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ABSTRACT 
 

 

A METAMODEL FOR 

THE HIGH LEVEL ARCHITECTURE OBJECT MODEL 

 

Çetinkaya, Deniz 

M.S., Department of Computer Engineering 

Supervisor: Asst. Prof. Dr. Halit Oğuztüzün 

 

August 2005, 69 pages 

 

 

The High Level Architecture (HLA), IEEE Std. 1516-2000, provides a general 

framework for distributed modeling and simulation applications, called federations. HLA 

focuses on interconnection of interacting simulations, called federates, with special 

emphasis on reusability and interoperability. An HLA object model, be it a simulation 

object model (SOM), a federation object model (FOM) or the management object model 

(MOM), describes the data exchanged during federation execution. This thesis introduces 

a metamodel for the HLA Object Model, fully accounting for IEEE Std. 1516.2. The 

metamodel is constructed with GME (Generic Modeling Environment), a meta-

programmable tool for domain-specific modeling, developed at Vanderbilt University. 

GME generates a design environment for HLA object models having the HLA OM  

metamodel as input. This work can be regarded as a step for bringing model-integrated 

computing  to bear on HLA-based distributed simulation. 

 

Keywords: High Level Architecture, Object Model Template, metamodeling, Generic 

Modeling Environment 
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ÖZ 
 

 

YÜKSEK SEVİYE MİMARİSİ NESNE MODELİ  

İÇİN BİR METAMODEL 

 

Çetinkaya, Deniz 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Asst. Prof. Dr. Halit Oğuztüzün 

 

Ağustos 2005, 69 sayfa 

 

 

IEEE Std. 1516 ile tanımlanan Yüksek Seviye Mimarisi (YSM), Modelleme ve 

Simülasyon (M&S) uygulamaları için genel bir altyapı tanımlamaktadır. YSM 

simulasyonların yani federelerin birbirleriyle olan etkileşimleri üzerinde durur ve tekrar 

kullanılabilirlik ile birlikte çalışabilirlik ilkelerine özel önem verir. YSM nesne 

modelleri, simulasyon nesne modeli (SOM), federasyon nesne modeli (FOM) ve 

federasyon yönetimi nesne modeli (MOM) olarak tanımlanır ve federasyon hedeflerini 

gerçekleştirmek için kullanılan bilgiyi tanımlarlar. Bu tezde YSM nesne modelleri için 

IEEE 1516.2 standardını tamamen kapsayan bir metamodel önerilmiştir. Bu metamodel 

meta programlanabilir bir modelleme aracı olan ve Vanderbilt Üniversitesi tarafından 

geliştirilen GME (Generic Modeling Environment) aracı ile tanımlanmıştır. GME 

tanımlanan metamodeli kullanarak YSM nesne modelleri için bir modelleme ortamı 

oluşturur. Bu çalışma bütünleşik gelişim sürecinin (MIC) YSM’ye uygulanması 

konusunda bir basamak olarak görülebilir. 

 

Anahtar Kelimeler: Yüksek Seviye Mimarisi, Nesne Modeli, metamodelleme, Generic 

Modelleme Ortamı 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 
 

The High Level Architecture (HLA) is a key technology in Modeling and Simulation 

(M&S) area for distributed simulations. Zeigler and his colleagues [7] described the 

computer simulations development process in terms of three major elements: the source 

system, the model, and the simulator. Modeling is primarily concerned with the 

relationships between source systems and models, while simulation refers to 

relationships between simulators and models. The increasing interest in modeling and 

simulation has also increased the importance of the HLA. 

Currently the HLA is an IEEE (Institute of Electrical and Electronic Engineers) 

standard as the IEEE Std. 1516 specification, which is also our basic reference [22]. This 

standard defines the HLA as an integrated architecture that provides a general framework 

within which simulation developers can structure and describe their simulation 

applications [9]. 

In order to perform simulation, the HLA defines some basic terms: federation, 

federate, federation execution, run time infrastructure and others [4]. The combined 

simulation system created from the constituent simulations is a federation; each 

simulation that is combined to form a federation is a federate; and a session of a 

federation executing together is a federation execution. A federation contains a 

supporting software called the Run Time Infrastructure (RTI), a number of federates and 

a common object model for the data exchanged between these federates. The HLA gives 

special attention to interoperability and reusability. It has three main components: HLA 

Rules [9], Object Model Template (OMT) [11] and Federate Interface Specification [10]. 

Rules are a set of rules that apply to HLA federations and federate. OMT describes the 

data used by a particular model called object model and addresses reusability. Federate 

Interface Specification describes a generic communications interface that allows 

simulation models to be connected and coordinated. It also addresses interoperability 

issues. 
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HLA object models are composed of a group of interrelated components. IEEE Std. 

1516.2 [11] gives motivation for new representation techniques for object models saying 

that: 

“The information content of components can be represented in many different 

ways or presentations. A presentation is the formatting of the information 

contained in the object model in a particular manner for a particular purpose. All 

HLA object models shall be capable of being presented in both the OMT tabular 

format and the OMT Data Interchange Format (DIF) format.” 

OMT tabular format uses tables to save the information in the object model, where 

OMT DIF format expresses object models with nested tags similar to XML (eXtensible 

Markup Language) [26]. Both of them are well defined and text based presentations. 

Unfortunately, at design steps textual presentations may lack on understandability, 

reusability and upgradeability. Defining a visual layer on top of OMT to provide a visual 

representation, can help easier understanding for complex federations and can reduce the 

design time with better reusability. Many researchers proposed various representations 

for object models as well as for other federation design issues. Next section introduces 

some related work. In this thesis, we have adopted metamodeling, which is another 

representation technique that has been widespread recently, where metamodel is a 

definition of an architectural language in the form of a model. Section 3.2 and 3.3 

discusses the reasons of choosing the metamodeling approach. 

Though we want to define a visual layer with metamodeling approach, we searched 

for a domain specific modeling environment, which will give us the opportunity to 

describe our metamodel and provide support for further design issues. The Generic 

Modeling Environment (GME), developed at the Institute for Software Integrated 

Systems (ISIS) at Vanderbilt University, is a configurable toolkit that supports the easy 

creation of domain-specific modeling and program synthesis environments [39]. It is free 

and open software. It is actively supported by ISIS. So we have chosen GME as the 

modeling environment. 

This thesis proposes a metamodel for HLA Object Model (OM) and describes this 

metamodel in a domain specific modeling environment, which is GME, in order to define 

a visual representation. In GME, metamodels are defined in modeling paradigms using 

GME metamodel. After describing the HLA OM modeling paradigm, the GME modeling 
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environment creates a design environment for domain models by using this proposed 

metamodel automatically. Then the generated design environment can be used to design 

HLA object models. 

1.1 Related Work 

Object Model Tools are expected to have facilities on designing, developing, managing 

and sharing object models; by providing object model development tools, object model 

libraries or object model data dictionaries [4]. Many researchers worked on these 

subjects, in this section we point out some studies that we have examined. In our view an 

object model tool should be based on a metamodel. Presumably, each of these tools has a 

native representation scheme for object models. We believe that tool integration and tool 

extensibility will be greatly facilitated by the use of metamodels that are accessible to 

users. Adoption of standardized metamodels will further improve integration and 

extensibility issues. 

1.1.1 An Integrated Tool for HLA 

This research project at Computer Engineering Department of Hacettepe University 

focuses on modeling, code generation, monitoring and testing issues for HLA [29]. 

Researchers aim to develop an integrated toolset that will improve and accelerate 

federation development and testing process. Their work is based on UML extensions. 

1.1.2 Object Model Development Toolkit 

Object Model Development Toolkit (OMDT) by AEgis Technologies [20] is a tool 

which provides an environment for creating, editing, manipulating, and managing HLA 

object models with an easy to use interface.  

1.1.3 Calytrix SIMplicity 

Calytrix SIMplicity is a visual tool for developing distributed HLA simulations from new 

and pre-existing components (federates) [41]. It provides an integrated development 

environment to design and manage object models, to design federates, to create complex 

mappings with third-party federates, to automatically generate code, and more. Calytrix 

Technologies (Australia) is a leading company in simulation area and Calytrix 
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SIMplicity [25] is listed as a committed product, which means this product is a valuable 

resource in its application area, in Object Management Group (OMG) web site [23]. 

1.1.4 Visual OMT 

Visual OMT is a graphical object model development tool for efficient development and 

maintenance of HLA Object Models [19]. It provides an integrated environment in which 

the HLA object models of any simulation or federation can be loaded and edited [34]. It 

is a product of Pitch Company (Sweden) [24], which supplies commercial tools and 

services to the modeling and simulation community.  

1.1.5 GENESIS 

GENESIS project of the French National Air and Space Agency (ONERA) aims to 

develop a tool for the design and development of HLA simulations [28]. It is financed by 

the French General Armament Directorate (DGA). With the current version of GENESIS 

defining object models, C++ code and configuration file generation are provided. It 

started in January 2003 and runs for 3 years.  

1.1.6 A Framework for Ontology Based Federation Development 

Ontology can be defined as an explicit specification of a conceptualization in [33]. A 

research study held in Systems Realization Laboratory at Georgia Institute of 

Technology, aims to define a framework for ontology based federation development. The 

major components of this framework are the federate ontologies, target federation 

ontology and a metamodel that corresponds to the OMT, called the World Ontology [42]. 

1.2 Thesis Overview 

After this introduction chapter, the thesis continues with Chapter 2 which introduces 

HLA and IEEE Std. 1516. Metamodeling concepts and the GME Metamodel are 

explained in Chapter 3. Metamodel for High Level Architecture Object Model is 

proposed and discussed in Chapter 4. Finally, conclusions are drawn and future work is 

suggested in Chapter 5. The appendices introduce complementary material: Appendix A 

contains a User’s Guide for designing object models and Appendix B contains a sample 

output file. 
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CHAPTER 2 
 
 

HIGH LEVEL ARCHITECTURE (HLA) 
 
 
 
 
 

IEEE standard defines the HLA as an integrated architecture that provides a general 

framework within which simulation developers can structure and describe their 

simulation applications. The HLA is not software, it provides a common framework. The 

HLA was first developed by the Defense Modeling and Simulation Office (DMSO) [21] 

of The United States Department of Defense (DoD), in order to support reuse and 

interoperability across the large numbers of different types of simulations and so reduce 

the cost of the projects [2]. The HLA Baseline Definition was approved by the Under 

Secretary of Defense for Acquisition and Technology (USD (A&T)) in 1996. After this 

approval the HLA is proposed as the standard technical architecture for all DoD 

simulations.  

OMG [23] adopted the HLA as the Facility for Distributed Simulation Systems in 

1998 and updated it in 2001 to reflect the changes resulting from commercial 

standardization of the specification. The HLA was approved as an open standard through 

the IEEE, namely IEEE Standard 1516, in September 2000. In November 2000 the HLA 

is identified as the preferred architecture within the DoD [21].  

Officially designated as IEEE Std. 1516-2000 Standard for Modeling and Simulation 

(M&S) High Level Architecture (HLA), the standard was prepared by the HLA Working 

Group, sponsored by the Simulation Interoperability Standards Committee (SISC) of the 

IEEE Computer Society. The standard consists of four related standards: 

• IEEE Std. 1516-2000: IEEE Standard for M&S HLA Framework and Rules [9] 

• IEEE Std. 1516.1-2000: IEEE Standard for M&S HLA Federate Interface 

Specification [10] 

• IEEE Std. 1516.2-2000: IEEE Standard for M&S HLA Object Model Template 

(OMT) Specification [11] 
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• IEEE Std. 1516.3: IEEE Recommended Practice for HLA Federation 

Development and Execution Process (FEDEP) [12] 

Next sections give brief overviews of these standards. 

2.1 Framework and Rules 

This is the main standard which provides an overview of the HLA and defines a set of 

rules that apply to HLA federations and federates [9]. Simulation Object Model (SOM) 

and Federation Object Model (FOM) mentioned here are explained in section 2.3. The 

rules for federations are as follows: 

• Federations shall have an HLA FOM, documented in accordance with the HLA 

OMT. 

• In a federation, all simulation-associated object instance representation shall be 

in federates, not in the RTI. 

• During a federation execution, all exchange of FOM data among joined federates 

shall occur via the RTI. 

• During a federation execution, joined federates shall interact with the RTI in 

accordance with the HLA federate interface specification. 

• During a federation execution, an instance attribute shall be owned by at most 

one joined federate at any given time. 

The rules for federates are as follows: 

• Federates shall have an HLA SOM, documented in accordance with the HLA 

OMT. 

• Federates shall be able to update and/or reflect any instance attributes and send 

and/or receive interactions, as specified in their SOMs. 

• Federates shall be able to transfer and/or accept ownership of instance attributes 

dynamically during a federation execution, as specified in their SOMs. 

• Federates shall be able to vary the conditions under which they provide updates 

of instance attributes, as specified in their SOMs. 
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• Federates shall be able to manage local time in a way that will allow them to 

coordinate data exchange with other members of a federation. 

2.2 Federate Interface Specification  

This specification defines the standard services and interfaces to be used by federates to 

be able to interact other federates in a distributed federation execution. Federate interface 

specification extends the HLA Rules and discusses the HLA concepts in detail. 

As stated before HLA federates interact with an underlying runtime infrastructure, 

which is RTI. Use of RTI software is required for HLA to coordinate the operations and 

data exchange during a federation execution [10]. The HLA Federate Interface 

Specification defines the services that the RTI software provides. Figure 2.1 shows the 

high level logical view of an HLA federation in order to depict the communication 

between federates and RTI. 

 

 

Figure 2.1:   Components of an HLA federation [2]. 
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The services defined in this specification are divided into 7 service groups. These are 

outlined as the follows: 

• Federation management: Creating, modifying, deleting and dynamic control of 

a federation execution are provided by federation management services. This 

group includes join to a federation execution and resign from a federation 

execution services of federates; and some federation synchronization point 

services.  

• Declaration management: Joined federates use the services in this group to 

declare their interest to an object class attribute or an interaction class. Also these 

services are used to declare intention to generate information. Namely 

publish/unpublish and subscribe/unsubscribe services are included. 

• Object management: The services in this group deal with the registration, 

modification, and deletion of object instances and the sending and receiving of 

interactions. Also this group includes some transportation type services. 

• Ownership management: The services in this group are used to transfer 

ownership of instance attributes among joined federates.  

• Time management: Messages sent by different joined federates are delivered in 

a consistent order throughout the federation execution by the time management 

services and associated mechanisms. 

• Data distribution management: The services in this group provide information 

on data relevance at different levels and allow refining the data requirements. 

These services may be used to reduce the transmission of irrelevant data in terms 

of bounds, regions or sets. 

• Support services: This group includes miscellaneous services for performing 

such actions as setting advisory switches, manipulating regions, or RTI start-up 

and shutdown. 

The support services specification also introduces the Management Object Model 

(MOM). MOM is defined in this specification instead of OMT specification, because 

MOM provides facilities for access to RTI operating information during federation 

execution, which can be used by joined federates, where a joined federate is a member of 

 8



a federation execution. Section 4.2.2 gives more information about MOM and how it is 

modeled in HLA OM Metamodel. 

2.3 Object Model Template (OMT) Specification 

OMT introduces two types of object models: an HLA Simulation Object Model (SOM) 

which describes an individual federate and a Federation Object Model (FOM) which 

describes a federation. HLA object models identify the data exchanged at runtime to 

achieve federation objectives. The OMT Specification defines the format and syntax of 

HLA object models.  

Firstly, the standard presents object models in OMT tabular format. The OMT 

consists of 14 components that are presented as tables: 

• Object model identification table: This component identifies the name, type, 

version, modification date, purpose, application domain, sponsor, POC (point of 

contact) name, POC organization, POC telephone, POC E-mail address, 

references and some other information about the object model. 

• Object class structure table: If we understand attributes as objects with certain 

characteristics, then object class is a collection of attributes. Object class 

structure table includes all federate or federation object classes and their class-

subclass relationships. 

• Interaction class structure table: An explicit action taken by a federate that 

may have some effect or impact on another federate within a federation 

execution is called an interaction. Interaction class structure table includes all 

federate or federation interaction classes and their class-subclass relationships. 

• Attribute table: Each object class may have attributes. This table includes 

features of object attributes in a federate or federation. 

• Parameter table: Each interaction class may have parameters. This table 

includes features of interaction parameters in a federate or federation. 

• Dimension table: Each attribute or interaction that uses data distribution 

management services has a set of available dimensions. This component 

specifies dimensions for filtering instance attributes and interactions. 
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• Time representation table: This component defines the usage of time stamps 

and lookahead characteristics of both federates and federations.  

• User-supplied tag table: Federates can supply tags with certain HLA services to 

provide additional coordination and control. This table defines these tags. 

• Synchronization table: This component specifies the representation and data 

types used in HLA synchronization services. 

• Transportation type table: It describes mechanisms used for the transportation 

of data. 

• Switches table: It includes the initial settings for some parameters defined in 

federate interface specification. 

• Datatype tables: Basic data representation table, simple datatype table, 

enumerated datatype table, fixed record datatype table, array datatype table, and 

variant record datatype table specify the details of data representation in the 

object model. 

• Notes table: Additional descriptive information can be added to any element of 

the object model. This component includes these notes. 

• FOM/SOM lexicon: It includes verbal definitions for the objects, attributes, 

interactions, and parameters used in the HLA object model. 

After describing these components in detail, the standard introduces OMT DIF 

format. The HLA OMT DIF is a standard data exchange format, which is built on a 

common metamodel that represents the information needed to represent and manage 

HLA object models. 

2.4 Recommended Practice for HLA FEDEP 

Guidance in the process of developing HLA federations is provided by the Federation 

Development and Execution Process model. FEDEP defines how HLA applications are 

constructed and executed, though it does not prescribe a single way of constructing an 

HLA federation. In other words the actual process used to develop and execute HLA 

federations could vary within or across different user applications. However, at an 

abstract level, it is possible to identify a sequence of seven basic steps that HLA 

 10



federation developers should follow to develop and execute their federations. Figure 2.2 

shows the seven step FEDEP model.  

 

 

Figure 2.2:   Top-level view of FEDEP model [12]. 

 
 

The FEDEP model identifies these steps in detail and defines a process for guiding 

the development of an HLA federation. More information about High Level Architecture 

can be found in [4], [21], [10], [11]. 
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CHAPTER 3 
 
 

GENERIC MODELING ENVIRONMENT (GME) 
 
 
 
 
 

This chapter provides description of the modeling environment GME. We have used 

GME version 4.11.10 in this research. Defining a metamodel for HLA OM is an instance 

of domain specific modeling. In this context we can talk about Model Driven 

Architecture (MDA) and more specifically Domain Specific (DS) MDA. 

DS MDA, also known as Model Integrated Computing (MIC), is touted as an 

effective and efficient method for developing, maintaining, and evolving large-scale, 

domain-specific software [40]. Karsai and his colleagues in [35] and [36] introduce tools 

for MIC, shown in Figure 3.1. In order to set up a specific MIC process first the 

metamodels for the domain, the target, and the transformations should be created. Then a 

domain specific model editor and a model transformation tool can be built with meta-

level tools. The model editor is then used to create and modify domain models, while the 

transformation tool is used to convert the models into target models. Next section briefly 

reviews the MIC concept. 

The GME is a meta-programmable modeling tool that supports the creation of 

domain-specific modeling and program synthesis environments [39]. In [8], the 

definition is extended and GME is described as a configurable model-integrated program 

synthesis tool, where configurable means that it can be programmed to work with vastly 

different domains. As Figure 3.1 indicates, a meta-programmable tool creates domain 

models after configuration of a domain metamodel. Section 3.4 describes the core 

modeling concepts supported by GME. 
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Figure 3.1:   Tools of MIC [35]. 

 
 

There are some characteristics of the GME that make it a valuable tool for the 

construction of domain-specific modeling environments.  

• The GME provides generic modeling primitives [38], which are specialized to 

create the domain-specific modeling concepts through meta-modeling.  

• A metamodel for a domain is defined as the modeling paradigm described in the 

form of a formal modeling language, where the modeling paradigm is a set of 

requirements that specifies the ontology of the domain [40]. GME paradigms are 

generated from formal modeling environment specifications. 

• The GME provides an environment containing all of the modeling elements and 

valid relationships that can be constructed in a specific domain, after a modeling 

paradigm is defined. 

• Models are formed as graphical, multi-aspect, attributed entity-relationship 

diagrams [8]. The dynamic semantics of a model is determined later during the 

model interpretation process.  

• It supports various techniques (hierarchy, multiple aspects, sets, references, and 

explicit constraints) for building large-scale, complex models. 
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• It contains some integrated model interpreters that perform translation and 

analysis of models and provides defining new interpreters.  

• The GME supports multiple paradigms and enables meta-model composition 

[38]. 

• The GME is Windows based and well organized graphical user interfaces make 

it easy to use. 

• The GME is an ongoing academic research project that one can use freely for 

non-commercial purposes. Its source codes are available. 

• The GME contains an extended constraint manager which is fully compliant with 

the Object Constraint Language (OCL) 1.4 specification [16], which is a well 

known OMG specification [8].  

• The GME-metamodel is implemented using UML 1.4 specification, which is 

also a well known OMG specification [8]. 

Besides the advantages, the GME needs some improvements and upgrades. The most 

important expectation is about OCL 1.4 and UML 1.4 specifications, which are not up-

to-date. OCL 2.0 [18] and UML 2.0 [15] are already available and the academia waits for 

the upgrades. Also a meta-programmable modeling tool with Meta Object Facility 

(MOF) 2.0 is another expected issue. The facility for metamodeling with directly MOF 

2.0 metamodel will enhance the GME. The good news is that the researchers at ISIS have 

started upgrading GME. 

In this thesis, the proposed metamodel for HLA OM is a GME modeling paradigm 

based on the GME-metamodel. GME generates a design environment for HLA object 

models automatically using the proposed metamodel that is represented as a modeling 

paradigm. 

In accordance to the objectives of this thesis, MIC, the metamodeling approach and 

the GME modeling concepts are presented in the following sections. 

3.1 Model Integrated Computing (MIC) 

Model integrated computing, or domain specific Model Driven Architecture (MDA), is a 

methodology for developing, maintaining, and evolving large-scale, domain-specific 
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software, which uses MDA concepts and metamodel approach [40]. The MDA is defined 

by the OMG and based on the importance of models in the software development process 

[13]. In MDA the formal models are the building stones of software development [3]. 

A group of entities that share the same characteristic or exhibit similar functionality 

is known as a domain [43]. Domain specific modeling is an approach to model a system 

with the terminology and concepts from a specific domain [32], where data structures 

and logic are abstracted beyond programming. Domain Specific Modeling Language 

(DSML) is a language specifically designed to represent and implement the particular 

problem domain concepts. MIC allows the synthesis of application programs from 

models by using customized domain-specific Model Integrated Program Synthesis 

(MIPS) environments. Once a domain-specific modeling language has been formally 

defined, a meta-level translation can be performed to synthesize the Domain-Specific 

MIPS Environment (DSME) [37] from the metamodel. The DSME is then used by 

domain experts to create various models of domain-specific systems. Once one or more 

domain models exists, model interpreters are used to perform semantic translations on 

the models in order to generate executable models or perform various types of data 

translation and analysis. Model transformations are the most important step in the MIC 

process, which are used to generate target domain specific models.  

A MIPS environment operates according to a modeling paradigm [40]. A modeling 

paradigm is a set of requirements that governs how systems within the domain are to be 

modeled, i.e., it defines a language for modeling systems in the domain. The modeling 

paradigm is captured in the form of formal modeling language specifications called a 

metamodel. So, the MIC applies the metamodel based approach to domain specific 

applications. Figure 3.2 shows the MIC process summarized above. 

We believe that applying domain specific MDA to HLA will contribute the 

distributed simulation design and development process in terms of formalism, reuse, 

verification, and validation.  

3.2 Metamodeling 

A model can be defined as an abstract representation of something so that we can view, 

manipulate, and reason about it in a well defined language; where a language defines 
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which elements can exist in the model [3]. If we define this well defined language with 

models, this mechanism is called metamodeling.  

 

 

Figure 3.2:   Overview of MIC process [37]. 

 

In fact, modeling and metamodeling are identical activities, the difference is the level 

of modeling. So it is also possible to mention meta-meta-models, which will describe the 

language to generate meta-models, and so on.  

The OMG introduces a four-layer metamodeling infrastructure for defining 

modeling, metamodeling, and meta-metamodeling languages and activities in [17]. Table 

3.1 describes each layer of this framework. Table 3.2 shows the metamodeling layers in 

our study mapped to OMG’s four-layer framework. If we added a fifth layer, namely 

Meta-Meta-Metamodel, to this framework, which could be derived from the definition of 

Metamodeling, it would map to UML metamodel. The fifth layer UML Meta-Model 

describes the language to generate GME meta-models. 
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Table 3.1:   Four-layer metamodeling infrastructure of OMG. 

Layer Definition 

M3 Layer 

Meta Metamodels 

This layer forms the foundation of the metamodeling 

hierarchy. It defines a language, namely meta-

metamodeling language, for specifying a metamodel. 

M2 Layer 

Metamodels 

A metamodel is an instance of a meta-metamodel. This 

layer defines a language, namely metamodeling language, 

for specifying models. 

M1 Layer 

Models 

A model is an instance of a metamodel. This layer defines 

domain specific modeling languages that describe 

semantic domains. 

M0 Layer 

Run-time instances 

The metamodel hierarchy bottoms out at M0, which 

contains the run-time instances of model elements defined 

in a model. 

 

Table 3.2:   Mapping to layers of OMG. 

Framework Model Mapped Model 

Meta Metamodel GME Metamodel 

Metamodel HLA OM metamodel 

Model 
Domain model  

(e.g. Restaurant FOM)  

Run-time instance 

Domain model instance 

(e.g. object instances in a Restaurant 

federation execution)  

 

Next section discusses the advantages of Metamodeling with a comparison with 

UML profiling mechanism, which is another domain specific modeling approach. 
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3.3 Metamodeling vs. UML Profiling Mechanism 

The Unified Modeling Language is an industry standard language for visualizing, 

specifying, constructing, and documenting the artifacts of a software-intensive system. 

Research on domain specific modeling using UML has focused on the UML profiling 

mechanism [44] [45]. The specification of UML includes extension mechanisms that 

allow UML to be adapted to meet specific needs of a domain. 

A UML profile is a stereotyped package that contains model elements that have been 

customized for a specific domain or purpose using extension mechanisms. A profile may 

specify model libraries on which it depends and the metamodel subset that it extends.  In 

most cases a UML profile consists of a predefined set of stereotypes, tagged values and 

constraints. In [1], a stereotype is defined as the main extension mechanism providing a 

method to extend a meta-class. Tagged values are defined as properties attached to UML 

elements, and constraints are defined as the rules that restrict the semantics of one or 

more elements in UML.  

After this brief introduction, we will compare metamodels to UML profiles by listing 

some differences, also other differences may occur. 

• UML Profiles extend the UML syntax, while metamodels define entirely new 

modeling languages. In other words, profiling yields an extended UML for the 

intended domain, while metamodeling yields a specialized language, on the same 

footage as UML, for the domain.  

• Stereotyping doesn’t provide additional classes, while metamodels define their 

own model elements [30]. Furthermore, tool-specific restrictions may apply in 

this regard. 

• UML Profiles may have some drawbacks when the domain metamodel and 

domain model both represented with the same notation. One may have problems 

with managing the models and the difference between layers may not have been 

come out. 

• UML Profiles doesn’t allow defining associations between stereotypes, but with 

metamodels you can define associations like inheritance, composition or others 

between model elements provided that the meta-metamodel includes their 

definition. 
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• UML Profiles doesn’t allow changing the notation of any element; you can only 

define icons, while with metamodeling approaches you can define fundamentally 

new representations. 

Lastly, in this thesis context we can say one more thing, which possibly makes 

metamodeling preferable. Firstly note that the HLA object model does not totally agree 

with the object model in the usual object oriented analysis and design (OOA&D) sense. 

Thus, a UML profile for HLA OM has to carry “extra luggage”. This may hinder 

constraint specification and checking, and user input validation.  

On the other hand, UML profiling allows one to stay with the same host UML tool, 

thus avoiding any tool switches between object-oriented design model (for the software) 

and object modeling (for the domain). The solution within metamodeling approach 

would be to invoke model transformations between the two modeling environments, and 

to utilize the XMI (XML Metadata Interchange) standard to carry the models across 

tools. 

3.4 GME Architecture and Modeling Concepts 

This section describes the core modeling concepts provided within the GME and their 

relationships. The GME supports various techniques for building large-scale complex 

models. 

In GME the domain specific modeling languages are viewed as the modeling 

paradigms which contain all the syntactic, semantic, and presentation information 

regarding the domain. A modeling paradigm describes which concepts will be used to 

construct models, what relationships may exist among these concepts, how the concepts 

may be organized, and the rules governing the construction of models. The metamodels 

specifying the modeling paradigm are used to automatically generate the target domain-

specific environment. The generated domain-specific environment is then used to build 

domain models, which can be used in different synthesis tools. This process is called 

model interpretation [39].  

The GME architecture is explained in [31], here we only emphasize to modeling 

concepts shown in Figure 3.3. The modeling paradigm metamodel, also known as the 

GME metamodel introduces some concepts. In GME, Model is the basic concept that is 

an abstract object that represents something in the world and has state, identity, and 
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behavior. Models typically have parts, other objects contained within the model. Models 

can include models, atoms, FCOs (first class objects), references, sets, and connections. 

The purpose of the GME is to create and manipulate these models. Modeling paradigms 

may have several kinds of models. 

 

 

Figure 3.3:   GME modeling concepts. 

 

The modeling concepts of the GME are described below: 

• Project: Project is the root container class. 

• Folder: Folders are containers that help organize models. 

• FCO: FCOs are first-class objects which must be abstract but can serve as the 

base type of any other elements. 

• Model: Models are compound objects which can contain other model elements 

as stated above. 
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• Atom: Atoms are atomic objects which may not contain other model elements. 

They can have attributes 

• Set: Sets can be used to specify a relationship among a group of objects. The 

only restriction is that all the members of a set must have the same parent and be 

visible in the same aspect. 

• Connection: Connections are used to express a relationship between two objects. 

• Reference: References are placeholders for FCOs (other than Connections) - 

similar to references in some programming languages. 

• Attribute: Attributes are values of a simple type. Any FCO can have many 

attributes. 

• Aspect: Aspects provide logical visibility partitioning to present different views 

of a model.  

• Constraint: Constraints are Boolean expressions, which are evaluated over the 

object instances. The GME permits the specification of constraints using a 

variant of the OCL. 

The GME modeling environment provides four views: classes, visualization, 

constraints and attributes. The classes view allows users (model builders) to define the 

basic class diagrams with models, references, atoms and other elements; the visualization 

view to define the aspects and to connect the modeling elements to the related aspects; 

the constraints view to define constraints and constraint functions with OCL and to 

connect the constraints to the modeling elements; the attributes view to define various 

attributes for the modeling elements. Figure 3.4 denotes sample views of GME. 

We refer to GME User’s Guide [8] for further details. 
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Figure 3.4:   Sample views of GME. 
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CHAPTER 4 
 
 

GME PARADIGM FOR THE HLA OBJECT MODEL 
 
 
 
 
 

As we discussed in chapter 3, a modeling paradigm should be defined in GME in order to 

represent a metamodel which will constitute a domain specific modeling language. Then 

GME interprets this paradigm and generates a design tool which supports this modeling 

language. In our study we have modeled the HLA Object Model Template paradigm with 

GME.  

This chapter presents the HLA OMT paradigm in an organized way. The class 

diagrams, aspects, attributes and constraints are explained and the rationale is discussed 

for each model. The metamodel introduced here is fully compliant with IEEE Std. 1516.2 

and the modeled architecture refers to this standard in every detail. The modeling 

elements in our metamodel are named consistently with OMT Data Interchange Format 

(DIF). The metamodel is compatible with the HLA OMT tabular format and every 

metamodel element map to the related table column in OMT tabular format. Together 

with the attached comments, we regard the HLA OM metamodel as an alternative 

rendering of the HLA OMT standard IEEE 1516.2. 

After introducing the metamodel, this chapter also shows some IEEE related default 

entries and an example. HLA OMT specification defines some default datatypes and 

transportation types; we included them in our metamodel as explained in section 4.2.1. 

Meanwhile, HLA Federate Interface Specification defines MOM, which must be 

included by all FOMs. We also modeled the MOM as explained in section 4.2.2. After 

preparing default libraries we have built a sample federation design model, based on the 

sample in HLA OMT specification, with our proposed metamodel; this is explained in 

section 4.2.3.  

We also provide a User’s Guide in Appendix A, which explains how to make HLA 

federation design model and object models with the design environment of the HLA OM 

paradigm. The intended user of our metamodel is a federate or federation developer. 
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4.1 HLA OM Metamodel as GME Paradigm 

As already mentioned we have modeled the HLA OMT paradigm with GME. The 

proposed HLA OMT paradigm includes the Object Model paradigm sheet, the 

Federation Design paradigm sheet and the OMT Core folder. Paradigm sheets are 

separate models. OMT Core folder includes the definitions for classes, data types, 

dimensions, normalization functions, notes, switches, synchronization points, user 

supplied tags, time representations and transportations in separate paradigm sheets. 

Although we have focused on a metamodel for HLA OM, we have also defined a simple 

Federation Design metamodel for illustrative purposes. Object Models and OMT Core 

could be used individually if needed. 

There are some rules which apply to the whole metamodel. One of them is the 

naming constraint: Names in object models can be constructed from a combination of 

letters, digits, hyphens, and underscores with no spaces or other breaking characters. 

Names beginning with the string “hla” or any string that would match (('H'|'h') ('L'|'l') 

('A'|'a')), are reserved and also the string “na” or any string that would match (('N'|'n') 

('A'|'a')), is reserved. These can not be included as a user-defined name. We check this 

constraint for object class names, interaction class names, attribute names, parameter 

names, datatype names, enumerated datatype enumerators, enumerated datatype values, 

fixed record field names, variant record alternative names, basic data representation 

names, dimension names, transportation type names, synchronization point names, note 

identifying labels. Other names could be checked in the same fashion if needed. 

Another common constraint is the cardinality constraint. We check the cardinalities 

in two ways: the upper bounds and the lower bounds. Upper bounds cause error 

messages and the user is not allowed to do the operation. Lower bounds cause warnings, 

allowing the user to add the needed elements later. 

Unique name constraints are also applicable for various elements. As the name 

suggests if an element’s name needs to be unique throughout the project, this constraint 

causes error messages for duplicate names. We also checked the null references, in order 

to catch the forgotten elements. The null reference constraint causes warnings. 

In our metamodel some elements have default attributes or names, which can not be 

changed. For example, the name of the object class “HLAobjectRoot” cannot be 

changed. Such violations cause errors or warnings according to the severity of the 
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situation. Some attributes and some model parts are mandatory, and the user is expected 

to fill these fields. Some attributes may be “NA” which means not applicable. Some 

attributes have a common format like date, email …etc. We also check the validity of 

attributes and model parts. 

All of the constraints are written in OCL [6]. Extended OCL support of the GME 

helped us immensely to enhance the precision of the metamodel. Succeeding sections 

describe the Federation Design Model, Object Model and OMT Core Folder in detail. 

4.1.1 Federation Design Model 

The Federation Design Model (FDM) provides an interface to define a federation and the 

federates and to connect them to the related FOM and SOMs. In FDM, FOM and SOMs 

are referenced object models. Each design can include one federation and one FOM 

reference, while there may be any number of federates and SOMs. 

Figure 4.1 shows the GME class diagram of federation design model. There is a 

“MemberOf” connection between federation and federates. This connection presents the 

federation execution capabilities. Federation Design Model is not intended to complete; 

it is constructed to show the usage of object models in context. 

 

 

Figure 4.1:   Federation design model. 
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GME provides import and export facilities with XML and XME (XML Extension) 

files. Figure 4.2 shows a sample XME output for Federation Design Model. 

 

<model id="id-0065-000000c6" kind="FederationDesignModel"> 
   <name>Federation Design Model</name> 
   <model id="id-0065-000000c7" kind="Federation"> 
      <name>Restaurant Federation</name> 
   </model> 
   <model id="id-0065-000000c8" kind="Federate"> 
      <name>Restaurant Federate 1</name> 
   </model> 
   <model id="id-0065-000000c9" kind="Federate"> 
      <name>Restaurant Federate 2</name> 
   </model> 
 
   <reference id="id-0067-00000059" kind="SOMReference"  
referred="id-0065-00000001"> 
      <name>SOMReference</name> 
   </reference> 
   <reference id="id-0067-0000005a" kind="SOMReference"  
referred="id-0065-00000001"> 
      <name>SOMReference</name> 
   </reference> 
   <reference id="id-0067-0000005b" kind="FOMReference"  
referred="id-0065-000000ca"> 
      <name>FOMReference</name> 
   </reference> 
 
   <connection id="id-0068-0000005b" kind="FederateSOM"> 
      <connpoint role="src" target="id-0065-000000c8"/> 
      <connpoint role="dst" target="id-0067-00000059"/> 
   </connection> 
   <connection id="id-0068-0000005c" kind="FederateSOM"> 
      <connpoint role="src" target="id-0065-000000c9"/> 
      <connpoint role="dst" target="id-0067-0000005a"/> 
   </connection> 
   <connection id="id-0068-0000005d" kind="FederationFOM"> 
      <connpoint role="src" target="id-0065-000000c7"/> 
      <connpoint role="dst" target="id-0067-0000005b"/> 
   </connection> 
 
   <connection id="id-0068-0000005e" kind="MemberOf"> 
      <name>MemberOf</name> 
      <attribute kind="FederateCardinality" status="meta"> 
         <value>0..*</value> 
      </attribute> 
      <attribute kind="RoleName" status="meta"> 
         <value>member</value> 
      </attribute> 
      <connpoint role="src" target="id-0065-000000c7"/> 
      <connpoint role="dst" target="id-0065-000000c8"/> 
   </connection> 

 26



   <connection id="id-0068-0000005f" kind="MemberOf"> 
      <name>MemberOf</name> 
         <attribute kind="FederateCardinality"> 
            <value>0..*</value> 
         </attribute> 
         <attribute kind="RoleName" status="meta"> 
            <value>member</value> 
         </attribute> 
         <connpoint role="src" target="id-0065-000000c7"/> 
         <connpoint role="dst" target="id-0065-000000c9"/> 
      </connection> 
   </model> 
</folder> 

Figure 4.2:   XME output for Federation Design model. 

 

4.1.2 Object Model 

The Object Model paradigm sheet includes the main diagram for object models. As 

seen in Figure 4.3, there are three types of object models, namely, FOM, SOM and 

Other. FOM and SOM are HLA object models which are defined in HLA OMT 

specification. The “Other” type provides a template for “temporary” object models -not 

to be included in Federation Design model.  

Object Model, which is the parent of FOM, SOM and Other, is an abstract class. The 

inheritance operator in this figure presents a parent-child relation that is analogous to the 

inheritance in usual OO approach. Object models have some attributes, most of which 

correlate with the object model identification table categories in [11]: 

• Name: The name assigned to the object model. 

• Version: The version identification assigned to the object model. 

• Modification Date: The latest date on which this version of the object model 

was created or modified.  

• Purpose: The purpose for which the federate or federation was developed. 

• Application Domain: The type or class of application to which the federate or 

federation applies. 

• Sponsor: The organization that sponsored the development of the federate or 

federation. 
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• Point of Contact: The name of the point of contact (POC) for information. 

• POC Organization: The organization with which the POC is affiliated. 

• POC Telephone: The telephone number for the POC. 

• POC E-mail: The e-mail address of the POC. 

• References: Additional sources of information. The default value is “NA”. 

• Other: Other information related to the object model. The default value is “NA”. 

• MOM version: The version of the included management object model. The 

default value is “IEEE 1516”. Selecting a MOM name is required for all FOMs. 

In SOMs the MOM shall be included if needed. 

• Notes: Note labels added to the object model. 

Object models have five aspects, namely Classes, User-Supplied Tags, 

Synchronization, Switches and Time Representation. In each aspect the model 

definitions are taken from the related paradigm sheets with proxy elements. The Classes 

aspect includes the definition of object classes, attributes, interaction classes and 

parameters. The User-Supplied Tags aspect includes the user-supplied tag elements. The 

Synchronization aspect includes the definition of synchronization point models. The 

Switches aspect includes the switches in order to change the initial settings and time 

representation aspect includes the definition of lookahead and timestamp models. 
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Figure 4.3:   Object Models diagram. 

 

A sample XME file that includes the object model information is shown in Figure 

4.4. 
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<folder id="id-006a-00000002" kind="ObjectModels"> 
   <name>Object Models</name> 
   <model id="id-0065-00000001" kind="SOM"> 
      <name>RestaurantSOM</name> 
      <attribute kind="MOMVersion"> 
         <value>ieee</value> 
      </attribute> 
      <attribute kind="appDomain"> 
         <value>Restaurant operations</value> 
      </attribute> 
      <attribute kind="date"> 
         <value>1998-01-01</value> 
      </attribute> 
      <attribute kind="name"> 
         <value>Restaurant Example</value> 
      </attribute> 
      <attribute kind="notes" status="meta"> 
         <value></value> 
      </attribute> 
      <attribute kind="other"> 
         <value>See Mobil Int. Restaurant Guide</value> 
      </attribute> 
      <attribute kind="pocEmail"> 
         <value>doej@fedfoods.com</value> 
      </attribute> 
      <attribute kind="pocName"> 
         <value>Mr. Joseph Doe</value> 
      </attribute> 
      <attribute kind="pocOrg"> 
         <value>Joe&apos;s Place</value> 
      </attribute> 
      <attribute kind="pocPhone"> 
         <value>1-977-555-1234</value> 
      </attribute> 
      <attribute kind="purpose"> 
         <value>Object model for a restaurant fed.</value> 
      </attribute> 
      <attribute kind="references"> 
         <value>www.fedfoods.com/restsim.html</value> 
      </attribute> 
      <attribute kind="sponsor"> 
         <value>Federated foods</value> 
      </attribute> 
      <attribute kind="version"> 
         <value>1.0 Alpha</value> 
      </attribute> 
      <model id="id-0065-00000002" kind="objects"> 
         <name>objects</name> 
      </model> 
      <model id="id-0065-00000003" kind="interactions"> 
         <name>interactions</name> 
      </model> 
   </model> 
</folder> 

Figure 4.4:   XME output of object model information. 
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4.1.3 OMT Core Elements 

The OMT Core folder includes basic elements needed to define an object model; it 

serves classification purposes. OMT Core folder includes classes, data types, dimensions, 

normalization functions, notes, switches, synchronization points, user supplied tags, time 

representations and transportations models. The following sections describe the models 

in this folder. 

4.1.3.1   Classes 

The Classes paradigm sheet provides object class, interaction class, attribute, and 

parameter definitions for the object models. It refers to object class structure table, 

interaction class structure table, attribute table, and parameter table in HLA OMT 

specification. 

Figure 4.5 shows the elements defined in this paradigm sheet. “OMTClass”, which is 

the parent of “objectClass” and “interactionClass”, is an abstract class. “HLAobjectRoot” 

and “HLAinteractionRoot” are the default classes. Each one is defined in the model with 

an appropriate inheritance type. 

GME features three types of inheritance: normal inheritance, implementation 

inheritance and interface inheritance. In implementation inheritance (denoted by a black 

dot inside the inheritance icon), the subclass inherits all of the base class' attributes, 

except for those containment associations where the base class functions as the container 

Interface inheritance (denoted by an unfilled circle) allows no attribute inheritance but 

does allow full association inheritance, with one exception: containment associations 

where the base class functions as the container are not inherited.  

The same explanation applies for “OMTAttribute”, which is an abstract class for 

attributes and parameters.  “HLAprivilegetoDeleteObject” is a default attribute for 

“HLAobjectRoot” object class and it is also defined with implementation inheritance. 
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Figure 4.5:   Classes diagram. 

 
The HLA object and interaction classes support only single inheritance: Each class 

has at most one immediate superclass, and loops are not allowed. The HLA object class 

structure and the HLA interaction class structure are defined with class elements and 

inheritance operators. “OCInheritance” is used for object class hierarchy and 

“ICInheritance” is used for interaction class hierarchy. Subclasses can be considered to 

be specializations, or refinements, of their superclasses. “HLAobjectRoot” is the 

superclass of all other object classes and it may have attributes like other object classes. 

“HLAinteractionRoot” is the superclass of all other interaction classes and it may have 
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parameters like other interaction classes. Individual class names need not be unique. But 

the names of the sibling classes must be different. A violation of this constraint causes an 

error message. 

Object classes have attributes and interaction classes have parameters. The names 

assigned to attributes of any particular object class shall not duplicate (overload) the 

names of attributes of this class or any higher level superclass. In the same way, the 

names assigned to parameters of any particular interaction class shall not duplicate 

(overload) the names of parameters of this class or any higher level superclass. Any 

violation of these constraints causes error messages. Be reminded that in case of an error 

message the user cannot complete the attempted operation. In contrast, a warning 

message allows the operation to complete, with the presumption that the user will have 

the violation removed from the final model. 

The models in this paradigm sheet have some attributes and parts. We will look at 

the most important ones. 

OMTClass Model Attributes: 

• Sharing: Each object class or interaction class shall have information on 

publication and subscription capabilities. Valid entries for sharing shall be: “P 

(Publish)”, “S (Subscribe)”, “PS (PublishSubscribe)” and “N(Neither)”. 

• Definition: Information about the class. The FOM/SOM lexicon defined in HLA 

OMT specification can be derived from this attribute.  

• Semantics: Semantics for the class if needed. 

• Notes: Note labels added to the class. 

ObjectClass Model Attributes 

No additional attributes. 

InteractionClass Model Attributes 

• Order: Specifies the order of delivery to be used. Valid values are: “Receive” 

and “TimeStamp”. 
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• Dimension: Available dimensions are provided with references that shall be 

referred to any dimension described in dimensions folder. A value of “NA” may 

also be provided with no reference. 

• Transportation: Specifies the type of transportation to be used. Transportation 

is provided with a reference that shall be referred to any transportation described 

in transportations folder. Each interaction class has one and only one 

transportation type. Default transportations “HLAbestEffort” and “HLAreliable” 

are available in IEEE default library which is prepared with our proposed 

metamodel. 

OMTAttribute Model Attributes: 

• Datatype: Identify the datatype of the attribute. Datatype is provided with a 

reference that shall be referred to any simple, enumerated, array, fixed record, or 

variant record datatype described under datatypes folder. A value of “NA” may 

also be provided with no reference. When datatype is “NA”, the update type, 

update condition, and available dimensions shall also be “NA”. 

• Definition: Information about the attribute or parameter. The FOM/SOM lexicon 

defined in HLA OMT specification can be derived from this attribute.  

• Semantics: Semantics for the attribute or parameter if needed. 

• Notes: Note labels added to the attribute or parameter. 

Attribute Model Attributes 

• Dimension: Available dimensions are provided with references in the same way 

with interaction classes.  

• Transportation: Specifies the type of transportation to be used; provided in the 

same way with interaction classes. 

• UpdateType: The policy for updating an instance of the class attribute. Valid 

values are: “Static”, “Periodic”, “Conditional” and “NA”. 

• UpdateCondition: Expand and explain the policies for updating an instance of 

the class attribute. If the update type is “Static” or “NA”, “NA” shall be entered. 

• DivestAcquire: Indicates whether ownership of an instance of the class attribute 

can be divested or acquired. Valid values are: “D (Divest)”, “A (Acquire)”, “N 
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(NoTransfer)” and “DA (DivestAcquire)”. In a FOM, if an instance attribute can 

be divested by a federate, it should be acquirable by some other federate in the 

federation. Therefore, the unique designations for this column shall be: “N 

(NoTransfer)” or “DA (DivestAcquire)”. 

• Sharing: Each attribute shall have information on publication and subscription 

capabilities, provided in the same way with OMT classes. 

Parameter Model Attributes 

No additional attributes. 

A part of a sample XME file that includes an object class definition is shown in 

Figure 4.6. 

 

<model id="id-0065-00000008" kind="objectClass"> 
   <name>Employee</name> 
   <attribute kind="definition"> 
      <value>A person working for the restaurant</value> 
   </attribute> 
   <attribute kind="notes" status="meta"> 
      <value></value> 
   </attribute> 
   <attribute kind="semantics" status="meta"> 
      <value></value> 
   </attribute> 
   <attribute kind="sharing" status="meta"> 
      <value>N (Neither)</value> 
   </attribute> 
   <model id="id-0065-00000053" kind="attribute"> 
      <name>PayRate</name> 
      <attribute kind="definition" status="meta"> 
         <value></value> 
      </attribute> 
      <attribute kind="notes"> 
         <value>Note1</value> 
      </attribute> 
      <attribute kind="order" status="meta"> 
         <value>Time Stamp</value> 
      </attribute> 
      <attribute kind="ownership"> 
         <value>divestacquire</value> 
      </attribute> 
      <attribute kind="semantics" status="meta"> 
         <value></value> 
      </attribute> 
      <attribute kind="sharing"> 
         <value>PS (PublishSubscribe)</value> 
      </attribute> 

 35



      <attribute kind="updateCondition"> 
         <value>Merit increase * [1,2]</value> 
      </attribute> 
      <attribute kind="updateType"> 
         <value>conditional</value> 
      </attribute> 
      <reference id="id-0067-00000009" 
kind="transportationRef" referred="id-0066-0000003b"> 
      </reference> 
      <reference id="id-0067-0000000a" kind="datatype" 
referred="id-0065-0000005c"> 
      </reference> 
   </model> 
   <model id="id-0065-00000079" kind="attribute"> 
      <name>HomeNumber</name> 
      . 
      . 
   </model> 
   <model id="id-0065-0000007a" kind="attribute"> 
      <name>HomeAddress</name> 
      . 
      . 
   </model> 
   <model id="id-0065-0000007b" kind="attribute"> 
      <name>YearsOfService</name> 
      . 
      . 
   </model> 
</model> 

Figure 4.6:   The XME output for an object class. 

 

4.1.3.2   Dimensions 

Dimensions model map to dimension table of HLA OMT tabular format. Figure 4.7 

shows the dimension diagram. Federations use dimensions to limit the delivery of some 

data on the basis of object class, interaction class, and object attribute. They refer to the 

available dimensions using “dimensionRef” model element. Each set of available 

dimensions is a subset of all dimensions, so there can be many referred dimensions. 

Dimensions folder is in the root folder of the project, so that dimensions are shared 

models. 
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Figure 4.7:   Dimension diagram. 

 
The important attributes of dimension model are “value” and “upperBound”. 

Dimension upper bound specifies the upper bound for the dimension as a positive 

integer. “Value” specifies the default range for the dimension. 

Each dimension should have a datatype reference, this can refer to a simple datatype 

or an enumerated datatype. Each dimension has a normalization function that specifies 

the map from a dimension’s bounding coordinates to nonnegative integer sub-ranges in 

the range [0, dimension upper bound). The following normalization functions are 

commonly used and they are provided with our metamodel; new functions can be 

referred as well: 

• linear(domain, dimensionLower, dimensionUpper) 

• linearEnumerated(domain, mappedSet) 

• enumeratedSet(domain, mappedSet) 

• logarithmic(domain, domainLower, domainUpper) 

• tanh(domain, domainCenter, domainSize) 

• newFunction(parameter1, parameter2, parameter3) 

Figure 4.8 denotes the normalization function diagram, where the above functions are 

modeled. 
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Figure 4.8:   Normalization functions. 

 
Unfortunately the format of the default range for dimensions and the format of some 

parameters for normalization functions are not checked as these fields accept arbitrary 

strings. 

4.1.3.3   Time Representation 

Federates may associate themselves or some of their activities with points on the HLA 

time axis, i.e. time stamps. It is also important to define the lookahead characteristics of 

federates and federations in order to provide compatibility. Time stamp and lookahead 

are modeled in time representation diagram shown in Figure 4.9. Both of them may have 

a datatype reference, which can refer to a simple, enumerated, array, fixed record or 

variant record datatype. 
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Figure 4.9:   Time representation model. 

 

4.1.3.4   User Supplied Tags 

With the User Supplied Tags diagram, the mechanism for federates to supply tags with 

some certain HLA services is modeled. The HLA service categories that are capable of 

accepting a user-supplied tag are: update/reflect instance attribute values, send/receive an 

interaction, delete/remove an object instance, divestiture request, divestiture completion, 

acquisition request, and request update services. 

Figure 4.10 shows the user supplied tags model. Each service category may have a 

datatype reference which can refer to a simple, enumerated, array, fixed record or variant 

record datatype.  
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Figure 4.10:   User-supplied tags diagram. 

 

4.1.3.5   Synchronizations 

The synchronizations diagram shown in Figure 4.11 defines synchronization points to 

synchronize federation activities. Each synchronization point has a tag datatype reference 

that identifies the datatype of the user-supplied tag when needed. It can refer to a simple, 

enumerated, array, fixed record or variant record datatype. 

For SOMs, synchronization points have “notes” attribute, “semantics” attribute, and 

an attribute named capability that indicates the level of interaction that a federate is 

capable of honoring. Valid values for capability are: “Register”, “Achieve”, 

“RegisterAchieve” and “NoSynch”. For FOMs, synchronization points have only “notes” 

and “semantics” attributes. In the diagram “synchronization” model is used for SOMs 

and “synchronizationNA” model is used for FOMs. 
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Figure 4.11:   Synchronizations diagram. 

 

4.1.3.6   Transportations 

This diagram defines transportation types that define the transportation of data among 

federates. Two transportation types, “HLAreliable” and “HLAbestEffort”, are required 

by the HLA and these are provided with IEEE default library model. This library is 

described in section 4.2.1.  

Figure 4.12 shows the transportations diagram. Transportation folder is in the root 

folder of the project, so transportations are shared models. Object class attributes and 

interaction classes refer to a transportation type via the “transportationRef” model 

element. 

 

 

Figure 4.12:   Transportations diagram. 
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4.1.3.7   Switches 

The Switches diagram provides initial settings of some actions provided on behalf of 

federates. Researchers who will do future work should note that although the initial 

setting of each switch is specified, the value of each switch may be changed during 

execution. The switches whose setting can be provided are: auto provide, convey region 

designator sets, attribute scope advisory, attribute relevance advisory, object class 

relevance advisory, interaction relevance advisory, and service reporting. For SOMs, 

setting can be “NA” as well as enabled or disabled, but for FOMs, all switches must be 

(initially) set as enabled or disabled. 

4.1.3.8   Data types 

Figure 4.13 denotes the datatypes diagram. “DatatypeModel” is an abstract model on the 

top of other datatypes. There is a “basicData” model to provide the representation type of 

some datatypes. Basic data representation is not used as a datatype, but it forms the basis 

of the datatypes. The “simpleData” model can be used to describe simple, scalar data 

items. The “enumeratedData” model can be used to describe data elements that can take 

on a finite discrete set of possible values. The “arrayData” model can be used to describe 

indexed homogenous collections of datatypes also known as arrays or sequences. 

The “fixedRecordData” model can be used to describe heterogeneous collections of 

types also known as records or structures. Each fixed record datatype may contain fields 

that are of other types, such as simple datatypes, fixed records, arrays, enumerations, or 

variant records.  

The “variantRecordData” model can be used to describe discriminated unions of 

types known as variant or choice records. Each variant record datatype may contain 

enumerators that determine the alternatives. 

Datatypes folder is in root folder in the project. Datatypes are shared models and 

several models (object class attributes, interaction class parameters, dimensions, time 

representations, user-supplied tags, and synchronization points) refer to datatypes. 
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Figure 4.13:   Datatypes diagram. 
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A predefined set of basic data representations, three predefined simple datatypes, a 

single predefined enumerated datatype and three predefined array datatypes are defined 

in IEEE default library mode. This library is explained in section 4.2.1.  

4.1.3.9   Notes 

The Notes diagram provides note elements for the object model elements. Notes are 

defined under the root folder and they can be pointed out from any model element 

described previous sections. A note may be referenced any number of times and a single 

object model element may have any number of notes. 

Also additional notes, related to the design model, can be added by the user with 

GME annotation facilities. These annotations are not a part of the object model. 

4.2 Object Model Design Environment 

After defining the metamodel as a GME paradigm, a design environment for object 

models can be automatically generated by using the GME Meta 2004 Interpreter. The 

Object Model Design Environment (OMDE) is explained in Appendix A as the User’s 

Guide. This chapter explains IEEE default library, the MOM and an example federation 

design model. 

4.2.1 IEEE Defaults Library 

An important facility that GME needs is default model elements that mean when the user 

creates a model some model elements are already defined for it. The GME overcomes 

this problem with libraries. The user defines libraries and attaches them to the model 

where needed. So in order to define default datatypes and transportations for HLA, we 

modeled IEEE defaults library with our metamodel. To utilize these datatypes and 

transportations, first he should attach this library to his model. 

The predefined basic data representations and datatypes in this library are listed in 

Figure 4.14 in the tree browser of GME for IEEE defaults library. The XME output, 

generated by GME, of this library is reproduced in Appendix B. 
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Figure 4.14:   Default datatypes and transportations. 

 

4.2.2 Management Object Model 

Management Object Model, s defined in Federate Interface Specification. MOM 

provides facilities for joined federates to access RTI services during federation 

execution. MOM specification employs the OMT tabular format and so we can readily 

model it with our metamodel. MOM provides some default model elements for some 

services, such as publishing object classes; registering object instances and updating 

values of attributes of those object instances; subscribing to and receiving some 

interactions; or publishing and sending other interactions. The classes, attributes, 
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parameters, datatypes and dimensions in MOM are modeled completely. Figure 4.15 

shows the datatypes and dimensions in the tree browser. 

 

Figure 4.15:   MOM datatypes and dimensions. 
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Although GME provides XME outputs, which has an extended XML representation, 

the size of the files can get very large. MOM has more than 10,000 XME lines, where 

our proposed metamodel has over 40,000. GME also needs improvement on its import 

and export mechanisms. Because of this reason we cannot show the XME output for 

MOM.  

Figure 4.16 shows the object classes and Figure 4.17 shows the interaction classes 

drawn with the HLA OM design environment. We refer to HLA federate interface 

specification for further details. 

 

 

Figure 4.16:   MOM object classes. 
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Figure 4.17:   MOM interaction classes. 

 

4.2.3 Sample Federation Design Model 

We have modeled a sample restaurant federation design model, which is a well known 

example, since the HLA standard gives this example in order to explain object model 

template tabular format. Here we extend the given example with a few new modeling 

elements and a simple federation design model. All sample tables included in the 

standard document are completely covered in this example. 

Figure 4.18 shows a screenshot from the modeling environment. On the right side of 

the figure the tree browser shows the datatypes, dimensions and transportations. On the 

left side of the figure, above model shows the federation design model with one 

federation and two federates connected to the related FOM and SOMs; the following 

model shows some of the interaction classes of Restaurant Federate SOM. 

Figure 4.19 shows a sample object class hierarchy in Restaurant Federate SOM. This 

is only a part of the object class hierarchy with “HLAobjectRoot” on the top. 
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Figure 4.18:   Sample federation design model overview. 

 

 

Figure 4.19:   Sample object class hierarchy. 
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This example, along with the MOM model, raised our confidence that object model 

design environment created by GME based on our metamodel, is a sufficiently powerful 

visual tool for object models and it can be used for designing “real life” object models. 
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CHAPTER 5 
 
 

CONCLUSION 
 
 
 
 
 

This thesis introduces a metamodel as a GME paradigm for HLA object models and 

explains a design environment that is generated automatically. Our objective is to lay the 

foundation for developing a federation object model design tool, which can be a part of a 

federation development toolkit, by applying model integrated computing to HLA. 

Defining a metamodel for HLA OM can be seen as an initial step in this direction. This 

metamodel is used in GME’s Meta interpreter and the Object Model Design 

Environment (OMDE) is generated automatically. The OMDE is a design tool to 

describe individual federates and federations with SOMs and FOMs respectively. OMDE 

also provides modeling simple federation designs with illustrative purposes. The object 

models defined with OMDE, are the domain models of the MIC process. So they can be 

used in another model transformation tool, such as code generators. 

The proposed metamodel is fully compliant with IEEE Std. 1516.2, and it is 

strengthened with constraints written in OCL. OMT DIF formatted object models can be 

easily generated by writing simple interpreters. The OMT tabular format can also be 

generated easily, since all information in tabular format can map to a modeling element 

in our metamodel. Furthermore, our metamodel can support virtually any presentation of 

an object model compliant with IEEE Std. 1516. All that is required is to provide a 

generator based on model traversal, which is supported through an API in GME. 

Although we have described a metamodel for HLA OM, services defined in federate 

interface specification can also be modeled in this way; and this work will make our 

metamodel more useful. Now, there is a metamodel that is ready to be used as a design 

tool and an input of a further study in MIC process. 
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5.1 Future Work 

In this thesis we have used the latest version 4.11.10 of GME. Unfortunately, at this time 

it uses UML 1.4, it isn’t upgraded to UML 2.0 yet. But we understand that the next 

generation modeling environment will support MOF 2.0 and also it will give opportunity 

to directly use MOF 2.0 for paradigms. So porting the HLA OM metamodel to MOF 2.0 

should be considered. 

Also the IEEE has announced that it began to revise IEEE 1516, IEEE 1516.1 and 

IEEE 1516.2 modeling and simulation standards on 31.03.2005. Upgrading this 

metamodel will be a future-work after the revision of the standards will be completed. 

GME has a decorator facility for better visualization of the models. We used the 

standard Meta Decorator, but more advanced decorators can be defined and used. 

Providing more powerful visual elements will improve the object model design 

environment. 

As we noted in related section, most of the attribute values are checked for syntactic 

validity while a few of them are not. Validation and also verification of the domain 

models will allow the metamodel to be used more effectively in development tools. 

Applying MIC to HLA will bring new future works as model transformations and 

code generation, for which the proposed metamodel can be directly used. The researchers 

at Vanderbilt University developed a model-to-model transformation language The 

Graph Rewriting And Transformation language (GReAT) [46], and a meta-

programmable transformation tool that supports the development of graphical language 

semantic translators using graph transformations. These translators can convert models of 

one domain into models of another domain. The GReAT tool can be used for model 

transformations.  

Lastly this metamodel handles only HLA object models. A complete design and 

development environment for HLA based distributed simulations should be developed, 

supporting all steps of FEDEP. Subsequent tasks include a) generating HLA 

configuration files, b) importing and exporting object models represented in OMT 

tabular format, in OMT DIF format, or in some UML tool, c) defining a mapping from 

FOM elements to SOM elements, and d) producing Publish/Subscribe diagrams. 
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APPENDIX A 
 
 

USER’S GUIDE 
 
 
 
 
 

This is the User’s Guide of the Object Model Design Environment (OMDE) which is 

automatically generated with GME. It explains how to use the GME HLA OM paradigm 

to design object models. 

Registering the paradigm: 

To be able to use the OMDE you should first register the HLA OM paradigm. Open the 

HLA OM paradigm “.mga” file and run the Meta 2004 Interpreter on the upper left 

corner of the GME. Answer “yes” when you are asked to register the paradigm. And 

press “Next” button for other dialogs. Close the metamodel. 

Opening a New HLA OMT Project: 

Start GME, and select “File/New Project”. A dialog box asks you to choose the paradigm 

that the new project will be based on. Select HLA_OMT and press the “Create New” 

button. The next dialog asks you to specify the data storage. Simple models are usually 

stored in project files. Click “Next” and you are asked to name a project file. The 

standard extension is “.mga”. Specify a name (like “restaurant.mga”) and press OK. 

GME has now created and opened an empty project that is named “restaurant” and 

associated with the HLA_OMT paradigm. 

Creating Federation Design model: 

Right click on the root folder in the Browser window (the one usually positioned at the 

right side), and select the single option “Federation Design Model” within the “Insert 

Model” option as in Figure 4.20. A new model named “New Federation Design Model” 

is created under the root; you may change the name from Attributes browser. Double 

click on the model to open it. An empty window appears in the user-area. 
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The Part Browser, a small window in the lower left portion of the program, displays 

the model elements that can be inserted into the model in its current aspect. The elements 

in this browser are federation, federate, FOMReference and SOMReference. You can use 

them by dragging from the Part Browser onto the main window. You can connect 

federation to federates to denote the members of the federation; federation to 

FOMReference; and Federate to SOMReference. When using references, you drag the 

referred element over the reference and drop it when the mouse icon changes. But before 

referring elements you should first define FOM and SOM object models. Copy and paste 

operations on elements are supported by GME and all elements can be created, moved or 

copied by drag and drop as usual. 

 

 
 

Figure 4.20:   Creating Federation Design model. 
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Creating Object Model: 

Right click on the root folder in the Browser window and select the “Object Models” 

within the “Insert Folder” option. A new folder named “New Object Models” is created 

under the root. Again right click on the new folder. You can select FOM, SOM or Other 

within the “Insert Model” option. For example select “SOM”. Double click to open it. An 

empty window appears in the user-area. Figure 4.21 shows a part of the Restaurant SOM. 

 

 

Figure 4.21:   Creating Object Models. 

 
The Part Browser has five views and each view displays the model elements that can 

be inserted into the model in its current aspect. 

• Classes-view includes the definition of object classes, attributes, interaction 

classes, and the inheritance relation between the classes. 

• User-Supplied Tags view includes user supplied tag elements.   

• Synchronization view includes the definition of synchronization point models.  

• Switches view includes the Boolean switches in order to change the initial 

settings  
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• Time representation view includes the definition of lookahead and timestamp 

models. 

The icons with “M” letter on the bottom mean this element has parts; you can open 

the parts double clicking on the icon. 

Creating Other Elements: 

Right click on the root folder in the Browser window within the “Insert Folder” option 

you can select Dimensions, Transportations, Data Types or Notes. After the selection a 

new folder is created under the root. By right clicking on the new folder, you can select 

the related model elements. And in the same way with object models and federation 

design model, you can define the model elements. 

For adding HLA notes, define notes under the Notes folder and give references to 

them; or directly add notes to the notes attribute of each modeling element. For adding 

design notes, use Annotation facility of GME. 

And lastly we can add a few points. References used in the model shall not be null, if 

you want to denote “NA”, then simply use no reference element. If you want to check the 

validity of your model you can use Check facility of GME, by selecting “File-> Check” 

option. 
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APPENDIX B 
 
 

IEEE DEFAULT LIBRARY 
 
 
 
 
 

This is the XME output of IEEE Default Datatypes and Transportations Library defined 

with object model design environment.  

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE project SYSTEM "mga.dtd"> 
 
<project version="IEEE 1516.2-2000" metaname="HLA_OMT"> 
  <name>IEEE 1516 defaults</name> 
  <comment>Default entries for HLA-OMT.</comment> 
  <author>Deniz Cetinkaya</author> 
 
  <folder id="id-006a-00000001" kind="RootFolder"> 
    <name>IEEE 1516 defaults</name> 
    <folder id="id-006a-00000002" kind="dataTypes"> 
      <name>Default Data Types</name> 
      <folder id="id-006a-00000003" kind="basicDataRepr"> 
        <name>Default Basic Data Representations</name> 
        <model id="id-0065-00000001" kind="basicData"> 
          <name>HLAfloat32BE</name> 
          <attribute kind="encoding"> 
            <value>32-bit IEEE normalized single-precision 
            format. 
            (see IEEE Std. 754-1985)</value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Single-precision floating-point number. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>32</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000002" kind="basicData"> 
          <name>HLAfloat32LE</name> 
          <attribute kind="encoding"> 
            <value>32-bit IEEE normalized single-precision  
            format. 
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            (see IEEE Std. 754-1985)</value> 
          </attribute> 
          <attribute kind="endian"> 
            <value>Little</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Single-precision floating-point number. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>32</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000003" kind="basicData"> 
          <name>HLAfloat64BE</name> 
          <attribute kind="encoding"> 
            <value>64-bit IEEE normalized single-precision  
            format. 
            (see IEEE Std. 754-1985)</value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Double-precision floating-point number. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>64</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000004" kind="basicData"> 
          <name>HLAfloat64LE</name> 
          <attribute kind="encoding"> 
            <value>64-bit IEEE normalized single-precision  
            format. 
            (see IEEE Std. 754-1985)</value> 
          </attribute> 
          <attribute kind="endian"> 
            <value>Little</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Double-precision floating-point number. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>64</value> 
          </attribute> 
        </model> 
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        <model id="id-0065-00000005" kind="basicData"> 
          <name>HLAinteger16BE</name> 
          <attribute kind="encoding"> 
            <value>16-bit two&apos;s complement signed  
            integer. 
            The most significant bit contains the sign. 
            </value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Integer in the range [-2^15, -2^15-1]. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>16</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000006" kind="basicData"> 
          <name>HLAinteger16LE</name> 
          <attribute kind="encoding"> 
            <value>16-bit two&apos;s complement signed  
            integer. 
            The most significant bit contains the sign. 
            </value> 
          </attribute> 
          <attribute kind="endian"> 
            <value>Little</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Integer in the range [-2^15, -2^15-1]. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>16</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000007" kind="basicData"> 
          <name>HLAinteger32BE</name> 
          <attribute kind="encoding"> 
            <value>32-bit two&apos;s complement signed  
            integer. 
            The most significant bit contains the sign. 
            </value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Integer in the range [-2^31, -2^31-1]. 
            </value> 

 63



          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>32</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000008" kind="basicData"> 
          <name>HLAinteger32LE</name> 
          <attribute kind="encoding"> 
            <value>32-bit two&apos;s complement signed  
            integer. 
            The most significant bit contains the sign. 
            </value> 
          </attribute> 
          <attribute kind="endian"> 
            <value>Little</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Integer in the range [-2^31, -2^31-1]. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>32</value> 
          </attribute> 
        </model> 
        <model id="id-0065-00000009" kind="basicData"> 
          <name>HLAinteger64BE</name> 
          <attribute kind="encoding"> 
            <value>64-bit two&apos;s complement signed  
            integer. 
            The most significant bit contains the sign. 
            </value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Integer in the range [-2^63, -2^63-1]. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>64</value> 
          </attribute> 
        </model> 
        <model id="id-0065-0000000a" kind="basicData"> 
          <name>HLAinteger64LE</name> 
          <attribute kind="encoding"> 
            <value>64-bit two&apos;s complement signed  
            integer. 
            The most significant bit contains the sign. 
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            </value> 
          </attribute> 
          <attribute kind="endian"> 
            <value>Little</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>Integer in the range [-2^63, -2^63-1]. 
            </value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>64</value> 
          </attribute> 
        </model> 
        <model id="id-0065-0000000b" kind="basicData"> 
          <name>HLAoctet</name> 
          <attribute kind="encoding"> 
            <value>Assumed to be portable among hardware  
            devices.</value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>8-bit value</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>8</value> 
          </attribute> 
        </model> 
        <model id="id-0065-0000000c" kind="basicData"> 
          <name>HLAoctetPairBE</name> 
          <attribute kind="encoding"> 
            <value>Assumed to be portable among hardware  
            devices.</value> 
          </attribute> 
          <attribute kind="endian" status="meta"> 
            <value>Big</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>16-bit value</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>16</value> 
          </attribute> 
        </model> 
        <model id="id-0065-0000000d" kind="basicData"> 
          <name>HLAoctetPairLE</name> 
          <attribute kind="encoding"> 
            <value>Assumed to be portable among hardware  
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            devices.</value> 
          </attribute> 
          <attribute kind="endian"> 
            <value>Little</value> 
          </attribute> 
          <attribute kind="interpretation"> 
            <value>16-bit value</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="size"> 
            <value>16</value> 
          </attribute> 
        </model> 
      </folder> 
      <folder id="id-006a-00000004" 
kind="enumeratedDatas"> 
        <name>Default Enumerated Data Types</name> 
        <model id="id-0065-0000000e" 
kind="enumeratedData"> 
          <name>HLAboolean</name> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>Standard Boolean type</value> 
          </attribute> 
          <atom id="id-0066-00000001" kind="enumerator"> 
            <name>HLAfalse</name> 
            <attribute kind="notes" status="meta"> 
              <value></value> 
            </attribute> 
            <attribute kind="values"> 
              <value>0</value> 
            </attribute> 
          </atom> 
          <atom id="id-0066-00000002" kind="enumerator"> 
            <name>HLAtrue</name> 
            <attribute kind="notes" status="meta"> 
              <value></value> 
            </attribute> 
            <attribute kind="values"> 
              <value>1</value> 
            </attribute> 
          </atom> 
          <reference id="id-0067-00000001" 
         kind="representation" referred="id-0065-
00000007"> 
            <name>representation</name> 
          </reference> 
        </model> 
      </folder> 
      <folder id="id-006a-00000005" kind="arrayDataTypes"> 
        <name>Default Array Data Types</name> 
        <model id="id-0065-0000000f" kind="arrayData"> 
          <name>HLAASCIIstring</name> 
          <attribute kind="cardinality" status="meta"> 
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            <value>Dynamic</value> 
          </attribute> 
          <attribute kind="encoding"> 
            <value>HLAvariableArray</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>ASCII string representation</value> 
          </attribute> 
          <reference id="id-0067-00000005" kind="datatype"  
          referred="id-0065-00000012"> 
            <name>datatype</name> 
          </reference> 
        </model> 
        <model id="id-0065-00000010" kind="arrayData"> 
          <name>HLAopaqueData</name> 
          <attribute kind="cardinality" status="meta"> 
            <value>Dynamic</value> 
          </attribute> 
          <attribute kind="encoding"> 
            <value>HLAvariableArray</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>Uninterpreted sequence of bytes</value> 
          </attribute> 
          <reference id="id-0067-00000007" kind="datatype"  
          referred="id-0065-00000014"> 
            <name>datatype</name> 
          </reference> 
        </model> 
        <model id="id-0065-00000011" kind="arrayData"> 
          <name>HLAunicodeString</name> 
          <attribute kind="cardinality" status="meta"> 
            <value>Dynamic</value> 
          </attribute> 
          <attribute kind="encoding"> 
            <value>HLAvariableArray</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>Unicode string representation</value> 
          </attribute> 
          <reference id="id-0067-00000008" kind="datatype"  
          referred="id-0065-00000013"> 
            <name>datatype</name> 
          </reference> 
        </model> 
      </folder> 
      <folder id="id-006a-00000006" 
kind="simpleDataTypes"> 
        <name>Default Simple Data Types</name> 
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        <model id="id-0065-00000012" kind="simpleData"> 
          <name>HLAASCIIchar</name> 
          <attribute kind="accuracy" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="resolution" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>Standard ASCII character. 
            (See ANSI Std. X3.4-1986)</value> 
          </attribute> 
          <attribute kind="units" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <reference id="id-0067-00000002"  
         kind="representation" referred="id-0065-
0000000b"> 
            <name>representation</name> 
          </reference> 
        </model> 
        <model id="id-0065-00000013" kind="simpleData"> 
          <name>HLAunicodeChar</name> 
          <attribute kind="accuracy" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="resolution" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>Unicode UTF-16 character. 
            (see the Unicode Standard, version 
3.0)</value> 
          </attribute> 
          <attribute kind="units" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <reference id="id-0067-00000003"  
         kind="representation" referred="id-0065-
0000000c"> 
            <name>representation</name> 
          </reference> 
        </model> 
        <model id="id-0065-00000014" kind="simpleData"> 
          <name>HLAbyte</name> 
          <attribute kind="accuracy" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <attribute kind="notes" status="meta"> 
            <value></value> 
          </attribute> 
          <attribute kind="resolution" status="meta"> 
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            <value>NA</value> 
          </attribute> 
          <attribute kind="semantics"> 
            <value>Uninterpreted 8-bit value.</value> 
          </attribute> 
          <attribute kind="units" status="meta"> 
            <value>NA</value> 
          </attribute> 
          <reference id="id-0067-00000004"  
         kind="representation" referred="id-0065-
0000000b"> 
            <name>representation</name> 
          </reference> 
        </model> 
      </folder> 
    </folder> 
    <folder id="id-006a-00000007" kind="transportations"> 
      <name>Default Transportations</name> 
      <atom id="id-0066-00000003" kind="transportation"> 
        <name>HLAreliable</name> 
        <attribute kind="description"> 
          <value>Provide reliable delivery of data in the  
          sense 
          that TCP/IP delivers its data reliably.</value> 
        </attribute> 
        <attribute kind="notes" status="meta"> 
          <value></value> 
        </attribute> 
      </atom> 
      <atom id="id-0066-00000004" kind="transportation"> 
        <name>HLAbestEffort</name> 
        <attribute kind="description"> 
          <value>Make an effort to deliver data in the  
          sense 
          that UDP provides best-effort delivery.</value> 
        </attribute> 
        <attribute kind="notes" status="meta"> 
          <value></value> 
        </attribute> 
      </atom> 
    </folder> 
  </folder> 
</project> 
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