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ABSTRACT

ON THE SERVICE MODELS FOR DYNAMIC SCHEDULING OF

MULTI-CLASS BASE-STOCK CONTROLLED SYSTEMS

Kat, Bora

M.Sc., Department of Industrial Engineering

Supervisor: Asst. Prof. Dr. Zeynep Müge Avs.ar

August 2005, 112 pages

This study is on the service models for dynamic scheduling of multi-class make-to-

stock systems. An exponential single-server facility processes different types of items

one by one and demand arrivals for different item types occur according to indepen-

dent Poisson processes. Inventories of the items are managed by base-stock policies

and backordering is allowed. The objective is to minimize base-stock investments or

average inventory holding costs subject to a constraint on the aggregate fill rate, which

is a weighted average of the fill rates of the item types. The base-stock controlled pol-

icy that maximizes aggregate fill rate is numerically investigated, for both symmetric

and asymmetric systems, and is shown to be optimal for minimizing base-stock in-

vestments under an aggregate fill rate constraint. Alternative policies are generated

by heuristics in order to approximate the policy that maximizes aggregate fill rate

and performances of these policies are compared to those of two well-known Longest

Queue and First Come First Served policies.

Also, optimal policy for the service model to minimize average inventory holding

cost subject to an aggregate fill rate constraint is investigated without restricting the

attention to only base-stock controlled dynamic scheduling policies. Based on the

equivalence relations between this service model and the corresponding cost model, it

is observed that the base-stock controlled policy that maximizes aggregate fill rate is

almost the same as the solution to the service model and cost model under consider-

ation, especially when backorder penalties are large in the cost model as compared to

cost parameters for inventory holding or equivalently when the target fill rate is large

in the service model.

Keywords: Multi-class, Dynamic scheduling, Base-stock, Fill rate, Cost and service

models.
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ÖZ

C. OK SINIFLI, BAZ-STOK DENETİMİNDEKİ SİSTEMLERİN

DİNAMİK C. İZELGEMESİ İC. İN SERVİS MODELLERİ

Kat, Bora

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Y. Doc.. Dr. Zeynep Müge Avs.ar

Ağustos 2005, 112 sayfa

Bu tezde iki veya daha fazla sayıda parc.a tipinin bulunduğu, stok ic.in üretim yapan

bir sistemin dinamik c.izelgelemesi üzerine c.alıs.ılmaktadır. Talep sürec.leri Poisson olan

parc.alar, is.leme süresi üstel olan bir tesis tarafından birer birer is.lenmektedir. Parc.a

tipleri ic.in stoklar baz-stok denetimindedir ve yoksatma mümkündür. Amac., parc.a

tiplerinin farklılıklarını göz önüne alarak hesaplanan gelen talebi anında kars.ılama

oranı ic.in bir kısıt altında baz-stoklara yapılan yatırımı veya ortalama stok tas.ıma

maliyetini en aza indirmektir. Kars.ılama oranını en büyükleyen politika simetrik

ve asimetrik sistemler ic.in sayısal olarak aras.tırılmakta ve bu politikanın kars.ılama

oranı ic.in bir hedef düzey kısıtı altında, baz-stoklara yapılan yatırımı en aza indirdiği

gösterilmektedir. Sözü gec.en politika sezgisel yöntemlerle yaklas.ık olarak belirlen-

mekte ve bu sezgisel yöntemler sıklıkla kullanılan, parc.aları gelis. sıralarında is.leme

ve is.lenmek üzere sırada bekleyen parc.a tiplerinden sayısı fazla olanı öncelikle is.leme

politikalarıyla kars.ılas.tırılmaktadır.

Ayrıca, sadece baz-stok denetimindeki dinamik c.izelgeleme politikaları ile sınırlı kal-

madan, kars.ılama oranı ic.in bir hedef düzey kısıtı altında, ortalama stok tas.ıma

maliyetini en aza indiren politika aras.tırılmaktadır. Servis modeli ile maliyet modeli-

nin denkliği gözönüne alınarak, yoksatma maliyetinin veya servis modelinde kars.ılama

oranı hedefinin yüksek olduğu durumlarda, kars.ılama oranı ic.in bir hedef düzey kısıtı

altında stok tas.ıma maliyetini en aza indiren politikanın, kars.ılama oranını en büyük-

leyen politika ile hemen hemen aynı olduğu gözlenmektedir.

Anahtar Kelimeler: C. ok sınıflı, Dinamik c.izelgeleme, Baz-stok, Kars.ılama oranı, Maliyet

ve servis modelleri.
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CHAPTER 1

INTRODUCTION

This study is on the dynamic scheduling of multi-class make-to-stock systems for the

case (s, S) policies with s = S − 1, namely base-stock policies, are employed at the

stock points. Items are processed one by one by a single exponential server allowing

preemption. Demands of different classes (item types) arrive according to independent

Poisson processes and demands that cannot be satisfied upon arrival are backordered.

The system is called symmetric if the demand rates, cost parameters and base-stock

levels are equal for different types of items, and asymmetric otherwise. There are no

set-up costs or change-over times to switch from processing one item type to another.

It is possible to consider the setting outlined above within the context of manufac-

turing or spare part systems. One of the design issues to be considered for a given

configuration is to determine the base-stock levels for items or spare parts of different

types for the respective stock points. High base-stock levels bring extra cost; low base-

stock levels, on the other hand, would cause frequent backorders (e.g., interruptions

of the activities at the sites where repairable items are in use as in the case of many

military applications).

It is common in the literature to work with backorder cost although it is hard, even

impossible, to quantify or estimate the corresponding cost parameter. Service levels,

on the other hand, represent customer satisfaction more realistically, especially when

quality of the estimates of cost parameters for backorders is questioned. That is why

specifying some target service levels to be achieved and working with backorder costs

are considered as alternative approaches. Inventory models to minimize all relevant

costs, including backorder cost, are known as the cost models whereas service mod-

els are the ones with some service level constraints introduced instead of incurring

backorder cost. There is a number of service levels. Probability of not stocking out

(α-service), fill rate (β-service level) and modified fill rate (γ-service level) are the

most common ones. α-service level is the fraction of time that demand is satisfied im-

mediately upon arrival, β-service level is the fraction of demand satisfied immediately

upon arrival and γ-service level is one minus the ratio of the average backorders and

the mean demand per period.

For each service model, there is a corresponding cost model where backorder cost is
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incurred in accordance with the service level definition in the service model. For ex-

ample, if γ-service level is considered in the service model, then in the corresponding

cost model the backorder cost is for the time needed to satisfy each backordered re-

quest. Since α and β type service levels are not for the case of penalizing time needed

to satisfy a backorder, use of these in the service models may cause unfair policies to

be feasible as pointed out in [3]. In order to avoid this, items of the same type are

processed on a First Come First Served (FCFS) basis which is fair in the sense that

there is no discrimination between customers of the same class. As clarified in [18],

such related models are said to be equivalent under certain conditions.

Most of the research on multi-class make-to-stock M/M/1 queueing systems are to

minimize the long-run expected average or discounted inventory holding and back-

order costs. Due to the difficulty to quantify cost parameters for backorders, in this

study we prefer to concentrate on service models with α or β-service levels. Since Pois-

son arrivals see time averages, α and β-service levels are equal for each class. Keeping

this in mind, we will be calling the service level under consideration as the fill rate

throughout the thesis. Instead of working with individual fill rates of different item

types, a weighted average of them is introduced in this study as the aggregate fill rate

to represent the overall system performance, and structure of the dynamic scheduling

policies (state-dependent priorities) is investigated to maximize aggregate fill rate for

given base-stock levels. It is observed that the base-stock controlled scheduling poli-

cies that maximize aggregate fill rate are characterized by (two) switching curves (for

two-class systems). Depending on the weights of the individual fill rates of different

item types, the curves shift accordingly. For the symmetric systems, these scheduling

policies reduce to the Longest Queue (LQ) policy when there is not any backorder and

to the Shortest Queue (SQ) policy when there are backorders of all classes. LQ (SQ)

policy awards priority to the class with the highest (lowest) number of outstanding

orders, i.e., the class with the lowest (highest) inventory level due to the employment

of base-stock policies.

Optimal policies for the following formulations are in the set of policies maximizing

aggregate fill rate: minimizing investment on base-stock quantities subject to a con-

straint on the aggregate fill rate to achieve a target level or maximizing aggregate

fill rate subject to a budget constraint for the investment on base-stock quantities.

Although we first focus on the base-stock controlled dynamic scheduling policies max-

imizing aggregate fill rate, our observations are not limited to only resolving the

trade-off between base-stock investment and aggregate fill rate. Also a generalized
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problem formulation is considered under the set of all dynamic scheduling policies

(not only of base-stock controlled policies) to resolve the trade-off between expected

average inventory holding cost and aggregate fill rate. Basically, what is proposed

in this study is to consider the service models with an aggregate fill rate constraint

instead of the ones with an individual fill rate constraint for each item type. Replacing

the individual fill rate constraints with a weighted average of them is, in fact, a re-

laxation but brings about the advantage of working with a single service level. Then,

the question is how representative a single aggregate service level is for the overall

system performance. This question is addressed relating the generalized formulation

mentioned above to the corresponding cost model. It is observed that working with

aggregate fill rate cannot be regarded as a relaxation when weights for the individual

fill rates of different item types and target fill rate are chosen to guarantee equivalence

of the generalized service and the related cost models. This way, we can claim more

about the base-stock controlled scheduling policy maximizing aggregate fill rate.

Organization of this thesis is as follows: in Chapter 2, related studies are reviewed

positioning our work among others in the literature. Chapter 3 is on the problem

setting considered in this study and numerical investigation of the structure of the

base-stock controlled dynamic scheduling policies maximizing aggregate fill rate for

both symmetric and asymmetric two-class systems. Next, in Chapter 4, heuristics

are proposed in order to approximate the base-stock controlled dynamic scheduling

policies investigated in Chapter 3. Alternative problem formulations are studied in

Chapter 5 using the relations between cost and service models so as to reveal the

meaning or importance of working with aggregate fill rate for multi-class systems and

the use or power of the policy investigated and approximated in Chapters 3 and 4, re-

spectively. Finally, Chapter 6 is on the concluding remarks and further research topics.
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CHAPTER 2

REVIEW OF RELATED STUDIES

Most of the studies on multi-class make-to-stock systems are to minimize long-run

expected average inventory holding and backorder costs under base-stock control as

in [21], [23], [19], [10] and [6]. Long-run expected discounted cost criterion, on the

other hand, is considered by Ha [8]. Optimality of base-stock policies is shown in [8]

only for a special case and is verified in general by extensive numerical experiments.

[3], [7] and [4] on models to minimize long-run average holding costs subject to a

service level constraint differ from the references mentioned above. The service level

considered in [3], [7] and [4] is of α type. Based on this classification of the studies

in the literature, our work can be considered in the class of [3], [7] and [4]. Different

from [3], [7] and [4], the (equivalence) relations between the service model primarily

focused on and the corresponding cost models are also investigated in this work. In

the cost models related to the service model with aggregate fill rate, backorder cost is

of either α or β type unlike the γ type backorder cost in [21], [23], [19], [10] and [6].

A reference book that covers many of the issues mentioned above is [24].

First study on multi-class make-to-stock queueing systems is by Zheng and Zipkin

[22] for the base-stock controlled symmetric two-class case with independent Poisson

processes for the arrivals of different item types and exponential constant processing

rate of the single-server facility. The authors study the LQ policy and compare per-

formance of this policy to that of FCFS policy. Allowing preemption under the LQ

policy, Zheng and Zipkin obtain closed-form expressions for steady-state probabilities

of the differences between queue lengths and for the first two moments of the marginal

queue lengths. Moreover, they develop a recursive scheme for calculating the exact

joint distribution of queue lengths and marginal queue length distributions. Zheng

and Zipkin also show that, with a convex cost (inventory holding and backorder costs)

function, LQ policy performs always better than FCFS policy with respect to long-run

average cost criterion and support their analytical observations with numerical exper-

iments to compare these two policies in terms of the fraction of demands backordered,

average outstanding backorders and average inventory on hand. As an extension, al-

lowing the demand rates to be different for the two classes of items they modify the

LQ policy in such a way that even if the queue length for a class is shorter this class

is given priority up to a threshold, i.e., the items of one class are processed only if the
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corresponding queue length is larger than the queue length of the other class by a pre-

specified constant, ∆. Besides this, Zheng and Zipkin propose an alternative policy

for the symmetric case imposing a maximum total inventory level, S+, while keeping

individual maximum inventory (base-stock) levels, S, and argue that it is enough to

consider only the case S+ = 2S− 1. One of the heuristics we propose in this study to

maximize the aggregate fill rate is similar to this alternative policy.

Wein [21] studies the same problem without restricting his attention only to two-class

symmetric systems but allowing each class to have its own general service time distri-

bution and gives an approximation analyzing a Brownian model under heavy traffic

conditions. The scheduling policy Wein proposes is to minimize long-run expected av-

erage (inventory holding and backorder) cost for both preemptive and non-preemptive

cases. According to this policy, the weighted inventory process (sum of the inventory

levels weighted by the mean processing times) is monitored to identify the classes in

danger of being backordered. Priority is given to the class with largest bµ index among

the classes in danger of being backordered, where b is the backorder cost and µ is the

mean service rate. If none of the classes is in danger of being backordered, then the

class with the lowest hµ index is processed where h is the inventory holding cost. The

proposed policy is compared with a policy that awards priority to the class with min-

imum inventory level and FCFS policy using simulation. The results imply that the

proposed policy outperforms LQ policy which outperforms FCFS policy. Simulation

results are also compared with Brownian approximation.

In [23], Zipkin considers the preemptive symmetric problems under base-stock control

with two and more classes where processing times are restricted exponentially dis-

tributed random variables. LQ and FCFS policies are compared. He argues that σ,

the sum of queue length standard deviations, represents the major behavior of perfor-

mance of a wide range of systems. He supports his claim showing that an upper bound

on the optimal expected average cost (inventory holding and backorder costs) and the

optimal cost when normal approximation is used for the steady-state outstanding or-

ders of each class are both product of σ and some other terms. He also proves that

his claim is valid when expected average inventory holding cost is minimized subject

to a service level constraint under the normal approximation mentioned above. He

derives closed-form expression for σ under FCFS policy and gives an approximation

for σ under LQ policy. The approximation turns out to be consistent with the exact

closed-form expression given in [22] for two-class systems.
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Veatch and Wein [19] propose several idleness and index policies for a single-server

make-to-stock system with different classes of items allowing preemption under the

long-run average (inventory holding and backorder) cost criterion. Idleness policies

are to determine when to keep the server idle and index policies are to specify the class

to be processed. One of the idleness policies decomposes the system into single-item

subsystems having the same utilization as the whole system. The other aggregates

the items into a single class, and a third one is based on Brownian approximation

to the problem for the lost sales case and another one decomposes the system into

single-class subproblems assuming that LQ policy is used. One of the index policies,

called Service Time Look Ahead (STLA) policy, considers the expected cost rate after

one service time instead of only considering the cost rate of the next state as in the

case of fully myopic static priority policies. A second index policy is obtained by

value function approximation and the last one is based on restless bandit analysis.

Combinations of these index and idleness policies are tested for two and three-class

systems, the results are then compared with the optimal values using value iteration.

Numerical experiments show that the STLA index and the Brownian idleness policy

combination performs best (with a suboptimality less than 7%) and the LQ switching

curve combined with the Brownian idleness policy performs well.

Van Houtum et al. [17] investigate the performance of multi-class base-stock con-

trolled symmetric systems under LQ policies using a model slightly different than the

ones reviewed above although independent demand arrivals for different classes are

still Poisson and the constant service rate is exponential. The authors do not allow

preemption and their state description denotes the number of items of each class in

the corresponding queue, not the number of items of each class in the system. They

consider performance of the system in terms of stockout probability (which is directly

related to the fill rate in symmetric systems), the payoff formulation we use in this

study is equivalent to the one proposed by van Houtum et al. in [17] for the symmetric

case and an immediate extension of it for the asymmetric case. Limiting the difference

between queue lengths by a predetermined threshold (truncating the state-space), van

Houtum et al. obtain lower and upper bounds on the performance measure, stock-

out probability, of the system with two variants: threshold rejection and threshold

addition. With an arrival for the longest queue, if the difference between the longest

and shortest queues exceeds the threshold, then the arrival is rejected in threshold

rejection model and an item is added to shortest queue in threshold addition model.

The authors prove that these variants, which they analyze by matrix geometric theory,

give lower and upper bounds on the stockout probability in the original LQ model.
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The numerical experiments in [17] are to compare LQ and FCFS policies with respect

to the minimum base-stock levels required to achieve a target service level (one minus

stockout probability).

Ha [8] studies two-class make-to-stock systems with a single server in order to investi-

gate structure of the optimal dynamic scheduling policy under the expected discounted

(inventory holding and backorder) cost criterion over an infinite horizon allowing pa-

rameters to be different for different classes and employing preemptive discipline. For

the case exponential processing times are identically distributed among classes, he

shows that for some initial inventory levels, the optimal policy is a hedging point

(base-stock) policy characterized by two switching curves: one separates the state-

space into busy (”produce”) and idle (”do not produce”) regions and the other speci-

fies the regions for the class of items to be processed. Ha also shows that, for the case

of unequal process rates for different classes, a static priority rule (choosing the class

with larger bµ value where b is the cost per backorder per period and µ is the process

rate) is optimal (when there are backorders of that class). Three heuristic policies

proposed in [8] are for given base-stock levels. One of the heuristics, called bµ rule,

is a static priority rule, which always chooses to process the class with the largest

bµ index among the ones having inventory levels lower than their base-stock levels.

Another heuristic, called modified bµ rule which is similar to the one proposed in [21],

is such that index of each class is bµ except the one with the lowest hµ where h is the

inventory holding cost per item per time unit. Suppose class k is the one with lowest

hµ index, then, index of class k is bkµk when its inventory level is below ǫk, a pre-

specified constant, and zero otherwise. Priority is given to the class with the largest

index. The last heuristic, called the switching rule, is to approximate switching curves

giving priority to the class with the largest bµ index among the backordered classes. If

there is not any backordered item, then the class with largest bµ(1− x
S
) index is given

priority where (1 − x
S
) is interpreted as the proportion of unfilled base-stock, x and

S denoting the current inventory and the base-stock level respectively. This heuristic

policy turns out to be (state-dependent) longest queue policy for the symmetric case.

[10] is on multi-class make-to-stock systems with the objective function minimizing

long-run expected average (inventory holding and backorder) cost. In this study,

Peña-Perez and Zipkin propose heuristics similar to STLA in [19], based on myopic

allocation. One heuristic chooses the class that improves the overall cost rate, which

is cost rate change per time unit, considering the service time and the other consider-

ing the sojourn time (omitting all other classes and devoting the server to associated
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class). For symmetric systems, the former is consistent with LQ policy, which is op-

timal for this case. The heuristic policies proposed are compared with the optimal

policy and with the heuristic in [21] estimating some parameters by simulation. The

experiments in [10] are for two-class problems with Poisson demand arrivals and ex-

ponential service times. The myopic heuristic working with the sojourn time performs

very close to the optimal policy especially for the case of equal service rates.

de Vericourt et al. [6] investigate structure of the optimal policy for two-class sys-

tems by coupling and sample path comparison techniques. They give a closed-form

expression for the switching curve which is a straight line in the region where the class

with lower bµ index is backordered and also provide the condition for this line to pass

through the origin which implies a policy giving priority to the backordered class and

choosing the class with higher bµ index if both are backordered. This characterization

allows generalizing results in [8] and helps to show that one of the myopic policies in

[10] is consistent with the optimal policy in the stated region. Later as an extension

of the work in [6], Veatch and de Vericourt [20], using coupling trajectories, set the

conditions for zero inventory policy, which implies the hedging point at the origin.

Obviously, the system becomes a make-to-order system when these conditions are sat-

isfied, and then a full characterization of the optimal policy is provided referring also

to the results in [8].

Bertsimas and Paschalidis [3] consider multi-class make-to-stock systems with any

stationary stochastic demand and service processes.This allows them to accommodate

autocorrelated demand and service processes, and this way to broaden their scope

to cover also failure-prone systems. These constraints assure that specified levels of

stockout probabilities are not exceeded for any of the classes. Using a fluid model,

obtained by translating the deterministic version of the problem into continuous-time,

Bertsimas and Paschalidis approximate the system in order to determine the schedul-

ing policy; and using large deviations techniques, they obtain approximations for the

hedging points. The policies they handle are based on fixed static priorities, the class

with the highest priority is processed until its inventory level drops below its hedg-

ing point. Given fixed priorities, the authors find hedging points, that guarantee the

stockout probability of each class to be less than a pre-specified amount using an

approximate expression for the expected queue lengths, and report that the approx-

imate hedging points turn out to be very close to the ones obtained by simulation.

Trying all permutations, of priority orderings, the authors propose to choose the best

priority policy with the smallest cost. The numerical experiments show that these
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approximations work well when compared to simulation results.

[7] is on the problem of allocating production capacity among several classes for two

different settings under base-stock control: one to minimize long-run average inven-

tory holding and backorder costs and the other to minimize expected holding costs

subject to a service-level (stockout) constraint. The interarrival times of demands are

i.i.d. and each demand arrival may represent a request of a number of items of each

class. There is a maximum production rate defining the overall capacity of the manu-

facturer. Glasserman claims that the approach, allocating production capacity among

classes, is realistic where there are distinct facilities. In the case of a single facility,

on the other hand, the model can be considered as the allocation of the time for each

class, ”in much the same way that the processor sharing-model in queueing theory is

commonly taken as an approximation of round and robin discipline, but although this

approach is reasonable to allocate the overall effort on each class, it may be insufficient

in sequencing issue”. Besides this, the issues such as determination of base period,

i.e., duration of a cycle, and adjustments to be made when base-stock level of a class

is reached before time devoted to that class are not clear in the case of a single facility.

Milito and Levy [9] consider a computer communication network with stations com-

peting for a single channel. The stations have limited storage capacity and the packets

of information sent to stations from independent sources are blocked when this capac-

ity is full. The objective is to avoid blocked queues, which represent limited capacities

of stations. The system explained above is called a blocking system. A similar system

with a single central server feeding stations, a starvation system, and another one that

contains both blocking and starvation systems, a hybrid system, are also introduced.

In starvation systems, the stations again have limited storage capacities and the ob-

jective is to avoid empty queues. In [9], starvation system is analyzed, and blocking

and hybrid systems are presented as straightforward extensions. In the starvation sys-

tem, the service times in stations and the time that it takes for the central server to

feed a station are both exponentially distributed with station-dependent parameters.

For each station there is a cost incurred per unit of time when associated queue is

in starvation. The objective is to find a policy that minimizes the long-run expected

discounted cost. Symmetric two-station system is analyzed in the first place. Mono-

tonicity of the value function with respect to queue lengths, existence of monotonic

switching curves, for both finite and infinite storage capacities, are shown and the

relations between the cost parameters and shape of the optimal switching curves are

investigated. It is conjectured that, any closed-form policy is unlike to be found, and
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then an index type heuristic rule is proposed using the results for single-station system.

Numerical experiments for asymmetric three-station systems show that the proposed

policy performs quite well, relative error is less than 0.04% and 5% for discount fac-

tors of 0.90 and 0.998, respectively. The problem considered is the reminiscent of the

ones in multi-class make-to-stock queueing systems with lost sales where stations and

central computer (channel in the blocking case) play the same role as the classes and

the single server facility, respectively. But, note that there is not a cost term that

corresponds to the inventory holding cost.

The study by Boyacı and Gallego [4] is on single-item base-stock controlled multi-

stage serial systems with backorders but it is similar to ours in the sense that the

objective is to minimize average inventory holding costs subject to a service-level (fill

rate) constraint. The authors give a lower bound on the total system stock and upper

bounds on both the system stock and on the stock level at each stage. Three heuristic

procedures are proposed to determine the base-stock levels and one other to find the

optimal base-stock levels. Number of stages that can hold inventory is restricted in the

first heuristic. Second and third heuristics are based on majorization. Another heuris-

tic proposed in [4] is to solve a cost model that guarantees some specified service level.

Second and third heuristics are observed to outperform the first and the last heuristics.

Some other studies to be referred to are the following: Rosling [11] studies single-item

inventory systems under different review types and demand structures and derives

the conditions for shortage costs, which are related to β and α-service levels, to be

quasi-convex. His analysis is to extend optimality of (s, S) and (R,nQ) policies to

mentioned cost structures. Axsäter [1] considers a single-echelon system controlled by

a continuous-review (R,Q) policy. The author proposes a simple two-step procedure

to minimize holding and ordering costs under a fill rate constraint. The system in

[12] is the same as in [4]. Shang and Song [12] propose effective closed-form approxi-

mations for the optimal base-stock levels at each stage. Sleptchenko et al. [14] study

multi-class M/M/k systems with preemptive static priorities. They carry out an exact

analysis and devise a solution procedure to calculate the steady-state probabilities.

van der Heijden et al. [16], then, propose approximation procedures for the problem in

[14] due to the high computational times of the exact solution procedure for systems

with many servers and classes.

To wrap up, this study can be positioned somewhere among the ones on service models.

However, we use aggregate fill rate as the service measure, which simplifies dynamic
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scheduling as compared to employing individual service level constraints for different

item types. In the service models with the individual service level constraints, op-

timization is considered over the class of static priority rules, which are simpler to

handle than the dynamic scheduling. The cost models related to the service model

we consider are different than the cost models in literature. γ type backorder cost is

incurred in the latter unlike α or β type costs incurred in our case in accordance with

the use of (aggregate) fill rate in the related service model.
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CHAPTER 3

FILL RATE MAXIMIZATION: NUMERICAL INVESTIGATION

OF THE OPTIMAL POLICY

In this chapter, characteristics and mechanics of the multi-class base-stock controlled

systems are presented introducing the notation and the mathematical (dynamic pro-

gramming) formulation for dynamic scheduling of these systems (for finding the state-

dependent priorities to process items of different types) is given to maximize aggregate

fill rate (a weighted average of fill rates of different classes) for given base-stock levels.

Structure of the policy with maximum aggregate fill rate is numerically investigated.

Questioning this approach, i.e., maximizing fill rate for given base-stock levels, is

deferred to Chapter 5. That is, the problem formulations for which maximizing ag-

gregate fill rate would serve the propose of resolving the trade-off between base-stock

investment and target fill rate are considered in Chapter 5.

3.1 MODEL FOR DYNAMIC SCHEDULING

The system with I different types of items is depicted in Figure 3.1. The case of

single-server facility is considered in the first place (instead of a network of servers)

as a building block of more generalized cases. Processing time for the items is expo-

nentially distributed with mean 1
µ

independently of the item type, and preemption

is allowed. Si is the base-stock level for the inventories of type i. Demands for dif-

ferent item types occur according to independent Poisson processes with rates λi,

i = 1, ..., I, and are met from the respective stock if there is available inventory (i.e.,

ni > 0). When demand of an item arrives (an item fails) in the case of a manufacturing

(spare part) system, raw material (this failed item) is sent to the queue of orders (failed

items) of the requested type to be processed at the manufacturing (repair) facility and

to replenish the respective stock. In the case of a manufacturing system, it is assumed

that there is always available raw material. ni denotes the number of items to be pro-

cessed and ki is the number of backordered requests, i = 1, ..., I. Base-stock policies

imply the following inventory balance equations: ni + ni = Si + ki, i = 1, ..., I, note

that ni ·ki = 0. That is, n = (n1, ..., nI) fully describes the system under consideration.

Instead of working with continuous-time Markov chain formulation, we proceed with

an equivalent discrete-time version of it by defining the corresponding transition ma-
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trix as P = I + Q, where Q is the generator matrix of the continuous-time Markov

chain. Note that the steady-state probabilities for these Markov chains are the same1.

Figure 3.1: System with I item types.

Defining fm(n) as the minimum total cost over m periods when the initial state is n,

the recursive (multi-period) formulation given below is to determine the item type to

be processed in state n when there are m periods to go until the end of the planning

horizon.

fm(n) = c(n) +
I∑

i=1

λi
τ
fm−1(n + ei) +

µ

τ
vm−1(n) (3.1)

f0(n) = 0, (3.2)

for all n, where τ =
∑I

i=1 λi + µ, ei is the unit vector with ith entry being equal to 1

1Let p and ṕ denote the steady-state distributions for the continuous-time and discrete-time
Markov chains, then pQ = 0 and ṕ = ṕP , respectively. If P = I + Q, then ṕ = ṕ(I + Q) which holds
only if ṕQ = 0.
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and

vm−1(n) =




fm−1(n) if n = 0,

mini ∋ ni 6=0{fm−1(n − ei)} otherwise.

Since it is always possible to define the time-scale, without loss of generality assume

that τ = 1. Then, in (3.1) λi stands for the probability that the first event to occur is

a demand arrival of type i, i = 1, ..., I, and µ stands for the probability that the first

event to occur is service completion for the item in service. Note that processing the

item, say of type j, in service may be preempted and the server may switch to another

item type, say type i, upon a demand arrival of this type based on the minimization

in vm−2(n + ei) of fm−1(n + ei).

Let random variable Ni(t) denote the number of items in the queue of type i in period

t. Then,

fm(n) = min
π∈ΠS

{Eπ(
m∑

t=1

I∑

i=1

wi1{Ni(t)≥Si}|N(0) = n)},

where

1{Ni(t)} =





1 if Ni(t) ≥ Si,

0 otherwise,

is to count the periods in stockout state for item type i and wi is the corresponding

weight and ΠS is the set of dynamic scheduling policies under base-stock control given

S = (S1, ..., SI). This shows that the cost function, c(n), is a weighted average of the

number of item types in stockout state, to be introduced as an extension of the one

used in [17] with equal weights for the symmetric case (λi = λ and Si = S for all

i = 1, ..., I). That is, c(n) =
∑I

i=1wi1{ni≥Si}. Minimizing the long-run average cost

working with the formulation in (3.1) and (3.2) is, then, equivalent to maximizing

the weighted average of the fill rates, i.e., 1 − c(n) =
∑I

i=1wi1{ni<Si}, the fraction of

demand satisfied upon arrival (β-service level). Note that since the demand process

for each item type is a Poisson process independent of the other item types, fill rate

for type i is not any different than the fraction of time stock i is not empty (α-service

level), i.e., the long-run probability that random variable Ni is strictly less than Si.

Recall from the inventory balance equation implied by the base-stock policies that

Ni < Si means N i > 0, i.e., there are available items in stock.
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Although the use of aggregate fill rate instead of penalizing backorders in the objective

function of a cost model is justified by the difficulty in estimating the cost parameters

for backordered items (see Chapter 5 for details of different problem formulations:

optimizing expected average inventory holding and backorder cost versus optimizing

expected average inventory holding cost subject to fill rate constraint), with this ap-

proach determining the values of wi turns out as an issue except for the symmetric

case where aggregate fill rate is the same as the fill rate of each item type (just the

regular average with equal weights). That is, for the symmetric systems our approach

immediately comes up as an alternative one directly comparable to the ones in the

literature like [17] and [22]. For the asymmetric systems, these weights can be chosen

proportional to demand rates, i.e., wi = λi
PI

j=1
λj

, as pointed out in [18]. This means

that without differentiating item types, we consider the fraction of demand satisfied

upon arrival. Note that, in this case, aggregate fill rate is
PI

i=1
λiPr(N i>0)

PI
i=1

λi
. In addition

to proposing this choice of weights proportional to the demand rates, we should note

that wi values should be determined depending on how the backorders are penalized,

what characteristics of the customer classes are important in this sense. Combining

all such relevant factors, analytical results are given as to how to choose wi values in

Chapter 5 based on the (equivalence) relations between cost and service models.

In order to numerically investigate the structure of the dynamic scheduling policy

maximizing aggregate fill rate, two-class system is considered first for the sake of

simplicity. The formulation in (3.1), (3.2) reduces to

fm(n1, n2) = c(n1, n2) +
λ1

τ
fm−1(n1 + 1, n2) +

λ2

τ
fm−1(n1, n2 + 1) (3.3)

+
µ

τ
vm−1(n1, n2),

f0(n1, n2) = 0, (3.4)

for all n1, n2, where τ = λ1 + λ2 + µ and

vm−1(n1, n2) =





min{fm−1(n1 − 1, n2), fm−1(n1, n2 − 1)} if n2 > 0, n1 > 0,

fm−1(n1 − 1, n2) if n2 = 0, n1 > 0,

fm−1(n1, n2 − 1) if n1 = 0, n2 > 0,

fm−1(n1, n2) if n1 = 0, n2 = 0.

Regarding the analysis of the recursive formulation, intuitively immediate observa-

tions are that f is nondecreasing in n1, n2 and m, and it is symmetric when λi = λ

and Si = S for i = 1, 2. See Appendix A for proofs. These observations are not
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enough for proving optimality (fill rate maximization) of the policy structure investi-

gated studying a wide range of numerical examples in this chapter.

In Section 3.2, the solution approach is presented. The succeeding two sections are for

the analysis of the structure of the dynamic scheduling policies maximizing aggregate

fill rate (we will call this as ς policy throughout the thesis) in both symmetric and

asymmetric systems.

3.2 SOLUTION APPROACH

In order to solve the recursive formulation presented above for the long-run average

cost, i.e., for the probability of stockout, value-iteration algorithm is used (see Tijms

[15] for an overview of the value-iteration algorithm). Note that the Markov chain

formulated is irreducible and aperiodic (when n1=n2=0, there is a probability of

staying in the current state for one more period) for all stationary dynamic scheduling

policies under base-stock control, and value-iteration algorithm works for m being

sufficiently large to approximate the long-run average payoff for every initial state (n1,

n2), i.e., limm→∞[fm(n1, n2)− fm−1(n1, n2)] = 1−FR where FR is the aggregate fill

rate for the given λi, µ and wi values. Recalling the definition of fm(n) in Section

3.1, aggregate fill rate under policy π, to be denoted by FR(π) is

lim
m→∞

1

m
Eπ(

m∑

t=1

I∑

i=1

wi1{Ni(t)<Si}|N(0) = n)

= lim
m→∞

1

m

I∑

i=1

wiEπ(
m∑

t=1

1{Ni(t)<Si}|N(0) = n)

=
I∑

i=1

wiFRi(π)

where FRi(π) is the fill rate for items of type i under policy π.

Since we cannot work with infinite state space, one may think of some kind of

truncation which would mean approximation. Instead, we proceed with the idea

of narrowing the state space (not evaluating the functional value at some states)

as the number of remaining periods decreases, this way eliminating any require-

ment for truncation. A sketch of this approach is given in Figure 3.2 and a pseu-

docode of the procedure is in Appendix B. If the functional value is to be eval-

uated using (3.3), (3.4) over the state space {0,1,...,No1} × {0,1,...,No2} with m′
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periods to go until the end of the planning horizon, we need the functional values

for the states in {0,1,...,No1 + 1} × {0,1,...,No2 + 1} with (m′ − 1) periods to go

due to the recursive nature of the formulation. This means that, initially we need

the functional values for state space {0,1,...,No1 + m′} × {0,1,...,No2 + m′} with

no periods to go (at the end of the planning horizon). We start with state space

{0,1,...,No1 +m′}× {0,1,...,No2 +m′}, f0(n1, n2) being zero for every (n1, n2) in this

state space, then continue with {0,1,...,No1 +m′−1}×{0,1,...,No2 +m′−1} to calcu-

late f1(n1, n2) for every (n1, n2) of this smaller state space. Proceeding this way, we

calculate fm′(n1, n2) for every (n1, n2) in the state space {0,1,...,No1}×{0,1,...,No2}.

m′ should be sufficiently large to observe convergence and No1, No2 values should

be large enough to figure out structure of the optimal (ς) policy. Complexity of the

procedure is O(m′3).

n2

n1
No1

No2 m=m'

m=1

m=0

No1+m'No1+m'-1

No2+m'-1

No2+m'

Figure 3.2: Sketch of the solution approach for value-iteration algorithm.

From the numerical experiments, it is observed that the convergence time is increasing

in traffic intensity, ρ = λ1+λ2

µ
, which is obvious. When ρ is small, the processing rate

is much higher than the demand rates and the process is restricted to fewer states,

compared to the cases of larger ρ values. For large ρ values such as 0.95, complete

convergence could not be observed for the asymmetric cases with the specified ranges
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to stop although the successive fm values turn out to be still very close to each other.

We have the increasing and decreasing rates of average costs for different initial states.

By using these rates, we approximate the convergence points where these costs would

meet. This approximation is tested for the experiments which had already converged

and it is observed to perform well. In all the experiments in this thesis instead of

given µ and λi, i = 1, ..., I, values, 1
1+ρ and ( λi

PI
j=1

λj
ρ)/(1 + ρ), i = 1, ..., I, are used

respectively, so that τ = 1.

3.3 SYMMETRIC SYSTEMS

In this section, symmetry considered is the following: Si = S and λi = λ for i = 1, 2.

That is, aggregate fill rate is the same as the fill rates of each class regardless of the

(w1, w2) values.

Since the given recursive formulation is to determine which item type to process in

each state (n1, n2) when there are m periods to go (recall the definition of vm−1,

the alternatives for optimization are fm−1(n1 − 1, n2) and fm−1(n1, n2 − 1)), let

dm(n1, n2) and Dm(n1, n2) denote the differences fm−1(n1 − 1, n2)− fm−1(n1, n2 − 1)

and dm(n1, n2) − dm(n1 − 1, n2), respectively. In Figure 3.3, dm(n1, n2) is plotted

against n1 for n2 = 5, ρ = 0.80, S = 9 and m = 1, 2, 3, 5, 10, 50, 100, 1000 and

graphs for Dm(n1, n2) can be seen in Figure 3.4. Some other example graphs, for

different values of n2 and ρ, can be seen in Appendix C. Our observations from these

numerical experiments are as follows:

• dm(n1, n2) is non-increasing (non-decreasing) in n1 (n2) when n1 < S1 (n2 < S2)

and the rate of decrease is 0 for low values of n1 (n2),

• dm(n1, n2) is non-decreasing (non-increasing) in n1 (n2) when n1 ≥ S1 (n2 ≥ S2)

and rate of increase converges to 0 as n1 (n2) goes to infinity,

• Negative (positive) values of dm(n1, n2) implies that fm(n1−1, n2) is less (larger)

than fm(n1, n2 − 1), then type 1 (2) should be chosen to process.

• For a given n2, dm(n1, n2) intersects n1 − axis at two points, say ñ1 and n̂1,

ñ1 = n2. For n2 < S2 (n2 ≥ S2), processing type 2 is optimal when n1 < ñ1

(n1 < n̂1). Between ñ1 and n̂1, it is optimal to process type 1 and beyond n̂1

(ñ1), it is optimal to process type 2. Note that ñ1 < n̂1 (n̂1 < ñ1) when n2 < S2

(n2 ≥ S2).
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(h) m = 1000.

Figure 3.3: dm(n1, n2) versus n1 for n2 = 5, ρ = 0.80, S = 9.
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(h) m = 1000.

Figure 3.4: dm(n1, n2) − dm(n1 − 1, n2) versus n1 for n2 = 5, ρ = 0.80, S = 9.
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In Figure 3.5, optimal decisions are shown for each initial state when there are m

periods to go, m = 2, 3, 5, 1000. Such figures for some other ρ values are given

in Appendix D. As seen for three example cases (three different ρ values) in Figure

3.6, once m is sufficiently large, policies converge to the ones characterized by two

switching curves intersecting at n = (S1, S2). These curves for m periods to go are

defined as follows in a way similar to the ones Ha uses in [8]:

Bm(n1) =

{
max{n2 : dm(n1, n2) ≥ 0} if n1 < S1,

min{n2 : dm(n1, n2) ≥ 0} if n1 ≥ S1,

Am(n1) =

{
min{n2 : dm(n1, n2) ≥ 0} if n1 < S1,

max{n2 : dm(n1, n2) ≥ 0} if n1 ≥ S1.

Let the state space be separated into the following four regions: n1 < S1 and n2 < S2

(region 1), n1 ≥ S1 and n2 < S2 (region 2), n1 ≥ S1 and n2 ≥ S2 (region 3), n1 < S1

and n2 ≥ S2 (region 4). When m takes very large values, LQ and SQ policies are

optimal in regions 1 and 3, respectively. In the remaining regions 2 and 4, optimal

priorities are determined by switching curve Bm(n1) that converges to B(n1) as m

tends to infinity. Note that Am(n1) is the diagonal for all m, so is A(n1). Hence, the

ς policy shows different characteristics over four regions. This policy structure makes

sense as clarified below.

• In region 1, none of the items is in stockout. LQ policy is followed in order to

avoid stockout for the item with higher risk of falling into the stockout region,

i.e., the one with higher ni.

• In region 3, both of the items are in stockout. SQ policy is followed in order to

eliminate stockout for the promising item to reach non-stockout region sooner,

i.e., the one with smaller ni.

• In regions 2 and 4, one of the items is in stockout. B(n1) is the threshold level to

be sufficiently away from region 3, while trying to reach region 1. For example,

if the current state is in region 2, say n′ = (n1, S2 − 1) such that n1 > S1,

is reached from (n1, S2), we do not immediately start processing items of type

1 although, in region 2, type 1 is in stockout but type 2 is not. Instead, we

continue processing type 2 until threshold level is reached and then we switch

to type 1. This is not to take the risk of falling into more costly region 3 while

processing type 1 towards the end of avoiding the cost of region 2 by reaching

region 1, i.e., if we immediately start processing type 1 when the current state

is n′, most probably the system will be in region 3 before reaching region 1.
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Figure 3.5: ς policy for ρ = 0.80, S = 9.

To a certain extent, FCFS would reflect the behavior of LQ policy because it is more

probable that the next item to be processed would be of type i if ni > nj , j 6= i. As a

matter of fact, LQ and FCFS policies perform almost equally well for a wide range of

parameters, especially when they are compared to the ς policy, as seen in Tables 3.1.

These two policies are compared to the ς policy in terms of (aggregate) fill rate for

constant base-stock levels in Chapter 4. LQ policy is optimal in region 1. When ρ is

small, probability of observing only a few items in the queues would be high, i.e., the

system would mostly be in region 1. This explains why performance of the ς policy

is not strikingly dominating FCFS and LQ policies when ρ is small. On the other

hand, for higher ρ values, visiting states outside region 1 is more probable making

the difference between the ς policy and the other policies significant. The difference
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Figure 3.6: ς policy for S = 9.

is due to handling states outside region 1 optimally (i.e., to maximize aggregate fill

rate), instead of persisting with LQ or FCFS policies.

In this section, performance of the ς policy investigated above is compared with those

of LQ and FCFS policies. The comparison is to see the improvement in the required

base-stock levels to achieve a given target fill rate under the ς policy compared to

LQ and FCFS policies as in the way LQ policy is compared to FCFS in [17]. But,

note that our results are not consistent with the ones in [17] because there are several

differences between the models; ni in [17] is for the number of items of type i waiting

in the respective queue and the cases with no items in the queue with idle and busy

server are distinguished defining (0; i) and (0; b), where i stands for idle and b stands

for busy, respectively, and 0 is vector of size I with zeros. They do not allow preemp-

tion and assume the item in service is considered to be ready for use, either to be put

in stock or to be sent to the customer. On the other hand, as in [22], preemption is

allowed in our case and the states represent the number of items of different types in

the system, i.e., including the one being processed. Thus, our numerical results are

directly comparable to the ones in [22].

In Table 3.1, the minimum base-stock levels required in order to achieve different tar-

get service levels (aggregate fill rate) under each of the ς, LQ and FCFS policies can

be seen. The values for LQ are calculated by using the recursive scheme developed in

[22] for finding the steady-state probabilities and the values for FCFS2 are obtained

2Pr{Ni = ni} = (1 − bρi)bρni

i is the marginal probability for queue length of class i and bρi =
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Table 3.1: Comparison of the ς, LQ and FCFS policies with minimum base-stock levels to
satisfy the given target fill rates.

ς FCFS LQ

Target FR ρ S FR(%) S FR(%) Error(%) S FR(%) Error(%)

0.90 0.40 2 94.35 2 93.75 0.60 2 94.03 0.32
0.60 3 93.64 3 92.13 1.51 3 92.68 0.96
0.80 5 90.87 6 91.22 -0.35 6 91.91 -1.04
0.90 9 90.04 12 91.00 -0.96 12 91.50 -1.46
0.95 18 90.90 24 90.95 -0.05 23 90.28 0.62

0.95 0.40 3 98.73 3 98.44 0.29 3 98.68 0.05
0.60 4 97.51 4 96.63 0.88 4 97.17 0.34
0.80 7 96.22 8 96.10 0.12 8 96.67 -0.45
0.90 13 95.71 15 95.07 0.64 15 95.48 0.23
0.95 24 95.10 30 95.03 0.07 30 95.26 -0.16

0.99 0.40 4 99.72 4 99.61 0.11 4 99.72 0.00
0.60 5 99.05 6 99.38 -0.33 6 99.59 -0.54
0.80 10 99.01 12 99.23 -0.22 11 99.13 -0.12
0.90 20 99.02 23 99.01 0.01 23 99.16 -0.14
0.95 40 99.08 47 99.09 -0.01 46 99.08 0.00

by using the fact that the conditional distribution of n given |n| = n is binomial, i.e.,

Pr(N = n| |N| = n) =

(
n

n1

)
( λ1

λ1+λ2
)
n1

( λ2

λ1+λ2
)
n2

for all n such that |n| = n, and the

steady-state probability of |N| = n is (1 − ρ)ρn due to M/M/1 nature of the system

when item types are not differentiated.

Under the ς policies, the desired service levels are achieved with lower base-stock levels

as compared to the other two policies. The decrease in investment for stock keeping

units (sku) is more for higher ρ values. This is explained by the increase in the prob-

ability of being in stockout (visiting the states in regions 2, 3 and 4 more frequently)

when ρ is high. Recall that handling the stockout case in regions 2, 3 and 4 optimally

puts forward the difference between the ς and the other two policies. When ρ = 0.90

and S = 8, the difference between the fill rates under ς and LQ policies is around

8%. This difference increases to 17% for S = 1, because smaller S values increase

probability of stockout and cause the policies to be distinguishable (LQ and ς policies

are the same as long as the system is in region 1). Performances of the LQ and FCFS

policies in terms of the required sku investment turn out to be almost the same (not

only for the example cases in Table 3.1, but in general for the extensive numerical

experiments) in accordance with the intuitive comparison of LQ and FCFS policies

to behave similarly on the average as pointed out in one of the preceding paragraphs.

λi

µ−
P

j 6=i λj
. See Buzacott and Shanthikumar [5] for details.
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Some error values are negative which means lower (aggregate) fill rate under the ς

policy, but note that these cases are observed when the ς policy achieves the target

service level with a smaller base-stock level.

3.4 ASYMMETRIC SYSTEMS

Asymmetric two-class systems are considered in this section allowing demand rates

and base-stock levels to be different for the item types. When w1 = w2, both item

types are equally important. When w1 6= w2, on the other hand, immediate delivery

for the item type with higher weight is more important. Note that these two cases

cannot be differentiated for the symmetric systems in Section 3.3.

In this section, without loss of generality we assume that λ1 > λ2. Figure 3.7 shows

structure of the ς policy for λ1 = 2λ2, S1 = S2 = S and w1 = w2 and figures for

λ1 = 4λ2 can be seen in Appendix G. This time, A is not the diagonal and B is not

symmetric with respect to the diagonal as one would expect. In figure 3.7, curve A has

a smaller (larger) slope in region 1 (3) compared to the symmetric case. Curve B, on

the other hand, is not that steep in region 2 but steeper in region 4. The explanation

below for such shifts of the switching curves as compared to the symmetric case is

immediate when S1 = S2 = S and w1 = w2.

• In region 1, there is not stockout for any of the item types. In addition to the

states such that n1 > n2, at some others such that n1 ≤ n2 it would be more

probable for type 1 to be in stockout before type 2 because λ1 > λ2. That is, A

shifts to favour (to give priority to) the type with higher demand rate more.

• In region 3, there is stockout for both of the item types. In addition to the states

such that n1 > n2, at some others with n1 ≤ n2 it would be more probable to

eliminate stockout of type 2 before that of type 1 because λ2 < λ1. That is, A

shifts to favour (to give priority to) the type with lower demand rate more.

• In regions 2 and 4, one of the item types is in stockout. B is the threshold to

be sufficiently away from region 3 while trying to reach region 1. But, since the

demand rates are different, B is not symmetric with respect to the diagonal.

When the type with higher (lower) demand rate is in stockout and the other is

not, then at any state it is more (less) probable as compared to the symmetric

case to reach region 1 before the other type steps up to region 3 while processing

the type in stockout. That is, B shifts to favour (to give priority to) the type

with higher demand rate more.
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Figure 3.7: ς policy: equally weighted cost function, w1 = w2, S = 8, λ1 = 2λ2.

Figures 3.8, 3.9, 3.10 show structures of the ς policy for three different weight vectors.

Some other figures can be seen in Appendix G. These figures imply that the weights

are dominant in determining structure of the ς policy. Especially for high values of ρ,

the ς policy chooses to process the class with higher weight in most of the states even

if that class has lower demand rate. The observations are itemized below.

• In region 1, in addition to states such that n1 > n2, at some others with n1 ≤ n2

it would be more probable for type 1 to be in stockout before type 2 because

λ1 > λ2. Since region 2 is more costly than region 4 when w1 > w2, A shifts to

favor (to give priority to) type 1 even more compared to the case w1 = w2.

• In region 3, it is possible to have more cost saving by reaching region 4 than

reaching region 2 when w1 > w2, then A shifts to favor (to give priority to) type

1 even more compared to the case w1 = w2.

• In region 2 (4) in addition to states in which it would be more probable for type

1 to eliminate stockout (to step up to region 3) than for type 2 to step up to

region 3 (to eliminate stockout), at some others type 1 is given priority because

the cost saving by reaching region 1 is larger (less) than the one avoided by

being sufficiently away from region 3.

• When demand rates and/or weights for the item types differ, one may wish to

permit unequal base-stock levels. Since the structure of the ς policy is highly

dependent on the distances to the base-stock levels from any given state, the

general structure of the ς policy stays the same in the case of unequal base-stock

levels.
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Figure 3.8: ς policy: cost function weighted by demand rates, w1 = 2w2, S = 8, λ1 = 2λ2.
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Figure 3.9: ς policy for w1 = 5w2, S = 8, λ1 = 2λ2.
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Figure 3.10: ς policy for w2 = 2w1, S = 8, λ1 = 2λ2.
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CHAPTER 4

HEURISTICS FOR FILL RATE MAXIMIZATION

In this chapter, heuristics are proposed to approximate the ς policy of which structure

is investigated based on numerical experiments for two-class systems in Sections 3.3

and 3.4. In devising these heuristics the approach is to approximate the switching

curve B (and also A in the asymmetric case) because a closed-form expression cannot

be derived for B (and A). Section 4.1 is on the heuristics proposed for the symmetric

case. Some of the heuristic approaches in Section 4.1 are then extended in a natural

way to the asymmetric case with two classes in Section 4.2 and more than two classes

(numerical experiments being for the three-class case) in Section 4.3.

4.1 SYMMETRIC TWO-CLASS SYSTEMS

Five heuristics are presented in this section for Si = S and λi = λ. Recall that B

characterizes the ς policy together with A, the latter of which turns out to be the

diagonal n2 = n1 for symmetric systems. The heuristics are for m being sufficiently

large to approximate the long-run average behavior. Heuristics 3 and 4 are proposed

with rather rough approximations of Bm for large m compared to the other heuristics;

on the other hand, heuristic 3 has the advantage of having balance equations which

we can solve recursively unlike others for which we have to continue using time con-

suming value-iteration to compute the steady-state aggregate fill rates (or any other

measures).

All alternative policies are of LQ and SQ types in regions 1 and 3, respectively, as

observed numerically for the ς policy. The reasoning behind the first two heuristics is

given next. When the system is in state (n1, n2) in region 2, with rate λ2 the system

moves to the states closer to the more costly region 3; on the other hand, the system

gets away from the zero-cost region 1 with rate λ1. In order to approximate B, the

choice for each state in region 2 would be between trying to get away from the more

costly region 3 by processing items of type 2 (while at the same time getting away

from region 1 by arrivals of type 1) and trying to get closer to zero-cost region 1 by

processing type 1 items (while at the same time getting closer or even into region 3 by

arrivals of type 2 items). Similar arguments can be raised also for the states in region

4. Heuristics 1 and 2 are based on comparing the expected times required to cover
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the distance from a state in region 2 (4) to regions 1 and 3 while processing type 1

(2). For each state in region 2 and 4, indices proposed for both of the item types are

to represent the expected times to cover these distances as shown in Figure 4.1 for an

example state, and heuristics 1 and 2 are to choose processing the item type with lower

index in that state. Note that the system reduces to single-class M/M/1 when the

server is devoted to processing one of the classes, say class 1. Then, the expected time

for the server to become idle, when there is one item of type 1 in the system, is 1
µ−λ1

,

which is the so-called expected length of a busy period. With a similar reasoning, the

expected time required to move from n1 = S1 to n1 = S1 − 1 (to process an item of

type 1, say Sst1 item, and all the items of type 1 arriving during the processing time of

the Sst1 item under consideration) is 1
µ−λ1

. Then, the expected time required to reach

n1 = S1 − 1 from any n′ in region 2 (to process n′ − (S1 − 1) items of type 1 and all

the items of type 1 arriving during the processing of the n′ − (S1 − 1) items under

consideration) is equal to n1−(S1−1)
µ−λ1

. On the other hand, the expected time required

to reach n2 = S2 from n′ while processing type 1 is equal to the expected time for

(S2 − n′2) items of type 2 to arrive, i.e.,
S2−n′

2

λ2
.

S1 n1

(n1,n2)
LQ

S2-n2

n1-(S1-1)

SQ

S2

n2

Figure 4.1: Distances from a state in region 2 to regions 1 and 3.

Heuristic 1:
n1−(S1−1)
µ−λ1

and S2−n2

λ2
are the indices for item types 1 and 2, respectively,

for state (n1, n2) in region 2. The former is the expected time to reach region 1 from

state (n1, n2) (to cover distance n1 − (S1 − 1)) while type 1 is being processed. Simi-

larly, the latter is the expected time to reach region 3 (to cover distance S2−n2) while
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type 1 is being processed. If the former is smaller, then we can process type 1 items

because we expect to reach (zero-cost) region 1 before stepping up the more costly

region 3. Otherwise, if S2−n2

λ2
is smaller, then it is more probable that we will step

up the more costly region 3 before reaching region 1 by processing type 1 items, so

going away from the more costly region is preferable for the state under consideration.

Note that S1−n1

λ1
and n2−(S2−1)

µ−λ2
are the indices to be compared for any state (n1, n2)

in Region 4.

Heuristic 2: This heuristic is just a variation of heuristic 1 obtained revising indices

as n1−(S1−1)
µ

and S2−n2

λ2
for item types 1 and 2, respectively, for state (n1, n2) in Region

2 and as S1−n1

λ1
and n2−(S2−1)

µ
for state (n1, n2) in Region 4.

S1 n1

LQ

n2

S2

SQ

(a) Heuristic 3.

S1 n1

n2

SQ

S2

LQ

(b) Heuristic 4.

n2

2S

n12S

LQ

SQ

(c) Heuristic 5.

Figure 4.2: Heuristics.

Although heuristics 1 and 2 are easy to implement, use of time-consuming (especially

for problems with high traffic intensity) value-iteration is unavoidable to compute the

steady-state performance measures. This is why three other heuristics are proposed

(to capture general structure of the ς policy) so that we may either derive a closed-form

solution or at least devise a recursive scheme to calculate the steady-state probabilities

easily. As a matter of fact, as noted in the first paragraph of this section, we come up

with a recursive algorithm for heuristic 3 but unfortunately not for heuristics 4 and 5.

Heuristic 3: SQ policy in region 3 and LQ policy in the remaining regions are fol-

lowed as seen in Figure 4.2(a). The algorithm in [22] is used to find the steady-state
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probabilities in the region {(i, j)| i < S1 − 1 or j < S2 − 1} ∪ (i = S1 − 1, j = S2 − 1)

where LQ policy is followed, then the other steady-state equations can be solved re-

cursively. Introducing the notation and some preliminaries next, the algorithm in [22]

is extended for this heuristic.

State-transition diagram for the LQ model studied in [22] is seen in Figure 4.3. Arcs for

the arrivals are not shown in this figure. Each node has two arcs with rate λ (because

λi = λ), one upward and one to the right. Let pij be the steady-state probability of

being in state (n1, n2) = (i, j). Note that pij = pji for the symmetric case. Also, pij

is set to zero if either i or j is less than zero. Then, the balance equations for the

system can be written as

(1 + ρ)pij =
1

2
ρ(pi−1,j + pi,j−1) +





pi+1,j if i ≥ j + 2,

pi,j+1 if j ≥ i+ 2,

pi+1,j + 1
2pi,j+1 if i = j + 1,

1
2pi+1,j + pi,j+1 if j = i+ 1,

pi+1,j + pi,j+1 if i = j,

(4.1)

for (i, j) 6= (0, 0) (note that ρp00 = p01+p10). On the other hand, since total number of

items in the system, n1 +n2, is the state description of M/M/1 queue with parameter

ρ when item types are not differentiated, we have

p00 = Pr(n1 + n2 = 0) = 1 − ρ,

p01 = p10 = 1
2Pr(n1 + n2 = 1) =

1

2
(1 − ρ)ρ.

The algorithm in [22] is summarized next. Letting xi(k) = pi,i+k, k ≥ 0, the balance

equations for j ≥ i+ 2 can be rewritten as

xi(k + 1) − (1 + ρ)xi(k) +
1

2
ρxi(k − 1)

= −
1

2
ρxi−1(k + 1) for k ≥ 2, i ≥ 0. (4.2)

If xi−1(·) is known, then (4.2) becomes a linear second-order difference equation with

unknowns xi(·). Note that, for i = 0, xi−1(·) = 0, (4.2) is a homogeneous difference

equation with the characteristic equation z2 − (1 + ρ)z + 1
2ρ = 0. Let ζ be the

root of the characteristic equation. Then, x0(k), k ≥ 0, can be obtained by using

x0(1) = p01 = 1
2(1 − ρ)ρ, and the algorithm proceeds by increasing i. Marginal

probabilities of the queue lengths under LQ policy can be calculated by using equation
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(4.1) as follows

pi =
1

2
ρpi−1 +

1

2
pii +

1

ρ
pi+1,j+1

=
1

2
ρpi−1 +

1

2
xi(0) +

1

ρ
xi+1(0) for i ≥ 1.

where pi =
∑∞

j=0 pi,j for i ≥ 0 and p0 = (1−ρ)[1+ 1
2ρ/(1−ζ)]. Details of the algorithm

can be found in [22].

State-transition diagram for heuristic 3 can be seen in Figure 4.4. Figure 4.5 is to

show how we proceed in a recursive manner to calculate steady-state probabilities in

SQ region for heuristic 3. Black nodes in Figure 4.5(a) represent the states for which

steady-state probabilities are determined by Zheng and Zipkin’s algorithm in [22],

shaded nodes are the ones for which steady-state probabilities are to be determined

in the order of Figures 4.5(a), 4.5(b), 4.5(c), 4.5(d). The nodes become black once

the steady-state probabilities are calculated. The recursive scheme is given below to

achieve an accuracy less than ǫ for some given ǫ.

Figure 4.3: State-transition diagram for the LQ model (arrival transitions are not shown).

32



Figure 4.4: State-transition diagram for Heuristic 3 (arrival transitions are not shown).

Recursive Scheme to Calculate Steady-State Probabilities:

Step 1. Use algorithm in [22] to find pij for (i, j) in {(i, j)| i < S1 − 1 or j < S2 − 1}

∪ (i = S1 − 1, j = S2 − 1). Set ω = 0.

Step 2. Solve the balance equation of state (S1 − 1 + ω, S2 − 1) for ps1+ω,s2−1.

Step 3. Solve the balance equations of states (S1 + ω, S2 + υ), υ = 0, ..., ω, (ω + 1

unknowns and ω + 1 linearly independent equations) for ps1+ω,s2+υ, υ = 0, ..., ω.

Step 4. If total probability calculated is greater than 1 − ε, then stop; else, increase

ω by 1 and go to step 2.

Table 4.1 is to compare the efforts spent for the recursive scheme above and value

iteration. CPU time for value-iteration is not any different for the heuristics and for

finding the ς policy. The number of iterations required for the recursive scheme to con-

verge when ε = 0.00001 is also given in this table. As seen in the table, the recursive

scheme gives the opportunity to calculate aggregate fill rates almost instantaneously.

With the given ε value and the required number of iterations listed, aggregate fill rates

calculated using the recursive scheme turn out to be the same (upto and including the

second decimal digit) as the ones calculated by value-iteration for heuristic 3.
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(a) (b)

(c) (d)

Figure 4.5: Recursion for Heuristic 3.

Heuristic 4: LQ Policy in region 1 and SQ Policy in the remaining regions are fol-

lowed as seen in Figure 4.2(b). Note that for the states where one of the queues is

empty LQ policy is applied.

Heuristic 5: LQ policy in region {(n1, n2)| n1 + n2 < 2S} and SQ policy in the

remaining regions are followed as seen in Figure 4.2(c).

Note that the heuristics are the same for the case S = 1; SQ policy is employed when

both n1 and n2 are positive and LQ is employed when n1 or n2 = 0. The observations

that result from the numerical experiments given in Table 4.2 and Figure 4.6 and in
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Figure 4.6: Heuristic 2.

Table 4.1: Performance of the recursive scheme for Heuristic 3.

ρ number of iterations for the recursive scheme CPU time for

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15 value-iteration recursive scheme

0.10 4 2 1 1 1 1 1 1 0.88982 0.00739

0.20 6 4 2 1 1 1 1 1 3.65946 0.00738

0.30 8 6 4 3 1 1 1 1 8.37664 0.00739

0.40 10 9 7 5 2 1 1 1 17.99361 0.00740

0.50 14 13 11 9 5 2 1 1 43.66775 0.00752

0.60 20 18 16 15 11 7 2 1 115.50373 0.00782

0.70 30 28 26 24 20 16 11 3 414.66782 0.00979

0.80 50 48 46 44 40 36 30 22 1501.28810 0.02788

0.90 108 106 104 102 98 94 88 80 5196.20532 0.57421

Appendix E:

• Heuristics 1 and 2 perform very well since the actions chosen are the same as

the ς policy in regions 1 and 3 and in most of the states in regions 2 and 4.

Heuristic 2 works better than heuristic 1 for almost all ρ and S combinations

(parameter sets) considered.

• Heuristics 3 and 4 perform worse (better) than heuristic 1 and 2 (LQ and FCFS

policies) because the actions chosen are very different than (the same as) the ς

policy (only) in regions 2 and 4 (1 and 3).

• To compare the approximate switching curve B with the exact curve, see Figure

4.6 for heuristic 2 (this figure given for heuristic 2 because it turns out to be
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Table 4.2: Comparison of the aggregate fill rates (%) of the ς, LQ, FCFS policies and the
heuristics, λi = λ, wi = 1

2 , i = 1, 2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8

ς 94.76 99.73 99.99 100.00 100.00 100.00
LQ 94.72 99.73 99.99 100.00 100.00 100.00

FCFS 94.74 99.72 99.99 100.00 100.00 100.00

0.1 Heuristic 1 94.76 99.73 99.99 100.00 100.00 100.00

Heuristic 2 94.76 99.73 99.99 100.00 100.00 100.00

Heuristic 3 94.76 99.73 99.99 100.00 100.00 100.00

Heuristic 4 94.76 99.70 99.98 100.00 100.00 100.00

Heuristic 5 94.76 99.73 99.99 100.00 100.00 100.00

ς 89.07 98.85 99.88 99.99 100.00 100.00
LQ 88.79 98.84 99.88 99.99 100.00 100.00

FCFS 88.89 98.77 99.86 99.98 100.00 100.00

0.2 Heuristic 1 89.07 98.85 99.88 99.99 100.00 100.00

Heuristic 2 89.07 98.85 99.88 99.99 100.00 100.00

Heuristic 3 89.07 98.85 99.88 99.99 100.00 100.00

Heuristic 4 89.07 98.64 99.84 99.98 100.00 100.00

Heuristic 5 89.07 98.82 99.88 99.99 100.00 100.00

ς 82.94 97.15 99.55 99.93 100.00 100.00
LQ 82.04 97.07 99.54 99.93 100.00 100.00

FCFS 82.35 96.89 99.45 99.90 100.00 100.00

0.3 Heuristic 1 82.94 97.15 99.55 99.93 100.00 100.00

Heuristic 2 82.94 97.15 99.55 99.93 100.00 100.00

Heuristic 3 82.94 97.15 99.55 99.93 100.00 100.00

Heuristic 4 82.94 96.59 99.32 99.87 100.00 100.00

Heuristic 5 82.94 97.06 99.53 99.93 100.00 100.00

ς 76.38 94.35 98.73 99.72 99.99 100.00
LQ 74.31 94.03 98.68 99.72 99.99 100.00

FCFS 75.00 93.75 98.44 99.61 99.98 100.00

0.4 Heuristic 1 76.38 94.35 98.73 99.72 99.99 100.00

Heuristic 2 76.38 94.35 98.73 99.72 99.99 100.00

Heuristic 3 76.38 94.35 98.73 99.72 99.99 100.00

Heuristic 4 76.38 93.37 98.10 99.47 99.97 100.00

Heuristic 5 76.38 94.17 98.67 99.71 99.99 100.00

ς 69.35 90.14 96.99 99.11 99.93 99.99
LQ 65.45 89.13 96.74 99.05 99.92 99.99

FCFS 66.67 88.89 96.30 98.77 99.86 99.98
0.5 Heuristic 1 69.35 90.13 96.99 99.11 99.93 99.99

Heuristic 2 69.35 90.14 96.99 99.11 99.93 99.99

Heuristic 3 69.35 90.07 96.97 99.11 99.93 99.99

Heuristic 4 69.35 88.77 95.70 98.38 99.80 99.98
Heuristic 5 69.35 88.90 96.84 99.06 99.92 99.99

ς 61.82 84.21 93.64 97.51 99.64 99.95
LQ 55.32 81.55 92.68 97.17 99.59 99.94

FCFS 57.14 81.63 92.13 96.63 99.38 99.89
0.6 Heuristic 1 61.82 84.21 93.63 97.50 99.64 99.95

Heuristic 2 61.82 84.15 93.62 97.50 99.64 99.95

Heuristic 3 61.82 83.83 93.49 97.46 99.63 99.95

Heuristic 4 61.82 82.61 91.58 95.92 99.11 99.83
Heuristic 5 61.82 83.95 93.39 97.36 99.61 99.95
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Table 4.2 Continued.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

ς 53.72 76.26 87.73 93.75 98.43 99.61 99.95 100.00
LQ 43.81 70.25 84.70 92.26 98.07 99.53 99.94 100.00

FCFS 46.15 71.01 84.39 91.59 97.56 99.29 99.89 99.99
0.7 Heuristic 1 53.72 76.06 87.60 93.67 98.40 99.61 99.95 100.00

Heuristic 2 53.72 76.26 87.72 93.74 98.43 99.61 99.95 100.00

Heuristic 3 53.72 75.03 87.03 93.40 98.35 99.59 99.95 100.00

Heuristic 4 53.72 74.68 85.11 91.09 96.89 98.98 99.83 99.99
Heuristic 5 53.72 76.06 87.43 93.48 98.31 99.57 99.95 100.00

ς 44.97 66.00 78.14 85.86 94.12 97.58 99.36 99.89
LQ 30.81 53.95 69.88 80.48 91.91 96.67 99.13 99.85

FCFS 33.33 55.56 70.37 80.25 91.22 96.10 98.84 99.77
0.8 Heuristic 1 44.97 65.92 77.95 85.69 93.98 97.49 99.34 99.89

Heuristic 2 44.97 66.00 78.14 85.85 94.12 97.58 99.36 99.89

Heuristic 3 44.97 62.94 75.62 84.15 93.41 97.29 99.29 99.88
Heuristic 4 44.97 64.74 75.57 82.52 90.94 95.41 98.43 99.65
Heuristic 5 44.97 65.92 77.95 85.57 93.83 97.39 99.29 99.88

ς 35.46 53.20 63.86 71.24 81.26 87.71 93.47 97.19
LQ 16.23 31.12 43.80 54.31 69.93 80.26 89.50 95.48

FCFS 18.18 33.06 45.23 55.19 70.00 79.92 89.00 95.07
0.9 Heuristic 1 35.46 53.20 63.79 71.08 80.97 87.37 93.17 97.01

Heuristic 2 35.46 53.17 63.74 71.13 81.19 87.66 93.44 97.17

Heuristic 3 35.46 46.65 56.36 64.48 76.61 84.64 91.83 96.48
Heuristic 4 35.46 52.48 62.11 68.50 77.24 83.38 89.74 94.72
Heuristic 5 35.46 53.20 63.79 71.08 80.90 87.25 93.05 96.92

the best for almost all parameter sets) referring to Figure 3.6 as for the ς policy

with the same ρ and S values.

4.2 ASYMMETRIC TWO-CLASS SYSTEMS

For the symmetric systems, it is enough to approximate only curve B, A is the di-

agonal. However, A also needs to be approximated for the asymmetric systems. To

that end, i.e., to approximate A, the idea used in heuristics 1 and 2 for the symmetric

case, which is based on comparing the expected time required to reach regions 1 and

3 from a state in regions 2 or 4, is extended for the states in regions 1 and 3. With a

revision of heuristic 1, indices in each region are given as in Table 4.3. First, consider

the equally weighted cost function i.e., w1 = w2. Then, while comparing the indices

wi’s will cancel out, i.e., our explanation below for w1 = w2 is by disregarding wi’s in

Table 4.3 as if they are already cancelled out. Then, for a state in region 1, the index

for type 1 (2) is the time to reach region 2 (4) from this state under consideration

while type 2 (1) is being processed. For a state in region 3, the index for type 1 (2)

is the expected time to reach region 4 (2) from this state while type 1 (2) is being

processed. Indices for the states in regions 2 and 4 are the same as introduced for the
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(a) ρ = 0.90.
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(b) ρ = 0.90.

Figure 4.7: Comparison of the ς, LQ, FCFS Policies and the heuristics.

symmetric case in Section 4.1 to approximate curve B. See Figure 4.8 for the distances

from given states in different regions. For the cases of arbitrary weights w1 and w2,

indices are adjusted dividing them by the corresponding weights, i.e., reflecting the

effects of the savings gained by reaching a less costly region or by postponing to fall

into a more costly region to the indices in a way proportional to the weights.

Revision of heuristic 2 in Section 4.1 is then obtained by using µ instead of µ − λ1
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Table 4.3: Indices for heuristic 1.

Region 4 Region 3

(S1−n1)
λ1w1

, (n2−(S2−1))
(µ−λ2)w2

(n1−(S1−1))
(µ−λ1)w1

, (n2−(S2−1))
(µ−λ2)w2

Region 1 Region 2

(S1−n1)
λ1w1

, (S2−n2)
λ2w2

(n1−(S1−1))
(µ−λ1)w1

, (S2−n2)
λ2w2

and µ − λ2 for calculating the first index in region 2 and the second one in region

4, respectively. Note that these heuristics are generalizations of heuristics 1 and 2 in

Section 4.1, i.e., when demand rates and weights are equal they turn into the respec-

tive ones in Section 4.1.

S1 n1

(n1,n2)

(n1,n2)

n1-(S1-1)

S2-n2S1-n1

S2-n2

(n1,n2)

n2

S2

n2-(S2-1)

n1-(S1-1)

S1-n1

n2-(S2-1)

Figure 4.8: Distances from a state in one region to neighboring regions.

For the equally weighted cost function, the heuristic policies are good at representing

the general structure of the optimal policy as can be seen comparing Figure 3.7 to 4.9

and Figure G.1 to G.2 in Appendix G. In this case, demand rates determine behaviour

of the switching curves. Otherwise, i.e., when the weights are not equal, these weights

become dominant in this sense as previously noted in Section 3.4 and the indices in

Table 4.3 fail in capturing the general structure of the ς policy especially in region 3.

When ρ is high (and possibly when base-stock levels are low), the system would be
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visiting region 3 frequently and the failure mentioned above would become apparent.

Based on numerical observations, at least for capturing the general behaviour of the

switching curve in region 3, index for the item type with higher weight is adjusted

multiplying it by (1 − ρ). Performance of heuristic 2 with this adjustment, heuristic

2 (M), can be seen in Figures 4.10, 4.11 and 4.12 to be compared with Figures 3.8,

3.9, 3.10, respectively, and Figures G.4 to G.8 in Appendix G. In fact, we should note

that the aggregate fill rates are approximated very accurately although approximate

curve A may turn out to be very different than the one under ς policy. For example,

see figures 3.8(c) and 4.10(c) for the ς policy and heuristic 2, respectively. There is a

significant difference between the actions taken by the policies but the aggregate fill

rates, 89.48% and 89.34%, respectively, in Table 4.5 are very close.
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TYPE 1

PROCESS 
TYPE 2

PROCESS 
TYPE 1

n2

S1 n1

S2

(a) ρ = 0.40.

PROCESS 
TYPE 1

PROCESS 
TYPE 2

PROCESS 
TYPE 1

n2

S1 n1

S2

(b) ρ = 0.60.

PROCESS 
TYPE 2

PROCESS 
TYPE 1

PROCESS 
TYPE 1

n2

S1 n1

S2

(c) ρ = 0.90.

Figure 4.9: Heuristic 2: equally weighted cost function, S = 8, λ1 = 2λ2.

In Tables 4.4 to 4.6 and Tables H.1 to H.7 the heuristics are compared with the ς

and FCFS policies. There is another heuristic introduced in [22] and used here for

comparisons: serve a customer of type 1 when n1 −n2 < ∆ with ∆ being some prede-

termined constant. Note that the relationship between ∆ and λi is not investigated in

[22], but the recursive scheme developed for LQ policy is extended. Tables 4.7 and F.1

are to determine the best ∆ value(s) for some given base-stock levels. As seen in these

tables, best ∆ may correspond to a static priority rule as in the cases of S = (6, 3) and

S = (9, 4) in Tables 4.7 and F.1 and S = (8, 7) in Table F.1. Although considerably

good performances can be attained by setting ∆ to its best value, heuristic 2 (M) is

still good in approximating the ς policy, even for unequal base-stock levels.
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Table 4.4: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and the heuristics:
equally weighted case, λ1 = 2λ2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.10 ς 94.79 99.71 99.98 100.00 100.00 100.00 100.00 100.00
FCFS 94.77 99.70 99.98 100.00 100.00 100.00 100.00 100.00

Heuristic 1 94.79 99.71 99.98 100.00 100.00 100.00 100.00 100.00

Heuristic 2 94.79 99.71 99.98 100.00 100.00 100.00 100.00 100.00

0.20 ς 89.20 98.78 99.86 99.98 100.00 100.00 100.00 100.00
FCFS 89.01 98.68 99.83 99.98 100.00 100.00 100.00 100.00

Heuristic 1 89.20 98.78 99.85 99.98 100.00 100.00 100.00 100.00

Heuristic 2 89.20 98.78 99.85 99.98 100.00 100.00 100.00 100.00

0.30 ς 83.25 97.06 99.48 99.90 100.00 100.00 100.00 100.00
FCFS 82.64 96.75 99.35 99.87 99.99 100.00 100.00 100.00

Heuristic 1 83.25 97.06 99.47 99.90 100.00 100.00 100.00 100.00

Heuristic 2 83.25 97.06 99.47 99.90 100.00 100.00 100.00 100.00

0.40 ς 76.96 94.31 98.61 99.66 99.98 100.00 100.00 100.00
FCFS 75.52 93.61 98.24 99.50 99.96 100.00 100.00 100.00

Heuristic 1 76.96 94.31 98.59 99.65 99.98 100.00 100.00 100.00

Heuristic 2 76.96 94.31 98.59 99.65 99.98 100.00 100.00 100.00

0.50 ς 70.34 90.23 96.86 99.00 99.90 99.99 100.00 100.00
FCFS 67.50 88.88 96.02 98.52 99.78 99.97 100.00 100.00

Heuristic 1 70.34 90.23 96.81 98.98 99.90 99.99 100.00 100.00

Heuristic 2 70.34 90.22 96.81 98.98 99.90 99.99 100.00 100.00

0.60 ς 63.42 84.56 93.59 97.38 99.58 99.94 100.00 100.00
FCFS 58.33 81.94 91.90 96.26 99.15 99.80 99.98 100.00

Heuristic 1 63.39 84.44 93.45 97.32 99.57 99.93 100.00 100.00

Heuristic 2 63.39 84.51 93.49 97.34 99.57 99.93 100.00 100.00

0.70 ς 56.21 77.12 87.94 93.72 98.37 99.59 99.95 100.00
FCFS 47.69 71.90 84.54 91.30 97.11 98.99 99.78 99.97

Heuristic 1 56.16 77.00 87.71 93.57 98.31 99.57 99.95 100.00

Heuristic 2 56.16 76.90 87.71 93.60 98.32 99.58 99.95 100.00

0.80 ς 48.76 67.89 78.93 86.17 94.19 97.60 99.37 99.90
FCFS 35.06 57.23 71.44 80.68 90.86 95.52 98.39 99.57

Heuristic 1 48.72 67.65 78.51 85.81 93.93 97.46 99.33 99.89

Heuristic 2 48.72 67.54 78.54 85.93 94.06 97.54 99.35 99.89

0.90 ς 41.12 56.93 65.78 72.25 81.72 88.00 93.64 97.27
FCFS 19.64 35.14 47.42 57.19 71.27 80.43 88.71 94.38

Heuristic 1 41.07 56.76 65.31 71.54 80.88 87.22 93.07 96.96
Heuristic 2 41.07 56.45 65.20 71.78 81.40 87.78 93.51 97.21
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Figure 4.10: Heuristic 2: cost function weighted by demand rates, S = 8, λ1 = 2λ2.
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Figure 4.11: Heuristic 2 (M) for w1 = 5w2, S = 8, λ1 = 2λ2.

4.3 SYSTEMS WITH MORE THAN TWO CLASSES

Extension of heuristic 1 with indices in Table 4.3 and heuristic 2 as its variation to

the cases with more than two classes is, in fact, immediate. In each region there will

be one index to be written for each class depending on whether it is in stockout or

not. But, the difficulty arises due to the increase in the number of conditions, which

are specified for each arrival, to decide whether the item in the server should be pre-

empted or not. These conditions are to take into account all possible orderings of the

indices and the class in service. Around 100 conditions are specified for the three-class

system, and the number of conditions increase in the number of classes. A systematic
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Figure 4.12: Heuristic 2 (M) for w2 = 2w1, S = 8, λ1 = 2λ2.

way of generating all conditions for a given number of classes is not considered within

the scope of the this thesis and left as a further work to handle more than three

classes. All these point out the difficulty of implementing ς policy and heuristics 1

and 2, unless the conditions mentioned above are systematically generated.

In this study, we consider the symmetric three-class system to test accuracy of the

proposed heuristics. Preliminary numerical experiments show that value-iteration

cannot be employed due to computational restrictions. Starting with a very limited

state-space, it is possible to obtain convergence only for low values of ρ. To overcome

this limitation, simulation (Arena) is used. Minimum number of items processed is

200000 for each class in a single replication and 15 replications are made for each S

and ρ combination. 95% confidence intervals are considered to ensure that the relative

precisions of any half-width (ratio of half of the confidence interval to the mean) is not

greater than 0.0005 for two-class systems and not greater than 0.002 for three-class

systems. Simulation results are compared with the ones obtained by value-iteration

for both two-class and three-class systems, but only with low traffic intensity cases

for the three-class systems. Almost all simulation results are consistent with the ones

obtained by value-iteration algorithm. Table I.1 in Appendix I shows this comparison

for two-class systems.

Comparison of the aggregate fill rates under ς, FCFS, LQ policies and Heuristic 2

can be seen in Table 4.8 for symmetric three-class systems. The values for ς and

LQ and heuristic 2 are calculated by value-iteration for ρ = 0.10, 0.25, 0.50. For
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ρ = 0.75 , 0.90 aggregate fill rates under ς policy could not be found due to the com-

putational restrictions, and under LQ policy and for heuristic 2 simulation results

are referred to. All the values for FCFS policy are calculated using the closed-form

steady-state distribution. Accuracy of the proposed heuristics is still good when there

are three classes.
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Table 4.5: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristics:
weighted by demand rates, λ1 = 2λ2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.10 ς 94.29 99.66 99.98 100.00 100.00 100.00 100.00 100.00
FCFS 94.29 99.66 99.98 100.00 100.00 100.00 100.00 100.00

Heuristic 1 94.29 99.66 99.98 100.00 100.00 100.00 100.00 100.00

Heuristic 1 (M) 94.29 99.66 99.98 100.00 100.00 100.00 100.00 100.00

Heuristic 2 94.29 99.66 99.98 100.00 100.00 100.00 100.00 100.00

Heuristic 2 (M) 94.21 99.64 99.98 100.00 100.00 100.00 100.00 100.00

0.20 ς 88.24 98.58 99.82 99.98 100.00 100.00 100.00 100.00
FCFS 88.24 98.58 99.82 99.98 100.00 100.00 100.00 100.00

Heuristic 1 88.23 98.58 99.82 99.98 100.00 100.00 100.00 100.00

Heuristic 1 (M) 88.24 98.58 99.82 99.98 100.00 100.00 100.00 100.00

Heuristic 2 88.23 98.58 99.82 99.98 100.00 100.00 100.00 100.00

Heuristic 2 (M) 87.91 98.44 99.79 99.97 100.00 100.00 100.00 100.00

0.30 ς 81.81 96.63 99.37 99.88 100.00 100.00 100.00 100.00
FCFS 81.81 96.63 99.36 99.88 100.00 100.00 100.00 100.00

Heuristic 1 81.80 96.63 99.36 99.88 100.00 100.00 100.00 100.00

Heuristic 1 (M) 81.81 96.63 99.36 99.88 100.00 100.00 100.00 100.00

Heuristic 2 81.80 96.63 99.36 99.88 100.00 100.00 100.00 100.00

Heuristic 2 (M) 81.02 96.19 99.20 99.83 99.99 100.00 100.00 100.00

0.40 ς 74.99 93.59 98.37 99.59 99.97 100.00 100.00 100.00
FCFS 74.99 93.59 98.36 99.57 99.97 100.00 100.00 100.00

Heuristic 1 74.95 93.59 98.36 99.57 99.97 100.00 100.00 100.00

Heuristic 1 (M) 74.99 93.59 98.36 99.57 99.97 100.00 100.00 100.00

Heuristic 2 74.95 93.59 98.36 99.57 99.97 100.00 100.00 100.00

Heuristic 2 (M) 73.43 92.59 97.86 99.37 99.94 100.00 100.00 100.00

0.50 ς 67.72 89.18 96.40 98.83 99.88 99.99 100.00 100.00
FCFS 67.72 89.17 96.40 98.79 99.87 99.99 100.00 100.00

Heuristic 1 67.49 89.15 96.39 98.79 99.87 99.99 100.00 100.00

Heuristic 1 (M) 67.72 89.17 96.40 98.79 99.87 99.99 100.00 100.00

Heuristic 2 67.49 89.15 96.39 98.79 99.87 99.99 100.00 100.00

Heuristic 2 (M) 65.00 87.25 95.21 98.16 99.72 99.96 100.00 100.00

0.60 ς 59.97 83.09 92.88 97.07 99.52 99.93 100.00 100.00
FCFS 59.96 82.76 92.73 96.93 99.48 99.91 99.99 100.00

Heuristic 1 59.61 82.77 92.74 96.93 99.48 99.91 99.99 100.00

Heuristic 1 (M) 59.96 83.00 92.85 96.98 99.49 99.91 99.99 100.00

Heuristic 2 59.61 83.05 92.87 96.99 99.49 99.91 99.99 100.00

Heuristic 2 (M) 55.56 79.63 90.43 95.42 98.91 99.73 99.97 100.00

0.70 ς 51.66 74.98 86.96 93.26 98.24 99.56 99.95 100.00
FCFS 44.84 68.92 82.17 89.63 96.38 98.70 99.71 99.96

Heuristic 1 51.54 74.41 86.63 92.98 98.11 99.49 99.93 99.99
Heuristic 1 (M) 50.98 74.71 86.86 93.09 98.14 99.49 99.93 99.99

Heuristic 2 51.54 74.52 86.66 93.00 98.13 99.50 99.93 100.00

Heuristic 2 (M) 50.98 74.92 86.95 93.15 98.16 99.51 99.93 100.00

0.80 ς 42.69 64.62 77.84 85.89 94.20 97.62 99.38 99.90
FCFS 32.47 53.85 68.14 77.80 88.97 94.40 97.92 99.43

Heuristic 1 42.50 63.39 76.67 84.99 93.71 97.32 99.25 99.86
Heuristic 1 (M) 41.80 64.46 77.75 85.74 93.99 97.42 99.27 99.87

Heuristic 2 42.50 63.36 76.71 85.04 93.76 97.37 99.28 99.87
Heuristic 2 (M) 41.80 64.52 77.84 85.80 94.06 97.48 99.30 99.88

0.90 ς 32.95 52.01 64.79 73.24 83.56 89.48 94.48 97.64
FCFS 17.86 32.27 43.95 53.47 67.63 77.24 86.36 92.95

Heuristic 1 32.73 48.98 60.70 69.59 81.19 87.90 93.52 97.12
Heuristic 1 (M) 32.22 51.79 64.42 72.82 83.17 89.08 94.04 97.31

Heuristic 2 32.74 49.29 61.30 70.10 81.41 88.03 93.65 97.22
Heuristic 2 (M) 32.22 52.01 64.78 73.21 83.53 89.34 94.30 97.48
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Table 4.6: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): λ1 = 2λ2, w1 = 5w2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 74.05 93.12 98.20 99.53 99.97 100.00 100.00 100.00
FCFS 71.33 91.56 97.47 99.23 99.93 99.99 100.00 100.00

Heuristic 2 (M) 74.05 93.12 98.19 99.52 99.97 100.00 100.00 100.00

0.60 ς 59.66 83.35 93.06 97.11 99.52 99.92 100.00 100.00
FCFS 52.78 77.31 88.97 94.59 98.68 99.67 99.96 100.00

Heuristic 2 (M) 59.66 83.35 93.00 97.08 99.48 99.90 99.99 100.00

0.80 ς 44.21 68.03 81.14 88.60 95.56 98.23 99.55 99.93
FCFS 29.87 50.48 64.83 74.91 87.09 93.29 97.46 99.29

Heuristic 2 (M) 44.21 68.03 81.14 88.60 95.46 98.02 99.34 99.86

0.90 ς 36.11 58.01 71.48 79.92 88.98 93.33 96.61 98.57
FCFS 16.07 29.40 40.49 49.75 63.99 74.05 84.01 91.52

Heuristic 2 (M) 36.11 58.01 71.48 79.91 88.94 93.11 96.09 98.10

Table 4.7: Comparison of the aggregate fill rates (%) of the ς, ∆ policies and heuristic 2 (M):
equally weighted case, λ1 = 2λ2.

S = (6, 3) S = (9, 4) S = (11, 11)

ς 73.692 82.832 86.422
Heuristic 2 73.590 82.766 86.399

-1000 73.436 81.266 85.165
-100 73.435 81.265 85.165
-50 73.309 81.160 85.141
-40 73.072 80.962 85.095
-25 71.671 79.791 84.823
-15 68.375 77.036 84.184
-9 63.911 73.305 84.419
-8 62.851 72.804 85.199
-7 61.674 72.797 86.013
-6 60.364 72.924 86.787
-5 59.440 72.997 87.484
-4 59.171 72.917 88.085
-3 59.053 72.626 88.580
-2 58.824 72.088 88.965
-1 58.346 71.278 89.238

∆ 0 57.544 70.182 89.399
1 56.524 68.846 89.444
2 55.736 67.459 89.373
3 55.996 66.354 89.186
5 57.985 66.745 88.479
6 58.822 67.239 87.969
7 59.570 67.683 87.373
8 60.239 68.082 86.722
9 60.838 68.439 86.080
10 61.375 68.760 85.571
15 63.336 69.939 86.058
25 65.155 71.039 86.808
40 65.922 71.504 87.125
50 66.051 71.582 87.179
100 66.119 71.624 87.208
1000 66.120 71.624 87.208
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Table 4.8: Comparison of the aggregate fill rates (%) of ς, FCFS, LQ policies and heuristic 2
for symmetric three-class systems.

ρ S ς FCFS LQ H2

0.10 1 96.444 96.429 96.421 96.444

2 99.880 99.872 99.880 99.880

0.25 1 90.262 90.000 89.863 90.262

2 99.128 99.000 99.109 99.119

3 99.925 99.900 99.924 99.925

0.50 1 77.480 75.000 73.766 77.480

2 95.160 93.750 94.294 94.819

3 99.002 98.438 98.867 98.938

4 99.806 99.609 99.786 99.796

6 99.993 99.902 99.993 99.993

0.75 1 - 50.000 46.345 60.743

2 - 75.000 74.302 81.533

3 - 87.500 88.339 91.487

4 - 93.750 94.861 96.208

6 - 98.438 99.043 99.288

8 - 99.609 99.826 99.871

11 - 99.951 99.987 99.990

0.90 1 - 25.000 21.390 47.903

2 - 43.750 40.905 66.445

3 - 57.813 56.349 76.584

4 - 68.359 67.996 83.162

6 - 82.202 82.944 91.071

8 - 89.989 90.941 95.263

11 - 95.776 96.490 98.159

15 - 98.664 99.003 99.482
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CHAPTER 5

RELATIONS BETWEEN COST AND SERVICE MODELS

This chapter is to question the problem formulations which justify the maximization

of aggregate fill rate for multi-class base-stock controlled systems. Some questions

addressed are the following: What kind of trade-offs can be resolved directly (or in-

directly) with (implications of) the use of dynamic scheduling policy maximizing fill

rate? Which trade-offs are missing concentrating on maximization of aggregate fill

rate? Relevant service measure being fill rate (equivalently, α-service due to demand

arrivals according to Poisson process), i.e., penalizing each backordered item regard-

less of how long it is backordered (the fraction of time with backorders regardless of

the number of items backordered and the time required to satisfy each), how mean-

ingful is it to work with base-stock controlled policies? Clearly, different formulations

lead to different types of optimal policies. So, our analysis in this chapter would be to

evaluate the performances of optimal policies for alternative formulations considered

in the literature as compared to the ς policy proposed and approximated in Chapters

3 and 4, respectively, for maximization of aggregate fill rate. Section 5.1 is on the for-

mulations for which the base-stock controlled dynamic scheduling policy investigated

in Chapter 3 is optimal. Section 5.2 is to figure out differences between the policies

proposed in Chapters 3 and 4 and other base-stock controlled policies in terms of

relevant performance measures. Finally, in Section 5.3, the last question raised above

is answered to a certain extent referring to some (equivalence) relations between dif-

ferent problem formulations.

5.1 FORMULATIONS FOR FILL RATE MAXIMIZATION

Let S = (S1, ..., SI) and let the base-stock controlled dynamic scheduling policy that

maximizes aggregate fill rate for given S be denoted as ςS and consider the following
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problems:

P1(C) : Maximize FR(πS)

subject to

I∑

i=1

ciSi ≤ C,

πS ∈ Π,

Si ≥ 0 and integer, i = 1, ..., I,

P2(β) : Minimize
I∑

i=1

ciSi

subject to

FR(πS) ≥ β,

πS ∈ Π,

Si ≥ 0 and integer, i = 1, ..., I,

where Π is the set of all stationary dynamic scheduling policies under base-stock con-

trol, C is the budget limitation and β is the target level for aggregate fill rate and

FR(πS) is the aggregate fill rate under policy πS. Proposition 1 given below with its

immediate proof is to show that ςS is optimal for problems P1(C) and P2(β).

Proposition 1.

a. Let ϑS∗ be optimal for problem P1(C). Then, ϑS∗ = ςS∗.

b. Let ϑS∗ be optimal for problem P2(β). Then, ϑS∗ and ςS∗ are the same policies

or alternative optima.

Proof.

a. In problem P1(C), for any feasible S, aggregate fill rate FR is maximized under

ςS. That is among all FR(ςS) with feasible S, the maximizing S∗ is optimal.

b. For problem P2(β), suppose ϑS∗ is different than ςS∗ . Since ςS∗ =

argmaxπS∗∈Π{FR(πS∗)} is feasible, i.e., FR(ςS∗) ≥ FR(ϑS∗) ≥ β, ςS∗ and ϑS∗

would be alternative optima.
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In the literature, we come across the use of
∑I

i=1 ciSi to represent the inventory cost

in spare part management. This quantity makes sense as the investment required for

the spare parts to be kept in stock. But, in manufacturing systems use of expected

average inventory holding cost is preferred. So, even if it would not be possible in

general to justify working with
∑I

i=1 ciSi in problems P1(C) and P2(β) which direct

us to maximize aggregate fill rate and come up with ςS∗ policies, there is at least

the following indirect advantage of ς policy over other base-stock controlled policies:

consider problem P2(β) for a given β, and let S be the best solution for P2(β) under

some base-stock controlled policy π other than ς policy, e.g., LQ for the symmetric

systems or ∆ policies for the asymmetric systems or FCFS, (i.e., when π is restricted

to the set of base-stock controlled LQ or FCFS policies). This advantage gets striking

as the traffic intensity increases as explained in the next section referring to extensive

numerical results. It is possible to put forward similar arguments to show the advan-

tage of ς considering problem P1(C) for a given C value.

Note that, it is a common practice at managerial level to figure out the behaviour of

efficient frontier for the investment required and the (aggregate) fill rate while trying

to resolve the trade-off. That is, one can show performance of any S on a graph of the

required investment versus one minus the aggregate fill rate under the corresponding

optimal policy (ςS in this case). This is to be repeated for all possible S. Then, the

decision makers can see which S would be preferable on the efficient frontier depending

on the budget limitation and the target service level.

5.2 COMPARISONS WITH ALTERNATIVE BASE-STOCK

CONTROLLED POLICIES

The generic problem formulations considered in the literature are either to minimize

expected average inventory holding and backorder costs or to minimize expected aver-

age inventory holding costs subject to a service level constraint. These are the cost and

service models, respectively. The service model is preferred when there is the difficulty

of estimating penalties (cost parameters) for backorders. Depending on the way back-

order costs are incurred, the corresponding service levels are defined. Cost and service

models with consistent backorder costs and service level constraints, respectively, are

related in the literature for a number of rather simple single-item cases through the

backorder penalties and the target service levels to be satisfied. Such related cost and

service models are said to be equivalent, i.e., optimal policies for these models are the

same. Section 5.3 is to elaborate on the equivalence relationships between the cost
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and service models of multi-class systems to place the policies maximizing aggregate

fill rate (ς policies) among others in the literature.

With this perspective, problem P2(β) is generalized as follows:

P3(β) : Minimize r(πS)

subject to

FR(πS) ≥ β,

πS ∈ Π,

Si ≥ 0 and integer, i = 1, ..., I,

where r(πS) is a cost function. A variation of problem P2(β) that we can think of in

the first place is obtained letting r(πS) =
∑I

i=1 hiInvi(πS), where hi is the inventory

holding cost per item of type i per time unit and Invi(πS) is the expected average

inventory of type i under policy πS, i.e., EπS(N i) recalling the notation introduced

in Chapter 3. Note that the arguments in the proof of Proposition 1 do not work for

problem P3(β), i.e., when
∑I

i=1 ciSi in problem P2(β) is replaced with r(πS), because

r is a function of π unlike
∑I

i=1 ciSi.

As mentioned in Chapter 2, most of the studies on multi-class make-to-stock systems

in the literature are to minimize expected average inventory holding and backorder

costs. This problem is as below.

P4 : min
π∈Π

{
I∑

i=1

hiInvi(π) +
I∑

i=1

biBi(π)}

where Π is the set of all feasible policies, Bi(πS) is the expected average backorders

of type i under policy πS, i.e., EπS(Ki) recalling the notation introduced in Chapter

3, and bi is the penalty charged for each time unit a request is backordered. For the

symmetric systems with λi = λ, hi = h and bi = b for all i operating under base-

stock policies (i.e., when Π is replaced with Π), LQ policy with Si = S is optimal as

pointed out by Veatch and Wein in [19]. Ha [8] later shows that base-stock controlled

LQ policies are optimal for symmetric systems. Then, it is enough to concentrate on

Π in the problem above instead of Π when the system is symmetric. Note that Π ⊂ Π.

The cost model above and problem P3(β) with r(πS) =
∑I

i=1 hiInvi(πS) (even re-

placing Π by Π and πS by π in P4) cannot be related directly in the sense mentioned
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in the first paragraph of this section. In other words, backorder penalties are not

consistent in these two models. In problem P4, it is charged for each time unit needed

to satisfy a backordered request whereas fill rate in the service model is to represent

the case penalty is charged per backordered item regardless of the backordering dura-

tion. In the literature, for symmetric systems alternative policies FCFS and LQ are

tried for problem P4 in [22] and for fill rate being the relevant performance measure

in [17], without questioning (equivalence) relations between the cost and service mod-

els. Similarly, instead of getting into equivalence relations, here we compare these

alternative policies studied in the literature and ς policy. The comparisons are for the

symmetric systems (otherwise, instead of LQ policy we should maybe proceed with

∆ policies) with equal demand rates, cost figures and fill rate weights, and to see the

performances of LQ, FCFS and ς policies as feasible alternative solutions of problem

P3(β) with their respective minimum base-stock levels required to achieve target level

β and when r(πS) =
∑I

i=1 hiInvi(πS).

Note that a feasible policy π satisfying the fill rate constraint of problem P3(β) with

minimum base-stock levels is, in fact, the solution of problem P2(β) under the set of

base-stock controlled π policies when ci = c. By optimality of ς policy in problem

P2(β), ςS∗ gives the base-stock level combination with minimum
∑I

i=1 ciSi (minimum
∑I

i=1 Si when ci = c). If the minimum base-stock levels required to achieve target

level β are considerably smaller under ς than the minimum levels required under LQ

and FCFS policies, then the expected average inventory holding cost will be expected

to be smaller under ςS∗ as compared to other policies. This sort of an indirect or

implied advantage of ς policy over LQ and FCFS is observed numerically although, in

fact, it is known that the proposed ς policy that maximizes the aggregate fill rate is

worse than LQ with respect to the expected average inventory holding and backorder

costs (considering the case bi = 0) when base-stock levels are the same for both of

these policies.

In Table 5.1, for the symmetric two-class systems with λi = λ, hi = h, wi = w and ci =

c, FCFS and LQ policies and heuristics 2 and 3 are compared. Only heuristics 2 and 3

are considered in this table to approximate the behaviour of ς policy because heuristic

2 is the best as reported in Chapter 4 and heuristic 3 is the only one for which the

steady-state probabilities can be calculated instantaneously using the recursive scheme

devised in Section 4.1 for symmetric systems. For any given β and ρ combination in

this table, Si values are the minimum base-stock levels to satisfy target fill rate under

the considered policy and Invi = Inv, i = 1, 2, is the corresponding expected average
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inventory given these base-stock levels. The following observations are immediate

from Table 5.1.

• Heuristic 2 attains target fill rates with minimum base-stock levels. This is an

expected result because heuristic 2 is the best approximation for the optimal ς

policy of problem P2(β).

• When the traffic intensity, ρ, is small, minimum Si values required for given

β are almost always the same under the alternative policies and LQ gives the

minimum expected average inventory among the three policies. However, as ρ

increases advantage of heuristic 2 and 3 over other policies becomes apparent to

guarantee fill rate with smaller Si values thus to give and with smaller expected

average inventory values.

In order to further elaborate on the use of aggregate fill rate, one can refer to Figure

5.1 and the tables in Appendix J. This figure and the tables are for the symmetric

systems with λi = λ, hi = h, bi = b and Si = S. As the LQ policy is optimal to

minimize expected average inventories and/or expected average backorders in such

systems operating under base-stock policies as previously noted referring to [19], (let-

ting h and b take values of zero and one alternatively) LQ dominates other policies

in Table J.1 with respect to these performance measures but not fill rate. Our ex-

planation for this is that, for the sake of avoiding stockout of a class, under ςS for

given S we may allow the number of backorders of the other class to reach higher

values if it is already in stockout, causing the expected average backorders to be high

as compared to LQ policy. This disadvantage may be overcome considering γ type

service level constraints, maybe one constraint for each type of items instead of an

aggregate service level, but then an increase in the required base-stock levels and so

in the expected average inventory would be expected. Having an insight into all such

trade-offs, one should work with the appropriate formulation.

Note that above we think of the comparison of policy ς, which is supposed to be a

good solution for P3, with others, especially with LQ, in terms of expected average

backorders because LQ minimizes expected average backorders in P4 when h = 0 and

b = 1. But, in fact, P4 and P3 are not related. The way backorder penalty is charged

in problem P4 where expected average backorders appear in the objective function

is not in accordance with the service level constraint (aggregate fill rate) in problem

P3(β). This is further clarified in the following section.
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Figure 5.1: Performance measures for λi = λ, wi = 1
2 , Si = S for i = 1, 2 and ρ = 0.90.

Next, for the symmetric two-class systems, some analytical results are given with

Propositions 2 and 3 and a remark in order to guide one in enumerating S to find the

smallest base-stock levels under one of the considered policy as in the case of filling

out Table 5.1. Although the anaytical results may not hold under each of ς, FCFS

and LQ policies, sometimes supporting our arguments with numerical observations we

proceed with the guidelines for all of these policies. Hence, we somehow mean solving

problem P3(β), but not only solving P2(β) (with ci = c) for the ”best” S under the

given scheduling policy. Optimality of this S may not be guaranteed when the con-

sidered policy is ς or LQ, but FCFS, as clarified below.
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Table 5.1: Comparison of the alternative policies for problem P3(β).

FCFS LQ Heuristic 2 Heuristic 3
β ρ S1 S2 FR(%) Inv S1 S2 FR(%) Inv S1 S2 FR(%) Inv S1 S2 FR(%) Inv

0.90 0.25 2 1 91.837 1.347 2 1 91.807 1.346 2 1 92.462 1.346 2 1 92.462 1.346

0.50 3 2 92.593 2.037 3 2 92.936 2.030 2 2 90.139 1.562 2 2 90.070 1.555

0.60 3 3 92.128 2.309 3 3 92.681 2.296 3 3 93.616 2.313 3 3 93.493 2.304
0.75 5 5 92.224 3.617 5 4 90.259 3.127 4 4 90.458 2.745 5 4 92.136 3.138
0.90 12 11 90.001 7.450 12 11 90.502 7.405 9 9 90.000 5.545 11 10 90.924 6.523
0.95 24 23 90.470 14.905 23 23 90.284 14.399 18 17 90.093 10.684 21 20 90.427 12.195

0.95 0.25 2 2 97.959 1.837 2 2 98.085 1.836 2 2 98.115 1.836 2 2 98.115 1.836

0.50 3 3 96.296 2.519 3 3 96.741 2.513 3 3 96.989 2.517 3 3 96.971 2.516
0.60 4 4 96.626 3.275 4 4 97.167 3.267 4 3 95.837 2.789 4 3 95.764 2.784

0.75 6 6 95.334 4.570 6 6 95.990 4.552 6 5 95.864 4.108 6 5 95.532 4.078

0.90 15 15 95.071 10.722 15 15 95.482 10.693 13 12 95.214 8.533 14 13 95.177 9.278
0.95 30 30 95.034 20.972 30 29 95.006 20.462 24 24 95.075 15.850 27 27 95.081 18.112

0.99 0.25 3 3 99.708 2.834 3 3 99.755 2.834 3 2 99.025 2.335 3 2 99.025 2.335

0.50 5 4 99.177 4.004 4 4 99.052 3.504 4 4 99.113 3.505 4 4 99.109 3.504

0.60 6 6 99.380 5.255 6 5 99.258 4.754 5 5 99.042 4.259 5 5 99.026 4.257

0.75 10 9 99.194 8.012 9 9 99.278 7.509 8 8 99.007 6.526 9 8 99.194 7.014
0.90 23 23 99.010 18.545 23 22 99.065 18.040 20 20 99.014 15.617 21 21 99.007 16.557
0.95 47 46 99.046 37.091 46 45 99.033 36.090 40 40 99.073 30.810 43 43 99.047 33.619
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Proposition 2. Given a policy πS ∈ Π for symmetric two-class systems with λi = λ,

hi = h and wi = w for i = 1, 2, let the following conditions be satisfied.

Condition 1. FR(πS) is concave in S,

Condition 2. r(πS) is convex in S,

Condition 3. FR(πS) is increasing in S,

Condition 4. r(πS) is increasing in S.

Suppose FR(π(s,s)) ≥ β and FR(π(s−1,s−1)) < β. Then, the solution for problem

P3(β) under πS is either S = (s, s) or S = (s, s− 1) or S = (s, s− 1).

Proof. Since FR(πS) is concave, it satisfies the following inequality for any 0 ≤ κ ≤ 1,

S′ and S′′:

FR(πκS′+(1−κ)S′′) ≥ κFR(πS′) + (1 − κ)FR(πS′′).

a. Then, letting S′ = (s+ k, s− k) and S′′ = (s− k, s+ k), with −s ≤ k ≤ s, and

κ = 0.5 and noting that FR(π(s+k,s−k)) = FR(π(s−k,s+k)) because the system is

symmetric with λ1 = λ2 and w1 = w2, we obtain

FR(π(s,s)) ≥ FR(π(s+k,s−k)) = FR(π(s−k,s+k))

for all s and −s ≤ k ≤ s, which implies FR(π(s,s)) ≥ FR(π(S1,S2)) for all S1 and

S2 such that S1 +S2 = 2s. Similarly, since λi = λ, hi = h, r(π(s,s)) ≤ r(π(S1,S2))

for all S1 and S2 such that S1 + S2 = 2s.

b. Also, letting S′ = (s+k, s−1−k) and S′′ = (s−1−k, s+k) with 0 ≤ k ≤ s−1,

and κ = 1+k
1+2k , we obtain

FR(π(s,s−1)) ≥ FR(π(s+k,s−1−k)) = FR(π(s−1−k,s+k))

for all s and 0 ≤ k ≤ s − 1. Then, FR(π(s,s−1)) ≥ FR(π(S1,S2)) for all S1

and S2 such that S1 > S2 and S1 + S2 = 2s − 1. Note that FR(S1, S2) =

FR(S2, S1) because the system is symmetric with λ1 = λ2 and w1 = w2, then

the FR(π(s,s−1)) = FR(π(s−1,s)) ≥ FR(π(S1,S2)) holds for all S1 and S2 such

that S1 + S2 = 2s− 1. Similarly, r(π(s,s−1)) = r(π(s−1,s)) ≤ r(π(S1,S2)) for all S1

and S2 such that S1 + S2 = 2s− 1

It is given that FR(π(s,s)) ≥ β and FR(π(s−1,s−1)) < β. From Condition 3,

FR(π(s−1,s−1)) ≤ FR(π(s,s−1)). Then, we are to consider the following cases.

If FR(π(s,s−1)) < β, then (s, s) is the best for π in problem P3(β). This is shown

comparing (s, s) with every S.
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• Let S ∈ {S|S1 + S2 ≥ 2s}.

If S1 + S2 is even, then r(π
(

S1+S2
2

+k,
S1+S2

2
−k)

) ≥ r(π
(

S1+S2
2

,
S1+S2

2
)
) ≥ r(π(s,s)) for

all −S1+S2

2 ≤ k ≤ S1+S2

2 where the first and second inequalities result from (a)

and Condition 4, respectively.

If S1 + S2 is odd, then r(π
(

S1+S2+1

2
+k,

S1+S2−1

2
−k)

) ≥ r(π
(

S1+S2+1

2
,
S1+S2−1

2
)
) ≥

r(π(s,s)) for all 0 ≤ k ≤ S1+S2−1
2 where the first and second inequalities re-

sult from (b) and Condition 4, respectively.

Then, even if S satisfying |S| ≥ 2s is feasible, it is not optimal for P3(β).

• Let S ∈ {S|S1 + S2 < 2s}.

If S1 + S2 is even, then FR(π
(

S1+S2
2

+k,
S1+S2

2
−k)

) ≤ FR(π
(

S1+S2
2

,
S1+S2

2
)
) ≤

FR(π(s−1,s−1)) < β for all −S1+S2

2 ≤ k ≤ S1+S2

2 where the first and second

inequalities result from (a) and Condition 3 respectively.

If S1 +S2 is odd, then FR(π
(

S1+S2+1

2
+k,

S1+S2−1

2
−k)

) ≤ FR(π
(

S1+S2+1

2
,
S1+S2−1

2
)
) ≤

FR(π(s,s−1)) < β for all 0 ≤ k ≤ S1+S2−1
2 where the first and second inequalities

result from (b) and Condition 3, respectively.

Then, S satisfying |S| < 2s is not feasible for problem P3(β).

If FR(π(s,s−1)) ≥ β, then (s, s− 1) or equivalently (s− 1, s) is the best for π in P3(β).

• Let S ∈ {S|S1 + S2 ≥ 2s− 1}.

If S1 + S2 is even, then r(π
(

S1+S2
2

+k,
S1+S2

2
−k)

) ≥ r(π
(

S1+S2
2

,
S1+S2

2
)
) ≥ r(π(s,s−1))

for all −S1+S2

2 ≤ k ≤ S1+S2

2 where the first and second inequalities result from

(a) and Condition 4, respectively.

If S1 + S2 is odd, then r(π
(

S1+S2+1

2
+k,

S1+S2−1

2
−k)

) ≥ r(π
(

S1+S2+1

2
,
S1+S2−1

2
)
) ≥

r(π(s,s−1)) for all 0 ≤ k ≤ S1+S2−1
2 where the first and second inequalities result

from (b) and Condition 4, respectively.

Then, even if S satisfying |S| ≥ 2s− 1 is feasible, it is not optimal for P3(β).

• Let S ∈ {S|S1 + S2 < 2s− 1}.

If S1 + S2 is even, then FR(π
(

S1+S2
2

+k,
S1+S2

2
−k)

) ≤ FR(π
(

S1+S2
2

,
S1+S2

2
)
) ≤

FR(π(s−1,s−1)) < β for all −S1+S2

2 ≤ k ≤ S1+S2

2 where the first and second

inequalities result from (a) and Condition 3, respectively.

If S1 +S2 is odd, then FR(π
(

S1+S2+1

2
+k,

S1+S2−1

2
−k)

) ≤ FR(π
(

S1+S2+1

2
,
S1+S2−1

2
)
) ≤

FR(π(s−1,s−1)) < β for all 0 ≤ k ≤ S1+S2−1
2 where the first and second inequal-

ities result from (a) and Condition 3, respectively.

Then, S satisfying |S| < 2s− 1 is not feasible for problem P3(β).
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Note that if the policy employed is independent of S as in the case of FCFS and LQ

policies, then the steady-state distribution depends on only the policy employed and

is independent of the choice of base-stock levels. Then, the performance measures

for an item type, under such a policy, depend on only the base-stock level of this

type, i.e., FR(πS) =
∑I

i=1wiFRi(πSi
) and r(πS) =

∑I
i=1 ri(πSi

) if r is separable

(r(πS) =
∑I

i=1 ri(πS)). We will call such policies as S-independent policies. For poli-

cies like ςS, on the other hand, the steady-state distribution depends on S, then the

performance measures of an item type are also dependent on the base-stock levels of

the other types of items.

Proposition 3. If r(πS) =
∑I

i=1 hiInvi(πS) and λi = λ and hi = h, then Condition

2 is satisfied for problem P3(β)under an S-independent policy πS.

Proof. Since πS is S-independent in the sense mentioned above, Invi(πS) = Invi(πSi
).

Then, dropping subscript i for the sake of keeping notation simple, and letting ∆S =

Inv(πS) − Inv(πS−1),

∆S+1 =
S+1∑

n=0

(S + 1 − n)Pr(N = n) −
S∑

n=0

(S − n)Pr(N = n)

= (
S∑

n=0

(S − n)Pr(N = n) +
S∑

n=0

Pr(N = n) −
S∑

n=0

(S − n)Pr(N = n)

=
S∑

n=0

Pr(N = n).

Then, ∆S+1 − ∆S =
∑S

n=0 Pr(N = n) −
∑S−1

n=0 Pr(N = n) = Pr(N = S) ≥ 0, which

shows that Inv(πS) is convex in S. Since sum of convex functions is also convex, the

result follows.

Remark. Consider problem P2(β) with λ1 = λ2, c1 = c2, w1 = w2 when I = 2. If

Conditions 1 and 3 are satisfied under policy ςS, then Proposition 2 holds for problem

P2(β) under ςS. Note that Conditions 2 and 4 are already satisfied because
∑I

i=1 ciSi

is linear in S. (Recall that, for any S, if there is a feasible policy for problem P2(β),

then ςS is feasible with the best aggregate fill rate. This explains why we can restrict

our arguments in this remark to ς policies.) �

When π is FCFS policy, FR(πS) = 1 −
ρ̂

S1
1

+ρ̂
S2
2

2 , where ρ̂i = λi

µ−
P

j 6=i λj
for i = 1, 2,

(see the reference to [5] in Section 3) is concave in S and Invi(πSi
) is convex in S

(from Proposition 3). Thus, having analytically observed that FR(πS) is concave and
∑I

i=1 hiInvi(πS) is convex in S when π is FCFS policy, Proposition 2 holds for this
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case. When π is LQ policy, convexity of
∑I

i=1 hiInvi(πS) is guaranteed analytically

(from Proposition 3) but concave behaviour of FR(πS) is observed only numerically.

And when π is ς policy, then the same behaviours for FR(πS) and
∑I

i=1 hiInvi(πS)

can only be observed numerically. See figures in Appendix K. Based on all these,

referring to Proposition 2 and 3, we fill out Table 5.1 with the ”best” S checking

S1 = S2 = s values to satisfy target fill rate β for any given ρ until FR(π(s,s)) ≥ β

but FR(π(s−1,s−1)) < β is observed. Then, we check also S = (s, s−1) or equivalently

S = (s− 1, s).

5.3 ON THE OPTIMAL POLICY OF THE SERVICE MODEL

In this section, optimal policy for the generalized version of problem P3(β) is inves-

tigated using the equivalence relations between cost and service models. Recall that

cost models are to optimize any kind of costs such as inventory holding costs, ordering

costs and penalties for backorders. In service models, on the other hand, a constraint

on the service level is introduced instead of handling backorder costs in the objective

function. The reader is referred to [18] for the relations between cost and service

models of general inventory systems. For a cost and a service model to be related in

the case of a single-item system, Condition 1 below given in [18] needs to be satisfied.

apen(π) is defined as the expected number of times penalty b is paid per time unit

and θ(π) is the service level under policy π, and Π is the set of all feasible policies.

bapen(π) appears in the objective function of the cost model as a part of the expected

average cost. In the service model, θ(π) is bounded below with a target service level

θ instead of incurring bapen(π) but keeping all the other cost terms in the objective

function.

Condition 1. There exists a constant K > 0 such that apen(π) = K(1 − θ(π)), or

equivalently θ(π) = 1 −
apen(π)
K

, for all π ∈ Π.

As explained in [18], cost and service models can be related to one another for different

combinations of the backorder penalties and service measures. Review type, contin-

uous or periodic, and whether backordering is allowed or not, i.e., the way penalty

is incurred and service level is measured, determine these combinations. When the

system is continuously reviewed and backordering is allowed as in the case we consider

in this study, the following three combinations of the penalties and service measures

arise to satisfy Condition 1 above for the single-item systems:
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i. a penalty of b is paid for the fraction of time with backorders, the related service

measure is of type α;

ii. a penalty of b is paid for each backordered item, the related service measure is

of type β (fill rate);

iii. a penalty of b is paid for each time unit an item is backordered, the related

service measure is of type γ (modified fill rate).

More on these service levels can be found in Silver et al. [13]. Based on the equivalence

relations, van Houtum and Zijm [18] give the following theorem.

Theorem 1. If

i. Condition 1 is satisfied,

ii. π∗ is an optimal policy for the cost model,

iii. θ(π∗) = θ0,

then π∗ is also an optimal policy for the service model with target service level being θ0.

Now, consider the following generalized version of problem P3(β) for a given target

service level β:

P5(β) : Minimize
I∑

i=1

hiInvi(π)

subject to

FR(π) ≥ β,

π ∈ Π.

Problem P5(β) is a service model where an overall (aggregate) fill rate is considered

as service measure of the multi-class systems we focus on. Note that FR(π) ≥ β is, in

fact, a relaxation of FRi(π) ≥ βi, i = 1, ..., I if β is chosen as
∑I

i=1wiβi. (Multiplying

the fill rate constraint of each class by wi and then summing up these constraints, we

end up with the single constraint on aggregate fill rate.) That is, when β =
∑I

i=1wiβi,

the feasible region in the formulations we consider in this thesis is larger than the ones

in [3] and [7].

The cost model corresponding to problem P5(β) turns out to be one of two types

depending on the backorder costs incurred, for the fraction of demand backordered or
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the fraction of time with backorders. Then, a related cost model can be constructed

referring to combination (ii) above if FR is regarded as the weighted average of fill

rates (β-service levels) of different types of items and another cost model would be for

(i) regarding FR as the weighted average of α-service levels of different item types.

Denote the weighted average of α-service levels, i.e., aggregate α-service level, by α(π).

Note that FR(π) and α(π) are the same for a given system due to the independent

Poisson arrivals of different item types. Definition of apen(π) is generalized to handle

different types of items letting ai(π) denote the expected number of times penalty

cost for item type i, i.e., bi, is paid per time unit, i = 1, ..., I, under policy π. Then,

bapen(π) in Condition 1 is
∑I

i=1 biai(π) for multi-class systems. Note that biai(π) is

biλi(1−FRi(π)) and bi(1−FRi(π)) for cases (ii) and (i), respectively. The cost model

mentioned above is

P6(b) : min
π∈Π

{
I∑

i=1

hiInvi(π) +
I∑

i=1

biai(π)}

where b = (b1, ..., bI). Similarly, let h = (h1, ..., hI) to be used later.

Next, Condition 2 is given for cost and service models (problems P6(b) and P5(β),

respectively) of the multi-class systems to be related when backorder penalties and

service levels are of α or β type.

Condition 2. There exists a constant K > 0 such that
∑I

i=1 biai(π) = K(1−FR(π)),

for all π ∈ Π.

Proposition 4. If a penalty is paid for each backordered request (for the fraction of

time with backorders) and wi, i = 1, ..., I, in problem P5 are chosen to satisfy wi

wj
= biλi

bjλj

(wi

wj
= bi

bj
) for all i, j, then Condition 2 holds for aggregate fill rate (aggregate α-service

level) with K = biλi

wi
(K = bi

wi
).

Proof. If a penalty is paid for each backordered request,

I∑

i=1

biai(π) =

I∑

i=1

biλi(1 − FRi(π))

=
I∑

i=1

biλi
wi

(wi − wiFRi(π))

=
b1λ1

w1
(1 − FR(π)) when

b1λ1

w1
=
biλi
wi

for all i.

Proof similarly follows when a penalty is paid for the fraction of time with backorders.
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Corollary. Suppose a penalty is paid for each backordered request (for the fraction

of time with backorders), and wi, i = 1, ..., I, in problem P5 are chosen to satisfy
wi

wj
= biλi

bjλj
(wi

wj
= bi

bj
) for all i, j.

i. Then, Condition 2 is equivalent to FR(π) = 1 −
∑I

i=1wi(
ai(π)
λi

) (α(π) = 1 −
∑I

i=1wiai(π)) where wi = biλi
PI

j=1
bjλj

(wi = bi
PI

j=1
bj

).

ii. If also bi = bj for all i, j, then FR(π) = 1 −
PI

i=1
ai(π)

PI
i=1

λi
(α(π) = 1 −

PI
i=1

ai(π)
I

)

where wi = λi
PI

j=1
λj

(wi = 1
I
).

Note that all these make sense. Since we relate cost models to a service model with

an aggregate fill rate, the relation between the models is expressed in terms of weights

chosen. In the most general form (case (i) in the corollary) of the systems with back-

order costs being incurred in accordance with α-service (β-service) level, the weights

of the individual α-service levels (fill rates) of different item types should be pro-

portional to backorder costs (weighted by demand rates) and 1 − ai(π) (1 − ai(π)
λi

)

represents FRi(π). If bi is the same for all i (case (ii) in the corollary), then we do not

differentiate item types with respect to bi to calculate aggregate service level in the

service model. In this case, FR(π) turns out to be 1
I

∑I
i=1 FRi(π) (regular average

of the fraction of time with backorders) when the backorder penalty is of type α and
PI

i=1
λiFRi(π)

PI
i=1

λi
(fraction of demand satisfied upon arrival) when the backorder penalty

is of type β. Then, Theorem 1 given in [18] can be revised as follows for multi-class

systems when aggregate fill rate is considered as the service level in the service model.

Proof of Theorem 2 follows as the one in [18].

Theorem 2. If

i. wi

wj
= biλi

bjλj
(wi

wj
= bi

bj
) for all i, j,

ii. π∗ is an optimal policy for the cost model P6,

iii. FR(π∗) = β0,

then π∗ is also an optimal policy for the service model P5(β0).

van Houtum and Zijm [18] state that, under Condition 1 for single-class systems (or

when there is a service level constraint for each class in the service model unlike our

case), the cost model is a kind of Lagrangean relaxation of the service model and it is
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a straightforward Lagrangean relaxation of the service model if apen(π) is θ0 − θ(π).

To clarify this statement for the cost and service models we study, let PL5 (β) be the

Lagrangean relaxation of P5(β), i.e.,

PL5 (β, ψ) : min
π∈Π

{
I∑

i=1

hiInvi(π) + ψ(β − FR(π))},

for any ψ ≥ 0. It is possible to rewrite (β − FR(π)) as ((1 − FR(π)) − (1 − β)) and

(1 − FR(π)) as
∑I

i=1wi −
∑I

i=1wiFRi(π). Then, PL5 (β, ψ) becomes

PL5 (β, ψ) : min
π∈Π

{

I∑

i=1

hiInvi(π) +

I∑

i=1

ψwi(1 − FRi(π)) − ψ(1 − β)}

for any ψ ≥ 0.

For the case a penalty is paid for each backordered request (for the fraction of time with

backorders), immediate observations regarding the Lagrangean relaxation of P5(β) are

as follows.

• The optimal policies for PL5 (β, ψ) and P6(
ψw1

λ1
, ..., ψwI

λI
) (P6(ψw1, ..., ψwI)) are

the same for given β (irrespective of the value of β). Note that given any ψ,

ψ(1 − β) is constant.

• Problem PL5 (β, ψ) provides a lower bound, called the Lagrangean lower bound,

on the optimal objecive value of the original problem P5(β) for any ψ ≥ 0. We are

seeking for the values of multiplier ψ that give the maximum lower bound which

is closest to the optimal solution of the original problem P5(β). The problem

of finding the maximizing ψ, i.e., maxψ≥0{P
L
5 (β, ψ)}, is called the Lagrangean

dual problem to be denoted by PLD5 (β). Ideally, the optimal objective function

values of problem P5(β) and the corresponding Lagrangean dual problem are

the same. A duality gap is said to exist if these two values are different (see [2]

for an overview of Lagrangean relaxation).

• Let ψ∗ and ϑ∗ be the optimal Lagrange multiplier and the optimal policy for

PLD5 (β), respectively. Then, ϑ∗ is also the optimal policy for P5(β) and

P6(
ψ∗w1

λ1
, ..., ψ

∗wI

λI
) (P6(ψ

∗w1, ..., ψ
∗wI) if a duality gap does not exist.

• Let π∗ be the optimal policy for P6(b) and FR(π∗) = β0, then π∗ is also an

optimal policy for P5(β0) according to Theorem 2.

• For P5(β) and P6(b) to be related, we should have ψwi

λi
= bi (ψwi = bi), i.e.,

ψ = biλi

wi
(ψ = bi

wi
), for all i. Recall Proposition 4.
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Note that π is not limited to dynamic scheduling policies under base-stock control,

neither in problem P5(β) nor in P6(b). Optimal policy for problem P6(b) can be

determined by value-iteration algorithm by adding a ”no process” option for each

state. For the two-class systems, state description ni, being the number of items of

class i in queue or in service as in chapters 3 and 4 is convenient when the system

is analyzed under base-stock control. However, for problem P6(b), another state

description is required: xi denotes the inventory level of class i, where a negative

value of xi shows backorder(s) for that class. Let x = (x1, x2). Recursive (multi-

period) formulation below is to determine the optimal dynamic scheduling policy for

problem P6(b).

gm(x1, x2) = c(x1, x2) +
λ1

τ
gm−1(x1 − 1, x2) +

λ2

τ
gm−1(x1, x2 − 1)

+
µ

τ
min{gm−1(x1 + 1, x2), gm−1(x1, x2 + 1), gm−1(x1, x2)}, (5.1)

g0(x1, x2) = 0, (5.2)

for all (x1, x2) where c(x) = h1x
+
1 + h2x

+
2 + b1λ11{x1≤0} + b2λ21{x2≤0} if ai(π) =

λi(1−FRi(π)) and c(x) = h1x
+
1 +h2x

+
2 + b11{x1≤0} + b21{x2≤0} if ai(π) = 1−FRi(π),

and x+
i = max{xi, 0} and τ = λ1 + λ2 + µ = 1. All the numerical experiments in the

remaining part of this chapter are for the case ai(π) = λi(1−FRi(π)), i.e., backorder

penalties charged are of type β. Figure 5.2 shows the optimal policies for a symmetric

two-class system with three different values of ρ. As seen, the optimal policy is of

base-stock type with two switching curves. Note that under the optimal policy, once

the inventory level of class i drops below its base-stock level then it can never exceed

its base-stock level. So, the states outside the region {(x1, x2) : x1 ≤ S1, x2 ≤ S2} are

transient. See Appendix L for some other examples.

In Section 5.2, problem P5(β) is considered over the set of base-stock controlled poli-

cies, recall problem P3(β) with r(πS) =
∑I

i=1 hiInvi(πS), and performances of some

alternative scheduling policies are compared for symmetric two-class systems in Table

5.1. In other words, given one of the scheduling policies, ”best” base-stock levels, S,

are determined to solve problem P3: Recall that optimality of S cannot be guaranteed

for each scheduling policy but the arguments regarding being close to the optimal

S are supported with numerical observations. It is observed that in general ς pol-

icy (which is approximated by heuristic 2) works better in solving P3 than LQ and

FCFS policies. Observing these numerically, the problem we note in Section 5.2 is

that base-stock controlled LQ policy is known to be optimal for problem P4 if the

system is symmetric, but in fact problems P3 and P4 are not related in terms of the
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Figure 5.2: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 100, hi = 1 for i = 1, 2.

way backorder penalties are paid. However, using the relation between P6 and P5, it

is now possible to compare ςS with the optimal policy of P6 (optimal policy of P6 will

be optimal also for P5 under the conditions of Theorem 2 if there is not any duality

gap). Note that this comparison is only for ς because we have already observed that ς

is almost always better than LQ and FCFS policies for the symmetric systems under

consideration.

Let π∗ be the optimal policy for P6(b) and FR(π∗) = β0. Under the conditions of

Theorem 2, π∗ is optimal also for P5(β0). Then, it is possible to compare π∗ and

ςS∗ , where S∗ denotes the ”optimal” base-stock levels that solves P5(β0) under policy

ς, but not only P2(β0). (Note once more that optimality of S∗ here is not in strict

analytical sense, but referring to Propositions 2 and 3 based on some numerical ex-

periments for ς policy in case the system is symmetric and has two classes.) Figures

5.3 and 5.5 show the optimal policies of P6(b) for the symmetric two-class systems

with λi = λ, bi = b, hi = h, wi = 1
2 for all i. Note that n is used as the state de-

scription instead of x once the base-stock levels are determined for P6(b). Switching

from x to n according to xi = Si−ni for all i (e.g., from Figure 5.2 to 5.3) makes the

comparison of π∗ and ςS∗ easier. Figures 5.4 and 5.6 show the ”optimal” policies for

P5(β0) under ς, where target fill rates (β0 values), are set as the aggregate fill rates in

Figures 5.3 and 5.5, respectively and choosing wi = 1
2 , i = 1, 2. These figures show

that, base-stock levels are the same for both policies and the policy structures are very

close to each other, which explains the success of using ς in solving P5(β) or the equiv-

alent cost model P6(b). The equivalence relation needs to be expressed in terms of β
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and b. Some other numerical comparisons can be seen in Table 5.2 and in Appendix M.

Table 5.3 to 5.5 and N.1, and Figures 5.7 to 5.9 and the ones in Appendix O are for

the asymmetric systems. Since we cannot refer to Propositions 2 and 3 for finding the

”best” S and claiming optimality of it for problem P5(β0) under policy ς when the

system is asymmetric, we proceed as follows: we solve problem P6(b) for π∗, and let

β0 = FR(π∗) and S0 be the optimal S. Then, we choose wi values as in Proposition 4

to guarantee equivalence of P6(b) and P5(β0), and observe that inequality FR(ςS0
) ≥

β0 is satisfied for all the numerical experiments. We search around S0 for better base-

stock levels in P5(β0) under ς, and we come across such an instance just once (in Table

N.1 S = (6, 2) is optimal for P6(100, 50) when λ1

λ2
= 2 whereas ς(5,3) satisfies target

service level β0 with lower objective function value). As in the case of symmetric

systems, the ”best” S that we can numerically identify for P5(β0) under policy ς is

denoted by S∗. Except for the instance noted above, S∗ = S0 in all the figures and

tables. Based on all the numerical experiments, the following points are noteworthy.

• In symmetric systems, both π∗ and ςS∗ are LQ policy in region 1 and SQ policy

in region 3.

• ςS∗ approximates π∗ better for high values of b. The reason is that as bi values

increase in problem P6(b), the difference between the costs to be incurred in

states in region 1 and regions 2, 3 and 4 becomes more apparent as in the

case of fill rate maximization (recall that c(n) is 0 in region 1 and w1 (w2) in

region 2 (4) and 1 in region 3). Note that as bi values increase, the trade-off

between inventory holding cost and backorder cost is resolved in P6(b) avoiding

backorders more, i.e., backorder cost becomes dominant in resolving the trade-

off. Then, in the service model P5, considering the ς policy (which is obtained

maximizing the fill rate but not working with inventory holding cost) makes

sense and it is not surprising that the optimal policy is similar to ς.

• ςS∗ is better in approximating π∗ for low values of ρ. The reason for this is

obvious in the symmetric systems: as ρ increases, the steady-state probabilities

of being in regions 2 and 4, where these policies are not exactly the same,

increase.

• We have investigated structure of the optimal policy for P5(β) using the related

model P6(b). But, since the base-stock levels are discrete, any scheduling policy,

e.g., LQ, FCFS, ς or some other policy, can be the optimal solution of P5(β) for

some β values. Note that LQ is the best for P3 for low values of ρ among the
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policies considered in Table 5.1. If integrality constraint for base-stock levels

were relaxed, then for any β it would always be possible to find some b such that

π∗ is the optimal policy for P6(b) and FR(π∗) = β, which implies that π∗ is an

optimal solution also for P5(β) due to Theorem 2.

We can claim good performance of the ς policies for problem P6 (or for P5 under the

equivalence conditions in Theorem 2) when bi values are relatively higher than the hi

values (when β is high). Otherwise, optimal base-stock levels for problem P6 would

be very small, even equal to zero, causing fill rate to be zero and turning the system

into a make-to-order system. A related reference is [20]. The following proposition is

to give a sufficient condition for the optimality of zero base-stock levels.

Proposition 5. If biλi < hi, then the optimal base-stock level for item type i is zero

for problem P6. If biλi = hi, base-stock levels of zero and one are alternative optima.

Proof. The result is intuitive. Since c(x1, ..., x
′
i, ..., xI) < c(x1, ..., x

′′
i , ..., xI) for all

x′i ≤ 0 and x′′i > 0 when biλi < hi, then it is not possible to improve long-run average

cost by visiting states with xi > 0. It is straightforward to extend the result for

biλi = hi.

Examples for Proposition 5 can be seen in Table 5.5, Figures 5.7 to 5.9 and in Appendix

O. Immediate results and observations are as follows.

• If base-stock level of one of the item types is zero, then the optimal policy, π∗,

is characterized by a static priority rule to choose the item type with zero base-

stock level only if there is no outstanding order for the other item types. The

result is intuitive because there is no way to eliminate stockout, i.e., fill rate is

zero, for the item type with zero base-stock level, then the main concern is to

minimize the expected average cost for the other item types. See Figure 5.8 for

an example.

• If base-stock levels of both of the item types are zero, then processing any of the

item types is optimal when there are outstanding orders for both of the items.

Examples can be seen in Figures 5.9 and O.3.

ς policy is optimal for problem P2. On the other hand, optimal policy π∗ for P6 or its

equivalent P5(β0) with β0 = FR(π∗) is very similar to ς policy when β0 is large. That

is why we should note that when β is large, ”best” S vectors for problems P2 and P5

are almost always the same, meaning that the objective functions in these problems
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Figure 5.3: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 100, hi = 1 for i = 1, 2.

are almost equally good in resolving the trade-off between inventories and aggregate

fill rate. hi is mostly approximated by ci multiplied by the interest rate; thus, these

coefficients appearing in the objective functions of P2 and P5 are proportional, which

to a certain extent explains finding the same ”best” S. This argument is supported

by checking possible base-stock level combinations numerically when hi = h, but its

validity cannot be fully guaranteed for the cases with unequal hi values due to large

number of possible base-stock level combinations to be checked numerically. Beyond

this relationship between hi and ci, working with Si instead of Invi we can apparently

resolve the trade-off between inventories and aggregate fill rate with almost the same

base-stock levels for all the numerical experiments we consider as long as β is large

enough.
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Figure 5.4: Policy ςS∗ for P5(β0), where β0 = FR(π∗) in Figure 5.3.
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Figure 5.5: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 10000, hi = 1 for i = 1, 2.
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Figure 5.6: Policy ςS∗ for P5(β0), where β0 = FR(π∗) in Figure 5.5.
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Table 5.2: Comparison of the policies π∗ and ςS∗ for λi = λ, bi = b, hi = 1, wi = 1
2 for i = 1,

2.

FR Inv

bλ ρ S π∗ ςS∗ Error(%) π∗ ςS∗ Error(%)

1 0.40 (0,0) 0 0 0.000 0 0 0.000
0.50 (0,0) 0 0 0.000 0 0 0.000
0.60 (0,0) 0 0 0.000 0 0 0.000
0.70 (0,0) 0 0 0.000 0 0 0.000
0.80 (0,0) 0 0 0.000 0 0 0.000
0.90 (0,0) 0 0 0.000 0 0 0.000

5 0.40 (2,1) 85.869 85.881 0.014 2.43293 2.43892 0.246
0.50 (2,2) 90.070 90.139 0.077 3.11042 3.12350 0.421
0.60 (2,2) 83.914 84.208 0.350 2.79096 2.84715 2.013
0.70 (2,2) 75.808 76.257 0.593 2.44430 2.51329 2.822
0.80 (3,2) 71.691 72.463 1.077 2.67845 2.87496 7.337
0.90 (3,3) 61.330 63.862 4.127 2.40954 2.88831 19.869

10 0.40 (2,2) 94.349 94.355 0.006 3.37335 3.37653 0.094
0.50 (2,2) 90.113 90.139 0.028 3.11676 3.12350 0.216
0.60 (3,2) 89.346 89.391 0.050 3.70256 3.72628 0.641
0.70 (3,3) 87.533 87.726 0.220 4.06954 4.13673 1.651
0.80 (4,3) 81.853 82.282 0.524 4.12177 4.29827 4.282
0.90 (5,4) 73.119 74.180 1.451 4.19346 4.73767 12.978

100 0.40 (4,3) 99.310 99.310 0.000 6.33771 6.33772 0.000
0.50 (4,4) 99.113 99.113 0.000 7.00951 7.00955 0.001
0.60 (5,5) 99.045 99.045 0.000 8.51862 8.51909 0.006
0.70 (6,6) 98.429 98.429 0.001 9.72288 9.72566 0.029
0.80 (9,8) 98.058 98.060 0.002 13.14259 13.15381 0.085
0.90 (13,13) 95.698 95.712 0.015 17.81306 17.91816 0.590

1000 0.40 (5,5) 99.941 99.941 0.000 9.33369 9.33369 0.000
0.50 (6,6) 99.928 99.928 0.000 11.00071 11.00071 0.000
0.60 (8,7) 99.916 99.916 0.000 13.50153 13.50156 0.000
0.70 (10,9) 99.866 99.866 0.000 16.67157 16.67157 0.000
0.80 (14,13) 99.791 99.791 0.000 23.01640 23.01654 0.001
0.90 (24,23) 99.531 99.531 0.000 38.09554 38.10130 0.015

10000 0.40 (7,6) 99.994 99.994 0.000 12.33337 12.33337 0.000
0.50 (8,8) 99.994 99.994 0.000 15.00005 15.00005 0.000
0.60 (10,9) 99.989 99.989 0.000 17.50020 17.50021 0.000
0.70 (13,12) 99.984 99.984 0.000 22.66724 22.66724 0.000
0.80 (19,18) 99.978 99.98 0.000 33.00177 33.00178 0.000
0.90 (34,34) 99.949 99.949 0.000 59.01083 59.01105 0.000
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Table 5.3: Comparison of the policies π∗ and ςS∗ for b1 = 10000, hi = 1 for i = 1, 2.

FR
P

i hiInvi

b2
λ1

λ2

w1

w2

ρ π∗ ςS∗ Error(%) π∗ ςS∗ Error(%)

20000 2 1 0.40 99.971 99.971 0.000 10.33353316 10.33353316 0.000
0.60 99.951 99.951 0.000 14.50091021 14.50091032 0.000
0.80 99.918 99.918 0.000 27.00634857 27.0063621 0.000

20000 4 2 0.40 99.942 99.942 0.000 9.333675927 9.333675927 0.000
0.60 99.945 99.945 0.000 14.50091153 14.50091868 0.000
0.80 99.908 99.908 0.000 27.00658284 27.00660517 0.000

5000 2 4 0.40 99.946 99.946 0.000 9.333692917 9.333692917 0.000
0.60 99.928 99.928 0.000 13.50191942 13.5019511 0.000
0.80 99.881 99.881 0.000 24.01883222 24.01909785 0.001

2500 3 12 0.40 99.959 99.959 0.000 9.333783914 9.333783915 0.000
0.60 99.940 99.940 0.000 13.50267803 13.50268445 0.000
0.80 99.866 99.866 0.000 22.0439803 22.04536569 0.006

Table 5.4: Comparison of the policies π∗ and ςS∗ for ρ = 0.70, bi = 1000, λi = λ for i = 1, 2.

FR
P

i hiInvi

h S∗ π∗ ςS∗ Error(%) π∗ ςS∗ Error(%)

(0.2,8) (14,3) 97.692 97.692 0.000 22.25294474 22.25466379 0.008

(0.5,11) (11,5) 99.418 99.422 0.005 13.40970335 13.43469052 0.186

(1,3) (10,4) 98.666 98.667 0.000 18.51346979 18.5150628 0.009

(1,10) (10,3) 97.144 97.148 0.004 32.74109323 32.76239365 0.065

(2,5) (8,4) 98.031 98.032 0.001 29.4596704 29.46898136 0.032

Table 5.5: Comparison of the policies π∗ and ςS∗ for ρ = 0.80.

FR
P

i hiInvi
λ1

λ2

b (b1λ1,b2λ2) h S∗ π∗ ςS∗ Error(%) π∗ ςS∗ Error(%)

2 (200,100) (59.26,14.81) (2,1) (5,5) 92.326 92.473 0.159 10.41715 10.59913 1.747
(20,30) (5.93,4.44) (8,4) (0,1) 31.429 31.429 0.000 2.93333 2.93333 0.000
(10,5) (2.96,0.74) (3,5) (0,0) 0 0 0.000 0 0 0.000

1.5 (300,1000) (80.00,177.78) (3,1) (5,10) 97.353 97.456 0.106 18.51970 18.87665 1.927
(100,50) (26.67,8.89) (6,9) (2,0) 57.720 57.720 0.000 7.73760 7.73760 0.000
(15,45) (4.00,8.00) (4,8) (0,0) 0 0 0.000 0 0 0.000

1.2 (1000,800) (242.42,161.62) (3,2) (6,10) 97.558 97.564 0.006 29.29224 29.36301 0.242
(40,10) (9.70,2.02) (1,3) (3,0) 75.882 75.882 0.000 2.29013 2.29013 0.000
(5,10) (1.21,2.02) (2,3) (0,0) 0 0 0 0 0 0.000

3 (2000,400) (666.67,44.44) (8,3) (8,4) 96.809 96.989 0.187 56.40573 58.32497 3.403
(250,100) (83.33,11.11) (5,4) (5,1) 84.492 85.767 1.510 17.66350 19.24278 8.941
(20,40) (6.67,4.44) (7,5) (0,0) 0 0 0.000 0 0 0.000
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Figure 5.7: Comparison of the Policies π∗ and ςS∗ for b = (1000, 800), h = (3, 2), ρ = 0.80
and λ1 = 1.2λ2.
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Figure 5.8: Comparison of the Policies π∗ and ςS∗ for b = (40, 10), h = (1, 3), ρ = 0.80 and
λ1 = 1.2λ2.

72



S2

n2

PROCESS TYPE 1 
OR TYPE 2

S1 n1

(a) Optimal Scheduling
Policy, π∗, for P6(b).

S2

n2

PROCESS TYPE 1 
OR TYPE 2

S1 n1

(b) Policy ςS∗ for P5(β0)
where β0 = FR(π∗).

Figure 5.9: Comparison of the Policies π∗ and ςS∗ for b = (5, 10), h = (2, 3), ρ = 0.80 and
λ1 = 1.2λ2.
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CHAPTER 6

CONCLUSION

This study can be considered among a few others in the literature on the service mod-

els for dynamic scheduling of multi-class make-to-stock systems. The main difference

here is the use of aggregate fill rate instead of having a fill rate constraint for each

item class as in [3] and [7]. Replacing a number of fill rate constraints with a single

one is, in fact, a relaxation of the service models in [3] and [7]. But, this drawback

can be handled choosing weights of the individual fill rates and the target level for

the aggregate fill rate to relate the service model we work with to the corresponding

cost model and, this way, to guarantee optimality of the solution of the cost model

also for the service model with aggregate fill rate constraint under some equivalence

conditions. Note that the same cost model is also related to the service model with

individual fill rate constraints under some other conditions. Furthermore, having the

total base-stock investment (a linear function of the base-stock levels) as the objective

function of the service model under consideration, unlike the usual service models

with exponential inventory holding cost being the objective function, allows us to

restrict our attention to the set of base-stock controlled dynamic scheduling policies

maximizing aggregate fill rate (ς policies). Due to optimality of the ς policy for this

somewhat simpler service model as compared to the ones in [3] and [7], the minimum

base-stock investment (lowest base-stock levels) required to satisfy any given target

fill rate can be found using accurate heuristics we propose to approximate ς policies.

Working with the lowest base-stock levels, then, implies a considerable advantage of

decreasing also the average inventory holding cost over the other well-known policies

FCFS, LQ and its variations in the symmetric and asymmetric cases, respectively, as

numerically shown in this study.

Although our focus is primarily on the service models, further investigations are to

relate the service model minimizing average inventory holding cost under a constraint

on the aggregate fill rate to the corresponding cost model where backorder cost is in-

curred in accordance with the service measure considered in the service model. These

investigations lead to the following: We numerically observe that the optimal policy

of the cost model is almost the same as the ς policy with the minimum base-stock

investment to achieve the target fill rate implied by the optimal solution of the cost

model. At least to a certain extent, we also answer the questions that would be raised
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about how to determine the weights for fill rates of different classes. These, with some

reservations due to the lack of the equivalence relation between the backorder penal-

ties and the target level for aggregate fill rate, suggest the employment of ς policy

instead of using value-iteration for the cost model or solving the lagrangean dual for

the service model.

Any progress in the literature on the relation between the backorder penalties in the

cost model and the target level of aggregate fill rate in the service model as for the

equivalence of these two models would reveal the use of ς policies. For the time being,

in the current status of the literature, practical use of our observations in this study

is limited. We should also note the following: the difficulty regarding the progress

mentioned above is that the optimal dynamic scheduling policy, which turns out to

be of base-stock type for the cost and service models under consideration, are depen-

dent on the base-stock levels (i.e., they are not S-independent policies as base-stock

controlled FCFS and LQ policies) as numerically shown in Chapter 5.

All these position this thesis somewhere among the studies on service models. How-

ever, it should be pointed out that the cost model related to the service models we

study under aggregate fill rate constraint are different than the cost models in litera-

ture. γ type backorder cost are incurred in the latter unlike α or β type costs incurred

in our case in accordance with the use of (aggregate) fill rate in the service model.

An immediate generalization of the heuristics proposed in Chapter 4 is for systems

more than two classes. Since evaluating the performance of heuristics 1 and 2 us-

ing value-iteration is not computationally efficient even for three-class systems when

the traffic intensity is high, we cannot avoid proceeding with simulation. Recall that

heuristic 3, for which the steady-state probabilities can be calculated recursively, is

only for the symmetric two-class systems. Not only to evaluate performance of heuris-

tics 1 and 2, but even to employ them, in systems with more than two classes, there are

implementation difficulties mentioned in Section 4.3 for these heuristics, unlike easily

implementable state-dependent LQ policy and its variations (e.g., ∆ policy). Then,

coming up with a systematic way of handling this difficulty for any given number of

classes and writing its code appears as a further work.

Another important issue is to determine the best base-stock levels while solving ser-

vice models, under some specified policy. The set of base-stock levels searched is

restricted in the symmetric case based on the analytical results presented for certain
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policies. These results can be supported only by some numerical observations under

some other policies. Unfortunately, an extensive (maybe enumeration type of) search

is still required for the asymmetric systems. So, devising or adopting search proce-

dures towards that end would be useful.

An extension of this study can be considered relaxing the assumption of constant ser-

vice rate but allowing this rate to be dependent on the item type being processed. [8]

has some results on the partial characterization of the optimal policy in this case for

the long-run discounted inventory holding and backorder costs. Replacing the single

server facility with a network of servers, maybe with different routings for different

item types, would make the problem more realistic and challenging.

Incorporating set-up times to switch from processing one item type to another can

be considered as another extension. But, then, the use of base-stock policies cannot

be justified, and the problem should be studied within the context of stochastic lot

scheduling.
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APPENDIX A

Lemma A1. fm(n1, n2) = fm(n2, n1) for all λ1 = λ2, S1 = S2 = S and all m, n1,

n2.

Proof. Proof is by induction on m. For m = 1, proof is immediate because c(n1, n2) =

c(n2, n1) for all n1, n2. Next assuming that fm−1(n1, n2) = fm−1(n2, n1) for all n1,

n2, (2) can be rewritten as

fm(n1, n2) = c(n2, n1) +
λ1

τ
fm−1(n2 + 1, n1) +

λ2

τ
fm−1(n2, n1 + 1)

+
µ

τ
vm−1(n2, n1)

where the right hand side is fm(n2, n1) for all n1 and n2.

Lemma A2. fm(n1, n2) is nondecreasing in n1 (n2) for all m, n2 (n1).

Proof. Proof is by induction on m. f1(n1, n2) = c(n1, n2) is nondecreasing in n1 as

seen in Figure A.1. Assume that fm−1(n1, n2) is nondecreasing in n1. Then, the terms

on the right hand side of 3.1 are all nondecreasing in n1, and the result follows. With

similar arguments it can be shown that f(n1, n2) is nondecreasing in n2 for all m and

n1.

0

0.5

1

0 1 2 . . S-1 S . . .

n1

f 1
(n

 1,
n

 2)


n2<=S2

n2>S2

Figure A.1: f1(n1, n2) versus n1.
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Lemma A3. fm(n1, n2) is nondecreasing in m for all n1, n2.

Proof. Proof is by induction onm. Since c1(n1, n2) ≥ 0, f1(n1, n2) ≥ f0(n1, n2). Then,

the assumption that fm(n1, n2) ≥ fm−1(n1, n2) leads to fm+1(n1, n2) ≥ fm(n1, n2)

from (2) for all n1 and n2.
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APPENDIX B

Step 1: Initialization.

For n1 := 0 to No1 +m′

For n2 := 0 to No2 +m′

f0(n1, n2) = 0

m := 1, Min := ∞, Max := 0

Step 2 .

For n1 := 0 to (No1 +m′ −m)

For n2 := 0 to (No2 +m′ −m)

begin

fm(n1, n2) := c(n1, n2) + λ1fm−1(n1 + 1, n2) + λ2fm−1(n1, n2 + 1) + µvm−1(n1, n2)

end

For n1 := 0 to No1

For n2 := 0 to No2

begin

if (fm(n1, n2) − fm−1(n1, n2) > Max) then

Max := fm(n1, n2) − fm−1(n1, n2)

if (fm(n1, n2) − fm−1(n1, n2) < Min) then

Min := fm(n1, n2) − fm−1(n1, n2)

end

Step 3 . If (m = m′) or (Max−Min
Min

≤ ǫ), then STOP, else m := m+ 1 goto Step 2.
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APPENDIX C
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Figure C.1: dm(n1, n2) versus n1 for n2 = 15, ρ = 0.80, S = 9.
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(h) m = 1000.

Figure C.2: dm(n1, n2) − dm(n1 − 1, n2) versus n1 for n2 = 15, ρ = 0.80, S = 9.
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Figure C.3: dm(n1, n2) versus n1 for n2 = 4, ρ = 0.40, S = 7.
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Figure C.4: dm(n1, n2) − dm(n1 − 1, n2) versus n1 for n2 = 4, ρ = 0.40, S = 7.
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Figure C.5: dm(n1, n2) versus n1 for n2 = 10, ρ = 0.40, S = 7.
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Figure C.6: dm(n1, n2) − dm(n1 − 1, n2) versus n1 for n2 = 10, ρ = 0.40, S = 7.
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APPENDIX D
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Figure D.1: ς policy for ρ = 0.40, S = 9.
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Figure D.2: ς policy for ρ = 0.60, S = 9.
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Figure D.3: ς policy for ρ = 0.90, S = 9.
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APPENDIX E
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(b) ρ = 0.60.

Figure E.1: Comparison of the ς, LQ, FCFS policies and the heuristics.

91



APPENDIX F

Table F.1: Comparison of the aggregate fill rates (%) of the ς, ∆ policies and heuristic 2 (M):
equally weighted case, λ1 = 1.2λ2.

S = (6, 3) S = (9, 4) S = (8, 7)

ς 73.692 82.832 86.422
Heuristic 2 73.590 82.766 86.399

-1000 72.173 80.919 80.229
-100 72.173 80.919 80.229
-50 72.051 80.812 80.169
-40 71.823 80.612 80.055
-25 70.469 79.429 79.384
-15 67.282 76.644 77.804
-10 63.880 73.673 76.121
-9 62.954 72.865 75.664
-8 61.924 72.385 75.156
-6 59.501 72.565 75.578
-5 58.663 72.641 76.291
-4 58.510 72.536 76.980
-3 58.499 72.192 77.537
-2 58.341 71.575 77.906
-1 57.881 70.663 78.060

∆ 0 57.039 69.436 77.987
1 55.976 67.968 77.680
2 55.182 66.460 77.149
3 55.483 65.267 76.418
4 56.559 65.082 75.544
5 57.525 65.615 74.646
6 58.393 66.094 73.961
7 59.172 66.525 73.958
8 59.872 66.913 74.433
9 60.501 67.262 74.860
10 61.066 67.576 75.244
15 63.146 68.732 76.660
25 65.094 69.816 77.987
40 65.920 70.277 78.551
50 66.060 70.355 78.646
100 66.134 70.396 78.697
1000 66.135 70.397 78.697
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APPENDIX G
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Figure G.1: ς policy: equally weighted cost function, S = 8, λ1 = 4λ2
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Figure G.2: Heuristic 2: equally weighted cost function, S = 8, λ1 = 4λ2.
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Figure G.3: ς policy: cost function weighted by demand rates, w1 = 4w2, S = 8, λ1 = 4λ2.
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Figure G.4: Heuristic 2: cost function weighted by demand rates, w1 = 4w2, S = 8, λ1 = 4λ2.
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Figure G.5: ς policy for w1 = 8w2, S = 8, λ1 = 4λ2.
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Figure G.6: Heuristic 2 (M) for w1 = 8w2, S = 8, λ1 = 4λ2.
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Figure G.7: ς policy for w2 = 4w1, S = 8, λ1 = 4λ2.
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Figure G.8: Heuristic 2 (M) for w2 = 4w1, S = 8, λ1 = 4λ2.
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APPENDIX H

Table H.1: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): λ1 = 2λ2, w2 = 2w1.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 80.07 95.31 98.90 99.74 99.98 100.00 100.00 100.00
FCFS 77.62 94.64 98.63 99.63 99.97 100.00 100.00 100.00

Heuristic 2 (M) 80.07 95.26 98.88 99.73 99.98 100.00 100.00 100.00

0.60 ς 68.78 87.72 94.96 97.97 99.68 99.95 100.00 100.00
FCFS 61.11 84.26 93.36 97.09 99.39 99.86 99.98 100.00

Heuristic 2 (M) 68.78 87.51 94.86 97.89 99.65 99.94 100.00 100.00

0.80 ς 56.85 75.72 84.39 89.81 95.70 98.22 99.53 99.92
FCFS 37.66 60.60 74.74 83.57 92.75 96.63 98.86 99.70

Heuristic 2 (M) 56.85 75.52 84.28 89.66 95.55 98.12 99.49 99.91

0.90 ς 50.70 68.03 75.59 80.41 87.10 91.52 95.50 98.06
FCFS 21.43 38.01 50.88 60.91 74.92 83.61 91.07 95.81

Heuristic 2 (M) 50.70 68.02 75.58 80.30 86.84 91.22 95.26 97.94

Table H.2: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): λ1 = 2λ2, w2 = 5w1.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 83.37 96.64 99.27 99.83 99.99 100.00 100.00 100.00
FCFS 79.72 95.67 99.01 99.76 99.98 100.00 100.00 100.00

Heuristic 2 (M) 83.37 96.64 99.21 99.81 99.98 100.00 100.00 100.00

0.60 ς 74.39 91.67 96.76 98.71 99.80 99.97 100.00 100.00
FCFS 63.89 86.57 94.83 97.93 99.63 99.92 99.99 100.00

Heuristic 2 (M) 74.39 91.67 96.65 98.58 99.66 99.92 99.99 100.00

0.80 ς 65.09 84.21 90.81 94.11 97.52 98.97 99.73 99.95
FCFS 40.26 63.97 78.04 86.45 94.63 97.75 99.32 99.84

Heuristic 2 (M) 65.09 84.21 90.81 93.98 96.93 98.47 99.47 99.88

0.90 ς 60.35 79.48 86.19 89.33 93.04 95.42 97.57 98.95
FCFS 23.21 40.88 54.35 64.64 78.56 86.80 93.42 97.24

Heuristic 2 (M) 60.35 79.48 86.19 89.19 92.37 94.48 96.68 98.37
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Table H.3: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): equally weighted case, λ1 = 4λ2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 77.95 93.90 98.19 99.45 99.95 99.99 100.00 100.00
FCFS 76.73 93.26 97.81 99.26 99.91 99.99 100.00 100.00

Heuristic 2 (M) 77.95 93.90 98.19 99.44 99.95 99.99 100.00 100.00

0.60 ς 65.76 84.56 92.89 96.73 99.30 99.85 99.98 100.00
FCFS 61.19 82.46 91.27 95.43 98.68 99.61 99.94 99.99

Heuristic 2 (M) 65.76 84.51 92.87 96.68 99.29 99.84 99.98 100.00

0.80 ς 53.05 69.22 78.93 85.76 93.64 97.22 99.22 99.86
FCFS 39.68 61.10 73.50 81.20 89.83 94.25 97.48 99.15

Heuristic 2 (M) 53.04 68.76 78.63 85.44 93.46 97.13 99.19 99.85

0.90 ς 46.56 59.30 66.53 72.44 81.55 87.80 93.52 97.23
FCFS 23.95 40.79 52.87 61.74 73.56 80.88 87.65 92.83

Heuristic 2 (M) 46.56 58.87 66.12 71.99 81.17 87.51 93.33 97.15

Table H.4: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): weighted by demand rates, λ1 = 4λ2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 71.28 91.21 97.27 99.14 99.91 99.99 100.00 100.00
FCFS 69.82 90.04 96.60 98.83 99.86 99.98 100.00 100.00

Heuristic 2 (M) 71.27 91.21 97.27 99.14 99.91 99.99 100.00 100.00

0.60 ς 55.11 78.91 90.05 95.29 98.95 99.76 99.97 100.00
FCFS 51.75 75.13 86.77 92.86 97.89 99.37 99.90 99.99

Heuristic 2 (M) 55.02 78.91 90.04 95.29 98.94 99.76 99.97 100.00

0.80 ς 37.01 58.92 73.09 82.31 92.27 96.64 99.05 99.83
FCFS 30.16 49.61 62.86 72.26 84.20 90.89 95.98 98.65

Heuristic 2 (M) 36.65 58.91 73.06 82.28 92.24 96.58 98.98 99.79

0.90 ς 26.96 45.27 58.76 68.62 81.38 88.58 94.30 97.67
FCFS 16.90 30.06 40.53 49.03 61.93 71.15 80.71 88.60

Heuristic 2 (M) 26.59 45.26 58.75 68.61 81.33 88.52 94.16 97.43

Table H.5: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): λ1 = 4λ2, w1 = 8w2.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 69.80 90.56 97.02 99.06 99.90 99.99 100.00 100.00
FCFS 67.77 89.09 96.24 98.70 99.84 99.98 100.00 100.00

Heuristic 2 (M) 69.80 90.56 97.02 99.05 99.90 99.99 100.00 100.00

0.60 ς 53.63 78.04 89.52 95.00 98.86 99.74 99.97 100.00
FCFS 48.95 72.96 85.44 92.10 97.66 99.30 99.89 99.99

Heuristic 2 (M) 53.63 78.04 89.52 94.98 98.86 99.74 99.97 100.00

0.80 ς 36.34 58.97 73.40 82.67 92.57 96.80 99.10 99.84
FCFS 27.34 46.21 59.71 69.61 82.53 89.89 95.53 98.50

Heuristic 2 (M) 36.34 58.97 73.40 82.67 92.54 96.77 99.05 99.80

0.90 ς 27.22 46.55 60.50 70.62 83.39 90.33 95.46 98.23
FCFS 14.81 26.88 36.87 45.27 58.48 68.27 78.65 87.35

Heuristic 2 (M) 27.22 46.55 60.50 70.62 83.39 90.33 95.41 98.10
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Table H.6: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): λ1 = 4λ2, w2 = 4w1.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 86.36 96.91 99.19 99.76 99.98 100.00 100.00 100.00
FCFS 83.63 96.47 99.03 99.69 99.96 100.00 100.00 100.00

Heuristic 2 (M) 86.36 96.87 99.16 99.75 99.98 100.00 100.00 100.00

0.60 ς 79.09 92.41 96.71 98.53 99.70 99.94 99.99 100.00
FCFS 70.63 89.79 95.77 98.00 99.46 99.84 99.97 100.00

Heuristic 2 (M) 79.09 92.20 96.59 98.44 99.66 99.92 99.99 100.00

0.80 ς 71.61 85.67 90.59 93.67 97.18 98.77 99.65 99.94
FCFS 49.21 72.59 84.13 90.14 95.47 97.61 98.98 99.66

Heuristic 2 (M) 71.61 85.53 90.48 93.42 96.88 98.55 99.56 99.91

0.90 ς 67.82 81.51 85.66 88.26 92.13 94.78 97.21 98.81
FCFS 31.01 51.52 65.21 74.45 85.19 90.60 94.60 97.05

Heuristic 2 (M) 67.82 81.38 85.56 88.05 91.62 94.21 96.74 98.53

Table H.7: Comparison of the aggregate fill rates (%) of the ς, FCFS policies and heuristic 2
(M): λ1 = 4λ2, w2 = 8w1.

ρ S = 1 S = 2 S = 3 S = 4 S = 6 S = 8 S = 11 S = 15

0.40 ς 88.87 97.95 99.50 99.86 99.99 100.00 100.00 100.00
FCFS 85.68 97.43 99.39 99.82 99.98 100.00 100.00 100.00

Heuristic 2 (M) 88.87 97.95 99.47 99.83 99.98 100.00 100.00 100.00

0.60 ς 83.05 95.09 97.95 99.12 99.82 99.96 100.00 100.00
FCFS 73.43 91.96 97.10 98.76 99.69 99.91 99.99 100.00

Heuristic 2 (M) 83.05 95.03 97.87 98.97 99.72 99.92 99.99 100.00

0.80 ς 77.12 90.90 94.39 96.27 98.34 99.28 99.80 99.96
FCFS 52.03 75.99 87.28 92.79 97.14 98.60 99.43 99.81

Heuristic 2 (M) 77.12 90.90 94.33 95.96 97.80 98.81 99.55 99.88

0.90 ς 74.12 88.29 91.63 93.24 95.47 96.99 98.39 99.31
FCFS 33.10 54.70 68.86 78.21 88.63 93.48 96.65 98.30

Heuristic 2 (M) 74.12 88.29 91.62 93.04 94.79 96.11 97.56 98.74

98



APPENDIX I

Table I.1: Aggregate fill rates (%) of symmetric three-class systems for Heuristic 2.

simulation
ρ S Lower Mean Upper Relative Precision Value-Iteration

0.10 1 94.75 94.75 94.76 0.00008 94.76
2 99.73 99.73 99.74 0.00001 99.73
3 99.99 99.99 99.99 0.00000 99.99

0.20 1 89.06 89.07 89.08 0.00013 89.07
2 98.85 98.85 98.85 0.00003 98.85
3 99.88 99.88 99.88 0.00001 99.88

0.30 1 82.93 82.95 82.97 0.00020 82.94
2 97.14 97.15 97.16 0.00008 97.15
3 99.55 99.55 99.55 0.00003 89.55
4 99.93 99.93 99.93 0.00001 99.93

0.40 1 76.36 76.38 76.41 0.00028 76.38
2 94.35 94.36 94.37 0.00012 94.35
3 98.72 98.73 98.73 0.00006 98.73
4 99.72 99.72 99.72 0.00002 99.72

0.50 1 69.34 69.36 69.38 0.00025 69.35
2 90.12 90.13 90.15 0.00018 90.14
3 96.98 96.99 97.00 0.00009 96.99
4 99.11 99.12 99.12 0.00006 99.11
6 99.93 99.93 99.93 0.00001 99.93

0.60 1 61.79 61.82 61.85 0.00041 61.82
2 84.13 84.15 84.17 0.00024 84.21
3 93.59 93.61 93.64 0.00026 93.64
4 97.50 97.51 97.51 0.00009 97.51
6 99.63 99.64 99.64 0.00005 99.64
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APPENDIX J

Table J.1: Performance measures for λi = λ, wi = 1
2 , Si = S for i = 1, 2.

FR B Inv

ρ S FCFS LQ H2 FCFS LQ H2 FCFS LQ H2

0.10 1 0.9474 0.9472 0.9476 0.0029 0.0028 0.0032 0.9474 0.9472 0.9476
2 0.9972 0.9973 0.9973 0.0002 0.0001 0.0001 1.9446 1.9446 1.9446

3 0.9999 0.9999 0.9999 0.0000 0.0000 0.0000 2.9445 2.9445 2.9445

4 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 3.9444 3.9444 3.9444

0.25 1 0.8571 0.8553 0.8606 0.0238 0.0220 0.0273 0.8571 0.8553 0.8606
2 0.9796 0.9809 0.9812 0.0034 0.0028 0.0031 1.8367 1.8361 1.8364
3 0.9971 0.9975 0.9976 0.0005 0.0004 0.0004 2.8338 2.8337 2.8337

4 0.9996 0.9997 0.9997 0.0001 0.0000 0.0000 3.8334 3.8334 3.8334

6 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 5.8333 5.8333 5.8333

0.50 1 0.6667 0.6545 0.6935 0.1667 0.1545 0.1935 0.6667 0.6545 0.6935
2 0.8889 0.8913 0.9014 0.0556 0.0458 0.0618 1.5556 1.5458 1.5618
3 0.9630 0.9674 0.9699 0.0185 0.0132 0.0174 2.5185 2.5132 2.5174
4 0.9877 0.9905 0.9911 0.0062 0.0037 0.0048 3.5062 3.5037 3.5048
6 0.9986 0.9992 0.9993 0.0007 0.0003 0.0004 5.5007 5.5003 5.5004
8 0.9998 0.9999 0.9999 0.0001 0.0000 0.0000 7.5001 7.5000 7.5000

11 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 10.5000 10.5000 10.5000

0.60 1 0.5714 0.5532 0.6182 0.3214 0.3032 0.3682 0.5714 0.5532 0.6182
2 0.8163 0.8155 0.8415 0.1378 0.1187 0.1611 1.3878 1.3687 1.4111
3 0.9213 0.9268 0.9362 0.0590 0.0456 0.0631 2.3090 2.2956 2.3131
4 0.9663 0.9717 0.9750 0.0253 0.0172 0.0237 3.2753 3.2672 3.2737
6 0.9938 0.9959 0.9964 0.0046 0.0024 0.0032 5.2546 5.2524 5.2532
8 0.9989 0.9994 0.9995 0.0009 0.0003 0.0004 7.2509 7.2503 7.2504
11 0.9999 1.0000 1.0000 0.0001 0.0000 0.0000 10.2501 10.2500 10.2500

15 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 14.2500 14.2500 14.2500

0.75 1 0.4000 0.3750 0.4943 0.9000 0.8750 0.9943 0.4000 0.3750 0.4943
2 0.6400 0.6281 0.7143 0.5400 0.5031 0.6648 1.0400 1.0031 1.1648
3 0.7840 0.7838 0.8344 0.3240 0.2869 0.4097 1.8240 1.7869 1.9097
4 0.8704 0.8759 0.9046 0.1944 0.1628 0.2451 2.6944 2.6628 2.7451
6 0.9533 0.9599 0.9690 0.0700 0.0520 0.0816 4.5700 4.5520 4.5816
8 0.9832 0.9872 0.9901 0.0252 0.0165 0.0263 6.5252 6.5165 6.5263
11 0.9964 0.9977 0.9982 0.0054 0.0029 0.0047 9.5054 9.5029 9.5047
15 0.9995 0.9998 0.9998 0.0007 0.0003 0.0005 13.5007 13.5003 13.5005

0.90 1 0.1818 0.1623 0.3546 3.6818 3.6622 3.8546 0.1818 0.1623 0.3546
2 0.3306 0.3112 0.5317 3.0124 2.9734 3.3569 0.5124 0.4734 0.8569
3 0.4523 0.4380 0.6374 2.4647 2.4114 2.9097 0.9647 0.9114 1.4097
4 0.5519 0.5431 0.7113 2.0166 1.9545 2.5008 1.5166 1.4545 2.0008
6 0.7000 0.6993 0.8119 1.3499 1.2830 1.7961 2.8499 2.7830 3.2961
8 0.7992 0.8026 0.8766 0.9037 0.8419 1.2566 4.4037 4.3419 4.7566
11 0.8900 0.8950 0.9344 0.4949 0.4474 0.7138 6.9949 6.9474 7.2139
15 0.9507 0.9548 0.9717 0.2218 0.1926 0.3238 10.7218 10.6926 10.8238
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Table J.2: Differences in performance measures with respect to Heuristic 2 when λi = λ,
wi = 1

2 , Si = S for i = 1, 2.

FR B) Inv

ρ S FCFS LQ FCFS LQ FCFS LQ

0.10 1 0.00023 0.00036 -0.00023 -0.00036 -0.00023 -0.00036
2 0.00011 0.00000 0.00001 0.00000 0.00001 0.00000
3 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000
4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.25 1 0.00345 0.00530 -0.00345 -0.00530 -0.00345 -0.00530
2 0.00156 0.00030 0.00029 -0.00030 0.00029 -0.00030
3 0.00048 0.00002 0.00011 -0.00002 0.00011 -0.00002
4 0.00011 0.00000 0.00002 0.00000 0.00002 0.00000
6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.50 1 0.02680 0.03896 -0.02680 -0.03896 -0.02680 -0.03896
2 0.01250 0.01008 -0.00620 -0.01593 -0.00620 -0.01593
3 0.00693 0.00248 0.00117 -0.00412 0.00117 -0.00412
4 0.00348 0.00061 0.00139 -0.00103 0.00139 -0.00103
6 0.00065 0.00004 0.00033 -0.00006 0.00033 -0.00006
8 0.00010 0.00000 0.00005 0.00000 0.00005 0.00000
11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 0.04672 0.06491 -0.04672 -0.06491 -0.04672 -0.06491
2 0.02515 0.02597 -0.02334 -0.04235 -0.02334 -0.04235
3 0.01487 0.00935 -0.00403 -0.01752 -0.00403 -0.01752
4 0.00876 0.00335 0.00161 -0.00646 0.00161 -0.00646
6 0.00258 0.00043 0.00141 -0.00085 0.00141 -0.00085
8 0.00063 0.00006 0.00042 -0.00011 0.00042 -0.00011
11 0.00006 0.00000 0.00005 -0.00001 0.00005 -0.00001
15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.75 1 0.09435 0.11935 -0.09435 -0.11935 -0.09435 -0.11935
2 0.07433 0.08620 -0.12484 -0.16172 -0.12484 -0.16172
3 0.05042 0.05062 -0.08570 -0.12278 -0.08570 -0.12278
4 0.03418 0.02869 -0.05072 -0.08231 -0.05072 -0.08231
6 0.01563 0.00908 -0.01158 -0.02956 -0.01158 -0.02956
8 0.00687 0.00287 -0.00113 -0.00980 -0.00113 -0.00980
11 0.00185 0.00051 0.00072 -0.00178 0.00072 -0.00178
15 0.00029 0.00005 0.00023 -0.00018 0.00023 -0.00018

0.90 1 0.17277 0.19232 -0.17273 -0.19232 -0.17277 -0.19232
2 0.20111 0.22052 -0.34448 -0.38346 -0.34451 -0.38346
3 0.18516 0.19948 -0.44500 -0.49829 -0.44501 -0.49829
4 0.15938 0.16818 -0.48427 -0.54637 -0.48428 -0.54637
6 0.11189 0.11257 -0.44619 -0.51314 -0.44620 -0.51314
8 0.07740 0.07401 -0.35291 -0.41470 -0.35293 -0.41470
11 0.04435 0.03931 -0.21889 -0.26641 -0.21890 -0.26641
15 0.02102 0.01691 -0.10198 -0.13117 -0.10199 -0.13117
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Table J.3: Differences (%) in performance measures with respect to Heuristic 2, when λi = λ,
wi = 1

2 , Si = S for i = 1, 2.

FR(S) B(S) I(S)

ρ S FCFS LQ FCFS LQ FCFS LQ

0.10 1 0.02476 0.03786 -8.02204 -12.80664 -0.02476 -0.03786
2 0.01137 0.00031 6.87859 -2.22256 0.00054 -0.00016
3 0.00126 0.00000 13.08706 -0.40342 0.00004 0.00000
4 0.00010 0.00000 17.69887 -0.07505 0.00000 0.00000

0.25 1 0.40257 0.61994 -14.49264 -24.14781 -0.40257 -0.61994
2 0.15954 0.03087 8.48560 -10.78510 0.01571 -0.01650
3 0.04801 0.00179 23.23886 -5.04438 0.00398 -0.00063
4 0.01072 0.00011 34.17065 -2.41544 0.00062 -0.00003
6 0.00036 0.00000 50.31778 -0.57332 0.00001 0.00000

0.50 1 4.02041 5.95270 -16.08164 -25.21602 -4.02041 -5.95270
2 1.40636 1.13069 -11.15334 -34.76937 -0.39833 -1.03062
3 0.71932 0.25641 6.29649 -31.16357 0.04630 -0.16405
4 0.35215 0.06202 22.58085 -27.51856 0.03976 -0.02943
6 0.06531 0.00381 48.50990 -22.23413 0.00605 -0.00117
8 0.00972 0.00024 66.58008 -18.67285 0.00068 -0.00005
11 0.00045 0.00000 83.08327 -15.07203 0.00002 0.00000

0.60 1 8.17631 11.73315 -14.53566 -21.40637 -8.17631 -11.73315
2 3.08105 3.18484 -16.94470 -35.66826 -1.68201 -3.09435
3 1.61445 1.00852 -6.83448 -38.46061 -0.17475 -0.76321
4 0.90671 0.34482 6.38147 -37.49631 0.04930 -0.19771
6 0.25915 0.04342 30.28715 -35.30302 0.02679 -0.01609
8 0.06357 0.00560 49.12140 -33.74742 0.00578 -0.00151
11 0.00646 0.00026 68.89561 -32.37821 0.00045 -0.00005
15 0.00026 0.00000 84.17979 -31.47548 0.00001 0.00000

0.75 1 23.58719 31.82634 -10.48320 -13.63986 -23.58719 -31.82634
2 11.61381 13.72392 -23.11926 -32.14291 -12.00423 -16.12152
3 6.43068 6.45826 -26.45121 -42.79215 -4.69857 -6.87104
4 3.92746 3.27604 -26.09169 -50.55544 -1.88251 -3.09110
6 1.63976 0.94593 -16.54058 -56.85630 -0.25330 -0.64946
8 0.69833 0.29078 -4.47737 -59.36054 -0.01729 -0.15046
11 0.18564 0.05119 13.18235 -60.36552 0.00755 -0.01871
15 0.02919 0.00511 32.78729 -60.60506 0.00171 -0.00133

0.90 1 95.02356 118.52000 -4.69152 -5.25147 -95.02407 -118.52008
2 60.83636 70.86582 -11.43542 -12.89637 -67.23474 -80.99431
3 40.93710 45.54728 -18.05496 -20.66414 -46.13030 -54.67288
4 28.87914 30.96894 -24.01454 -27.95493 -31.93295 -37.56459
6 15.98392 16.09696 -33.05276 -39.99632 -15.65668 -18.43855
8 9.68488 9.22179 -39.05315 -49.25917 -8.01439 -9.55121
11 4.98289 4.39193 -44.22413 -59.54143 -3.12943 -3.83459
15 2.21111 1.77126 -45.97671 -68.10494 -0.95124 -1.22675
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(d) ρ = 0.90.

Figure K.1: Concavity of FR in S under LQ policy.
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(b) ρ = 0.70.
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(c) ρ = 0.80.
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(d) ρ = 0.80.

Figure K.2: Concavity of FR in S under ς policy.
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Figure K.3: Convexity of Inv in S under ς policy.
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Figure L.1: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 10, hi = 1 for i = 1, 2.
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Figure L.2: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 1000, hi = 1 for i = 1, 2.
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Figure L.3: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 10000, hi = 1 for i = 1, 2.
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Figure M.1: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 10, hi = 1 for i = 1, 2.
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Figure M.2: Policy ςS∗ for P5(β0), where β0 = FR(π∗) in Figure M.1 and wi = 1
2 , i = 1, 2.
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Figure M.3: Optimal Scheduling Policy, π∗, for P6(b), λi = λ, bi = 1000, hi = 1 for i = 1, 2.
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Figure M.4: Policy ςS∗ for P5(β0), where β0 = FR(π∗) in Figure M.3 and wi = 1
2 , i = 1, 2.
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APPENDIX N

Table N.1: Comparison of the policies π∗ and ςS∗ for b1 = 100, hi = 1 for i = 1, 2.

FR
P

i hiInvi

b2
λ1

λ2

w1

w2

ρ π∗ ς∗S Error(%) π∗ ς∗S Error(%)

200 2 1 0.40 97.414 97.415 0.001 2.17574 2.17592 0.008
0.60 96.151 96.155 0.004 2.78954 2.79103 0.053
0.80 91.198 91.233 0.038 3.31111 3.33869 0.833

200 4 2 0.40 97.135 97.137 0.002 2.17723 2.17750 0.013
0.60 95.954 95.956 0.002 2.78685 2.78801 0.042
0.80 92.151 92.202 0.055 3.74790 3.77337 0.679

50 2 4 0.40 94.744 94.749 0.006 1.69255 1.69383 0.076
0.60 94.623 94.691 0.072 2.31985 2.33431 0.624
0.80 89.566 89.697 0.147 2.57354 2.63387 2.344

25 3 12 0.40 96.119 96.119 0.000 1.69577 1.69577 0.000
0.60 93.432 93.432 0.000 1.91009 1.91009 0.000
0.80 90.465 90.887 0.466 2.34365 2.44084 4.147

110



APPENDIX O
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Figure O.1: Comparison of the Policies π∗ and ςS∗ for b = (2000, 400), h = (8, 3), ρ = 0.80
and λ1 = 3λ2.
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Figure O.2: Comparison of the Policies π∗ and ςS∗ for b = (250, 100), h = (5, 4), ρ = 0.80 and
λ1 = 3λ2.
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Figure O.3: Comparison of the Policies π∗ and ςS∗ for b = (20, 40), h = (7, 5), ρ = 0.80 and
λ1 = 3λ2.
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