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ABSTRACT 

 
 

AN EVOLUTIONARY METHODOLOGY FOR CONCEPTUAL DESIGN 

 
 
 

GÜROĞLU, Serkan 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Abdülkadir ERDEN 

 

 

July 2005, 174 pages 

 

 

 

The main goal of this thesis is the development of a novel methodology to 

generate creative solutions at functional level for design tasks without binding 

solution spaces with designers’ individual experiences and prejudices. For this 

purpose, an evolutionary methodology for the conceptual design of 

engineering products has been proposed.  

 

This methodology performs evaluation, combination and modification of the 

existing solutions repetitively to generate new solution alternatives. Therefore, 

initially a representation scheme, which is generic enough to cover all 

alternatives in solution domain, has been defined. Following that, the 

evolutionary operations have been defined and two evaluation metrics have 

been proposed. Finally, the computer implementation of the developed theory 

has been performed. The test-runs of developed software resulted in creative 

alternatives for the design task. Consequently, the evolutionary design 

methodology presents a systematic design approach for less experienced or 
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inexperienced designers and establishes a base for experienced designers to 

conceive many other solution alternatives beyond their experiences. 

 

 

Keywords: Conceptual design, design automation, evolutionary design, multi-

objective optimization in design, complexity in design, creativity in design. 
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ÖZ 

 
 

KAVRAMSAL TASARIMA EVRİMSEL BİR YAKLAŞIM 

 
 
 

GÜROĞLU, Serkan 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Abdülkadir ERDEN 

 

 

Temmuz 2005, 174 pages 

 

 

 

Bu tezin amacı, tasarımcının önyargı ve bireysel deneyimlerinden bağımsız 

olarak işlevsel düzeyde yaratıcı tasarım seçenekleri oluşturacak yeni bir 

yöntem geliştirmektir. Bu amaçla, mühendislik ürünlerinin kavramsal 

tasarımında kullanılmak üzere, evrimsel bir yöntem geliştirilmiştir.  

 

Bu yöntem, yeni çözüm önerileri oluşturmak için mevcut çözümlerin 

değerlendirilmesini, birleştirilmesini ve uyarlanmasını sürekli olarak 

gerçekleştirir. Dolayısıyla, öncelikle çözüm kümesinde yer alan tüm seçenekleri 

ifade edebilecek bir gösterim şablonu tanımlanmıştır. Daha sonra, evrimsel 

işlemler tanımlanmış ve iki değerlendirme ölçütü önerilmiştir. Son olarak, 

geliştirilen kuramın bilgisayar ortamında uygulaması gerçekleştirilmiştir. 

Geliştirilen yazılım ile yapılan denemeler sonucunda, yaratıcı özellikler içeren 

tasarım seçeneklerinin üretildiği gözlenmiştir. Sonuç olarak, evrimsel tasarım 

yöntemi, az deneyimli ya da deneyimsiz tasarımcılar için sistematik bir tasarım 
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yaklaşımı, tecrübeli tasarımcılar için ise tecrübelerinin ötesinde çözüm 

seçenekleri oluşturabilecekleri bir ortam sunmaktadır. 

    

 

Anahtar kelimeler: Kavramsal tasarım, tasarım otomasyonu, evrimsel tasarım, 

tasarımda çok-amaçlı optimizasyon kullanımı, tasarımda karmaşıklık, tasarımda 

yaratıcılık. 
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CHAPTER I 

 

INTRODUCTION 

 

 
1.1 BACKGROUND AND MOTIVATION 

 

The engineering design activity is defined, in general, as a creative, iterative 

and often open-ended process of conceiving and developing components, 

systems and processes to satisfy real needs (Dixie, 2004). Due to the implicit 

and indirect nature of the relations between customer needs and design 

concepts, it is commonly accepted that this activity possesses artistic 

characteristics besides its scientific and methodic aspects. This sophisticated 

structure of design prevents the immediate formulation and standardization of 

it. In many design issues of engineering products, the design team members 

seek solutions directly basing on their knowledge and their past design 

practices. Therefore, the designer’s biases and experiences have significant 

effects on the generated solutions.   

 

Over the last twenty years, the researchers have focused on the studies 

aiming at placing design concept at a higher intellectual level and developing 

design as a discipline with its own structure, techniques and vocabulary. The 

design models developed by these studies can be classified into two main 

groups: the design process models and the design artifact models (Erden, 

2004).   

 

Design process models aim at revealing the methodology and characteristics 

of the engineering design process and proposing strategies for the designers 

about how to proceed in design procedure. One of the most important process 
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models proposed by Pahl and Beitz (1988) defines the flow of work at four 

main steps namely; the clarification of the task, conceptual design, 

embodiment design and detail design. The clarification of the task states the 

problem, objective and constraints, as well as the collection of information 

about the needs to be fulfilled. The second step, which is the conceptual 

design, includes transformation of the needs into functional requirements, 

creation of design alternatives and evaluation of them according to the design 

criteria. Next comes the embodiment design, which involves the transition 

from function structure of the design to form of product through the selection 

of appropriate components. Moreover, preparation of a preliminary layout, 

determination of production processes and optimization issues are performed 

in this step. Finally, detail design consists of all technical and economical 

calculations of the whole product and finalization of design. This flow of 

design process is presented in Figure 1.1. 

 

 
Figure 1.1. Flow of design process. 
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Among these steps, the conceptualization is the most vital and difficult part of 

design activity. During this stage, designers deal with the incomplete and 

informal information combining their intelligence and creativity to make large 

number of decisions and compare numerous alternatives. The studies that 

have been performed with a number of different industrial companies with 

complex products (e.g. advanced machine tools, motor vehicle), have 

indicated that the design of these products involve some 8-10 levels of 

decision making activity. Additionally, at each of these levels, the designers 

have to consider approximately 15 alternative function structures, 

embodiments or details. This geometric increase leads to about 2.5 billion 

decisions of purely qualitative nature, which necessitate a similar number of 

quantitative decisions or calculations (Sharpe, 1995).  

 

Furthermore, these decisions made in early phases of conceptualization, have 

significant effects on whole design, manufacturing and even marketing 

activities. It is generally admitted that the first 5% of design process commits 

80% of the overall cost to market the product (Carruba, 1993).  

 

In the light of these facts, in order to model the products at conceptual and 

embodiment design stages, design artifact (or product) models have been 

developed. In design artifact models, researchers aim at extracting functional, 

structural and behavioral characteristics of the engineering systems regardless 

of their specific tasks (Erden, 2004). Expanding demands on the development 

of multi-technical artifacts (e.g. mechatronic products or systems) have 

increased the significance of such modeling approaches. The development of 

these products requires designers from different engineering disciplines to 

work together. Therefore, such a modeling methodology provides the 

designers with a powerful tool for correct, complete and systematic 

information transfer to the embodiment design, detail design and 

documentation phases (Erden, 1999). 

 

Moreover, an efficient modeling technique with computer implementation 

highly reduces time and energy spent by the designers on construction and 
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evaluation of the design alternatives. The effect of modeling on the certainty 

with respect to the product performance is illustrated in Figure 1.2 (Soemers 

et al., 2000). At the beginning of conceptualization, design freedom is 

maximum. However, certainty with respect to the performance and the costs 

is minimum. In the following phases of the design, while the design freedom 

decreases, certainty about the performance of the product increases. The 

decrease in the design freedom makes serial modifications on design very 

difficult. At this point, effective modeling increases the knowledge with respect 

to the performance as early as possible, and reveals the risks, opportunities 

and peculiarities of the design. 

 

 

 

Figure 1.2.The effect of modeling on the certainty about the product performance 

(Soemers et al., 2000). 

 

The next step of these studies is the automation of design process. The 

modeling strategies mentioned above are limited to purposes of archival and 

transmittal of design information, or benchmarking on performances of 

developed alternatives. In addition to detection of design faults and 

suggestions for minor improvements, guiding designers in generation of novel 

designs or even performing the whole design process or some part of it 

without requiring the supervision of the designer are primary goals of ongoing 

research on design theory. Due to the integrated nature of the 

conceptualization phase including human intelligence and engineering 

creativity, automation of this phase is very difficult to achieve. 
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Although in today’s engineering problems many design issues transform into 

concept evaluation (i.e. performance and cost assessment and optimization) 

rather than concept generation (Otto and Wood, 2001), creativity is always an 

essential characteristic of design activity and even designs are classified with 

respect to level of creativity involved (Bahrami and Dagli, 1994); 

 

• Creative Design: Conceptualization of the problem begins with an 

abstract decomposition of the design task. If no priori decomposition 

exists for the solution of the problem, creative designs are taken into 

consideration.  

• Innovative Design: If the design starts with a known decomposition, 

the design task will transform to the activity of uncovering appropriate 

component alternatives for the decomposition in hand.  

• Adaptive design or Redesign: Modification of a completely known 

design to satisfy changes in the original function structure is defined as 

redesign. 

• Routine Design: If both the priori decomposition of the design task and 

its solution alternatives are known in advance, the design issue 

becomes the determination of the most suitable alternative. 

 

Thanks to the limited involvement of creativity in redesign and routine design 

activities, automation of these design types is accomplished to a certain extent 

through the use of various engineering analysis, CAD and CAE tools.  

 

The recent researches on the design automation have mainly focused on 

innovative design and consequently numerous techniques and tools have been 

proposed. Rule based expert systems for electronic component design or 

software design, case based expert systems for mechanical or mechatronic 

design issues, genetic design tools for topology or configuration, evolutionary 

software design techniques, and data centric design databases / knowledge 

centric design repositories for system design are only some of them. Due to 

nature of innovative design based on appropriate component mining rather 
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than analysis and decomposition of design task, this design type becomes 

eligible for automation. 

 

However, there are a small number of studies dedicated to the automation of 

creative design. Since creative designs require a complicated mental effort far 

beyond the combinatorial exploration of physical solution alternatives, building 

a methodology for the automation of creative design is much more difficult 

than that for the innovative design. For instance, in a design task, although 

preferring a chain-sprocket pair rather than a gear box generates a variance in 

solution, the functional composition behind both of these solutions are same 

and the main aim is to “increase torque” in a power transmission unit. 

Likewise, in many cases, the advances in both hardware and software 

technologies also create variety in designs but these new designs also become 

functionally equivalent of their initial prototypes (Roston, 1994). Since the 

functional resolution of the design task is the key point of the generation of 

the creative solutions (Ullman, 1997), a creative design methodology should 

be capable of generating different functional resolutions for the same design 

task. 

 

The major motivation for this thesis is the fact that field of creative design is 

overlooked in design automation research in literature. Besides its complex 

nature, it is a probable consequence of the fact that many of today’s 

engineering problems can be solved by the use of routine design, redesign 

and rarely innovative design activities. However, expanding demands on 

quality, increasing variety in customer needs, shrinking product cycles and 

budgets force the designers to generate creative solutions. Furthermore the 

intense competition conditions compel designers to respond changing trends 

in the market in a very short time. Therefore a new creative design 

methodology both for systemization and the automation purposes becomes a 

visible need. 

 

 

 



7

 

1.2 THE SCOPE OF THE STUDY AND METHODOLOGY 

 

This study aims at developing a design methodology to generate and identify 

creative solutions in early design process. Aside from the need for a creative 

design methodology in the solution of entirely new design problems, the 

proposed approach is a candidate for being an integrated part of the studies 

on innovative design automation. Since all innovative design issues require a 

priori decomposition of the design task, constitution of the original 

decompositions obtained through this methodology will help the generation of 

inventive products. Moreover, assurance of the creativity gives designers the 

opportunity of directing their efforts mostly on definition of new objective 

criteria.  

 

In order to accomplish this goal, an abstract decomposition of the design task 

should be available at first. Therefore a functional modeling technique 

revealing working principles of artifact, basic functional modules and their 

interactions should be involved. Such a modeling technique not only translates 

the customer needs into a functional description, but also concentrates on 

how the product must carry out these functions to achieve the overall design 

task. For this purpose, in this study a functional modeling technique using 

reconciled functional basis proposed by Hirtz et al. (2001a) is employed.  

 

Since the functional domain presents numerous solution possibilities, the next 

step is the development of a heuristic for the inference of functional structure 

or a search strategy for the exploration in functional domain. Although there 

exists some studies involving traditional search strategies (e.g. depth-first or 

breadth-first search etc.) (Malmqvist, 1995), in this study an evolutionary 

search strategy is employed. Unlike traditional search strategies, evolutionary 

techniques are not directionless. They utilize their past experiences to guide 

future events (Roston, 1994).  Therefore, time consumption and possibility of 

reaching practically impossible solutions decreases. Employment of an 

evolutionary strategy also eliminates the need for the development of a 

functional reasoning technique. Evolutionary strategies do not need 
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understanding of procedures used to generate new individuals (i.e. new 

design alternatives in proposed methodology) (Roston, 1994). They only 

require a formal representation scheme for individuals and an objective 

function for the evaluation of them. Additionally, this feature makes the 

proposed methodology computer implementable. 

 

Evaluation of generated designs at early phases is another serious problem 

met in construction of such a methodology. Due to abstract nature of 

conceptualization, it is very difficult to develop an evaluation metric that does 

not require human supervision. However automatic evaluation of the created 

design alternatives minimizes the dependency of designs to the designer’s 

experience and the effects of designer’s prejudices, intuitions and beliefs on 

the design decisions. Therefore in the scope of this study, two entropy based 

evaluation criteria to measure the complexity and the creativity of the 

generated designs are proposed. 

 

Finally, the proposed methodology has been implemented in computer 

environment. The developed software has been tested through a case study 

on the design of household appliances.  

 

 

1.3 OUTLINE OF THESIS 

 

The remainder of the thesis is organized in six chapters. Chapter 2 presents 

an overview of engineering design approaches, review of design automation 

and modeling literature, exploration of the reasoning techniques and 

evolutionary search strategies employed in design automation and a survey on 

evaluation metrics for functional designs. Chapter 3 introduces the basics of 

evolutionary strategies. Chapter 4 gives the theoretical architecture of the 

developed evolutionary design methodology and proposed evaluation metrics. 

Chapter 5 provides computer implementation, case studies and results. Finally 

conclusions, discussions and possible future work are included in Chapter 6. 

 



9

 

 

 

CHAPTER II 

 

LITERATURE REVIEW 

 

 
2.1 SURVEY ON METHODOLOGIES INVOLVED AT EARLY PHASES OF 

ENGINEERING DESIGN  

 

The conceptual and embodiment design phases of product development 

period involve the completion of functional, structural (i.e. form of the 

product) and behavioral construction of the artifact (Edward et al., 2000; Feng 

and Song, 2000). In order to systemize these significant design phases, two 

well-known problem solving strategies namely bottom-up and top-down 

design approaches have been suggested in the literature (Houstis, 2004). As 

the traditional approach, using bottom-up strategy produces solutions at 

physical level, top-down design strategy looks for original ideas at functional 

level before investigating physical solution alternatives. However, in order to 

provide designer with an appropriate level of abstraction and detail at each 

level, some combined strategies have also been developed.  

 

In addition to the systematization of design process, these approaches also 

provide the designer with the ability of modeling designed artifacts at different 

levels of abstraction. These models are very beneficial, especially for taking 

immediate feedback on design decisions at different stages of the design 

process. This promises a comprehensive exploration of the design alternatives 

and a better realization of the design task (Sinha et al., 2001). 
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Therefore many researchers have studied on the development, improvement 

and implementation of these approaches. The Sections 2.1.1, 2.1.2, 2.1.3 and 

2.1.4 will provide a brief overview of these studies. 

 

2.1.1 Top-Down Approach 

 

Top-down design approach deals with what we want to achieve, rather than 

specifying physically how we want to achieve it. Therefore, in this approach, 

the design is driven from functional requirements toward solution alternatives 

(Terpenny, 1998). Some advantages of employing this approach can be 

summarized as follows (Otto and Wood, 2001); 

 

• Derivation of functional requirements provides the designer a form 

independent expression of the design task. A comprehensive search 

for different form alternatives can be accomplished by the designer.  

• In the cooperation of multi-disciplinary design team members, 

functional description provides a road map for the organization of tasks 

and processes. Meanwhile, interactions between independent functions 

clarify communication needed between concurrent design activities. 

• Functional description of design task sets the boundaries to associate 

assemblies of subassemblies of final design solutions. Therefore 

resource allocation for concurrent engineering efforts is provided. 

• Decomposition of the problems and seeking partial solutions improve 

creativity. Due to the reduction of extraneous information, solutions of 

sub-problems become more apparent. 

• An important way of dealing with complexity is modularization 

(Rzevsky, 1995). Decomposition of the task provides modularization in 

design. It also helps the designer in fault detection and 

documentation. 

• Abstraction leads the designer to solve the “real” problem rather than 

concentrating on particular solutions. Moreover, with the help of 

abstraction, it is possible to optimize the design according to various 

objectives such as reliability, energy consumption, ecological issues, 
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aesthetics, cost or manufacturability by considering trade offs through 

exchange of technologies (Rzevsky, 1995).  

 

Before mentioning different methodologies developed for top-down approach, 

it should be considered that the distinctions between many of these are not so 

clear; they use some overlapping key concepts such as function, flow, 

constraint and objective. 

 

In mathematics, a “function” is defined as a relation such that each element of 

a set is associated with a unique element of another set. It is obvious that in 

engineering design literature, perception of function concept differs. The 

selected definitions are as follows; 

 

• Matousek (1963) views function as action required by the design 

problem (Chakrabarti, 1993). 

• In Sembugamoorthy and Chandrasekaran’s study (1986), a function is 

defined as the intended response of a device to external or internal 

stimuli (Chakrabarti, 1993). 

• Pahl and Beitz (1988) state function as a general input-output 

relationship of a system whose purpose is to perform a task.  

• Buur (1990) describes a function as the ability of a machine to create 

an expedient effect. 

• Chakrabarti and Bligh (1992) identify function as a transformation 

between a set of (time-varying) input characteristics and a set of 

(time-varying) output characteristic.  

• Ullman (1993) describes a function as transformation of objects and 

the relationships between them during an operational step. Moreover, 

this definition is expanded by covering the changes in relationships and 

object states that enable transformations.  

• Function is defined by Blanchard and Fabrycky (1998) as the 

purposeful action performed by a system. 

• According to the definition of Otto and Wood (2001), a function is a 

statement of a clear, reproducible relationship between the available 
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input and desired output of a product, independent of any particular 

form. Since its internal form is unknown, functions are represented by 

black boxes.  

• In addition to these definitions, Suh (1990) has brought a new 

“Functional Requirement” expression into design theory. Functional 

requirements are defined as independent requirements that must be 

fulfilled in order to satisfy a certain need. This definition includes all 

functional and other life-cycle process properties. For instance, 

although it is not an ability of the system creating a physical effect, 

recycling is treated as a functional requirement. Moreover, parametric 

requirements are included by the functional requirement definition. 

This definition expands the boundaries of function definition.  

 

These descriptions indicate that, although there is so far no generally agreed 

definition of the word “function”, when these definitions are synthesized, the 

common properties of functions can be summarized as follows; 

 

• A function is the ability of a system to create an external effect. 

• A function should have an abstract formulation and it should be task 

independent. 

• A function should not give a direction to the designer. As “resist 

bending” can be accepted as a function, “maintain toughness in 

bending” is not suitable due to its guidance to designer in solution 

generation (Salustri, 2000). 

• In determination of a function, input-output relationships should also 

be considered. 

• Each function should have at least one physically realizable solution. 

• A function should be reproducible. 

• In a function set, functions should be defined such that they are 

independent of each other. Redundant or overlapping function 

definitions should not be allowed. 

• Life-cycle process properties may also be covered by this definition. 
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Although these properties enable the designer to identify customer needs 

entirely, this is achieved at the cost of a wider definition of the function, which 

causes difficulties in management of requirements. In order to overcome 

these difficulties, researchers have classified the functions into some sub-

categories. Some of these classifications are presented in the following 

paragraphs. 

 

Pahl and Beitz (1988) have classified functions as main and auxiliary. While 

the main functions serve the overall function directly, auxiliary functions 

contribute it indirectly. Auxiliary functions have a supportive or complementary 

character and are often determined by the nature of the solution.  Some 

auxiliary functions are; 

 

1. Communication functions involved to exchange of information between 

the system and the user or other systems, 

2. Protection functions for protecting the main function against 

disturbances and protecting the environment against undesirable 

outputs, 

3. Control functions to control main function and establish an interface 

between main and communication functions, 

4. Power related functions to supply main function with required energy, 

5. Structural functions to support components and modules and describe 

the spatial relationship between them. 

 

Kusiak (2000) as cited by Korkmazel (2001) divides functions into 3 groups 

according to their related features; 

 

1. Performance-related functions: Functions corresponding to the product 

performance requirements. 

2. Process-related functions: Functions corresponding to the 

manufacturing process requirements. 

3. Ergonomics-related functions: Functions corresponding to the 

ergonomic requirements. 
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Otto and Wood (2001) define 2 types of functions.  

 

1. Basic functions: These are the overall product functions and represent 

the main reason behind the existence of the product; for example, the 

basic function of a CPU fan is to dissipate heat generated by CPU. 

Based on the conditions, a product may have more than one basic 

function. For example, the basic functions of an electric fuse are to 

“conduct electricity under certain conditions” and “break the circuit 

under certain other conditions”. 

2. Secondary functions: All other functions except basic ones are treated 

as secondary functions. There are three types of secondary functions; 

required, aesthetic and unwanted. One of the required functions of a 

cd player is to “generate rotary motion”. The housing unit of it satisfies 

its aesthetic requirements. Additionally, a damping mechanism or 

rubber isolation may be employed to fulfill the requirement of “dampen 

vibration” unwanted by product. 

 

Besides the categorization of functions regarding to their roles in the product, 

Chakrabarti (1997) has classified them with respect to their representation 

schemes in literature (Korkmazel, 2000). 

 

• Verb-noun pair representation: The function is represented just a noun 

and an active verb such as “erase board”, “transport item x”. Although 

it is weak for computational support, it has informality and flexibility 

that designers need. 

• I/O representation: Functions are described on the basis of inputs and 

outputs.  

• Algorithmic representation: This representation is preferred especially 

in software design. Functions are arranged in a logical ordering. It is 

also suitable for the representation of decision type functions.  

• State-based representation: In this representation, conversions 

between states are defined by functions. 
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Other concepts mentioned in developed methodologies are flows, constraints 

and objectives. 

 

Flows are employed to define inputs and outputs of functions. Thus they 

reveal the relationships between functions or modules. Energy, matter and 

information are considered as basic concepts in any design problem (Stone 

and Wood, 2000). Conversions, variations or transmissions of these three 

concepts are followed by flows. 

 

Constraints define the boundaries of allowable solution space (e.g. 

dimensions, maximum weight, etc.). Product must not violate these 

boundaries to be accepted as feasible (Malmqwist, 1995). Accepted solution 

principle determines the distinction on whether a customer need can be met 

with a function or should be considered as a constraint (Otto and Wood, 

2001). As an example, if “compactness”, which is a customer need, of a 

product is satisfied by a folding mechanism, then it becomes a function of the 

product. However, if the desired “compactness” is achieved by simply being 

small, here “compactness” becomes a constraint and a volumetric criterion 

that the entire product must satisfy (Otto and Wood, 2001).  

 

Objectives form the basis for selecting the “best” solution among a number of 

design alternatives that fulfill all functional requirements and constraints 

(Malmqwist, 1995). Different methodologies propose different quality 

measures to evaluate the generated solution alternatives. According to the 

preferred methodology, objectives can change from “minimal cost”, to 

“minimal information content”. Some of these evaluation measures proposed 

for functional design are explained in Section 2.2. 

 

All of these concepts are employed in the extraction and evaluation of 

functional model of designed artifact. These models can be constituted by 

either hierarchical function trees or graph based function structures. 
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2.1.1.1 Hierarchical Function Trees 

 

The most effective way of deriving the hierarchical model of a product in 

sufficient depth is by modularizing the problem via a process known as 

“functional decomposition” (Ullman, 1997). Functional decomposition is 

defined as breaking an overall function into multiple sub-functions, which can 

be treated as individual sub-problems.  

 

Two of the functional modeling techniques adopting hierarchical 

decomposition are; 

 

• AND/OR Tree (Kusiak et al., 1991a, 1991b) 

• Functional Design Tree (Erden et al., 1996) 

 

Kusiak et al. (1991a; 1991b) have used AND/OR tree to represent design 

specifications. In this representation, design requirements are divided into 

sub-requirements up to reaching a corresponding function. In the functional 

space, each function specified for a given requirement can be further 

decomposed into sub-functions. This decomposition continues until reaching a 

possible match of the component. The relationships among requirements and 

functions at the same abstraction level are revealed using AND/OR links. 

AND/OR tree for a hypothetical product is given in Figure 2.1. AND links are 

represented by connecting arcs between same level requirements and 

functions, whereas no arcs stands for OR links. 

 

This methodology has been primarily developed for the “requirement 

analysis”, therefore objectives and constraints in the product design are not 

considered in the construction of the AND/OR tree. Moreover, no reasoning 

technique has been proposed for the extraction of requirements, functions 

and relations (mapping) between them. An evaluation methodology is another 

deficiency of this approach. 
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Figure 2.1 AND/OR tree for a hypothetical product (Kusiak et al., 1991a). 

 

Another hierarchical representation named “Functional Design Tree” has been 

mentioned in Erden et al.’s work (1996).  It is a functional decomposition 

hierarchy that involves sub-functions of systems at various levels of resolution 

and where the top most node is to satisfy the required overall function (Erden 

et al., 1999). In this representation, as one proceeds to the lower levels of 

tree, nodes gain precision in their definition. Nodes in the last level of 

decomposition can be defined numerically or in a formula-driven formal way 

representing precise sub-functions as precise input/output mappings. 

 

A similar representation method has been employed in Otto and Wood’s 

studies (2001). As recommended in these studies, this type of decomposition 

is very useful especially in reverse engineering activities. Generated function 

tree for a coffee mill is illustrated in Figure 2.2. 

 

Although functional resolution of an artifact can be extracted by using subtract 

and operate procedure in reverse engineering activities, this methodology 

does not offer any reasoning technique for functional decomposition in design 

of novel products. Disregarding objectives and constraints and need of an 

evaluation methodology are other problems of this approach to handle.  
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Figure 2.2 Function tree of coffee mill (Otto and Wood, 2001). 

 

2.1.1.2 Graph Based Function Structures  

 

Hierarchical function trees are very important representation schemes both for 

describing architecture of a product and determining level of abstraction that 

the designer handles the design task. However there is still a serious need for 

revealing the relationships between defined functions and modules in a 

product. For this purpose, a graph-based representation scheme has been 

proposed in the literature. The approaches using graph-based representation 

can be classified into three with respect to their need for a standard 

function/flow language. First approach does not use a standard language, the 

second approach requires a limited vocabulary and the third approach works 

with comprehensive standard languages.  

 

One of the important studies in the first approach employs Functional Analysis 

Systems Technique (FAST) Diagrams in the representation of designed 

artifacts (Miles, 1972). Although these studies are performed mainly for value 

engineering purposes, in order to estimate the value of the product, they need 

to break the overall design into sub assemblies. The FAST Diagram of an 

overhead transparency projector is given in Figure 2.3. 
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Figure 2.3 FAST Diagram of overhead transparency projector (Miles, 1972).  

 

Some of the studies in the second approach aim at extracting function 

definitions of some specific problems and therefore, their functional languages 

have become limited to the scope of those specific problems (e.g. Collins et al. 

(1976) developed a vocabulary to accurately communicate helicopter failure 

information). However, Systematic Design Approach of Pahl and Beitz (1988) 

is different from these studies and it is applicable to general design problems. 

Although it has a limited vocabulary for defining functions and flows, 

Systematic Design Approach provides designers with a standard way to reveal 

sequential and parallel function chains and external/internal connections of 

these chains in a product. 

 

In the third approach, there are two major attempts to generate a common 

design language namely NIST Design Repository project (Szykman et al., 

1999a; 1999b; 2000a; 2000b; Allen et al., 2000) and Functional Basis (Little et 

al., 1997; Otto and Wood, 1997; Stone and Wood, 1999; Stone and Wood, 

2000; Kurfman et al., 2001). The third research is on reconciliation of these 

two studies; Reconciled Functional Basis (Hirtz et al., 2001a; 2001b). 

 

In order to generate repeatable and meaningful designs, a standard set of 

functions and flows is essential. In particular, the development of a universal 

language, which defines product functions, will reduce the ambiguity at 
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modeling level. As the source of ambiguity can be a function/flow, which has 

multiple meanings accepted by different engineers or it can be a group of 

different functions/flows used to mean same entity by different designers. 

 

Since the functions/flows are atoms of the modules, standard definition of 

them provides designers with a base for transition from integral architecture 

to modular architecture in product development. Meanwhile, product 

comparison and benchmarking activities can also be possible by development 

of the evaluation metrics for standard function structures. Overlapping 

function/flow definitions are the main reason of redundant designs. Such a 

standardization prevents designers from inferring redundant function 

structures.  

 

For these purposes, a research has been driven by industry needs that were 

identified at a workshop held at NIST in November, 1996 (Szykman, 1999b). 

The aim of this study is to develop a repository to provide the effective reuse 

of design knowledge. In order to prevent a combinatorial explosion in function 

definitions, functions and flows are identified by generating two separate 

taxonomies. These taxonomies have broken down to reach atomic definitions. 

Thus, over 100 flows and 130 functions are identified while preserving the 

taxonomy generic enough due to the hierarchical decomposition. In addition, 

a concurrent effort has also been performed to constitute a language for 

obtaining functional blueprint of designed products by two US universities and 

their industrial partners. At the end of this study, a Functional Basis has been 

developed and applied to product similarity computations, functional 

tolerancing and design by analogy studies (Hirtz et al., 2001b). 

 

There is a high degree of similarity between these two studies. Therefore a 

reconciliation process has been performed to obtain a complete set of function 

and flows. Besides the same terms in the function and flow lists, there exist 

some synonyms and some others terms, which are specific to its basis, in 

these two research efforts. By considering these, a new set comprising 

mutually exclusive terms has been acquired (i.e. Reconciled Functional Basis). 



21

 

This new basis includes a three level hierarchy; class (primary), secondary and 

tertiary. Specification of the level increases with the level number. Thanks to 

this hierarchy, the reconciled functional basis is generic enough to cover 

engineering design activities in many scales. Although it focuses primarily on 

the mechanical and electromechanical domains, the basis allows updating and 

adding new descriptors without disturbing the developed taxonomy. Therefore 

this makes the basis applicable to all disciplines. 

 

Although reconciled functional basis supports other representation formats, 

verb-object representation is adopted in many studies. In this representation, 

verb part indicates the function and object part specifies the flow descriptor. 

Both of the function and the flow can be selected from any of the three levels 

depending on the specification desired. These function and the flow sets are 

presented in Tables 2.1 and 2.2 respectively. 

 

In practice, a secondary flow is described by a secondary descriptor and a 

class descriptor such as biological energy. Tertiary flows are described by a 

tertiary descriptor and a class descriptor (e.g. solar energy). “Correspondents” 

category is not the fourth level of reconciled functional basis. The terms 

placed in this column are means of the terms described in reconciled 

functional basis.  Secondary and tertiary flows may be further specified by 

adding a power conjugate complement. Here the flow description is formed by 

a secondary descriptor (or tertiary descriptor) and a complement. For 

instance, human energy description can be specified further with the 

description of human force. Detailed descriptions of the terms in function and 

flow lists are given in Appendix A.  

 

In the extraction of function structures, it should be considered that the 

reconciled functional basis consists of device functions rather than user 

functions.  For instance, a coffee maker imports the flow of water while a 

person pours water into the coffee maker. 
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Table 2.1 Functional basis reconciled function set (Stone et al., 2001). 
Class  
Primary 

Secondary Tertiary Correspondents 

 Isolate, sever, disjoin 
Divide Detach, isolate, release, sort, split, disconnect, 

subtract 
Extract Refine, filter, purify, percolate, strain, clear 

Separate 

Remove Cut, drill, lathe, polish, sand 

Branch 

Distribute  Diffuse, dispel, disperse, dissipate, diverge, 
scatter 

Import  Form entrance, allow, input, capture 
Export  Dispose, eject, emit, empty, remove, destroy, 

eliminate 
 Carry, deliver 
Transport Advance, lift, move 

Transfer 

Transmit Conduct, convey 
 Direct, shift, steer, straighten, switch 
Translate Move, relocate 
Rotate Spin, turn 

Channel 

Guide 

Allow DOF Constraint, unfasten, unlock 
 Associate, connect 
Join Assemble, fasten 

Couple 

Link Attach 

Connect 

Mix  Add, blend, coalesce, combine, pack 
Actuate  Enable, initiate, start, turn on 

  
Increase Allow, open 

Regulate 

Decrease Close, delay, interrupt 
 Adjust, modulate, clear, demodulate, invert, 

normalize, rectify, reset, scale, vary, modify 
Increment Amplify, enhance, magnify, multiply 
Decrement Attenuate, dampen, reduce 
Shape Compact, compress, crush, pierce, deform, form 

Change 

Condition Prepare, adapt, treat 
 End, halt, pause, interrupt, restrain 
Prevent Disable, turn off 

Control 
Magnitude 

Stop 

Inhibit Shield, insulate, protect, resist 
Convert Convert  Condense, create, decode, differentiate, digitize, 

encode, evaporate, generate, integrate, liquefy, 
process, solidify, transform 

 Accumulate 
Contain Capture, enclose 

Store 

Collect Absorb, consume, fill, reserve 

Provision 

Supply  Provide, replenish, retrieve 
 Feel, determine 
Detect Discern, perceive, recognize 

Sense 

Measure Identify, locate 
 Announce, show, denote, record, register 
Track Mark, time 

Indicate 

Display Emit, expose, select 

Signal 

Process  Compare, calculate, check 
Stabilize  Steady 
Secure  Constrain, hold, place, fix 

Support 

Position  Align, locate, orient 
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Table 2.2 Functional basis reconciled flow set (Stone et al., 2001). 

Class  
Primary 

Secondary Tertiary Correspondents 

Human   Hand, foot, head 
Gas  Homogeneous 
Liquid  Incompressible, compressible, 

homogeneous 
Object Rigid-body, elastic-body, widget 
Particulate  

Solid 

Composite  
Plasma   

Gas-gas  
Liquid-liquid  
Solid-solid Aggregate 
Solid-Liquid  
Liquid-Gas  
Solid-Gas  
Solid-Liquid-
Gas 

 

Material 

Mixture 

Colloidal Aerosol 
Auditory Tone, word 
Olfactory  
Tactile Temperature, pressure, roughness 
Taste  

Status 

Visual Position, displacement 
Analog Oscillatory 

Signal 

Control 
Discrete Binary 

  Power Conjugate Complements 
  Effort Analogy Flow Analogy 
Human  Effort Flow 
Acoustic  Force Velocity 
Biological  Pressure Particle velocity 
Chemical  Pressure Volumetric flow 
Electrical  Affinity Reaction rate 

Optical Electro-motive force Current Electromagnetic 
Solar Effort Flow 

Hydraulic  Intensity Velocity 
Magnetic  Intensity Velocity 

Rotational Pressure Volumetric flow Mechanical 
Translational Magneto-motive 

force 
Magnetic flux rate 

Pneumatic  Effort Flow 
Radioactive/ 
Nuclear 

 Torque Angular velocity 

Energy 

Thermal  Force Linear velocity 

 

As an example, function structure of an electric wok developed using 

reconciled functional basis is illustrated in Figure 2.4. 
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Figure 2.4 Function structure of an electric wok (Stone et al., 2004). 

 

It is obvious that there are many other attempts to systemize and model the 

top-down design approach. Only some selected researches in the 

development of functional design theory are mentioned here.  A summary of 

these efforts and some others are presented in Table 2.3. 

 

2.1.2 Bottom-Up Approach 

 

Traditional engineering design tasks are handled through bottom-up 

approach. This approach drives designs from form to function. Satisfaction of 

functional requirements is an evaluation measure rather than a starting point. 

Bottom-up approach carries out the design activities at component level. In 

employment of this approach, as the physical realization of designed system is 

guaranteed, there is no immediate assurance that functional requirements are 

met on the first attempt unless the system is simple. Therefore this approach 

is known to be highly iterative (Terpenny, J. P., 1998). 
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Table 2.3 Overview of some important efforts in functional design. 

Study/Reference Goal Representation Challenges 
Value Engineering 
(Miles, 1972; 
Akiyama, 1991;  
VAI, 1993) 

Minimization of 
cost 

Verb-Object 
FAST Diagram 

No standard list for 
verbs and objects 
(Stone and Wood, 
1999). 

Failure Experience 
Matrix 
(Collins et al., 1976) 

Communicate 
helicopter failure 
information. 

105 unique 
mechanical 
functions 

Limited to helicopter 
systems (Stone and 
Wood, 1999). 

TIPS/TRIZ 
(Altshuller, 1984) 

Inventive 
Problem Solving, 
Value 
Engineering 
Analysis 

30 functional 
descriptions 

Does not cover whole 
design process (only 
inventive part is 
considered) 
(Malmqvist et al., 
1996). 

Systematic Design 
Approach (Pahl and 
Beitz, 1988) 

Modeling and 
Systematization 
 

5 generally valid 
functions and 3 
flows 

High level of 
abstraction, 
Limited function/flow 
vocabulary. 

A Systematic Method 
for Function 
Structures (Hundal, 
1990) 

Modeling and 
Systematization 

6 functional 
classes and more 
specific functions 
for each class 

For mechanical design 
applications, Limited 
function/flow 
vocabulary (Stone and 
Wood, 1999).  

Axiomatic Design  
(Suh, 1990) 

Modeling and 
Systematization 

FR/DP Trees No standard list for 
functions and flows 

A Novel Approach 
for Decomposition 
(Kusiak et al., 1991) 

Modeling and 
Systematization 

AND/OR Trees No standard list for 
functions and flows. 

Design Methodology  
(Grabowski and 
Benz, 1991) 

Modeling and 
Systematization 

Frame Based 
Function 
Description 

For mechanical design 
applications (Erden, 
1999). 

Mechanical Design 
Process 
(Ullman, 1992) 

Modeling and 
Systematization 

Description of 
functions in terms 
of flows 

For mechanical design 
applications (Erden, 
1999).  

Design Methodology 
(Koch et al., 1994) 

Systematization 20 sub-system 
representations 

For mechanical design 
applications (Stone 
and Wood, 1999). 

Classification of 
Functions 
(Kirschman and 
Fadel, 1998) 

Systematization 4 basic 
mechanical 
function groups 

For mechanical design 
applications (Stone 
and Wood, 1999). 

The NIST Design 
Repository Project 
(Szykman et al., 
1999) 

Creation of a 
design 
repository 

130 functions and 
100 flows 

Some deficiencies in 
function-flow list. 

Functional Basis 
(Little et al., 1997; 
Otto, Wood, 1997) 

Modeling and 
Systematization 

8 function and 3 
flow classes  

Some deficiencies in 
function-flow list. 

Reconciled 
Functional Basis 
(Hirtz et al., 2001a) 

Reconciling of 
NIST Design 
Repository and 
Functional Basis  

8 function and 3 
flow classes 

Requirement for a 
formal computable 
form (Stone and 
Wood, 2000). 
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Bottom-up design is simply the physical synthesis of components. 

Morphological analysis is one of the key methodologies in concept generation 

through bottom-up approach (Weber and Condoor, 1998). Morphological 

analysis is first proposed by Zwicky (1948) as a method for identifying and 

investigating the total set of possible relationships or configurations contained 

in a given problem (Ritchey, 2002). All these relationships and configurations 

are defined at the level of shape or form.  

 

In order to construct a morphological matrix, attributes of the product sought 

by designer are listed at first. These attributes can be parts, properties such 

as material, color etc. or design elements. They determine the columns of 

morphological matrix. Each row in the matrix is filled with possible variations 

of these attributes. Then the designer selects a combination of these 

variations to complete the design process.  

 

Morphological matrix for a lamp design is constructed in Table 2.4. According 

to this matrix, some possible solutions can be 

• A flashlight design with attributes of battery powered, low intensity 

and hand held or, 

• A mains powered, medium intensity, daylight bulb, which can be used 

especially in clothes shops to allow customers to see the true color of 

clothes. 

 

Table 2.4 Lamp design via morphological matrix (MindTools, 2004). 

Power 
Supply 

Bulb 
Type 

Light 
Intensity Size Style Finish Material

Battery Halogen Low Very 
Large Modern Black Metal 

Mains Bulb Medium Large Antique White Ceramic 
Solar Daylight High Medium Roman Metallic Concrete 

Generator Colored Variable Small Art 
Nouveau Terracotta Bone 

Crank     Hand held Industrial Enamel Glass 
Gas       Ethnic Natural Wood 
Oil/Petrol         Fabric Stone 
Flame           Plastic 
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Snavely et al. (1990) cited two other bottom-up design attempts in his study. 

The first one namely EDISON intends to obtain innovative designs by applying 

heuristics to generate new structural topologies (Dyer and Flowers, 1984; 

Dyer et al., 1986).  This study is one of the early works concentrating on 

cognitive area to generate creative designs. Such studies aim at mimicking 

human way of thinking, when designing and require an expert system. 

Although EDISON has generated some novel solutions for design tasks such 

as can opener or door design, application of it is limited to these highly 

simplified designs (Bently and Wakefield, 1996). 

 

The second approach is Ward and Seering’s mechanical design compiler 

(1989a; 1989b). Besides developing a heuristics, construction of a component 

database is another common method employed by bottom-up design 

approach. Mechanical design compiler uses a catalog of artifacts (i.e. off-the-

shelve components) to satisfy a user defined topology. This compiler simply 

imports a schematic of a mechanical or hydraulic power transmission system 

and returns catalog numbers from predefined catalogs for the optimal 

selection of components implementing the design. 

 

Due to their form based nature of adaptive design-redesign or routine design 

activities, bottom-up approach becomes more applicable. While creative 

design activities have the potential to generate infinite number of topologies, 

routine designs deal with a fixed topology (Snavely et al., 1990). Although it is 

possible to change functional topology by changing physical means, in order 

to obtain creative solutions, it looks better starting from topology construction 

(i.e. top-down approach). 

 

2.1.3 Combined Approach 

 

These two approaches mentioned above indicate that as each designed 

functional topology can have more than one physical solution, design tasks 

can also be satisfied more than one functional topology. In order to reveal the 

relation between the functional decomposition and physical manifestations of 
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them, Hubka (1976) and Andreasen (1980) formulate the law of vertical 

causality. This law states that, hierarchical decomposition of a function is only 

possible, when a means (e.g. technical principle, an organ or a component 

etc.) has been chosen to realize that function (Buur, 1990). In this way, once 

a function is formulated, a number of alternative means to perform this 

function should be defined. Regarding to selected means a different set of 

subfunctions on a lower level will be involved. Therefore as functional 

resolution is completed, physical realization of artifact is also constructed 

through this combined approach. Two studies using this approach are 

mentioned in Section 2.1.3.1 and 2.1.3.2. 

 

2.1.3.1 Axiomatic Design Theory 

 

• Suh (1990; 1998; 2001), the developer of the axiomatic design theory, 

divides the design world into four domains illustrated in Figure 2.5. As 

the domains on the left represent goals, the domains on the right 

represent the design solutions to achieve them. Suh states that design 

is simply generation of mapping between these domains.  

 

 

 
Figure 2.5 Four domains of design world. 
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This theory is based on two fundamental axioms that govern this mapping 

process.  

 

• The Independence Axiom: Maintain the independence of functional 

requirements.  

• The Information Axiom: Minimize the information content. 

 

Axiomatic design theory classifies designs as uncoupled, decoupled and 

coupled with respect to dependencies of their functional requirements. As the 

first axiom guides the designer to generate uncoupled designs, the second 

axiom evaluates the generated designs regarding their information content. 

Information content is measured by an entropy based evaluation metric and it 

indicates the probability of success of a design. This metric needs the 

identification of design parameters at physical level. Identification process is 

performed by a zigzagging manner together with the decomposition of 

functional requirements. In addition to these axioms, some other corollaries 

and theorems are proposed in axiomatic design theory.  

 

2.1.3.2 Function/Means Tree 

 

Function/Means tree is basically a breadth-first search of a design space 

containing all possible solutions to a problem. Breadth-first searching is 

employed to help controlling the size of the design space (making the design 

easier to manage). 

 

By operating the rules of vertical causality, function/means hierarchy is 

constructed layer by layer. Figure 2.6 illustrates a function-means diagram for 

a cigarette lighter. In this diagram, functions are represented by boxes.  The 

ovals represent some possible means by which the top-level function can be 

achieved. For demonstration purpose, only two of the possible means are 

worked out in further detail. 
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Figure 2.6 Function/Means diagram for a cigarette lighter (Salustri, 2000). 

 

2.1.4 A Critique of Three Design Approaches 

 

All of three approaches in Sections 2.1.1, 2.1.2 and 2.1.3 have benefits and 

drawbacks. When the bottom-up approach deals with the physical solutions, it 

is very weak at the point of finding optimum or best designs for complex 

systems. It is obvious that finding a solution is not the sole concern of today’s 

engineer. Reaching an optimal solution is a necessity rather than an option in 

today’s engineering efforts. Moreover, variations in designs through bottom-

up approach are limited to changes in configuration, parameter or 



31

 

components. Generation of creative ideas requires differences beyond physical 

alterations. 

 

However, as the top-down approach proposes a powerful strategy to reach 

the optimal or best functional topologies, it may become very time consuming 

and sometimes generated solutions can not be physically realizable. This 

approach applies to the designer’s experience, foreseeing ability or trial and 

error procedure in a highly combinatoric domain of detail. This sometimes 

causes the top-down design methodology to be a fruitless effort.  

 

Although combined approach assures the physical realization of the artifact, it 

requires decisions on form at the very beginning steps of the design process. 

Therefore, inexperienced designers using this strategy may get stuck into the 

same drawbacks as bottom-up approach. 

 

Consequently, a top-down design strengthened with a functional reasoning 

technique or an intelligent search strategy seeking solutions with a high 

probability of success is the most promising approach in solution of design 

problems. Moreover, employment of a graph based representation scheme 

with a common vocabulary (e.g. reconciled functional basis) has advantages 

on standardization of this approach. 

 

 

2.2 BEHAVIORAL MODELING  

 

Whichever the direction of design activity (i.e. function to form or form to 

function), an evaluation whether the initial requirements are met is required. 

A cheap, fast and reliable way of this evaluation is making a virtual prototype 

of the designed system or product by using behavioral modeling techniques. 

Behavioral modeling and simulation is a very broad area including all 

engineering disciplines. However, this section is limited to classification of 

modeling paradigms and languages and identification of issues that are 

particularly important in support of multi-technical product design.  
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According to the level of design, a detailed simulation of the system is not 

always required. At the beginning stages, coarse but reliable models are very 

useful for taking feedback of design decisions. The expectations from the 

model increase as the performance evaluation results become essential for 

decisions in further levels of design. Figure 2.7 illustrates the position of 

behavioral modeling in design world. 

 

 

 
Figure 2.7 Position of behavioral modeling in design procedure (Paredis, 2001). 

 

In order to derive mathematical background of behavioral model, the basic 

material and energy balance equations are considered. In the literature, there 

have been many attempts to describe the flow of material and energy in a 

product. As a result, some commonly accepted modeling paradigms, 

languages and tools have been developed. These are compared and classified 

according to the following criteria: graph based versus language based (i.e. 

textual) paradigms, procedural versus declarative models, multi-domain 

versus single domain models, continuous versus discrete models, and 

functional versus object oriented paradigms (Sinha et al., 2001).  

 

Decision on modeling paradigm is the initial step of behavioral modeling. In 

modeling of systems including parts from different domains or multi-technical 

products, graph based paradigms such as high level Petri nets, hybrid 

automata, bond graphs, linear graphs or block diagrams are preferred. These 

paradigms are briefly explained below.  
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• Petri Nets are bipartite directed multi-graphs, which are used to model 

procedures, organizations and devices (systems in general), in which 

regulated flow of objects and information occurs. Both continuous and 

discrete systems can be modeled by using Petri Nets (Reisig, 1985; 

Reisig, 1992). 

• Hybrid automata define operations in hybrid systems as a sequence of 

steps. Within each step the system state evolves continuously 

according to a dynamical law until a transition occurs. Transitions are 

instantaneous state changes that separate continuous state evolutions 

(Alur et al., 1995).  

• Bond graphs aim at deriving domain independent description of a 

system (Broenink, 1999). It is based on energy conserving junctions 

that connect energy storing or transforming elements through bonds. 

Although bond graph representation is domain independent, it is 

difficult to describe a hybrid system consisting of continuous and 

discrete parts. However, there are some recent studies to develop a 

hybrid bond graph modeling technique for the systems that combine 

energy and signal flows (Mosterman and Biswas, 1995). 

• Linear graphs interpret systems as a collection of a finite number of 

energy manipulators regardless of the physical media involved (Platin 

et al., 1991). Unlike bond graphs, linear graphs reflect the system 

topology directly. They are domain independent and can be easily 

extended to hybrid systems (Sinha et al., 2001). 

 

Modeling languages for multi-technical systems are also object oriented and 

declarative in nature. Unlike procedural languages, declarative languages are 

equation based. Only state transition equations are established and conversion 

of these equations to software procedures is left to simulation engine. These 

languages are domain independent and able to describe hybrid systems as 

well. Some well known modeling languages with these features are SIDOPS+ 

(Breunese and Broenink, 1997) a bond graph based language, ASCEND (Piela 

et al., 1991) employing block diagram based representation, VHDL-AMS  
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(IEEE, 1999) relying on linear graphs and SynchNet (Ziaei and Agha, 2003) a 

Petri net based coordination language for distributed objects. 

 

Some other object oriented non-casual physical modeling languages 

developed within last two decades are ObjectMath (Fritzson et al., 1993), 

Omola (Mattsson and Andersson, 1992), Smile (Jochum and Kloas, 1994), 

ULM (UML) (Jeandel et al., 1996) and NMF (Sahlin et al., 1994) and Modelica 

(Broenink, 1997; Elmqvist and Mattsson, 1997). Modelica is intended to be a 

superset of the aforementioned languages and to become a neutral exchange 

format for model representation (Tummescheit et al., 1997). Therefore it 

allows integration and reuse of model knowledge developed in different 

modeling and simulation environments. 

 

These modeling languages are more relevant for software developers rather 

than end users. By implementing these languages, they develop high level 

modeling and simulation tools to physical system modelers. Only some of 

these high level modeling and simulation tools are mentioned below. 

 

ClearSim-MultiDomain (Krisp and Müller-Schloer, 2000) has been developed 

for the timing and functional validation of a virtual prototype. In ClearSim, 

UML diagrams provide a standard notation in specification of designer’s 

requirements. 

 

20-SIM (Broenink and Kleijin, 1999; Amerogen, J. van, 2000) is another tool 

to support engineering activities in the processes of design, analysis and 

diagnosis of multi-domain systems and products. All information about model 

elements used in 20-SIM has been specified in SIDOPS+ model description 

language. 

 

Dymola (Elmqvist et al., 1996) is a visual object oriented modeling 

environment integrated with Modelica. It is used in modeling and simulation of 

continuous systems.  
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Schemebuilder (Bracewell and Sharpe, 2004) utilizing the facilities of 

Dymola/Modelica is another modeling and simulation environment. It supports 

the designer in both functional and physical design stages. Schemebuilder 

represents designs as schemes structured based on the Function/Means tree 

approach and simulations of these designs are performed by the help of a 

partially bond graph based ontology.  

 

Although there are many other modeling and simulation tools in literature, one 

of them has found a wide application area especially in control system designs 

for multi-domain hybrid artifacts namely MATLAB/SIMULINK.  SIMULINK is a 

block diagram based, object oriented, declarative modeling environment. It 

provides designer with a visual interface both for SIMULINK libraries and 

MATLAB functions (Mathworks, 2004c).  

 

All of these modeling languages and tools compare designs in terms of 

performance evaluations, which require mathematical descriptions of energy 

and material flows included by the artifact. These flows become 

mathematically identifiable at concrete levels of design process. However, at 

the initial stages, if top-down approach is adopted, carrying out performance 

evaluations is very difficult. Therefore in order to model and simulate designs 

at preliminary phases, a theoretical framework built on Petri Net theory, PNDN 

(Petri Net Based Design Inference Network) and a simulation software, DNS 

(Design Network Simulator) have been developed. PNDN (Erden, 1999; 

Korkmazel, 2001) is intended to represent and analyze artifact behaviors and 

logical relations that arises these behaviors through information flow. This 

study utilizes information flow to compare and reveal flaws and drawbacks of 

examined design alternatives. Proposed theory was implemented in computer 

environment by Güroğlu (1999) and Coşkun (2004). 

 

Construction of a virtual prototype of an artifact is the main aim of modeling 

and simulation attempts. A virtual prototype parades all behaviors of the 

artifact in its real working environment.  Although it is a powerful tool for 

appraisal of designs, other evaluation metrics are also required to guide the 
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design activity before completion of the design process. These metrics are 

involved especially at concept generation phase. They may be related to cost, 

complexity, probability of success or another objective measure. Some of 

these metrics are overviewed in Section 2.4. 

 

 

2.3 REASONING TECHNIQUES AND EVOLUTIONARY SEARCH 

STRATEGIES IN DESIGN 

 

Automation of conceptual design involves generation of solutions for design 

tasks without need of human supervision. This can be achieved by employing 

either a reasoning technique or an evolutionary search strategy in the solution 

domain. In the literature, there are significant examples for both of these 

approaches. Some of them are discussed in following sections. 

 

2.3.1 Functional Reasoning in Design 

 

Reasoning at functional level to solve a design problem can be performed in 

two ways namely descriptive or prescriptive. Descriptive way aims at imitating 

human way of thinking. It tries to describe the nature of the human concept 

generation. Prescriptive way focuses on generation of a reasoning scheme to 

constitute solution alternatives. Since the former is mainly associated with 

cognitive sciences, the studies on the latter are mentioned here. 

 

Chakrabarti and Bligh (2001) cited three influential functional reasoning 

techniques and presented a new approach in their study. The earliest one was 

proposed by Freeman and Newell (1971). This study operates a similar 

procedure used in function/means tree construction. All functional 

requirements are mapped to some structures (i.e. physical entities) and these 

structures bring new required functions. This process continues until all the 

functions required are provided by some structures. The resulting combination 

of these structures provides the designer with a solution to the design 

problem. However, if no structure is found to partially or completely fulfill a 
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function at a given level, this methodology can not offer any solution to the 

designer.  

 

This limitation is dealt with in Yoshikawa’s approach (1981; 1985). This 

approach bases on modification of an existing solution. After describing design 

problem in terms of functional requirements, the design process starts with a 

temporary solution. This temporary solution is evaluated by comparing the 

original functional requirements and the functions provided by the temporary 

solution. The aim of designer would reduce the difference. For this purpose, 

wrong components in temporary solution are identified and replaced by other 

components having more potential to contribute to satisfaction of the 

problem. This process is continued until the solution becomes satisfactory. 

This reasoning technique has some underlying assumptions. At first, the 

functions provided by the temporary solution in the absence of wrong 

components could be identified. This assumption is defined as deducibility. 

The second assumption is availability of a satisfaction evaluation criterion (i.e. 

evaluatability). This criterion is employed to figure out whether the potential 

of the solution to solve the problem increases after modification or not.  The 

third assumption, monotonicity, states that it should be possible to 

monotonically modify the temporary solution. In other words, increase in the 

satisfaction of requirements should ensure a move towards a valid and 

complete solution. This can only be possible with the last assumption. The last 

assumption, called decomposability, involves the artifact comprising 

independent clusters of components. This provides the designer with the 

ability of separately control various functions. In short, replacement of a 

cluster should not affect the functionality of the rest of the solution. Even 

though the temporary solution validates all of these assumptions, there are 

still a vast number of wrong components to be checked against the 

satisfaction of evaluation criterion. Due to these limitations imposed by 

assumptions and computational intensity, this technique does not look 

promising in design of complex artifacts.  
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Another widely accepted reasoning technique was proposed by Pahl and Beitz 

(1988). This technique carries out the procedure of functional design tree 

construction to express the problem in a solution neutral way. It decomposes 

the overall design task into sub-functions until reaching sufficiently simple 

function definitions. Then alternative physical concepts are sought for this 

functional structure. After the evaluation of the alternatives, the best one is 

chosen. Chakrabarti and Bligh (2001) indicated the need of this technique for 

a finite, distinct and complete function set as a drawback. Certainly the 

predetermined function set should comprise a finite number of functions (i.e. 

a finite function set). There should be no overlapping function definitions in it 

(i.e. a distinct function set) and finally all solutions should be expressed by the 

combination of these functions (i.e. a complete function set). The impossibility 

of generation hierarchical function structures in a solution neutral way (i.e. 

law of vertical causality) was pointed out as well. In addition, Chakrabarti and 

Bligh (2001) claim that in this approach, it is possible to find solution concepts 

only if each atomic function corresponds to a component-solution. If a 

function structure rather than a single function corresponds to a component-

solution, it can not be reasoned. This difficulty was addressed as the problem 

of partitioning in their study. 

 

Due to these limitations of Pahl and Beitz’s approach (1988), Chakrabarti and 

Bligh (2001) have proposed a new reasoning technique in their study. In this 

technique, a recursive problem definition is used. In each step only a part of 

overall functional requirement is handled and a set of alternative solutions is 

synthesized to satisfy this part. After the evaluation of this partial solution, 

overall problem definition is revised and another part of requirements is 

handled in the next step. This process continues until satisfaction of all 

requirements. Then found physical solutions are aggregated to constitute the 

complete solution for the problem. 

 

Another reasoning technique was discussed by Sharpe and Bracewell (1995). 

They used bond graph reasoning in construction of function/means tree of a 

product. This approach provides a set of rules for the decomposition of 
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energetic systems. These rules are based on the fact that only similar energy 

ports must be connected to each other. Therefore, the correct components 

should be selected to be able to propagate energy variables. This selection 

limits the set of functions used in tree construction. This reasoning technique 

is only applicable to the functions having an effect on energy flow. It does not 

offer any methodology to identify functions operating on information or 

material. 

 

An experience derived heuristics can also be used as a reasoning technique in 

design (Potter et al., 2003). Heuristic knowledge comprises “rules of thumb” 

concerning the manner in which the inference process is driven. It is derived 

by case based reasoning making use of previous design experiences. This 

knowledge base generally comprises if-then rules.  

 

All of these approaches except Pahl and Beitz’s approach (1988) can not be 

adopted in creative design activities due to their dependency on physical 

solutions to proceed. The solution neutral way of Pahl and Beitz’s approach 

(1988) allows generation of both creative and innovative designs. The 

questions on the necessary features of predetermined function set can be 

removed by the use of a detailed functional vocabulary (e.g. reconciled 

functional basis). Furthermore, if graph based representation is preferred 

instead of hierarchical representation, there will be no need to operate the law 

of vertical causality. Consequently solution neutrality will be kept. Thanks to 

atomic function and flow descriptions in the vocabulary, the designs are 

naturally generated at a certain level of abstraction. Moreover, above 

mentioned partitioning problem can be defeated by the identification of 

modules. Ulrich and Tung (1991) define modules as physical structures that 

have a one-to-one correspondence with functional structures. A module 

identification heuristic in functional domain would overcome this difficulty 

(Stone et al., 2000). 
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2.3.2 Evolutionary Search Strategies in Design 

 

In late 1950s, researchers have paid their attention to the use of evolution as 

an optimization tool for engineering systems. This optimization tool used the 

operators inspired by genetic variation and natural selection. In the following 

years, evolutionary computation including evolutionary strategies, evolutionary 

programming and genetic algorithms has become an active area of research. 

 

Detailed theory of Genetic Algorithms (GA) was pioneered by Holland (1975). 

Holland’s primarily aim was not to develop an algorithm for optimization issues 

but rather to study the phenomenon of adaptation as it occurs in nature 

(Mitchell, 1996). Due to the fixed length encoding of genetic algorithms, this 

technique has been limited to problems whose topology remain fixed, but 

whose parametric values can be changed (Roston, 1994).  Some example 

application areas include controller parameter estimation (Downing et al., 

1996), VLSI circuit layout design, filter design, financial applications, 

scheduling, shape and structural design, truss optimization (Burton, 2004) etc. 

In order to remove this fixed topology limitation and improve GA performance, 

Goldberg et al. (1989c) has proposed the notion of messy GA. Messy GA 

makes it possible to work with variable length chromosomes and expands the 

application areas of GAs. 

 

The idea of application of GAs to a population of computer algorithms to 

design a new algorithm automatically was introduced by Koza (1992; 1994). 

Besides self-reproduction of software and self-programming, this new 

technique namely Genetic Programming (GP) has found a wide application 

area for itself such as data mining, task prioritization, path planning, 

distributed problem solving, natural language processing, symbolic regression 

and network routing etc.  

 

In addition to these application areas of evolutionary computation, both GA 

and GP have become strong tools of engineers in solving engineering design 
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and optimization problems. Some examples in the literature are mentioned 

below. 

 

In the studies of Sims (1994a; 1994b) evolutionary strategies have been 

applied to morphological design issues. In a part of these studies, different 

creature morphologies are generated and the generated morphologies are 

evaluated according to their performances in realizing different behaviors such 

as swimming, walking, jumping and following. For the description of 

morphologies, a graph based genetic language using nodes and connections 

as its primitive elements was developed.  In the remaining part of these 

studies, control systems for generated creatures were also determined by 

using evolutionary strategies. 

 

Another morphological design application has been realized by Pollack et al. 

(2000). At the beginning, this study handled morphology as the arbitrary 

networks of linear actuators and bars. It employed evolution to generate 

sufficiently proficient structures from these networks. As a case study, some 

structures were emerged to carry out the task of locomotion. The distances 

traveled by the generated structures are defined as evaluation criterion. It has 

been observed that the evolved robots exhibited various methods of 

locomotion, including crawling, ratcheting and some forms of pedalism.  

 

An alternative application on design of locomotion system has been presented 

by Roston (1994). In his study, a hybrid evolutionary technique (GA/GP) was 

developed and applied to a configuration design issue of a frame-walking 

robot. It has been observed that the developed methodology provided 

promising solutions in configuration design problems. 

 

A group of evolutionary applications has focused on the modularity issue in 

design. Koza (1994) has proposed a promising method relying on the 

description of partial solutions in the form of reusable blocks. These solutions 

called Automatically Defined Functions (ADFs) decrease the depth of trees 

involved in genetic programming and consequently the computation load.  
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Unlike Koza’s approach (1994), Lipson et al. (2001) have employed an 

evolutionary mechanism to generate modular designs without module 

descriptions. This mechanism has based on the observation that modular 

designs have higher adaptability and better survival rates under changing 

requirements.  

 

In addition to these evolutionary design applications, there exist some others 

even at molecular level in the literature. In particular, these studies 

concentrate on pharmacological problems such as drug design (Lawton and 

Wipke, 1999) or protein folding (Schulze-Kremer, 1996).  

 

All of these studies indicate that the majority of evolutionary design 

applications focus on the physical design issues such as component selection 

or configuration design. However, there is no study that carried out 

evolutionary techniques to design a functional topology. Such a study with a 

correct evaluation measure would eliminate the need for a functional 

reasoning technique. Some evaluation measures mentioned in the literature 

for functional designs are presented in following section.  

 

 

2.4 SURVEY ON EVALUATION METRICS FOR FUNCTIONAL DESIGNS 

 

Evaluation of artifacts at functional level is a very difficult task to perform due 

to the abstract nature of functional design process. At this level, only working 

principles are determined and no other information is available for 

performance calculations. However, some characteristics of function structures 

can be used for comparison. First of all, it is preferable to construct artifacts 

using independent functions. Therefore dependency of functions can be 

considered as a comparison criterion for generated design alternatives. The 

number of functions in an artifact can be employed as another measure for 

comparison. Designs should perform their tasks through operating minimum 

number of functions. Finally, all functional structures in a design could be 

physically achievable. The last characteristic is also a necessity to accept a 
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function cluster as a design alternative. These characteristics of function 

structures provide designer with a limited evaluation capability and they can 

not be used as general evaluation metrics. According to these characteristics, 

it is possible to generate equally acceptable solutions from the functional point 

of view. Some evaluation metrics employed in the literature are information 

content, value analysis and complexity. These are briefly explained below.  

 

Information content determines the probability of success of a design 

alternative (Suh, 1990). Design with minimum information content has highest 

probability of success. The information content “I” associated with the 

probability is defined as 

 

pI 2log−=      (2.1) 

 

The unit of information content is bits. Artifacts including many functions 

should satisfy all of them at the same time.  The logarithmic function makes 

information content additive. Then the information content of an artifact is 
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I 1log     (2.2) 

 

where pi is the probability of success of each function. Minimum information 

content states that generated alternative requires the least amount of 

information to achieve the design goals. When probabilities of all functions 

included by the artifact are equal to unity, the information content becomes 

zero. Then design becomes completely achievable. Conversely, the 

information required is infinite when one or more probabilities are equal to 

zero. This shows that design is unreachable. 

 

In the real world, the probability of success is provided by the intersection of 

the tolerance defined by the designer to satisfy the function and the tolerance 
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of the system to produce the part within the specified tolerance. This 

intersection is illustrated in Figure 2.8.  

 

 
Figure 2.8 Intersection of the design range and system range (Amos et al., 2001). 
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One disadvantage of this metric is its need for decisions in physical domain. In 

order to calculate information content of an artifact, its physical design should 

also be completed. 

 

Another evaluation metric, value analysis aims at achieving the total function 

for lowest overall cost (Miles, 1972). Value analysis decomposes artifacts in 

functional domain, and establishes means for each function. According to 

these means, an approximate cost is assigned to each function. By 

considering the interactions between functions, these values are added and 

the cost of achieving the overall task is determined. It is obvious that this 

technique also needs the completion of the decisions in physical domain.  

 

Finally, complexity can be used as an evaluation criterion of artifacts. 

Summers and Shah (2003) give six different definitions of complexity in their 

studies. These definitions vary from design problem complexity, design and 

manufacturing process complexity to design artifact complexity. In the 
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literature, numerous measuring methods are proposed for these complexity 

definitions. These methods can be grouped as: computational views of 

complexity, information based views of complexity and traditional design 

views of complexity. One of the information based measuring methods looks 

promising to measure the complexity of artifacts generated completely in 

functional domain. This method calculates structural complexity through 

considering functions and relationships constructing the artifact. A detailed 

explanation for this measure will be presented in Chapter IV. 
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CHAPTER III 

 

AN APPRAISAL OF EVOLUTIONARY METHODS 

 

 

There are numerous well established search and optimization techniques in 

the literature. Some of these techniques are illustrated in Figure 3.1. 

Enumerative methods, a type of deterministic search techniques, in principal 

search systematically every possible solution one at a time. Therefore, they 

require vast amount of time and calculation power in large search spaces. 

Meanwhile, another deterministic search technique, traditional calculus based 

method needs continuous mathematical functions and their derivatives, 

however, it is not always possible to define the problem in the form of a 

continuous mathematical function. To overcome these difficulties, stochastic 

techniques are suggested.  

 

Stochastic techniques determine the next search point with a probability 

obtained from the search information so far. For instance, simulated annealing 

looks for a good solution to an optimization problem by trying random 

variations of the current solution. A worse variation is accepted as the new 

solution with a probability that decreases as the computation proceeds. This 

technique chooses the new solution if the probability of the new solution is 

greater than the probability of the current solution (Zhang and Kim, 2000). 

Similarly, evolutionary strategies, a type of evolutionary algorithms, basically 

creates a new solution by adding random noise to current solution. If the new 

solution is better, search proceeds utilizing the new solution, if not the older 

solution is retained (Langdon and Qureshi, 1995). In other words, these 

stochastic techniques use past experiences to guide future events. This 
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characteristic causes a considerable decrease in the need of calculation time 

and power.  

 

All evolutionary algorithms are based on Darwin's Natural Selection theory of 

evolution, where a population is progressively improved by selectively 

discarding the worse and breeding new children from the better (Langdon and 

Qureshi, 1995). Koza (1992) states the conditions, on which the evolutionary 

process in nature depends, as; 

 

• An entity should be capable of reproducing itself. 

• Such self-reproducing entities should constitute a population. 

• There should be some variety among the self-reproducing entities. 

• This variety should be associated with rate of survival and the 

reproduction of the entity in its environment.  

 

Figure 3.1 Search and optimization techniques. 

 

Therefore selective replication of individuals, information exchange among 

them and inheritance are also the key concepts of evolutionary search and 

optimization techniques. Almost all evolutionary techniques operate the 

procedure presented in Figure 3.2. 
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Evolutionary techniques have some merits and shortcomings. Primarily these 

techniques have the advantage to create new individuals without requiring 

understanding of procedures used to generate them. This feature makes the 

strategy domain independent and computer implementable. In addition, 

randomness in genetic operations increases the applicability of these 

techniques to complex problems. Therefore it becomes possible to extract 

many successful and interesting solution suggestions, some of which would be 

difficult to invent or build by traditional approaches (Sims, 1994a). 

 
 

 
Figure 3.2 A general algorithm for evolutionary techniques. 

 

However, there are still some poorly understood factors that affect the 

success of these techniques. These include ambiguity in the choice of initial 

populations, need for experiments in determination of constraint handling 

techniques and case dependency of selection and replacement mechanisms. 

 

While evolutionary techniques keep a part of search history by inheritance, 

random mechanisms of genetic operations add randomness to them. 

Therefore evolutionary techniques provide a crossover of random and 

informed search strategies. 

 

Evolutionary techniques differ in representation scheme. While genetic 

algorithms (GA) prefer string based representation scheme, genetic 

programming (GP) utilizes trees to represent the individuals. The preferred 

representation scheme has to be general enough to cover all possible 

procedure Evolutionary Algorithm; 
 begin 
       initialize population Pt=0; 
       evaluate all individuals in Pt=0; 
                 do 
                 t=t+1; 
                 select Pt from Pt-1; 
                 recombine Pt; 
                 evaluate Pt; 

      while(termination criterion not satisfied) 
end.  
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solutions. It also has to be suitable for computer implementation. In Sections 

3.1 and 3.2, an overview for genetic algorithms and genetic programming are 

given respectively. 

 

 

3.1 INTRODUCTION TO GENETIC ALGORITHMS (GA) 

 

Genetic algorithm defines the individuals with the string representations 

(usually fixed length representation is preferred).  For this purpose, at first, a 

representation scheme for the solution of the problem is determined. 

Representation scheme is generated through the coding of the parameters. 

Genetic algorithm works with this coding rather than the parameters 

themselves. Specification of the representation scheme requires selection of 

the string length and the alphabet size. Bit-string representation of the 

problem is the most preferred representation type in genetic algorithms. In 

this representation, the alphabet is binary.  Non-binary representations are 

also possible but tend to be more complex without yielding any additional 

benefit (Roston, 1994). 

 

In string based representation, a part of string describing a property is named 

as a gene. The values taken by this gene are alleles. All values that can be 

taken in the problem should be described by these alleles. Strings containing 

more than one gene as shown in Figure 3.3 are called the chromosomes. This 

chromosome is analogous to the base-4 chromosomes present in our DNA. In 

GA community, the haploid model (i.e. one-chromosome individuals) is used. 

However, diploid models have also been used in the past (Goldberg, 1989a).   

 

 

 G E N E 1 G E N E 2 G E N E 3 

Figure 3.3 A chromosome, which comprises 3 genes. 
 

After the identification of the scheme, the next step is to define the size of 

population. Population sizing is a trade off between reaching solutions of a 
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certain quality and increasing computational costs. While larger populations 

result in better solutions, dealing with unnecessary individuals causes wasting 

time and computational resources.  In literature, there exists small number of 

theoretical studies on determining the adequate population sizes (Goldberg, 

1989b; Goldberg et al., 1992; Harik et al., 1999). Many genetic algorithm 

applications prefer sizing their populations empirically in general.   

 

After finding the population size, the individuals constituting the initial 

population should be defined. The individuals may be constructed randomly or 

a predetermined set of individuals may also be defined as an initial population.  

 

The next step is to determine a fitness measure for genetic algorithm. By 

using the fitness measure, each possible string in the search space is 

evaluated and a fitness value is assigned. The fitness measure is often 

inherent in the problem (Koza, 1992). For example, if the aim is to find the 

object, which has the largest area in the search space, the fitness measure is 

the multiplication of the length and the width of the object, which are 

represented by two genes of a chromosome.  

 

Genetic algorithm transforms the individuals of initial population each with an 

associated fitness value, into a new population (i.e. the next generation) using 

reproduction operation. Reproduction operation determines the fitter 

individuals in the current population and copies these individuals without 

change into the next generation. Therefore, fitter individuals in the population 

survive and others become extinct. There are number of selection methods 

used to perform reproduction operation such as fitness proportionate 

selection, linear ranking selection and truncation selection etc. (Blickle and 

Thiele, 1995). The most common selection method in literature is the “fitness 

proportionate reproduction”. This method copies the individuals in the current 

generation into the next generation with a probability proportional to their 

fitness.  
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The next step after reproduction is the modification of the individuals of the 

new population. This step comprises two genetic operations namely, crossover 

and mutation. The crossover operation aims to generate new individuals by 

crossing the individuals. Therefore the fittest genes of individuals are 

transmitted to their descendants through sexual recombination. Crossover 

operation starts with two parents and ends with two new offspring. Parents 

are selected proportionate to their fitness values. Crossover probability (pc) 

indicates the percentage of the population, which will participate in crossover 

operation. Crossover points on participating members are determined 

randomly. Then parent individuals are crossed at that point and two offspring 

occur in the new population. This operation is illustrated in Figure 3.4. 

 

 

PARENT I 
1 0 0 1 1 0 0 1 

PARENT II 
0 1 1 1 0 1 1 1  

 

1 0 0 1 1 1 1 1
CHILD I 

 
0 1 1 1 0 0 0 1

CHILD II 
Figure 3.4 Crossover operation in genetic algorithms. 
 

Another individual modification operation is mutation. Frequency of mutation 

operation is controlled by a parameter called mutation probability (pm). 

Mutation operates on a single individual. This operation is especially needed 

for increasing the genetic diversity of the population. In some cases, in order 

to avoid from getting stuck into a local minima, occurrence of some bits in 

string could become extinct in the earlier generations of the population. These 

bits can be needed to reach global optimum. Therefore mutation operation 

can also be used to remind the extinct bits to the population. Mutation is a 

secondary operation. Therefore it is not expected to obtain a global optimum 

via a single mutation. However it is a strong tool that provides a way to 

restore the genetic diversity lost in the generations of the population.  
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In binary string representation, mutation operation is applied by converting 

the value of the bit at the point of mutation. Mutation operation can be 

applied more than one point in a string. Figure 3.5 illustrates a sample 

mutation operation. 

 

 

 
1 0 0 1 1 0 0 1

BEFORE MUTATION 
 

 
1 0 1 1 1 0 0 1 

AFTER MUTATION 

Figure 3.5 Mutation operation in genetic algorithms. 
 

Finally, run of a genetic algorithm is terminated in two ways; first, if the 

fitness of the best individual in the run is close to the optimal solution with an 

acceptable predefined error value, operation of the algorithm is terminated. 

The second way of termination is the execution of the predefined maximum 

number of generation. Although an acceptable solution can not be found, 

operation is terminated.  

 

Below, a genetic algorithm implemented in MATLAB environment 

demonstrates the capability of genetic algorithm to avoid local minima in 

searching for global minimum. For this purpose, Rastrigin’s function, which is 

often used to test the genetic algorithms, is employed. Its many local minima 

make it difficult for standard, gradient-based methods to find the global 

minimum (Mathworks, 2004a). Figure 3.6 illustrates the plot of Rastrigin’s 

function shown in Equation 3.1. 

 

 

( ) ( )21
2

2
2

121 2cos2cos1020, xxxxxxZ ππ +⋅−++=   (3.1) 
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Figure 3.6 Plot of Rastrigin’s function. 
 

 
Figure 3.7 Contour plot of Rastrigin’s function with initial population and best 
individuals. 
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Figure 3.8 Best and mean fitness values of implemented genetic algorithm. 
 

Population size and maximum number of generations for genetic algorithm are 

set as 25 and 100 respectively. All individuals at initial population, blue circles 

in Figure 3.7, are constructed randomly. The genetic algorithm successfully 

reaches the global optimum at 25th generation indicated by the red circle in 

Figure 3.7. All individuals in the population also converges the global optimum 

at nearly 97th generation, shown in Figure 3.8. This figure also shows the best 

and mean fitness plots of population for all generations. 

 

 

3.2 INTRODUCTION TO GENETIC PROGRAMMING (GP) 

 

Genetic programming is a special application of genetic algorithm theory to 

automated programming concept. The main aim is to develop a method, 

which teaches the computers to solve problems without needing explicitly 

programming. The solutions of the many problems need hierarchical computer 

programs rather than fixed length character strings. Hierarchical depths of 

these programs are not known in advance. Therefore it is very difficult to 



55

 

represent computer programs of dynamically varying sizes and shapes with 

fixed length character strings.  

 

GP uses rooted trees to represent the individuals in the population. These 

rooted trees consist of terminals and functions appropriate to the problem 

domain. As the functions can be standard arithmetic operators, logical 

functions or domain specific function definitions etc., the terminals can consist 

of either variable atoms (representing perhaps the inputs, sensors, detectors 

or state variables of the system) or constant atoms such as the numbers or 

the Boolean constant NIL) (Koza, 1992). Rooted tree representation of 

function x2+2x+3 is represented in Figure 3.9. In this example the function 

and terminal sets consist of {+,*} and {2, 3, X} respectively.  

 

 

 
Figure 3.9 Rooted tree representation of x2+2x+3 
 

Hierarchical representation has two main properties namely closure and 

sufficiency. The closure property states that each function defined in the 

function set must be able to accept, as its arguments, all of the possible 

return values of other functions and all possible terminal values defined in the 

terminal set. In some cases, such as requiring combined function sets 

including the arithmetic operators and logical operators at the same time, 

there may be difficulties in the application of this property. By defining some 

syntactic rules, these difficulties can be overcome. The closure property is 

desirable, but it is not absolutely required. If it is not succeeded, alternative 

strategies such as elimination of the infeasible individuals or application of a 

penalty to individuals that generate unacceptable results can be applied. The 

other property, sufficiency, states that the set of terminals and the set of 

+

* *

X X 2 X

3
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functions should be capable of expressing a solution to the problem. This 

property is a precondition of solving a problem with genetic programming. 

 

In order to be able to operate the algorithm shown in Figure 3.2, an initial 

population of rooted trees is generated considering the properties mentioned 

above. Similar to the genetic algorithms, the next step is the definition of a 

fitness measure to assign a scalar fitness value to each individual in the 

population. These fitness values are employed to perform genetic operations. 

Genetic programming has two primary (i.e. reproduction, crossover) and five 

secondary (i.e. mutation, permutation, editing, encapsulation and decimation) 

genetic operations.  

 

Both the reproduction and the crossover operations obey the same rules as 

the operations in genetic algorithms. However, the only change occurs at 

crossover operation in shape. In this operation, different sized parents can be 

selected. A random point in each parent is chosen as a crossover point. 

Crossover fragments of the parents are rooted sub-trees, which accept 

crossover point as the root. The first offspring is produced by deleting the 

crossover fragment of the first parent and then inserting the crossover 

fragment of the second parent at the crossover point of the first parent. The 

second offspring is produced in symmetric manner. This operation is 

illustrated in Figure 3.10. 

 

In secondary operations, the most common one is mutation operation. 

Mutation operation starts with random selection of the mutation point in 

individual. A terminal or a function node can be selected as a mutation point. 

Mutation operation removes the mutation point and the tree below this point 

and inserts a randomly generated sub-tree at that point.  Figure 3.11 gives an 

example of mutation operation. 
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PARENT A-BEFORE CROSSOVER 

 
PARENT B-BEFORE CROSSOVER 

 

 
OFFSPRING A-AFTER CROSSOVER 

 

 
OFFSPRING B-AFTER CROSSOVER 

 
Figure 3.10 Crossover operation in genetic programming 
 

INDIVIDUAL-BEFORE MUTATION INDIVIDUAL-AFTER MUTATION 
 
Figure 3.11 Mutation operation in genetic programming 
 

These operations are iteratively performed until reaching termination criterion. 

As in the case of genetic algorithms, genetic programming also uses a 

predefined error value and the maximum number of generations as 

termination criteria. 

 

In order to demonstrate problem solving capability of genetic programming, a 

regression problem is solved at MATLAB environment through the help of 

GPLab, which is a third parity genetic programming toolbox for MATLAB (Silva, 
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2004). At first a regression problem is solved for Equation 3.2 with the data 

between -3 and +3. 

 

832 23 −++ xxx     (3.2) 

 

Population size and maximum number of generations for genetic programming 

are set as 50 and 25 respectively. All individuals at initial population are 

constructed randomly using the function and terminal sets of {plus, minus, 

times} and {1, X}. Genetic programming exactly reaches Equation 3.2 at 23rd 

generation. The best individual and the approximation progress in generations 

are given in Figures 3.12 and 3.13 respectively.  

 

At the bottom of the tree shown in Figure 3.12, the bordered region performs 

a fruitless operation. This proves that, GP tends to produce programs that are 

robust to genetic manipulation, similar in a sense to biological genomes that 

produce viable individuals even though parts of the DNA sequence might be 

corrupt (Roston, 1994).  

 

 
Figure 3.12 Best individual obtained for the regression problem. 
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Figure 3.13 Approximation progress for the regression problem. 
 

Randomness gives robustness to evolutionary algorithms. Therefore 

evolutionary algorithms become capable of handling uncertainties in problems. 

This can be validated by solving aforementioned regression problem by adding 

random noise to its data. In this problem, a polynomial will be fitted to 

randomly disturbed data shown in Figure 3.14. 

 

The parameters of genetic programming are again set to 25 and 50 for 

maximum number of generations and population size respectively. It is 

observed that, genetic programming successfully reaches Equation 3.2 at 24th 

generation. The rooted tree representation of the best individual is illustrated 

in Figure 3.15. The approximation progress of evolutionary process in 

generations is given in Figure 3.16. This simple example demonstrates 

uncertainty handling capability of evolutionary algorithms in the presence of 

noise. 
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Figure 3.14 Noisy data for the regression problem. 
 
 
 

 
Figure 3.15 Best individual obtained for the regression problem with noisy data. 
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Figure 3.16 Approximation progress for the regression problem with noisy data. 
 

 

3.3 CONSTRAINT HANDLING TECHNIQUES USED WITH 

EVOLUTIONARY ALGORITHMS 

 

A vast majority of engineering problems are subject to constraints. Constraint 

handling affects the performance of all optimization techniques including 

evolutionary algorithms. Therefore numerous constraint handling techniques 

are suggested to be used with evolutionary algorithms in the literature 

(Coello, 2002). These techniques are basically established on two different 

paradigms (Michalewicz et al., 1996). The first one is based on the 

penalization of emerged infeasible individuals in the population. Other 

paradigm aims at maintaining the feasibility of individuals in the population by 

means of some restrictions and operations.  
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The most common technique is to use penalties. Basically, penalty is a way of 

converting constrained optimization problems into unconstrained optimization 

problems by adding or subtracting a certain value to/from the objective 

function. This value is generally calculated considering the amount of 

constraint violation in a certain solution. There are three different views of 

assigning penalties to infeasible individuals;  

 

• Infeasible individual is penalized regardless of the amount of 

constraint violation. 

• The amount of violation is taken into consideration to calculate the 

penalty. 

• The effort of repairing infeasible individual (i.e. cost of making 

individual feasible) is considered to find penalty. 

 

Traditionally, weighting of penalties is usually based on experiments. Often 

the algorithm must be rerun several times before assigning penalties (Carlson 

and Shonkwiler, 1998). The main problem in determining the penalties is that 

they are problem dependent. However, it is ideally suggested that the penalty 

should be kept as low as possible (Coello, 2002). High penalties discourage 

the exploration of the infeasible region since the very beginning of the search 

process.  

 

There are several types of penalty functions such as static, dynamic, 

annealing, adaptive or death penalty etc. (Coello, 2002). Static penalties 

remain constant throughout the evolutionary process. The number of 

generations executed is not taken into account in this type of penalty 

calculations. In some types of static penalties, level of constraint violation is 

also handled through a distance metric. Applicability of static penalty is limited 

in highly constrained search spaces. Using a static penalty function, an 

individual is evaluated by Equation 3.3 (Michalewicz, 1996). 
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where ikR ,  are the penalty coefficients used, m is the total number of 

constraints, )(xf is the unpenalized objective function and k=1,2, ….,l, where 

l is the number of levels of violation defined by the designer. )(xg  denotes 

the function of constraint. 

 

The second category consists of dynamic penalties. This category involves the 

current number of generation in calculation of the penalty. In general, for 

minimization problems, penalty function increases as the evolution proceeds. 

This type of penalty also requires a distance metric to find the amount of 

violation. It is possible to define dynamic penalty in different forms. One of 

these forms is presented in Equation 3.4 (Kazarlis and Petridis, 1998). 
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       (3.4) 

 

where A is a severity factor, m is the total number of constraints, iδ is 1 if 

constraint i is violated and 0 otherwise, wi is a weight factor for constraint i. 

Фi(di(S)) is a function of amount of violation of constraint i introduced by 

solution S. B is a penalty threshold factor. sδ takes the value of 1 if solution S 

is infeasible, otherwise 0. V(g) is an increasing function, where g indicates the 

current number of generation. 

 

Annealing penalty is based on the idea of simulated annealing (Carlson and 

Shonkwiler, 1998). In this approach, the next generation is created using the 

best solution in previous generation. Therefore only single instance of a 

feasible individual is enough to operate annealing penalty. This penalty also 

increases over time and in the last generations, the infeasible individuals are 

heavily penalized. The objective function applied annealing penalty is 

presented in Equation 3.5 (Carlson and Shonkwiler, 1998). 

 

)()( xfxfitness ⋅Α=       (3.5) 
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where A depends on two parameters: M, which measures the amount of 

violation of a constraint and T, which is a function of the running time of the 

algorithm. T tends to zero as evolution progress. Therefore the initial penalty 

factor is small and it increases over time as illustrated in Equation 3.6. 

 

     TMeA /−=      (3.6) 

 

The cooling schedule T can be defined as  

 

     
t

T 1
=       (3.7) 

 

t refers to the temperature used in the previous iteration. 

 

Adaptive penalty requires a feedback from the search process. This approach 

starts with a relatively small initial penalty to guarantee the adequate 

sampling of search space and increases or decreases it depending on the 

conditions (Rasheed, 1998). An objective function using adaptive penalty 

proposed by Smith and Tate (1993) is given in Equation 3.8. 
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where Bfeasible is the best-known objective function at generation t, Ball is the 

best (unpenalized) overall objective function, )(xgi is the amount of violation 

of the constraint i, k is a constant adjusting the severity of penalty and NFT is 

Near Feasibility Threshold, which is defined as the threshold distance from the 

feasible region (Coello, 2002). 

 

Death penalty is the easiest way to handle constraints. In this approach, all 

infeasible individuals are rejected. However, this approach can not use any 

information in infeasible individuals. Another potential problem is that if there 
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is no feasible solution in initial population then the evolutionary process will 

stagnate. 

 

Besides the penalization of infeasible individuals, other constraint handling 

techniques aim at maintaining feasible population in the evolutionary process. 

For this purpose, one of these techniques suggests using special 

representations and genetic operators. Problem specific definition of 

representation scheme and genetic operations will prevent the generation of 

infeasible individuals. It is obvious that, this approach is more reliable than the 

other approaches based on penalty functions (Michalewicz et al., 1996). 

However, the generalization of these representations and operators even for 

similar problems is impossible. 

 

Another constraint handling technique is to use repair algorithms. These 

algorithms are used to convert infeasible individuals to feasible individuals. 

This repaired version can either be used for evaluation only or it can also 

replace the original individual in the population. However, there are some 

drawbacks to employ repair algorithms. Such algorithms may introduce 

systematic bias into search and severely disturb the superior aspects of the 

parent solutions carried in the children, defeating the fundamental strength of 

the evolution (Smith and Coit, 1997). Moreover, they are problem dependent 

and there is no standard heuristics to design such repair algorithms. In 

generations, since the children often do not resemble their parents, restoring 

infeasible children may be as difficult as the optimization problem (Joines and 

Houck, 1994).  

 

Using decoders are also used to handle constraints. In this approach, a 

chromosome gives instructions on how to build a feasible solution 

(Michalewicz et al., 1996). Following these instructions always lead the 

evolutionary process to generate feasible individuals. 

 

An alternative way of handling constraints is to employ multi-objective 

optimization techniques. The main idea behind this method is to redefine the 
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single objective optimization problem as a multi-objective optimization 

problem in which each constraint is treated as an objective. Therefore m+1 

objectives are considered in optimization problem, where m is the total 

number of constraints (Coello, 2000). 

 

There are many other constraint handling techniques proposed in literature. In 

general, all of these techniques require major or minor problem specific 

modifications and there is still a need for a systematic way for determining 

parameters of them.  

 

 

3.4 MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTIONARY 

ALGORITHMS 

 

Genetic algorithms require scalar fitness information to operate, which means 

that when approaching multi-objective problems, it is needed to perform a 

scalarization of the objective vectors. Therefore, in order to handle multi-

objective optimization problems, some techniques are suggested in literature. 

Coello (1996) categorized these techniques as; use of aggregating functions, 

non-pareto approaches and pareto based approaches. 

 

Aggregating functions aim at combining different objective functions into a 

single formula. The first method in this category is “weighted sum approach”. 

This approach requires assigning weights indicating the importance of the 

assigned objective. Then the objectives are combined. The difficulty in this 

approach is the determination of weights under absence of enough 

information about the problem.  

 

“Reduction to a single objective” is another method in this category. This 

method assumes all objectives except one as constraints and a single value is 

assigned to each of these constraints. The remaining objective becomes the 

fitness function of evolutionary algorithm. Then, the evolutionary process is 

run numerous times for different values of the constraints. Thus, a trade off 
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surface is developed. It is obvious that this process is very time consuming 

and the coding is impossible for certain problems. 

 

An additional method in this category is “goal attainment”. In this method, the 

problem formulation allows the objectives to be under- or overachieved, 

enabling the decision maker to be relatively imprecise about the initial goals. 

The relative degree of under- or overachievement of the goals is controlled by 

a vector of weighting coefficients (Mathworks, 2004b). By varying weights, the 

important objectives can be emphasized. 

 

An essential property of any candidate solution of a multi-objective problem is 

that the solution should not be dominated. The Pareto set consists of solutions 

that are not dominated by any other solutions. A solution x is said to dominate 

y, if x is better than or equal to y in all attributes, and strictly better in at least 

one attribute (Anderson, 2001). Figure 3.17 illustrates Pareto optimal solutions 

of a bi-objective (f1, f2) minimization problem. Each objective function is 

represented on a separate axis. In such a problem, since there is no point 

down and to the left of them in the graph, solutions 1 and 3 are Pareto 

optimal solutions. Solution 2 does not offer any smaller value for neither of 

the objectives. Therefore it is dominated by Pareto optimal solutions. Multi-

objective optimization problem aims at obtaining a set of Pareto optimal 

solutions. 

 

 
Figure 3.17 Pareto optimal solutions of a bi-objective minimization problem. 
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Another category in multi-objective optimization consists of non-Pareto 

approaches. VEGA (Vector Evaluating Genetic Algorithm) developed by 

Schaffer (1985) can be given as an example for these approaches. This 

algorithm generates a number of sub-populations at each generation. Each 

individual objective is assigned to one of these sub-populations as the 

evaluation metric. As the individuals are selected using this metric in sub-

populations, in order to perform crossover and mutation operations in usual 

way, all sub-populations are mixed again (Anderson, 2001).  

 

A different non-Pareto technique is lexicographic ordering.  This technique 

ranks the objectives in the order of importance. The optimum solution is 

found by minimizing the objective functions, starting with the most important 

one and proceeding according to the order of importance of the objectives. 

 

The last category comprises pareto based approaches. The first Pareto based 

approach in multi-objective optimization was proposed by Goldberg (1989a). 

Basically, these approaches find the individuals, which are Pareto non-

dominated by the rest of the population. Then, the highest rank is assigned to 

these individuals and these individuals are removed from the population. 

Another set of Pareto non-dominated individuals are determined from the 

remaining of the population and the next highest rank is assigned to them. 

This process repeats until the whole population is ranked as presented in 

Figure 3.18. After that, the genetic operations are performed on this ranked 

population. In the literature, there are also some variations of pareto based 

optimization such as MOGA, NSGA and NPGA (Coello, 2002). 
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Figure 3.18 Pareto ranking (Fonseca and Fleming, 1993). 
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CHAPTER IV 

 

EVOLUTIONARY DESIGN OF ENGINEERING 

PRODUCTS AT FUNCTIONAL LEVEL 

 

 

Roston (1994) indicated the similarity between a mechanical device and a 

computer program in his Ph.D. thesis. While in a computer program, data is 

operated on by functions to produce results, in a mechanical device, physical 

objects are acted on by forces to produce an expedient effect as shown in 

Figure 4.1. Design of either of a computer program or a mechanical device 

seeks for a suitable mapping between the available inputs and desired output.  

 

 
Figure 4.1 Black-box representations of a computer function and a mechanical device 

(Roston, 1994). 

 

To the question of “How can computers learn to solve problems without being 

explicitly programmed?”, an answer has been raised by the theory of genetic 

programming (GP) (Koza, 1992; 1994). This theory aims at programming 

without need of a human programmer. To accomplish this aim, it starts with 

randomly generated primitive program codes and breeds this population using 

the principle of survival of the fittest and two genetic operations; crossover 

and mutation. 

 

Aforementioned similarity gives the idea of application of the automated 

programming theory in software development to product development as 

 
FUNCTION 

DATA 
RESULT

DEVICE 

INPUT
OUTPUT 

COMPUTER PROGRAM MECHANICAL DEVICE 
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automated design. There exist numerous attempts to automate design 

process of engineering products. Some of them have been reviewed in 

Chapter 2. Almost all of these attempts have focused on physical design 

issues such as catalog search for component selection or parameter 

optimization. However, there exists no previous effort to design of a functional 

topology of an engineering product using evolutionary algorithms. In this 

chapter, a theory on evolutionary design at functional level is addressed. 

 

Before giving the details of this theory, some benefits of employing 

evolutionary approach for functional design issues can be summarized as 

follows; 

 

• In the literature, there exists no functional reasoning technique 

extracting design alternatives in a solution neutral way (i.e. without 

referring any physical solution) except Pahl and Beitz’s approach 

(1988). However, Pahl and Beitz’s approach (1988) does not consider 

the law of vertical causality in the decomposition of design tasks. 

Moreover, this approach does not propose a heuristic to prevent the 

design from including overlapping functions. Finally, this approach 

requires one to one correspondence between each function and a 

physical component to generate physically realizable designs. 

Evolutionary approach overcomes these difficulties by working on 

initial populations, whose individuals are constituted by atomic 

functions. The atomic functions do not require hierarchical 

decomposition. Moreover, the independence of atomic functions and 

physical achievability of them are assured by a well structured 

functional vocabulary. In addition, the required heuristic to generate 

workable function structures is inherent in the structures of viable 

individuals in initial population.   

• Generation of creative designs require the changes at functional level. 

Therefore, it will be more effective to apply evolutionary methods 

directly at functional level than at physical level and expecting 

alterations in functional topology. 
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• Functional search space consists of infinitely many solution 

alternatives. Evolutionary methods search for the most promising 

solutions incorporating the guided and random search strategies. This 

makes possible to extract solution suggestions difficult to find by 

designers, who consider alternatives limited to only those conceived by 

them.  

• In the evolutionary methods, by means of a properly defined 

evaluation measure, solution alternatives are generated independently 

from the designer’s biases and foreseeing ability. 

• In order to generate optimum designs, evolutionary approaches do not 

require problem specific knowledge (i.e. understanding the working 

principles of extracted solution). Therefore, evolutionary methods 

search solutions in a domain independent space. This feature of 

evolutionary methods supports the domain independent nature of 

functional design process.  

• Evolutionary methods carry out synthesis and analysis automatically. 

Therefore the designer spends his/her time on definition of a proper 

evaluation measure and construction of the initial population. 

• Computer implementation is one of the essentials of automation. 

Unlike some exhaustive search strategies (e.g. breadth-first search, 

depth-first search etc.), evolutionary techniques are computer 

implementable for very large solution spaces.  

 

In the evolutionary design process, basically the general procedure shown in 

Figure 3.2 is operated. Evolutionary design starts with the creation of an initial 

population. All individuals in this population are evaluated by using an 

objective function and a fitness value is assigned to each of them. By using 

these fitness values and the average fitness of the population, the first genetic 

operation, reproduction is performed. Reproduction operation determines the 

fitter individuals in the current population and copies these individuals to the 

next generation with a probability proportional to their fitness. Therefore, 

fitter individuals in the population survive and others become extinct.  
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The next step is the modification of the individuals of this new population. 

This step comprises two genetic operations: crossover and mutation. The 

crossover operation aims to generate new individuals by crossing the selected 

fitter individuals. Crossover operation starts with two parents and ends with 

two new children. As parents are chosen proportionate to their fitness values, 

crossover points on these parents are determined randomly. Then parent 

individuals are crossed at that point and two new children emerge in the new 

population. These operations on population are repeated until satisfying the 

termination criterion. This algorithm of evolutionary design process is 

presented in Figure 4.2.  

 

 

 
 

Figure 4.2 Algorithm of Evolutionary Design process. 
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In order to operate this algorithm, evolutionary design requires the completion 

of the following steps. 

 

• A representation scheme covering all potential solutions in the search 

space must be developed. 

• Using this representation scheme, an initial population must be 

constructed. 

• An evaluation metric rating individuals in terms of their fitness values 

must be described. 

• Genetic operators that alter the composition of children must be 

defined. 

• Values for various parameters of evolutionary process such as 

population size, probabilities of applying genetic operators, an error 

value or maximum number of generations as a termination criterion 

etc. must be assigned. 

• Finally, computer implementation of evolutionary design process is 

crucial for automation. 

 

 

4.1 REPRESENTATION SCHEME 

 

In evolutionary design process, representation scheme is a means to 

represent solutions of the design task. As in the case of other evolutionary 

methods, this representation scheme has to be general enough to cover all 

possible solutions and permit the generation of new designs. It also has to be 

eligible to computer implementation. 

 

Development of a representation scheme and a formal grammar is essential 

for evolutionary design process. It is expected that functional formation of the 

generated artifact using this scheme must obey some strict grammatical rules. 

This requirement guarantees to obtain the syntactically correct design 

solutions at the end of genetic operations.  
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Different grammars are required for different phases of the design process 

from functional design to form design. In general, as the construction of the 

grammar is easier at abstract phases due to increasing complexity at latter 

stages, the performance evaluation of the generated artifacts becomes more 

difficult than at concrete phases (Roston, 1994). The main reason of this is 

the high dependency of the performance calculations to the component 

selections in physical domain. 

 

In the construction of representation schemes and grammatical rules, the 

biological terms genotype and phenotype correspond to two different views 

used in evolutionary strategies. 

 

In biology, genotype is simply the coded representation of an individual. 

Phenotype is the “outward, physical manifestation” of the organism such as 

physical parts, structures, tissues, organs and behaviors; anything that is part 

of the observable structure, function or behavior of a living organism (Blamire, 

1997). Naturally, genotype requires decoding to produce phenotype.  

 

In artificial evolution, genotype representation is employed by genetic 

algorithms. In genetic algorithms, the chromosome in the form of a fixed 

length character string represents the encoded artifact. However, in the 

genetic programming, the artifact itself (phenotype of artifact) is represented 

by a tree structure. As genetic algorithms are powerful especially in parameter 

optimization tasks, handling topology optimization problems becomes easier 

using genetic programming. For that reason, tree based representation 

scheme is used at early attempts in construction of evolutionary design 

process (Güroğlu and Erden, 2003). The details of this representation scheme 

and difficulties encountered in its application are given in following 

paragraphs.  

 

Rooted tree representation requires identification of the function and the 

terminal sets appropriate to problem domain. As the functions become the 

internal nodes, the terminals are the leaf nodes in the tree structure. The 
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functions, being a part of the representation scheme, are different from 

functions constituting an artifact. As the first one configures the terminals in 

the representation, the second one identifies the operations in an artifact to 

generate the desired output. 

 

According to the study of Stone et al. (1998) on functional dependencies, 

function chains constituting artifacts are grouped into two namely; sequential 

and parallel chains. In sequential function chains, the sub-functions must be 

carried out in a specific order to generate the desired result. Functions in a 

sequential chain use the output flow of previous function as its input flow. 

Parallel chains comprise sets of sequential chains sharing one or more 

common flows. By means of this classification, functions in representation 

scheme of evolutionary design are determined as “SEQ” and “PAR” 

corresponding to sequential and parallel chains respectively.  

 

In the evolutionary design, terminals of tree based representation are the 

operations, which are performed by the designed artifact, to obtain the 

desired output flow from available input flows. The terminal set of 

representation scheme consists of functions and flows defined in reconciled 

functional basis developed by Stone and Wood (1999) and Stone et al. (2001). 

This basis provides the designer with a standard language for the description 

of artifacts. By using this basis, a terminal node is represented in the form of a 

verb-object (i.e. function-flow) pair such as “import electricity” or “guide 

particles”. Both of the function and the flow can be selected from any of the 

three levels presented in Tables 2.1 and 2.2 depending on the specification 

desired. After the definition of the terminals, these terminals are placed to 

leaves of the rooted tree structure.  

 

An illustration of tree based representation for a CD player is given in Figure 

4.3. SEQ function at the root of the tree states that all sub-functions are 

operated in a sequential order. These sub-functions correspond to the 

modules of CD-Player such as supply electricity module, drive module, digital 

data retrieval module and sound conversion module. 
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In this representation scheme, in order to construct a syntactically correct 

configuration, all sequential and parallel modules should be placed in correct 

order. This order is determined by the flows on modules. This requirement 

violates the closure property of hierarchical representation in genetic 

programming theory. To correct this deficiency, an extension of genetic 

programming called “strongly typed genetic programming” (STGP) is 

employed. Strongly typed genetic programming is an enhanced version of 

genetic programming which enforces constraints on data types (Montana, 

1995). Therefore, strongly typed genetic programming provides the 

hierarchical representation scheme with being discriminatory about input data 

types of functions to generate viable individuals. 

 

 

 
 
Figure 4.3 Tree representation of CD player. 

 

Although the violation of closure property is prevented by introducing the 

concept of STGP, tests performed using this representation scheme indicated 

that there are some drawbacks of describing artifacts using functional 

dependencies. It was observed that the two definitions in the function set are 
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not enough to reveal all relations between functions in an artifact. In order to 

cover all relations, in addition to sequential and parallel function chains, Ulrich 

and Eppinger (1999) have proposed a third definition called “coupled function 

chains”. Even though the coupled function chains are not found on the same 

flow, they need the completion of each other to complete their tasks. 

However, as this third definition assists revealing all relations between the 

functions, it makes the representation more complex especially for genetic 

operations.  

 

Another shortcoming of tree based representation scheme originates from its 

structural characteristic. In tree representation, each node has a single 

ancestor and many descendants (i.e. children nodes). In some problems, a 

node may need to have more than one ancestor. Especially in functional 

description of artifacts, some function chains require multiple flows to operate. 

Then, the tree based representation becomes inappropriate for describing the 

relations between these function chains. In order to overcome all of these 

difficulties, a graph based representation scheme was proposed for the 

evolutionary design process.  

 

Although graph based representation is not as common as the others, it is 

generally preferred in topology design and optimization problems such as 

truss design (Sushil, 1997), integrated circuit design, network routing (Hobbs 

and Rodgers, 1998), scheduling (Özdemir and Mohan, 2001) or 

nanotechnological molecule design problems (Lawton and Wipke, 1999). 

 

A graph is constructed by connecting a set of vertices through edges. Each 

edge connects two vertices. If the edges are directed, the graph becomes a 

directed graph. Otherwise the graph is an undirected graph (Al-Hakim et al., 

2000).  

 

In graph-based evolutionary design, solutions are represented by graph-

structured individuals and all evolutionary operations are performed on these 

individuals. Functions and flows in an artifact correspond to the vertices and 
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edges in the graph respectively. The sequence of operations of functions is 

expressed using directed edges and cycles representing flows in the artifact. 

Therefore all flow motions in an artifact can be described in the functional 

model using this representation. In addition, the function chains requiring 

multiple input flows can easily be defined. In Figure 4.4, graph-based 

functional representation of a CD player is illustrated. In this product, the 

input flows are solid (CD), human energy and electricity, the desired output 

flow is acoustic energy. These flows are at the boundaries of the system and 

present the interactions between the environment and the product. 
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Figure 4.4 Graph based representation of a CD player. 
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4.2 CREATION OF AN INITIAL POPULATION 

 

In evolutionary methods, the second step after the determination of 

representation scheme is the creation of an initial population. Initial 

population can be generated randomly or a consciously prepared population 

can be adopted. Although using randomly generated initial populations is very 

common in applications of evolutionary methods, evolutionary design prefers 

to work on a predetermined population.  

 

Individuals consisting of function clusters must obey precise grammatical rules 

to represent a workable solution alternative. Certain functions in the 

reconciled functional basis, which is the vocabulary of formal representation 

scheme, are limited to operate on certain types of flows. In evolutionary 

design, this can be provided with either operating on already working function 

structures or operating on a randomly created initial population by the help of 

restrictions on genetic operations and powerful constraint handling algorithms. 

As a randomly created population requires the definition of many constraints 

and decreases the efficiency of evolutionary process, working function 

structures inherently satisfy these constraints. The way of defining some 

heuristics or restrictions to construct working individuals makes the design 

process unmanageable. 

 

Moreover, random generation of individuals may result in lack of diversity in 

the population (i.e. not having a single feasible individual). Lack of diversity in 

a population causes all individuals to have similar or equal fitness values. 

Therefore it seriously limits the applicability of evolutionary process in highly 

constrained search spaces. 

 

However, some difficulties also appear in the use of designer defined initial 

populations. First of all, an initial population should include all function chains 

and flows required to construct at least one solution alternative for the design 

task. For instance, if an initial population completely consists of pneumatic 

systems, it can not be expected to produce a solution requiring an electro-
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optic system (e.g. laser range finders, optical sensors etc.) from this 

population. In order to overcome this problem, it would be beneficial to select 

a part of the individuals among the members of similar product families to the 

goal product. Intuitively, the proper selection of the remaining individuals 

from other product families will provide the design process with creativity.  

 

The studies performed on product design based on modular architecture 

indicate that products in the same product family handle many common 

modules to create product variants. In the study of Chandrasekaran and 

Stone, (2001), these modules are classified into three major categories: 

operational modules, carrier modules and form defining modules. Operational 

modules are responsible for importation, conversion, transmission and end-

utilization of the energy. In other words, these modules run the product. The 

carrier modules are responsible for carrying energy flow in a product. Finally, 

form defining modules influence how the product looks physically. In Table 

4.1, some consumer products are examined based on the presence or 

absence of certain operational modules, which are the main modules in the 

run of the product. 

 

Table 4.1 Product-Operational Module Matrix adopted from Chandrasekaran and Stone 
(2001). 
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Electric Wok X X X    
Toaster X X X   X 
Coffee Maker X X X    
Kettle X X X    
Iced Tea Maker  X X    
Café Trio X X X    
Pop Corn Popper X X X X   
Blender   X X X  
Juicer   X X   
Dough Machine   X X X  
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This table proves that, from operational point of view, many modules are 

repeated in several products belonging to similar product families. This 

emphasizes the need for similar individuals to the goal product in construction 

of initial population.  

 

Another difficulty emerging in the selection of individuals probably stems from 

the designer’s bias. Creativity as an evaluation measure, which is detailed in 

Section 4.3.1.2, highly depends on the probability of occurrences of functions 

and flows in initial population. Therefore the designer should perform the 

individual selection process objectively to facilitate the diversity in initial 

population. 

 

The number of individuals in the initial population and the size of the 

individuals are other criteria, which should be considered by the designer. In 

order to generate high quality solution alternatives by effectively using 

computational resources, the number of individuals in the initial population 

and the size of the individuals should be properly determined by the designer.  

 

 

4.3 EVALUATION METRICS 

 

In order to achieve automatic evaluation of the generated design alternatives, 

an evaluation metric, which will be used as an objective function, is required. 

This objective function must express the designer’s intent and have the ability 

to guide evolution process to generate feasible alternatives. It should also be 

capable of evaluating all possible individuals that can be encountered in the 

steps of evolution.  

  

Although evolutionary design process can be operated using a single objective 

function, the adopted evaluation measure should be suitable to handle 

multiple objectives to search optimum alternatives for multi-criteria design 

tasks. Moreover, constraint handling, one of major concerns of designers, 

should also be considered in the development of this measure. 
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4.3.1 Objective Functions in Evolutionary Design 

 

Cost and performance of an artifact are two of the most common evaluation 

criteria in design problems. However, in early phases of the design process, 

both of these criteria are difficult to observe. Although, some function costing 

methodologies have been proposed to make a rough estimation of the product 

cost in the literature, all of these methodologies require physical embodiment 

of the product to operate. In the same way, performance calculations strictly 

depend on the means selection for intended functions. Evolutionary design 

process at the functional level requires evaluation measures independent of 

physical solution alternatives.  Therefore, “complexity” and “creativity” as two 

means-independent evaluation measures are proposed in this study.  

 

Complexity as a measure aims at guiding the evolutionary process to generate 

simple designs in size based on the assumption that simple solutions have a 

greater probability of success. This measure focuses on the complexity of the 

artifact rather than the amount of effort required to design or manufacture it. 

 

The other measure, creativity  is handled as “novel combinations of old ideas” 

as considered in Boden’s studies (1991). In evolutionary conceptual design, 

these combinations take place at functional level. This measure leads the 

evolution process to generate original and useful design alternatives.  

 

4.3.1.1 Measuring the Complexity of an Artifact 

 

In order to measure the complexity of an artifact, an information-based metric 

is employed. According to this metric, structural complexity of a design is 

interpreted as a function of its information content (Summers and Shah, 

2003). This approach allows comparing generated design alternatives 

according to their complexity level.  

 

In the study of Summers and Shah (2003), a measure of structural complexity 

for hierarchically represented systems has been proposed. This measure is 
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based on the information theory (Klir and Folger, 1988). The complexity 

measure employed in the evolutionary design process is mainly inspired by 

this structural complexity definition (Güroğlu and Erden, 2004). The changes 

in the formulation are due to the differences in the representation methods. 

As Summers and Shah (2003) handle a design hierarchically, in the 

evolutionary design, functional structure of an artifact is described at a single 

abstraction level. The abstraction level in a representation is guaranteed by 

using a standard vocabulary. 

 

The information included in a design appears in two different forms: operands 

(entities) and operators (relationships). In representation scheme of 

evolutionary design, as operands correspond to functions, operators represent 

flows. A design artifact is a sequence of instances of operands and operators. 

The information content of this sequence is calculated by joint entropy 

equation.  

 

The size of vocabulary “λ” is the summation of the number of unique 

operands “ρ” and the number of unique operators “ν”.  

 

υρλ +=     (4.1) 

 

Assuming that all operators and operands are independent and identically 

distributed, the probability of occurrence of each variable is calculated as; 

 

λ
1)( =xP     (4.2) 

 

Information content of a specific sequence of operands and operators is 

calculated through joint entropy equation; 

 

( )( )∑ ⋅−= )(ln)( xPxPH    (4.3) 
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According to this equation, the entropy of an artifact indicates the complexity 

of design and it decreases as more information is collected (i.e. as the 

probabilities involved increase). This measure is completely independent of 

the form of the artifact. It basically focuses on the degree of interconnections 

and size. 

 

4.3.1.2 Measuring the Creativity in an Artifact 

 

Creativity is often associated with unpredictability. According to Boden (1991), 

creative ideas are brought into being by unusual and surprising combinations 

of ideas. By definition, creativity is identified due to the improbability of 

combination, which brings novelty.  

 

However, every surprising or unpredictable idea cannot be identified as 

creative at the same time. A creative idea must be useful, illuminating, or 

challenging in some way (Boden, 1991). Therefore, constraints are essential 

for identification of creativity in evolutionary design process. Constraints act as 

the criteria of judgement. Random process without constraints, which give 

birth to unpredictable and interesting ideas, causes first time curiosities. 

However, a process, which is carried out with respect to constraints, can give 

novel and useful ideas.  

 

Genetic operations (i.e. mutation and crossover), which are the essence of 

evolutionary design process, have random characters. For instance, mutations 

do not happen for their capacity to bring individuals who can survive. While 

mutations randomly generate variety in chromosomes, natural selection lets 

the fit individuals to survive. Natural selection provides the constraints 

necessary for fit individuals. On the other hand, crossover process operates in 

a more constrained nature since it is carried out between two individuals, 

which have high survival value. However, even in crossover operation, the 

chromosomes are broken from random points.  
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“Improbability of combination”, which is mentioned in Boden’s study (1991), 

can be handled as “low probability of occurrence” in evolutionary design 

process (Güroğlu et al., 2005). The individuals, which have low probability of 

occurrence, are regarded as the ones, which have original character with 

respect to the individuals included in initial population.  

 

Since the design process is based on identifying necessary functions and flows 

and building a plausible structure from them, usefulness of the built structure 

appears as the ultimate outcome. Designer’s goals and constraints determine 

the usefulness of generated solution. 

 

Creativity in generated artifacts is a relative measure. It can be computed by 

comparing the generated individuals relative to the individuals in the initial 

population. Therefore it is formulated considering the instances of unique 

operands and operators in the initial population. 

 

The total number of instances (N) of the whole elements in the vocabulary is 

the summation of instances of each operands and operators in the initial 

population.  
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where n, m and l correspond to number of individuals in the initial population, 

number of unique operands and number of unique operators in the vocabulary 

respectively. Φ and ψ indicate number of instances of each unique operand 

(Fj=1..m) and operator (Ok=1..l) in the ith individual.  

 

It is assumed that all operators and operands are independent. Unlike the 

complexity measure, they are not identically distributed. Therefore, the 

probability of occurrence of each operand and operator in the initial 

population are calculated as indicated in Equations 4.5 and 4.6 respectively. 
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Then for a specific sequence; 

 

( )( ) ( )( )( )∑ += OPFPH lnln    (4.7) 

 

This measure provides the designer with a rough idea about the originality 

involved by generated artifact comparatively to the individuals in initial 

population. However, in order to assess this value as a measure of creativity, 

the generated individual should satisfy the designer’s goals and constraints. 

 

However, stand-alone application of the creativity measure may cause the 

possibility of occurring unpredictability steming from complication (Boden, 

1991). Non-deterministic nature of evolutionary process can be misleaded to 

generate complicated solutions to reach creative ideas. Therefore the 

complexity measure mentioned in Section 4.3.1.1 is required to control the 

level of complication of generated artifacts. 

 

In order to make the problem manageable, in calculation of the complexity 

and the creativity measures, it is assumed that operands and operators are 

mutually exclusive (usually not the case in design). As it is mentioned by 

Summers and Shah (2003), this assumption make these measures 

independent of domain restrictions and heuristics which require use of 

conditional probabilities. Since all operands and operators are handled as 

being mutually exclusive, the calculations result in relative measures. These 

measures are also appropriate for evolutionary process. 
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4.3.2 Handling Constraints in Evolutionary Design 

 

Constraints may arise in many forms in design. They determine feasible and 

infeasible solution alternatives for the design task. Different constraints can be 

defined depending on the designer’s needs.  

 

In the evolutionary design, the design task itself is treated as a constraint, 

which has a higher priority over the others. At functional level, the design task 

is simply defined by a black box using available inputs to give desired outputs. 

The design task as a constraint necessitates that all feasible solution 

alternatives should import these available input flows and export the expected 

output flows. This constraint forces the evolution process to generate feasible 

solutions by penalizing the infeasible individuals. A penalty value is added to 

the fitness values of the infeasible individuals by considering the amount of 

constraint violation. The amount of constraint violation is determined by the 

number of missing flows at the black box representation of the generated 

artifact. Penalties make feasible individuals fitter than the others. For instance, 

if the goal product is a kettle, the individuals, which take liquid and electricity 

as the inputs and give hot liquid as the output are feasible. All of the other 

individuals are infeasible and penalized. Each expected flow both at input and 

output of the product is accepted as a distinct requirement, which must be 

satisfied by the goal product. 

 

4.3.3 Handling Multiple Objectives in Evolutionary Design 

 

The easiest and perhaps the most widely used method to handle multi-criteria 

design problems is the weighted sum approach. The logarithmic function in 

both of the evaluation criteria mentioned above makes them additive. 

Therefore, evolutionary design method adopts this approach. 

 

The weighted sum method involves the aggregation of all the objective 

functions using different weighting coefficients for each of them. Therefore 
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the multi-objective optimization problem is transformed into a scalar 

optimization problem (Coello, 1996): 

( )∑
=

⋅
k

i
ii xf

1
min ω      (4.8) 

 

where 0ω i ≥  are the weighting coefficients representing the relative 

importance of the objectives. Therefore this method provides the designer 

with a way for earlier articulation of his/her preferences (Anderson, 2001). In 

general 
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The results are highly dependent on the weighting coefficients. Therefore in 

order to assign weighting coefficients, it is required to solve the same design 

problem for many different values of iω . Moreover, since objective functions 

have generally different magnitudes, in order to apply this method, they must 

be normalized at first. 

 

 

4.4 FORMULATION OF OPTIMIZATION PROBLEM 

 

The constraints and objective function are combined to give the following 

optimization problem: 

 

minimize  

( ) ( ) ( )XGXfXF k +=ρ,                (4.10) 

subject to 

( )DAI OOO ∪⊆  

 

)(Xf : fitness value of the evaluated individual, X . This value is calculated by 

using Equation 4.11. 
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The variables are defined as follows; 

 

• wk: weight of kth criterion in objective function 

• nfunctions: number of functions in evaluated individual, X . 

• nflows: number of flows in evaluated individual, X . 

• ntotal=nfunctions+nflows 

• λ: size of the vocabulary 

• P(Fi): probability of occurrence of ith function (operand) in the initial 

population 

• P(Oj): probability of occurrence of jth flow (operator) in the initial 

population 

• OI: flows of evaluated individual, X . 

• OA: available flows  

• OD: desired flows  

• )(XG : static penalty function 

 

Optimization function can be expanded by adding new criteria and constraints 

depending on the design task. 

 

4.4.1 Penalty Function 

 

In the evolutionary design, the static penalty function is employed. Thus a 

constant penalty is applied to the fitness values of infeasible individuals 

without considering the current generation number.  

 

As it is discussed in Section 4.3.2, all feasible individuals must have the same 

input and output flows as the goal product. This necessity is handled as two 

separate constraints in the evolutionary design process.  
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The penalty function for these two constraints is calculated as: 

 

( ) ∑
=

⋅=
2

1i
ipCXG δ             (4.12) 
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• )(XG : penalty value of the evaluated individual, X . 

• Cp: the penalty constant. 

• iδ : the amount of violation of the ith constraint. 

• Fin_generated: number of the same input flows in the generated individual 

with the goal product. 

• Fin_goal: number of input flows in the goal product. 

• Fout_generated: number of the same output flows in the generated 

individual with the goal product. 

• Fout_goal: number of output flows in the goal product. 

 

Although, a stepwise increase in the penalty (i.e dynamic penalty) puts more 

selective pressure on the evolutionary process to find a feasible solution 

(Joines and Houck, 1994), the performed tests have indicated that static 

penalty is also able to cope with the probable diversity problem in an initial 

population. In the test runs using static penalty, it is observed that even if 

there is a single feasible individual in the initial population, the best individuals 

of all runs are feasible. However, when additional constraints are imposed on 

the design problem, the use of dynamic or adaptive penalties might be 

necessary to improve the efficiency of evolutionary design process.  
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4.5 GENETIC OPERATIONS 

 

The primary operations of evolutionary strategies, reproduction and crossover 

are also adopted by evolutionary design method. The main idea behind the 

genetic operations is the same with the genetic algorithms and the genetic 

programming. However, there exist some changes in application depending on 

the graph-based representation scheme. In the following sections, 

reproduction, crossover and mutation operations are explained in detail. 

 

4.5.1 Reproduction Operation 

 

After the initialization of the population, the next step is the evaluation of the 

individuals. Regarding the results of this evaluation, a reproduction algorithm 

is operated. Any reproduction algorithm such as weighted roulette wheel 

selection, rank selection or tournament selection etc. can be chosen by the 

designer. At the end of this operation, the surviving and extinct individuals are 

determined. Reproduction prepares the population to crossover operation. 

This procedure repeats itself in each generation until reaching termination 

criterion. 

 

4.5.2 Crossover Operation 

 

In evolutionary design process, a single point crossover operation is 

employed. This operation separates individuals into two fragments from a 

randomly selected crossover edge. In order to perform crossover operation, 

edges cut (i.e. crossover edges) should represent the same flow at both of the 

parents. Otherwise separated segments can not be connected in a symmetric 

manner. By the replacement of the separated segments, two new individuals 

are generated. Since the evolutionary design uses directed graphs, 

convenience of the direction of the edges between the mating parts is also 

important. Number of individuals participating in the crossover operation is 

determined by the crossover probability defined by the designer.  
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In Figure 4.5, functional structures of parent individuals participating in a 

sample crossover operation, CD player and Opto-mechanical mouse, are 

presented. It is assumed that these parents are selected based on their fitness 

values. Crossover points are determined by random selection between similar 

flows available in both of the parents. In this example, one of the 

electromagnetic energy flows is selected as the crossover edge for each 

parent. The parents are cut at these edges and each graph is separated into 

two. By considering the direction of the edges cut, the separated fragments 

are replaced.  
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Parent I CD Player Parent II Opto-Mechanical Mouse

Figure 4.5 Parents participating in crossover operation, before crossover. 
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Child I  Child II  

Figure 4.6 Children obtained at the end of crossover operation. 

 

Figure 4.6 presents the individuals obtained at the end of crossover operation. 

The first child obtained at the end of the crossover operation can be embodied 

by an encoder coupled to an electric motor that is frequently used where 

speed control is required such as paper feeding mechanisms in inkjet printers 

or differential drive systems of robots. The second child looks like a musical 

instrument. It gives the user instant musical feedback as the user moves the 

mouse. At present, a similar product called music mouse for Macintosh users 

is commercially available in the market. Although in this example, crossover 

operation produced two devices serving to certain purposes, this operation 



95

 

often generates conversion and transmission modules for energy, matter and 

information flows, which are not dedicated to a specific purpose. 

 

4.5.3 Mutation Operation 

 

Mutation is a secondary genetic operation. Although it is not a dominant force 

in evolution, it aims at restoring lost diversity in early generations of 

population.  

In graph-based evolutionary algorithms, mutation operation replaces a graph 

segment bordered by randomly selected mutation points with a randomly 

generated graph segment. The same difficulties in random generation of the 

initial individuals are also valid for random generation of graph segments. 

Generation of operational segments (i.e. syntactically correct graph divisions) 

requires the definition of large amount of constraints to guide generation 

procedure. Otherwise mutation would require a costly repair operation. 

Therefore mutation operation is not adopted at the present stage of the 

evolutionary design process. It is operated by a crossover-driven approach.  

 

 

4.6 CONTROL PARAMETERS 

 

Control parameters adjusted by the designer determine the efficiency of 

evolutionary process and quality of generated designs. These parameters are 

described below: 

 

• Population size: corresponds to number of individuals in the 

population. As the large populations improve the quality of the result, 

it also increases the computational cost. 

• Number of generations: is the number of test, select and reproduce 

cycles in evolution (Roston, 1994). It is determined empirically. 

• Probability of crossover: determines the number of individuals 

participating in the crossover operation. This value is also set 

empirically. 
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• Maximum size of individuals: basically states the maximum number of 

functions and flows that can be included by an artifact. It is adjusted 

by the designer considering the computational costs in the evolution 

process.  
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CHAPTER V 

 

COMPUTER IMPLEMENTATION 

 

 
5.1 SOFTWARE ARCHITECTURE 

 

The software implementation of the evolutionary design theory is done at MS 

Visual C++ programming environment using LEDA library developed in the 

Max-Planck Institute of Computer Science and GALib developed at the MIT 

CAD Lab.  

 

GaLib is a C++ library of genetic algorithm objects (Wall, 1996). The library 

supports all genetic operations and many representation types such as tree, 

various strings and arrays except graphs.  

 

Another C++ library, LEDA provides efficient data types and algorithms in the 

fields of geometric computing, combinatorial optimization, graph and network 

problems (Max-Planck Institute, 2004). 

 

In computer implementation of evolutionary design process, genetic 

operations defined in GALib are operated on graph based individuals 

represented using LEDA library in C++ programming environment. Crossover 

operation defined in GALib was redefined to make it appropriate for graph-

based individuals. Structure of the software is presented in Figure 5.1. 
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Figure 5.1 Structure of implemented software. 

 

Using LEDA library, the graphs of the individuals that contain many different 

types of nodes (i.e. functions) and edges (i.e. flows) are identified by means 

of a structure shown in Figure 5.2.  Besides connectivity map, this structure 

holds the types of included functions and flows by graph. 

 

 
Figure 5.2 Graph representation using LEDA library. 

 

Steady-state genetic algorithm defined in GALib is adopted in the software 

implementation. Instead of replacing all parents by their children as in 

conventional GA, steady-state GA involves keeping a specified percentage of 

the population and renewing the rest with the newly formed individuals. It is 

empirically observed that steady-state GA prevents premature convergence of 

population and reaches an optimal solution with fewer number of fitness 

evaluations (Davis, 1991).  
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The developed software has a modular architecture as shown in Figure 5.3. 

This feature makes the software eligible for future improvements especially for 

the definition of new objective functions or genetic operations such as multi-

point crossover or mutation. New design criteria depending on the design task 

can be easily implemented by only an addition of a new objective function to 

evaluation module of the software. Moreover, the software allows changing 

selection algorithms used in reproduction operation by providing the designer 

with predefined selection schemes such as rank selector, roulette wheel 

selector, tournament selector or deterministic sampling selector. The control 

parameters (e.g. number of generations, probability of crossover etc.) of 

evolutionary process can also be altered by designer easily. Fitness value of 

the best individual and average fitness value of the population is recorded for 

each generation of the evolution process. All feasible individuals encountered 

in these generations are also presented as an output of the software. 

 

 

 
Figure 5.3 Modules of the software. 
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5.2 INITIAL POPULATION 

 

The initial population is constructed by considering the criteria mentioned in 

Section 4.2. 100 products have been selected and functional models of these 

products have been built. These products are mainly consumer oriented, 

household appliances, hand held construction tools, mechanical or electro-

mechanical devices and energy conversion modules. 

 

The initial population comprises; 

 

• A group of individuals selected from kitchen appliances. It belongs to 

the same product family of the goal product, which is designed in 

Section 5.4. 

• Some products belonging to other product families. In the selection of 

these products, products consisting of similar modules are avoided. 

Products including distinct modules are modeled, e.g. Peltier cooler, 

crystal microphone etc. 

• Some simple components and energy conversion modules (e.g. 

solenoid, photo-voltaic cell, piezoelectric actuator etc.).  

• Some gauges and transducers (e.g. thermocouple, pressure gauge 

etc.) to increase the variety in the initial population.  

 

 

5.3 EVALUATION OF INITIAL POPULATION 

 

The initial population is evaluated with respect to both the complexity and the 

creativity measures proposed in Sections 4.3.1.1 and 4.3.1.2. The resulting 

histograms for the normalized values of these measures are presented in 

Figures 5.4 and 5.5 respectively. 

 

The complexity values of the artifacts in the initial population presents a 

roughly Gaussian distribution as shown in Figures 5.4. This validates the 

unbiased construction of the initial population with respect to this criterion. 
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The only exception is observed in the distribution of the complexity values at 

the left most part. This is originated from inclusion of simple components, 

energy conversion modules, gauges and transducers to initial population.  
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Figure 5.4 Frequency distribution of the individuals in the initial population with 

respect to their complexity values. 
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Figure 5.5 Frequency distribution of the individuals in the initial population with 

respect to their creativity values. 
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According to the creativity criterion, the individuals with a low probability of 

occurrence have high creativity values. There are a small number of these 

individuals in the initial population as shown in Figure 5.5. However, the 

simple individuals and the individuals including the modules, which are 

repetitive in the initial population, have high probability of occurrence and 

they constitute the significant part of the population. 

 

In order to demonstrate the application of evaluation measures, computation 

results for a representative sample having 15 of the 100 products are 

presented in the following sections. These products consists of bath scale, 

magnetic door bell, hand vacuum, humidifier, electric tooth brush, electric 

wok, hair drier, kettle, rice cooker, electric knife, blender, deep fryer, espresso 

machine, coffee maker and iced tea maker. 

 

5.3.1 Computation of the Complexity Values for the Sample 

Population 

 

The complexity values of the sample population are computed and presented 

in Table 5.1. The values are sorted in the ascending order. The simplest 

design has the value of 0.217 and the most complex design has the value of 

0.883. 

Table 5.1 The sample population sorted with respect to the complexity evaluation. 

# INDIVIDUAL COMPLEXITY
1 Bath Scale 0.217
2 Magnetic Door Bell 0.217
3 Hand Vacuum 0.317
4 Humidifier 0.350
5 Elec. Tooth Brush 0.350
6 Electric Wok 0.367
7 Hair Drier 0.367
8 Kettle 0.367
9 Rice Cooker 0.383
10 Electric Knife 0.433
11 Blender 0.483
12 Deep Fryer 0.517
13 Espresso Machine 0.617
14 Coffee Maker 0.650
15 Iced Tea Maker 0.883
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In interpreting the results, it should be considered that the complexity 

measure evaluates the size and degree of interconnections in functional 

representation. This should not be confused with the form complexity. As 

suggested by Suh (1990), in the functional design, employing independent 

functions is essential to increase the probability of success of an artifact. In 

other words, independent functions decrease the difficulty in achieving the 

design task. On the contrary, in physical design, physical coupling is 

encouraged. Integration of more than one function in a single part, as long as 

the functions remain independent, reduces form complexity of the artifact. 

Therefore the complexity values presented below should not be handled 

through conceiving of forms of the artifacts.  

 

The table indicates that bath scale shown in Figure 5.6 and iced tea maker 

shown in Figure 5.7 are the simplest and the most complex products 

respectively. This is an expected result when the number of functions and 

flows of the two products are considered. 

 

 
Figure 5.6 Functional structure of the bath scale. 
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Figure 5.7 Functional structure of the iced tea maker. 

 

 

Table 5.1 also illustrates that the complexities of the kettle shown in Figure 

5.8a and the hair drier shown in Figure 5.8b are identical as both of these 

devices have the same number of functions and flows. 
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a. Kettle. b. Hair drier. 

Figure 5.8 Functional structures of the kettle and the hair drier. 

 

 

5.3.2 Computation of the Creativity Values for the Sample Population 

 

The creativity values of the sample population are computed and presented in 

ascending order in Table 5.2. This measure expresses unpredictability of the 

designs based on the frequency of occurrence of the functions and the flows 

in the initial population.  

 

The iced tea maker is now the most creative design in the population. 

However, it might not be the real situation. The stand alone application of 

creativity misleads the evolutionary process to generate designs with low 

probability of occurrence due to their complicated structures rather than their 

exceptional attributes. Therefore, for the evolutionary design process, it is a 

necessity to apply both of these measures together through a multi-objective 

optimization strategy.  
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Table 5.2 The sample population sorted with respect to the creativity evaluation. 

# INDIVIDUAL CREATIVITY
1 Magnetic Door Bell 0.159
2 Bath Scale 0.199
3 Elec. Tooth Brush 0.246
4 Hand Vacuum 0.251
5 Humidifier 0.256
6 Hair Drier 0.269
7 Electric Wok 0.278
8 Kettle 0.282
9 Electric Knife 0.306
10 Rice Cooker 0.315
11 Blender 0.361
12 Deep Fryer 0.414
13 Espresso Machine 0.537
14 Coffee Maker 0.542
15 Iced Tea Maker 0.750

 

 

5.4 TEST CASE 

 

5.4.1 Goal 

 

As a case study, design of a product, which cooks food (e.g. potato, 

mushroom etc.), has been performed by using the developed software with 

the initial population mentioned above. The black box representation of this 

design task is given in Figure 5.9.  

 

 

 
Figure 5.9 The black box representation of the design task. 

 

The black box representation of the product presents a high level description 

of the design task, which consists of the necessary flows at the boundaries of 

the product and the objectives. In the design of a cooker, the necessary flows 

are food and hot food. During the evolutionary process, these flows are 

treated as the constraints of the design task. In order for an individual to be 

 
Objective: Cook Food

Food Hot Food
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feasible, it should have these flows at its boundaries (i.e. its inputs and 

outputs). The individuals that violate these constraints are penalized by using 

the penalty function proposed in Section 4.4.1. 

 

During the tests, the available flow is simply identified as “solid”, which 

corresponds to the raw food and the desired output flow is “thermal energy + 

solid”, which represents the cooked food. It is expected that evolutionary 

process searches for different ways of cooking such as heating, boiling, frying 

baking, steaming etc. starting from the initial population. The feasible 

individuals present in the initial population are only rice cooker, microwave 

oven and electric wok. 

 

The last step is the identification of control parameters. After performing 

numerous test runs, the control parameters of the evolutionary process were 

set to the values as shown in Table 5.3. The replacement percentage 

mentioned in the fourth row specifies the percentage of the population to 

replace at each generation. 

 

Table 5.3 The run-time control parameters of the evolutionary process. 

Size of the Initial Population 100 
Maximum Number of Generations 120 
Crossover Probability (pc) 0.95 
Replacement Percentage 0.10 
Penalty Constant (Cp) 0.50 
Termination Criterion maximum number of generations 

 

5.4.2 Results 

 

In order to employ both of the evaluation measures, the weighting coefficients 

(i.e. ω1 and ω2 in Equation 4.11) of the multi-criteria objective function must 

be determined. Since the results of the evolution process can vary significantly 

as the weighting coefficients change, the necessary approach is to solve the 

same problem for many different values of the weighting coefficients (ωi) 

(Coello, 2001). For this purpose, some test runs were again performed. The 

results of these test runs indicate that the evaluation measure, which has a 
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greater weighting coefficient than 0.5, becomes dominant and the evolution 

process searches for the global minimum of this measure. As a result, both of 

the weighting coefficients were set to 0.5. The outputs of the software runs 

with the stand alone and combined applications of these evaluation measures 

are presented in the following sections.  

 

GALib, which is used to perform genetic operations, maximizes the defined 

objective function by default. Therefore, the inverse of the objective function 

defined in Equation 4.11 has been taken in the computer implementation.  

 

5.4.2.1 The Experiments Concerning the Stand Alone Application of 

the Complexity Measure (ω1=1, ω2=0) 

 

The global minimum of the structural complexity measure should theoretically 

yield the feasible design shown in Figure 5.10. This design imports thermal 

energy from an external source without paying any effort to generate it.  

 

 
Figure 5.10. The simplest cooker design. 

 

The test-runs performed for the stand alone application of the complexity 

evaluation measure have converged to this simplest design. However, in some 

of the runs, it has been observed that, the evolution got stuck in a local 

minimum representing a feasible but a more complex design. The results of a 

typical test run, which the evolution converged to the global minimum, are 

presented in Figures 5.11 and 5.12.  
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Figure 5.11 The average fitness values of the population throughout the evolution 

process in the experiment with the weighting coefficients of ω1=1, ω2=0. 
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Figure 5.12 The best (i.e. maximum) and the worst (i.e. minimum) fitness values 

obtained throughout the evolution process in the experiment with the weighting 

coefficients of ω1=1, ω2=0. 
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The fitness values of the best individual in the initial population monotonically 

increase as shown in Figure 5.12. This is a result of the steady-state genetic 

algorithm, which always keeps the best individuals in each generation. 

 

5.4.2.2 The Experiments Concerning the Stand Alone Application of 

the Creativity Measure (ω1=0, ω2=1) 

 

As it is discussed in Section 5.3.2, theoretically the stand alone application of 

the creativity measure forces the evolutionary process to generate complex 

individuals due to their low probability of occurrences. The following two 

experiments have also validated this result.  

 

Experiment 1: 

 

The average fitness values of the population during the evolution process in 

the experiment 1 are given in Figure 5.13. 

 

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

Number of Generations

A
ve

ra
ge

 F
itn

es
s 

V
al

ue
s

 
Figure 5.13 The average fitness values of the population throughout the evolution 

process in the experiment 1 with the weighting coefficients of ω1=0, ω2=1. 
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Figure 5.14 illustrates the maximum and the minimum fitness values of the 

individuals in each generation. 
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Figure 5.14 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 1 with the weighting coefficients of ω1=0, ω2=1. 

 

In the experiment 1, it was observed that at the end of the generations, the 

evolution process converged to the individual shown in Figure 5.15. Although 

the converged solution is a feasible solution, it is very complex and includes 

unnecessary modules. In this design, the section bordered with a dashed 

rectangle itself is able to satisfy the design goal. Unlikely, the following part 

looking like a cooling radiator is completely unnecessary. However, by the 

addition of this part, the increasing complexity decreases the probability of 

occurrence of the generated design and so increases the creativity value. 
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Figure 5.15 The best design alternative generated in the experiment 1 with the 

weighting coefficients of ω1=0, ω2=1. 

 

Experiment 2: 

 

In the experiment 2, the average fitness values of the population and the 

minimum-maximum fitness values encountered during the generations are 

presented in Figure 5.16 and 5.17 respectively. The best individual found at 

the end of the process is given in Figure 5.18. 
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Figure 5.16 The average fitness values of the population throughout the evolution 

process in the experiment 2 with the weighting coefficients of ω1=0, ω2=1. 
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Figure 5.17 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 2 with the weighting coefficients of ω1=0, ω2=1. 
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Figure 5.18 The best design alternative generated in the experiment 2 with the 

weighting coefficients of ω1=0, ω2=1. 

 

In Figure 5.18, the section in the dashed rectangle introduces a boiler design 

and this part is sufficient to fulfill the design goal. The remaining part 

resembling an evaporator only increases the complexity of the generated 

individual.  
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5.4.2.3 The Experiments Concerning the Combined Application of the 

Complexity and the Creativity Measures (ω1=0.5, ω2=0.5) 

 

In order to prevent designs from having unnecessarily complex structures in 

the generation of creative solutions, the combined application of the 

complexity and the creativity measures is required. This fact is shown in the 

following experiments.  

 

Experiment 1: 

 

The best individual generated during the experiment 1 is a boiler working with 

solar energy as shown in Figure 5.19.  It is observed that this individual is 

composed of an energy conversion module, some parts from the photo-voltaic 

cell and the rice cooker.  

 

The changes in the average fitness values of the population during the 

generations are presented in Figures 5.20. Moreover, Figure 5.21 illustrates 

the fitness values of the best and the worst individuals at each generation. 

 

 

 
Figure 5.19 The best design alternative generated in the experiment 1 with the 

weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.20 The average fitness values of the population throughout the evolution 

process in the experiment 1 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.21 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 1 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Experiment 2: 

 

In the experiment 2, the best individual is again a strange kind of boiler as 

shown in Figure 5.22. It generates thermal energy by converting the imported 

rotational mechanical energy. Although this type of conversion is usually 

encountered as a type of energy loss in the household appliances, it may be 

likened to the energy conversion observed in the spin or the friction welding 

processes.  

 

The average fitness values of the population throughout the evolution process 

are given in Figure 5.23. Similarly, the best and the worst fitness values 

obtained throughout the evolution process can be observed in Figure 5.24. 

 

 

 
 

Figure 5.22 The best design alternative generated in the experiment 2 with the 

weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.23 The average fitness values of the population throughout the evolution 

process in the experiment 2 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.24 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 2 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Experiment 3: 

 

In the experiment 3, a cooker similar to the simplest design in Figure 5.10 is 

generated as the best individual. This design also imports thermal energy 

without paying any effort to generate it. However, instead of applying this 

thermal energy to the raw food, the stored liquid is heated and the food is 

cooked by hot liquid as shown in Figure 5.25. The Figures 5.26 and 5.27 

indicates the changes in the average fitness values of the population and the 

fitness values of the best and worst individuals throughout the process 

respectively. 

 
Figure 5.25 The best design alternative generated in the experiment 3 with the 

weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.26 The average fitness values of the population throughout the evolution 

process in the experiment 3 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.27 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 3 with the weighting coefficients of ω1=0.5, ω2=0.5. 

 

Experiment 4: 

 

In the experiment 4, the best individual generated throughout the evolution 

process works with chemical energy as shown in Figure 5.28. This design 

consists of an energy conversion module and the parts from the electric 

generator, the electric wok. 

 

The tendency of average fitness values of the population during the evolution 

process is illustrated in Figure 5.29. The fitness values of the best and the 

worst individuals are also presented in Figure 5.30. 
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Figure 5.28 The best design alternative generated in the experiment 4 with the 

weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.29 The average fitness values of the population throughout the evolution 

process in the experiment 4 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.30 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 4 with the weighting coefficients of ω1=0.5, ω2=0.5. 

 

Experiment 5: 

 

In the experiment 5, the best individual resembles a microwave oven working 

with solar energy as shown in Figure 5.31.  

 

 
Figure 5.31 The best design alternative generated in the experiment 5 with the 

weighting coefficients of ω1=0.5, ω2=0.5. 
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The changes of the average fitness values and the fitness values of the best 

and worst individuals during evolution are presented in Figures 5.32 and 5.33 

respectively. 
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Figure 5.32 The average fitness values of the population throughout the evolution 

process in the experiment 5 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.33 The best and the worst fitness values obtained throughout the evolution 

process in the experiment 5 with the weighting coefficients of ω1=0.5, ω2=0.5. 
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During the test runs, some interesting feasible individuals are also observed in 

the intermediate generations. Although the evolutionary process does not 

converge to these individuals, it is beneficial for the designer to investigate 

them. Some of these individuals arising in the intermediate generations of the 

experiments are presented below.  

 

In Figure 5.34, a feasible design alternative, which has the similar operating 

principles with a steam cooker, is presented. In this design, thermal energy is 

used for producing steam and cooking process is performed by the produced 

steam.  

 

 

 
Figure 5.34 A steam cooker arising in the intermediate generations of the experiments 

with the weighting coefficients of ω1=0.5, ω2=0.5. 

 

A popcorn popper working with solar energy is another feasible design 

alternative arising in the intermediate generations. This design uses hot gas to 

cook the raw food as shown in Figure 5.35.  
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Figure 5.35 A popcorn popper arising in the intermediate generations of the 

experiments with the weighting coefficients of ω1=0.5, ω2=0.5. 

 

A press toaster-like design shown in Figure 5.36 is also a feasible solution 

alternative generated in the intermediate steps of the evolution.  

 

 
Figure 5.36 A toaster arising in the intermediate generations of the experiments with 

the weighting coefficients of ω1=0.5, ω2=0.5. 
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In the experiments, two different types of boiler have also been observed. 

The first type boiler shown in Figure 5.37 heats water and mixes the hot 

water and the raw food. 

 

The second type boiler illustrated in Figure 5.38 has a more interesting 

working principle. It produces steam and uses it to control the temperature of 

the hot water as in the case of the espresso machine. In this design, the hot 

water is not applied to the raw food, unless the sufficient amount of steam is 

stored. 

 

 

 
Figure 5.37 The first type boiler arising in the intermediate generations of the 

experiments with the weighting coefficients of ω1=0.5, ω2=0.5. 
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Figure 5.38 The second type boiler arising in the intermediate generations of the 

experiments with the weighting coefficients of ω1=0.5, ω2=0.5. 

 

 

 
Figure 5.39 A solar cooker arising in the intermediate generations of the experiments 

with the weighting coefficients of ω1=0.5, ω2=0.5. 
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In Figure 5.39, an interesting solar cooker generated by evolutionary process 

is presented. Although it utilized hot water to cook the raw food, it does not 

work like a boiler. The operating principle of this cooker is more similar to a 

radiator. The hot water and the raw food are never mixed, only a heat 

exchange occurs between them. 

 

Another strange type of cooker is given in Figure 5.40. In this design, two 

different solid foods are coupled and pierced (or squeezed) before cooking. 

The cooking process involved in this design is the same as the microwave 

oven. 

 

 
Figure 5.40 A strange type of cooker arising in the intermediate generations of the 

experiments with the weighting coefficients of ω1=0.5, ω2=0.5. 



129

 

 

 

CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

 
6.1 SUMMARY AND DISCUSSIONS 

 

The main goal of this thesis is the development of an effective methodology to 

generate creative solutions for the design tasks without binding solution 

spaces with the designers’ individual experiences and prejudices. Therefore an 

evolutionary methodology for the functional level conceptual design of 

engineering products has been proposed. 

 

The 20th century French mathematician Hadamard defines invention or 

discovery, whether in mathematics or anywhere else, as the novel 

combination of old ideas (Goldberg, 2004). This statement clarifies this work 

with its two aspects. First, the combination might result in better than notion 

taken individually. Second, to produce a creative solution, this combination 

should be performed on ideas instead of means. From engineering point of 

view, both of them bring new and important aspects into traditional design 

approach.  

 

The human way of thinking in combination of ideas stemming from knowledge 

and experiences to generate creative or innovative solutions is a very intricate 

subject to understand. This is still the primary goal of many ongoing research 

studies in the area of cognitive science. Therefore, in order to bring creativity 

into foreground in the design activities, the proposed methodology employs 

evolutionary algorithms, which are search procedures based on the mechanics 

of natural genetics and selection (Goldberg, 1997). Although it is a search 
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procedure rather than a reasoning technique, it might still set an analogy 

between evolutionary design process and designer’s activities. As the genetic 

operations: crossover and mutation take on the designer’s activities to 

perform combination and modification of the existing solutions, the evaluation 

procedure forces the process to act similar to the designer’s behavior following 

his/her inference.  

 

In the literature, there exist many studies adopting evolutionary process in 

design of engineering artifacts, some of which are mentioned in Chapter 2. All 

of these studies operate evolutionary algorithms at physical level because of 

the habits arising form the traditional engineering approach (i.e. bottom-up 

design). Although these applications become fruitful especially in design 

optimization tasks, they usually generate functionally equivalent variants. 

Therefore, in order to generate differences far beyond the physical formation, 

this study operates evolutionary algorithms at functional level. 

 

In the literature, the problems of accomplishing the conceptual design process 

completely at functional level are addressed as: 

 

• Its need for a finite, distinct and complete function set to cover all 

operations, which are performed by the artifacts. 

• The lack of a reasoning technique, which does not violate the law of 

vertical causality, in searching for the form independent solutions. 

• Difficulties encountered in evaluating generated solutions at abstract 

levels of the design process. 

 

In order to overcome the first difficulty, the proposed methodology utilizes a 

functional basis as a vocabulary. This basis aims to achieve a repeatable and 

meaningful representation way for the artifacts without relying on the physical 

structure. The second difficulty was defeated by abandoning hierarchical 

representation (i.e. representation in tree form) of the design task. Through 

the atomic function and flow definitions of vocabulary, it becomes possible to 

represent artifacts at a single level of abstraction (i.e. representation in graph 
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form) without need for further decomposition. Finally, to be able to compare 

artifacts at functional level, two evaluation measures, the complexity and the 

creativity were proposed. 

 

Neither the creativity nor the complexity is appropriate for being a standalone 

objective function of the evolutionary design process. The creativity measure 

drives the evolutionary process to unpredictable combinations of individuals in 

the initial population through the crossover operation. The design constraints 

make these combinations creative design alternatives, which is the main goal 

of the evolutionary design process. This measure is based on the assumption 

that the feasible designs having unusual operating principles are creative. 

However, it should be noticed that the complexity is another factor originating 

unusual designs. Therefore, in order to lead the design activity to genuine 

feasible solution alternatives without any doubt, another measure managing 

the complexity of solutions is required. The combined use of the complexity 

and the creativity measures generate inventive alternatives for the design 

tasks. 

 

The value indicated by the complexity measure expresses the difficulty of 

achieving of a design task. Although in many times the design activities 

starting with complex functional designs conclude with the products having 

complex forms, it is not a direct measure of the form complexity. In the 

evolutionary design, the degree of complexity of a generated artifact is not 

the sole concern of the designer. Instead, this measure is employed primarily 

for its supportive attribute to the creativity measure.   

 

In addition to the aforementioned difficulties in development of such a 

methodology, some others have also been encountered throughout the study. 

First of all, the need for a generic representation scheme of evolutionary 

process is satisfied by employing the directed graphs. Unlike the string based 

or the tree based representation schemes, this representation seems working 

well in revealing interconnections and operation sequence besides the 
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identification of the required functions. This representation is also eligible for 

the definition of the genetic operations and the computer implementation.  

 

Additionally, engineering design unavoidably requires dealing with a significant 

number of problem specific constraints. Although evolutionary algorithms 

operate successfully in unconstrained environments, some constraint handling 

techniques are needed to produce feasible alternatives for the constrained 

optimization problems. In the implementation of the evolutionary design 

process, it was observed that the static penalty is able to cope with the 

diversity problem that might be encountered in the initial population. The 

performed tests show that even if there is only a single feasible individual in 

the initial population, the best individual generated during the evolution is 

always a feasible individual. The coefficients of static penalty are optimized by 

performing many test-runs according to the design problem and the employed 

initial population. 

 

The presence of several objectives is typical for engineering design problems. 

Two evaluation measures are presently used in the evolutionary design 

process. In order to accomplish multi-criteria optimization, the weighted sum 

method is employed. This method is required to carry out the synthesis with 

different objective function weights in a systematic way to have a complete 

understanding of the design task at hand (Cetin, 2003). In the evolutionary 

design, the weights are determined by performing numerous test runs. 

 

 

6.2 CONTRIBUTION OF THE THESIS 

 

This is the first study that implements the evolutionary approach to the 

conceptual design phase. The main contribution of the evolutionary design 

methodology is to propose a tool to automate the most critical and ambiguous 

stage of the design process. In the traditional approach, the designer 

accomplishes this stage with his/her experience and intuition, lacking 

immediate feedback about his/her design decisions. Automation by the 
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proposed methodology decreases the dependency of the design activity on 

the designer. Therefore, it increases the quality of generated designs and the 

efficiency of the design process. It also presents a systematic design approach 

for less or inexperienced designers and facilitates a base for experienced 

designers to conceive the other solution alternatives beyond their experiences. 

 

The developed methodology proposes a set of feasible functional designs to 

the designer at the end of the conceptual design phase. Each functional 

design may have numerous physical solution alternatives at the embodiment 

design phase. Thus, the designer’s freedom is kept throughout the design 

process. It is important especially for the form optimization of the artifact. 

 

Automation in the generation of design alternatives, which is a tedious task 

for designers, facilitates the designer to concentrate on the evaluation issues 

only. Hence, the development of new evaluation measures, the constraint 

handling and the multi-criteria optimization techniques become the primary 

concerns of designer.  

 

 

6.3 THE DIFFICULTIES IN THE OPERATION OF THE EVOLUTIONARY 

DESIGN PROCESS 

 

Besides all these merits, there are also some difficulties in the application of 

the evolutionary design methodology.  

 

• Besides the best individuals found at the end of the design process, 

the individuals generated at the intermediate steps of the evolution are 

also very important. Since, the thousands of feasible individuals are 

generated during the evolution, the overlooking of the important part 

of these designs is one of the major difficulties in the operation of 

evolutionary design process.  
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• The generated individuals may require interpretations to conceive its 

operating principles. The designers should avoid getting stuck in the 

known physical solution alternatives in interpreting the generated 

designs.  

 

• Since no repair algorithm is operated, the generated individuals may 

require some modifications.  

 

• Working on non-uniform initial populations limits the effectiveness of 

the evolutionary process. Moreover, the diversity in the initial 

population is important for the constrained handling. Therefore, the 

definition of the initial population is a critical issue influencing the 

result substantially.  

 

• The evolutionary methodology requires problem specific multi-

objective optimization and constraint handling techniques. These 

techniques determine both the efficiency and the reliability of the 

process. Therefore, the evolutionary design methodology needs 

designers knowledgeable about these techniques to operate efficiently. 

 

• In the traditional engineering design activities, designers intuitively 

avoid some possible impractical design alternatives. All criteria to 

distinguish these alternatives from viable designs should be defined in 

the evolutionary design process, otherwise impractical solutions 

becomes inevitable. In some applications, the impractical solutions are 

eliminated by employing interactive evolutionary algorithms. 

 

• It should be noticed that, many of the today’s consumer products have 

been developed by designers throughout their historical development 

period. This period acts as a natural evolution process, which leaves a 

little to the evolutionary design process. Therefore, finding creative 

solutions for these products every time is impossible to achieve for the 

evolutionary design process.  
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• Finally, in computer implementation, the size of generated artifacts is 

limited due to the increasing computational cost for larger artifacts. 

Although this limitation is not a problem for the test case of the 

household appliance design, this may be a problem in generation of 

more complicated artifacts.  

 

 

6.4 SUGGESTIONS FOR FUTURE WORK 

 

The evolutionary design methodology has many promising paths for future 

research; some of them are given below. 

 

• Expanding the Initial Population: The performed test runs indicated 

that especially feasible individuals in the initial population have a 

significant effect on the generated designs. Therefore, the initial 

population should be expanded through increasing the feasible 

individuals. 

 

• Application of the evolutionary design process to different design 

tasks: In this thesis, the evolutionary design process has been applied 

to the design of a household cooker, which is a very difficult task to 

find innovative solutions due to its long historical improvement 

background. Although, this case study has also resulted in different 

solution alternatives, working on the design topics, which are more 

open to the advances in technology, such as automotive engineering 

or aerospace engineering, may generate more innovative design 

solutions.  

 

• Definition of a Multipoint Crossover Operation: Empirical studies 

performed on genetic algorithms employing string based 

representation showed that multipoint crossover operation increases 

the effectiveness of evolutionary algorithms on some problems. 

Although the graph based representation requires a more complicated 
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procedure to perform multipoint crossover, such an operation might 

result in the generation of surprising design alternatives. 

 

• Definition of Other Evaluation Measures: In order to compare the 

generated design alternatives, depending on the design problem 

numerous evaluation measures can be proposed. Some typical 

evaluation measures employed in traditional design activities are cost, 

quality, reliability, maintainability, performance, ease of use, 

redundancy, aesthetics, safety, compatibility with other systems and 

effect on environment etc. However, many of these criteria can not be 

adopted due to their dependency on the form of the artifact (e.g. 

reliability, cost etc.). The measures of evolutionary design process 

might be increased through redefining these general measures at 

functional level or developing new problem specific criteria. 

 

• Implementation of Other Multi-objective Optimization Methods: 

Weighted sum approach is the simplest and probably the most 

common way of handling multi-objective optimization tasks. In order 

to increase the effectiveness of the design process, other methods can 

also be applied. However, GALib does not support other multi-objective 

optimization methods. Therefore, computer implementation for these 

methods necessitates the utilization of other available software 

packages such as Open BEAGLE or using custom libraries. 

 

• Implementation of Other Constraint Handling Techniques: In the 

literature, there exist many variations of the penalty functions and 

other constraint handling techniques such as immune system 

emulation or ant colonies. Although some of these techniques such as 

repair algorithms seem inappropriate for the evolutionary design 

process, the computer implementation of some promising techniques 

might be done as a future work. 
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• Computer Implementation for Parallel Processing: Evolutionary 

algorithms are eligible for parallel processing. Populations and/or 

individuals can be evolved in parallel. Parallel processing significantly 

decreases the evolution time, therefore it allows increasing the number 

of individuals in the initial population or maximum number of 

generations. Especially for the designs of complicated artifacts, parallel 

processing is essential. 

 

• Promoting Modularity In Evolutionary Design: Some highly repetitive 

modules included in individuals can be encapsulated in evolutionary 

process. These modules can not be deformed by genetic operations. 

This decreases the size of individuals and hence the computational 

costs.   

 

• Determination of Strategies in Education of Designers: This novel 

design methodology necessitates designer to be well-informed on 

some specific topics such as criteria in generation of initial populations, 

handling constraints and multiple objectives in evolutionary algorithms 

etc. Therefore, some strategies are required to educate designers on 

the evolutionary design methodology. 

 

• Extension of Evolutionary Methodology to Embodiment Design: In the 

literature, there exist many evolutionary design applications performed 

at physical level. By adopting one of them, this study might be 

extended to cover all stages of design process up to prototyping 

phase. 
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APPENDIX A 

 

RECONCILED FUNCTIONAL BASIS 

 

 
A.1 FLOW DEFINITIONS (Stone et al., 2001) 

 

A.1.1 Material 

 

• Human. All or part of a person who crosses the device boundary. 

Example:  Most coffee makers require the flow of a human hand to 

actuate (or start) the electricity and thus heat the water.  

• Gas. Any collection of molecules characterized by random motion and 

the absence of bonds between the molecules. Example: An oscillating 

fan moves air by rotating blades. The air is transformed as gas flow. 

• Liquid. A readily flowing fluid, specifically having its molecules moving 

freely with respect to each other, but because of cohesive forces, not 

expanding indefinitely. Example: The flow of water through a coffee 

maker is a liquid flow. 

• Solid. Any object with mass having a definite, firm shape. Example: 

The flow of sandpaper into a hand sander is transformed into a solid 

entering the sander.  

o Object. Material that can be seen or touched that occupies 

space. Example: The box of scrap paper for recycling is 

represented as the flow object.  

o Particulate. Substance containing minute separate particles. 

Example:  Granular sugar and powdered paint are particulates.  

o Composite. Solid material composed of two or more substances 

having different physical characteristics and in which each 
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substance retains its identity while contributing desirable 

properties to the whole unit. Any class of high-strength, 

lightweight engineering materials consisting of various 

combinations of alloys, plastics, and ceramics. Example: 

Materials such as wood, fiberglass combined with metals, 

ceramics, glasses, or polymers together are considered a 

composite.   

• Plasma. A collection of charged particles that is electrically neutral 

exhibiting some properties of a gas, but differing from a gas in being a 

good conductor of electricity and in being affected by a magnetic field. 

Example: Plasma cutting focuses an intense beam of ionized air, 

known as plasma, produced by an electric arc, which melts the 

material to be cut.  

• Mixture. A substance containing two or more components, which are 

not in fixed proportions, do not lose their individual characteristics and 

can be separated by physical means.  

o Liquid-Liquid. A readily flowing combination of two or more 

fluids, specifically having its molecules moving freely with 

respect to each other, but because of cohesive forces, not 

expanding indefinitely.  Example: Machine oil and gasoline is a 

common liquid-liquid mixture used in yard maintenance 

machines.  

o Gas-Gas. A collection of molecules containing two or more 

components, which are characterized by random motion and 

the absence of bonds between the molecules. Example: The 

mixture of argon and carbon dioxide, a gas-gas flow, is 

commonly used in welding.  

o Solid-Solid. A combination of two or more objects with mass 

having definite, firm shape. Example: Pebbles, sand, gravel, 

and slag can be used to form concrete, mortar, or plaster.  

After it cures, concrete is a solid-solid.  

o Solid-Liquid. A combination of two or more components 

containing at least one solid and one liquid.  Example: Iced tea 
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is a solid-liquid mixture of ice (solid), water (liquid), and tea 

grounds (solid).  

o Solid-Gas. A combination of two or more components 

containing at least one solid and one gas. Example: Fog is a 

solid-gas mixture of frozen ice particles (solid) in air (gas).  

o Liquid-Gas. A combination of two or more components 

containing at least one liquid and one gas. Example: 

Carbonated drinks are liquid-gas mixtures of flavored syrup 

(liquid), purified water (liquid), and carbon dioxide (gas). 

o Solid-Liquid-Gas. A combination or three or more components 

containing at least one each of a solid, liquid, and gas.  

Example:  In a cup of soda and ice cubes, the cup contains the 

solid-liquid-gas flow.  

o Colloidal. A solid, liquid, or gaseous substance made up of very 

small, insoluble, non-diffusible particles that remain in 

suspension in a surrounding solid, liquid, or gaseous medium of 

a different matter. Example: Aerosols, smoke, and mist can all 

be considered colloids.  Mist is a combination of very fine water 

droplets suspended in air.  

 

A.1.2 Energy 

 

Generic Complements: 

Effort: Any component of energy used to accomplish an intended purpose.  

Flow: Any component of energy causing the intended object to move or run 

freely. 

 

• Human. Work performed by a person on a device. Example: An 

automobile requires the flow of human energy to steer and accelerate 

the vehicle. 

o Force. Human effort that is input to the system without regard 

for the required motion. Example: Human force is needed to 

actuate the trigger of a toy gun. 
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o Velocity. Activity requiring movement of all or part of the body 

through a prescribed path. Example: The track pad on a laptop 

computer receives the flow of human velocity to control the 

cursor. 

• Acoustic. Work performed in the production and transmission of sound. 

Example: The motor of a power drill generates the flow of acoustic 

energy in addition to the torque. 

o Pressure. The pressure field of the sound waves. Example: A 

condenser microphone has a diaphragm, which vibrates in 

response to acoustic pressure. This vibration changes the 

capacitance of the diaphragm, thus superimposing an 

alternating voltage on the direct voltage applied to the circuit.  

o Particle velocity. The speed at which sound waves travel 

through a conducting medium. Example: Sonar devices rely on 

the flow of acoustic particle velocity to determine the range of 

an object. 

• Biological. Work produced by or connected with plants or animals.  

Example: In poultry houses, grain is fed to chickens, which is then 

converted into biological energy. 

o Pressure. The pressure field exerted by a compressed biological 

fluid. Example: The high concentration of sugars and salts 

inside a cell causes the entry, via osmosis, of water into the 

vacuole, which in turn expands the vacuole and generates a 

hydrostatic biological pressure, called turgor, that presses the 

cell membrane against the cell wall. Turgor is the cause of 

rigidity in living plant tissue.  

o Volumetric flow. The kinetic energy of molecules in a biological 

fluid flow. Example: Increased metabolic activity of tissues such 

as muscles or the intestine automatically induces increased 

volumetric flow of blood through the dilated vessels. 

• Chemical. Work resulting from the reactions by which substances are 

produced from or converted into other substances. Example: A battery 

converts the flow of chemical energy into electrical energy. 
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o Affinity. The force with which atoms are held together in 

chemical bonds. Affinity is proportional to the chemical 

potential of a compound’s constituent species. Example: An 

internal combustion engine transforms the chemical affinity of 

the gas into a mechanical force.  

o Reaction rate. The speed or velocity at which chemical 

reactants produce products. Reaction rate is proportional to the 

mole rate of the constituent species.  Example: Special coatings 

on automobile panels stop the chemical reaction rate of the 

metal with the environment.  

• Electrical.  Work resulting from the flow of electrons from a negative to 

a positive source.  Example: A power belt sander imports a flow of 

electrical energy (electricity, for convenience) from a wall outlet and 

transforms it into a rotation.  

o Electromotive force. Potential difference across the positive and 

negative sources. Example: Household electrical receptacles 

provide a flow of electromotive force of approximately 110 V.  

o Current. The flow or rate of flow of electric charge in a 

conductor or medium between two points having a difference 

in potential. Example: Circuit breakers trip when the current 

exceeds a specified limit. 

• Electromagnetic. Energy that is propagated through free space or 

through a material medium in the form of electromagnetic waves. It 

has both wave and particle-like properties. Example: Solar panels 

convert the flow electromagnetic energy into electricity. 

o Optical. Work associated with the nature and properties of light 

and vision. Also, a special case of solar energy (see solar). 

Example: A car visor refines the flow of optical energy that its 

passengers receive.  

 Intensity. The amount of optical energy per unit area. 

Example: Tinted windows reduce the optical intensity of 

the entering light. 
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 Velocity. The speed of light in its conducting medium. 

Example: NASA developed and tested a trajectory 

control sensor (TCS) for the space shuttle to calculate 

the distance between the payload bay and a satellite.  It 

relied on the constancy of the optical velocity flow to 

calculate distance from time of flight measurements of a 

reflected laser.  

o Solar. Work produced by or coming from the sun. Example: 

Solar panels collect the flow of solar energy and transform it 

into electricity.  

 Intensity. The amount of solar energy per unit area.  

Example: A cloudy day reduces the solar intensity 

available to solar panels for conversion to electricity.  

 Velocity. The speed of light in free space.  Example:  

Unlike most energy flows, solar velocity is a well-known 

constant. 

• Hydraulic. Work that results from the movement and force of a liquid, 

including hydrostatic forces. Example: Hydroelectric dams generate 

electricity by harnessing the hydraulic energy in the water that passes 

through the turbines.  

o Pressure. The pressure field exerted by a compressed liquid.  

Example: A hydraulic jack uses the flow hydraulic pressure to 

lift heavy objects.  

o Volumetric flow. The movement of fluid molecules. Example:  A 

water meter measures the volumetric flow of water without a 

significant pressure drop in the line. 

• Magnetic. Work resulting from materials that have the property of 

attracting other like materials, whether that quality is naturally 

occurring or electrically induced. Example: The magnetic energy of a 

magnetic lock is the flow that keeps it secured to the iron based 

structure.  

o Magnetomotive force. The driving force which sets up the 

magnetic flux inside of a core. Magnetomotive force is directly 
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proportional to the current in the coil surrounding the core. 

Example: In a magnetic door lock, a change in magnetomotive 

force (brought about by a change in electrical current) allows 

the lock to disengage and the door to open.  

o Magnetic flux rate. Flux is the magnetic displacement variable 

in a core induced by the flow of current through a coil. The 

magnetic flow variable is the time rate of change of the flux. 

The voltage across a magnetic coil is directly proportional to 

the time rate of change of magnetic flux. Example: A magnetic 

relay is a transducer that senses the time rate of change of 

magnetic flux when the relay arm moves. 

• Mechanical. Energy associated with the moving parts of a machine or 

the strain energy associated with a loading state of an object. 

Example: An elevator converts electrical or hydraulic energy into 

mechanical energy. 

o Rotational energy. Energy that results from a rotation or a 

virtual rotation. Example: Customers are primarily concerned 

with the flow of rotational energy from a power screwdriver.  

 Torque. Pertaining to the moment that produces or 

tends to produce rotation. Example: In a power 

screwdriver, electricity is converted into rotational 

energy. The more specific flow is torque, based on the 

primary customer need to insert screws easily, not 

quickly.  

 Angular velocity. Pertaining to the orientation or the 

magnitude of the time rate of change of angular 

position about a specified axis.  Example: A centrifuge is 

used to separate out liquids of different densities from a 

mixture.  The primary flow it produces is that of angular 

velocity, since the rate of rotation about an axis is the 

main concern.  

o Translational energy. Energy flow generated or required by a 

translation or a virtual translation.  
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 Force. The action that produces or attempts to produce 

a translation. Example: In a tensile testing machine, the 

primary flow of interest is that of a force which 

produces a stress in the test specimen. 

 Linear velocity. Motion that can be described by three 

component directions. Example: An elevator car uses 

the flow of linear velocity to move between floors. 

• Pneumatic. Work resulting from a compressed gas flow or pressure 

source.  

o Pressure. The pressure field exerted by a compressed gas. 

Example: Certain cylinders rely on the flow of pneumatic 

pressure to move a piston or support a force.  

o Mass flow. The kinetic energy of molecules in a gas flow. 

Example: The mass flow of air is the flow that transmits the 

thermal energy of a hair dryer to damp hair. 

• Radioactive (Nuclear).  Work resulting from or produced by particles or 

rays, such as alpha, beta and gamma rays, by the spontaneous 

disintegration of atomic nuclei. Example: Nuclear reactors produce a 

flow of radioactive energy which heats water into steam and then 

drives electricity generating turbines. 

o Intensity. The amount of radioactive particles per unit area.  

Example: Concrete is an effective radioactive shielding material, 

reducing the radioactive intensity in proportion to its thickness.  

o Decay rate. The rate of emission of radioactive particles from a 

substance. Example: The decay rate of carbon provides a 

method to date pre-historic objects. 

• Thermal. A form of energy that is transferred between bodies as a 

result of their temperature difference.  Example: A coffee maker 

converts the flow of electricity into the flow of thermal energy, which it 

transmits to the water 

o Temperature. The degree of heat of a body. Example:  A coffee 

maker brings the temperature of the water to boiling in order 

to siphon the water from the holding tank to the filter basket. 
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o Heat rate. The time rate of change of heat energy of a body.  

Example: Fins on a motor casing increase the flow heat rate 

from the motor by conduction (through the fin), convection (to 

the air) and radiation (to the environment). 

 

 

 

 

A.1.3 Signal 

 

• Status. A condition of some system, as in information about the state 

of the system. Example: Automobiles often measure the engine water 

temperature and send a status signal to the driver via a temperature 

gage. 

o Auditory. A condition of some system as displayed by a sound.  

Example: Pilots receive an auditory signal, often the words "pull 

up," when their aircraft reaches a dangerously low altitude.  

o Olfactory. A condition of some system as related by the sense 

of smell or particulate count. Example: Carbon monoxide 

detectors receive an olfactory signal from the environment and 

monitor it for high levels of CO.  

o Tactile. A condition of some system as perceived by touch or 

direct contact. Example: A pager delivers a tactile signal to its 

user through vibration.  

o Taste. A condition of some dissolved substance as perceived by 

the sense of taste. Example: In an electric wok, the taste signal 

from the human chef is used to determine when to turn off the 

wok. 

o Visual. A condition of some system as displayed by some 

image. Example: A power screwdriver provides a visual signal 

of its direction through the display of arrows on the switch. 

• Control. A command sent to an instrument or apparatus to regulate a 

mechanism.  
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o Analog. A control signal sent by direct, continuous, measurable, 

variable physical quantities. Example: Turning the volume knob 

on a radio sends an analog signal to increase or decrease the 

sound level. 

o Discrete. A control signal sent by separate, distinct, unrelated 

or discontinuous quantities. Example: A computer sends 

discrete signals to the hard disk controller during read/write 

operations.  

 

A.2 FUNCTION DEFINITIONS (Stone et al., 2001) 

 

Note that certain functions are limited to operate on certain types of flows. 

This restriction is typically given in the function definition and applies to all 

functions at sub-levels of the given function. 

 

• Branch. To cause a flow (material, energy, signal) to no longer be 

joined or mixed.  

o Separate. To isolate a flow (material, energy, signal) into 

distinct components.  The separated components are distinct 

from the original flow, as well as each other. Example:  A glass 

prism separates light into different wavelength components to 

produce a rainbow.  

 Divide. To split up a flow into parts or to classify distinct 

parts of a flow. Example: A vending machine divides the 

solid form of coins into appropriate denominations.  

 Extract. To draw, or forcibly pull out, a flow.  Example: 

A vacuum cleaner extracts debris from the imported 

mixture and exports clean air to the environment.  

 Remove. To take away a part of a flow from its prefixed 

place. Example: A sander removes small pieces of the 

wood surface to smooth the wood. 

o Distribute. To cause a flow (material, energy, signal) to break 

up. The individual bits are similar to each other and the 
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undistributed flow. Example: An atomizer distributes (or sprays) 

hair-styling liquids over the head to hold the hair in the desired 

style. 

• Channel. To cause a flow (material, energy, signal) to move from one 

location to another location. 

o Import. To bring in a flow (material, energy, signal) from 

outside the system boundary. Example: A physical opening at 

the top of a blender pitcher imports a solid (food) into the 

system. Also, a handle on the blender pitcher imports a human 

hand. 

o Export. To send a flow (material, energy, signal) outside the 

system boundary. Example: Pouring blended food out of a 

standard blender pitcher exports liquid from the system. The 

opening at the top of the blender is a solution to the export 

sub-function. 

o Transfer. To shift, or convey, a flow (material, energy, signal) 

from one place to another. 

 Transport. To move a material from one place to 

another. Example: A coffee maker transports liquid 

(water) from its reservoir through its heating chamber 

and then to the filter basket.  

 Transmit. To move an energy from one place to 

another. Example: In a hand held power sander, the 

housing of the sander transmits human force to the 

object being sanded. 

o Guide. To direct the course of a flow (material, energy, signal) 

along a specific path. Example: A domestic HVAC system 

guides gas (air) around the house to the correct locations via a 

set of ducts. 

 Translate. To fix the movement of a flow by a device 

into one linear direction. Example: In an assembly line, 

a conveyor belt translates partially completed products 

from one assembly station to another.  
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 Rotate. To fix the movement of a flow by a device 

around one axis. Example: A computer disk drive 

rotates the magnetic disks around an axis so that the 

head can read data.  

 Allow degree of freedom (DOF). To control the 

movement of a flow by a force external to the device 

into one or more directions.  Example: To provide easy 

trunk access and close appropriately, trunk lids need to 

move along a specific degree of freedom.  A four bar 

linkage allows a rotational DOF for the trunk lid. 

• Connect. To bring two or more flows (material, energy, signal) 

together. 

o Couple. To join or bring together flows (material, energy, and 

signal) such that the members are still distinguishable from 

each other. Example: A standard pencil couples an eraser and a 

writing shaft. The coupling is performed using a metal sleeve 

that is crimped to the eraser and the shaft. 

 Join. To couple flows together in a predetermined 

manner. Example: A ratchet joins a socket on its square 

shaft interface.  

 Link. To couple flows together by means of an 

intermediary flow. Example: A turnbuckle links two ends 

of a steering cable together.  

o Mix. To combine two flows (material, energy, and signal) into a 

single, uniform homogeneous mass. Example: A shaker mixes a 

paint base and its dyes to form a homogeneous liquid. 

• Control Magnitude. To alter or govern the size or amplitude of a flow 

(material, energy, signal). 

o Actuate. To commence the flow of energy, signal, or material in 

response to an imported control signal. Example: A circuit 

switch actuates the flow of electrical energy and turns on a 

light bulb. 
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o Regulate. To adjust the flow of energy, signal, or material in 

response to a control signal, such as a characteristic of a flow. 

Example: Turning the valves regulates the flow rate of the 

liquid flowing from a faucet. 

 Increase. To enlarge a flow in response to a control 

signal. Example: Opening the valve of a faucet further 

increases the flow of water.  

 Decrease. To reduce a flow in response to a control 

signal. Example: Closing the valve further decreases the 

flow of propane to the gas grill.   

o Change. To adjust the flow of energy, signal, or material in a 

predetermined and fixed manner. Example: In a hand held drill, 

a variable resistor changes the electrical energy flow to the 

motor thus changing the speed the drill turns.  

 Increment. To enlarge a flow in a predetermined and 

fixed manner. Example: A magnifying glass increments 

the visual signal (i.e. the print) from a paper document.  

 Decrement. To reduce a flow in a predetermined and 

fixed manner. Example: The gear train of a power 

screwdriver decrements the flow of rotational energy.  

 Shape. To mold or form a flow. Example: In the auto 

industry, large presses shape sheet metal into 

contoured surfaces that become fenders, hoods and 

trunks.  

 Condition. To render a flow appropriate for the desired 

use. Example: To prevent damage to electrical 

equipment, a surge protector conditions electrical 

energy by excluding spikes and noise (usually through 

capacitors) from the energy path. 

o Stop. To cease, or prevent, the transfer of a flow (material, 

energy, signal). Example: A reflective coating on a window 

stops the transmission of UV radiation through a window.  
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 Prevent. To keep a flow from happening.  Example:  A 

submerged gate on a dam wall prevents water from 

flowing to the other side.  

 Inhibit. To significantly restrain a flow, though a portion 

of the flow continues to be transferred. Example: The 

structures of space vehicles inhibits the flow of radiation 

to protect crew and cargo.  

• Convert. To change from one form of a flow (material, energy, signal) 

to another. For completeness, any type of flow conversion is valid. In 

practice, conversions such as convert electricity to torque will be more 

common than convert solid to optical energy. Example: An electrical 

motor converts electricity to rotational energy. 

• Provision. To accumulate or provide a material or energy flow. 

o Store. To accumulate a flow. Example: A DC electrical battery 

stores the energy in a flashlight. 

 Contain. To keep a flow within limits. Example: A 

vacuum bag contains debris vacuumed from a house.  

 Collect. To bring a flow together into one place. 

Example: Solar panels collect ultraviolet sun rays to 

power small mechanisms.  

o Supply. To provide a flow from storage. Example: In a 

flashlight, the battery supplies energy to the bulb. 

• Signal. To provide information on a material, energy or signal flow as 

an output signal flow.  The information providing flow passes through 

the function unchanged. 

o Sense.  To perceive, or become aware, of a flow.  Example:  An 

audiocassette machine senses if the end of the tape has been 

reached. 

 Detect. To discover information about a flow. Example: 

A gauge on the top of a gas cylinder detects proper 

pressure ranges.  
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 Measure. To determine the magnitude of a flow. 

Example: An analog thermostat measures temperature 

through a bimetallic strip. 

o Indicate. To make something known to the user about a flow. 

Example: A small window in the water container of a coffee 

maker indicates the level of water in the machine.  

 Track. To observe and record data from a flow. 

Example: By tracking the performance of batteries, the 

low efficiency point can be determined.    

 Display. To reveal something about a flow to the mind 

or eye. Example: The xyz-coordinate display on a 

vertical milling machine displays the precise location of 

the cutting tool. 

o Process. To submit information to a particular treatment or 

method having a set number of operations or steps. Example: 

A computer processes a login request signal before allowing a 

user access to its facilities. 

• Support. To firmly fix a material into a defined location, or secure an 

energy or signal into a specific course.  

o Stabilize. To prevent a flow from changing course or location. 

Example: On a typical canister vacuum, the center of gravity is 

placed at a low elevation to stabilize the vacuum when it is 

pulled by the hose. 

o Secure. To firmly fix a flow path. Example: On a bicycling 

glove, a Velcro strap secures the human hand in the correct 

place.  

o Position. To place a flow (material, energy, signal) into a 

specific location or orientation. Example: The coin slot on a 

soda machine positions the coin to begin the coin evaluation 

and transportation procedure. 
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