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Signature :



ABSTRACT

ENERGY BANDS OF TlSe AND TlInSe2 IN TIGHT BINDING MODEL

Yildirim, Özlem

M. S., Department of Physics

Supervisor: Prof. Dr. Şinasi Ellialtıoğlu

September 2005, 47 pages

The electronical and structural properties of TlSe-type chain-like crystals

are the main topic of this study. A computational method which is Tight

Binding method is introduced and used to obtain the electronic band structure

of TlSe and TlInSe2. For both materials the partial and total density of states

are calculated. The results are compared with the other theoretical results.

Keywords: TlSe, TlInSe, tight binding method, electronic band structure,

density of states, effective mass
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ÖZ

TlSe VE TlInSe2’İN SIKI BAĞ MODELİNDE ENERJİ BANTLARI

Yildirim, Özlem

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Şinasi Ellialtıoğlu

Eylül 2005, 47 sayfa

Bu çalısmanın ana konusunu TlSe tipi zincirsi kristallerin elektronik ve

yapısal özellikleri oluşturmaktadır. TlSe ve TlInSe2’in elektronik bant yapıları

sıkı bağ metodu kullanılarak incelendi ve bu metot ayrıntılı olarak anlatıldı.

Her iki malzeme için kısmi ve toplam elektron durum yoğunlukları hesaplandı.

Sonuçlar diğer kuramsal sonuçlarla karşılaştırıdı.

Anahtar Kelimeler: TlSe, TlInSe, sıkı bağ yöntemi, elektronik bant yapısı,

durum yoğunluğu, etkin kütle
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TlSe and TlInSe2. The parameter u is the ratio of c/a . . . . . . . . . . 27

IV.1 The on-site energy parameters for TlSe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
IV.2 The first and second nearest neighbor two-center integral para-

meters (in eV) for TlSe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
IV.3 The effective masses for TlSe along high symmetry directions. . . 37
IV.4 The on-site energies for TlInSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
IV.5 The first and second nearest neighbor two-center integral para-

meters (in eV) for TlInSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



LIST OF FIGURES

II.1 Orbital interaction integrals in the two-center approximation. . . . 11
II.2 Tight-binding energy band structure of Si with Pandey’s para-

meters [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III.1 Oblique view of the crystal structure for TlSe. The large light
spheres are Tl+ ions, large dark spheres are Tl3+ ions and small
light spheres are the Se2− ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

III.2 The wedge shown in dark lines is the IR part (1/16) of the first
Brillouin Zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IV.1 Tight binding results for the energy band structure of TlSe. . . . . . 32
IV.2 Partial densities of states for TlSe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
IV.3 Ab initio results for the energy band structure of TlSe [26]. . . . . 34
IV.4 Parabola fitting to the conduction band minimum and valence

band maximum for TlSe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
IV.5 Pseudopotential Band Structure of TlInSe2 [25]. . . . . . . . . . . . . . . . . . . 38
IV.6 Tight Binding Band Structure of TlInSe2. . . . . . . . . . . . . . . . . . . . . . . . . . 40
IV.7 Partial densities of states for TlInSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
IV.8 Effective mass estimation by parabola fitting to the bands of

TlInSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xi



CHAPTER I

INTRODUCTION

The understanding of the physical properties of molecular systems and bulk

materials on an atomistic level is one of the fundamental tasks of physics

and chemistry. The role of computational methods in this challenging task is

steadily increasing as a result of both the rapid progress in computer perfor-

mance and the algorithmic advances in the field. Many computational meth-

ods are nowadays used in materials science for electronic structure calculations.

These methods span from very accurate quantum chemistry techniques applied

to small molecules up to empirical schemes which make it possible to simu-

late systems composed of about million atoms. The empirical tight-binding

method of modeling electronic structures of materials is not to be compared

with the very accurate, expensive, and reliable ab initio methods, however, it

is preferred or can be the only way out when the size of the problem is much

larger and when speed is important.
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Because of the important role of semiconductors in technology, they are

the most widely investigated materials and still attract attention of many

scientists. The semiconductors are distinguished from the other materials,

namely, insulators and conductors, due to the special character of their elec-

tronic structure. One can tell the difference between conductors, insulators

and semiconductors by visualizing the available energies for electrons in the

materials. Unlike the free atoms having discrete energies, the available energy

states form bands. The highest energy band group occupied by electrons in

their ground state is called the valence band. The lowest energy band group

occupied by excited electrons and empty otherwise (in the ground state) is

called the conduction band. The energy spacing between the valence band

and the conduction band is called the (forbidden) band gap. An important

parameter in the band theory is the Fermi level, the top of the available elec-

tron energy levels at absolute zero. The position of the Fermi level in relation

to the conduction band is a crucial factor in determining the electronic prop-

erties. In insulators the magnitude of the band gap is quite large (typically

few to 10 eV) that conductivity is negligible, while the gap of semiconductors

is smaller (of the order of an eV), and some conductivity is observed at finite

temperatures. The lowest excitation consists of promoting an electron from

the valence band to the conduction band. This results in an electron being

near the bottom of the conduction band and a hole near the top of the valence

band. It is important to know the values such as band gap, concentration of
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electrons in the conduction bands, and that of the holes in the valence bands

in order to characterize the electronic behavior of a semiconductor material.

Semiconductors are available as either elemental materials or as compounds.

The most common elemental semiconductors are silicon and germanium. Sil-

icon and germanium have diamond structure and there is a whole electronic

technology set up based on silicon. Compound semiconductors that are widely

studied are of III-V groups in zinc-blende structure, and include GaAs, InSb,

InAs, GaP, etc. With the advent of epitaxial growth, GaAs is used in semi-

conductor laser applications. The advantage of compound semiconductor is

that the energy gaps span a wide range, so that materials are available with

properties that meet specific requirements of the device engineer. The combi-

nation of silicon technology and lasing talent of GaAs is a promising marriage

for optoelectronic devices and nanotechnology.

Another type of compounds that are considered as the topic of this study

are the III-VI compounds, which are of chain-like or of layered structures.

These materials attracted interest of many researchers because of their possible

technological applications such as switching and memory devices, oscillators,

thermistors, etc. Their low dimensionality makes these materials important in

fields like photoconductivity, optoacoustics and optoelectronics. Among them

TlSe is a generic material of chain-like structure and will be investigated in this

work. We concentrate on their electronic properties and using a simple tight

binding model we determine their electronic band structure and corresponding

3



density of states.

In the following chapter the tight-binding theory is discussed, and how the

tight-binding matrix elements can be obtained is introduced in detail, and the

effective mass values of electrons and holes are estimated and compared with

values in the existing literature.

After the theory, in the third chapter, the structural properties of chain-

like compounds with a special interest on TlSe and TlInSe2 are introduced.

The crystal structure and the previous studies concerning these materials are

mentioned.

In the fourth chapter, the results of the tight-binding calculation fitted

to band structures obtained by other means are introduced. To achieve these

results, firstly, the hopping parameters are found and presented in this chapter.

For a better understanding of chemical bonding and the nature of the relevant

atomic interactions, we have performed the density of states calculation and

compared them as well. Effective masses are obtained by fitting parabolas

E-bands, that are also presented in this chapter.
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CHAPTER II

THEORY

The Schrödinger equation is solved exactly analytically only for a few exam-

ples like particle in a box, square barrier and wells, simple harmonic oscillator

potential and the hydrogen atom. When a molecule or an atom with several

electrons are in question, the exact analytical solutions are close to hopeless.

In the case of solids, the periodicity of the crystal is a big advantage to carry

out the calculations. With the high performance of the present day computer,

the Schrödinger equation can be solved numerically using certain approxima-

tions. The ab initio method yields the most accurate reliable results. This

method starts with the Born-Oppenheimer approximation which is based on

the idea that the motion of the nuclei in a molecule or a solid is much slower

than that of the electrons, due to much larger masses of the nuclei compared

to electrons. There are two main approaches for the many body the calcu-

lations in the ab initio method. One of them is the Hartree-Fock method.
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This method expresses the total wavefunction of the system as a product of

one-electron orbitals which takes into account the antisymmetric nature of

the total wavefunction. The other approach is the Density Functional Theory

which is to replace the many-body electronic wavefunction with a functional

of the electronic density. The wavefunction in the Schrödinger equation can

be formed by using the Bloch sums, namely the sum of the localized atomic

orbitals that are weighted with a phase which depends on the crystal momen-

tum and periodicity of the lattice in a crystal. The atomic orbitals used for

Bloch sums can be either Slater-type orbitals (STOs), Gaussian-type orbitals

(GTOs), or various other numerical functions which have to form a complete

orthogonal set. When plane waves are used as basis functions, the method

is called the plane wave (PW) method which is used more successfully for

metals. Further, one can use a set of orthogonalized plane waves (OPW) in

which case the wave functions of the valence states are all orthogonal to the

core states. The secular equation formed by OPWs can give only valence and

conduction energies and the corresponding wave functions. To determine the

core orbitals the muffin-tin potential can be adopted. In the “muffin-tin ap-

proximation”, the potential seen by an electron is decomposed into two regions

such as muffin-tin and muffin-pan. One is a spherically symmetric part around

each atom and is called the muffin-tin. The muffin-pan is the potential in the

outer region which is flat and constant. The wavefunctions in the muffin-tin

are called muffin-tin orbitals. When the plane waves of the outer region are

6



matched with the muffin-tin orbitals, the method is called augmented plane

wave method (APW).

A different approach used very commonly is the pseudopotential method.

The pseudopotential method can be used in an ab-initio method or in an

empirical fit. The main point in this approach is only the valence electrons

are considered, and their interaction with the ionic cores is replaced by a

pseudopotential, v(~r). This means in fact that the solutions of the Schrödinger

equation are pseudo-wavefunctions and the charge density, n(~r), is the pseudo-

density of the valence electrons.

In the next section, the tight binding Hamiltonian is introduced and the

necessary approximations needed to solve the secular equation are discussed.

II.1 Tight-Binding Method

The tight-binding formalism is an extension of Bloch’s original Linear Combi-

nation of Atomic Orbitals (LCAO) method [1], it was parametrized by Slater

and Koster [2] in 1954 for certain simple lattice types including the diamond

structure. After that the tight-binding method has been used very widely in

many applications.

The Hamiltonian for the electron in the solid is

H(~r) =
p2

2m
+ V (~r), (II.1)

where V (~r) is the effective one-electron potential with the lattice periodicity

V (~r + ~Rj) = V (~r).
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In the tight binding or LCAO approximation, the wavefunction for the solid

is constructed as a Linear Combination of Atomic Orbits. The Bloch function

is

ψ~k(~r) =
∑
α

Cα

∑

~Ri

φα(~r − ~Ri) ei~k·~Ri (II.2)

where α denotes the symmetry type of the atomic function, s, p, d, etc., and

Cα are constants to be determined, ~k is a vector in the Brillouin zone. Since

the φ’s are atomic orbitals then the ψ~k’s are not orthogonal functions because

the constituent atomic orbitals centered at different positions ~Ri need not be

orthogonal :
∫

d3rφ∗α(~r − ~Ri)φβ(~r − ~Rj) ≡ Sij
αβ. (II.3)

Sij
αβ are the measures of the non-orthogonality and are called the “overlap”

integrals, and the matrix Ŝ, the overlap matrix.

It is convenient to work with orthogonal functions. So, one can define a set

of new atomic-like basis states called Löwdin orbitals [3] by :

φ
′†
γ (~r − ~Rm) ≡ ∑

βj

(
S−1/2

)mj

γβ
φ∗β(~r − ~Rj) (II.4)

and

φ
′
γ′(~r − ~Rn) ≡ ∑

β′j′

(
S−1/2

)j′n

β′γ′
φβ′(~r − ~Rj′) (II.5)

Then, it can be shown that

∫
φ
′†
γ (~r − ~Rm) φ

′
γ′(~r − ~Rn) d3r = δmnδγγ′ (II.6)

Now, these new functions are orthogonal. Hence, one assumes Löwdin orbitals

as the basis functions, and expansion of the wave function can be named

8



as Linear Combinations of Löwdin Orbitals (LCLO). However, an important

feature proved by Löwdin is that the symmetry of φ
′
γ(~r− ~Ri) is the same as that

of φα(~r− ~Ri), the atomic orbital, meaning, group theoretically that both have

identical transformation properties under the group of the Hamiltonian. Thus,

for conceptual purposes we may think of these states as atomic functions.

In terms of Löwdin orbitals one has :

∫
ψ†~k(~r)ψ~k′(~r)d

3r = Nδkk′
∑
α

|Cα|2 (II.7)

Then, the normalization factor is 1√
N

with the condition that
∑

α |cα|2 = 1 and

the functions are orthogonal in k-space (i.e., δkk′ factor). Thus,

ψ~k(~r) =
1√
N

∑
α

C(~k)
α

∑

~Ri

φα(~r − ~Ri)e
i~k·~Ri (II.8)

is now an expansion in terms of a complete orthonormal set of functions.

To generate the secular equation we start with Schrödinger’s equation

H(~r)ψ~k(~r) = E~kψ~k(~r) (II.9)

which can be put in the form

∑
α

∑

~Ri

{
Hmi

αβei~k·(~Ri−~Rm) − E~kδαβδmi

}
Cα = 0 (II.10)

This is recognized as the usual matrix eigenvalue equation (leading to the

secular equation):

(
Ĥ− Ê

)
~C = 0 (II.11)

with the Hamiltonian matrix elements (hopping integrals) defined as

Hmi
αβ ≡

∫
φ∗β(~r − ~Rm) H(~r) φα(~r − ~Ri) d3r (II.12)

9



II.2 Near Neighbors Approximation

The largest matrix elements of Hmi
βα are the diagonal, H ii

αα, and the nearest

neighbor, H i,i+∆
αβ , terms where (i + ∆) implies ~Ri + ~∆ with ~∆ being a nearest

neighbor vector. With this approximation (II.10) reduces to

∑
α



H0

βα +


∑

~∆

H
~∆
αβei~k·~∆


− E~kδαβ



 Cα = 0 (II.13)

This is a matrix equation whose dimensionality is determined by the number

of different symmetry basis functions α employed.

If the second nearest neighbor interactions are also considered then the

matrix equation will have the form

∑
α



H0

βα +


∑

~∆1

H
~∆1
αβ ei~k·~∆1


 +


∑

~∆2

H
~∆2
αβ ei~k·~∆2


− E~kδαβ



 Cα = 0. (II.14)

where ~∆1 is the nearest-neighbor vector and ~∆2 is the second nearest neighbor

vector.

Hamiltonian matrix elements, also called hopping integrals, may be diffi-

cult to calculate analytically. But they can be assigned to certain parameters

which are to be determined by fitting to other model calculations or existing

experimental information. The naming convention for on-site and hopping

terms adopted here is as follows :

H0
αα ≡

∫
φ∗α(~r) H(~r) φα(~r) d3r ≡ Eα, α = s, p (II.15)

H∆n

ss ≡
∫

φ∗s(~r) H(~r) φs(~r −∆n
z ) d3r ≡ (ssσ)n (II.16)

H∆n

sp ≡
∫

φ∗s(~r) H(~r) φpz(~r −∆n
z ) d3r ≡ (spσ)n (II.17)
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H∆n

zz ≡
∫

φ∗pz
(~r) H(~r) φpz(~r −∆n

z ) d3r ≡ (ppσ)n (II.18)

H∆n

yy ≡
∫

φ∗py
(~r) H(~r) φpy(~r −∆n

z ) d3r ≡ (ppπ)n (II.19)

For the ss-, sp-, pp-bondings, there are only four nonzero hopping integrals as

shown in Figure II.1.

ϕα ϕβ

s s

(ssσ)

z

pz s

(spσ)

z

z

y

(ppπ)

py py

z

pz pz

(ppσ)

Figure II.1: Orbital interaction integrals in the two-center approximation.

II.3 Slater-Koster Model for Silicon

The on-site terms arise from the self-interaction of each orbital of the same

atom i.e. when i = j and α = β. They contribute to the diagonal elements of

the Hamiltonian matrix and can be shown 〈si|H|si〉 = Es and 〈pi|H|pi〉 = Ep.

When i is not equal to j, interactions between orbitals on different atoms can

be found for a general geometry (rather than only the special cases like in Fig.

11



II.1) using the equations below:

Ess(~d) = s1s2σ(d)

Esp(~d) = s1p2σ(d)d̂ · ~tp2

Epp(~d) = p1p2σ(d)(d̂ · ~tp1)(d̂ · ~tp2) + p1p2π(d)(d̂× ~tp1) · (d̂× ~tp2)

(II.20)

where ~d is the vector from one orbital to the other, d̂ = ~d/|~d| and ~t is the

direction of the p orbital. The p orbital has three components as px, py, and

pz, so they can be denoted as x, y, and z. With the help of equation (II.20),

part of the table, including only s − p orbital interactions, in the Slater and

Koster paper [2] can be obtained as shown below :

Es,s = (ssσ)

Es,x = l(spσ)

Ex,x = l2(ppσ) + (1− l2)(ppπ)

Ex,y = lm(ppσ)− lm(ppπ)

Ex,z = ln(ppσ)− ln(ppπ) .

(II.21)

These equations are for the simple cubic unit cell, where l, m, and n are the

projections along the ~Rj− ~Ri vector with respect to x, y, and z directions, and

are called directional cosines. The most popular materials as semiconductors

are Si and Ge which have the diamond structure. They have been investigated

in detail over the years and their electronic structure are well-known and the

tight binding method gives a good description of their electronic behavior. For

this reason, as a result of equation (II.20), the energy integrals are obtained
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for the diamond and given in the equation (II.22) :

Ess(
1
2

1
2

1
2
) = (ssσ)1 Ess(110) = (ssσ)2

Exx(
1
2

1
2

1
2
) = 1

3
(ppσ)1 + 2

3
(ppπ)1 Exx(011) = (ppπ)2

Exy(
1
2

1
2

1
2
) = 1

3
(ppσ)1 − 1

3
(ppπ)1 Exy(110) = 1

2
(ppσ)2 − 1

2
(ppπ)2

Esx(
1
2

1
2

1
2
) = 1√

3
(spσ)1 Exx(110) = 1

2
(ppσ)2 + 1

2
(ppπ)2

Esx(110) =
√

2(spσ)2

Esx(011) = Exy(011) = 0

(II.22)

Above the nearest neighbor interaction parameters are listed in the first col-

umn in terms of two-center integrals and that of the second nearest neighbor

interactions in the second column.

Phase of the Matrix Elements:

According to positions of atoms in the unit cell, the exponential part will

consist of cosine and sine terms. In a diamond the four first nearest neighbors

of the given atom at (0,0,0) are located at the positions: (1
2

1
2

1
2
), (1

2
− 1

2
− 1

2
),

(−1
2

1
2
− 1

2
), (−1

2
− 1

2
1
2
) in units of a

2
. Therefore, the k-dependent parts of the

matrix equation of the diamond for the first nearest neighbors are as follows:

g0(~k) = + cos kxa
4

cos kya
4

cos kza
4
− i sin kxa

4
sin kya

4
sin kza

4

g1(~k) = − cos kxa
4

sin kya
4

sin kza
4

+ i sin kxa
4

cos kya
4

cos kza
4

g2(~k) = − sin kxa
4

cos kya
4

sin kza
4

+ i cos kxa
4

sin kya
4

cos kza
4

g3(~k) = − sin kxa
4

sin kya
4

cos kza
4

+ i cos kxa
4

cos kya
4

sin kza
4

(II.23)

Now, all the components of the Hamiltonian matrix of the diamond can be

13



written as:




Es1 0 0 0 Vss g0 Vsx g1 Vsx g2 Vsx g3

0 Ep1 0 0 −Vsx g1 Vxx g0 Vxy g3 Vxy g1

0 0 Ep1 0 −Vsx g2 Vxy g3 Vxx g0 Vxy g1

0 0 0 Ep1 −Vsx g3 Vxy g1 Vxy g2 Vxx g0

Vss g∗0 −Vsx g∗1 −Vsx g∗2 −Vsx g∗3 Es2 0 0 0

Vsx g∗1 Vxx g∗0 Vxy g∗3 Vxy g∗1 0 Ep2 0 0

Vsx g∗2 Vxy g∗3 Vxx g∗0 Vxy g∗2 0 0 Ep2 0

Vsx g∗3 Vxy g∗1 Vxy g∗1 Vxy g∗1 0 0 0 Ep2




(II.24)

where Es, Ep, Vss, Vxx, Vxy, and Vsx are defined below:

Es = Es,s(000), Ep = Ex,x(000),

Vss = 4Ess(
1
2

1
2

1
2
), Vxx = 4Exx(

1
2

1
2

1
2
),

Vxy = 4Exy(
1
2

1
2

1
2
), Vsx = 4Esx(

1
2

1
2

1
2
),

(II.25)

When we consider the second nearest neighbor interactions, the additional

terms enter to the diagonal minors (4×4) of the full matrix (8×8). So the first

diagonal minor becomes:

M11 =




Es1 + Vss2 g4 V ′
sy2

g7 + Vsx2 g8 · · · · · ·

V ′
sy2

g7 + Vsx2 g8 Ep1 + Vxx2 g5 + V ′
xx2

g6 · · · · · ·
...

...
. . .

...
...

. . .




(II.26)

The second diagonal matrix becomes very similar to the first one, but for
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some of the matrix elements the sign will be opposite :

M22 =




Es2 + Vss2 g4 −V ′
sy2

g7 + Vsx2 g8 · · · · · ·

−V ′
sy2

g7 + Vsx2 g8 Ep2 + Vxx2 g5 + V ′
xx2

g6 · · · · · ·
...

...
. . .

...
...

. . .




(II.27)

where Vss2 , Vxx2 , V
′
xx2

, Vsx2 , V
′
sy2

, etc., and g4, g5, g6, g7, g8, etc., are defined be-

low:

Vss2 = 4Ess(110),

Vxx2 = 4Exx(110), V ′
xx2

= 4Exx(011)

Vsx2 = 4iEsx(110), V ′
sy2

= −4Esy(011)

(II.28)

and

g4(~k) = cos kxa
2

cos kya
2

+ cos kya
2

cos kz

2
+ cos kxa

2
cos kza

2

g5(~k) = cos kxa
2

cos kya
2

+ cos kxa
2

cos kza
2

g6(~k) = cos kya
2

cos kza
2

g7(~k) = − sin kxa
2

sin kya
2

g8(~k) = i(sin kxa
2

cos ky

2
+ sin kxa

2
cos kza

2
)

(II.29)

The off-diagonal minors M12 and M21 will not be affected by the inclusion

of the second nearest neighbor interactions. Finally the matrix will have the

following form: 


M11 M12

M21 M22


 . (II.30)

Solving for the eigenvalues of the above matrix, the energy band diagram

of Si in terms of ~k is given in Figure II.2. To obtain the bands we have used
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Figure II.2: Tight-binding energy band structure of Si with Pandey’s parame-
ters [4]

the two center integral parameters given in the Ref. [4]. The parameters are

listed in the Table II.1.

Comparison of the results with the experimental findings indicates that the

great quantitative agreement (≈ 2%) for the valence bands is achieved using

tight binding method [4].

Table II.1: The first and second nearest neighbor two-center integral parame-
ters (in eV) for Si by Pandey [4].

ETB Parameters Values for Si (in eV)
Ep − Es 4.39
(ssσ)1 –2.08
(spσ)1 –2.12
(ppσ)1 –2.32
(ppπ)1 –0.52
(ppσ)2 –0.58
(ppπ)2 –0.10
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One can increase the accuracy ignoring some of the approximations used

in the method. The approximations reduce the transferability. Transferability

is one of the disadvantages of tight binding because, for example, a parame-

trization suitable for Si in the diamond structure, may not be adequate for

simulating liquid Si. Starting from the first approximation, instead of orthog-

onal Löwdin orbitals, one can use a non-orthogonal basis set. This was first

done by Mattheiss and Patel [5]. The effects of non-orthogonality of the ba-

sis have been investigated by Mirabella et al. [6] for one dimensional atomic

chains in 1994, and by McKinnon and Choy [7] for two and three dimensional

lattices in 1995. Since the non-orthogonal tight binding method is more realis-

tic, many calculations have been performed to investigate and better describe

the electronic properties of materials using the non-orthogonal type set.

Including the further neighbor interactions beyond first and the second can

increase the accuracy. There are calculations in the literature which include

the third nearest neighbor interactions as well [5].

In addition to the s and p orbitals, s∗ and also d orbitals are included in

various calculations. When the importance of the empty d orbitals become un-

avoidable, e.g. in the case of germanium conduction bands, Vogl, Hjalmarson,

and Dow [8] added an s∗ orbital to the sp3 basis set to mimic the influence

of the empty d states above the conduction bands. Later on Chang and Asp-

nes [9] made the calculations using six orbitals. They included the d2 orbitals

instead of utilizing the s∗ orbital to correct the lowest conduction bands, and
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achieving the same results obtained by sp3s∗ case. Jancu, Scholz, Beltram,

and Bassani [10] increased the number of the basis set to ten atomic orbitals,

namely sp3d5s∗. With this approach they reproduced the main features of the

valence band and that of the two lowest conduction bands more successfully.

The last modification can be done by adopting the three-center integrals.

Calculations that use the three-center matrix elements can achieve better fits

than those that use just the two-center integrals in expressing the matrix ele-

ments. This is because there are more fitting parameters available, and more-

over, some physically important contributions to the matrix elements might

also be neglected in the two-center integral approximation. As a good exam-

ple for the inclusion of three-center integrals, Papaconstantopoulos has found

the best fits using the three center formulation to the face-centered-cubic and

body-centered-cubic solids [11].

With the tight binding method discussed above, we have obtained the

energy band diagram of the system. Using energy values found in terms of

~k, total density of states, partial density of states and effective mass can be

calculated. In the following two sections, the density of states and effective

mass formulations will be introduced.

II.4 Density of States

The density of states (DOS) results can be directly used in finding other elec-

trical properties of materials such as the electric heat capacity and the optical
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absorbtion. The photoemission spectroscopy reflects the peak positions and

other structures in density of states.

DOS can be calculated by counting the number of states at each infinites-

imal energy range between E and E + dE. It is customary to calculate the

number of states per unit energy per unit volume:

ρ(E) ∝ ∑

~k

{θ(E + ∆E − E(~k))− θ(E − E(~k))} (II.31)

where the first θ-function counts the number of states with energies less than

E + dE, and the second θ-function counts the number of states with energies

less than E. The differences in the limit ∆E → dE becomes a δ-function and

ρ(E)dE equals the number of states with energies between E and E + dE per

unit cell. Most generally, the density of states can be written as below:

ρ(E) =
2Ωcell

(2π)3

∫

BZ
δ[Eij(~k)− E]d3k (II.32)

which can be put into a surface integral given as follows:

ρ(E) =
2Ωcell

(2π)3

∫

S

dS

|~∇~kE(~k)| (II.33)

where dS is the surface element of a sheet of constant energy in wavevector

space. The factor (2π)3

Ωcell
is the volume between adjacent sheets of constant E

in ~k-space and Ωcell is the unit cell volume in direct space. When |~∇~kE(~k)| =

0, where the energy bands are flat, the peaks occur in the density of states

structure. So the band structure can be predicted by looking at the density of

states structure. Points in ~k-space where |~∇~kE(~k)| = 0 condition is fulfilled are
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called critical points and the unusual structures they produce in the density of

states (like jump discontinuities, infinite slope, discontinuous slope, logarithmic

infinities, etc.) are called the van-Hove singularities. The kind of van-Hove

singularities gives information about the dimensionality of the system.

II.5 Effective Mass

In a solid, the electron wavefunction is a Bloch wave and the energy depends

upon the periodic potential V (~r) of the lattice. Near the minima, the energy of

an electron in a solid is frequently quadratic in the components of the ~k-vector.

It is then possible to write

E ≈ h̄2k2

2m∗ + E0 (II.34)

where m∗ is the effective mass of the electron.

To find an expression for the effective mass, one can start with the group

velocity for an electron in terms of its energy band:

vg =
dω

dk
=

1

h̄

dE

dk
. (II.35)

If we take the time derivative of group velocity, the acceleration becomes

a =
dvg

dt
=

1

h̄

d

dt

(dE

dk

)
=

1

h̄

(d2E

dk2

)dk

dt
=

1

h̄2

(d2E

dk2

)d(h̄k)

dt
. (II.36)

Since the force can be written as

F =
dp

dt
= h̄

dk

dt
. (II.37)

Then comparing the two equations the acceleration will have the form

a =
1

h̄2

(d2E

dk2

)d(h̄k)

dt
=

1

h̄2

(d2E

dk2

)
F. (II.38)
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¿From the Newton’s second law of motion, ~F = m~a, it can be recognized that

m∗ =
1

1
h̄2 (

d2E
dk2 )

. (II.39)

where it shows that the curvature of the energy band affects the inertia of the

electron in that band. In the presence of anisotropy this will be reflected in

the definition of the effective mass as well, which then has a tensorial form:

( 1

m∗
)

αβ
=

1

h̄2

( ∂2E

∂kα∂kβ

)
(II.40)

Effective mass is a measurable quantity, which can be obtained from cy-

clotron resonance experiment. Here we calculate the effective mass from the

curvature of the energy band. The effective mass of a semiconductor can

be obtained by fitting the actual E(~k) diagram around the conduction band

minimum or the valence band maximum by a paraboloid. The E(~k) curve is

concave at the bottom of the CB, so m∗ is positive. Whereas, it is convex at

the top of the valence band, thus m∗ is negative. This means that a particle

in that state will be accelerated by the field in the reverse direction expected

for a negatively charged electron. That is, it behaves as if a positive charge

and mass. This is the concept of the hole.

Thus, for more parabolic bands, the electron will be lighter and for less

parabolic (more flat) it will have a heavier mass.
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CHAPTER III

STRUCTURE OF TlSe

There are a series of compounds that can be called TlSe-type crystals which

are TlGaTe2, TlInTe2, TlInSe2, and TlSe. The other type is TlGaSe2 structure

which are TlGaS2, TlS, TlInS2, and TlGaSe2. TlSe-type shows chain structure

behavior while the other type shows layered structure behavior. Actually the

formula of TlSe is more informative if written in terms of different charge states

it possesses as Tl+(Tl3+Se2−
2 )−, or in general, Tl+(M3+X2−

2 )− where M is Tl,

Ga or In, and X is Se, S, or Te. In the crystal for the TlSe, trivalent thallium

atoms (Tl3+) make a chain along the z axis, which corresponds to the optical

c axis, and binds to selenium covalently in a tetrahedral shape. Monovalent

thallium atoms (Tl+) also bind to divalent selenium atoms (Se2−) but weakly

in an octahedral environment. For TlInSe2, In atoms take the place of trivalent

Tl3+ atoms. Binding ionically with Tl atoms gives a natural cleavage along

the (110) plane.
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TlSe-type is a mixed-valence compound containing monovalent and triva-

lent Tl atoms. This property makes the TlSe a ternary compound. The single

crystals of the ternary compounds, a typical one being TlInSe2, are of great

interest. Their electrical parameters are sensitive to temperature, to pressure,

and to the influence of electromagnetic waves. Because of this sensitivity, they

exhibit switching and memory capability. The switching from the semicon-

ductor case to the metal case occurs under the influence of large electric field

in the direction (110) [13]. The non-linear transport properties [14] lead to

possible technological applications such as oscillators and thermistors. The

ternary compounds TlInX2 (X=Se, Te) in general show nonlinear electrical

behavior at moderate and higher current densities while ohmic behavior at

low current densities [15]. Its reason is supposed to be due to electrothermal

property of the material in the ref [13]. At pressures higher than ∼= 0.7 GPa

TlInSe2 is non-transparent to a laser light with energy 1.17 eV [16]. According

to the study of hydrostatic pressure on the electrical conductivity of TlInSe2,

the band gap of TlInSe2 crystal decreases with increasing pressure [17]. The

metallic conductivity of TlSe shows interesting behavior at low temperatures.

In the low temperature interval, between 4.2–1.3 K, TlSe gives two types of

results. In one case the resistivity rises with decreasing temperature with a low

activation energy at about 1 meV while in the other case the resistivity does

not change at all [17]. The chain-like ternary compounds are also important

for obtaining high quality heterojunctions. For this purpose, the liquid TlSe
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is melted on the natural (110) cleavage surface of TlInSe2 [18]. According to

this study, it is important for the isotropic compounds to have natural surface

with a low density of states for obtaining the good heterojunctions. They also

pointed out that this structure is sensitive to light (near-IR) and exhibits high

radiation resistance.

Panich and Gasanly [19] performed a nuclear magnetic resonance (NMR)

measurements to study the indirect nuclear exchange coupling, electronic struc-

ture, and wave-functions overlap for the single crystal of semiconductor TlSe.

They reported strong exchange coupling among the spins of Tl+ and Tl3+ ions

due to the overlap of the Tl+ and Tl3+ electron wave functions across the

intervening Se atoms. They found this interaction was significantly stronger

than the exchange coupling of the nuclei of the equivalent atoms within the

chains. According to their study, the wave-function overlap of monovalent and

trivalent thallium atoms is the dominant mechanism of the formation of the

uppermost valence bands and lower conduction bands in TlSe and determines

the electronic structure and the main properties of the compound.

The chain-like compounds are in the III-VI compound family. The shape

of the unit cell of TlSe is the body centered tetragonal (bct) which belongs

to DI8
4h (I4/mcm) space group. The atomic positions, primitive translation

vectors and bond lengths between neighboring atoms are the parameters that

describe the crystal structure and will be input in tight binding calculations.

The atomic positions are given in Table III.1 and indicated in Fig. III.1.
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Figure III.1: Oblique view of the crystal structure for TlSe. The large light
spheres are Tl+ ions, large dark spheres are Tl3+ ions and small light spheres
are the Se2− ions.

In Table III.1, η = 0.358 is the internal parameter, a = 8.02± 0.01 Å and

c = 7.00 Å are the lattice parameters of TlSe [20, 21]. The corresponding

values for TlInSe2 are given as η = 0.3428, a = 8.075 Å, and c = 6.847 Å [22].

The atomic positions for each compound are listed in Table III.1. There are

8 atoms in each unit cell. The primitive translation vectors can be chosen as

(−a/2, a/2, c/2), (a/2,−a/2, c/2), and (a/2, a/2,−c/2).

Table III.1: The description of the unit cell.

# of type of positions TlSe TlInSe2

ions ions of ions (Å) (Å)

2 Tl(In)3+ ±(0, 0, c/4) (0, 0, 1.75) (0, 0, 1.711)

2 Tl+ ±(a/2, 0, c/4) (4.01, 0, 1.75) (4.03, 0, 1.71)

4 Se2− ±(ηa/2, ηa/2,±c/2) (1.43, 1.43, 3.5) (1.38, 1.38, 3.42)
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Table III.2: The first nearest neighbor atom distances

Bond Length for TlSe (Å) Length for TlInSe2 (Å)

Tl3+– Se2− 2.68 2.60
Tl+ – Se2− 3.428 3.448
Tln+– Tln+ 3.50 3.424
Se2−– Se2− 3.853 3.866
Tl3+– Tl+ 4.01 4.0375

The distances between any pair can be calculated using the atomic positions

given in Table III.1 and the lattice parameters. The results for typical close

neighbors are shown in Table III.2. These bond lengths compare reasonable

with the sum obtained from the ionic bond of Se2− and covalent bonds of Tl+

and Tl3+.

The shape of the first Brillouin zone of the bct structure is given in the

Figure III.2. The high symmetry points of this Brillouin zone are listed in

Table III.3 and the symmetry lines are K = (k, π/a, π/c) D = (π/a, π/a, k),

Σ = (k, k, 0), ∆ = (0, k, 0), A = (0, 0, k), and G = (k, 2π/a− k, 0).
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Figure III.2: The wedge shown in dark lines is the IR part (1/16) of the first
Brillouin Zone.
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Table III.3: The high symmetry points and these values in units of Å for TlSe
and TlInSe2. The parameter u is the ratio of c/a

Symmetry Points TlSe TlInSe2

R (0, π/a, π/c) (0, 0.3917, 0.4487) (0, 0.3890, 0.4588)
P (π/a, π/a, π/c) (0.3917, 0.3917, 0.4487) (0.3890, 0.3890, 0.4588)
N (π/a, π/a, 0) (0.3917, 0.3917, 0) (0.3890, 0.3890, 0)
Γ (0, 0, 0) (0, 0, 0) (0, 0, 0)
T (0, 2π/a, 0) (0, 0.7834, 0) (0, 0.7781, 0)
T′ (0, 0, 2π/c) (0, 0, 0.897) (0, 0, 0.9176)
H (0, 0, (1 + u2)π/c) (0, 0, 0.7905) (0, 0, 0.7886)

There are few theoretical studies to investigate the electronic structure of

TlSe-type compounds. Gashimzade and Guliev [23] founded the band struc-

ture of TlSe-type for TlGaTe2 by using an empirical pseudopotential model.

The pseudo-potential method also used to find the energy band structure of

TlSe in the Ref. [24]. The band structure of ternary chain TlInSe2 is calculated

by a pseudo-potential method with allowance for non-locality of ionic pseudo-

potentials [25]. Another calculation has been done for TlGaTe2 in the local-

density approximation (LDA) using a full potential, with scalar-relativistic

implementation of the linear augmented plane-wave (LAPW) method [14]. In

a later study, the electronic structure of TlSe was investigated using an ab

initio pseudopotential calculation in the density functional theory within the

local density approximation (LDA) [26]. To our knowledge there is no pub-

lished band structure for TlSe and TlInSe2 obtained by tight binding method

and no set of empirical parameters in the literature. The comparison of our

results with the above calculations are presented in the next chapter.
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CHAPTER IV

ELECTRONIC PROPERTIES

IV.1 TlSe

The energy band diagram of TlSe is obtained using the empirical tight-binding

method whose interaction parameters (two-center integrals) are determined by

fitting to ab initio LDA results [26]. The empirical tight binding method is

used in its simplest form, which utilizes the orthogonal basis set and excludes

three center interactions and in addition to on-site energies first and second

nearest neighbor interactions are included. The atomic orbital configurations

Tl+(6s26p1 → 6s26p0), Tl3+(6s26p1 → 6s06p0), and Se2−(4s24p4 → 4s24p6)

are treated as the valence electrons. In other words, sp3 basis set is used for

both kinds of atoms and in the expansion of the total wavefunction.

To find the energy eigenvalues we needed to fit totally 60 independent

parameters for the sp3 basis set. 6 parameters come from the on-site terms,
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24 of them are the first nearest neighbor two-center integrals, and the other 24

parameters are the second nearest neighbor two-center integrals. 6 parameters

are the extra sp interactions coming from the switching of the different atoms.

There are some earlier methods proposed to fit these parameters [27] and

used by other researchers [28]. Harrison [27] proposed for sc, bcc, fcc, and

tetrahedral diamond structure that the hopping integrals can be found using

the equation below :

Vllm = ηllm
h̄2

md2
(IV.1)

where d is the first nearest neighbor distance, and the m in the denominator

is the electron mass. According to structure shape, ηllm has different values.

Using these coefficients in the scaling law, the matrix elements can also be

estimated for tetrahedral structure [29] as:

Vαβγ = ηαβγ
e−2.5(R

d
−1)

d2
(IV.2)

where d is the nearest neighbor distance between atoms of the same nature as

those under consideration, and R is the actual distance between the atoms un-

der consideration. These methods were not expected to give successful results

when applied to III-VI compounds, GaSe and InSe [30]. So their fitting pro-

cedure was achieved by employing least-square fits to pseudopotential bands

[31, 32, 33]. We applied Harrison’s formula and scaling law to find the hopping

integrals of TlSe and TlInSe2, but as expected they did not give good results.

Instead, a careful study of the results for partial density of states obtained

from the ab initio calculation of TlSe [26], revealed that 3 parameters were
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enough to give the shape of semi core states (–14.0 to –12.0 eV), namely,

the first and second nearest-neighbor interactions of s-orbitals ((ssσ)1 and

(ssσ)2) for Se2−-Se2−, and the first nearest-neighbor interaction of s-orbitals

of Tl3+-Se2− with the on-site term of Se2− at 19.92 eV. Similarly, the four

lower valence bands localized between –7.1 eV and –4.0 eV above the semi

core states can be fitted by varying the parameters which are (spσ) interaction

between Tl3+-Se2− and Tl+-Se2−, (ssσ) and (spσ) interactions between any

Tl ions. Although some other coefficients still affect slightly the shape of four

bands, they are usually not significant. The same parameters also adjust the

highest valence band and the lowest two conduction bands. But the lowest two

conduction bands are actually affected also by the (ppσ) and (ppπ) interaction

parameters between Tl3+-Tl3+ and Tl+-Tl+.

The 8 higher valence bands above the four lower valence bands are origi-

nated from (ppσ) interaction between Se2− ions and interaction between the p

orbitals of Se2− ions and p orbitals of monovalent and trivalent thallium ions.

Finally, interaction between the p orbitals of monovalent and trivalent thal-

lium atoms made up the conduction bands.

The hopping integral parameters obtained by fitting to the results of ab-

initio calculation [26] of TlSe are listed in the Table IV.1 and Table IV.2.

To obtain the energy band diagram of the TlSe, shown in Fig. IV.1, the

lattice constants and the positions of the atoms in the Table III.1, the primitive

translation vectors, the high symmetry points in the Brillouin zone, the bond

30



Table IV.1: The on-site energy parameters for TlSe

Ions Es(eV) Ep(eV)

Tl3+ –9.32 –3.51
Tl+ –11.90 –2.01
Se2− –19.92 –9.55

Table IV.2: The first and second nearest neighbor two-center integral parame-
ters (in eV) for TlSe

1st nearest-neighbors (ssσ)1 (spσ)1 (psσ)1 (ppσ)1 (ppπ)1

Tl+– Tl+ –0.05 0.67 – 1.2 –0.60
Tl+– Tl3+ –0.05 –0.50 –0.40 0.3 –0.20
Tl+– Se2− 0.10 0.74 0.75 0.8 –0.30
Tl3+– Tl3+ 0.28 –0.74 – 1.5 –0.20
Tl3+– Se2− 0.30 2.15 –1.00 1.2 –0.16
Se2−– Se2− –0.10 0.10 – 0.5 –0.05

2nd nearest-neighbors (ssσ)2 (spσ)2 (psσ)2 (ppσ)2 (ppπ)2

Tl+– Tl+ –0.01 0.0 – –0.20 –0.10
Tl+– Tl3+ –0.08 0.08 0.0 0.10 –0.05
Tl+– Se2− 0.0 0.0 0.0 0.0 0.0
Tl3+– Tl3+ 0.15 0.0 – 0.10 0.06
Tl3+– Se2− 0.0 –0.20 0.0 0.10 0.0
Se2−– Se2− –0.09 0.0 – –0.04 0.0

lengths of the crystal in Table III.3, and the fitting parameters in the Table

IV.1 and IV.2 are used as input parameters for our tight binding code. Energy

bands are given along symmetry lines of IR part of the first Brillouin zone (see

Table III.2) which are sampled with 20 point meshes.

The maximum and minimum of the valence bands occur at the same sym-

metry point, T. So the width of the valence bands between these two points is

fitted to the ab initio result of 7.41 eV [26].

The minimum of the conduction bands occur at a point between P and N

along the line D.
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Figure IV.1: Tight binding results for the energy band structure of TlSe.

From the eigenfunction obtained for the same set of parameters we obtained

the partial and total density of states.

From the partial density of states calculation in the Fig. IV.2, the lowest

valence bands at the bottom are due to s-orbitals of Se2− ions. The four va-

lence bands above the first four bands result from mostly s-states of trivalent

thallium ions and s-states of monovalent thallium ions. The Fig. IV.2 depicts

that the upper valence band group correspond to mainly p-states of Se2− ions.
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Figure IV.2: Partial densities of states for TlSe.

s and p orbitals of Tl3+ ions and p-orbitals of Se2− form the lowest conduc-

tion bands. We cannot discuss charge density in the upper conduction bands

because of the disagreement of the energy bands.

IV.2 Comparison of the results of TlSe

Starting from the lower energies upward, the comparison of the tight-binding

results to the ab initio LDA results shown in Figs. IV.1 and IV.3, respectively,

reveals the following observations: the shape of the semi-core bands and the

way they disperse are the same.
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Figure IV.3: Ab initio results for the energy band structure of TlSe [26].

The four lower valence bands are in a good agreement with the ab initio

calculation and separated from the upper valence bands as in the ab initio

result. This agreement also valid for the rest of the valence bands. When we

look at the study of band structure of ternary chain TlSe-type crystals [23],

we can not see this agreement. According to their calculation, the lowest two

bands separated from the upper valence bands, and the top valence bands are

far from the rest of the valence band group, and their shape are different from

our calculation. In our calculation, the edge of the valence bands, including

the lowest and the highest valence bands, are exactly fitted on the ab initio
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bands. The valence width is found same with the ab initio result which is 7.21

eV. The valence bands from top to bottom have almost the same shape, but

some differences can still be seen in detail.

When we look at the conduction bands, we were hardly able to fit only

the lowest three bands. For the two lowest conduction bands, there is a dis-

agreement along the A line between the symmetry points H and Γ. Along this

line these two lowest conduction bands must have been separated from the

upper conduction bands. But great achievement has come from obtaining the

first and the second minimum points of the lowest conduction band which are

exactly at the same symmetry points with the result of ab initio calculation.

According to result of ab initio method [26], the expected band gap is under-

estimated due to the artifact of Local Density Approximation. The fitting has

been done to results where the conduction bands are shifted upwards by 0.8

eV. This shifting was necessary due to fit the band gap to the experimental

results which is found between 0.6–1.0 eV by different authors [34, 35]. The

band gap for TlSe is found as 0.73 eV in Ref. [24]. The agreement for the val-

ues of the first and the second minimum, respectively at 0.69 eV and 1.11 eV

can be seen after the shifting process. The third minimum point of conduction

band is appeared at the symmetry point T instead of H. But this still gives

the direct gap at the same value which is 1.17 eV.

When we obtained the total density of states with using the tight binding

method, we saw great agreement with the ab-initio results. The shape of the
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TDOS for the valence bands is almost same, but we saw the differences in

the conduction band states. The results in the Fig. IV.2 consistent with ab

initio PDOS calculation [26]. In the study of TlSe with ab initio method, it

is found that s-like character due to 6s2 of Tl+ ions are participating in the

valence bands at the high symmetry point T. They did not find contribution

of Tl+ ions in the anti-bonding bands, which were formed by Tl3+ 6s and

Se2− 4p states. When they plotted the charge density of (004) plane of TlSe,

they noticed 6p and 6s electrons of trivalent thallium had some charge density

extending towards Se2− ions.
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Figure IV.4: Parabola fitting to the conduction band minimum and valence
band maximum for TlSe.

The effective masses are calculated by fitting the energy bands by parabo-

las. Fig. IV.4 below depicts the fitting procedure at the bottom of the con-

duction band by a parabola which gives the value of 0.24 m0 where m0 is the

free electron mass equal to 9.10938× 10−31 kg.
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Table IV.3: The effective masses for TlSe along high symmetry directions.

High symmetry points and lines ETB results ab-initio results
Hole at T m∗

h = 0.65 m0 m∗
h = 0.33 m0

Hole at H m∗
h = 0.81 m0 m∗

h = 1.16 m0

e− along D m∗
e = 0.24 m0 m∗

e = 0.16 m0

e− along A between H-Γ m∗
e = 0.427 m0 m∗

e = 0.22 m0

e− at H m∗
e = 0.34 m0

e− at T m∗
e = 0.407 m0 m∗

e = 0.37 m0

e− at T along G m∗
e = 0.637 m0 m∗

e = 0.38 m0

In the Table IV.3, the effective masses are represented for the result of the

tight binding method and for the result of ab initio. The values can be hardly

compared because of the differences of the curvatures of the bands, but the

heaviest hole for both result appears at the same high symmetry point H and

the smallest value for the electron appear again along the same high symme-

try line D. Other theoretical result for effective masses of TlSe are presented

by Gashimzade and Orudzhev [36] who calculated the band structure of TlSe

using the pseudo-potential method and the effective masses were found by us-

ing the ~k · ~p method. According to their study, the effective masses of holes

were m∗
⊥ = 0.32 m0 and m∗

|| = 4.40 m0, where m∗
|| is the effective mass of holes

in the direction parallel to tetragonal axis. The electron masses were found

to be m∗
1 = 0.840 m0, m∗

2 = 0.35 m0, and m∗
3 = 0.27 m0. The experimental

results from the electrical conductivity, Hall effect, and thermoelectric power

are m∗
h = 0.6 m0, and m∗

e = 0.3 m0 [37] and m∗
h = 0.86 m0 [38].
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IV.3 TlInSe2

The band structure of another ternary chain, TlInSe2, has also been investi-

gated by the empirical tight binding approach, but this time the hopping inte-

grals are fitted to the results of the pseudopotential method used by Orudzhev

et al. [25] and their band structure is given in Fig. IV.5.

Figure IV.5: Pseudopotential Band Structure of TlInSe2 [25].
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The empirical tight-binding parameters obtained from this fit for TlInSe2 are

given in the tables below and the band structure is shown in Fig. IV.6.

Table IV.4: The on-site energies for TlInSe2

Ions Es(eV) Ep(eV)

In3+ –7.52 –4.11
Tl+ –10.80 –2.61
Se2− –19.22 –9.35

Table IV.5: The first and second nearest neighbor two-center integral parame-
ters (in eV) for TlInSe2

1st nearest-neighbors (ssσ)1 (spσ)1 (psσ)1 (ppσ)1 (ppπ)1

Tl+– Tl+ –0.10 0.40 – 1.40 –0.60
Tl+– In3+ –0.10 –0.70 –0.05 0.30 –0.28
Tl+– Se2− 0.10 0.64 0.75 0.70 –0.30
In3+– In3+ 0.15 –0.30 – 1.50 –0.50
In3+– Se2− 0.60 1.80 –1.00 1.40 –0.25
Se2−– Se2− –0.04 0.10 – 0.45 –0.05

2nd nearest-neighbors (ssσ)2 (spσ)2 (psσ)2 (ppσ)2 (ppπ)2

Tl+– Tl+ 0.0 0.0 – –0.20 –0.10
Tl+– In3+ 0.0 0.1 0.0 0.10 –0.05
Tl+– Se2− 0.0 0.0 0.0 0.0 0.0
In3+– In3+ 0.25 0.0 – 0.10 0.06
In3+– Se2− 0.0 –0.2 0.0 0.10 0.0
Se2−– Se2− –0.10 0.0 – –0.04 0.0

The agreement between the energy bands of TlInSe2 obtained by our empir-

ical tight binding method and the pseudopotential method [25] is remarkable,

especially for the valence bands. The valence band edges, and the lowest con-

duction bands are fitted very well. The top of the valence band and the bottom

of the conduction band are located at the symmetry point T as in the bands

of the pseudopotential method. The direct band gap energy is obtained in

agreement with their value of ≈ 0.6 eV.
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Figure IV.6: Tight Binding Band Structure of TlInSe2.

In the experimental side, the optical band gap for TlInSe2 is found to be

indirect and reported as ≈ 1.4 eV at room temperature [39]. In another study

the indirect band gap is claimed to be 1.2 eV [40]. The indirect and direct

band gaps of TlInSe2 are found 1.07 eV and 1.35 eV, respectively in a different

study [41]. Since our energy bands and the parameters that produce them are

obtained from the fit to the most recent calculations of the energy bands of

TlInSe2, our band gap is also fitted to their direct gap of 0.6 eV.
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Figure IV.7: Partial densities of states for TlInSe2.

PDOS and TDOS for TlInSe2 are presented in the Fig. IV.7. We see

very similar behavior in electron density of states when compared with the

TlSe case. Since the structure of two compounds are the similar and the

main difference being In3+ ions take the place of trivalent thallium ions, the

shape of the density of the orbitals of In3+ is almost the same as Tl3+. The

peak occurring at about –12.0 eV due to s-states of Se2− ions is narrower and

sharper than the same peak for TlSe charge density. Other contributions of

the orbitals from monovalent thallium and chalcogen ions are the same as in

TlSe. In general, results agree well with the study of Orudzhev et al. [25].
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Figure IV.8: Effective mass estimation by parabola fitting to the bands of
TlInSe2.

The effective masses of holes and electrons for TlInSe2 are found by fitting

the bands by parabola. The effective masses of electrons are m∗
e = 0.22 m0

and m∗
e = 0.29 m0 respectively at the point T, and along the symmetry line D.

The effective masses of holes are m∗
h = 0.98 m0 at T and m∗

h = 1.2 m0 at H. To

our knowledge there are no data in the literature about the effective masses of

TlInSe2 to compare with our results.
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CHAPTER V

CONCLUSION

The problem considered in this work is the electronical behavior of chain-

like compounds, TlSe and TlInSe2. For this purpose, simple tight binding

model is used and tight binding parameters for these compounds are found

by fitting the energy bands for TlSe to ab initio LDA results and for TlInSe2

to pseudopotential method results. We have seen the simple tight binding

method is enough to explain the behavior of the electron in the valence bands.

This study showed us that tight binding method can be applied to chain-like

compounds successfully.

We obtained the indirect band gap for TlSe, and direct band gap for TlInSe2

and the second indirect transition for them in agreement with experimental

and theoretical results but the third indirect transitions for TlSe were not in

agreement with ab-initio results.

After partial density of states and total density of states calculations, the
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contributions of the orbitals of the atoms were predicted well with the fitting

parameters presented in the previous chapter. The results are found in good

agreement with the previous theoretical and experimental results again in the

valence band region.

The effective masses were calculated for TlSe and TlInSe2 by fitting parabo-

las to the energy bands at extremum points. The curvatures of parabolas give

effective masses of the electrons and holes.
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