NLIN

¢00¢

VAVIINILAD ZINAA

A METAMODEL FOR
THE HIGH LEVEL ARCHITECTURE OBJECT MODEL

DENIZ CETINKAYA

AUGUST 2005

A METAMODEL FOR
THE HIGH LEVEL ARCHITECTURE OBJECT MODEL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DENIZ CETINKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

AUGUST 2005

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Halit Oguztiiziin
Supervisor

Examining Committee Members

Assoc. Prof. Dr. Ahmet Cosar (METU,CEng)
Asst. Prof. Dr. Halit Oguztiiziin (METU,CEng)
Assoc. Prof. Dr. Veysi Isler (METU,CEng)

Asst. Prof. Dr. Kayhan Imre ~ (HACETTEPE,CEng)

Dr. Cevat Sener (METU,CEng)

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare
that, as required by these rules and conduct, | have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Deniz Cetinkaya

Signature

il

ABSTRACT

A METAMODEL FOR
THE HIGH LEVEL ARCHITECTURE OBJECT MODEL

Cetinkaya, Deniz
M.S., Department of Computer Engineering
Supervisor: Asst. Prof. Dr. Halit Oguztiiziin

August 2005, 69 pages

The High Level Architecture (HLA), IEEE Std. 1516-2000, provides a general
framework for distributed modeling and simulation applications, called federations. HLA
focuses on interconnection of interacting simulations, called federates, with special
emphasis on reusability and interoperability. An HLA object model, be it a simulation
object model (SOM), a federation object model (FOM) or the management object model
(MOM), describes the data exchanged during federation execution. This thesis introduces
a metamodel for the HLA Object Model, fully accounting for IEEE Std. 1516.2. The
metamodel is constructed with GME (Generic Modeling Environment), a meta-
programmable tool for domain-specific modeling, developed at Vanderbilt University.
GME generates a design environment for HLA object models having the HLA OM
metamodel as input. This work can be regarded as a step for bringing model-integrated

computing to bear on HLA-based distributed simulation.

Keywords: High Level Architecture, Object Model Template, metamodeling, Generic

Modeling Environment

v

oz

YUKSEK SEVIYE MIMARISI NESNE MODELI
ICIN BIR METAMODEL

Cetinkaya, Deniz
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii
Tez Yoneticisi: Asst. Prof. Dr. Halit Oguztiiziin

Agustos 2005, 69 sayfa

IEEE Std. 1516 ile tamimlanan Yiiksek Seviye Mimarisi (YSM), Modelleme ve
Simiilasyon (M&S) uygulamalar1 i¢in genel bir altyapt tanimlamaktadir. YSM
simulasyonlarin yani federelerin birbirleriyle olan etkilesimleri iizerinde durur ve tekrar
kullanilabilirlik ile birlikte caligabilirlik ilkelerine 6zel Onem verir. YSM nesne
modelleri, simulasyon nesne modeli (SOM), federasyon nesne modeli (FOM) ve
federasyon yonetimi nesne modeli (MOM) olarak tanimlanir ve federasyon hedeflerini
gergeklestirmek i¢in kullanilan bilgiyi tanimlarlar. Bu tezde YSM nesne modelleri igin
IEEE 1516.2 standardin1 tamamen kapsayan bir metamodel onerilmistir. Bu metamodel
meta programlanabilir bir modelleme arac1 olan ve Vanderbilt Universitesi tarafindan
gelistirilen GME (Generic Modeling Environment) araci ile tanimlanmistir. GME
tanimlanan metamodeli kullanarak YSM nesne modelleri i¢in bir modelleme ortami
olusturur. Bu calisma biitlinlesik gelisim siirecinin (MIC) YSM’ye uygulanmasi

konusunda bir basamak olarak goriilebilir.

Anahtar Kelimeler: Yiiksek Seviye Mimarisi, Nesne Modeli, metamodelleme, Generic

Modelleme Ortami

To my Daughter

vi

ACKNOWLEDGMENTS

The author wishes to thank her supervisor Asst. Prof. Dr. Halit Oguztiiziin for his

guidance, advice, criticism, encouragements and insight throughout this research.

The author would also like to thank Prof. Dr. Miislim Bozyigit for giving her the
opportunity to work with him.

The author also wishes to gratefully acknowledge Ph.D. students Giirkan Ozhan,
Mehmet Adak and Okan Topcu for their comments on improving the quality of the

thesis.

The author also wishes to thank her mother Giilsen Kiigiikkegeci, her father Muhsin
Kiiciikkececi, her brothers Cihan and Onur for their support during the preparation of this

thesis.

At last, but the most, her special thanks are due to her husband Orhan Cetinkaya for

his endless patience.

Vil

TABLE OF CONTENTS

PLAGIARISM ..ottt ettt st ettt e esseessessesseensesessnensenns iii

ABSTRACT ...ttt ettt ettt ettt et et e st e s e s seesbe s e eseensesseensesesssensenseessensenns iv

OZ ettt ettt r e v

DEDICATION ...ttt sttt ettt et et b et sst et e sbe et e b saeenee vi

ACKNOWLEDGMENTS ...ttt ettt st st vii

TABLE OF CONTENTS. ..ottt ettt ettt s viii

LIST OF TABLES ...ttt bttt sttt X

LIST OF FIGURES ...ttt st xi

LIST OF ABBREVIATIONS ..ottt sttt s xii
CHAPTER

I INTRODUCTION ...cooiiiiieiee e eeeiiieeee e e e e ettt e e e e s e s eenerreeeeeeesensnnnsnenaeeseens 1

L1.1 0 Related WOrK.......oouiiieieeee ettt st 3

1.1.1 An Integrated Tool for HLAccoooeiiiiiiiie e 3

1.1.2 Object Model Development ToolKit...........ccccceererriiiniireiieeeeeenee, 3

1.1.3 CalytriX SIMPICILY...c.eeiieriieriiiiiieieeieeie ettt 3

L.1.4 ViSual OMToiiiiiiieieiecee ettt 4

LIS GENESIS ..ottt 4

1.1.6 A Framework for Ontology Based Federation Development............. 4

1.2 TheESiS OVETVIEWoiuiiuiiiiiiieiesieeiiesie ettt ettt ettt sttt st sbe e 4

2 HIGH LEVEL ARCHITECTURE (HLA) ..ottt 5

2.1 Framework and RUIES...........cccoiiriiiiiieei e 6

2.2 Federate Interface SpecifiCationcccccueeevievrieriienieriecreere e seeeseveeene e 7

2.3 Object Model Template (OMT) Specificationcccccveeveecrieriiereerresneaneens 9

2.4 Recommended Practice for HLA FEDEPccocoiiiiiiiniiieeceee, 10

3 GENERIC MODELING ENVIRONMENT (GME) ...ccccceiiiiiiiiiiiiiiiiieeeeeeeeeiennns 12

3.1 Model Integrated Computing (MIC)ceocevriiriiiiieiecieceee e 14

3.2 MetamoOdeliNg......cccveiieriieiieeiie ettt eeas 15

3.3 Metamodeling vs. UML Profiling Mechanism..........c..cccccevereeneninnienennenne. 18

3.4 GME Architecture and Modeling Concepts........ccevvevverververciercreesieeseeeenes 19

viil

4 GME PARADIGM FOR THE HLA OBJECT MODELccccocciiiiiiiiiniieneen. 23

4.1 HLA OM Metamodel as GME Paradigm...........ccccceeeevvenieeciienieeneenreeereen 24

4.1.1 Federation Design Modelccccceeiiiiiiinciiieciie et 25

4.1.2 ODbJeCt MOlcccuiiiiiiiieieeeec ettt 27

4.1.3 OMT Core EISMEntsccceevieriiiiiiiiiiieieesieee e 31

4131 ClaSS@S .ceueiiuiieiieieenieesiie ettt ettt ettt 31

4.1.3.2 DIMENSIONS ...eitiiiieriieriieiieeie ettt ettt 36

4.1.3.3 Time Representation..........cocceecueereeseeniesienieeieesieeseeenees 38

4.1.3.4 User Supplied Tagsccccoceeveririeniniiienenieneseeeseeene 39

4.1.3.5 Synchronizationscceeeueeveeseeseeniesie e 40

4.1.3.6 TranSpOrtationsS.......ccceeeereeerueesieesieesieesieseeeeeeseeseeesseeneeas 41

4.1.3.7 SWILCHES ..eoniiiieieiieeeeeee e 42

4.1.3.8 DAt tYPES.ccuveeeeurieeiieeiieeeiee et e st e eiteeeaeestee et e naae s 42

4.1.3.9 NOEES.c.eeeitiiieeteete ettt 44

4.2 Object Model Design Environment..............cceecvverieereeneenieeenieeneeseesnesnennns 44

4.2.1 IEEE Defaults Library.........ccccceeeevcereciieriieniieniesieeresreeveeeesee e 44

4.2.2 Management Object Model........c.ccceeeiieviiinienieniecre e 45

4.2.3 Sample Federation Design Modelcccovevvievieniinciieiieeeeeen, 48

5 CONCLUSION ...ttt e eeeeieteee e e e e e e eertrteeeeeesessnsnseaeeaeeseasssnsseeeeaesssansnnes 51

5.1 FUUIE WOTK ..ottt st s e 52

REFERENCES ... oottt ettt sttt st e s st e neesse et esesneennens 53
APPENDICES

A USER’S GUIDE ..ottt ettt e e e e 57

B IEEE DEFAULT LIBRARY oottt 61

X

LIST OF TABLES

Table 3.1 Four-layer metamodeling infrastructure of OMG........ccccoocevviriniiencncenenens

Table 3.2 Mapping to layers of OMG

Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21

LIST OF FIGURES

Components of an HLA federation............ccecveviievieeneenienieniesieeieeieeniens 7
Top-level view of FEDEP model.cccccevviviiiiiiieiieieeceeeeeee 11
TOOIS OF MIC. .. 13
OVErview Of MIC PrOCESS.cervierierireriierreereeieeieesieeseesenessreanseenseeseenens 16
GME mMOdeling CONCEPLS. ...ocuvvrreerieriieriiereeeieereereesieeseesenesnressreesseeseeens 20
Sample Views Of GME........c.ccooiiviiiiiiiieiie et 22
Federation design model..........cccevveeiieiieniieieiecie et 25
XME output for Federation Design model.c.cccceevveriiiieenieneenienenens 27
Object Models diagrams.cccceevveeiieeirieniiesieseesee e e ereeseeseresveesne e 29
XME output of object model information.ccceeeevereviienciieecieeereeenee, 30
ClasSes AIAZIAMLccuvieruiieiiieeiieeeieeereeerreeeveeeteeesebeeeaeeeseseessseeeeseesaseeens 32
The XME output for an object Class.ccceeeveeeciieeiiieniie e 36
Dimension dia@ramm...........ecveierrieiieeeiieerieeeieeesieeesreeesteeesreesreeeseveesseeens 37
Normalization fUNCHONS.coouiiiiiiriiiie e 38
Time representation Model.ccoevieriiiiiiiiiiiiieeee e 39
User-supplied tags diagram.cccoceeveererienineniieninienenceene e 40
Synchronizations diagram.cceceeveueeiiienienierieee et 41
Transportations diagram.ccceeveeeieeiieesienierie et e e 41
Datatypes diagram.ccceeeeveerieeriienienierieree et ere e see e saeereeseenne 43
Default datatypes and tranSportations............c.ccveevereervervesceeeneeseeseennenns 45
MOM datatypes and dimenSions.cc.eeeveeereerieereeseesirenrreesreesseeseesnenns 46
MOM ODJECE CLASSES. ..eevrerereeeieeiieiieieeitesee e ereebeeseesseesteeseressnesnseesseenns 47
MOM INtEraction ClASSES.cc.eeueeruirierierieeieeneete ettt 48
Sample federation design model OVErvVIeW.cccveveverveereenieenieesee e 49
Sample object class hierarchy...........ccecvvevienieriieiiice e 49
Creating Federation Design model.ccooeveeviiiviiinienieniececreceeeene 58
Creating Object MOdeIS.ccveviieiiiiiicii et 59

xi

LIST OF ABBREVIATIONS

DIF Data Interchange Format

DMSO Defense Modeling and Simulation Office
DoD The United States Department of Defense
DSM Domain Specific Modeling

DSME Domain-Specific MIPS Environment
DSML Domain Specific Modeling Language
FDM Federation Design Model

FEDEP Federation Development and Execution Process model
FOM Federation Object Model

GME Generic Modeling Environment

HLA High Level Architecture

IEEE Institute of Electrical and Electronic Engineers
MDA Model Driven Architecture

MIC Model Integrated Computing

MIPS Model Integrated Program Synthesis
MOF Meta Object Facility

MOM Management Object Model

OCL Object Constraint Language

oM Object Model

OMDT Object Model Development Toolkit
OMG Object Management Group

OMT Object Model Template

RTI Run Time Infrastructure

SOM Simulation Object Model

UML Unified Modeling Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

Xii

CHAPTER 1

INTRODUCTION

The High Level Architecture (HLA) is a key technology in Modeling and Simulation
(M&S) area for distributed simulations. Zeigler and his colleagues [7] described the
computer simulations development process in terms of three major elements: the source
system, the model, and the simulator. Modeling is primarily concerned with the
relationships between source systems and models, while simulation refers to
relationships between simulators and models. The increasing interest in modeling and

simulation has also increased the importance of the HLA.

Currently the HLA is an IEEE (Institute of Electrical and Electronic Engineers)
standard as the IEEE Std. 1516 specification, which is also our basic reference [22]. This
standard defines the HL A as an integrated architecture that provides a general framework
within which simulation developers can structure and describe their simulation

applications [9].

In order to perform simulation, the HLA defines some basic terms: federation,
federate, federation execution, run time infrastructure and others [4]. The combined
simulation system created from the constituent simulations is a federation; each
simulation that is combined to form a federation is a federate; and a session of a
federation executing together is a federation execution. A federation contains a
supporting software called the Run Time Infrastructure (RTI), a number of federates and
a common object model for the data exchanged between these federates. The HLA gives
special attention to interoperability and reusability. It has three main components: HLA
Rules [9], Object Model Template (OMT) [11] and Federate Interface Specification [10].
Rules are a set of rules that apply to HLA federations and federate. OMT describes the
data used by a particular model called object model and addresses reusability. Federate
Interface Specification describes a generic communications interface that allows
simulation models to be connected and coordinated. It also addresses interoperability

1SSues.

HLA object models are composed of a group of interrelated components. IEEE Std.
1516.2 [11] gives motivation for new representation techniques for object models saying

that:

“The information content of components can be represented in many different
ways or presentations. A presentation is the formatting of the information
contained in the object model in a particular manner for a particular purpose. All
HLA object models shall be capable of being presented in both the OMT tabular
format and the OMT Data Interchange Format (DIF) format.”

OMT tabular format uses tables to save the information in the object model, where
OMT DIF format expresses object models with nested tags similar to XML (eXtensible
Markup Language) [26]. Both of them are well defined and text based presentations.
Unfortunately, at design steps textual presentations may lack on understandability,
reusability and upgradeability. Defining a visual layer on top of OMT to provide a visual
representation, can help easier understanding for complex federations and can reduce the
design time with better reusability. Many researchers proposed various representations
for object models as well as for other federation design issues. Next section introduces
some related work. In this thesis, we have adopted metamodeling, which is another
representation technique that has been widespread recently, where metamodel is a
definition of an architectural language in the form of a model. Section 3.2 and 3.3

discusses the reasons of choosing the metamodeling approach.

Though we want to define a visual layer with metamodeling approach, we searched
for a domain specific modeling environment, which will give us the opportunity to
describe our metamodel and provide support for further design issues. The Generic
Modeling Environment (GME), developed at the Institute for Software Integrated
Systems (ISIS) at Vanderbilt University, is a configurable toolkit that supports the easy
creation of domain-specific modeling and program synthesis environments [39]. It is free
and open software. It is actively supported by ISIS. So we have chosen GME as the

modeling environment.

This thesis proposes a metamodel for HLA Object Model (OM) and describes this
metamodel in a domain specific modeling environment, which is GME, in order to define
a visual representation. In GME, metamodels are defined in modeling paradigms using

GME metamodel. After describing the HLA OM modeling paradigm, the GME modeling

environment creates a design environment for domain models by using this proposed
metamodel automatically. Then the generated design environment can be used to design

HLA object models.

1.1 Related Work

Object Model Tools are expected to have facilities on designing, developing, managing
and sharing object models; by providing object model development tools, object model
libraries or object model data dictionaries [4]. Many researchers worked on these
subjects, in this section we point out some studies that we have examined. In our view an
object model tool should be based on a metamodel. Presumably, each of these tools has a
native representation scheme for object models. We believe that tool integration and tool
extensibility will be greatly facilitated by the use of metamodels that are accessible to
users. Adoption of standardized metamodels will further improve integration and

extensibility issues.

1.1.1 An Integrated Tool for HLA

This research project at Computer Engineering Department of Hacettepe University
focuses on modeling, code generation, monitoring and testing issues for HLA [29].
Researchers aim to develop an integrated toolset that will improve and accelerate

federation development and testing process. Their work is based on UML extensions.

1.1.2 Object Model Development Toolkit

Object Model Development Toolkit (OMDT) by AEgis Technologies [20] is a tool
which provides an environment for creating, editing, manipulating, and managing HLA

object models with an easy to use interface.

1.1.3 Calytrix SIMplicity

Calytrix SIMplicity is a visual tool for developing distributed HLA simulations from new
and pre-existing components (federates) [41]. It provides an integrated development
environment to design and manage object models, to design federates, to create complex
mappings with third-party federates, to automatically generate code, and more. Calytrix

Technologies (Australia) is a leading company in simulation area and Calytrix

SIMplicity [25] is listed as a committed product, which means this product is a valuable

resource in its application area, in Object Management Group (OMG) web site [23].

1.1.4 Visual OMT

Visual OMT is a graphical object model development tool for efficient development and
maintenance of HLA Object Models [19]. It provides an integrated environment in which
the HLA object models of any simulation or federation can be loaded and edited [34]. It
is a product of Pitch Company (Sweden) [24], which supplies commercial tools and

services to the modeling and simulation community.

1.1.5 GENESIS

GENESIS project of the French National Air and Space Agency (ONERA) aims to
develop a tool for the design and development of HLA simulations [28]. It is financed by
the French General Armament Directorate (DGA). With the current version of GENESIS
defining object models, C++ code and configuration file generation are provided. It

started in January 2003 and runs for 3 years.

1.1.6 A Framework for Ontology Based Federation Development

Ontology can be defined as an explicit specification of a conceptualization in [33]. A
research study held in Systems Realization Laboratory at Georgia Institute of
Technology, aims to define a framework for ontology based federation development. The
major components of this framework are the federate ontologies, target federation

ontology and a metamodel that corresponds to the OMT, called the World Ontology [42].

1.2 Thesis Overview

After this introduction chapter, the thesis continues with Chapter 2 which introduces
HLA and IEEE Std. 1516. Metamodeling concepts and the GME Metamodel are
explained in Chapter 3. Metamodel for High Level Architecture Object Model is
proposed and discussed in Chapter 4. Finally, conclusions are drawn and future work is
suggested in Chapter 5. The appendices introduce complementary material: Appendix A
contains a User’s Guide for designing object models and Appendix B contains a sample

output file.

CHAPTER 2

HIGH LEVEL ARCHITECTURE (HLA)

IEEE standard defines the HLA as an integrated architecture that provides a general
framework within which simulation developers can structure and describe their
simulation applications. The HLA is not software, it provides a common framework. The
HLA was first developed by the Defense Modeling and Simulation Office (DMSO) [21]
of The United States Department of Defense (DoD), in order to support reuse and
interoperability across the large numbers of different types of simulations and so reduce
the cost of the projects [2]. The HLA Baseline Definition was approved by the Under
Secretary of Defense for Acquisition and Technology (USD (A&T)) in 1996. After this
approval the HLA is proposed as the standard technical architecture for all DoD

simulations.

OMG [23] adopted the HLA as the Facility for Distributed Simulation Systems in
1998 and updated it in 2001 to reflect the changes resulting from commercial
standardization of the specification. The HLA was approved as an open standard through
the IEEE, namely IEEE Standard 1516, in September 2000. In November 2000 the HLA
is identified as the preferred architecture within the DoD [21].

Officially designated as IEEE Std. 1516-2000 Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA), the standard was prepared by the HLA Working
Group, sponsored by the Simulation Interoperability Standards Committee (SISC) of the
IEEE Computer Society. The standard consists of four related standards:

e [EEE Std. 1516-2000: IEEE Standard for M&S HLA Framework and Rules [9]

e JEEE Std. 1516.1-2000: IEEE Standard for M&S HLA Federate Interface
Specification [10]

o IEEE Std. 1516.2-2000: IEEE Standard for M&S HLA Object Model Template
(OMT) Specification [11]

IEEE Std. 1516.3: IEEE Recommended Practice for HLA Federation
Development and Execution Process (FEDEP) [12]

Next sections give brief overviews of these standards.

2.1

Framework and Rules

This is the main standard which provides an overview of the HLA and defines a set of

rules that apply to HLA federations and federates [9]. Simulation Object Model (SOM)

and Federation Object Model (FOM) mentioned here are explained in section 2.3. The

rules for federations are as follows:

Federations shall have an HLA FOM, documented in accordance with the HLA
OMT.

In a federation, all simulation-associated object instance representation shall be

in federates, not in the RTI.

During a federation execution, all exchange of FOM data among joined federates

shall occur via the RTI.

During a federation execution, joined federates shall interact with the RTI in

accordance with the HLA federate interface specification.

During a federation execution, an instance attribute shall be owned by at most

one joined federate at any given time.

The rules for federates are as follows:

Federates shall have an HLA SOM, documented in accordance with the HLA
OMT.

Federates shall be able to update and/or reflect any instance attributes and send

and/or receive interactions, as specified in their SOMs.

Federates shall be able to transfer and/or accept ownership of instance attributes

dynamically during a federation execution, as specified in their SOMs.

Federates shall be able to vary the conditions under which they provide updates

of instance attributes, as specified in their SOMs.

e Federates shall be able to manage local time in a way that will allow them to

coordinate data exchange with other members of a federation.

2.2 Federate Interface Specification

This specification defines the standard services and interfaces to be used by federates to
be able to interact other federates in a distributed federation execution. Federate interface

specification extends the HLA Rules and discusses the HLA concepts in detail.

As stated before HLA federates interact with an underlying runtime infrastructure,
which is RTI. Use of RTI software is required for HLA to coordinate the operations and
data exchange during a federation execution [10]. The HLA Federate Interface
Specification defines the services that the RTI software provides. Figure 2.1 shows the
high level logical view of an HLA federation in order to depict the communication

between federates and RTI.

Federates Federates Federates

Federate Interfzce Specification

Inter Process Communications
through RTI Provided Services

Figure 2.1: Components of an HLA federation [2].

The services defined in this specification are divided into 7 service groups. These are

outlined as the follows:

e Federation management: Creating, modifying, deleting and dynamic control of
a federation execution are provided by federation management services. This
group includes join to a federation execution and resign from a federation
execution services of federates; and some federation synchronization point

services.

o Declaration management: Joined federates use the services in this group to
declare their interest to an object class attribute or an interaction class. Also these
services are used to declare intention to generate information. Namely

publish/unpublish and subscribe/unsubscribe services are included.

e Object management: The services in this group deal with the registration,
modification, and deletion of object instances and the sending and receiving of

interactions. Also this group includes some transportation type services.

e Ownership management: The services in this group are used to transfer

ownership of instance attributes among joined federates.

o Time management: Messages sent by different joined federates are delivered in
a consistent order throughout the federation execution by the time management

services and associated mechanisms.

o Data distribution management: The services in this group provide information
on data relevance at different levels and allow refining the data requirements.
These services may be used to reduce the transmission of irrelevant data in terms

of bounds, regions or sets.

e Support services: This group includes miscellaneous services for performing
such actions as setting advisory switches, manipulating regions, or RTI start-up

and shutdown.

The support services specification also introduces the Management Object Model
(MOM). MOM is defined in this specification instead of OMT specification, because
MOM provides facilities for access to RTI operating information during federation

execution, which can be used by joined federates, where a joined federate is a member of

a federation execution. Section 4.2.2 gives more information about MOM and how it is

modeled in HLA OM Metamodel.

2.3 Object Model Template (OMT) Specification

OMT introduces two types of object models: an HLA Simulation Object Model (SOM)
which describes an individual federate and a Federation Object Model (FOM) which
describes a federation. HLA object models identify the data exchanged at runtime to
achieve federation objectives. The OMT Specification defines the format and syntax of

HLA object models.

Firstly, the standard presents object models in OMT tabular format. The OMT

consists of 14 components that are presented as tables:

e Object model identification table: This component identifies the name, type,
version, modification date, purpose, application domain, sponsor, POC (point of
contact) name, POC organization, POC telephone, POC E-mail address,

references and some other information about the object model.

o Obiject class structure table: If we understand attributes as objects with certain
characteristics, then object class is a collection of attributes. Object class
structure table includes all federate or federation object classes and their class-

subclass relationships.

e Interaction class structure table: An explicit action taken by a federate that
may have some effect or impact on another federate within a federation
execution is called an interaction. Interaction class structure table includes all

federate or federation interaction classes and their class-subclass relationships.

e Attribute table: Each object class may have attributes. This table includes

features of object attributes in a federate or federation.

e Parameter table: Each interaction class may have parameters. This table

includes features of interaction parameters in a federate or federation.

e Dimension table: Each attribute or interaction that uses data distribution
management services has a set of available dimensions. This component

specifies dimensions for filtering instance attributes and interactions.

o Time representation table: This component defines the usage of time stamps

and lookahead characteristics of both federates and federations.

e User-supplied tag table: Federates can supply tags with certain HLA services to

provide additional coordination and control. This table defines these tags.

e Synchronization table: This component specifies the representation and data

types used in HLA synchronization services.

e Transportation type table: It describes mechanisms used for the transportation
of data.

e Switches table: It includes the initial settings for some parameters defined in

federate interface specification.

o Datatype tables: Basic data representation table, simple datatype table,
enumerated datatype table, fixed record datatype table, array datatype table, and
variant record datatype table specify the details of data representation in the

object model.

o Notes table: Additional descriptive information can be added to any element of

the object model. This component includes these notes.

o FOM/SOM lexicon: Tt includes verbal definitions for the objects, attributes,

interactions, and parameters used in the HLA object model.

After describing these components in detail, the standard introduces OMT DIF
format. The HLA OMT DIF is a standard data exchange format, which is built on a
common metamodel that represents the information needed to represent and manage

HLA object models.

24 Recommended Practice for HLA FEDEP

Guidance in the process of developing HLA federations is provided by the Federation
Development and Execution Process model. FEDEP defines how HLA applications are
constructed and executed, though it does not prescribe a single way of constructing an
HLA federation. In other words the actual process used to develop and execute HLA
federations could vary within or across different user applications. However, at an

abstract level, it is possible to identify a sequence of seven basic steps that HLA

10

federation developers should follow to develop and execute their federations. Figure 2.2

shows the seven step FEDEP model.

) Plan, Execute
Perform Design Develop Integra'te. Federation
Conceptual Federation Federation :

Analyze
Data and

Define
and Test and Evaluate

Federation

Ohbjectives Analysis Federation et Results
Cutputs

L i i i it)

Corrective Actions | lterative Development

Figure 2.2: Top-level view of FEDEP model [12].

The FEDEP model identifies these steps in detail and defines a process for guiding
the development of an HLA federation. More information about High Level Architecture

can be found in [4], [21], [10], [11].

11

CHAPTER 3

GENERIC MODELING ENVIRONMENT (GME)

This chapter provides description of the modeling environment GME. We have used
GME version 4.11.10 in this research. Defining a metamodel for HLA OM is an instance
of domain specific modeling. In this context we can talk about Model Driven

Architecture (MDA) and more specifically Domain Specific (DS) MDA.

DS MDA, also known as Model Integrated Computing (MIC), is touted as an
effective and efficient method for developing, maintaining, and evolving large-scale,
domain-specific software [40]. Karsai and his colleagues in [35] and [36] introduce tools
for MIC, shown in Figure 3.1. In order to set up a specific MIC process first the
metamodels for the domain, the target, and the transformations should be created. Then a
domain specific model editor and a model transformation tool can be built with meta-
level tools. The model editor is then used to create and modify domain models, while the
transformation tool is used to convert the models into target models. Next section briefly

reviews the MIC concept.

The GME is a meta-programmable modeling tool that supports the creation of
domain-specific modeling and program synthesis environments [39]. In [8], the
definition is extended and GME is described as a configurable model-integrated program
synthesis tool, where configurable means that it can be programmed to work with vastly
different domains. As Figure 3.1 indicates, a meta-programmable tool creates domain
models after configuration of a domain metamodel. Section 3.4 describes the core

modeling concepts supported by GME.

12

MetaModel of Uses
MetaModel of Domain uses Domain-to-Target MetaModel of Target
Meta-models Mapping

configures
g r
Meta- N Code Generator H
programmable Meta Programmable configures H
tools Modeling Tool
geperates
creafes Meta-Programmable I describes
desdrbes Transformation Tool ||\
Debugger \

Generated tool (Generated)
Transformation Tool \

3
Models and Target/Executable
applications Models

Domain Models

Target Platform

Figure 3.1: Tools of MIC [35].

There are some characteristics of the GME that make it a valuable tool for the

construction of domain-specific modeling environments.

e The GME provides generic modeling primitives [38], which are specialized to

create the domain-specific modeling concepts through meta-modeling.

e A metamodel for a domain is defined as the modeling paradigm described in the
form of a formal modeling language, where the modeling paradigm is a set of
requirements that specifies the ontology of the domain [40]. GME paradigms are

generated from formal modeling environment specifications.

e The GME provides an environment containing all of the modeling elements and
valid relationships that can be constructed in a specific domain, after a modeling

paradigm is defined.

e Models are formed as graphical, multi-aspect, attributed entity-relationship
diagrams [8]. The dynamic semantics of a model is determined later during the

model interpretation process.

e It supports various techniques (hierarchy, multiple aspects, sets, references, and

explicit constraints) for building large-scale, complex models.

13

e [t contains some integrated model interpreters that perform translation and

analysis of models and provides defining new interpreters.

e The GME supports multiple paradigms and enables meta-model composition

[38].

e The GME is Windows based and well organized graphical user interfaces make

it easy to use.

e The GME is an ongoing academic research project that one can use freely for

non-commercial purposes. Its source codes are available.

e The GME contains an extended constraint manager which is fully compliant with
the Object Constraint Language (OCL) 1.4 specification [16], which is a well
known OMG specification [8].

e The GME-metamodel is implemented using UML 1.4 specification, which is

also a well known OMG specification [8].

Besides the advantages, the GME needs some improvements and upgrades. The most
important expectation is about OCL 1.4 and UML 1.4 specifications, which are not up-
to-date. OCL 2.0 [18] and UML 2.0 [15] are already available and the academia waits for
the upgrades. Also a meta-programmable modeling tool with Meta Object Facility
(MOF) 2.0 is another expected issue. The facility for metamodeling with directly MOF
2.0 metamodel will enhance the GME. The good news is that the researchers at ISIS have
started upgrading GME.

In this thesis, the proposed metamodel for HLA OM is a GME modeling paradigm
based on the GME-metamodel. GME generates a design environment for HLA object
models automatically using the proposed metamodel that is represented as a modeling

paradigm.

In accordance to the objectives of this thesis, MIC, the metamodeling approach and

the GME modeling concepts are presented in the following sections.

3.1 Model Integrated Computing (MIC)

Model integrated computing, or domain specific Model Driven Architecture (MDA), is a

methodology for developing, maintaining, and evolving large-scale, domain-specific

14

software, which uses MDA concepts and metamodel approach [40]. The MDA is defined
by the OMG and based on the importance of models in the software development process

[13]. In MDA the formal models are the building stones of software development [3].

A group of entities that share the same characteristic or exhibit similar functionality
is known as a domain [43]. Domain specific modeling is an approach to model a system
with the terminology and concepts from a specific domain [32], where data structures
and logic are abstracted beyond programming. Domain Specific Modeling Language
(DSML) is a language specifically designed to represent and implement the particular
problem domain concepts. MIC allows the synthesis of application programs from
models by using customized domain-specific Model Integrated Program Synthesis
(MIPS) environments. Once a domain-specific modeling language has been formally
defined, a meta-level translation can be performed to synthesize the Domain-Specific
MIPS Environment (DSME) [37] from the metamodel. The DSME is then used by
domain experts to create various models of domain-specific systems. Once one or more
domain models exists, model interpreters are used to perform semantic translations on
the models in order to generate executable models or perform various types of data
translation and analysis. Model transformations are the most important step in the MIC

process, which are used to generate target domain specific models.

A MIPS environment operates according to a modeling paradigm [40]. A modeling
paradigm is a set of requirements that governs how systems within the domain are to be
modeled, i.e., it defines a language for modeling systems in the domain. The modeling
paradigm is captured in the form of formal modeling language specifications called a
metamodel. So, the MIC applies the metamodel based approach to domain specific

applications. Figure 3.2 shows the MIC process summarized above.

We believe that applying domain specific MDA to HLA will contribute the
distributed simulation design and development process in terms of formalism, reuse,

verification, and validation.

3.2 Metamodeling

A model can be defined as an abstract representation of something so that we can view,

manipulate, and reason about it in a well defined language; where a language defines

15

which elements can exist in the model [3]. If we define this well defined language with

models, this mechanism is called metamodeling.

Metaprogramming Application
Interface . . Domain
Envirenment Application

I Ewclution Ewolution
| [T 1 A
. .] I e—
Formal Specifications : ! App App App
[METAMODEL S} | i 1 S 2 3
a a
! i A /

Modeling Environment

Model Builder

[\

[I
[¥

Domain Specific 11
Models 1 /
| I

[11
Model Interpreters

Figure 3.2: Overview of MIC process [37].

In fact, modeling and metamodeling are identical activities, the difference is the level
of modeling. So it is also possible to mention meta-meta-models, which will describe the

language to generate meta-models, and so on.

The OMG introduces a four-layer metamodeling infrastructure for defining
modeling, metamodeling, and meta-metamodeling languages and activities in [17]. Table
3.1 describes each layer of this framework. Table 3.2 shows the metamodeling layers in
our study mapped to OMG’s four-layer framework. If we added a fifth layer, namely
Meta-Meta-Metamodel, to this framework, which could be derived from the definition of
Metamodeling, it would map to UML metamodel. The fifth layer UML Meta-Model

describes the language to generate GME meta-models.

16

Table 3.1: Four-layer metamodeling infrastructure of OMG.

Layer Definition
M3 Layer This layer forms the foundation of the metamodeling
Meta Metamodels hierarchy. It defines a language, namely meta-

metamodeling language, for specifying a metamodel.

M2 Layer A metamodel is an instance of a meta-metamodel. This

Metamodels layer defines a language, namely metamodeling language,

for specifying models.

M1 Layer A model is an instance of a metamodel. This layer defines

Models domain specific modeling languages that describe

semantic domains.

MO Layer The metamodel hierarchy bottoms out at M0, which

. . contains the run-time instances of model elements defined
Run-time instances

in a model.

Table 3.2: Mapping to layers of OMG.

Framework Model Mapped Model
Meta Metamodel GME Metamodel
Metamodel HLA OM metamodel

Domain model

Model
(e.g. Restaurant FOM)
Domain model instance
Run-time instance (e.g. object instances in a Restaurant

federation execution)

Next section discusses the advantages of Metamodeling with a comparison with

UML profiling mechanism, which is another domain specific modeling approach.

17

3.3 Metamodeling vs. UML Profiling Mechanism

The Unified Modeling Language is an industry standard language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system.
Research on domain specific modeling using UML has focused on the UML profiling
mechanism [44] [45]. The specification of UML includes extension mechanisms that

allow UML to be adapted to meet specific needs of a domain.

A UML profile is a stereotyped package that contains model elements that have been
customized for a specific domain or purpose using extension mechanisms. A profile may
specify model libraries on which it depends and the metamodel subset that it extends. In
most cases a UML profile consists of a predefined set of stereotypes, tagged values and
constraints. In [1], a stereotype is defined as the main extension mechanism providing a
method to extend a meta-class. Tagged values are defined as properties attached to UML
elements, and constraints are defined as the rules that restrict the semantics of one or

more elements in UML.

After this brief introduction, we will compare metamodels to UML profiles by listing

some differences, also other differences may occur.

e UML Profiles extend the UML syntax, while metamodels define entirely new
modeling languages. In other words, profiling yields an extended UML for the
intended domain, while metamodeling yields a specialized language, on the same

footage as UML, for the domain.

e Stereotyping doesn’t provide additional classes, while metamodels define their
own model elements [30]. Furthermore, tool-specific restrictions may apply in

this regard.

e UML Profiles may have some drawbacks when the domain metamodel and
domain model both represented with the same notation. One may have problems
with managing the models and the difference between layers may not have been

come out.

e UML Profiles doesn’t allow defining associations between stereotypes, but with
metamodels you can define associations like inheritance, composition or others
between model elements provided that the meta-metamodel includes their

definition.

18

e UML Profiles doesn’t allow changing the notation of any element; you can only
define icons, while with metamodeling approaches you can define fundamentally

new representations .

Lastly, in this thesis context we can say one more thing, which possibly makes
metamodeling preferable. Firstly note that the HLA object model does not totally agree
with the object model in the usual object oriented analysis and design (OOA&D) sense.
Thus, a UML profile for HLA OM has to carry “extra luggage”. This may hinder

constraint specification and checking, and user input validation.

On the other hand, UML profiling allows one to stay with the same host UML tool,
thus avoiding any tool switches between object-oriented design model (for the software)
and object modeling (for the domain). The solution within metamodeling approach
would be to invoke model transformations between the two modeling environments, and
to utilize the XMI (XML Metadata Interchange) standard to carry the models across

tools.

3.4 GME Architecture and Modeling Concepts

This section describes the core modeling concepts provided within the GME and their
relationships. The GME supports various techniques for building large-scale complex

models.

In GME the domain specific modeling languages are viewed as the modeling
paradigms which contain all the syntactic, semantic, and presentation information
regarding the domain. A modeling paradigm describes which concepts will be used to
construct models, what relationships may exist among these concepts, how the concepts
may be organized, and the rules governing the construction of models. The metamodels
specifying the modeling paradigm are used to automatically generate the target domain-
specific environment. The generated domain-specific environment is then used to build
domain models, which can be used in different synthesis tools. This process is called

model interpretation [39].

The GME architecture is explained in [31], here we only emphasize to modeling
concepts shown in Figure 3.3. The modeling paradigm metamodel, also known as the
GME metamodel introduces some concepts. In GME, Model is the basic concept that is

an abstract object that represents something in the world and has state, identity, and

19

behavior. Models typically have parts, other objects contained within the model. Models
can include models, atoms, FCOs (first class objects), references, sets, and connections.
The purpose of the GME is to create and manipulate these models. Modeling paradigms

may have several kinds of models.

Project
1
Constraint Folder
0.7 g
Regnode 0.% 4 Y_—|
T
0.7
0..|'
4+
Aftribute FCO Role Part
[
0..* member 0.x
referred o.x 0.x
ConnRole
s
07 4 +
Set Reference Atom Connection Model |_ Aspect
™ 0.

Figure 3.3: GME modeling concepts.

The modeling concepts of the GME are described below:

e Project: Project is the root container class.
e Folder: Folders are containers that help organize models.

e FCO: FCOs are first-class objects which must be abstract but can serve as the

base type of any other elements.

e Model: Models are compound objects which can contain other model elements

as stated above.

20

e Atom: Atoms are atomic objects which may not contain other model elements.

They can have attributes

e Set: Sets can be used to specify a relationship among a group of objects. The
only restriction is that all the members of a set must have the same parent and be

visible in the same aspect.
e Connection: Connections are used to express a relationship between two objects.

o Reference: References are placeholders for FCOs (other than Connections) -

similar to references in some programming languages.

e Attribute: Attributes are values of a simple type. Any FCO can have many

attributes.

e Aspect: Aspects provide logical visibility partitioning to present different views

of a model.

e Constraint: Constraints are Boolean expressions, which are evaluated over the
object instances. The GME permits the specification of constraints using a

variant of the OCL.

The GME modeling environment provides four views: classes, visualization,
constraints and attributes. The classes view allows users (model builders) to define the
basic class diagrams with models, references, atoms and other elements; the visualization
view to define the aspects and to connect the modeling elements to the related aspects;
the constraints view to define constraints and constraint functions with OCL and to
connect the constraints to the modeling elements; the attributes view to define various

attributes for the modeling elements. Figure 3.4 denotes sample views of GME.

We refer to GME User’s Guide [8] for further details.

21

FEEEE = &

Jidaax gt it daJsea MTETEOED 7 & Xow
| & T Mw [Faiaman iﬁ;ﬁd—_ luﬁ:hﬂu.- =] e iR | .
n i | rrmstacn | vea |
- UMY =
-, Ll EE LT
E """fmfu T T f_-.-;u'r_‘n..
1 Buatare taar # Gl Cnem
£ = o I 17 ety fase w Gl Do Trom
- fis B3 wre Wedes tum
Fbroruiatl 1 |—- Sl daEx a2 s fleJsd A TETmEET 7
iy e - g T e [Ctmctadsl Fuﬁ-ﬂ-r Aspact ebuis =] e A Foom [108%
Fai ' I
r [e
" P e S oERTEE D
o s == el I
i i [Ere et
[T — P T i oo e
D L] afgenpmo» ==Conameanes s b T | rwemrmans
] PO —
k2 iy 1 ¥ % !
e e ST
JSLduweXx At s el ARMFTEOSD ¥ & Xow :
R T M [Tionpatinars [Fuwsdgeblest ogpest|Cornmnsv) B M8 o T | =
w — Sogegms | rrmawcs | s | gt
P — =)
=y P -
tﬂf 1?-‘ # il Tew b
= W vamaef arnid vesedepbiimecs veckirss Hatl_ ety - Y Tarmensen e
s ¥, Scealincuatiems —"
weil i harallagrafve=Li
2} B e et
e lm ¥ it
rvmww LIy] ki
Sy AR -a i sy L
i S =) ;' Wmtm‘
demirgton heid I sraires
¥ varap
ety bard ;’ o
gt v ﬂw—mpu:
€ » L |
G '@ - ? o artuins | P | Pt |
Corireor Conmre o e g bow =i L row -
Bt e
[
|
el = et b sl b | P
Tl 8 LI P e [i 1
(=] a
| Bl | Vi, Comsnrs [t |
3 mlil'lm LoG ETm H:ﬁ dagrunt 57 TDH 1204810 PR a
“tl dl l.d(. el

— T m—— Ee

Figure 3.4: Sample views of GME.

22

CHAPTER 4

GME PARADIGM FOR THE HLA OBJECT MODEL

As we discussed in chapter 3, a modeling paradigm should be defined in GME in order to
represent a metamodel which will constitute a domain specific modeling language. Then
GME interprets this paradigm and generates a design tool which supports this modeling
language. In our study we have modeled the HLA Object Model Template paradigm with
GME.

This chapter presents the HLA OMT paradigm in an organized way. The class
diagrams, aspects, attributes and constraints are explained and the rationale is discussed
for each model. The metamodel introduced here is fully compliant with IEEE Std. 1516.2
and the modeled architecture refers to this standard in every detail. The modeling
elements in our metamodel are named consistently with OMT Data Interchange Format
(DIF). The metamodel is compatible with the HLA OMT tabular format and every
metamodel element map to the related table column in OMT tabular format. Together
with the attached comments, we regard the HLA OM metamodel as an alternative

rendering of the HLA OMT standard IEEE 1516.2.

After introducing the metamodel, this chapter also shows some IEEE related default
entries and an example. HLA OMT specification defines some default datatypes and
transportation types; we included them in our metamodel as explained in section 4.2.1.
Meanwhile, HLA Federate Interface Specification defines MOM, which must be
included by all FOMs. We also modeled the MOM as explained in section 4.2.2. After
preparing default libraries we have built a sample federation design model, based on the
sample in HLA OMT specification, with our proposed metamodel; this is explained in

section 4.2.3.

We also provide a User’s Guide in Appendix A, which explains how to make HLA
federation design model and object models with the design environment of the HLA OM

paradigm. The intended user of our metamodel is a federate or federation developer.

23

4.1 HLA OM Metamodel as GME Paradigm

As already mentioned we have modeled the HLA OMT paradigm with GME. The
proposed HLA OMT paradigm includes the Object Model paradigm sheet, the
Federation Design paradigm sheet and the OMT Core folder. Paradigm sheets are
separate models. OMT Core folder includes the definitions for classes, data types,
dimensions, normalization functions, notes, switches, synchronization points, user
supplied tags, time representations and transportations in separate paradigm sheets.
Although we have focused on a metamodel for HLA OM, we have also defined a simple
Federation Design metamodel for illustrative purposes. Object Models and OMT Core

could be used individually if needed.

There are some rules which apply to the whole metamodel. One of them is the
naming constraint: Names in object models can be constructed from a combination of
letters, digits, hyphens, and underscores with no spaces or other breaking characters.
Names beginning with the string “hla” or any string that would match (("H'I'h') ('L''l")
('A'l'a")), are reserved and also the string “na” or any string that would match (('N'|'n")
('A'l'a")), is reserved. These can not be included as a user-defined name. We check this
constraint for object class names, interaction class names, attribute names, parameter
names, datatype names, enumerated datatype enumerators, enumerated datatype values,
fixed record field names, variant record alternative names, basic data representation
names, dimension names, transportation type names, synchronization point names, note

identifying labels. Other names could be checked in the same fashion if needed.

Another common constraint is the cardinality constraint. We check the cardinalities
in two ways: the upper bounds and the lower bounds. Upper bounds cause error
messages and the user is not allowed to do the operation. Lower bounds cause warnings,

allowing the user to add the needed elements later.

Unique name constraints are also applicable for various elements. As the name
suggests if an element’s name needs to be unique throughout the project, this constraint
causes error messages for duplicate names. We also checked the null references, in order

to catch the forgotten elements. The null reference constraint causes warnings.

In our metamodel some elements have default attributes or names, which can not be
changed. For example, the name of the object class “HLAobjectRoot” cannot be

changed. Such violations cause errors or warnings according to the severity of the

24

situation. Some attributes and some model parts are mandatory, and the user is expected
to fill these fields. Some attributes may be “NA” which means not applicable. Some
attributes have a common format like date, email ...etc. We also check the validity of

attributes and model parts.

All of the constraints are written in OCL [6]. Extended OCL support of the GME
helped us immensely to enhance the precision of the metamodel. Succeeding sections

describe the Federation Design Model, Object Model and OMT Core Folder in detail.

4.1.1 Federation Design Model

The Federation Design Model (FDM) provides an interface to define a federation and the
federates and to connect them to the related FOM and SOMs. In FDM, FOM and SOMs
are referenced object models. Each design can include one federation and one FOM

reference, while there may be any number of federates and SOMs.

Figure 4.1 shows the GME class diagram of federation design model. There is a
“MemberOf” connection between federation and federates. This connection presents the
federation execution capabilities. Federation Design Model is not intended to complete;

it is constructed to show the usage of object models in context.

} . MemberOr
FederationDesigniiode! _._.L =
e o - _ ==Connections:=
_— ==} fodel== o=
Ey - P ----{ Rolefame : field
Ilrl"cl. --E‘-G‘ , o N H Fidy o
‘ FederateCardinality . field
++ ¢+ 4 !
T
_ T o
i :—|..
Federation |_| 1| Federate
==lfodel== :l':"v w=lfodel==
info: field U Info field
=1
'
0.*dst |1 ‘ 1 a 1 o.=
1
FOMReferenceProxy || FederationFOM Federate 200 SOMReferenceProxy
==Referencefroxy== || ==Connection== ==Connection== ==Referencelroxy==
n n

Figure 4.1: Federation design model.

25

GME provides import and export facilities with XML and XME (XML Extension)
files. Figure 4.2 shows a sample XME output for Federation Design Model.

<model id=""1d-0065-000000c6" kind="FederationDesignModel">

<name>Federation Design Model</name>

<model i1d=""1d-0065-000000c7" kind="'Federation'>
<name>Restaurant Federation</name>

</model>

<model 1d=""1d-0065-000000c8" kind="Federate'>
<name>Restaurant Federate 1</name>

</model>

<model id=""1d-0065-000000c9" kind="'Federate'>
<name>Restaurant Federate 2</name>

</model>

<reference i1d=""1d-0067-00000059" kind=""SOMReference"
referred=""1d-0065-00000001"">
<name>SOMReference</name>
</reference>
<reference i1d=""1d-0067-0000005a" kind="'SOMReference"
referred=""1d-0065-00000001"">
<name>SOMReference</name>
</reference>
<reference 1d="1d-0067-0000005b"" kind=""FOMReference""
referred=""i1d-0065-000000ca"'">
<name>FOMReference</name>
</reference>

<connection i1d=""1d-0068-0000005b" kind=""FederateSOMm'>
<connpoint role="src" target="i1d-0065-000000c8"/>
<connpoint role="dst" target="i1d-0067-00000059"/>

</connection>

<connection 1d="i1d-0068-0000005c" kind="FederateSOM">
<connpoint role="src" target="1d-0065-000000c9""/>
<connpoint role="dst" target="i1d-0067-0000005a"/>

</connection>

<connection i1d="i1d-0068-0000005d" kind="FederationFOM">

<connpoint role="src" target="1d-0065-000000c7"/>

<connpoint role="dst" target="1d-0067-0000005b"/>
</connection>

<connection i1d="i1d-0068-0000005e" kind="MemberOf>
<name>MemberOof</name>
<attribute kind="FederateCardinality' status="meta'>
<value>0. .*</value>
</attribute>
<attribute kind="RoleName" status="'meta'>
<value>member</value>
</attribute>
<connpoint role="src" target="i1d-0065-000000c7"/>
<connpoint role="dst" target="i1d-0065-000000c8"/>
</connection>

26

41.2

<connection i1d="id-0068-0000005F" kind="MemberOf'>
<name>MemberOf</name>
<attribute kind="FederateCardinality'>
<value>0. .*</value>
</attribute>
<attribute kind="RoleName" status="'meta'>
<value>member</value>
</attribute>
<connpoint role="src" target="1d-0065-000000c7"'/>
<connpoint role="dst" target="1d-0065-000000c9"/>
</connection>
</model>
</folder>

Figure 4.2: XME output for Federation Design model.

Object Model

The Object Model paradigm sheet includes the main diagram for object models. As

seen in Figure 4.3, there are three types of object models, namely, FOM, SOM and
Other. FOM and SOM are HLA object models which are defined in HLA OMT

specification. The “Other” type provides a template for “temporary” object models -not

to be included in Federation Design model.

Object Model, which is the parent of FOM, SOM and Other, is an abstract class. The

inheritance operator in this figure presents a parent-child relation that is analogous to the

inheritance in usual OO approach. Object models have some attributes, most of which

correlate with the object model identification table categories in [11]:

Name: The name assigned to the object model.
Version: The version identification assigned to the object model.

Modification Date: The latest date on which this version of the object model

was created or modified.
Purpose: The purpose for which the federate or federation was developed.

Application Domain: The type or class of application to which the federate or

federation applies.

Sponsor: The organization that sponsored the development of the federate or

federation.

27

e Point of Contact: The name of the point of contact (POC) for information.

e POC Organization: The organization with which the POC is affiliated.

e POC Telephone: The telephone number for the POC.

e POC E-mail: The e-mail address of the POC.

o References: Additional sources of information. The default value is “NA”.

e Other: Other information related to the object model. The default value is “NA”.

e MOM version: The version of the included management object model. The
default value is “IEEE 1516”. Selecting a MOM name is required for all FOMs.
In SOMs the MOM shall be included if needed.

e Notes: Note labels added to the object model.

Object models have five aspects, namely Classes, User-Supplied Tags,
Synchronization, Switches and Time Representation. In each aspect the model
definitions are taken from the related paradigm sheets with proxy elements. The Classes
aspect includes the definition of object classes, attributes, interaction classes and
parameters. The User-Supplied Tags aspect includes the user-supplied tag elements. The
Synchronization aspect includes the definition of synchronization point models. The
Switches aspect includes the switches in order to change the initial settings and time

representation aspect includes the definition of lookahead and timestamp models.

28

ofjectiodel
==\ fodel==*

D e
field
field
field
field
field
field
field
field
field
field
field
field
field

name :
notes :

l:' rll-l E'IF ..
pocEmail ;
pochlame :
pocOing ;
pocPhone :
purpose ;
references .
EpORE0r
Version :

OCModelProxy
<<ModelProxy==

L

ICMode!Proxy
==Model Proxy==

1
- ”
TimeModelProxy
- '=-"=-'|.'__rE'If‘.‘E':F.'C'X_}"::'::'
K
. LUserTaghMode!Proxy
ObjectModels s
e =={fodelProxy==
==Fnlder== _ ' L

+ 4

FOoM

SOM

. E Fel— . E
==l jodel== =zllodel=> |a
- |

FOMReference
<=Heference=>

otfer

== fodel==

SynMode!ProxyMA
==\odelProxy=:=

SyniodelProxy
==y, _r.:..:,*e.'F-"C'X}-f:'::'

4.4.

’

SwitchProxyhA
==AfomBroxy==

SwitchiProxy
== AtomProxy=:=

A sample XME file that includes the object model information is shown in Figure

SOMReference C
==Reference==

Figure 4.3: Object Models diagram.

29

<folder id="i1d-006a-00000002" kind="ObjectModels">
<name>0Object Models</name>
<model id=""id-0065-00000001" kind=""SOM"">
<name>RestaurantSOM</name>
<attribute kind="MOMVersion'>
<value>ieee</value>
</attribute>
<attribute kind="appDomain'>
<value>Restaurant operations</value>
</attribute>
<attribute kind="date'>
<value>1998-01-01</value>
</attribute>
<attribute kind="name'>
<value>Restaurant Example</value>

</attribute>

<attribute kind="notes" status="'meta'>
<value></value>

</attribute>

<attribute kind="other">
<value>See Mobil Int. Restaurant Guide</value>
</attribute>
<attribute kind="pocEmail">
<value>doej@fedfoods.com</value>
</attribute>
<attribute kind="pocName'>
<value>Mr. Joseph Doe</value>
</attribute>
<attribute kind="pocOrg'>
<value>Joeé's Place</value>
</attribute>
<attribute kind="pocPhone">
<value>1-977-555-1234</value>
</attribute>
<attribute kind="purpose'>
<value>0Object model for a restaurant fed.</value>
</attribute>
<attribute kind="references'>
<value>www. fedfoods.com/restsim.html</value>
</attribute>
<attribute kind="sponsor'>
<value>Federated foods</value>
</attribute>
<attribute kind="version'>
<value>1.0 Alpha</value>
</attribute>
<model id=""1d-0065-00000002" kind="objects'>
<name>objects</name>
</model>
<model id=""id-0065-00000003" kind=""interactions'>
<name>interactions</name>
</model>
</model>
</folder>

Figure 4.4: XME output of object model information.

30

41.3 OMT Core Elements

The OMT Core folder includes basic elements needed to define an object model; it
serves classification purposes. OMT Core folder includes classes, data types, dimensions,
normalization functions, notes, switches, synchronization points, user supplied tags, time
representations and transportations models. The following sections describe the models

in this folder.

4.1.3.1 Classes

The Classes paradigm sheet provides object class, interaction class, attribute, and
parameter definitions for the object models. It refers to object class structure table,
interaction class structure table, attribute table, and parameter table in HLA OMT

specification.

Figure 4.5 shows the elements defined in this paradigm sheet. “OMTClass”, which is
the parent of “objectClass” and “interactionClass”, is an abstract class. “HLAobjectRoot”
and “HLAinteractionRoot” are the default classes. Each one is defined in the model with

an appropriate inheritance type.

GME features three types of inheritance: normal inheritance, implementation
inheritance and interface inheritance. In implementation inheritance (denoted by a black
dot inside the inheritance icon), the subclass inherits all of the base class' attributes,
except for those containment associations where the base class functions as the container
Interface inheritance (denoted by an unfilled circle) allows no attribute inheritance but
does allow full association inheritance, with one exception: containment associations

where the base class functions as the container are not inherited.

The same explanation applies for “OMTAttribute”, which is an abstract class for
attributes and parameters. “HLAprivilegetoDeleteObject” is a default attribute for

“HLAobjectRoot” object class and it is also defined with implementation inheritance.

31

ParentOC
=<Connection==

semantics - field

interactionClass

==Connection==

OCinheritance

== Afom==

transportation

==ReferenceProxy==

n

HLAobjectRoot
fodel==

dataType
<=ReferenceProxy==

n

—

dimensions
==RefarenceProxy=:=

field

figld
semantics © field

n

o

==Connection=»

&
il

nheritance

parameler
<=fModel==

arder: SITUim
ol io: enuim
Sirar =i

updateCondition . field
updateType . enum

<< Atommss —

A

HLAprivilegeToDeleteQbject
<=Model==>

Figure 4.5: Classes diagram.

The HLA object and interaction classes support only single inheritance: Each class

has at most one immediate superclass, and loops are not allowed. The HLA object class

structure and the HLA interaction class structure are defined with class elements and

inheritance operators. “OClnheritance” is used for object class hierarchy and

“ICInheritance” is used for interaction class hierarchy. Subclasses can be considered to

be specializations, or refinements, of their superclasses. “HLAobjectRoot” is the

superclass of all other object classes and it may have attributes like other object classes.

“HLAinteractionRoot” is the superclass of all other interaction classes and it may have

32

parameters like other interaction classes. Individual class names need not be unique. But
the names of the sibling classes must be different. A violation of this constraint causes an

€rror message.

Object classes have attributes and interaction classes have parameters. The names
assigned to attributes of any particular object class shall not duplicate (overload) the
names of attributes of this class or any higher level superclass. In the same way, the
names assigned to parameters of any particular interaction class shall not duplicate
(overload) the names of parameters of this class or any higher level superclass. Any
violation of these constraints causes error messages. Be reminded that in case of an error
message the user cannot complete the attempted operation. In contrast, a warning
message allows the operation to complete, with the presumption that the user will have

the violation removed from the final model.

The models in this paradigm sheet have some attributes and parts. We will look at

the most important ones.

OMTClass Model Attributes:

e Sharing: Each object class or interaction class shall have information on
publication and subscription capabilities. Valid entries for sharing shall be: “P

(Publish)”, “S (Subscribe)”, “PS (PublishSubscribe)” and “N(Neither)”.

e Definition: Information about the class. The FOM/SOM lexicon defined in HLA

OMT specification can be derived from this attribute.
e Semantics: Semantics for the class if needed.

e Notes: Note labels added to the class.

ObjectClass Model Attributes

No additional attributes.

InteractionClass Model Attributes

e Order: Specifies the order of delivery to be used. Valid values are: “Receive”

and “TimeStamp”.

33

o Dimension: Available dimensions are provided with references that shall be
referred to any dimension described in dimensions folder. A value of “NA” may

also be provided with no reference.

e Transportation: Specifies the type of transportation to be used. Transportation
is provided with a reference that shall be referred to any transportation described
in transportations folder. Each interaction class has one and only one
transportation type. Default transportations “HLAbestEffort” and “HLAreliable”
are available in IEEE default library which is prepared with our proposed

metamodel.

OMTAttribute Model Attributes:

o Datatype: Identify the datatype of the attribute. Datatype is provided with a
reference that shall be referred to any simple, enumerated, array, fixed record, or
variant record datatype described under datatypes folder. A value of “NA” may
also be provided with no reference. When datatype is “NA”, the update type,

update condition, and available dimensions shall also be “NA”.

e Definition: Information about the attribute or parameter. The FOM/SOM lexicon

defined in HLA OMT specification can be derived from this attribute.
e Semantics: Semantics for the attribute or parameter if needed.

e Notes: Note labels added to the attribute or parameter.

Attribute Model Attributes

o Dimension: Available dimensions are provided with references in the same way

with interaction classes.

e Transportation: Specifies the type of transportation to be used; provided in the

same way with interaction classes.

o UpdateType: The policy for updating an instance of the class attribute. Valid

values are: “Static”, “Periodic”, “Conditional” and “NA”.

e UpdateCondition: Expand and explain the policies for updating an instance of
the class attribute. If the update type is “Static” or “NA”, “NA” shall be entered.

o DivestAcquire: Indicates whether ownership of an instance of the class attribute

can be divested or acquired. Valid values are: “D (Divest)”, “A (Acquire)”, “N

34

(NoTransfer)” and “DA (DivestAcquire)”. In a FOM, if an instance attribute can
be divested by a federate, it should be acquirable by some other federate in the
federation. Therefore, the unique designations for this column shall be: “N

(NoTransfer)” or “DA (DivestAcquire)”.

e Sharing: Each attribute shall have information on publication and subscription

capabilities, provided in the same way with OMT classes.

Parameter Model Attributes

No additional attributes.

A part of a sample XME file that includes an object class definition is shown in

Figure 4.6.

<model id=""1d-0065-00000008" kind="objectClass">
<name>Employee</name>
<attribute kind="definition">
<value>A person working for the restaurant</value>

</attribute>

<attribute kind="notes" status="meta'>
<value></value>

</attribute>

<attribute kind="semantics"™ status="meta''>
<value></value>

</attribute>

<attribute kind="sharing" status="meta'>
<value>N (Neither)</value>
</attribute>
<model i1d=""i1d-0065-00000053" kind="attribute'>
<name>PayRate</name>
<attribute kind="definition" status="meta">
<value></value>
</attribute>
<attribute kind="notes'>
<value>Notel</value>
</attribute>
<attribute kind="order"™ status="meta'>
<value>Time Stamp</value>
</attribute>
<attribute kind="ownership">
<value>divestacquire</value>

</attribute>

<attribute kind="semantics"™ status=""meta'>
<value></value>

</attribute>

<attribute kind="sharing'>
<value>PS (PublishSubscribe)</value>
</attribute>

35

<attribute kind="updateCondition'>
<value>Merit increase * [1,2]</value>

</attribute>

<attribute kind="updateType'>
<value>conditional</value>

</attribute>

<reference id=""i1d-0067-00000009""
kind=""transportationRef" referred="1d-0066-0000003b"">

</reference>

<reference id=""1d-0067-0000000a"" kind=""datatype"
referred=""i1d-0065-0000005c"">
</reference>
</model>
<model id="id-0065-00000079" kind=""attribute'>
<name>HomeNumber</name>

</model>
<model id="id-0065-0000007a" kind=""attribute'>
<name>HomeAddress</name>

</model>
<model id="id-0065-0000007b" kind="'attribute'>
<name>YearsOfService</name>

</model>
</model>

Figure 4.6: The XME output for an object class.

4.1.3.2 Dimensions

Dimensions model map to dimension table of HLA OMT tabular format. Figure 4.7
shows the dimension diagram. Federations use dimensions to limit the delivery of some
data on the basis of object class, interaction class, and object attribute. They refer to the
available dimensions using “dimensionRef” model element. Each set of available
dimensions is a subset of all dimensions, so there can be many referred dimensions.
Dimensions folder is in the root folder of the project, so that dimensions are shared

models.

36

dimensions
<=fFolders=>

dimensionRel
==References==

¥

notes field
value : field
upperBound : field
+ +

9 1

dataType normalization
<=ReferencelProxy== <= AtomProxy==
” notes : field
domain field
’

Figure 4.7: Dimension diagram.

The important attributes of dimension model are “value” and “upperBound”.
Dimension upper bound specifies the upper bound for the dimension as a positive

integer. “Value” specifies the default range for the dimension.

Each dimension should have a datatype reference, this can refer to a simple datatype
or an enumerated datatype. Each dimension has a normalization function that specifies
the map from a dimension’s bounding coordinates to nonnegative integer sub-ranges in
the range [0, dimension upper bound). The following normalization functions are
commonly used and they are provided with our metamodel; new functions can be

referred as well:

linear(domain, dimensionLower, dimensionUpper)
e linearEnumerated(domain, mappedSet)

e cnumeratedSet(domain, mappedSet)

e logarithmic(domain, domainLower, domainUpper)
e tanh(domain, domainCenter, domainSize)

e newFunction(parameterl, parameter2, parameter3)

Figure 4.8 denotes the normalization function diagram, where the above functions are

modeled.

37

normEunctions
==Atoim==

fotes field
dormain . field

==

linear linearEnumerated enumeratedSet

== Atom== == Atom== == Atofms=
dimensionlUpper: feld mappedset ;. feld mappedset - feld
dimensionLower . field

|] 1

logarithimic tanh newrFunction

==Atom== <<Atom== ==Atom=>
dimensionlpper : field domainSize : field | | Description : field
dirmensionLower : feld domainCenter - field | | Parameter2 : field

Parameter? . field
FParameter? . field

Figure 4.8: Normalization functions.

Unfortunately the format of the default range for dimensions and the format of some
parameters for normalization functions are not checked as these fields accept arbitrary

strings.

4.1.3.3 Time Representation

Federates may associate themselves or some of their activities with points on the HLA
time axis, i.e. time stamps. It is also important to define the lookahead characteristics of
federates and federations in order to provide compatibility. Time stamp and lookahead
are modeled in time representation diagram shown in Figure 4.9. Both of them may have
a datatype reference, which can refer to a simple, enumerated, array, fixed record or

variant record datatype.

38

dataType
- -+ ==ReferenceProxy==

notes field
semantics . field

L4

lookahead timestamo
== fodel== ==jjodel==

Figure 4.9: Time representation model.

4.1.3.4 User Supplied Tags

With the User Supplied Tags diagram, the mechanism for federates to supply tags with
some certain HLA services is modeled. The HLA service categories that are capable of
accepting a user-supplied tag are: update/reflect instance attribute values, send/receive an
interaction, delete/remove an object instance, divestiture request, divestiture completion,

acquisition request, and request update services.

Figure 4.10 shows the user supplied tags model. Each service category may have a
datatype reference which can refer to a simple, enumerated, array, fixed record or variant

record datatype.

39

tags

wefdodel== ffara Type
- - ==Referencefroxy==
notes field
semantics : field &
updateReflectTag sendReceiveTag deleteRemoveTag divestitureRequesiTag
=={fodel== ==\fodel== ==} odel== ==[odel==
divestitureCompletion Tag acquisitionRequestTag requestUpdateTag
== fodel== == fodel== <= fodel==

Figure 4.10: User-supplied tags diagram.

4.1.3.5 Synchronizations

The synchronizations diagram shown in Figure 4.11 defines synchronization points to
synchronize federation activities. Each synchronization point has a tag datatype reference
that identifies the datatype of the user-supplied tag when needed. It can refer to a simple,

enumerated, array, fixed record or variant record datatype.

For SOMs, synchronization points have “notes” attribute, “semantics” attribute, and
an attribute named capability that indicates the level of interaction that a federate is
capable of honoring. Valid values for capability are: “Register”, “Achieve”,
“RegisterAchieve” and “NoSynch”. For FOMs, synchronization points have only “notes”
and “semantics” attributes. In the diagram “synchronization” model is used for SOMs

and “synchronizationNA” model is used for FOMs.

40

synchronizations

== fodel==
notes - field -
semantics . field

A

dataType

==Heferancelroxy=:=

;

synchronizationMA

==\fodel==

synchronization
<=\ iodel==

capabifityMA ;

field

capability . enum

4.1.3.6 Transportations

This diagram defines transportation types that define the transportation of data among
federates. Two transportation types, “HLAreliable” and “HLAbestEffort”, are required
by the HLA and these are provided with IEEE default library model. This library is

described in section 4.2.1.

Figure 4.12 shows the transportations diagram. Transportation folder is in the root
folder of the project, so transportations are shared models. Object class attributes and

interaction classes refer to a transportation type via the “transportationRef” model

element.

fransportationRel
—=Refergnces=

transportation

Figure 4.11: Synchronizations diagram.

==Atoim==
notes ; field
description . field

transpontations

& =EFolders=

Figure 4.12: Transportations diagram.

41

4.1.3.7 Switches

The Switches diagram provides initial settings of some actions provided on behalf of
federates. Researchers who will do future work should note that although the initial
setting of each switch is specified, the value of each switch may be changed during
execution. The switches whose setting can be provided are: auto provide, convey region
designator sets, attribute scope advisory, attribute relevance advisory, object class
relevance advisory, interaction relevance advisory, and service reporting. For SOMs,
setting can be “NA” as well as enabled or disabled, but for FOMs, all switches must be

(initially) set as enabled or disabled.

4.1.3.8 Data types

Figure 4.13 denotes the datatypes diagram. “DatatypeModel” is an abstract model on the
top of other datatypes. There is a “basicData” model to provide the representation type of
some datatypes. Basic data representation is not used as a datatype, but it forms the basis
of the datatypes. The “simpleData” model can be used to describe simple, scalar data
items. The “enumeratedData” model can be used to describe data elements that can take
on a finite discrete set of possible values. The “arrayData” model can be used to describe

indexed homogenous collections of datatypes also known as arrays or sequences.

The “fixedRecordData” model can be used to describe heterogeneous collections of
types also known as records or structures. Each fixed record datatype may contain fields
that are of other types, such as simple datatypes, fixed records, arrays, enumerations, or

variant records.

The “variantRecordData” model can be used to describe discriminated unions of
types known as variant or choice records. Each variant record datatype may contain

enumerators that determine the alternatives.

Datatypes folder is in root folder in the project. Datatypes are shared models and
several models (object class attributes, interaction class parameters, dimensions, time

representations, user-supplied tags, and synchronization points) refer to datatypes.

42

== fodeg/==

Data Typelfodel

fiotes ; field

e !
SeManics .

field

dataTypes

=<Folder==

+ W

datatype

==References==

[—

e T |
datatypesE
==Reference==

—] |

bazicDataRepresentalions

==Folder==

zsimpleDataTypes

==zFolder==

encodifg
enaian .

retaliof |

field

field

field

representalion

==Reference==

)

datatypet

==References==

4 T

=i
ST

'leData

“z{fode/==

paeite -
LA .

enumeratedDataTypes
z=Cnldars:=

dCCUracy .
resoluti

o

field [*
field
field

arrayData Types

==Folders=

fixedRecordDataTvpes
==Folder==

-

— |

P —

iR ——
enuimeralor
enumeratedData [D
* ==Alom==
o.=| notes - field
values : field
dataTypeRefl
==Referencelroxy==
”
| ¥ —
fivedRecordData et
R ==iogel==
Rt | 'C'GE'IF":' R —
notes field
encoding - field . o
= semantics . field

%

variantRecordData Types

==Folder==

Ja

varantRecordData
=={fodel=

gilerfiative

==lodel==

aiscriminagnt |

gncodifng |

field
field

field
field
field
field

alternativelame :
fioles .
EeMmantics |

efnuimeraior .

Figure 4.13: Datatypes diagram.

43

A predefined set of basic data representations, three predefined simple datatypes, a
single predefined enumerated datatype and three predefined array datatypes are defined

in IEEE default library mode. This library is explained in section 4.2.1.

4.1.3.9 Notes

The Notes diagram provides note elements for the object model elements. Notes are
defined under the root folder and they can be pointed out from any model element
described previous sections. A note may be referenced any number of times and a single

object model element may have any number of notes.

Also additional notes, related to the design model, can be added by the user with

GME annotation facilities. These annotations are not a part of the object model.

4.2 Object Model Design Environment

After defining the metamodel as a GME paradigm, a design environment for object
models can be automatically generated by using the GME Meta 2004 Interpreter. The
Object Model Design Environment (OMDE) is explained in Appendix A as the User’s
Guide. This chapter explains IEEE default library, the MOM and an example federation

design model.

4.2.1 |EEE Defaults Library

An important facility that GME needs is default model elements that mean when the user
creates a model some model elements are already defined for it. The GME overcomes
this problem with libraries. The user defines libraries and attaches them to the model
where needed. So in order to define default datatypes and transportations for HLA, we
modeled IEEE defaults library with our metamodel. To utilize these datatypes and
transportations, first he should attach this library to his model.

The predefined basic data representations and datatypes in this library are listed in
Figure 4.14 in the tree browser of GME for IEEE defaults library. The XME output,
generated by GME, of this library is reproduced in Appendix B.

44

Aagregate llnheritanu:e] Meta]

|HL-’lb|:u:|Iean j

=] % |EEE 1516 defaults
-1-iZg Default Data Types
-3 Default Amay Data Types
+-[dl HLAASClstring
+ A HLAopaguelata
+-ffll HLAunicodeString
-3 Default Basic Data Representations
[l HLAfloat32EE
Il HLAfloat32LE
[l HLAfloatS4EE
Il HLAfloatG4LE
fal HLAirteger16BE
fall HLAinteger16LE
@l HLAintegerdZBE
@l HLAintegerdZLE
@l HLAintegers4BE
[all HLAintegerG4LE
fall HLAoctet
fall HLAoctetPairEE
[all HLAoctetPairlE
-1-iZ3 Default Enumerated Data Types
+- Tl HLAboalean
-1-izg Default Simple Data Types
+- Tl HLAASClIchar
+-fll HLARyte
+- Tl HLAURicodeChar
-1-izg Default Transportations
W@ HLAbest Effort
@ HLArslizble

3 N

Figure 4.14: Default datatypes and transportations.

4.2.2 Management Object Model

Management Object Model, s defined in Federate Interface Specification. MOM
provides facilities for joined federates to access RTI services during federation
execution. MOM specification employs the OMT tabular format and so we can readily
model it with our metamodel. MOM provides some default model elements for some
services, such as publishing object classes; registering object instances and updating
values of attributes of those object instances; subscribing to and receiving some

interactions; or publishing and sending other interactions. The classes, attributes,

45

parameters, datatypes and dimensions in MOM are modeled completely. Figure 4.15

shows the datatypes and dimensions in the tree browser.

Aggregate Ilnheritancel Meta I
|EEE 1516 MOM -

=% |EEE 1516 MOM ~|
&2} -4 MGA=IEEE_1516_library_ver1-0_250705.mga T
=423 MOM
= MOM

H interactions

-1 objects
M Diata Types
MOM Amay Data Types

E
Dﬂ?
E

HHHHWEHHHWEHHHIIII@HHHHHHHHHHHW
§
I}
[=
3
[}
=
|-
0.

HLAhandle

HLAhandle List
HLAinteractionCourts
HLAinteraction SubList
HLAlogical Time
HLAobjectClassBasedCounts
HLAsyncPoint Federate List
HLAsyncPoirt List
HLAtimeIrterval
HLAtransportation Mame
M Enumerated Data Types
HLAfederateState
H HLAorder Type

Bl HLAownership

Bl HLAresignAction

H HLAserviceGroupMame
o-fal HLAswitch

o-fal HLAsyncPoint Status
7Tl HLAimeState

MOM Ficed Record Data Types
HLAinteractionCourt
HLAInteraction Subscription
HLAobjectClassBasedCount
HLAsyncPoint Federate
M Simple Data Types
HLAcount
HLAfederateHandlz
HLAmsec

HLAseconds

Dimensions
ederate

erviceGnoup

i
L

Bl 5 B B B B

I}
L

m

- BRI 5 R EE

=

B
w mo=

o

m
sof

Figure 4.15: MOM datatypes and dimensions.

46

Although GME provides XME outputs, which has an extended XML representation,
the size of the files can get very large. MOM has more than 10,000 XME lines, where
our proposed metamodel has over 40,000. GME also needs improvement on its import
and export mechanisms. Because of this reason we cannot show the XME output for

MOM.

Figure 4.16 shows the object classes and Figure 4.17 shows the interaction classes
drawn with the HLA OM design environment. We refer to HLA federate interface

specification for further details.

HLA_ QBT - Jobrjects - AIEEE 1576 MOWUAMDRMOW |

s A mMETEDEOED T

& T Mo [chmcts Aapeca|Clises = | Bave [Zooem 10X =] =
n — boregate | hatancs | M |
” = =
$ w2 15k 150E MM
& Mlasal 1406 ey vwr 10 240 T g
- = i MOM
& &8 wou
N]
= W s
= Wl HLMeseme
Tl =L Heserman
[LT——
Tl HibctectRsat
e Ol Fhedarnce
) Gorheiance
) MO Dt Troms
w) MOM Ay Diats Troes
[MO Ernumersied Data Tioes
* ¥ gl VO Mooed Piacord Dt Typas
o~ a1 Gl MO0 Sl Dt Troes
g‘! Jg ¥ |3 MO Demprmars
H
HLAfeder ale HLAfederabon
-
i 1 . A [HLtecerate r
byl
ﬂ il A Aot | Pretererses | Progerte |
OCinhentance Fi Sharg F Pubieh) =
HLAohectRoof F F [irroar Thas pkwoct clars shall cordam RT1 slste wanables sslstre) 1o 4 vt loderate. The AT) shal
. PN Erublith ¥ arel sl iogrates ore abwedt rrilireo o i e ok ate 1 o b shon, Dpraes:
12 i that sl s oot in a0 Sl riterd ihal b wgebated pescdally, eheeg the
— o] shnd bt ptosard By an reacion o B clas
WLt HLAbsees e HLS ekt LA T, I ue vl i reress dd o if 60 03 T,
abpciClass i partis Lgulabe ol b pasdtvarasd By B IT1
-
Cisns |
Eip EDIT [300% a_OnT (G55 A

Figure 4.16: MOM object classes.

47

HELA_QBAT - IEEE 1576 MO - [interactions - AEEE 1576 MOWAMDRMOW | |
Gl Ple EaE Vew Window Mep - X

[l Wotcharge e

L oEl X R b St A mETEEOED 7

& T Mo [rieactons " [imtesachions QT [ve— | B [n - | =
n — horme | rbatance | Mes |

*

i ¥ =l
bt} e o
- I taasen
“ ¢ M e

% Qi FLicharguindnre

S Tt
,«__*?‘ o T HLlshargaiternee:
—|' # Il WLachargainbescc
+ Tl W Adeeeltec e
vl S e
v [l HLAdaaiie Tl
Ll WL Adestie Tralag
+ U mheanimin i
v FLreramie Trelorn
[l MLAenatie TimeBag
Dl WL Aecerntn
T
i Ll WLsbedernintavalie
BT LT
T LT
vy B L8 R i B

| ¥

g E,

SR B

e

-

1
1
L,
-'.>—-=k_; £l

-

" Amlades | Postererces | Froperte: |

-

: — ; I

ICinherdance -
HLATeractonRoc! E =

==
-
o
=
b1 8 =
=
=
ﬂﬁﬁ ==
=
=
=

mlprachonClass

icdad Flistaecs
ohraon Flimt et of BIDM rlgs ot

Fhebbbpbke kbbb
Ladias sadasatesd
BEERbRRRRE FEE

Clnises

Beady EDIT FS% HLA OnT 0853 aM

Figure 4.17: MOM interaction classes.

4.2.3 Sample Federation Design Model

We have modeled a sample restaurant federation design model, which is a well known
example, since the HLA standard gives this example in order to explain object model
template tabular format. Here we extend the given example with a few new modeling
elements and a simple federation design model. All sample tables included in the

standard document are completely covered in this example.

Figure 4.18 shows a screenshot from the modeling environment. On the right side of
the figure the tree browser shows the datatypes, dimensions and transportations. On the
left side of the figure, above model shows the federation design model with one
federation and two federates connected to the related FOM and SOMs; the following

model shows some of the interaction classes of Restaurant Federate SOM.

Figure 4.19 shows a sample object class hierarchy in Restaurant Federate SOM. This

is only a part of the object class hierarchy with “HLAobjectRoot” on the top.

48

NEA OET - 1L Sample S0

P L& Tes Widba g
/Ld-ﬂ~.—-rufdnmmmmlﬂemr —

x r"lo-a-r_-nt.n;ruup el - Fhaskarr ey ;

: T Moo [Fectsten Dongr [Fodeaton Demgn gt | Frciuten [ew = | B [H0A Zow VL =] ey =]

p.] | Fedatation T L4 i Dmsyoes &

- R & T T —— - Sy D T

Y el T = e

£ FOLRefermnce Restawranl Federaion Restgurant Federade T g@f‘i?ﬂ.*“‘_ﬂ_mlﬁm_}j:-lﬁ.:rr el
ol vrmgraieot

= 2 et Do Trom
pecasl v
= | & Gl NevorToe
Hesraarant Feaerate 7 SOMRelerence - ﬁ .
F i Fruned Bpmaet Dt Troes
el -
» il Severa

= 2 Seve Den Troen

T Meew |rimacton

= -l Vet Aot Dera Vo
-l Hatertinie
* = 2 Drarsers
il Ewties

¥
L] —
o
? + Sl Sessfwor
Copmdpedng Sl

{
17 3k 18
H__'_’:im % iuf?r: w Gl Winderid

T Fedemmen Dengr bicdel
i MOASETE 5314 oy vl
“WE

¥ 3 Vot
Frometoyileny Pomasciiges [eocierer dopecpecieeos

1 3l Teet Mase
< il Trarmeedutern
¥, LosLmwoy 3

Useoloormsfarvay Jespprianes Blrpoeles Belaar &
¥

a"[
[0
o
e

EDET | Fi HLA 0T ERAT Ma

Figure 4.18: Sample federation design model overview.

Uil

]
[}
2 |mn.
i
4

-
-

= = =

%
1

Beef Chicken Seslood Pasta Corn Broceoli BakedPotato

le—vl

Menhettan MNewEngland

Figure 4.19: Sample object class hierarchy.

49

This example, along with the MOM model, raised our confidence that object model
design environment created by GME based on our metamodel, is a sufficiently powerful

visual tool for object models and it can be used for designing “real life” object models.

50

CHAPTER 5

CONCLUSION

This thesis introduces a metamodel as a GME paradigm for HLA object models and
explains a design environment that is generated automatically. Our objective is to lay the
foundation for developing a federation object model design tool, which can be a part of a
federation development toolkit, by applying model integrated computing to HLA.
Defining a metamodel for HLA OM can be seen as an initial step in this direction. This
metamodel is used in GME’s Meta interpreter and the Object Model Design
Environment (OMDE) is generated automatically. The OMDE is a design tool to
describe individual federates and federations with SOMs and FOMs respectively. OMDE
also provides modeling simple federation designs with illustrative purposes. The object
models defined with OMDE, are the domain models of the MIC process. So they can be

used in another model transformation tool, such as code generators.

The proposed metamodel is fully compliant with IEEE Std. 1516.2, and it is
strengthened with constraints written in OCL. OMT DIF formatted object models can be
easily generated by writing simple interpreters. The OMT tabular format can also be
generated easily, since all information in tabular format can map to a modeling element
in our metamodel. Furthermore, our metamodel can support virtually any presentation of
an object model compliant with IEEE Std. 1516. All that is required is to provide a
generator based on model traversal, which is supported through an API in GME.

Although we have described a metamodel for HLA OM, services defined in federate
interface specification can also be modeled in this way; and this work will make our
metamodel more useful. Now, there is a metamodel that is ready to be used as a design

tool and an input of a further study in MIC process.

51

51 Future Work

In this thesis we have used the latest version 4.11.10 of GME. Unfortunately, at this time
it uses UML 1.4, it isn’t upgraded to UML 2.0 yet. But we understand that the next
generation modeling environment will support MOF 2.0 and also it will give opportunity
to directly use MOF 2.0 for paradigms. So porting the HLA OM metamodel to MOF 2.0

should be considered.

Also the IEEE has announced that it began to revise IEEE 1516, IEEE 1516.1 and
IEEE 1516.2 modeling and simulation standards on 31.03.2005. Upgrading this

metamodel will be a future-work after the revision of the standards will be completed.

GME has a decorator facility for better visualization of the models. We used the
standard Meta Decorator, but more advanced decorators can be defined and used.
Providing more powerful visual elements will improve the object model design

environment.

As we noted in related section, most of the attribute values are checked for syntactic
validity while a few of them are not. Validation and also verification of the domain

models will allow the metamodel to be used more effectively in development tools.

Applying MIC to HLA will bring new future works as model transformations and
code generation, for which the proposed metamodel can be directly used. The researchers
at Vanderbilt University developed a model-to-model transformation language The
Graph Rewriting And Transformation language (GReAT) [46], and a meta-
programmable transformation tool that supports the development of graphical language
semantic translators using graph transformations. These translators can convert models of
one domain into models of another domain. The GReAT tool can be used for model

transformations.

Lastly this metamodel handles only HLA object models. A complete design and
development environment for HLA based distributed simulations should be developed,
supporting all steps of FEDEP. Subsequent tasks include a) generating HLA
configuration files, b) importing and exporting object models represented in OMT
tabular format, in OMT DIF format, or in some UML tool, ¢) defining a mapping from
FOM elements to SOM elements, and d) producing Publish/Subscribe diagrams.

52

(1]

(2]

[3]

[4]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

H.-E. Eriksson, M. Penker, B. Lyons, D. Fado, UML 2 Toolkit, Wiley, Indiana,
2004.

R. M. Fujimoto, Parallel and Distributed Simulation Systems, Wiley, New York,
2000.

A. Kleppe, S. Warmer, W. Bast, MDA Explained - The Model Driven
Architecture: Practice and Promise, Addison-Wesley, Boston, 2003.

F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An
Introduction to the High Level Architecture, Prentice Hall, New Jersey, 1999.

M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging
Discipline, Prentice-Hall, New Jersey, 1996.

J. Warmer, A. Kleppe, The Object Constraint Language: Getting Your Models
Ready for MDA, 2nd Ed., Addison-Wesley, Boston, 2004.

B.P. Zeigler, H. Prachofer, T.G. Kim, Theory of Modeling and Simulation, 2nd
Ed., Academic Press, San Diego, 2000.

GME 4 User’s Manual, Institute for Software Integrated Systems at Vanderbilt
University, 2004.

IEEE Std. 1516, IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Framework and Rules, IEEE, 2000.

IEEE Std. 1516.1, IEEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Federate Interface Specification, IEEE, 2000.

IEEE Std. 1516.2, [EEE Standard for Modeling and Simulation (M&S) High
Level Architecture (HLA) - Object Model Template Specification, IEEE, 2000.

IEEE Std. 1516.3, IEEE Recommended Practice for High Level Architecture
(HLA) Federation Development and Execution Process (FEDEP), IEEE, 2003.

MDA Guide v1.0.1, OMG, 2003.

53

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[28]

[29]

[30]

MOF Specification vi.4, OMG, 2002.

MOF 2.0 Core Specification, OMG, 2003.

UML Specification vi.4, OMG, 2001.

UML 2.0 Infrastructure Specification, OMG, 2003.

UML 2.0 OCL Specification, OMG, 2003.

Visual OMT 1516 User’s Guide, Pitch Technologies, Sweden, 2003.

AEgis Technologies, http://www.aegistg.com, last accessed 26.07.2005.

DMSO web site, https://www.dmso.mil, last accessed 30.07.2005.

IEEE web site, http://www.leee.org, last accessed 20.07.2005.

OMG web site, http://www.omg.org, last accessed 26.07.2005.

Pitch Technologies, http://www.pitch.se, last accessed 01.08.2005.

SIMplicity, http://simplicity.calytrix.com, last accessed 01.08.2005.

XML, http:// www.w3.org/XML, last accessed 12.08.2005.

J. Borah, “Conceptual Modeling: The Missing Link of Simulation Development,”
in 2002 Spring Simulation Interoperability Workshop, Orlando, 2002.

J. Bourrely, P. Carle, M. Barat, F. Lévy, “GENESIS: an integrated platform for
designing and developing HLA applications,” in EURO SIW 2005, France, 2005.

T. Celik, R. Siitbas, K. Imre, “HLA icin Modelleme, Otomatik Kod Uretme,
Izleme ve Sinama Araglari,” in USMOS 2005, Ankara, Turkey, 2005.

P. Desfray, “UML Profiles versus Metamodel extensions: An ongoing debate,”
in UML Workshop 2000, California, 2000.

M.J. Emerson, “GME-MOF: An MDA Metamodeling Environment for GME”,
MS Thesis in Computer Science at Vanderbilt University, Tennessee, 2005.

J. Gray, T. Bapty, S. Neema, J. Tuck, “Handling Crosscutting Constraints in
Domain-Specific Modeling,” in Communications of the ACM Journal, vol. 44
no. 10, pp. 87-93, 2001.

54

http://www.aegistg.com/
https://www.dmso.mil/
http://www.ieee.org/
http://www.omg.org/
http://www.pitch.se/
http://simplicity.calytrix.com/
http://www.w3.org/XML

[33]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

[44]

T. Gruber, “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing,” in International Workshop on Formal Ontology, Italy, 1993.

M. Karlsson, L. Olsson, “pRTI 1516 - Rationale and Design,” in 2001 Fall
Simulation Interoperability Workshop (SIW), Orlando, 2001.

G. Karsai, A. Agrawal, “Graph Transformations in OMG’s Model-Driven
Architecture,” in the Proceedings of the Applications of Graph Transformations
with Industrial Relevance International Workshop, Virginia, 2003.

G. Karsai, A. Agrawal, A. Ledeczi, “4 Metamodel-Driven MDA Process and its
Tools,” in WISME, UML 2003 Conference, San Francisco, 2003.

G. Karsai, A. Agrawal, F. Shi, J. Sprinkle, “On the Use of Graph
Transformations for the Formal Specification of Model Interpreters,” in
Universal Computer Science Journal, vol. 9, no: 11, pp. 1296-1321, 2003.

G. Karsai, M. Maroti, A. Ledeczi, J. Gray, J. Sztipanovits. “Composition and
Cloning in Modeling and Meta-Modeling,” in IEEE Transactions on Control
System Technology, vol.12 no.2, pp. 263-278, 2004.

A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G.
Nordstrom, J. Sprinkle, P. Volgyesi, “The Generic Modeling Environment,” in
the Proceedings of IEEE International Workshop on Intelligent Signal
Processing (WISP'2001), Budapest, Hungary, 2001.

G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi, “Metamodeling - Rapid
Design and Evolution of Domain-Specific Modeling Environments,” in the
Proceedings of the IEEE ECBS'99 Conference, Tennessee, 1999.

S. Parr, “A Visual Tool to Simplify the Building of Distributed Simulations Using
HLA,” in Information & Security International Journal, vol. 12 no. 2, pp. 151-
163, 2003.

T. Rathnam, C.J.J. Paredis, “Developing Federation Object Models Using
Ontologies,” in the Proceedings of the 2004 Winter Simulation Conference,
Washington D.C., 2004.

R. Sudarsan, J. Gray, “Meta-Model Search: Using XPath to Search Domain-
Specific Models,” in International Conference on Software Engineering
Research and Practice, Nevada, 2005

O. Topgu, H. Oguztiizin, “Towards a UML Extension for HLA Federation
Design,” in the Proceedings of 2nd Conference on Simulation Methods and
Applications (CSMA-2000), Orlando, 2000.

55

[45] O. Topgu, H. Oguztiziin, G.M. Hazen, “Towards a UML Profile for HLA
Federation Design, Part II,” in the Proceedings of Summer Computer
Simulation Conference (SCSC-2003), Montreal, Canada, 2003.

[46] A. Vizhanyo, “A Metamodel based Model Transformation Tool: GReAT and
Code Generator: the GReAT Compiler,” in OMG MIC Workshop, Virginia,
2004.

56

APPENDIX A

USER’S GUIDE

This is the User’s Guide of the Object Model Design Environment (OMDE) which is
automatically generated with GME. It explains how to use the GME HLA OM paradigm

to design object models.
Registering the paradigm:

To be able to use the OMDE you should first register the HLA OM paradigm. Open the
HLA OM paradigm “.mga” file and run the Meta 2004 Interpreter on the upper left
corner of the GME. Answer “yes” when you are asked to register the paradigm. And

press “Next” button for other dialogs. Close the metamodel.
Opening a New HLA OMT Project:

Start GME, and select “File/New Project”. A dialog box asks you to choose the paradigm
that the new project will be based on. Select HLA OMT and press the “Create New”
button. The next dialog asks you to specify the data storage. Simple models are usually
stored in project files. Click “Next” and you are asked to name a project file. The

3

standard extension is “.mga”. Specify a name (like “restaurant.mga”) and press OK.
GME has now created and opened an empty project that is named “restaurant” and

associated with the HLA OMT paradigm.
Creating Federation Design model:

Right click on the root folder in the Browser window (the one usually positioned at the
right side), and select the single option “Federation Design Model” within the “Insert
Model” option as in Figure 4.20. A new model named “New Federation Design Model”
is created under the root; you may change the name from Attributes browser. Double

click on the model to open it. An empty window appears in the user-area.

57

The Part Browser, a small window in the lower left portion of the program, displays
the model elements that can be inserted into the model in its current aspect. The elements
in this browser are federation, federate, FOMReference and SOMReference. You can use
them by dragging from the Part Browser onto the main window. You can connect
federation to federates to denote the members of the federation; federation to
FOMReference; and Federate to SOMReference. When using references, you drag the
referred element over the reference and drop it when the mouse icon changes. But before
referring elements you should first define FOM and SOM object models. Copy and paste
operations on elements are supported by GME and all elements can be created, moved or

copied by drag and drop as usual.

l Inhertance] [Meta]
Fioot Folder ﬂ

T '

. Properties

Reqgistry...
Attach Library...

Insert Folder b

Federation Design Model m

LIndo

Copy
Copy Closure
Copy Smart

Delete

Constraints 4
Interpret

Help

Tree Browser Options...

Figure 4.20: Creating Federation Design model.

58

Creating Object Model:

Right click on the root folder in the Browser window and select the “Object Models”
within the “Insert Folder” option. A new folder named “New Object Models” is created
under the root. Again right click on the new folder. You can select FOM, SOM or Other
within the “Insert Model” option. For example select “SOM?”. Double click to open it. An

empty window appears in the user-area. Figure 4.21 shows a part of the Restaurant SOM.

HILA_DMT - [RestawmrantSOM - fRestarant/Dbject ModelsS]
fal Fée Edit Vew Window Feb - =

S O£ | H Gl 2 | 4 BaJSE A mETEEED ¢

T Haww [Mestmaention [50H Bapet [Sretoorizatir | Base: (M Zoom 1000 =] e

X
u
&
& m @ m m Crae

(0 DetaTyoes
4 T —
& IniliaiPubiish Mnitaitipdate BegeTimedchance PavseExgculion Sl Feceration Desgn Model
-l MBAIEEE_1516 bormry_ver1-
[Metes

= {8 e Mocels
4 Tl RastmmpetFOMN

+ i PemmntsoM
G Trsmesssns

AledmrareidH r

m Attbdr | Proemesns | Progetins |
tlnﬁe Frestsuant Easnpie I
e

synchronzalon 1.080pka

pdlegnon (se 19RO
"upase Ennmpis of an obyect model for & sestauant federshe

P ey [y Flsious ok oo st i

Lt sl Tzt | Dharises | Tin Riperienitation Gpeehioninations | Swilches

EDIT | 100%: HLA_OMT (D:31 PN

Figure 4.21: Creating Object Models.

The Part Browser has five views and each view displays the model elements that can

be inserted into the model in its current aspect.
e C(Classes-view includes the definition of object classes, attributes, interaction
classes, and the inheritance relation between the classes.
e User-Supplied Tags view includes user supplied tag elements.
e Synchronization view includes the definition of synchronization point models.

e Switches view includes the Boolean switches in order to change the initial

settings

59

e Time representation view includes the definition of lookahead and timestamp

models.

The icons with “M” letter on the bottom mean this element has parts; you can open

the parts double clicking on the icon.
Creating Other Elements:

Right click on the root folder in the Browser window within the “Insert Folder” option
you can select Dimensions, Transportations, Data Types or Notes. After the selection a
new folder is created under the root. By right clicking on the new folder, you can select
the related model elements. And in the same way with object models and federation

design model, you can define the model elements.

For adding HLA notes, define notes under the Notes folder and give references to
them; or directly add notes to the notes attribute of each modeling element. For adding

design notes, use Annotation facility of GME.

And lastly we can add a few points. References used in the model shall not be null, if
you want to denote “NA”, then simply use no reference element. If you want to check the
validity of your model you can use Check facility of GME, by selecting “File-> Check”

option.

60

APPENDIX B

IEEE DEFAULT LIBRARY

This is the XME output of IEEE Default Datatypes and Transportations Library defined

with object model design environment.

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE project SYSTEM "mga.dtd">

<project version="1EEE 1516.2-2000" metaname="HLA_OMT'>
<name>lEEE 1516 defaults</name>
<comment>Default entries for HLA-OMT.</comment>
<author>Deniz Cetinkaya</author>
<folder i1d="1d-006a-00000001" kind="RootFolder'>
<name>lEEE 1516 defaults</name>
<folder id="i1d-006a-00000002" kind="'dataTypes''>
<name>Default Data Types</name>
<folder i1d="i1d-006a-00000003" kind="basicDataRepr''>
<name>Default Basic Data Representations</name>
<model id=""i1d-0065-00000001" kind="basicData'>
<name>HLAFfloat32BE</name>
<attribute kind="encoding">
<value>32-bit IEEE normalized single-precision

format.
(see IEEE Std. 754-1985)</value>
</attribute>
<attribute kind="endian" status="'meta''>
<value>Big</value>
</attribute>

<attribute kind="interpretation'>
<value>Single-precision floating-point number.
</value>
</attribute>
<attribute kind=""notes" status="meta''>
<value></value>
</attribute>
<attribute kind="size'">
<value>32</value>
</attribute>
</model>
<model id=""1d-0065-00000002" kind="basicData">
<name>HLAfloat32LE</name>
<attribute kind="encoding">
<value>32-bit IEEE normalized single-precision
format.

61

(see IEEE Std. 754-1985)</value>

</attribute>

<attribute kind="endian">
<value>Little</value>

</attribute>

<attribute kind="interpretation'>
<value>Single-precision floating-point number.
</value>

</attribute>

<attribute kind=""notes" status="meta''>
<value></value>

</attribute>

<attribute kind="size'">
<value>32</value>

</attribute>

</model>
<model id=""1d-0065-00000003" kind="'basicData">

<name>HLAfloat64BE</name>

<attribute kind="encoding">
<value>64-bit IEEE normalized single-precision

format.
(see IEEE Std. 754-1985)</value>
</attribute>
<attribute kind="endian"™ status="meta'>
<value>Big</value>
</attribute>

<attribute kind="interpretation'>
<value>Double-precision floating-point number.
</value>
</attribute>
<attribute kind=""notes" status="meta''>
<value></value>
</attribute>
<attribute kind="size'">
<value>64</value>
</attribute>
</model>
<model id=""1d-0065-00000004" kind=""basicData">
<name>HLAFfloat64LE</name>
<attribute kind="encoding'>
<value>64-bit IEEE normalized single-precision
format.
(see IEEE Std. 754-1985)</value>
</attribute>
<attribute kind="endian''>
<value>Little</value>
</attribute>
<attribute kind="interpretation'>
<value>Double-precision floating-point number.
</value>
</attribute>
<attribute kind="notes" status="'meta'>
<value></value>
</attribute>
<attribute kind="'size">
<value>64</value>
</attribute>
</model>

62

<model i1d=""i1d-0065-00000005" kind="basicData'>
<name>HLAinteger16BE</name>
<attribute kind="encoding">
<value>16-bit two's complement signed
integer.
The most significant bit contains the sign.
</value>
</attribute>
<attribute kind="endian" status="meta'>
<value>Big</value>
</attribute>
<attribute kind="interpretation'>
<value>Integer in the range [-2715, -2715-1].
</value>
</attribute>
<attribute kind="notes"™ status="meta''>
<value></value>
</attribute>
<attribute kind="size'">
<value>16</value>
</attribute>
</model>
<model id=""id-0065-00000006" kind="basicData'>
<name>HLAintegerl6LE</name>
<attribute kind="encoding'>
<value>16-bit two's complement signed
integer.
The most significant bit contains the sign.
</value>
</attribute>
<attribute kind="endian'>
<value>Little</value>
</attribute>
<attribute kind="interpretation'>
<value>Integer in the range [-2"15, -2715-1].
</value>
</attribute>
<attribute kind="notes" status="meta'>
<value></value>
</attribute>
<attribute kind="size">
<value>16</value>
</attribute>
</model>
<model id=""id-0065-00000007"" kind="basicData'>
<name>HLAinteger32BE</name>
<attribute kind="encoding'>
<value>32-bit two's complement signed
integer.
The most significant bit contains the sign.
</value>
</attribute>
<attribute kind="endian" status="'meta'>
<value>Big</value>
</attribute>
<attribute kind="interpretation'>
<value>Integer in the range [-27"31, -2731-1].
</value>

63

</attribute>
<attribute kind="notes" status="meta''>
<value></value>
</attribute>
<attribute kind="size">
<value>32</value>
</attribute>
</model>
<model id=""id-0065-00000008" kind="basicData'>
<name>HLAinteger32LE</name>
<attribute kind="encoding'>
<value>32-bit two's complement signed
integer.
The most significant bit contains the sign.
</value>
</attribute>
<attribute kind="endian'>
<value>Little</value>
</attribute>
<attribute kind="interpretation'>
<value>Integer in the range [-2731, -2731-1].
</value>
</attribute>
<attribute kind="notes" status="meta'>
<value></value>
</attribute>
<attribute kind="size'">
<value>32</value>
</attribute>
</model>
<model i1d=""id-0065-00000009" kind="basicData'>
<name>HLAinteger64BE</name>
<attribute kind="encoding">
<value>64-bit two's complement signed
integer.
The most significant bit contains the sign.
</value>
</attribute>
<attribute kind="endian" status="meta'>
<value>Big</value>
</attribute>
<attribute kind="interpretation'>
<value>Integer in the range [-2763, -2763-1].
</value>
</attribute>
<attribute kind="notes"™ status="meta'>
<value></value>
</attribute>
<attribute kind="size'">
<value>64</value>
</attribute>
</model>
<model id="1d-0065-0000000a" kind="basicData'>
<name>HLAinteger64LE</name>
<attribute kind="encoding'>
<value>64-bit two's complement signed
integer.
The most significant bit contains the sign.

64

</value>

</attribute>

<attribute kind="endian">
<value>Little</value>

</attribute>

<attribute kind="interpretation'>
<value>Integer in the range [-2763, -2763-1].
</value>

</attribute>

<attribute kind=""notes" status="meta''>
<value></value>

</attribute>

<attribute kind="size'">
<value>64</value>

</attribute>

</model>
<model id=""1d-0065-0000000b" kind="'basicData">

<name>HLAoctet</name>

<attribute kind="encoding">
<value>Assumed to be portable among hardware
devices.</value>

</attribute>

<attribute kind="endian" status="'meta''>
<value>Big</value>

</attribute>

<attribute kind="interpretation'>
<value>8-bit value</value>
</attribute>
<attribute kind="notes" status="meta'>
<value></value>
</attribute>
<attribute kind="size'>
<value>8</value>
</attribute>
</model>
<model i1d=""1d-0065-0000000c" kind=""basicData">
<name>HLAoctetPairBE</name>
<attribute kind="encoding">
<value>Assumed to be portable among hardware
devices.</value>

</attribute>

<attribute kind="endian" status="'meta''>
<value>Big</value>

</attribute>

<attribute kind="interpretation'>
<value>16-bit value</value>
</attribute>
<attribute kind="notes" status="meta'>
<value></value>
</attribute>
<attribute Kind="'size">
<value>16</value>
</attribute>
</model>
<model i1d=""1d-0065-0000000d" kind="'basicData">
<name>HLAoctetPairLE</name>
<attribute kind="encoding'>
<value>Assumed to be portable among hardware

65

devices.</value>
</attribute>
<attribute kind="endian">
<value>Little</value>
</attribute>
<attribute kind="interpretation'>
<value>16-bit value</value>
</attribute>
<attribute kind="notes" status="meta'>
<value></value>
</attribute>
<attribute kind="size'>
<value>16</value>
</attribute>
</model>
</folder>
<folder id=""1d-006a-00000004""
kind="enumeratedDatas"'>
<name>Default Enumerated Data Types</name>
<model id=""1d-0065-0000000e""
kind="enumeratedData''>
<name>HLAboolean</name>
<attribute kind="notes" status="'meta'>
<value></value>
</attribute>
<attribute kind="semantics'>
<value>Standard Boolean type</value>
</attribute>
<atom 1d="i1d-0066-00000001" kind="enumerator'>
<name>HLAfalse</name>
<attribute kind="notes" status="'meta''>
<value></value>
</attribute>
<attribute kind="values">
<value>0</value>
</attribute>
</atom>
<atom i1d="i1d-0066-00000002" kind="enumerator'>
<name>HLAtrue</name>
<attribute kind="notes" status="meta''>
<value></value>
</attribute>
<attribute kind="values'>
<value>1</value>
</attribute>
</atom>
<reference id="i1d-0067-00000001""
kind="representation” referred=""1d-0065-
00000007"">
<name>representation</name>
</reference>
</model>
</folder>
<folder i1d="i1d-006a-00000005" kind="arrayDataTypes''>
<name>Default Array Data Types</name>
<model i1d=""i1d-0065-0000000f" kind="arrayData'>
<name>HLAASCI Istring</name>
<attribute kind="cardinality" status="meta'>

66

<value>Dynamic</value>
</attribute>
<attribute kind="encoding">
<value>HLAvariableArray</value>
</attribute>
<attribute kind="notes"™ status="meta''>
<value></value>
</attribute>
<attribute kind="semantics''>
<value>ASCIIl string representation</value>
</attribute>
<reference i1d="i1d-0067-00000005" kind="'datatype"’
referred=""i1d-0065-00000012"">
<name>datatype</name>
</reference>
</model>
<model id="1d-0065-00000010" kind="arrayData'>
<name>HLAopaqueData</name>
<attribute kind="cardinality" status="meta'>
<value>Dynamic</value>
</attribute>
<attribute kind="encoding'>
<value>HLAvariableArray</value>
</attribute>
<attribute kind="notes"™ status="meta''>
<value></value>
</attribute>
<attribute kind="semantics'>
<value>Uninterpreted sequence of bytes</value>
</attribute>
<reference i1d="i1d-0067-00000007"" kind="datatype""
referred=""1d-0065-00000014"">
<name>datatype</name>
</reference>
</model>
<model id=""id-0065-00000011" kind="arrayData'>
<name>HLAunicodeString</name>
<attribute kind="cardinality" status="meta'>
<value>Dynamic</value>
</attribute>
<attribute kind="encoding'>
<value>HLAvariableArray</value>
</attribute>
<attribute kind="notes" status="meta'>
<value></value>
</attribute>
<attribute kind="semantics'>
<value>Unicode string representation</value>
</attribute>
<reference i1d="1d-0067-00000008" kind="'datatype""
referred=""1d-0065-00000013"">
<name>datatype</name>
</reference>
</model>
</folder>
<folder 1d=""1d-006a-00000006""
kind="simpleDataTypes''>
<name>Default Simple Data Types</name>

67

<model id=""1d-0065-00000012" kind="simpleData'>
<name>HLAASCI Ichar</name>
<attribute kind="accuracy" status="meta'>

<value>NA</value>

</attribute>

<attribute kind=""notes" status="meta''>
<value></value>

</attribute>

<attribute kind="resolution" status="meta'>
<value>NA</value>

</attribute>

<attribute kind="semantics'>
<value>Standard ASCII character.
(See ANSI Std. X3.4-1986)</value>

</attribute>

<attribute Kind="units" status="meta''>
<value>NA</value>

</attribute>

<reference i1d=""1d-0067-00000002""

kind=""representation” referred=""1d-0065-

0000000b"">

<name>representation</name>

</reference>

</model>

<model i1d=""id-0065-00000013" kind="simpleData'>
<name>HLAunicodeChar</name>
<attribute kind="accuracy" status="meta''>

<value>NA</value>

</attribute>

<attribute kind=""notes" status="meta''>
<value></value>

</attribute>

<attribute kind="resolution" status="meta'>
<value>NA</value>

</attribute>

<attribute kind="semantics'>
<value>Unicode UTF-16 character.

(see the Unicode Standard, version
3.0)</value>
</attribute>
<attribute Kind="units" status="'meta''>
<value>NA</value>
</attribute>
<reference i1d=""1d-0067-00000003""
kind=""representation” referred=""1d-0065-
0000000c"">
<name>representation</name>
</reference>
</model>

<model i1d=""1d-0065-00000014" kind="simpleData'>

<name>HLAbyte</name>

<attribute kind="accuracy" status="meta'>
<value>NA</value>

</attribute>

<attribute kind="notes" status="meta''>
<value></value>

</attribute>

<attribute kind="resolution" status="meta'>

68

<value>NA</value>

</attribute>

<attribute kind="semantics'>
<value>Uninterpreted 8-bit value.</value>

</attribute>
<attribute Kind="units" status="meta''>
<value>NA</value>
</attribute>
<reference i1d=""1d-0067-00000004""
kind="‘representation” referred=""1d-0065-
0000000b"">
<name>representation</name>
</reference>
</model>
</folder>
</folder>

<folder i1d="i1d-006a-00000007" kind=""transportations'>
<name>Default Transportations</name>
<atom 1d=""1d-0066-00000003" kind=""transportation'>
<name>HLAreliable</name>
<attribute kind="description'>
<value>Provide reliable delivery of data in the
sense
that TCP/IP delivers its data reliably.</value>
</attribute>
<attribute kind="notes" status="'meta''>
<value></value>
</attribute>
</atom>
<atom 1d=""1d-0066-00000004" kind=""transportation’>
<name>HLAbestEffort</name>
<attribute kind="description'>
<value>Make an effort to deliver data in the
sense
that UDP provides best-effort delivery.</value>
</attribute>
<attribute kind="notes" status="meta''>
<value></value>
</attribute>
</atom>
</folder>
</folder>
</project>

69

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	1.1 Related Work
	1.1.1 An Integrated Tool for HLA
	1.1.2 Object Model Development Toolkit
	1.1.3 Calytrix SIMplicity
	1.1.4 Visual OMT
	1.1.5 GENESIS
	1.1.6 A Framework for Ontology Based Federation Development

	1.2 Thesis Overview

	HIGH LEVEL ARCHITECTURE (HLA)
	2.1 Framework and Rules
	2.2 Federate Interface Specification
	Figure 2.1: Components of an HLA federation [2].

	2.3 Object Model Template (OMT) Specification
	2.4 Recommended Practice for HLA FEDEP
	Figure 2.2: Top-level view of FEDEP model [12].

	GENERIC MODELING ENVIRONMENT (GME)
	Figure 3.1: Tools of MIC [35].
	3.1 Model Integrated Computing (MIC)
	3.2 Metamodeling
	Figure 3.2: Overview of MIC process [37].
	Table 3.1: Four-layer metamodeling infrastructure of OMG.
	Table 3.2: Mapping to layers of OMG.

	3.3 Metamodeling vs. UML Profiling Mechanism
	3.4 GME Architecture and Modeling Concepts
	Figure 3.3: GME modeling concepts.
	Figure 3.4: Sample views of GME.

	GME PARADIGM FOR THE HLA OBJECT MODEL
	4.1 HLA OM Metamodel as GME Paradigm
	4.1.1 Federation Design Model
	Figure 4.1: Federation design model.
	Figure 4.2: XME output for Federation Design model.

	4.1.2 Object Model
	Figure 4.3: Object Models diagram.
	Figure 4.4: XME output of object model information.

	4.1.3 OMT Core Elements
	4.1.3.1 Classes
	Figure 4.5: Classes diagram.
	Figure 4.6: The XME output for an object class.

	4.1.3.2 Dimensions
	Figure 4.7: Dimension diagram.
	Figure 4.8: Normalization functions.

	4.1.3.3 Time Representation
	Figure 4.9: Time representation model.

	4.1.3.4 User Supplied Tags
	Figure 4.10: User-supplied tags diagram.

	4.1.3.5 Synchronizations
	Figure 4.11: Synchronizations diagram.

	4.1.3.6 Transportations
	Figure 4.12: Transportations diagram.

	4.1.3.7 Switches
	4.1.3.8 Data types
	Figure 4.13: Datatypes diagram.

	4.1.3.9 Notes

	4.2 Object Model Design Environment
	4.2.1 IEEE Defaults Library
	Figure 4.14: Default datatypes and transportations.

	4.2.2 Management Object Model
	Figure 4.15: MOM datatypes and dimensions.
	Figure 4.16: MOM object classes.
	Figure 4.17: MOM interaction classes.

	4.2.3 Sample Federation Design Model
	Figure 4.18: Sample federation design model overview.
	Figure 4.19: Sample object class hierarchy.

	CONCLUSION
	5.1 Future Work

	REFERENCES
	USER’S GUIDE
	Figure 4.20: Creating Federation Design model.
	Figure 4.21: Creating Object Models.

	IEEE DEFAULT LIBRARY

