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ABSTRACT 
 
 

TRANSIENT DYNAMIC RESPONSE OF VISCOELASTIC CYLINDERS 
ENCLOSED IN FILAMENT WOUND CYLINDRICAL COMPOSITES  

 
 

Şen, Özge 

Ph.D., Department of Engineering Sciences 

    Supervisor: Prof. Dr. Doğan Turhan 

 

August 2005, 189 pages 
 
 

  In this study, transient dynamic response of viscoelastic cylinders enclosed 

in filament wound cylindrical composites is investigated. Thermal effects, in addition 

to mechanical effects, are taken into consideration. A generalized thermoelasticity 

theory which incorporates the temperature rate among the constitutive variables and 

is referred to as temperature-rate dependent thermoelasticity theory is employed. 

This theory predicts finite heat propagation speeds.  

 

The body considered in this thesis consists of n+1-layers, the inner layer 

being viscoelastic, while the outer fiber reinforced composite medium consist of n-

different generally orthotropic, homogeneous and elastic layers. In each ply, the fiber 

orientation angle may be different. The body is a hollow circular cylinder with a 

finite thickness in the radial direction, whereas it extends to infinity in the axial 

direction. The multilayered medium is subjected to uniform time-dependent dynamic 

inputs at the inner and/or outer surfaces. The body is assumed to be initially at rest. 

The layers are assumed to be perfectly bonded to each other. 

 

The case in which the inner surface of the viscoelastic cylinder is a 

moving boundary is further investigated in this study. This is similar to the solid 
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propellant rocket motor cases. The solid propellant is modelled as a viscoelastic 

material which in turn is modelled as standard linear solid; whereas, the rocket motor 

case is a fiber-reinforced filament wound cylindrical composite.  

 

Method of characteristics is employed to obtain the solutions. Method of 

characteristics is suitable because the governing equations are hyperbolic. The 

method is amenable to numerical integration and different boundary, interface and 

initial conditions can be handled easily. 

 

Key words: Filament wound cylindrical composites, viscoelasticity, standard linear 

solid, anisotropic elasticity, generalized thermoelasticity. 
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ÖZ 
 
 

ELYAF SARGILI SİLİNDİRİK BİLEŞİK CİSİMLERLE ÇEVRELENMİŞ 
VİSKOELASTİK SİLİNDİRLERİN GEÇİCİ DİNAMİK DAVRANIŞI 

 
 

Şen, Özge 

Doktora, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Prof. Dr. Doğan Turhan 

 

Ağustos 2005, 189 sayfa 
 

 

Bu çalışmada, elyaf sargılı silindirik bileşik cisimlerle çevrelenmiş 

viskoelastik silindirlerin geçici dinamik davranışı incelenmektedir. Mekanik etkilere 

ek olarak ısıl etkiler de gözönüne alınmaktadır. Bünye değişkenleri arasında sıcaklık 

değişim hızı da bulunan ve sıcaklık değişim hızına bağlı genelleştirilmiş 

termoelastisite teorisi olarak adlandırılan teori uygulanmaktadır. Bu teori sonlu ısı 

yayılma hızı içermektedir.  

 

Bu tezde gözönüne alınan cisim n+1 tabakadan oluşmaktadır. En iç tabaka 

viskoelastik, dışındaki elyaf takviyeli bileşik ortam ise n farklı genel ortotrop, 

homojen ve elastik tabakadan oluşmaktadır. Her bir tabakada, elyaf doğrultu açısı 

farklı olabilmektedir. Cisim, içi boş bir dairesel silindir olup, radyal doğrultuda sonlu 

kalınlıkta, eksenel doğrultuda ise sonsuza uzanmaktadır. Çok tabakalı ortamın iç 

ve/veya dış yüzeyleri zamana bağlı düzgün dinamik etkilere maruzdur. Cismin 

başlangıçta sükünet halinde olduğu varsayılmaktadır. Tabakalar birbirlerine 

mükemmel olarak yapıştırılmışlardır.  

 

Viskoelastik silindirin iç yüzeyinin hareket eden bir sınır yüzeyi olması hali 

de bu çalışmada incelenmektedir. Bu durum katı yakıtlı roket motorundaki duruma 
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benzemektedir. Katı roket yakıtı viskoelastik malzeme ve viskoelastik malzeme de 

standart doğrusal katı olarak modellenirken, roket motor gövdesi elyaf sargılı 

silindirik bileşik cisim olarak alınmıştır.  

 

Çözümleri elde etmek için karakteristikler yöntemi uygulanmaktadır. 

Davranışı tanımlayan alan denklemlerinin hiperbolik olmasından dolayı 

karakteristikler yöntemi uygundur. Yöntem sayısal integrasyonu kolaylıkla mümkün 

kılar ve değişik sınır, arayüzey ve başlangıç şartları kolaylıkla ele alınabilir.  

 

Anahtar kelimeler: Elyaf sargılı silindirik bileşik cisimler, viskoelastisite, standart 

doğrusal katı, anizotrop elastisite, genelleştirilmiş termoelastisite. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

In recent years, the use of advanced composite materials has increased 

tremendously due to their superior properties. They are found in different areas of 

applications ranging from space vehicles to sports equipment. As people demand 

products with superior properties, the use of composites will continue to increase; 

especially, in the construction of solid propellant rocket motors, space and aircraft 

vehicles, in which weight is a significant factor. Among composite materials, fiber-

reinforced polymer composites found a wide range of applications because of their 

excellent properties, like high strength-to-weight or stiffness-to-weight ratios and 

easy manufacturing processes. The analysis of composites, however, is more difficult 

compared to conventional materials because of the anisotropy and inhomogeneity 

inherent in these materials.  

 

Many researchers have investigated transient wave propagation through 

layered media. Most of these works are concentrated on solving elastic problems, but 

relatively less work is directed to analyzing wave propagation in anisotropic and/or 

viscoelastic layered media. Early analytical treatment of the subject can be found in 

Ewing, Jardetzky and Press [1] and in Brekhovskikh [2]. Among more recent books 

treating harmonic and transient wave propagation in elastic layered media with 

isotropic and anisotropic layers, we can mention Kennet [3], Tygel and Hubral [4], 

Van der Hijden [5], Nayfeh [6], Achenbach [7] and Miklowitz [8]. Elegant analytical 

and numerical techniques based on Green’s function formulations, integral 

transforms, inversion of integral transforms by Cagniard-de Hoop method and 

asymptotic techniques can be found in these books.  
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Different methodologies have been employed to study harmonic and transient waves 

in layered media. Approximate models have been developed and employed which 

yield satisfactory results when the thickness of the layers are small compared to the 

wavelengths of the propagating waves, for example, Sun et al. [9], Achenbach et. al. 

[10], Santosa and Symes [11], Soldatos [12], Noor et al. [13]. Exact methods of 

elasticity theory have been employed to investigate harmonic wave propagation in 

multilayered elastic media with isotropic and anisotropic layers which are valid for 

any wavelength [14-18]. The construction of a steady state Green’s function for a 

laminated circular cylinder is given by Zhuang et al. [19].  

 

Transient axisymmetric wave propagation in weakly coupled layered 

structures is investigated in [20-21]. Two different computational approaches, one 

based on the numerical inversion of Fourier and Hankel transforms and the other on 

finite element method (FEM) are employed in [21]. Rizzi and Doyle [22] developed 

a spectral element approach based on fast Fourier transform (FFT) and applied it to 

study transient waves in elastic layered solids. Transfer matrix method was employed 

by Kundu and Mal [23] to study wave propagation in multilayered solids with 

isotropic layers and by Mal [24] in laminated composites with anisotropic layers, 

namely transversely isotropic layers, subjected to periodic surface loads. A multiple 

transform technique coupled with a matrix method was used to investigate the 

elastodynamic response of a unidirectional composite laminate to concentrated 

surface loads in [25-26] and the response of multilayered composite laminates 

consisting of transversely isotropic layers with arbitrarily oriented symmetry axes to 

dynamic surface loads in [27].  

 

Compared to the extensive research on wave motion in multilayered elastic 

media, transient wave propagation in viscoelastic layered media has been 

investigated relatively less. Approximate theories have been developed by Mengi and 

Turhan [28] for viscoelastic layered composites with plane layers and by Mengi and 

Birlik [29] for viscoelastic cylindrical laminated composites. The validity of these 

approximate theories were assessed by solving a transient [30] and a harmonic wave 

propagation problem [31]. An analytical method is presented to study the 
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propagation of plane harmonic waves in an infinite periodically laminated 

viscoelastic medium in [32]. An exact viscoelastic analogy relation between a 

periodically layered elastic medium and a homogeneus viscoelastic medium was 

introduced by Han and Sun in [33]. The problem of  reflection and refraction of 

micropolar elastic waves at a loosely bonded interface between a viscoelastic solid 

and a micropolar elastic solid is studied by Singh and Kumar [34]. Most of the 

existing work on transient wave motion in viscoelastic layered media deals with one-

dimensional wave propagation normal to the layering [35-37]. Two dimensional 

transient wave propagation in a viscoelastic sandwich plate was investigated by 

Nkemzi and Green [38]. Propagation of two-dimensional transient out of plane shear 

waves in multilayered viscoelastic media and transient waves in viscoelastic 

cylindrical layered media are investigated by Abu-Alshaikh, Turhan and Mengi [39], 

[40]. An effective numerical method for solving elastic wave propagation problems 

in an infinite Timoshenko beam on viscoelastic foundation in time domain was given 

in [41]. Inhomogeneous plane, monochromatic waves traveling in viscoelastic media 

are considered in [42].     

 

The method of characteristics has been employed effectively in investigating 

transient wave propagation problems in layered media. Among many contributions in 

this area, we can mention those presented in [43-48], which involve investigation of 

wave propagation in layered elastic cylindrical and spherical media, and infinite 

elastic media having cylindrical and spherical cavities. The method of characteristics 

is also employed by Turhan et. al [49-50] in solving problems of viscoelastic layered 

media with layers modeled as standard linear solid (with one discrete relaxation 

time). Solution of transient wave propagation in a linear viscoelastic solid with more 

than one discrete relaxation time is presented by Wegner and Haddow [51]. The 

same procedure is employed by Wegner [52] in solving waves generated from a 

spherical cavity in a viscoelastic infinite medium with one and two discrete 

relaxation times.   

 

Thermal effects are also taken into consideration in many studies in which 

wave propagation problems are investigated. The conventional thermoelasticity 
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theory is based, among other constitutive relations, on the classical Fourier’s law. 

The formulation of this theory were laid in the first half of the 19 th century [53], but 

a satisfactory formulation of the dynamical version of the theory, based on firm 

grounds of irreversible thermodynamics, was presented half a century back [54] to 

eliminate the paradox inherent in the uncoupled theory that elastic changes have no 

effect on the temperature. The theory is now proved to be an elegant model for 

studying coupled effects of elastic and thermal fields, and important contributions, 

for example of Chadwick [55], Boley and Wiener [56], Carlson [57], Nowacki [58], 

Parkus [59], Nowinski [60] and Dhaliwal and Singh [61] contain comprehensive 

accounts of the theory and applications thereof.  

 

The thermoelasticity theory presented in detail in Refs. [53-61] and referred 

to conventional thermoelasticity (CTE) hereafter, with all its merits, suffer from the 

deficiency of allowing infinite heat propagation speed contrary to physical 

observations. During the last four decades, attempts have been made to remove this 

deficiency on various grounds, and generalized versions of the theory have come into 

existence. The simplest way of removing the paradox of infinite heat propagation 

speed present in conventional thermoelasticity is to replace the classical Fourier’s 

law by a generalized conduction equation. We then arrive at a straightforward 

extension of CTE, each of the equations of this system is hyperbolic type, and 

consequently no solution of the system can extend to infinity. In what follows, we 

shall refer to the new theory as extended thermoelasticity, or, briefly, ETE. This 

theory is often referred to as thermoelasticity with thermal relaxation or 

thermoelasticity with one relaxation time.  

 

The equations of generalized thermoelasticity with one relaxation time for a 

homogeneous medium were derived by Lord and Shulman [62]. Dhaliwal and 

Sherief [63] obtained the corresponding equations for a general anisotropic medium. 

These equations admit the so-called second sound effect in solids; i.e. they predict 

finite speeds of propagation for heat and mechanical disturbances.  
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The half space problem in ETE has been studied by several authors under 

various boundary conditions. Lord and Shulman [62], Achenbach [64], Norwood and 

Warren [65], Mengi and Turhan [66], Chandrasekharaiah and Srinath [67] have 

investigated the cases of step function in stress/strain and/or step function in 

temperature on the boundary.  The problem of an infinitely long solid conducting 

circular cylinder whose lateral surface is traction free and subjected to known 

surrounding temperatures in the presence of a uniform magnetic field in the direction 

of the axis has been investigated by Sherief [68]. Using Laplace transform technique 

in the solution, as in [68], Sherief and Anwar [69] consider the problem of an 

infinitely long annular cylinder whose inner and outer surfaces are subjected to 

known surrounding temperatures and are traction free. The plane wave propagation 

in a generalized thermo-microstrech solid is investigated in [70]. Sherief and 

Dhaliwal [71] solved a thermal shock problem; Sherief [72] solved a spherically 

symmetric problem with a point source. Both of these problems are valid for short 

times. Sherief and Ezzat have obtained the fundamental solution for thermoelasticity 

with one relaxation time valid for all times [73]. The uniqueness theorem for the 

equations of generalized thermoelasticity with one relaxation time, derived by 

Dhaliwal and Sherief [63], is proved by [74]. The distribution of temperature, 

displacement and stress in infinite homogeneous transversely isotropic elastic solid 

having a cylindrical hole has been investigated by taking (i) unit step function in 

stress and zero temperature change, and (ii) unit step function in temperature and 

zero stress, at the boundary of the cylindrical hole using Laplace Transform in [75].  

Thermal shock on the boundary of a half space is also investigated in [76, 77]. The 

analysis in the former one is based on the decoupled field equations of generalized 

thermoelasticity. Equations have been solved with the help of integral transforms. 

Thermal shock at the surface of a half space is further investigated in [78]. The 

model of the equations of generalized thermoelasticity with thermal relaxation in an 

isotropic elastic medium with temperature dependent mechanical properties is 

established in [79]. At this study, the state space approach is adopted for the solution 

of one-dimensional problems in the absence or presence of heat sources. State-space 

approach is also applied for the solutions at [80]. A reciprocal theorem is presented 

for initial mixed boundary conditions in the framework of the linearized isotropic 
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thermoelasticity theory of Lord and Shulman in [81]. Eigenvalue approach is applied 

to the solutions of generalized thermoelasticity with one relaxation time in [82, 83]. 

A number of thermoelastic wave problems which involve one or two space variables, 

are treated in a uniform manner, by a system of first order partial differential 

equations with stress, velocity, heat flow and temperature in [84]. The system of 

equations are analyzed by the method of characteristics in the study.  Nonlinear 

continuum mechanics techniques are applied to the constitutive equations in [85]. In 

this study same exact solutions are given to illustrate novel features of the nonlinear 

theory. For different boundary conditions, in particular for those arising in pulsed 

laser heating of solids, the exponential stability of the hyperbolic linear system is 

proved in [86]. In this study, linear and non-linear thermoelastic systems in one space 

dimension where thermal disturbances modeled propagating as wave like pulses 

traveling at finite speed using Cattaneo’s law for heat conduction is considered.  

 

 Only a few authors have considered problems on inhomogenous and/or 

anisotropic  layered media employing generalized thermoelasticity. Mengi and 

Turhan [87] have made a detailed analysis of problems concerned with 

inhomogeneous and isotropic half space, and infinite space with spherical and 

cylindrical cavity, by using the method of characteristics. Kolyano and Shter [88], 

[89] have derived the governing equations for anisotropic and inhomogeneous 

medium and studied transverse oscillations of an inhomogeneous and isotropic 

cantilever beam. Sharma and Sidhu [90] studied propagation of plane harmonic 

waves in anisotropic generalized thermoelasticity. Propagation of thermoelastic 

waves in arbitrary anisotropic layered plates and general anisotropic media is 

investigated in the context of the generalized theory of thermoelasticity in [91] and 

[92]. The propagation of harmonic waves in a laminated anisotropic plate is studied 

in [93]. Transient wave propagation in thermoelastic layered composites consisting 

of alternating isotropic, homogenous, and linearly elastic high strength reinforcing 

and low strength matrix layers is investigated by Turhan et. al [94] by employing the 

thermoelasticity theory of Lord and Shulman [62]. 

 



 7

 Another generalization of the coupled theory of thermoelasticity is known as 

the thermoelasticity with two relaxation times, which, in other words, is known as 

temperature rate dependent thermoelasticity. Muller [95] in a review of 

thermodynamics of thermoelastic solids has proposed an entropy production 

inequality, with the help of which, he considered restrictions on a class of 

constitutive equations. A generalization of this inequality was proposed by Green 

and Laws [96]. Green and Lindsay obtained an explicit version of the constitutive 

equations in [97]. These equations were also obtained independently by Şuhubi [98]. 

This theory also predicts finite speeds of propagation as in Lord and Shulman’s 

theory [62]. It differs from the latter in that Fourier’s law of heat conduction is not 

violated if the body under consideration has a center of symmetry. Erbay and Suhubi 

[99] have studied wave propagation in infinite cylinders employing this version of 

generalized thermoelasticity with two relaxation times. The dispersion relation is 

obtained for the case in which the temperature is kept constant on the surface of the 

cylinder. Ignaczak [100] studied a strong discontinuity wave and obtained a 

decomposition theorem for this theory [101]. Sherief has obtained the fundamental 

solutions for generalized thermoelasticity with two relaxation times for point source 

of heat [102]. In this study, Laplace transform techniques together with the method 

of potentials are used to obtain the temperature and stress distributions. Sherief, also 

studied a half space problem employing the equations of generalized thermoelasticity 

with two relaxation times [103]. In this study, the bounding plane is acted upon by a 

combination of a thermal and a mechanical shock acting for a finite period of time. 

Using the theory of linear thermoelasticity proposed by Green and Lindsay [97], 

Payne and Song [104] treat the thermoelastic problem for a semi-infinite cylinder 

where the lateral surface of the cylinder is held either at zero temperature and zero 

displacement, or at zero heat flux and zero traction. The two dimensional 

thermoelasticity problem for a half space whose surface is traction free and subjected 

to the effects of heat sources is considered within the context of the theory of 

thermoelasticity with two relaxation times in [105]. Sherief and Megahed studied the 

two dimensional axisymmetric problem within the context of the theory of 

thermoelasticity with two relaxation times in spherical regions [106]. In the study, 

the general solution is obtained in the Laplace transform domain by using a direct 
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approach without the use of potential functions. The resulting formulation is utilized 

to solve a problem for a thick spherical shell. The surface of the shell is taken as 

traction free and subjected to given axisymmetric temperature distributions. A new 

time domain boundary element formulation and solution procedure for generalized 

dynamic coupled thermoelasticity is developed by Polyzos and Beskos [107]. 

Temperature rate dependent thermoelasticity theory is employed to study the 

distribution of temperature, deformation and streses in an infinitely extended 

isotropic elastic thin plate containing a circular hole for step input at temperature or 

step input at stress in [108]. Balta and Suhubi developed a theory of nonlocal 

generalized thermoelasticity within the framework of the nonlocal continuum 

mechanics [109]. The disturbance due to mechanical and thermal sources in a 

homogeneous, isotropic, micropolar generalized thermoelastic half-space is 

investigated in [110]. In the solution, Laplace Fourier transform technique is used. 

Daneshjoo and Romazani proposed a new mixed finite element formulation to 

analyze transient coupled thermoelastic problems [111]. The non-classical (Green-

Lindsay) coupled model of dynamic thermoelasticity is applied to a laminated 

composite plate in this study.  

 

In addition to the references cited above, many other authors have employed 

extensively generalized thermoelasticity theories with one and two relaxation times 

in harmonic and transient wave propagation problems in nonpolar and micropolar 

media. Among these, we can mention Refs. [112-121]. A comprehensive survey of 

the literature on generalized thermoelasticity theories is given in two review papers 

by Chadrasekharaiah [122-123]. One can also refer to Hetnarski and Ignaczac [124] 

for a review and presentation of the generalized theories of thermoelasticity. 

 

 Compared to the extensive literature on elastic wave propagation in 

generalized thermoelastic media, relatively less work can be found on transient wave 

propagation in generalized thermo-viscoelastic media. In the theories of generalized 

thermo-viscoelasticity, two models have found wide acceptance. In the first model of 

the equations of generalized thermoviscoelasticity, the relaxation effects of the 

volume are ignored, and, only, relaxation effects for stress deviators are taken 
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account. Hence, in this model, viscoelastic constitutive equations of differential or 

integral type are considered for the stress deviators; whereas, for the spherical stress 

332211 σσσσσ ++== kk , constitutive equation in the same form as that of 

generalized thermoelasticity theories is considered. The equations of this model with 

one relaxation time and with two relaxation times are established by Ezzat and 

coworkers [125-126]. This model has further been developed and has been applied to 

various problems by different authors among which we can mention [127-129]. In 

the second model of the equations of generalized thermo-viscoelasticity, the 

relaxation effects of the volume as well as the relaxation effects for the stress 

deviators are taken into consideration. The equations of this model for isotropic 

media are established in [130-131]. 

 

In this thesis transient dynamic response of viscoelastic cylinders enclosed in 

filament wound cylindrical composites is investigated. The filament wound 

cylindrical composite consists of generally orthotropic elastic layers. A lamina 

reinforced by unidirectional fibers in which the principal material directions, that is, 

the fiber direction and the directions normal to the fiber direction coincide with the 

natural body coordinate axes is said to be a specially orthotropic lamina. In the case 

of a cylindrical lamina, the natural body coordinate axes are in the axial, 

circumferential and radial directions. If the fiber direction and the directions normal 

to it do not coincide with the natural body coordinate axes, the lamina is said to be a 

generally orthotropic lamina. Thermal effects in addition to mechanical effects are 

taken into consideration as well. A generalized thermoelasticity theory which 

incorporates the temperature rate among the constitutive variables and is referred to 

as temperature rate dependent thermoelasticity is applied to the outer elastic layers; 

whereas, generalized thermo-viscoelasticity is employed for the inner isotropic 

viscoelastic layer. These generalized theories predict finite heat propagation speeds.   

 

The body considered in this thesis consists of n+1 layers, the inner layer 

being viscoelastic, while the outer fiber reinforced composite medium consists of n-

different generally orthotropic, homogenous and elastic layers. In each ply the fiber 

orientation may be different. The body is a hollow circular cylinder with a finite 



 10

thickness in the radial direction, whereas it extends to infinity in the axial direction. 

The multilayered medium is subjected to uniform time-dependent dynamic inputs at 

the inner and/or outer surfaces. The body is assumed to be initially at rest. The layers 

are assumed to be perfectly bonded to each other. The material of the viscoelastic 

layer is modeled as standard linear solid.   

 

The case in which the inner surface of the viscoelastic cylinder is a moving 

boundary is further investigated in this study. This is similar to the solid propellant 

rocket motor cases. The solid propellant is modeled as a viscoelastic material which 

in turn is modeled as standard linear solid; whereas, the rocket motorcase is a fiber-

reinforced filament wound cylindrical composite. As the propellant burns, the inner 

surface moves outwards, decreasing the thickness of the viscoelastic layer 

representing the solid propellant.  

 

The governing field equations of temperature-rate dependent anisotropic 

thermoelasticity and isotropic thermo-viscoelasticity are applied to the elastic layers 

and the inner viscoelastic layer, respectively, and the solutions are required to satisfy 

the continuity conditions at the interfaces of the layers, the boundary conditions at 

the inner and outer surfaces and the initial conditions.  

 

Method of characteristics is employed  to obtain the solutions. This method is 

suitable because the governing equations are hyperbolic. In the method of 

characteristics, the governing partial differential equations are transformed into a 

system of ordinary differential equations each of which is valid along a different 

family of characteristic lines. These equations are suitable for numerical integration 

and computer programming. Furthermore different interface, initial and boundary 

conditions can be handled easily in the method of characteristics. The convergence 

and stability of the method are well established. Sharp variations in the field 

variables at the wave fronts can be accommodated in the method. More information 

about the method can be found in Courant and Hilbert [132]. The method as applied  

in this thesis, however, is closer to the format applied by Mengi and McNiven [133].    
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The study is organized as follows: In Chapter 2, dynamic response of 

viscoelastic cylinders enclosed in filament wound cylindrical composites, with 

thermal effects neglected, is investigated. The cases of both the ablating and the non-

ablating inner surface are considered. In the numerical examples, solid propellant 

material properties are taken for the inner viscoelastic layer modeled as standard 

linear solid. The striking effects of solid propellant material properties on the curves 

denoting the time variations of stresses at different locations are pointed out and 

discussed. The effects of moving inner boundary are also discussed.  

 

In Chapter 3, thermomechanical response of fiber-reinforced cylindrical 

composites consisting of only generally orthotropic elastic layers is investigated. In 

composite material applications, cylindrical laminated composites consisting of all 

elastic orthotropic layers is very important. Hence, this chapter is devoted to elastic 

multilayered medium with no inner viscoelastic layer. Thermal effects, in addition to 

mechanical effects, are taken into consideration as well. A generalized 

thermoelasticity theory which incorporates the temperature rate among the 

constitutive variables and is referred to as temperature-rate dependent 

thermoelasticity theory is employed. This theory is also known as generalized 

thermoelasticity theory with two relaxation times. In the numerical examples, curves 

denoting the time variations of stresses at different locations are given for both the 

case where the thermal effects are neglected and the case where the thermal effects 

arte taken into consideration. The effects of thermal dispersion on the wave profiles 

are discussed.  

 

In Chapter 4, thermomechanical response of viscoelastic cylinders enclosed 

in fiber-reinforced cylindrical composites is investigated. The multilayered medium, 

then consists of n generally orthotropic elastic layers and an isotropic viscoelastic 

inner layer. Equations of generalized thermoelasticity are applied to the elastic 

layers; whereas equations of generalized thermo-viscoelasticity, in which relaxation 

effects of the volume are neglected, are applied to the inner viscoelastic layer. 

Numerical examples are worked out in which the inner surface of the multilayered 

body is subjected to uniform time-dependent pressure and uniform time dependent 
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temperature deviation, while the outer surface is free of surface tractions and 

temperature deviation is kept zero. The effects of refractions and reflections of waves 

at the boundaries and at the interfaces of the layers and the effects of geometric and 

thermal dispersions on the wave profiles are discussed.   

 

 The conclusions are presented in Chapter 5. The manual of the computer 

programs developed in the study are given in Appendix B. 
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 CHAPTER 2 
 
 
MECHANICAL RESPONSE OF VISCOELASTIC CYLINDERS ENCLOSED 

IN FIBER-REINFORCED CYLINDRICAL COMPOSITES 
 
 
2.1 Introduction 
 
 

In this chapter, dynamic response of viscoelastic cylinders enclosed in filament 

wound cylindrical composites is investigated. Only mechanical effects are 

considered in this chapter. The body consists of n+1-layers, the inner layer being 

viscoelastic, while the outer being fiber-reinforced composite consisting of n-

different generally orthotropic, homogeneous and linearly elastic layers. In each ply, 

the ply orientation angle may be different. The body is a hollow circular cylinder 

with a finite thickness in the radial direction, whereas it extends to infinity in the 

axial direction. The multilayered medium is subjected to uniform time-dependent 

dynamic inputs at the inner and/or outer surfaces. The body is assumed to be initially 

at rest. The layers are assumed to be perfectly bonded to each other. The material of 

the viscoelastic layer is modelled as standard linear solid. 

 

The case in which the inner surface of the viscoelastic cylinder is a moving 

boundary is further investigated in this chapter. This is similar to the solid propellant 

rocket motor cases. The solid propellant is modelled as a viscoelastic material which 

in turn is modelled as standard linear solid; whereas, the rocket motor case is a fiber-

reinforced filament wound cylindrical composite. As the solid propellant burns, the 

inner surface moves outwards, decreasing the thickness of the viscoelastic layer 

representing the solid propellant.  

 

The governing field equations of isotropic viscoelasticity and anisotropic 

elasticity are applied to the inner viscoelastic layer and each outer elastic layer, 

respectively, and the solutions are required to satisfy the continuity conditions  at the 

interfaces of the layers, the  boundary conditions at  the inner and outer surfaces and 
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the initial conditions.  

 

Method of characteristics is employed to obtain the solutions. Method of 

characteristics is suitable because the governing equations are hyperbolic. In the 

method of characteristics, the governing partial differential equations are transformed 

into a system of ordinary differential equations each of which is valid along a 

different family of characteristic lines. These equations are suitable for numerical 

integration and computer programming. Furthermore, different interface, initial and 

boundary conditions can be handled easily in the method of characteristics. The 

convergence and stability of the method are well established. Sharp variations in the 

field variables at the wavefronts can be accommodated in the method of 

characteristics. Details of the method of characteristics can be found in Courant and 

Hilbert [132]. The way it is applied in this study, however, is closer to that applied by 

McNiven and Mengi [133]. 

 
 
2.2 The Fundamental Equations of the Linear Theory of Elasticity for Orthotropic 

Materials and Viscoelasticity Theory for Isotropic Materials in Cylindrical 
Coordinates 

 
 

This part summarizes the basic equations of the theory of linear viscoelasticity 

and anisotropic elasticity in cylindrical coordinates. These equations are the stress 

equations of motion, strain-displacement relations and the stress-strain relations for a 

generally orthotropic elastic material and isotropic viscoelastic material. Derivations 

can be found in Refs [134-136]. The constitutive equations of orthotropic layers are 

expressed in the transformed form of stiffness coefficients [137-138]. 
 

The stress equations of motion in cylindrical coordinates for a three dimensional 

body are [134]. 
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where rf , θf , zf  are the body forces associated with r , θ  and z directions, ru , θu  

and zu  are the displacement components and rrσ is the radial stress, θθσ  is the 

circumferential stress, zzσ  is the axial stress and z  θθ σσσ ,, rzr  are shear stress 

components.  
  

 
 
Strain-displacement relations can be expressed as 
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where θθεε  ,rr  and zzε  are the normal strain components associated with θ ,r  and 

z directions, and z  θθ εεε ,, rzr  are the shear strain components.  
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The stress-strain relations for an orthotropic material in coordinates aligned with the 

principal material directions can be expressed as [134-136] 

 
 

33132212111111 εεεσ CCC ++=  
 

33232222112122 εεεσ CCC ++=  
 

33332232113133 εεεσ CCC ++=  

       (2.3) 
234423 2 εσ C=  

 

135513 2 εσ C=  
 

126612 2 εσ C=  
 
 
where ijC  are the stiffnesses in contracted notation. It should be noted that the 

principal material directions in a fiber reinforced lamina are the fiber direction (1- 

direction) and the directions normal to the fiber direction (directions - 2 and 3).  

 

In our problem, however, the principal material directions of orthotropy do 

not coincide with coordinate axes that are geometrically natural to the solution of the 

problem. In our problem, the natural body coordinates are cylindrical  coordinates 

θ ,r  and z , where r  is the radial coordinate, θ  is the polar angle and z  is the 

coordinate in the axial direction of the filament wound cylindrical composite, see 

Fig. 2.1. Thus, the stress-strain relations are transformed from the principal material 

directions to the body coordinates (cylindrical coordinates). The results can be 

expressed as: 
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where ijC

~  are the transformed stiffness coefficients for an orthotropic material which 

can be expressed as, 
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Figure 2.1. Filament wound fiber-reinforced circular cylindrical composite. 

 

In Eqs.(2.5), ijC  are the stiffness coefficients referred to the principal material 

directions, φcos=m  and φsin=n , where φ  is the angle between the z-axis and the 

principal direction 1, the fiber direction, see Fig. 2.1. 

 

 The stiffness coefficients, ijC , of an orthotropic material can be expressed in 

terms of engineering constants associated with the principal material directions as 
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and 321  and  , EEE  are Young’s moduli in the principal material directions 1, 2, 3, 

respectively, 322331132112  , , , , , υυυυυυ  are Poisson’s ratios, and 122331  , , GGG  are the 

shear moduli in the 31− , 32 −  and 21−  planes.  
 

The stress-strain relations for a linear isotropic and homogeneous viscoelastic 

material in differential equation form are expressed as [133]:  
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In these equations, ak, bk, ck, dk are specified material constants and 

k

k
k

t
D
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= . In Eqs. (2.7), ′
ijσ , ′

ijε  are the components of stress and strain deviators 

defined as follows: 
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In Eqs. (2.7-2.9), indicial notation is used. In this notation i  and j  represent 

the r , θ , z  in cylindrical coordinates. A repeated index implies summation. For 

example, εkk is equal to the sum of rrε , θθε , zzε  in cylindrical coordinates, that is, 
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zzrrkk εεεε θθ ++=      (2.10) 

 

Furthermore, δij is the Kronecker’s delta defined as: 
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 Under certain conditions, Eqs. (2.7) can also be written in integral form as: 
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where G1(t) and G2(t) are shear and bulk relaxations functions, respectively, and r  is 

the position vector of the particle considered. 

  

In our study, we model the viscoelastic material with standard linear solid. 

The standard linear solid involves three parameters and can be represented as shown 

in Fig. 2. 
 

 

Figure 2.2. Model of viscoelastic material: standard linear solid. 
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The stress-strain relations in differential form for the standard linear solid are 

expressed in the same form as given in Eqs. (2.7). The operators, however, are 

defined as follows: 
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This completes the summary of the basic equations of viscoelasticity and anisotropic 

elasticity in cylindrical coordinates. 

 
 
2.3  Formulation of the Problem 
 
 

As stated in Section 2.1, viscoelastic cylinders enclosed in filament wound 

cylindrical composites consisting of n different generally orthotropic, homogenous 

and linearly elastic fiber-reinforced layers is investigated in this chapter. The body is 

referred to a cylindrical coordinate system, where the radial distances are measured 

by the coordinate r . Boundary, initial and interface conditions of the problem imply 

that the responses of the body are axisymetrical, that is all the field variables are 

functions of r  and t, only. Moreover, the only nonvanishing displacement 

component is ru , that is, the displacement component in the radial direction. 

 

 The governing equations for the viscoelastic layer and for a typical fiber-

reinforced  cylindrical layer will now be given. For the problem considered in this 

chapter, the components of the displacement field in cylindrical coordinates can be 

expressed as: 

 

),( truu rr = ;  0== zuuθ    (2.15) 
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For the three-dimensional case, the stress equations of motions in cylindrical 

coordinates system are given in Section 2.1 by Eqs. (2.1). For the problem 

considered in this study, these equations for the viscoelastic layer reduce to; 
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Equation (2.16) represents the stress equation of motion in the radial direction for the 

viscoelastic layer. The equations in the θ  and z-directions are satisfied identically. In 

the equation, )(v
rrσ  represents the normal radial stress and )(v

θθσ  represents the 

circumferential normal stress. Furthermore, vρ  is the mass density of the viscoelastic 

layer and )(v
ru  is the displacement component in the r - direction for the viscoelastic 

layer. In Eq. (2.16), the body forces are taken zero.  

 

The stress equation of motion for the viscoelastic cylinder can be expressed in terms 

of stress deviators as 
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In Eq. (2.17), 
′)(v

rrσ , 
′)(v

θθσ are the stress deviators defined in section 2.2 by Eqs. 

(2.9) and )(v
kkv σσ = . It should be noted that the subscript v  and the superscript v  in 

parentheses denote that the quantity refers to the viscoelastic layer.  

 

For the three-dimensional case, the stress-strain relations of linear isotropic 

and homogenous viscoelastic material were given by Eqs. (2.7). These equations for 

the standard linear solid take the following forms: 
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The strain-displacement relations for the strain deviators 
′)(v

rrε , 
′)(v

θθε and 

zzrrv εεεε θθ ++=  for the problem considered can be expressed as: 
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In writing Eqs. (2.19), we made use of Eqs. (2.2), Eq. (2.9)2 and the axisymmetrical 

nature of our problem. 

 

Taking into consideration Eqs. (2.19), we can rewrite Eqs. (2.18) as 
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where 

r
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=
)(

)(ε ;  
t
u

v
v

rv
r ∂

∂
=

)(
)(    (2.21) 

 
The stress equation of motion for the outer layers is of the same form as Eq. (2.17). 

In this case, however, the subscript v  and the superscript v  in parentheses denoting 

the viscoelastic layer should be replaced by the subscript and superscript in 

parentheses characterizing the generally orthotropic elastic layer under consideration.  

The outer layers are assumed to be homogeneous, generally orthotropic and linearly 

elastic. Hence, the constitutive equations in terms of stress deviators and 

displacements for a typical layer can be expressed as, 
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where 333223221312
~,~ ,~ ,~,~ ,~ CCCCCC  are the transformed stiffness coefficients for a 

generally orthotropic material which can be expressed as in Eqs. (2.5) of Section 2.2. 

Furthermore, ,′rrσ  ′
θθσ are stress deviators and zzrr σσσσ θθ ++= . Differentiating 

Eqs (2.22) with respect to time, we obtain: 
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In the above equations rv  is the radial particle velocity of a typical generally 

orthotropic layer defined as: 

 

t
uv r

r ∂
∂

=      (2.24) 

 

The formulation of the problem is completed by stating the boundary, interface and 

initial conditions. The boundary conditions at the inner surface ar =  and the outer 

surface cr = can be expressed, respectively, as 
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where )(),()(),( tGtFtVtP   , are prescribed functions of time t , )(tH is the Heaviside 

step function, and 
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)()( ,, are the radial particle velocity 

pertaining to the viscoelastic cylinder and the n’th orthotropic layer. The subscript n  

and superscript n  in parentheses denote that the quantity refers to the outermost 

orthotropic layer. The layers are assumed to be perfectly bonded to each other. 

Hence, the interface conditions at the interface br =  between the viscoelastic 

cylinder and the innermost orthotropic layer, require that,  
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where the subscript 1 and the superscript 1 in parentheses are used for the quantities 

referring to the first innermost orthotropic layer.  
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For a typical interface between the layers designated by F  and 1+F , Eqs. (2.26) 

take the form,  
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),(),( )1()( tdutdu F
r

F
r

+=  

 

where the subscript F and superscript F in parenthesis denote the layer which 

precedes the interface and subscript 1+F  and superscript 1+F  in parentheses 

denote the layer which follows the interface. In the above equation, d is the radial 

coordinate of the interface considered.  
  

The layered body is assumed to be initially at rest; thus, at 0=t , we have  
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v
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v
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The formulation of the problem is thus complete. The governing field equations, Eqs. 

(2.20), (2.21)2, (2.29-2.30), (2.23), (2.24), (2.52-2.53) are applied to the viscoelastic 

and orthotropic layers, and the solutions are required to satisfy the boundary 

conditions at the inner and outer surfaces, Eq. (2.25), the continuity conditions at the 

interfaces, Eqs. (2.26-2.27), and quiescent initial conditions, Eqs. (2.28). Method of 

characteristics is employed to obtain the solutions.  

 
 
2.4 The Method of Characteristics and the Canonical Form of the Governing 

Equations for the Viscoelastic Layer 
 
 
In order to apply the method of characteristics, we write the governing equations as a 

system of first order partial differential equations. For this purpose, were write stress 

equation of motion, Eq. (2.17), in the form: 
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Furthermore, we have the compatibility equation: 
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Now, the system of governing first order partial differential equations, Eqs. (2.20), 

(2.21)2,  (2.29-2.30) can be written in matrix form as: 
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where A and B are six by six matrices defined as: 
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and C and )(vU  are six-dimensional column vectors given as: 

 

C =







































−

−−−

−+−
′

++−
′







 ′

−
′

−

)(

)(

1

1
)(

1

0)(

1

0

1

0

)(

1

1)(

1

0
)(

1

0)(

1

0

)(

1

1
)(

1

0)(

1

0)(

1

0

)()(

0

3
2

3
1

3
2

3
1

3
1

3
2

1

v
r

v
r

v
rv

rrv

v
rv

rr

v
rv

rr

v
r

v
rv

rr
v

rr

vv
rr

v

v

r
v

c
d

r
u

c
d

c
d

c
c

r
v

a
b

a
b

r
u

a
b

a
a

r
v

a
b

r
u

a
b

a
b

a
a

r

εσ

εσ

εσ

σσ

ρ

θθ

  (2.34) 

 



























′

′
=

)(

)(

)(

)(

)(

v
r

v

v

v
rr

v
r

v
rr

(v)

u

v

σ
σ

σ

ε

θθ

U     (2.35) 

    

In Eq. (2.31), )(vU  is the unknown vector and comma denotes partial differentiation: 
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Before we derive the canonical equations from Eq. (2.31), we first establish 

the characteristic lines along which these equations are valid. The characteristic lines 

are governed by the characteristic equation [132] 

 

( ) 0det =− AB vV      (2.37) 
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where  
dt
drVv =  defines the characteristic lines on the )( tr − plane. 

 

In view of Eqs. (2.32-2.33), the characteristic equation, Eq. (2.37), can be 

expressed as: 
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The roots of Eq. (2.38) are: 

 

vv cV =)1( , vv cV −=)2( , 0)6()5()4()3( ==== vvvv VVVV  (2.39) 

 

where  

 
2/1

1

1

1

12
3

1
















+=
c
d

a
b

c
v

v ρ
   (2.40) 

 

Vv
i( )  are the characteristic values and the characteristic lines are defined as: 
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vv cV
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Integration of Eq. (2.41) gives the families of characteristic lines Cv
i( )  

( )61−=i which can be written as: 
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These families of characteristic lines are shown in the ( )tr −  plane in Fig. 2.3. We 

note that Cv
( )1  describes a family of straight lines with slope cv , whereas Cv

( )2  

describes a family of straight lines with slope − cv  on the ( )tr −  plane. Moreover, 
)(i

vC  ( )63−=i  describes straight lines parallel to the −t axes, see Fig. 2.3.  

 

In establishing the canonical form of the governing equations, we define the 

left-hand eigenvectors )(i
vL  ( 61−=i ) corresponding to the characteristic values 

Vv
i( )  ( 61−=i ) as: 
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where T  denotes the transpose. 



 

Figure 2.3. Network of the characteristic lines on the ( )tr −  plane. 
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Solving Eqs (2.43), in view of Eqs. (2.32-2.33), we can write the left-hand 

eigenvectors as:   
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The left-hand eigenvectors in Eq. (2.44) are multiplied by arbitrary constants which 

are not written for the sake of brevity. 

 

The canonical equations can be written as 
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which hold along )(i
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=  )61( −=i . In Eq. (2.45), the superscript T  defines 

transpose, 
dt
d  denotes the total time derivative along the characteristic line and )(i

vL  

is the left-hand eigenvector given by Eqs. (2.44). For the derivations of Eqs. (2.37) 

(2.45) 
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and Eqs. (2.45) see Appendix A. By substituting Eqs. (2.44) into Eq. (2.45) and 

taking into consideration Eqs. (2.32-2.35), we get the canonical equations explicitly 

as 
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2.5 The Method of Characteristics and the Canonical Form of the Governing 
Equations for the Orthotropic Layers 

 
 
The stress equation of motion for a typical orthotropic layer in terms of stress 

deviators can be written as  
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3
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Furthermore, we have the compatibility equation,  
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∂
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Now, the system of the governing first-order partial differential equations, 

Eqs. (2.23-2.24), (2.52-2.53), for a typical layer can be written in matrix form as 

 

0JIUHU =++ rt ,,     (2.54) 

 

 

where H and I are the six-by-six matrices defined as 
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and J  and U are column vectors given by  

 

 

(2.55) 
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In Eq. (2.54), comma denotes partial differentiation as mentioned previously. 

Applying the characteristic equation in view of Eqs. (2.55-2.56), we have 
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The roots of Eq. (2.59) can be obtained as 
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0,, )5()4()3()2()1( ===−== VVVcVcV             (2.60) 

 

where 

ρ
33

~C
c =      (2.61) 

 

The characteristic families of straight lines in the ( )tr −  plane for a typical 

orthotropic layer are then defined by: 

 

cV
dt
dr

== )1(   along )1(C  

 

cV
dt
dr

−== )2(  along )2(C    (2.62) 

 

0)( == iV
dt
dr   along )(iC   )63( −=i  

 

Integration of Eqs. (2.62) gives the families of characteristic lines )(iC )61( −=i as: 

 

ctrC −:)1(  = constant  

 

ctrC +:)2(  = constant    (2.63) 

 

rC i :)(  = constant )63( −=i  

 

These families of characteristic lines are shown in the )( tr −  plane in Fig. 2.3. 

  

The canonical forms of the governing equations along the characteristic lines 

can be written as 
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0ILUHL =+
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where U I, H, are given by Eqs. (2.55, 2.56, 2.58) and )(iL  is the left-hand 

eigenvector defined by: 

 

0) )()( =− iTiT V LH(I  along  )(iC    (2.65)  

 

Applying Eq. (2.65), the left-hand eigenvectors can be computed as 
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Since the left-hand eigenvectors of the typical orthotropic layer are found, the 

canonical equations then can be obtained by applying Eq. (2.64) and taking into 

consideration Eqs. (2.55-2.58) and Eq. (2.66) . This gives the canonical equations for 

a typical orthotropic layer as 
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0=−
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2.6 Integration of the Canonical Equations for the Viscoelastic Layer 
 
 

The canonical form of the governing equations for the viscoelastic layers that 

are valid along the characteristic lines were derived in Section 2.4 and given by Eqs. 

(2.46-2.51). These equations can be written in matrix form as: 
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where the matrices E and F are given as: 
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The material constants in the constitutive equations of the standard linear solid given 

by Eqs. (2.14) can be expressed in terms of the parameters of the shear and bulk 

moduli which yield more physical insight. To this end, we consider the stress-strain 

relations for a linear isotropic and homogeneous viscoelastic material in integral 
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form given in Section 2.2 by Eqs (2.12-2.13). Shear and bulk moduli for the standard 

linear solid can be written as [133]: 
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 In Eqs. (2.76), the constants 1τ  and 2τ  are the relaxation times of shear and 

bulk moduli, respectively, and  
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The constants in Eqs. (2.14) and Eqs. (2.76) are related according to 
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By substituting Eqs. (2.78) into Eqs. (2.74-2.75), we can express the matrices 

FE  and  in terms of the parameters of the shear and bulk moduli of the standard solid 

as 
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where the wave velocity vc  defined by Eq. (2.40) can now be expressed as  
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The canonical equations, Eqs. (2.73), can be written in a more compact form in 

indicial notation as: 
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where a repeated index implies summation over its range. At this stage, it should be 

pointed out that the numerical procedure starts from the r - axis in the ( )tr −  plane, 

and uses the various integration elements shown in Fig. 2.3. A typical interior 

integration element in the viscoelastic layer shown as element V in Fig. 2.3 is drawn 

separately in Fig. 2.4. The canonical equations are integrated along the characteristic 

lines as 
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where iA  and A  are two consecutive points along the characteristic lines )(i
vC  

( )61−=i , Fig. 2.4. Performing the integration in Eq. (2.83) using the trapezoidal 

rule, we obtain: 
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Figure 2.4. Typical interior integration element in the viscoelastic layer. 

 
   

In Eqs. (2.85), t∆  is the time interval between two consecutive points along the 

characteristic lines )1(
vC , )2(

vC , )(i
vC ( )63−=i , see Figs. (2.3-2.4). Furthermore, in 

Eqs.(2.84-2.85), a bar under an index implies that summation convention is not 

applied to that index and ( )AU v
j

)( , ( )iv
j AU )(  represents the values of the field 

variables at point A  and iA , respectively. The elements of ijE  and ijF  are given in 

Eqs. (2.79-2.80). Equations (2.84) represent six equations defined by 61−=i , and 

for each value of the free index i , there is a summation over jwhich takes the values 

61−=j . Thus, when the field variables )(v
jU  are known at points iA ( )61−=i , the 
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values of the field variables )(v
jU at point A  can be determined from Eqs. (2.84). In 

other words, using the triangular mesh shown in Fig. 2.4, the values of the field 

variables at a specific point along any line parallel to the −r axis in the solution 

region, see Fig. 2.4, can be found in terms of the known values of the field variables 

defined at points on the previous line. It is compact and suitable to express the 

equation in this form for computer programming.  

 
 
2.7 Integration of the Canonical Equations for the Orthotropic Layers 
 
 

The canonical form of the governing equations for a typical orthotropic layer 

derived in Section 2.5 and given by Eqs. (2.67-2.72) can be represented in matrix 

form as; 

 

0NUUD =+
dt
d      (2.86) 

 

where the matrices D and N are given as; 
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( )
( )rCCC
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N
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2312322313223322
42 ~~~

~~~~~~~~
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r
CCC

N
)~~~( 122232

52
++−

= , 162 =N ,          

 

all the other 0=ijN   

 

The unknown vector U  is defined by Eq. (2.58). 

   

The canonical equations valid along the characteristic lines of a typical orthotropic 

layer can be integrated in a completely analogous manner as those of the viscoelastic 

layer. We obtain,  

 

[ ] [ ])()()()(
2
1)()( ijijijijijjji AUANAUANtAUAUD +∆=−  

)()(
2
1)()(

2
1

ijijiijjijij AUAtNDAUAtND 



 ∆+=



 ∆−  

 

or 
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)()()( ijijijij AUAZAUS =   ( 61−=i , 61−=j ) (2.89) 

 

where  

 

 S D tN Aij ij ij= −
1
2
∆ ( )   

       (2.90) 

)(
2
1

ijiijij AtNDZ ∆+=  

         

In Eqs. (2.90), ∆t  is the time interval between two consecutive points along the 

characteristic lines, same as that of the viscoelastic layer, see Fig. 2.3 The elements 

ijD  and ijN  are given by Eqs. (2.87-2.88), and jU defines the components of the 

unknown vector for a typical orthotropic layer. Furthermore, )(AU j  and  )( ij AU  

define the values of jU  at points A  and iA )61( −=i , respectively.  

   
 
2.8 Modification of the Equations for the Boundary and Interface Elements 
 
 

For the boundary element ‘B1’, an element on the inner boundary ar =  as 

shown in Fig. 2.3, we should modify Egs. (2.84) in order to satisfy the boundary 

conditions. 

 

When the layered body is subjected to time dependent dynamic input at its 

inner surface, Eqs. (2.25)1, the integrated canonical equations, Eqs. (2.84), remain the 

same for  ,62( −=i )61−=j whereas, the integrated canonical equation for 

,1( =i )61−=j should be replaced by the boundary condition 

 

)()(
3
1)()( APAA v

v
rr −=+

′
σσ  or )()()( AVAV v

r =   (2.91) 
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Now, for the interior element ‘V’, shown in Fig. 2.3, Eqs. (2.84) are capable 

of determining the values )(v
jU for ,61( −=i )61−=j  without any modification.  

 

As for the interface element ‘M’ an element on the interface between the 

viscoelastic layer and the orthotropic layer labelled as layer 1, we should make use of 

combining the sets of Eq.(2.84) and Eq. (2.89) together with the interface conditions. 

The interface conditions require the continuity of the surface tractions and 

displacements at the interface, that is the stress component )(v
rrσ  of the viscoelastic 

layer is equal to the stress component )1(
rrσ of the first orthotropic layer and the 

particle velocity ( )(v
rv ) of the viscoelastic layer is equal to particle velocity ( )1(

rv ) of 

the first orthotropic layer at points on the interface. We can write the governing 

equations for this element as:  

 

)()()()( )()(
i

v
jji

v
jij AUAHAUAG =  ;6,5,4,3,1( =i )61−=j  

          (2.92) 

)()()( )1()1(
ijijijij AUAZAUS =  ,62( −=i )61−=j  

 

supplemented by the interface conditions 

 

)(
3
1)()(

3
1)( 1

)1()( AAAA rrv
v

rr σσσσ +
′

=+
′

  (2.93)  

 

and  

)()( )1()( AvAv r
v

r =     (2.94) 

 

 The composite bodies considered in this thesis consist of n different, 

orthotropic, homogenous and linearly elastic filament wound layers. Equations (2.89) 

were derived for a typical layer. This typical layer can be considered as the m th 

layer and all the quantities pertaining to the m th layer will be denoted by subscripts 

m or superscripts m in parantheses. For a composite case consisting of n layers, m 
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takes the values m=1,2,…,n. Thus, the integrated equations for the interior element K 

in the m th layer can be written as  

 

i
m

ji
m

ji
m

j
m

ij AUAZAUS ()()( )()()()( = ) ,61( −=i )61−=j   (2.95) 

 

where )(m
ijS  and )(m

ijZ  can be obtained from Eqs. (2.90) by simply putting 

superscripts m in parentheses over all the quantities appearing in these equations. In 

this thesis, the inner orthotropic layer is assumed to be layer 1 and the outermost 

orthotropic layer is assumed to be n.  

 

For the boundary element B2 on the outer surface cr = (see Fig. 2.3), Eqs. (2.89) 

need to be modified. Equations for ,1=i 63−  remain the same, that is 

 

)()()( )()()()(
i

n
ji

n
ji

n
j

n
ij AUAZAUS =     ;6,5,4,3,1( =i )61−=j   (2.96) 

 

whereas, the equation for ,2=i should be replaced by 

 

)()(
3
1)( )(

)( AFAA n
n

rr −=+
′

σσ  or  )()()( AGAV n
r =  (2.97) 

 

depending on whether surface tractions or particle velocity is prescribed.. 

 

We have another type of element where Eqs. (2.89) need to be modified. These 

elements which are called the interface elements of orthotropic layers correspond to 

points A at the interfaces. The number of interfaces depend on the number of layers 

and since we have n layers, we have ( )1−n  interfaces which will be denoted by (L12, 

L23,…….,L(n-1)(n)), see Fig. 2.3. For a point A at the interface between the layers m 

and m+1, element L(m)(m+1), Fig. 2.3, Eqs.(2.89) are modified as 
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m
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m
ij AUAZAUS =  ;6,5,4,3,1( =i )61−=j  

          (2.98) 

)()()( )1()1()1()1(
i

m
ji

m
ji

m
j

m
ij AUAZAUS ++++ = ;62( −=i )61−=j   

 

where the superscripts m in paranthesis denote the layer which precedes the interface 

and m+1 denotes the layer which follows the interface. Equations (2.89) for 2=i  for 

m th layer and 1=i  for the layer m+1 are replaced by the interface conditions 

requiring the continuity of surface tractions and displacements, which are  

 

)(
3
1)(

3
1)( )1()( AAA m

m
rrm

m
rr σσσσ +

′
=+

′ +   (2.99) 

 

and 

 

)()( )1()( AvAv m
r

m
r

+=     (2.100) 

 

Thus, modification of the equations for the interface and boundary elements is 

completed. Equations (2.98–2.100) represent twelve equations to determine the 

twelve unknowns, )()( AU m
j  and )()1( AU m

j
+ , pertaining to points on the interface of 

the layers m and m+1. 

  
 
2.9 Ablating Inner Boundary  
 
 

In this section, we investigate the case in which the inner surface of the 

viscoelastic cylinder enclosed in filament wound cylindrical composites is a moving 

boundary. This is the case in solid propellant rocket motor cases. As the propellant 

burns, the inner surface moves outwards, decreasing the thickness of the viscoelastic 

layer representing the solid propellant (see Fig. 2.5). As can be seen from Fig. 2.5, 

equations for the elements ‘T’ and ‘P’ should be obtained by properly modifying the 

previously derived equations for the inner and boundary elements of the viscoelastic 

layer.  
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In order to find the values of the field variables )(v
jU  at points A of the 

boundary element ‘T’, we make use of Eqs. (2.84) together with Eq.(2.91). However, 

the coefficients )(AGij  and )( iij AH and the values of the field variables at points iA , 

that is )( ij AU , should be modified properly. For this purpose, the values of  ijG  

,62( −=i )61−=j at point A should be calculated using the known ijG  values of 

the former and later points (points F and L at Fig. 2.6) with interpolation technique. 

Formulation of this calculation can be written in equation form as  

 

 

)(
)()(

)( FGr
r

FGLG
AG ijF

v

ijij
ij +∆

∆

−
=   (2.101) 

  

where vr∆  and Fr∆  are the distances shown in Figs. (2.5-2.6) and )(LGij  and 

)(FGij  denote the values of ijG  at points ‘L’ and ‘F’, respectively, Fig. 2.6. 

 

Furthermore, the values of ijH ,62( −=i )61−=j at points ‘A2’ and ‘A3’ of the 

element ‘T’ should be modified using their known values at points ‘P′ ’, ‘Q’ and ‘S’, 

see Fig. 2.6. These can be calculated through interpolation as  
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  (2.103) 

 

where QPr ′∆ , Qr∆ , Pr ′∆  are the distances shown in Fig. 2.6 and can be calculated as 

below 
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burn

burn
p T

Tt
r

2
+

=∆ ′  

 

pvQP rrr ′′ ∆−∆=∆     (2.104) 

 

pQ rr ′∆=∆ 2  

 

In Eqs. (2.104), t  is the time corresponding to point A of typical boundary element T 

and burnT  is the burning time of the whole solid propellant. In other words, burnT  is 

the time required to reach zero thickness for viscoelastic layer.  

 

We must further find the values of vector )(v
jU  at points A2 and A3 of element ‘T’. 

This can be achieved by interpolating  known values of the field variables at points 

‘P′ ’, ‘Q’ and ‘S’ as shown in Fig. 2.6 and can be written in equation form as  
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  (2.106) 

  

In Eqs. (2.105-2.106),  )()( PU v
j ′ , )()( QU v

j  and )()( SU v
j denote the values of the 

field variables )(v
jU  at points ‘P′ ’, ‘Q’ and ‘S’, Fig. 2.6. 

 

The modifications of the coefficients and the values of the field variables in Eqs. 

(2.84) for the inner element ‘P’ will now be considered. For the element, location of 

the point A1 can be seen on Fig. 2.6. As can be seen from the figure, equations of 

jH1  )61( −=j  for point A1  needs modification. This can be done by modifying the 

time difference and the position values in the equation. For the former one tt∆  is 

used instead of t∆  after that point. For example ( )112 AH  takes the form below   
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1020112 Ar
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where tt∆  is the time difference and )( 1Ar  is the position of  the point 1A  of element 

P as shown in Fig. 2.6 and tt∆  can be evaluated using the following equation   

 

pQ rPtt ′∆−′∆=∆     (2.108) 

 

Furthermore, the values of )(v
jU  for point 1A  of element ‘P’ should be evaluated by 

interpolation from known values of the field quantities at points ‘W’ and ‘V’ shown 

in Fig. 2.6.  This can be written as  

 

( ) )(
)()(

)( )(
)()(

1
)( WUttt

t
WUVU

AU v
j

v
j

v
jv
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where )()( VU v
j  and )()( WU v

j  are the known values of the  field variables at points 

‘V’ and ‘W’ , see Fig. 2.6.  

 

For the points A of inner element ‘S’, Eq. (2.84) do not need any modification. 

 
 
2.10 The Solution Procedure 
 
 

At this point, the integration of the canonical equations is completed. Before 

discussing the numerical examples, we explain below, the numerical procedure in 

more detail. For this purpose, we refer to the network of characteristic lines, Fig. 2.3.  

 

Our goal is to establish the solution ( ))()()()()()( ,,,,, v
rv

vv
rr

v
r

v
rr

v
i uvU σσσε θθ=  

for the viscoelastic layer and ( )rrrrrri uvU ,,,,, σσσε θθ=  for the orthotropic layers  



 

Figure 2.5. Description of characteristic lines with a moving inner boundary for the encased viscoelastic cylinder.

56
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Figure 2.6. Detailed description of elements T and P on the )( tr − plane. 

 
 
at all points of the network of characteristics lines shown in Fig. 2.3. To achieve this, 

we start at the origin and proceed along axisr −  where the values of, i
v

i UU   ,)(  are 

all equal to zero because of quiescent initial conditions. Then, we proceed into the 

region by computing i
v

i UU   ,)(  at the points of the network with the order 

3,2,1,3,2,1 ′′′′′′′′′ ...... ,….etc(Fig. 2.3). 

 

To explain the numerical procedure, we refer to five different elements, namely, the 

inner boundary element ‘B1’, the inner viscoelastic layer element ‘V’, the interface 

element ‘M’ between viscoelastic layer and first orthotropic layer, the inner 

orthotropic element ‘K’, the interface element ‘L’ between orthotropic layers, and the 

outer boundary element ‘B2’, see Fig. 2.3. Knowing that all the field variables are 

zero on the axisr − , we start the solution at point 1′  which is point A on the 

boundary ar =  and is denoted by element ‘B1’ in Fig. 2.3. The analysis of the 

boundary element ‘B1’ involves finding the six components of )(v
iU  at the point A in 
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terms of their values at the points A2 and iA ( )63−=i  and the given boundary 

condition at the inner surface. The integrated equations giving the values of )(v
iU  at 

the point A are Eqs. (2.84) for ,62( −=i )61−=j together with Eq. (2.91) where the 

inner boundary surface is subjected to uniform time dependent dynamic inputs. As 

we advance in the ( )tr − -plane, we come to an interior point A in the viscoelastic 

layer which is denoted by element ‘V’ in Fig. 2.3. Similarly, the analysis for the 

interior element ‘V’ involves establishing the six components of )(v
iU  at the points A 

in terms of their values at the points A1, A2 and iA ( )63−=i  which at this stage are 

all known. The equations giving these values were obtained in section 2.6 as Eqs. 

(2.84). Next element in the solution process is ‘M’ which represents points A at the 

interface of the viscoelastic and innermost orthotropic layers. The analysis of this 

element involves finding the values of )(v
iU  and )1(

iU , ( )61−=i , from the integrated 

canonical equations, Eqs. (2.92) and the interface conditions given by Eqs. (2.93-

2.94). Next type of the element in the solution process is, the inner element ‘K’ in the 

m th layer and the analysis involves the determination of the values of iU  at the 

points A in terms of their values at points A1, A2 and iA ( )63−=i . This is 

accomplished by employing Eqs. (2.95). For an interface element ‘L’ at the interface 

of layers m and m+1, the values of the field variables at point A can be determined 

from the integrated canonical equations, Eqs. (2.98), together with the interface 

conditions given by Eqs. (2.99-2.100). Finally, in the analysis for the boundary 

element ‘B2’ at cr = , the values of the field variables at point A are determined from 

Eqs. (2.96-2.97). This completes the description of the numerical procedure to obtain 

the values of the field variables )(v
iU  and iU  )61( −=i  at points A of the network of 

the characteristic lines. For this purpose, a computer program in the FORTRAN 

language is written and the numerical computations are carried out at the computer. 

 

For the ablating inner boundary solutions, we investigate the problem with 

two different boundary lines. Equations for the two boundary lines are different from 

each other because the rates of decrease of the solid rocket propellant for the two 
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cases are taken different. The equations of these boundary lines in the )( tr −  plane 

can be stated as follows.  

 

( )ar
c

t
v

−=
100 : boundary line BL1   (2.110) 

 

( )ar
c

t
v

−=
500 : boundary line BL2   (2.111) 

 

In the first equation, Eq. (2.110), the rate of decrease is the highest while for the last 

equation, Eq. (2.111), it is the smallest. In other words, Eq. (2.111) has smaller slope 

with respect to axist −  as compared to Eq. (2.110).  

 

Our aim in using two different line equations is, to find )(v
jU  )61( −=j  and 

)61( −=jU j  in the viscoelastic cylinder enclosed in filament wound cylindrical 

composites for two different decreasing rates is to see the effects of the rate of 

decrease of the thickness of the viscoelastic layer on the stresses in the remaining of 

the viscoelastic layer and the filament wound cylindrical laminate enclosing the 

viscoelastic layer. Numerical values for the material properties and the geometric 

parameters are exactly the same as the numerical values of the examples considered 

in the non ablating cases.  

 

In the case of an ablating inner boundary, the integrated canonical equations for the 

boundary element ‘B1’ and the inner element ‘V’ for some inner points in the 

immediate vicinity of the ablating boundary need to be modified. This modification 

was described in some detail in section 2.9. As in the case of non-ablating boundary, 

we start at the origin and proceed along the axisr − , where at all the points the field 

variables are zero due to quiescent initial conditions. Then, we proceed to point 1′ , 

Fig. 2.5. Point 1′  is a boundary point described by element ‘T’. Hence, we use Eqs. 

(2.84, 2.91) with the modifications defined by Eqs. (2.101-2.103, 2.105) to find the 

field quantities at point 1′ . Then we proceed to point 2′ . This is an interior point in 

the immediate vicinity described by the interior element ‘P’ and therefore, we use 
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Eqs. (2.84) with the modifications defined in Eqs. (2.106, 2.107), in order to find the 

values of the field variables at this point. After finding it, we pass to point 3′ . This is 

also an interior point, but described by element ‘S’ and hence we can use Eqs. (2.84) 

without any modification. We know the values of the field variables at points 2, 3 

and 4 and we can find the response of point 3′ . The values of the field variables at 

points 4′ , 5′ , 6′ , …. are computed in the same way as that of the non ablating 

boundary case, employing the same equations with the same elements.  

 

We wrote a computer program for this case and carried out all the 

computations through the computer. The computer program is written in FORTRAN 

language as well.  

 

 

2.11 Numerical Examples and Discussion of the Results 
 
 

In the numerical examples, the inner surface is assumed to be subjected to a 

uniform time dependent pressure and the outer surface is free of surface tractions, 

that is, the boundary conditions, in view of Eqs. (2.25), are 

 

)()(),(
3
1),()( tHtPtata v

v
rr −=+

′
σσ  

        (2.112) 

0),(
3
1),()( =+

′
tctc n

n
rr σσ  

 

In the method of characteristics, we are free to choose any time dependency for the 

applied pressure. In the problems, we choose a step-time variation with an initial 

ramp, see Fig. 2.7. In this figure, we notice that the applied pressure is zero at 0=t , 

linearly rises to a constant value oP  during a rise time of t∆  and remains constant 

thereafter. The initial ramp in the pressure variation eliminates the complicated 

circumstances of having first-order discontinuities in the field variables at the wave 

fronts. Furthermore, it is physically more realistic as a boundary condition than a step 

time variation without a ramp.  
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Figure 2.7. Variation of radial pressure applied at the inner surface. 

  

 
The numerical computations are carried out and the results are displayed in 

terms of non-dimensional quantities. These non-dimensional quantities are defined as   
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where the non-dimensional quantities are designated by bars. Furthermore, a is the 

radius of the inner surface and vv c,ρ  are the mass density and wave velocity of the 

viscoelastic layer, respectively.  

 

First, several examples will be given to verify the validity, efficiency and 

effectiveness of the method employed. In the first example of verification, the 

dynamic response of a viscoelastic cylinder encased in an isotropic, homogeneous 

and linearly elastic layer is investigated. The viscoelastic and elastic layers are 

perfectly bonded to each other. The inner surface of the viscoelastic layer is 

subjected to a uniform time dependent pressure where the time variation is chosen as 

a step function with an initial ramp, see Fig. 2.7, and the outer surface is free of 

surface tractions, Eqs (2.112). The encased viscoelastic cylinder is initially at rest. 

This problem was solved by Turhan and Şen [139] and Şen [144] by employing the 

method of characteristics. Şen’s [144] solution was further verified by the solution of 

Chou and Greif [43] for a special case. The solution of this problem in our treatment 

is obtained as a special case of a viscoelastic cylinder encased in a filament wound 
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fiber-reinforced cylindrical composite consisting of three generally orthotropic layers 

with stacking sequence -30/0/90 starting from the inner layer. The viscoelastic 

material is modelled as standart linear solid in this study as well as Refs. [139, 144].  

 

Two different materials (one more viscous) were chosen for the viscoelastic layer. 

The material properties are taken as Refs. [133, 139] 

 

A) Material 1: (more viscous material properties) 

 

7.010 =G ;  14.01 =FG ;  ;6.120 =G  4.02 =FG ;  

          (2.114) 

5.11 =τ ;  ;5.22 =τ   1=ρ ;  1==
v

v
v
c
c

c    

  

B) Material 2: (less viscous material properties) 

 

7.010 =G ;  28.01 =FG ;  ;6.120 =G  8.02 =FG  

          (2.115) 

31 =τ ;  ;52 =τ   1=ρ ;  1=vc    

  

 

The non-dimensional  material properties for the elastic case were taken in [139] as 

 

57.42 ==
vvcρ

λλ ,  86.62 ==
vvcρ

µµ ,  

         (2.116) 

4==
v

e
e ρ

ρ
ρ ,  2==

v

e
e c
c

c     
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where λ  and µ  are Lame’s constants and eρ  and ec are the density and particle 

wave velocities of the isotropic elastic layer.  

 

In our treatment of the problem in this study, we take the material properties of the 

three generally orthotropic layers the same and such that they represent three 

identical isotropic elastic layers with the same dimensionless material properties 

given by Eq. (2.116). The thickness of the layers are chosen such that the total 

thickness of the multilayered elastic case is the same as the thickness of the elastic 

layer of Refs. [139,144]. The material properties of the viscoelastic layer in our 

treatment are taken the same as these given by Eqs. (2.114-2.115). The material 

properties of the orthotropic layers in our treatment are taken as  

 

691.11321 === EEE ; 96.3231312 === GGG  

          (2.117) 

3.0122113313223 ====== υυυυυυ     

 

The geometric properties of the case cylinders of Refs. [139,144] and those 

considered in this treatment are  

 

1=a ;  2=b ;   3.2=c   (2.118) 

 

The curves for denoting the variations of the non-dimensional radial normal stress 

0
)( / Pv

rrσ−  with the dimensionless time atct v /=  at the location 5.1/ == arr  and 

the non- dimensional circumferential normal stress 0/ Pθθσ  with atct v /=  at 

location 15.2=r  for nonablating inner surface are given in Figs. (2.8, 2.9), 

respectively. Location 5.1=r  is in the viscoelastic layer, whereas 15.2=r is in the 

outer elastic case. The curves for viscoelastic material 1 obtained from Refs. 

[139,144] and those obtained in this study as a special case are almost identical and 

they are given as the same curves in Figs. (2.8, 2.9). The curves for viscoelastic 

material 2 are not given in Refs. [139,144]. They are given in this study to show the 

effects of viscosity of the viscoelastic layer. Material 2 is less viscous than material 1 
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and this is revealed in the curves by a slower attenuation of the stress levels due to 

material internal friction. The case of ablating inner surface defined by  

 

( )1500 −= rt : boundary line BL2   (2.119) 

 

is considered in Fig. 2.10. The curves in this figure denote the time variations of 

0/ Pθθσ  at the location 15.2=r in the outer elastic layer for both the ablating and 

non-ablating inner surfaces. The curves are for viscoelastic material 1. The curves of 

Refs. [139,144] and these obtained in this study coincide and they are shown as one 

curve in Fig. 2.10. These excellent agreements verify the validity of our solutions.  

 

 In the second example of verification, transient dynamic response of a 

multilayered medium consisting of five generally orthotropic layers with the stacking 

sequence 30/-30/90/0/90 is considered. A uniform pressure with a stepwise time 

variation as shown in Fig. 2.7, is applied on the inner surface and the outer boundary 

is free of surface tractions. This problem was solved by Turhan and Ghaith [140] 

which was verified, for a special case, by the solution of Chou and Greif [43]. The 

numerical computations are carried out for T300/5208 graphite/epoxy composite 

with the non dimensional properties 

 

 

817.0
33

1
1 ==
C
EE ,    

 

644.0
33

3

33

2
32 ====

C
E

C
EEE ,     

        (2.120a) 

,0338.0
33

13

33

12
1312 ====

C
G

C
GGG      

 

,035.0
33

23
23 ==

C
G

G       
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238.01312 ==υυ , 49.023 =υ      

 

1=a , 5.1=b ,     (2.120b)

    

1.0=ih  )51( −=i ,    1=iρ  )51( −=i  

 

This problem is solved in this study by modifying our computer program to include 

only the generally orthotropic layers without the viscoelastic layer. The solution 

obtained in this study is exactly the same as that given in Ref. [140] and the curves 

giving the time variations of the non-dimensional radial and circumferential normal 

stresses at location 25.1=r  are given in Fig. 2.11. 

 

We now present some results for the case of viscoelastic cylinders encased in 

filament wound fiber- reinforced cylindrical composites which is the basic problem 

investigated in this chapter. The inner surface is subjected to a uniform time 

dependent pressure and the outer surface is free of surface tractions, that is, the 

boundary conditions are given by Eqs (2.112). The pressure function )(tP  has a step-

time variation with an initial ramp as shown in Fig. 2.7. The body is assumed to be 

initially at rest; hence, the initial conditions are as given in Eqs. (2.28). The layers are 

assumed to be perfectly bonded to each other, and therefore, the interface conditions 

are as defined by Eqs. (2.26-2.27). The multilayered body consists of a viscoelastic 

layer whose material is modeled as standard linear solid and three generally 

orthotropic elastic layers with stacking sequence -30/0/90 starting from the inner 

layer. The numerical computations are carried out using solid propellant material 

properties for inner viscoelastic layer and S2 glass/epoxy composite material 

properties for orthotropic elastic outer layers [141-142]. The non-dimensional 

material properties then can be written as  

 
 
 
 



 67

A) Propellent properties  

 

006.010 =G ; 002.01 =FG ;  ;988.220 =G  

(2.121) 

805.02 =FG ; 4.11 =τ ; ;8.32 =τ  1=vρ ;  

 

B) S2 glass/epoxy properties 

 

33.03223 ==υυ ;  236.012211331 ==== υυυυ ;   

           

        786.2023 =G ;  591.191213 == GG    (2.122) 

        

693.1631 =E ;  564.5432 == EE     

           

588.1=ρ  
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Figure 2.8. Variation of radial normal stress 0/ Prrσ−  with time t  at location   

5.1=r  in the viscoelastic layer for non-ablating inner surface. 
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Figure 2.9.  Variation of circumferential normal stress 0/ Pθθσ  with time t  at 

location 15.2=r  for non-ablating inner surface. 

 

-1

0

1

2

3

4

5

6

0 5 10 15 20 25 30

non - dimensional time

no
n 

- d
im

en
si

on
al

 c
irc

um
fe

re
nt

ia
l s

tre
ss

stationary

ablating with boundary line B2

 
 

Figure 2.10. Variation of circumferential normal stress 0/ Pθθσ  with time t  at     

location  15.2=r  for ablating and non ablating inner surfaces. 
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Figure 2.11.Variations of non-dimensional stresses with time t  at location 

25.1=r  for the cylindrical laminate with five generally orthotropic 

layers. 

 
The numerical results are illustrated in curves in Figs. (2.12-2.18). In Fig. 2.12, the 

variation of 0
)( / Pv

rrσ−  with time t  at the location 5.1=r  is displayed. In the figure, 

three curves are given, one for the stationary inner surface and the other two for 

ablating inner boundaries. Equations of ablating inner boundary lines in the ( )tr −  

plane are given by Eqs. (2.110, 2.111). The curves denote the effects of reflections at 

the inner ( 1=r ), and outer )3.2( =r boundaries, and reflections and transmissions at 

the interfaces of the layers. Furthermore, the curves denote the effects of material 

internal friction due to the fact that the body is four layered and first layer is 

viscoelastic. The effect of geometric dispersion is also apparent in the curves. The 

pattern of sudden increases and decreases in the stress levels is due to the arrival of 

reflected, re-reflected and transmitted waves generated at the inner and outer 

boundaries and the interfaces between the viscoelastic and elastic orthotropic layers. 

We note that the mass densities and wave velocities of all the orthotropic elastic plies 

are the same, hence reflections at the interfaces between orthotropic layers are not 
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distinctive in the curves. In the values of stress levels up and down, we can also see 

the effects of viscoelasticity and the cylindrical geometry of the layered body. If the 

four layers were made of elastic materials with the same properties and the geometry 

of the body were plane instead of cylinder, the jumps in the stress levels would be 

equal to 1 and dimensionless stress levels would be either 0 or 1 which is a well 

known fundamental result in wave propagation. In the curves of Fig. 2.12, we see 

that the non-dimensional radial stress 0
)( / Pv

rrσ−  reaches values as high as 2. This is 

quite striking. Normally, the radial stress does not reach that high values in ordinary 

elastic or viscoelastic layers. The reason it is so high here is due to the distinguished 

properties of the solid propellant which is quite close to being incompressible. We 

also note that the radial stress is compressive in the time range considered. This is 

also a desirable situation for smooth combustion of the propellant. The curves for the 

ablating inner boundary cases show similar features especially in the neighborhood 

of the time of arrival of the disturbance. As time passes on, differences in the curves 

become more distinct. This is due to the differences in the rates of decrease of the 

thickness of the viscoelastic layer. The curve with the bold color is for the boundary 

line B2 defined by the equation )1(500 −= rt . When we compare this curve with the 

curve having a solid line and grey color which is for the stationary inner boundary, 

curves differ very little from each other. On the other hand, the curve for the 

boundary line B1 defined by the equation ( )1100 −= rt  deviates more significantly 

for large times from that of the stationary inner boundary case. Thus, naturally, as the 

rate of decrease gets larger, the differences in the curves increase. 

 

Fig. 2.14 shows the variation of the non-dimensional stress 0
)( / Pv

rrσ−  with time t  

at location 2=r (interface). The curve in this figure exhibits similar features as those 

of Fig. 2.12. We note that the peak stress levels get smaller for the problem as we go-

away from the inner surface ( )1=r , see Figs. (2.12, 2.14). This is due to the material 

internal friction and geometric dispersion.  

 

Figures (2.13, 2.15) denote the variations of the non-dimensional circumferential 

normal stress 0
)( / Pv

θθσ−  with time t  at points 5.1=r  and 2 (interface), 
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respectively, of the multilayered medium. These curves reveal similar trends. The 

effects of reflections at the boundaries, reflections and transmissions from interface 

between viscoelastic and first orthotropic layer, internal friction and body geometry 

are exhibited in these curves, as well. We note from these curves  that 0
)( / Pv

θθσ  is 

overhelmingly negative. Furthermore, we note that the trend and the values of the 

stress levels for 0
)( / Pv

θθσ  are very similar to those of 0
)( / Pv

rrσ  at the locations and 

time ranges considered. This is due to the incompressible nature of the propellant. 

We also note from the two figures that, the peak levels of the stress 0
)( / Pv

θθσ  are 

higher at location 5.1=r  than at 2=r . This is due to the internal friction in the 

viscoelastic layer and geometric dispersion.  

 

Figures (2.16, 2.18) show the variations of the circumferential normal stress 

0
)1( / Pθθσ  and 0

)2( / Pθθσ  with time t  at locations 2=r (interface) and 2.15, 

respectively. These figures display similar trends. We note from the figures that the 

major stress in the orthotropic layers is 0/ Pθθσ  which may assume values as high as 

11 for 2=r (interface) and 18 for 15.2=r . At the interface ,2=r  we note that the 

circumferential normal stress 0/ Pθθσ  suffers discontinuities. It may reach values as 

high as 11 in the orthotropic side, whereas in the viscoelastic side of the interface it 

remains less than 2, see Figs. (2.15, 2.16). We further note that 0/ Pθθσ  for 

orthotropic layers is basically tensile, whereas in the viscoelastic layer which 

represents a solid propellant, it is basically compressive. The circumferential stress 

being compressive in the viscoelastic layer is a desired situation for solid propellants. 

In addition to the stationary inner boundary curve, Fig. 18 includes two different 

ablating boundary curves as well. It is seen from the figure that the curves for the 

stationary surface and ablating boundary surface denoted as 2BL  differ little from 

each other. This is because 2BL defined by equation ( )1500 −= rt  in the ( )tr − -plane 

is a slowly moving boundary. However, the curve pertaining to the boundary 1BL  

represented by equation ( )1100 −= rt , deviate more significantly from the curve 
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related to the stationary boundary. This is because ablating boundary 1BL  is a fast 

moving boundary.  

 

Finally, Fig. 17 displays the variation of radial normal stress 0
)2( / Prrσ−  with respect 

to time t  at location 15.2=r . This curve also denotes the effects of reflections and 

transmissions at the boundaries and interfaces. Jumps in the stress levels decrease as 

time t  increases. This is due to body geometry and viscoelasticity of the first layer. 

When we compare this figure to the non-ablating curve of Fig. 12, the differences are 

due to the position of the location considered. Since the point is close to the outer 

boundary and the interface, the jumps at the stress levels are more frequent in this 

figure compared to the curve of the non-ablating case of Fig. 12. This is also due to 

the fact that wave velocity in the orthotropic layer is nearly seven times to that in the 

viscoelastic layer and the thickness of the orthotropic layers is one-tenth of that of 

the viscoelastic layer.  
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Figure 2.12. Variation of  radial stress 0

)( / Pv
rrσ−  with time t  at location 5.1=r  

in the  viscoelastic layer for the ablating and non-ablating inner 
surfaces. 
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Figure 2.13. Variation of circumferential stress 0

)( / Pv
θθσ−  with time t  at location 

5.1=r  in the viscoelastic cylinder for non-ablating inner surface. 
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Figure 2.14.  Variation of radial stress 0

)( / Pv
rrσ−  with time t  at location 2=r , 

the interface between the viscoelastic and first orthotropic layer, for 
non-ablating inner surface. 
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Figure 2.15. Variation of circumferential stress 0

)( / Pv
θθσ−  with time t  at location  

2=r , the interface between the viscoelastic and first orthotropic layer 
for non-ablating inner surface. 
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Figure 2.16.  Variation of circumferential stress 0

)1( / Pθθσ  with time t  at location 

2=r , the interface between the viscoelastic and first orthotropic 

layer, for non-ablating inner surface. 
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Figure 2.17. Variation of radial stress 0

)2( / Prrσ−  with time t  at location 15.2=r  in 

the  second orthotropic layer for non-ablating inner surface. 
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Figure 2.18. Variation of  circumferential stress 0

)2( / Pθθσ  with time t  at location 

15.2=r  in the second orthotropic layer for ablating and non-ablating 
inner surfaces. 
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CHAPTER 3 
 
 

THERMOMECHANICAL RESPONSE OF FIBER-REINFORCED 
CYLINDRICAL COMPOSITES 

 
 
3.1 Introduction 
 
 

In this chapter, transient dynamic response of filament wound cylindrical 

composites will be investigated. Thermal effects, in addition to mechanical effects, 

are taken into consideration as well. A generalized thermoelasticity theory which 

incorporates the temperature rate among the constitutive variables and is referred to 

as temperature-rate dependent thermoelasticity theory is employed. This theory 

predicts finite heat propagation speeds. This theory has been developed and used in 

many steady state and transient wave propagation problems, among which we can 

site [97-121]. An exhaustive review of the literature on these theories known as 

thermoelasticity with second sound is given in Ref. [122-124]. 

 

The body considered in this chapter consist of n-different generally orthotropic, 

homogeneous and elastic layers. In each ply, the ply orientation angle may be 

different. The body is a hollow circular cylinder with a finite thickness in the radial 

direction, whereas it extends to infinity in the axial direction. The multilayered 

medium is subjected to uniform time-dependent dynamic inputs at the inner and/or 

outer surfaces. The body is assumed to be initially at rest. The layers are assumed to 

be perfectly bonded to each other.  

 

 The governing field equations of anisotropic temperature rate dependent 

thermoelasticity will be applied to each layer and the solutions are required to satisfy 

the continuity conditions at the interfaces of the layers, the boundary conditions at 

the inner and outer surfaces and the initial conditions. In the following parts of this 

chapter, governing field equations are explained briefly. 
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Method of characteristics is employed to obtain the solutions. Method of 

characteristics is suitable for this thermoelastic problem as well, because the 

governing equations of the temperature rate dependent thermoelasticity are 

hyperbolic unlike those of classical thermoelasticity. 

 
 

3.2 Basic Equations of  the Temperature Rate Dependent Thermoelasticity (TRDTE) 
for Orthotropic Materials in Cylindrical Coordinates 

 
 

 This part summarizes the basic equations of temperature rate dependent 

thermoelasticity (TRDTE) for orthotropic materials. Equations for the anisotropic 

TRDTE with no symmetry are obtained from Chandrasekharaiah [122] and more 

information can be obtained from this reference.  

 

Constitutive equations of TRDTE together with the energy equation for 

homogenous and anisotropic materials for the three-dimensional body in Cartesian 

coordinates can be written as [122]; 

 

( )TTC ijklijklij
&αβεσ +−=  

 

( )( ) ijiji
i T

T
c

TTTcS εβαρρ +







−+= ,

0
00/ &   (3.1)  

 
( )jijii TkTcq ,+−= &  

 
( )0, TSRq ii

&−= ρ  
 

In Eqs. (3.1), T  is the temperature deviation from the initial uniform reference 

temperature 0T , ie, 0TTT −′= , where T ′  is the absolute temperature. Also, ijklC  is 

the elasticity tensor, ijβ  is the thermoelasticity tensor, ijk  is the thermal conductivity 

tensor and c  is the specific heat per unit mass, in the isothermal state. Further, iq  is 

the heat flux, S  is the entropy per unit mass and ic , , , , 210 σααα  are new material 

constants not encountered in classical thermoelasticity (CTE). Furthermore, the last 
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of Eqs. (3.1) is the energy equation in which R is the intensity of the internal heat 

source per unit mass. In addition to these, following symmetry conditions hold good; 

 

jiijjiijijlkjiklklijijkl kkββCCCC =====        ,       ,    (3.2) 

 

We note that, in Eqs. (3.1-3.2), indicial notation is used and from now on, the rules 

pertaining to its use will be employed, otherwise it will be indicated.  

 

 For an orthotropic material with three orthogonal planes of symmetry the 

second rank symmetric thermoelasticity tensor ijβ  takes the form; 

 

[ ]















=

33

22

11

00
00
00

β
β

β
β     (3.3) 

 

This is the form referred to the principal material directions   2,1 and 3 . The 

transformed thermoelasticity tensor components referred to the body coordinates 

zr   ,,θ  (cylindrical coordinates, see Fig. 2.1) can be expressed as; 

 

22
2

11
2 βββ nmzz +=  

 
22

2
11

2 βββθθ mn +=     (3.4)  
 

33ββ =rr  
 

2211 βββθ mnmnz −=  
 

where φcos=m , φsin=n  and φ  is the angle between the z -axis and the principal 

material direction 1, the fiber direction, see Fig. 2.1. 

 

The symmetric thermal conductivity tensor ijk  has six independent components for 

an anisotropic material with no symmetry. However, for an orthotropic material with 
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three orthogonal planes of symmetry, the thermal conductivity tensor referred to the 

principal material directions takes the form below.  

 

[ ]k















=

33

22

11

00
00
00

k
k

k
    (3.5) 

 

The transformed thermal conductivity tensor components referred to the body 

coordinates z   r ,,θ can be expressed as; 

 

22
2

11
2 knkmkzz +=  

 
22

2
11

2 kmknk +=θθ     (3.6)  
 

33kkrr =  
 

2211 mnkmnkk z −=θ  
 

 Furthermore, it can be shown that the material constants ic  in Eqs. (3.1)2, (3.1)3 

are zero for an orthotropic material having three orthogonal planes of symmetry.  

 

  Thus, the equations for a generally orthotropic thermoelastic layer can be 

written in cylindrical coordinates as; 

 
constitutive equations for stress components 
 

 

( )TTCCCC zzzrrzzzz
&αβεεεεσ θθθ +−+++= 16131211

~2~~~  

 

( )TTCCCC zrrzz
&αβεεεεσ θθθθθθθ +−+++= 26232221

~2~~~   (3.7a) 

          

( )TTCCCC rrzrrzzrr
&αβεεεεσ θθθ +−+++= 36333231

~2~~~  

 



 80

rzrr CC εεσ θθ 4536
~2~2 +=  

          

rzrrz CC εεσ θ 5545
~2~2 +=     (3.7b) 

          

( )TTCCCC zzrrzzz
&αβεεεσ θθθθθ +−+++= 66362616

~2~~~  

 

where ijC~  are the transformed stiffness coefficients for a generally orthotropic 

material, see Eqs. (2.5), 

 

constitutive equation for the entropy dencity 
 

( )( ) rrrrzzzzzzzzTTTcS εβεβεβεβεβαρρ θθθθθθθθ ++++++= &
00/  (3.8) 

 

energy equation  

 

( ) ( )0
11 TSR

z
qq

r
rq

rr
z

r
&−=

∂
∂

+
∂
∂

+
∂
∂ ρ

θ
θ   (3.9) 

 

Fourier law of heat conduction 
 

r
Tkq rrr ∂
∂

−=  

 

z
TkT

r
kq z ∂

∂
−

∂
∂

−= θθθθ θ
1     (3.10) 

 

z
TkT

r
kq zzzz ∂

∂
−

∂
∂

−=
θθ

1     

 

This completes the summary of the basic equations of temperature-rate dependent 

thermoelasticity in cylindrical coordinates for generally orthotropic materials. 
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3.3 Formulation of the Problem 
 
 

As stated in Section 3.1, transient dynamic response of filament wound 

cylindrical composites consisting of n different generally orthotropic, homogenous, 

thermoelastic layers is investigated in this chapter. The body is referred to a 

cylindrical coordinate system where the radial distances are measured by the 

coordinate r . Boundary, initial and interface conditions of the problem dictate that 

the responses of the body are axisymetrical, that is all the field variables are 

functions of r and t, only. Moreover, the only non-vanishing displacement 

component is ru  , that is, the displacement component in the radial direction.  

 

For the three dimensional case, the stress equations of motions in cylindrical 

coordinates are given in Section 2.2 by Eqs. (2.1). For the problem considered in this 

study, these equations for a typical layer can be expressed in the form, 

 

2

2)(1
t
u

rr
rrrrr

∂
∂

=
−

+
∂
∂

ρ
σσσ

ρ
θθ    (3.10) 

 

where the body forces are taken zero. 

 

For the three dimensional case, the constitutive equations for stress 

components of orthotropic thermoelastic materials were given by Eqs. (3.7). In our 

problem, these equations for the relevant stress components rrσ  and θθσ  take the 

following forms for the typical orthotropic layer: 

 

( ) 0~~
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r

uC rr
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Fourier law of heat conduction, the constitutive equation for the entropy density and 

the energy equation for our axi-symmetrical problem, can be written, respectively, in 

view of Eqs. (3.8 – 3.9) as.  

           

0=
∂
∂

+
r
Tkq rrr  

 

00 =+
∂
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+ TS
r

q
r

q rr &ρ     (3.12) 
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c
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u
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uS r
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where the internal heat source R is taken zero.  
 

Differentiating Eqs. (3.11), (3.12)1 and (3.12)3 with respect to t , and eliminating S&  

from the energy equation, Eq. (3.12)3, we obtain 
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The formulation of the problem is completed by stating the boundary, interface and 

initial conditions. The boundary conditions involve both mechanical and thermal 

parts. At each point of the boundary surface, surface tractions or displacements and 

temperature deviations or heat fluxes should be prescribed. Thus the boundary 

conditions at the inner surface, ar = can be expressed as  

 

)()(),( tHtPtarr −=σ  or  )()(),( tHtVtaVr =  and 

        (3.15) 

)()(),( * tHtTtaT =  or  )()(),( tHtQtaqr =  

 

and at the outer surface br = as  
 

)()(),( tHtFtbrr −=σ  or  )()(),( * tHtVtbVr =  and 

        (3.16) 

)()(),( * tHtttbT =  or  )()(),( * tHtQtaqr =  

 
where )(tP , )(tV , )(* tT , )(tQ , )(tF , )(* tV , )(* tt , )(* tQ  are prescribed functions 

of t  and )(tH is the Heaviside step function.  

 
Since the bodies are assumed to be initially at rest, all the field variables are zero at 

0=t . The layers of the bodies are assumed to be perfectly bonded to each other. 

Hence, the interface conditions imply that the normal stress rrσ , the displacement 

component ru , the temperature deviation T  and the heat flux rq  are continuous 

across the interfaces of the layers. 

 

The formulation of the problem is thus complete. The governing field equations, Eqs. 

(3.13), (3.14), (3.10) are applied to each layer and the solutions are required to satisfy 

the continuity conditions at the interfaces, the boundary conditions at the inner and 

outer surfaces Eqs. (3.15-3.16) and zero initial conditions. Method of characteristics 

is employed to obtain the solution.  
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3.4 The Method of Characteristics and the Canonical Form of the Governing 
Equations  

 
 
In order to apply the method of characteristics, we write the governing equations as a 

system of first-order, partial differential equations. The system of the governing first 

order partial differential equations, Eqs. (3.13), (3.14), (3.10) can be written in matrix 

form for a typical orthotropic layer as: 

 

 0RQUPU =++ rt ,,     (3.17) 

 

where P and Q  are seven by seven matrices defined as: 
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and R and U  are seven dimensional column vectors given as: 

 



 85





































−
−







 −

++

+−

+−

=

φ

σσ
ρ

φ
ρ

β

φβ

φβ

θθ

θθ

θθ

r

rr

rrr

o

r

rr
r

v
x

T
c

r
v

r
q

T

r
vC
r
vC

1
0

1

~

~

0

22

32

R    (3.20) 

 





























=

r

r

rr

r

u
T
q

v

θθσ
σ

φ

U       (3.21) 

 

In Eq. (3.17), U  is the unknown vector and comma denotes partial differentiation: 

 

t,t ∂
∂

=
UU ,  

r,r ∂
∂

=
UU    (3.22) 

 

Before we derive the canonical equations from Eq. (3.17), we first establish 

the characteristic lines along which these equations are valid. The equation 

governing the characteristic lines can be written as 

 

( ) 0det =− PQ V     (3.23) 

 

where  
dt
drV =  defines the characteristic lines on the ( )tr −  plane. 
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In view of Eqs. (3.18-3.19), the characteristics equation, Eq. (3.23), is 

expressed as: 
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The roots of Eq. (3.25) can be obtained as:  
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)(iV  )71( −=i  are the characteristic values and the characteristic lines are defined 

as:  

 

1
)1( cV

dt
dr

==    along )1(C  

         

1
)2( cV

dt
dr

−==   along  )2(C  

 

2
)3( cV

dt
dr

==    along  )3(C   (3.28)  

 

2
)4( cV

dt
dr

−==   along  )4(C    

  

0)7()6()5( ==== VVV
dt
dr  along  )5(C  

 

Integration of Eq. (3.28) gives the families of characteristic lines )(iC  )71( −=i as; 

 

tcrC 1
)1( : −  = constant  

tcrC 1
)2( : +  = constant  

tcrC 2
)3( : −  = constant     (3.29) 

tcrC 2
)4( : +  = constant      

rC i :)(  = constant  )75( −=i  
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These families of characteristic lines are shown in the ( )tr −  plane in Fig. 3.1. We 

note that )1(C  and )3(C  describe families of straight lines with slopes 1c  and 2c  , 

respectively, while )2(C  and )4(C describe families with slopes 1c−  and 2c−  , on the 

)( tr −  plane. Moreover, )(iC  )75( −=i describes straight lines parallel to the 

axist − , see Fig. 3.1.  
 
 
The canonical forms of the governing equations along the characteristic lines can be 

written similar to Eqs. (2.64) as: 

 

0QLUPL =+
TiTi

dt
d )()(   along )(iV

dt
dr

= )71( −=i   (3.30) 

 

where U Q, P, are given by Eqs. (3.18, 3.19, 3.21) and )(iL  is the left-hand 

eigenvector which, similar to Eq. (2.65), is defined as: 
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Applying Eq. (3.31), the left-hand eigenvectors can be computed as 
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Since the left-hand eigenvectors of the orthotropic layers are found, then the 

canonical equations can be obtained by applying Eg. (3.30) and taking into 

consideration Eqs. (3.18-3.20). Performing the matrix products, we get the following 

set of canonical equations:  
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Figure 3.1. Description of the network of characteristic lines for the thermoelastic layered medium. 
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3.5 Integration of the Canonical Equations  
 
 
The canonical form of the governing equations for the typical orthotropic layer 

which are given Eqs (3.33-3.39) can be represented in matrix form as; 
 

0NUUD =−
dt
d

     (3.40) 

 

where the matrices D  and N are given as; 
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and the unknown vector U  is given by Eq. (3.21). 
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The integration of the canonical equation along the characteristic lines of a typical  

layer can be done in exactly the same way as was done in Chapter 2 through Eqs. 

(2.82-2.85). The integrated equations thus obtained are    

 

)()()( ijijijij AUAZAUS =  ( 71−=i , 71−=j )  (3.43) 

 

where  

 S D tN Aij ij ij= −
1
2
∆ ( )   

       (3.44) 

)(
2
1

ijiijij AtNDZ ∆+=  

 

 
 

Figure 3.2. Typical interior integration element in the orthotropic layer. 

 

In Eqs. (3.44), t∆  is the time interval between two consecutive points along the 

characteristic lines )(iC ( )71−=i , see Figs. (3.1-3.2). Furthermore, in Eqs.(3.43-
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3.44), a bar under an index implies that summation convention is not applied to that 

index and ( )AU j , ( )ij AU  represents the values of the field variables at points A  and 

iA , respectively. To compute the values of field variables at 3A and 4A  in terms of 

the values of the field variables at points 1A , 5A  and 2A , we use a linear 

interpolation between 1A  and 5A , and 2A  and 5A , (see Fig. 3.1). This gives   

 

)(
)()(

)( 11
15

3 AUr
r

AUAU
AU ja

jj
j +∆

∆

−
=  

         (3.45) 

)(
)()(

)( 55
52

4 AUr
r

AUAU
AU ja

jj
j +∆

∆

−
=  

 

where r∆  is the distance between two consecutive vertical straight lines in ( )tr −  

plane for the typical layer. Furthermore, 1ar∆  and 5ar∆  are define as, 

 

 Tcrra ∆−∆=∆ 21  

          (3.46) 

Tcra ∆=∆ 25  

 

The elements of ijD  and ijN  are given in Eqs.(3.41-3.42). Equations (3.43) represent 

seven equations defined by 71−=i , and for each value of the free index i , there is a 

summation over j which takes the values ( )71−=j . Thus, when the field variables 

jU  are known at points iA ( )71−=i , the values of the field variables jU at point A  

can be determined from Eqs. (3.43). In other words, using the triangular mesh shown 

in Fig. 3.2, the values of the field variables at a specific point along any line parallel 

to the −r axis in the solution region, see Fig. 3.1, can be found in terms of the known 

values of the field variables defined at points on the previous line. It is compact and 

suitable to express the equations in this form for computer programming.  
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3.6 Modification of the Equations for the Boundary and Interface Elements 
 
 

The integrated canonical equations, Eqs. (3.43), are valid for interior points 

represented by interior elements, e.g., element M, see Fig. 3.1. For points on the 

boundaries and at the interfaces, these equations need to be modified.   

 

For the boundary point “L” on the inner surface ar = , Fig. 3.1, the integrated 

canonical equations, Eqs. (3.43), remain the same for 7174,2 −=−= ji  ; , whereas, 

the integrated canonical equations for 7131 - ; j,i == should be replaced by the 

boundary conditions, Eqs. (3.15),  

 

)()()1( APArr −=σ   or   )()()1( AVAVr =   and 

        (3.47) 

)()( *
1 ATAT =   or   )()()1( AQAqr =   

 

depending on whether the surface tractions or particle velocities and temperature 

deviations or heat fluxes are prescribed on the inner surface ar = . The subscript 1 

and superscript 1 in parentheses denote that the quantities refer to layer 1, the 

innermost layer.   

       

Let us recall that the composite bodies considered in this chapter consist of n 

different, orthotropic, homogeneous and thermoelastic fiber reinforced layers. 

Equations (3.43) were derived for a typical layer. This typical layer can be 

considered as the m th layer and all the quantities pertaining to the m th layer will be 

denoted by subscripts m or superscripts m in parentheses. For a body consisting of n 

layers, m takes the values m=1,2,…,n. Thus, the integrated equations for the interior 

element M in the m th layer (see Fig. 3.1) can be written as  

 

)()()( )()()()(
i

m
ji

m
ji

m
j

m
ij AUAZAUS =   ( 71−=i , 71−=j ) (3.48) 
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where )(m
ijS  and )(m

ijZ  can be obtained from Eqs. (3.44) by simply putting 

superscripts m in parentheses over all the quantities appearing in the equation. In this 

thesis, the innermost orthotropic layer is assumed to be layer 1 and the outermost 

orthotropic layer is assumed to be n.  

 

Equations (3.43) should be modified for the outer boundary element “P”, as well. In 

this case, integrated canonical equations, Eqs. (3.43), remain same for 

71;7531 −=−= j, , i  , that is, 

 

)()()( )()()()(
i

n
ji

n
ji

n
j

n
ij AUAZAUS =  71;7531 −=−= j, , i   (3.49) 

 

 whereas, the equations for 71;42 −== j, i  should be replaced by, 

 

)()()( AFAn
rr −=σ   or   )()( *)( AVAV n

r =   and 

        (3.50) 

)()( * AtATn =    or   )()( *)( AQAq n
r =   

 

depending on what is prescribed on the outer boundary br = .   

 

We have another type of element where Eqs. (3.43) need to be modified. These 

elements which are called the interface elements correspond to points A at the 

interfaces. The number of interfaces depend on the number of layers and since we 

have n layers, we have ( )1−n  interfaces which will be denoted by (N12, 

N23,…….,N(n-1)(n)), see Fig.3.1. For a point A at the interface between the layers m 

and m+1, element N(m)(m+1), Fig. 3.1, Eqs.(3.43) are modified as 
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          (3.51) 
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where the superscripts m denote the layer which precedes the interface and m+1 

denotes the layer which follows the interface. Equations (3.43) for 4,2=i  for m th 

layer and 3,1=i  for the layer m+1 are replaced by the interface conditions requiring 

the continuity of  radial stress, rrσ , particle wave velocity, rv , temperature deviation, 

T , and heat flux, rq . These conditions can be expressed as, 

 

)()( )1()( AA m
rr

m
rr

+= σσ  

             

 )()( )1()( AvAv m
r

m
r

+=  

           (3.52)  

)()( 1 ATAT mm +=  

          

)()( )1()( AqAq m
r

m
r

+=  

 

Thus, modification of the equations for the interface and boundary elements is 

completed. Equations (3.51–3.52) represent fourteen equations to determine the 

fourteen unknowns, )()( AU m
j  and )()1( AU m

j
+ , pertaining to points on the interface of 

the layers m and m+1. 

 

The solution procedure is exactly the same as that explained in Section 2.10. We 

establishing the solution ( )rrrrri uTqvU ,,,,,, θθσσφ=  at all points of the network of 

characteristic lines shown in Fig. 3.1. We start at the origin, proceed along the 

axisr −  and advance  into the solution region determining the values of iU  at the 

points of the network with the order 3,2,1,3,2,1 ′′′′′′′′′ ...... ,….etc, see Fig. 3.1. In this 

process, we employ the integrated canonical equations for the boundary element ‘L’, 

interior element ‘M’, interface element ‘N’, and the outer boundary element ‘P’, Fig. 

3.1.These equations are discussed in detail above.  For this purpose, a computer 

program in the FORTRAN language is written and the numerical computations are 

carried out at the computer. 
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3.7 Numerical Examples and Discussion of the Results 
 
 

In the numerical examples involving the multilayered medium, it has been 

assumed that the inner surface, ar = , is subjected to a uniform pressure and a 

uniform temperature deviation, while the outer surface br =  is free of surface 

tractions and kept at zero temperature deviation. Thus, the boundary conditions at the 

inner )( ar = and outer ( )br =  surfaces can be expressed, respectively, as 

 

)()(),( tHtPtarr −=σ , )()(),( * tHtTtaT =  or 0),( =taT  

         (3.53) 

( ) 0, =tbrrσ ,   0),( =tbT  

 

In the method of characteristics, we are free to choose any time dependency for the 

applied pressure and temperature deviation. In the problems, we choose a step-time 

variation with an initial ramp, see Fig. 2.7 and Fig. 3.3. In the figures, we notice that 

the applied pressure and temperature deviation are zero at 0=t , linearly rises to a 

constant value 0P  and 0T  , respectively, during a rise time of t∆  and remain constant 

thereafter. The initial ramp in the pressure variation and temperature deviation 

eliminates the complicated circumstances of having first-order discontinuities in the 

field variables at the wave fronts and it is physically more realistic.  
 

The numerical computations are carried out and the results are displayed in 

terms of non-dimensional quantities. These non-dimensional quantities are defined as   
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where 
1

)1(
33)1(

ρ
C

cL = in Eqs. (3.54) is the uncoupled mechanical longitudinal wave 

speed in layer 1 and the non-dimensional quantities are shown by putting bars over 

them. Furthermore, a is the radius of the inner surface and 1ρ  is the mass density of 

the innermost layer 1. 

 

First, an example of verification will be given. In this example, a whole space 

containing a cylindrical hole is considered. A uniform pressure is applied on the 

surface of the cylindrical hole, and the transient dynamic response of the whole space 

is investigated by employing the TRDTE theory. The boundary conditions on the 

cylindrical surface ar =  are taken as  

 

( ) )(, 0 tHPtarr −=σ ;  0),( =taT   (3.55) 
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where 0P  is a constant and )(tH is the Heaviside unit step function. The body is 

initially unstressed, at rest and at a constant reference temperature 0T . The whole 

space is isotropic, homogenous and linearly elastic. This problem was solved by 

Harmain, Wegner and Haddow [120] by employing the method of characteristics. 

The solution of this problem in our treatment is obtained as a special case of the 

general multilayered problem. The computer program developed in this thesis for 

multilayered medium consisting of n generally orthotropic layers is employed. By 

suitably choosing the material constants and the geometric parameters of the 

orthotropic layers, the solution for the homogenous isotropic whole space containing 

a cylindrical whole is obtained as a special case. The non-dimensional material 

properties of the orthotropic layers in our treatment, which gives the same material 

properties as chosen in [120] for the isotropic whole space, are taken as  
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01.000 ==
ag
cLαα , 

ag
rr =     (3.56b) 

 

where ( )
ρρ

λµ 332 C
cL =

+
=  is the uncoupled mechanical longitudinal wave 

speed, and the constant g is a non-dimensional scaling parameter used by Harmain, 

Wegner and Haddow [120] to present the results for times several order of magnitude 

larger than the relaxation time constant. Furthermore, the constant non-dimensional 

uniform pressure applied at the cylindrical surface is taken as 001.00 =P . 

 

The variations of non-dimensional temperature deviation T , non-dimensional heat 

flux q  and non-dimensional radial stress rrσ  with dimensionless agrr /=  at times 

,2.0=t 0.4, 0.6, 0.8, 1.0 are given in Figs. (3.4-3.6), respectively. As seen from Figs. 

(3.4-3.6), the curves of Harmain, Wegner and Haddow [120] coincide with the 

curves obtained from our treatment.  

 

We shall now present some results for multilayered media consisting of generally 

orthotropic layers. In the first example investigated, we consider a cylindrical 

laminate consisting of alternating isotropic layers, which we denote as layers 1 and 2. 

The laminate consists of five layers with the sequence 1/2/1/2/1 starting from the 

innermost layer. The material properties of the orthotropic layers are chosen such 

that they represent isotropic layers. The non-dimensional properties are taken as,  

 

 

Figure 3.3. Variation of temperature deviation at the boundary. 
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Figure 3.4. Variation of non-dimensional temperature deviation with respect to 

distance at various non-dimensional times for an unbounded body 

with a cylindrical hole.  

 

 
 

Figure 3.5. Variation of non-dimensional heat flux with respect to distance at 

various non-dimensional times for an unbounded body with a 

cylindrical hole  
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Figure 3.6. Variation of non-dimensional radial stress with respect to distance at 

various non-dimensional times for an unbounded body with a 

cylindrical hole.  
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In Eqs. (3.57), the non dimensional quantities are shown by putting bars over them, 

and subscripts 1 and 2 or superscripts 1 and 2 in parentheses, respectively, denote 

that the quantities belong to layer 1 or 2.   

 

Furthermore, the non dimensional thickness of the layers are equal to 1.021 == hh , 

and the network of characteristic lines used in the numerical analysis is defined by 

00025.0=∆t . In the examples, the boundary conditions are as given by Eqs. (3.53). 

The applied pressure at the inner surface 1== ar  is a step function with an initial 

ramp as given in Fig. 2.7. It is zero at 0=t , then linearly rises to a constant value 

001.00 =P  during a rise time of 00025.0=∆t  after which it remains constant. The 

applied temperature at the inner surface is either a step function with an initial ramp 

as given in Fig. 3.3 with 08.00 =T  or 0.3 or it is zero. This is expressed explicitly in 
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each figure. In all cases, the outer surface br =  is free of surface tractions and the 

temperature deviation is kept zero.  

 

Results of the numerical computations are given in Figs. (3.7-3.10). The curves are 

given for the cases when the thermal effects are neglected and when they are taken 

into account, which in the sequel are described as non-thermal and thermoelastic 

solutions, respectively. Variations of the non dimensional stress rrσ−  with time t  at 

location 15.1=r  is given in Fig. 3.7. The curves denote clearly the dispersion caused 

by the thermal effects in the wave profiles. In the curve representing the non thermal 

solution in which thermal effects are neglected, the sudden changes in the stress 

levels correspond to the arrivals of reflected and refracted waves from the interfaces 

and boundaries of the composite body at the position considered. In the thermoelastic 

solutions in which thermal effects are taken into account, the curves display a similar 

character. However, due to the thermal dispersion, the sudden changes in the elastic 

solution now become smoothly varying curves. The maximum values of the radial 

normal stress for thermoelastic solutions  increase as inner temperature deviation 

increases, especially for higher non-dimensional times. The radial stress remains 

mostly compressive both in non thermal and thermoelastic solutions. This is 

especially the case for thermoelastic solutions. 

 

The curves of Fig. 3.8 display the variations of the dimensionless normal stress θθσ  

with t  at 15.1=r , the middle of the second layer of the multilayered media. The 

normal circumferential stress is basically tensile; whereas, for short durations of 

time, it may become compressive as seen in Fig. 3.8. In addition to the solutions 

obtained by employing the TRDTE theory, the elastic solutions with thermal effects 

neglected are also given in the figure. We further note that the effects of thermal 

changes are more significant for the circumferential stress and the circumferential 

stresses are much higher than the normal stresses.  

 

The curves of Fig. 3.9 show the variations of the non-dimensional radial stress rrσ−  

with time t  at location 25.1=r . These curves display similar features as those of 



 108

Fig. 3.7. In addition to the effects of reflections and refractions from the interfaces 

and boundaries and thermal dispersion, we can see the effects of geometric 

attenuation in these curves as well. The maximum levels of the stresses in the curves 

of Fig. 3.9 are considerably lower than those of Fig. 3.7, because the location 

25.1=r  compared to 15.1=r  is further away from the inner boundary. In fact 

maximum value of rrσ−  in the curves of Fig. 3.9 is approximately 0.0011, whereas 

it reaches values as high as 0.0015 in Fig. 3.7.  

 

In the curves of Fig. 3.10, the variations of the dimensionless circumferential normal 

stress θθσ  with t  at the location 25.1=r , which corresponds to the middle of the 

third layer from the inner surface, are displayed. These curves show similar trends as 

those in in Fig. 3.8. The maximum stress levels are much lower. The effects of 

thermal dispersion seem to be relatively more pronounced in these curves then those 

of Fig. 3.8.  
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Figure 3.7. Variation of radial stress rrσ with time t  at 15.1=r , for the laminate 

with alternating isotropic layers.  
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Figure 3.8. Variation of circumferential stress θθσ  with time t  at 15.1=r , for the 

laminate with alternating isotropic layers.  
 

-0,001

-0,0005

0

0,0005

0,001

0,0015

0 1 2 3 4 5 6 7
non - dimensional time

- n
on

 - 
di

m
en

si
on

al
 r

ad
ia

l s
tr

es
s

non - thermal

thermoelastic, temperature deviation at inner
and outer surfaces 0
thermoelastic, temperature deviation at inner
surface 0.3 and outer surface 0
thermoelastic, temperature deviation at inner
surface 0.08 and outer surface 0

 
 

Figure 3.9. Variation of radial stress rrσ  with time t  at 25.1=r , for the laminate 

with alternating isotropic layers.  
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Figure 3.10. Variation of circumferential stress θθσ  with t  at 25.1=r , for the 

laminate with alternating isotropic layers.  

 

Next, we shall investigate an example involving a filament wound fiber-reinforced 

cylindrical composite which is the basic problem investigated in this chapter. The 

boundary conditions given by Eqs. (3.53) are considered with the pressure function 

)(tP  and temperature deviation )(tT  given as in Fig. 2.7 and Fig. 3.3. The 

multilayered bodies considered consist of five generally orthotropic elastic layers 

with stacking sequence 30/-30/90/0/90 and 30/-30/30/-30/30 starting from the 

innermost layer. The numerical computations are carried out using S2 glass/epoxy 

material properties for generally orthotropic layers [141]. The non-dimensional 

material properties then can be written as  

 

 

1=ρ ,  10 =T  ,  027.0=c   

         (3.58a)  

=),,( 321 EEE (2.323,0.787, 0.787),  
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( )=231312 ,, GGG (0.278, 0.278, 0.295),     

                      
910943.6 −= xk rr          

 

( )=332211 ,, βββ (0.024, 0.015, 0.015)    (3.58b) 

 

50000000158.0=α ,  50000000158.00 =α  

33.03223 ==υυ , 

 
236.012211331 ==== υυυυ  

 
       

  
Furthermore, the non-dimensional thicknesses of the layers are equal to 1.0=ih  

)51( −=i , and the network of characteristic lines used in the numerical analysis is 

defined by 00025.0=∆t . The applied pressure at the inner surface 1== ar  given 

in Fig. 2.7 is zero at 0=t , then linearly rises to a constant value 001.00 =P  during a 

rise time of =∆t 0.00025, after which it remains constant.  

 

Results of the numerical computations are given in the form of curves in Figs. (3.11-

3.16) The curves are given for the cases when the thermal effects are neglected and 

when they are taken into account.  

 

The temperature deviation prescribed  at 1=r  is a step function with an initial ramp, 

see Fig. (3.3), with 00.00 =T , 0.01, 0.02 or 0.04. This is pointed out explicitly in 

each figure. In all cases, the outer surface 5.1== br  is free of surface tractions and 

temperature deviation is zero.  

Variation of the non-dimensional stress rrσ−  with time t  at location 15.1=r  for a 

multilayered body having stacking sequence 30/-30/90/0/90 is shown in Fig. 3.11. 

The curves of Fig. 3.11, correspond to non-thermal and three thermoelastic solutions, 

in which the temperature deviations at the inner surface are 0.00, 0.01 and 0.02 while 
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the outer surface temperature deviation kept zero. The curves denote clearly the 

dispersion caused by the thermal effects in the wave profiles. In the curve 

representing the solution in which thermal effects are neglected, the sudden changes 

in the stress levels correspond to the arrivals of reflected and refracted waves from 

the interfaces and boundaries of the composite body at the position considered. In the 

thermoelastic solutions in which thermal effects are taken into account, the curves 

display a similar character. However, due to the thermal dispersion, the sudden 

changes in the non-thermal solution now become smoothly varying curves. There is 

considerable difference between the non-thermal solution and the solutions when 

thermal effects are taken into account even in the case when the temperature 

deviations at the inner and outer boundary surfaces are kept at zero. We note that 

these differences become more apparent as time passes. Furthermore, the differences 

are larger as the temperature deviation prescribed at the inner surface gets higher. We 

also note that the radial stress remains basically compressive.     

Figure 3.12 displays the variations of the dimensionless normal stress θθσ  with t  for 

a multilayered body having stacking sequence 30/-30/90/0/90 at the location 25.1=r  

which represents the middle of the third layer of the laminate. The normal 

circumferential stress is basically tensile; whereas, for short durations of time after 

the arrival of the wave front at the location considered, it may become compressive 

as seen in Fig. 3.12. The curves represent the non-thermal solution together with the 

thermoelastic solutions in which the dimensionless temperature deviations at the 

inner surface take the values 0.00, 0.01, 0.04. The curves display similar features. 

However, due to thermal dispersion, the sudden changes in the non-thermal solution 

become smoothly varying curves in the thermoelastic solutions. The differences 

between non-thermal and thermoelastic curves are smaller for small inner surface 

temperature deviations. Higher temperature deviations at the inner surface yield 

thermoelastic curves which differ more significantly from the non-thermal one, 

especially for larger times. We further note that the circumferential normal stress is 

the dominant stress for the laminate, since it reaches nearly four times higher stress 

values than the radial one.  

 



 113

The curves of Fig. 3.13 show the variations of the dimensionless normal stress θθσ  

with t  for a multilayered body having stacking sequence 30/-30/90/0/90 at 45.1=r , 

which corresponds to the middle of the fifth orthotropic layer. The curves of the non-

thermal solution together with the thermoelastic solutions where the temperature 

deviation at the inner surface are 0.0 and 0.04 are shown in the figure. The curves 

display similar trends as those of Fig. 3.12.  

 

Variation of the non-dimensional stress rrσ−  with time t  at location 15.1=r  for a 

multilayered body having stacking sequence 30/-30/30/-30/30 is shown in Fig. 3.14. 

The curves of the non-thermal solution together with the thermoelastic solutions 

where the temperature deviations at the inner surface are 0.00, 0.01 and 0.02 are 

shown in the figure. The curves display similar trends as those of Fig. 3.11. The 

curves of the figure have  smaller maximum stress values relative to the curves of  

Fig. 3.11.  

 

Figures (3.15-3.16) show the variations of the dimensionless normal stress θθσ  with 

t  at locations 15.1=r  and 45.1=r , for a multilayered body having stacking 

sequence 30/-30/30/-30/30. The curves of the non-thermal solution together with the 

thermoelastic solutions where the temperature deviations at the inner surface are 0.0, 

0.01 and 0.04 are shown in the figure. The curves display similar trends as those of 

Fig. 3.12 and Fig. 3.13. Effects of geometric attenuation can be seen in these figures 

since the curves of Fig. 3.16 reach smaller stress values than those of Fig. 3.15. 

When we compare the curves of Figures 3.12 and 3.13, however, we see that the 

stress levels at 45.1=r  are higher than those at 15.1=r  in spite of geometric 

attenuation. This is because of the effects of the stacking sequence of the layers. 

Even though all the other properties are the same, the stacking sequence in Figs. 

(3.12-3.13) is 30/-30/90/0/90; whereas, in Figs. (3.15-3.16), it is 30/-30/30/-30/30. 

This shows that the effects of stacking sequence on the wave profiles can be quite 

significant.  
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Figure 3.11.  Variation of radial normal stress rrσ−  with time t  at location 

15.1=r , for the laminate with generally orthotropic layers having 

stacking sequence 30/-30/90/0/90.  
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Figure 3.12. Variation of circumferential normal stress θθσ  with time t  at location 

15.1=r , for the laminate with generally orthotropic layers having 

stacking sequence 30/-30/90/0/90. 
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Figure 3.13. Variation of circumferential normal stress θθσ  with time t  at location 

45.1=r , for the laminate with generally orthotropic layers having 

stacking sequence 30/-30/90/0/90. 
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Figure 3.14. Variation of radial normal stress rrσ−  with time t  at location 

15.1=r , for the laminate with generally orthotropic layers having 

stacking   sequence 30/-30/30/-30/30. 
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Figure 3.15. Variation of circumferential normal stress θθσ  with time t  at location 

15.1=r , for the laminate with generally orthotropic layers having 

stacking sequence 30/-30/30/-30/30. 
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Figure 3.16. Variation of circumferential normal stress θθσ  with respect to time t  

at location 45.1=r  for the laminate with generally orthotropic layers 

having stacking sequence 30/-30/30/-30/30. 
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CHAPTER 4 
 
 

THERMOMECHANICAL RESPONSE OF VISCOELASTIC CYLINDERS 
ENCLOSED IN FIBER-REINFORCED CYLINDRICAL COMPOSITES 

 
 
4.1 Introduction 
 
 

In this chapter, transient dynamic response of viscoelastic cylinders enclosed in 

filament wound cylindrical composites will be investigated. Thermal effects, in 

addition to the mechanical effects, are taken into consideration as in the previous 

chapter.  

 

The body considered in this chapter consists of n+1-layers, the inner layer being 

isotropic, homogenous and linearly viscoelastic, while the outer part being fiber-

reinforced composite consisting of n-different generally orthotropic, homogeneous 

and linearly elastic layers. In each ply, the ply orientation angle may be different. 

The body is a hollow circular cylinder with a finite thickness in the radial direction, 

whereas it extends to infinity in the axial direction. The multilayered medium is 

subjected to uniform time-dependent dynamic inputs at the inner and/or outer 

surfaces. The body is assumed to be initially at rest. The layers are assumed to be 

perfectly bonded to each other.  

 

The governing field equations of generalized thermo-viscoelasticity with two 

relaxation times is applied to the inner viscoelastic layer in addition to the application 

of the governing field equations of generalized anisotropic thermoelasticity to the 

outer layers and the solutions are required to satisfy the continuity conditions at the 

interfaces of the layers, the boundary conditions at the inner and outer surfaces and 

the initial conditions. In the following section of this chapter, governing field 

equations of generalized viscoelasticity are explained briefly [125-131]. Governing 

equations of the generalized anisotropic thermoelasticity applied to the outer layers 

are already discussed in detail in the previous chapter.   
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Similar to Chapter 2 and Chapter 3, method of characteristics is employed to 

obtain the solutions. Method of characteristics is suitable because the governing 

equations are hyperbolic 

 
 

4.2 Basic Equations of  the Generalized Thermo-Viscoelasticity for Isotropic 
Materials in Cylindrical Coordinates  

 
 

 In this section, we summarize the basic equations of generalized thermo-

viscoelasticity with two relaxation times for isotropic materials as applied to the 

viscoelastic layer considered in this study. In our treatment in this chapter, we take 

the constitutive equations for the stress deviators ′
ijσ  as in Eq. (2.7)1 in differential 

equation form with )(1 DP  and )(1 DQ defined by Eq. (2.14)1 or as in Eq. (2.12) in 

integral form where the shear modulus ( )tG1  is given by Eq. (2.76)1. These are the 

constitutive equations for stress deviators in terms of strain deviators for standard 

linear solid. Assuming that the relaxation effects of the volume properties of the 

material are ignored, we can write for the general theory of thermo-viscoelasticity 

with two relaxation times  

 

( )[ ]vvv
v

Tvv TTTK &ααεσ +−−= 0
)(33    (4.1) 

 

where )(v
kkv σσ =  and K  is the bulk modulus defined in terms of Lame’s constant λ  

and µ  as µλ
3
2

+=K . Furthermore, )(v
Tα  is the coefficient of linear thermal 

expansion and subscript v  and the superscript v  in parentheses denote that the 

quantity refers to the viscoelastic layer, same as in Chapter 2. Other parameters in 

Eq. (4.1) are the same as defined in the previous chapters. Generalized thermo-

viscoelasticity is a relatively new subject which is not treated widely in the literature 

yet. Taking the constitutive equations as described above is quite new.  

 

In the case of isotropic thermo-viscoelastic materials, Eqs. (3.1)2,3,4 reduce to, 
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( )( ) vvv

v
vvvvv TTTcS εβαρρ ++= &)(

00/      
 

iv
v

i Tkq ,
)( −=      (4.2) 

 
( )0

)(
, TSRq vv

v
ii

&−= ρ  
 

We note that in the above equations, indicial notation is used as was done in the 

previous chapters when it was appropriate. 

 

This completes the summary of the basic equations of generalized thermo-

viscoelasticty as applied to the viscoelastic layer considered in this study.  

. 
 
4.3 Formulation of the Problem 
 

 
The body is referred to a cylindrical coordinate system where the radial 

distances are measured by the coordinate r . As in Chapters 2 and 3 boundary, initial 

and interface conditions of the problem require the responses of the body to be 

axisymetrical. Thus all the field variables are functions of r and t only, and the only 

non-vanishing displacement component is ru  , that is the displacement component in 

the radial direction. The constitutive equations for the stress deviators ′
ijσ  given by 

(2.7)1 and (2.14)1 for the three-dimensional case now reduce to Eqs. (2.20)1,2 for the 

axisymmetrical problem investigated in this chapter. The constitutive equation for 
)(v

kkv σσ =  given by Eq. (4.1) for the three-dimensional case takes the following 

form for the axisymmetrical problem:  

 

 

09933 )()(
)()(

=
∂
∂

++−
∂

∂
−

t
TKTK

r
u

K
r

u
K v

v
T

v
T

v
r

v
r

v ααασ   (4.3) 

 

In writing Eq. (4.1), we used Eq. (2.19)3 for the dilatation )(v
kkv εε = . For our 

axisymmetrical problem, Eqs. (4.2) take the forms:  
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In preparation for the application of method of characteristics, we differentiate Eq. 

(4.3) with respect to t , and obtain  
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where  

 

   
t

Tv
v ∂

∂
=φ     (4.6) 

 

Differentiating Eq. (4.4)1 with respect to time t and eliminating vS&  from Eq. (4.4)3, 

we get  
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where in the above equations 
t

u
v

v
rv

r ∂
∂

=
)(

)(  is the particle velocity of the viscoelastic 

layer which was defined in Chapter 2 by Eq. (2.21)2. The stress equation of motion 

for the viscoelastic layer is the same as Eq. (2.29) in Chapter 2. We also have a 

compatibility equation between the normal strain )(v
rrε  and particle velocity 

)(v
rv which is given by Eq. (2.30). The formulation of the governing field equations 

for the thermo-viscoelastic layer is now complete. These are Eqs. (2.20)1,2, (2.21)2, 

(2.29-2.30), (4.5), (4.6), (4.4)2 and (4.7) involving the field variables )(v
rrε , )(v

rv , 

′)(v
rrσ , 

′)(v
θθσ , vσ ,  )(v

ru , vφ , )(v
rq  and vT , i.e., nine equations with nine unknown 

field variables. The governing field equations for a typical generally orthotropic 

thermoelastic layer are the same as those given Chapter 3, i.e., Eqs. (3.10) and (3.13-

3.14). These equations represent seven equations with seven unknown field variables 

φ , rv , rrσ , θθσ , rq , T and ru  for each orthotropic layer.     

         

The formulation of the problem is completed by stating the boundary, interface and 

initial conditions. As boundary conditions, surface tractions or displacements and 

temperature deviations or heat fluxes can be prescribed at the boundary surfaces. 

Thus, the boundary conditions at the inner surface, ar = , can be expressed as  

 

( ) )()(,
3
1),()( tHtPtata v

v
rr −=+

′
σσ    or  )()(),()( tHtVtaV v

r =   and 

        (4.8) 

)()(),( * tHtTtaTv =  or  ( ) )()(,)( tHtQtaq v
r =  

 

and at the outer surface br =  as  

 

( ) )()(,
3
1),()( tHtFtatb v

n
rr −=+ σσ    or  )()(),( *)( tHtVtbV n

r =   and 

        (4.9) 

)()(),( * tHtttbTn =  or  ( ) )(),(, *)( tHtbQtbq n
r =  
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where )(tP , )(tV , )(* tT , )(tQ , )(tF , )(* tV , )(* tt  and )(* tQ  are prescribed 

functions of t  and )(tH is the Heaviside step function. Furthermore, subscript v  and 

superscript v  in parentheses refer to the viscoelastic layer and subscript n and 

superscript n  in parentheses refer to the outermost orthotropic layer, that is, the layer 

adjacent to the outer boundary surface.   

 

Since the bodies are assumed to be initially at rest, all the field variables are zero at 

0=t . The layers of the bodies are assumed to be perfectly bonded to each other. 

Hence, the interface conditions imply that the normal stress rrσ , the displacement 

component ru , the temperature deviation T  and the heat flux rq  are continuous 

across the interfaces of the layers. 

 

The formulation of the problem is thus complete. The governing field equations, Eqs. 

(2.20)1,2, (2.21)2, (2.29-2.30), (4.4)2, (4.5), (4.6) and (4.7) are applied to the 

viscoelastic layer and Eqs. (3.13), (3.14), (3.10) are applied to the orthotropic elastic 

layers, and the solutions are required to satisfy the boundary conditions at the inner 

and outer surfaces, Eq. (4.8, 4.9), the continuity conditions at the interfaces and 

quiescent initial conditions. Method of characteristics is employed to obtain the 

solution. Application of  method of characteristics to the governing field equations of 

the viscoelastic layer will be explained in this chapter in the next section. For 

orthotropic layers, application of the method of characteristics and integration of the 

canonical equations along the characteristic lines are the same as in Chapter 3.  

 
 
4.4 The Method of Characteristics and the Canonical Form of the Governing 

Equations for the Thermo-Viscoelastic Layer 
 
 
In order to apply the method of characteristics, we write the governing equations as a 

system of first order, partial differential equations. The system of the governing first 

order partial differential equations, Eqs. (2.20)1,2, (2.21)2, (2.29-2.30), (4.4)2, (4.5), 

(4.6) and (4.7) can be written in matrix form as: 
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where A and B are nine by nine matrices defined as: 
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and C and )(vU  are nine-dimensional column vectors given as: 

 

(4.11) 
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In Eq. (4.10) )(vU  is the unknown vector and comma denotes partial differentiation 

as defined in Eq. (2.36). 

 

Before we derive the canonical equations from Eq. (4.10), we first establish 

the characteristic lines along which these equations are valid. The characteristic lines 

are governed by the characteristic equation (2.37). 
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In view of Eqs. (4.11-4.12), the characteristic equation, Eq. (2.37), can be 

expressed as: 
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         (4.15) 

 

The roots of Eq. (4.15) are: 
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)1( v
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)3( v
v cV = , )(

2
)4( v

v cV −=  

           (4.16) 

 0)9()8()7()6()5( ===== vvvvv VVVVV  

 

where  
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where Eq. (2.78)1, is used to express the wave velocities in terms of 10G , a parameter 

of shear modulus, instead of 1a  and 1b , and the bulk modulus K , in addition to other 

material parameters appearing in the expressions. 
 

Vv
i( )  are the characteristic values and the characteristic lines are defined as: 

 

)(
1

)1( v
v cV

dt
dr

==   along )1(
vC  

         

)(
1

)2( v
v cV

dt
dr

−==   along  )2(
vC    (4.18a) 

 

)(
2

)3( v
v cV

dt
dr

==   along  )3(
vC    
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)(
2

)4( v
v cV

dt
dr

−==   along  )4(
vC    

       (4.18b) 

0)( == i
vV

dt
dr   along  )(i

vC   )95( −=i  

 

Integration of Eq. (4.18) gives the families of characteristic lines )(iC  )91( −=i as; 

 

tcrC v
v

)(
1

)1( : −  = constant  

tcrC v
v

)(
1

)2( : +  = constant  

tcrC v
v

)(
2

)3( : −  = constant    (4.19) 

tcrC v
v

)(
2

)4( : +  = constant    

          rC i
v :)(  = constant    )95( −=i  

 

These families of characteristic lines are shown in the ( )tr −  plane in Fig. 4.1. We 

note that )1(
vC  and )3(

vC  describe families of straight lines with slopes )(
1

vc  and )(
2

vc , 

respectively, whereas )2(
vC  and )4(

vC describe families of straight lines with slopes 

)(
1

vc−  and )(
2

vc− , on the )( tr −  plane. Moreover, )(i
vC  )95( −=i describe straight 

lines parallel to the axist −  , see Fig. 4.1.  

 

In establishing the canonical equations, we define the left-hand eigenvectors 
)(i

vL ( 91−=i ) corresponding to the characteristic values Vv
i( )  ( 91−=i ) as  

 

( )B A L 0T
v

i T
v

iV− =( ) ( )  )91( −=i   (4.20) 

 

Solving Eqs (4.20), in view of Eqs. (4.11-4.12), we can write the left-hand 

eigenvectors as:   
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The left-hand eigenvectors in Eq. (4.21) are multiplied by arbitrary constants as in 

the previous chapters which are not written for the sake of brevity. 

 

The canonical equations can be written as in Eq. (2.45) which hold along )(i
vV

dt
dr

=  

)91( −=i . In this case, however, )(i
vL  is the left-hand eigenvector given by Eqs. 

(4.21). By substituting Eqs. (4.21) into Eq. (2.45) and taking into consideration Eqs. 

(4.11 - 4.14), we get the canonical equations explicitly as 
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Figure 4.1. Network of characteristic lines for the multilayered medium with inner viscoelastic layer. 
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4.5 Integration of the Canonical Equations for the Thermo-Viscoelastic Layer 
 
 

The canonical form of the governing equations for the thermo-viscoelastic layer 

which are given by Eqs (4.22-4.30) can be represented in matrix form as in Eq. 

(2.73) where in this case the matrices E and F are given as: 
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The unknown vector (v)U  can be written as Eq. (4.14). 

 

Applying the same mathematical operations as in Eqs. (2.82-2.83), we obtain the 

integrated canonical equations along the characteristic lines for the thermo-

viscoelastic layer as 

 

 

)()()()( i
)(

ij i
)( AUAHAUAG v

j
v

jij =  ( 91−=i , )91−=j  (4.33)  

 

where 

 

 )(
2
1)( AtFEAG ijijij ∆−=  

          (4.34) 

)(
2
1)( ijijiiji AtFEAH ∆+=

 
  

In Eqs. (4.34), t∆  is the time interval between two consecutive points along the 

characteristic lines )(i
vC ( )91−=i , see Fig. 4.1. Furthermore, in Eqs.(4.33 - 4.34), a 

bar under an index implies that summation convention is not applied to that index 



 140

and ( )AU v
j

)( , ( )i
v

j AU )(  represent the values of the field variables at points A  and 

iA , respectively, as in the previous chapters.  

 

To compute the values of field variables at 3A and 4A , we use a linear interpolation 

between the points 1A and 5A and 2A and 5A  (see Fig. 4.1) using Eqs. (3.45) by 

simply putting subscript v  or superscript v  in parentheses on the related elements.   

 

The elements of ijE  and ijF  are given in Eqs.(4.31-4.32). Equations (4.33) represent 

nine equations defined by 91−=i , and for each value of the free index i , there is a 

summation over j which takes the values ( )91−=j . Thus, when the field variables 

jU  are known at points iA ( )91−=i , the values of the field variables jU at point A  

can be determined from Eqs. (4.33). In other words, the values of the field variables 

at a specific point along any line parallel to the −r axis in the solution region, see 

Fig. 4.1, can be found in terms of the known values of the field variables defined at 

points on the previous line. It is compact and suitable to express the equations in this 

form for computer programming.  

 

For the orthotropic layers of the problem considered in this chapter, canonical forms 

of the equations, integrated forms of the equations along the characteristic lines are 

the same as those of Chapter 3. These are Eqs. (3.33 – 3.39) and Eqs. (3.43). These 

equations are not rewritten here for the sake of brevity.  

 
 
4.6 Modification of the Equations for the Boundary and Interface Elements 
 
 

Equations (3.43) and Eqs. (4.33) are valid for the interior points of the layers 

of the multilayered body and should be modified for points A on the boundaries and 

interfaces. The modified form of Eqs. (3.43) for the interfaces between the 

orthotropic layers and outer boundary element are the same as those of Eqs. (3.49-

3.52).  
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For points A on the inner boundary, which is denoted by the element “L” in 

Fig. 4.1, the integrated canonical equations, Eqs. (4.33), remain the same for 

9194,2 −=−= ji  ; , whereas, the integrated canonical equations for 9131 - ; j,i ==  

should be replaced by the boundary conditions on the inner surface ar = : 

 

)()(
3
1)()( APAA v

v
rr −=+

′
σσ   or  )()( AVAVr =   and 

         (4.35) 

)()( * ATATv =   or  )()()( AQAq v
r =  

 

As for the interface element ‘S’, an element on the interface between the viscoelastic 

layer and the orthotropic layer labeled as layer 1, we should make use of combining 

the sets of Eq.(3.43) and Eq. (4.33) together with the interface conditions. The 

interface conditions require the continuity of the surface tractions, displacements, 

heat flux and temperature at the interface. For the interface element ‘S’, then the 

integrated canonical equations, Eqs. (3.43) remain the same for ,1=i  3, 5-7, 

whereas, Eqs. (4.33) remain the same for =i  2, 4, 5-9; thus, we have 
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          (4.36) 

)()()( )1()1()1()1(
ijijijij AUAZAUS =   71,75,4,2 −=−= ji       

 

Equations (3.43) for ,2=i  4 and Eqs. (4.33) for ,1=i  3 should be replaced by the 

interface conditions 
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)()( 1 ATATv =  
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)()( )1()( AqAq r
v

r =      (4.37b) 

 

Thus, modification of the equations for the interface and boundary elements is 

completed. Equations (4.36–4.37) represent sixteen equations to determine the 

sixteen unknowns, )()( AU v
j  and )()1( AU j  )161( −=j , pertaining to points on the 

interface between the viscoelastic layer and first orthotropic layer. 

 

Without getting into details, the numerical procedure employed here is of the same 

form as that employed in the previous chapters.  

 
 
4.7  Numerical Examples and Discussion of the Results 
 

 
In the numerical examples, it is assumed that the inner surface ar =  is 

subjected to a uniform time dependent pressure and a uniform temperature deviation 

and the outer surface br =  is free of surface tractions and the temperature deviation 

is kept at zero, that is, the boundary conditions are  

 

( ) )()(,
3
1),()( tHtPtata v

v
rr −=+

′
σσ ,   )()(),( * tHtTtaTv =  

         (4.38) 

0),()( =tbn
rrσ , ( ) 0, =tbTn  

 

In the method of characteristics, we are free to choose any time dependency for the 

applied pressure and temperature deviation. In the examples, we choose a step-time 

variation with an initial ramp, see Figs. (2.7, 3.3). In the figures, we notice that the 

applied pressure and temperature deviation are zero at 0=t , linearly rise to  constant 

values 0P  and *
0T , respectively, during a rise time of t∆  and remain constant 

thereafter. The initial ramp in the pressure variation and temperature deviation 

eliminates the complicated circumstances of having first-order discontinuities in the 

field variables at the wave fronts.  
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The numerical computations are carried out and the results are displayed in 

terms of  non-dimensional quantities. These non-dimensional quantities are defined 

as   
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where ( )KGc
v

32
3

1
100 +=

ρ
 is the uncoupled mechanical longitudinal wave speed 

for viscoelastic layer and a bar over the elements designates non-dimensional 

quantities. Furthermore, a is the radius of the inner surface and vρ  is the mass 

density of the typical viscoelastic layer. 
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We now present some results for the response of viscoelastic cylinders enclosed in 

filament wound fiber- reinforced cylindrical composites. The multilayered body is 

subjected to boundary conditions given by Eqs. (4.38) with )(tP  and )(* tT  defined 

as in Figs. (2.7,3.3); it is initially at rest and the layers are perfectly bonded to each 

other. The body consists of three generally orthotropic elastic layers with stacking 

sequence -45/90/30 starting from the first orthotropic layer and one viscoelastic 

innermost layer. The non-dimensional material properties are taken as  

 

 

( ) =KGG F ,, 110 (0.857,0.735,0.429) 

 

1=vρ ,  008.0)( =v
Tα , 

 

40000000184.0)(
0 == v
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( ) ( )99 10958.5,10549.4, −−= xxkk rrv  

 

35.1=iρ  )31( −=i , 10 =T  , 02.0=c   (4.40a) 

           

=),,( 321 EEE (2.318, 0.785, 0.785),     

          

( )=231312 ,, GGG (0.277, 0.277, 0.294),    

 

( )=332211 ,, βββ (0.024, 0.015, 0.015)     

 

50000000158.0=α ,  50000000158.00 =α  



 146

33.03223 ==υυ ,       

         (4.40b) 
       

236.012211331 ==== υυυυ  
    
 

The thicknesses of the viscoelastic layer  and the orthotropic layers are all equal to 

1.0=ih  )31( −=i , and the network of characteristic lines used in the numerical 

analysis is defined by 0002.0=∆t . The applied pressure at inner surface is zero at 

0=t , then linearly rises to a constant value 001.00 =P  during a rise time of 

0002.0=∆t  after which it remains constant. The applied temperature deviation at 

the inner surface is taken as 08.0*
0 =T .  

 

Results of the numerical computations are given in Figs. (4.2-4.8). The curves are 

given for the cases when the thermal effects are neglected and when they are taken 

into account, which in the sequel are described as non-thermal and thermal solutions, 

respectively.  

 

Variations of the non-dimensional stress rrσ−  with time t  at location 05.1=r , 

corresponding to the middle of the viscoelastic layer, are displayed in Fig. 4.2. The 

curves denote the effects of reflections at the inner ( 1=r ), and outer )4.1( =r  

boundaries, and reflections and transmissions at the interfaces of the layers. Figure 

4.2 includes two curves, one is for the non-thermal solution and the other is for the 

solution where thermal effects are taken into consideration. The curves of Fig. 4.2 

denote clearly the dispersion caused by the thermal effects in the wave profiles. In 

the curve representing the non-thermal solution, the sudden changes in the stress 

levels correspond to the arrivals of reflected and refracted waves from the interfaces 

and boundaries of the composite body at the position considered. In the thermal 

solution, the curves display a similar character. However, due to the thermal 

dispersion, the sudden changes, in the non-thermal solution now become smoothly 

varying curves (see Fig. 4.2). The maximum values of the radial normal stresses are 

smaller in the thermal solution than in the non-thermal solution. The radial stress 
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remains mostly compressive. From Fig. 4.2, one sees that the disturbances propagate 

faster when thermal effects are taken into consideration.  
 

Figure 4.3 shows the variations of the dimensionless normal stress θθσ  with t  at the 

location 1.05, middle of the viscoelastic layer of the multilayered medium. The 

normal circumferential stress remains tensile for thermal and non-thermal solutions 

except short duration, near the time of arrival of the wave front. Thermal solution 

displays a similar character with non-thermal one. However, due to the thermal 

dispersion, the sudden changes in the non-thermal solution now become smoothly 

varying curve. For the position considered, thermal effects are significant for the 

circumferential stress. Different from the radial stress trend, circumferential stress 

levels are higher for some non-dimensional time intervals in the thermal solution. 

Furthermore, we note from the figure that, circumferential stress is the significant 

stress for the layer and position considered, since it reaches nearly three and a half 

times higher stress values than the radial one.  

 
Figure 4.5 shows the variations of the dimensionless normal stress θθσ  with time t  

at the location 15.1=r , the middle of the first orthotropic layer. We note that 

circumferential normal stress reaches higher values in the first orthotropic layer than 

those in the viscoelastic layer. Figure 4.5 includes non-thermal solution, as well as 

the thermal solution with temperature deviation at the inner boundary taken as 0.08. 

Due to the thermal dispersion, the sudden changes in the non thermal solution now 

become smoothly varying curves as in the curves of previous figures. The sudden 

changes in the stress levels due to reflections and refractions are more distinct and 

significant in these curves compared to the curves of Fig. 4.3. The fact that the 

circumferential normal stress is the dominant stress is more valid for the elastic 

orthotropic layer which can be seen from the comparison of the curves of  Figs. (4.5, 

4.4) 

 

In Fig. 4.4, the variation of radial stress rrσ  with time t  at location 15.1=r  is given. 

The curves of Fig. 4.4 display similar features as those of Fig. 4.2. The sudden 

changes in the stress levels due to reflections and refractions of waves at the 
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boundaries and interfaces in the non-thermal solution leave their places to smoothly 

varying curves in the thermal solution due to thermal dispersion. The radial stress 

rrσ  in the curves of Fig. 4.4 may assume tensile values as well; whereas, in the 

curves of Fig. 4.2, it was primarily compressive. The maximum values of the radial 

normal stress are smaller in the thermal solution than in the non thermal solution. We 

note from the curves in Fig. 4.4 that the disturbances propagate faster when thermal 

effects are taken into consideration.  

 

Figures (4.6-4.8) display the time variations of the radial normal stress rrσ  and 

circumferential normal stress θθσ  at the interface between second and third 

orthotropic layers. The radial stress rrσ  is continuous across the interface and its 

time variation at the location 3.1=r  is given in Fig. 4.6; whereas, θθσ  is 

discontinuous across the interface and its time variations at the points just before and 

just after the interface, i.e., at 03.1 −=r  and 03.1 +=r  are shown in Figs. (4.7, 

4.8), respectively. The curves in these figures display similar trends as the curves in 

the previous figures. The sudden changes in the stress levels in the non-thermal 

solutions are more distinct and pronounced in these curves and they are smoothed out 

in the case of thermal solutions. The radial stresses assume tensile stresses as well 

and the extreme stress levels are smaller in the thermal case, Fig. 4.6. The 

circumferential stress θθσ suffers considerable jumps at the interface which may 

reach values twice as high, see Figs. (4.7, 4.8).  
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Figure 4.2. Variation of radial normal stress rrσ  with time t  at location 05.1=r , 

middle of viscoelastic layer.  
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Figure 4.3. Variation of circumferential normal stress θθσ with time t  at location  

05.1=r , middle  of viscoelastic layer. 
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Figure 4.4. Variation of radial normal stress rrσ  with time t  at location 15.1=r , 

middle  of first orthotropic layer. 
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Figure 4.5. Variation of circumferential normal stress θθσ  with time t  at location  

15.1=r , middle  of first orthotropic layer. 
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Figure 4.6. Variation of radial normal stress rrσ  with time t  at location 3.1=r , 

interface between second and third orthotropic layers. 
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Figure 4.7. Variation of circumferential normal stress θθσ  with time t  at location 

3.1=r  on the side of second layer at the interface between second and 

third orthotropic layers. 
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Figure 4.8. Variation of circumferential normal stress θθσ  with time t  at location 

3.1=r  on the side of third layer, at the interface between second and 

third orthotropic layers. 
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CHAPTER 5 
 
 

CONCLUSIONS 
 
 

In this thesis, transient dynamic response of viscoelastic cylinders enclosed in 

filament wound cylindrical composites is investigated. The multilayered medium 

consists of n+1 layers, the inner layer being viscoelastic, while the outer fiber 

reinforced cylindrical laminate consists of n-different generally orthotropic, 

homogeneous and linearly elastic layers. The problems investigated in this thesis can 

be grouped under three categories. In the first category, presented in Chapter 2, 

transient dynamic response of the viscoelastic cylinder enclosed in filament wound 

cylindrical laminate, with thermal effects neglected, is investigated. In the numerical 

examples, the inner surface is subjected to a uniform pressure which varies in time as 

a step function with an initial ramp, and the outer surface is free of surface tractions. 

Solid propellant material properties are used for the viscoelastic layer. Curves 

displaying the variations of the nondimensional radial stress 0/ Prrσ  and 

circumferential normal stress 0/ Pθθσ  with time t  at different locations in the inner 

viscoelastic and outer elastic layers show striking properties. At points in the 

viscoelastic layer, both 0/ Prrσ and 0/ Pθθσ  are compressive, their values and 

variations are very close to each other and they reach values as high as -2. At points 

in the outer generally orthotropic layers and in the time interval considered, however, 

0/ Prrσ  is basically compressive and 0/ Pθθσ  is basically tensile. The highest levels 

of 0/ Prrσ  are around -1, whereas 0/ Pθθσ  may reach values as high as 18. This 

striking difference in the trends of the time variations of the stresses 0/ Prrσ and 

0/ Pθθσ  in the inner viscoelastic and outer orthotropic layers is due to the propellant 

material properties of the viscoelastic layer. The fact that the normal stresses in the 

viscoelastic layer are compressive is a desired property for solid propellants. The 

case of ablating inner surface is investigated as well. This is an important advantage 

of the method of characteristics. Handling of a moving boundary, which may be a 
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formidable task in many methods of solution, can be achieved without much 

difficulty in the method of characteristics. Furthermore, for verification purposes, 

solutions are obtained for two special cases and the results are compared with those 

already existing in the literature and excellent agreements are found.  

 

In the second category of problems, presented in Chapter 3, the 

thermomechanical response of fiber-reinforced cylindrical composites consisting of n 

generally orthotropic linearly elastic layers is investigated. Thermal effects, in 

addition to the mechanical effects, are taken into consideration as well. A generalized 

thermoelasticity theory which incorporates the temperature rate among the 

constitutive variables is employed. This theory is known as temperature-rate 

dependent thermoelasticity (TRDTE) theory or generalized thermoelasticity with two 

relaxation times. This theory predicts finite speeds for thermal disturbances. In the 

numerical examples, uniform time dependent pressure and temperature deviation 

varying in time as step function with initial ramp are applied at the inner surface, and 

the outer surface is free of surface tractions and kept at zero temperature deviation. 

The numerical results are displayed in curves showing the variations of normal 

stresses rrσ and θθσ with time at different locations in the cylindrical laminate. 

Curves where thermal effects are neglected are also given in the figures. The curves 

clearly reveal the effects of reflections and refractions of waves from the boundary 

surfaces and the interfaces of the layers. The sharp changes in the stress levels in the 

non-thermal solution are smoothed out in the thermal solutions due to thermal 

dispersion. The effects of the stacking sequence of the layers and the effects of 

geometric dispersion on the wave profiles are also apparent. The stress levels 

decrease as we go away from the inner surface due to geometric dispersion; but in 

some cases, due to the stacking sequence of the layers, the stress levels at further 

points are higher than at points closer to the inner surface. The generalized 

thermoelasticity theory employed in this thesis is a linear theory; hence, it is valid for 

small temperatures deviations. The curves reveal that the effects of thermal 

dispersion may be significant even for small temperature deviations prescribed at the 

inner surface, especially for large times after the arrival of the waves.  
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A verification example solved as a special case of the general formulation 

presented in this thesis is compared with the solution existing in the literature and it 

is shown that the two solutions are almost identical. This verification example shows 

that generalized thermoelasticity theory employed in this thesis describes accurately 

the response for very short times and for very small distances.  

 

In the third category of problems, presented in Chapter 4, the transient 

dynamic response of an isotropic viscoelastic layer enclosed in a fiber-reinforced 

cylindrical laminate consisting of n generally orthotropic elastic layers is 

investigated. The elastic layers are governed by the equations of generalized thermo-

viscoelasticity in which relaxation effects of the volume are neglected. Generalized 

thermo-viscoelasticity is a relatively new subject which is not treated widely in the 

literature yet. The constitutive equations as employed in this thesis are quite new. 

Numerical results displayed in curves are given for the cases when the thermal 

effects are neglected and when they are taken into account which are described as 

non-thermal and thermal solutions, respectively. The boundary conditions considered 

are similar to the ones considered in the second category of problems. The curves 

show the time variations of rrσ  and θθσ  at different locations and they reveal that 

disturbances propagate faster when thermal effects are taken into consideration. 

Radial stress in the inner viscoelastic layer is basically compressive; whereas, in the 

outer orthotropic layers, it may assume tensile values as well. The dominant stress is 

the circumferential normal stress in both the viscoelastic and the elastic layers; but 

the ratio of the maximum levels of the circumferential stress to radial stress is higher 

in the orthotropic elastic layers than in the viscoelastic layer. Thermal dispersion 

smoothes out the distinct sudden changes in the stress levels of the non-thermal 

solutions and this is more apparent in the radial stress variations. The effects of 

reflections, refractions, and the effects of stacking sequence of the elastic layers are 

similar to those in the previous problems.  

 

Four computer programs are written in this thesis. The first computer 

program handles the problems discussed in the first category with non-ablating inner 

surface, Chapter 2. In the second program, the first program is modified to take care 



 156

of the ablating inner boundary. The third program handles the transient dynamic 

response of filament wound cylindrical laminates consisting of n generally 

orthotropic thermoelastic layers, problems in the second category, Chapter 3. Finally, 

the last computer program handles the problems discussed under the third category, 

Chapter 4.  

 

As a final comment for future research, this work can be extended to two-

dimensional problems in multilayered elastic, and/or viscoelastic media by 

employing a technique which combines the method of characteristics with the 

Fourier transform, for example.  
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APPENDIX A 
 
 

METHOD OF CHARACTERISTICS 
 
 
In this appendix, the derivations of the basic equations used in the method of 

characteristics, namely, the characteristic equation and the canonical equations will 

be given. Let the system of governing 1-D partial differntial equations be given in 

matrix form as  

 

0CBUAU =++ xt ,,     (A.1) 

 

where A  and B are (mxm) square matrices, C  is an m dimensional vector and U is 

m-dimensional unknown vector 

 

( )TmUUUU ,.....,, 321=U     (A.2) 

 

The unknown field variables mUUUU ,......,, 321  are functions of the space variable x 

and the time variable t. The system of governing equations, Eq. (A.1), is assumed to 

be linear, i.e., A and B  are functions of x and t only and C  is a linear function of 

U , i.e., 

 

EDUC +=     (A.3) 

 

where D  is an (mxm) matrix and E is m-dimensional vector both of which are 

functions  of x and t, only. Furthermore,  comma  denotes  partial  differentiation  in  

 



 174

Eq. (A.1),   i.e.,  
tt ∂

∂
=

UU,  and 
xx ∂

∂
=

UU, . 

 

Let x=x(t) define the equation of the singular point (wave front) at which the field 

variables and/or their derivatives may suffer discontinuities. The plot of x(t) is given 

in Fig. A.1. If f denotes a function of x and t, the jump of ),( txf at the singular 

point is defined and denoted as  

 

[ ] −+ −= fff     (A.4) 

 

where the supercripts + and – denote the values of the function on the disturbed and 

undisturbed sides of the singular point, respectively.  

 

 Now, assume that U is continuous and the first derivatives of U are 

discontinuous on the singular point x=x(t), i.e., [ ] 0=U , [ ] 0, ≠tU , [ ] 0, ≠xU  on 

x=x(t). 

 

 

Figure A.1. Position of the singular point.  

 

Writing Eq. (A.1) on positive and negative sides of x=x(t), noting that A , B and 

C are continuous on x=x(t), and taking the difference, we obtain on x=x(t)  
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[ ] [ ] 0UBUA =+ xt ,,     (A.5) 

 

The kinematical condition of compatibility gives on x=x(t) 

 






∂
∂

−=




∂
∂

x
V

t
UU     (A.6) 

 

where V denotes the propagation velocity of the singular point (wave front). 

Substituting Eq. (A.6) into Eq. (A.5), we get 

 

( ) 0WAB =−V     (A.7) 

 

where [ ]x,UW = . This is an eigenvalue problem and W  is the eigenvector and V is 

the eigenvalue. For non trivial solution 

 

( ) 0AB =−Vdet     (A.8) 

 

Equation (A.8) is called the characteristic equation. Solving the equation we find m 

roots (characteristic values), i.e, ( ))()3()2()1()( ,........,, mi VVVVV = . If the roots are real 

then the system is called hyperbolic and each )(iV  corresponds to thi  family of  

characteristic curves )(iC . This characteristic family can be determined by solving 

the following equation:  

 

( )txxV
dt
dxC iiii ,: )()()()( α=→=  for  mi ,.......,2,1=  (A.9) 

 

where )(iα  are integration constants. The family of the curves 
)()2()1( ,......, mCCC constitues the characteristic manifold.  

 

 Now, we shall put Eq. (A.1) into canonical form. For this purpose, we define 

the left hand eigenvector )(iL  corresponding to )(iV  as  
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( ) 0ABL =− )()( iTi V   ( )mi −= 1   (A.10) 

 

or  

 

       ( ) 0LAB =− )()( iTiT V   ( ))1 mi −=   (A.11) 

 

Pre-multiply Eq. (A.1) by Ti)(L  (i=1-m) and substituting 

 

ALBL TiiTi V )()()( =   )1( mi −=   (A.12) 

 

from Eq. (A.10), we can write  

 

( ) 0CLUUAL =++
Ti

x
i

t
Ti V )()()( ,,  on )(iC   (A.13) 

 

Noting that 
dt
dxV i =)(  and the quantity in paranthesis in Eq. (A.13) is equal to 

dt
dU , 

we can write  

 

0CLUAL =+
TiTi

dt
d )()(      (A.14) 

 

which holds along ( ) )(/ iVdtdx = )1( mi −= . Eqs. (A.14) are called the canonical 

equations. In these equations dtd /  denotes the total time derivative along the 

characteristic lines. Thus, through the application of the method of characteristics, 

the system of governing partial differential equations, Eqs. (A.1), is transformed into 

a system of ordinary differential equations., Eqs. (A.14), each of which is valid along 

a different family of characteristic lines.  
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APPENDIX B 
 
 

MANUALS FOR COMPUTER PROGRAMS 
 
 
In this study, four program are written in order to perform the calculations discussed 

in Chapter 2, 3 and 4, respectively. One is for the mechanical response of viscoelastic 

cylinders enclosed in filament wound cylindrical composites called MECHANICAL. 

Second is the modified form of MECHANICAL calculating the field variables for 

ablating inner boundary case. This second program is called MOVING-

MECHANICAL. Third program is called THERMO-MECHANICAL and calculates 

field variables for n-layered filament wound cylindrical composites. The last 

program is for the thermomechanical response of viscoelastic cylinders enclosed in 

filament wound cylindrical composites. This program is called INVISTHERMO-

MECHANICAL. The programs have similar structure and contain parts with the 

following functions: 

 

INPUT: Reads the input file “INP”, writes geometric and material properties of each 

layer in the output file “out”. 

 

MATRIX: Evaluates the matrices ijG  and jiH , Eq. (2.84), Eq. (4.33), ijS and jiZ , 

Eq. (2.89), Eq. (3.43).  

 

VECTORSOLVE: Evaluates the vector )( ijji AUH , Eq. (2.84), Eq. (4.33), 

)( ijji AUZ , Eq. (2.89), Eq. (3.43) and call sabroutine sol. 

 

SUBROUTINE SOL: Solves the system of complex linear equations at every point 

A of the solution region. 
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OUT: Write the field variables in the output files ‘OUT’. 
 
B1. Input data file for MECHANICAL 
 
 

The program MECHANICAL is written for non-ablating problem in Chapter 2. The 

input file of this program is composed of the following parts:  

 

PO, RO, RO1 

 

XA, DX1, DX, DT 

 

TAU1, TAU2 

 

G10, G1F, G20, G2F 

 

JMAX' 

 

ANG1, ANG2, ANG3 

 

NU23, NU32, NU31, NU13, NU21 

 

NU12, G23, G13, G12, E2 

 

E3, E1 

 

The parameters can be defined as follows; 

 

PO: inner pressure 

 

RO: density of viscoelastic layer 

 

RO1: density of the orthotropic layers 
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XA: inner radius of the body 

 

DX1: increment in the r-axis for the viscoelastic layer 

 

DX: increment in the r-axis for the orthotropic layers 

 

DT: increment in the t-axis 

 

TAU1: relaxation time for shear moduli 

 

TAU2: relaxation time for bulk moduli 

 

G10: initial shear relaxation moduli 

 

G1F: final shear relaxation moduli 

 

G20: initial bulk relaxation moduli 

 

G2F: final bulk relaxation moduli 

 

JMAX: number of increments  

 

ANG1, ANG2, ANG3: ply angles of the orthotropic layers 

 

NU23, NU32, NU31, NU13, NU21, NU12: Poisson’s ratios of orthotropic layers 

 

G23, G13, G12: Shear moduli of orthotropic layers 

 

E2, E3, E1: Young moduli of orthotropic layers in principal material directions  

 

B2. Input data file for MOVING-MECHANICAL 
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The program MOVING-MECHANICAL is written for ablating problem in Chapter 

2. The input file of this program is composed of the parts containing previous 

section. In addition to this parameters program needs parameter called “SLOPE”, 

that is the slope of the ablating boundary line.  

 

B3 Input data file for THERMO-MECHANICAL: 
 
The program THERMO-MECHANICAL is written for the problems in Chapter 3. 

The input file of this program is composed of the following parts:  

 

XA, DX, DT, PO 

 

TETO, TETA, JMAX 

 

INANG, INANG1, INANG2, INANG3, INANG4 

 

NU23, NU32, NU31, NU13, NU21 

 

NU12, G23, G13, G12, E2 

 

E3, E1 

 

RO, KOND, AF, AFO 

 

BT1, BT2, BT3, Cp 

 

The parameters can be defined as follows; 

 

XA: inner radius of the body 

 

DX: increment in the r-axis for the layers 
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DT: increment in the t-axis 

 

PO: inner pressure 

 

TETO: initial uniform temperature 

 

TETA: temperature deviation from the initial uniform temperature 0T  

 

JMAX: number of increments 

 

INANG, INANG1, INANG2, INANG3, INANG4: ply angles of the orthotropic 

layers 

 

NU23, NU32, NU31, NU13, NU21, NU12: Poisson’s Ratios of orthotropic layers 

 

G23, G13, G12: Shear moduli of orthotropic layers 

 

E2, E3, E1: Young moduli of orthotropic layers in principal material directions  

 

KOND: conductivity of first orthotropic layer 

 

B4 Input data file for INVISTHERMO-MECHANICAL: 

 
The program INVISTHERMO-MECHANICAL is written for the problems in 

Chapter 4. The input file of this program is composed of the following parts:  

 

XA, DT 

 

TETO, JMAX, PO 

 

TETA 
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DX1, KONDV 

 

G10, G1F, RO1 

 

AFT1, AF1, Cp1, AFO1 

 

BULK1 

 

TAU1 

 

DX 

 

INANG, INANG1, INANG2 

 

NU23, NU32, NU31, NU13, NU21, NU12 

 

G23, G13, G12, E2 

 

E3, E1 

 

RO, AF, AFO 

 

BT1, BT2, BT3, Cp 

 

KOND 

 

 

The parameters can be defined as follows; 

 

XA: inner radius of the body 

 

DT': increment in the t-axis 
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TETO: initial uniform temperature 

 

JMAX: number of increments 

 

PO: inner pressure 

 

TETA: temperature deviation from the initial uniform temperature 0T  

 

DX1: increment in the r-axis for the viscoelastic layers 

 

KONDV: conductivity of viscoelastic layer 

 

G10: initial shear relaxation moduli for viscoelastic layer 

 

G1F: final shear relaxation moduli for viscoelastic layer  

 

RO1 density of inner viscoelastic layer 

 

AFT1 thermal expansion coefficient of viscoelastic layer 

 

AF1, AFO1: thermal relaxation times for viscoelastic layer 

 

Cp1: specific heat for viscoelastic layer 

 

BULK1: bulk moduli for viscoelastic layer 

 

TAU1: relaxation time for shear moduli for viscoelastic layer 

 

DX: increment in the r-axis for the orthotropic layers 

 

INANG, INANG1, INANG2: ply angles of the orthotropic layers. 
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NU23, NU32, NU31, NU13, NU21, NU12: Poisson’s Ratios of orthotropic layers 

 

G23, G13, G12: Shear moduli of orthotropic layers 

 

E2, E3, E1: Young moduli of orthotropic layers in principal material directions 

 

RO: density of orthotropic layers 

 

AF, AFO: thermal relaxation times for orthotropic layers 

 

BT1, BT2, BT3: Elements of thermoelasticity tensor. 

 

Cp: specific heat for orthotropic layers 

 

KOND: conductivity of orthotropic layers 
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