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ABSTRACT 
 

OPTIMIZATION OF DOPPLER PROCESSING BY  

USING BANK OF MATCHED FILTERS 

 

AKTOP, Onur 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Yalçın TANIK 

 

September 2005, 139 pages 

 

 

In radars, matched filters are used in the receiver of the system. Since the 

target velocity is not known a priori, degradation occurs due to mismatch of 

the return signal and the matched filter. The performance of the radar can be 

improved by using a bank of matched filters. The first topic investigated in 

this work is optimization of the bank of matched filter structure. Two methods 

are proposed for the design of the parallel filter structure and computations 

are performed with both methods. 

 

The output signal of a radar receiver filter consists not only of the main peak 

from the target but also of range sidelobes. In a multi-target radar 

environment, the sidelobes of one large target may appear as a smaller 

target at another range, or the integrated sidelobes from targets or clutter 

may mask all the information of another target. The second part of this thesis 

discusses the methods for decreasing the sidelobe level of the receiver 

output. Two methods are studied for this purpose. The first is the classical 

amplitude weighting and the second is the use of an inverse filter that 
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minimizes total sidelobe energy. Both methods decrease the sidelobe levels 

while bringing a mismatch loss and main peak broadening. For the inverse 

filter case it is observed that the effect of inverse filter becomes evident as 

the filter length is increased beyond some point. 

 

Finally, the effects of quantization on video signal and the receiver filter 

coefficients are evaluated. It is observed that 16 bits quantization is sufficient 

for all kinds of receiver filters tested. 

 

 

Keywords: Pulse Doppler radar, Doppler mismatch, P4 code, amplitude 

weighting, inverse filter 
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ÖZ 
 

DOPPLER İŞLEMENİN UYUMLU SÜZGEÇ ÖBEĞİ KULLANILARAK 

ENİYİLEŞTİRİLMESİ 

 

AKTOP, Onur 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yalçın TANIK 

 

Eylül 2005, 139 sayfa 

 

 

Radarlarda uyumlu süzgeçler sistemin alıcılarında kullanılmaktadır. Hedefin 

hızı önceden bilinmediğinden sistemde kullanılan uyumlu süzgeç ile hedeften 

gelen işaretin birbirlerine uyumsuzluğundan dolayı sistemde kayıp 

oluşmaktadır. Radarın başarımı uyumlu süzgeç öbeği kullanılarak artırılabilir. 

Bu tezdeki çalışma uyumlu süzgeç öbeği yapısının eniyileştirilmesi ile 

başlamaktadır. Süzgeç öbeği yapısı için iki yöntem önerilmiş ve benzetimler 

yapılarak bu yöntemlerin başarımları bulunmuştur. 

 

Radar alıcı süzgecinin çıkış işareti sadece yankı alımı için kullanılan asıl 

tepeyi içermemekte, bunun yanında yan lopları da bulunmaktadır. Birden çok 

hedef barındıran bir ortamda, büyük bir hedefin yan lopları başka bir hedefin 

asıl tepesi gibi gözükebilmekte; bir çok hedefin birleşik yan lobu veya 

parazitler ise başka bir hedefi tamamen gölgeleyebilmektedir. Bu tezin ikinci 

kısmı radarın alıcı çıkışındaki yan lop seviyesinin düşürülmesiyle ilgili 

çalışmaları içerir. Bu amaçla iki yöntem üzerinde durulmuştur; bunlardan ilki 

klasik genlik ağırlıklandırması, diğeri ise ters süzgeç kullanarak toplam yan 
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lop enerjisinin asgari düzeye indirilmesidir. Her iki yöntem de yan lop 

seviyesini düşürürken uyumsuzluktan kaynaklanan kayıba ve asıl tepenin 

genişlemesine neden olur. Ters süzgeç yönteminde filtrenin öneminin filtre 

uzunluğu belirli bir değeri geçtikten sonra ortaya çıktığı gözlenmiştir.  

 

Son olarak hedeften gelen yankı işaretinin ve süzgeç katsayılarının 

kuvantalanmasının radarın başarımına etkileri değerlendirilmiştir. 

Kuvantalamanın 16 parçadan yapılmasının test edilen tüm alıcı süzgeçleri 

için yeterli olduğu görülmüştür. 

 

 

Anahtar Kelimeler: Darbeli Doppler radarı, Doppler uyumsuzluğu, P4 kodu, 

genlik ağırlıklandırması, ters süzgeç 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

1.1. Problem Definition 

 

Radar is an electromagnetic system for the detection and location of objects 

that operates by transmitting electromagnetic signals and receiving echoes 

from reflective objects (targets) within its volume of coverage. It extracts the 

location of the objects in space about the radar, the time rate of change of 

the objects’ location in space and in some cases identifies the objects as 

being a particular one of a number of classes using the information from the 

echo signal. Radar is an acronym for RAdio Detection And Ranging [1]. 

 

Generally, the return signal and the transmitted signals are not the same in a 

radar system. The difference in signals comes from the radial velocity of the 

target causing a Doppler frequency shift in the echo signal received by the 

radar. The Doppler shift phenomenon is used to discriminate real targets 

from the background clutter such as precipitation, chaff, sea or ground [2]. 

This phenomenon also gives rise to a signal-to-noise-ratio (SNR) loss in the 

receiving filter of the radar. The resulting SNR loss in the receiver can be 

very significant depending on the parameters of the radar and the target 

radial velocity.  
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The echo signal coming from a reflective object is filtered in the receiver 

system of the radar to determine if a target is present or not in the radars 

operating environment. The output signal of a radar receiver filter consists 

not only of the main peak used for echo detection but also of time (range) 

sidelobes. In a multi-target radar environment, the time sidelobes of one 

large target may appear as a smaller target at another range, or the 

integrated sidelobes from targets or clutter may mask all the information of 

another target. Because of this, it is generally desirable that the time 

sidelobes of the autocorrelation function (ACF) of the transmitted waveform 

be reduced to the lowest level possible [2]. 

 

In modern radars, analog-to-digital (A/D) converters are used in different 

stages of the whole system. Quantization errors exist in the system because 

of the finite bit representation of the coefficients of a radar receiver filter and 

quantization of the received analog signal. The quantization error can 

increase the sidelobes of the ACF, decrease the probability of detection (PD) 

or increase the probability of false alarm (PFA) of the radar depending on the 

quantization levels used. 

 

 

1.2. Scope of the Thesis 

 

In this thesis, the first problem considered is the minimization of the SNR loss 

which is a result of the Doppler shift in the received echo signal. The 

parameters that cause the SNR loss are obtained first and a parallel filter 

method is proposed as a solution to the problem. The minimum number of 

parallel filters that satisfies the desired SNR loss is obtained. The center 

frequencies of the filters are also calculated. In the literature a study on this 

subject could not be found. 

  

The second problem considered is the reduction of time sidelobes of the 

ACF. Different solutions to this problem are considered. The first method is 
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the use of an amplitude weighting window in the matched filter of the radar. 

The benefits and drawbacks of this method for different weighting windows 

are obtained and compared. In [9], the amplitude weighting method is 

discussed briefly. The results of cosn function on pedestal k, Taylor nbar = 6 

and Chebyshev windowing functions are given. However, the performance of 

windowing functions with Doppler shifted echo signal is not investigated. The 

second method proposed is the use of an inverse filter that minimizes the 

sidelobe energy. The results of the latter method are obtained and compared 

with the results of the previous one. In [17], both methods are discussed. 

Classical amplitude weighting performances of Hanning, Hamming, 

Chebyshev and Taylor windowing functions are obtained. Inverse filtering 

method is also studied with different input code lengths and different inverse 

filter lengths. Again the performance of the methods with Doppler shifted 

echo signal is not discussed. The difference of the study in this thesis from 

[9, 17] is that both methods are investigated in detail with Doppler shift 

responses. The performances of 25 window functions are obtained and the 

best functions are determined. The performances of window functions that 

have variable parameters are also obtained and the best parameter values 

are determined. The Doppler shift performances of the best window 

functions, as well as inverse filter approach are also obtained. 

 

The last concern of this thesis is the effects of quantization on radar receiver 

performance. Finite bit representation of receiver filter coefficients and 

quantization of analog input signal is taken into account and the effect of this 

on ACF sidelobes is considered. The results are obtained and compared for 

different receiver filters (matched, inverse) and different weighting windows. 

Also for a desired PD and PFA, the extra input SNR required is calculated for 

different receiver filters and for different levels of quantization. In [12], the 

effects of quantization on sidelobe levels for Frank code are given briefly. An 

analysis of the effect of quantization on performance of weighting windows or 

inverse filter could not be found in the literature. Also, a study on the effect of 

quantization on detection probabilities of these methods is not present in the 

literature. 
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1.3. Outline of the Thesis 

 

In chapter 2; a review of fundamental radar signal processing concepts is 

given.  Matched filter theory, pulse compression, polyphase codes and the 

radar ambiguity function are roughly mentioned in this chapter. 

 

The parallel filter method for minimization of mismatch loss in the receiver 

filter is investigated in Chapter 3. The details of the proposed system are 

given for both odd and even number of parallel filters. 

 

Chapter 4 investigates the weighting techniques for sidelobe suppression. 

The effects of different weighting windows are compared. 

 

In chapter 5, sidelobe suppression problem is approached by inverse filter 

method. The results obtained in this chapter are also compared with the 

results of previous chapter. 

 

The effect of quantization on the performance of the radar system is 

discussed for various receiver filters in Chapter 6.  
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CHAPTER 2 

 

 

REVIEW OF FUNDAMENTAL CONCEPTS 
 

 

2.1. Matched Filter Theory 

 

The basic concept of matched filters evolved from the effort to obtain a better 

theoretical understanding of the factors leading to optimum performance of a 

radar system. The optimum linear processing of radar signals is performed 

by the matched filter technique. The raw radar data which is assumed to be 

corrupted by white Gaussian noise available at the radar receiver is 

transformed into a suitable form with the matched filtering technique for 

performing optimum detection decisions such as target / no target; or for 

estimating target parameters such as range, velocity, acceleration with 

minimum errors [3]. 

 

The characteristics of matched filters can be designated by either a 

frequency response function or a time response function, each being related 

to the other by a Fourier transform operation. In the frequency domain the 

matched filter transfer function, )f(H , is the complex conjugate function of 

the spectrum of the signal that is to be processed in the optimum fashion. 

Thus the transfer function of a matched filter has the form 

 

dfTπ2j* e)f(kS)f(H -=     (2.1) 
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where )f(S  is the spectrum of the transmitted signal )t(s , k  is a constant for 

normalization, and dT  is a delay constant required to make the filter 

physically realizable. Except for the amplitude and delay factors of the form 

dfTπ2jke - , the transfer function of a matched filter is the complex conjugate of 

the spectrum of the signal to which it is matched. Because of this a matched 

filter is sometimes called a “conjugate” filter [4]. 

 

The time domain relationship between the transmitted signal and its matched 

filter is obtained by taking the inverse Fourier transform of )f(H . This leads 

to the result that the impulse response of a matched filter is a replica of the 

time inverse of the signal function. Thus, if )t(h  represents the matched filter 

impulse response, the general relationship in time domain equivalent to (2.1) 

is 

 

)tT(ks)t(h d -=      (2.2) 

 

Then, the output of the matched filter is obtained as 

 

τd)τ-t(s)τ(h)t(y
0

∫
∞  

=     (2.3) 

or 

dfe)f(S)f(H)t(y ftπ2j

  

-

∫
∞

∞

= .    (2.4) 

 

(2.4) is the inverse Fourier transform of )f(Y  and (2.3) is the convolution of 

)t(h and )t(s . Consequently the output of the matched filter is 

 

τd)τt(s)τT(s)t(y
0 

d --∫
∞  

=     (2.5) 
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or 

 

dfe)f(S)t(y )Tt(fπ2j

-

2
d-

∞  

∞
∫= .    (2.6) 

 

(2.6) is the inverse Fourier transform of the signal energy spectral density 

2

)f(S  and (2.5) is the correlation of the input signal )t(s . Hence, matched 

filtering is equivalent to correlation processing [3]. This indicates that the 

matched filter may be implemented as a cross correlator between the echo 

from a target and a time-delayed and Doppler-shifted replica of the 

transmitted signal [2]. 

 

The characteristics of the matched filter can be derived using three different 

approaches: 

 

Signal / Noise criterion 

Likelihood ratio criterion 

Inverse probability criterion 

 

The signal/noise ratio criterion assumes that the optimum predetection 

system maximizes the SNR at one instant of time at the output of the signal 

processor [3]. The signal / noise approach was developed independently by 

several individuals [5, 6]. Assuming the basic definition 

 

power noise rms

)voltage output eous)(instantan peak(
SNR

2

=    (2.7) 

 

North [5] determined that the matched filter maximized this ratio yielding 

 

bandwidth unit per power noise

energy signal received x 2
SNRmax =    (2.8) 
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(2.8) also implies that the ability to detect a radar signal is only a function of 

the energy it contains and the noise power density [3]. Features of the signal 

as peak power, time duration, wave shape and bandwidth do not enter the 

expression.  

 

The likelihood criterion defines the optimum predetection filter as the one that 

processes the received signal in such a way as to provide an evaluation of 

the ratio of two conditional probabilities, which are signal plus noise or noise 

only cases [3]. This criterion was formulated from considerations of the 

theories for statistical decision and parameter estimation, developed by Wald 

[7], Neyman and Pearson [8], and others. 

 

The inverse probability criterion describes the ideal receiver as the one that 

processes the received signal so as to produce an a posteriori probability 

distribution as an output [9]. This approach is based on Shannon’s 

information theory, and was first developed by Woodward and Davies [10], 

and later expanded by Woodward [11]. 

 

 

2.2. Radar Ambiguity Function 

 

For a radar system, it is evident that a particular waveform for transmission 

must first be specified before an optimum detection system can be 

implemented. Because of this requirement, the radar designer is always 

faced with the task of specifying an appropriate signal for his particular 

application. This signal is usually defined as the one which will lead to the 

least amount of uncertainty and ambiguity when the radar return signal is 

interpreted for information about range, velocity and the number of true 

targets in the radar’s environment [3]. 

 

The successful extraction of information about range and velocity is 

determined by the measuring accuracy of the radar. The performance of the 



 9 

radar system, in both respects, is accurately indicated by Woodward’s 

ambiguity function [3]. The ambiguity function is defined as the response of 

the matched filter radar receiver to a target displaced in range delay τ  and 

Doppler frequency φ  from a reference target. The ambiguity function is given 

as 
2

)φ,τ(X  where [1]: 

 

dte)τt(u)t(u)φ,τ(X tπφ2j* -

∞

∞-
∫ +=    (2.9) 

 

where )t(u  is the transmitted waveform. The ambiguity function is closely 

related to the matched filtered output waveform and is simply the squared 

magnitude of the time-reversed matched filter response. Because of this the 

ambiguity function is a measure of the ability of the radar system to 

distinguish similar coded waveforms at the receiver that differ in time of 

arrival and / or frequency shift. 

 

It can be shown through Parseval’s theorem that )φ,τ(X  can also be 

expressed in terms of )f(U , the Fourier transform of )t(u , thus: 

 

dfe)φf(U)f(U)φ,τ(X τfπ2j* -

∞

∞-
∫ +=   (2.10) 

 

In the ambiguity diagram notation 0τ =  and 0φ =  correspond to the time 

and Doppler frequency displacement of target of interest; i.e. the ambiguity 

diagram origin is centered on the target location in the range - Doppler 

frequency plane. For the case of matched filter reception, the origin of the 

ambiguity function may be thought of as the output of the matched filter that 

is tuned in time delay and frequency shift to the signal reflected from an 

idealized point source target. In this case τ  becomes the time delay relative 

to the target position, and φ  becomes the Doppler relative to the target 

Doppler [2]. 
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The most significant aspect of the ambiguity diagram in the context of signal 

design is that the total potential ambiguity does not change from one signal to 

the next. This property is known as the radar uncertainty principle or 

sometimes as the law of conservation of ambiguity. It leads to the conclusion 

that the total potential ambiguity is the same for all signals those posses the 

same energy. It is the most important ambiguity function constraint since it 

implies that all signals are equally good (or bad) as long as they are not 

compared against a specific radar environment [9]. The preferable procedure 

for signal design would be to align the ambiguity distribution so that the 

regions of potential ambiguity occur where, a priori, undesirable target 

parameters are not expected, and to derive the signal from this distribution by 

means of an inverse transform. Unfortunately, this transform is not unique. 

Further, even if a unique transform could be formulated there is no guarantee 

that the signal derived from this will be realizable. The usual procedure is 

therefore to examine the ambiguity function of a variety of signals for the one 

that yields the best fit for the operational environment [3]. 

 

If 
2

)φ,τ(X  is an ambiguity function then the volume invariance property can 

be shown as: 

 

22

)0,0(Xφdτd)φ,τ(X =∫∫
∞

∞-

∞

∞-
   (2.11) 

 

 

2.2.1. Ambiguity Function Examples 

 

The significance and general properties of the ambiguity function are 

discussed generally in the previous section. In this section examples of 

ambiguity functions are given. 

 

Figure 2.1 and Figure 2.2 show the ambiguity function of a Frank [13] and P4 

[15] codes of length 100. 
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Range axis is given in code length and the frequency axis is given in code 

duration multiplied with target Doppler Shift. For the plots the parameters 

given below are used: 

 

s/m10x3c 8=  

GHz5.9f0 =  

m15Rδ =  

100N =  

s/m 1500V max,R =  

 

where c  is the speed of electromagnetic wave propagation, 0f  is the center 

frequency of the radar, Rδ  is the range resolution of the radar, N  is the code 

length and RV  is the radial target velocity. 



 
1
2
 

 

Figure 2.1: Ambiguity function of a 100 element Frank code 



 
1
3
 

 

Figure 2.2: Ambiguity function of a 100 element P4 code 
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2.3. Pulse Compression 

 

Pulse compression is a method for obtaining the resolution of a short pulse 

with the energy of a long pulse by internally modulating the phase or 

frequency of a long pulse so as to increase its bandwidth, and using a 

matched filter (also called a pulse compression filter) on reception to 

compress the pulse. It is used to obtain high range resolution when peak-

power limited transmitters are used [1]. 

 

The concept of pulse compression was discovered during World War II. The 

matched filter concept developed in the 1940’s revealed the theoretical 

performance of the pulsed radar systems independent of practical limitations 

of that time. The engineers were considering methods of improving the 

practical results that could be achieved with World War II radars. As the war 

progressed, the engineers understood that the major drawback of the radars 

was the power limitations of the transmitters being used. The problem in the 

transmitters used was two-fold. The peak power that could be provided to the 

transmitters was limited and even if this peak power was available many of 

the transmitter components could not have operated under such high power 

conditions. A straightforward solution could be the widening of pulse widths 

so that the power transmitted would be increased. However, this would 

decrease the range resolution so this method was not acceptable. The 

problem described above was solved by different people serving on both 

sides during the war. The method proposed a wide pulse be transmitted 

during which the carrier frequency was linearly swept. This was seen to yield 

a correlation between time and frequency that could be exploited in the radar 

receiver. The exploitation was proposed as a filter having a linear time delay 

versus frequency characteristics of such a sense that it would delay one end 

of the received pulse greater than the other end and by this way causing the 

signal compress in time and increase in peak amplitude [3]. 
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By the pulse compression method, efficient use of the average power 

available at the radar transmitter and, in some cases, avoidance of peak 

power problems in the high power sections of the transmitter was 

accomplished. The resolution capabilities of the radars are also increased by 

pulse compression. In the range resolution case, the generation of fast rise-

time, high peak power signals is bypassed when pulse compression 

techniques are used. 

 

 

2.3.1. Range Resolution 

 

Radars transmit electromagnetic waves into the space and receive echoes 

from any reflector in the path of the radiation from the radar. The time 

elapsed between transmission and echo repetition is used by the radar in 

order to determine the distance, or range, separating the target and the radar 

[12]. In this case,  

 

2

t∆c
R =      (2.12) 

 

where c  is the velocity of the electromagnetic wave propagation (i.e., speed 

of light) and t∆ is the round trip transmit time of the electromagnetic wave 

transmitted.  

 

The range resolution of a radar with a pulse of time duration of CT  can be 

given as, 

 

2

cT
Rδ

C=      (2.13) 

 

where Rδ  is the distance beyond which two targets must be separated so 

that their echoes can be seen by different pulses [12]. 
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2.3.2. Doppler Shift 

 

The radial velocity of the target in the radar radiation path causes a Doppler 

shift in the echo signal received by the radar. The Doppler shift phenomenon 

is used to discriminate real targets from the background clutter [2] and is 

given by, 

 

0

R

D f
c

V2
f =      (2.14) 

 

where RV  is the radial velocity of the target and 0f  is the carrier frequency of 

radar. 

 

 

2.3.3. Discrete Coded Waveforms 

 

The various types of modulation used in pulse compression are called codes 

[12]. Codes can be divided into two main groups as binary codes and 

polyphase codes. In the next two subsections the binary and polyphase 

codes are discussed briefly. The goodness of the given codes is determined 

based on the autocorrelation function since in the absence of noise; the 

output of the matched filter is proportional to the code autocorrelation.  

 

The autocorrelation function of a discrete coded waveform can be given as: 

 

∑
1-N

0k

mk
*

kcc)m(Φ
=

+=     (2.15) 

 

where the integer index m  steps over the domain )1-N(  m  )1-N(- ≤≤  and 

0ck =  for 0k <  and )1-N(k > . 
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Two important parameters for radar performance analysis are the peak 

sidelobe level (PSL) and the integrated sidelobe level (ISL). PSL is a 

measure of the largest sidelobe as compared with the peak of the 

compression and ISL is a measure of the total power in the sidelobes as 

compared with the peak of the compression. For an N  bit code [2] 

 

2

2

)0(Φ

)i(Φmax
log10PSL =     (2.16) 

 

∑
i

2

)0(Φ

)i(Φ
log10ISL =     (2.17) 

 

 

2.3.3.1. Binary Codes 

 

Binary phase codes are obtained by dividing a relatively long pulse of width τ  

into N  smaller subpulses each of width 'τ . Then the phase of each subpulse 

is chosen as either 0  or π  radians relative to an arbitrary reference. The 

code sequence nc  is obtained as: 

 

nθj

n ec =      (2.18) 

 

where π 0,θn = . Since π 0,θn = ; it is seen that 1cn ±= . 

 

One family of known binary codes is the Barker code. The Barker binary 

phase codes have maximum range-time sidelobes which are only one code 

element amplitude high. Thus they are also called optimum sequences. The 

match point peak to maximum sidelobe power ratio for an N  element code is 

thus equal to N . The size of this family of codes is restricted and there exist 

no more than nine Barker sequences [9]. These codes are given in table 2.1 

along with their autocorrelation ISL and PSL values. 
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Table 2.1: Barker Sequences 

N  nc  PSL, dB ISL, dB 

2 ++ -6.0 -3.0 

2 -+ -6.0 -3.0 

3 ++- -9.5 -6.5 

4 ++-+ -12.0 -6.0 

4 +++- -12.0 -6.0 

5 +++-+ -14.0 -8.0 

7 +++--+- -16.9 -9.1 

11 +++---+--+- -20.8 -10.8 

13 +++++--++-+-+ -22.3 -11.5 

 

 

 

The autocorrelation function of a Barker code with length 13 is given in 

Figure 2.3. 

 

 

 

 

Figure 2.3: Autocorrelation of Barker code of length 13 
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Another class of codes that may be used for generating large pulse 

compression ratios are those whose sequence of plusses and minuses are 

chosen in an essentially randomly manner [2]. These codes are called 

pseudorandom codes (or maximal length sequences). A pseudorandom code 

is generated using a binary shift register circuitry with feedback. 

 

The autocorrelation function of a pseudorandom code with length 15 is given 

in Figure 2.4. 

 

 

 

 

Figure 2.4: Autocorrelation of Pseudorandom code of length 15 

 

 

 

While the pseudorandom codes are easy to generate and decode, the ratio 

of amplitude of the central peak to largest side peak remains close to N . 

The maximal-length codes and the technique of combining codes can be 

used for creating codes of arbitrary long lengths. However, the technique of 

combining codes leads to relatively high sidelobes, and even when 
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mismatched filters are used to suppress these sidelobes, an SNR loss occurs 

because of the code-filter mismatch. 

 

The ambiguity diagrams of the binary phase codes consist of single narrow 

pike surrounded by a plateau of time and Doppler frequency sidelobes. The 

match-point peak occurs over a very narrow range in time and in frequency. 

As a consequence, biphase codes have little Doppler shift tolerance, i.e., 

their performance is degraded by moving targets [12].  

 

 

2.3.3.2. Polyphase Codes 

 

Polyphase codes are obtained by dividing a relatively long pulse of width τ  

into N  smaller subpulses each of width 'τ . Then the phase of each subpulse 

is chosen from M  discrete phases, where M  is greater than 2. The code 

sequence nc  is obtained as: 

 

nθj

n ec =      (2.19) 

 

where nθ  takes values from M discrete phases.  

 

The polyphase codes can be divided into three major groups according to 

their derivation technique [12]: 

 

Step-frequency-derived (Frank and P1 codes) 

Butler-matrix-derived (P2 code) 

Linear-frequency-derived (P3 and P4 codes) 

 

 

2.3.3.2.1. Frank Codes 
 

The Frank polyphase code has been described by a matrix [13]: 
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0 0 0 . . . 0 

0 1 2 . . . (N’-1) 

0 2 4 . . . 2(N’-1) 

.      . 

.      . 

.      . 

0 (N’-1) 2(N’-1) . . . (N’-1)2 

 

 

where the numbers represent the multiplying coefficients of a phase angle 

equal to 'N/pπ2  where p  and 'N  are integers and p  is relatively prime to 

'N . For this study it will be assumed that 1p = . The actual coded sequence 

is formed by placing the rows (or columns) side by side. This will yield a 

sequence containing 2)'N(N =  elements. The Frank code sequences for 

5 and 4 ,3 ,2'N =  are given in Table 2.2. 

 

 

 

Table 2.2: Frank Codes 

N'  N  Code Sequence 

2 4 (a)0,0/0,1   (b)0,0/1,0 

3 9 0,0,0/0,1,2/0,2,1 

4 16 0,0,0,0/0,1,2,3/0,2,0,2/0,3,2,1 

5 25 0,0,0,0,0/0,1,2,3,4/0,2,4,1,3/0,3,1,4,2/0,4,3,2,1 

 

 

 

The sequences for 2N' =  are also seen to be the Barker binary sequences. 

The elements of the sequences are presented 'Nmod  and that each of the 

N'  groups starts with a zero element. The first group in the sequences 

corresponds to no phase shift; in the next group the coefficients progress in 
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steps of one; in the next group the coefficients progress in steps of two and 

so on. Because the phase progresses to the right in an orderly quadratic 

manner, the Frank polyphase coded waveforms formed from such 

sequences have also been described as quantized phase linear FM [9]. The 

total time duration of these waveforms is 'τ N  and they have an effective 

bandwidth of 'τ/1 . The total time-bandwidth product is therefore N . Also, for 

large N'  the peak-to-sidelobe ratio of the Frank codes asymptotically 

approaches 'Nπ  [9]. 

 

The Frank code phases may be stated mathematically as follows [12]. The 

phase of the ith code element in the jth phase group is: 

 

)1-j)(1-i(
'N

π2
θ j,i =    (2.20) 

 

where the index i  ranges from 1  to N'  for each of the values of j  ranging 

from 1  toN' . 

 

The autocorrelation function of a Frank code with length 100 is given in 

Figure 2.5. 
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Figure 2.5: Autocorrelation of Frank code of length 100 

 

 

 

Comparing the Frank polyphase code to binary phase codes, the Frank code 

has a PSL which is approximately 10 dB better than the best pseudorandom 

codes [2]. In the presence of Doppler shift, the autocorrelation function of 

Frank codes degrades at much slower rate that for binary codes, however 

the peak shifts in position rapidly and a range error occurs due to this shift. 

 

 

2.3.3.2.2. P1 and P2 Codes 
 

P1 and P2 codes are similar to Frank polyphase code in many respects. 

These similarities include low sidelobes, good Doppler tolerance and ease of 

implementation. The P1 code has an autocorrelation function magnitude 

which is identical to the Frank code for zero Doppler shift. While the peak 

sidelobes of the P2 code are the same as the Frank code for zero Doppler 

case, the mean square sidelobes of the P2 code are slightly less [14]. 

 

The significant advantage of the P1 and P2 codes over the Frank code is that 

they are more tolerant of receiver bandlimiting prior to pulse compression. 
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This bandlimiting is required to avoid out-of-band noise fold over caused by 

sampling in conversion to digital format. For the case of Frank code, the 

limited receiver bandwidth results in an unfavorable mismatch which causes 

degradation in the PSL of the compressed pulse. A similar degradation 

occurs for binary coded waveforms. By increasing the receiver bandwidth, 

sampling rate, and matching to this oversampled signal, the degradation can 

be reduced. However this requires faster circuitry and additional complexity. 

The reason for the degradation of the Frank coded waveforms is that the 

smoothing or averaging effect caused by bandlimiting has the least effect on 

the ends of the Frank code, where the phase changes between adjacent 

code elements are the smallest, and has the most effect in the middle of the 

code where the phase changes from code element to code element are the 

largest. That is, thinking of the phase groups as corresponding to the 

frequencies, bandlimiting has the effect of attenuating the center frequencies 

of the Frank coded waveform the most, which amounts to an inverse of the 

normal amplitude weighting employed to reduce sidelobes [14]. These 

considerations catalyzed the search for phase coded waveforms which have 

the largest phase increments at the ends of the waveform which represent 

the highest and lowest frequencies in the radar passband. 

 

The P1 code can be thought of a rearranged Frank code with the zero 

frequency group in the middle. P1 code consists of 2)'N(N =  elements and 

the phase of the ith code element in the jth phase group is: 

 

[ ] [ ])1-i('N)1-j( 1)--(2j'N
'N

π
-θ j,i +=   (2.21) 

 

where i  and j  are integers ranging from 1  toN' . 

 

The P2 code, which also has desired feature as the P1 code, is valid for N'  

even, and each group of the code is symmetric about 0  phase. For N'  even, 

the P1 code has the same phase increments within each phase group as the 
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P2 code, except that the starting phases are different [14]. The ith code 

element in the jth group of the P2 code is given by: 

 

)2j-1'N)(2i-1'N(
'N2

π
θ j,i ++=    (2.22) 

 

where i  and j  are integers ranging from 1  to N'  as before. The requirement 

for N'  to be even in this code stems from the desire of low autocorrelation 

sidelobes. An odd value of N'  results in high autocorrelation sidelobes [14]. 

 

The ambiguity diagram of the P1 code for N'  odd is identical to that of Frank 

code. For N'  even, the ambiguity diagrams of the P1 and P2 codes are 

similar to each other and to that of Frank code. 

 

The autocorrelation function of a P1 code with length 121 is given in Figure 

2.6. 

 

 

 

 

Figure 2.6: Autocorrelation of P1 code of length 121 
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The autocorrelation function of a P2 code with length 100 is given in Figure 

2.7. 

 

 

 

 

Figure 2.7: Autocorrelation of P2 code of length 100 

 

 

 

2.3.3.2.3. P3 and P4 Codes 
 

P3 and P4 codes are conceptually derived from a linear frequency 

modulation waveform (LFMW) and are more Doppler tolerant than other 

phase codes derived from a step approximation to a LFMW such as P1 or P2 

codes. The P3 code is not precompression bandwidth limitation tolerant but 

is much more Doppler tolerant than the Frank or P1 and P2 codes. The P4 

code is a rearranged P3 code with the same Doppler tolerance and with 

better precompression bandwidth limitation tolerant [15]. 

 

The P3 code is generated conceptually by converting a linear frequency 

modulation waveform to baseband using a local oscillator on one end of the 
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sweep and sampling the waveform at the Nyquist rate. The P3 code is given 

by [15]: 

 

 )1-i(
N

π
θ 2

i =     (2.23) 

 

where i  is an integer ranging from 1  to N . 

 

The P4 code is conceptually derived from the same waveform as the P3 

code. However, in this case, the local oscillator frequency is changed to 

overcome precompression bandwidth problem. The phase values of the P4 

code is: 

 

 )1-π(i-)1(i-
N

π
=θ 2

i     (2.24) 

 

where i  is an integer ranging from 1  to N . 

 

The largest phase increments from code element to code element are on the 

two ends of the P4 code but are in the middle of the P3 code. Thus the P4 

code is more precompression bandwidth tolerant than the P3 code. 

 

The phase values of P3 and P4 codes of lengths 100 are given in Figure 2.8. 
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Figure 2.8: Phases of P3 and P4 codes of length 100 

 

 

The autocorrelation function of a P4 code with length 100 is given in Figure 

2.9. 

 

 

 

Figure 2.9: Autocorrelation of P4 code of length 100 
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CHAPTER 3 

 

 

PARALLEL DOPPLER FILTERS FOR RADAR RECEIVER 
 

 

3.1. The Need for Parallel Filters 

 

Radars transmit electromagnetic waves into the space and receive echoes 

from targets within their volume of coverage. When the transmitted signal is 

reflected from a moving target such as a plane, the radial velocity of the 

target causes a Doppler shift in the echo signal. The Doppler shift in the echo 

signal leads to a mismatch between the received signal and the matched 

filter used in the receiver filter. This gives rise to an SNR loss in the radar 

system. Depending on the target radial velocity and the radar parameters this 

mismatch loss can be very significant. 

 

In (2.14) the Doppler shift in the echo signal due to target radial velocity was 

given. In discrete-time system model this shift can be expressed as [16]: 

 

S0

R

D Tf
c

V2
π2w =     (3.1) 

 

where c  is the velocity of the electromagnetic wave propagation, RV  is the 

radial velocity of the target, 0f  is the carrier frequency of the radar and ST  is 

the sampling period. 
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Then, the output of the matched filter used in the receiver is: 

 

∑
1-N

0k

mk
*

kvu)m(Φ
=

+=      (3.2) 

 

where nu  and nv  are the transmitted and received signals respectively. 

Because of the Doppler shift, the received echo can be written as 

njw

nn
Deuv = . For a discrete coded sequence of nc  the output of the receiver 

filter can be rewritten as: 

 

∑
1-N

0k

)mk(jw-
mk

*

k
De cc)m(Φ

=

+
+=    (3.3) 

 

where the integer index m  steps over the domain )1-N(  m  )1-N(- ≤≤  and 

0ck =  for 0k <  and )1-N(k > . If the output signal is sampled at the ideal 

position, i.e. at 0m = , then with a normalization of N  the output of the 

receiver filter is: 

 

∑
1-N

0k

kjw- De 
N

1
)0(Φ

=

=      (3.4) 

 

)0(Φ  is the attenuation in the output of the receiver filter due to target radial 

velocity and the magnitude of this function can be written as: 

 

( )
)

2

w
sin(

)
2

Nw
sin(

N

1
)w(A0Φ

D

D

D ==     (3.5) 

 

The attenuation function )w(A D  for the following radar parameters is given 

in Figure 3.1: 
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s/m10x3c 8=  

GHz5.9f0 =  

m15Rδ =  

100N =  

.sec10
c

Rδ2
TT 7-

cS ===  

 

For a target velocity of s/m 750VR =  an attenuation of 3.5dB is obtained due 

to filter mismatch. 

 

 

 

 

Figure 3.1: Attenuation function due to filter mismatch 

 

 

 

The minimum target radial velocity for which the attenuation function is zero 

can be found as: 

 

NTf2

c
V

C0
0)w(AR

D

=
=

     (3.6) 
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For the above parameters the minimum radial velocity making attenuation 

function zero is obtained at s/m 1579V
0)w(AR

D

=
=

. The attenuation gets 

worse as the parameters in the denominator of (3.6) increases. An increase 

in radar center frequency 0f , code sequence length N  or a decrease in 

radar’s range resolution Rδ  increases the attenuation function. 

 

To overcome the mismatch loss given above, a parallel filter structure can be 

used as in Figure 3.2. The total number of filters, i.e. K, depends on the 

parameters given in (3.6) and the maximum radial target velocity. 

 

 

 

 

Figure 3.2: Parallel filter structure for the radar receiver 

 

 

 

3.2. Proposed Parallel Filter Methods 

 

The mismatch loss due to target Doppler shift in a radar receiver is presented 

in the previous subsection. This loss can be reduced by using parallel filters 

in the radar receiver each of which is matched to different target velocities. 
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The minimum number of filters needed depends on the maximum radial 

velocity of the target, radar center frequency, code sequence length and the 

range resolution of the radar.  

 

For a desired maximum mismatch loss the parallel filter system can be 

designed in two ways. The total number of filters used determines this 

difference and can be chosen to be odd or even. In the following subsections 

these two filter structures are described. In this chapter, the term “odd case” 

is used where it is desired to mean that the total number of filters used is 

odd. If the total number of filters used is even this time the term “even case” 

is used.  

 

 

3.2.1. Odd Number of Filters 

 

For the odd case, the structure of the radar receiver is given in Figure 3.3. 

 

 

 

Figure 3.3: Parallel filter structure with odd number of filters 
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In the proposed system a total of K = 2M+1 parallel filters is used. MF0 is the 

matched filter for zero Doppler shift, MF1 is the matched filter for a Doppler 

shift of w1 and MFM is the matched filter for a Doppler shift of wM. Since the 

direction of the target is not known a priori both the approaching and 

departing target velocities should be taken into account. Because of this, in 

the structure given above the matched filters are symmetric in Doppler 

frequency, i.e. there are filters for both wk and w-k for k = 1, 2,.., M.  

 

The distribution of the filters in frequency axis versus the attenuation of each 

filter is shown in Figure 3.4. The filters are uniformly distributed over the 

frequency axis because there is no apriori information about the Doppler 

frequency of the target. 

 

 

 

 

Figure 3.4: Parallel filter structure for the radar receiver for odd case 

 

 

 

Because of the uniform distribution the intersection points of the matched 

filters over the Doppler axis is obtained as: 

 

maxint V
1M2

1i2
V

+

+
=     (3.7) 
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where i = -M, .., -1, 0, 1, .., (M-1).  

 

The maximum loss in the above system is obtained for the intersection points 

found above: 

 

)
2

w
sin(

)
2

Nw
sin(

N

1
loss  .max

int

int

=    (3.8) 

 

where intw  is the Doppler of the intersection points and can be found as: 

 

S0

max1M2
1

int Tf
c

)V(2
π2w

+
= .    (3.9) 

 

The procedure of obtaining the minimum required number of filters is as 

follows. The maximum loss of the filter structure is calculated starting with M 

= 0. If the calculated loss is smaller than the required loss than one filter is 

sufficient and a matched filter is used in the traditional way. Otherwise, M is 

increased until the loss of the parallel filter structure meets the requirements 

of the radar system. 

 

The center Doppler frequencies of the filters are also obtained and can be 

expressed as: 

 

maxi V
1M2

i2
V

+
=     (3.10) 

 

where i = -M, .., -1, 0, 1, .., M. 

 

For the radar parameters below and a maximum desired mismatch loss of 

0.5 dB the parallel filter structure is obtained as in Figure 3.5. 
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s/m 750Vmax =  

s/m10x3c 8=  

GHz5.9f0 =  

m15Rδ =  

100N =  

.sec10
c

Rδ2
TT 7-

CS ===  

 

 

 

 

Figure 3.5: Attenuation in the output of parallel filter structure  

 

 

 

As can be seen from Figure 3.5 the maximum loss is 0.36 dB and three 

parallel filters are required to obtain this worst case loss. The center Doppler 

frequencies of the filters are obtained as -500 m/s, 0 m/s and 500 m/s. 

 

If the radar parameters are changed in a way of increasing the attenuation, 

i.e. for the radar parameters below changed while the others remain the 
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same and a desired maximum loss of 0.75 dB, the filter structure is obtained 

as in Figure 3.6. 

 

GHz5.15f0 =  

169N =  

 

 

 

 

Figure 3.6: Attenuation in the output of parallel filter structure  

 

 

 

For this case the maximum loss is 0.51 dB and seven parallel filters are 

required to obtain this worst case loss. The center Doppler frequencies of the 

filters is obtained as -642 m/s, -428 m/s, -214 m/s, 0 m/s, 214 m/s, 428 m/s 

and 642 m/s. 
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3.2.2. Even Number of Filters 

 

For the even case the structure of the radar receiver is given in Figure 3.7. 

 

 

 

 

Figure 3.7: Parallel filter structure with even number of filters 

 

 

 

In this case a total of K = 2M parallel filters is used. MF1 is the matched filter 

for a Doppler shift of w1 and MFM is the matched filter for a Doppler shift of 

wM as before. Again, since the direction of the target is not known apriori both 

the approaching and departing target velocities should be taken into account.  

 

The distribution of the filters in Doppler axis versus the attenuation of each 

filter is given in Figure 3.8. The filters are uniformly distributed over the 

Doppler axis as in the odd case. 
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Figure 3.8: Parallel filter structure for the radar receiver for even case 

 

 

 

Because of the uniform distribution the intersection points of the matched 

filters over the Doppler axis is obtained as: 

 

maxint V
M2

i2
V =     (3.11) 

 

where i = -(M-1), .., -1, 0, 1, .., (M-1).  

 

The maximum loss in the above system is obtained for the intersection points 

found above. It can again be written as: 

 

)
2

w
sin(

)
2

Nw
sin(

N

1
loss  .max

int

int

=    (3.12) 

 

where intw  is the Doppler of the intersection points and can be written as: 
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S0

maxM2
1

int Tf
c

)V(2
π2w =     (3.13) 

 

The procedure of obtaining the minimum required number of filters is the 

same as in the odd number of filters case. The maximum loss of the filter 

structure is calculated starting with M = 1. If the calculated loss is smaller 

than the required loss than a two filter structure is sufficient and two matched 

filters located on the middle of the positive and negative Doppler axis are 

used. Else M is increased until the loss of the parallel filter structure meets 

the requirements of the radar system. 

 

The center Doppler frequencies of the filters are also obtained and can be 

given as: 

 

maxi V
M2

1-i2
V =     (3.14) 

 

where i = -(M-1), .., -1, 0, 1, .., M.  

 

For the radar parameters below and a maximum desired mismatch loss of 

0.5 dB the parallel filter structure is obtained as in Figure 3.9. 
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Figure 3.9: Attenuation in the output of parallel filter structure 

 

 

 

As can be seen from Figure 3.9 the maximum loss is 0.2 dB and four parallel 

filters are required to obtain this worst case loss. The center Doppler’s of the 

filters is obtained as -562.5 m/s, -187.5 m/s, 187.5 m/s and 562.5 m/s. 

 

If the radar parameters is changed in a way of increasing the attenuation, i.e. 

for the below radar parameters changed while the others remain the same 

and a desired maximum loss of 0.75 dB the filter structure is obtained as in 

Figure 3.10. 

 

GHz5.15f0 =  

169N =  
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Figure 3.10: Attenuation in the output of parallel filter structure  

 

 

 

For this case the maximum loss is 0.69 dB and six parallel filters are required 

to obtain this worst case loss. The center Doppler frequencies of the filters is 

obtained as -625 m/s, -375 m/s, -125 m/s, 125 m/s, 375 m/s and 625 m/s.  

 

 

3.2.3. MATLAB Functions for Parallel Filter Method 

 

Two Matlab functions have been written as a design aid for the parallel filter 

method, doppler_filter1.m and doppler_filter2.m. The first program calculates 

the maximum loss due to Doppler mismatch with the total filter number for 

given radar parameters and desired mismatch loss with a choice of odd/even 

case. The second one calculates the maximum loss for the minimum number 

of filters that satisfies the desired loss. Both programs also determine the 

center frequencies of the filters. The MATLAB codes of the programs are 

included in a CD attached. 
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CHAPTER 4 

 

 

WEIGHTING TECHNIQUES FOR SIDELOBE SUPPRESSION 
 

 

4.1. Introduction 

 

The successful application of pulse-compression matched filter techniques 

described in Chapter 2 depends quite critically on producing at the output of 

the matched filter a compressed-pulse waveform having a low level of range 

sidelobes. Low level of range sidelobes are desired because in a multiple-

target radar environment, the range sidelobes of one large target may appear 

as a smaller target at another range, or the integrated sidelobes from targets 

or clutter may mask all the information of another target.  

 

Different solutions for the reduction of range sidelobes of ACF exist. In this 

chapter, the amplitude weighting in the receive filter is discussed. In this 

method, the receiver filter (i.e. matched filter) coefficients are windowed with 

a weighting function. Although weighting windows used both on transmit and 

receive provides better results, in this thesis only weighting on receive is 

discussed because weighting on transmit leads to a power loss since the 

available transmit power can not be fully utilized. 

 

Along with the windowing method, the two sample sliding window averaging 

[18, 19] (or difference for some codes) is also considered and the results of 
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this method are also obtained. Most of the window functions used for 

computations are chosen from the window library of MATLAB. Some of them 

are shown in Figure 4.1. The effect of windowing methods on PSL, ISL, SNR 

loss and main lobe broadening (MLB) are obtained for P4, P3, P2, P1 and 

Frank codes for different code lengths. Results of P4 and Frank codes are 

provided in detail. Also, for the window functions that have variable 

parameters (such as sidelobe attenuation for Chebyshev window) the 

variation of PSL, ISL, SNR loss and MLB are obtained for the variation in that 

parameter. 



 
4
5
 

  

 

Figure 4.1: Some of the window functions used in computations 
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4.2. Basic Definitions 

 

Figure 4.2 shows a simple model of the radar system. The system is 

assumed to be working in a clutter and noise free environment and a point 

target is assumed. For this system; nu , nh , ny are the transmitted signal, 

receiver filter and output signal, respectively. 

 

 

 

 

Figure 4.2: Radar receiver  

 

 

 

The receiver filter, nh  , with weighting can be expressed as: 

 

nn-N
*

n w xu=h     (4.1) 

 

where nu  is the transmitted waveform, nw  is the weighting function, n  is an 

integer ranging from 0  to )1-N(  and N  is the code length. 

 

If instead of a weighting window a two sample sliding window averager 

(TSSWA) or two sample sliding window differencer (TSSWD) is used then 

the receiver filter can be given as: 

 

∑
1

0k

)k-n(-N
*

kn ugh
=

=     (4.2) 
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where ng is the TSSWA ([1 1]) or TSSWD ([1 -1]). 

 

The output of the receiver filter is: 

 

∑
1-N

0k

k-nkn uhy
=

=     (4.3) 

 

where nh  is the receiver filter and nu  is the transmitted code. A weighting 

function at the receiver filter gives an output of length )1-N2(  while a 

TSSWA/TSSWD gives an output of length N2 .This is because the 

TSSWA/TSSWD increases the length of nh  to )1N( + . For the general case 

if nh  is of length M  then we get the output ny  of length )1-MN( + . 

 

If the output signal ny  is sampled at the ideal position, assume for the 

general case Ln = , then the output SNR of the receiver is: 

 

∑
1-M

0k

2

k

2

2

L

o

hσ

y
SNR

=

=      (4.4) 

 

where σ  is the variance of the additive white Gaussian noise (WGN). 

 

The SNR loss is defined relative to the matched filter output SNR (i.e. 

weighting filter has all the coefficients equal to unity). The output SNR of MF 

can be written as: 

 

2MF,o σ

N
SNR =      (4.5) 

 

Combining (4.4) and (4.5) the SNR loss for the general case is: 
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∑
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 SNR

=

=      (4.6) 

 

where SNR lossdB ≤ 0 dB. 

 

For the windowing method the SNR loss can be simplified because both L  

and M  are equal to N . The simplification can be written as: 
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The definitions of PSL and ISL are as given in (2.16) and (2.17).  

 

2

2

)0(Φ

)i(Φmax
log10PSL =     (4.8) 

 

∑
i

2

)0(Φ

)i(Φ
log10ISL =     (4.9) 

 

In [19] main lobe broadening (MLB) is defined as ±2.5 times inverse 

bandwidth (ibw) from the mainlobe peak of receiver filter output, where ibw is 

equal to chip duration for binary and binary-based codes. The main lobe 

region is also chosen to contain all points above -6 dB relative to mainlobe 

peak. 
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4.3. P4 Code Weighting on Receive 

 

A window function reduces the PSL and ISL values at the expense of an 

SNR loss and main lobe broadening due to filter mismatch. Generally, a 

window is preferred that reduces the sidelobes to a desired level while 

bringing a small SNR loss and a low MLB value. 

 

Figure 4.3 shows the ACF function of P4 code of length 128. It is given for 

comparison with the other figures obtained with windowing the P4 code. 

 

 

 

 

Figure 4.3: Autocorrelation of P4 code of length 128 
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Figure 4.4: Receiver output for Bartlett and Modified Bartlett-Hanning 

windows 

 

 

 

Figure 4.4 shows the receiver filter output for Bartlett and modified Bartlett-

Hanning windows. As seen in Figure 4.1 the Bartlett window is similar to a 

triangular window. The Bartlett window of length 128 causes an SNR loss of 

1.28 dB, and a MLB of 1.34. Both of these values are acceptable values but 

the PSL of Bartlett window is worse than the rectangular window, i.e. no 

window case. Bartlett window has a PSL value of -26.67 dB whereas 

rectangular window has a PSL of -27.41 dB. The ISL of Bartlett window is -

20.01 dB and if compared to -12.67 dB which is the ISL of rectangular 

window, it is again an acceptable value. Modified Bartlett-Hanning window 

has a mainlobe at the origin and asymptotically decaying sidelobes on both 

sides like Bartlett window. It is a linear combination of weighted Bartlett and 

Hann windows with near sidelobes lower than both Bartlett and Hann and 

with far sidelobes lower than both Bartlett and Hamming windows [20]. The 

modified Bartlett-Hanning window of length 128 has an SNR loss of 1.67 dB, 

MLB of 1.47, PSL of -39.65 dB and an ISL of -22.60 dB. This window has 

worse SNR loss and MLB values and better ISL and PSL with respect to 
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Bartlett window. So, if one has to choose one of them, Bartlett-Hanning 

window is a better choice. 

 

 

 

 

Figure 4.5: Receiver output for Blackman, Chebyshev and Taylor windows 

 

 

 

Figure 4.5 shows the receiver filter output for Blackman, Chebyshev and 

Taylor windows. Blackman window is in the form of: 

 

)w3cos(a)w2cos(a)wcos(aa 3210 +++   (4.10) 

 

with 42.0a0 = , 5.0a1 = , 08.0a2 =  and 0a3 =  where 
2

π
w

2

π
- << .  

 

Blackman window has slightly wider central lobes and less sideband leakage 

than equivalent length Hamming and Hann windows [20]. It has an SNR loss 

of 2.40 dB, MLB of 1.74, PSL of -40.56 dB and ISL of -23.31 dB. Chebyshev 

window has a variable parameter, R, which defines the Fourier transform 
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sidelobe magnitude with respect to the mainlobe magnitude. For this 

computation it is taken as 50 dB. Chebyshev window with 50 dB relative 

sidelobe level has an SNR loss of 1.47 dB, MLB of 1.40, PSL of -41.01 dB 

and ISL of -22.27 dB. Taylor window with nbar=6 and 40 dB sidelobe level is 

used together with the window functions above. Taylor window is not present 

in the window library of MATLAB and the coefficients of Taylor window is 

obtained from [21]. It has an SNR loss of 1.17 dB, MLB of 1.31, PSL of -

41.14 dB and ISL of -21.54 dB. If these three window functions are compared 

among each other Taylor window comes out to be the best one. The second 

window would be Chebyshev window with 50 dB sidelobe level.  

 

 

 

 

Figure 4.6: Receiver output for Gaussian and Hamming windows 

 

 

 

Figure 4.6 shows the receiver filter output for Gaussian and Hamming 

windows. Gaussian window has a parameter α which is the inverse of the 

standard deviation. The width of the window is inversely related to the value 

of α; larger values of α produces a narrower window [20]. In this computation 



 53 

α is taken as 2.5. Gaussian window gives an SNR loss of 1.60 dB, MLB of 

1.45, PSL of -41.92 and ISL of -22.68 dB. Hamming window has the form 

given in (4.10) with 54.0a0 = , 0a1 = , 46.0a2 =  and 0a3 = . It has an SNR 

loss of 1.37 dB, MLB of 1.37 and has PSL and ISL values of -42.21 dB and -

22.08 dB respectively. The results for Hamming window are better than 

results of Gaussian window. If all the window functions mentioned until here 

are compared to each other, the Hamming and the Taylor windows come out 

to be the ones with lowest sidelobe levels; least SNR loss and MLB. 

 

 

 

 

Figure 4.7: Receiver output for Kaiser and Tukey windows 

 

 

 

Figure 4.7 shows the receiver filter output for Kaiser and Tukey windows. 

Kaiser window has a parameter β that affects the sidelobe attenuation of the 

Fourier transform of the window. For the computation it is taken as π. Kaiser 

window of length 128 has an SNR loss of 0.63 dB, MLB of 1.16, PSL and ISL 

of -36.73 dB and -20.48 dB respectively. Its SNR loss and MLB values are 

the best among the window functions given. However, its sidelobe levels are 
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not as good as Hamming or Taylor windows. Tukey window is a cosine-

tapered window. It has a parameter , r, which is the ratio of taper to constant 

sections and takes values between 0 and 1 [20]. r is taken as 0.5 for the 

computation. Tukey window has an SNR loss of 0.91 dB, MLB of 1.23, PSL 

of -41.03 dB and ISL of -21.17 dB. Tukey window is between Kaiser and 

Hamming / Taylor windows because its SNR loss, MLB are worse than 

Kaiser but better than Hamming / Taylor. Also it has sidelobe levels close to 

Hamming window which is better than Kaiser window sidelobe levels. 

 

 

 

 

Figure 4.8: Receiver output for Parzen, Flat-top and Blackman-Harris 

windows 

 

 

 

Figure 4.8 shows the receiver filter output for Parzen, Flat-top and Minimum 

4-term Blackman-Harris windows. Parzen windows are piecewise cubic 

approximations of Gaussian windows [20]. Parzen window of length 128 has 

an SNR loss of 2.83 dB, MLB of 1.92, PSL and ISL of -39.64 dB and -23.48 

dB respectively. Minimum 4-term Blackman-Harris window is minimum in the 

sense that its maximum sidelobes are minimized [20]. It is in the form of (4.9) 
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with 35875.0a0 = , 48829.0a1 = , 14128.0a2 =  and 01168.0a3 = . The 

performance of Minimum 4-term Blackman-Harris window is close to Parzen 

window. It has an SNR loss of 3.05 dB, MLB of 2.02, PSL and ISL values of -

39.17 dB and -23.57 dB respectively. The Flat Top window has very low 

passband ripple (< 0.01 dB) and is used primarily for calibration purposes. Its 

bandwidth is approximately 2.5 times wider than a Hann window [20]. In this 

triple group flat top window has the worst performance. Its SNR loss is 5.80 

dB, it has a MLB of 3.80, PSL and ISL of -34.77 dB and -23.84 dB. This 

group has the worst values among the window functions mentioned till here. 

A careful designer does never use these window functions. 

 

 

 

 

Figure 4.9: Receiver output for cos2, cos3, cos4, cos5 and cos6 windows 

 

 

 

In Figure 4.9 cosn windows for n = 2, 3, 4, 5 and 6 are given. cos2 window is 

also called Hann or Hanning window. Best performance in the group is 

obtained using Hanning window. It has SNR loss of 1.73 dB, MLB of 1.49, 

PSL and ISL of -42.21 dB and -22.81 dB. Its performance is the best in cosn 

group but not as good as Taylor or Hamming windows. 
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Figure 4.10: Pulse compressor followed by a TSSWA in radar receiver 

 

 

 

TSSWA structure in the radar receiver is given in Figure 4.10. Each chip of 

the compressed pulse is delayed by one chip duration and added to the 

previous chip. This system acts as a sliding window two-sample adder. 

 

 

 

 

Figure 4.11: Receiver output for TSSWA 

 

 

In Figure 4.11, the receiver output of P4 code using a two sample sliding 

window averager is given. TSSWA causes an SNR loss of 3.01 dB. This is 
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because the TSSWA doubles the noise power without changing the signal 

power. In [17] it is given that a detector would have two chances to detect the 

signal in two adjacent time cells containing different noise values. And the 

consequence of this is given as an SNR loss on the order of 1 dB. The MLB 

of TSSWA is 2.03 which decrease the resolution by a factor of two because 

of addition. It gives a PSL of -36.12 dB and an ISL value of -18.77 dB. 

 

The MLB, SNR loss, PSL and ISL values of the window functions given 

above are listed in Table 4.1. 
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Table 4.1: Performance of Window Functions for P4 Code of Length 128 

 

window SNR loss [dB] MLB [cells] PSL [dB] ISL [dB] 

Rectangular 0 1 -27.41 -12.67 

Bartlett 1.28 1.34 -26.67 -20.01 

Bartlett - Hann 1.67 1.47 -39.65 -22.60 

Blackman 2.40 1.74 -40.56 -23.31 

Chebyshev (50 dB sidelobe) 1.47 1.40 -41.01 -22.27 

Gaussian (σ = 0.4) 1.60 1.45 -41.92 -22.68 

Hamming (n = 2, k = 0.08) 1.37 1.37 -42.21 -22.08 

Taylor (nbar = 6, 40dB) 1.17 1.31 -41.14 -21.54 

Kaiser (β = π) 0.63 1.16 -36.73 -20.48 

Tukey (r = 0.5) 0.91 1.23 -41.03 -21.17 

Parzen 2.83 1.92 -39.64 -23.48 

Blackman - Harris 3.05 2.02 -39.19 -23.57 

Flat top 5.80 3.80 -34.77 -23.84 

Hanning 1.73 1.49 -42.21 -22.81 

cos3 2.43 1.75 -40.65 -23.31 

cos4 2.92 1.96 -39.56 -23.51 

cos5 3.33 2.15 -38.71 -23.63 

cos6 3.67 2.33 -37.99 -23.71 

TSSWA 3.01 2.03 -36.18 -18.77 
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In the next six figures the double groups obtained from SNR loss, MLB, PSL 

and ISL of the window functions used above are given. Some extra window 

functions are also added and some window functions exist twice or more with 

different parameters. Figure 4.12 shows SNR loss versus PSL. The window 

functions located in the upper-left corner of Figure 4.12 are better from the 

point of SNR loss and PSL. Figure 4.13 shows SNR loss versus ISL. 

Similarly the window functions at upper-left side are better. Hamming, Tukey 

with r = 0.5 and 0.6, Taylor, Kaiser with β = 5 windows are at the upper left 

corner in both figures. So they are good choice in the sense of SNR loss, 

PSL and ISL. In Figure 4.14, SNR loss versus MLB is given. Again the upper-

left corner located window functions are better. However, one has to consider 

Figure 4.14 on one hand and Figure 4.17 (PSL versus ISL) on the other 

hand. Each windowing function has to be controlled in both figures not to 

conclude in a wrong decision. MLB versus PSL is given in Figure 4.15. The 

better window functions are at the lower left corner of the figure. As in the 

SNR loss versus PSL and SNR loss versus ISL cases the Hamming, Tukey 

with r = 0.5 and 0.6, Taylor, Kaiser with β = 5 windows are the best choices. 

In Figure 4.16 MLB versus ISL is shown. Again the same windowing 

functions as before which reside in the lower left corner give better results. 

PSL versus ISL is given in Figure 4.17. Window functions located at the 

lower-left corner are better. Tukey window with r = 0.6, Hamming, Hanning 

and Kaiser window with β = 5 are convenient in the sense of PSL and ISL. 

For the selection of a window function such a method can be also applied: 

The designer defines a cost function with the parameters SNR loss, MLB, ISL 

and PSL. Then, the window that minimizes the cost function for that 

application is the optimum one. On the overall; Hamming, Tukey with r = 0.5 

and 0.6, Taylor nbar = 6, Kaiser with β = 5 windows give adequate 

performance. If the radar designer has a primary concern, for example PSL, 

then he should use Tukey window with r = 0.6. This window will provide 

adequate SNR loss, ISL and MLB while maintaining a low level of PSL. 

 

In the following subsections the window functions that have a variable 

parameter are studied. 
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Figure 4.12: SNR loss versus PSL 
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Figure 4.13: SNR loss versus ISL 
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Figure 4.14: SNR loss versus MLB 
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Figure 4.15: MLB versus PSL 
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Figure 4.16: MLB versus ISL 
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Figure 4.17: PSL versus ISL 
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The computations in the next subsections are obtained with a P4 code of 

length 128. 

 

 

4.3.1. cosn on pedestal k window 

 

cosn on pedestal k window is in the form of: 

 

n)wcos()k-1(k +     (4.11) 

 

where k is the pedestal height between 0 and 1 and n is the order of cosine 

with 
2

π
w

2

π
- << . 

 

Figures 4.18-4.21 plot the data associated with the cosn on pedestal k 

weighting functions. Figure 4.18 shows the effect of pedestal height on SNR 

loss for different integer values of n. As seen in Figure 4.18 SNR loss 

increases as the order of cosine increases.  

 

 
 

 

Figure 4.18: SNR loss versus pedestal height for n = 1, 2, 3, 4 and 5 
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In Figure 4.19 the pulse widening versus pedestal height is given. Like SNR 

loss, as n increases MLB gets worse. 

 

 

 

 

Figure 4.19: MLB versus pedestal height for n = 1, 2, 3, 4 and 5 

 

 

 

 

Figure 4.20: PSL versus pedestal height for n = 1, 2, 3, 4, and 5 
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The variation of PSL with respect to pedestal height for different n values is 

given in Figure 4.20.  

 

Variation of PSL does not resemble the previous results. Lowest PSL values 

are obtained for n = 2. For low pedestal heights n = 1 gives the worst PSL 

values and as pedestal height increases its PSL values approach that of n = 

2. The lowest PSL value is obtained with n = 2 and k = 0.08 which is the 

Hamming window indeed. In [9] it is also given that the Hamming function (k 

= 0.08, n = 2) represents the optimum for this family of weighted pulse 

shapes. The sudden jump in cos1 for k = 0.292 is due to the increase of the 

closest sidelobe to the mainlobe. For k between 0 and 0.292 the highest 

sidelobe is at the end of the receiver output. As k increases, the sidelobe 

close to the mainlobe increases especially for cos1 window. This increase 

depends on the shape of the cos1 window. It is much wider in the center 

compared other cosn windows and is always concave whereas the other cosn 

windows are convex in some part and concave in the other parts. 

 

 

 

 

Figure 4.21: ISL versus pedestal height for n = 1, 2, 3, 4, and 5 
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In Figure 4.21 ISL versus pedestal height is depicted. The lowest ISL value at 

k = 0.08 is obtained for n = 5. But as k increases n = 5 gives worst ISL 

values. The behavior of cos1 is similar to PSL case. It is worse for low 

pedestal heights and approach best as pedestal height increases.  

 

On the overall the SNR loss and MLB are lower for pedestal height close to 1 

whereas PSL and ISL take lowest values for pedestal height between 0 and 

0.1. Especially PSL quickly increases as pedestal height passes 0.1. 

Therefore, the best choice for cosn on pedestal k window as stated in [9] is 

the Hamming window with k = 0.08 and n = 2. 

 

 

4.3.2. Chebyshev window 

 

As stated previously, Chebyshev window has a variable parameter, r, which 

defines the Fourier transform sidelobe magnitude with respect to the 

mainlobe magnitude. Preceding results were obtained with r = 50 [dB]. In the 

following plots, the Fourier transform sidelobe magnitude is varied between 

20 dB and 200 dB. 

 

 

 

Figure 4.22: SNR loss versus relative sidelobe level 
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Figure 4.22 shows the SNR loss versus relative sidelobe level. Minimum 

level of SNR loss is obtained for 30 dB relative sidelobe level. For the relative 

sidelobe between 20 and 30 dB SRN loss decreases and after 30 dB it 

increases quickly. 

 

The variation of main lobe broadening versus relative sidelobe level is given 

in Figure 4.23. MLB increases constantly with the decrease in the relative 

sidelobe level of Chebyshev window. 

 

 

 

 

Figure 4.23: MLB versus relative sidelobe level 

 

 

 

In Figure 4.24 PSL versus relative sidelobe level is given for the Chebyshev 

window. PSL takes the lowest value for 60 dB relative sidelobe level. At 60 

dB sidelobe level PSL makes a notch. Before 60 dB PSL decreases and after 

60 dB PSL increases. 
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Figure 4.24: PSL versus relative sidelobe level 

 

 
 

Figure 4.25 shows ISL versus relative sidelobe level. ISL decreases quickly 

as relative sidelobe level increases from 20 dB to 50 dB. Between 50 dB and 

160 dB ISL decreases more slowly. After 160 dB of relative sidelobe level ISL 

starts to increase slowly. 

 

 

 

 

Figure 4.25: ISL versus relative sidelobe level 
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SNR loss and MLB take lower values for lower relative sidelobe levels for the 

Chebyshev window. SNR loss is minimum for relative sidelobe level between 

20 dB and 60 dB. PSL and ISL take acceptable values when the relative 

sidelobe level is between 50 dB and 70 dB. So, the designer has to choose 

the window according to his priorities. For example, if PSL has the highest 

priority then the designer should choose a Chebyshev window with relative 

sidelobe level of 60 dB.  

 

 

4.3.3. Gaussian window 

 

As given previously, Gaussian window has a parameter α which is the 

inverse of the standard deviation. The width of the Gaussian window is 

inversely related to α, i.e. higher α values result in a narrower window.  In the 

previous computation α taken as 2.5. In the following plots α is varied 

between 0.2 and 10. 

 

 

 

 

Figure 4.26: SNR loss versus α 
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Figure 4.26 shows SNR loss versus α. As the Gaussian window gets 

narrower, the SNR loss increases. 

 

 

 

 

Figure 4.27: MLB versus α 

 

 

 

Main lobe broadening versus α is given in Figure 4.27. Similar to SNR loss 

narrower Gaussian windows worsen the result, i.e. increases the MLB. 
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Figure 4.28: PSL versus α 

 

 

In Figure 4.28 PSL versus α is given for the Gaussian window. PSL takes the 

lowest value for α = 2.4 which gives a standard deviation close to 0.42. 

Around α = 2.4 a notch is present in the plot and lowest PSL values are 

obtained. 

 

 

 

Figure 4.29: ISL versus α 
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The variation of ISL with respect to α is given in Figure 4.29. Similar to PSL a 

notch is present for the ISL case but this time around α = 4.  

 

Similar to previously examined window functions, both SNR loss and MLB 

are lower for lower α values for the Gaussian window. For the PSL and ISL 

notches occur at different α values. It is reasonable to select Gaussian 

window with α = 2.4 because it gives the lowest PSL value, moderate ISL 

and acceptable SNR loss and MLB values. If α is chosen as 4 then ISL gets 

its lowest value but this time the SNR loss, PSL and MLB get higher values 

with respect to α = 2.4 case. Therefore, the designer could choose α = 2.4 if 

he wants to use a Gaussian window.  

 

 

 

4.3.4. Kaiser window 

 

Similar to Chebyshev window, Kaiser window has a parameter, β, that affects 

the sidelobe attenuation of the Fourier transform of the window. For the 

previous computation it is taken as π. In the following plots β is varied 

between 0 and 30. 

 

The variation of SNR loss with respect to β is given in Figure 4.30. As β 

increases the SNR loss increases uniformly for Kaiser window. 
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Figure 4.30: SNR loss versus β  

 

 

 

In Figure 4.31 main lobe broadening versus β is given for the Kaiser window. 

Similar to SNR loss case, MLB increases with increasing β values. 

 

 

 

 

Figure 4.31: MLB versus β  
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PSL versus β is given in Figure 4.32. Similar to previous window functions 

investigated a notch is present around β = 4.5. PSL decreases to its lowest 

value quickly when β increases from 0 to 4.5. After 4.5 PSL increases but not 

as quick like β is between 0 and 4.5. 

 

 

 

 

Figure 4.32: PSL versus β  

 

 

 

The variation of ISL versus β is given in Figure 4.33. Similar to PSL case and 

previous cases the ISL versus β has a notch around β = 17. The width of the 

notch is much higher than the PSL case. 
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Figure 4.33: ISL versus β  

 

 

 

The results of Kaiser window are very similar to the results of Gaussian 

window. For lower values of β, SNR loss and MLB take lower values. Again 

the minimum point notches of PSL and ISL are at different β values. 

Selecting the β around 4.5 gives the lowest PSL and SNR loss values and 

acceptable ISL value. 

 

 

4.3.5. Effect of code length 

 

In the previous subsections the results were obtained for P4 code of length 

128. In this subsection the code length is varied with Hamming window 

(which is the optimum in cosn on pedestal k group). The results are obtained 

with the code length changed from 16 to 512. 

 

Figure 4.34 shows the variation of SNR loss with code length. SNR loss has 

a rapid decrease when the code length increases from 16 to 100. As the 

code length is increased above 100 the decrease in SNR loss gets slower.  
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Figure 4.34: SNR loss versus code length 

 

 

 

In Figure 4.35 MLB versus code length is given. MLB decreases as code 

length increases. Similar to SNR loss MLB does not vary much after code 

length of 100. 

 

PSL versus code length is given in Figure 4.36. As code length is increased 

the PSL decreases as expected. However the decrease is much faster for 

lower values of code length especially between 16 and 144. 
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Figure 4.35: MLB versus code length 

 

 

 

 

Figure 4.36: PSL versus code length 

 

 

 

Figure 4.37 depicts ISL versus code length for Hamming windowed P4 code. 

The behavior of ISL is very similar to that of PSL.  
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Figure 4.37: ISL versus code length 

 

 

 

In the next subsection the effects of weighting on Frank code is obtained. 

 

 

4.4. Frank Code Weighting on Receive 

 

Weighting windows used with Frank code gives unacceptable results 

especially in PSL. Most of the window functions increases the value of PSL 

above from the no window case. Because of this only the table below is given 

in this thesis. The MLB, SNR loss, PSL and ISL values of the window 

functions for Frank code is given in Table 4.2.   
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Table 4.2: Performance of Window Functions for Frank Code of Length 121 

 

window SNR loss [dB] MLB [cells] PSL [dB] ISL [dB] 

Rectangular 0 1 -30.74 -14.19 

Bartlett 1.28 1.33 -27.29 -16.58 

Bartlett - Hann 1.67 1.46 -26.71 -16.95 

Blackman 2.41 1.72 -24.58 -15.42 

Chebyshev (50 dB sidelobe) 1.47 1.39 -27.22 -17.46 

Gaussian (σ = 0.4) 1.60 1.44 -26.98 -17.10 

Hamming (n = 2, k = 0.08) 1.37 1.36 -27.76 -17.56 

Taylor (nbar = 6, 40dB) 1.17 1.31 -28.66 -17.96 

Kaiser (β = π) 0.63 1.16 -32.54 -18.57 

Tukey 0.91 1.22 -30.23 -17.36 

Parzen 2.83 1.89 -23.73 -14.48 

Blackman - Harris 3.06 1.99 -23.34 -13.94 

Flat top 5.80 3.67 -18.06 -8.42 

Hanning 1.73 1.47 -26.52 -16.89 

cos3 2.43 1.73 -24.48 -15.41 

cos4 2.92 1.93 -23.51 -14.28 

cos5 3.33 2.12 -22.90 -13.34 

cos6 3.67 2.28 -22.48 -12.54 

TSSWD 3.01 2.03 -35.57 -16.23 
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4.5. Other Codes 

 

Weighting windows are also tested with other polyphase codes. P3 code 

gives the same results with the P4 code. But instead of a TSSWA, a TSSWD 

is used for P3 code [18]. P1 and P2 codes act similar to Frank code of similar 

length. Because of similar outputs obtained the results of P1, P2 and P3 

codes are not given in this study. 

 

 

4.6. Doppler Properties of Weighting Techniques 

 

The Doppler response performance of P4 code with various windowing 

functions is investigated in this subsection. The main performance criteria are 

again SNR loss, main lobe broadening, PSL and ISL. The results are 

obtained with the windowing functions that gave the best performance with 

zero Doppler; i.e. Hamming, Tukey with r = 0.5, Taylor with nbar = 6, Kaiser 

with β = 5 windows and also with TSSWA for comparison. P4 code is of 

length 128 and the target Doppler is varied between 0 m/s and 1500 m/s with 

the given radar parameters below: 
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Figure 4.38: SNR loss versus target Doppler shift 

 

 

 

Figure 4.38 illustrates the variation of SNR loss with Doppler shift under four 

different window functions and sliding window averager. Windowing functions 

react to Doppler shifts almost the same. Starting with their zero Doppler PSL 

values; Hamming, Tukey, Taylor and Kaiser windows give notch at 620 m/s 

and give an SNR loss of 3.05 dB at that Doppler. This Doppler value is half of 

the minimum target radial velocity for which the attenuation function given in 

(3.6) is zero. P4 code with no window also gives a notch for that Doppler but 

its SNR loss increases to 3.88 dB. This loss is due to the mismatch of the 

Doppler shifted echo signal and the matched filter. After 620 m/s Doppler 

shift the SNR loss decreases again and approaches its zero Doppler shift 

value for the windowing functions. At 1240 m/s (twice the Doppler of notch 

and first null of attenuation function given in (3.6)) the SNR loss reaches its 

maximum value and starts decreasing again. This peak is due to the range-

doppler coupling [3] and the receiver gives the output with one range 

resolution error. In the TSSWA case behavior of SNR loss is the opposite of 

window function cases. At 620 m/s SNR loss reaches its peak value of 0.93 

dB and at 1240 m/s approaches its zero Doppler value which is 3.01 dB. 
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Figure 4.39: MLB versus target Doppler shift 

 

 

Main lobe broadening versus target Doppler is given in Figure 4.39. The 

behavior of MLB is very similar to SNR loss. The window functions begin with 

their zero Doppler values and increase until 620 m/s. Then turn back to their 

zero Doppler values at 1240 m/s. TSSWA act in the opposite way as 

previously. 

 

 

 

Figure 4.40: PSL versus target Doppler shift 
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Figure 4.40 depicts the variation in PSL due to target Doppler. Because of 

Doppler the peak sidelobes of the windowed code can act independently, i.e. 

one sidelobe can increase and one other sidelobe can decrease while the 

target Doppler increases. These two sidelobes can increase / decrease with 

different ratios due to target Doppler shift, and this is one of the reasons of 

the sudden jumps in PSL. Sometimes a sidelobe can appear / disappear in 

the mainlobe again causing sudden changes in PSL. Most windowing 

functions and TSSWA give nearly constant PSL over the Doppler range. 

Tukey window does not act like the other window functions. It makes a 

sudden jump at 180 m/s with a PSL change of close to 25 dB. This is due to 

the sidelobe formed from the mainlobe at that Doppler. With that instability 

Tukey window is not a good choice. Taylor window spans a 3.7 dB PSL 

interval over the Doppler range. This is the widest interval in the group apart 

from the Tukey window. Hamming window is the most stable window in the 

sense of PSL. It has a dynamic range of 1.8 dB over the whole Doppler 

range, and is the best choice from the viewpoint of PSL. 

 

 

 

 

Figure 4.41: ISL versus target Doppler shift 
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Variation of ISL versus target Doppler for window functions is given in Figure 

4.41. The change of ISL is similar to PSL. But since ISL is the sum of the 

sidelobe energy there is no sudden jump in ISL. Again, Tukey window has 

the widest dynamic range and Hamming window has the narrowest. 

Hamming window has a nearly constant ISL about -22 dB over the Doppler 

axis. 

 

The corresponding properties of P3 code under different window functions 

weighting are almost the same as P4 code [22]. Because of that the result of 

P3 code is not given here. Frank, P1 and P2 codes have yielded 

unacceptable results for no Doppler case and because of that they are not 

examined here. 
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CHAPTER 5 

 

 

INVERSE FILTER FOR SIDELOBE SUPPRESSION 
 

 

5.1. Introduction 

 

Previous chapter dealt with the reduction of range sidelobes of matched filter 

output based on windowing functions and sliding windows. In this chapter the 

sidelobe suppression problem is approached from a different viewpoint: The 

method discussed in this chapter is inverse filtering.  

 

A large amount of work on this area has been done by geophysicists that is 

directly relevant to this problem [25, 26]. The application of inverse filtering to 

radar range sidelobe reduction is first discussed in [23]. The results of the 

proposed method are illustrated with Barker code of length 13 and the results 

are compared with matched filter results. The suggested method minimizes 

the energy of the difference between the actual and the ideal MF response 

sequences. This is actually an optimization procedure which minimizes the 

ISL. A similar method is also developed in [24] for the minimization of peak 

sidelobe level in the correlation of a biphase code. 

 

The method employed in this chapter minimizes the integrated sidelobe 

energy. In the next subsection it is shown that this minimization procedure 

results in the solution given in [23]. The inverse filter method given in [23] is 
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applied to P4 code with various filter lengths. The variation of SNR loss, 

MLB, PSL and ISL are obtained with respect to inverse filter length. The 

effect of Doppler shifts on inverse and filter performance is also obtained. 

Finally, the results of sidelobe suppression methods are compared. 

 

 

5.2. Inverse Filtering 

 

The output of the receiver filter of radar can be expressed by: 

 

∑
1-M

0k

k-nkn uhy
=

=     (5.1) 

 

where nh  is the receiver filter of length M  and nu  is the received code 

sequence of length N . 

 

When one is concerned basically about sidelobe levels, ideally, the desired 

response of an inverse filter is a sequence of elements except one is all zero. 

This filter is indeed the inverse of the code sequence. The position of the 

nonzero element, L , is immaterial at this point. If the code sequence is (u0, 

u1, u2,.., uN-1) then the desired inverse filter has a Z transform of: 
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Obviously, H(z) can not be realized with a finite impulse response (FIR) filter. 

So a realizable method is the minimization of the energy of the sidelobes of 

ny : 
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The energy of sidelobes, whish is indeed ISL, can also be given as: 

 

∑ ∑
1-MN

0n

2

)L-n

1-M

0k
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+

= =

=     (5.4) 

 

To find the inverse filter which gives the minimum ISL, the derivative of E  is 

taken with respect to mh  for ( )1-M  m 0 ≤≤ . 
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The equation in (5.6) should be solved for ( )1-M  m 0 ≤≤ . 

 

m = 0: 
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m = 1: 
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m = M - 1: 
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After obtaining the equations given above, one can solve these equations to 

get hm. These equations can be put into matrix/vector form: 

 

rhA =      (5.16) 

 

where h  is a column vector whose elements are the elements of the 

weighting sequence that is to be calculated (i.e. hm’s) and r  is a vector 

containing the discrete cross-correlation function of the input sequence (u0, 

u1, u2,.., uN-1) and the desired output sequence. A  is a matrix each row of 

which consists of a shifted version of the autocorrelation of the input 

sequence. Then, the inverse filter coefficient vector h  is: 

 

rAh
1-= .     (5.17) 

 

 

5.3. IF on Receive 

 

For the study of inverse filtering on receive, P4 code is used due to its 

previous success on windowing and Doppler shifts. The ACF function of P4 

code of length 128 was given in Figure 4.3. Figure 5.1 depicts the response 

of IF (Inverse Filter) to the P4 code obtained with the solution of (5.17). 
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Figure 5.1: P4 code of length 128 filtered with IF of length 128  

 

 

 

In the case of IF, the filter length can be chosen arbitrarily; i.e. filter length 

does not have to be equal to the code length. Also, the desired location of the 

output peak does not have to be at the middle of the IF output. But the 

performance of the computations show that the IF length at least has to be 

equal to or greater than the input code sequence length. The optimum 

location of the output peak is found to be the middle point of the output 

sequence which has a length of (N+M-1). If these two requirements are not 

met, the sidelobes increase too much approaching the main peak which 

forms a contradiction with the main purpose of inverse filtering. 

 

P4 code of length 128 with inverse filtering of length 128 applied has an ISL 

value of -15.15 dB which is about 2.48 dB lower than the matched filter 

output. While trying to minimize ISL, the inverse filter also lowers the PSL. 

Inverse filtered P4 has a PSL value of -28.00 dB which is about 0.6 dB lower 

than MF case. One difference about PSL of MF and IF is the location of the 

peak sidelobe of the output. In the MF case the peak sidelobe is close to the 

main peak while in the IF case it is close to the end. One advantage of this 
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difference is that two close targets in space can be distinguished better using 

IF. The drawback of inverse filtering is an SNR loss due to filter mismatch 

and in this case a mismatch loss of 0.08 dB occurs. The pulse widening due 

to inverse filtering is negligible with a value of 1.01.  

 

 

 

 

Figure 5.2: P4 code of length 128 filtered with IF of length 512  

 

 

 

As stated previously, the filter length in inverse filtering case can be variable. 

Figure 5.2 shows the response of an inverse filter of length 512 to a P4 code 

of length 128. For this case the ISL value is lowered to -21.94 dB, 9.27 dB 

lower than MF ISL value. The PSL is -39.23 dB which is 11.42 dB lower than 

MF PSL. But as the filter length increases the SNR loss due to mismatch also 

increases and the resultant loss of this IF is 0.34 dB. The MLB value of 

inverse filter is obtained as 1.00. 

 

In the following figures the variation of SNR loss, main lobe broadening, PSL 

and ISL are given with respect to inverse filter length (M) for a P4 code of 
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length 128. Figure 5.3 shows the effect of filter length on SNR loss. The filter 

length is varied between 128 and 640. As seen in Figure 5.3 SNR loss 

increases as the filter length increases. There is a sharp jump in the SNR 

loss as the filter length varies between 350 and 400. Another jump occurs 

when the filter length exceeds 600. To make a better comparison with MF 

case the upper limit of the plot is taken to 0 dB. 

 

 

 

 

Figure 5.3: SNR loss versus IF length  
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Figure 5.4: MLB versus IF length  

 

 

 

Main lobe broadening versus inverse filter length is given in Figure 5.4. On 

the contrary of windowing case the main lobe of the filter output does not 

widen in the IF case. As the filter length is varied between 128 and 640 the 

MLB varies between 1.0055 and 1.0001. Similar to SNR loss a jump occurs 

in MLB when the filter length varies between 350 and 400. 

 

The variation of PSL with respect to inverse filter length is given in Figure 5.5. 

The PSL of MF output is also given on the plot. Similar to previous plots the 

PSL has a sudden jump as the filter length passes between 350 and 400. 

This difference is about 9.1 dB. So, if the designer can use an inverse filter 

with length not necessarily equal to the code length and if PSL is the primary 

concern in the design then the designer should choose the filter length 

greater than 400. After a code length of 400 the PSL remains approximately 

constant till the code length reaches 600. So, varying filter length between 

400 and 600 does not bring the designer any benefit. As the filter length is 

increased the realization of the theory in practice gets harder so it seems 

reasonable to choose a filter length around 400. 
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Figure 5.5: PSL versus IF length  

 

 

 

Figure 5.6: ISL versus IF length  

 

 

ISL versus inverse filter length is given in Figure 5.6. ISL value of the MF 

output is also given in the plot. As in the previous three plots, the ISL has a 

jump when the filter length changes between 350 and 400 and there is a 

second jump at 600. The difference of ISL when the filter length changes 
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from 350 to 400 is about 4.6 dB. Similar to PSL case the filter length can be 

selected as 400 if ISL is the primary or secondary concern. 

 

In the next subsection Doppler response of the IF method is given. 

 

 

5.4. Doppler Performance of IF Technique 

 

The Doppler response of inverse filtered P4 code is investigated in this 

subsection. The main performance criteria are again SNR loss, main lobe 

broadening, PSL and ISL as before. 

 

First the Doppler performance of Taylor window is obtained. For this purpose 

a P4 code of length 128 is used with the radar parameters below. Target 

radial velocity is selected as 750 m/s. 
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Figure 5.7 through 5.12 show the plots of the response of filters to P4 code. 

Figures on the left show the no Doppler case and the figures on the right 

show the response of the filter on the left to a Doppler shifted input 

sequence. Inverse filter length is equal to the code sequence length. The 

peak levels of the filter responses to Doppler shifted inputs are also shown 

on the plots. The values of the peak points are equal to the SNR loss due to 

target Doppler shift mismatch only. There is also an SNR loss due to filter 

mismatch. These values were given in Table 4.1. Table 5.1 gives the 

performance of the cases given in Figures 5.7-5.12. WMF refer to windowed 

MF. 
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Figure 5.7: MF output of P4 code 
Figure 5.8: MF output of P4 code with 

Doppler shift 

  

Figure 5.9: WMF output of P4 code 
Figure 5.10: WMF output of P4 code 

with Doppler shift 

  

Figure 5.11: IF output of P4 code 
Figure 5.12: IF output of P4 code with 

Doppler shift 
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Table 5.1: Performance of Filtering Methods for P4 Code and Taylor Weight 

 

 

 

First, third and fifth and rows are obtained in the previous chapters or 

sections. They are repeated here again to give a reference point. The 

responses of the filters given in these rows to Doppler shifted input code 

sequence are given in the second, fourth and sixth rows. If the receiver is IF 

only a mismatch loss of 2.23 dB occurs due to Doppler. Due to filter 

mismatch there exists a 0.08 dB loss also. Total is 2.31 dB mismatch loss in 

the IF only case. MF results in a 2.35 dB mismatch loss due to Doppler. 

Comparing these two conditions IF is a better choice also with its lower MLB, 

PSL and ISL values. If IF only case is compared with WMF then WMF can be 

a better choice with lower PSL and ISL values. Mismatch loss of WMF is 2.33 

dB and is only 0.02 dB higher than IF mismatch loss. These results are only 
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valid for a target radial velocity of 750 m/s. So a better understanding can be 

gained if the IF case is investigated over the whole Doppler space. 

 

Figure 5.13 plots the variation of mismatch loss versus inverse filter length for 

the radar and target parameters used above. 

 

 

 

 

Figure 5.13: SNR loss versus inverse filter length 

 

 

 

The variation of mismatch loss versus inverse filter length with no Doppler on 

target echo was given in Figure 5.3. Figure 5.13 gives the mismatch loss of 

an inverse filter due to filter mismatch only, which was given in Figure 5.3, 

target Doppler only and the total of both losses. Here, target radial velocity is 

again taken as 750 m/s. All the mismatch losses make a step down when the 

IF length is between 350 and 400. The jump of Doppler mismatch is not very 

sharp. Therefore, the step in the total loss is mainly due to filter mismatch. 

Except that little step down the Doppler mismatch remains nearly constant 

through the whole filter lengths. 
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Figure 5.14 gives the SNR loss versus target Doppler frequency variation of 

IF method. The response of IF is almost the same as the response of MF or 

WMF methods. Similar to MF case the loss in SNR makes a notch at 620 m/s 

with a value of 3.78. This loss was 3.88 dB for MF. Thus, the inverse filter 

response has less loss compared with matched filter response at the same 

target Doppler frequency. After the notch point SNR loss decreases again 

and approaches its zero Doppler value as in MF case. 

 

 

 

 

Figure 5.14: SNR loss versus Doppler shift 

 

 



 103 

 

Figure 5.15: MLB versus Doppler shift 

 

 

 

Response of IF to target radial velocity in the case of MLB is similar to the 

variation of SNR loss. MLB first increases to its peak value as the target 

Doppler reaches 620 m/s and then decreases and approaches its zero 

Doppler value as radial velocity goes to 1240 m/s. Figure 5.15 and 4.39 are 

almost the same. This can also be seen in Table 5.1. The MLB values of MF 

and IF are very close to each other. 

 

Figure 5.16 depicts the variation in PSL with radial target velocity. The PSL 

increases with increasing radial velocity and reaches its peak value at the 

620 m/s target velocity. After that point the PSL starts decreasing with 

increasing target Doppler. As the radial velocity reaches 1240 m/s the PSL 

makes a notch, but the PSL value at that point is not as low as zero Doppler 

shift PSL value. 
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Figure 5.16: PSL versus Doppler shift 

 

 

Variation of ISL versus target Doppler shift is given in Figure 5.17. The 

change of ISL is similar to PSL. ISL makes the peak at 620 m/s radial 

velocity and decreases as velocity reaches 1240 m/s and makes a notch at 

that target Doppler shift. Then after that point ISL starts increasing again. 

 

 

 

Figure 5.17: ISL versus Doppler shift 
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CHAPTER 6 

 

 

QUANTIZATION EFFECTS 
 

 

6.1. Introduction 

 

In modern radars, A/D converters are used in different parts of the system. 

When the incoming echo signal is converted from analog to digital, 

quantization errors occur due to the finite bit length of the A/D converters. In 

addition, the coefficients used in the receiver system are represented by a 

finite number of bits. 

 

The finite bit representation of the receiver filter coefficients and quantization 

of the analog input signal increase the sidelobes of the ACF, decrease the 

probability of detection (PD) and / or increase the probability of false alarm 

(PFA) of the radar, depending on the quantization levels used. 

 

In this chapter, the effect of quantization on radar performance is examined. 

The variation of sidelobe levels with the number of bits used is studied in 

Section 6.2. The results are obtained and compared for different receiver 

filters (matched, inverse) and different weighting windows.  

 

Section 6.3 investigates the extra input SNR required for a desired PD and 

PFA for different receiver filters and for different levels of quantization. 
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6.2. Quantization Effects on Sidelobes 

 

Figure 6.1 shows a simple radar receiver model with quantization effects 

taken into account. 

 

 

 

 

Figure 6.1: Radar receiver with quantization 

 

 

 

nu  is the transmitted signal with q1 levels of quantization and can be given 

as: 

 

)u(Qu n1n =      (6.1) 

 

where 1Q  is the quantizer function with q1 levels. 

 

Similarly nh  is the receiver filter with q2 levels of quantization and can be 

given as: 

 

)h(Qh n2n =      (6.2) 

 

where 2Q  is the quantizer function with q2 levels and ny  is the output. 

 

A quantizer function with 4 bits of quantization is plotted in Figure 6.2. The 

input signal is assumed to be within the dynamic range of the quantizer. The 

maximum value of the input signal is taken as α times the maximum value of 
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the quantizer. The value of α is taken as 0.9 in the computations and q1 and 

q2 are used with equal values. 

 

 

 

 

Figure 6.2: 4 bit quantizer 

 

 

 

In the computations performed, the effect of saturation is not taken into 

account. Gray and Zeoli [27] have investigated the effect of quantization and 

saturation with an input signal that has an assumed Gaussian probability 

density function. They have found an optimum value (kopt) that relates the 

input signal rms value and the quantizer dynamic range. They have shown 

that, for all the quantization levels used (3, 4,..,10) a ±10 percent change in k 

results in a very small change in total noise power. In their study the noise 

power is broken into two parts, one due to quantization and one due to 

saturation. They have also shown that at optimum k, the quantization noise is 

several times larger than saturation noise. In [12] computations are 

performed to quantify the effects of quantization on Frank code. Compression 

ratios of 36 and 144 are considered in computations. The general conclusion 

reached is that the polyphase code is relatively insensitive to the number of 

bits beyond a certain number. That certain number is 8 bits at worst case. 
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The computations in this chapter are performed with P4 code of length 128 

as before. The MF output of a P4 code with 4 bits of quantization is given in 

Figure 6.3. As stated before, both the incoming signal and the MF 

coefficients are quantized with the quantizer given in Figure 6.2, i.e. q1=q2=q. 

As compared with Figure 4.3, the sidelobe level of MF output has increased. 

 

 

 

 

Figure 6.3: MF output of 4 bit quantized P4 code 

 

 

 

The variation of PSL and quantization level is given in Figure 6.4 for P4 code 

filtered with MF. Quantization level is varied between 4 and 16 bits. The PSL 

saturates to its final value after 7 bits. 
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Figure 6.4: PSL versus number of bits for MF 

 

 

 

 

Figure 6.5: ISL versus number of bits for MF 

 

 

 

Similar to PSL the ISL of quantized MF system saturates after 7 bits. If the 

code sequence length is increased the saturation point moves right side. For 

a code length of 256 the knee point is at 8 bits for ISL and 9 bits for PSL. If 
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the code length is increased further to 1024 then the knee point remains the 

same for ISL but moves to 10 bits for PSL. Thus, an increase in the code 

length also brings an increase in the minimum required bit resolution of 

quantizer. However, if the code length is to be selected around 128 then 8 

bits is sufficient. 

 

 

 

 

Figure 6.6: PSL versus number of bits for WMF 

 

 

 

The effect of quantization on WMF is provided in Figures 6.6 and 6.7. Figure 

6.6 depicts PSL versus number of bits used in the quantizers. No window 

case is also given for reference. The PSL saturates at 10 bits quantization 

level for most of the windowing functions used. The filter with no window has 

the knee point at 7 bits which is also given in Figure 6.3. With 7 bit 

quantization level; the Hamming window has 2.58 dB, Tukey window has 

2.87 dB, Taylor window has 2.10 dB and Kaiser window has 3.61 dB higher 

PSL values compared with the final PSL values. Along with their low PSL 

values, the window functions also require 3 extra bits to the quantizer 
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compared with no window. Tukey window gave the worst performance in 

terms of Doppler shifts in previous chapters. Here again Tukey window 

saturates at 12 bits which is 2 bits later than the other group. 

 

The variation of ISL with number of bits used in the quantizers is shown in 

Figure 6.7. The ISL values of WMF system saturates at 8 bits. No window 

ISL value saturates at 7 bits. Thus, it can be concluded that the effect of 

quantization on ISL is not as much as the effect on PSL for WMF 

implementation. 

 

 

 

 

Figure 6.7: ISL versus number of bits for WMF 

 

 

 

The IF output of a P4 code with 10 bit of quantization is shown in Figure 6.8. 

The inverse filter length is taken equal to code length which is 128. The 

incoming signal and the IF coefficients are quantized with a 10 bit quantizer, 

i.e. q1=q2=q. As compared with Figure 5.1 the sidelobe level of IF output has 

increased even with 10 bits. 
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Figure 6.8: IF output of 10 bit quantized P4 code 

 

 

 

The variation of PSL with quantization level is plotted in Figure 6.9 for IF 

method. The PSL of inverse filtered code sequence saturates at 12 bits for IF 

length of 128 and 14 bits for IF length of 400. MF only case has the knee 

point at 7 bits of resolution. Thus IF needs 5 to 7 more bits of resolution 

compared with MF. 

 

ISL versus quantization level is shown in Figure 6.10. The ISL of IF method 

saturates at 14 bits for IF of length 128 and 16 bits for IF of length 400. This 

value is 7 to 9 bits more compared with MF knee point. On the overall, the 

effect of quantization on IF is more compared with MF since IF outputs 

saturate later compared to MF outputs. If the inverse filter length is increased 

the knee points of ISL and PSL shifts to the right. Therefore, if inverse 

filtering is used, depending on IF length, at least 14 or 16 bits of quantizers 

should be used. 
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Figure 6.9: PSL versus number of bits for IF 

 

 

 

 

Figure 6.10: ISL versus number of bits for IF 
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6.3. Quantization Effects on PD & PFA 

 

In this subsection the effect of quantization on detection probabilities of a 

radar system is investigated. A standard radar receiver with quantization 

effects taken into account was given in Figure 6.1. The incoming signal nu  

after quantization can be written as: 

 

nnn quu +=      (6.3) 

 

where nq  is the quantization noise in received signal. 

 

Similarly, the receiver filter; either MF, IF or WMF can be written as: 

 

nnn ehh +=      (6.4) 

 

Then, the output signal ny  is equal to: 

 

[ ] [ ]∑∑
1-M

0k

k-nk-nkk

1-M

0k

k-nkn qu ehuhy
==

++==    (6.5) 

 

∑ ∑ ∑
1-M

0k

1-M

0k

1-M

0k

k-nkk-nkk-nknn qeueqhyy
= = =

+++=    6.6) 

 

The output SNR of a radar system was given in (4.5). For the quantized 

system the output SNR can be rewritten as: 

 

∑
1-M

0k

2

k

2

2

L

o

hσ
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SNR

=

=      (6.7) 
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where L  is the ideal sampling position and 
12

∆
σσ

2

22 +=  with the quantizer 

step size of ∆  [27]. 

 

The received signal in a radar system can be either an echo signal from a 

target with additive noise or only noise: This can be given by two hypotheses 

[28]: 

 

ii

ii

1

0

nmr

nr
  
:

:
  

H

H

+=

=
    (6.8) 

 

where obsN ,..,2 ,1i =  is the number of observations, m  is the received signal 

and in  are independent zero mean Gaussian noise. Detection and false 

alarm probabilities for this observation set can be given as [28]: 
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where  

 

σ

Nm
d
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=      (6.11) 

 

and 

 

2

d

d

ηln
γ +=      (6.12) 



 116 

where η  is the threshold that depends on observation probabilities and the 

costs of the events [28]. 

 

For desired values of PD and PFA the required SNR at the output of the 

receiver filter can be found using (6.9), (6.10) and (6.11). Then, according to 

the filter type and quantization level used in the system the input SNR 

required for that output SNR can be found using (6.7). The output SNR, and 

therefore, the input SNR of a system without quantization is found in parallel 

also. Then the extra SNR required for the desired PD and PFA values in a 

quantized system can be found by taking the difference in input SNR values 

of the two systems.  

 

For the computations P4 code with length 128 is used as before. The PD and 

PFA are taken as 0.85 and 10
-6 respectively. Only one observation is 

assumed )1N( obs = . The results are obtained for MF, WMF and IF. 

 

Figure 6.11 depicts the SNR loss due to quantization in MF. WMF and MF 

are given on the same plot. All the curves saturate at 10 bits of resolution. 

The SNR loss of no window case declines to 0 dB. Other curves decline to 

the SNR loss values given in Table 4.1 after 10 bits. The Hamming and 

Kaiser window functions give the almost the same loss with all the 

quantization levels. In the previous chapter PSL of WMF was found to be 

saturated after 10 bits. Therefore the quantizer should have a resolution of at 

least 10 bits if the user wants to use windowed MF in the radar receiver for 

the given detection probabilities. 
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Figure 6.11: SNR loss due to quantization in WMF 

 

 

 

The variation of SNR loss with quantizer bit resolution for IF receiver is 

depicted in Figure 6.12. The curve saturates at 12 bits for both of the inverse 

filter lengths. The SNR loss of IF of length 128 reaches 0.08 dB after 12 bits 

as given in Table 5.1. For IF receiver the minimum resolution required was 

found as 16 bits in the previous chapter. Thus, this result also covers the 

requirement of SNR loss for detection probabilities and the radar designer 

should at least use 16 bit quantizers with inverse filter receivers. 
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Figure 6.12: SNR loss due to quantization in IF 
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CHAPTER 7 

 

 

CONCLUSIONS 
 

 

We have investigated several design problems for the design of the matched 

filters used in pulse Doppler radars. 

 

The first problem handled is the hindering of mismatch loss in radar receiver 

filter which occurs due to the target Doppler in the echo signal. The amount 

of mismatch loss and the parameters that affect this loss are found. Then two 

similar methods are proposed to overcome this problem. The methods are 

based on a parallel filter bank structure in which each filter is matched to a 

different Doppler shift. The distribution of the parallel filters on the Doppler 

plane is also given for optimum processing. The results of computations 

performed with the proposed methods show that the number of parallel filters 

can vary significantly for a desired maximum mismatch loss and given radar 

parameters. The number of filters also depends on which of the methods is 

used. 

 

The second subject studied in this thesis is the reduction of sidelobes of 

radar receiver filter output. Two different solutions to this problem are 

considered. The first method considered is the use of classical amplitude 

weighting window in the matched filter of the radar. The second method is 

the use of a mismatched filter that minimizes the sidelobe energy. The results 

of all the methods are obtained and compared with each other. Taylor, 
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Hamming and Kaiser windows gave the best results with the windowed 

methods both with and without Doppler shift. It is found that the PSL of the 

receiver output is lowered by about 15 dB with some of the given windows. 

The influence of inverse filter on the receiver output is found to be 

considerable as the inverse filter length is increased over 400 for a 128 

length P4 code. It is concluded from computations that the performance of an 

inverse filter of length 400 is comparable with the performance of the 

windowed matched filter. 

 

The last part of the thesis is on the quantization effects on the radar 

performance. The effects of quantization on sidelobe levels and detection 

probabilities are obtained for the methods studied in Chapter 4 and Chapter 

5. It is concluded that 12 bits are sufficient for windowed matched filter 

methods and at least 14 bits are required for inverse filter receivers. 

 

As a future work, the independent studies conducted in this thesis can be 

combined to see the overall performance of the receiver with a Doppler 

shifted echo signal. Also the performance of P(n,k) codes [29] with the 

methods used in this thesis can be investigated. 
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