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ABSTRACT

A SYSTEMATIC STUDY OF PROBABILISTIC

AGGREGATION STRATEGIES IN SWARM ROBOTIC SYSTEMS

Soysal, Onur

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Erol Şahin

September 2005, 52 pages

In this study, a systematic analysis of probabilistic aggregation strategies in swarm

robotic systems is presented. A generic aggregation behavior is proposed as a com-

bination of four basic behaviors: obstacle avoidance, approach, repel, and wait. The latter

three basic behaviors are combined using a three-state finite state machine with two

probabilistic transitions among them. Two different metrics were used to compare

performance of strategies. Through systematic experiments, how the aggregation

performance, as measured by these two metrics, change 1) with transition probabili-

ties, 2) with number of simulation steps, and 3) with arena size, is studied.

Keywords: Aggregation, Swarm Robotics, Systematic Experiments, Simulation
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ÖZ

OĞUL ROBOTBİLİM SİSTEMLERİNDE, RASLANTISAL TOPLANMA

STRATEJİLERİ ÜZERİNE SİSTEMATİK BİR ÇALIŞMA

Soysal, Onur

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Erol Şahin

Eylül 2005, 52 sayfa

Bu çalışmada, oğul robotbilim sistemlerinde, raslantısal toplanma stratejilerinin sis-

tematik bir analizi sunulmuştur. Nesnelerden kaçma, yaklaşma, kaçma ve bekleme olarak

tanımlanan dört basit davranışın bileşiminden oluşan, geniş kapsamlı bir davranış

önerilmiştir. Son üç basit davranış, iki rastlantısal geçişi olan bir üç durumlu bir

sonlu durum makinesi aracılığıyla birleştirilmiştir. Değişik stratejileri birleştirmek

için, iki farklı ölçüt kullanılmıştır. Sistematik deneyler kullanılarak, 1) geçiş olasılıkla-

rıyla, 2) benzetimin adım sayısıyla, 3) arenanın büyüklüğüyle, toplanma davranışının

performansının, bu iki ölçüte göre, nasıl değiştiğini incelenmiştir.

Anahtar Kelimeler: Toplanma, Oğul Robotbilim, Sistematik Deneyler, Benzeşim
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Çelikkanat added hundreds of entries to this system, which was invaluable for orga-
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Şafakcan Tunçdemir, listened every little detail about this study for two years.
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CHAPTER 1

INTRODUCTION

The idea of automata, or “self-operating physical artifacts” dates back to ancient

times. In Jewish mythology Golem [1], a creature “built” from human parts, appears

in a human-like form performing menial tasks. However, the design and building of

such automata took centuries. First examples of such automata were built for enter-

tainment purposes. In 1738, Jacques de Vaucanson built an automaton [2] which can

play different songs, coded on mechanical disks, with a flute. In Japan, Hosokawa

Hanzo built a tea serving doll [3] in 18th century. When a cup is put on the tray of

the doll moved forward to “serve” the tea to the guest. When the guest finished his

tea, placing the cup back on the tray, the doll bowed, turned back and returned to the

owner. These automata can be considered as the early precursors of today’s robots.

The term “robot” was first coined by Karel Kapek, in one of his plays written

in 1920, to name artificial humans built to perform menial labor. However in time,

the term robot moved on to describe the whole class of mechanical devices that can

perform “automated” tasks. During half of the last century, the progress in robotics

has been accelerating at an increasing pace, thanks to the advances in mechanical

and electrical engineering and computer science.

Today, the robots have started to get into our lives to take over tasks that are

too “dirty, difficult, dangerous and dull (repetitive)” for us. Autonomous vacuum

cleaners, like Roomba (iRobot Inc., USA), are being sold as household items, mobile

robots like, Spirit and Opportunity [4], enable the exploration of Mars under danger-

ous environment conditions, robotics arms have proved themselves as reliable and

cost-effective workers on manufacturing lines. Also, during the recent years, robots

have also made a successful entry into the consumer market as entertainment toys.

Aibo (Sony, Japan) is a good example. Companies like Honda, developed humanoid
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robots for advertisement purposes, hinting the competence for developing high tech-

nology.

The robots, which exist in a wide range of domains as briefly overviewed above,

can roughly be classified into two major categories: industrial and autonomous. In-

dustrial robots can be described as programmable manipulators which can perform

repetitive tasks that require precision and speed. Since 1950’s these robots have been

employed in manufacturing. Industrial robots usually do not sense their environ-

ment and make many assumptions about the state of the world. Therefore these ro-

bots require highly structured environments and their working domains are usually

confined to factory floors.

In this thesis, we are interested in autonomous robots. These robots are aimed to

operate in environments as unstructured and dynamic as in our daily lives. Un-

like industrial robots, these robots cannot afford to make many assumptions about

their operation environment. These robots use sensing devices to obtain information

about their environment. This information is used to choose between different ac-

tions. Furthermore autonomous robots can construct models of the environment and

plan using these models, enabling them to anticipate and adapt to different condi-

tions.

1.1 Autonomous Robots

One of the first working examples of the autonomous robots are the “tortoises” of

Walter Grey Walter [5], built during 1950’s. These robots were controlled by an ana-

log circuitry that included two vacuum tubes as its main processing unit. Despite

their limited computational capability, the tortoises were able to move around with-

out getting stuck and could move towards light sources.

With the developments in digital computers, the main challenge in autonomous

robots has shifted from the mechatronics development of the robots towards the con-

trol of the robot. In 1970’s, robots emerged as a platform for artificial intelligence

studies. In line with the contemporary view of intelligence of that time, a number of

control architectures, like STRIPS [6], HACKER [7] and NOAH [8] were proposed. In

these architectures, sensor data is used to construct a symbolic model of the world.

A plan is constructed within this world model and the plan is then executed using
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the actuators of the robot. The robots controlled with these architectures such as,

“Shakey” in late 1960’s [9], “HILARE” in 1977 [10] and “Stanford Cart” in 1977 [11],

had difficulties in dealing with the uncertainty and noise in the environment and

were observed to be slow in responding to changes in the environment [12].

In response to the problems experienced with the early architectures, reactive

control architectures were proposed. These systems promoted “the tight coupling be-

tween perception and action, typically in the context of motor behaviors, to produce timely

robotic response in dynamic and unstructured worlds” [12]. Rodney Brooks, one of the

first proponents of such architectures emphasized three fundamental principles for

autonomous robots: situatedness, embodiment and emergence. Situatedness principle

underlined the reality of robot, rather than being an abstract entity working with ar-

bitrary symbols. Embodiment on the other hand expressed the physical presence of

robot, with its physical limitations. Emergence pointed out that intelligence is not a

stand-alone property but is the result of interactions between robot and its environ-

ment [13].

An indicative example of reactive architectures is the subsumption architecture pro-

posed by Brooks [14]. In this architecture, the main processing unit is a behavior which

can be defined as a mapping from the sensors to the actuators of the robot. The sub-

sumption architectures dictates that behaviors are organized in a layered way and

that higher-level behaviors have the ability to “subsume” the lower level behaviors.

In its purest form, the reactive architectures had denounced any kind of world

modeling. However as the limitations of these architectures arose in time, hybrid

architectures which combine the world modeling and planning properties of earlier

architectures with the responsiveness of reactive architectures are developed.

In all these different architectures, the challenge is how to design the controller of

a robot such that it can perform a desired task in an unstructured and dynamic envi-

ronment. This problem is difficult since, the relationship between a desired behavior

and the controller of the robot can be very complex. This is due to the fact that the

observed behavior is a result of the interaction between robot and environment.

Recently, as the robots became more and more affordable, the control of multi-

robot systems has become a hot research topic [12, 15].
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1.2 Multi-robot Systems and Swarm Robotics

Multiple robots can provide, improved performance, distributed sensing, fault tol-

erance and solutions to problems that are impossible to achieve with a single robot.

However, the utilization of multiple robots require coordination among the robots

making the development of a control system even more challenging than that of a

single robot.

Studies on multi-robot systems included playing team games such as in Robocup

[16], as well as studying group behaviors similar to those observed in nature such as

foraging [17], forming formations, flocking [18, 19, 20] and cooperative object trans-

port [21].

The development of control systems in the early multi-robot studies were done

using extensions of existing architectures. In [20], Matarić extended the subsump-

tion architecture, with internal states and a vector summation to incorporate social

interactions. This arhitecture is applied on flocking, foraging and docking. The ar-

chitecture also allowed learning to be conducted.

Similarly “ALLIANCE” architecture proposed by Parker [18], used multiple con-

trollers with subsumption architecture. The controllers in ALLIANCE architecture

competed for control of the robot. Communication between robots, guide the choice

of controllers for acting on the real robot. This architecture also considers the case of

robots with heterogeneous capabilities. Through communication, robots could spe-

cialize on the parts of the problem they are more capable.

Dudek et. al, proposes a taxonomy for describing multi robot studies [22] and in

[23] Cao et. al give a good review of these early approaches, for cooperative multi

robot studies. Main drawback of the early research on multi-robot problems is the

requirement of global and precise communication usually associated with these ar-

chitectures. This type of communication leads to error prone systems with poor scal-

ability.

Swarm robotics emerged as a sub-field of multi-robot studies with the recent ad-

vances towards the mass manufacturing of small robots. Inspired from social insects,

swarm robotic systems consist of large numbers of simple robots that cooperate to

solve problems. Scalability and simplicity are central issues in the design of behav-

iors for robotic swarms and limits the complexity of the robots and their communi-
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cation abilities.

Self organization is one of the main mechanisms employed by swarm robotic sys-

tems. In [24], Camazine et. al, define self organization as follows: Self-organization is a

process in which pattern at the global level of a system emerges solely from numerous interac-

tions among lower level components of the system. Moreover, the rules specifying interactions

among the system’s components are executed using only local information, without reference

to the global pattern. Camazine et. al also , underline the importance of feedback in self

organizing systems. It is noted that, in nature, self organizing systems rely on positive

feedback. Positive feedback is the tendency of the environment and agents to magnify

the fluctuations in the system. It is observed in, growth of population, construction

of nesting sites, motion of herds and schools and in aggregation. Antagonist of pos-

itive feedback is the negative feedback mechanism, which acts against the changes in

the system. Negative feedback stabilizes the system and reduces the effect of fluctu-

ations. In nature, negative feedback can be a result of limitations in the environment

or a part of the behavior of the organisms. Depending on both positive and negative

feedback mechanisms, self organizing systems can respond to changes in the envi-

ronment collectively and return to stable configurations. Although observing natural

systems for existence of such mechanisms is useful, it is complicated to build control

algorithms that provide these mechanisms for specific tasks.

One of the earliest studies on generation of self organizing behaviors is conducted

by Reynolds [25] in 1987. In this study, he demonstrated use of simple rules to gen-

erate, flocking behavior in a group of artificial agents. This study also points out

that self organization behaviors can be achieved by simple rules. Following this

study, two main approaches were used in the literature to achieve self organization.

First approach is using optimization methods like evolutionary methods to gener-

ate control systems. Problems including aggregation [26], cooperative transport [27],

functional assembling [28] and coordinated motion [29] is studied with this method.

Stefano Nolfi and Dario Floreano provide many examples of such applications [30].

Second approach to create self organizing behaviors is to use carefully designed

algorithms to control agents’ behavior. Simple and probabilistic algorithms which

are suitable to modeling [31] are employed in this approach. Statistical models of

individual behaviors can be used to construct a macroscopic model of the swarm.

This model then can be used to predict emergent behavior of the swarm. Macro-
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scopic models allow deeper understanding of swarms, faster simulations and design

of better individual behaviors. Problems including clustering [17], task allocation

and pattern formation [32] is studied with this method. Bahçeci et. al [33] gives a

review of recent studies on pattern formation.

Patterns formed by individuals in the swarm can provide, increased efficiency

and cooperation [20, 32]. Pattern formation usually requires robots to be in close

proximity. This can be achieved by aggregation behavior. Even though there are stud-

ies that show successful aggregation on swarm robotic systems, there is a lack of

systematic experiments to explore this behavior.

This thesis presents systematic experiments conducted for understanding aggre-

gation behavior in a swarm of robots. A minimal behavior that uses probabilistic

transitions, to arbitrate reactive basic behaviors is implemented. Systematic experi-

ments are conducted on physically embodied simulation of robot swarm. A prelim-

inary version of this thesis is presented in IEEE Swarm Intelligence Symposium, in

Pasedena, California, USA [34]. Chapter 2 gives a definition of aggregation behav-

ior and surveys the state of the art for this problem. The simulation environment is

described in Chapter 3, followed by the behavior of robots in Chapter 4. Chapter 5

describes the experiments conducted using the simulator environment and finally

Chapter 6 includes conclusions and possible future work.
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CHAPTER 2

AGGREGATION PROBLEM

Aggregation is one of the fundamental behaviors of swarms in nature and is ob-

served in organisms ranging from bacteria to social insects and mammals [24]. The

aggregation behavior in penguins and in fish schools is shown in Figure 2.1. Aggre-

gation helps organisms to avoid predators, resist hostile environmental conditions

and find mates. Some of the aggregation behaviors are known to be facilitated by

environmental clues; flies use light and temperature, and sow bugs use humidity for

aggregation. However, other aggregations are self-organized. Aggregation of cock-

roaches, young penguins and fish schools don’t use such clues but are rather result

of emergent cooperative decision.

This study focuses on the self-organized aggregation behaviors for swarm robotic

systems [29, 35]. This behavior is required to form a robot cluster, where robots in

the cluster is in close proximity, from any distribution of robots. This motivation is

shown in Figure 2.2. Aggregation task requires distributed decision to form a glob-

ally observable pattern. Even with explicit communication, robots need to know

their exact positions and orientations to exactly determine the global view.

Aggregation behavior is essential for swarm robotic systems. Swarm robotics use

simple and incapable robots and these robots must cooperate to accomplish tasks.

Usually cooperation requires being in some proximity with other robots. Addition-

ally, aggregation is a requisite for swarm robotic behaviors, such as self-assembly and

pattern formation.

Aggregation of a robotic swarm is especially challenging since in such systems,

individuals have to rely on a rather myopic and crude perception of their world. The

perception of robots in these systems is myopic due to the limited range of percep-

tion. In addition to this, sensor data is usually noisy and ambiguous, such that only
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(a) (b)

Figure 2.1: Aggregation behavior in nature. (a) Aggregation in penguins (b) Aggre-
gation in fish schools. Aggregation provides protection from environmental condi-
tions and from predators for these species.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 Figure 2.2: The goal of aggregation behavior is to aggregate a number of robots that

are initially dispersed.
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rough details of the environment can be extracted. Swarm robotic systems, as a prin-

ciple, should not use global communication and robots must use simple processing

to solve problems [36]. As a result, common control algorithms in swarm robotic

systems are reactive. Although advances in technology allow cheaper and more ef-

fective sensing, communication and computing, simple robots promise more scalable

and fault tolerant systems as observed in the nature. Simplistic approach uses less

assumptions hence provide a larger field of application. Reliance on global commu-

nication and precise sensing creates a fragile system even with improved technology.

In this study, aggregation of a swarm of robots in a bounded arena is investi-

gated. The robots in this study have limited perception range, through ambiguous

and noisy sensors.

2.1 Related Work

Aggregation studies in the literature come from different disciplines: biology, robot-

ics and control theory. In this section, these studies will be summarized.

In [37], Deneubourg et al. investigate aggregation behavior in weaver ants and

cockroaches. Weaver ants aggregate in chains to abridge gaps and cockroaches ag-

gregate together in hiding sites. In these species, individuals rest in aggregations for

varying time spans. The study investigates the effect of individual resting time to

aggregation. Results indicate that the amount of time individuals spend in aggrega-

tions are modulated by environmental conditions and presence of other individuals.

Individuals tend to spend more time in large aggregations, providing positive feed-

back for growth of aggregations. Individuals also spend more time on favorable sites,

causing larger aggregates to form on such sites. Using this simple scheme individu-

als are able to make collective decisions.

Jeanson et al., in [38], present a model of aggregation behavior of cockroach lar-

vae in homogeneous conditions. The aggregation behavior observed in this species,

include wall following, and two different resting behaviors. Individual behavior is

modeled through systematic experiments. It is observed that the behavior of indi-

vidual cockroaches depend on the number of cockroaches in close vicinity. A model

of this behavior is used in robotic experiments to obtain similar behavior in a group

of Alice robots (K-Team, Switzerland).
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One of the early robotics applications of aggregation behavior is done by Mel-

huish et al. [39]. In this study, robots are required to form clusters of predetermined

size around infrared beacons. Similar to the sounds produced by birds and frogs

the method proposed uses chorus consisting of individuals where individuals try

to produce sound simulatenously. However, individuals have small variations in

elicitation of sound. Using these variations in sound elicitation, individuals can ap-

proximate the size of the clusters. This study has also been tested on systems without

infrared beacons that trigger aggregation. Results indicate it is only possible to obtain

this kind of self organized aggregation behavior, in virtually noiseless environment.

In [26, 29] genetic algorithms are used to evolve neural network controllers for

a swarm of robots in aggregation task. Performance of evolved controllers are in-

vestigated using rigid body simulation of robots. These studies produced, different

aggregation strategies including static clustering where robots stop in clusters, and

dynamic clustering where robots continue moving in robot clusters. In spite of the

fact that aggregation behavior can be synthesized using this methodology, due to

the complexity of analyzing resultant controllers, it is difficult to arrive at general

conclusions about aggregation.

In control theory aggregation is often referred as gathering, agreement or ren-

dezvous. These studies usually consider abstract models of robots with varying de-

tail in modeling. Most of the studies [40, 41] in this approach ignore the dynamics

of the robots, representing robots as points without orientation. Even though some

studies use kinematic models of robots, use of rigid body physics is not common

practice.

Another important assumption in these studies is the limit on perception range.

Some studies in aggregation consider the infinite visibility case where robots are able

to perceive all robots. Under the unlimited visibility assumption, strong results on

aggregation such as explicit bounds on the swarm size and bounds on the time of

convergence can be obtained [42, 43, 44]. This approach is quite powerful for theo-

retical analysis however, unlimited perception range is an unrealistic assumption for

real robotic swarms.

Real biological swarms have limited range of perception. It is, thus, more realistic

to use models with robots that can only perceive a limited range. Studies indicate,

when perception range is limited, there are some required conditions for aggrega-
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tion. One of these conditions is defined using a visibility graph, which is constructed

by robots as nodes and by edges between robots that are able to perceive each other.

In order for a deterministic control algorithm to allow aggregation, this graph needs

to have at least one node which is accessible from all other nodes in the graph [45].

Flocchini et. al noted that, even convergence may not be enough since convergence

may take infinitely long time [40]. They proposed a control algorithm that requires

only limited visibility with distinguishable robots. Their algorithm guarantees ag-

gregation in finite time and only requires a common orientation decided by robots.

Another study by Gordon et. al investigate gathering of agents with asynchro-

nous distributed control [41]. In this study, theoretical convergence is supported

with simple kinematic simulation of robots modeled as point bodies. Asynchronous

nature of the model introduces a randomness in the behavior of agent clusters. Agent

clusters move randomly due to unordered motion of agents. These random motions

allow, to a degree, the system to aggregate when necessity conditions are not satis-

fied.

Importance of strong theoretical support is emphasized in Swarm engineering ap-

proach by Sanza T. Kazadi [46]. This approach defines the global goals as mathe-

matical constraints. Behaviors are then synthesized to satisfy these constraints. The

behavior of system can be investigated using the goal constraints. Lee et. al apply

this concept to robot aggregation in their recent work [47]. Their implementation

of aggregation behavior allows robots to approximately estimate the size of the ro-

bot aggregation. Using this information and the analysis of puck clustering problem

where similar properties exists, implemented aggregation behavior produces clus-

ters with increasing size.

In all of these studies, aggregation behaviors were analyzed under a rather nar-

row range of parameter choices. In this thesis, we propose a minimal aggregation

behavior obtained through a combination of some simple behaviors. Simple be-

haviors were combined with subsumption architecture and a finite state machine.

By systematically varying the parameters of the minimal aggregation behavior and

the environment, we analyzed the aggregation performance of different aggregation

strategies using two different metrics. Four representative strategies were chosen us-

ing the results of experiments on effect of parameters. These four strategies were then

analyzed with respect to simulation time and size of the arena used in experiments.
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CHAPTER 3

SIMULATION ENVIRONMENT

In this study a port of the Swarmbot3D [48] simulator is used to conduct our experi-

ments. Swarmbot3D is a physics-based simulator developed within the Swarm-bots

project [49]. The simulator provides models of s-bots, mobile robots which have the

ability to connect to or disconnect from each other. Swarmbot3D provides models of

s-bots with increasing detail. The robots have both long and short range signaling

and sensing abilities. The sensing and actuation models used are either taken from

sensor data obtained from the actual s-bot or derived from realistic sensor models.

The simulator used Vortex(Critical Mass Labs, USA), a commercial physics-based

simulation library, to realistically simulate the physical interactions between the ro-

bots and the environment. Swarmbot3D simulator is verified against real robots and

many studies on swarm robotics is conducted on this simulator, including aggrega-

tion studies. Figure 3.1 shows a screen capture from the simulator used in experi-

ments.

There were two main drawbacks of the Swarmbot3D simulator to be used in our

study. First, the simulator was slow since it used a physics-based simulation library

making it difficult to perform systematic simulations. Second, the simulator used the

Vortex, which required license per machine.

In order to be able to conduct systematic experiments in a reasonable time, we

ported the Swarmbot3D simulator to the ODE (Open Dynamic Engine) physics sim-

ulation library, an open source physics engine. This allowed us to run the ported

simulator on a computer cluster in parallel, speeding up our experiments.

12



Figure 3.1: A screen shot from simulator.

3.1 Porting Swarmbot3D to ODE

The port of the Swarmbot3D is done through the implementation of a wrapper, called

KODEX (Kovan ODE eXtensions), to allow this simulator to run using the ODE li-

brary.

The work done within KODEX consists of three major parts: First, the Vortex

functions that are being used by the Swarmbot3D simulator are implemented us-

ing ODE counterparts, where possible. Within the context of this work, only the

functions that are used for the implementation of the Swarmbot3D simulator are im-

plemented. Second, ODE is extended to include model loading abilities, which are

essential for simulations developed in Vortex but not supported by ODE. This allows

one to use the robot, and environment models developed for the Swarmbot3D to be

loaded to ODE with minimal changes. Third, a new set of utility functions, such as

new and better graphics rendering capabilities are implemented for ODE. Figure 3.2

shows the conceptual representation of KODEX versus Vortex.

Figure 3.3 shows two snapshots of the Swarmbot3D simulator. The first snapshot,

shown in Figure 3.3 (a), is captured from the original Swarmbot3D simulator that

used the Vortex Library. The second snapshot, shown in Figure 3.3 (b), is captured
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Figure 3.2: Comparison of Swarmbot3D using Vortex and KODEX. (a) Swarmbot3D
using Vortex. (b) Swarmbot3D using KODEX.
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Figure 3.3: (a) A scene from Swarmbot3D simulator using Vortex. (b) A similar scene
with KODEX.

from the ported Swarmbot3D simulator which used ODE as wrapped by KODEX.

In the next subsection, we briefly describe the physics-based simulation.

3.1.1 Physics-based Simulation

Simulation of robots with physical reality requires realistic models of forces, frictions

and velocities. Traditional kinematics based models ignore force dynamics of the

systems they model. These models are plausible when interactions between bodies

are limited.

Physics-based simulation is achieved using, Rigid body dynamics, which allows

modeling environment and robots as a set of rigid bodies connected with joints. Rigid

bodies are solid objects that don’t deform, which can be modeled as a set of parti-

cles constrained to move together. Joints are used to connect bodies with different

constraints in their motions, like wheels of a car and arms of a clock.
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Rigid body dynamics also take into account forces acting on objects, which allows

accelerations to be realistically modeled. This way springs, pendulums and many

similar devices can be created. More importantly collusions between bodies can be

simulated by temporary joints, in this way realistic forces can be exerted on colliding

bodies.

In this approach, each body has constant and varying properties. Constant prop-

erties include mass, moment of inertia, friction coefficient and varying properties

are position, velocity, rotation and angular velocity. Joints, collusions and forces

are represented in differential equations defining change in these varying proper-

ties. Although these underlying principles for rigid body dynamics is quite simple,

for multiple bodies analytical solution is not possible for general case. So numerical

approximations are used. Fast, stable and accurate implementation of this numerical

approximation is a very challenging task.

Physics System Developer Kits provide numerical integrators to approximate

rigid body dynamics. There are various commercial, (VORTEX [50], Novodex [51]

and Havok [52]) and open source (ODE [53] and Dyna3d [54]) physics SDK’s are

available in the market.

Rigid body dynamics is useful in faithful simulation of vehicles, mechanical de-

vices and robots. Computer games, realistic animations as in movies and simulators

used in research use rigid body dynamics.

Player-Stage simulator from USC [55], uses a module named Gazebo [56] which

models physically embodied robots with rigid body dynamics. Webots [57, 58],

which was originally a kinematics based simulator has recently integrated rigid body

dynamics using ODE.

In the following section, technical details of KODEX library is given.

3.1.2 KODEX

KODEX is developed in C++ for Linux systems as well as Windows systems using

Cygwin.

KODEX provides a very similar interface to Vortex. This allows easy migration

from Vortex to KODEX. Many of the applications of Vortex library can be run in

KODEX with minimal changes. But it should be noted that KODEX provides only

some of the support functionality present in Vortex and is not intended to fully emu-
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late the Vortex library.

KODEX improves the functionality of ODE with model loading capabilities. KODEX

can load Vortex models and improves ODE with some utility functions and better

rendering capabilities.

As a result of this, it is much easier to create physical simulations, than to use

plain ODE. With ODE alone, environment and objects must be constructed by writing

code. KODEX simplifies this process using XML files, which are parsed to construct

the world. This reduces the task of loading a scene to a single line of code. This

allows creation of much more complex environments and models easily.

XML files can also be easily extended to add additional user parameters. XML

file syntax is also compatible with Vortex further simplifying the migration process.

By allowing textured high performance rendering KODEX improves the visual

output of ODE. KODEX also includes better camera and material handling than plain

ODE. Rendering can be useful for monitoring the simulations in robotics and camera

control is quite important for observing the simulation environment.

KODEX uses two external libraries: xerces-c is used for parsing XML files and

ODE is used for physics calculations. Rendering is done using a heavily modified

version of the reference renderer distributed with ODE. This renderer uses OpenGL

and thus it is very portable.

For the rigid body simulation, Vortex and ODE provide similar features, with

ODE being slightly more limited. ODE provide bodies which model the mass, in-

ertia and velocity of objects in the environment, geoms which model the colliding

parts of bodies and joints which are used to connect rigid bodies together. Although

these parts are roughly equivalent to Vortex counterparts, their representations are

different.

For instance, position and rotation of bodies are represented in different struc-

tures in ODE but they are kept in the same matrix in Vortex. Vortex provides direct

access to position and rotation of bodies thus these matrices must be kept up-to-date

for compatibility. In KODEX, a map between ODE and Vortex-like versions of these

matrices is kept. At each simulation step, all Vortex-like matrices are updated with

their associated ODE data.

Another challenging problem encountered during implementation of KODEX is

the lack of cylinder implementation in standard ODE implementation. There are
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user contributed modules that provide cylinders and in KODEX these modules are

included with minor modifications.

Rendering is not an essential part of ODE. Only a reference renderer is provided

with the library which is both incapable and inefficient. KODEX uses a heavily mod-

ified version of this renderer, with texture and lightning support, improved camera

handling and support for additional cameras.

Additionally, KODEX is being used in other projects. In MACS European Union

project, KODEX is used to simulate, Kurt-2 robot [59] developed by Fraunhofer AiS.

This simulation requires, robot to manipulate objects and complex sensors like cam-

era and laser range turret which are provided by the KODEX library.

The features of KODEX can be summarized as follows:

• Open source: This is the major power of KODEX. It can be modified for fur-

ther needs or customized for specific applications. Since no license is required,

KODEX is also very suitable for systematic studies using multiple computers.

• Platform independent: KODEX currently works on Linux and Windows plat-

forms with Cygwin.

• Loading world from XML files: The parser included in KODEX allows loading of

world setup from an easily understandable file. This file format also reduces

requirement for rebuilding code for different setups, making it very suitable for

a series of experiments.

• Extensible XML structure: XML files can contain user defined tags for applica-

tion specific data. These data can be obtained by the application easily.

• Easy migration from Vortex code: Interfaces provided by KODEX are very simi-

lar to Vortex interfaces, allowing very easy migration of programs written for

Vortex engine to KODEX.

• Collisions between boxes, cylinders, spheres, triangle meshes and composite objects:

KODEX uses ODE and some user contributed code to provide these collisions.

With basic geometries, composite objects and triangle meshes many real world

problems can be modeled.
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• Textures and materials in rendering: Textures and materials allow more visual

information to be displayed to user. Examples include but are not limited to

emulating LEDs by changing textures on robots.

• Better camera handling: Many dynamic simulations require constant debugging

and a good view around the simulation environment is a useful tool to un-

derstand problems. KODEX uses a flexible motion model for camera to allow

better management of the scene.

• Support for additional cameras: KODEX provide support for additional cameras

that can be used for modeling camera sensors.

3.2 Simulated Robot Model

Simplest model of Swarmbot3D, fast model as described in [48], is intended for evo-

lutionary runs and has many successful results [26, 60, 61, 27, 28, 29]. In this study

we also used the fast model of simulator. S-bot robot which moves using differential

drive, includes proximity and sound sensors. Figure 3.4 shows a schematic draw-

ing of the robot. The large circle (radius: 2.9 cm.) represents the body of the robot

oriented upwards and the black rectangles denote the wheels. Gray triangles repre-

sent the directional sound sensors. Although in [29] three microphones were shown

in the model, these microphones were later extrapolated into four microphones. The

dotted lines represent the location and the approximate range of the infrared sensors.

The small gray circle at the center of the body indicates the omni-directional sound

emitter. Infrared proximity sensors are modeled using sampling data obtained from

the real robot with the addition of white noise as described in [48].

3.2.1 Actuator Model

The robot used in the experiments, has two separately controlled wheels mounted

on a circular chassis. Motors driving wheels are modeled as motorized hinge joints

without rotational limits. These joints allow simple but useful and fairly realistic

modeling of motors.

The robots also have omni-directional sound emitters which are constantly kept

active during this study.
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Figure 3.4: A schematic drawing of the robot model. See text for detailed explanation
of this figure.

3.2.2 Sensor Models

The robot contains 4 directional sound sensors and 15 IR sensors as shown in Fig-

ure 3.4. The IR sensors are modeled using a sampling model described in [35]. The

sensors use the maximum of the sensor values computed from robots and white noise

with magnitude of 5% of the range of original signal is added to this sensor’s read-

ings.

An additional feature extractor algorithm that can detect robots in close proximity

is modeled. This can be implemented by using modulation in IR sensing, using a

different set of IR sensors.

Sound sensors are not capable of distinguishing different sound sources. In case

of multiple sound sources, the result is a sum of the effects of these sources. The

echoes and interference are not modeled. Range of sound sensor is 100 cm. Figure 3.5

shows the perceived sound value for a robot. In the x-axis the distance between robot

cluster and the perceiving robot changes and y-axis shows the perceived magnitude.

Series depict different cluster sizes. In this figure the robots are assumed to be tightly

packed and center of mass of cluster is placed directly in front of the sound sensor.

Each simulation step corresponds to 0.1s of real time. Swarmbot3D working with

KODEX can perform around 50 frames per second for 20 robots, which corresponds
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to 5 times speed up with respect to real robots.

It should be noted, however, that this simulator was neither verified against the

original Swarmbot3D simulator, nor against the physical robots. Therefore, we make

no claims about the portability of the controllers onto the physical robots. Yet, for the

purpose of this study, it is our belief that the sensor and signaling models which were

taken from the Swarmbot3D simulator are sufficient since this study aims to analyze

aggregation behavior in swarm robotic systems in general.
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CHAPTER 4

AGGREGATION BEHAVIOR

The aggregation behavior observed in social insects is a result of simple individual

behaviors. Computational capabilities of individuals are so low that many of the

responses of these organisms are reactive [24].

During aggregation, insects display a combination of reactive behaviors. Three

main behaviors can be labeled among these simple behaviors: moving randomly, ap-

proaching to an aggregate and waiting in the aggregate [37]. Individuals can help

formation of aggregates by approaching to aggregate and waiting in the aggregate.

Similarly by moving randomly, aggregates can be dispersed. Due to the limited per-

ception range of the individuals, aggregation observed in nature, requires formation

and dispersion of many aggregates. These formation are the intermediate steps of

the final aggregate.

Individual decisions for switching behaviors are non deterministic. Although the

reason behind this randomness is not clear, external factors are known to be effecting

the probabilities for switching behaviors [37, 38].

In this study, we present a minimal aggregation behavior that uses reactive sub

behaviors that are switched using probabilistic rules. Next section gives details of

the proposed behavior.

4.1 A Minimal Aggregation Behavior

Minimal aggregation behavior used in this study is implemented as a combination of

three basic behaviors and obstacle avoidance. These behaviors are arranged in two

layers according to the subsumption architecture as shown in Figure 4.1.

In the higher level, three behaviors exist: approach, repel and wait. The approach

behavior uses sound sensors to estimate the relative direction of the loudest sound
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Figure 4.1: Minimal aggregation behavior. Ovals display the behaviors and arrows
represent the behavior transitions.

(a rough indication of the closest robot cluster) and drives the robot toward this ap-

proximated direction.

The repel behavior is the opposite of the approach behavior. It drives the robot in

the opposite direction of the loudest sound.

During the wait behavior, the robot stays in its place.

In the lower level, an obstacle avoidance behavior is implemented, which becomes

active when the values of infrared sensors become larger than a fixed threshold. This

threshold is chosen as 10% of the range of IR sensor values, derived from the inves-

tigation of sample data used of IR modeling. Without this behavior robots get stuck

on the walls and other aggregates.

The higher-level behaviors are arbitrated using a finite state machine (FSM) with

probabilistic transitions as shown in Figure 5.7(a) to implement a class of aggregation

behaviors. At each state, the corresponding behavior becomes active. The robot ini-

tially starts in the approach state. In this state, the robot approaches the largest robot

cluster in its view and switches to the wait state when it satisfies the “robot close”

condition. The “robot close” condition is signaled when a robot can be perceived

using infrared sensors. During the wait state, the robot picks a random number uni-

formly within the range [0 − 1] at each time step. If this number is larger that Pleave,

then the robot switches to the repel state. Otherwise, the robot remains in the wait

state. Similarly, when the robot is in the repel state, with probability Preturn the robot
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switches back to the approach state.

At the beginning of simulation, all robots are in approach state, algorithm shown in

Algorithm 1 is run for each robot. SoundVector is calculated using sum of the vectors

created from sound sensors. Four such vectors are created each with direction same

as the relative direction of one of the sound sensors and magnitude equal to the

sensor value read from that sensor. Similarly for each proximity sensor, a vector is

generated and the obstacleVector is the sum of these vectors.

Here soundThreshold is introduced to allow robots to deal with noise inherent in

sensors and to reduce jaggy behavior. This also allows robots to explore arena when

they can not perceive any other robot. avoidThreshold on the other hand controls

when the obstacle avoidance will suppress other behaviors. Here also note that, in

wait state, obstacle avoidance is not activated, since without this modification, robots

can not wait close to other robots.

Robots use raw sensor values with their relative headings to approximate the

relative direction of robot cluster. For this purpose, at each time step, a vector is

constructed for each sound sensor, with relative direction same as the heading of the

sound sensor and magnitude equal to the value of sensor at that time step. These

four vectors are added to approximate direction of the cluster.

The robots try to minimize the angle between desired direction, which is de-

scribed by either SoundVector or obstacleVector, and their heading. In order to reduce

dead locks and allow smoother movement, robots turn in place until the angle is less

than π
3

. When the angle is less than π
3

, robots both move forward and turn toward

the desired vector.

It is our belief that the FSM, shown in Figure 4.1, represents a simple model of

reactive, self-organizing, aggregation behaviors that are of interest to swarm robotic

systems. The resulting behavior can be summarized as: Approach the sound source.

Wait within that cluster for a random time. Run away from sound sources. After random

amount of time approach back to the loudest sound source.

Note that the robot can not distinguish sound sources, causing robot to move to

the middle of sound sources when two sound sources with equal intensity are at the

same distance. Similarly, from the view point of the robot, a single robot that is close

by will sound as loud as a large robot cluster that is further. This phenomenon is

illustrated in Figure 4.2, where all setups shown are perceived same by the robot in

23



Algorithm 1 Aggregation Behavior

currentState← approach

for Each control step do

Read sensor data

Calculate soundVector

Calculate obstacleVector

if currentState = approach then

if mag(obstacleVector)>avoidThreshold then

move away from obstacleVector

else if mag(soundVector)>noiseThreshold then

move toward soundVector

else

move forward

if robotClose then

currentState← wait

else if currentState=repel then

if mag(obstacleVector)>avoidThreshold then

move away from obstacleVector

else if mag(sound vector)>noiseThreshold then

move away from soundVector

else

move forward

if rand < Preturn then

currentState← approach

else if currentState = wait then

stop motors

if rand < Pleave then

currentState← repel

Apply actuator outputs

24



Figure 4.2: Perceptual aliasing in sound sensors. The robot at the center perceived
approximately same sound intensities. Therefore robot has no perceptual ability to
distinguish between these four different cases.

the middle.

The minimal aggregation behavior described in this chapter is used in the exper-

iments presented in the next chapter.
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CHAPTER 5

EXPERIMENTS

In this chapter the experiments done in this study will be presented. These experi-

ments aim to understand the effect of individual behavior on behavior of the swarm,

manifestation of aggregation behavior with time and the effect of the size of environ-

ment on aggregation.

The minimal aggregation behavior we used in this study has two probabilistic

transitions, which govern the overall behavior of the robot. The first set of experi-

ments aims to understand the effect of these probabilities on aggregation. Behavior

transition probabilities, as will be revealed in following sections, lead to different and

interesting strategies. A set of possible transition probability pairs were chosen for

these experiments and runs using these pairs are conducted on the simulator.

Following the investigation of transition probabilities, progress of aggregation be-

havior is examined using four representative strategies, obtained from first set of ex-

periments. This is followed by experiments to understand the effect of the arena size

on aggregation performance, again on the four representative strategies. Increasing

the arena size allows investigation of aggregation when visibility constraints men-

tioned in literature [45, 41, 40] are relaxed.

In order to analyze aggregation behavior a metric of the aggregation performance

is required. It is difficult to define aggregation performance since aggregation is usu-

ally a task dependent and a subjective term. There are different performance metrics

proposed in the literature for this purpose and in this study, two performance metrics

with different characteristics are proposed. Section 5.1 gives details about the metrics

used. This section is followed by, Section 5.2, which gives details of the experimental

setup. Section 5.3 presents experiments made on behavior transition probabilities.

Finally, Section 5.4 and Section 5.5 report experiments on time dynamics and arena
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size.

5.1 Aggregation Performance Metrics

Aggregation performance metrics are required to compare the performance of differ-

ent aggregation behaviors. The difficulty of constructing aggregation metrics arises

from the subjective and task depended nature of aggregation. Good aggregation for

one task may not be as good for another task.

In literature various metrics were used for evaluating aggregation. Jeason et. al

used ratio of largest cluster formed to the number of robots in [38]. Trianni et. al on

the other hand used the sum of distances of robots to the center of mass of the ro-

bots, with some exceptions and normalization[26]. In [47], the aggregation behavior

involves decreasing number of active robots. The number of active robots decrease

with increasing cluster size This property allows them to measure performance of

aggregation using the reduction in number of active robots.

Considering the variety in requirements we introduce two different aggregation

performance metrics. These metrics will be explained in detail in the following sub-

sections.

5.1.1 Expected Cluster Size

Expected Cluster Size (ECS) metric aims to estimate the size of the cluster any robot

belongs to after the aggregation algorithm is run on the swarm. Calculation of this

metric involves counting the number of clusters, so the clusters must be identified

mathematically.

In the implementation of ECS metric, a threshold TRobotClose is used to determine

robots neighbor robots. The robots which are closer than the TRobotClose are named

neighbors, which can be labeled to be in the same cluster immediately. Transitivity

of this neighborhood relation is used to determine clusters.

Let dist(Ri, Rj) denote distance of ith to jth robot. Then neighborhood relation-

ship is defined as follows:

Neigh(Ri, Rj) =











1 ; if dist(Ri, Rj) < TRobotClose

0 ; o.w.
(5.1)
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Using this neighborhood information, robots in the same cluster are determined

using a connected component determination algorithm. This algorithm constructs

the transitive closure of the neighborhood matrix. Using the transitive closure of

neighborhood matrix, each connected component is labeled as a separate cluster.

Cluster size for a robot, Size(Ri), is the number of robots in the cluster that robot

belongs to. This metric calculates the average of cluster sizes for each robot in the

swarm, where n is the number of robots in the swarm.

ECS =
1

n

n
∑

i=1

Size(Ri) (5.2)

This metric ignores spatial distribution of clusters, but gives a measure for size of

cluster each robot belongs to. This approach is useful for applications where robots

must maintain local links with other robots in a cluster. Average size of robot clusters

is also important in applications where specific number of robots are required such

as in many self-assembly and pattern formation tasks. In [38], Jeanson et al. used

a similar metric for measuring the aggregation performance. Their work only uses

the size of largest cluster, ignoring the distribution of the robots outside the largest

cluster. In contrast ECS metric, by taking average of cluster sizes, takes this point

into account.

In this study, TRobotClose is set to 10 cm which is approximately the distance from

which robots can be reliably detected with the infrared proximity sensors.

5.1.2 Total Distance

The second metric, called Total Distance (TD), measures the total of distances between

each robot pair. This metric gives more information about the spatial distribution of

the swarm and clusters. This metric uses negative of distance to emphasize high

metric value for better clustering. This metric is defined as follows:

TD = −
n−1
∑

i=1

n
∑

j=i+1

dist(Ri, Rj) (5.3)

This metric is useful when density of robots in an area is significant. However,

when local communications are required this metric doesn’t always correspond to

locally connected groups of robots. This metric is essentially equivalent to the metric
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used by Trianni et al.[26], but further penalizes outlier robots and doesn’t include

normalization.

5.2 Experimental Setup

All experiments use a bounded square arena similar to the one shown in Figure 5.1.

Bounded arena assumption is introduced to simplify the problem to a manageable

size. Without borders, either robots must have memory or the visibility graph of ro-

bots must be connected. Therefore we chose to keep borders, as in many studies in

literature[39, 38, 26]. Although the use of square arenas is not common, we didn’t

have sampling data for IR sensors against concave surfaces, hence we kept the arena

shape square. The default size of this square arena is chosen to be large enough to

allow visibility problems to arise, and small enough to be solvable by simple algo-

rithms in some cases. Size of the standard arena is 200 cm × 200 cm, this arena is

shown in Figure 5.1.

Experiments are conducted in the simulator environment using 20 robots. Here

the number of robots is chosen to allow more than one stable group of robots. With

more than seven robots, the geometry of the robots, allows fairly stable clusters. By

using 20 robots more than one such large stable cluster can be formed.

Fifty runs are made for each data point in the figures shown with different ran-

dom initial placements. All experiments use the same fifty random initial place-

ments. Robots are able to move at a maximum speed of 0.3cm per simulation step.

At this simulation speed robots can cover, in the standard run time of 160000 simu-

lation steps, a maximum distance of 48000cm, 240 times the length of the standard

arena. This procedure is summarized in Figure 5.2.

Performance metrics are evaluated for the positions of robots at the end of each

run. A total of 2200 runs, for 160000 steps and 200 runs for 320000 steps are con-

ducted, for the results presented. Although KODEX provides a descent speed up,

this amount of simulation is still costly. A single run of the simulation for the 160000

steps requires approximately an hour to complete on a 2.4Ghz Pentium4 computer.

2200 such runs are reported in this document, which would require more than 90

days on a single computer. Without the license restrictions of Vortex, KODEX can

be run in parallel. We used the 128 node Beowulf cluster in TÜBİTAK ULAKBİM
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Figure 5.1: A screenshot of the standard arena used in experiments.
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Figure 5.2: This figure shows the flow of experiments. Each dotted box represents an
independent simulation.
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High Performance Computing Center for this purpose, reducing the computation

time to under a single day, provided all machines were dedicated to this task, which

is almost never the case.

Through the work, we collaborated with TÜBİTAK ULAKBİM High Performance

Computing Center, through beta testing. Initial experiments were conducted using

Parallel Virtual Machine (PVM)[62] library utilities implemented. With the installation

of Sun Grid Engine (SGE)[63], all simulation runs are ported to be executed from

SGE array jobs. SGE array jobs are intended for repetitive tasks similar to the task

described in this study. Scripts implemented for SGE array jobs are also provided to

other users of ULAKBİM High Performance Computing Center.

In the following sections, the experiments conducted using this framework is de-

scribed.

5.3 Effect of Behavior Transition Probabilities

This part of the experiments aims to understand the effect of behavior transition

probabilities Pleave and Preturn to aggregation performance. These probabilities change

the amount of time robots spend in behavior states. The experiments reported in this

section aim to understand these effects. Figure 5.3 summarizes the effect of different

Pleave and Preturn probabilities in the standard arena. In this figure median perfor-

mance for 50 runs of each pair of behavior transition probabilities is plotted. Preturn

values change on x − axis and different Pleave values are on different series. In Fig-

ure 5.4 and Figure 5.5 the aggregation performance is plotted in detail for ECS and

TD metrics respectively. Each sub-figure in these plots represent a different Pleave

value and again Preturn changes on x − axis. In these figures, boxes represent the

interquartile interval and whiskers represent the minimum and maximum values

found for ECS and TD metrics.

One of the factors for high variance of the results can be explained by the fact that

the aggregation algorithm is being observed at different stages. Although 160000

is sufficient for some of the initial conditions to form large clusters, it is not suffi-

cient for all initial conditions. When performance grows larger, the range of different

stages of aggregation also grows larger. Figure 5.6 shows histogram of ECS metric

values for aggregation behaviors. In this figure, each subplot is the histogram of ECS
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Figure 5.3: Effect of behavior transition probabilities. (a) On ECS metric values (b)
On TD metric values.

performance values for the 50 runs conducted for corresponding behavior transition

probabilities. In this figure Preturn changes on horizontally and Pleave changes verti-

cally. In each histogram, ECS value increases from left to right and bars indicate the

number of occurrences of the corresponding ECS value.

In order to remedy this problem, the number of runs is increased and results has

shown no significant improvement in variance. Median values in this case seems

quite similar. This result points out that the number of runs is sufficient and the

variance is inherent to the system.

Another important factor in the high variance, is the instantenous calculation of

performance. Robots in this study are usually in motion, which introduces additional

variance to the aggregation performance of group.

By choosing different values for controller parameters, we constructed 4 strate-

gies with different characteristics. Behavior of these four strategies can be seen from

screenshots of the arena for varying simulation steps in Figure 5.8. Details of these

strategies are explained in the following subsections.

5.3.1 Strategy 1

When Pleave 6= 0, Preturn 6= 0, the behavior has two competing dynamics determined

by the transition probabilities. Increasing Pleave increases the time spent by robots in

repel state, thus reduces size of the robot clusters. But this also allows more robots to

search for clusters, in turn increasing the chance of forming larger clusters.

Increasing Preturn on the other hand reduces the time robots spend in repel state.

By this way, distance traveled by robot while changing clusters is also reduced. When
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Figure 5.4: Change of ECS metric values for varying Pleave and Preturn for standard
arena for 50 runs. Each figure shows a different Pleave value. Preturn changes along
x axis. Boxes in the middle are interquartile interval. The line in middle of boxes are
the median, and whiskers are the min and max values for ECS metric.
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Figure 5.5: Change of TD metric values for varying Pleave and Preturn for standard
arena for 50 runs. Each figure shows a different Pleave value. Preturn changes along
x axis. Boxes in the middle are interquartile interval. The line in middle of boxes are
the median, and whiskers are the min and max values for TD metric.
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Figure 5.7: Finite State Machine representations of the representative strategies. (a)
strategy 1, (b) strategy 2, (c) strategy 3, (d) strategy 4. See text for detailed description.
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robots can not move far away from robot clusters, more stable clusters are obtained.

To represent this strategy, Pleave is chosen to be 0.0001 and Preturn is chosen to

be 0.001. Aggregation behavior using these probabilities is the highest performing

value discovered in this study for the ECS metric and performs reasonably well with

the TD metric. Figure 5.7(a) shows the FSM corresponding to this controller.

5.3.2 Strategy 2

When Pleave = 0, the FSM of the resulting behavior is reduced to Figure 5.7(b). In this

case robots remain in wait state. This behavior can be summarized as: Move toward

sound sources and when close to a robot, stay there forever.

In this strategy, when robot gets near another robot, the robot changes into wait

state. Since the probability of switching to repel state is zero, the robot stays within

the wait state forever. This strategy is deterministic, in the sense that robots never use

probabilistic transitions of the behavior. This behavior leads to small “frozen” aggre-

gations. Where robot clusters converge to locally formed clusters and stay in these

clusters. It is also interesting to note that, the result of this strategy is only dependent

on the initial distribution of the robots, since no random process is involved.

Due to the fact that robots being stuck in wait state, the expected cluster size for

this strategy is independent of Preturn and is considered as our baseline performance.

5.3.3 Strategy 3

When Pleave 6= 0, Preturn = 0, the FSM of the resulting behavior is reduced to Fig-

ure 5.7(c). In this strategy, similar to Strategy 2, robots are stuck in a state: repel. Since

this repel state causes robots to move away from sound sources, this behavior is really

poor in aggregation performance. The behavior can be summarized as: Move toward

sound sources initially but then run away from sound sources forever.

In this strategy, eventually, all robots are in the repel state, which means they

are actively avoiding sound sources. This destroys all aggregations and leads to the

worst aggregation performance.

An interesting point to note about this strategy is that, this behavior can accom-

plish another task that can be of interest to swarm robotic systems, segregation. In

segregation task, robots are required to be as far as possible from each other, while
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maintaining visibility. Robots using this strategy can cover an area efficiently, similar

to gas molecules, in a closed box.

5.3.4 Strategy 4

When Pleave = Preturn = 1, the FSM of the resulting behavior is reduced to Fig-

ure 5.7(d). In this behavior, robots doesn’t utilize the full potential of aggregation

behavior. This time robots are stuck in approach behavior.

The strategy can thus be summarized as: Move toward sound sources but don’t stop;

avoid robots like walls. In this strategy robot never remains in states other than approach,

since the probabilities of transition are one. This is equivalent to a fully reactive

control with only approach and obstacle avoidance.

This behavior creates dynamic robot aggregations, exploiting the obstacle avoid-

ance behavior. Robots approaching each other asynchronously and randomly cause

a random drift in the robot clusters. When robots get too close, they try to avoid each

other using obstacle avoidance behavior, moving in unpredictable directions. Robots

are in constant motion in this strategy, as a result, the clusters they form are also in

motion.

Although there is only a minor difference between this behavior and the behav-

ior with Pleave = 0.1 and Preturn = 1; the emergent behavior is quite different. In

the latter case, robots use wait behavior and can’t benefit from drift effect caused by

obstacle avoidance in strategy 4.

In this section we introduced the results of experiments conducted on thirty six

different behavior transition probabilities. Performance of chosen behavior transi-

tion probabilities were investigated using systematic simulation runs. Among these

cases, four distinct strategies were qualitatively described. We should underline that

these four different strategies are obtained by changing only the transition probabil-

ities of robots, allowing static aggregation, dynamic aggregation and even segrega-

tion. The aggregation behaviors obtained perform differently according to the ECS

and TD metric. When wait behavior is employed, robots move less amount of dis-

tance, and these kind of strategies perform better according to the ECS metric. When

wait behavior is not used effectively, robots move continuously and these kind of

strategies perform better in TD metric.

In the next sections we further investigate these four strategies.
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(1)
ECS= 1.1000 ECS= 2.8000 ECS= 2.8000 ECS= 3.5000 ECS= 13.0000
TD= -18705 TD= -10453 TD= -11227 TD= -9537 TD= -7438

(2)
ECS= 1.1000 ECS= 2.5000 ECS= 2.5000 ECS= 2.5000 ECS= 2.5000
TD= -18705 TD= -11666 TD= -11666 TD= -11666 TD= -11666

(3)
ECS= 1.1000 ECS= 1.6000 ECS= 1.1000 ECS= 1.0000 ECS= 1.0000
TD= -18705 TD= -19168 TD= -23291 TD= -24727 TD= -24934

(4)
ECS= 1.1000 ECS= 5.9000 ECS= 4.6000 ECS= 3.1000 ECS= 5.1000
TD= -18705 TD= -6394 TD= -6103 TD= -5499 TD= -4835

1 5000 10000 20000 80000

Figure 5.8: Positions of the robots in the arena for different time steps for four strate-
gies.
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Figure 5.9: The effect of time on metric values for the four strategies. (a) shows
median of metric values for ECS metric, (b) shows median of metric values for TD
metric.

5.4 Effect of Time

Robots must move to form clusters in aggregation behavior. This motion requires

time. Moreover, the probabilistic controller used in this study includes wait behav-

ior, which increases time required for aggregation. This part of experiments aims to

observe phases of aggregation with respect to time.

Figure 5.9 gives the summary of change in performance of strategies with respect

to number of simulation steps conducted for both, ECS and TD metrics. In this fig-

ures, number of simulation steps conducted change in x − axis and performance

metric values change on y − axis. This figure shows the median values of perfor-

mance. The results are given in more detail in Figures 5.10 and 5.11. Where change

in performance of the strategies are separated in different plots. In these figures,

each box represent the interquartile interval and whiskers show the minimum and

maximum value.

It can be seen that the ECS performance of strategy 1 is even lower than strategy

2 and 4 during the first 20000 steps. But after 40000 steps, performance of strategy

1 increases rapidly. Another interesting point is the initial increase of performance

for strategy 3. All robots start with approach behavior thus they form initial clusters

corresponding to increasing performance until 2500 simulation steps. After a random

amount of time controlled with Pleave robots start moving away from sound sources.

In case of strategy 3, robots never change into the approach behavior. Which causes

the performance of this strategy to fall afterward.

According to the results of the experiments with the TD metric, 4th strategy is su-
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Figure 5.10: Effect of time on ECS metric values for the four strategies. Boxes in the
middle are interquartile interval. The line in middle of boxes are the median, and
whiskers are the minimum and maximum values for ECS metric.
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Figure 5.11: Effect of time on TD metric values for the four strategies. Boxes in the
middle are interquartile interval. The line in middle of boxes are the median, and
whiskers are the min and max values for TD metric.
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Figure 5.12: Effect of time on ECS for the four strategies with TRobotClose is equal to
13 cm.

perior. This effect can be explained by the definition of aggregation for the ECS met-

ric. The threshold used for deciding on neighboring robots was 10 cm. This threshold

is found to be high enough to detect clusters in strategy 1, but is not sufficient to la-

bel clusters in strategy 4 where clusters are more sparse internally. Figure 5.12 shows

median cluster sizes for a larger threshold (maximum distance possible for IR de-

tection range, 13 cm) for the four strategies. ECS metric values are calculated in the

same way except the threshold is chosen to be higher. Similar to the other results,

reported in this study, detailed results for the four strategies are separately plotted

on Figure 5.13.

Although the performance of strategy 4 is high, it is not very feasible for robotic

systems. Apart from the risk of having large number of robots moving in close prox-

imity, large energy consumption due to motion is problematic. In this strategy, robots

never cease to move, therefore they use more energy. Figure 5.14 plots total distance

traveled by all robots in the swarm for different strategies. In strategy 2, robots move

only a little before coming to full stop and in strategy 3, robots move the largest dis-

tances among all strategies. There is also a significant difference between distances

traveled by robots using strategy 1 and strategy 4.
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Figure 5.13: Effect of time on ECS for the four strategies with TRobotClose is equal to
13 cm. Boxes in the middle are interquartile interval. The line in middle of boxes are
the median, and whiskers are the min and max values for ECS metric.
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Figure 5.14: Total distance traveled by robots with respect to time for the four strate-
gies.
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5.5 Effect of Arena Size

Arena size in this study, controls the visibility of robots to each other. In standard

arena size of 200 cm × 200 cm, a robot in the middle can perceive most of the arena.

By changing the size of arena, relative size of the perceived area is changed. Arena

size also effects the distance robots must traverse while forming robot clusters.
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Figure 5.15: Effect of arena size on ECS for the four strategies. (a) shows median of
metric values for ECS metric, (b) shows median of metric values for TD metric

Figures 5.16 and 5.17 display the performance of the four different strategies in

different arena sizes. The results show that even when the transition probabilities are

chosen for the arena with size 200 cm × 200 cm, the behavior can still outperform

the other strategies in the smaller arena and perform reasonably well for the larger

arena.

Larger arena poses a rather interesting challenge for aggregation. With this arena

size, the visibility graph of robots is usually disconnected. In this case, determin-

istic algorithms are bound to fail. Gordon et. al [41], note that additional random

behavior can lead to better clustering when visibility graph is disconnected. Small

improvement in performance supports this argument.

In small arena, without considering the perceptual aliasing effect, theoretical limit

for performance is complete clustering. This is not observed in our experiments. It

should be noted that, the sound sensor model used in this study is much simpler

than the long range sensor models used in visibility graph discussions[40, 45, 41].

These discussions assume sensors to be able to distinguish sources or at least cluster

directions. So although there exists a more general statement about limits of perfor-

mance in large arena, these studies are not directly applicable to small arena in this
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Figure 5.16: Effect of arena size on ECS metric values for the four strategies. Median
of performance of 50 runs with respect to arena size for 160000 simulation steps are
shown together with interquartile interval as whiskers.
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Figure 5.17: Effect of arena size on TD metric values for the four strategies. Median
of performance of 50 runs with respect to arena size for 160000 simulation steps are
shown together with interquartile interval as whiskers.
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study.
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CHAPTER 6

CONCLUSION

A minimal aggregation behavior composed of simple reactive behaviors is presented

in this study. Parameters of this behavior and some parameters of the environment

has been analyzed using two performance metrics. To the best of our knowledge,

this kind of systematic study is the first in literature for aggregation in swarm robotic

systems.

Strategies obtained through variation of parameters provide segregation like be-

havior (strategy 3), static clustering (strategy 2), and dynamic clustering (strategies

1 and 4). Clustering metrics favor different dynamic clustering methods, indicating

importance of an appropriate metric for the required task. Furthermore, threshold

choice for the ECS metric is important since it can dramatically change the obtained

results.

Although both strategies 1 and 4 form and break clusters during runs, their en-

ergy characteristics are different. Strategy 1 is more similar to cockroach behavior,

where clustering is modulated by resting. This strategy allows robots to stay in closer

proximity. On the other hand, strategy 4 looks more similar to schooling/flocking

observed in fish and flies where agents are constantly in motion. In this strategy av-

erage distance between robots in the same cluster is relatively larger due to obstacle

avoidance.

We wish to note that behaviors described in this study are not dependent on the

specifics of the platform, thus are quite portable. Sound sensors can be replaced with

any approximation of clusters around the robot and close range detection of other

robots can be implemented with different methods like leds, bump sensors, etc.

Simplicity of the controller used allows a good framework for further modeling.

Macroscopic modeling of aggregation is one of the topics the we hope to explore in
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future.

In order to increase the aggregation performance, changing strategies during ag-

gregation process might be useful. Starting with fast techniques like fourth strategy

and then switching to first strategy might be a viable option. The change of strat-

egy can also be arbitrated by an adaptation mechanism, that uses information robots

receive during aggregation process.

Finally an implementation of the minimal aggregation behavior proposed on real

robots is planned to arrive on stronger claims about the topic.
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