to simulate cell formations even for low Ra values. 

We concluded that in nature since these disturbances occur naturally, we 

can say that formation of cells is also likely to occur in microchannels 

with the help of  these alterations. 

• When the lower wall is heated periodically, we observe regular patterns, 

two dimensional rolls. However, for the uniformly heated lower wall 

boundary condition, hexagonal patterns occur. 
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• The effect of axial conduction is seen from the results of “no-axial 

conduction included” case for uniformly heated lower wall configuration. 

An important conclusion drawn from the numerical results is the 2D 

behavior of the cells in contrast to the case for the energy equation with 

axial conduction term. 
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