

AN EVOLUTIONARY METHODOLOGY FOR CONCEPTUAL DESIGN

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN GÜROĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MECHANICAL ENGINEERING

JULY 2005

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Doctor of Philosophy.

 Prof. Dr. Kemal İder

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Doctor of

Philosophy.

 Prof. Dr. Abdülkadir Erden

 Supervisor

Examining Committee Members

Prof. Dr. Faruk Arınç (METU, ME)

Prof. Dr. Abdülkadir Erden (METU, ME)

Prof. Dr. Bülent E. Platin (METU, ME)

Assoc. Prof. Dr. Mehmet Önder Efe (ETU, EEE)

Asst. Prof. Dr. Zühal Erden (ATILIM UNIV., IE)

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I
have fully cited and referenced all material and results that are not
original to this work.

 Name, Last name: Serkan Güroğlu

 Signature :

iv

ABSTRACT

AN EVOLUTIONARY METHODOLOGY FOR CONCEPTUAL DESIGN

GÜROĞLU, Serkan

Ph.D., Department of Mechanical Engineering

Supervisor: Prof. Dr. Abdülkadir ERDEN

July 2005, 174 pages

The main goal of this thesis is the development of a novel methodology to

generate creative solutions at functional level for design tasks without binding

solution spaces with designers’ individual experiences and prejudices. For this

purpose, an evolutionary methodology for the conceptual design of

engineering products has been proposed.

This methodology performs evaluation, combination and modification of the

existing solutions repetitively to generate new solution alternatives. Therefore,

initially a representation scheme, which is generic enough to cover all

alternatives in solution domain, has been defined. Following that, the

evolutionary operations have been defined and two evaluation metrics have

been proposed. Finally, the computer implementation of the developed theory

has been performed. The test-runs of developed software resulted in creative

alternatives for the design task. Consequently, the evolutionary design

methodology presents a systematic design approach for less experienced or

v

inexperienced designers and establishes a base for experienced designers to

conceive many other solution alternatives beyond their experiences.

Keywords: Conceptual design, design automation, evolutionary design, multi-

objective optimization in design, complexity in design, creativity in design.

vi

ÖZ

KAVRAMSAL TASARIMA EVRİMSEL BİR YAKLAŞIM

GÜROĞLU, Serkan

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Abdülkadir ERDEN

Temmuz 2005, 174 pages

Bu tezin amacı, tasarımcının önyargı ve bireysel deneyimlerinden bağımsız

olarak işlevsel düzeyde yaratıcı tasarım seçenekleri oluşturacak yeni bir

yöntem geliştirmektir. Bu amaçla, mühendislik ürünlerinin kavramsal

tasarımında kullanılmak üzere, evrimsel bir yöntem geliştirilmiştir.

Bu yöntem, yeni çözüm önerileri oluşturmak için mevcut çözümlerin

değerlendirilmesini, birleştirilmesini ve uyarlanmasını sürekli olarak

gerçekleştirir. Dolayısıyla, öncelikle çözüm kümesinde yer alan tüm seçenekleri

ifade edebilecek bir gösterim şablonu tanımlanmıştır. Daha sonra, evrimsel

işlemler tanımlanmış ve iki değerlendirme ölçütü önerilmiştir. Son olarak,

geliştirilen kuramın bilgisayar ortamında uygulaması gerçekleştirilmiştir.

Geliştirilen yazılım ile yapılan denemeler sonucunda, yaratıcı özellikler içeren

tasarım seçeneklerinin üretildiği gözlenmiştir. Sonuç olarak, evrimsel tasarım

yöntemi, az deneyimli ya da deneyimsiz tasarımcılar için sistematik bir tasarım

vii

yaklaşımı, tecrübeli tasarımcılar için ise tecrübelerinin ötesinde çözüm

seçenekleri oluşturabilecekleri bir ortam sunmaktadır.

Anahtar kelimeler: Kavramsal tasarım, tasarım otomasyonu, evrimsel tasarım,

tasarımda çok-amaçlı optimizasyon kullanımı, tasarımda karmaşıklık, tasarımda

yaratıcılık.

viii

To my family

ix

ACKNOWLEDGEMENTS

First of all, I am deeply indebted to my advisor, Prof. Dr. Abdülkadir Erden for

his invaluable support, supervision, encouragement and insight throughout

this study.

I would like to express my gratitude to Dr. Zühal Erden and Prof. Dr. Faruk

Arınç for valuable discussions, their patience and precious suggestions. I

would also like to thank to the other members of my dissertation committee,

Assoc. Prof. Dr. Önder Efe and Prof. Dr. Bülent Platin for their technical

counsel and critical reviews of this study.

I am particularly thankful for Onur Çetin, Ali Emre Turgut and Kutluk Bilge

Arıkan for fundamental and theoretical discussions, cooperation and proof-

readings. But above all these, I am grateful for their companionship and

encouragement. Each generously devoted significant time and effort to my

thesis, and their suggestions and comments led to substantial improvement in

my thesis.

I would like to give many thanks Dilek Akbulut for fruitful discussions, her

assistance and constant support.

Of course, none of this would have been possible without my family. I would

like to thank them for their never ending understanding, help and support in

every stage of my life.

x

TABLE OF CONTENTS

PLAGIARISM .. iii

ABSTRACT ... iv

ÖZ ..vi

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS ...x

LIST OF TABLES...xiii

LIST OF FIGURES ...xiv

CHAPTER

 1. INTRODUCTION...1

 1.1 Background and Motivation...1

 1.2 The Scope of the Study and Methodology7

 1.3 Outline of Thesis..8

 2. LITERATURE REVIEW...9

 2.1 Survey on Methodologies Involved at Early Phases of

 Engineering Design..9

 2.1.1 Top-Down Approach10

 2.1.1.1 Hierarchical Function Trees16

 2.1.1.2 Graph Based Function Structures18

 2.1.2 Bottom-Up Approach.......................................24

 2.1.3 Combined Approach..27

 2.1.3.1 Axiomatic Design Theory......................28

 2.1.3.2 Function/Means Tree29

 2.1.4 A Critique of Three Design Approaches30

 2.2 Behavioral Modeling ...31

 2.3 Reasoning Techniques and Evolutionary Search

 Strategies in Design...36

 2.3.1 Functional Reasoning in Design........................36

 2.3.2 Evolutionary Search Strategies in Design40

 2.4 Survey on Evaluation Metrics for Functional Design.......42

xi

 3. AN APPRAISAL OF EVOLUTIONARY METHODS........................46

 3.1 Introduction to Genetic Algorithms (GA).......................49

 3.2 Introduction to Genetic Programming (GP)...................54

 3.3 Constraint Handling Techniques Used with Evolutionary

 Algorithms ..61

 3.4 Multi-objective Optimization Using Evolutionary

 Algorithms ...66

 4. EVOLUTIONARY DESIGN OF ENGINEERING PRODUCTS AT

 FUNCTIONAL LEVEL ..70

 4.1 Representation Scheme..74

 4.2 Creation of an Initial Population80

 4.3 Evaluation Metrics ..82

 4.3.1 Objective Functions in Evolutionary Design83

 4.3.1.1 Measuring the Complexity of

 an Artifact...83

 4.3.1.2 Measuring the Creativity in

 an Artifact...85

 4.3.2 Handling Constraints in Evolutionary Design......88

 4.3.3 Handling Multiple Objectives in Evolutionary

 Design ...88

 4.4 Formulation of Optimization Problem89

 4.4.1 Penalty Function ...90

 4.5 Genetic Operations...92

 4.5.1 Reproduction Operation...................................92

 4.5.2 Crossover Operation92

 4.5.3 Mutation Operation ...95

 4.6 Control Parameters ..95

 5. COMPUTER IMPLEMENTATION..97

 5.1 Software Architecture...97

 5.2 Initial Population..100

 5.3 Evaluation of Initial Population100

 5.3.1 Computation of the Complexity Values for the

 Sample Population ..102

xii

 5.3.2 Computation of the Creativity Values for the

 Sample Population ..105

 5.4 Test Case ..106

 5.4.1 Goal ..106

 5.4.2 Results...107

 5.4.2.1 The Experiments Concerning the Stand

 Alone Application of the Complexity

 Measure (ω1=1, ω2=0)108

 5.4.2.2 The Experiments Concerning the Stand

 Alone Application of the Creativity

 Measure (ω1=0, ω2=1)110

 5.4.2.3 The Experiments Concerning the

 Combined Application of the Complexity

 and the Creativity Measures

 (ω1=0.5, ω2=0.5)115

 6. DISCUSSION AND CONCLUSIONS..129

 6.1 Summary and Discussions...129

 6.2 Contribution of the Thesis...132

 6.3 The Difficulties in the Operation of the Evolutionary

 Design Process..133

 6.4 Suggestions for Future Work.......................................135

REFERENCES ...138

APPENDICES

 A. RECONCILED FUNCTIONAL BASIS...158

CURRICULUM VITAE...173

xiii

LIST OF TABLES

TABLES

Table 2.1 Functional basis reconciled function set22

Table 2.2 Functional basis reconciled flow set23

Table 2.3 Overview of some important efforts in functional design........25

Table 2.4 Lamp design via morphological matrix26

Table 4.1 Product-Operational module matrix adopted from

 Chandrasekaran and Stone ...81

Table 5.1 The sample population sorted with respect to the complexity

 evaluation ...102

Table 5.2 The sample population sorted with respect to the creativity

 evaluation ...106

Table 5.3 The run-time control parameters of the evolutionary process.107

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 Flow of design process...2

Figure 1.2 The effect of modeling on the certainty about the product

 performance...4

Figure 2.1 AND/OR Tree for a hypothetical product............................17

Figure 2.2 Function tree of coffee mill ...18

Figure 2.3 FAST Diagram of overhead transparency projector19

Figure 2.4 Function structure of an electric wok.................................24

Figure 2.5 Four domains of design world...28

Figure 2.6 Functions/Means diagram for a cigarette lighter30

Figure 2.7 Position of behavioral modeling in design procedure32

Figure 2.8 Intersection of the design range and system range.............44

Figure 3.1 Search and optimization techniques47

Figure 3.2 A general algorithm for evolutionary techniques48

Figure 3.3 A chromosome, which comprises three genes49

Figure 3.4 Crossover operation in genetic algorithms..........................51

Figure 3.5 Mutation operation in genetic algorithms52

Figure 3.6 Plot of Rastrigin’s function ..53

Figure 3.7 Contour plot of Rastrigin’s function with initial population

 and best individuals..53

Figure 3.8 Best and mean fitness values of implemented genetic

 algorithm...54

Figure 3.9 Rooted tree representation of x2+2x+355

Figure 3.10 Crossover operation in genetic programming.....................57

Figure 3.11 Mutation operation in genetic programming57

Figure 3.12 Best individual obtained for the regression problem58

Figure 3.13 Approximation progress for the regression problem59

Figure 3.14 Noisy data for the regression problem...............................60

Figure 3.15 Best individual obtained for the regression problem with

xv

 noisy data ..60

Figure 3.16 Approximation progress for the regression problem with

 noisy data ..61

Figure 3.17 Pareto optimal solutions of a bi-objective minimization

 problem ...67

Figure 3.18 Pareto ranking ..69

Figure 4.1 Black-Box representation of a computer function and a

 mechanical device ...70

Figure 4.2 Algorithm of evolutionary design process73

Figure 4.3 Tree representation of CD player..77

Figure 4.4 Graph based representation of a CD player79

Figure 4.5 Parents participating in crossover operation,

 before crossover ...93

Figure 4.6 Children obtained at the end of crossover operation94

Figure 5.1 Structure of implemented software.....................................98

Figure 5.2 Graph representation using LEDA library98

Figure 5.3 Modules of the software ..99

Figure 5.4 Frequency distribution of the individuals in the initial

 population with respect to their complexity values101

Figure 5.5 Frequency distribution of the individuals in the initial

 population with respect to their creativity values..................101

Figure 5.6 Functional structure of the bath scale103

Figure 5.7 Functional structure of the iced tea maker104

Figure 5.8 Functional structures of the kettle and the hair drier105

Figure 5.9 Black-Box representation of design task..............................106

Figure 5.10 The simplest cooker design..108

Figure 5.11 The average fitness values of the population throughout

 the evolution process in the experiment with the weighting

 coefficients of ω1=1, ω2=0...109

Figure 5.12 The best (i.e. maximum) and the worst (i.e. minimum)

 fitness values obtained throughout the evolution process in

 the experiment with the weighting coefficients of

 ω1=1, ω2=0..109

xvi

Figure 5.13 The average fitness values of the population throughout

 the evolution process in the experiment 1 with the

 weighting coefficients of ω1=0, ω2=1................................110

Figure 5.14 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 1 with

 the weighting coefficients of ω1=0, ω2=1111

Figure 5.15 The best design alternative generated in the experiment 1

 With the weighting coefficients of ω1=0, ω2=1112

Figure 5.16 The average fitness values of the population throughout

 the evolution process in the experiment 2 with the

 weighting coefficients of ω1=0, ω2=1................................113

Figure 5.17 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 2 with

 the weighting coefficients of ω1=0, ω2=1113

Figure 5.18 The best design alternative generated in the experiment 2

 with the weighting coefficients of ω1=0, ω2=1...................114

Figure 5.19 The best design alternative generated in the experiment 1

 with the weighting coefficients of ω1=0.5, ω2=0.5115

Figure 5.20 The average fitness values of the population throughout

 the evolution process in the experiment 1 with the

 weighting coefficients of ω1=0.5, ω2=0.5116

Figure 5.21 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 1 with

 the weighting coefficients of ω1=0.5, ω2=0.5116

Figure 5.22 The best design alternative generated in the experiment 2

 with the weighting coefficients of ω1=0.5, ω2=0.5117

Figure 5.23 The average fitness values of the population throughout

 the evolution process in the experiment 2 with the

 weighting coefficients of ω1=0.5, ω2=0.5118

Figure 5.24 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 2 with

 the weighting coefficients of ω1=0.5, ω2=0.5118

xvii

Figure 5.25 The best design alternative generated in the experiment 3

 with the weighting coefficients of ω1=0.5, ω2=0.5119

Figure 5.26 The average fitness values of the population throughout

 the evolution process in the experiment 3 with the

 weighting coefficients of ω1=0.5, ω2=0.5119

Figure 5.27 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 3 with

 the weighting coefficients of ω1=0.5, ω2=0.5120

Figure 5.28 The best design alternative generated in the experiment 4

 with the weighting coefficients of ω1=0.5, ω2=0.5121

Figure 5.29 The average fitness values of the population throughout

 the evolution process in the experiment 4 with the

 weighting coefficients of ω1=0.5, ω2=0.5121

Figure 5.30 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 4 with

 the weighting coefficients of ω1=0.5, ω2=0.5122

Figure 5.31 The best design alternative generated in the experiment 5

 with the weighting coefficients of ω1=0.5, ω2=0.5122

Figure 5.32 The average fitness values of the population throughout

 the evolution process in the experiment 5 with the

 weighting coefficients of ω1=0.5, ω2=0.5123

Figure 5.33 The best and the worst fitness values obtained

 throughout the evolution process in the experiment 5 with

 the weighting coefficients of ω1=0.5, ω2=0.5123

Figure 5.34 A steam cooker arising in the intermediate generations of

 the experiments with the weighting coefficients of

 ω1=0.5, ω2=0.5 ..124

Figure 5.35 A popcorn popper arising in the intermediate generations of

 the experiments with the weighting coefficients of

 ω1=0.5, ω2=0.5 ..125

Figure 5.36 A toaster arising in the intermediate generations of the

 experiments with the weighting coefficients of

 ω1=0.5, ω2=0.5 ..125

xviii

Figure 5.37 The first type boiler arising in the intermediate generations

 of the experiments with the weighting coefficients of

 ω1=0.5, ω2=0.5 ..126

Figure 5.38 The second type boiler arising in the intermediate

 generations of the experiments with the weighting

 coefficients of ω1=0.5, ω2=0.5 ...127

Figure 5.39 A solar cooker arising in the intermediate generations of

 the experiments with the weighting coefficients of

 ω1=0.5, ω2=0.5 ..127

Figure 5.40 A strange type of cooker arising in the intermediate

 generations of the experiments with the weighting

 coefficients of ω1=0.5, ω2=0.5 ...128

1

CHAPTER I

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The engineering design activity is defined, in general, as a creative, iterative

and often open-ended process of conceiving and developing components,

systems and processes to satisfy real needs (Dixie, 2004). Due to the implicit

and indirect nature of the relations between customer needs and design

concepts, it is commonly accepted that this activity possesses artistic

characteristics besides its scientific and methodic aspects. This sophisticated

structure of design prevents the immediate formulation and standardization of

it. In many design issues of engineering products, the design team members

seek solutions directly basing on their knowledge and their past design

practices. Therefore, the designer’s biases and experiences have significant

effects on the generated solutions.

Over the last twenty years, the researchers have focused on the studies

aiming at placing design concept at a higher intellectual level and developing

design as a discipline with its own structure, techniques and vocabulary. The

design models developed by these studies can be classified into two main

groups: the design process models and the design artifact models (Erden,

2004).

Design process models aim at revealing the methodology and characteristics

of the engineering design process and proposing strategies for the designers

about how to proceed in design procedure. One of the most important process

2

models proposed by Pahl and Beitz (1988) defines the flow of work at four

main steps namely; the clarification of the task, conceptual design,

embodiment design and detail design. The clarification of the task states the

problem, objective and constraints, as well as the collection of information

about the needs to be fulfilled. The second step, which is the conceptual

design, includes transformation of the needs into functional requirements,

creation of design alternatives and evaluation of them according to the design

criteria. Next comes the embodiment design, which involves the transition

from function structure of the design to form of product through the selection

of appropriate components. Moreover, preparation of a preliminary layout,

determination of production processes and optimization issues are performed

in this step. Finally, detail design consists of all technical and economical

calculations of the whole product and finalization of design. This flow of

design process is presented in Figure 1.1.

Figure 1.1. Flow of design process.

3

Among these steps, the conceptualization is the most vital and difficult part of

design activity. During this stage, designers deal with the incomplete and

informal information combining their intelligence and creativity to make large

number of decisions and compare numerous alternatives. The studies that

have been performed with a number of different industrial companies with

complex products (e.g. advanced machine tools, motor vehicle), have

indicated that the design of these products involve some 8-10 levels of

decision making activity. Additionally, at each of these levels, the designers

have to consider approximately 15 alternative function structures,

embodiments or details. This geometric increase leads to about 2.5 billion

decisions of purely qualitative nature, which necessitate a similar number of

quantitative decisions or calculations (Sharpe, 1995).

Furthermore, these decisions made in early phases of conceptualization, have

significant effects on whole design, manufacturing and even marketing

activities. It is generally admitted that the first 5% of design process commits

80% of the overall cost to market the product (Carruba, 1993).

In the light of these facts, in order to model the products at conceptual and

embodiment design stages, design artifact (or product) models have been

developed. In design artifact models, researchers aim at extracting functional,

structural and behavioral characteristics of the engineering systems regardless

of their specific tasks (Erden, 2004). Expanding demands on the development

of multi-technical artifacts (e.g. mechatronic products or systems) have

increased the significance of such modeling approaches. The development of

these products requires designers from different engineering disciplines to

work together. Therefore, such a modeling methodology provides the

designers with a powerful tool for correct, complete and systematic

information transfer to the embodiment design, detail design and

documentation phases (Erden, 1999).

Moreover, an efficient modeling technique with computer implementation

highly reduces time and energy spent by the designers on construction and

4

evaluation of the design alternatives. The effect of modeling on the certainty

with respect to the product performance is illustrated in Figure 1.2 (Soemers

et al., 2000). At the beginning of conceptualization, design freedom is

maximum. However, certainty with respect to the performance and the costs

is minimum. In the following phases of the design, while the design freedom

decreases, certainty about the performance of the product increases. The

decrease in the design freedom makes serial modifications on design very

difficult. At this point, effective modeling increases the knowledge with respect

to the performance as early as possible, and reveals the risks, opportunities

and peculiarities of the design.

Figure 1.2.The effect of modeling on the certainty about the product performance

(Soemers et al., 2000).

The next step of these studies is the automation of design process. The

modeling strategies mentioned above are limited to purposes of archival and

transmittal of design information, or benchmarking on performances of

developed alternatives. In addition to detection of design faults and

suggestions for minor improvements, guiding designers in generation of novel

designs or even performing the whole design process or some part of it

without requiring the supervision of the designer are primary goals of ongoing

research on design theory. Due to the integrated nature of the

conceptualization phase including human intelligence and engineering

creativity, automation of this phase is very difficult to achieve.

5

Although in today’s engineering problems many design issues transform into

concept evaluation (i.e. performance and cost assessment and optimization)

rather than concept generation (Otto and Wood, 2001), creativity is always an

essential characteristic of design activity and even designs are classified with

respect to level of creativity involved (Bahrami and Dagli, 1994);

• Creative Design: Conceptualization of the problem begins with an

abstract decomposition of the design task. If no priori decomposition

exists for the solution of the problem, creative designs are taken into

consideration.

• Innovative Design: If the design starts with a known decomposition,

the design task will transform to the activity of uncovering appropriate

component alternatives for the decomposition in hand.

• Adaptive design or Redesign: Modification of a completely known

design to satisfy changes in the original function structure is defined as

redesign.

• Routine Design: If both the priori decomposition of the design task and

its solution alternatives are known in advance, the design issue

becomes the determination of the most suitable alternative.

Thanks to the limited involvement of creativity in redesign and routine design

activities, automation of these design types is accomplished to a certain extent

through the use of various engineering analysis, CAD and CAE tools.

The recent researches on the design automation have mainly focused on

innovative design and consequently numerous techniques and tools have been

proposed. Rule based expert systems for electronic component design or

software design, case based expert systems for mechanical or mechatronic

design issues, genetic design tools for topology or configuration, evolutionary

software design techniques, and data centric design databases / knowledge

centric design repositories for system design are only some of them. Due to

nature of innovative design based on appropriate component mining rather

6

than analysis and decomposition of design task, this design type becomes

eligible for automation.

However, there are a small number of studies dedicated to the automation of

creative design. Since creative designs require a complicated mental effort far

beyond the combinatorial exploration of physical solution alternatives, building

a methodology for the automation of creative design is much more difficult

than that for the innovative design. For instance, in a design task, although

preferring a chain-sprocket pair rather than a gear box generates a variance in

solution, the functional composition behind both of these solutions are same

and the main aim is to “increase torque” in a power transmission unit.

Likewise, in many cases, the advances in both hardware and software

technologies also create variety in designs but these new designs also become

functionally equivalent of their initial prototypes (Roston, 1994). Since the

functional resolution of the design task is the key point of the generation of

the creative solutions (Ullman, 1997), a creative design methodology should

be capable of generating different functional resolutions for the same design

task.

The major motivation for this thesis is the fact that field of creative design is

overlooked in design automation research in literature. Besides its complex

nature, it is a probable consequence of the fact that many of today’s

engineering problems can be solved by the use of routine design, redesign

and rarely innovative design activities. However, expanding demands on

quality, increasing variety in customer needs, shrinking product cycles and

budgets force the designers to generate creative solutions. Furthermore the

intense competition conditions compel designers to respond changing trends

in the market in a very short time. Therefore a new creative design

methodology both for systemization and the automation purposes becomes a

visible need.

7

1.2 THE SCOPE OF THE STUDY AND METHODOLOGY

This study aims at developing a design methodology to generate and identify

creative solutions in early design process. Aside from the need for a creative

design methodology in the solution of entirely new design problems, the

proposed approach is a candidate for being an integrated part of the studies

on innovative design automation. Since all innovative design issues require a

priori decomposition of the design task, constitution of the original

decompositions obtained through this methodology will help the generation of

inventive products. Moreover, assurance of the creativity gives designers the

opportunity of directing their efforts mostly on definition of new objective

criteria.

In order to accomplish this goal, an abstract decomposition of the design task

should be available at first. Therefore a functional modeling technique

revealing working principles of artifact, basic functional modules and their

interactions should be involved. Such a modeling technique not only translates

the customer needs into a functional description, but also concentrates on

how the product must carry out these functions to achieve the overall design

task. For this purpose, in this study a functional modeling technique using

reconciled functional basis proposed by Hirtz et al. (2001a) is employed.

Since the functional domain presents numerous solution possibilities, the next

step is the development of a heuristic for the inference of functional structure

or a search strategy for the exploration in functional domain. Although there

exists some studies involving traditional search strategies (e.g. depth-first or

breadth-first search etc.) (Malmqvist, 1995), in this study an evolutionary

search strategy is employed. Unlike traditional search strategies, evolutionary

techniques are not directionless. They utilize their past experiences to guide

future events (Roston, 1994). Therefore, time consumption and possibility of

reaching practically impossible solutions decreases. Employment of an

evolutionary strategy also eliminates the need for the development of a

functional reasoning technique. Evolutionary strategies do not need

8

understanding of procedures used to generate new individuals (i.e. new

design alternatives in proposed methodology) (Roston, 1994). They only

require a formal representation scheme for individuals and an objective

function for the evaluation of them. Additionally, this feature makes the

proposed methodology computer implementable.

Evaluation of generated designs at early phases is another serious problem

met in construction of such a methodology. Due to abstract nature of

conceptualization, it is very difficult to develop an evaluation metric that does

not require human supervision. However automatic evaluation of the created

design alternatives minimizes the dependency of designs to the designer’s

experience and the effects of designer’s prejudices, intuitions and beliefs on

the design decisions. Therefore in the scope of this study, two entropy based

evaluation criteria to measure the complexity and the creativity of the

generated designs are proposed.

Finally, the proposed methodology has been implemented in computer

environment. The developed software has been tested through a case study

on the design of household appliances.

1.3 OUTLINE OF THESIS

The remainder of the thesis is organized in six chapters. Chapter 2 presents

an overview of engineering design approaches, review of design automation

and modeling literature, exploration of the reasoning techniques and

evolutionary search strategies employed in design automation and a survey on

evaluation metrics for functional designs. Chapter 3 introduces the basics of

evolutionary strategies. Chapter 4 gives the theoretical architecture of the

developed evolutionary design methodology and proposed evaluation metrics.

Chapter 5 provides computer implementation, case studies and results. Finally

conclusions, discussions and possible future work are included in Chapter 6.

9

CHAPTER II

LITERATURE REVIEW

2.1 SURVEY ON METHODOLOGIES INVOLVED AT EARLY PHASES OF

ENGINEERING DESIGN

The conceptual and embodiment design phases of product development

period involve the completion of functional, structural (i.e. form of the

product) and behavioral construction of the artifact (Edward et al., 2000; Feng

and Song, 2000). In order to systemize these significant design phases, two

well-known problem solving strategies namely bottom-up and top-down

design approaches have been suggested in the literature (Houstis, 2004). As

the traditional approach, using bottom-up strategy produces solutions at

physical level, top-down design strategy looks for original ideas at functional

level before investigating physical solution alternatives. However, in order to

provide designer with an appropriate level of abstraction and detail at each

level, some combined strategies have also been developed.

In addition to the systematization of design process, these approaches also

provide the designer with the ability of modeling designed artifacts at different

levels of abstraction. These models are very beneficial, especially for taking

immediate feedback on design decisions at different stages of the design

process. This promises a comprehensive exploration of the design alternatives

and a better realization of the design task (Sinha et al., 2001).

10

Therefore many researchers have studied on the development, improvement

and implementation of these approaches. The Sections 2.1.1, 2.1.2, 2.1.3 and

2.1.4 will provide a brief overview of these studies.

2.1.1 Top-Down Approach

Top-down design approach deals with what we want to achieve, rather than

specifying physically how we want to achieve it. Therefore, in this approach,

the design is driven from functional requirements toward solution alternatives

(Terpenny, 1998). Some advantages of employing this approach can be

summarized as follows (Otto and Wood, 2001);

• Derivation of functional requirements provides the designer a form

independent expression of the design task. A comprehensive search

for different form alternatives can be accomplished by the designer.

• In the cooperation of multi-disciplinary design team members,

functional description provides a road map for the organization of tasks

and processes. Meanwhile, interactions between independent functions

clarify communication needed between concurrent design activities.

• Functional description of design task sets the boundaries to associate

assemblies of subassemblies of final design solutions. Therefore

resource allocation for concurrent engineering efforts is provided.

• Decomposition of the problems and seeking partial solutions improve

creativity. Due to the reduction of extraneous information, solutions of

sub-problems become more apparent.

• An important way of dealing with complexity is modularization

(Rzevsky, 1995). Decomposition of the task provides modularization in

design. It also helps the designer in fault detection and

documentation.

• Abstraction leads the designer to solve the “real” problem rather than

concentrating on particular solutions. Moreover, with the help of

abstraction, it is possible to optimize the design according to various

objectives such as reliability, energy consumption, ecological issues,

11

aesthetics, cost or manufacturability by considering trade offs through

exchange of technologies (Rzevsky, 1995).

Before mentioning different methodologies developed for top-down approach,

it should be considered that the distinctions between many of these are not so

clear; they use some overlapping key concepts such as function, flow,

constraint and objective.

In mathematics, a “function” is defined as a relation such that each element of

a set is associated with a unique element of another set. It is obvious that in

engineering design literature, perception of function concept differs. The

selected definitions are as follows;

• Matousek (1963) views function as action required by the design

problem (Chakrabarti, 1993).

• In Sembugamoorthy and Chandrasekaran’s study (1986), a function is

defined as the intended response of a device to external or internal

stimuli (Chakrabarti, 1993).

• Pahl and Beitz (1988) state function as a general input-output

relationship of a system whose purpose is to perform a task.

• Buur (1990) describes a function as the ability of a machine to create

an expedient effect.

• Chakrabarti and Bligh (1992) identify function as a transformation

between a set of (time-varying) input characteristics and a set of

(time-varying) output characteristic.

• Ullman (1993) describes a function as transformation of objects and

the relationships between them during an operational step. Moreover,

this definition is expanded by covering the changes in relationships and

object states that enable transformations.

• Function is defined by Blanchard and Fabrycky (1998) as the

purposeful action performed by a system.

• According to the definition of Otto and Wood (2001), a function is a

statement of a clear, reproducible relationship between the available

12

input and desired output of a product, independent of any particular

form. Since its internal form is unknown, functions are represented by

black boxes.

• In addition to these definitions, Suh (1990) has brought a new

“Functional Requirement” expression into design theory. Functional

requirements are defined as independent requirements that must be

fulfilled in order to satisfy a certain need. This definition includes all

functional and other life-cycle process properties. For instance,

although it is not an ability of the system creating a physical effect,

recycling is treated as a functional requirement. Moreover, parametric

requirements are included by the functional requirement definition.

This definition expands the boundaries of function definition.

These descriptions indicate that, although there is so far no generally agreed

definition of the word “function”, when these definitions are synthesized, the

common properties of functions can be summarized as follows;

• A function is the ability of a system to create an external effect.

• A function should have an abstract formulation and it should be task

independent.

• A function should not give a direction to the designer. As “resist

bending” can be accepted as a function, “maintain toughness in

bending” is not suitable due to its guidance to designer in solution

generation (Salustri, 2000).

• In determination of a function, input-output relationships should also

be considered.

• Each function should have at least one physically realizable solution.

• A function should be reproducible.

• In a function set, functions should be defined such that they are

independent of each other. Redundant or overlapping function

definitions should not be allowed.

• Life-cycle process properties may also be covered by this definition.

13

Although these properties enable the designer to identify customer needs

entirely, this is achieved at the cost of a wider definition of the function, which

causes difficulties in management of requirements. In order to overcome

these difficulties, researchers have classified the functions into some sub-

categories. Some of these classifications are presented in the following

paragraphs.

Pahl and Beitz (1988) have classified functions as main and auxiliary. While

the main functions serve the overall function directly, auxiliary functions

contribute it indirectly. Auxiliary functions have a supportive or complementary

character and are often determined by the nature of the solution. Some

auxiliary functions are;

1. Communication functions involved to exchange of information between

the system and the user or other systems,

2. Protection functions for protecting the main function against

disturbances and protecting the environment against undesirable

outputs,

3. Control functions to control main function and establish an interface

between main and communication functions,

4. Power related functions to supply main function with required energy,

5. Structural functions to support components and modules and describe

the spatial relationship between them.

Kusiak (2000) as cited by Korkmazel (2001) divides functions into 3 groups

according to their related features;

1. Performance-related functions: Functions corresponding to the product

performance requirements.

2. Process-related functions: Functions corresponding to the

manufacturing process requirements.

3. Ergonomics-related functions: Functions corresponding to the

ergonomic requirements.

14

Otto and Wood (2001) define 2 types of functions.

1. Basic functions: These are the overall product functions and represent

the main reason behind the existence of the product; for example, the

basic function of a CPU fan is to dissipate heat generated by CPU.

Based on the conditions, a product may have more than one basic

function. For example, the basic functions of an electric fuse are to

“conduct electricity under certain conditions” and “break the circuit

under certain other conditions”.

2. Secondary functions: All other functions except basic ones are treated

as secondary functions. There are three types of secondary functions;

required, aesthetic and unwanted. One of the required functions of a

cd player is to “generate rotary motion”. The housing unit of it satisfies

its aesthetic requirements. Additionally, a damping mechanism or

rubber isolation may be employed to fulfill the requirement of “dampen

vibration” unwanted by product.

Besides the categorization of functions regarding to their roles in the product,

Chakrabarti (1997) has classified them with respect to their representation

schemes in literature (Korkmazel, 2000).

• Verb-noun pair representation: The function is represented just a noun

and an active verb such as “erase board”, “transport item x”. Although

it is weak for computational support, it has informality and flexibility

that designers need.

• I/O representation: Functions are described on the basis of inputs and

outputs.

• Algorithmic representation: This representation is preferred especially

in software design. Functions are arranged in a logical ordering. It is

also suitable for the representation of decision type functions.

• State-based representation: In this representation, conversions

between states are defined by functions.

15

Other concepts mentioned in developed methodologies are flows, constraints

and objectives.

Flows are employed to define inputs and outputs of functions. Thus they

reveal the relationships between functions or modules. Energy, matter and

information are considered as basic concepts in any design problem (Stone

and Wood, 2000). Conversions, variations or transmissions of these three

concepts are followed by flows.

Constraints define the boundaries of allowable solution space (e.g.

dimensions, maximum weight, etc.). Product must not violate these

boundaries to be accepted as feasible (Malmqwist, 1995). Accepted solution

principle determines the distinction on whether a customer need can be met

with a function or should be considered as a constraint (Otto and Wood,

2001). As an example, if “compactness”, which is a customer need, of a

product is satisfied by a folding mechanism, then it becomes a function of the

product. However, if the desired “compactness” is achieved by simply being

small, here “compactness” becomes a constraint and a volumetric criterion

that the entire product must satisfy (Otto and Wood, 2001).

Objectives form the basis for selecting the “best” solution among a number of

design alternatives that fulfill all functional requirements and constraints

(Malmqwist, 1995). Different methodologies propose different quality

measures to evaluate the generated solution alternatives. According to the

preferred methodology, objectives can change from “minimal cost”, to

“minimal information content”. Some of these evaluation measures proposed

for functional design are explained in Section 2.2.

All of these concepts are employed in the extraction and evaluation of

functional model of designed artifact. These models can be constituted by

either hierarchical function trees or graph based function structures.

16

2.1.1.1 Hierarchical Function Trees

The most effective way of deriving the hierarchical model of a product in

sufficient depth is by modularizing the problem via a process known as

“functional decomposition” (Ullman, 1997). Functional decomposition is

defined as breaking an overall function into multiple sub-functions, which can

be treated as individual sub-problems.

Two of the functional modeling techniques adopting hierarchical

decomposition are;

• AND/OR Tree (Kusiak et al., 1991a, 1991b)

• Functional Design Tree (Erden et al., 1996)

Kusiak et al. (1991a; 1991b) have used AND/OR tree to represent design

specifications. In this representation, design requirements are divided into

sub-requirements up to reaching a corresponding function. In the functional

space, each function specified for a given requirement can be further

decomposed into sub-functions. This decomposition continues until reaching a

possible match of the component. The relationships among requirements and

functions at the same abstraction level are revealed using AND/OR links.

AND/OR tree for a hypothetical product is given in Figure 2.1. AND links are

represented by connecting arcs between same level requirements and

functions, whereas no arcs stands for OR links.

This methodology has been primarily developed for the “requirement

analysis”, therefore objectives and constraints in the product design are not

considered in the construction of the AND/OR tree. Moreover, no reasoning

technique has been proposed for the extraction of requirements, functions

and relations (mapping) between them. An evaluation methodology is another

deficiency of this approach.

17

Figure 2.1 AND/OR tree for a hypothetical product (Kusiak et al., 1991a).

Another hierarchical representation named “Functional Design Tree” has been

mentioned in Erden et al.’s work (1996). It is a functional decomposition

hierarchy that involves sub-functions of systems at various levels of resolution

and where the top most node is to satisfy the required overall function (Erden

et al., 1999). In this representation, as one proceeds to the lower levels of

tree, nodes gain precision in their definition. Nodes in the last level of

decomposition can be defined numerically or in a formula-driven formal way

representing precise sub-functions as precise input/output mappings.

A similar representation method has been employed in Otto and Wood’s

studies (2001). As recommended in these studies, this type of decomposition

is very useful especially in reverse engineering activities. Generated function

tree for a coffee mill is illustrated in Figure 2.2.

Although functional resolution of an artifact can be extracted by using subtract

and operate procedure in reverse engineering activities, this methodology

does not offer any reasoning technique for functional decomposition in design

of novel products. Disregarding objectives and constraints and need of an

evaluation methodology are other problems of this approach to handle.

R1

R3 R4R2

R6R5 R7

F2

R8

F3 F4

F9 F8

F12

R10 R9

F5

F11 F10

F1

F6 F7

18

Make Coffee
Grind

Input On/Off
Signal Input Power Chop BeansProvide

CoffeeRotate ShaftHold Permit
CleaningInput Beans

Accept
Beans

Indicate
Amount

Accept
On/Off
Signal

Transmit
On/Off
Signal

Accept
Power

Switch
Power

Transmit
Power to

Motor

Support
Motor

Contain
Noise

Convert
Electricity
Rotation

Spin
Shaft

Spin
Blade

Dispense
Coffee

Provide
Indication

of
Chopped

Contain
Chop
Noise

Contain
Chopping

Separate
Blade
from

Hands

Cut
Beans

Figure 2.2 Function tree of coffee mill (Otto and Wood, 2001).

2.1.1.2 Graph Based Function Structures

Hierarchical function trees are very important representation schemes both for

describing architecture of a product and determining level of abstraction that

the designer handles the design task. However there is still a serious need for

revealing the relationships between defined functions and modules in a

product. For this purpose, a graph-based representation scheme has been

proposed in the literature. The approaches using graph-based representation

can be classified into three with respect to their need for a standard

function/flow language. First approach does not use a standard language, the

second approach requires a limited vocabulary and the third approach works

with comprehensive standard languages.

One of the important studies in the first approach employs Functional Analysis

Systems Technique (FAST) Diagrams in the representation of designed

artifacts (Miles, 1972). Although these studies are performed mainly for value

engineering purposes, in order to estimate the value of the product, they need

to break the overall design into sub assemblies. The FAST Diagram of an

overhead transparency projector is given in Figure 2.3.

19

Figure 2.3 FAST Diagram of overhead transparency projector (Miles, 1972).

Some of the studies in the second approach aim at extracting function

definitions of some specific problems and therefore, their functional languages

have become limited to the scope of those specific problems (e.g. Collins et al.

(1976) developed a vocabulary to accurately communicate helicopter failure

information). However, Systematic Design Approach of Pahl and Beitz (1988)

is different from these studies and it is applicable to general design problems.

Although it has a limited vocabulary for defining functions and flows,

Systematic Design Approach provides designers with a standard way to reveal

sequential and parallel function chains and external/internal connections of

these chains in a product.

In the third approach, there are two major attempts to generate a common

design language namely NIST Design Repository project (Szykman et al.,

1999a; 1999b; 2000a; 2000b; Allen et al., 2000) and Functional Basis (Little et

al., 1997; Otto and Wood, 1997; Stone and Wood, 1999; Stone and Wood,

2000; Kurfman et al., 2001). The third research is on reconciliation of these

two studies; Reconciled Functional Basis (Hirtz et al., 2001a; 2001b).

In order to generate repeatable and meaningful designs, a standard set of

functions and flows is essential. In particular, the development of a universal

language, which defines product functions, will reduce the ambiguity at

20

modeling level. As the source of ambiguity can be a function/flow, which has

multiple meanings accepted by different engineers or it can be a group of

different functions/flows used to mean same entity by different designers.

Since the functions/flows are atoms of the modules, standard definition of

them provides designers with a base for transition from integral architecture

to modular architecture in product development. Meanwhile, product

comparison and benchmarking activities can also be possible by development

of the evaluation metrics for standard function structures. Overlapping

function/flow definitions are the main reason of redundant designs. Such a

standardization prevents designers from inferring redundant function

structures.

For these purposes, a research has been driven by industry needs that were

identified at a workshop held at NIST in November, 1996 (Szykman, 1999b).

The aim of this study is to develop a repository to provide the effective reuse

of design knowledge. In order to prevent a combinatorial explosion in function

definitions, functions and flows are identified by generating two separate

taxonomies. These taxonomies have broken down to reach atomic definitions.

Thus, over 100 flows and 130 functions are identified while preserving the

taxonomy generic enough due to the hierarchical decomposition. In addition,

a concurrent effort has also been performed to constitute a language for

obtaining functional blueprint of designed products by two US universities and

their industrial partners. At the end of this study, a Functional Basis has been

developed and applied to product similarity computations, functional

tolerancing and design by analogy studies (Hirtz et al., 2001b).

There is a high degree of similarity between these two studies. Therefore a

reconciliation process has been performed to obtain a complete set of function

and flows. Besides the same terms in the function and flow lists, there exist

some synonyms and some others terms, which are specific to its basis, in

these two research efforts. By considering these, a new set comprising

mutually exclusive terms has been acquired (i.e. Reconciled Functional Basis).

21

This new basis includes a three level hierarchy; class (primary), secondary and

tertiary. Specification of the level increases with the level number. Thanks to

this hierarchy, the reconciled functional basis is generic enough to cover

engineering design activities in many scales. Although it focuses primarily on

the mechanical and electromechanical domains, the basis allows updating and

adding new descriptors without disturbing the developed taxonomy. Therefore

this makes the basis applicable to all disciplines.

Although reconciled functional basis supports other representation formats,

verb-object representation is adopted in many studies. In this representation,

verb part indicates the function and object part specifies the flow descriptor.

Both of the function and the flow can be selected from any of the three levels

depending on the specification desired. These function and the flow sets are

presented in Tables 2.1 and 2.2 respectively.

In practice, a secondary flow is described by a secondary descriptor and a

class descriptor such as biological energy. Tertiary flows are described by a

tertiary descriptor and a class descriptor (e.g. solar energy). “Correspondents”

category is not the fourth level of reconciled functional basis. The terms

placed in this column are means of the terms described in reconciled

functional basis. Secondary and tertiary flows may be further specified by

adding a power conjugate complement. Here the flow description is formed by

a secondary descriptor (or tertiary descriptor) and a complement. For

instance, human energy description can be specified further with the

description of human force. Detailed descriptions of the terms in function and

flow lists are given in Appendix A.

In the extraction of function structures, it should be considered that the

reconciled functional basis consists of device functions rather than user

functions. For instance, a coffee maker imports the flow of water while a

person pours water into the coffee maker.

22

Table 2.1 Functional basis reconciled function set (Stone et al., 2001).
Class
Primary

Secondary Tertiary Correspondents

 Isolate, sever, disjoin
Divide Detach, isolate, release, sort, split, disconnect,

subtract
Extract Refine, filter, purify, percolate, strain, clear

Separate

Remove Cut, drill, lathe, polish, sand

Branch

Distribute Diffuse, dispel, disperse, dissipate, diverge,
scatter

Import Form entrance, allow, input, capture
Export Dispose, eject, emit, empty, remove, destroy,

eliminate
 Carry, deliver
Transport Advance, lift, move

Transfer

Transmit Conduct, convey
 Direct, shift, steer, straighten, switch
Translate Move, relocate
Rotate Spin, turn

Channel

Guide

Allow DOF Constraint, unfasten, unlock
 Associate, connect
Join Assemble, fasten

Couple

Link Attach

Connect

Mix Add, blend, coalesce, combine, pack
Actuate Enable, initiate, start, turn on

Increase Allow, open

Regulate

Decrease Close, delay, interrupt
 Adjust, modulate, clear, demodulate, invert,

normalize, rectify, reset, scale, vary, modify
Increment Amplify, enhance, magnify, multiply
Decrement Attenuate, dampen, reduce
Shape Compact, compress, crush, pierce, deform, form

Change

Condition Prepare, adapt, treat
 End, halt, pause, interrupt, restrain
Prevent Disable, turn off

Control
Magnitude

Stop

Inhibit Shield, insulate, protect, resist
Convert Convert Condense, create, decode, differentiate, digitize,

encode, evaporate, generate, integrate, liquefy,
process, solidify, transform

 Accumulate
Contain Capture, enclose

Store

Collect Absorb, consume, fill, reserve

Provision

Supply Provide, replenish, retrieve
 Feel, determine
Detect Discern, perceive, recognize

Sense

Measure Identify, locate
 Announce, show, denote, record, register
Track Mark, time

Indicate

Display Emit, expose, select

Signal

Process Compare, calculate, check
Stabilize Steady
Secure Constrain, hold, place, fix

Support

Position Align, locate, orient

23

Table 2.2 Functional basis reconciled flow set (Stone et al., 2001).

Class
Primary

Secondary Tertiary Correspondents

Human Hand, foot, head
Gas Homogeneous
Liquid Incompressible, compressible,

homogeneous
Object Rigid-body, elastic-body, widget
Particulate

Solid

Composite
Plasma

Gas-gas
Liquid-liquid
Solid-solid Aggregate
Solid-Liquid
Liquid-Gas
Solid-Gas
Solid-Liquid-
Gas

Material

Mixture

Colloidal Aerosol
Auditory Tone, word
Olfactory
Tactile Temperature, pressure, roughness
Taste

Status

Visual Position, displacement
Analog Oscillatory

Signal

Control
Discrete Binary

 Power Conjugate Complements
 Effort Analogy Flow Analogy
Human Effort Flow
Acoustic Force Velocity
Biological Pressure Particle velocity
Chemical Pressure Volumetric flow
Electrical Affinity Reaction rate

Optical Electro-motive force Current Electromagnetic
Solar Effort Flow

Hydraulic Intensity Velocity
Magnetic Intensity Velocity

Rotational Pressure Volumetric flow Mechanical
Translational Magneto-motive

force
Magnetic flux rate

Pneumatic Effort Flow
Radioactive/
Nuclear

 Torque Angular velocity

Energy

Thermal Force Linear velocity

As an example, function structure of an electric wok developed using

reconciled functional basis is illustrated in Figure 2.4.

24

Figure 2.4 Function structure of an electric wok (Stone et al., 2004).

It is obvious that there are many other attempts to systemize and model the

top-down design approach. Only some selected researches in the

development of functional design theory are mentioned here. A summary of

these efforts and some others are presented in Table 2.3.

2.1.2 Bottom-Up Approach

Traditional engineering design tasks are handled through bottom-up

approach. This approach drives designs from form to function. Satisfaction of

functional requirements is an evaluation measure rather than a starting point.

Bottom-up approach carries out the design activities at component level. In

employment of this approach, as the physical realization of designed system is

guaranteed, there is no immediate assurance that functional requirements are

met on the first attempt unless the system is simple. Therefore this approach

is known to be highly iterative (Terpenny, J. P., 1998).

25

Table 2.3 Overview of some important efforts in functional design.

Study/Reference Goal Representation Challenges
Value Engineering
(Miles, 1972;
Akiyama, 1991;
VAI, 1993)

Minimization of
cost

Verb-Object
FAST Diagram

No standard list for
verbs and objects
(Stone and Wood,
1999).

Failure Experience
Matrix
(Collins et al., 1976)

Communicate
helicopter failure
information.

105 unique
mechanical
functions

Limited to helicopter
systems (Stone and
Wood, 1999).

TIPS/TRIZ
(Altshuller, 1984)

Inventive
Problem Solving,
Value
Engineering
Analysis

30 functional
descriptions

Does not cover whole
design process (only
inventive part is
considered)
(Malmqvist et al.,
1996).

Systematic Design
Approach (Pahl and
Beitz, 1988)

Modeling and
Systematization

5 generally valid
functions and 3
flows

High level of
abstraction,
Limited function/flow
vocabulary.

A Systematic Method
for Function
Structures (Hundal,
1990)

Modeling and
Systematization

6 functional
classes and more
specific functions
for each class

For mechanical design
applications, Limited
function/flow
vocabulary (Stone and
Wood, 1999).

Axiomatic Design
(Suh, 1990)

Modeling and
Systematization

FR/DP Trees No standard list for
functions and flows

A Novel Approach
for Decomposition
(Kusiak et al., 1991)

Modeling and
Systematization

AND/OR Trees No standard list for
functions and flows.

Design Methodology
(Grabowski and
Benz, 1991)

Modeling and
Systematization

Frame Based
Function
Description

For mechanical design
applications (Erden,
1999).

Mechanical Design
Process
(Ullman, 1992)

Modeling and
Systematization

Description of
functions in terms
of flows

For mechanical design
applications (Erden,
1999).

Design Methodology
(Koch et al., 1994)

Systematization 20 sub-system
representations

For mechanical design
applications (Stone
and Wood, 1999).

Classification of
Functions
(Kirschman and
Fadel, 1998)

Systematization 4 basic
mechanical
function groups

For mechanical design
applications (Stone
and Wood, 1999).

The NIST Design
Repository Project
(Szykman et al.,
1999)

Creation of a
design
repository

130 functions and
100 flows

Some deficiencies in
function-flow list.

Functional Basis
(Little et al., 1997;
Otto, Wood, 1997)

Modeling and
Systematization

8 function and 3
flow classes

Some deficiencies in
function-flow list.

Reconciled
Functional Basis
(Hirtz et al., 2001a)

Reconciling of
NIST Design
Repository and
Functional Basis

8 function and 3
flow classes

Requirement for a
formal computable
form (Stone and
Wood, 2000).

26

Bottom-up design is simply the physical synthesis of components.

Morphological analysis is one of the key methodologies in concept generation

through bottom-up approach (Weber and Condoor, 1998). Morphological

analysis is first proposed by Zwicky (1948) as a method for identifying and

investigating the total set of possible relationships or configurations contained

in a given problem (Ritchey, 2002). All these relationships and configurations

are defined at the level of shape or form.

In order to construct a morphological matrix, attributes of the product sought

by designer are listed at first. These attributes can be parts, properties such

as material, color etc. or design elements. They determine the columns of

morphological matrix. Each row in the matrix is filled with possible variations

of these attributes. Then the designer selects a combination of these

variations to complete the design process.

Morphological matrix for a lamp design is constructed in Table 2.4. According

to this matrix, some possible solutions can be

• A flashlight design with attributes of battery powered, low intensity

and hand held or,

• A mains powered, medium intensity, daylight bulb, which can be used

especially in clothes shops to allow customers to see the true color of

clothes.

Table 2.4 Lamp design via morphological matrix (MindTools, 2004).

Power
Supply

Bulb
Type

Light
Intensity Size Style Finish Material

Battery Halogen Low Very
Large Modern Black Metal

Mains Bulb Medium Large Antique White Ceramic
Solar Daylight High Medium Roman Metallic Concrete

Generator Colored Variable Small Art
Nouveau Terracotta Bone

Crank Hand held Industrial Enamel Glass
Gas Ethnic Natural Wood
Oil/Petrol Fabric Stone
Flame Plastic

27

Snavely et al. (1990) cited two other bottom-up design attempts in his study.

The first one namely EDISON intends to obtain innovative designs by applying

heuristics to generate new structural topologies (Dyer and Flowers, 1984;

Dyer et al., 1986). This study is one of the early works concentrating on

cognitive area to generate creative designs. Such studies aim at mimicking

human way of thinking, when designing and require an expert system.

Although EDISON has generated some novel solutions for design tasks such

as can opener or door design, application of it is limited to these highly

simplified designs (Bently and Wakefield, 1996).

The second approach is Ward and Seering’s mechanical design compiler

(1989a; 1989b). Besides developing a heuristics, construction of a component

database is another common method employed by bottom-up design

approach. Mechanical design compiler uses a catalog of artifacts (i.e. off-the-

shelve components) to satisfy a user defined topology. This compiler simply

imports a schematic of a mechanical or hydraulic power transmission system

and returns catalog numbers from predefined catalogs for the optimal

selection of components implementing the design.

Due to their form based nature of adaptive design-redesign or routine design

activities, bottom-up approach becomes more applicable. While creative

design activities have the potential to generate infinite number of topologies,

routine designs deal with a fixed topology (Snavely et al., 1990). Although it is

possible to change functional topology by changing physical means, in order

to obtain creative solutions, it looks better starting from topology construction

(i.e. top-down approach).

2.1.3 Combined Approach

These two approaches mentioned above indicate that as each designed

functional topology can have more than one physical solution, design tasks

can also be satisfied more than one functional topology. In order to reveal the

relation between the functional decomposition and physical manifestations of

28

them, Hubka (1976) and Andreasen (1980) formulate the law of vertical

causality. This law states that, hierarchical decomposition of a function is only

possible, when a means (e.g. technical principle, an organ or a component

etc.) has been chosen to realize that function (Buur, 1990). In this way, once

a function is formulated, a number of alternative means to perform this

function should be defined. Regarding to selected means a different set of

subfunctions on a lower level will be involved. Therefore as functional

resolution is completed, physical realization of artifact is also constructed

through this combined approach. Two studies using this approach are

mentioned in Section 2.1.3.1 and 2.1.3.2.

2.1.3.1 Axiomatic Design Theory

• Suh (1990; 1998; 2001), the developer of the axiomatic design theory,

divides the design world into four domains illustrated in Figure 2.5. As

the domains on the left represent goals, the domains on the right

represent the design solutions to achieve them. Suh states that design

is simply generation of mapping between these domains.

Figure 2.5 Four domains of design world.

MANUFACTURING

NEEDs
&

CONSTRAINTs

•
•
•

FUNCTIONAL
REQUIREMENTs

•
•
•

DESIGN
PARAMETERs

•
•
•

PROCESS
VARIABLEs

•
•
•

mapping

Concept
Design

Product
Design

Process
Design

CUSTOMER LEVEL FUNCTIONAL LEVEL PHYSICAL LEVEL PROCESS LEVEL

CONCEPTUALIZATION EMBODYING
COLLECTION of

NEEDS

29

This theory is based on two fundamental axioms that govern this mapping

process.

• The Independence Axiom: Maintain the independence of functional

requirements.

• The Information Axiom: Minimize the information content.

Axiomatic design theory classifies designs as uncoupled, decoupled and

coupled with respect to dependencies of their functional requirements. As the

first axiom guides the designer to generate uncoupled designs, the second

axiom evaluates the generated designs regarding their information content.

Information content is measured by an entropy based evaluation metric and it

indicates the probability of success of a design. This metric needs the

identification of design parameters at physical level. Identification process is

performed by a zigzagging manner together with the decomposition of

functional requirements. In addition to these axioms, some other corollaries

and theorems are proposed in axiomatic design theory.

2.1.3.2 Function/Means Tree

Function/Means tree is basically a breadth-first search of a design space

containing all possible solutions to a problem. Breadth-first searching is

employed to help controlling the size of the design space (making the design

easier to manage).

By operating the rules of vertical causality, function/means hierarchy is

constructed layer by layer. Figure 2.6 illustrates a function-means diagram for

a cigarette lighter. In this diagram, functions are represented by boxes. The

ovals represent some possible means by which the top-level function can be

achieved. For demonstration purpose, only two of the possible means are

worked out in further detail.

30

Figure 2.6 Function/Means diagram for a cigarette lighter (Salustri, 2000).

2.1.4 A Critique of Three Design Approaches

All of three approaches in Sections 2.1.1, 2.1.2 and 2.1.3 have benefits and

drawbacks. When the bottom-up approach deals with the physical solutions, it

is very weak at the point of finding optimum or best designs for complex

systems. It is obvious that finding a solution is not the sole concern of today’s

engineer. Reaching an optimal solution is a necessity rather than an option in

today’s engineering efforts. Moreover, variations in designs through bottom-

up approach are limited to changes in configuration, parameter or

31

components. Generation of creative ideas requires differences beyond physical

alterations.

However, as the top-down approach proposes a powerful strategy to reach

the optimal or best functional topologies, it may become very time consuming

and sometimes generated solutions can not be physically realizable. This

approach applies to the designer’s experience, foreseeing ability or trial and

error procedure in a highly combinatoric domain of detail. This sometimes

causes the top-down design methodology to be a fruitless effort.

Although combined approach assures the physical realization of the artifact, it

requires decisions on form at the very beginning steps of the design process.

Therefore, inexperienced designers using this strategy may get stuck into the

same drawbacks as bottom-up approach.

Consequently, a top-down design strengthened with a functional reasoning

technique or an intelligent search strategy seeking solutions with a high

probability of success is the most promising approach in solution of design

problems. Moreover, employment of a graph based representation scheme

with a common vocabulary (e.g. reconciled functional basis) has advantages

on standardization of this approach.

2.2 BEHAVIORAL MODELING

Whichever the direction of design activity (i.e. function to form or form to

function), an evaluation whether the initial requirements are met is required.

A cheap, fast and reliable way of this evaluation is making a virtual prototype

of the designed system or product by using behavioral modeling techniques.

Behavioral modeling and simulation is a very broad area including all

engineering disciplines. However, this section is limited to classification of

modeling paradigms and languages and identification of issues that are

particularly important in support of multi-technical product design.

32

According to the level of design, a detailed simulation of the system is not

always required. At the beginning stages, coarse but reliable models are very

useful for taking feedback of design decisions. The expectations from the

model increase as the performance evaluation results become essential for

decisions in further levels of design. Figure 2.7 illustrates the position of

behavioral modeling in design world.

Figure 2.7 Position of behavioral modeling in design procedure (Paredis, 2001).

In order to derive mathematical background of behavioral model, the basic

material and energy balance equations are considered. In the literature, there

have been many attempts to describe the flow of material and energy in a

product. As a result, some commonly accepted modeling paradigms,

languages and tools have been developed. These are compared and classified

according to the following criteria: graph based versus language based (i.e.

textual) paradigms, procedural versus declarative models, multi-domain

versus single domain models, continuous versus discrete models, and

functional versus object oriented paradigms (Sinha et al., 2001).

Decision on modeling paradigm is the initial step of behavioral modeling. In

modeling of systems including parts from different domains or multi-technical

products, graph based paradigms such as high level Petri nets, hybrid

automata, bond graphs, linear graphs or block diagrams are preferred. These

paradigms are briefly explained below.

FORM

FUNCTION BEHAVIOR

EVALUATION

MODELING &
ANALYSIS

SYNTHESIS

33

• Petri Nets are bipartite directed multi-graphs, which are used to model

procedures, organizations and devices (systems in general), in which

regulated flow of objects and information occurs. Both continuous and

discrete systems can be modeled by using Petri Nets (Reisig, 1985;

Reisig, 1992).

• Hybrid automata define operations in hybrid systems as a sequence of

steps. Within each step the system state evolves continuously

according to a dynamical law until a transition occurs. Transitions are

instantaneous state changes that separate continuous state evolutions

(Alur et al., 1995).

• Bond graphs aim at deriving domain independent description of a

system (Broenink, 1999). It is based on energy conserving junctions

that connect energy storing or transforming elements through bonds.

Although bond graph representation is domain independent, it is

difficult to describe a hybrid system consisting of continuous and

discrete parts. However, there are some recent studies to develop a

hybrid bond graph modeling technique for the systems that combine

energy and signal flows (Mosterman and Biswas, 1995).

• Linear graphs interpret systems as a collection of a finite number of

energy manipulators regardless of the physical media involved (Platin

et al., 1991). Unlike bond graphs, linear graphs reflect the system

topology directly. They are domain independent and can be easily

extended to hybrid systems (Sinha et al., 2001).

Modeling languages for multi-technical systems are also object oriented and

declarative in nature. Unlike procedural languages, declarative languages are

equation based. Only state transition equations are established and conversion

of these equations to software procedures is left to simulation engine. These

languages are domain independent and able to describe hybrid systems as

well. Some well known modeling languages with these features are SIDOPS+

(Breunese and Broenink, 1997) a bond graph based language, ASCEND (Piela

et al., 1991) employing block diagram based representation, VHDL-AMS

34

(IEEE, 1999) relying on linear graphs and SynchNet (Ziaei and Agha, 2003) a

Petri net based coordination language for distributed objects.

Some other object oriented non-casual physical modeling languages

developed within last two decades are ObjectMath (Fritzson et al., 1993),

Omola (Mattsson and Andersson, 1992), Smile (Jochum and Kloas, 1994),

ULM (UML) (Jeandel et al., 1996) and NMF (Sahlin et al., 1994) and Modelica

(Broenink, 1997; Elmqvist and Mattsson, 1997). Modelica is intended to be a

superset of the aforementioned languages and to become a neutral exchange

format for model representation (Tummescheit et al., 1997). Therefore it

allows integration and reuse of model knowledge developed in different

modeling and simulation environments.

These modeling languages are more relevant for software developers rather

than end users. By implementing these languages, they develop high level

modeling and simulation tools to physical system modelers. Only some of

these high level modeling and simulation tools are mentioned below.

ClearSim-MultiDomain (Krisp and Müller-Schloer, 2000) has been developed

for the timing and functional validation of a virtual prototype. In ClearSim,

UML diagrams provide a standard notation in specification of designer’s

requirements.

20-SIM (Broenink and Kleijin, 1999; Amerogen, J. van, 2000) is another tool

to support engineering activities in the processes of design, analysis and

diagnosis of multi-domain systems and products. All information about model

elements used in 20-SIM has been specified in SIDOPS+ model description

language.

Dymola (Elmqvist et al., 1996) is a visual object oriented modeling

environment integrated with Modelica. It is used in modeling and simulation of

continuous systems.

35

Schemebuilder (Bracewell and Sharpe, 2004) utilizing the facilities of

Dymola/Modelica is another modeling and simulation environment. It supports

the designer in both functional and physical design stages. Schemebuilder

represents designs as schemes structured based on the Function/Means tree

approach and simulations of these designs are performed by the help of a

partially bond graph based ontology.

Although there are many other modeling and simulation tools in literature, one

of them has found a wide application area especially in control system designs

for multi-domain hybrid artifacts namely MATLAB/SIMULINK. SIMULINK is a

block diagram based, object oriented, declarative modeling environment. It

provides designer with a visual interface both for SIMULINK libraries and

MATLAB functions (Mathworks, 2004c).

All of these modeling languages and tools compare designs in terms of

performance evaluations, which require mathematical descriptions of energy

and material flows included by the artifact. These flows become

mathematically identifiable at concrete levels of design process. However, at

the initial stages, if top-down approach is adopted, carrying out performance

evaluations is very difficult. Therefore in order to model and simulate designs

at preliminary phases, a theoretical framework built on Petri Net theory, PNDN

(Petri Net Based Design Inference Network) and a simulation software, DNS

(Design Network Simulator) have been developed. PNDN (Erden, 1999;

Korkmazel, 2001) is intended to represent and analyze artifact behaviors and

logical relations that arises these behaviors through information flow. This

study utilizes information flow to compare and reveal flaws and drawbacks of

examined design alternatives. Proposed theory was implemented in computer

environment by Güroğlu (1999) and Coşkun (2004).

Construction of a virtual prototype of an artifact is the main aim of modeling

and simulation attempts. A virtual prototype parades all behaviors of the

artifact in its real working environment. Although it is a powerful tool for

appraisal of designs, other evaluation metrics are also required to guide the

36

design activity before completion of the design process. These metrics are

involved especially at concept generation phase. They may be related to cost,

complexity, probability of success or another objective measure. Some of

these metrics are overviewed in Section 2.4.

2.3 REASONING TECHNIQUES AND EVOLUTIONARY SEARCH

STRATEGIES IN DESIGN

Automation of conceptual design involves generation of solutions for design

tasks without need of human supervision. This can be achieved by employing

either a reasoning technique or an evolutionary search strategy in the solution

domain. In the literature, there are significant examples for both of these

approaches. Some of them are discussed in following sections.

2.3.1 Functional Reasoning in Design

Reasoning at functional level to solve a design problem can be performed in

two ways namely descriptive or prescriptive. Descriptive way aims at imitating

human way of thinking. It tries to describe the nature of the human concept

generation. Prescriptive way focuses on generation of a reasoning scheme to

constitute solution alternatives. Since the former is mainly associated with

cognitive sciences, the studies on the latter are mentioned here.

Chakrabarti and Bligh (2001) cited three influential functional reasoning

techniques and presented a new approach in their study. The earliest one was

proposed by Freeman and Newell (1971). This study operates a similar

procedure used in function/means tree construction. All functional

requirements are mapped to some structures (i.e. physical entities) and these

structures bring new required functions. This process continues until all the

functions required are provided by some structures. The resulting combination

of these structures provides the designer with a solution to the design

problem. However, if no structure is found to partially or completely fulfill a

37

function at a given level, this methodology can not offer any solution to the

designer.

This limitation is dealt with in Yoshikawa’s approach (1981; 1985). This

approach bases on modification of an existing solution. After describing design

problem in terms of functional requirements, the design process starts with a

temporary solution. This temporary solution is evaluated by comparing the

original functional requirements and the functions provided by the temporary

solution. The aim of designer would reduce the difference. For this purpose,

wrong components in temporary solution are identified and replaced by other

components having more potential to contribute to satisfaction of the

problem. This process is continued until the solution becomes satisfactory.

This reasoning technique has some underlying assumptions. At first, the

functions provided by the temporary solution in the absence of wrong

components could be identified. This assumption is defined as deducibility.

The second assumption is availability of a satisfaction evaluation criterion (i.e.

evaluatability). This criterion is employed to figure out whether the potential

of the solution to solve the problem increases after modification or not. The

third assumption, monotonicity, states that it should be possible to

monotonically modify the temporary solution. In other words, increase in the

satisfaction of requirements should ensure a move towards a valid and

complete solution. This can only be possible with the last assumption. The last

assumption, called decomposability, involves the artifact comprising

independent clusters of components. This provides the designer with the

ability of separately control various functions. In short, replacement of a

cluster should not affect the functionality of the rest of the solution. Even

though the temporary solution validates all of these assumptions, there are

still a vast number of wrong components to be checked against the

satisfaction of evaluation criterion. Due to these limitations imposed by

assumptions and computational intensity, this technique does not look

promising in design of complex artifacts.

38

Another widely accepted reasoning technique was proposed by Pahl and Beitz

(1988). This technique carries out the procedure of functional design tree

construction to express the problem in a solution neutral way. It decomposes

the overall design task into sub-functions until reaching sufficiently simple

function definitions. Then alternative physical concepts are sought for this

functional structure. After the evaluation of the alternatives, the best one is

chosen. Chakrabarti and Bligh (2001) indicated the need of this technique for

a finite, distinct and complete function set as a drawback. Certainly the

predetermined function set should comprise a finite number of functions (i.e.

a finite function set). There should be no overlapping function definitions in it

(i.e. a distinct function set) and finally all solutions should be expressed by the

combination of these functions (i.e. a complete function set). The impossibility

of generation hierarchical function structures in a solution neutral way (i.e.

law of vertical causality) was pointed out as well. In addition, Chakrabarti and

Bligh (2001) claim that in this approach, it is possible to find solution concepts

only if each atomic function corresponds to a component-solution. If a

function structure rather than a single function corresponds to a component-

solution, it can not be reasoned. This difficulty was addressed as the problem

of partitioning in their study.

Due to these limitations of Pahl and Beitz’s approach (1988), Chakrabarti and

Bligh (2001) have proposed a new reasoning technique in their study. In this

technique, a recursive problem definition is used. In each step only a part of

overall functional requirement is handled and a set of alternative solutions is

synthesized to satisfy this part. After the evaluation of this partial solution,

overall problem definition is revised and another part of requirements is

handled in the next step. This process continues until satisfaction of all

requirements. Then found physical solutions are aggregated to constitute the

complete solution for the problem.

Another reasoning technique was discussed by Sharpe and Bracewell (1995).

They used bond graph reasoning in construction of function/means tree of a

product. This approach provides a set of rules for the decomposition of

39

energetic systems. These rules are based on the fact that only similar energy

ports must be connected to each other. Therefore, the correct components

should be selected to be able to propagate energy variables. This selection

limits the set of functions used in tree construction. This reasoning technique

is only applicable to the functions having an effect on energy flow. It does not

offer any methodology to identify functions operating on information or

material.

An experience derived heuristics can also be used as a reasoning technique in

design (Potter et al., 2003). Heuristic knowledge comprises “rules of thumb”

concerning the manner in which the inference process is driven. It is derived

by case based reasoning making use of previous design experiences. This

knowledge base generally comprises if-then rules.

All of these approaches except Pahl and Beitz’s approach (1988) can not be

adopted in creative design activities due to their dependency on physical

solutions to proceed. The solution neutral way of Pahl and Beitz’s approach

(1988) allows generation of both creative and innovative designs. The

questions on the necessary features of predetermined function set can be

removed by the use of a detailed functional vocabulary (e.g. reconciled

functional basis). Furthermore, if graph based representation is preferred

instead of hierarchical representation, there will be no need to operate the law

of vertical causality. Consequently solution neutrality will be kept. Thanks to

atomic function and flow descriptions in the vocabulary, the designs are

naturally generated at a certain level of abstraction. Moreover, above

mentioned partitioning problem can be defeated by the identification of

modules. Ulrich and Tung (1991) define modules as physical structures that

have a one-to-one correspondence with functional structures. A module

identification heuristic in functional domain would overcome this difficulty

(Stone et al., 2000).

40

2.3.2 Evolutionary Search Strategies in Design

In late 1950s, researchers have paid their attention to the use of evolution as

an optimization tool for engineering systems. This optimization tool used the

operators inspired by genetic variation and natural selection. In the following

years, evolutionary computation including evolutionary strategies, evolutionary

programming and genetic algorithms has become an active area of research.

Detailed theory of Genetic Algorithms (GA) was pioneered by Holland (1975).

Holland’s primarily aim was not to develop an algorithm for optimization issues

but rather to study the phenomenon of adaptation as it occurs in nature

(Mitchell, 1996). Due to the fixed length encoding of genetic algorithms, this

technique has been limited to problems whose topology remain fixed, but

whose parametric values can be changed (Roston, 1994). Some example

application areas include controller parameter estimation (Downing et al.,

1996), VLSI circuit layout design, filter design, financial applications,

scheduling, shape and structural design, truss optimization (Burton, 2004) etc.

In order to remove this fixed topology limitation and improve GA performance,

Goldberg et al. (1989c) has proposed the notion of messy GA. Messy GA

makes it possible to work with variable length chromosomes and expands the

application areas of GAs.

The idea of application of GAs to a population of computer algorithms to

design a new algorithm automatically was introduced by Koza (1992; 1994).

Besides self-reproduction of software and self-programming, this new

technique namely Genetic Programming (GP) has found a wide application

area for itself such as data mining, task prioritization, path planning,

distributed problem solving, natural language processing, symbolic regression

and network routing etc.

In addition to these application areas of evolutionary computation, both GA

and GP have become strong tools of engineers in solving engineering design

41

and optimization problems. Some examples in the literature are mentioned

below.

In the studies of Sims (1994a; 1994b) evolutionary strategies have been

applied to morphological design issues. In a part of these studies, different

creature morphologies are generated and the generated morphologies are

evaluated according to their performances in realizing different behaviors such

as swimming, walking, jumping and following. For the description of

morphologies, a graph based genetic language using nodes and connections

as its primitive elements was developed. In the remaining part of these

studies, control systems for generated creatures were also determined by

using evolutionary strategies.

Another morphological design application has been realized by Pollack et al.

(2000). At the beginning, this study handled morphology as the arbitrary

networks of linear actuators and bars. It employed evolution to generate

sufficiently proficient structures from these networks. As a case study, some

structures were emerged to carry out the task of locomotion. The distances

traveled by the generated structures are defined as evaluation criterion. It has

been observed that the evolved robots exhibited various methods of

locomotion, including crawling, ratcheting and some forms of pedalism.

An alternative application on design of locomotion system has been presented

by Roston (1994). In his study, a hybrid evolutionary technique (GA/GP) was

developed and applied to a configuration design issue of a frame-walking

robot. It has been observed that the developed methodology provided

promising solutions in configuration design problems.

A group of evolutionary applications has focused on the modularity issue in

design. Koza (1994) has proposed a promising method relying on the

description of partial solutions in the form of reusable blocks. These solutions

called Automatically Defined Functions (ADFs) decrease the depth of trees

involved in genetic programming and consequently the computation load.

42

Unlike Koza’s approach (1994), Lipson et al. (2001) have employed an

evolutionary mechanism to generate modular designs without module

descriptions. This mechanism has based on the observation that modular

designs have higher adaptability and better survival rates under changing

requirements.

In addition to these evolutionary design applications, there exist some others

even at molecular level in the literature. In particular, these studies

concentrate on pharmacological problems such as drug design (Lawton and

Wipke, 1999) or protein folding (Schulze-Kremer, 1996).

All of these studies indicate that the majority of evolutionary design

applications focus on the physical design issues such as component selection

or configuration design. However, there is no study that carried out

evolutionary techniques to design a functional topology. Such a study with a

correct evaluation measure would eliminate the need for a functional

reasoning technique. Some evaluation measures mentioned in the literature

for functional designs are presented in following section.

2.4 SURVEY ON EVALUATION METRICS FOR FUNCTIONAL DESIGNS

Evaluation of artifacts at functional level is a very difficult task to perform due

to the abstract nature of functional design process. At this level, only working

principles are determined and no other information is available for

performance calculations. However, some characteristics of function structures

can be used for comparison. First of all, it is preferable to construct artifacts

using independent functions. Therefore dependency of functions can be

considered as a comparison criterion for generated design alternatives. The

number of functions in an artifact can be employed as another measure for

comparison. Designs should perform their tasks through operating minimum

number of functions. Finally, all functional structures in a design could be

physically achievable. The last characteristic is also a necessity to accept a

43

function cluster as a design alternative. These characteristics of function

structures provide designer with a limited evaluation capability and they can

not be used as general evaluation metrics. According to these characteristics,

it is possible to generate equally acceptable solutions from the functional point

of view. Some evaluation metrics employed in the literature are information

content, value analysis and complexity. These are briefly explained below.

Information content determines the probability of success of a design

alternative (Suh, 1990). Design with minimum information content has highest

probability of success. The information content “I” associated with the

probability is defined as

pI 2log−= (2.1)

The unit of information content is bits. Artifacts including many functions

should satisfy all of them at the same time. The logarithmic function makes

information content additive. Then the information content of an artifact is

∑ ⎥
⎦

⎤
⎢
⎣

⎡
=

ip
I 1log (2.2)

where pi is the probability of success of each function. Minimum information

content states that generated alternative requires the least amount of

information to achieve the design goals. When probabilities of all functions

included by the artifact are equal to unity, the information content becomes

zero. Then design becomes completely achievable. Conversely, the

information required is infinite when one or more probabilities are equal to

zero. This shows that design is unreachable.

In the real world, the probability of success is provided by the intersection of

the tolerance defined by the designer to satisfy the function and the tolerance

44

of the system to produce the part within the specified tolerance. This

intersection is illustrated in Figure 2.8.

Figure 2.8 Intersection of the design range and system range (Amos et al., 2001).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

eCommonRang
eSystemRangI 2log (2.3)

One disadvantage of this metric is its need for decisions in physical domain. In

order to calculate information content of an artifact, its physical design should

also be completed.

Another evaluation metric, value analysis aims at achieving the total function

for lowest overall cost (Miles, 1972). Value analysis decomposes artifacts in

functional domain, and establishes means for each function. According to

these means, an approximate cost is assigned to each function. By

considering the interactions between functions, these values are added and

the cost of achieving the overall task is determined. It is obvious that this

technique also needs the completion of the decisions in physical domain.

Finally, complexity can be used as an evaluation criterion of artifacts.

Summers and Shah (2003) give six different definitions of complexity in their

studies. These definitions vary from design problem complexity, design and

manufacturing process complexity to design artifact complexity. In the

45

literature, numerous measuring methods are proposed for these complexity

definitions. These methods can be grouped as: computational views of

complexity, information based views of complexity and traditional design

views of complexity. One of the information based measuring methods looks

promising to measure the complexity of artifacts generated completely in

functional domain. This method calculates structural complexity through

considering functions and relationships constructing the artifact. A detailed

explanation for this measure will be presented in Chapter IV.

46

CHAPTER III

AN APPRAISAL OF EVOLUTIONARY METHODS

There are numerous well established search and optimization techniques in

the literature. Some of these techniques are illustrated in Figure 3.1.

Enumerative methods, a type of deterministic search techniques, in principal

search systematically every possible solution one at a time. Therefore, they

require vast amount of time and calculation power in large search spaces.

Meanwhile, another deterministic search technique, traditional calculus based

method needs continuous mathematical functions and their derivatives,

however, it is not always possible to define the problem in the form of a

continuous mathematical function. To overcome these difficulties, stochastic

techniques are suggested.

Stochastic techniques determine the next search point with a probability

obtained from the search information so far. For instance, simulated annealing

looks for a good solution to an optimization problem by trying random

variations of the current solution. A worse variation is accepted as the new

solution with a probability that decreases as the computation proceeds. This

technique chooses the new solution if the probability of the new solution is

greater than the probability of the current solution (Zhang and Kim, 2000).

Similarly, evolutionary strategies, a type of evolutionary algorithms, basically

creates a new solution by adding random noise to current solution. If the new

solution is better, search proceeds utilizing the new solution, if not the older

solution is retained (Langdon and Qureshi, 1995). In other words, these

stochastic techniques use past experiences to guide future events. This

47

characteristic causes a considerable decrease in the need of calculation time

and power.

All evolutionary algorithms are based on Darwin's Natural Selection theory of

evolution, where a population is progressively improved by selectively

discarding the worse and breeding new children from the better (Langdon and

Qureshi, 1995). Koza (1992) states the conditions, on which the evolutionary

process in nature depends, as;

• An entity should be capable of reproducing itself.

• Such self-reproducing entities should constitute a population.

• There should be some variety among the self-reproducing entities.

• This variety should be associated with rate of survival and the

reproduction of the entity in its environment.

Figure 3.1 Search and optimization techniques.

Therefore selective replication of individuals, information exchange among

them and inheritance are also the key concepts of evolutionary search and

optimization techniques. Almost all evolutionary techniques operate the

procedure presented in Figure 3.2.

SEARCH AND OPTIMIZATION TECHNIQUES

DETERMINISTIC

CALCULUS
BASED

STOCHASTIC

SIMULATED
ANEALING

EVOLUTIONARY
ALGORITHMS

EVOLUTION
STRATEGIES

GENETIC
PROGRAMMING

GENETIC
ALGORITHMS

MONTE CARLO
ALGORITHM

HILL
CLIMBING

DEPTH, BREADTH and
BEST FIRST SEARCHES

GREEDY
SEARCH

ENUMERATIVE
METHODS

DYNAMIC
PROGRAMMING

48

Evolutionary techniques have some merits and shortcomings. Primarily these

techniques have the advantage to create new individuals without requiring

understanding of procedures used to generate them. This feature makes the

strategy domain independent and computer implementable. In addition,

randomness in genetic operations increases the applicability of these

techniques to complex problems. Therefore it becomes possible to extract

many successful and interesting solution suggestions, some of which would be

difficult to invent or build by traditional approaches (Sims, 1994a).

Figure 3.2 A general algorithm for evolutionary techniques.

However, there are still some poorly understood factors that affect the

success of these techniques. These include ambiguity in the choice of initial

populations, need for experiments in determination of constraint handling

techniques and case dependency of selection and replacement mechanisms.

While evolutionary techniques keep a part of search history by inheritance,

random mechanisms of genetic operations add randomness to them.

Therefore evolutionary techniques provide a crossover of random and

informed search strategies.

Evolutionary techniques differ in representation scheme. While genetic

algorithms (GA) prefer string based representation scheme, genetic

programming (GP) utilizes trees to represent the individuals. The preferred

representation scheme has to be general enough to cover all possible

procedure Evolutionary Algorithm;
 begin
 initialize population Pt=0;
 evaluate all individuals in Pt=0;
 do
 t=t+1;
 select Pt from Pt-1;
 recombine Pt;
 evaluate Pt;

 while(termination criterion not satisfied)
end.

49

solutions. It also has to be suitable for computer implementation. In Sections

3.1 and 3.2, an overview for genetic algorithms and genetic programming are

given respectively.

3.1 INTRODUCTION TO GENETIC ALGORITHMS (GA)

Genetic algorithm defines the individuals with the string representations

(usually fixed length representation is preferred). For this purpose, at first, a

representation scheme for the solution of the problem is determined.

Representation scheme is generated through the coding of the parameters.

Genetic algorithm works with this coding rather than the parameters

themselves. Specification of the representation scheme requires selection of

the string length and the alphabet size. Bit-string representation of the

problem is the most preferred representation type in genetic algorithms. In

this representation, the alphabet is binary. Non-binary representations are

also possible but tend to be more complex without yielding any additional

benefit (Roston, 1994).

In string based representation, a part of string describing a property is named

as a gene. The values taken by this gene are alleles. All values that can be

taken in the problem should be described by these alleles. Strings containing

more than one gene as shown in Figure 3.3 are called the chromosomes. This

chromosome is analogous to the base-4 chromosomes present in our DNA. In

GA community, the haploid model (i.e. one-chromosome individuals) is used.

However, diploid models have also been used in the past (Goldberg, 1989a).

 G E N E 1 G E N E 2 G E N E 3

Figure 3.3 A chromosome, which comprises 3 genes.

After the identification of the scheme, the next step is to define the size of

population. Population sizing is a trade off between reaching solutions of a

50

certain quality and increasing computational costs. While larger populations

result in better solutions, dealing with unnecessary individuals causes wasting

time and computational resources. In literature, there exists small number of

theoretical studies on determining the adequate population sizes (Goldberg,

1989b; Goldberg et al., 1992; Harik et al., 1999). Many genetic algorithm

applications prefer sizing their populations empirically in general.

After finding the population size, the individuals constituting the initial

population should be defined. The individuals may be constructed randomly or

a predetermined set of individuals may also be defined as an initial population.

The next step is to determine a fitness measure for genetic algorithm. By

using the fitness measure, each possible string in the search space is

evaluated and a fitness value is assigned. The fitness measure is often

inherent in the problem (Koza, 1992). For example, if the aim is to find the

object, which has the largest area in the search space, the fitness measure is

the multiplication of the length and the width of the object, which are

represented by two genes of a chromosome.

Genetic algorithm transforms the individuals of initial population each with an

associated fitness value, into a new population (i.e. the next generation) using

reproduction operation. Reproduction operation determines the fitter

individuals in the current population and copies these individuals without

change into the next generation. Therefore, fitter individuals in the population

survive and others become extinct. There are number of selection methods

used to perform reproduction operation such as fitness proportionate

selection, linear ranking selection and truncation selection etc. (Blickle and

Thiele, 1995). The most common selection method in literature is the “fitness

proportionate reproduction”. This method copies the individuals in the current

generation into the next generation with a probability proportional to their

fitness.

51

The next step after reproduction is the modification of the individuals of the

new population. This step comprises two genetic operations namely, crossover

and mutation. The crossover operation aims to generate new individuals by

crossing the individuals. Therefore the fittest genes of individuals are

transmitted to their descendants through sexual recombination. Crossover

operation starts with two parents and ends with two new offspring. Parents

are selected proportionate to their fitness values. Crossover probability (pc)

indicates the percentage of the population, which will participate in crossover

operation. Crossover points on participating members are determined

randomly. Then parent individuals are crossed at that point and two offspring

occur in the new population. This operation is illustrated in Figure 3.4.

PARENT I
1 0 0 1 1 0 0 1

PARENT II
0 1 1 1 0 1 1 1

1 0 0 1 1 1 1 1
CHILD I

0 1 1 1 0 0 0 1

CHILD II
Figure 3.4 Crossover operation in genetic algorithms.

Another individual modification operation is mutation. Frequency of mutation

operation is controlled by a parameter called mutation probability (pm).

Mutation operates on a single individual. This operation is especially needed

for increasing the genetic diversity of the population. In some cases, in order

to avoid from getting stuck into a local minima, occurrence of some bits in

string could become extinct in the earlier generations of the population. These

bits can be needed to reach global optimum. Therefore mutation operation

can also be used to remind the extinct bits to the population. Mutation is a

secondary operation. Therefore it is not expected to obtain a global optimum

via a single mutation. However it is a strong tool that provides a way to

restore the genetic diversity lost in the generations of the population.

52

In binary string representation, mutation operation is applied by converting

the value of the bit at the point of mutation. Mutation operation can be

applied more than one point in a string. Figure 3.5 illustrates a sample

mutation operation.

1 0 0 1 1 0 0 1

BEFORE MUTATION

1 0 1 1 1 0 0 1

AFTER MUTATION

Figure 3.5 Mutation operation in genetic algorithms.

Finally, run of a genetic algorithm is terminated in two ways; first, if the

fitness of the best individual in the run is close to the optimal solution with an

acceptable predefined error value, operation of the algorithm is terminated.

The second way of termination is the execution of the predefined maximum

number of generation. Although an acceptable solution can not be found,

operation is terminated.

Below, a genetic algorithm implemented in MATLAB environment

demonstrates the capability of genetic algorithm to avoid local minima in

searching for global minimum. For this purpose, Rastrigin’s function, which is

often used to test the genetic algorithms, is employed. Its many local minima

make it difficult for standard, gradient-based methods to find the global

minimum (Mathworks, 2004a). Figure 3.6 illustrates the plot of Rastrigin’s

function shown in Equation 3.1.

() ()21
2

2
2

121 2cos2cos1020, xxxxxxZ ππ +⋅−++= (3.1)

53

Figure 3.6 Plot of Rastrigin’s function.

Figure 3.7 Contour plot of Rastrigin’s function with initial population and best
individuals.

54

Figure 3.8 Best and mean fitness values of implemented genetic algorithm.

Population size and maximum number of generations for genetic algorithm are

set as 25 and 100 respectively. All individuals at initial population, blue circles

in Figure 3.7, are constructed randomly. The genetic algorithm successfully

reaches the global optimum at 25th generation indicated by the red circle in

Figure 3.7. All individuals in the population also converges the global optimum

at nearly 97th generation, shown in Figure 3.8. This figure also shows the best

and mean fitness plots of population for all generations.

3.2 INTRODUCTION TO GENETIC PROGRAMMING (GP)

Genetic programming is a special application of genetic algorithm theory to

automated programming concept. The main aim is to develop a method,

which teaches the computers to solve problems without needing explicitly

programming. The solutions of the many problems need hierarchical computer

programs rather than fixed length character strings. Hierarchical depths of

these programs are not known in advance. Therefore it is very difficult to

55

represent computer programs of dynamically varying sizes and shapes with

fixed length character strings.

GP uses rooted trees to represent the individuals in the population. These

rooted trees consist of terminals and functions appropriate to the problem

domain. As the functions can be standard arithmetic operators, logical

functions or domain specific function definitions etc., the terminals can consist

of either variable atoms (representing perhaps the inputs, sensors, detectors

or state variables of the system) or constant atoms such as the numbers or

the Boolean constant NIL) (Koza, 1992). Rooted tree representation of

function x2+2x+3 is represented in Figure 3.9. In this example the function

and terminal sets consist of {+,*} and {2, 3, X} respectively.

Figure 3.9 Rooted tree representation of x2+2x+3

Hierarchical representation has two main properties namely closure and

sufficiency. The closure property states that each function defined in the

function set must be able to accept, as its arguments, all of the possible

return values of other functions and all possible terminal values defined in the

terminal set. In some cases, such as requiring combined function sets

including the arithmetic operators and logical operators at the same time,

there may be difficulties in the application of this property. By defining some

syntactic rules, these difficulties can be overcome. The closure property is

desirable, but it is not absolutely required. If it is not succeeded, alternative

strategies such as elimination of the infeasible individuals or application of a

penalty to individuals that generate unacceptable results can be applied. The

other property, sufficiency, states that the set of terminals and the set of

+

* *

X X 2 X

3

56

functions should be capable of expressing a solution to the problem. This

property is a precondition of solving a problem with genetic programming.

In order to be able to operate the algorithm shown in Figure 3.2, an initial

population of rooted trees is generated considering the properties mentioned

above. Similar to the genetic algorithms, the next step is the definition of a

fitness measure to assign a scalar fitness value to each individual in the

population. These fitness values are employed to perform genetic operations.

Genetic programming has two primary (i.e. reproduction, crossover) and five

secondary (i.e. mutation, permutation, editing, encapsulation and decimation)

genetic operations.

Both the reproduction and the crossover operations obey the same rules as

the operations in genetic algorithms. However, the only change occurs at

crossover operation in shape. In this operation, different sized parents can be

selected. A random point in each parent is chosen as a crossover point.

Crossover fragments of the parents are rooted sub-trees, which accept

crossover point as the root. The first offspring is produced by deleting the

crossover fragment of the first parent and then inserting the crossover

fragment of the second parent at the crossover point of the first parent. The

second offspring is produced in symmetric manner. This operation is

illustrated in Figure 3.10.

In secondary operations, the most common one is mutation operation.

Mutation operation starts with random selection of the mutation point in

individual. A terminal or a function node can be selected as a mutation point.

Mutation operation removes the mutation point and the tree below this point

and inserts a randomly generated sub-tree at that point. Figure 3.11 gives an

example of mutation operation.

57

PARENT A-BEFORE CROSSOVER

PARENT B-BEFORE CROSSOVER

OFFSPRING A-AFTER CROSSOVER

OFFSPRING B-AFTER CROSSOVER

Figure 3.10 Crossover operation in genetic programming

INDIVIDUAL-BEFORE MUTATION INDIVIDUAL-AFTER MUTATION

Figure 3.11 Mutation operation in genetic programming

These operations are iteratively performed until reaching termination criterion.

As in the case of genetic algorithms, genetic programming also uses a

predefined error value and the maximum number of generations as

termination criteria.

In order to demonstrate problem solving capability of genetic programming, a

regression problem is solved at MATLAB environment through the help of

GPLab, which is a third parity genetic programming toolbox for MATLAB (Silva,

+

+ *

Y Z Z +

Y 2

+

* *

3 X Z +

Y 2

+

* Z

+ sin

Y2Y

+

* *

3 X Z X

+

* Z

X sin

Y

+

* *

3 X Z +

Y 2

58

2004). At first a regression problem is solved for Equation 3.2 with the data

between -3 and +3.

832 23 −++ xxx (3.2)

Population size and maximum number of generations for genetic programming

are set as 50 and 25 respectively. All individuals at initial population are

constructed randomly using the function and terminal sets of {plus, minus,

times} and {1, X}. Genetic programming exactly reaches Equation 3.2 at 23rd

generation. The best individual and the approximation progress in generations

are given in Figures 3.12 and 3.13 respectively.

At the bottom of the tree shown in Figure 3.12, the bordered region performs

a fruitless operation. This proves that, GP tends to produce programs that are

robust to genetic manipulation, similar in a sense to biological genomes that

produce viable individuals even though parts of the DNA sequence might be

corrupt (Roston, 1994).

Figure 3.12 Best individual obtained for the regression problem.

59

Figure 3.13 Approximation progress for the regression problem.

Randomness gives robustness to evolutionary algorithms. Therefore

evolutionary algorithms become capable of handling uncertainties in problems.

This can be validated by solving aforementioned regression problem by adding

random noise to its data. In this problem, a polynomial will be fitted to

randomly disturbed data shown in Figure 3.14.

The parameters of genetic programming are again set to 25 and 50 for

maximum number of generations and population size respectively. It is

observed that, genetic programming successfully reaches Equation 3.2 at 24th

generation. The rooted tree representation of the best individual is illustrated

in Figure 3.15. The approximation progress of evolutionary process in

generations is given in Figure 3.16. This simple example demonstrates

uncertainty handling capability of evolutionary algorithms in the presence of

noise.

60

Figure 3.14 Noisy data for the regression problem.

Figure 3.15 Best individual obtained for the regression problem with noisy data.

61

Figure 3.16 Approximation progress for the regression problem with noisy data.

3.3 CONSTRAINT HANDLING TECHNIQUES USED WITH

EVOLUTIONARY ALGORITHMS

A vast majority of engineering problems are subject to constraints. Constraint

handling affects the performance of all optimization techniques including

evolutionary algorithms. Therefore numerous constraint handling techniques

are suggested to be used with evolutionary algorithms in the literature

(Coello, 2002). These techniques are basically established on two different

paradigms (Michalewicz et al., 1996). The first one is based on the

penalization of emerged infeasible individuals in the population. Other

paradigm aims at maintaining the feasibility of individuals in the population by

means of some restrictions and operations.

62

The most common technique is to use penalties. Basically, penalty is a way of

converting constrained optimization problems into unconstrained optimization

problems by adding or subtracting a certain value to/from the objective

function. This value is generally calculated considering the amount of

constraint violation in a certain solution. There are three different views of

assigning penalties to infeasible individuals;

• Infeasible individual is penalized regardless of the amount of

constraint violation.

• The amount of violation is taken into consideration to calculate the

penalty.

• The effort of repairing infeasible individual (i.e. cost of making

individual feasible) is considered to find penalty.

Traditionally, weighting of penalties is usually based on experiments. Often

the algorithm must be rerun several times before assigning penalties (Carlson

and Shonkwiler, 1998). The main problem in determining the penalties is that

they are problem dependent. However, it is ideally suggested that the penalty

should be kept as low as possible (Coello, 2002). High penalties discourage

the exploration of the infeasible region since the very beginning of the search

process.

There are several types of penalty functions such as static, dynamic,

annealing, adaptive or death penalty etc. (Coello, 2002). Static penalties

remain constant throughout the evolutionary process. The number of

generations executed is not taken into account in this type of penalty

calculations. In some types of static penalties, level of constraint violation is

also handled through a distance metric. Applicability of static penalty is limited

in highly constrained search spaces. Using a static penalty function, an

individual is evaluated by Equation 3.3 (Michalewicz, 1996).

 []∑
=

⎟
⎠
⎞

⎜
⎝
⎛ ×+=

m

i
iik xgRxfxfitness

1

2

,)(,0max)()((3.3)

63

where ikR , are the penalty coefficients used, m is the total number of

constraints,)(xf is the unpenalized objective function and k=1,2, ….,l, where

l is the number of levels of violation defined by the designer.)(xg denotes

the function of constraint.

The second category consists of dynamic penalties. This category involves the

current number of generation in calculation of the penalty. In general, for

minimization problems, penalty function increases as the evolution proceeds.

This type of penalty also requires a distance metric to find the amount of

violation. It is possible to define dynamic penalty in different forms. One of

these forms is presented in Equation 3.4 (Kazarlis and Petridis, 1998).

 s

m

i
iii BSdwAgVxfxfitness δδ ×+Φ⋅⋅×+= ∑

=

))))(((()()()(
1

 (3.4)

where A is a severity factor, m is the total number of constraints, iδ is 1 if

constraint i is violated and 0 otherwise, wi is a weight factor for constraint i.

Фi(di(S)) is a function of amount of violation of constraint i introduced by

solution S. B is a penalty threshold factor. sδ takes the value of 1 if solution S

is infeasible, otherwise 0. V(g) is an increasing function, where g indicates the

current number of generation.

Annealing penalty is based on the idea of simulated annealing (Carlson and

Shonkwiler, 1998). In this approach, the next generation is created using the

best solution in previous generation. Therefore only single instance of a

feasible individual is enough to operate annealing penalty. This penalty also

increases over time and in the last generations, the infeasible individuals are

heavily penalized. The objective function applied annealing penalty is

presented in Equation 3.5 (Carlson and Shonkwiler, 1998).

)()(xfxfitness ⋅Α= (3.5)

64

where A depends on two parameters: M, which measures the amount of

violation of a constraint and T, which is a function of the running time of the

algorithm. T tends to zero as evolution progress. Therefore the initial penalty

factor is small and it increases over time as illustrated in Equation 3.6.

 TMeA /−= (3.6)

The cooling schedule T can be defined as

t

T 1
= (3.7)

t refers to the temperature used in the previous iteration.

Adaptive penalty requires a feedback from the search process. This approach

starts with a relatively small initial penalty to guarantee the adequate

sampling of search space and increases or decreases it depending on the

conditions (Rasheed, 1998). An objective function using adaptive penalty

proposed by Smith and Tate (1993) is given in Equation 3.8.

∑
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅−+=

n

i

k

i
allfeasible tNFT

xg
BBxfxfitness

1)(
)(

)()()((3.8)

where Bfeasible is the best-known objective function at generation t, Ball is the

best (unpenalized) overall objective function,)(xgi is the amount of violation

of the constraint i, k is a constant adjusting the severity of penalty and NFT is

Near Feasibility Threshold, which is defined as the threshold distance from the

feasible region (Coello, 2002).

Death penalty is the easiest way to handle constraints. In this approach, all

infeasible individuals are rejected. However, this approach can not use any

information in infeasible individuals. Another potential problem is that if there

65

is no feasible solution in initial population then the evolutionary process will

stagnate.

Besides the penalization of infeasible individuals, other constraint handling

techniques aim at maintaining feasible population in the evolutionary process.

For this purpose, one of these techniques suggests using special

representations and genetic operators. Problem specific definition of

representation scheme and genetic operations will prevent the generation of

infeasible individuals. It is obvious that, this approach is more reliable than the

other approaches based on penalty functions (Michalewicz et al., 1996).

However, the generalization of these representations and operators even for

similar problems is impossible.

Another constraint handling technique is to use repair algorithms. These

algorithms are used to convert infeasible individuals to feasible individuals.

This repaired version can either be used for evaluation only or it can also

replace the original individual in the population. However, there are some

drawbacks to employ repair algorithms. Such algorithms may introduce

systematic bias into search and severely disturb the superior aspects of the

parent solutions carried in the children, defeating the fundamental strength of

the evolution (Smith and Coit, 1997). Moreover, they are problem dependent

and there is no standard heuristics to design such repair algorithms. In

generations, since the children often do not resemble their parents, restoring

infeasible children may be as difficult as the optimization problem (Joines and

Houck, 1994).

Using decoders are also used to handle constraints. In this approach, a

chromosome gives instructions on how to build a feasible solution

(Michalewicz et al., 1996). Following these instructions always lead the

evolutionary process to generate feasible individuals.

An alternative way of handling constraints is to employ multi-objective

optimization techniques. The main idea behind this method is to redefine the

66

single objective optimization problem as a multi-objective optimization

problem in which each constraint is treated as an objective. Therefore m+1

objectives are considered in optimization problem, where m is the total

number of constraints (Coello, 2000).

There are many other constraint handling techniques proposed in literature. In

general, all of these techniques require major or minor problem specific

modifications and there is still a need for a systematic way for determining

parameters of them.

3.4 MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTIONARY

ALGORITHMS

Genetic algorithms require scalar fitness information to operate, which means

that when approaching multi-objective problems, it is needed to perform a

scalarization of the objective vectors. Therefore, in order to handle multi-

objective optimization problems, some techniques are suggested in literature.

Coello (1996) categorized these techniques as; use of aggregating functions,

non-pareto approaches and pareto based approaches.

Aggregating functions aim at combining different objective functions into a

single formula. The first method in this category is “weighted sum approach”.

This approach requires assigning weights indicating the importance of the

assigned objective. Then the objectives are combined. The difficulty in this

approach is the determination of weights under absence of enough

information about the problem.

“Reduction to a single objective” is another method in this category. This

method assumes all objectives except one as constraints and a single value is

assigned to each of these constraints. The remaining objective becomes the

fitness function of evolutionary algorithm. Then, the evolutionary process is

run numerous times for different values of the constraints. Thus, a trade off

67

surface is developed. It is obvious that this process is very time consuming

and the coding is impossible for certain problems.

An additional method in this category is “goal attainment”. In this method, the

problem formulation allows the objectives to be under- or overachieved,

enabling the decision maker to be relatively imprecise about the initial goals.

The relative degree of under- or overachievement of the goals is controlled by

a vector of weighting coefficients (Mathworks, 2004b). By varying weights, the

important objectives can be emphasized.

An essential property of any candidate solution of a multi-objective problem is

that the solution should not be dominated. The Pareto set consists of solutions

that are not dominated by any other solutions. A solution x is said to dominate

y, if x is better than or equal to y in all attributes, and strictly better in at least

one attribute (Anderson, 2001). Figure 3.17 illustrates Pareto optimal solutions

of a bi-objective (f1, f2) minimization problem. Each objective function is

represented on a separate axis. In such a problem, since there is no point

down and to the left of them in the graph, solutions 1 and 3 are Pareto

optimal solutions. Solution 2 does not offer any smaller value for neither of

the objectives. Therefore it is dominated by Pareto optimal solutions. Multi-

objective optimization problem aims at obtaining a set of Pareto optimal

solutions.

Figure 3.17 Pareto optimal solutions of a bi-objective minimization problem.

f1(2)

f2(2)
2

f2(1)

f2(3)

f1(1) f1(3)

1

3

f1

f2

68

Another category in multi-objective optimization consists of non-Pareto

approaches. VEGA (Vector Evaluating Genetic Algorithm) developed by

Schaffer (1985) can be given as an example for these approaches. This

algorithm generates a number of sub-populations at each generation. Each

individual objective is assigned to one of these sub-populations as the

evaluation metric. As the individuals are selected using this metric in sub-

populations, in order to perform crossover and mutation operations in usual

way, all sub-populations are mixed again (Anderson, 2001).

A different non-Pareto technique is lexicographic ordering. This technique

ranks the objectives in the order of importance. The optimum solution is

found by minimizing the objective functions, starting with the most important

one and proceeding according to the order of importance of the objectives.

The last category comprises pareto based approaches. The first Pareto based

approach in multi-objective optimization was proposed by Goldberg (1989a).

Basically, these approaches find the individuals, which are Pareto non-

dominated by the rest of the population. Then, the highest rank is assigned to

these individuals and these individuals are removed from the population.

Another set of Pareto non-dominated individuals are determined from the

remaining of the population and the next highest rank is assigned to them.

This process repeats until the whole population is ranked as presented in

Figure 3.18. After that, the genetic operations are performed on this ranked

population. In the literature, there are also some variations of pareto based

optimization such as MOGA, NSGA and NPGA (Coello, 2002).

69

Figure 3.18 Pareto ranking (Fonseca and Fleming, 1993).

70

CHAPTER IV

EVOLUTIONARY DESIGN OF ENGINEERING

PRODUCTS AT FUNCTIONAL LEVEL

Roston (1994) indicated the similarity between a mechanical device and a

computer program in his Ph.D. thesis. While in a computer program, data is

operated on by functions to produce results, in a mechanical device, physical

objects are acted on by forces to produce an expedient effect as shown in

Figure 4.1. Design of either of a computer program or a mechanical device

seeks for a suitable mapping between the available inputs and desired output.

Figure 4.1 Black-box representations of a computer function and a mechanical device

(Roston, 1994).

To the question of “How can computers learn to solve problems without being

explicitly programmed?”, an answer has been raised by the theory of genetic

programming (GP) (Koza, 1992; 1994). This theory aims at programming

without need of a human programmer. To accomplish this aim, it starts with

randomly generated primitive program codes and breeds this population using

the principle of survival of the fittest and two genetic operations; crossover

and mutation.

Aforementioned similarity gives the idea of application of the automated

programming theory in software development to product development as

FUNCTION

DATA
RESULT

DEVICE

INPUT
OUTPUT

COMPUTER PROGRAM MECHANICAL DEVICE

71

automated design. There exist numerous attempts to automate design

process of engineering products. Some of them have been reviewed in

Chapter 2. Almost all of these attempts have focused on physical design

issues such as catalog search for component selection or parameter

optimization. However, there exists no previous effort to design of a functional

topology of an engineering product using evolutionary algorithms. In this

chapter, a theory on evolutionary design at functional level is addressed.

Before giving the details of this theory, some benefits of employing

evolutionary approach for functional design issues can be summarized as

follows;

• In the literature, there exists no functional reasoning technique

extracting design alternatives in a solution neutral way (i.e. without

referring any physical solution) except Pahl and Beitz’s approach

(1988). However, Pahl and Beitz’s approach (1988) does not consider

the law of vertical causality in the decomposition of design tasks.

Moreover, this approach does not propose a heuristic to prevent the

design from including overlapping functions. Finally, this approach

requires one to one correspondence between each function and a

physical component to generate physically realizable designs.

Evolutionary approach overcomes these difficulties by working on

initial populations, whose individuals are constituted by atomic

functions. The atomic functions do not require hierarchical

decomposition. Moreover, the independence of atomic functions and

physical achievability of them are assured by a well structured

functional vocabulary. In addition, the required heuristic to generate

workable function structures is inherent in the structures of viable

individuals in initial population.

• Generation of creative designs require the changes at functional level.

Therefore, it will be more effective to apply evolutionary methods

directly at functional level than at physical level and expecting

alterations in functional topology.

72

• Functional search space consists of infinitely many solution

alternatives. Evolutionary methods search for the most promising

solutions incorporating the guided and random search strategies. This

makes possible to extract solution suggestions difficult to find by

designers, who consider alternatives limited to only those conceived by

them.

• In the evolutionary methods, by means of a properly defined

evaluation measure, solution alternatives are generated independently

from the designer’s biases and foreseeing ability.

• In order to generate optimum designs, evolutionary approaches do not

require problem specific knowledge (i.e. understanding the working

principles of extracted solution). Therefore, evolutionary methods

search solutions in a domain independent space. This feature of

evolutionary methods supports the domain independent nature of

functional design process.

• Evolutionary methods carry out synthesis and analysis automatically.

Therefore the designer spends his/her time on definition of a proper

evaluation measure and construction of the initial population.

• Computer implementation is one of the essentials of automation.

Unlike some exhaustive search strategies (e.g. breadth-first search,

depth-first search etc.), evolutionary techniques are computer

implementable for very large solution spaces.

In the evolutionary design process, basically the general procedure shown in

Figure 3.2 is operated. Evolutionary design starts with the creation of an initial

population. All individuals in this population are evaluated by using an

objective function and a fitness value is assigned to each of them. By using

these fitness values and the average fitness of the population, the first genetic

operation, reproduction is performed. Reproduction operation determines the

fitter individuals in the current population and copies these individuals to the

next generation with a probability proportional to their fitness. Therefore,

fitter individuals in the population survive and others become extinct.

73

The next step is the modification of the individuals of this new population.

This step comprises two genetic operations: crossover and mutation. The

crossover operation aims to generate new individuals by crossing the selected

fitter individuals. Crossover operation starts with two parents and ends with

two new children. As parents are chosen proportionate to their fitness values,

crossover points on these parents are determined randomly. Then parent

individuals are crossed at that point and two new children emerge in the new

population. These operations on population are repeated until satisfying the

termination criterion. This algorithm of evolutionary design process is

presented in Figure 4.2.

Figure 4.2 Algorithm of Evolutionary Design process.

74

In order to operate this algorithm, evolutionary design requires the completion

of the following steps.

• A representation scheme covering all potential solutions in the search

space must be developed.

• Using this representation scheme, an initial population must be

constructed.

• An evaluation metric rating individuals in terms of their fitness values

must be described.

• Genetic operators that alter the composition of children must be

defined.

• Values for various parameters of evolutionary process such as

population size, probabilities of applying genetic operators, an error

value or maximum number of generations as a termination criterion

etc. must be assigned.

• Finally, computer implementation of evolutionary design process is

crucial for automation.

4.1 REPRESENTATION SCHEME

In evolutionary design process, representation scheme is a means to

represent solutions of the design task. As in the case of other evolutionary

methods, this representation scheme has to be general enough to cover all

possible solutions and permit the generation of new designs. It also has to be

eligible to computer implementation.

Development of a representation scheme and a formal grammar is essential

for evolutionary design process. It is expected that functional formation of the

generated artifact using this scheme must obey some strict grammatical rules.

This requirement guarantees to obtain the syntactically correct design

solutions at the end of genetic operations.

75

Different grammars are required for different phases of the design process

from functional design to form design. In general, as the construction of the

grammar is easier at abstract phases due to increasing complexity at latter

stages, the performance evaluation of the generated artifacts becomes more

difficult than at concrete phases (Roston, 1994). The main reason of this is

the high dependency of the performance calculations to the component

selections in physical domain.

In the construction of representation schemes and grammatical rules, the

biological terms genotype and phenotype correspond to two different views

used in evolutionary strategies.

In biology, genotype is simply the coded representation of an individual.

Phenotype is the “outward, physical manifestation” of the organism such as

physical parts, structures, tissues, organs and behaviors; anything that is part

of the observable structure, function or behavior of a living organism (Blamire,

1997). Naturally, genotype requires decoding to produce phenotype.

In artificial evolution, genotype representation is employed by genetic

algorithms. In genetic algorithms, the chromosome in the form of a fixed

length character string represents the encoded artifact. However, in the

genetic programming, the artifact itself (phenotype of artifact) is represented

by a tree structure. As genetic algorithms are powerful especially in parameter

optimization tasks, handling topology optimization problems becomes easier

using genetic programming. For that reason, tree based representation

scheme is used at early attempts in construction of evolutionary design

process (Güroğlu and Erden, 2003). The details of this representation scheme

and difficulties encountered in its application are given in following

paragraphs.

Rooted tree representation requires identification of the function and the

terminal sets appropriate to problem domain. As the functions become the

internal nodes, the terminals are the leaf nodes in the tree structure. The

76

functions, being a part of the representation scheme, are different from

functions constituting an artifact. As the first one configures the terminals in

the representation, the second one identifies the operations in an artifact to

generate the desired output.

According to the study of Stone et al. (1998) on functional dependencies,

function chains constituting artifacts are grouped into two namely; sequential

and parallel chains. In sequential function chains, the sub-functions must be

carried out in a specific order to generate the desired result. Functions in a

sequential chain use the output flow of previous function as its input flow.

Parallel chains comprise sets of sequential chains sharing one or more

common flows. By means of this classification, functions in representation

scheme of evolutionary design are determined as “SEQ” and “PAR”

corresponding to sequential and parallel chains respectively.

In the evolutionary design, terminals of tree based representation are the

operations, which are performed by the designed artifact, to obtain the

desired output flow from available input flows. The terminal set of

representation scheme consists of functions and flows defined in reconciled

functional basis developed by Stone and Wood (1999) and Stone et al. (2001).

This basis provides the designer with a standard language for the description

of artifacts. By using this basis, a terminal node is represented in the form of a

verb-object (i.e. function-flow) pair such as “import electricity” or “guide

particles”. Both of the function and the flow can be selected from any of the

three levels presented in Tables 2.1 and 2.2 depending on the specification

desired. After the definition of the terminals, these terminals are placed to

leaves of the rooted tree structure.

An illustration of tree based representation for a CD player is given in Figure

4.3. SEQ function at the root of the tree states that all sub-functions are

operated in a sequential order. These sub-functions correspond to the

modules of CD-Player such as supply electricity module, drive module, digital

data retrieval module and sound conversion module.

77

In this representation scheme, in order to construct a syntactically correct

configuration, all sequential and parallel modules should be placed in correct

order. This order is determined by the flows on modules. This requirement

violates the closure property of hierarchical representation in genetic

programming theory. To correct this deficiency, an extension of genetic

programming called “strongly typed genetic programming” (STGP) is

employed. Strongly typed genetic programming is an enhanced version of

genetic programming which enforces constraints on data types (Montana,

1995). Therefore, strongly typed genetic programming provides the

hierarchical representation scheme with being discriminatory about input data

types of functions to generate viable individuals.

Figure 4.3 Tree representation of CD player.

Although the violation of closure property is prevented by introducing the

concept of STGP, tests performed using this representation scheme indicated

that there are some drawbacks of describing artifacts using functional

dependencies. It was observed that the two definitions in the function set are

78

not enough to reveal all relations between functions in an artifact. In order to

cover all relations, in addition to sequential and parallel function chains, Ulrich

and Eppinger (1999) have proposed a third definition called “coupled function

chains”. Even though the coupled function chains are not found on the same

flow, they need the completion of each other to complete their tasks.

However, as this third definition assists revealing all relations between the

functions, it makes the representation more complex especially for genetic

operations.

Another shortcoming of tree based representation scheme originates from its

structural characteristic. In tree representation, each node has a single

ancestor and many descendants (i.e. children nodes). In some problems, a

node may need to have more than one ancestor. Especially in functional

description of artifacts, some function chains require multiple flows to operate.

Then, the tree based representation becomes inappropriate for describing the

relations between these function chains. In order to overcome all of these

difficulties, a graph based representation scheme was proposed for the

evolutionary design process.

Although graph based representation is not as common as the others, it is

generally preferred in topology design and optimization problems such as

truss design (Sushil, 1997), integrated circuit design, network routing (Hobbs

and Rodgers, 1998), scheduling (Özdemir and Mohan, 2001) or

nanotechnological molecule design problems (Lawton and Wipke, 1999).

A graph is constructed by connecting a set of vertices through edges. Each

edge connects two vertices. If the edges are directed, the graph becomes a

directed graph. Otherwise the graph is an undirected graph (Al-Hakim et al.,

2000).

In graph-based evolutionary design, solutions are represented by graph-

structured individuals and all evolutionary operations are performed on these

individuals. Functions and flows in an artifact correspond to the vertices and

79

edges in the graph respectively. The sequence of operations of functions is

expressed using directed edges and cycles representing flows in the artifact.

Therefore all flow motions in an artifact can be described in the functional

model using this representation. In addition, the function chains requiring

multiple input flows can easily be defined. In Figure 4.4, graph-based

functional representation of a CD player is illustrated. In this product, the

input flows are solid (CD), human energy and electricity, the desired output

flow is acoustic energy. These flows are at the boundaries of the system and

present the interactions between the environment and the product.

Import Solid

Position Solid

Secure Solid

Import Human
Energy

Import Electrical
Energy

Actuate Electrical
Energy

Regulate Electrical
Energy

Separate Electrical
Energy

Sol.

Sol.

H.E. H.E.

E.E.

E.E.

E.E.

Convert Electrical
Energy To
Rotational

Mechanical Energy

E.E.

Convert Electrical
Energy To

Electromagnetic
Energy

E.E.

Emit
Electromagnetic

Energy

Transfer
Mechanical Energy

Guide Mechanical
Energy

Em.E

R.M.E.

R.M.E

Rotate Solid

Sol.

R.M.E.

Export Solid

Sol.+R.M.E
Interrupt

Electromagnetic
Energy

Em.E.

Sol.+R.M.E.

Em.E.

Convert
Electromagnetic

Energy To
Electrical Energy

Regulate Electrical
Energy

Convert Electrical
Energy To

Acoustical Energy

Export Acoustical
Energy

E.E.

E.E. A.E.

Figure 4.4 Graph based representation of a CD player.

80

4.2 CREATION OF AN INITIAL POPULATION

In evolutionary methods, the second step after the determination of

representation scheme is the creation of an initial population. Initial

population can be generated randomly or a consciously prepared population

can be adopted. Although using randomly generated initial populations is very

common in applications of evolutionary methods, evolutionary design prefers

to work on a predetermined population.

Individuals consisting of function clusters must obey precise grammatical rules

to represent a workable solution alternative. Certain functions in the

reconciled functional basis, which is the vocabulary of formal representation

scheme, are limited to operate on certain types of flows. In evolutionary

design, this can be provided with either operating on already working function

structures or operating on a randomly created initial population by the help of

restrictions on genetic operations and powerful constraint handling algorithms.

As a randomly created population requires the definition of many constraints

and decreases the efficiency of evolutionary process, working function

structures inherently satisfy these constraints. The way of defining some

heuristics or restrictions to construct working individuals makes the design

process unmanageable.

Moreover, random generation of individuals may result in lack of diversity in

the population (i.e. not having a single feasible individual). Lack of diversity in

a population causes all individuals to have similar or equal fitness values.

Therefore it seriously limits the applicability of evolutionary process in highly

constrained search spaces.

However, some difficulties also appear in the use of designer defined initial

populations. First of all, an initial population should include all function chains

and flows required to construct at least one solution alternative for the design

task. For instance, if an initial population completely consists of pneumatic

systems, it can not be expected to produce a solution requiring an electro-

81

optic system (e.g. laser range finders, optical sensors etc.) from this

population. In order to overcome this problem, it would be beneficial to select

a part of the individuals among the members of similar product families to the

goal product. Intuitively, the proper selection of the remaining individuals

from other product families will provide the design process with creativity.

The studies performed on product design based on modular architecture

indicate that products in the same product family handle many common

modules to create product variants. In the study of Chandrasekaran and

Stone, (2001), these modules are classified into three major categories:

operational modules, carrier modules and form defining modules. Operational

modules are responsible for importation, conversion, transmission and end-

utilization of the energy. In other words, these modules run the product. The

carrier modules are responsible for carrying energy flow in a product. Finally,

form defining modules influence how the product looks physically. In Table

4.1, some consumer products are examined based on the presence or

absence of certain operational modules, which are the main modules in the

run of the product.

Table 4.1 Product-Operational Module Matrix adopted from Chandrasekaran and Stone
(2001).

Operational
Modules

Products Te

m
p

er
at

ur
e

C
on

tr
ol

Th
er

m
al

El
ec

tr
ic

al

R
ot

at
io

n

R
ot

at
io

n
 C

on
tr

ol

M
ag

n
et

ic

Electric Wok X X X
Toaster X X X X
Coffee Maker X X X
Kettle X X X
Iced Tea Maker X X
Café Trio X X X
Pop Corn Popper X X X X
Blender X X X
Juicer X X
Dough Machine X X X

82

This table proves that, from operational point of view, many modules are

repeated in several products belonging to similar product families. This

emphasizes the need for similar individuals to the goal product in construction

of initial population.

Another difficulty emerging in the selection of individuals probably stems from

the designer’s bias. Creativity as an evaluation measure, which is detailed in

Section 4.3.1.2, highly depends on the probability of occurrences of functions

and flows in initial population. Therefore the designer should perform the

individual selection process objectively to facilitate the diversity in initial

population.

The number of individuals in the initial population and the size of the

individuals are other criteria, which should be considered by the designer. In

order to generate high quality solution alternatives by effectively using

computational resources, the number of individuals in the initial population

and the size of the individuals should be properly determined by the designer.

4.3 EVALUATION METRICS

In order to achieve automatic evaluation of the generated design alternatives,

an evaluation metric, which will be used as an objective function, is required.

This objective function must express the designer’s intent and have the ability

to guide evolution process to generate feasible alternatives. It should also be

capable of evaluating all possible individuals that can be encountered in the

steps of evolution.

Although evolutionary design process can be operated using a single objective

function, the adopted evaluation measure should be suitable to handle

multiple objectives to search optimum alternatives for multi-criteria design

tasks. Moreover, constraint handling, one of major concerns of designers,

should also be considered in the development of this measure.

83

4.3.1 Objective Functions in Evolutionary Design

Cost and performance of an artifact are two of the most common evaluation

criteria in design problems. However, in early phases of the design process,

both of these criteria are difficult to observe. Although, some function costing

methodologies have been proposed to make a rough estimation of the product

cost in the literature, all of these methodologies require physical embodiment

of the product to operate. In the same way, performance calculations strictly

depend on the means selection for intended functions. Evolutionary design

process at the functional level requires evaluation measures independent of

physical solution alternatives. Therefore, “complexity” and “creativity” as two

means-independent evaluation measures are proposed in this study.

Complexity as a measure aims at guiding the evolutionary process to generate

simple designs in size based on the assumption that simple solutions have a

greater probability of success. This measure focuses on the complexity of the

artifact rather than the amount of effort required to design or manufacture it.

The other measure, creativity is handled as “novel combinations of old ideas”

as considered in Boden’s studies (1991). In evolutionary conceptual design,

these combinations take place at functional level. This measure leads the

evolution process to generate original and useful design alternatives.

4.3.1.1 Measuring the Complexity of an Artifact

In order to measure the complexity of an artifact, an information-based metric

is employed. According to this metric, structural complexity of a design is

interpreted as a function of its information content (Summers and Shah,

2003). This approach allows comparing generated design alternatives

according to their complexity level.

In the study of Summers and Shah (2003), a measure of structural complexity

for hierarchically represented systems has been proposed. This measure is

84

based on the information theory (Klir and Folger, 1988). The complexity

measure employed in the evolutionary design process is mainly inspired by

this structural complexity definition (Güroğlu and Erden, 2004). The changes

in the formulation are due to the differences in the representation methods.

As Summers and Shah (2003) handle a design hierarchically, in the

evolutionary design, functional structure of an artifact is described at a single

abstraction level. The abstraction level in a representation is guaranteed by

using a standard vocabulary.

The information included in a design appears in two different forms: operands

(entities) and operators (relationships). In representation scheme of

evolutionary design, as operands correspond to functions, operators represent

flows. A design artifact is a sequence of instances of operands and operators.

The information content of this sequence is calculated by joint entropy

equation.

The size of vocabulary “λ” is the summation of the number of unique

operands “ρ” and the number of unique operators “ν”.

υρλ += (4.1)

Assuming that all operators and operands are independent and identically

distributed, the probability of occurrence of each variable is calculated as;

λ
1)(=xP (4.2)

Information content of a specific sequence of operands and operators is

calculated through joint entropy equation;

()()∑ ⋅−=)(ln)(xPxPH (4.3)

85

According to this equation, the entropy of an artifact indicates the complexity

of design and it decreases as more information is collected (i.e. as the

probabilities involved increase). This measure is completely independent of

the form of the artifact. It basically focuses on the degree of interconnections

and size.

4.3.1.2 Measuring the Creativity in an Artifact

Creativity is often associated with unpredictability. According to Boden (1991),

creative ideas are brought into being by unusual and surprising combinations

of ideas. By definition, creativity is identified due to the improbability of

combination, which brings novelty.

However, every surprising or unpredictable idea cannot be identified as

creative at the same time. A creative idea must be useful, illuminating, or

challenging in some way (Boden, 1991). Therefore, constraints are essential

for identification of creativity in evolutionary design process. Constraints act as

the criteria of judgement. Random process without constraints, which give

birth to unpredictable and interesting ideas, causes first time curiosities.

However, a process, which is carried out with respect to constraints, can give

novel and useful ideas.

Genetic operations (i.e. mutation and crossover), which are the essence of

evolutionary design process, have random characters. For instance, mutations

do not happen for their capacity to bring individuals who can survive. While

mutations randomly generate variety in chromosomes, natural selection lets

the fit individuals to survive. Natural selection provides the constraints

necessary for fit individuals. On the other hand, crossover process operates in

a more constrained nature since it is carried out between two individuals,

which have high survival value. However, even in crossover operation, the

chromosomes are broken from random points.

86

“Improbability of combination”, which is mentioned in Boden’s study (1991),

can be handled as “low probability of occurrence” in evolutionary design

process (Güroğlu et al., 2005). The individuals, which have low probability of

occurrence, are regarded as the ones, which have original character with

respect to the individuals included in initial population.

Since the design process is based on identifying necessary functions and flows

and building a plausible structure from them, usefulness of the built structure

appears as the ultimate outcome. Designer’s goals and constraints determine

the usefulness of generated solution.

Creativity in generated artifacts is a relative measure. It can be computed by

comparing the generated individuals relative to the individuals in the initial

population. Therefore it is formulated considering the instances of unique

operands and operators in the initial population.

The total number of instances (N) of the whole elements in the vocabulary is

the summation of instances of each operands and operators in the initial

population.

 () ()∑ ∑∑
= ==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ+Φ=

n

i

l

k
ki

m

j
ji OFN

1 11
 (4.4)

where n, m and l correspond to number of individuals in the initial population,

number of unique operands and number of unique operators in the vocabulary

respectively. Φ and ψ indicate number of instances of each unique operand

(Fj=1..m) and operator (Ok=1..l) in the ith individual.

It is assumed that all operators and operands are independent. Unlike the

complexity measure, they are not identically distributed. Therefore, the

probability of occurrence of each operand and operator in the initial

population are calculated as indicated in Equations 4.5 and 4.6 respectively.

87

 ()
()

N

F
FP

n

i
ji

j

∑
=

Φ
= 1 (4.5)

 ()
()

N

O
OP

n

i
ki

k

∑
=

Ψ
= 1 (4.6)

Then for a specific sequence;

()() ()()()∑ += OPFPH lnln (4.7)

This measure provides the designer with a rough idea about the originality

involved by generated artifact comparatively to the individuals in initial

population. However, in order to assess this value as a measure of creativity,

the generated individual should satisfy the designer’s goals and constraints.

However, stand-alone application of the creativity measure may cause the

possibility of occurring unpredictability steming from complication (Boden,

1991). Non-deterministic nature of evolutionary process can be misleaded to

generate complicated solutions to reach creative ideas. Therefore the

complexity measure mentioned in Section 4.3.1.1 is required to control the

level of complication of generated artifacts.

In order to make the problem manageable, in calculation of the complexity

and the creativity measures, it is assumed that operands and operators are

mutually exclusive (usually not the case in design). As it is mentioned by

Summers and Shah (2003), this assumption make these measures

independent of domain restrictions and heuristics which require use of

conditional probabilities. Since all operands and operators are handled as

being mutually exclusive, the calculations result in relative measures. These

measures are also appropriate for evolutionary process.

88

4.3.2 Handling Constraints in Evolutionary Design

Constraints may arise in many forms in design. They determine feasible and

infeasible solution alternatives for the design task. Different constraints can be

defined depending on the designer’s needs.

In the evolutionary design, the design task itself is treated as a constraint,

which has a higher priority over the others. At functional level, the design task

is simply defined by a black box using available inputs to give desired outputs.

The design task as a constraint necessitates that all feasible solution

alternatives should import these available input flows and export the expected

output flows. This constraint forces the evolution process to generate feasible

solutions by penalizing the infeasible individuals. A penalty value is added to

the fitness values of the infeasible individuals by considering the amount of

constraint violation. The amount of constraint violation is determined by the

number of missing flows at the black box representation of the generated

artifact. Penalties make feasible individuals fitter than the others. For instance,

if the goal product is a kettle, the individuals, which take liquid and electricity

as the inputs and give hot liquid as the output are feasible. All of the other

individuals are infeasible and penalized. Each expected flow both at input and

output of the product is accepted as a distinct requirement, which must be

satisfied by the goal product.

4.3.3 Handling Multiple Objectives in Evolutionary Design

The easiest and perhaps the most widely used method to handle multi-criteria

design problems is the weighted sum approach. The logarithmic function in

both of the evaluation criteria mentioned above makes them additive.

Therefore, evolutionary design method adopts this approach.

The weighted sum method involves the aggregation of all the objective

functions using different weighting coefficients for each of them. Therefore

89

the multi-objective optimization problem is transformed into a scalar

optimization problem (Coello, 1996):

()∑
=

⋅
k

i
ii xf

1
min ω (4.8)

where 0ω i ≥ are the weighting coefficients representing the relative

importance of the objectives. Therefore this method provides the designer

with a way for earlier articulation of his/her preferences (Anderson, 2001). In

general

 ∑
=

=
k

i
i

1
1ω (4.9)

The results are highly dependent on the weighting coefficients. Therefore in

order to assign weighting coefficients, it is required to solve the same design

problem for many different values of iω . Moreover, since objective functions

have generally different magnitudes, in order to apply this method, they must

be normalized at first.

4.4 FORMULATION OF OPTIMIZATION PROBLEM

The constraints and objective function are combined to give the following

optimization problem:

minimize

() () ()XGXfXF k +=ρ, (4.10)

subject to

()DAI OOO ∪⊆

)(Xf : fitness value of the evaluated individual, X . This value is calculated by

using Equation 4.11.

90

() ()()() ()()()⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅⋅= ∑∑∑

==

flowsfunctionstotal n

j
j

n

i
i

n

OPFPXf
11

2
1

1 lnln1ln1 ω
λλ

ω (4.11)

The variables are defined as follows;

• wk: weight of kth criterion in objective function

• nfunctions: number of functions in evaluated individual, X .

• nflows: number of flows in evaluated individual, X .

• ntotal=nfunctions+nflows

• λ: size of the vocabulary

• P(Fi): probability of occurrence of ith function (operand) in the initial

population

• P(Oj): probability of occurrence of jth flow (operator) in the initial

population

• OI: flows of evaluated individual, X .

• OA: available flows

• OD: desired flows

•)(XG : static penalty function

Optimization function can be expanded by adding new criteria and constraints

depending on the design task.

4.4.1 Penalty Function

In the evolutionary design, the static penalty function is employed. Thus a

constant penalty is applied to the fitness values of infeasible individuals

without considering the current generation number.

As it is discussed in Section 4.3.2, all feasible individuals must have the same

input and output flows as the goal product. This necessity is handled as two

separate constraints in the evolutionary design process.

91

The penalty function for these two constraints is calculated as:

() ∑
=

⋅=
2

1i
ipCXG δ (4.12)

goalin

generatedingoalin

F
FF

_

__
1

−
=δ

 where

goalout

generatedoutgoalout

F
FF

_

__
2

−
=δ

•)(XG : penalty value of the evaluated individual, X .

• Cp: the penalty constant.

• iδ : the amount of violation of the ith constraint.

• Fin_generated: number of the same input flows in the generated individual

with the goal product.

• Fin_goal: number of input flows in the goal product.

• Fout_generated: number of the same output flows in the generated

individual with the goal product.

• Fout_goal: number of output flows in the goal product.

Although, a stepwise increase in the penalty (i.e dynamic penalty) puts more

selective pressure on the evolutionary process to find a feasible solution

(Joines and Houck, 1994), the performed tests have indicated that static

penalty is also able to cope with the probable diversity problem in an initial

population. In the test runs using static penalty, it is observed that even if

there is a single feasible individual in the initial population, the best individuals

of all runs are feasible. However, when additional constraints are imposed on

the design problem, the use of dynamic or adaptive penalties might be

necessary to improve the efficiency of evolutionary design process.

92

4.5 GENETIC OPERATIONS

The primary operations of evolutionary strategies, reproduction and crossover

are also adopted by evolutionary design method. The main idea behind the

genetic operations is the same with the genetic algorithms and the genetic

programming. However, there exist some changes in application depending on

the graph-based representation scheme. In the following sections,

reproduction, crossover and mutation operations are explained in detail.

4.5.1 Reproduction Operation

After the initialization of the population, the next step is the evaluation of the

individuals. Regarding the results of this evaluation, a reproduction algorithm

is operated. Any reproduction algorithm such as weighted roulette wheel

selection, rank selection or tournament selection etc. can be chosen by the

designer. At the end of this operation, the surviving and extinct individuals are

determined. Reproduction prepares the population to crossover operation.

This procedure repeats itself in each generation until reaching termination

criterion.

4.5.2 Crossover Operation

In evolutionary design process, a single point crossover operation is

employed. This operation separates individuals into two fragments from a

randomly selected crossover edge. In order to perform crossover operation,

edges cut (i.e. crossover edges) should represent the same flow at both of the

parents. Otherwise separated segments can not be connected in a symmetric

manner. By the replacement of the separated segments, two new individuals

are generated. Since the evolutionary design uses directed graphs,

convenience of the direction of the edges between the mating parts is also

important. Number of individuals participating in the crossover operation is

determined by the crossover probability defined by the designer.

93

In Figure 4.5, functional structures of parent individuals participating in a

sample crossover operation, CD player and Opto-mechanical mouse, are

presented. It is assumed that these parents are selected based on their fitness

values. Crossover points are determined by random selection between similar

flows available in both of the parents. In this example, one of the

electromagnetic energy flows is selected as the crossover edge for each

parent. The parents are cut at these edges and each graph is separated into

two. By considering the direction of the edges cut, the separated fragments

are replaced.

Import Solid

Position Solid

Secure Solid

Import Human
Energy

Import Electrical
Energy

Actuate Electrical
Energy

Regulate Electrical
Energy

Separate Electrical
Energy

Sol.

Sol.

H.E. H.E.

E.E.

E.E.

E.E.

Convert Electrical
Energy To
Rotational

Mechanical Energy

E.E.

Convert Electrical
Energy To

Electromagnetic
Energy

E.E.

Emit
Electromagnetic

Energy

Transfer
Mechanical Energy

Guide Mechanical
Energy

Em.E

R.M.E.

R.M.E

Rotate Solid

Sol.

R.M.E.

Export Solid

Sol.+R.M.E
Interrupt

Electromagnetic
Energy

Em.E.

Sol.+R.M.E.

Em.E.

Convert
Electromagnetic

Energy To
Electrical Energy

Regulate Electrical
Energy

Convert Electrical
Energy To

Acoustical Energy

Export Acoustical
Energy

E.E.

E.E.

A.E.

Crossover Edge

Parent I CD Player Parent II Opto-Mechanical Mouse

Figure 4.5 Parents participating in crossover operation, before crossover.

94

Child I Child II

Figure 4.6 Children obtained at the end of crossover operation.

Figure 4.6 presents the individuals obtained at the end of crossover operation.

The first child obtained at the end of the crossover operation can be embodied

by an encoder coupled to an electric motor that is frequently used where

speed control is required such as paper feeding mechanisms in inkjet printers

or differential drive systems of robots. The second child looks like a musical

instrument. It gives the user instant musical feedback as the user moves the

mouse. At present, a similar product called music mouse for Macintosh users

is commercially available in the market. Although in this example, crossover

operation produced two devices serving to certain purposes, this operation

95

often generates conversion and transmission modules for energy, matter and

information flows, which are not dedicated to a specific purpose.

4.5.3 Mutation Operation

Mutation is a secondary genetic operation. Although it is not a dominant force

in evolution, it aims at restoring lost diversity in early generations of

population.

In graph-based evolutionary algorithms, mutation operation replaces a graph

segment bordered by randomly selected mutation points with a randomly

generated graph segment. The same difficulties in random generation of the

initial individuals are also valid for random generation of graph segments.

Generation of operational segments (i.e. syntactically correct graph divisions)

requires the definition of large amount of constraints to guide generation

procedure. Otherwise mutation would require a costly repair operation.

Therefore mutation operation is not adopted at the present stage of the

evolutionary design process. It is operated by a crossover-driven approach.

4.6 CONTROL PARAMETERS

Control parameters adjusted by the designer determine the efficiency of

evolutionary process and quality of generated designs. These parameters are

described below:

• Population size: corresponds to number of individuals in the

population. As the large populations improve the quality of the result,

it also increases the computational cost.

• Number of generations: is the number of test, select and reproduce

cycles in evolution (Roston, 1994). It is determined empirically.

• Probability of crossover: determines the number of individuals

participating in the crossover operation. This value is also set

empirically.

96

• Maximum size of individuals: basically states the maximum number of

functions and flows that can be included by an artifact. It is adjusted

by the designer considering the computational costs in the evolution

process.

97

CHAPTER V

COMPUTER IMPLEMENTATION

5.1 SOFTWARE ARCHITECTURE

The software implementation of the evolutionary design theory is done at MS

Visual C++ programming environment using LEDA library developed in the

Max-Planck Institute of Computer Science and GALib developed at the MIT

CAD Lab.

GaLib is a C++ library of genetic algorithm objects (Wall, 1996). The library

supports all genetic operations and many representation types such as tree,

various strings and arrays except graphs.

Another C++ library, LEDA provides efficient data types and algorithms in the

fields of geometric computing, combinatorial optimization, graph and network

problems (Max-Planck Institute, 2004).

In computer implementation of evolutionary design process, genetic

operations defined in GALib are operated on graph based individuals

represented using LEDA library in C++ programming environment. Crossover

operation defined in GALib was redefined to make it appropriate for graph-

based individuals. Structure of the software is presented in Figure 5.1.

98

Figure 5.1 Structure of implemented software.

Using LEDA library, the graphs of the individuals that contain many different

types of nodes (i.e. functions) and edges (i.e. flows) are identified by means

of a structure shown in Figure 5.2. Besides connectivity map, this structure

holds the types of included functions and flows by graph.

Figure 5.2 Graph representation using LEDA library.

Steady-state genetic algorithm defined in GALib is adopted in the software

implementation. Instead of replacing all parents by their children as in

conventional GA, steady-state GA involves keeping a specified percentage of

the population and renewing the rest with the newly formed individuals. It is

empirically observed that steady-state GA prevents premature convergence of

population and reaches an optimal solution with fewer number of fitness

evaluations (Davis, 1991).

C +
+

 EN
VIRO

N
M

EN
T

O
U

TP
U

TS

IN
PU

TS
 Initial

Population &
Control
Parameters

Best and
Average
Fitness
Records for
Each
Generation

Feasible
Individuals

LE
D

A
LI

BR
AR

Y Individuals
Represented
in Graphical
Form

G
AL

ib

Genetic
Operations

Evaluation

struct GraphStruct {
graph *G;
node *Nodes;
edge *Edges;
int *NodeInfo;
int *EdgeInfo;

};

99

The developed software has a modular architecture as shown in Figure 5.3.

This feature makes the software eligible for future improvements especially for

the definition of new objective functions or genetic operations such as multi-

point crossover or mutation. New design criteria depending on the design task

can be easily implemented by only an addition of a new objective function to

evaluation module of the software. Moreover, the software allows changing

selection algorithms used in reproduction operation by providing the designer

with predefined selection schemes such as rank selector, roulette wheel

selector, tournament selector or deterministic sampling selector. The control

parameters (e.g. number of generations, probability of crossover etc.) of

evolutionary process can also be altered by designer easily. Fitness value of

the best individual and average fitness value of the population is recorded for

each generation of the evolution process. All feasible individuals encountered

in these generations are also presented as an output of the software.

Figure 5.3 Modules of the software.

INPUT
MODULE

EVALUATION
MODULE

SELECTION
MODULE

OUTPUT
MODULE

GENETIC OP.
MODULE

CONTROL
PARAMETERS

100

5.2 INITIAL POPULATION

The initial population is constructed by considering the criteria mentioned in

Section 4.2. 100 products have been selected and functional models of these

products have been built. These products are mainly consumer oriented,

household appliances, hand held construction tools, mechanical or electro-

mechanical devices and energy conversion modules.

The initial population comprises;

• A group of individuals selected from kitchen appliances. It belongs to

the same product family of the goal product, which is designed in

Section 5.4.

• Some products belonging to other product families. In the selection of

these products, products consisting of similar modules are avoided.

Products including distinct modules are modeled, e.g. Peltier cooler,

crystal microphone etc.

• Some simple components and energy conversion modules (e.g.

solenoid, photo-voltaic cell, piezoelectric actuator etc.).

• Some gauges and transducers (e.g. thermocouple, pressure gauge

etc.) to increase the variety in the initial population.

5.3 EVALUATION OF INITIAL POPULATION

The initial population is evaluated with respect to both the complexity and the

creativity measures proposed in Sections 4.3.1.1 and 4.3.1.2. The resulting

histograms for the normalized values of these measures are presented in

Figures 5.4 and 5.5 respectively.

The complexity values of the artifacts in the initial population presents a

roughly Gaussian distribution as shown in Figures 5.4. This validates the

unbiased construction of the initial population with respect to this criterion.

101

The only exception is observed in the distribution of the complexity values at

the left most part. This is originated from inclusion of simple components,

energy conversion modules, gauges and transducers to initial population.

Initial Population

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Complexity Values

N
u

m
b

er
 o

f
In

di
vi

du
al

s

Frequency

Figure 5.4 Frequency distribution of the individuals in the initial population with

respect to their complexity values.

Initial Population

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Creativity Values

N
u

m
b

er
 o

f
In

di
vi

du
al

s

Frequency

Figure 5.5 Frequency distribution of the individuals in the initial population with

respect to their creativity values.

102

According to the creativity criterion, the individuals with a low probability of

occurrence have high creativity values. There are a small number of these

individuals in the initial population as shown in Figure 5.5. However, the

simple individuals and the individuals including the modules, which are

repetitive in the initial population, have high probability of occurrence and

they constitute the significant part of the population.

In order to demonstrate the application of evaluation measures, computation

results for a representative sample having 15 of the 100 products are

presented in the following sections. These products consists of bath scale,

magnetic door bell, hand vacuum, humidifier, electric tooth brush, electric

wok, hair drier, kettle, rice cooker, electric knife, blender, deep fryer, espresso

machine, coffee maker and iced tea maker.

5.3.1 Computation of the Complexity Values for the Sample

Population

The complexity values of the sample population are computed and presented

in Table 5.1. The values are sorted in the ascending order. The simplest

design has the value of 0.217 and the most complex design has the value of

0.883.

Table 5.1 The sample population sorted with respect to the complexity evaluation.

INDIVIDUAL COMPLEXITY
1 Bath Scale 0.217
2 Magnetic Door Bell 0.217
3 Hand Vacuum 0.317
4 Humidifier 0.350
5 Elec. Tooth Brush 0.350
6 Electric Wok 0.367
7 Hair Drier 0.367
8 Kettle 0.367
9 Rice Cooker 0.383
10 Electric Knife 0.433
11 Blender 0.483
12 Deep Fryer 0.517
13 Espresso Machine 0.617
14 Coffee Maker 0.650
15 Iced Tea Maker 0.883

103

In interpreting the results, it should be considered that the complexity

measure evaluates the size and degree of interconnections in functional

representation. This should not be confused with the form complexity. As

suggested by Suh (1990), in the functional design, employing independent

functions is essential to increase the probability of success of an artifact. In

other words, independent functions decrease the difficulty in achieving the

design task. On the contrary, in physical design, physical coupling is

encouraged. Integration of more than one function in a single part, as long as

the functions remain independent, reduces form complexity of the artifact.

Therefore the complexity values presented below should not be handled

through conceiving of forms of the artifacts.

The table indicates that bath scale shown in Figure 5.6 and iced tea maker

shown in Figure 5.7 are the simplest and the most complex products

respectively. This is an expected result when the number of functions and

flows of the two products are considered.

Figure 5.6 Functional structure of the bath scale.

104

Import Solid Import Human
Energy

Import
Electrical
Energy

Store Solid
Transfer
Electrical
Energy

Actuate
Electrical
Energy

Sol.

H.E.

E.E.

E.E.

E.E.

Sol.

Convert
Electrical
Energy to
Thermal
Energy

Th.E.

Transfer
Thermal
Energy

Import Liquid

Store Liquid

Liq.

Transfer
Liquid

Liq.

Change Liquid

Th.E.

Liq.

Guide Liquid

Liq.+Th.E.

Mix Liquid and
Solid

Liq.+Th.E.

Separate Solid

Liq.+Sol.+Th.E.

Guide Liquid

Store Liquid

Guide Liquid

Store Solid

Export Solid

Sol.+Th.E

Sol.+Th.E.Liq.+Th.E.

Liq.+Th.E.

Liq.

Import Solid

Store Solid

Sol.

Secure Solid Secure Solid

Mix Liquid and
Solid

Distribute
Thermal
Energy

Liq.+Th.E.

Liq.

Sol.Sol.

Sol.

Export Liquid

Liq.

Figure 5.7 Functional structure of the iced tea maker.

Table 5.1 also illustrates that the complexities of the kettle shown in Figure

5.8a and the hair drier shown in Figure 5.8b are identical as both of these

devices have the same number of functions and flows.

105

a. Kettle. b. Hair drier.

Figure 5.8 Functional structures of the kettle and the hair drier.

5.3.2 Computation of the Creativity Values for the Sample Population

The creativity values of the sample population are computed and presented in

ascending order in Table 5.2. This measure expresses unpredictability of the

designs based on the frequency of occurrence of the functions and the flows

in the initial population.

The iced tea maker is now the most creative design in the population.

However, it might not be the real situation. The stand alone application of

creativity misleads the evolutionary process to generate designs with low

probability of occurrence due to their complicated structures rather than their

exceptional attributes. Therefore, for the evolutionary design process, it is a

necessity to apply both of these measures together through a multi-objective

optimization strategy.

106

Table 5.2 The sample population sorted with respect to the creativity evaluation.

INDIVIDUAL CREATIVITY
1 Magnetic Door Bell 0.159
2 Bath Scale 0.199
3 Elec. Tooth Brush 0.246
4 Hand Vacuum 0.251
5 Humidifier 0.256
6 Hair Drier 0.269
7 Electric Wok 0.278
8 Kettle 0.282
9 Electric Knife 0.306
10 Rice Cooker 0.315
11 Blender 0.361
12 Deep Fryer 0.414
13 Espresso Machine 0.537
14 Coffee Maker 0.542
15 Iced Tea Maker 0.750

5.4 TEST CASE

5.4.1 Goal

As a case study, design of a product, which cooks food (e.g. potato,

mushroom etc.), has been performed by using the developed software with

the initial population mentioned above. The black box representation of this

design task is given in Figure 5.9.

Figure 5.9 The black box representation of the design task.

The black box representation of the product presents a high level description

of the design task, which consists of the necessary flows at the boundaries of

the product and the objectives. In the design of a cooker, the necessary flows

are food and hot food. During the evolutionary process, these flows are

treated as the constraints of the design task. In order for an individual to be

Objective: Cook Food

Food Hot Food

107

feasible, it should have these flows at its boundaries (i.e. its inputs and

outputs). The individuals that violate these constraints are penalized by using

the penalty function proposed in Section 4.4.1.

During the tests, the available flow is simply identified as “solid”, which

corresponds to the raw food and the desired output flow is “thermal energy +

solid”, which represents the cooked food. It is expected that evolutionary

process searches for different ways of cooking such as heating, boiling, frying

baking, steaming etc. starting from the initial population. The feasible

individuals present in the initial population are only rice cooker, microwave

oven and electric wok.

The last step is the identification of control parameters. After performing

numerous test runs, the control parameters of the evolutionary process were

set to the values as shown in Table 5.3. The replacement percentage

mentioned in the fourth row specifies the percentage of the population to

replace at each generation.

Table 5.3 The run-time control parameters of the evolutionary process.

Size of the Initial Population 100
Maximum Number of Generations 120
Crossover Probability (pc) 0.95
Replacement Percentage 0.10
Penalty Constant (Cp) 0.50
Termination Criterion maximum number of generations

5.4.2 Results

In order to employ both of the evaluation measures, the weighting coefficients

(i.e. ω1 and ω2 in Equation 4.11) of the multi-criteria objective function must

be determined. Since the results of the evolution process can vary significantly

as the weighting coefficients change, the necessary approach is to solve the

same problem for many different values of the weighting coefficients (ωi)

(Coello, 2001). For this purpose, some test runs were again performed. The

results of these test runs indicate that the evaluation measure, which has a

108

greater weighting coefficient than 0.5, becomes dominant and the evolution

process searches for the global minimum of this measure. As a result, both of

the weighting coefficients were set to 0.5. The outputs of the software runs

with the stand alone and combined applications of these evaluation measures

are presented in the following sections.

GALib, which is used to perform genetic operations, maximizes the defined

objective function by default. Therefore, the inverse of the objective function

defined in Equation 4.11 has been taken in the computer implementation.

5.4.2.1 The Experiments Concerning the Stand Alone Application of

the Complexity Measure (ω1=1, ω2=0)

The global minimum of the structural complexity measure should theoretically

yield the feasible design shown in Figure 5.10. This design imports thermal

energy from an external source without paying any effort to generate it.

Figure 5.10. The simplest cooker design.

The test-runs performed for the stand alone application of the complexity

evaluation measure have converged to this simplest design. However, in some

of the runs, it has been observed that, the evolution got stuck in a local

minimum representing a feasible but a more complex design. The results of a

typical test run, which the evolution converged to the global minimum, are

presented in Figures 5.11 and 5.12.

109

0 20 40 60 80 100 120
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.11 The average fitness values of the population throughout the evolution

process in the experiment with the weighting coefficients of ω1=1, ω2=0.

0 20 40 60 80 100 120

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.12 The best (i.e. maximum) and the worst (i.e. minimum) fitness values

obtained throughout the evolution process in the experiment with the weighting

coefficients of ω1=1, ω2=0.

110

The fitness values of the best individual in the initial population monotonically

increase as shown in Figure 5.12. This is a result of the steady-state genetic

algorithm, which always keeps the best individuals in each generation.

5.4.2.2 The Experiments Concerning the Stand Alone Application of

the Creativity Measure (ω1=0, ω2=1)

As it is discussed in Section 5.3.2, theoretically the stand alone application of

the creativity measure forces the evolutionary process to generate complex

individuals due to their low probability of occurrences. The following two

experiments have also validated this result.

Experiment 1:

The average fitness values of the population during the evolution process in

the experiment 1 are given in Figure 5.13.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.13 The average fitness values of the population throughout the evolution

process in the experiment 1 with the weighting coefficients of ω1=0, ω2=1.

111

Figure 5.14 illustrates the maximum and the minimum fitness values of the

individuals in each generation.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.14 The best and the worst fitness values obtained throughout the evolution

process in the experiment 1 with the weighting coefficients of ω1=0, ω2=1.

In the experiment 1, it was observed that at the end of the generations, the

evolution process converged to the individual shown in Figure 5.15. Although

the converged solution is a feasible solution, it is very complex and includes

unnecessary modules. In this design, the section bordered with a dashed

rectangle itself is able to satisfy the design goal. Unlikely, the following part

looking like a cooling radiator is completely unnecessary. However, by the

addition of this part, the increasing complexity decreases the probability of

occurrence of the generated design and so increases the creativity value.

112

Figure 5.15 The best design alternative generated in the experiment 1 with the

weighting coefficients of ω1=0, ω2=1.

Experiment 2:

In the experiment 2, the average fitness values of the population and the

minimum-maximum fitness values encountered during the generations are

presented in Figure 5.16 and 5.17 respectively. The best individual found at

the end of the process is given in Figure 5.18.

113

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.16 The average fitness values of the population throughout the evolution

process in the experiment 2 with the weighting coefficients of ω1=0, ω2=1.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.17 The best and the worst fitness values obtained throughout the evolution

process in the experiment 2 with the weighting coefficients of ω1=0, ω2=1.

114

Figure 5.18 The best design alternative generated in the experiment 2 with the

weighting coefficients of ω1=0, ω2=1.

In Figure 5.18, the section in the dashed rectangle introduces a boiler design

and this part is sufficient to fulfill the design goal. The remaining part

resembling an evaporator only increases the complexity of the generated

individual.

115

5.4.2.3 The Experiments Concerning the Combined Application of the

Complexity and the Creativity Measures (ω1=0.5, ω2=0.5)

In order to prevent designs from having unnecessarily complex structures in

the generation of creative solutions, the combined application of the

complexity and the creativity measures is required. This fact is shown in the

following experiments.

Experiment 1:

The best individual generated during the experiment 1 is a boiler working with

solar energy as shown in Figure 5.19. It is observed that this individual is

composed of an energy conversion module, some parts from the photo-voltaic

cell and the rice cooker.

The changes in the average fitness values of the population during the

generations are presented in Figures 5.20. Moreover, Figure 5.21 illustrates

the fitness values of the best and the worst individuals at each generation.

Figure 5.19 The best design alternative generated in the experiment 1 with the

weighting coefficients of ω1=0.5, ω2=0.5.

116

0 20 40 60 80 100 120
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.20 The average fitness values of the population throughout the evolution

process in the experiment 1 with the weighting coefficients of ω1=0.5, ω2=0.5.

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.21 The best and the worst fitness values obtained throughout the evolution

process in the experiment 1 with the weighting coefficients of ω1=0.5, ω2=0.5.

117

Experiment 2:

In the experiment 2, the best individual is again a strange kind of boiler as

shown in Figure 5.22. It generates thermal energy by converting the imported

rotational mechanical energy. Although this type of conversion is usually

encountered as a type of energy loss in the household appliances, it may be

likened to the energy conversion observed in the spin or the friction welding

processes.

The average fitness values of the population throughout the evolution process

are given in Figure 5.23. Similarly, the best and the worst fitness values

obtained throughout the evolution process can be observed in Figure 5.24.

Figure 5.22 The best design alternative generated in the experiment 2 with the

weighting coefficients of ω1=0.5, ω2=0.5.

118

0 20 40 60 80 100 120
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.23 The average fitness values of the population throughout the evolution

process in the experiment 2 with the weighting coefficients of ω1=0.5, ω2=0.5.

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.24 The best and the worst fitness values obtained throughout the evolution

process in the experiment 2 with the weighting coefficients of ω1=0.5, ω2=0.5.

119

Experiment 3:

In the experiment 3, a cooker similar to the simplest design in Figure 5.10 is

generated as the best individual. This design also imports thermal energy

without paying any effort to generate it. However, instead of applying this

thermal energy to the raw food, the stored liquid is heated and the food is

cooked by hot liquid as shown in Figure 5.25. The Figures 5.26 and 5.27

indicates the changes in the average fitness values of the population and the

fitness values of the best and worst individuals throughout the process

respectively.

Figure 5.25 The best design alternative generated in the experiment 3 with the

weighting coefficients of ω1=0.5, ω2=0.5.

0 20 40 60 80 100 120
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.26 The average fitness values of the population throughout the evolution

process in the experiment 3 with the weighting coefficients of ω1=0.5, ω2=0.5.

120

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.27 The best and the worst fitness values obtained throughout the evolution

process in the experiment 3 with the weighting coefficients of ω1=0.5, ω2=0.5.

Experiment 4:

In the experiment 4, the best individual generated throughout the evolution

process works with chemical energy as shown in Figure 5.28. This design

consists of an energy conversion module and the parts from the electric

generator, the electric wok.

The tendency of average fitness values of the population during the evolution

process is illustrated in Figure 5.29. The fitness values of the best and the

worst individuals are also presented in Figure 5.30.

121

Figure 5.28 The best design alternative generated in the experiment 4 with the

weighting coefficients of ω1=0.5, ω2=0.5.

0 20 40 60 80 100 120
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.29 The average fitness values of the population throughout the evolution

process in the experiment 4 with the weighting coefficients of ω1=0.5, ω2=0.5.

122

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.30 The best and the worst fitness values obtained throughout the evolution

process in the experiment 4 with the weighting coefficients of ω1=0.5, ω2=0.5.

Experiment 5:

In the experiment 5, the best individual resembles a microwave oven working

with solar energy as shown in Figure 5.31.

Figure 5.31 The best design alternative generated in the experiment 5 with the

weighting coefficients of ω1=0.5, ω2=0.5.

123

The changes of the average fitness values and the fitness values of the best

and worst individuals during evolution are presented in Figures 5.32 and 5.33

respectively.

0 20 40 60 80 100 120
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Generations

A
ve

ra
ge

 F
itn

es
s

V
al

ue
s

Figure 5.32 The average fitness values of the population throughout the evolution

process in the experiment 5 with the weighting coefficients of ω1=0.5, ω2=0.5.

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Generations

M
in

im
um

 a
nd

 M
ax

im
um

 F
itn

es
s

V
al

ue
s

fo
r t

he
 G

en
er

at
io

ns

minimum
maximum

Figure 5.33 The best and the worst fitness values obtained throughout the evolution

process in the experiment 5 with the weighting coefficients of ω1=0.5, ω2=0.5.

124

During the test runs, some interesting feasible individuals are also observed in

the intermediate generations. Although the evolutionary process does not

converge to these individuals, it is beneficial for the designer to investigate

them. Some of these individuals arising in the intermediate generations of the

experiments are presented below.

In Figure 5.34, a feasible design alternative, which has the similar operating

principles with a steam cooker, is presented. In this design, thermal energy is

used for producing steam and cooking process is performed by the produced

steam.

Figure 5.34 A steam cooker arising in the intermediate generations of the experiments

with the weighting coefficients of ω1=0.5, ω2=0.5.

A popcorn popper working with solar energy is another feasible design

alternative arising in the intermediate generations. This design uses hot gas to

cook the raw food as shown in Figure 5.35.

125

Import Solid

Store Solid

Change Solid

Export Hot
Solid

Sol.

Sol.

Sol.+Th.E.

Import Gas
Import Solar

Energy

Guide Gas
Convert Solar

Energy to
Electrical
Energy

Convert
Electrical
Energy To
Mechanical

Energy

Convert
Mechanical
Energy To
Pneumatic

Energy

Change Gas

Sol.E.

E.E.

Gas+Pn.E.

Gas

Convert
Electrical
Energy To

Thermal Energy

E.E.

Th.E

Gas+Pn.E+Th.E

Gas R.M.E.

Figure 5.35 A popcorn popper arising in the intermediate generations of the

experiments with the weighting coefficients of ω1=0.5, ω2=0.5.

A press toaster-like design shown in Figure 5.36 is also a feasible solution

alternative generated in the intermediate steps of the evolution.

Figure 5.36 A toaster arising in the intermediate generations of the experiments with

the weighting coefficients of ω1=0.5, ω2=0.5.

126

In the experiments, two different types of boiler have also been observed.

The first type boiler shown in Figure 5.37 heats water and mixes the hot

water and the raw food.

The second type boiler illustrated in Figure 5.38 has a more interesting

working principle. It produces steam and uses it to control the temperature of

the hot water as in the case of the espresso machine. In this design, the hot

water is not applied to the raw food, unless the sufficient amount of steam is

stored.

Figure 5.37 The first type boiler arising in the intermediate generations of the

experiments with the weighting coefficients of ω1=0.5, ω2=0.5.

127

Import
Liquid

Import
Electrical
Energy

Store Liquid
Convert
Electrical
Energy To
Thermal
Energy

Guide Hot
Liquid

Liq. E.E.

Import Solid

Store Solid

Sol.

Convert
Liquid To

Gas

Store Hot
Gas

Gas+Th.E.

Change
Solid

Liq.+Th.E.

Sol.

Export Hot
Solid

Sol.+Th.E.

Gas+Th.E.

Change
Liquid

Liq.

Liq.

Liq.+Th.E.

Th.E.

Figure 5.38 The second type boiler arising in the intermediate generations of the

experiments with the weighting coefficients of ω1=0.5, ω2=0.5.

Figure 5.39 A solar cooker arising in the intermediate generations of the experiments

with the weighting coefficients of ω1=0.5, ω2=0.5.

128

In Figure 5.39, an interesting solar cooker generated by evolutionary process

is presented. Although it utilized hot water to cook the raw food, it does not

work like a boiler. The operating principle of this cooker is more similar to a

radiator. The hot water and the raw food are never mixed, only a heat

exchange occurs between them.

Another strange type of cooker is given in Figure 5.40. In this design, two

different solid foods are coupled and pierced (or squeezed) before cooking.

The cooking process involved in this design is the same as the microwave

oven.

Figure 5.40 A strange type of cooker arising in the intermediate generations of the

experiments with the weighting coefficients of ω1=0.5, ω2=0.5.

129

CHAPTER VI

DISCUSSION AND CONCLUSIONS

6.1 SUMMARY AND DISCUSSIONS

The main goal of this thesis is the development of an effective methodology to

generate creative solutions for the design tasks without binding solution

spaces with the designers’ individual experiences and prejudices. Therefore an

evolutionary methodology for the functional level conceptual design of

engineering products has been proposed.

The 20th century French mathematician Hadamard defines invention or

discovery, whether in mathematics or anywhere else, as the novel

combination of old ideas (Goldberg, 2004). This statement clarifies this work

with its two aspects. First, the combination might result in better than notion

taken individually. Second, to produce a creative solution, this combination

should be performed on ideas instead of means. From engineering point of

view, both of them bring new and important aspects into traditional design

approach.

The human way of thinking in combination of ideas stemming from knowledge

and experiences to generate creative or innovative solutions is a very intricate

subject to understand. This is still the primary goal of many ongoing research

studies in the area of cognitive science. Therefore, in order to bring creativity

into foreground in the design activities, the proposed methodology employs

evolutionary algorithms, which are search procedures based on the mechanics

of natural genetics and selection (Goldberg, 1997). Although it is a search

130

procedure rather than a reasoning technique, it might still set an analogy

between evolutionary design process and designer’s activities. As the genetic

operations: crossover and mutation take on the designer’s activities to

perform combination and modification of the existing solutions, the evaluation

procedure forces the process to act similar to the designer’s behavior following

his/her inference.

In the literature, there exist many studies adopting evolutionary process in

design of engineering artifacts, some of which are mentioned in Chapter 2. All

of these studies operate evolutionary algorithms at physical level because of

the habits arising form the traditional engineering approach (i.e. bottom-up

design). Although these applications become fruitful especially in design

optimization tasks, they usually generate functionally equivalent variants.

Therefore, in order to generate differences far beyond the physical formation,

this study operates evolutionary algorithms at functional level.

In the literature, the problems of accomplishing the conceptual design process

completely at functional level are addressed as:

• Its need for a finite, distinct and complete function set to cover all

operations, which are performed by the artifacts.

• The lack of a reasoning technique, which does not violate the law of

vertical causality, in searching for the form independent solutions.

• Difficulties encountered in evaluating generated solutions at abstract

levels of the design process.

In order to overcome the first difficulty, the proposed methodology utilizes a

functional basis as a vocabulary. This basis aims to achieve a repeatable and

meaningful representation way for the artifacts without relying on the physical

structure. The second difficulty was defeated by abandoning hierarchical

representation (i.e. representation in tree form) of the design task. Through

the atomic function and flow definitions of vocabulary, it becomes possible to

represent artifacts at a single level of abstraction (i.e. representation in graph

131

form) without need for further decomposition. Finally, to be able to compare

artifacts at functional level, two evaluation measures, the complexity and the

creativity were proposed.

Neither the creativity nor the complexity is appropriate for being a standalone

objective function of the evolutionary design process. The creativity measure

drives the evolutionary process to unpredictable combinations of individuals in

the initial population through the crossover operation. The design constraints

make these combinations creative design alternatives, which is the main goal

of the evolutionary design process. This measure is based on the assumption

that the feasible designs having unusual operating principles are creative.

However, it should be noticed that the complexity is another factor originating

unusual designs. Therefore, in order to lead the design activity to genuine

feasible solution alternatives without any doubt, another measure managing

the complexity of solutions is required. The combined use of the complexity

and the creativity measures generate inventive alternatives for the design

tasks.

The value indicated by the complexity measure expresses the difficulty of

achieving of a design task. Although in many times the design activities

starting with complex functional designs conclude with the products having

complex forms, it is not a direct measure of the form complexity. In the

evolutionary design, the degree of complexity of a generated artifact is not

the sole concern of the designer. Instead, this measure is employed primarily

for its supportive attribute to the creativity measure.

In addition to the aforementioned difficulties in development of such a

methodology, some others have also been encountered throughout the study.

First of all, the need for a generic representation scheme of evolutionary

process is satisfied by employing the directed graphs. Unlike the string based

or the tree based representation schemes, this representation seems working

well in revealing interconnections and operation sequence besides the

132

identification of the required functions. This representation is also eligible for

the definition of the genetic operations and the computer implementation.

Additionally, engineering design unavoidably requires dealing with a significant

number of problem specific constraints. Although evolutionary algorithms

operate successfully in unconstrained environments, some constraint handling

techniques are needed to produce feasible alternatives for the constrained

optimization problems. In the implementation of the evolutionary design

process, it was observed that the static penalty is able to cope with the

diversity problem that might be encountered in the initial population. The

performed tests show that even if there is only a single feasible individual in

the initial population, the best individual generated during the evolution is

always a feasible individual. The coefficients of static penalty are optimized by

performing many test-runs according to the design problem and the employed

initial population.

The presence of several objectives is typical for engineering design problems.

Two evaluation measures are presently used in the evolutionary design

process. In order to accomplish multi-criteria optimization, the weighted sum

method is employed. This method is required to carry out the synthesis with

different objective function weights in a systematic way to have a complete

understanding of the design task at hand (Cetin, 2003). In the evolutionary

design, the weights are determined by performing numerous test runs.

6.2 CONTRIBUTION OF THE THESIS

This is the first study that implements the evolutionary approach to the

conceptual design phase. The main contribution of the evolutionary design

methodology is to propose a tool to automate the most critical and ambiguous

stage of the design process. In the traditional approach, the designer

accomplishes this stage with his/her experience and intuition, lacking

immediate feedback about his/her design decisions. Automation by the

133

proposed methodology decreases the dependency of the design activity on

the designer. Therefore, it increases the quality of generated designs and the

efficiency of the design process. It also presents a systematic design approach

for less or inexperienced designers and facilitates a base for experienced

designers to conceive the other solution alternatives beyond their experiences.

The developed methodology proposes a set of feasible functional designs to

the designer at the end of the conceptual design phase. Each functional

design may have numerous physical solution alternatives at the embodiment

design phase. Thus, the designer’s freedom is kept throughout the design

process. It is important especially for the form optimization of the artifact.

Automation in the generation of design alternatives, which is a tedious task

for designers, facilitates the designer to concentrate on the evaluation issues

only. Hence, the development of new evaluation measures, the constraint

handling and the multi-criteria optimization techniques become the primary

concerns of designer.

6.3 THE DIFFICULTIES IN THE OPERATION OF THE EVOLUTIONARY

DESIGN PROCESS

Besides all these merits, there are also some difficulties in the application of

the evolutionary design methodology.

• Besides the best individuals found at the end of the design process,

the individuals generated at the intermediate steps of the evolution are

also very important. Since, the thousands of feasible individuals are

generated during the evolution, the overlooking of the important part

of these designs is one of the major difficulties in the operation of

evolutionary design process.

134

• The generated individuals may require interpretations to conceive its

operating principles. The designers should avoid getting stuck in the

known physical solution alternatives in interpreting the generated

designs.

• Since no repair algorithm is operated, the generated individuals may

require some modifications.

• Working on non-uniform initial populations limits the effectiveness of

the evolutionary process. Moreover, the diversity in the initial

population is important for the constrained handling. Therefore, the

definition of the initial population is a critical issue influencing the

result substantially.

• The evolutionary methodology requires problem specific multi-

objective optimization and constraint handling techniques. These

techniques determine both the efficiency and the reliability of the

process. Therefore, the evolutionary design methodology needs

designers knowledgeable about these techniques to operate efficiently.

• In the traditional engineering design activities, designers intuitively

avoid some possible impractical design alternatives. All criteria to

distinguish these alternatives from viable designs should be defined in

the evolutionary design process, otherwise impractical solutions

becomes inevitable. In some applications, the impractical solutions are

eliminated by employing interactive evolutionary algorithms.

• It should be noticed that, many of the today’s consumer products have

been developed by designers throughout their historical development

period. This period acts as a natural evolution process, which leaves a

little to the evolutionary design process. Therefore, finding creative

solutions for these products every time is impossible to achieve for the

evolutionary design process.

135

• Finally, in computer implementation, the size of generated artifacts is

limited due to the increasing computational cost for larger artifacts.

Although this limitation is not a problem for the test case of the

household appliance design, this may be a problem in generation of

more complicated artifacts.

6.4 SUGGESTIONS FOR FUTURE WORK

The evolutionary design methodology has many promising paths for future

research; some of them are given below.

• Expanding the Initial Population: The performed test runs indicated

that especially feasible individuals in the initial population have a

significant effect on the generated designs. Therefore, the initial

population should be expanded through increasing the feasible

individuals.

• Application of the evolutionary design process to different design

tasks: In this thesis, the evolutionary design process has been applied

to the design of a household cooker, which is a very difficult task to

find innovative solutions due to its long historical improvement

background. Although, this case study has also resulted in different

solution alternatives, working on the design topics, which are more

open to the advances in technology, such as automotive engineering

or aerospace engineering, may generate more innovative design

solutions.

• Definition of a Multipoint Crossover Operation: Empirical studies

performed on genetic algorithms employing string based

representation showed that multipoint crossover operation increases

the effectiveness of evolutionary algorithms on some problems.

Although the graph based representation requires a more complicated

136

procedure to perform multipoint crossover, such an operation might

result in the generation of surprising design alternatives.

• Definition of Other Evaluation Measures: In order to compare the

generated design alternatives, depending on the design problem

numerous evaluation measures can be proposed. Some typical

evaluation measures employed in traditional design activities are cost,

quality, reliability, maintainability, performance, ease of use,

redundancy, aesthetics, safety, compatibility with other systems and

effect on environment etc. However, many of these criteria can not be

adopted due to their dependency on the form of the artifact (e.g.

reliability, cost etc.). The measures of evolutionary design process

might be increased through redefining these general measures at

functional level or developing new problem specific criteria.

• Implementation of Other Multi-objective Optimization Methods:

Weighted sum approach is the simplest and probably the most

common way of handling multi-objective optimization tasks. In order

to increase the effectiveness of the design process, other methods can

also be applied. However, GALib does not support other multi-objective

optimization methods. Therefore, computer implementation for these

methods necessitates the utilization of other available software

packages such as Open BEAGLE or using custom libraries.

• Implementation of Other Constraint Handling Techniques: In the

literature, there exist many variations of the penalty functions and

other constraint handling techniques such as immune system

emulation or ant colonies. Although some of these techniques such as

repair algorithms seem inappropriate for the evolutionary design

process, the computer implementation of some promising techniques

might be done as a future work.

137

• Computer Implementation for Parallel Processing: Evolutionary

algorithms are eligible for parallel processing. Populations and/or

individuals can be evolved in parallel. Parallel processing significantly

decreases the evolution time, therefore it allows increasing the number

of individuals in the initial population or maximum number of

generations. Especially for the designs of complicated artifacts, parallel

processing is essential.

• Promoting Modularity In Evolutionary Design: Some highly repetitive

modules included in individuals can be encapsulated in evolutionary

process. These modules can not be deformed by genetic operations.

This decreases the size of individuals and hence the computational

costs.

• Determination of Strategies in Education of Designers: This novel

design methodology necessitates designer to be well-informed on

some specific topics such as criteria in generation of initial populations,

handling constraints and multiple objectives in evolutionary algorithms

etc. Therefore, some strategies are required to educate designers on

the evolutionary design methodology.

• Extension of Evolutionary Methodology to Embodiment Design: In the

literature, there exist many evolutionary design applications performed

at physical level. By adopting one of them, this study might be

extended to cover all stages of design process up to prototyping

phase.

138

REFERENCES

Akiyama, K., 1991, Function Analysis: Systematic Improvement of Quality

Performance, Productivity Press.

Al-Hakim, L., Kusiak, A. and Mathew, J., 2000, “A Graph-Theoretic Approach

to Conceptual Design with Functional Perspectives”, Computer Aided Design,

Vol. 32, pp. 867-875.

Allen, R., Sriram, R., Szykman, S. and Fijol, R. J., 2000, “Representing an

Artifact Transport System in a Design Repository: A Case Study”, Proceedings

of the ASME Design Engineering Technical Conference & Computers &

Information in Engineering Conference, Maryland, USA.

Altshuller, G., 1984, Creativity as an Exact Science, Gordon and Branch

Publishers, New York, USA.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P., Nicollin, X.,

Olivero, A., Sifakis, J. and Yovine, S., 1995, “The Algorithmic Analysis of

Hybrid Systems”, Theoretical Computer Science, Vol. 138, pp.3-34.

Amos, D., Savinder D., Ujval, A. and Sameer, A., 2001, Axiomatic Design

Theory, Lecture Notes, University of Maryland, Maryland, USA.

Amerogen, J. van, 2000, “Modelling, Simulation and Controller Design for

Mechatronic Systems with 20-sim 3.0”, Proceedings 1st IFAC Conference on

Mechatronic Systems, Darmstadt, Germany, pp. 832-836.

139

Anderson, J., 2001, A Survey of Multi-Objective Optimization in Engineering

design, Technical Report, Linköping University, Linköping, Sweden.

Andreasen, M. M., 1980, Machine Design and Development, Ph.D.

Dissertation, Lund University, Lund.

Bahrami, A. and Dagli, C. H., 1994, "Design Science", Intelligent Systems in

Design and Manufacturing, Editors: C. H. Dagli and A. Kusiak, ASME Press,

New York, pp. 7-25.

Bently, P. J. and Wakefield J. P., 1996, “Conceptual Evolutionary Design by

Genetic Algorithm”, Engineering Design and Automation 2:3, John Wiley and

Sons Inc.

Blanchard, B. S. and Fabrycky, W. J., 1998, Systems Engineering and Analysis,

3rd Ed., Prentice Hall, New Jersey, USA.

Blamire, J., 1997, Genotype and Phenotype Definition, Science at a Distance,

http://www.brooklyn.cuny.edu/bc/ahp/BioInfo/GP/Definition.html.

Blickle, T. and Thiele, L., 1995, A Comparison of Selection Schemes used in

Genetic Algorithms, TIK Report, Computer Engineering and Communication

Networks Lab., Swiss Federal Institute of Technology, Zurich, Switzerland.

Boden, M. A., 1991, The Creative Mind: Myths and Mechanisms, Basic

Books, New York, USA.

Bracewell, R. H. and Sharpe, J. E. E., 2004, “Functional Descriptions used in

Computer Support for Qualitative Scheme Generation: Schemebuilder”,

Schemebuilder: Computer Aided Knowledge Based Design of Mechatronic

Systems, http://www.comp.lancs.ac.uk/edc/publications/automation.pdf.

140

Breunese, A. P. J. and Broenink, J. F., 1997, “Modeling Mechatronic Systems

Using the SIDOPS+ Language”, ICBGM '97, Phoenix, AZ, USA, pp. 301-306.

Broenink, J, F., 1999, “Introduction to Physical Systems Modeling with Bond

Graphs”, SiE Whitebook on Simulation Methodologies,

http://www.rt.el.utwente.nl/bnk/papers/BondGraphsV2.pdf.

Broenink, J. F. and Kleijn, C., 1999, “Computer-Aided Design of Mechatronic

Systems Using 20-Sim 3.0”, Proceedings WESIC’99, 2nd Workshop on

European Scientific and Industrial Collaboration, Newport, UK, pp. 27-34.

Broenink, J. F., 1997, “Bond Graph Modeling in Modelica”, European

Simulation Symposium, Passau, Germany, Oct. 19-22.

Burton, A., 2004, “Truss Optimization using Genetic Algorithms”, Proceedings

of Genetic and Evolutionary Computation Conference, GECCO, Seattle,

Washington, USA.

Buur, J., 1990, A Theoretical Approach to Mechatronics Design, Ph.D.

Dissertation, Technical University of Denmark, Lyngby, Denmark.

Carlson, S. E. and Shonkwiler, R., 1998, “Annealing a Genetic Algorithm over a

Constraint”, Proceedings of SMC98: IEEE International Conference on

Systems, San Diego, USA.

Carruba, F. P., 1993, “Designing People Pleasing Products”, 9th international

Conference on Engineering Design, ICED’93, Heurista, Zurich, Switzerland.

Cetin, O., 2003, Decomposition–Based Assembly Synthesis of Family of

Structures, Ph.D. Dissertation, The University of Michigan, Michigan, USA.

141

Chandrasekaran, B. and Stone, R., 2001, “An Inductive Approach to Product

Design Based on Modular Product Architecture”, ASME DETC’01,

http://function.basiceng.umr.edu/delabsite/DESite/PDF/DFM-

DETC_2001_stone_balaji.pdf.

Chakrabarti, A. and Bligh, T. P., 2001, “A Scheme for Functional Reasoning in

Mechanical Conceptual Design”, Design Studies, 22, 6, pp.493-517.

Chakrabarti, A., 1997, “Supporting Deep Understanding and Problem Solving

Using Function Structures: A Case Study”, Proceedings of International

Conference on Engineering Design, ICED97, Tampere, Finland, Vol. 3, pp. 70-

76.

Chakrabarti, A., 1993, “Towards a Theory of Functional Reasoning in Design”,

Proceedings of the International Conference on Engineering Design, ICED93,

Hague, Netherlands.

Chakrabarti, A. and Bligh, T. P., 1992, “A Knowledge-Based System for

Synthesis of Single Input Single Output Systems in Mechanical Concept

Design”, Proceedings of EXPERSYS 1992, Houston, Texas, USA.

Coello, C. A. C., 2002, “Theoretical and Numerical Constraint-Handling

Techniques used with Evolutionary Algorithms: A Survey of the State of the

Art”, Computer Methods in Applied Mechanics and Engineering, Vol. 191, No.

11-12, pp. 1245-1287.

Coello, C. A. C., 2001, “A Short Tutorial on Evolutionary Multi-objective

Optimization”, The Proceedings of First International Conference on

Evolutionary Multi-Criterion Optimization (EMO’01), Zurich, Switzerland, pp.

21-40.

Coello, C. A. C., 2000, “Treating Constraints as Objectives for Single-Objective

Evolutionary Optimization”, Engineering Optimization, 32-3, pp. 275-308.

142

Coello, C. A. C., 1996, An Empirical Study of Evolutionary Techniques for

Multi-Objective Optimization in Engineering Design, Ph.D. Dissertation, Tulane

University, New Orleans, USA.

Collins, J., Hagan, B., and Bratt, H., 1976, “The Failure-Experience Matrix - a

Useful Design Tool,” Transactions of the ASME, Series B, Journal of

Engineering in Industry, Vol. 98, pp. 1074-1079.

Coşkun, Ç, 2004, Software Development for Multi Level Petri Net Based

Design Inference Network, M.Sc. Dissertation, Mechanical Engineering

Department, Middle East Technical University, Ankara, Turkey.

Davis, L., 1991, Handbook of Genetic Algorithms, Van Nostrand, Reinhold,

New York, USA.

Dixie, L. E., 2004, “Whole Qualification Standard for the National Diploma in

Engineering”,

http://www.ctech.ac.za/facul/eng/ee/convener/docs/ndipdoc.html.

Downing, C. J., Cork, R. T. C., Byrne, B., Coveney, K. and Marnane, W. P.,

1996, “Controller Optimisation and System Identification using Genetic

Algorithms”, Proceedings of Irish DSP and Control Colloquium, pp. 45-52.

Dyer, M. G., Flowers, M. and Hodges J, J., 1986, “EDISON: An Engineerign

Design Invention System Operating Naively”, Artificial Intelligence, Vol. 1, No.

1, pp. 36-44.

Dyer, M. and Flowers, M., 1984, “Automating Design Invention”, Proceedings

of the Autofact 6 Conference, Anaheim, California, USA, pp. 25-1 to 25-21.

Edward, C., Xin, L., Schmidt, L. C., 2000, The Need for a Form, Function, and

Behavior-based Representation System, Lab. Report,

http://www.enme.umd.edu/DATLab/.

143

Elmqvist, H. and Mattsson, S. E., 1997, “An Introduction to Physical Modeling

Language Modelica”, Proceedings of the 9th European Simulation Symposium,

ESS'97, Oct 19-23, Passau, Germany.

Elmqvist, H., Brück, D. and Otter M., 1996, Dymola: User’s Manual, Dynasim

AB, Research Park Ideon, Lund, Sweden.

Erden, A., 2004, Engineering Design: Concepts, Tools and Education,

Unpublished Manuscript.

Erden, Z., 1999, A Petri Net Based Design Inference Network for Design

Automation at Functional Level Applied to Mechatronic Systems, Ph.D.

Dissertation, Middle East Technical University, Ankara, Turkey.

Erden Z., Erkmen A. and Erden A., 1999, "Handling Uncertainty In Design

Automation Using Intuitionistic Fuzzy Propositions", International Conference

on Engineering Design, ICED 99, Munich, Germany.

Erden, Z., Erkmen, A. M. and Erden, A., 1996, ''Generation of Functional Cells

for a Mechatronic Design Network'', Proceedings of the 5th UK Mechatronics

Forum International Conference (Mechatronics 96) with the 3rd International

Conference on Mechatronics and Machine Vision in Practice (M2VIP 96),

Guimaraes, Portugal, Vol.1, pp. 233-238.

Feng, S. and Song E. Y., 2000, “Information Modeling on Conceptual Process

Planning Integrated with Conceptual Design”, Proceedings of the 5th Design

for Manufacturing Conference in The 2000 ASME Design Engineering Technical

Conferences, Paper Number: DETC00/DFM-14009, Baltimore, Maryland, USA,

September 10-13.

144

Fonseca, C. M. and Fleming, P. J., 1993, “Genetic Algorithms for Multi-

Objective Optimization: Formulation, Discussion and Generalization”, Genetic

Algorithms: Proceedings of the Fifth International Conference, San Mateo, CA,

USA.

Freeman, P. and Newell, A., 1971, “A Model for Functional Reasoning in

Design”, Proceedings of the Second International Joint Conference on Artificial

Intelligence, London, UK, pp. 621-633.

Fritzson, P., Engelson,V. and Viklund L., 1993, “Variant Handling, Inheritance

and Composition in the ObjectMath Computer Algebra Environment”, Design

and Implementation of Symbolic Computation Systems (DISCO), Edited By

Miola, A.,Springer-Verlag, Volume 722 of LNCS, Gmunden, Austria, pp. 145-

160.

Goldberg, D. E., 1997 “The design of innovating machines”, Unpublished

Manuscript.

Goldberg, D. E. and Liepins, G., 1991, “A Tutorial on Genetic Algorithm

Theory”, The Fourth International Conference on Genetic Algorithms,

University of California at San Diego, La Jolla, California, USA.

Goldberg, D. E., 1989a, Genetic Algorithms in Search, Optimization and

Machine Learning, Addison-Wesley Publishing Co, USA.

Goldberg, D. E., 1989b, “Sizing Populations for Serial and Parallel Genetic

Algorithms”, Proceedings of the Third International Conference on Genetic

Algorithms, Edited by Schaffer, J. D., San Mateo, California, USA, pp.70–79.

Goldberg, D. E., Kord, B. and Deb, K., 1989c, “Messy Genetic Algorithms:

Motivation, Analysis, and First Results”, Complex Systems, 3(5): pp. 493-530.

145

Grabowski, H. and Benz, T., 1991, “Implementing the Design Methodology”,

Intelligent CAD III, Edited by Yoshikawa, H., Arbab F. and Tomiyama T.,

Elsevier Science Publishers B. V., North-Holland, pp. 109-127.

Güroğlu, S., Erden, A., Akbulut, D. and Özgüç, B., 2005, “Creativity: As an

Evaluation Measure for Evolutionary Conceptual Design”, Submitted to the

Sixth International Conference on Computer Aided Industrial Design and

Conceptual Design, Delft, Netherlands.

Güroğlu, S. and Erden, A., 2004, “Development of an Evaluation Measure for

Genetic Approach to Functional Level Conceptual Mechatronic Design”, The

Proceedings of 9th Mechatronics Forum - International Conference,

MECHATRONICS 2004, Ankara, Turkey.

Güroğlu, S. and Erden, A., 2003, “Development of a Representation Scheme

for the Application of Genetic Methodology to Functional Design”, Proceedings

of International Conference on Engineering Design, ICED’03, Stockholm,

Sweden.

Güroğlu S., 1999, Implementation of an Algorithm for a Petri Net Based

Design Inference Network, M.Sc. Thesis, Mechanical Engineering Department,

Middle East Technical University, Ankara, Turkey.

Harik, G., Cantu-Paz E., Goldberg D. and Miller, B., 1999, “The Gambler’s Ruin

Problem, Genetic Algorithms, and the Sizing of Populations”, Evolutionary

Computation, Vol. 7-3, pp.231-253.

Hirtz, J., Stone, R., McAdams, D., Szykman, S. and Wood, K., 2001a, “A

Functional Basis for Engineering Design: Reconciling and Evolving Previous

Efforts”, Research in Engineering Design, 13(2):65-82.

146

Hirtz, J., Stone, R., McAdams, D., Szykman, S. and Wood, K., 2001b,

“Evolving a Functional Basis for Engineering Design”, Proceedings of

DETC2001, DETC2001/DTM-21688, Pittsburgh, Pennsylvania, USA.

Hobbs, M. H. V. and Rodgers, P. J., 1998, “Representing Space: A Hybrid

Genetic Algorithm for Aesthetic Graph Layout”, Proceedings of JCIS'98, The 4th

Joint Conference on Information Sciences, Vol. 2, pp. 415-418.

Holland, J. H., 1975, Adaptation in Natural and Artificial Systems. The MIT

Press, Cambridge, MA, USA.

Houstis C., 2004, Conceptual Modeling: An Introduction, Lecture Notes,

http://support.inf.uth.gr/courses/CE428/.

Hubka V., 1976, Theorie der Konstruktionsprozesse, Springer-Verlag, Berlin.

Hundal, M., 1990, “A Systematic Method for Developing Function Structures,

Solutions and Concept Variants”, Mechanism and Machine Theory, 25(3), pp.

243-256.

IEEE, 1999, Standard VHDL Analog and Mixed-Signal Extensions, Technical

Report IEEE Std. 1076.1, http://www.designers-guide.com/Modeling/1076.1-

1999.pdf.

Jeandel, A., Boudaud, F., Ravier, P. and Bushing A., 1996, “U.L.M: Un

Langage de Modélisation, A Modelling Language”, Proceedings of the CESA’96

IMACS Multiconference, IMACS, Lille, France.

Jochum, P. and Kloas M., 1994, “The Dynamic Simulation Environment-Smile”,

The Second Biennial European Conference on System Design & Analysis,

ASME, pp. 53–56.

147

Joines, J. A. and Houck, C. R., 1994, “On the Use of Non-Stationary Penalty

Functions to Solve Nonlinear Constrained Optimization Problems with GA's”,

Proceedings of International Conference on Evolutionary Computation, IEEE,

Orlando, Florida, USA, pp. 579-584.

Kazarlis, S. and Petridis V., 1998, “Varying Fitness Functions in Genetic

Algorithms: Studying the Rate of Increase of the Dynamic Penalty Terms”,

Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V),

Heidelberg, Germany, pp. 211-220,

http://www.cs.cinvestav.mx/~constraint/papers/kazarlis98.ps.gz.

Kirschman, C., Fadel, G., 1998, “Classifying Functions for Mechanical Design”,

Journal of Mechanical Design, Transactions of the ASME, 120(3), pp. 475-482.

Klir, J. G. and Folger T. A., Fuzzy Sets, Uncertainty and Information, Prentice

Hall, New Jersey, USA.

Koch, P., Peplinski, J., Allen, J. and Mistree, F., 1994, “A Method for Design

Using Available Assets: Identifying a Feasible System Configuration”,

Behavioral Science, 30, pp. 229-250.

Korkmazel, M., 2001, Development of Multi Level Petri Net Based Design

Inference Network, M.Sc. Thesis, Middle East Technical University, Ankara,

Turkey.

Koza, J. R., 1992, Genetic Programming, MIT Press, Cambridge, MA, USA.

Koza, J. R., 1994, Genetic Programming II, MIT Press, Cambridge, MA, USA.

Krisp, H. and Müller-Schloer C., 2000, “Towards a High Level System Design

Using UML and Java”, 3rd International UML Conference-Workshop, York, UK.

148

Kurfman, M., Rajan, J., Stone, R. and Wood, K., 2001, “Functional Modeling

Experimental Studies”, Proceedings of DETC2001, DETC2001/DTM-21709,

Pittsburgh, Pennsylvania, USA.

Kusiak, A., 2000, Computational Intelligence in Design and Manufacturing,

John Willey and Sons Inc., New York, USA.

Kusiak, A., Szczerbicki, E., Park, K., 1991a, “A Novel Approach to

Decomposition of Design Specifications and Search for Solutions”,

International Journal on Production Research, Volume 29, No. 7, pp. 1391-

1406.

Kusiak, A., Szczerbicki, E., Vujosevic, R., 1991b, “Intelligent Design Synthesis:

An Object Oriented Approach”, International Journal on Production Research,

Volume 29, No. 7, pp. 1291- 1308.

Langdon W. B. and Qureshi A., 1995, Genetic Programming : Computers using

'Natural Selection' to Generate Programs, Technical Report, RN/95/76,

London, UK.

Lawton, J. and Wipke, T., 1999, “Automatic Molecular Design Using

Evolutionary Techniques”, Nanotechnology, Vol 10, pp. 290-299.

Little, A., Wood, K., and McAdams, D., 1997, “Functional Analysis: A

Fundamental Empirical Study for Reverse Engineering, Benchmarking and

Redesign”, Proceedings of the 1997 Design Engineering Technical

Conferences, 97-DETC/DTM-3879, Sacramento, California, USA.

Lipson, H., Pollack, J. B. and Suh, N. P., 2001, “Promoting Modularity in

Evolutionary Design”, Proceedings of Design Engineering Technical

Conference, DETC’01, Pittsburgh, USA.

149

Malmqvist, J., Axelsson, R., and Johansson, M., 1996, “A Comparative Analysis

of the Theory of Inventive Problem Solving and the Systematic Approach of

Pahl and Beitz”, Proceedings of the 1996 ASME Design Engineering Technical

Conferences, 96-DETC/DTM-1529, Irvine, California, USA.

Malmqvist, J., 1995, “A Computer-Based Approach Towards Including Design

History Information in Product Models and Function-Means Trees”,

Proceedings of DTM-95, Boston, Massachusetts, USA, pp 593–602.

Mathworks, 2004a, Genetic Algorithm and Direct Search Toolbox, User’s

Guide,

http://www.mathworks.com/access/helpdesk/help/toolbox/gads/gads.html.

Mathworks, 2004b, Optimization Toolbox, User’s Guide,

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/.

Mathworks, 2004c, SIMULINK: Dynamic System Simulation for MATLAB,

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/simulink.h

tml.

Mattsson, S. E. and Andersson M., 1992, “Omola: An Object-Oriented

Modelling Language”, Recent Advances in Computer-Aided Control Systems

Engineering Studies in Automation and Control, Edited by Jamshidi M. and

Herget C. J., Elsevier Science Publishers, Amsterdam, Netherlands, pp. 291–

310.

Max-Planck Institute of Computer Science, 2004, http://www.mpi-

sb.mpg.de/LEDA/.

Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution

Programs, Springer-Verlag, 3rd edition.

150

Michalewicz, Z., Dasgupta, D., Le Riche, R. G., and Schoenauer, M., 1996,

“Evolutionary Algorithms for Constrained Engineering Problems”, Computers &

Industrial Engineering Journal, Vol.30, No.2, pp.851-870.

Miles, L., 1972, Techniques of Value Analysis Engineering, McGraw-Hill, New

York, USA, http://www.wisc.edu/wendt/miles/milesbook.html.

MindTools, 2004, “Attribute Listing, Morphological Analysis & Matrix Analysis,

Tools for creating new products & services”,

http://www.mindtools.com/pages/article/newCT_03.htm.

Mitchell, M., 1996, An Introduction to Genetic Algorithms, MIT Press, London,

England.

Montana, D. J., 1995, “Strongly Typed Genetic Programming”, Evolutionary

Computation, 3-2.

Mosterman, P. J. and Biswas, G., 1995, “Behavior Generation using Model

Switching: A Hybrid Bond Graph Modeling Technique”, Proceedings of the

International Conference on Bond Graph Modeling’95, vol. 27, no. 1, pp. 177-

182, Society for Computer Simulation, San Diego, California, USA.

Otto, K. and Wood, K., 2001, Product Design Techniques in Reverse

Engineering and New Product Development, Prentice Hall, New Jersey, USA.

Otto, K. and Wood, K., 1997, “Conceptual and Configuration Design of

Products and Assemblies”, ASM Handbook, Materials Selection and Design,

Vol. 20, ASM International.

Özdemir, H. T. and Mohan, C. K., 2001, “Flight Graph Based Genetic Algorithm

for Crew Scheduling in Airlines”, Information Sciences 133, pp. 165-173.

151

Pahl, G. and Beitz, W., 1988, Engineering Design: A Systematic Approach,

Springer-Verlag, UK.

Paredis, C. J. J., Diaz-Calderon A., Sinha R. and Khosla, P. K., 2001,

“Composable Models for Simulation-Based Design”, Engineering with

Computers 17, pp. 112-128.

Piela, P., Epperly, T., Westerberg, K. and Westerberg, A., 1991, “ASCEND: An

Object-Oriented Computer Environment for Modeling and Analysis: The

Modeling Language”, Computers and Chemical Engineering, Pergamon Press,

Vol. 15, No. 1, pp.53-72.

Platin, B. E., Çalışkan, M., Özgüven, H. N., 1991, Dynamics of Engineering

Systems, METU Press.

Pollack, J. B., Lipson. H., Ficici, S., Funes, P., Hornby, G. and Watson, R.,

2000, “Evolutionary Techniques in Physical Robotics”, Proceedings of the third

international conference on Evolvable Systems: from biology to hardware,

Edited by Miller, J., Springer (Lecture Notes in Computer Science; Vol. 1801),

pp. 175-186.

Potter, S., Culley, S. J., Darlington J. M., Chawdhry, P. K., 2003, “Automatic

Conceptual Design Using Experience-Derived Heuristics”, Research in

Engineering Design, Vol 14 No 3, pp. 131-144.

Rasheed, K., 1998, “An Adaptive Penalty Approach for Constrained Genetic-

Algorithm Optimization”, Proceedings of 3rd Annual Genetic Programming

Conference, San Francisco, California, USA, pp. 584-590.

Reisig, W., 1992, A Primer in Petri Net Design, Springer-Verlag, Germany.

Reisig, W., 1985, Petri Nets: An Introduction, Springer-Verlag, Germany.

152

Ritchey, T., 2002, “General Morphological Analysis: A general method for non-

quantified modeling”, An Article on Morphological Analysis, Swedish

Morphological Society, http://www.swemorph.com/ma.html.

Roston, G. P., 1994, A Genetic Methodology for Configuration Design, Ph.D.

Dissertation, Carnegie Mellon University, Pittsburg, USA.

Rzevsky, G. 1995, Designing Intelligent Machines, Vol.1. The Open University,

UK.

Sahlin, P., Bring, A. and Sowell, E. F., 1996, The Neutral Model Format for

Building Simulation, Version 3.02, Technical Report, Department of Building

Sciences, The Royal Institute of Technology, Stockholm, Sweden.

Salustri, F. A., 2000, MEC 723 Mechanical System Lecture Notes,

http://deed.megan.ryerson.ca/~fil/L/Courses/mec723/2000/Lectures/lectures/

node4.html.

Schaffer, J., 1985, “Multiple Objective Optimization with Vector Evaluated

Genetic Algorithms”, Proceedings of 1st International Conference on Genetic

Algorithms, Pittsburgh, USA.

Schulze-Kremer, S., 1996, Genetic Algorithms and Protein Folding,

http://www.techfak.uni-bielefeld.de/bcd/Curric/ProtEn/contents.html.

Sembugamoorthy, V. and Chandrasekaran, 1986, “Functional Representation

of Devices and Compilation of Diagnostic Problem-Solving Systems”,

Experience, Memory and Reasoning, Lawrence Erlbaum Associates, Hillsdale,

New Jersey, USA.

Sharpe, J. E., 1995, “Conceptual Tools for Integrated Conceptual Design”,

Design Studies Journal, Vol: 16 (4), pp 471-488.

153

Sharpe, J. E. E. and Bracewell, R. H., 1995, “The Use of Functional Reasoning

for the Conceptual Design of Interdisciplinary Schemes”, 10th International

Conference on Engineering Design, ICED 95, Praha, Czech Republic.

Silva, S., 2004, GPLAB: A Genetic Programming Toolbox for MATLAB,

http://gplab.sourceforge.net/.

Sims, K., 1994a, “Evolving Virtual Creatures”, Computer Graphics (Siggraph

'94 Proceedings), pp. 15-22.

Sims, K., 1994b, “Evolving 3D Morphology and Behavior by Competition”,

Artificial Life IV Proceedings, Edited by Brooks & Maes, MIT Press, pp. 28-39.

Sinha, R., Liang, V. C., Paredis, C. J. J. and Khosla, P. K., 2001, “Modeling and

Simulation Methods for Design of Engineering Systems”, Journal of Computing

and Information Science in Engineering, Vol. 1-1, pp. 84-91.

Smith A. E. and Coit D. W., 1997, “Constraint Handling Techniques-Penalty

Functions”, Chapter C5.2 in Handbook of Evolutionary Computation, Institute

of Physics Publishing and Oxford University Press, Bristol, UK.

Smith, A. E. and Tate, D. M., 1993, “Genetic Optimization Using a Penalty

Function”, Proceedings of the Fifth International Conference on Genetic

Algorithms (ICGA-93), San Mateo, California, USA, pp. 499-503.

Snavely, G. L., Pomrehn, L. P. and Papalambros P. L., 1990, “Toward a

Vocabulary for Classifying Research in Mechanical Design Automation”,

Proceedings of the First International Workshop on Formal Methods in Design,

Colorado, USA, Jan 14-17.

Soemers, H. M. J. R., Cox, H., Gaal, E.W. and Eijk, van J., 2000, “The

Mechatronic Design Approach, A Case Study”, Mechatronic 2000 Conference,

Atlanta, USA.

154

Stone, R., McAdams, D. and Kayyalethekkel, V., 2004, “A Product

Architecture-Based Conceptual DFA Technique”, Design Studies, 23(3):301-

325.

Stone, R. B., Hirtz, J., McAdams, D. A., Szykman S. and Wood, K. L., 2001, “A

Functional Basis for Engineering Design: Reconciling and Evolving Previous

Efforts”, Journal of Research in Engineering Design, 13(2), pp. 65-82.

Stone, R. and Wood, K., 2000, "Development of a Functional Basis for

Design," Journal of Mechanical Design, 122(4):359-370.

Stone, R., Wood, K., and Crawford, R., 2000, “A Heuristic Method for

Identifying Modules for Product Architectures”, Design Studies, 21(1):5-31.

Stone, R. and Wood, K., 1999, “Development of a Functional Basis for

Design”, Proceedings of DETC99, DETC99/DTM-8765, Las Vegas, Nevada,

USA.

Stone, R., Wood, K. and Crawford, R., 1998, “A Heuristic Method to Identify

Modules from a Functional Description of a Product”, Proceedings of DETC98,

DETC98/DTM-5642, Atlanta, Georgia, USA.

Suh, N. P., 2001, Axiomatic Design: Advances and Applications, Oxford

University Press, New York, USA.

Suh, N. P., 1998, “Axiomatic Design Theory for Systems”, Research in

Engineering Design (1998) 10, Springer-Verlag, London, UK, pp. 189-209.

Suh, N. P., 1990, The Principles of Design, Oxford University Press, New York,

USA.

155

Summers, J. D. and Shah, J. J., 2003, “Developing Measures of Complexity for

Engineering Design”, Proceedings of Design Engineering Technical

Conference, DETC’03, Chicago, Illinois, USA.

Sushil, J. L., 1997, Genetic Algorithms and Truss Design,

http://www.cs.unr.edu/~sushil/papers/conference/papers/IJES/tech/node3.ht

ml.

Szykman, S., Racz J. W., Bochenek C. and Sriram R. D., 2000a, “A Web-based

System for Design Artifact Modeling,” Design Studies.

Szykman, S., Bochenek, C., Racz, J. W. and Sriram, R., 2000b, “Design

Repositories: Next-Generation Engineering Design Databases”, IEEE Intelligent

Systems and Their Applications.

Szykman, S., Racz J. W. and Sriram R. D., 1999a, “The Representation of

Function in Computer-based Design”, Proceedings of the 1999 ASME

Design Engineering Technical Conferences (11th International Conference

on Design Theory and Methodology), Paper No: DETC99/DTM-8742, Las

Vegas, Nevada, USA.

Szykman, S., Sriram, R., Bochenek, C. and Racz J., 1999b, “The NIST Design

Repository Project”, Advances in Soft Computing - Engineering Design and

Manufacturing, Roy, R., T. Furuhashi and P. K. Chawdhry (eds.), Springer-

Verlag, London, UK, pp.5-19.

Terpenny, J. P., 1998, “Blending Top-Down and Bottom-Up Approaches in

Conceptual Design”, 7th Annual Industrial Engineering Research Conference,

Banff, Alberta, Canada.

156

Tummescheit, H., Klose, M., and Ernst, T., 1997, “Modelica and Smile: A Case

Study Applying Object-Oriented Concepts to Multi-Facet Modeling”,

Proceedings of the 9th European Simulation Symposium, ESS97, Budapest,

Hungary.

Ullman, D., 1997, The Mechanical Design Process, McGraw-Hill, New York,

2nd edition.

Ullman, D., G., 1993, “The Evolution of Function and Behavior during

Mechanical Design”, Design Theory and Methodology ASME, New York, USA,

Volume 53, pp.91-103.

Ullman, D. G., 1992, The Mechanical Design Process, McGraw-Hill Inc., USA.

Ulrich, K. T. and Eppinger, S. D., 1999, Product Design and Development,

McGraw-Hill, USA.

Ulrich, K. and Tung, K., 1991, "Fundamentals of Product Modularity",

Proceedings of the 1991 Winter Annual Meeting, DE-Vol. 39 Atlanta, Georgia,

USA, pp.73-79.

VAI (Value Analysis Incorporated), 1993, Value Analysis, Value Engineering,

and Value Management, Clifton Park, New York, USA.

Ward, A. C. and Seering, W. P., 1989a, “The Performance of a Mechanical

Design Compiler”, MIT Artificial Intelligence Laboratory AI Memo No. 1084,

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Wall, 1996, GAlib: A C++ Library of Genetic Algorithm Components, User

Manual, http://lancet.mit.edu/ga/.

157

Ward, A. C. and Seering, W. P., 1989b, “Quantitative Inference in a

Mechanical Design Compiler”, Artificial Intelligence Laboratory AI Memo No.

1062, Massachusetts Institute of Technology, Cambridge, Massachusetts,

USA.

Weber, R. G. and Condoor, S. S., 1998, “Conceptual Design Using a

Synergistically Compatible Morphological Matrix”, Proceedings of Frontiers in

Education Conference, Arizona, USA.

Yoshikawa, H., 1985, “Design Theory for CAD/CAM Integration”, Annals of the

CIRP, Vol 34 No 1, pp.173–178.

Yoshikawa, H., 1981, “General Design Theory and a CAD system”, IFIP Man–

Machine Communication in CAD/CAM, Edited by Sata, T. and Warman, E., pp.

35–88.

Zhang, B. T. and Kim, J. J., 2000, “Comparison of Selection Methods for

Evolutionary Optimization”, International Journal of Evolutionary Optimization,

Vol: 2-1, pp. 55-70.

Ziaei, R. and Agha, G., 2003, “SynchNet: A Petri Net Based Coordination

Language for Distributed Objects”, Generative Programming and Component

Engineering (GPCE).

Zwicky, F., 1948, “The Morphological Method of Analysis and Construction”,

Courant Anniversary Volume, New York Wiley-Interscience, New York, USA.

158

APPENDIX A

RECONCILED FUNCTIONAL BASIS

A.1 FLOW DEFINITIONS (Stone et al., 2001)

A.1.1 Material

• Human. All or part of a person who crosses the device boundary.

Example: Most coffee makers require the flow of a human hand to

actuate (or start) the electricity and thus heat the water.

• Gas. Any collection of molecules characterized by random motion and

the absence of bonds between the molecules. Example: An oscillating

fan moves air by rotating blades. The air is transformed as gas flow.

• Liquid. A readily flowing fluid, specifically having its molecules moving

freely with respect to each other, but because of cohesive forces, not

expanding indefinitely. Example: The flow of water through a coffee

maker is a liquid flow.

• Solid. Any object with mass having a definite, firm shape. Example:

The flow of sandpaper into a hand sander is transformed into a solid

entering the sander.

o Object. Material that can be seen or touched that occupies

space. Example: The box of scrap paper for recycling is

represented as the flow object.

o Particulate. Substance containing minute separate particles.

Example: Granular sugar and powdered paint are particulates.

o Composite. Solid material composed of two or more substances

having different physical characteristics and in which each

159

substance retains its identity while contributing desirable

properties to the whole unit. Any class of high-strength,

lightweight engineering materials consisting of various

combinations of alloys, plastics, and ceramics. Example:

Materials such as wood, fiberglass combined with metals,

ceramics, glasses, or polymers together are considered a

composite.

• Plasma. A collection of charged particles that is electrically neutral

exhibiting some properties of a gas, but differing from a gas in being a

good conductor of electricity and in being affected by a magnetic field.

Example: Plasma cutting focuses an intense beam of ionized air,

known as plasma, produced by an electric arc, which melts the

material to be cut.

• Mixture. A substance containing two or more components, which are

not in fixed proportions, do not lose their individual characteristics and

can be separated by physical means.

o Liquid-Liquid. A readily flowing combination of two or more

fluids, specifically having its molecules moving freely with

respect to each other, but because of cohesive forces, not

expanding indefinitely. Example: Machine oil and gasoline is a

common liquid-liquid mixture used in yard maintenance

machines.

o Gas-Gas. A collection of molecules containing two or more

components, which are characterized by random motion and

the absence of bonds between the molecules. Example: The

mixture of argon and carbon dioxide, a gas-gas flow, is

commonly used in welding.

o Solid-Solid. A combination of two or more objects with mass

having definite, firm shape. Example: Pebbles, sand, gravel,

and slag can be used to form concrete, mortar, or plaster.

After it cures, concrete is a solid-solid.

o Solid-Liquid. A combination of two or more components

containing at least one solid and one liquid. Example: Iced tea

160

is a solid-liquid mixture of ice (solid), water (liquid), and tea

grounds (solid).

o Solid-Gas. A combination of two or more components

containing at least one solid and one gas. Example: Fog is a

solid-gas mixture of frozen ice particles (solid) in air (gas).

o Liquid-Gas. A combination of two or more components

containing at least one liquid and one gas. Example:

Carbonated drinks are liquid-gas mixtures of flavored syrup

(liquid), purified water (liquid), and carbon dioxide (gas).

o Solid-Liquid-Gas. A combination or three or more components

containing at least one each of a solid, liquid, and gas.

Example: In a cup of soda and ice cubes, the cup contains the

solid-liquid-gas flow.

o Colloidal. A solid, liquid, or gaseous substance made up of very

small, insoluble, non-diffusible particles that remain in

suspension in a surrounding solid, liquid, or gaseous medium of

a different matter. Example: Aerosols, smoke, and mist can all

be considered colloids. Mist is a combination of very fine water

droplets suspended in air.

A.1.2 Energy

Generic Complements:

Effort: Any component of energy used to accomplish an intended purpose.

Flow: Any component of energy causing the intended object to move or run

freely.

• Human. Work performed by a person on a device. Example: An

automobile requires the flow of human energy to steer and accelerate

the vehicle.

o Force. Human effort that is input to the system without regard

for the required motion. Example: Human force is needed to

actuate the trigger of a toy gun.

161

o Velocity. Activity requiring movement of all or part of the body

through a prescribed path. Example: The track pad on a laptop

computer receives the flow of human velocity to control the

cursor.

• Acoustic. Work performed in the production and transmission of sound.

Example: The motor of a power drill generates the flow of acoustic

energy in addition to the torque.

o Pressure. The pressure field of the sound waves. Example: A

condenser microphone has a diaphragm, which vibrates in

response to acoustic pressure. This vibration changes the

capacitance of the diaphragm, thus superimposing an

alternating voltage on the direct voltage applied to the circuit.

o Particle velocity. The speed at which sound waves travel

through a conducting medium. Example: Sonar devices rely on

the flow of acoustic particle velocity to determine the range of

an object.

• Biological. Work produced by or connected with plants or animals.

Example: In poultry houses, grain is fed to chickens, which is then

converted into biological energy.

o Pressure. The pressure field exerted by a compressed biological

fluid. Example: The high concentration of sugars and salts

inside a cell causes the entry, via osmosis, of water into the

vacuole, which in turn expands the vacuole and generates a

hydrostatic biological pressure, called turgor, that presses the

cell membrane against the cell wall. Turgor is the cause of

rigidity in living plant tissue.

o Volumetric flow. The kinetic energy of molecules in a biological

fluid flow. Example: Increased metabolic activity of tissues such

as muscles or the intestine automatically induces increased

volumetric flow of blood through the dilated vessels.

• Chemical. Work resulting from the reactions by which substances are

produced from or converted into other substances. Example: A battery

converts the flow of chemical energy into electrical energy.

162

o Affinity. The force with which atoms are held together in

chemical bonds. Affinity is proportional to the chemical

potential of a compound’s constituent species. Example: An

internal combustion engine transforms the chemical affinity of

the gas into a mechanical force.

o Reaction rate. The speed or velocity at which chemical

reactants produce products. Reaction rate is proportional to the

mole rate of the constituent species. Example: Special coatings

on automobile panels stop the chemical reaction rate of the

metal with the environment.

• Electrical. Work resulting from the flow of electrons from a negative to

a positive source. Example: A power belt sander imports a flow of

electrical energy (electricity, for convenience) from a wall outlet and

transforms it into a rotation.

o Electromotive force. Potential difference across the positive and

negative sources. Example: Household electrical receptacles

provide a flow of electromotive force of approximately 110 V.

o Current. The flow or rate of flow of electric charge in a

conductor or medium between two points having a difference

in potential. Example: Circuit breakers trip when the current

exceeds a specified limit.

• Electromagnetic. Energy that is propagated through free space or

through a material medium in the form of electromagnetic waves. It

has both wave and particle-like properties. Example: Solar panels

convert the flow electromagnetic energy into electricity.

o Optical. Work associated with the nature and properties of light

and vision. Also, a special case of solar energy (see solar).

Example: A car visor refines the flow of optical energy that its

passengers receive.

 Intensity. The amount of optical energy per unit area.

Example: Tinted windows reduce the optical intensity of

the entering light.

163

 Velocity. The speed of light in its conducting medium.

Example: NASA developed and tested a trajectory

control sensor (TCS) for the space shuttle to calculate

the distance between the payload bay and a satellite. It

relied on the constancy of the optical velocity flow to

calculate distance from time of flight measurements of a

reflected laser.

o Solar. Work produced by or coming from the sun. Example:

Solar panels collect the flow of solar energy and transform it

into electricity.

 Intensity. The amount of solar energy per unit area.

Example: A cloudy day reduces the solar intensity

available to solar panels for conversion to electricity.

 Velocity. The speed of light in free space. Example:

Unlike most energy flows, solar velocity is a well-known

constant.

• Hydraulic. Work that results from the movement and force of a liquid,

including hydrostatic forces. Example: Hydroelectric dams generate

electricity by harnessing the hydraulic energy in the water that passes

through the turbines.

o Pressure. The pressure field exerted by a compressed liquid.

Example: A hydraulic jack uses the flow hydraulic pressure to

lift heavy objects.

o Volumetric flow. The movement of fluid molecules. Example: A

water meter measures the volumetric flow of water without a

significant pressure drop in the line.

• Magnetic. Work resulting from materials that have the property of

attracting other like materials, whether that quality is naturally

occurring or electrically induced. Example: The magnetic energy of a

magnetic lock is the flow that keeps it secured to the iron based

structure.

o Magnetomotive force. The driving force which sets up the

magnetic flux inside of a core. Magnetomotive force is directly

164

proportional to the current in the coil surrounding the core.

Example: In a magnetic door lock, a change in magnetomotive

force (brought about by a change in electrical current) allows

the lock to disengage and the door to open.

o Magnetic flux rate. Flux is the magnetic displacement variable

in a core induced by the flow of current through a coil. The

magnetic flow variable is the time rate of change of the flux.

The voltage across a magnetic coil is directly proportional to

the time rate of change of magnetic flux. Example: A magnetic

relay is a transducer that senses the time rate of change of

magnetic flux when the relay arm moves.

• Mechanical. Energy associated with the moving parts of a machine or

the strain energy associated with a loading state of an object.

Example: An elevator converts electrical or hydraulic energy into

mechanical energy.

o Rotational energy. Energy that results from a rotation or a

virtual rotation. Example: Customers are primarily concerned

with the flow of rotational energy from a power screwdriver.

 Torque. Pertaining to the moment that produces or

tends to produce rotation. Example: In a power

screwdriver, electricity is converted into rotational

energy. The more specific flow is torque, based on the

primary customer need to insert screws easily, not

quickly.

 Angular velocity. Pertaining to the orientation or the

magnitude of the time rate of change of angular

position about a specified axis. Example: A centrifuge is

used to separate out liquids of different densities from a

mixture. The primary flow it produces is that of angular

velocity, since the rate of rotation about an axis is the

main concern.

o Translational energy. Energy flow generated or required by a

translation or a virtual translation.

165

 Force. The action that produces or attempts to produce

a translation. Example: In a tensile testing machine, the

primary flow of interest is that of a force which

produces a stress in the test specimen.

 Linear velocity. Motion that can be described by three

component directions. Example: An elevator car uses

the flow of linear velocity to move between floors.

• Pneumatic. Work resulting from a compressed gas flow or pressure

source.

o Pressure. The pressure field exerted by a compressed gas.

Example: Certain cylinders rely on the flow of pneumatic

pressure to move a piston or support a force.

o Mass flow. The kinetic energy of molecules in a gas flow.

Example: The mass flow of air is the flow that transmits the

thermal energy of a hair dryer to damp hair.

• Radioactive (Nuclear). Work resulting from or produced by particles or

rays, such as alpha, beta and gamma rays, by the spontaneous

disintegration of atomic nuclei. Example: Nuclear reactors produce a

flow of radioactive energy which heats water into steam and then

drives electricity generating turbines.

o Intensity. The amount of radioactive particles per unit area.

Example: Concrete is an effective radioactive shielding material,

reducing the radioactive intensity in proportion to its thickness.

o Decay rate. The rate of emission of radioactive particles from a

substance. Example: The decay rate of carbon provides a

method to date pre-historic objects.

• Thermal. A form of energy that is transferred between bodies as a

result of their temperature difference. Example: A coffee maker

converts the flow of electricity into the flow of thermal energy, which it

transmits to the water

o Temperature. The degree of heat of a body. Example: A coffee

maker brings the temperature of the water to boiling in order

to siphon the water from the holding tank to the filter basket.

166

o Heat rate. The time rate of change of heat energy of a body.

Example: Fins on a motor casing increase the flow heat rate

from the motor by conduction (through the fin), convection (to

the air) and radiation (to the environment).

A.1.3 Signal

• Status. A condition of some system, as in information about the state

of the system. Example: Automobiles often measure the engine water

temperature and send a status signal to the driver via a temperature

gage.

o Auditory. A condition of some system as displayed by a sound.

Example: Pilots receive an auditory signal, often the words "pull

up," when their aircraft reaches a dangerously low altitude.

o Olfactory. A condition of some system as related by the sense

of smell or particulate count. Example: Carbon monoxide

detectors receive an olfactory signal from the environment and

monitor it for high levels of CO.

o Tactile. A condition of some system as perceived by touch or

direct contact. Example: A pager delivers a tactile signal to its

user through vibration.

o Taste. A condition of some dissolved substance as perceived by

the sense of taste. Example: In an electric wok, the taste signal

from the human chef is used to determine when to turn off the

wok.

o Visual. A condition of some system as displayed by some

image. Example: A power screwdriver provides a visual signal

of its direction through the display of arrows on the switch.

• Control. A command sent to an instrument or apparatus to regulate a

mechanism.

167

o Analog. A control signal sent by direct, continuous, measurable,

variable physical quantities. Example: Turning the volume knob

on a radio sends an analog signal to increase or decrease the

sound level.

o Discrete. A control signal sent by separate, distinct, unrelated

or discontinuous quantities. Example: A computer sends

discrete signals to the hard disk controller during read/write

operations.

A.2 FUNCTION DEFINITIONS (Stone et al., 2001)

Note that certain functions are limited to operate on certain types of flows.

This restriction is typically given in the function definition and applies to all

functions at sub-levels of the given function.

• Branch. To cause a flow (material, energy, signal) to no longer be

joined or mixed.

o Separate. To isolate a flow (material, energy, signal) into

distinct components. The separated components are distinct

from the original flow, as well as each other. Example: A glass

prism separates light into different wavelength components to

produce a rainbow.

 Divide. To split up a flow into parts or to classify distinct

parts of a flow. Example: A vending machine divides the

solid form of coins into appropriate denominations.

 Extract. To draw, or forcibly pull out, a flow. Example:

A vacuum cleaner extracts debris from the imported

mixture and exports clean air to the environment.

 Remove. To take away a part of a flow from its prefixed

place. Example: A sander removes small pieces of the

wood surface to smooth the wood.

o Distribute. To cause a flow (material, energy, signal) to break

up. The individual bits are similar to each other and the

168

undistributed flow. Example: An atomizer distributes (or sprays)

hair-styling liquids over the head to hold the hair in the desired

style.

• Channel. To cause a flow (material, energy, signal) to move from one

location to another location.

o Import. To bring in a flow (material, energy, signal) from

outside the system boundary. Example: A physical opening at

the top of a blender pitcher imports a solid (food) into the

system. Also, a handle on the blender pitcher imports a human

hand.

o Export. To send a flow (material, energy, signal) outside the

system boundary. Example: Pouring blended food out of a

standard blender pitcher exports liquid from the system. The

opening at the top of the blender is a solution to the export

sub-function.

o Transfer. To shift, or convey, a flow (material, energy, signal)

from one place to another.

 Transport. To move a material from one place to

another. Example: A coffee maker transports liquid

(water) from its reservoir through its heating chamber

and then to the filter basket.

 Transmit. To move an energy from one place to

another. Example: In a hand held power sander, the

housing of the sander transmits human force to the

object being sanded.

o Guide. To direct the course of a flow (material, energy, signal)

along a specific path. Example: A domestic HVAC system

guides gas (air) around the house to the correct locations via a

set of ducts.

 Translate. To fix the movement of a flow by a device

into one linear direction. Example: In an assembly line,

a conveyor belt translates partially completed products

from one assembly station to another.

169

 Rotate. To fix the movement of a flow by a device

around one axis. Example: A computer disk drive

rotates the magnetic disks around an axis so that the

head can read data.

 Allow degree of freedom (DOF). To control the

movement of a flow by a force external to the device

into one or more directions. Example: To provide easy

trunk access and close appropriately, trunk lids need to

move along a specific degree of freedom. A four bar

linkage allows a rotational DOF for the trunk lid.

• Connect. To bring two or more flows (material, energy, signal)

together.

o Couple. To join or bring together flows (material, energy, and

signal) such that the members are still distinguishable from

each other. Example: A standard pencil couples an eraser and a

writing shaft. The coupling is performed using a metal sleeve

that is crimped to the eraser and the shaft.

 Join. To couple flows together in a predetermined

manner. Example: A ratchet joins a socket on its square

shaft interface.

 Link. To couple flows together by means of an

intermediary flow. Example: A turnbuckle links two ends

of a steering cable together.

o Mix. To combine two flows (material, energy, and signal) into a

single, uniform homogeneous mass. Example: A shaker mixes a

paint base and its dyes to form a homogeneous liquid.

• Control Magnitude. To alter or govern the size or amplitude of a flow

(material, energy, signal).

o Actuate. To commence the flow of energy, signal, or material in

response to an imported control signal. Example: A circuit

switch actuates the flow of electrical energy and turns on a

light bulb.

170

o Regulate. To adjust the flow of energy, signal, or material in

response to a control signal, such as a characteristic of a flow.

Example: Turning the valves regulates the flow rate of the

liquid flowing from a faucet.

 Increase. To enlarge a flow in response to a control

signal. Example: Opening the valve of a faucet further

increases the flow of water.

 Decrease. To reduce a flow in response to a control

signal. Example: Closing the valve further decreases the

flow of propane to the gas grill.

o Change. To adjust the flow of energy, signal, or material in a

predetermined and fixed manner. Example: In a hand held drill,

a variable resistor changes the electrical energy flow to the

motor thus changing the speed the drill turns.

 Increment. To enlarge a flow in a predetermined and

fixed manner. Example: A magnifying glass increments

the visual signal (i.e. the print) from a paper document.

 Decrement. To reduce a flow in a predetermined and

fixed manner. Example: The gear train of a power

screwdriver decrements the flow of rotational energy.

 Shape. To mold or form a flow. Example: In the auto

industry, large presses shape sheet metal into

contoured surfaces that become fenders, hoods and

trunks.

 Condition. To render a flow appropriate for the desired

use. Example: To prevent damage to electrical

equipment, a surge protector conditions electrical

energy by excluding spikes and noise (usually through

capacitors) from the energy path.

o Stop. To cease, or prevent, the transfer of a flow (material,

energy, signal). Example: A reflective coating on a window

stops the transmission of UV radiation through a window.

171

 Prevent. To keep a flow from happening. Example: A

submerged gate on a dam wall prevents water from

flowing to the other side.

 Inhibit. To significantly restrain a flow, though a portion

of the flow continues to be transferred. Example: The

structures of space vehicles inhibits the flow of radiation

to protect crew and cargo.

• Convert. To change from one form of a flow (material, energy, signal)

to another. For completeness, any type of flow conversion is valid. In

practice, conversions such as convert electricity to torque will be more

common than convert solid to optical energy. Example: An electrical

motor converts electricity to rotational energy.

• Provision. To accumulate or provide a material or energy flow.

o Store. To accumulate a flow. Example: A DC electrical battery

stores the energy in a flashlight.

 Contain. To keep a flow within limits. Example: A

vacuum bag contains debris vacuumed from a house.

 Collect. To bring a flow together into one place.

Example: Solar panels collect ultraviolet sun rays to

power small mechanisms.

o Supply. To provide a flow from storage. Example: In a

flashlight, the battery supplies energy to the bulb.

• Signal. To provide information on a material, energy or signal flow as

an output signal flow. The information providing flow passes through

the function unchanged.

o Sense. To perceive, or become aware, of a flow. Example: An

audiocassette machine senses if the end of the tape has been

reached.

 Detect. To discover information about a flow. Example:

A gauge on the top of a gas cylinder detects proper

pressure ranges.

172

 Measure. To determine the magnitude of a flow.

Example: An analog thermostat measures temperature

through a bimetallic strip.

o Indicate. To make something known to the user about a flow.

Example: A small window in the water container of a coffee

maker indicates the level of water in the machine.

 Track. To observe and record data from a flow.

Example: By tracking the performance of batteries, the

low efficiency point can be determined.

 Display. To reveal something about a flow to the mind

or eye. Example: The xyz-coordinate display on a

vertical milling machine displays the precise location of

the cutting tool.

o Process. To submit information to a particular treatment or

method having a set number of operations or steps. Example:

A computer processes a login request signal before allowing a

user access to its facilities.

• Support. To firmly fix a material into a defined location, or secure an

energy or signal into a specific course.

o Stabilize. To prevent a flow from changing course or location.

Example: On a typical canister vacuum, the center of gravity is

placed at a low elevation to stabilize the vacuum when it is

pulled by the hose.

o Secure. To firmly fix a flow path. Example: On a bicycling

glove, a Velcro strap secures the human hand in the correct

place.

o Position. To place a flow (material, energy, signal) into a

specific location or orientation. Example: The coin slot on a

soda machine positions the coin to begin the coin evaluation

and transportation procedure.

173

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Güroğlu, Serkan

Nationality: Turkish (TC)

Date and Place of Birth: 24 April 1975 , Ankara

Marital Status: Single

Phone: +90312 586 8308

Fax: +90312 586 8091

email: serkan.guroglu@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.Sc. METU Mechanical Engineering 1999

B.Sc. METU Mechanical Engineering 1997

High School Ankara Kurtuluş High School 1992

ACADEMIC EXPERIENCE

Year Place Enrollment

2003-2005 Atılım University, Department of

Mechatronics Engineering

Instructor

1998-2003 METU, Department of

Mechanical Engineering

Research Assistant

1996 MKEK ELSA A.Ş. Intern Engineering Student

1995 MKEK KAPSÜLSAN A.Ş. Intern Engineering Student

FOREIGN LANGUAGES

Advanced English

174

PUBLICATIONS

1. Güroğlu, S., Erden, A., Akbulut, D. and Özgüç, B., 2005, “Creativity: As

an Evaluation Measure for Evolutionary Conceptual Design”, Submitted

to the Sixth International Conference on Computer Aided Industrial

Design and Conceptual Design, Delft/NETHERLANDS.

2. Güroğlu S. and Erden A., 2004, "Development of an Evaluation

Measure for Genetic Approach to Functional Level Conceptual

Mechatronic Design", 9th Mechatronics Forum - International

Conference, MECHATRONICS 2004, Ankara/TURKEY.

3. Güroğlu S. and Erden A., 2004, "An Evolutionary Approach for

Functional Level Conceptual Design of Products", International Design

Conference, DESIGN 2004, Dubrovnik/CROTIA.

4. Güroğlu S. and Erden A., 2003, "Development of a Representation

Scheme for the Application of Genetic Methodology to Functional

Design", International Conference on Engineering Design, ICED 2003,

Stockholm/SWEDEN.

5. Güroğlu S., Çetin O. and Erden A., 2001, "Application of a Pruning

Algorithm to Automate the Design of Artificial Neural Networks", 5th

International Conference on Mechatronic Design and Modeling, MDM

2001, Konya/TURKEY.

6. Güroğlu S., Erden Z. and Erden A., 2001, "Implementation of Petri Net

Based Design Network on the Automation of Mechatronic Design",

International Conference on Engineering Design, ICED 2001,

Glasgow/UK.

7. Erden Z., Güroğlu S. and Erden A., 2000, "Functional Synergy in

Mechatronic Design By Integrating Petri Nets and Hybrid Automata",

7th Mechatronics Forum International Conference, Mechatronics 2000,

Atlanta, Georgia/USA.

8. Güroğlu S., Erden Z., Erkmen A., and Erden A., 1999, "The Design

Network Simulator (DNS): An Implementation Software for a Petri Net-

Based Design Network Applied to Mechatronic Design", 6th

International Conference on Mechatronics and Machine Vision in

Practice, M2ViP'99, Ankara/TURKEY.

