
 
THE INVENTORY ROUTING PROBLEM  

WITH DETERMINISTIC ORDER-UP-TO LEVEL INVENTORY POLICIES 
 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 
 

ÖZLEM PINAR 
 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

INDUSTRIAL ENGINEERING 

 
 
 
 
 
 

SEPTEMBER 2005



Approval of the Graduate School of Natural and Applied Sciences 
 
 
 

  
                                                                                         Prof. Dr. Canan Özgen 
                                                                                         Director 
 
 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 
 
 

 
                                                                                         Prof. Dr. Çağlar Güven 

     Head of Department 
 
 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
 
            Asst. Prof. Dr. Haldun Süral 
            Supervisor 
 
 
Examining Committee Members 
 
 
Prof. Dr. Nur Evin Özdemirel  (METU,IE) 

 

Asst. Prof. Dr. Haldun Süral  (METU,IE) 

 

Asst. Prof. Dr. Sedef Meral  (METU,IE) 

 

Dr. Seçil Savaşaneril   (METU,IE) 

 

Prof. Dr. Refik Güllü  (Boğaziçi Unv.,IE) 



 iii

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct.  I also 

declare that, as required by these rules and conduct, I have fully cited and 

referenced all material and results that are not original to this work. 

 

 

 

      Name, Last name : Özlem Pınar 

  

Signature              : 

 



 iv

ABSTRACT 
 

  

THE INVENTORY ROUTING PROBLEM  

WITH DETERMINISTIC ORDER-UP-TO LEVEL INVENTORY POLICIES 

 

 

Pınar, Özlem 

M.Sc., Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. Haldun Süral 

 

September 2005, 145 pages 

 

 

This study is concerned with the inventory routing problem with deterministic, 

dynamic demand and order-up-to level inventory policy.  The problem mainly 

arises in the supply chain management context.  It incorporates simultaneous 

decision making on inventory management and vehicle routing with the purpose of 

gaining advantage from coordinated decisions.   

 

An integrated mathematical model that represents the features of the problem is 

presented.  Due to the magnitude of the model, lagrangean relaxation solution 

procedures that identify upper bounds and lower bounds for the problem are 

developed.  Satisfactory computational results are obtained with the solution 

procedures suggested on the test instances taken from the literature. 

 

Keywords: Inventory Routing Problem, Deterministic Order-Up-To Level Policy, 

Lagrangean Relaxation 
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ÖZ 
 

 

DETERMİNİSTİK TALEPLİ, BELİRLİ BİR SEVİYEYE KADAR 

ISMARLAMALI ENVANTER YÖNETİMİ VE GÜZERGAH BELİRLEME 

PROBLEMİ 

 

 

Pınar, Özlem 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Haldun Süral 

 

Eylül 2005, 145 sayfa 

 

 

Bu çalışmada deterministik, dinamik talepler ve belirli bir seviyeye kadar 

ısmarlamalı envanter politikası içeren bütünleşik envanter yönetimi ve güzergah 

belirleme problemi incelenmektedir.  Tedarik zinciri yönetimi kapsamında sıklıkla 

ortaya çıkan bu problemde, envanter yönetimi ve güzergah belirleme kararlarının 

koordineli olarak ele alınmasıyla avantajlar elde edilmesi hedeflenir.   

 

Ele alınan problemin özelliklerini ortaya koyan bütünleşik bir model 

oluşturulmuştur.  Bu modelin geniş kapsamlı olmasından dolayı, probleme üst ve alt 

sınırlar belirlemek amacıyla Lagrange gevşetim esasına dayalı çözüm yöntemleri 

geliştirilmiştir.  Literatürden alınan test problemleriyle yapılan sayısal deneylerle 

elde edilen sonuçlar, geliştirilen yöntemlerin başarılı olduğunu göstermektedir.  

 

Anahtar Kelimeler: Bütünleşik Envanter Yönetimi ve Güzergah Belirleme 

Problemi, Belirli Bir Seviyeye kadar Ismarlamalı Envanter Politikası, Lagrange 

Gevşetimi 
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CHAPTER 1  
 

INTRODUCTION 
 

 

The main motivations for carrying inventory, as mentioned in Nahmias (1997), are 

gaining from economies of scale; dealing with uncertainties, speculations, and 

changes in demand patterns; complying with the restrictions on the amount that can 

be purchased or distributed (such as the restrictions on the minimum amounts that 

must be purchased); and reducing control costs (as the inventory levels are reduced, 

the inventory controls should be increased to ensure that stockouts do not occur.)     

 

Due to these properties, keeping inventories may become inevitable and the 

inventory management problem arises since there are costs related with inventory 

policies.  Following Nahmias (1997), the related costs can be classified as inventory 

holding costs, ordering costs, and penalty costs.  The inventory holding cost is 

incurred related with the inventory on hand, i.e., the opportunity cost, the cost of the 

physical space used for inventories, and so on.  The ordering cost, as its name 

implies, is incurred according to the amount of inventory ordered or produced (It 

usually has a fixed and a variable component.), whereas the penalty cost is incurred, 

when the inventory on hand is insufficient to meet the demands.  Thus, the 

inventory management problem is based on identifying inventory holding policies 

according to the characteristics of the system (the constraints that are imposed), 

while minimizing the related costs.  

 

The vehicle routing problem, on the other hand, as stated in Fisher (1995), arises in 

the distribution systems with the purpose of using a fleet of vehicles efficiently, 

which either distribute or collect products by making a number of stops.  Costs can 

be incurred related with the distances traveled, the amount of product distributed, 

the number of stops made, and the number of routes executed.  Thus, the vehicle
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routing problem is based on determining the visits to be made by each vehicle and 

the order of the visits under restrictions imposed such as vehicle capacity, delivery 

times, and so on, while minimizing the related costs. 

 

The inventory management problem and the vehicle routing problem have 

frequently been studied for years, whereas coordinated decision making for these 

problems, i.e., the inventory routing problem (IRP), has been of interest mostly in 

the last two decades.  The main inspiration for studying IRP is the logistics systems, 

in which either vendor-managed replenishment systems are in use or when the 

supplier and the multiple retailers represent different echelons in the supply chain of 

a single firm.  As generally cited in the literature, vendor-managed replenishment 

systems can be seen in the grocery industry, for instance, when the producer 

(supplier) of the goods on the shelves of the supermarkets (retailers) has the 

responsibility of monitoring and replenishing the products.  In these types of 

distribution systems, the decision of how much inventory to maintain at the supplier 

and the retailers is affected by delivery times and amounts for the retailers, which in 

turn is affected by the capacity of the vehicles used for the deliveries.  Thus, 

simultaneous decision making is important in these systems to obtain significant 

cost savings. 

 

In this study, an inventory routing problem with deterministic order-up-to level 

inventory policy (IRDOP) is considered.  The problem consists of coordinated 

decision making for inventory management and vehicle routing in a distribution 

system composed of a supplier and multiple retailers.  The demands at the retailers 

are deterministic, dynamic, and the inventory that can be kept at each retailer is 

bounded from below and above by predetermined levels, which give rise to the so 

called deterministic order-up-to level policy.  This problem is introduced by 

Bertazzi, Paletta and Speranza (2002). 

 

Deterministic demand assumption can be considered as too restrictive, when 

modeling a real life problem since the uncertainties inherent in real life are ignored.  



 3

However, with the advanced technology, it is possible to retrieve point of sales data 

by electronic data interchange, if strategic alliances are formed between the retailers 

and the supplier.  Thus, if advanced technologies are in use, the supplier can rapidly 

get information about the inventory status at the retailers.  By this means, the 

uncertainties inherent in the system can be reduced to some extent. 

 

Most of the earlier works on the IRP are based on comparing the solutions obtained 

with methods that incorporate a coordinated approach and a decoupled approach.  

To solve the coordinated and the decoupled problems, both mathematical models 

and intuitive heuristics have been developed.  Even though mathematical 

formulations have been presented for the IRP, the solution procedures provided are 

generally based on sequentially solving the inventory management problem and the 

vehicle routing problem and resorting to improvement steps later on.  Another 

approach taken is assuming that the replenishments are carried out by direct 

deliveries from the supplier to the retailers, who need to be resupplied.  This 

assumption simplifies the model by eliminating the routing component.  Thus, the 

studies that suggest approaches which consolidate finding routes and satisfying 

inventory policies are rare in the literature. 

 

The IRDOP, on the other hand, has not been modeled mathematically so far, which 

forms one of the main motivations for this study.  Besides, although a heuristic 

method has been developed to obtain an upper bound to the IRDOP by Bertazzi et 

al. (2002), a lower bound has not been identified, yet.  Since the problem is difficult 

to solve, lower bounds are needed to evaluate the performances of the solution 

procedures suggested.  Therefore, developing lower bounds is our secondary 

motivation for this study.  

 

We study a distribution system consisting of a supplier of a product and several 

retailers.  The retailers encounter retailer dependent, deterministic, and dynamic 

demands for the product that need to be met without backlogs.   
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A capacitated vehicle is available at the supplier to distribute the product to the 

retailers.  It is assumed that the deliveries are made on a route that starts from the 

supplier, serves the retailers to be visited, and ends at the supplier.  Upon deliveries, 

a transportation cost related with the distance traveled is incurred.   

 

Both the retailers and the supplier can hold inventory to be able to meet the demand 

on time.  Each retailer has a retailer dependent predetermined minimum and 

maximum inventory levels.  The retailers must be visited before their inventory falls 

below the minimum level.  Whenever a retailer is visited, its inventory is filled up 

to the maximum level.  A predetermined amount of product becomes available at 

the supplier in each period, which is used in the deliveries to the retailers.  

Backlogging is not allowed at the retailers and the supplier.  Inventory holding costs 

are incurred at the retailers and the supplier according to amount of product carried 

in the inventory. 

 

In short, the problem determines the retailers to be visited in each period, the 

amount of product to be delivered, and the route of a single vehicle, while 

minimizing the inventory holding cost at the retailers and the supplier and the 

transportation cost. 

 

An integrated mathematical model is developed for the IRDOP.  Due to difficulties 

inherent in the mathematical formulation provided for the IRDOP, it is not expected 

to solve this model optimally even for moderate-size instances.  Thus, methods that 

provide upper and lower bounds for the IRDOP are developed.  The focus in this 

study is the difficulties caused by the subtour elimination constraints and so, 

methods to identify upper and lower bounds are developed with the purpose of 

removing these constraints from the formulation of the problem.  The first method 

developed is based on relaxing the subtour elimination constraints by lagrangean 

relaxation.  Both an upper bound and a lower bound on IRDOP are identified by 

this method.  The second method starts with identifying the minimum cost tour that 

visits all retailers.  The precedence relationships of the visits on this a priori tour are 
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substituted for the subtour elimination constraints.  Computational studies are 

conducted to evaluate the performances of the methods developed. 

 

The chapters in this thesis are organized as follows.   

 

In Chapter 2, we discuss the related studies on inventory routing problems in the 

literature.  A scheme to classify the inventory routing problems, based on Baita, 

Ukovich, Pesenti and Favaretto (1998), is described in Section 2.1.  In Section 2.2, 

the features of the problem under consideration are presented for the study reviewed 

according to this classification scheme.  The solution methods employed in the 

related study, the bounds obtained, and the qualities of the bounds are discussed 

afterwards. 

 

In Chapter 3, the mixed integer programming (MIP) model developed for the 

IRDOP is presented.  Section 3.1 starts with a description of the problem 

environment.  Then, the features of our problem are summarized according to the 

classification scheme given in Section 2.1 and the basic assumptions made.  In 

Section 3.2, the mathematical formulation of the IRDOP is presented and the 

constraints of this model are described in detail.  The difficulties related with this 

model are explained afterwards. 

  

Due to difficulties faced with the solution to the mathematical formulation of the 

IRDOP, methods for identifying upper and lower bounds for the IRDOP are 

suggested in Chapter 4.  The formulation of the lagrangean relaxation model that is 

based on relaxing the subtour elimination constraints is provided in Section 4.1.  A 

solution for the subproblem obtained by this relaxation identifies the retailers to be 

visited and the amount of product to be delivered to the visited retailers.  This 

solution is not feasible for the integrated model since the deliveries may be made 

with subtours.  Thus, it provides a lower bound on the IRDOP.  An upper bound for 

the IRDOP is identified by converting the subtours in each period into a single tour 

for that period.  In Section 4.2, another method is described, which is based on 
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obtaining an a priori tour that visits all retailers and fixing the precedence 

relationships of the visits on this a priori tour.  The simplification provided by this 

approach results from separating the inventory management and vehicle routing 

problems to some extent.  This method provides an upper bound for the IRDOP 

since its formulation is more restrictive than the integrated model.  

 

Numerical experiments are carried out both with the integrated model given in 

Chapter 3 and with the methods of Chapter 4 that are used to obtain upper and 

lower bounds for the IRDOP.  Chapter 5 includes all results obtained with these 

methods in two sets of randomly generated numerical tests and a set of test 

instances taken from the literature.  In Section 5.1, the properties of the test 

problems are discussed.  Section 5.2 starts with a description of the statistics 

monitored to evaluate the results of the experiments.  Then, the results obtained for 

the test instances are presented for each set of experiment in sequence. 

 

In Chapter 6, main stages and contributions of our study are summarized.  The 

performances of the upper and lower bounds that are identified with the methods 

developed are presented.  Then, two basic directions for future research are 

discussed.  The first stream of possible future research areas is based on improving 

the results that are obtained by either enhancing the methods we developed or 

developing new methods.  The second area of further studies is extending the study 

to more general problems.  
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CHAPTER 2  
 

LITERATURE REVIEW FOR THE INVENTORY ROUTING 

PROBLEM 
 

 

Both inventory management problems and vehicle routing problems have 

independently been analyzed in numerous studies for years.  On the other hand, 

combined analysis of inventory management and vehicle routing problems, i.e., 

inventory routing problems, has mostly arisen in the last two decades.  Although the 

contexts of the studies show differences, the underlying idea of gaining advantage 

from simultaneous decision making is the same.   

 

In this chapter, we describe the classification scheme used for reviewing inventory 

routing problems studied in the literature and we present review of the related 

literature according to this scheme. 

 

2.1 Classification Scheme 

 

To classify the literature on inventory routing problems, a system similar to the one 

provided in Baita, Ukovich, Pesenti and Favaretto (1998) is used.  The elements of 

this classification scheme are explained below.   

 

Number of items 

 One: The items to be distributed are of one type. 

 Many: The items to be distributed are of multiple types.  
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Decision domain 

 Time: The decisions related to inventory and distribution problems are 

carried out over time periods. 

 Frequency: The decisions are executed over delivery frequencies.  The 

studies, whose decision domains are frequency, consider infinite-horizon 

problems. 

 

Demand  

 Deterministic: The demands at the retailers are assumed to be known. 

 Stochastic: The demands at the retailers are uncertain. 

 

Time behavior of the demand 

 Constant: The demand at each retailer is constant over time. 

 Dynamic: The demands at the retailers vary over time. 

 

Note that constant demand over time brings changes in the solution procedure 

adapted particularly for the studies whose decision domain is frequency.  Assuming 

that demand is constant over time at the retailers makes it possible to determine 

fixed visit frequencies for the retailers.   

 

Number of vehicles 

 Given: The distribution is performed with a given number of vehicles. 

 Not constraining: It is assumed that there are enough number of vehicles to 

make the required deliveries. 

 

Vehicle capacity  

 Equal: In case of multiple vehicles, the capacity of each vehicle is the same. 

 Different: In case of multiple vehicles, the vehicles have different capacities. 

 NA: It is used when single vehicle case is considered. 
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Note that vehicles with unequal capacities do not generally result in significant 

changes in the solution methods developed for the studies whose decision domain is 

time.  For the problems, in which the decision domain is frequency, vehicles with 

unequal capacities give rise to different visit frequency bounds for the regions that 

are visited with different vehicles. 

 

Stock capacity constraints 

 Yes: There are limits on the amount of inventory carried at the retailers. 

 No: The amount of inventory carried at the retailers is not restricted. 

 

Supply capacity constraints 

 Yes: There exists a limit on the amount of product that is supplied.  Limits 

on the production capacity (i.e., time availability, resource availability, and 

so on) are considered in this class, as well. 

 No: There is no limit on the product supply. 

 

Inventory parameters 

 H1: Inventory holding cost is incurred at the retailers. 

 H2: Inventory holding cost is incurred at the supplier. 

 Penalty: Inventory stockout or other penalty costs are taken into account. 

 Order: Product ordering costs are considered. 

 Revenue: Revenue is earned in proportion to the amount of product 

distributed. 

 Setup: The cost incurred when setting up the facility for production.   

 No: Inventory related costs are not taken into account. 

 

Transportation costs 

 Fixed: A fixed transportation cost is incurred at each trip. 

 Distance: Transportation cost is incurred according to the distance traveled.  

 Amount: Transportation cost is incurred in proportion to the amount of 

product carried or unloaded. 
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2.2 Literature review 

 

Due to the characteristics of the problem we studied, the literature examined mostly 

consists of works, in which retailers with deterministic demands are taken into 

account and the amount of production at the supplier is not a consideration.  The 

studies reviewed are infinite-horizon (i.e., frequency is the decision domain) and 

multi-period (i.e., time is the decision domain) inventory routing problems.  The 

reader is referred to Baita et al. (1998) and Federgruen and Simchi-Levi (1995) for 

more comprehensive reviews of inventory routing problems.     

 

Our review of each study starts with a table consisting of the features of the 

problem under consideration according to the classification elements that are 

described in Section 2.1 and the solution methodologies used in the study are 

discussed afterwards. 

 

 

Table 2.1 Campbell, Clarke and Savelsbergh (2002) 

Element Feature 
Number of items One 
Decision domain Time 
Demand  Deterministic
Demand time behavior Constant 
Number of vehicles Given 
Vehicle capacity Equal 
Stock capacity Yes 
Supply capacity No 
Inventory parameters No 
Transportation costs Distance 

 

 

In Campbell et al. (2002), a real life inventory routing problem of a firm which 

negotiated with its customers about initiating a vendor-managed replenishment 

policy is studied.  The environment of the problem is as seen in Table 2.1.  

Although meeting the demands at the customers on time is required, inventory 

related costs are not considered when making decisions. 
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The solution approach suggested is composed of two phases.  In Phase I, the 

customers to be visited in each day and the delivery amounts are determined, 

whereas in Phase-II, the actual delivery routes and schedules for each day are 

determined.  

 

For the first phase, an integer programming model is constructed.  Upon this basic 

model, three variations are considered: (1) handling the stop times at the customers 

together with the vehicle reloading time at the supplier, (2) the start and end times 

of customer usage, and (3) the time windows that restrict the delivery times.   

 

For solving the integer programming model constructed in phase I, the customers 

are clustered at the beginning and it is assumed that only the customers that are in 

the same cluster can be on the same route.  After identifying the clusters, the integer 

programming model is solved by replacing the daily variables with weekly 

variables for the days after a specific day (k days) and removing integrality for these 

weekly variables.  Thus, the volume of product that will be delivered to each 

customer in the next k days is determined in phase I.  In phase II, vehicle routing 

problems with time windows are solved to obtain daily vehicle routes and 

schedules.  

 

For the computational experiments, the actual data of two production facilities of 

the company is used.  The solutions obtained are compared with another heuristic, 

which is composed of the rules that constitute an approximation of the methods 

used in the industry.  It is seen that the two-phase approach outperforms the 

industry approximation approach for both facilities considered on the important 

statistics.    
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Table 2.2 Bell, Dalberto, Fisher, Greenfield, Jaikumar, Kedia, Mack and Prutzman (1983) 

Element Feature 
Number of items One 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Dynamic 
Number of vehicles Given 
Vehicle capacity Different 
Stock capacity Yes 
Supply capacity Yes (Resource availability)
Inventory parameters Revenue 
Transportation costs Fixed + Amount 

 

 

Bell et al. (1983) also consider a real life problem, whose characteristics are given 

in Table 2.2.  Although costs related with inventories are not taken into account in 

this study as in Campbell et al. (2002), it is assumed that revenue related with the 

amount of product delivered is earned.  A fixed cost and cost related with the 

amount of product unloaded form the transportation costs.   

 

Customer data (i.e., tank capacity, historical product usage), resource data (i.e., 

truck capacities, product availabilities), cost data, time and distance data, and 

schedule data of the firm are incorporated into a MIP formulation as problem 

parameters.  To formulate the model, demand forecasts are used to compute 

minimum and maximum inventory levels.  

 

To formulate the problem as a MIP, a set of vehicle routes, each composed of a set 

of customers to be visited at a trip, is generated by a program, which produces 

feasible and efficient routes.  The least-cost order of the customers on the route is 

decided by complete enumeration.  A subset of routes that are to be driven are 

selected from the set of routes generated and the starting time of each route, the 

vehicle to be used at each route, and the delivery amount to each customer on the 

route are determined with the aim of maximizing the value of deliveries minus the 

cost of deliveries by using the MIP model.  Due to large size of the model, 

lagrangean relaxation is applied, after which the problem is decomposed into 

subproblems (one for each vehicle) and an upper bound is obtained for the problem.  
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A heuristic based on the lagrangean relaxation approach is used to find a feasible 

solution (a lower bound) to the problem.   

 

It is seen that the gap between the upper and the lower bounds is at most 2% in the 

computational experiments performed and it is stated that the approach resulted in 

important savings for the firm. 

 

 

Table 2.3 Anily and Federgruen (1990) 

Element Feature 
Number of items One 
Decision domain Frequency 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Not constraining 
Vehicle capacity Equal & Different
Stock capacity No 
Supply capacity No 
Inventory parameters H1 
Transportation costs Fixed + Distance 

 

 

A stream of studies dealing with fixed-partition policies are started with Anily and 

Federgruen (1990).  The characteristics of this study are given in Table 2.3.  In this 

study, it is assumed that inventory is not kept at the warehouse and an upper and a 

lower bound to the long run average transportation and retailer inventory holding 

costs are determined.   

 

The routing schemes are identified by a modified circular partitioning scheme.  

Following the partitioning of the customers, the customers in each partition are 

separated into regions.  Whenever a customer in a region receives a delivery with a 

vehicle, all other customers in the related region are also visited by the same 

vehicle.  Under this strategy, partial fulfillment is possible since it is probable to 

assign a customer to multiple regions.   
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It is seen that the average difference between the upper and lower bounds ranges 

from 1% to 19% for different problem settings.  

 

 

Table 2.4 Anily (1994) 

Element Feature 
Number of items One 
Decision domain Frequency 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Not constraining 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity No 
Inventory parameters H1 (Retailer dependent)
Transportation costs Fixed + Distance 

 

 

The author studies the same problem, whose characteristics are given in Table 2.4, 

and generalizes the results of Anily and Federgruen (1990) for the case, in which 

holding costs at the retailers are not identical.  Due to this property, a difference of 

the proposed solution from that of the previous work is that the partitioning of the 

retailers to the regions is performed taking the holding costs at the retailers into 

account.  

 

In the experiments, it is seen that the gaps between the lower and upper bounds are 

less than 10% for all instances and the computational time is at most a few seconds.  

However, the author recommends use of the algorithm presented by Anily and 

Federgruen (1990), if the holding costs at the retailers are identical since it provides 

better quality policies. 
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Table 2.5 Anily and Federgruen (1993) 

Element Feature 
Number of items One 
Decision domain Frequency 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Not constraining 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity No 
Inventory parameters H1 + H2 
Transportation costs Fixed + Distance

 

 

Table 2.5 presents the environment of the problem studied by Anily and Federgruen 

(1993).  In this article, the authors consider an extension to their previous work, i.e., 

Anily and Federgruen (1990), so that keeping inventory at the depot is allowed, i.e., 

central inventories are possible.  For obtaining a solution to this problem, a similar 

strategy to the one used in the preceding work is utilized.  It is observed that the 

average gap between the lower and the upper bounds that ranges between 6% and 

12% is usually better than the gap seen in the system without central inventories 

(Anily and Federgruen (1990)). 

 

 

Table 2.6 Gallego and Simchi-Levi (1990) 

Element Feature 
Number of items One 
Decision domain Frequency 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Not constraining 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity No 
Inventory parameters H1 (Retailer dependent) + Order 
Transportation costs Fixed + Distance 

 

 

The characteristics of the problem considered by Gallego and Simchi-Levi (1990) 

are given in Table 2.6.  In this study, a lower bound on the long run average retailer 
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ordering, retailer inventory holding, and transportation costs is obtained for all 

inventory-routing strategies.  Effectiveness of direct shipping, i.e., making delivery 

to each retailer by a separate shipment, is evaluated as a function of the truck 

capacity.  An upper bound is identified for the case in which direct shipments are 

carried out by fully loaded trucks.  Using the lower and the upper bounds obtained, 

it is shown that when the economic lot size of each retailer amounts to more than 

71% of the capacity of the truck, direct shipping is at least 94% effective.  

Moreover, it is stated that the error of direct shipping increases as the lot sizes 

decrease. 

 

 

Table 2.7 Chan, Federgruen and Simchi-Levi (1998) 

Element Feature 
Number of items One 
Decision domain Frequency 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Not constraining 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity No 
Inventory parameters H1 
Transportation costs Fixed + Distance

 

 

The environment of the problem studied by Chan et al. (1998) is seen in Table 2.7.  

In this study, the effectiveness of fixed partition policies (i.e., partitioning the 

retailers into regions and serving each region independently) and zero inventory 

ordering policies (i.e., a retailer receives a delivery when its inventory level reaches 

zero) are examined and the worst case analysis together with the probabilistic 

analysis are provided.  Two lower bounds on the total cost are presented.   

 

Besides, a heuristic algorithm is developed for partitioning the retailers into regions 

so that each region is assigned a vehicle that visits all retailers in that region at 

equidistant epochs.  Numerical results are reported for randomly generated 
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instances and it is seen that the gap between the heuristic solution (the upper bound) 

and the lower bound is less than 19%.   

 

 

Table 2.8 Dror and Ball (1987) 

Element Feature 
Number of items One 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Given 
Vehicle capacity Equal 
Stock capacity Yes 
Supply capacity No 
Inventory parameters Penalty (& Incentive) 
Transportation costs Distance 

 

 

In the study of Dror and Ball (1987) given in Table 2.8, a long term inventory 

routing problem is reduced to a short term problem.  It is assumed that the 

customers keep inventory in tanks with predetermined sizes and whenever a 

customer receives a delivery, its tank is filled up.   

 

The relationship between the annual distribution cost, the fixed delivery cost, and 

the amount delivered to the customers are examined and the customers to be visited 

on a given day are selected according to these costs.  The authors formulate a 

mathematical model that takes into account the relationships between the costs 

mentioned.  Single-customer deterministic, single-customer stochastic, and 

multiple-customers cases are considered in the paper.  

 

In the single-customer deterministic problem, to reduce the annual problem to a 

single period problem, a penalty cost for the long term effects of the decisions that 

are carried out in the short term is utilized and a continuous time deterministic 

model is formulated.  For this purpose, an m-day period, in which all costs incurred 

are considered explicitly, and the following n-day period, in which the effects of the 
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decisions made for the m-day period are considered, are defined.  The changes in 

the costs over the succeeding n days are investigated depending on whether the 

customer requires replenishment during m days or not.  The increase in the costs 

over the succeeding n days, if a customer who needs replenishment on day t (t<m) 

not to stock out is resupplied before day t and the decrease in the costs over n days, 

if a customer who does not need replenishment in m-day period is replenished 

within m days, are calculated.   

 

In the single-customer stochastic problem, it is decided whether or not to visit a 

customer at the beginning of the planning period.  In case a customer that is not 

visited runs out of the stock, a penalty cost is incurred and it is assumed that the 

customer is automatically replenished.  Since the customer runs out of stock, if it is 

not resupplied, the expected stock out payment, the expected future cost penalty, 

and a safety stock level are calculated. 

 

Single-customer optimal replenishment policies are identified for both deterministic 

and stochastic demand cases. 

 

In the multiple-customer case, a mathematical model for the inventory routing 

problem is constructed using a generalized assignment VRP formulation that 

includes transportation costs and costs and incentives related with early deliveries.  

Although stochastic demands are used in safety stock calculations, the formulation 

of the model is based on deterministic demands.  In this formulation, the amount of 

product to be delivered to a customer on a visit is determined by the day of the visit.  

Therefore it is not considered as a decision variable.  This problem is solved by a 

modified generalized assignment algorithm and it is seen that the algorithm 

provides more than 50% increase in the performance over a manual system that is 

used at the time of the study and more than 25% increase in the performance over 

another existing system. 
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Table 2.9 Chien, Balakrishnan and Wong (1989) 

Element Feature 
Number of items One 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Constant 
Number of vehicles Given 
Vehicle capacity Different  
Stock capacity Yes  
Supply capacity Yes 
Inventory parameters Penalty + Revenue  
Transportation costs Fixed + Amount  

 

 

In Chien et al. (1989), a series of single period inventory allocation and vehicle 

routing problems is solved with the aim of maximizing revenues minus costs to 

obtain an approximate solution to the multi-period inventory routing problem.  

Table 2.9 presents the characteristics of the problem.   

 

As a first step for solving this problem, a multi-commodity flow-based mixed 

integer programming model is formulated.  Since it is difficult to solve this problem 

optimally, a lagrangean relaxation based approach is developed to obtain upper and 

lower bounds for the problem. 

 

By applying lagrangean relaxation to four constraints of the model, two 

subproblems are obtained.  The first subproblem is an inventory allocation problem 

and the second subproblem is a customer assignment/vehicle utilization problem, 

which can further be decomposed into customers and vehicles.  Subproblems are 

solved by greedy procedures to identify an upper bound to the original problem.   

 

To find a lower bound for the problem, a heuristic composed of two phases is 

applied.  In phase I, an initial set of vehicle routes is obtained using the solutions of 

the inventory allocation and customer assignment/vehicle utilization subproblems.  

The first step of Phase II is to check for feasibility.  In case the solution is not 

feasible, a feasible solution is found.  Then, it is checked whether the amount 

supplied to the customers on the routes can be increased.  If the customers that are 
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currently on a route are fully supplied, new customers with unsatisfied demands are 

inserted to the related route. 

 

Experiments that are performed on randomly generated test problems show that the 

solutions are within 1-3% of optimality.   

 

 

Table 2.10 Chandra (1993) 

Element Feature 
Number of items Many 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Dynamic 
Number of vehicles Not constraining 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity No 
Inventory parameters H1 + H2 + Order
Transportation costs Fixed + Distance 

 

 

In the study of Chandra (1993), whose characteristics are given in Table 2.10, the 

decisions related with the inventory policies of the supplier (warehouse) are also 

taken into account.  The aim is to determine replenishment quantities for both the 

warehouse and the customers together with the delivery routes.   

 

The author provides a MIP model, which is decomposed into two subproblems by 

separating the constraints related with the warehouse and the customer 

replenishments.  The first subproblem is a single facility, uncapacitated, multi-

product, multi-period warehouse ordering problem (WOP), which is NP-hard.  The 

second subproblem is the distribution planning problem (DP), which determines 

delivery routes in every period and amount of product to be delivered to each 

customer upon delivery. 
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An approximate solution algorithm to the integrated problem is defined and the 

solutions obtained by this approach are compared to the case in which the two 

subproblems mentioned above are solved separately and sequentially.  The 

approximation algorithm finds an initial feasible solution to the WOP.  Based on the 

distribution lots obtained from the solution of WOP, DP is solved.  Then possible 

cost reductions are searched, when the distribution patterns are changed.  This 

iterative procedure is applied until further gains are not realized.  

 

Randomly generated test problems are used in the experiments and it is seen that the 

integrated approach provides decrease in the costs ranging from 3% to 11% on 

average over the decoupled approach. 

 

 

Table 2.11 Chandra and Fisher (1994) 

Element Feature 
Number of items Many 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Dynamic 
Number of vehicles Not constraining 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity Yes (Production time availability) 
Inventory parameters H1 (Retailer dependent) + H2 + Setup 
Transportation costs Fixed + Distance 

 

 

The characteristics of the problem studied by Chandra and Fisher (1994) are given 

in Table 2.11 above.  In this study, production, inventory, and routing decisions are 

considered together.  The authors compare the two approaches in which production 

and distribution decisions are taken separately and in coordination with each other.  

 

In the decoupled approach, the first step is determining a production schedule so as 

to minimize the setup and inventory holding costs, while meeting demands on time.  

For this subproblem, a MIP formulation is provided and it is solved optimally.  
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Using the available amounts obtained from the production scheduling problem, 

vehicle routing problems are solved by a heuristic approach, and improvement steps 

are applied later on without changing the production schedule.  In the coordinated 

approach, the production and distribution decisions are taken into consideration 

within a single model, which is solved by a heuristic method.  The method is 

composed of solving the two subproblems as in the decoupled approach and 

resorting to more comprehensive improvement steps that allow changes in the 

production schedule, as well. 

 

In the numerical results, it is seen that the total cost reduction obtained by 

coordinating the production and distribution decisions ranges from 3% to 20%.  

 

 

Table 2.12 Fumero and Vercellis (1999) 

Element Feature 
Number of items Many 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Dynamic 
Number of vehicles Given 
Vehicle capacity Equal 
Stock capacity No 
Supply capacity Yes (Resource availability) 
Inventory parameters H1 (Retailer dependent) + H2 + Setup 
Transportation costs Fixed + Amount + Distance 

 

 

As in Chandra and Fisher (1994), the production decisions are incorporated in this 

study, as well.  The features of the problem are presented in Table 2.12. 

 

The production and distribution decisions are isolated by relaxing the constraints 

that link the two decisions to obtain solvable subproblems.  After these constraints 

are relaxed, it is possible to decompose the problem into four subproblems that are 

used to make decisions on production, inventory, distribution, and routing, 
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separately.  The solution of the subproblems gives a lower bound on the original 

problem. 

 

Using the solutions of the subproblems, a feasible solution (i.e., an upper bound) for 

the original problem is identified by a heuristic procedure. 

 

Randomly generated test instances are used in the experiments.  The computational 

times range from a few minutes to 1 hour, the gap between the upper and lower 

bounds that is calculated as ( )
UB

LBUB −*100  assumes an average of 5.5%.  It needs 

to be mentioned that the statistic generally used in the literature to measure this gap 

is ( )
LB

LBUB −*100 , which will give a greater gap value than the one obtained in 

this study.  The average percentage improvement lagrangean relaxation provides 

over the continuous relaxation of the original problem is about 15%.   

 

The feasible solutions obtained by the integrated approach described above are 

compared to a decoupled approach.  It is seen that the percentage of improvement 

gained by the integrated approach over the decoupled approach averages to slightly 

above 10%. 

 

 

Table 2.13 Bertazzi, Paletta and Speranza (2002) 

Element Feature 
Number of items Many / One 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Dynamic 
Number of vehicles Given (One) 
Vehicle capacity NA  
Stock capacity Yes 
Supply capacity Yes 
Inventory parameters H1 (Retailer dependent) + H2 
Transportation costs Distance 
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The characteristics of the problem considered in Bertazzi et al. (2002) are given in 

Table 2.13.  Although the problem environment is described as distributing a set of 

products to several retailers by a vehicle, the solution algorithm is provided for the 

single product case.  Each retailer has a minimum and a maximum level of 

inventory.  The retailers must receive a delivery before their inventory falls below 

the minimum level and the amount of product delivered must fill the inventory up to 

the maximum level.  Thus, the problem introduced is called as deterministic order-

up-to level policies in an inventory routing problem.   

 

The authors suggest a two-step heuristic method for solving the problem.  Firstly, a 

set of delivery times are obtained for the retailers.  For this purpose, an acyclic 

network is formed for each retailer.  The nodes on these networks correspond to 

time instants.  The weight of an arc between any two nodes, say node k and t, is the 

estimated change in the total cost, when the last visit to the retailer occurred at time 

k (node k) and the next visit to the retailer is to occur at time t (node t).  Using the 

estimated costs associated with each arc on the network of a retailer, the shortest 

path between the time (node) 0 and T+1, where T is the number of periods in the 

planning horizon, is identified and a set of delivery times are obtained for each 

retailer.  Then, for these selected delivery times, the retailers are inserted into the 

routes by using insertion at cheapest cost method.  These steps form Phase-I of the 

two-phase heuristic developed.  In the second phase, iterative improvements are 

made in the following way.  A pair of retailers is removed from the routes and 

possible improvements are searched by identifying new sets of delivery time 

instants for these retailers and repeating the cheapest insertion method.  

 

The upper bounds obtained with the two-step heuristic described above are 

compared to two trivial heuristics, i.e., ‘every’ and ‘latest’.  ‘Every’ is based on 

visiting all retailers in each period with the minimum cost tour, whereas in ‘latest’ 

the retailers that are visited in a period are the ones that will stockout in the next 

period if a delivery is not made in the current period.  It is seen that the two-step 

heuristic outperforms the trivial heuristics.  The gap between the solutions obtained 
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by the two-step heuristic and ‘every’ averages to 14%, whereas the related gap with 

‘latest’ averages to 5%.  Furthermore, the authors investigate the changes in the 

solutions under different objectives.  Since a lower bound is not provided in this 

study, the performance of the heuristic developed can not be evaluated objectively. 

 

Regarding the studies reviewed, it is seen that optimal solutions are not identified 

for the problems since the inventory routing problem is a hard problem.  The 

method that is frequently used is decomposing the integrated inventory routing 

problem into subproblems, solving the subproblems by heuristic methods, and 

identifying upper and lower bounds to the integrated problem.  Some of the studies, 

on the other hand, are based on providing a coordinated and a decoupled approach 

and evaluating the gains of the coordinated approach. 

 

Although most of the studies take into account the inventory holding policies at the 

retailers, the studies that consider the inventory policies of the supplier (taking into 

consideration either production or inventory related costs) in addition to the 

inventory policies of the retailers are rare.   

 

Similar to the previous works, we do not deal with identifying optimal solutions for 

the hard inventory routing problem.  However, when compared to the previous 

studies, we provide an integrated mathematical model for the deterministic 

inventory routing problem with order-up-to level inventory policy that captures all 

decisions related with inventory management both at the retailers and at the supplier 

and routing.  Furthermore, we propose methods to identify a lower bound on this 

problem, which is not provided in the literature so far. 
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CHAPTER 3  
 

MIP FORMULATION FOR THE IRDOP 
 

 

In this chapter, firstly, the problem environment is introduced, next basic 

assumptions made to model the problem are listed, and then an integrated model to 

formulate the problem is described.  A discussion of difficulties faced upon 

identifying a solution to IRDOP using the integrated model is given afterwards. 

 

3.1 Environment 

 

IRP incorporates simultaneous decision making on inventory management and 

vehicle routing problems for a distribution system.  The motivation for integrating 

inventory management and routing decisions mainly arises in real life either when 

the supplier and the retailers represent different echelons in a supply chain or when 

vendor-managed inventory systems are present.  In IRP, the aim is to determine the 

route to distribute the product(s) under concern and the amount of inventory to keep 

at the stocks over a planning horizon.   

 

In this study, a distribution system consisting of a supplier and several retailers is 

considered.  The retailers face retailer dependent, deterministic, and dynamic 

demands for a product that have to be met without backlogs.  The supplier 

distributes the product to the retailers with a capacitated vehicle and a transportation 

cost is incurred (vehicle routing problem).  Both the supplier and the retailers hold 

inventory to be able to meet the demand on time (inventory management problem).  

Each retailer has a predetermined retailer dependent minimum and maximum 

inventory level and must be visited before its inventory falls below the minimum
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level.  During a visit to the retailers, the amount for the difference between the on-

hand inventory and the maximum level is delivered, which gives rise to the so 

called deterministic order-up-to level policy.   

 

The problem is to determine which retailers to visit in each period, the amount of 

product to be delivered to the retailers, and the route of the vehicle, while 

minimizing the inventory holding costs at the retailers and the supplier and the 

transportation costs.   

 

Thus, we study a deterministic IRP with order-up-to level inventory policies.  The 

maximum inventory level in this problem can be considered as the shelf space 

available for a product in a supermarket or the size of a tank that is used to keep 

inventory of a product such as heating oil.  The minimum inventory level, on the 

other hand, can be considered as safety stock level required not to stock out since 

backlogging is not allowed.  If maximum and minimum inventory levels are 

removed, the problem corresponds to the classical inventory routing problem in the 

literature.   

 

In fact, the property of filling the inventory at the retailers up to the maximum 

levels at each delivery is one of the distinguishing features handled in our 

mathematical formulation for IRDOP, when compared with earlier works on IRP.  

On the other hand, it can be argued that a minimum inventory level is not essential 

in systems with deterministic demands.  Nevertheless, taking this feature into 

account can be considered as an initial step for modeling systems with stochastic 

demands, where the minimum inventory level will be an estimated safety stock 

level.  Moreover, as it will be declared later on in detail, the minimum inventory 

level can simply be dropped from the formulation.  

 

The features of the problem we studied are summarized in Table 3.1 below 

according to the elements of the classification scheme described in Section 2.1. 
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Table 3.1 The characteristics of the problem we studied  

Element Feature 
Number of items One 
Decision domain Time 
Demand  Deterministic 
Demand time behavior Variable  
Number of vehicles Given (One) 
Vehicle capacity NA (Single vehicle) 
Stock capacity Yes 
Supply capacity Yes 
Inventory parameters H1 (Retailer dependent) + H2 
Transportation costs Distance 

 

 

Basic Assumptions 

 

 A deterministic and dynamic amount of product becomes available at the 

supplier in each period. 

 The supplier can keep inventory and incurs a time independent unit 

inventory holding cost per period. 

 The product is distributed by a capacitated vehicle on a tour that starts from 

the supplier, visits the retailers, and ends at the supplier. 

 A distance dependent transportation cost is incurred upon deliveries.  The 

formulation developed for IRDOP is valid for symmetrical and 

unsymmetrical distances and the triangle inequality is not necessarily 

satisfied.   

 Retailers face retailer dependent, deterministic, and dynamic demands for 

the product. 

 Retailers can keep inventory and incur a unit inventory holding cost per 

period that is retailer dependent and constant over time. 

 Inventory holding costs are incurred at the beginning of each period.  For 

this reason, to take into account the effects of the decisions made in the last 

period of the planning horizon, the inventory levels at the beginning of the 

period that succeeds the last period are considered in inventory holding cost 

calculations, as well. 
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 Retailers have retailer dependent minimum inventory levels and the 

inventories at the retailers are not allowed to be less than these levels. 

 Retailers have retailer dependent maximum inventory levels and the 

replenishments must fill the inventories up to these levels. 

 A lead time on using the amount of product available at the supplier is 

included by assuming that the amount that becomes available at the supplier 

in a period is not used in the deliveries in that period. 

 The sequence of the events for any time period t is as follows.  Inventory 

holding costs are incurred according to the on hand inventory at the retailers 

and the supplier at the beginning of the period.  The product is distributed 

from the supplier to the retailers and transportation costs are incurred 

according to the distance traveled.  A given amount of product becomes 

available at the supplier and the retailers meet the demands that they face.  

The events occurring in any period t are as seen in Figure 3.1.   

 

 

 

Figure 3.1 The order of the events in any period t 

 

 

Amount distributed 
to the retailers 

Supplier 

Retailer i 

Inventory level 
at the supplier 

Inventory level 
at retailer i 

Amount delivered 
to retailer i 

Demand satisfied 
at retailer i 

Amount available 
at the supplier 

t 

t t+1 

t+1 

Time Horizon 
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3.2 Integrated Model (IM) Formulation 

 

The mathematical formulation for the IRDOP is given below.  In this formulation, 

R represents the set of retailers.  The supplier is associated with {0}, and set N, 

where { }0∪= RN , includes both the supplier and the retailers.  T stands for the set 

of periods.  Also, set H is included to represent the T period planning horizon plus 

the period succeeding the planning horizon, i.e., 1+∪= TTH , basically for 

inventory holding cost computation purposes.  Note that T denotes both the set of 

periods and the last period in the planning horizon, which can be distinguished from 

the context. 

 

Sets 

R: Set of retailers, R = {1, 2, 3, …, N} 

T: Set of periods in the planning horizon, T = {1, 2, 3, …, T} 

R0: { }0∪R  

H: { }1+∪ TT  

 

Parameters 
ih : Unit inventory holding cost at retailer i in each period 

hs : Unit inventory holding cost at the supplier in each period 

ijc : Transportation cost incurred whenever j is visited after i 

i
td : Demand at retailer i in period t 

iS : Minimum inventory level at retailer i 

iS : Maximum inventory level at retailer i 

C : Capacity of the vehicle 

ta : Amount of product that becomes available at the supplier in period t 

iI1 : Initial inventory level at retailer i at the beginning of period 1 

1Is : Initial inventory level at the supplier at the beginning of period 1 
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i
tI  

∑
∈Ri

i
tX  

t 

ta  

i
tX  i

td  

1+tIs  

i
tI 1+  

Retailer i

Supplier

Time horizont + 1 

tIs  

Decision Variables 
i
tX : Amount of product delivered to retailer i in period t 

i
tI : Inventory kept at retailer i at the beginning of period t 

tIs : Inventory kept at the supplier at the beginning of period t 

 
i

tY : 

 

 
ij
tZ : 

 
i
tU : Total amount of product delivered up to and including retailer i in period t 

 

 

Using these variables and parameters, the order of the events that occur in any 

period t is given in Figure 3.2. 

 

 

 

 

 

 

 

1   if retailer i is visited in period t 

0   otherwise 

1   if i is visited after j in period t 

0   otherwise 

Figure 3.2 Events that occur in any time period t 
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[IM] 

Minimize  ∑ ∑ ∑∑∑∑
∈ ∈ ∈∈∈ ∈

++
0 0Ri Rj Tt

ij
t

ij

Ht
t

Ri Ht

i
t

i ZchsIsIh                       (3.1) 

 

Subject to  

 
i
t

i
t

i
t

i
t dIXI 111 −−− =−+          1,...,2, +=∈∀ TtRi                        (3.2) 

i
t

i
t MYX ≤               TtRi ∈∀∈∀ ,            (3.3) 

CX i
t

Ri
≤∑

∈
    Tt∈∀                         (3.4) 

t
i
t

Ri

IsX ≤∑
∈

    Tt∈∀                           (3.5) 

ii
t SI ≥      HtRi ∈∀∈∀ ,                        (3.6) 

ii
t

i
t SXI ≤+     TtRi ∈∀∈∀ ,                        (3.7) 

( )i
t

i
t

i
t

i YMIXS −≤−− 1     TtRi ∈∀∈∀ ,                        (3.8) 

111 −−−
∈

=−+ ∑ tt
i
t

Ri
t aIsXIs   1,...2 += Tt                       (3.9) 

i
t

Rj

ij
t YZ∑

∈
=

0

    TtRi ∈∀∈∀ ,                                (3.10) 

i
t

Rj

ji
t YZ∑

∈
=

0

    TtRi ∈∀∈∀ ,                                (3.11) 

j
t

ij
t

j
t

i
t XCZCUU −≤+− *   TtRjRi ∈∀∈∀∈∀ ,,                   (3.12) 

i
t

i
t XU ≥     TtRi ∈∀∈∀ ,                     (3.13)  

CU i
t ≤     TtRi ∈∀∈∀ ,                     (3.14)  

0≥i
tX      TtRi ∈∀∈∀ ,                                      (3.15) 

0≥tIs     Ht∈∀                                (3.16) 

∈i
tY  (0, 1)    TtRi ∈∀∈∀ ,                                (3.17) 

∈ij
tZ  (0, 1)    TtjiRjRi ∈∀≠∈∀∈∀ ,;, 00                  (3.18) 

 

where ii SSM −=    Ri∈∀                                 (3.19) 



 33

In the above formulation, the objective function (3.1) minimizes the total of 

inventory holding cost at the retailers, inventory holding cost at the supplier, and 

transportation cost.   

 

Constraint (3.2) is the flow balance restriction that ensures that demand in a period 

is met from the inventory at the beginning of that period and the delivery in that 

period without backlogs.  In the flow balance equation for the first period, the 

parameter iI1  that denotes the initial inventory level at a retailer is substituted for the 

term i
tI 1− . 

 

Constraint (3.3) enforces that a delivery can be made to a retailer in a period only if 

the retailer is visited in that period.  The parameter M used in this constraint is an 

appropriately large number.  In fact, the value of M given by (3.19), i.e., the 

difference between the maximum and the minimum inventory levels, is the 

maximum possible value that the variable i
tX , i.e., the amount of product delivered 

to retailer i in period t, can take on since inventory of a retailer is at least at the 

minimum level and must be filled up to the maximum level. 

 

Constraints (3.4) and (3.5) guarantee that the total amount of product distributed to 

the retailers in a period does not exceed the vehicle capacity and the inventory 

available at the supplier at the beginning of the period, respectively.  By this means, 

constraint (3.5) imposes that the deliveries to the retailers in a period are restricted 

with the inventory level at the supplier at the beginning of the period.  Thus, the 

amount of product that becomes available at the supplier in a period is not used up 

for the deliveries in that period, which can be considered as inclusion of an implicit 

lead time. 

 

Constraint (3.6) is for ensuring that the inventory level at each retailer at the 

beginning of each time period is above the minimum level.   
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Constraint (3.7) makes sure that the inventory level at a retailer at the beginning of a 

period and the amount of product delivered in that period is below the maximum 

level.  Therefore, the inventory level at a retailer is below the maximum level at any 

instant. 

 

Constraint (3.7) and constraint (3.8) ensure that whenever a delivery is made to a 

retailer, the inventory at the retailer reaches the maximum level.  The value 

assumed for the parameter M is as given in (3.19).  To give a brief explanation on 

how constraints (3.7) and (3.8) work, assuming that retailer i is visited in period t 

(i.e., 1=i
tY ), the term on the right hand side of the constraint (3.8) is equal to 0 and 

the constraint can be restated as follows.     

 

0≤−+− i
t

ii
t ISX    TtRi ∈∀∈∀ ,                      (3.8’) 

 

Arranging (3.8’) as ii
t

i
t SIX ≥+ , and taking constraint (3.7) into account, i.e., 

ii
t

i
t SXI ≤+ , it is seen that the delivery amount i

tX  is forced to be equal to the 

difference between the maximum inventory level for the related retailer and the 

inventory on hand at the beginning of the period, whenever the retailer is visited. 

 

The coordinated use of constraint (3.7) and (3.8) is explained above for the case, 

where 1=i
tY .  Now, assuming that 0=i

tY  and substituting the value of M as given 

in (3.19), constraint (3.8) can be expressed as follows. 

 
iii

t
ii

t SSISX −≤−+−   TtRi ∈∀∈∀ ,                               (3.8’’) 

 

(3.8’’) can be arranged as ii
t

i
t SIX ≥+ , which does not impose additional 

restrictions on the formulation since the inventory on its own is always above the 

minimum level by means of constraint (3.6). 
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Constraint (3.9) establishes the flow balance for the supplier.  It balances the 

inventory, the total amount delivered to the retailers and the amount that becomes 

available at the supplier in each period.  Note that although the amount that 

becomes available at the supplier in period t (i.e., ta ) is not allowed to be used in 

the deliveries during period t, it is present in this constraint for the purpose of on 

hand inventory balancing.  As stated before, its not being used in the deliveries 

during period t is assured with constraint (3.5).  

 

Constraints (3.10) and (3.11) ensure that if a retailer receives a delivery in a period, 

that retailer is visited before and after the supplier or a retailer on the route followed 

in that period, respectively.   

 

Constraint (3.12) is the subtour elimination constraint, developed for the Traveling 

Salesman Problem (TSP) by Miller, Tucker and Zemlin (1960) and adapted to the 

Vehicle Routing Problem by Kulkarni and Bhave (1985), to find a feasible tour.   

 

Constraints (3.13) and (3.14) define the minimum and the maximum value that the 

total amount of product delivered to the retailers up to and including retailer i, i.e., 
i
tU , can take on, respectively.  The total amount distributed up to and including 

retailer i can not be less than the amount delivered to retailer i (i.e., i
tX ) and can not 

be more than the capacity of the vehicle (i.e., C ).   

 

Constraints (3.15) and (3.16) are nonnegativity and constraints (3.17) and (3.18) are 

integrality restrictions on the related decision variables.  Note that a nonnegativity 

restriction is not required for the decision variable i
tI  since it is already forced to be 

above the minimum inventory level. 

 

It must be remarked that since constraint (3.6) forces the inventory level of each 

retailer to be over the minimum level, an amount that corresponds to this minimum 

level is always kept at the stocks of the retailers.  It is possible to drop out the 
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minimum inventory level from the formulation and use the usual restriction of the 

policies without backlogging which ensures that the inventory level is not allowed 

to be negative.  This can be handled as follows:  Set the minimum inventory level at 

zero and reduce the maximum inventory level by the minimum inventory level.  

Therefore, to simplify the formulation, the minimum inventory level is eliminated 

from the model by modifying constraints (3.6), (3.7), and (3.8) as below.   

 

0≥i
tI      HtRi ∈∀∈∀ ,                                (3.6’) 

iii
t

i
t SSXI −≤+    TtRi ∈∀∈∀ ,                                 (3.7’) 

( )i
t

i
t

iii
t YMISSX −≤−−+− 1    TtRi ∈∀∈∀ ,                                         (3.8’’’) 

 

It must be noticed that the adjustment replaces the term iS  with 0 in (3.6) and the 

term iS  with ii SS −  in (3.7) and (3.8).  Although the formulation is expressed 

including the minimum inventory levels throughout the rest of the text in 

accordance with the definition of the problem, it must be kept in mind that the 

experiments are performed using the modified version above.  

 

A solution for IM will identify the following basic issues, while minimizing the 

total cost.  

 The retailers that receive a delivery in each period. 

 The amount of product delivered to the retailers that are visited in each 

period. 

 The route followed by the vehicle when distributing the product. 

 

Putting aside the restrictions related with the inventory policies and the costs 

associated with them, and assuming that the vehicle capacity is large enough, what 

remains to be solved is a TSP for a period, if some retailers receive deliveries in that 

period, i.e. for the periods in which there exist some 1=i
tY .  
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For this setting, let T’ be the set of periods in which deliveries exist, R’ be the set of 

retailers that are visited in period ∈t  T’, and let R0’ = R’ { }0∪ . 

 

With these modifications, the resulting formulation to be solved can be expressed as 

below.  

 

Minimize  ∑ ∑ ∑
∈ ∈ ∈' ' '0 0Ri Rj Tt

ij
t

ijZc                         (3.1’) 

 

Subject to 

 

∑
∈

=
'0

1
Rj

ij
tZ     ',' TtRi ∈∀∈∀                   (3.10’) 

∑
∈

=
'0

1
Rj

ji
tZ     ',' TtRi ∈∀∈∀                              (3.11’) 

2*)1( −≤−+− nZnUU ij
t

j
t

i
t   ',',' TtRjRi ∈∀∈∀∈∀                            (3.12’) 

1≥i
tU      ',' TtRi ∈∀∈∀                              (3.13’)  

1−≤ nU i
t     ',' TtRi ∈∀∈∀                              (3.14’)  

∈ij
tZ  (0, 1)    ',;',' 00 TtjiRjRi ∈∀≠∈∀∈∀               (3.15) 

 

The objective function (3.1’) is a simplified version of the objective function of IM, 

which includes only transportation related costs. 

 

The right hand sides of constraints (3.10’) and (3.11’) are 1 because the model is 

formulated for only the retailers to be visited.   

 

Constraints (3.12’), (3.13’), and (3.14’) are the Miller-Tucker-Zemlin subtour 

elimination constraints and constraint (3.15) ensures integrality.  

 

The model given above turns out to be a TSP.  Thus, even if the inventory related 

decisions are excluded from the formulation, it is required to identify solutions to 
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several TSPs to solve our model.  The TSP is known to be NP-hard, so it is hard to 

come up with a polynomial time algorithm to solve it.  This implies that IM is also 

difficult to solve.  In addition to the routing difficulty, the complexity caused by 

other decisions included in IM motivates us to develop heuristic procedures to solve 

the IRDOP.  In the following chapter, our approaches to find lower and upper 

bounds on the solution are discussed. 
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CHAPTER 4  
 

SOLVING THE IRDOP 
 

 

In this chapter, the methods used to obtain lower and upper bounds for the IRDOP 

will be discussed.  Identifying a lower bound for the IRDOP is a significant concern 

in this study since a lower bound has not been identified for this problem so far.   

 

To avoid dealing with the NP-hard TSPs, the approach taken in this study is the 

exclusion of the subtour elimination constraints from the model.  Removal of these 

constraints is carried out in two basic ways:  using lagrangean relaxation approach 

on IM or incorporating an a priori tour into IM.   

 

4.1 A Lagrangean Relaxation Based Approach 

 

A lagrangean relaxation based approach is used to obtain lower and upper bounds 

for the IRDOP.  In this procedure, the subtour elimination constraints in IM are 

relaxed.  Thus, a solution identified by the relaxed problem is enforced to satisfy all 

restrictions imposed in IM except the subtour elimination constraints.  So, this 

solution provides a lower bound to the IRDOP.   

 

The solution to the relaxed problem may result in visiting the retailers by subtours 

because of ignoring subtour elimination.  Except for this violation, however, 

remaining restrictions on IM hold for the solution obtained by lagrangean relaxation 

problem.  As a result, to identify a feasible solution to IM, the subtours that exist in 

the solution for the relaxed problem must be turned into tours.  For this purpose, a 

heuristic method is developed to convert the subtours into a tour.  When a tour for 
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each period that contains all retailers visited in the related period is determined, a 

feasible solution to the original problem (i.e., an upper bound) is identified. 

 

4.1.1 Lagrangean Relaxation Problem  

 

The subtour elimination constraints are multiplied by the lagrangean multipliers 

(i.e., the dual variables associated with the constraints) and added into the objective 

function.  The relaxed problem (LRP) is formulated below.  

 

Sets 

R: Set of retailers, R = {1, 2, 3, …, N} 

T: Set of periods in the planning horizon, T = {1, 2, 3, …, T} 

R0: { }0∪R  

H: { }1+∪ TT  

 

Parameters 
ih : Unit inventory holding cost at retailer i in each period 

hs : Unit inventory holding cost at the supplier in each period 

ijc : Transportation cost incurred whenever j is visited after i 

i
td : Demand at retailer i in period t 

iS : Minimum inventory level at retailer i 

iS : Maximum inventory level at retailer i 

C : Capacity of the vehicle. 

ta : Amount of product that becomes available at the supplier in period t 

iI1 : Initial inventory level at retailer i at the beginning of period 1 

1Is : Initial inventory level at the supplier at the beginning of period 1 
ij
tλ : Lagrangean multiplier for the subtour elimination constraint over i, j, t 
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Decision Variables 
i
tX : Amount of product delivered to retailer i in period t 

i
tI : Inventory kept at retailer i at the beginning of period t 

tIs : Inventory kept at the supplier at the beginning of period t 

 
i

tY : 

 
ij
tZ : 

 
i
tU : Total amount of product delivered up to and including retailer i in period t 

 

The initial formulation of LRP is the same as IM formulation with only exception 

being the relaxed subtour elimination constraints that are included in the objective 

function, i.e., the last term in the objective function of LRP given with (4.1) below. 

 

[LRP] 

Minimize ∑ ∑ ∑∑ ∑ ∑∑∑ ∑
≠
∈ ∈ ∈∈ ∈ ∈∈∈ ∈

−++−+++

ji
Ri Rj Tt

j
t

ij
t

j
t

i
t

ij
t

Ri Rj Tt

ij
t

ij

Ht
t

Ri Ht

i
t

i CXZCUUZchsIsIh )*(
0 0

λ    (4.1) 

 

Subject to  

 
i
t

i
t

i
t

i
t dIXI 111 −−− =−+          1,...,2, +=∈∀ TtRi                                 (4.2) 

i
t

i
t MYX ≤               TtRi ∈∀∈∀ ,                       (4.3) 

CX
Ri

i
t ≤∑

∈     Tt∈∀                        (4.4) 

t
Ri

i
t IsX ≤∑

∈     Tt∈∀                        (4.5) 
ii

t
i
t SXI ≤+     TtRi ∈∀∈∀ ,                       (4.6) 

1   if retailer i is visited in period t 

0   otherwise 

1   if i is visited after j in period t 

0   otherwise 
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ii
t SI ≥      HtRi ∈∀∈∀ ,                      (4.7) 

( )i
t

i
t

i
t

i YMIXS −≤−− 1     TtRi ∈∀∈∀ ,                       (4.8) 

111 −−
∈

− =−+ ∑ tt
Ri

i
tt aIsXIs

  1,...2 += Tt                       (4.9) 

∑
∈

=
0Rj

i
t

ij
t YZ

    TtRi ∈∀∈∀ ,                     (4.10) 

i
t

Rj

ji
t YZ =∑

∈ 0     TtRi ∈∀∈∀ ,                     (4.11) 
i
t

i
t XU ≥     TtRi ∈∀∈∀ ,                     (4.12)  

CU i
t ≤     TtRi ∈∀∈∀ ,                     (4.13)  

0≥i
tX      TtRi ∈∀∈∀ ,                           (4.14) 

0≥tIs     Ht∈∀                     (4.15) 

∈i
tY  (0, 1)    TtRi ∈∀∈∀ ,                     (4.16) 

∈ij
tZ  (0, 1)    TtjiRjRi ∈∀≠∈∀∈∀ ,;, 00                   (4.17) 

   

where ii SSM −=    Ri∈∀                      (4.18) 

  

A solution for LRP identifies the retailers that are visited in each period, the amount 

of product delivered at each visit, and the (sub) routes executed to perform the 

visits.  The difference of the solution obtained for LRP from that of IM is that the 

deliveries can be made to the retailers by several subtours in each period since the 

subtour elimination constraints are relaxed into the objective function. 

 

4.1.2 Enhancements 

 

After the relaxation, there may be cases in which the supplier is included in more 

than one subtour in a period.  This situation, however, can be prevented to obtain 
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solutions for LRP in line with those of IM.  If the supplier is included in more than 

one subtour in a period, when the subtours in the related period are merged into a 

tour, there will be multiple visits to the supplier.  To overcome this unrealistic 

outcome, the decision variable that identifies whether a retailer is visited in a period 

or not is extended to include the supplier as shown below. 

 
0

tY : 

 

Using 0
tY , constraints (4.10) and (4.11) in LRP are extended with the insertion of 

constraints (4.19) and (4.20) given below to include the entries to and the exits from 

the supplier, as well. 
00

t
Rj

j
t YZ =∑

∈
    Tt∈∀                                            (4.19) 

00
t

Rj

j
t YZ =∑

∈
    Tt∈∀                                 (4.20) 

 

Constraints (4.19) and (4.20) guarantee that there is no more than one entrance to 

and one exit from the supplier in a period, respectively.  Thus, to include (4.19) and 

(4.20) in LRP formulation, constraints (4.10), (4.11), and (4.16) are modified as 

follows. 
i

t
Rj

ij
t YZ =∑

∈ 0

    TtRi ∈∀∈∀ ,0                              (4.10’) 

i
t

Rj

ji
t YZ =∑

∈ 0

    TtRi ∈∀∈∀ ,0                              (4.11’) 

∈i
tY  (0, 1)    TtRi ∈∀∈∀ ,0                   (4.16’) 

 

Another impractical solution that may be faced with is that deliveries may be made 

to the retailers with several subtours in a period without including the supplier in 

any of these subtours in that period.  To preclude this outcome, constraints (4.21) 

and (4.22) given below, which ensure that whenever a retailer is visited in a period, 

there must be an entrance to and an exit from the supplier in that period, are inserted 

into the model. 

1   if the supplier is included in a tour in period t 

0   otherwise 
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∑∑
∈∈

≤
Ri

i
t

Ri

i
t ZNY 0    Tt∈∀                                 (4.21) 

∑∑
∈∈

≤
Ri

i
t

Ri

i
t ZNY 0    Tt∈∀                                 (4.22) 

where N is the number of retailers in the distribution system. 

 

Note that the enhancements given above are already satisfied in IM and therefore 

they are redundant for IM. 

 

Moreover, to strengthen the solutions obtained from the relaxed problem, the cuts 

proposed in Barany, Van Roy and Wolsey (1984) and improved in Denizel and 

Süral (2005) are adapted to our problem as follows. 

 







 −≥+ ∑∑

=

−

=

t

k

ii
k

i
t

i
t

t

k

i
k IdYdX

1
1

1

1
,0max  TtRi ,...,3,2, =∈∀                    (4.23) 

 

Constraint (4.23) makes the model stronger by forcing that if a retailer is not visited 

in period t, demand at that retailer up to and including period t must be met by the 

amount of product delivered to the retailer up to and including period t-1 and the 

retailer’s initial inventory.   

 

Another issue that needs to be remarked is that the LP relaxation of the strengthened 

LRP that is obtained by the enhancements above does not necessarily provide an 

integral solution.  Therefore, as discussed in Geoffrion (1974), and restated in 

several succeeding studies as Fisher (1981), Fisher (1985), and Beasley (1993), we 

expect to get a lower bound with LRP that is not of inferior quality than the lower 

bound obtained by the LP relaxation of IM. 

 

Whenever LRP is referred in the text without a notification, the formulation with 

the enhancement should be considered.   
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4.1.3 Lower Bounding Procedure  

 

Any solution to LRP identifies a lower bound for IM.  However, the quality of the 

lower bound obtained depends on several issues, which are discussed in the sequel. 

 

One of the fundamental issues that affect the quality of a solution for LRP is the 

way the lagrangean multipliers are updated.  From the two possible multiplier 

updating methods used in the literature, namely, subgradient optimization and 

multiplier adjustment, subgradient optimization is selected and employed in this 

study.  As stated in Beasley (1993), although multiplier adjustment usually requires 

less computational effort, the lower bound obtained can be weaker than that of 

subgradient optimization.  Furthermore, different procedures are required for 

applying multiplier adjustment heuristic to different problems, whereas subgradient 

optimization is a robust procedure that can be applied to any kind of problem in the 

same way.  Nevertheless, a multiplier adjustment heuristic that is specific to the 

problem on hand may be considered in a more comprehensive study.  For gaining 

more insight into lagrangean relaxation based approaches, Held, Wolf and Crowder 

(1974); Geoffrion (1974); Fisher (1981); Fisher (1985); and Beasley (1993) are 

some basic references.  

 

The procedure utilized to obtain a lower bound for the IRDOP using LRP is 

described below. 

 

[Lower Bound Identifying Procedure] 

Initialization. Initialize the parameters.  

π  = 2  (Step size parameter) 
ij
tλ  = 0 TtRjRi ∈∀∈∀∈∀ ,,  (Lagrangean multipliers) 

ZUB = A heuristic method is used (Upper bound).  The reader is referred to 

Appendix A for a definition of the heuristic ‘every’.   

Zmax = A small, possibly negative, number (Maximum lower bound). 

Imax = Used if a limit is required for the number of iterations (Maximum iterations). 
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INo = 1 (Number of iterations) 

 

Step 1. Solve LRP with current set of multipliers and obtain ZLB.  

Let, Zmax = max (Zmax, ZLB) 

 

Step 2. Calculate subgradients for the relaxed subtour elimination constraints as 

below. 

 CXZCUUs j
t

ij
t

j
t

i
t

ij
t −++−= *  TtRjRi ∈∀∈∀∈∀ ,,  

 

Step 3. Identify the step size as follows. 

 ( )
( )∑∑∑

∈ ∈ ∈

−
=

Tt Rj Ri

ij
t

LBUB

s
ZZT 2

π  

 

Step 4. Update the lagrangean multipliers as seen below. 

 ( )ij
t

ij
t

ij
t sT+= λλ ,0max   TtRjRi ∈∀∈∀∈∀ ,,  

 

Step 5. Let, INo = INo + 1.  Update π  according to the scheme used.   

 

Step 6. Go to step 1 until )005.0( <π  or (INo = Imax). 

 

In the procedure above, a lower bound for IM is obtained each time step 1 is 

executed.  The maximum lower bound is kept as Zmax to be used as the final lower 

bound obtained with this method. 

 

In this procedure, multiplier initialization is a concern that needs to be clarified.  We 

initialize lagrangean multipliers as zero since this is the most natural choice 

frequently used in the literature.  Also, it is stated in Beasley (1993) that the 

initialization of the lagrangean multipliers does not have a high influence on the 

quality of the lower bound identified. 
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The parameter π  used in the step size calculation can assume values between 0 and 

2.  The reader is referred to Held et al. (1974) for a discussion on the step size 

calculation.  A common approach used in the literature is initialing π  at 2 and 

halving it if the lower bound does not improve for a certain number of iterations 

(see Fisher (1981), Fisher (1985), or Beasley (1993)).  In addition to this usual 

approach, we made use of another method, in which π  is initialized at 2 and 

divided by 1.005 at each iteration.  Thus two different schemes are employed for 

updating π  to assess its effect on the lower bound. 

 

Method 1: Halving π , if Zmax does not alter for a certain number of iterations. 

Method 2: Dividing π  by 1.005 at each iteration. 

 

The quality of the solutions obtained by different π  updating schemes will be 

discussed in the computational experiments. 

 

4.1.4 Upper Bounding Procedure 

 

Note that the solution obtained for LRP may not be feasible for IM since the 

deliveries in a period may be made to the retailers by several subtours.  To obtain a 

feasible solution for the IRDOP, the nearest merger TSP algorithm (NM) as defined 

in Johnson and Papadimitriou (1985) for the problems with symmetric distances is 

used.  The run time of the algorithm is O(n2) and its worst case bound approaches 

twice the length of the optimal tour.  

 

Previously, it was mentioned that IM is applicable whether the distance between 

any two retailers is assumed as symmetric or not.  However, NM requires the 

distances between the retailers to be symmetrical. 

The first step of NM is identifying the subtours in each period.  If there are two or 

more subtours in any period, the algorithm is used to merge these subtours into a 
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single tour.  When the subtours in each period are merged into a single tour for the 

related period, a feasible solution for the IRDOP is identified.   

 

NM algorithm works as follows.  For each subtour pair in each period, cost effects 

of removing one of the arcs from each of the two subtours and merging the two 

subtours into a tour is assessed and the merger with the minimum cost is selected 

out of possible merging schemes for the related period.   

 

For instance, if the solution of LRP contains two subtours in a period as seen in 

Figure 4.1, the effects of removing the arc connecting the supplier and retailer 1 

from the first subtour and the arc connecting retailer 2 and retailer 3 from the 

second subtour are evaluated as seen in Figure 4.2.  It must be noticed that the grey-

colored arcs are the ones, effects of whose removal are assessed in Figure 4.2, 

whereas the thick arcs are the ones that are considered to be inserted to obtain a 

tour.  All arcs in the two figures below are undirected since the algorithm is 

applicable for the cases with symmetric distances. 

 

 

 

Figure 4.1 An illustrative solution in a period for LRP 

 

 

R1Supplier

R2 R3

R5

R4

Subtour 1 

Subtour 2 
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Figure 4.2 Possible merging schemes when the grey-colored arcs are removed 

 

 

The tour obtained by the merging scheme that is demonstrated in Figure 4.2 (a), 

read clockwise, starts from the supplier, visits the retailers 5, 1, 3, 4, 2, and ends at 

the supplier.   

 

Letting ijc denote the cost of traveling from node i to node j, where i = 0 stands for 

the supplier and i = 1, 2, 3, 4, and 5 stand for respective retailers, the cost of the 

merging scheme in Figure 4.2 (a) i.e., CM1, is calculated as follows: 

 

 CM1 = 23011302 cccc −−+  

 

The tour obtained with the merging scheme in Figure 4.2 (b), read clockwise, starts 

from the supplier, visits the retailers 5, 1, 2, 4, 3, and ends at the supplier. 

 

Similarly, the cost of the merging scheme in Figure 4.2 (b), i.e., CM2, is calculated 

as follows: 

 

 CM2 = 23011203 cccc −−+  

 

R1Supplier 

R2 R3

R5

R4

R1 Supplier

R2 R3 

R5 

R4 

(a) (b) 
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The effects of excluding two of the arcs on transportation costs, where each arc 

comes from different subtours, are assessed as in the example above.  In our NM 

algorithm, the merging scheme with the minimum cost among all subtour pairs is 

selected and the related subtours are merged into a tour.  This procedure is repeated 

for each period until a single tour is obtained in each period.  

 

Figure 4.3 shows any iteration of NM for the nodes being considered.  It will be 

used to explain the steps of the entire procedure. 

 

 

 

Figure 4.3 The nodes and arcs under consideration at any iteration of the nearest merger heuristic 

 

 

In Figure 4.3, N1 and N2 are any two nodes on one of the subtours (s1) and N3 and 

N4 are any two nodes on another subtour (s2).  Let the arc between N1 and N2 on 

s1 and the arc between N3 and N4 on s2 be the arcs (the grey colored arcs in Figure 

4.3), whose removals are evaluated.  Let the costs of traveling along the arcs a1, a2, 

a3, a4, a5, and a6 be c1, c2, c3, c4, c5, and c6, respectively, for the nodes under 

consideration.  According to the arrangement in Figure 4.3, NM can be summarized 

as follows. 

 

[Nearest Merger Procedure] 

Initialization.   

t = 0 

N3

N1 N2 

N4 

a1

a2

a5 a6
a3 a4
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CMmin = A large number (Minimum merging cost). 

 

Step 1. Let t = t+1  

 

Step 2. Identify the subtours in period t.   

 

Create an ordered list of the subtours by associating each subtour in each period 

with a number starting with 1 and ending with the number of subtours in the related 

period in the following way.   

 

List of subtours: 1, 2, 3, …, nt  t∀ , where nt is the number of subtours in period t. 

 

Create an ordered list of arcs for each subtour in each period by associating each arc 

with a number starting with 1 and ending with the number of the arcs included in 

the related subtour as follows.   

 

List of arcs: 1, 2, 3, …, mts st,∀ , where mts is the number of arcs included in 

subtour s in period t.  

 

Step 3. Let s1 = 0 

Let s2 = 0 

Let a1 = 0 

Let a2 = 0 

 

Step 4. Let s1 = s1+1 

Let s2 = s1 

 

Step 5. Let s2 = s2+1 

 

Step 6. Let a1 = a1+1 
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Step 7. Let a2 = a2+1 

 

Step 8.  

i. Calculate the cost of removing the arcs a1 and a2 from the subtours s1 and 

s2, respectively and including the arcs a3 and a4 in the tour. 
21432143

21 ccccCM aaaa
sst −−+=−

−  

ii. Calculate the cost of removing the arcs a1 and a2 from the subtours s1 and 

s2, respectively and including the arcs a5 and a6 in the tour. 

 21652165
21 ccccCM aaaa

ss −−+=−  

 

 * Let CMt
min = Min (CMt

min, 2143
21

aaaa
ssCM − , 2165

21
aaaa

ssCM − ) 

 

* If 2143
21

aaaa
ssCM −  and 2165

21
aaaa

ssCM −  are equal for s1 and s2 that are currently under 

consideration, the value to keep as the minimum cost to connect s1 and s2 (i.e., 

CMt
min) is selected randomly out of the two possible schemes. 

 

Step 9.  If a2 ≠  mts2 go to Step 7, else a2 = 0. 

 

Step 10. If a1 ≠  mts1 go to Step 6, else a1, a2 = 0. 

 

Step 11. If s2 ≠  nt go to Step 5, else a1, a2 = 0. 

 

Step 12. If s1 ≠  nt-1 go to Step 4, else a1, a2 = 0.  

 

Step 13. Merge the subtour pair with the least CMt
min and go to Step 2 until a single 

tour is obtained for period t. 

 

Step 14. Calculate the transportation cost incurred in period t.  Go to Step 1 until t 

is the last period in the problem. 
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Step 15. Calculate the total transportation cost for the solution obtained. 

 

4.1.5 Lagrangean Relaxation Solution Procedure 

 

By using LRP in cooperation with the nearest merger heuristic (LRP-NM), a lower 

bound and an upper bound for the IRDOP are obtained.  The procedure is based on 

making successive iterations for LRP by updating the lagrangean multipliers to 

obtain a lower bound and calling NM at a predetermined frequency to obtain an 

upper bound. 

 

[LRP-NM] 

Initialization.   

I1. Initialize the parameters.  

π  = 2 (Step size parameter) 
ij
tλ  = 0  TtRjRi ∈∀∈∀∈∀ ,,   (Lagrangean multipliers) 

ZUB = Heuristic method ‘every’ is used (Initial upper bound). 

Zmax = A small, possibly negative, number (Maximum lower bound). 

Imax = Used if a limit is required for the number of iterations (Maximum iterations). 

INo = 1 (Number of iterations) 

m = Number of successive LRP-MIP iterations to be performed before finding an 

upper bound with NM (Frequency). 

  

I2. Solve LRP with initial set of multipliers and obtain a lower bound.  

Let, Zmax = max (Zmax, ZLB) 

 

Step 1. Calculate subgradients for the relaxed subtour elimination constraints as 

below. 

 CXZCUUs j
t

ij
t

j
t

i
t

ij
t −++−= *  ( ) TtRji ∈∀∈∀ ,,  

 

Step 2. Identify the step size as follows. 
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 ( )
( )∑∑∑

∈ ∈ ∈

−
=

Tt Rj Ri

ij
t

LBUB

s
ZZT 2

π  

 

Step 3. Update the lagrangean multipliers as seen below. 

 ( )ij
t

ij
t

ij
t Ts+= λλ ,0max    TtRjRi ∈∀∈∀∈∀ ,,  

 

Step 4. Let, INo = INo + 1 

 

Step 5. Solve LRP with current set of multipliers, obtain the total cost incurred 

(ZLB), and update the lower bound as below.  

Let, Zmax = max (Zmax, ZLB) and update π according to the scheme used. 

 

Step 6. At every m iterations, identify a feasible solution for the IRDOP by 

converting the subtours into a tour for each period with NM and obtain an upper 

bound.  Compute the total cost (ZUB) using the transportation cost given by NM and 

the inventory holding cost given by the last solution obtained for LRP at Step 5 and 

update the upper bound as below. 

 Let, Zmin = min (Zmin, ZUB) 

 

Step 7. Go to step 1 until )005.0( <π  or (Zmax = Zmin) or (INo = Imax). 

 

When the procedure terminates, the final value of Zmax defines the maximum (best) 

lower bound obtained for the IRDOP.  Likewise, the final value of Zmin is the 

minimum (best) upper bound obtained for the IRDOP.   

 

The lower and upper bound updating scheme mentioned above is used to obtain 

lower and upper bounds for small-sized problems.  However, solving LRP 

optimally is not possible for large-scale problems because too much time is needed 

to solve it.  Thus, another solution methodology is required for large-scale 

problems, which is described in the next section. 
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4.1.6 Lagrangean Relaxation Solution Procedure for Large Problems  

 

Since solving LRP optimally may not be affordable for large-size problems, LP 

relaxation of LRP (LRP-LP) is solved to obtain lower bounds for these problems.  

However, the decision variables that identify the routes executed will most probably 

be noninteger in the solution provided by LRP-LP.  Thus, it is not possible to apply 

NM over the solution of LRP-LP.  For this reason, to obtain upper bounds for large-

scale problems, LRP is run until the first integer feasible solution is identified with 

CPLEX and NM is applied over this solution (NM-1). 

 

It is apparent that LP relaxation of a lagrangean relaxation formulation can not 

provide a better quality lower bound than the solution provided by LP relaxation of 

the original problem (without lagrangean relaxation).  However, due to 

enhancements included in LRP with the usages of (4.19), (4.20), (4.21), (4.22), and 

(4.23); it may be possible to obtain better bounds by LRP-LP than the LP relaxation 

of IM.  In fact, as it will be mentioned in the computational results, it is observed 

during the numerical experiments that these constraints happen to be more 

restrictive than the subtour elimination constraints in the LP relaxation of the 

formulation.  

 

The lower bound and upper bound updating procedure is modified as follows for 

large scale problems (LRP-NM-1). 

  

[LRP-NM-1] 

Step 1. Solve LRP-LP with zero lagrangean multipliers ( ij
tλ = 0, Ri∈∀ , Rj∈∀ , 

Tt∈∀ ) and obtain a lower bound for the IRDOP. 

 

Step 2. Solve LRP with zero lagrangean multipliers ( ij
tλ = 0, TtRjRi ∈∀∈∀∈∀ ,, ) 

until the first integer solution is obtained. 
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Step 3. Using the first integer solution obtained at Step 2, identify a feasible 

solution for the problem by NM.  

 

Step 4. Determine an upper bound for the IRDOP by computing the total cost using 

the transportation cost given by NM and the inventory holding cost given by the 

first integer feasible solution of LRP at Step 3. 

 

The reason why the lagrangean multipliers are set at zero in this procedure needs to 

be clarified.  It is seen during the first set of preliminary experiments that the best 

lower bound with LRP-LP is identified in the first iteration when all of the 

lagrangean multipliers are equal to zero.  When the subtour elimination constraints 

are removed from IM and the enhancements given in Section 4.1.2 are included in 

IM, an equivalent formulation to LRP with zero lagrangean multipliers is obtained.  

Accordingly, LRP-LP with zero lagrangean multipliers corresponds to the LP 

relaxation of IM, when the enhancements are included in IM and the subtour 

elimination constraints are removed from IM.  It is known that removing a 

constraint entirely from a formulation causes the feasible region of the problem to 

enlarge if the detached constraints are binding, or to remain the same if they are 

nonbinding.  Therefore, the LP relaxation of IM without the subtour elimination 

constraints will provide a solution that is at least as good as the formulation 

including them.  As a result, it is expected to obtain better solutions when the 

lagrangean multipliers are zero.   

 

However, what needs to be discovered is the circumstance that makes it possible to 

obtain zero multipliers.  To see why this is the case, the enhancements presented in 

Section 4.1.2 are inserted into IM and sensitivity analysis is performed for the LP 

relaxation of IM.  It is observed in the solution to the LP relaxation of IM that the 

subtour elimination constraints happen to be nonbinding for 25 instances out of 30 

tested (the instances that are used in the preliminary experiments), which means that 

the optimal dual variables (i.e., the lagrangean multipliers) associated with them are 

zero.  In each of the remaining 5 instances, only two of the subtour elimination 
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constraints are binding (i.e., only two of the lagrangean multipliers are nonzero).  

So, setting the lagrangean multipliers at zero in LRP-LP appear to produce fine 

lower bounds.  

 

Considering that it may not be affordable to perform numerous iterations for large-

scale problems and that the best lower bounds are identified mostly when the 

lagrangean multipliers are zero, the multipliers are set at zero and only one iteration 

is performed for LRP-LP in the procedure above.  Since it is not possible to 

determine initial multipliers when solving LRP in a simple manner, they are set at 

zero, as well. 

 

4.2 MIP Formulation with a Priori Tour 

 

IM that is developed to obtain a solution for the IRDOP contains several NP-hard 

TSPs to be solved.  Basic motivation for formulating the problem with a priori tour 

is diminishing the number of inherent TSPs that are solved.  In IM, a TSP for each 

period, in which some of the retailers are visited, needs to be solved, whereas in the 

formulation with a priori tour, only one TSP is solved.   

 

This approach is based on an a priori minimum cost tour that is identified once as a 

preprocessing step.  An a priori tour that starts at the supplier, visits all retailers, and 

ends at the supplier is determined by solving a TSP optimally for small-sized 

problems and using software, called Concorde, to obtain the optimal tour for large-

scale problems (http://www.tsp.gatech.edu/concorde).   

 

A priori tour will be executed in each period, in which deliveries exist, with some 

modifications depending on the retailers that are visited in the related period.  For 

this purpose, the precedence relationships of the visits to the retailers in a priori tour 

are fixed.  For instance, let a priori least cost tour in a distribution system including 

five retailers be as in Figure 4.4 below.  
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Figure 4.4 A priori tour for an illustrative distribution system 

 

 

Letting P(X) denote the set of retailers that can take place prior to a visit to retailer 

X, the precedence relations are set as follows. 

 

P(R2) = {R1}   

P(R3) = {R1, R2} 

P(R4) = {R1, R2, R3} 

P(R5) = {R1, R2, R3, R4} 

 

The precedence relationships above reveal the set of successors of a visit to retailer 

X, i.e., S(X), as given below, which are to be used in the formulation, as well. 

 

S(R1) = {R2, R3, R4, R5} 

S(R2) = {R3, R4, R5} 

S(R3) = {R4, R5} 

S(R4) = {R5} 

 

In addition to the relations given above, it must be remarked that a direct visit is 

possible from the supplier to each retailer and from each retailer to the supplier.  To 

give an example for the usage of these relationships, suppose that retailer 2 is to be 

visited in a period.  The visit that can take place before a visit to retailer 2 is a visit 

to retailer 1, i.e., P(R2) = {R1}, or else a direct trip can be executed from the 

R1 

Supplier 

R2 

R5 

R3 

R4 
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supplier to the retailer 2.  Likewise, the visits that can take place following a visit to 

retailer 2 are visits to retailer 3, 4, or 5, i.e., S(R2) = {R3, R4, R5}, or else a direct 

trip from retailer 2 to the supplier can be carried out. 

 

After the predecessor and successor relationships are fixed as above, the retailers to 

be visited in each period and the amount of product to be delivered during the visits 

are determined considering these relations.  According to the relationships 

expressed above for the illustrative distribution system in Figure 4.4 and assuming 

that retailers 2, 4, and 5 are visited in a period in the planning horizon, the delivery 

route in that period will be as seen in Figure 4.5. 

 

 

 

Figure 4.5 The tour to be executed according to the illustrative distribution system when retailers 2, 

4, and 5 are visited in a period 

 

 

An advantage of this approach is that the decisions related with obtaining the least 

cost tour and the least cost inventory policy in each period are separated to some 

extent. 

 

4.2.1 Basic Formulation 

 

The problem with a priori tour can be formulated as Traveling Salesman Problem 

with Profits as in Feillet, Dejax and Gendreau (2002), where there exist revenue and 

R1 

Supplier 

R2 

R5 

R3 

R4 
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cost associated with visiting each retailer and the retailers to be visited are selected 

so as to maximize the revenue minus the cost, i.e., the profit, on a given a priori tour 

τ  containing all the retailers.   

 

Sets 

R: Set of retailers, R = {1, 2, 3, …, N} 

T: Set of periods in the planning horizon, T = {1, 2, 3, …, T} 

R0: { }0∪R  

S(i): Set of retailers that are allowed to be visited after retailer i ( )Ri∈  on route 

τ .  Direct visit to the supplier is also included in the set, i.e., ( )( )0RiS ⊂    

P(i): Set of retailers that are allowed to be visited before retailer i ( )Ri∈  on route 

τ .  Direct visit from the supplier is also included in the set, i.e., ( )( )0RiP ⊂   

 

Parameters 
i

tr : Revenue associated with visiting retailer i in period t 

ijc : Transportation cost incurred whenever j is visited after i 

 

Decision Variables 

 
i

tY : 

 
ij
tZ : 

 

 

 

[Traveling Salesman Problem with Profits] 

Maximize ∑ ∑ ∑∑∑
∈ ∈ ∈∈ ∈

−
Tt Rj Ri

ij
t

ij

Tt Ri

i
t

i
t ZcYr

0 0

          (4.24) 

 

 

1   if retailer i is visited in period t 

0   otherwise 

1   if i is visited after j in period t 

0   otherwise 
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Subject to 
i

t
iSj

ij
t YZ =∑

∈ )(
    TtRi ∈∀∈∀ ,                                (4.25) 

i
t

iPj

ji
t YZ =∑

∈ )(
    TtRi ∈∀∈∀ ,                     (4.26) 

10 ≤∑
∈Ri

i
tZ     Tt∈∀                      (4.27) 

10 ≤∑
∈Ri

i
tZ     Tt∈∀                      (4.28) 

∈i
tY  (0, 1)    TtRi ∈∀∈∀ ,                     (4.29) 

∈ij
tZ  (0, 1)    TtjiRjRi ∈∀≠∈∀∈∀ ,;, 00                   (4.30) 

 

In the formulation above, the first term in the objective function (4.24) is the 

revenue earned when a retailer is visited, whereas the second term is the cost 

incurred depending on the route followed.  Thus, the objective is maximizing the 

profit associated with visits to the retailers. 

 

Constraints (4.25) and (4.26) ensure that if a retailer is visited in a period, it is 

visited before and after the predetermined successors and predecessors of it on a 

priori tour τ , respectively.   

 

Constraints (4.27) and (4.28) make sure that there is at most one entrance to and one 

exit from the supplier in each period, respectively.  These constraint sets are 

included in the formulation to eliminate possible subtours.  Unless these restrictions 

are imposed, there may be several subtours in any period, each starting from the 

supplier, visiting some of the retailers, and ending at the supplier.    

 

Constraints (4.29) and (4.30) are the integrality restrictions on the related decision 

variables. 

 

The difference of the formulation we provided from the formulation in Feillet et al. 

(2002) is that our formulation is based on the precedence relationships that are 
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determined according to the least cost a priori tour obtained.  We use these 

precedence relationships in constraints (4.25) and (4.26) to restrict the tours that can 

be executed.  Feillet et al. (2002), on the other hand, use no advance information 

about the tour and seek the best possible tour.  In the formulation provided by 

Feillet et al. (2002), the visit that precedes or succeeds a visit to a customer can be 

made to any customer, whereas we require the precedence relationships given by a 

priori tour to be satisfied.   

 

4.2.2 The Formulation with a Priori Tour (APT) for the IRDOP  

 

Sets 

R: Set of retailers, R = {1, 2, 3, …, N} 

T: Set of periods in the planning horizon, T = {1, 2, 3, …, T} 

R0: { }0∪R  

H: { }1+∪ TT  

S(i): Set of retailers that are allowed to be visited after retailer i ( )Ri∈  on the 

route τ .  Direct visit to the supplier is also included in the set, i.e., ( )( )0RiS ⊂  

P(i): Set of retailers that are allowed to be visited before retailer i ( )Ri∈  on the 

route τ .  Direct visit from the supplier is also included in the set, i.e., ( )( )0RiP ⊂   

 

Parameters 
ih : Unit inventory holding cost at retailer i in each period 

hs : Unit inventory holding cost at the supplier in each period 

ijc : Transportation cost incurred whenever j is visited after i 

i
td : Demand at retailer i in period t 

iS : Minimum inventory level at retailer i 

iS : Maximum inventory level at retailer i 

C : Capacity of the vehicle 
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ta : Amount of product that becomes available at the supplier in period t 

iI1 : Initial inventory level at retailer i at the beginning of period 1 

1Is : Initial inventory level at retailer i at the beginning of period 1 

 

Decision Variables 
i
tX : Amount of product delivered to retailer i in period t 

i
tI : Inventory kept at retailer i at the beginning of period t 

tIs : Inventory kept at the supplier at the beginning of period t 

 
i

tY : 

 
ij
tZ : 

 

 

[APT] 

Minimize  ∑ ∑ ∑∑∑∑
∈ ∈ ∈∈∈ ∈

++
0 0Ri Rj Tt

ij
t

ij

Ht
t

Ri Ht

i
t

i ZchsIsIh                     (4.31) 

 

Subject to  
i
t

i
t

i
t

i
t dIXI 111 −−− =−+          1,...,2, +=∈∀ TtRi                               (4.32) 

i
t

i
t MYX ≤               TtRi ∈∀∈∀ ,                     (4.33) 

CX
Ri

i
t ≤∑

∈
    Tt∈∀                      (4.34) 

t
Ri

i
t IsX ≤∑

∈

    Tt∈∀                      (4.35) 

ii
t SI ≥      HtRi ∈∀∈∀ ,                    (4.36) 

ii
t

i
t SXI ≤+     TtRi ∈∀∈∀ ,                     (4.37) 

( )i
t

i
t

i
t

i YMIXS −≤−− 1     TtRi ∈∀∈∀ ,                     (4.38) 

1   if retailer i is visited in period t 

0   otherwise 

1   if i is visited after j in period t 

0   otherwise 
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111 −−−
∈

=−+ ∑ tt
i
t

Ri
t aIsXIs   1,...,2 += Tt                     (4.39) 

i
t

iSj

ij
t YZ =∑

∈ )(
    TtRi ∈∀∈∀ ,                                 (4.40) 

i
t

iPj

ji
t YZ =∑

∈ )(
    TtRi ∈∀∈∀ ,                                (4.41) 

10 ≤∑
∈Ri

i
tZ     Tt∈∀                      (4.42) 

10 ≤∑
∈Ri

i
tZ     Tt∈∀                      (4.43) 

0≥i
tX      TtRi ∈∀∈∀ ,                           (4.44) 

0≥tIs     Ht∈∀                     (4.45) 

∈i
tY  (0, 1)    TtRi ∈∀∈∀ ,                     (4.46) 

∈ij
tZ  (0, 1)    TtjiRjRi ∈∀≠∈∀∈∀ ,;, 00                   (4.47) 

 

The formulation above includes the same objective function and restrictions with 

IM except for the removal of the subtour elimination constraints given by (3.12), 

(3.13), and (3.14).  Instead of these three constraints, constraints (4.40), (4.41), 

(4.42), and (4.43) are included in the formulation.   

 

The restrictions on the precedence relations are satisfied with the inclusion of 

constraints (4.40) and (4.41).  Constraint (4.40) is for ensuring that if a retailer is 

visited in a period, it is visited before the nodes that are successors of it on a priori 

tour τ .  Similarly, constraint (4.41) enforces that if a retailer is visited in a period, it 

is visited after the nodes that are predecessors of it on a priori tour τ . 

 

Constraints (4.42), and (4.43) help prevent occurrence of subtours.  Constraint 

(4.42) guarantees that there is at most one entrance to the supplier in each period.  

Likewise, constraint (4.43) enforces that there is at most one exit from the supplier 

in each period.  If these constraints are not included in the formulation, the visits to 

the retailers may be split into subtours, each of which start from the supplier, visits 

some of the retailers, and ends at the supplier. 
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Solution of APT identifies the retailers to be visited, the amount of product to be 

delivered to these retailers, and the route to be executed to make the deliveries in 

each period according to the precedence relationships determined with a priori tour 

τ .  Since APT formulation is more restrictive than IM, a solution for APT provides 

an upper bound for IM. 

 

It is for sure that if the difference between the number of retailers that are visited in 

a period and the total number of retailers is large, the order given by a priori tour to 

visit the retailers may be considerably different from the minimum cost tour to visit 

these retailers.  Although the formulation of APT is valid under any kind of distance 

assumption, i.e., symmetrical, unsymmetrical, Euclidean, and so on, the distances 

are symmetrical and the triangle inequality holds in the numerical experiments.  The 

triangle inequality assumption may give rise to obtaining satisfactory results with 

the order given by a priori tour since skipping retailer i that is not visited in a period 

results in a direct visit from the retailer that precedes i to the retailer that succeeds i, 

which is less expensive than the case that retailer i is visited between them. 

 

4.2.3 Improvements 

 

Although a priori tour determined is the minimum cost tour that visits all the 

retailers, the route executed in each period according to the precedence relationships 

need not be the least cost tour to make the deliveries to a subset of retailers that are 

visited in the related period.  Therefore, an improvement step is inserted into the 

procedure which identifies the minimum cost tour for each period that contains the 

retailers that are visited according to the solution of APT.  The steps of the entire 

procedure including the improvement stage are summarized below.  

 

[The Procedure with APT] 

Step1. Solve a TSP to obtain a priori minimum cost tour starting from the supplier, 

visiting all of the retailers, and ending at the supplier. 
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Step 2. Fix the precedence relationships given by a priori tour. 

 

Step 3. Formulate and solve the model with a priori tour according to the 

precedence relations determined in Step 2. 

 

Step 4. Solve a TSP for each period to identify the minimum cost tour including the 

retailers that are visited in that period. 

 

Step 5. If any tour that is identified in Step 3 changes in Step 4, calculate the total 

cost which is composed of inventory holding costs incurred according to the 

deliveries determined in Step 3 and transportation costs incurred according to the 

tours obtained in Step 4.  If none of the tours has changed, the total cost incurred is 

equal to the cost of the solution provided by APT in Step 3.   

 

The improvement step causes an increase in the number of TSPs to be solved.  

However, a separate TSP is solved for each period in this improvement step, while 

all inherent TSPs are solved at the same time in IM.  Furthermore, another concern 

for using APT has been stated as separating the decisions related with obtaining the 

least cost tour and the least cost inventory policy to some extent to simplify the 

problem to be solved.  This purpose is reinforced by the usage of the improvement 

step.  

 

 

 



 67

CHAPTER 5  
 

COMPUTATIONAL RESULTS 
 

 

In this chapter, we give a brief explanation about our computational experiments, 

our purposes of performing them, and the environment we work in.  In Section 5.1, 

we present the data generation scheme used for the test problems in three parts of 

experiments.  The results obtained in each experiment are provided in Section 5.2. 

 

The experiments start with a preliminary run set, in which a distribution system 

composed of 6 retailers and 6 periods is considered.  The purpose of these runs is to 

obtain optimum solutions for IM and to examine the quality of the lower and upper 

bounds obtained with the methods we developed under different parameter settings.   

 

The second part of preliminary experiments has been carried out considering a 

distribution system involving 8 retailers and 8 periods.  Since it is not expected to 

identify optimal solution to IM in a reasonable time in this experiment, a time limit 

of 3600 CPU seconds is set when solving IM.  Other methods are tested without 

time limitation.  The aim of the runs performed with this problem set is to gain an 

insight into the changes in the performances of the lower and upper bound 

identifying procedures as the problem size slightly enlarges. 

 

The last part of experiments (main experiment) performed involves test problems 

with 50 retailers and 30 time periods.  These runs are carried out to test the 

performances of the lower and upper bound obtaining procedures in large-scale 

problems. 
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All models and the interactions within them are coded with Turbo Pascal 7.0 and 

solved by CPLEX 8.1.0.  All runs are carried out on Pentium IV 1.6 GHz. PC’s 

with 256 MB RAM that run Windows NT Workstation 4.0. 

 

5.1 Test Problems 

 

The preliminary test problems are produced according to the generation scheme 

used in Bertazzi et al. (2002) with the exceptions of the number of retailers, the 

number of periods, and the parameter ( ig ) that depends on the number of periods 

considered in our instances.   

 

For conducting the main experiments with 50 retailers and 30 periods, a selection 

from the data used in Bertazzi et al. (2002), which is provided by the authors, is 

utilized.  

 

Ranges of the parameters used in different experiments are as given in Table 5.1. 

 

 

Table 5.1 The distinctive parameters used in the experiments 

 Preliminary 
Experiment I

Preliminary 
Experiment II

Main 
Experiment 

Number of retailers 6 8 50 
Time horizon 6 8 30 
Retailer holding cost (hi) [0.6, 1] [0.6, 1] [0.1, 0.5]; [0.6, 1] 
Supplier holding cost (hs) 0.3 0.3 0.3; 0.8 
Coordinates (xi, yi) [0, 500] [0, 500] [0, 1000] 
No. of periods to  

consume ii SS −  (gi) 
{2, 3, 5, 6} {2, 3, 5, 6} {2, 3, 5, 6, 10, 15, 30} 

Vehicle capacity (C) ∑
∈Ri

id  ∑
∈Ri

id  ∑
∈Ri

id ; 3∑
∈Ri

id  
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The parameters of the test instances are generated as follows:   
ih : Randomly generated in the intervals seen in Table 5.1 according to uniform 

distribution. 

ijc : Calculated as ( ) ( ) 



 −+− 22

jiji yyxx , where ( )ii yx ,  and ( )jj yx ,  are 

randomly generated in the intervals seen in Table 5.1 according to uniform 

distribution. 
i
td : Randomly generated as an integer number in the interval [10, 100] 

according to uniform distribution, and assumed to be constant over time in the 

experiments (i.e., ii
t dd = ). 

iS : Randomly generated as an integer number in the interval [50, 150] 

according to uniform distribution.  Recall that this parameter is dropped from the 

formulation during the experiment phases (see Section 3.2).   
iS : Calculated as iii gdS + , where the parameter ig , which represents the 

number of periods needed for retailer i to consume the amount ii SS − , is randomly 

selected from the sets given in Table 5.1.  As mentioned in Section 3.2, this 

parameter is modified since the minimum inventory level is dropped from the 

formulation during the experiments. 

ta : Calculated as ∑
∈Ri

id  and assumed to be constant over time in the 

experiments. 
iI1 : Calculated as ii dS − .   

1Is : Calculated as ∑
∈Ri

id . 

 

5.2 Results 

 

In this section, the results obtained throughout the three parts of experiments are 

presented sequentially. 
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The abbreviations used in presenting the results are given below: 

 CPU: It denotes the solution time (in CPU seconds) of the method under 

consideration.     

 CPU-1: This denotes the average solution time (in CPU seconds), whenever 

more than one iteration is performed with the method under consideration.     

 TC: It is the total cost incurred in the solution obtained with the method 

under consideration.   

 LB: It is the lower bound value obtained with the method being discussed.   

 UB: It is the upper bound value obtained by the method under consideration.   

 IGap % = 100*(opt-LP)/opt: It is used, whenever the gap between the 

optimal solution value of a MIP formulation (denoted by opt) and its LP 

relaxation value, i.e., the integrality gap, is measured.    

 LGap % = 100*(opt-LB)/opt: It measures the gap between the optimum 

solution value obtained with IM and the lower bound obtained by the 

method under study. 

 UGap % = 100*(UB-opt)/opt: This statistic measures the gap between the 

optimum solution value obtained by IM and the upper bound obtained by the 

method used. 

 LUB % = 100*(UB-LB)/LB: It is the percent difference between the upper 

bound and the lower bound that are obtained with the methods being 

studied. 

 UDiff % = 100*(UB1-UB2)/UB2: It is used to compare the differences 

between the costs obtained by different upper bounding procedures.   

 LDiff % = 100*(LB1-LB2)/LB1: It is used, whenever the differences 

between the costs obtained by different lower bounding procedures are 

compared.   

 

Although the minimum inventory level is eliminated from the formulations during 

the experiments; the total costs, lower bounds, and the upper bounds given in the 

results include the inventory holding cost incurred on the minimum inventory level, 

as well.  This is accomplished by adding the holding cost that results from the 
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minimum inventory level (∑∑
∈ ∈Ht Ri

ii Sh ) over the cost obtained from the solution of 

the problem with the method being discussed. 

 

5.2.1 Results of Preliminary Experiment I (PE-I) 

 

15 test instances are generated according to the scheme presented in Section 5.1.  

 

5.2.1.1 Integrated Model 

 

The instances are solved with the integrated model (IM) and optimal solutions are 

obtained for 14 instances out of 15 instances that are generated.  The minimum total 

cost obtained by solving IM, the minimum total cost obtained by solving LP 

relaxation of IM, the times (in CPU seconds) required to solve the related models, 

and the integrality gap between the optimal solution of IM and its LP relaxation 

value are given in Table 5.2 below. 

 

 

Table 5.2 Results for IM in PE-I 

Instance TC CPU TC CPU IGap%
1 10588 288 7584 0.17 28.37
2 12633 35 9673 0.02 23.44
3 9831 3165 7167 0.02 27.09
4 11718 524 9094 0.02 22.40
5 8641 814 6177 0.02 28.52
*6 12664 31638 8337 0.02 -
7 12958 4958 9232 0.02 28.76
8 11947 53 8626 0.02 27.80
9 10021 107 7500 0.02 25.16

10 11345 59984 7849 0.02 30.82
11 11057 53 8778 0.02 20.61
12 9566 110 7459 0.02 22.03
13 10839 2213 7705 0.02 28.91
14 11646 1428 8415 0.02 27.74
15 9619 4580 7000 0.02 27.23

Average 7330 0.03 26.35

IM LP relaxation of IM

 

* Instance 6 could not be solved optimally due to memory limitations. 
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Instance 6 could not be solved optimally with the integrated model due to memory 

limitation of the PC used.  In fact, the features of the data used in instance 6 require 

frequent visits to all retailers, when compared to remaining 14 instances, which 

make it hard to obtain feasible solution for this instance due to capacity limitations. 

 

The solution times that average to 7330 CPU seconds for the MIP formulation 

decrease to less than 1 CPU second in all instances with the LP relaxation.  The 

average solution time is more than 2 CPU hours for IM, which is a sign of the fact 

that we may not be able obtain optimal solutions for IM in reasonable times for 

larger problems.  

 

The LP relaxation of IM provides solutions with integrality gaps that range between 

21% and 31%, and of 26% on average.   

 

5.2.1.2 Lagrangean Relaxation Solution Procedure 

 

As mentioned in Section 4.1.2, LRP does not satisfy the integrality property.  Thus, 

we expect the quality of the lower bounds provided with LRP to be no worse than 

the lower bounds obtained by the LP relaxation of IM.   

 

During the first part of preliminary runs conducted with the lagrangean relaxation 

based approach (LRP-NM), effects of changing the following parameters on the 

quality of the bounds obtained are observed. 

 

Let u be the parameter that denotes the update scheme for parameter π .  Two basic 

schemes are employed for updating π  as mentioned in Section 4.1.3.  The first 

method is halving π , if Zmax does not alter for a certain number of iterations.  The 

alternative values used for the number of iterations to halve π  are u = 10, 15, and, 

30.  The second method is dividing π  by 1.005 at each iteration.  This setting is 
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shown in the results as u = 1.  However, it must be kept in mind that it does not 

indicate that π  will be halved, if Zmax does not alter for one iteration. 

 

Let m be the parameter that sets the number of iterations to be performed by LRP 

before identifying a feasible solution for the problem with nearest merger heuristic 

(NM).  The alternative values that are tested for m are 5 and 10, which are given in 

the following results as m = 5 and m = 10, respectively. 

 

Note that in the tables (Table 5.3 through Table 5.7) below, the solution times given 

in terms of CPU seconds denote the average total time to execute the lower and the 

upper bounding procedures (LRP-NM). 

 

Instance 6 is given in the results that follow, as well.  However, it must be kept in 

mind that it could not be solved optimally with IM and so, the total cost of the 

feasible solution provided by IM is greater than the optimum cost for this instance.  

Thus, the actual UGap% values are more than the figures given below, while actual 

LGap% values are less than the given figures for this instance.   

 

 

Table 5.3 Results obtained with LRP-NM for u = 10, m = 5 and u = 10, m = 10 in PE-I 

Instance UB  LB CPU-1 UGap% LGap% LUB% UB  LB CPU-1 UGap% LGap% LUB%
1 10722 9588 4.25 1.26 9.44 11.82 11071 9588 3.52 4.56 9.44 15.46
2 12857 12411 3.06 1.77 1.76 3.60 12857 12411 3.94 1.77 1.76 3.60
3 9964 9042 4.00 1.35 8.03 10.20 10087 9042 4.92 2.61 8.03 11.56
4 11855 10928 6.54 1.16 6.74 8.48 12179 10805 6.59 3.93 7.79 12.72
5 8669 8388 1.23 0.33 2.92 3.35 9228 8388 0.98 6.80 2.92 10.01
6 12785 11752 4.72 0.96 7.20 8.78 12714 11752 4.08 0.40 7.20 8.19
7 13051 12290 2.10 0.72 5.15 6.19 13051 12290 2.75 0.72 5.15 6.19
8 12335 10893 2.50 3.25 8.82 13.24 12489 10893 3.88 4.53 8.82 14.65
9 10269 9092 3.37 2.48 9.27 12.94 10166 9092 1.90 1.45 9.27 11.81

10 12302 10464 3.84 8.44 7.76 17.56 12370 10464 2.60 9.04 7.76 18.22
11 11141 10737 0.77 0.76 2.89 3.75 11487 10737 1.19 3.89 2.89 6.98
12 9673 8981 1.09 1.12 6.12 7.71 9920 8981 1.47 3.70 6.12 10.46
13 11319 9468 4.16 4.43 12.65 19.55 11328 9468 2.47 4.51 12.65 19.65
14 11646 10502 2.03 0.00 9.82 10.89 11919 10502 1.74 2.35 9.82 13.49
15 9731 9162 2.41 1.16 4.75 6.21 9661 9162 3.78 0.44 4.75 5.45

Average 3.07 1.95 6.89 9.62 3.05 3.38 6.96 11.23

u=10, m=5 u=10, m=10
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Table 5.4 Results obtained with LRP-NM for u = 15, m = 5 and u = 15, m = 10 in PE-I 

Instance UB  LB CPU-1 UGap% LGap% LUB% UB  LB CPU-1 UGap% LGap% LUB%
1 10794 9752 3.54 1.95 7.89 10.69 10794 9588 4.33 1.95 9.44 12.58
2 12857 12411 3.53 1.77 1.76 3.60 12857 12411 3.54 1.77 1.76 3.60
3 9964 9042 4.25 1.35 8.03 10.20 10358 9042 5.35 5.36 8.03 14.55
4 11855 10941 6.92 1.16 6.63 8.35 12179 10805 5.91 3.93 7.79 12.72
5 8669 8388 1.27 0.33 2.92 3.35 8680 8388 1.15 0.46 2.92 3.48
6 12768 11898 5.14 0.83 6.04 7.31 12714 11752 5.34 0.40 7.20 8.19
7 13051 12290 2.24 0.72 5.15 6.19 13051 12290 2.60 0.72 5.15 6.19
8 11976 10893 2.72 0.24 8.82 9.94 11976 10893 4.05 0.24 8.82 9.94
9 10193 9092 2.70 1.72 9.27 12.11 10166 9092 2.57 1.45 9.27 11.81

10 12302 10464 3.97 8.44 7.76 17.56 12302 10545 3.97 8.44 7.05 16.67
11 11141 10755 0.77 0.76 2.73 3.59 11340 10737 1.26 2.57 2.89 5.62
12 9673 8981 1.17 1.12 6.12 7.71 9756 8981 1.70 1.99 6.12 8.64
13 11319 9521 3.57 4.43 12.16 18.89 11319 9468 3.11 4.43 12.65 19.55
14 11646 10565 1.70 0.00 9.28 10.23 11646 10502 1.79 0.00 9.82 10.89
15 9731 9162 2.78 1.16 4.75 6.21 9661 9162 3.53 0.44 4.75 5.45

Average 3.08 1.73 6.62 9.06 3.35 2.28 6.91 9.99

u=15, m=5 u=15, m=10

 
 

 

 

Table 5.5 Results obtained with LRP-NM for u = 30, m = 5 and u = 30, m = 10 in  PE-I 

Instance UB  LB CPU-1 UGap% LGap% LUB% UB  LB CPU-1 UGap% LGap% LUB%
1 10794 9755 3.19 1.95 7.87 10.66 10794 9752 3.15 1.95 7.90 10.69
2 12857 12411 3.53 1.77 1.76 3.60 12937 12418 3.30 2.40 1.71 4.18
3 9964 9046 4.52 1.35 7.98 10.15 10317 9046 4.45 4.94 7.99 14.05
4 11855 10942 6.53 1.16 6.62 8.34 12179 10937 6.33 3.93 6.67 11.35
5 8669 8500 1.49 0.33 1.63 2.00 8680 8388 1.40 0.46 2.92 3.48
6 12768 11898 5.15 0.83 6.04 7.31 12714 11897 5.14 0.40 6.05 6.87
7 13051 12314 2.92 0.72 4.97 5.98 13051 12315 2.83 0.72 4.96 5.97
8 11976 10954 2.19 0.24 8.31 9.33 11976 10953 2.40 0.24 8.32 9.33
9 10193 9125 2.45 1.72 8.95 11.71 10166 9102 2.45 1.45 9.17 11.69

10 12302 10543 4.15 8.44 7.07 16.69 12302 10544 4.14 8.44 7.06 16.67
11 11141 10757 0.79 0.76 2.71 3.57 11141 10757 0.91 0.76 2.71 3.56
12 9673 8987 1.34 1.12 6.05 7.63 9673 8988 1.51 1.12 6.04 7.62
13 11319 9518 3.52 4.43 12.19 18.93 11319 9517 3.43 4.43 12.19 18.93
14 11646 10579 1.59 0.00 9.16 10.09 11646 10581 1.41 0.00 9.14 10.06
15 9852 9193 3.55 2.42 4.43 7.16 9661 9162 3.38 0.44 4.75 5.45

Average 3.13 1.82 6.38 8.88 3.08 2.11 6.50 9.33

u=30, m=5 u=30, m=10

 
 

 



 75

Table 5.6 Results obtained with LRP-NM for u = 1, m = 5 and u = 1, m = 10 in PE-I 

Instance UB  LB CPU-1 UGap% LGap% LUB% UB  LB CPU-1 UGap% LGap% LUB%
1 10649 9744 3.23 0.58 7.97 9.29 10794 9740 3.06 1.95 8.01 10.82
2 12857 12413 3.26 1.77 1.74 3.57 12937 12413 3.26 2.40 1.74 4.21
3 9964 9042 4.13 1.35 8.03 10.20 10100 9042 4.58 2.74 8.03 11.70
4 11855 10940 6.62 1.16 6.64 8.36 12179 10941 6.39 3.93 6.64 11.32
5 8669 8499 1.48 0.33 1.64 2.01 8669 8497 1.53 0.33 1.66 2.02
6 12714 11882 4.99 0.40 6.17 7.01 12743 11880 5.02 0.63 6.19 7.26
7 13051 12309 2.78 0.72 5.01 6.03 13051 12309 2.74 0.72 5.01 6.03
8 11976 10944 2.17 0.24 8.39 9.42 11976 10945 2.34 0.24 8.39 9.42
9 10269 9110 2.41 2.48 9.09 12.73 10166 9112 2.30 1.45 9.07 11.57

10 12302 10525 3.88 8.44 7.23 16.88 12302 10528 3.96 8.44 7.20 16.85
11 11141 10753 0.83 0.76 2.75 3.60 11141 10754 0.90 0.76 2.74 3.59
12 9673 8981 1.30 1.12 6.12 7.71 9673 8981 1.34 1.12 6.12 7.71
13 11319 9488 3.42 4.43 12.46 19.30 11319 9489 3.29 4.43 12.45 19.29
14 11646 10573 1.56 0.00 9.21 10.15 11646 10573 1.44 0.00 9.21 10.14
15 9852 9186 3.48 2.42 4.50 7.24 9661 9189 3.39 0.44 4.47 5.14

Average 3.04 1.75 6.46 8.90 3.04 1.97 6.46 9.14

u=1, m=5 u=1, m=10

 
 

 

It can be seen in the tables above that the upper bounds obtained for instance 14 are 

indeed the optimal solutions under all parameter settings except for the setting u=10 

and m=10.  

 

 

Table 5.7 Summary table for LRP-NM in PE-I  

u=10
m=5

u=10
m=10

u=15
m=5

u=15
m=10

u=30
m=5

u=30
m=10

u=1
m=5

u=1
m=10

Avg. 3.07 3.05 3.08 3.35 3.13 3.08 3.04 3.04
Max. 6.54 6.59 6.92 5.91 6.53 6.33 6.62 6.39
Min. 0.77 0.98 0.77 1.15 0.79 0.91 0.83 0.90
Avg. 1.95 3.38 1.73 2.28 1.82 2.11 1.75 1.97
Max. 8.44 9.04 8.44 8.44 8.44 8.44 8.44 8.44
Min. 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00
Avg. 6.89 6.96 6.62 6.91 6.38 6.50 6.46 6.46
Max. 12.65 12.65 12.16 12.65 12.19 12.19 12.46 12.45
Min. 1.76 1.76 1.76 1.76 1.63 1.71 1.64 1.66
Avg. 9.62 11.23 9.06 9.99 8.88 9.33 8.90 9.14
Max. 19.55 19.65 18.89 19.55 18.93 18.93 19.30 19.29
Min. 3.35 3.60 3.35 3.48 2.00 3.48 2.01 2.02

LUB
%

CPU-1

UGap
%

LGap
%

 
 

 

It can be seen that the average gap between the optimal solution and the upper 

bound ranges from 1.73% to 3.38%, whereas the average gap between the optimal 
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solution and the lower bound ranges from 6.38% to 6.96%.  Regarding the solution 

times that average to only about 3 CPU seconds, the performances of the upper 

bounding and the lower bounding procedures are satisfactory.     

 

Table 5.7 shows that the quality of the upper bound improves when NM is applied 

at every 5 iterations (m=5) of LRP over the case in which it is applied at every 10 

iterations (m=10).  Thus, calling NM and identifying an upper bound more 

frequently results in getting better upper bounds, as it can be anticipated. 

 

The frequency of identifying an upper bound also affects the lower bound obtained.  

Particularly, identifying an upper bound more frequently (m=5 rather than m=10) 

gives better lower bounds.  In fact, this is also an expected outcome since the upper 

bound is utilized in the subgradient optimization step of the lower bounding 

procedure, which in turn affects the lower bound obtained. 

 

Thus, it is observed that identifying an upper bound with NM at every 5 iterations 

(m=5) of LRP performs better than identifying an upper bound at every 10 

iterations (m=10) of LRP in terms of both lower bound and upper bound qualities.  

Besides, since the CPU times do not seem to be affected much by the parameter 

settings, the frequency parameter m is decided to be set at 5.   

 

It can be seen that the results obtained by halving π  if the maximum lower bound 

does not change for 10 iterations (u = 10) are worse than the results of the other 

three update schemes in terms of the qualities of the lower and the upper bounds 

under a given setting of m.   

 

The results show that the average gap between the lower bound and the optimal 

solution depends on updating schedule of the step size parameter π .  The cases, in 

which π  is halved at every 30 iterations (u=30) and π  is divided by 1.005 at each 

iteration (u=1), give better results in terms of the average gap between the lower 

bound and the optimal solution.  Updating π  if the maximum lower bound does not 



 77

alter for 30 iterations makes sense if numerous (at least more than 30) iterations are 

performed.  However, for large test instances, it may not be affordable to perform 

even 30 iterations.   

 

Moreover, u=15 and u=1 provide better upper bounds than u=10 and u=30.  

Although setting u at 30 is still meaningful, u will be set at two values, 15 and 1, in 

the succeeding experiments on LRP-NM method because of time concern.   

 

Thus, to summarize, the levels to be used in solving larger scale test problems are 

selected as 15 and 1 for the step size parameter u and 5 for the frequency parameter 

m.  

 

To get a better understanding, the average LGap%, UGap%, and LUB% are given 

graphically in Figure B.1 in Appendix B.  The individual results can be seen in the 

figures given in Appendix C.  Figure C.1 visualizes the gap between the upper 

bound and the lower bound for each instance.  Figure C.2 (a) illustrates the gap 

between the optimal solution and the lower bound, whereas Figure C.2 (b) 

illustrates the gap between the optimal solution and the upper bound.  It is seen in 

Figure C.2 (a) that the gap between the optimal solution and lower bound is highly 

dependent on the problem instance.  However, the variation in lower bound for a 

specific problem is not too high under different parameter settings.  Likewise, 

Figure C.2 (b) shows that the gap between the optimal solution and the upper bound 

depends on the instance examined.  Moreover, there exists an obvious saw-tooth 

pattern in the results for some of the instances in Figure C.2 (b), which is an 

indication of the performance difference caused by the frequency that NM is 

utilized.  It can be seen that Figure C.1 also has the saw-tooth pattern that results 

from the frequency of calling NM. 

 

In the experimentations with LRP-NM, the stopping condition for the procedure is 

as stated in Section 4.1.5 and the maximum number of iterations is set at 200.  The 

changes in lower and upper bounds are observed according to number of iterations 
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performed to decide on maximum number of iterations to perform when larger 

problems are solved.  To gain a better understanding on the changes in maximum 

lower bounds (Zmax) and minimum upper bounds (Zmin) that arise from the number 

of iterations performed, the costs in these figures do not involve the inventory 

holding costs that result from the minimum inventory levels.  The related figures are 

provided for the selected parameter combinations below in Figure 5.1 and Figure 

5.2, and for the other parameter settings in Appendix D.  

 

Note that the number of iterations performed for the upper bounding heuristic NM 

depends on the number of iterations performed for LRP in addition to the frequency 

of identifying an upper bound, i.e., the parameter m.  For instance, if m is set at 5 

(NM will be called at every 5 iterations of LRP) and the maximum number of 

iterations to execute LRP is determined to be 200 as in the two figures above, then 

NM will be applied 40 times. 
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Figure 5.1 Lower and upper bounds for u = 15, m = 5 through iterations in PE-I for 15 instances 
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Figure 5.2 Lower and upper bounds for u = 1, m = 5 through iterations in PE-I for 15 instances 

 

 

The figures above demonstrate that the lower bounds are getting only slightly better 

after several iterations.  In addition to this, the upper bounds are almost fixed after 

several iterations.  Taking into account that making numerous iterations is not 

affordable for large-size problems, it is decided to keep the maximum number of 

iterations at 30 when using LRP-NM for larger problems.  This means that NM will 

be applied 6 times, because m is decided to be set at 5.  It can be seen in Figure 5.1 

and Figure 5.2 that 6 iterations of NM capture the changes in the upper bounds for 

most of the instances for the parameter settings given in these figures. 

 

(a) Lower Bound 

(b) Upper Bound 
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5.2.1.3 Lagrangean Relaxation Solution Procedure for Large Problems  

 

Since LRP is expected to require a long solution time for large problems, lower 

bounds may be obtained by solving the LP relaxation of LRP (LRP-LP).  Although 

we obtained lower bounds for this set of runs using LRP as given in Section 5.2.1.2, 

to have an idea about the quality of the lower bounds provided by LRP-LP, all runs 

are repeated with LRP-LP.  Recall that LRP includes extra variables and constraints 

that are not present in IM.  Thus, it may be possible to obtain solutions that are of 

better quality with the LP relaxation of LRP than that of IM. 

 

As stated in Section 4.1.6, the lagrangean relaxation solution procedure for large 

problems (LRP-NM-1) is based on running LRP until the first integer feasible 

solution is identified by CPLEX and applying NM over this solution.  Although 

upper bounds for this set of experiments are already obtained with LRP-NM as 

given in Section 5.2.1.2, new runs are performed to get an insight about the quality 

of the upper bounds obtained by LRP-NM-1.  The results obtained with LRP-NM-1 

are given in Table 5.8 below. 

 

 

Table 5.8 Results obtained with LRP-NM-1 in PE-I  

Instance UB LB CPU UGap% LGap% LUB%
1 13034 7922 0.24 23.10 25.18 64.52
2 12860 10113 0.31 1.79 19.95 27.15
3 10107 7524 0.24 2.81 23.46 34.32
4 13800 9500 0.24 17.77 18.93 45.27
5 9211 6708 0.07 6.60 22.37 37.32
*6 13876 9427 0.49 9.58 25.55 47.19
7 14208 9893 0.31 9.65 23.65 43.62
8 12222 9000 0.10 2.30 24.67 35.80
9 10913 7996 0.06 8.90 20.21 36.49

10 13295 8462 0.33 17.19 25.41 57.11
11 11467 9273 0.15 3.71 16.13 23.66
12 9894 7796 0.12 3.43 18.50 26.91
13 11936 8121 0.11 10.12 25.07 46.96
14 13597 8777 0.38 16.76 24.63 54.92
15 10315 7635 0.06 7.24 20.62 35.10

Average 0.21 9.40 22.29 41.09  

* Instance 6 could not be solved optimally with the integrated model 
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It can be seen in Table 5.8 that the gap between the optimal solution and the lower 

bound ranges between 16% and 26%, while the gap between the optimal solution 

and the upper bound ranges between 2% and 23%.  The solution times that involve 

the times to identify lower and upper bounds are less than 1 CPU second.  Note that 

although the solution times are provided for 1 iteration, the statistic is denoted as 

CPU rather than CPU-1 in the table.  The reason for this is that LRP-NM-1 

procedure requires 1 iteration of LRP-LP (to obtain lower bound) and 1 iteration of 

LRP (to obtain upper bound).   

 

LRP-NM method (with the selected parameter settings) has provided an average 

gap less than 7% between the optimum solution and the lower bound and an 

average gap less than 2% between the optimum solution and the upper bound.  The 

solution times of LRP-NM were slightly above 3 CPU seconds on the average.  As 

expected, a quality loss is experienced for the sake of decreasing the solution times 

when using LRP-NM-1 instead of LRP-NM.   

 

5.2.1.4 The Procedure with a Priori Tour  

 

Table 5.9 Results obtained with APT in PE-I 

IM 
Instance UB UGap% CPU CPU

1 10588 0.00 1.94 288
2 12633 0.00 1.54 35
3 9834 0.03 3.93 3165
4 11719 0.01 1.52 524
5 8641 0.00 0.69 814
*6 12657 -0.05 4.38 31638
7 12958 0.00 1.81 4958
8 11947 0.00 1.59 53
9 10021 0.00 0.90 107

10 11345 0.00 2.07 59984
11 11057 0.00 0.69 53
12 9567 0.01 1.09 110
13 10839 0.00 2.47 2213
14 11646 0.00 1.09 1428
15 9619 0.00 2.15 4580

Average 1.86 7330

APT

 

* Instance 6 could not be solved optimally with the integrated model 
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The results obtained by solving the model with a priori tour (APT) are seen in Table 

5.9 above.  

 

The solution times of APT given in CPU seconds include the times consumed for 

all the steps of the procedure given in Section 4.2.3, i.e., solving a TSP to obtain a 

priori tour, solving APT, and solving a TSP for each period, if necessary.  The CPU 

seconds required to solve the instances using IM are repeated in the table above to 

draw attention to the decrease in the solution times with the usage of APT.   

 

Table 5.9 shows that the model with a priori tour identifies the optimum solution for 

eleven instances out of fifteen.  While in three instances the gaps between the 

solutions of IM and the solutions given by APT are less than 0.03%, APT identifies 

a less cost solution for instance 6 in only about 4 CPU seconds, which can not be 

solved optimally with IM in almost 9 CPU hours.   

 

Regarding the quality of the solutions provided by APT together with the solution 

times that range between 0.69 and 4.38 CPU seconds, solving APT can be preferred 

over solving IM, which requires more than 2 CPU hours on the average.  

 

5.2.1.5 Benchmarking 

 

It may not be possible to obtain optimal solutions of IM for larger problems.  

Following Bertazzi et al. (2002), the upper bounds identified for larger problems 

with the methods used in this study will be compared to the results provided by the 

heuristic ‘every’ (Refer to Appendix A).   

 

For this purpose, the average gap between the solution given by IM and the solution 

obtained by ‘every’ is computed to have an idea on the performance of the upper 

bound provided by ‘every’.     
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Table 5.10 Gap between the solution of IM and the solution provided by ‘every’ 

Instance Every UGap%
1 16858 59.22
2 19156 51.63
3 14288 45.33
4 17133 46.21
5 13655 58.03
*6 16035 26.62
7 19155 47.82
8 18814 57.48
9 14251 42.21

10 15735 38.70
11 17024 53.98
12 14842 55.16
13 16068 48.25
14 17341 48.90
15 14752 53.36

Average 48.86  

* Instance 6 could not be solved optimally with the integrated model 

 

 

The gap between the solutions of the integrated model and ‘every’ depends on the 

combination of the inventory holding costs at the retailers, the inventory holding 

cost at the supplier, the transportation costs, and the parameter ig  (i.e., the number 

of periods needed for retailer i to consume the amount for the difference between 

the maximum and minimum inventory levels).  In general, if the holding cost at the 

supplier is high with respect to the holding costs at the retailers, the transportation 

cost incurred when executing the least cost tour that visits all retailers is low, and 

the parameter ig  is small for all retailers (i.e., frequent visits are required to the 

retailers), ‘every’ provides better solutions since it is based on visiting all retailers 

in each period with the least cost tour. 

 

The gap between the solutions of IM and ‘every’ ranges between 27% and 59%.  

The least gap of 27% is obtained for instance 6.  The one reason could be features 

of data of the instance 6, which require frequent visits to all retailers.  Thus, the best 

solution would be close to the solution of ‘every’ (i.e., visiting all retailers in every 

period) in this respect.  The other reason might be related with the fact that IM 
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could not be solved at optimality for this instance.  If the instance could have been 

solved optimally, the difference between the solutions of the integrated model and 

‘every’ would have increased to some extent. 

 

Although comparisons with optimal solutions of IM have been performed to assess 

the quality of the upper bounds for this part of experiments, the best upper bound 

obtained with our methods is compared with the solution given by the heuristic 

‘every’ in the table below for convenience.   

 

 

Table 5.11 Comparison of the best upper bounds obtained in PE-I with the solutions of ‘every’ 

Instance
Every
(UB1)

Best UB
(UB2)

UDiff 
%

1 16858 10588 59.22
2 19156 12633 51.63
3 14288 9834 45.29
4 17133 11719 46.20
5 13655 8641 58.03
6 16035 12657 26.68
7 19155 12958 47.82
8 18814 11947 57.48
9 14251 10021 42.21
10 15735 11345 38.70
11 17024 11057 53.98
12 14842 9567 55.14
13 16068 10839 48.25
14 17341 11646 48.90
15 14752 9619 53.36

Average 48.86  
 

 

The values given under the column ‘best UB’ in Table 5.11 are the minimum cost 

solutions among the solutions provided by LRP-NM with the selected parameter 

settings (u=15, m=5 and u=1, m=5) and by APT.  A note to be made is that the 

minimum cost solutions happen to be the solutions of APT for all instances except 

instance 14, for which all methods provide the same solution that is optimal for IM.  

The difference between our upper bound and upper bound provided by ‘every’ 

ranges from 27% to 59% and our methods outperform ‘every’.   
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5.2.2 Results of Preliminary Experiment II (PE-II) 

 

5.2.2.1 Integrated Model 

 

Solution times of IM have averaged to more than 2 CPU hours in PE-I.  Thus, we 

do not expect to get optimal solutions for IM in reasonable times in PE-II due to the 

increase in the problem size.  For this reason, a time limit of 3600 CPU seconds is 

used in CPLEX for the runs with IM in PE-II.  The best integer feasible solutions 

identified for the instances by IM in the specified time limit are given in Table 5.12 

below.  Solutions of the LP relaxation of IM, the solution times and the integrality 

gaps are also presented in the table below.  

 

 

Table 5.12 Results for IM in PE-II 

Instance TC CPU TC CPU LUB%
1 30129 3600 19494 0.25 35.30
2 26686 3600 16886 0.04 36.72
3 23188 3600 13170 0.07 43.20
4 25185 3600 13543 0.06 46.22
5 25398 3600 14854 0.06 41.51
6 24486 3600 13616 0.06 44.39
7 18920 3600 12373 0.05 34.60
8 28988 3600 17407 0.07 39.95
9 29278 3600 17991 0.05 38.55

10 23462 3600 15717 0.04 33.01
11 25785 2593 19042 0.05 26.15
12 21855 3600 13371 0.05 38.82
13 28531 3600 17414 0.05 38.97
14 28348 3600 16065 0.06 43.33
15 19629 3600 11324 0.05 42.31

Average 3533 0.07 38.87

IM LP relaxation of IM

 
 

 

The optimum solution is identified only for instance 11 within the time limit.  The 

number of instances, for which an optimal solution can not be determined in 3600 

CPU seconds, has been four in PE-I, whereas it is fourteen for this experiment set.  
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Thus, it is possible to say that the solution times for IM increase with the sizes of 

the problems. 

 

The statistic is denoted as LUB% in Table 5.12 since we do not have optimal 

solutions for 14 instances and thus the total costs for IM provide upper bounds 

rather than optimal solutions for these instances.  The true integrality gap can only 

be examined for instance 11, which is solved optimally.   

 

The gap between the total costs given by IM and its LP relaxation ranges from 26% 

to 46% with an average of 39%, whereas it has been 26% on average in PE-I.  

However, this is not necessarily an indication of wide integrality gaps since optimal 

solutions can not be identified for 14 instances in PE-II.   

 

5.2.2.2 Lagrangean Relaxation Solution Procedure  

 

During PE-I, it has been decided to perform 30 iterations of LRP for the problems 

that are of larger sizes and to use the parameter combinations u=15, m=5 and u=1, 

m=5 (see Section 5.2.1.2).  Results for these parameters are presented in Table 5.13. 

 

 

Table 5.13 Results obtained with LRP-NM for u = 15, m = 5 and u = 1, m = 5 in PE-II 

Instance UB  LB CPU-1 LUB% UB  LB CPU-1 LUB%
1 28589 27276 213 4.81 28589 27270 184 4.84
2 27313 23804 157 14.74 27221 23808 171 14.34
3 22798 19534 234 16.71 22798 19535 230 16.70
4 25371 18291 407 38.71 25371 18291 339 38.71
5 23095 19479 1096 18.56 22996 19479 1117 18.06
6 22300 20846 174 6.98 22352 20844 153 7.24
7 19039 16935 87 12.42 18402 16937 81 8.65
8 29771 24284 612 22.59 29771 24274 589 22.64
9 27316 24744 520 10.39 27316 24709 506 10.55
10 23050 19810 111 16.35 23050 19809 109 16.36
11 26424 25291 124 4.48 26424 25286 116 4.50
12 21208 18130 217 16.98 21208 18130 196 16.98
13 28269 24469 1049 15.53 28269 24514 951 15.32
14 25776 21927 1020 17.55 25776 21916 906 17.61
15 19355 16129 38 20.00 19102 16103 40 18.63

Average 404 15.79 379 15.41

u=15, m=5 u=1, m=5
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UGap% and LGap% statistics are not presented in the table above since 14 

instances can not be solved optimally with IM.  Besides, LRP-NM with parameter 

settings u=15 and u=1 provide solutions that are better than the solutions of IM for 

ten and eleven instances, respectively.     

 

The gap between the upper bound and the lower bound averages to 16% and 15% 

when u=15 and u=1, respectively for this set of runs, while the solution times are 

close to 400 CPU seconds.  They have been averaging to almost 9% with an 

average solution time of nearly 3 CPU seconds in PE-I.  So, we can conclude that 

the qualities of the bounds deteriorate and that the solution times increase, as the 

problems are enlarged. 

 

The stopping condition for the procedure is as stated in Section 4.1.5 and the 

maximum number of iterations is set at 30 as mentioned.  The changes in maximum 

lower bounds (Zmax) and minimum upper bounds (Zmin) are observed according to 

number of iterations performed in the figures in Appendix E.  As in PE-I, to gain a 

better understanding on the changes in upper and lower bounds that result from the 

number of iterations performed, the costs in these figures do not involve the 

inventory holding costs that are caused by the minimum inventory levels. 

 

5.2.2.3 The Procedure with a Priori Tour 

 

In PE-I, the TSPs are solved by Concorde.  When the total costs obtained by IM and 

APT are compared, it is seen that APT identifies solutions with less costs than IM in 

all of the instances except 11, for which IM and APT identify the same optimal 

solution.  Although the same solution is obtained for instance 11 with IM and APT, 

the solution times of the models are extremely different.  While it takes 2593 CPU 

seconds for IM, APT achieves the same solution in only 30 CPU seconds.  The 

results obtained by APT are seen in Table 5.14 . 
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Table 5.14 Results obtained with APT in PE-II 

Instance UB CPU
1 28398 71.65
2 25781 18.89
3 21801 36.81
4 23802 287.65
5 22639 703.64
6 22188 54.49
7 18402 24.81
8 27455 59.18
9 27005 349.59

10 22332 22.49
11 25785 29.50
12 20825 22.26
13 26766 116.52
14 25085 146.72
15 18550 19.81

Average 130.93  
 

 

The solution times of APT range between 19 and 704 CPU seconds.  Since the 

solutions of IM are obtained with 3600 CPU seconds of time limit, except for 

instance 11 (solved in 2593 CPU seconds), the remark made for APT in PE-I can be 

restated in a more powerful way that APT is preferred to IM due to qualities of the 

solutions it provides in reasonable times. 

 

5.2.2.4 Comparison of the Upper Bounds Obtained in PE-II 

 

Different from PE-I, comparison of the upper bounds obtained by LRP-NM and 

APT is provided in Table 5.15 below since optimal solutions of IM can not be 

identified for most of the instances in PE-II.    

 

The figures provided for LRP-NM in Table 5.15 are the upper bounds obtained 

when either u=1 or u=15, whichever is better.   
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Table 5.15 Comparison of the upper bounds obtained in PE-II 

Instance (UB1) CPU (UB2) CPU UDiff %
1 28589 184 28398 72 0.67
2 27221 171 25781 19 5.58
3 22798 230 21801 37 4.57
4 25371 339 23802 288 6.59
5 22996 1117 22639 704 1.58
6 22300 174 22188 54 0.51
7 18402 81 18402 25 0.00
8 29771 589 27455 59 8.43
9 27316 506 27005 350 1.15

10 23050 109 22332 22 3.21
11 26424 116 25785 30 2.48
12 21208 196 20825 22 1.84
13 28269 951 26766 117 5.62
14 25776 906 25085 147 2.76
15 19102 40 18550 20 2.98

Average 381 131 3.20

LRP-NM APT

 
 

 

APT outperforms LRP-NM in terms of the quality of the upper bounds it provides 

and the solution times as in PE-I. 

 

5.2.2.5 Benchmarking 

 

The best upper bound obtained for each instance with the methods we developed is 

compared to the solution provided by ‘every’ in Table 5.16 below. 

 

The values given under the column ‘best UB’ in the table below are the minimum 

cost solutions among the solutions provided by LRP-NM and APT.  The minimum 

cost solutions are provided by APT for all instances except instance 7, for which 

both APT and LRP-NM with u=1 and m=5 provide the same solution.  The gap 

between the solution of ‘every’ and the best solution obtained by our methods 

ranges from 37% to 103% and our methods clearly outperform ‘every’.   

 

 



 91

Table 5.16 Comparison of the best upper bounds obtained in PE-II with the solutions of ‘every’ 

Instance Every (UB1) Best UB (UB2) UDiff %
1 46236 28398 62.81
2 39775 25781 54.28
3 33077 21801 51.72
4 33934 23802 42.57
5 32254 22639 42.47
6 30328 22188 36.68
7 34648 18402 88.29
8 43186 27455 57.30
9 39855 27005 47.58

10 36886 22332 65.17
11 52244 25785 102.62
12 35585 20825 70.88
13 43003 26766 60.66
14 38120 25085 51.97
15 35207 18550 89.80

Average 61.65  
 

 

5.2.3 Results of Main Experiment (ME) 

 

In the main experiments, 80 out of the 240 instances used in Bertazzi et al. (2002) 

are tested.  The index numbers associated with the instances are the numbers used 

by Bertazzi et al. (2002) for the related instances. 

 

The instances that are tested in the main experiments differ in three parameters, 

namely, the holdings cost at retailers, the holding cost at supplier, and the vehicle 

capacity.  Since each of these three parameters may assume two different levels (see 

Section 5.1), there are eight possible combinations of these parameters as given in 

Table 5.17 below.  Note that H (for high) denotes the higher level value and L (for 

low) denotes the smaller one.  For instance, H, L, and H in the column numbered 

141-150 show that the retailer holding costs are in the range [0.6,1], the supplier 

holding cost is 0.3, and the vehicle capacity is 3∑
∈Ri

id .  Similarly, L, H, and L in the 

column numbered 211-220 means that the retailer holding costs are in the range 

[0.1,0.5], the supplier holding cost is 0.8, and the vehicle capacity is ∑
∈Ri

id . 
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Note that the frequency of visiting retailer i is bounded below by a number that 

depends on the parameter ig  (i.e., the number of periods required for retailer i to 

consume the amount for the difference between the maximum and the minimum 

inventory levels).  To be precise, retailer i should be visited at least once in every 
ig  periods for its inventory not to fall below the minimum level.  Thus, as ig gets 

smaller in value, retailer i must be visited more frequently.  Another issue that has 

an effect on the frequency of visiting a retailer is the relationship between the 

holding costs at the retailer and the supplier.  If the inventory holding cost at the 

supplier is high compared with the holding cost at a retailer, it may be advantageous 

to visit the related retailer more frequently. 

 

 

Table 5.17 The characteristics of the instances used in ME 

121-130 141-150 151-160 171-180 181-190 201-210 211-220 231-240
Retailer Holding Cost H H H H L L L L
Supplier Holding Cost L L H H L L H H
Vehicle Capacity L H L H L H L H  

 

 

Since the main experiments are performed for large instances, we do not expect to 

identify optimal solutions with the MIP formulations of the models.  For this 

reason, when solving MIP formulations, finding feasible solutions is emphasized in 

CPLEX.  On the other hand, LP relaxations of the models are run as usual with the 

default option of balancing optimality with feasibility. 

 

Additional abbreviations used in the main experiments are given below: 

 

 CPU w: It is the solution time (in CPU seconds) of the method under study 

with modified Barany et al. cuts. 

 CPU w/o: It denotes the solution time (in CPU seconds) of the method 

considered without modified Barany et al. cuts. 
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 Imp% = 100*(TC with-TC without) / TC without: This statistic measures 

the improvement obtained in the lower bound with the method studied, 

when modified Barany et al. cuts are present in its formulation.  TC with 

(TC without) cuts is the total cost obtained by the method under study with 

(without) Barany et al. cuts. 

 

5.2.3.1 Integrated Model 

 

Considering the observations made during the preliminary experiments, it is 

expected that solving IM optimally will require a long solution time.  Therefore, IM 

is run with a time limit of 3600 CPU seconds.  6 instances out of 80, for which 

integer feasible solutions can be obtained, are given in Table 5.18 below.  

 

 

Table 5.18 Feasible solutions obtained by IM in 3600 CPU seconds in ME 

Instance TC
141 954968
142 967293
145 789537
146 1020641
147 848527
149 962884  

 

 

The LP relaxation of IM is solved as in the preliminary experiments.  Additionally, 

modified Barany et al. cuts given with the relation (4.23) are inserted into IM and 

its LP relaxation is solved again to see whether we can obtain better lower bounds 

when these cuts are used.  The individual results can be seen in Appendix F and the 

average results are given in Table 5.19 below. 

 

 



 94

Table 5.19 Results of the LP relaxation of IM without and with (w) modified Barany et al. cuts 

Instance CPU CPU w Imp%
121-130 10.64 11.84 0.068
141-150 10.80 11.94 0.068
151-160 23.88 26.25 0.005
171-180 24.39 25.59 0.005
181-190 23.38 25.95 0.013
201-210 24.30 27.08 0.013
211-220 71.87 80.13 0.000
231-240 73.05 77.87 0.000
Overall 32.79 35.83 0.021  

 

 

It can be seen that equal improvements are obtained for each consequent two rows, 

i.e., 121-130 and 141-150; 151-160 and 171-180; and so on.  Considering the 

couple 121-130 and 141-150, when the tables provided in Appendix F are 

examined, it is seen that identical total costs are obtained for 121 and 141; 122 and 

142; through 130 and 150.  The differences between the data of these couples arise 

from the vehicle capacities.  This means that modifying the vehicle capacity 

between the two possible levels do not bring a change in the solutions obtained by 

the LP relaxation of IM. 

 

It is seen in Table 5.19 that the LP relaxation of IM with the cuts give only slightly 

better results than the original formulation with almost 3 CPU seconds increase in 

the solution time.  If these cuts had been used when solving the integrated model 

rather than its LP relaxation, it would have been expected to obtain more significant 

improvements in the solutions.  However, the solution times, which are already not 

acceptable, would have increased, as well. 

 

5.2.3.2 Lagrangean Relaxation Solution Procedure for Large Problems  

 

LRP-LP is solved as in the preliminary experiments.  In addition to this, to compare 

the performance of LRP-LP with the LP relaxation of IM, modified Barany et al. 

cuts (see relation 4.23) are removed from LRP-LP and it is solved again.  The 
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individual results for LRP-LP can be seen in Appendix G and the average results 

are given in Table 5.20 below. 

 

 

Table 5.20 Results of LRP-LP without (w/o) and with modified Barany et al. cuts 

Instance CPU CPU w/o Imp %
121-130 11.54 2.55 3.846
141-150 8.80 2.62 3.818
151-160 11.57 5.00 0.229
171-180 8.40 4.64 0.229
181-190 11.13 4.87 0.613
201-210 8.43 4.72 0.613
211-220 10.62 6.98 0.004
231-240 9.57 7.26 0.004
Overall 10.01 4.83 1.169  

 

 

Regarding the figures given in the table above, the cuts bring about 1% 

improvement with almost 5 CPU seconds increase in the average solution time.  

Overall improvement provided by the cuts in LRP-LP is greater than the overall 

improvement observed in the LP relaxation of IM with cuts. 

 

Average results obtained with LP relaxation of IM and LRP with and without 

modified Barany et al. cuts are compared in Table 5.21 below.  The results are 

provided in Appendix H for each instance.  It is worthwhile to remind that LRP-LP 

can provide better results than the LP relaxation of IM due to enhancements (extra 

variables and constraints) included in its formulation (Refer to Section 4.1.2). 
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Table 5.21 Comparison of the LP relaxation results of IM and LRP 

Instance LRP-LP
(LB1)

LP relaxation
of IM (LB2)

LRP-LP
(LB1)

LP relaxation
of IM (LB2)

121-130 2.55 10.64 0.113 11.54 11.84 3.741
141-150 2.62 10.80 0.113 8.80 11.94 3.714
151-160 5.00 23.88 0.088 11.57 26.25 0.311
171-180 4.64 24.39 0.088 8.40 25.59 0.311
181-190 4.87 23.38 0.236 11.13 25.95 0.831
201-210 4.72 24.30 0.236 8.43 27.08 0.831
211-220 6.98 71.87 0.190 10.62 80.13 0.195
231-240 7.26 73.05 0.190 9.57 77.87 0.195
Average 4.83 32.79 0.157 10.01 35.83 1.266

Results without the cuts Results with the cuts
CPU CPU

LDiff % LDiff %

 
 

 

It can be seen that LRP-LP provides better lower bounds than the LP relaxation of 

IM in overall with a reduction in solution time.  This shows that the enhancements 

made in LRP formulation in Section 4.1.2 to preclude occurrences of unrealistic 

solutions, result in obtaining better lower bounds with LRP-LP.  These 

enhancements have been needed in LRP formulation due to removal of the subtour 

elimination constraints.  However, the results above show that these enhancements 

happen to be more restricting than the subtour elimination constraints in the LP 

relaxation of the formulations. 

 

Although LRP has been extended to include modified Barany et al. cuts with 

relation (4.23), they are removed from the formulation of LRP since their inclusions 

increase the solution time extremely.  Apart from this difference in the formulation 

of LRP, the procedure for LRP-NM-1 given in Section 4.1.6 is followed (i.e., LRP 

is run until the first integer solution is found and NM is applied over this solution).     

 

To see whether improvements can be obtained by increasing the solution times for 

the instances, whose first integer feasible solutions are obtained in short times (less 

than 600 CPU seconds), the termination rule of finding the first integer feasible 

solution (see Section 4.1.6) is removed and a time limit of 600 CPU seconds is set.  

The results obtained by applying NM over the solutions got within the time limit of 
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600 CPU seconds for these instances are compared to the results got by applying 

NM over the first integer feasible solutions of the instances in Appendix I.  

 

The gap between the lower bound obtained with LRP-LP (using the modified 

Barany et al. cuts) and the best upper bound obtained with LRP-NM-1 (either the 

first integer feasible solution obtained or the solution got in 600 CPU seconds, 

whichever is better) are given for each instance in Appendix J.  The average figures 

are given in Table 5.22.  It can be checked from Appendix J that there are instances, 

for which feasible integer solutions can not be identified with LRP-NM-1.  These 

instances were stopped either because of memory limitations of the PC’s used or the 

solution times over 120,000 CPU seconds. 

 

 

Table 5.22 Results obtained with LRP-NM-1 in ME 

Instance LRP-NM-1 LRP-LP LUB%
121-130 28684 12 28.04
141-150 600 9 25.59
151-160 26580 12 9.89
171-180 456 8 9.99
181-190 28799 11 27.30
201-210 501 8 25.62
211-220 41699 11 33.21
231-240 600 10 31.91
Overall 12452 10 23.52

CPU

 
 

 

Average gap between the lower and upper bounds for 8 problem classes range from 

10% to 33% and the average solution time over the instances, for which integer 

feasible solutions are identified, is nearly 3.5 CPU hours.  Considering the 

characteristics of the problem classes given in Table 5.17, it is seen that an increase 

in the vehicle capacity reduces the solution time remarkably (the classes 141-150, 

171-180, 201-210, and 231-240), whereas it does not have a significant effect on the 

quality of the bounds obtained.  In fact, when the individual results that are 

provided in Appendix J are examined, it is observed that the lower bounds are only 
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slightly affected by the vehicle capacity.  Therefore, the differences among the gaps 

between the lower and upper bounds, i.e., LUB% statistics, mostly result from the 

differences in the upper bounds obtained.  For instance, data in classes 121-130 and 

141-150 differ only in terms of the vehicle capacity.  It can be checked from the 

table given in Appendix J that the lower bounds for instance 121 and 141 are 

615,460 and 615,297, respectively, while the related upper bounds are 775,097 and 

749,299.  Thus, the lower bounds are not noticeably affected by the vehicle capacity 

and the differences between LUB% statistics for these instances mainly result from 

the differences in the upper bounds.   

 

The bounds seem to perform better in the problem classes, in which the unit 

inventory holding costs of both the supplier and the retailers are at the high levels, 

i.e., classes 151-160 and 171-180.  Since the unit holding costs are high in these 

instances, the effects of the inventory holding costs (and so the inventory holding 

policies) on the results are high.  For this reason, it makes sense to obtain better 

bounds for these problems since all the restrictions on the inventory policies in IM 

are included in LRP-NM-1 method, while the restrictions on routing decisions are 

not fully included due to removal of subtour elimination constraints.  

 

Another point to mention is that while LRP-NM-1 identifies integer feasible 

solutions for 45 instances out of 80 in 3600 CPU seconds (see Appendix J), IM can 

find integer feasible solutions only for 6 instances in 3600 CPU seconds, which are 

clearly worse than the solutions provided by LRP-NM-1.  

 

5.2.3.3 The Procedure with a Priori Tour 

 

In ME, LP relaxation of APT (APT-LP) is solved to get an idea about the quality of 

the solutions provided by APT.  To see whether we can get improvements in APT-

LP, the modified Barany et al. cuts given with the relation (4.23) are inserted into 

APT formulation and its LP relaxation is solved.  The individual results obtained 
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with and without the cuts are compared to each other in Appendix K and the 

averages are provided in Table 5.23 below.   

 

It must be remarked that the procedure given in Section 4.2.3 is modified when 

solving APT-LP as follows.  First a TSP is solved with Concorde and a priori tour is 

obtained, next APT-LP is solved.  Since the decision variables that indicate whether 

the retailers are visited or not in a period are possibly noninteger in the solutions of 

APT-LP, the improvement step of the procedure, in which a TSP is solved for the 

retailers visited in each period, can not be executed.  Thus, the total cost figures are 

the costs provided by the solutions of APT-LP.   

 

 

Table 5.23 Results of APT-LP without and with (w) modified Barany et al. cuts 

Instance CPU CPU w Imp %
121-130 2.79 3.36 0.067
141-150 2.85 3.43 0.067
151-160 9.71 11.31 0.005
171-180 8.70 10.29 0.005
181-190 10.00 11.95 0.012
201-210 8.88 10.33 0.012
211-220 13.04 16.19 0.000
231-240 12.13 16.56 0.000
Overall 8.51 10.43 0.021  

 

 

Different from the preliminary experiments, modified Barany et al. cuts are inserted 

into APT to examine whether improvements can be obtained.  However, it is 

observed that these cuts increase the solution time extremely.  Thus, the original 

formulation of APT that is used in the preliminary experiments, i.e., the formulation 

without the cuts, is utilized in the main runs, as well.     

 

APT is run for each of the 80 instances until the first integer feasible solution is 

found.  The instances, for which the first integer solution is obtained in less than 

3600 CPU seconds, are run with a time limit of 3600 CPU seconds without the 
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termination rule of identifying the first integer feasible solution.  The results got by 

using the two termination rules are compared in Appendix L. 

 

The gap between the lower bound obtained for APT using APT-LP (with the 

modified Barany et al. cuts) and the best upper bound obtained with APT (either the 

first integer feasible solution obtained or the solution got in 3600 CPU seconds, 

whichever is better) are given for each instance in Appendix M and presented in 

averages in Table 5.24 below.  It can be seen in Appendix M that there exist 3 

instances out of 80, for which feasible integer solutions can not be identified by 

APT.  Although the solution times were less than 120,000 CPU seconds (the time 

limit used for LRP-NM-1), they were stopped due to memory limitations of the 

PC’s used. 

 

 

Table 5.24 Results obtained with APT in ME 

Instance APT APT-LP LUB%
121-130 20062 3.36 26.52
141-150 3600 3.43 22.55
151-160 14144 11.31 6.36
171-180 3600 10.29 3.59
181-190 14312 11.95 16.33
201-210 3600 10.33 8.81
211-220 11432 16.19 21.52
231-240 3600 16.56 15.95
Overall 9098 10.43 14.89

CPU

 
 

 

All TSPs are solved by Concorde in ME.  The results above show that the gap 

between the lower and upper bounds ranges between 4% and 27% with an average 

solution time (excluding the 3 instances, for which integer feasible solutions can not 

be identified) of almost 2.5 CPU hours.  It needs to be pointed out that the solutions 

of APT-LP provide lower bounds for APT but not for IM since it is based on a 

different formulation (fixing precedence relationships of the visits) that is more 
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restricting, i.e., probably causing a greater minimum cost, than the formulation of 

IM. 

 

5.2.3.4 Comparison of the Upper Bounds Obtained in ME 

 

Comparison of the best upper bounds obtained with LRP-NM-1 and APT are 

provided in Table 5.25 below in averages and in Appendix N for each instance, for 

which both methods provide integer feasible solutions.  The CPU seconds given for 

some of the classes and in overall are different from the figures given in Table 5.22 

and Table 5.24 since the figures given below include only the instances, for which 

both LRP-NM-1 and APT provide integer feasible solutions. 

 

 

Table 5.25 Comparison of the upper bounds obtained in ME 

Instance LRP-NM-1 (UB1) APT (UB2) UDiff %
121-130 28684 16436 1.21
141-150 600 3600 2.00
151-160 26580 8235 1.23
171-180 456 3600 3.37
181-190 28799 9570 3.25
201-210 501 3600 7.60
211-220 41674 5806 3.28
231-240 600 3600 6.93
Overall 11552 6482 3.84

CPU

 
 

 

As in the preliminary experiments, APT provides better upper bounds than LRP-

NM-1 and for more instances.  Moreover, in ME, the solution times required for 

APT are also less than that of LRP-NM-1.   
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5.2.3.5 Benchmarking 

 

In this section, the best upper bounds obtained with our methods are compared to 

the results of the heuristic ‘every’ and the results of Bertazzi et al. (2002).  The 

statistics used for benchmarking are described below. 

 

 BestUB: It denotes the best upper bound obtained by our methods. 

 UBe: It is the upper bound provided by ‘every’. 

 UBb: This denotes the upper bounds provided by Bertazzi et al. (2002). 

 UDiff E% = 100*(UBe-BestUB)/BestUB: This statistic denotes differences 

between our upper bounds and the upper bounds given by ‘every’. 

 UDiff B% = 100*(BestUB-UBb)/UBb: It gives the differences between our 

upper bounds and the upper bounds given by Bertazzi et al. (2002).   

 

The comparison for each instance is given in Appendix O and the average results 

are provided in Table 5.26 below. 

 

 

Table 5.26 Comparison of the best upper bounds obtained in ME with the solutions of ‘every’ and 

Bertazzi et al. (2002) 

Instance UDiff E % UDiff B %
121-130 33.19 7.52
141-150 37.75 5.46
151-160 10.07 2.41
171-180 13.02 1.32
181-190 23.50 5.95
201-210 32.04 2.96
211-220 6.17 2.82
231-240 12.08 3.42
Overall 20.82 3.94  

 

 

As in the preliminary experiments, the upper bounds we obtain always outperform 

the upper bounds provided by ‘every’.  In this case, a remarkable outcome is that 
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the upper bounds of ‘every’ are closer to our upper bounds when the unit inventory 

holding cost at the supplier is at the high level.  This is an anticipated result since 

‘every’ requires the retailers to be visited in every period and so, the inventory is 

preferred to be kept at the retailers as much as possible rather than keeping it at the 

supplier.  In addition to this, if the unit inventory holding costs at the retailers are at 

the low level, solutions of ‘every’ get closer to our solutions under a given capacity 

level, i.e., solutions of 211-220 (231-240) are closer to our solutions than 151-160 

(171-180). 

 

The upper bounds provided by Bertazzi et al. (2002) are of better quality than the 

upper bounds we obtained with an average difference of almost 4%.   
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CHAPTER 6  
 

CONCLUSION 
 

 

In this study, an inventory routing problem with deterministic order-up-to level 

inventory policy (IRDOP) has been analyzed and an integrated mathematical 

formulation for the IRDOP has been developed.  Optimal solutions could be 

identified with the integrated model for small problem instances.   

 

The integrated model provided for the IRDOP turned out to be a complex model 

due to several inherent traveling salesman problems that needed to be solved and 

large number of integer variables included in its formulation.  Considering 

difficulties caused by subtour elimination constraints, we developed methods to 

obtain upper and lower bounds for the IRDOP and examined their performances in 

a set of experiments.  The test instances were either generated according to a 

scheme provided in the literature or directly taken from the literature.  A secondary 

purpose of the first preliminary experiment that includes instances with known 

optimal solutions was to decide on the settings of the parameters in our proposed 

methods. 

 

A lagrangean relaxation based approach, founded on relaxing the subtour 

elimination constraints and incorporating them into the objective function, was 

utilized to identify upper and lower bounds for the IRDOP.  Upper and lower 

bounds were almost 7% and 2% within the optimality on average, respectively.  For 

larger instances with unknown optimal solutions, the gap between the upper and 

lower bounds was almost 16% on average.  For the largest instances that were 

tested, the procedure was simplified to be able to obtain bounds in reasonable times 

and the average gap between the upper and lower bounds increased up to 24%. 
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Another method for obtaining upper bounds for the IRDOP, which is based on 

identifying a priori tour and fixing the precedence relationships of the visits on this 

tour, is developed.  The results demonstrated that this method provided better upper 

bounds than the lagrangean relaxation based approaches most of the time.  The 

model with a priori tour happened to be more advantageous than the lagrangean 

relaxation problem in terms of the solution times, as well. 

 

The upper bounds obtained by the methods developed in this study were compared 

to the solutions provided by a trivial heuristic approach ‘every’ (see Appendix A) 

and to the solutions of Bertazzi et al. (2002).  Our methods outperformed ‘every’ all 

the time with average differences between them ranging from 21% to 62%.  

Although the upper bounding procedure given by the Bertazzi et al. (2002) provided 

slightly better values than ours, it must be pointed out that we do not conduct 

comprehensive improvement steps and there is no basis to compare the execution 

times because the solution times of Bertazzi et al. (2002) heuristics are unknown.   

 

The main contributions of this thesis are to develop a mathematical model for the 

IRDOP and identify a lower bound for the problem, both of which have not been 

accomplished so far.  Besides, to the best of our knowledge, this is the first time a 

priori tour is used to fix the precedence relationships of the visits and substitute 

these precedence relationships for the subtour elimination constraints in TSP 

context.  

 

The methods we developed can be considered as an initial attempt to solve the 

IRDOP.  Further improvements may be possible in two basic ways: making 

modifications in the procedures that are used currently and developing new 

procedures.   

 

The first possible way to modify the procedures developed is enhancing the 

formulations of the models using relevant cuts.  It was observed that the LP 

relaxation of the lagrangean relaxation problem was providing better solutions than 
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LP relaxation of the integrated model due to enhancements included in its 

formulation.  It may be possible to obtain better results for both the lagrangean 

relaxation problem and the model with a priori tour by including further cuts.   

 

The second way to improve the solutions we obtained is to build post improvement 

steps that will be executed following the usual stages of the procedures.   

 

While executing iterations for the lagrangean relaxation problem, the lagrangean 

multipliers were updated by general subgradient optimization.  Thus, as a third 

modification, different methods can be identified to improve the performance of the 

subgradient optimization.  Besides, different values for initializing the lagrangean 

multipliers can be tested and the value that provides the best bounds for the 

instances can be used as the initial multiplier.  

 

Considering new procedures that can be developed, it was seen that the upper and 

lower bounds provided by the lagrangean relaxation based approach were 

satisfactory particularly for small instances.  However, the lagrangean relaxation 

problem could not be solved optimally as MIP for large instances.  Thus, an 

apparent extension of this study is identifying a procedure to solve the MIP 

formulation of the lagrangean relaxation problem optimally. 

 

Besides, the solution approach with a priori tour provided quite good upper bounds 

in reasonable times for small problems.  The upper bounds that were obtained at the 

first integer feasible solutions for large problems were also satisfactory.  It is certain 

that if this model could have been solved to optimality, better upper bounds would 

have been obtained for large instances, as well.  Thus, identifying a method that is 

based on either lagrangean relaxation approach or other means to solve the model 

with a priori tour is a possible extension of this study.  Moreover, it can be analyzed 

how the performance of the model with a priori tour is affected by the distance 

structure. 
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Regarding the assumptions made to model the system, the minimum and the 

maximum inventory levels at the retailers can be decision variables, as well, i.e., 

these levels can be determined by the model.  In addition to this, rather than using a 

deterministic value for the amount of product that becomes available at the supplier 

in each period, a decision variable may be employed to get optimal value for this 

amount.  Furthermore, allowing transshipments between retailer pairs and backlogs, 

considering multiple vehicles and multiple products are also possible extensions 

that can be studied.   
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APPENDIX A  
 

A TRIVIAL HEURISTIC METHOD ‘EVERY’ 

 

 

A heuristic method named as ‘every’ is used by Bertazzi et al. (2002) to compare 

the results obtained in their study.  This heuristic method is employed in our study 

either to obtain an initial upper bound or to make comparisons with the results we 

obtained.  Below is a description of this heuristic. 

 

The method is based on visiting all retailers in each period with the least cost tour.  

Except for this, the remaining assumptions on the original problem such as the 

delivery amounts are taken into account in this method, as well.   

 

Due to some properties of the instances that are used in the numerical experiments, 

‘every’ always provides a feasible solution for the IRDOP.  These properties are 

discussed in the sequel.   

 

A restriction that should be taken into account to obtain feasible solutions is the 

capacity of the vehicle.  Data generation scheme used in the experiments guarantees 

satisfaction of the vehicle capacity restriction as follows.  The initial inventory level 

of a retailer (at the beginning of period 1) is set at the difference between the 

maximum inventory level and the demand at the retailer ( iI1  = ii dS − ).  Therefore, 

during a visit to a retailer in period 1, the amount of product delivered to the retailer 

that fills the inventory up to the maximum level is equal to the demand that needs to 

be satisfied by the respective retailer.  After this amount is delivered to the retailer, 

the retailer meets the demand incurred in period 1.  As a result of these events, the 

inventory level of retailer i at the beginning of period 2 is also equal to ii dS −  and 

the same events are observed recurrently.  This indicates that in every period each
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retailer receives a delivery that corresponds to the demand at it and so, the total 

amount of product distributed to the retailers in each period equals the sum of the 

demands at the retailers (∑
i

id ).  Thus, the total product distributed to the retailers 

in each period is always less than (if the vehicle capacity is 3∑
i

id ) or equal to (if 

the vehicle capacity is ∑
i

id ) the capacity of the vehicle. 

 

Another concern is the inventory available at the supplier.  Since the initial 

inventory level at the supplier is ∑
i

id , the first period requirements of the retailers 

(∑
i

id ) can be satisfied out of this amount.  Also, an amount equal to ∑
i

id  

becomes available at the supplier in each period.  Assuming that the first period 

requirements of the retailers are satisfied from the initial inventory of the supplier, 

the amount that becomes available in each period (∑
i

id ) can be used to meet the 

requirements of the retailers in the next period. 

 

Thus, the capacity of the vehicle and the amount available at the supplier can be 

used to meet the demands at the retailers on time.  Considering the features of the 

data set given above, the costs are computed as follows. 

 

Transportation cost:  

The tour with the minimum cost that visits all retailers is identified.  Because this 

tour is executed in each period, the cost of executing this tour is multiplied by the 

number of periods in the planning horizon (T). 

 

Inventory holding cost at the retailers:  

Knowing that every retailer receives a delivery that equals to the demand in each 

period, the flow balance constraint, i.e., constraint (3.2), can be expressed as 
i
t

i
t

i
t

i
t dIdI 111 −−− =−+ , i.e., i

t
i
t II =−1 .  This equality shows that the inventory level at 

each retailer at the beginning of each period equals the starting inventory level of 
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the related retailer, i.e., ii dS − .  It must be reminded that the inventory holding cost 

at the retailers is computed according to the inventory available at the beginning of 

each period in the planning horizon (i.e., T periods) and at the beginning of the 

period T+1.  Thus, to obtain the inventory holding cost at a retailer, the inventory 

level given above is multiplied by the unit holding cost at the relevant retailer and 

T+1, which is then summed up over all retailers. 

 

Inventory holding cost at the supplier:  

The flow balance constraint at the supplier, i.e., constraint (3.9), can be restated as 

∑∑ =−+ −
i

i
t

i

i
t dIsdIs 1 , i.e., 1−= tt IsIs  since both the amount that becomes 

available at the supplier and the amount distributed to the retailers from the supplier 

in each period is ∑
i

id .  This equality demonstrates that the inventory level at the 

supplier in each period is equal to the starting inventory level of the supplier, i.e., 

∑
i

id .  Therefore, in the same way as the retailers, the inventory holding cost at the 

supplier is calculated by multiplying this inventory level with the unit holding cost 

at the supplier and T+1.   

 

The total cost incurred is computed by summing up the total transportation and 

inventory holding costs that are discussed above.  Thus, a feasible solution for the 

IRDOP with the total cost that is calculated as above can be obtained using ‘every’. 
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APPENDIX B  
 

AVERAGE GAPS FOR THE BOUNDS OBTAINED WITH LRP-NM IN PE-I 

 

The figure below demonstrates the average percent gaps for the bounds obtained 

with lagrangean relaxation solution procedure (LRP-NM) over 15 instances that are 

tested in preliminary experiment I (PE-I).  
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Figure B.1 Average % gaps over the instances tested in PE-I 

(a) Average % gap between optimal solutions and lower bounds 

(b) Average % gap between optimal solutions and upper bounds 

(c) Average % gap between lower bounds and upper bounds 
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APPENDIX C  
 

INDIVIDUAL GAPS FOR THE BOUNDS OBTAINED WITH LRP-NM IN 

PE-I 

  

Figures in this part illustrate percent gaps for the bounds obtained by the lagrangean 

relaxation solution procedure (LRP-NM) for each instance tested in preliminary 

experiment I (PE-I) individually. 
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Figure C.1 % Gaps between upper and lower bounds for the instances tested in PE-I 
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Figure C.2 % Gaps for the instances tested in PE-I 

 

(a) % Gap between optimal solutions and lower bounds 

(b) % Gap between optimal solutions and upper bounds 



 118

APPENDIX D  
 

BOUNDS OBTAINED WITH LRP-NM IN PE-I THROUGH ITERATIONS  

 

Figures in this part show the changes in bounds obtained with lagrangean relaxation 

solution procedure (LRP-NM) for each instance tested in preliminary experiment I 

(PE-I) according to number of iterations performed. 
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Figure D.1 Lower and upper bounds for u = 10, m = 5 through iterations in PE-I for 15 instances

(a) Lower Bound 

(a) Upper Bound 
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Figure D.2 Lower and upper bounds for u = 10, m = 10 through iterations in PE-I for 15 instances 

 

 

 

 

(a) Lower Bound 

(b) Upper Bound 
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Figure D.3 Lower and upper bounds for u = 15, m = 10 through iterations in PE-I for 15 instances 

 

 

 

 

(a) Lower Bound 

(b) Upper Bound 
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Figure D.4 Lower and upper bounds for u = 30, m = 5 through iterations in PE-I for 15 instances 

 

 

 

 

(a) Lower Bound 

(b) Upper Bound 
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Figure D.5 Lower and upper bounds for u = 30, m = 10 through iterations in PE-I for 15 instances 

 

 

 

 

(a) Lower Bound 

(b) Upper Bound 
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Figure D.6 Lower and upper bounds for u = 1, m = 10 through iterations in PE-I for 15 instances 

 

 

(a) Lower Bound 

(b) Upper Bound 
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APPENDIX E  
 

BOUNDS OBTAINED WITH LRP-NM IN PE-II THROUGH ITERATIONS 

 

Figures below show the changes in bounds obtained with lagrangean relaxation 

solution procedure (LRP-NM) for each instance tested in preliminary experiment II 

(PE-II) according to number of iterations performed. 
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Figure E.1 Lower and upper bounds for u = 15, m = 5 through iterations in PE-II for 15 instances 

(a) Lower Bound 

(a) Upper Bound 



 125

 

 

 

 

 

9000

11000

13000

15000

17000

19000

21000

23000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Iteration

V
al

ue

12000

14000

16000

18000

20000

22000

24000

26000

1 2 3 4 5 6
Iteration

V
al

ue

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15
 

Figure E.2 Lower and upper bounds for u = 1, m = 5 through iterations in PE-II for 15 instances 

 

(a) Lower Bound 

(b) Upper Bound 
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APPENDIX F  
 

RESULTS FOR LP RELAXATION OF IM IN ME 

 

Results obtained with LP relaxation of the integrated model (IM-LP) during main 

experiments (ME) are provided in this part, together with the results obtained when 

modified Barany et al. cuts are included in this formulation. 

 

Table F.1 Results of IM-LP without and with modified Barany et al. cuts in ME * 

Instance TC CPU TC CPU Imp %
121 596221 9.31 596221 9.84 0.0000
122 636839 9.80 637577 10.90 0.1158
123 482182 9.87 482777 10.94 0.1235
124 571207 12.03 571570 12.70 0.0635
125 387533 9.87 387827 11.76 0.0760
126 574754 10.72 575314 12.31 0.0975
127 515018 10.53 515656 12.02 0.1240
128 562478 11.54 562498 11.99 0.0034
129 513177 11.60 513259 13.09 0.0160
130 552702 11.14 553048 12.85 0.0626
141 596221 9.53 596221 10.09 0.0000
142 636839 9.89 637577 10.72 0.1158
143 482182 10.25 482777 11.21 0.1235
144 571207 11.90 571570 12.35 0.0635
145 387533 10.14 387827 11.94 0.0760
146 574754 10.82 575314 12.48 0.0975
147 515018 10.58 515656 12.28 0.1240
148 562478 12.06 562498 12.02 0.0035
149 513177 11.61 513259 13.08 0.0160
150 552702 11.24 553048 13.22 0.0626
151 893385 16.84 893385 20.97 0.0000
152 971751 22.42 971840 23.34 0.0092
153 747551 30.90 747659 38.89 0.0145
154 848551 25.67 848628 28.38 0.0091
155 611137 29.73 611137 25.78 0.0000
156 880594 29.02 880609 26.64 0.0017
157 796425 20.90 796517 26.14 0.0115
158 829048 19.99 829050 27.91 0.0003
159 802735 23.37 802735 22.81 0.0000
160 843241 19.92 843248 21.63 0.0008
171 893385 19.57 893385 21.32 0.0000
172 971751 23.62 971840 26.18 0.0092
173 747551 29.14 747659 27.32 0.0145
174 848551 25.77 848628 26.44 0.0091
175 611137 28.72 611137 28.75 0.0000
176 880594 31.22 880609 29.00 0.0017
177 796425 21.04 796517 21.11 0.0115
178 829048 20.40 829050 26.64 0.0003
179 802735 25.40 802735 27.50 0.0000
180 843241 18.97 843248 21.67 0.0008

IM-LP IM-LP with cuts
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Table F.1 (continued) 

Instance TC CPU TC CPU Imp %
181 336935 18.68 336935 19.58 0.0000
182 340932 20.40 341021 23.46 0.0261
183 267159 27.89 267268 36.62 0.0407
184 308671 24.10 308747 28.97 0.0249
185 227001 28.13 227001 34.39 0.0000
186 316099 28.81 316115 26.69 0.0048
187 305726 22.78 305818 22.50 0.0300
188 308604 21.05 308607 24.98 0.0007
189 315462 19.59 315462 19.66 0.0000
190 326781 22.34 326788 22.68 0.0021
201 336935 19.53 336935 20.01 0.0000
202 340932 24.76 341021 26.96 0.0261
203 267159 23.06 267268 33.82 0.0407
204 308671 27.51 308747 30.83 0.0249
205 227001 26.88 227001 31.94 0.0000
206 316099 28.83 316115 30.24 0.0048
207 305726 21.93 305818 20.50 0.0300
208 308604 24.74 308607 35.04 0.0007
209 315462 26.06 315462 21.66 0.0000
210 326781 19.67 326788 19.76 0.0021
211 407940 65.26 407940 63.75 0.0000
212 413537 78.65 413537 78.31 0.0000
213 329658 73.30 329658 80.71 0.0000
214 376602 73.21 376602 88.23 0.0000
215 286537 75.94 286537 91.90 0.0000
216 382274 70.94 382274 72.91 0.0000
217 377482 79.18 377482 103.20 0.0000
218 375081 63.32 375081 68.19 0.0000
219 393506 84.50 393506 87.70 0.0000
220 392017 54.44 392017 66.37 0.0000
231 407940 70.76 407940 62.54 0.0000
232 413537 69.60 413537 80.87 0.0000
233 329658 67.35 329658 79.33 0.0000
234 376602 90.00 376602 89.02 0.0000
235 286537 87.97 286537 83.58 0.0000
236 382274 57.25 382274 68.39 0.0000
237 377482 69.50 377482 91.22 0.0000
238 375081 71.02 375081 66.60 0.0000
239 393506 82.23 393506 95.41 0.0000
240 392017 64.85 392017 61.71 0.0000

Average 32.79 35.83 0.0215

IM-LP IM-LP with cuts

 
* TC is the total cost incurred in the solution with the related formulation. 

CPU is the solution time for the related formulation. 
Imp %, given by  % (TC with cuts-TC without cuts)/TC without cuts, denotes the 
improvement obtained with modified Barany et al. cuts over the formulation 
without the cuts. 
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APPENDIX G  
 

RESULTS FOR LP RELAXATION OF LRP IN ME 

 

Results obtained in main experiment (ME) with LP relaxation of the lagrangean 

relaxation problem (LRP-LP) are provided in this part, together with the results 

obtained when modified Barany et al. cuts are excluded from its formulation. 

 

Table G.1 Results of LRP-LP with and without modified Barany et al. cuts in ME * 

Instance TC CPU TC CPU Imp %
121 615460 10.02 596877 2.62 3.0194
122 657499 15.24 637585 2.42 3.0287
123 503206 9.70 482682 2.82 4.0786
124 592218 13.22 571214 2.31 3.5468
125 411641 12.33 389722 2.44 5.3247
126 595706 7.80 575173 2.81 3.4469
127 536452 9.24 515433 3.27 3.9183
128 579296 10.33 562492 2.07 2.9008
129 537542 12.21 513491 2.20 4.4743
130 571351 15.27 552809 2.55 3.2452
141 615297 9.00 596877 2.65 2.9938
142 657368 11.58 637585 2.54 3.0094
143 503032 6.27 482682 2.93 4.0454
144 592077 10.25 571214 2.38 3.5237
145 411432 10.47 389722 2.52 5.2766
146 595624 6.39 575173 2.81 3.4336
147 536299 5.94 515433 3.32 3.8908
148 579199 9.80 562491 2.14 2.8846
149 537344 8.29 513491 2.27 4.4391
150 571205 10.04 552809 2.64 3.2205
151 895565 16.97 894097 5.35 0.1639
152 974395 11.92 972888 4.98 0.1546
153 750190 9.96 748177 6.70 0.2684
154 851075 10.32 848582 4.35 0.2928
155 615686 14.70 613839 6.19 0.3000
156 882491 10.75 880918 4.54 0.1782
157 798876 11.74 796787 4.61 0.2614
158 830352 6.57 829048 4.51 0.1570
159 805951 10.82 803148 3.86 0.3478
160 844720 11.97 843404 4.91 0.1557
171 895565 11.18 894097 5.08 0.1639
172 974395 6.46 972888 4.04 0.1546
173 750190 8.87 748177 5.45 0.2684
174 851072 7.77 848582 3.96 0.2925
175 615686 10.58 613839 6.19 0.3000
176 882491 6.32 880918 4.01 0.1782
177 798875 7.37 796787 4.45 0.2614
178 830352 6.43 829048 4.60 0.1570
179 805951 8.56 803148 4.12 0.3478
180 844720 10.46 843404 4.48 0.1557

LRP-LP w/o cutsLRP-LP
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Table G.1 (continued) 

Instance TC CPU TC CPU Imp %
181 339115 12.30 337647 5.04 0.4346
182 343576 9.38 342069 4.55 0.4405
183 269798 11.69 267785 6.30 0.7518
184 311194 11.97 308702 4.42 0.8073
185 231549 16.59 229702 5.86 0.8042
186 317996 13.20 316423 4.66 0.4971
187 308177 12.23 306088 4.58 0.6823
188 309908 5.93 308605 4.62 0.4224
189 318678 8.64 315874 4.01 0.8875
190 328260 9.35 326944 4.70 0.4024
201 339115 12.01 337647 5.23 0.4346
202 343576 5.99 342069 3.89 0.4405
203 269798 8.22 267785 5.53 0.7518
204 311191 11.02 308702 4.15 0.8063
205 231549 9.86 229702 6.46 0.8042
206 317996 6.27 316423 4.16 0.4971
207 308176 7.65 306088 4.19 0.6823
208 309908 6.52 308605 4.72 0.4224
209 318678 8.58 315874 4.25 0.8875
210 328260 8.14 326944 4.60 0.4024
211 408761 10.32 408749 6.86 0.0030
212 414758 9.45 414746 5.96 0.0029
213 330163 11.26 330162 8.74 0.0004
214 376663 11.24 376636 7.83 0.0070
215 289414 11.72 289412 7.55 0.0007
216 382550 12.02 382505 5.63 0.0117
217 377617 11.74 377599 7.05 0.0046
218 375084 7.85 375081 6.17 0.0010
219 393959 12.47 393946 7.64 0.0032
220 392269 8.09 392234 6.39 0.0087
231 408761 9.59 408749 6.90 0.0030
232 414758 8.82 414746 6.02 0.0029
233 330163 11.24 330162 8.49 0.0004
234 376663 11.15 376636 8.82 0.0070
235 289414 11.25 289412 9.45 0.0007
236 382550 8.56 382505 6.36 0.0117
237 377617 10.77 377599 7.87 0.0046
238 375084 7.17 375081 5.82 0.0010
239 393959 9.50 393946 6.98 0.0032
240 392269 7.60 392234 5.86 0.0087

Average 516710 10.01 510732 4.83 1.1326

LRP-LP w/o cutsLRP-LP

 
 * TC is the total cost incurred in the solution with the related formulation. 

CPU is the solution time for the related formulation. 
Imp %, given by  % (TC with cuts-TC without cuts)/TC without cuts, 
denotes the improvement obtained with modified Barany et al. cuts over the 
formulation without the cuts. 
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APPENDIX H  
 

COMPARISON OF LP RELAXATION RESULTS OF IM AND LRP IN ME 

 

Below, the results obtained in main experiment (ME) with LP relaxations of the 

lagrangean relaxation problem (LRP-LP) and integrated model (IM-LP) are 

compared under the formulations with and without modified Barany et al. cuts. 

 

Table H.1 Comparison of LRP-LP and IM-LP without and with modified Barany et al. cuts in ME * 

Instance LB1 CPU LB2 CPU LB1 CPU LB2 CPU 
121 596877 2.62 596221 9.31 0.1098 615460 10.02 596221 9.84 3.1259
122 637585 2.42 636839 9.80 0.1171 657499 15.24 637577 10.90 3.0301
123 482682 2.82 482182 9.87 0.1037 503206 9.70 482777 10.94 4.0598
124 571214 2.31 571207 12.03 0.0011 592218 13.22 571570 12.70 3.4867
125 389722 2.44 387533 9.87 0.5618 411641 12.33 387827 11.76 5.7850
126 575173 2.81 574754 10.72 0.0729 595706 7.80 575314 12.31 3.4232
127 515433 3.27 515018 10.53 0.0805 536452 9.24 515656 12.02 3.8766
128 562492 2.07 562478 11.54 0.0024 579296 10.33 562498 11.99 2.8998
129 513491 2.20 513177 11.60 0.0612 537542 12.21 513259 13.09 4.5176
130 552809 2.55 552702 11.14 0.0195 571351 15.27 553048 12.85 3.2035
141 596877 2.65 596221 9.53 0.1098 615297 9.00 596221 10.09 3.1003
142 637585 2.54 636839 9.89 0.1171 657368 11.58 637577 10.72 3.0107
143 482682 2.93 482182 10.25 0.1037 503032 6.27 482777 11.21 4.0266
144 571214 2.38 571207 11.90 0.0011 592077 10.25 571570 12.35 3.4635
145 389722 2.52 387533 10.14 0.5618 411432 10.47 387827 11.94 5.7371
146 575173 2.81 574754 10.82 0.0729 595624 6.39 575314 12.48 3.4099
147 515433 3.32 515018 10.58 0.0805 536299 5.94 515656 12.28 3.8490
148 562491 2.14 562478 12.06 0.0024 579199 9.80 562498 12.02 2.8834
149 513491 2.27 513177 11.61 0.0612 537344 8.29 513259 13.08 4.4824
150 552809 2.64 552702 11.24 0.0195 571205 10.04 553048 13.22 3.1788
151 894097 5.35 893385 16.84 0.0796 895565 16.97 893385 20.97 0.2433
152 972888 4.98 971751 22.42 0.1169 974395 11.92 971840 23.34 0.2622
153 748177 6.70 747551 30.90 0.0837 750190 9.96 747659 38.89 0.3373
154 848582 4.35 848551 25.67 0.0037 851075 10.32 848628 28.38 0.2875
155 613839 6.19 611137 29.73 0.4401 615686 14.70 611137 25.78 0.7388
156 880918 4.54 880594 29.02 0.0368 882491 10.75 880609 26.64 0.2132
157 796787 4.61 796425 20.90 0.0454 798876 11.74 796517 26.14 0.2952
158 829048 4.51 829048 19.99 0.0000 830352 6.57 829050 27.91 0.1568
159 803148 3.86 802735 23.37 0.0513 805951 10.82 802735 22.81 0.3990
160 843404 4.91 843241 19.92 0.0193 844720 11.97 843248 21.63 0.1742
171 894097 5.08 893385 19.57 0.0796 895565 11.18 893385 21.32 0.2433
172 972888 4.04 971751 23.62 0.1169 974395 6.46 971840 26.18 0.2622
173 748177 5.45 747551 29.14 0.0837 750190 8.87 747659 27.32 0.3373
174 848582 3.96 848551 25.77 0.0037 851072 7.77 848628 26.44 0.2871
175 613839 6.19 611137 28.72 0.4401 615686 10.58 611137 28.75 0.7388
176 880918 4.01 880594 31.22 0.0368 882491 6.32 880609 29.00 0.2132
177 796787 4.45 796425 21.04 0.0454 798875 7.37 796517 21.11 0.2952
178 829048 4.60 829048 20.40 0.0000 830352 6.43 829050 26.64 0.1568
179 803148 4.12 802735 25.40 0.0513 805951 8.56 802735 27.50 0.3990
180 843404 4.48 843241 18.97 0.0193 844720 10.46 843248 21.67 0.1742

Results without the cuts Results with the cuts

LDiff % LDiff %IM-LP IM-LPLRP-LP LRP-LP
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Table H.1 (continued) 

Instance LB1 CPU LB2 CPU LB1 CPU LB2 CPU 
181 337647 5.04 336935 18.68 0.2108 339115 12.30 336935 19.58 0.6427
182 342069 4.55 340932 20.40 0.3325 343576 9.38 341021 23.46 0.7437
183 267785 6.30 267159 27.89 0.2337 269798 11.69 267268 36.62 0.9379
184 308702 4.42 308671 24.10 0.0101 311194 11.97 308747 28.97 0.7862
185 229702 5.86 227001 28.13 1.1762 231549 16.59 227001 34.39 1.9645
186 316423 4.66 316099 28.81 0.1024 317996 13.20 316115 26.69 0.5918
187 306088 4.58 305726 22.78 0.1181 308177 12.23 305818 22.50 0.7653
188 308605 4.62 308604 21.05 0.0001 309908 5.93 308607 24.98 0.4200
189 315874 4.01 315462 19.59 0.1305 318678 8.64 315462 19.66 1.0091
190 326944 4.70 326781 22.34 0.0498 328260 9.35 326788 22.68 0.4483
201 337647 5.23 336935 19.53 0.2108 339115 12.01 336935 20.01 0.6427
202 342069 3.89 340932 24.76 0.3325 343576 5.99 341021 26.96 0.7437
203 267785 5.53 267159 23.06 0.2337 269798 8.22 267268 33.82 0.9379
204 308702 4.15 308671 27.51 0.0101 311191 11.02 308747 30.83 0.7853
205 229702 6.46 227001 26.88 1.1762 231549 9.86 227001 31.94 1.9645
206 316423 4.16 316099 28.83 0.1024 317996 6.27 316115 30.24 0.5917
207 306088 4.19 305726 21.93 0.1181 308176 7.65 305818 20.50 0.7653
208 308605 4.72 308604 24.74 0.0001 309908 6.52 308607 35.04 0.4200
209 315874 4.25 315462 26.06 0.1305 318678 8.58 315462 21.66 1.0091
210 326944 4.60 326781 19.67 0.0498 328260 8.14 326788 19.76 0.4483
211 408749 6.86 407940 65.26 0.1978 408761 10.32 407940 63.75 0.2008
212 414746 5.96 413537 78.65 0.2915 414758 9.45 413537 78.31 0.2943
213 330162 8.74 329658 73.30 0.1527 330163 11.26 329658 80.71 0.1531
214 376636 7.83 376602 73.21 0.0091 376663 11.24 376602 88.23 0.0161
215 289412 7.55 286537 75.94 0.9934 289414 11.72 286537 91.90 0.9940
216 382505 5.63 382274 70.94 0.0602 382550 12.02 382274 72.91 0.0720
217 377599 7.05 377482 79.18 0.0310 377617 11.74 377482 103.20 0.0356
218 375081 6.17 375081 63.32 0.0000 375084 7.85 375081 68.19 0.0010
219 393946 7.64 393506 84.50 0.1117 393959 12.47 393506 87.70 0.1149
220 392234 6.39 392017 54.44 0.0554 392269 8.09 392017 66.37 0.0641
231 408749 6.90 407940 70.76 0.1978 408761 9.59 407940 62.54 0.2008
232 414746 6.02 413537 69.60 0.2915 414758 8.82 413537 80.87 0.2943
233 330162 8.49 329658 67.35 0.1527 330163 11.24 329658 79.33 0.1531
234 376636 8.82 376602 90.00 0.0091 376663 11.15 376602 89.02 0.0161
235 289412 9.45 286537 87.97 0.9934 289414 11.25 286537 83.58 0.9940
236 382505 6.36 382274 57.25 0.0602 382550 8.56 382274 68.39 0.0720
237 377599 7.87 377482 69.50 0.0310 377617 10.77 377482 91.22 0.0356
238 375081 5.82 375081 71.02 0.0000 375084 7.17 375081 66.60 0.0010
239 393946 6.98 393506 82.23 0.1117 393959 9.50 393506 95.41 0.1149
240 392234 5.86 392017 64.85 0.0554 392269 7.60 392017 61.71 0.0641

Average 4.83 32.79 0.1568 10.01 35.83 1.2659

LDiff %

Results without the cuts Results with the cuts
IM-LP IM-LPLDiff %LRP-LP LRP-LP

 
* CPU is the solution time for the related formulation. 

LDiff %, given by  % (LB1-LB2)/LB1, denotes the difference between the costs 
obtained by different lower bounding procedures, where LB1 and LB2 are the total 
costs provided by LP relaxation of LRP and IM, respectively.   
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APPENDIX I  
 

UPPER BOUNDS OBTAINED WITH LRP-NM-1 IN ME 

 

Below are the upper bounds given by LRP-NM-1 in main experiment (ME).  If the 

first integer feasible solution (FIS) of LRP-MIP is identified in less than 600 CPU 

seconds, another upper bound is identified over the solution of LRP-MIP in 600 

CPU seconds.  

 

Table I.1 Upper bounds with FIS and the solution in the time limit (TL) by LRP-NM-1 in ME * 

Over TL
Instance UB1 CPU UB2 UDiff %

121 775097 8267
122 869551 63171
123 667805 119510
124 738676 1344
125 NFS
126 755668 2389
127 704162 31939
128 715858 418 709227 0.94
129 NFS
130 732178 2248
141 775063 455 749299 3.44
142 823613 390 806879 2.07
143 652917 396 645251 1.19
144 744101 447 723136 2.90
145 553825 386 552475 0.24
146 777148 306 744206 4.43
147 702620 472 682210 2.99
148 733367 284 711090 3.13
149 688400 419 681333 1.04
150 727103 268 713569 1.90
151 975559 6608
152 1060872 53808
153 NFS
154 939589 58212
155 NFS
156 972511 22724
157 NFS
158 921732 7628
159 882992 28536
160 931119 8546
171 975408 336 975588 -0.02
172 1062675 290 1062908 -0.02
173 830908 256 831300 -0.05
174 934672 404 937365 -0.29
175 696562 187 687883 1.26
176 966307 163 964721 0.16
177 883478 278 883725 -0.03
178 920210 167 917740 0.27
179 880123 259 879953 0.02
180 929321 250 929196 0.01

Over FIS
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Table I.1 (continued) 

Over TL
Instance UB1 CPU UB2 UDiff %

181 423001 1744
182 433412 24193
183 NFS
184 399841 70424
185 NFS
186 405665 18587
187 402699 50017
188 400069 10342
189 398547 22786
190 415812 32300
201 417941 396 415082 0.69
202 430330 272 426712 0.85
203 350464 247 347383 0.89
204 390509 304 393460 -0.75
205 310743 198 297591 4.42
206 400855 164 399863 0.25
207 390729 291 391105 -0.10
208 395507 144 395345 0.04
209 389140 219 391487 -0.60
210 410946 256 408935 0.49
211 NFS
212 546198 30406
213 450645 58818
214 NFS
215 NFS
216 NFS
217 503127 52943
218 NFS
219 NFS
220 515539 24631
231 540646 140 526523 2.68
232 549286 110 539085 1.89
233 460450 117 445255 3.41
234 511755 144 493294 3.74
235 413327 106 395780 4.43
236 523805 108 510968 2.51
237 517902 117 502322 3.10
238 513609 65 502487 2.21
239 513516 99 505284 1.63
240 521169 129 505828 3.03

Average 12277 1.47

Over FIS

 
* UB1 is the upper bound obtained over the first integer feasible solution of LRP-MIP. 

UB2 is the upper bound obtained over the solution identified by LRP-MIP in 600 
CPU seconds.   
UDiff %, given by  % (UB1-UB2)/UB2, denotes the difference between the costs 
obtained by LRP-NM-1 over the first integer solution of LRP-MIP and over the 
solution LRP-MIP provides in 600 CPU seconds. 
NFS denotes that an integer feasible solution can not be identified for the related 
instance.   
The empty cells under the column ‘over TL’ are the instances, for which the first 
integer feasible solutions are identified in more than 600 CPU seconds.  Thus, they 
are not solved again with a time limit. 
Shaded cells show the instances, for which the solutions in 600 CPU seconds, are 
worse than the solutions obtained with the other termination rule of finding the first 
integer solution.   
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APPENDIX J  
 

UPPER AND LOWER BOUNDS OBTAINED WITH LRP-NM-1 IN ME 

 

The upper bounds (UB) and lower bounds (LB) provided by the lagrangean 

relaxation solution procedure for large-scale problems (LRP-NM-1) in main 

experiment (ME), the solution times of the methods and the gaps between the 

bounds are provided below. 

 

Table J.1 Upper and lower bounds obtained by the procedure LRP-NM-1 in ME * 

Instance UB CPU LB CPU LUB%
121 775097 8267 615460 10 25.94
122 869551 63171 657499 15 32.25
123 667805 119510 503206 10 32.71
124 738676 1344 592218 13 24.73
125 NFS 411641 12
126 755668 2389 595706 8 26.85
127 704162 31939 536452 9 31.26
128 709227 600 579296 10 22.43
129 NFS 537542 12
130 732178 2248 571351 15 28.15
141 749299 600 615297 9 21.78
142 806879 600 657368 12 22.74
143 645251 600 503032 6 28.27
144 723136 600 592077 10 22.14
145 552475 600 411432 10 34.28
146 744206 600 595624 6 24.95
147 682210 600 536299 6 27.21
148 711090 600 579199 10 22.77
149 681333 600 537344 8 26.80
150 713569 600 571205 10 24.92
151 975559 6608 895565 17 8.93
152 1060872 53808 974395 12 8.87
153 NFS 750190 10
154 939589 58212 851075 10 10.40
155 NFS 615686 15
156 972511 22724 882491 11 10.20
157 NFS 798876 12
158 921732 7628 830352 7 11.00
159 882992 28536 805951 11 9.56
160 931119 8546 844720 12 10.23
171 975408 336 895565 11 8.92
172 1062675 290 974395 6 9.06
173 830908 256 750190 9 10.76
174 934672 404 851072 8 9.82
175 687883 600 615686 11 11.73
176 964721 600 882491 6 9.32
177 883478 278 798875 7 10.59
178 917740 600 830352 6 10.52
179 879953 600 805951 9 9.18
180 929196 600 844720 10 10.00

LRP-NM-1 LRP-LP

 
 

 



 135

 

 

 

Table J.1 (continued) 

Instance UB CPU LB CPU LUB%
181 423001 1744 339115 12 24.74
182 433412 24193 343576 9 26.15
183 NFS 269798 12
184 399841 70424 311194 12 28.49
185 NFS 231549 17
186 405665 18587 317996 13 27.57
187 402699 50017 308177 12 30.67
188 400069 10342 309908 6 29.09
189 398547 22786 318678 9 25.06
190 415812 32300 328260 9 26.67
201 415082 600 339115 12 22.40
202 426712 600 343576 6 24.20
203 347383 600 269798 8 28.76
204 390509 304 311191 11 25.49
205 297591 600 231549 10 28.52
206 399863 600 317996 6 25.74
207 390729 291 308176 8 26.79
208 395345 600 309908 7 27.57
209 389140 219 318678 9 22.11
210 408935 600 328260 8 24.58
211 NFS 408761 10
212 546198 30406 414758 9 31.69
213 450645 58818 330163 11 36.49
214 NFS 376663 11
215 NFS 289414 12
216 NFS 382550 12
217 503127 52943 377617 12 33.24
218 NFS 375084 8
219 NFS 393959 12
220 515539 24631 392269 8 31.43
231 526523 600 408761 10 28.81
232 539085 600 414758 9 29.98
233 445255 600 330163 11 34.86
234 493294 600 376663 11 30.96
235 395780 600 289414 11 36.75
236 510968 600 382550 9 33.57
237 502322 600 377617 11 33.02
238 502487 600 375084 7 33.97
239 505284 600 393959 10 28.26
240 505828 600 392269 8 28.95

Average 12452 10 23.52

LRP-NM-1 LRP-LP

 
* CPU is the solution time for the related formulation.  

LUB%, given by  % (UB-LB)/LB, denotes the gap  
between the upper and lower bounds.  
NFS denotes that an integer feasible solution can not be  
identified for the related instance.   
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APPENDIX K  
 

RESULTS FOR LP RELAXATION OF APT IN ME 

 

Results obtained with LP relaxation of the model with a priori tour (APT-LP) 

during main experiments (ME) are provided in this part, together with the results 

obtained when modified Barany et al. cuts are included in this formulation. 

 

Table K.1 Results of APT-LP without and with modified Barany et al. cuts in ME * 

Instance TC CPU TC CPU Imp %
121 615927 2.13 615927 2.83 0.0000
122 660270 3.42 661071 4.35 0.1214
123 505049 2.66 505723 3.10 0.1334
124 594125 2.28 594467 2.64 0.0576
125 418344 4.14 418622 4.89 0.0665
126 601039 2.48 601604 3.07 0.0939
127 536794 3.70 537416 4.34 0.1159
128 586536 2.13 586556 2.40 0.0034
129 531148 2.58 531235 3.12 0.0163
130 571197 2.38 571532 2.86 0.0587
141 615927 2.27 615927 3.01 0.0000
142 660270 3.56 661071 4.30 0.1214
143 505049 2.86 505723 3.41 0.1334
144 594125 2.39 594467 2.57 0.0576
145 418344 3.96 418622 5.03 0.0665
146 601039 2.39 601604 3.21 0.0939
147 536794 3.87 537416 4.32 0.1159
148 586536 2.13 586556 2.47 0.0034
149 531148 2.65 531235 3.27 0.0163
150 571197 2.37 571532 2.71 0.0587
151 913533 9.93 913533 9.52 0.0000
152 996919 10.49 997025 12.21 0.0106
153 771974 9.08 772087 12.61 0.0146
154 873347 9.21 873421 10.17 0.0084
155 643216 14.13 643216 15.87 0.0000
156 908996 12.12 909008 14.84 0.0013
157 818829 10.24 818919 10.31 0.0110
158 855797 6.57 855799 9.34 0.0003
159 821867 6.48 821867 8.04 0.0000
160 864101 8.85 864109 10.19 0.0010
171 913533 7.76 913533 9.67 0.0000
172 996919 9.18 997025 10.84 0.0106
173 771974 9.33 772087 10.05 0.0146
174 873347 8.09 873421 9.38 0.0084
175 643216 11.72 643216 14.74 0.0000
176 908996 9.40 909008 10.54 0.0013
177 818829 8.69 818919 11.79 0.0110
178 855797 6.54 855799 7.79 0.0003
179 821867 7.00 821867 7.92 0.0000
180 864101 9.30 864109 10.16 0.0010

APT-LP APT-LP with cuts
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Table K.1 (continued) 

Instance TC CPU TC CPU Imp %
181 357083 7.35 357083 8.60 0.0000
182 366100 10.43 366206 12.48 0.0289
183 291583 10.09 291696 12.84 0.0387
184 333467 10.53 333540 11.04 0.0220
185 259080 14.31 259080 20.60 0.0000
186 344502 12.26 344513 12.70 0.0033
187 328130 8.88 328220 10.87 0.0274
188 335353 7.06 335356 8.76 0.0008
189 334594 8.87 334594 9.79 0.0000
190 347641 10.19 347649 11.83 0.0024
201 357083 8.08 357083 9.95 0.0000
202 366100 8.42 366206 9.94 0.0289
203 291583 9.33 291696 10.59 0.0387
204 333467 9.72 333540 10.56 0.0220
205 259080 11.61 259080 13.14 0.0000
206 344502 8.82 344513 11.16 0.0033
207 328130 8.53 328220 9.98 0.0274
208 335353 7.11 335356 9.66 0.0008
209 334594 7.28 334594 7.85 0.0000
210 347641 9.91 347649 10.50 0.0024
211 428301 12.30 428301 15.20 0.0000
212 438486 11.97 438486 15.26 0.0000
213 353432 13.21 353432 19.69 0.0000
214 400592 12.98 400592 16.19 0.0000
215 317942 20.16 317942 20.06 0.0000
216 410066 13.84 410066 13.18 0.0000
217 399512 14.49 399512 17.84 0.0000
218 401981 8.89 401981 12.19 0.0000
219 412850 11.73 412850 16.13 0.0000
220 412921 10.85 412921 16.13 0.0000
231 428301 8.72 428301 14.29 0.0000
232 438486 11.92 438486 14.30 0.0000
233 353431 14.22 353431 21.50 0.0000
234 400592 11.27 400592 18.07 0.0000
235 317942 17.19 317942 20.51 0.0000
236 410066 11.39 410066 13.54 0.0000
237 399512 12.80 399512 18.18 0.0000
238 401981 8.98 401981 14.35 0.0000
239 412850 13.02 412850 17.04 0.0000
240 412921 11.75 412921 13.79 0.0000

Average 8.51 10.43 0.0209

APT-LP APT-LP with cuts

 
* TC is the total cost incurred in the solution with the related formulation. 

CPU is the solution time for the related formulation. 
Imp %, given by  % (TC with cuts-TC without cuts)/TC without cuts, denotes the 
improvement obtained with modified Barany et al. cuts over the formulation without 
the cuts. 
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APPENDIX L  
 

UPPER BOUNDS OBTAINED WITH APT IN ME 

 

Below are the upper bounds given by APT-MIP in main experiment (ME).  If the 

first integer feasible solution (FIS) for APT-MIP is identified in less than 3600 CPU 

seconds, another upper bound is obtained by solving APT-MIP for 3600 CPU 

seconds.  

 

Table L.1 Upper bounds with FIS and the solution in the time limit (TL) by APT in ME * 

Over TL
Instance UB1 CPU UB2 UDiff %

121 757152 1044 753208 0.52
122 828336 12467
123 649998 37838
124 744231 2483 737665 0.89
125 NFS
126 758259 21620
127 695488 27405
128 725733 638 721371 0.60
129 699096 49067
130 734132 21359
141 773872 145 740360 4.53
142 812981 122 792939 2.53
143 644216 172 633805 1.64
144 731843 109 708182 3.34
145 552416 127 542050 1.91
146 748348 119 722384 3.59
147 684577 133 671880 1.89
148 724913 99 686127 5.65
149 678966 125 672151 1.01
150 723136 138 702057 3.00
151 968731 2311 968731 0.00
152 1047426 1533 NFS
153 821935 31270
154 931995 2511 926119 0.63
155 700466 28395
156 962714 1696 962714 0.00
157 873949 24130
158 904885 5618
159 876827 37777
160 916885 5111
171 966246 216 942330 2.54
172 1038805 199 1027000 1.15
173 817652 322 804679 1.61
174 921090 189 901555 2.17
175 685521 213 669071 2.46
176 958729 225 935417 2.49
177 871791 269 853004 2.20
178 899721 156 886147 1.53
179 871472 190 855328 1.89
180 919875 205 894811 2.80

Over FIS
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Table L.1 (continued) 

Over TL
Instance UB1 CPU UB2 UDiff %

181 413090 4360
182 419284 1409 413837 1.32
183 347424 46613
184 388060 8167
185 308502 19950
186 397778 19120
187 387015 5911
188 386122 5519
189 388506 23076
190 401461 6806
201 407036 222 391443 3.98
202 409555 203 396357 3.33
203 336366 277 321227 4.71
204 379174 205 356123 6.47
205 306901 254 284477 7.88
206 387018 210 368559 5.01
207 379550 291 358813 5.78
208 381676 171 365309 4.48
209 381811 232 366898 4.06
210 396148 233 377749 4.87
211 516660 29924
212 528358 1445 528358 0.00
213 NFS
214 483398 14593
215 406625 2395 NFS
216 496718 5880
217 487628 10167
218 478060 21073
219 496816 5981
220 NFS
231 518150 214 496391 4.38
232 519143 138 498113 4.22
233 435499 223 416099 4.66
234 483286 131 455983 5.99
235 402284 161 376601 6.82
236 505799 161 477934 5.83
237 516145 176 469489 9.94
238 477249 144 458363 4.12
239 492444 188 482206 2.12
240 493761 181 475425 3.86

Average 7197 3.26

Over FIS

 
* UB1 is the upper bound given by the first integer feasible solution of APT-MIP. 

UB2 is the upper bound given by the solution identified by APT-MIP in 3600 CPU 
seconds.   
UDiff %, given by  % (UB1-UB2)/UB2, denotes the difference between the costs of 
the first integer feasible solution of APT-MIP and the solution APT-MIP provides in 
3600 CPU seconds. 
CPU is the solution time for the related formulation. 
NFS denotes that an integer feasible solution can not be identified for the related 
instance.   
The empty cells under the column ‘over TL’ are the instances, for which the first 
integer feasible solutions are identified in more than 3600 CPU seconds.  Thus, they 
are not solved again with a time limit. 
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APPENDIX M  
 

UPPER AND LOWER BOUNDS OBTAINED FOR APT IN ME 

 

Upper bounds (UB) for the model with a priori tour given by MIP solution of APT 

(APT-MIP), lower bounds (LB) given by LP relaxation of APT (APT-LP) in main 

experiment (ME), solution times and gaps between the bounds are provided below. 

 

Table M.1 Upper and lower bounds obtained by APT in ME * 

Instance UB CPU LB CPU LUB%
121 753208 3600 615927 2.83 22.29
122 828336 12467 661071 4.35 25.30
123 649998 37838 505723 3.10 28.53
124 737665 3600 594467 2.64 24.09
125 NFS 418622 4.89
126 758259 21620 601604 3.07 26.04
127 695488 27405 537416 4.34 29.41
128 721371 3600 586556 2.40 22.98
129 699096 49067 531235 3.12 31.60
130 734132 21359 571532 2.86 28.45
141 740360 3600 615927 3.01 20.20
142 792939 3600 661071 4.30 19.95
143 633805 3600 505723 3.41 25.33
144 708182 3600 594467 2.57 19.13
145 542050 3600 418622 5.03 29.48
146 722384 3600 601604 3.21 20.08
147 671880 3600 537416 4.32 25.02
148 686127 3600 586556 2.47 16.98
149 672151 3600 531235 3.27 26.53
150 702057 3600 571532 2.71 22.84
151 968731 2311 913533 9.52 6.04
152 1047426 1533 997025 12.21 5.06
153 821935 31270 772087 12.61 6.46
154 926119 3600 873421 10.17 6.03
155 700466 28395 643216 15.87 8.90
156 962714 1696 909008 14.84 5.91
157 873949 24130 818919 10.31 6.72
158 904885 5618 855799 9.34 5.74
159 876827 37777 821867 8.04 6.69
160 916885 5111 864109 10.19 6.11
171 942330 3600 913533 9.67 3.15
172 1027000 3600 997025 10.84 3.01
173 804679 3600 772087 10.05 4.22
174 901555 3600 873421 9.38 3.22
175 669071 3600 643216 14.74 4.02
176 935417 3600 909008 10.54 2.91
177 853004 3600 818919 11.79 4.16
178 886147 3600 855799 7.79 3.55
179 855328 3600 821867 7.92 4.07
180 894811 3600 864109 10.16 3.55

APT-MIP APT-LP
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Table M.1 (continued) 

Instance UB CPU LB CPU LUB%
181 413090 4360 357083 8.60 15.68
182 413837 3600 366206 12.48 13.01
183 347424 46613 291696 12.84 19.11
184 388060 8167 333540 11.04 16.35
185 308502 19950 259080 20.60 19.08
186 397778 19120 344513 12.70 15.46
187 387015 5911 328220 10.87 17.91
188 386122 5519 335356 8.76 15.14
189 388506 23076 334594 9.79 16.11
190 401461 6806 347649 11.83 15.48
201 391443 3600 357083 9.95 9.62
202 396357 3600 366206 9.94 8.23
203 321227 3600 291696 10.59 10.12
204 356123 3600 333540 10.56 6.77
205 284477 3600 259080 13.14 9.80
206 368559 3600 344513 11.16 6.98
207 358813 3600 328220 9.98 9.32
208 365309 3600 335356 9.66 8.93
209 366898 3600 334594 7.85 9.65
210 377749 3600 347649 10.50 8.66
211 516660 29924 428301 15.20 20.63
212 528358 1445 438486 15.26 20.50
213 NFS 353432 19.69
214 483398 14593 400592 16.19 20.67
215 406625 2395 317942 20.06 27.89
216 496718 5880 410066 13.18 21.13
217 487628 10167 399512 17.84 22.06
218 478060 21073 401981 12.19 18.93
219 496816 5981 412850 16.13 20.34
220 NFS 412921 16.13
231 496391 3600 428301 14.29 15.90
232 498113 3600 438486 14.30 13.60
233 416099 3600 353431 21.50 17.73
234 455983 3600 400592 18.07 13.83
235 376601 3600 317942 20.51 18.45
236 477934 3600 410066 13.54 16.55
237 469489 3600 399512 18.18 17.52
238 458363 3600 401981 14.35 14.03
239 482206 3600 412850 17.04 16.80
240 475425 3600 412921 13.79 15.14

Average 9098 10.43 14.89

APT-MIP APT-LP

 
* CPU is the solution time for the related formulation.  

LUB%, given by  % (UB-LB)/LB, denotes the gap  
between the upper and lower bounds.  
NFS denotes that an integer feasible solution can not be  
identified for the related instance.   
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APPENDIX N  
 

COMPARISON OF THE UPPER BOUNDS OBTAINED IN ME 

 

Comparisons of the best upper bounds obtained by lagrangean relaxation solution 

procedure for large-scale problems (LRP-NM-1) and by the model with a priori tour 

(APT-MIP) are presented below for the instances, for which both methods can 

identify integer feasible solutions. 

 

Table N.1 Comparison of the upper bounds obtained with LRP-NM-1 and APT-MIP in ME * 

Instance UB1 CPU UB2 CPU UDiff %
121 775097 8267 753208 3600 2.91
122 869551 63171 828336 12467 4.98
123 667805 119510 649998 37838 2.74
124 738676 1344 737665 3600 0.14
126 755668 2389 758259 21620 -0.34
127 704162 31939 695488 27405 1.25
128 709227 600 721371 3600 -1.68
130 732178 2248 734132 21359 -0.27
141 749299 600 740360 3600 1.21
142 806879 600 792939 3600 1.76
143 645251 600 633805 3600 1.81
144 723136 600 708182 3600 2.11
145 552475 600 542050 3600 1.92
146 744206 600 722384 3600 3.02
147 682210 600 671880 3600 1.54
148 711090 600 686127 3600 3.64
149 681333 600 672151 3600 1.37
150 713569 600 702057 3600 1.64
151 975559 6608 968731 2311 0.70
152 1060872 53808 1047426 1533 1.28
154 939589 58212 926119 3600 1.45
156 972511 22724 962714 1696 1.02
158 921732 7628 904885 5618 1.86
159 882992 28536 876827 37777 0.70
160 931119 8546 916885 5111 1.55
171 975408 336 942330 3600 3.51
172 1062675 290 1027000 3600 3.47
173 830908 256 804679 3600 3.26
174 934672 404 901555 3600 3.67
175 687883 600 669071 3600 2.81
176 964721 600 935417 3600 3.13
177 883478 278 853004 3600 3.57
178 917740 600 886147 3600 3.57
179 879953 600 855328 3600 2.88
180 929196 600 894811 3600 3.84

APT-MIPLRP-NM-1
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Table N.1 (continued) 

Instance UB1 CPU UB2 CPU UDiff %
181 423001 1744 413090 4360 2.40
182 433412 24193 413837 3600 4.73
184 399841 70424 388060 8167 3.04
186 405665 18587 397778 19120 1.98
187 402699 50017 387015 5911 4.05
188 400069 10342 386122 5519 3.61
189 398547 22786 388506 23076 2.58
190 415812 32300 401461 6806 3.57
201 415082 600 391443 3600 6.04
202 426712 600 396357 3600 7.66
203 347383 600 321227 3600 8.14
204 390509 304 356123 3600 9.66
205 297591 600 284477 3600 4.61
206 399863 600 368559 3600 8.49
207 390729 291 358813 3600 8.89
208 395345 600 365309 3600 8.22
209 389140 219 366898 3600 6.06
210 408935 600 377749 3600 8.26
212 546198 30406 528358 1445 3.38
217 503127 52943 487628 10167 3.18
231 526523 600 496391 3600 6.07
232 539085 600 498113 3600 8.23
233 445255 600 416099 3600 7.01
234 493294 600 455983 3600 8.18
235 395780 600 376601 3600 5.09
236 510968 600 477934 3600 6.91
237 502322 600 469489 3600 6.99
238 502487 600 458363 3600 9.63
239 505284 600 482206 3600 4.79
240 505828 600 475425 3600 6.39

Average 11552 6482 3.86

LRP-NM-1 APT-MIP

 
* UB1 is the best upper bound provided by LRP-NM-1. 

UB2 is the best upper bound provided by APT-MIP.   
UDiff %, given by  % (UB1-UB2)/UB2, denotes the difference between  
the costs of the solutions provided by LRP-NM-1 and APT-MIP. 
CPU is the solution time for the related method. 
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APPENDIX O  
 

UPPER BOUND BENCHMARKING FOR ME 

 

The best upper bounds obtained during the main experiment (ME) are compared to 

the solutions provided by a trivial heuristic ‘every’ and the solutions of Bertazzi et 

al. (2002 ). 

 

Table O.1 Comparison with the results of ‘Every’ and Bertazzi et al. (2002) in ME * 

Instance Best UB UBe UDiff E % UBb UDiff B %
121 753208 1039269 37.98 712497 5.71
122 828336 1086268 31.14 766561 8.06
123 649998 869906 33.83 606824 7.11
124 737665 967435 31.15 681950 8.17
125 NFS 733774 518729
126 755668 995206 31.70 700646 7.85
127 695488 935759 34.55 644218 7.96
128 709227 948758 33.77 664914 6.66
129 699096 937486 34.10 648914 7.73
130 732178 955601 30.51 675101 8.45
141 740360 1039269 40.37 700530 5.69
142 792939 1086268 36.99 757277 4.71
143 633805 869906 37.25 596325 6.29
144 708182 967435 36.61 671001 5.54
145 542050 733774 35.37 505109 7.31
146 722384 995206 37.77 691880 4.41
147 671880 935759 39.27 633749 6.02
148 686127 948758 38.28 657162 4.41
149 672151 937486 39.48 638864 5.21
150 702057 955601 36.11 668728 4.98
151 968731 1080390 11.53 942084 2.83
152 1047426 1133186 8.19 1026314 2.06
153 821935 912950 11.07 804518 2.16
154 926119 1012060 9.28 909074 1.87
155 700466 773128 10.37 674949 3.78
156 962714 1041753 8.21 945787 1.79
157 873949 975578 11.63 852227 2.55
158 904885 991600 9.58 886139 2.12
159 876827 981955 11.99 854803 2.58
160 916885 997606 8.80 895482 2.39
171 942330 1080390 14.65 931262 1.19
172 1027000 1133186 10.34 1018474 0.84
173 804679 912950 13.46 791250 1.70
174 901555 1012060 12.26 890032 1.29
175 669071 773128 15.55 657206 1.81
176 935417 1041753 11.37 926520 0.96
177 853004 975578 14.37 839862 1.56
178 886147 991600 11.90 875680 1.20
179 855328 981955 14.80 844427 1.29
180 894811 997606 11.49 882535 1.39

Every BPS
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Table O.1 (continued) 

Instance Best UB UBe UDiff E % UBb UDiff B %
181 413090 523940 26.83 387493 6.61
182 413837 502367 21.39 396061 4.49
183 347424 432558 24.50 320465 8.41
184 388060 472179 21.68 367308 5.65
185 308502 388992 26.09 290882 6.06
186 397778 477258 19.98 377025 5.50
187 387015 484879 25.29 363606 6.44
188 386122 471157 22.02 363856 6.12
189 388506 494682 27.33 368798 5.34
190 401461 481146 19.85 382672 4.91
201 391443 523940 33.85 375088 4.36
202 396357 502367 26.75 386512 2.55
203 321227 432558 34.66 310518 3.45
204 356123 472179 32.59 350133 1.71
205 284477 388992 36.74 272947 4.22
206 368559 477258 29.49 362484 1.68
207 358813 484879 35.13 349121 2.78
208 365309 471157 28.97 355165 2.86
209 366898 494682 34.83 357028 2.76
210 377749 481146 27.37 365892 3.24
211 516660 565062 9.37 505559 2.20
212 528358 549286 3.96 521664 1.28
213 450645 475602 5.54 429730 4.87
214 483398 516804 6.91 468411 3.20
215 406625 428346 5.34 383325 6.08
216 496718 523805 5.45 491056 1.15
217 487628 524699 7.60 478558 1.90
218 478060 513999 7.52 473181 1.03
219 496816 539151 8.52 488550 1.69
220 515539 523151 1.48 491793 4.83
231 496391 565062 13.83 477960 3.86
232 498113 549286 10.27 490768 1.50
233 416099 475602 14.30 401944 3.52
234 455983 516804 13.34 447875 1.81
235 376601 428346 13.74 359044 4.89
236 477934 523805 9.60 461669 3.52
237 469489 524699 11.76 451131 4.07
238 458363 513999 12.14 444994 3.00
239 482206 539151 11.81 460499 4.71
240 475425 523151 10.04 460330 3.28

Average 20.82 3.94

Every BPS

 
* Best UB is the best upper bound given by our methods.  

UBe is the total cost provided by ‘every’. 
UDiff E %, given by  % (UBe-BestUB)/BestUB, denotes the  
difference between our upper bounds and UBe 
UBb is the total cost provided by Bertazzi et al. (2002) 
UDiff B %, given by  % (BestUB-UBb)/UBb, denotes the  
difference between our upper bounds and UBb 
NFS denotes that an integer feasible solution can not be  
identified for the related instance. 

 


