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ABSTRACT

TRANSIENT DYNAMIC RESPONSE OF VISCOELASTIC CYLINDERS
ENCLOSED IN FILAMENT WOUND CYLINDRICAL COMPOSITES

Sen, Ozge
Ph.D., Department of Engineering Sciences

Supervisor: Prof. Dr. Dogan Turhan

August 2005, 189 pages

In this study, transient dynamic response of viscoelastic cylinders enclosed
in filament wound cylindrical composites is investigated. Thermal effects, in addition
to mechanical effects, are taken into consideration. A generalized thermoelasticity
theory which incorporates the temperature rate among the constitutive variables and
is referred to as temperature-rate dependent thermoelasticity theory is employed.

This theory predicts finite heat propagation speeds.

The body considered in this thesis consists of n+1-layers, the inner layer
being viscoelastic, while the outer fiber reinforced composite medium consist of n-
different generally orthotropic, homogeneous and elastic layers. In each ply, the fiber
orientation angle may be different. The body is a hollow circular cylinder with a
finite thickness in the radial direction, whereas it extends to infinity in the axial
direction. The multilayered medium is subjected to uniform time-dependent dynamic
inputs at the inner and/or outer surfaces. The body is assumed to be initially at rest.

The layers are assumed to be perfectly bonded to each other.

The case in which the inner surface of the viscoelastic cylinder is a

moving boundary is further investigated in this study. This is similar to the solid

v



propellant rocket motor cases. The solid propellant is modelled as a viscoelastic
material which in turn is modelled as standard linear solid; whereas, the rocket motor

case is a fiber-reinforced filament wound cylindrical composite.

Method of characteristics is employed to obtain the solutions. Method of
characteristics is suitable because the governing equations are hyperbolic. The
method is amenable to numerical integration and different boundary, interface and

initial conditions can be handled easily.

Key words: Filament wound cylindrical composites, viscoelasticity, standard linear

solid, anisotropic elasticity, generalized thermoelasticity.
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ELYAF SARGILI SILINDIRiK BILESIiK CiSIMLERLE CEVRELENMIS
VISKOELASTIK SILINDIRLERIN GECIiCi DINAMIK DAVRANISI

Sen, Ozge
Doktora, Miithendislik Bilimleri Boliimii

Tez Yoneticisi: Prof. Dr. Dogan Turhan

Agustos 2005, 189 sayfa

Bu caligmada, elyaf sargili silindirik bilesik cisimlerle c¢evrelenmis
viskoelastik silindirlerin gecici dinamik davranisi incelenmektedir. Mekanik etkilere
ek olarak 1s1l etkiler de gdzoniine alinmaktadir. Biinye degiskenleri arasinda sicaklik
degisim hizi da bulunan ve sicaklik degisim hizina bagl genellestirilmis
termoelastisite teorisi olarak adlandirilan teori uygulanmaktadir. Bu teori sonlu 1s1

yayilma hiz1 icermektedir.

Bu tezde gozoniine alinan cisim n+1 tabakadan olusmaktadir. En i¢ tabaka
viskoelastik, disindaki elyaf takviyeli bilesik ortam ise n farkli genel ortotrop,
homojen ve elastik tabakadan olugsmaktadir. Her bir tabakada, elyaf dogrultu agisi
farkli olabilmektedir. Cisim, i¢i bos bir dairesel silindir olup, radyal dogrultuda sonlu
kalinlikta, eksenel dogrultuda ise sonsuza uzanmaktadir. Cok tabakali ortamin ig
ve/veya dis yiizeyleri zamana bagl diizgiin dinamik etkilere maruzdur. Cismin
baslangigta siikiinet halinde oldugu varsayilmaktadir. Tabakalar birbirlerine

miitkemmel olarak yapistiriimiglardir.

Viskoelastik silindirin i¢ ylizeyinin hareket eden bir sinir yiizeyi olmas1 hali

de bu ¢alismada incelenmektedir. Bu durum kat1 yakitli roket motorundaki duruma

vi



benzemektedir. Kat1 roket yakit1 viskoelastik malzeme ve viskoelastik malzeme de
standart dogrusal kati olarak modellenirken, roket motor govdesi elyaf sargili

silindirik bilesik cisim olarak alinmistir.

Coziimleri elde etmek i¢in karakteristikler ydntemi uygulanmaktadir.
Davranis1 tanimlayan alan denklemlerinin hiperbolik olmasindan dolay1
karakteristikler yontemi uygundur. Yontem sayisal integrasyonu kolaylikla miimkiin

kilar ve degisik sinir, araylizey ve baslangi¢ sartlar1 kolaylikla ele alinabilir.

Anahtar kelimeler: Elyaf sargili silindirik bilesik cisimler, viskoelastisite, standart

dogrusal kat1, anizotrop elastisite, genellestirilmis termoelastisite.
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CHAPTER 1

INTRODUCTION

In recent years, the use of advanced composite materials has increased
tremendously due to their superior properties. They are found in different areas of
applications ranging from space vehicles to sports equipment. As people demand
products with superior properties, the use of composites will continue to increase;
especially, in the construction of solid propellant rocket motors, space and aircraft
vehicles, in which weight is a significant factor. Among composite materials, fiber-
reinforced polymer composites found a wide range of applications because of their
excellent properties, like high strength-to-weight or stiffness-to-weight ratios and
easy manufacturing processes. The analysis of composites, however, is more difficult
compared to conventional materials because of the anisotropy and inhomogeneity

inherent in these materials.

Many researchers have investigated transient wave propagation through
layered media. Most of these works are concentrated on solving elastic problems, but
relatively less work is directed to analyzing wave propagation in anisotropic and/or
viscoelastic layered media. Early analytical treatment of the subject can be found in
Ewing, Jardetzky and Press [1] and in Brekhovskikh [2]. Among more recent books
treating harmonic and transient wave propagation in elastic layered media with
isotropic and anisotropic layers, we can mention Kennet [3], Tygel and Hubral [4],
Van der Hijden [5], Nayfeh [6], Achenbach [7] and Miklowitz [8]. Elegant analytical
and numerical techniques based on Green’s function formulations, integral
transforms, inversion of integral transforms by Cagniard-de Hoop method and

asymptotic techniques can be found in these books.



Different methodologies have been employed to study harmonic and transient waves
in layered media. Approximate models have been developed and employed which
yield satisfactory results when the thickness of the layers are small compared to the
wavelengths of the propagating waves, for example, Sun et al. [9], Achenbach et. al.
[10], Santosa and Symes [11], Soldatos [12], Noor et al. [13]. Exact methods of
elasticity theory have been employed to investigate harmonic wave propagation in
multilayered elastic media with isotropic and anisotropic layers which are valid for
any wavelength [14-18]. The construction of a steady state Green’s function for a

laminated circular cylinder is given by Zhuang et al. [19].

Transient axisymmetric wave propagation in weakly coupled layered
structures is investigated in [20-21]. Two different computational approaches, one
based on the numerical inversion of Fourier and Hankel transforms and the other on
finite element method (FEM) are employed in [21]. Rizzi and Doyle [22] developed
a spectral element approach based on fast Fourier transform (FFT) and applied it to
study transient waves in elastic layered solids. Transfer matrix method was employed
by Kundu and Mal [23] to study wave propagation in multilayered solids with
isotropic layers and by Mal [24] in laminated composites with anisotropic layers,
namely transversely isotropic layers, subjected to periodic surface loads. A multiple
transform technique coupled with a matrix method was used to investigate the
elastodynamic response of a unidirectional composite laminate to concentrated
surface loads in [25-26] and the response of multilayered composite laminates
consisting of transversely isotropic layers with arbitrarily oriented symmetry axes to

dynamic surface loads in [27].

Compared to the extensive research on wave motion in multilayered elastic
media, transient wave propagation in viscoelastic layered media has been
investigated relatively less. Approximate theories have been developed by Mengi and
Turhan [28] for viscoelastic layered composites with plane layers and by Mengi and
Birlik [29] for viscoelastic cylindrical laminated composites. The validity of these
approximate theories were assessed by solving a transient [30] and a harmonic wave

propagation problem [31]. An analytical method is presented to study the



propagation of plane harmonic waves in an infinite periodically laminated
viscoelastic medium in [32]. An exact viscoelastic analogy relation between a
periodically layered elastic medium and a homogeneus viscoelastic medium was
introduced by Han and Sun in [33]. The problem of reflection and refraction of
micropolar elastic waves at a loosely bonded interface between a viscoelastic solid
and a micropolar elastic solid is studied by Singh and Kumar [34]. Most of the
existing work on transient wave motion in viscoelastic layered media deals with one-
dimensional wave propagation normal to the layering [35-37]. Two dimensional
transient wave propagation in a viscoelastic sandwich plate was investigated by
Nkemzi and Green [38]. Propagation of two-dimensional transient out of plane shear
waves in multilayered viscoelastic media and transient waves in viscoelastic
cylindrical layered media are investigated by Abu-Alshaikh, Turhan and Mengi [39],
[40]. An effective numerical method for solving elastic wave propagation problems
in an infinite Timoshenko beam on viscoelastic foundation in time domain was given
in [41]. Inhomogeneous plane, monochromatic waves traveling in viscoelastic media

are considered in [42].

The method of characteristics has been employed effectively in investigating
transient wave propagation problems in layered media. Among many contributions in
this area, we can mention those presented in [43-48], which involve investigation of
wave propagation in layered elastic cylindrical and spherical media, and infinite
elastic media having cylindrical and spherical cavities. The method of characteristics
is also employed by Turhan et. al [49-50] in solving problems of viscoelastic layered
media with layers modeled as standard linear solid (with one discrete relaxation
time). Solution of transient wave propagation in a linear viscoelastic solid with more
than one discrete relaxation time is presented by Wegner and Haddow [51]. The
same procedure is employed by Wegner [52] in solving waves generated from a
spherical cavity in a viscoelastic infinite medium with one and two discrete

relaxation times.

Thermal effects are also taken into consideration in many studies in which

wave propagation problems are investigated. The conventional thermoelasticity



theory is based, among other constitutive relations, on the classical Fourier’s law.
The formulation of this theory were laid in the first half of the 19 th century [53], but
a satisfactory formulation of the dynamical version of the theory, based on firm
grounds of irreversible thermodynamics, was presented half a century back [54] to
eliminate the paradox inherent in the uncoupled theory that elastic changes have no
effect on the temperature. The theory is now proved to be an elegant model for
studying coupled effects of elastic and thermal fields, and important contributions,
for example of Chadwick [55], Boley and Wiener [56], Carlson [57], Nowacki [58],
Parkus [59], Nowinski [60] and Dhaliwal and Singh [61] contain comprehensive

accounts of the theory and applications thereof.

The thermoelasticity theory presented in detail in Refs. [53-61] and referred
to conventional thermoelasticity (CTE) hereafter, with all its merits, suffer from the
deficiency of allowing infinite heat propagation speed contrary to physical
observations. During the last four decades, attempts have been made to remove this
deficiency on various grounds, and generalized versions of the theory have come into
existence. The simplest way of removing the paradox of infinite heat propagation
speed present in conventional thermoelasticity is to replace the classical Fourier’s
law by a generalized conduction equation. We then arrive at a straightforward
extension of CTE, each of the equations of this system is hyperbolic type, and
consequently no solution of the system can extend to infinity. In what follows, we
shall refer to the new theory as extended thermoelasticity, or, briefly, ETE. This
theory is often referred to as thermoelasticity with thermal relaxation or

thermoelasticity with one relaxation time.

The equations of generalized thermoelasticity with one relaxation time for a
homogeneous medium were derived by Lord and Shulman [62]. Dhaliwal and
Sherief [63] obtained the corresponding equations for a general anisotropic medium.
These equations admit the so-called second sound effect in solids; i.e. they predict

finite speeds of propagation for heat and mechanical disturbances.



The half space problem in ETE has been studied by several authors under
various boundary conditions. Lord and Shulman [62], Achenbach [64], Norwood and
Warren [65], Mengi and Turhan [66], Chandrasekharaiah and Srinath [67] have
investigated the cases of step function in stress/strain and/or step function in
temperature on the boundary. The problem of an infinitely long solid conducting
circular cylinder whose lateral surface is traction free and subjected to known
surrounding temperatures in the presence of a uniform magnetic field in the direction
of the axis has been investigated by Sherief [68]. Using Laplace transform technique
in the solution, as in [68], Sherief and Anwar [69] consider the problem of an
infinitely long annular cylinder whose inner and outer surfaces are subjected to
known surrounding temperatures and are traction free. The plane wave propagation
in a generalized thermo-microstrech solid is investigated in [70]. Sherief and
Dhaliwal [71] solved a thermal shock problem; Sherief [72] solved a spherically
symmetric problem with a point source. Both of these problems are valid for short
times. Sherief and Ezzat have obtained the fundamental solution for thermoelasticity
with one relaxation time valid for all times [73]. The uniqueness theorem for the
equations of generalized thermoelasticity with one relaxation time, derived by
Dhaliwal and Sherief [63], is proved by [74]. The distribution of temperature,
displacement and stress in infinite homogeneous transversely isotropic elastic solid
having a cylindrical hole has been investigated by taking (i) unit step function in
stress and zero temperature change, and (ii) unit step function in temperature and
zero stress, at the boundary of the cylindrical hole using Laplace Transform in [75].
Thermal shock on the boundary of a half space is also investigated in [76, 77]. The
analysis in the former one is based on the decoupled field equations of generalized
thermoelasticity. Equations have been solved with the help of integral transforms.
Thermal shock at the surface of a half space is further investigated in [78]. The
model of the equations of generalized thermoelasticity with thermal relaxation in an
isotropic elastic medium with temperature dependent mechanical properties is
established in [79]. At this study, the state space approach is adopted for the solution
of one-dimensional problems in the absence or presence of heat sources. State-space
approach is also applied for the solutions at [80]. A reciprocal theorem is presented

for initial mixed boundary conditions in the framework of the linearized isotropic



thermoelasticity theory of Lord and Shulman in [81]. Eigenvalue approach is applied
to the solutions of generalized thermoelasticity with one relaxation time in [82, 83].
A number of thermoelastic wave problems which involve one or two space variables,
are treated in a uniform manner, by a system of first order partial differential
equations with stress, velocity, heat flow and temperature in [84]. The system of
equations are analyzed by the method of characteristics in the study. Nonlinear
continuum mechanics techniques are applied to the constitutive equations in [85]. In
this study same exact solutions are given to illustrate novel features of the nonlinear
theory. For different boundary conditions, in particular for those arising in pulsed
laser heating of solids, the exponential stability of the hyperbolic linear system is
proved in [86]. In this study, linear and non-linear thermoelastic systems in one space
dimension where thermal disturbances modeled propagating as wave like pulses

traveling at finite speed using Cattaneo’s law for heat conduction is considered.

Only a few authors have considered problems on inhomogenous and/or
anisotropic  layered media employing generalized thermoelasticity. Mengi and
Turhan [87] have made a detailed analysis of problems concerned with
inhomogeneous and isotropic half space, and infinite space with spherical and
cylindrical cavity, by using the method of characteristics. Kolyano and Shter [88],
[89] have derived the governing equations for anisotropic and inhomogeneous
medium and studied transverse oscillations of an inhomogeneous and isotropic
cantilever beam. Sharma and Sidhu [90] studied propagation of plane harmonic
waves in anisotropic generalized thermoelasticity. Propagation of thermoelastic
waves in arbitrary anisotropic layered plates and general anisotropic media is
investigated in the context of the generalized theory of thermoelasticity in [91] and
[92]. The propagation of harmonic waves in a laminated anisotropic plate is studied
in [93]. Transient wave propagation in thermoelastic layered composites consisting
of alternating isotropic, homogenous, and linearly elastic high strength reinforcing
and low strength matrix layers is investigated by Turhan et. al [94] by employing the
thermoelasticity theory of Lord and Shulman [62].



Another generalization of the coupled theory of thermoelasticity is known as
the thermoelasticity with two relaxation times, which, in other words, is known as
temperature rate dependent thermoelasticity. Muller [95] in a review of
thermodynamics of thermoelastic solids has proposed an entropy production
inequality, with the help of which, he considered restrictions on a class of
constitutive equations. A generalization of this inequality was proposed by Green
and Laws [96]. Green and Lindsay obtained an explicit version of the constitutive
equations in [97]. These equations were also obtained independently by Suhubi [98].
This theory also predicts finite speeds of propagation as in Lord and Shulman’s
theory [62]. It differs from the latter in that Fourier’s law of heat conduction is not
violated if the body under consideration has a center of symmetry. Erbay and Suhubi
[99] have studied wave propagation in infinite cylinders employing this version of
generalized thermoelasticity with two relaxation times. The dispersion relation is
obtained for the case in which the temperature is kept constant on the surface of the
cylinder. Ignaczak [100] studied a strong discontinuity wave and obtained a
decomposition theorem for this theory [101]. Sherief has obtained the fundamental
solutions for generalized thermoelasticity with two relaxation times for point source
of heat [102]. In this study, Laplace transform techniques together with the method
of potentials are used to obtain the temperature and stress distributions. Sherief, also
studied a half space problem employing the equations of generalized thermoelasticity
with two relaxation times [103]. In this study, the bounding plane is acted upon by a
combination of a thermal and a mechanical shock acting for a finite period of time.
Using the theory of linear thermoelasticity proposed by Green and Lindsay [97],
Payne and Song [104] treat the thermoelastic problem for a semi-infinite cylinder
where the lateral surface of the cylinder is held either at zero temperature and zero
displacement, or at zero heat flux and zero traction. The two dimensional
thermoelasticity problem for a half space whose surface is traction free and subjected
to the effects of heat sources is considered within the context of the theory of
thermoelasticity with two relaxation times in [105]. Sherief and Megahed studied the
two dimensional axisymmetric problem within the context of the theory of
thermoelasticity with two relaxation times in spherical regions [106]. In the study,

the general solution is obtained in the Laplace transform domain by using a direct



approach without the use of potential functions. The resulting formulation is utilized
to solve a problem for a thick spherical shell. The surface of the shell is taken as
traction free and subjected to given axisymmetric temperature distributions. A new
time domain boundary element formulation and solution procedure for generalized
dynamic coupled thermoelasticity is developed by Polyzos and Beskos [107].
Temperature rate dependent thermoelasticity theory is employed to study the
distribution of temperature, deformation and streses in an infinitely extended
isotropic elastic thin plate containing a circular hole for step input at temperature or
step input at stress in [108]. Balta and Suhubi developed a theory of nonlocal
generalized thermoelasticity within the framework of the nonlocal continuum
mechanics [109]. The disturbance due to mechanical and thermal sources in a
homogeneous, isotropic, micropolar generalized thermoelastic half-space is
investigated in [110]. In the solution, Laplace Fourier transform technique is used.
Daneshjoo and Romazani proposed a new mixed finite element formulation to
analyze transient coupled thermoelastic problems [111]. The non-classical (Green-
Lindsay) coupled model of dynamic thermoelasticity is applied to a laminated

composite plate in this study.

In addition to the references cited above, many other authors have employed
extensively generalized thermoelasticity theories with one and two relaxation times
in harmonic and transient wave propagation problems in nonpolar and micropolar
media. Among these, we can mention Refs. [112-121]. A comprehensive survey of
the literature on generalized thermoelasticity theories is given in two review papers
by Chadrasekharaiah [122-123]. One can also refer to Hetnarski and Ignaczac [124]

for a review and presentation of the generalized theories of thermoelasticity.

Compared to the extensive literature on elastic wave propagation in
generalized thermoelastic media, relatively less work can be found on transient wave
propagation in generalized thermo-viscoelastic media. In the theories of generalized
thermo-viscoelasticity, two models have found wide acceptance. In the first model of
the equations of generalized thermoviscoelasticity, the relaxation effects of the

volume are ignored, and, only, relaxation effects for stress deviators are taken



account. Hence, in this model, viscoelastic constitutive equations of differential or
integral type are considered for the stress deviators; whereas, for the spherical stress

o =0, =0, +0, +0,, constitutive equation in the same form as that of

generalized thermoelasticity theories is considered. The equations of this model with
one relaxation time and with two relaxation times are established by Ezzat and
coworkers [125-126]. This model has further been developed and has been applied to
various problems by different authors among which we can mention [127-129]. In
the second model of the equations of generalized thermo-viscoelasticity, the
relaxation effects of the volume as well as the relaxation effects for the stress
deviators are taken into consideration. The equations of this model for isotropic

media are established in [130-131].

In this thesis transient dynamic response of viscoelastic cylinders enclosed in
filament wound cylindrical composites is investigated. The filament wound
cylindrical composite consists of generally orthotropic elastic layers. A lamina
reinforced by unidirectional fibers in which the principal material directions, that is,
the fiber direction and the directions normal to the fiber direction coincide with the
natural body coordinate axes is said to be a specially orthotropic lamina. In the case
of a cylindrical lamina, the natural body coordinate axes are in the axial,
circumferential and radial directions. If the fiber direction and the directions normal
to it do not coincide with the natural body coordinate axes, the lamina is said to be a
generally orthotropic lamina. Thermal effects in addition to mechanical effects are
taken into consideration as well. A generalized thermoelasticity theory which
incorporates the temperature rate among the constitutive variables and is referred to
as temperature rate dependent thermoelasticity is applied to the outer elastic layers;
whereas, generalized thermo-viscoelasticity is employed for the inner isotropic

viscoelastic layer. These generalized theories predict finite heat propagation speeds.

The body considered in this thesis consists of n+1 layers, the inner layer
being viscoelastic, while the outer fiber reinforced composite medium consists of n-
different generally orthotropic, homogenous and elastic layers. In each ply the fiber

orientation may be different. The body is a hollow circular cylinder with a finite



thickness in the radial direction, whereas it extends to infinity in the axial direction.
The multilayered medium is subjected to uniform time-dependent dynamic inputs at
the inner and/or outer surfaces. The body is assumed to be initially at rest. The layers
are assumed to be perfectly bonded to each other. The material of the viscoelastic

layer is modeled as standard linear solid.

The case in which the inner surface of the viscoelastic cylinder is a moving
boundary is further investigated in this study. This is similar to the solid propellant
rocket motor cases. The solid propellant is modeled as a viscoelastic material which
in turn is modeled as standard linear solid; whereas, the rocket motorcase is a fiber-
reinforced filament wound cylindrical composite. As the propellant burns, the inner
surface moves outwards, decreasing the thickness of the viscoelastic layer

representing the solid propellant.

The governing field equations of temperature-rate dependent anisotropic
thermoelasticity and isotropic thermo-viscoelasticity are applied to the elastic layers
and the inner viscoelastic layer, respectively, and the solutions are required to satisfy
the continuity conditions at the interfaces of the layers, the boundary conditions at

the inner and outer surfaces and the initial conditions.

Method of characteristics is employed to obtain the solutions. This method is
suitable because the governing equations are hyperbolic. In the method of
characteristics, the governing partial differential equations are transformed into a
system of ordinary differential equations each of which is valid along a different
family of characteristic lines. These equations are suitable for numerical integration
and computer programming. Furthermore different interface, initial and boundary
conditions can be handled easily in the method of characteristics. The convergence
and stability of the method are well established. Sharp variations in the field
variables at the wave fronts can be accommodated in the method. More information
about the method can be found in Courant and Hilbert [132]. The method as applied
in this thesis, however, is closer to the format applied by Mengi and McNiven [133].
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The study is organized as follows: In Chapter 2, dynamic response of
viscoelastic cylinders enclosed in filament wound cylindrical composites, with
thermal effects neglected, is investigated. The cases of both the ablating and the non-
ablating inner surface are considered. In the numerical examples, solid propellant
material properties are taken for the inner viscoelastic layer modeled as standard
linear solid. The striking effects of solid propellant material properties on the curves
denoting the time variations of stresses at different locations are pointed out and

discussed. The effects of moving inner boundary are also discussed.

In Chapter 3, thermomechanical response of fiber-reinforced cylindrical
composites consisting of only generally orthotropic elastic layers is investigated. In
composite material applications, cylindrical laminated composites consisting of all
elastic orthotropic layers is very important. Hence, this chapter is devoted to elastic
multilayered medium with no inner viscoelastic layer. Thermal effects, in addition to
mechanical effects, are taken into consideration as well. A generalized
thermoelasticity theory which incorporates the temperature rate among the
constitutive variables and is referred to as temperature-rate dependent
thermoelasticity theory is employed. This theory is also known as generalized
thermoelasticity theory with two relaxation times. In the numerical examples, curves
denoting the time variations of stresses at different locations are given for both the
case where the thermal effects are neglected and the case where the thermal effects
arte taken into consideration. The effects of thermal dispersion on the wave profiles

are discussed.

In Chapter 4, thermomechanical response of viscoelastic cylinders enclosed
in fiber-reinforced cylindrical composites is investigated. The multilayered medium,
then consists of n generally orthotropic elastic layers and an isotropic viscoelastic
inner layer. Equations of generalized thermoelasticity are applied to the elastic
layers; whereas equations of generalized thermo-viscoelasticity, in which relaxation
effects of the volume are neglected, are applied to the inner viscoelastic layer.
Numerical examples are worked out in which the inner surface of the multilayered

body is subjected to uniform time-dependent pressure and uniform time dependent

11



temperature deviation, while the outer surface is free of surface tractions and
temperature deviation is kept zero. The effects of refractions and reflections of waves
at the boundaries and at the interfaces of the layers and the effects of geometric and

thermal dispersions on the wave profiles are discussed.

The conclusions are presented in Chapter 5. The manual of the computer

programs developed in the study are given in Appendix B.
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CHAPTER 2

MECHANICAL RESPONSE OF VISCOELASTIC CYLINDERS ENCLOSED
IN FIBER-REINFORCED CYLINDRICAL COMPOSITES

2.1 Introduction

In this chapter, dynamic response of viscoelastic cylinders enclosed in filament
wound cylindrical composites is investigated. Only mechanical effects are
considered in this chapter. The body consists of n+1-layers, the inner layer being
viscoelastic, while the outer being fiber-reinforced composite consisting of n-
different generally orthotropic, homogeneous and linearly elastic layers. In each ply,
the ply orientation angle may be different. The body is a hollow circular cylinder
with a finite thickness in the radial direction, whereas it extends to infinity in the
axial direction. The multilayered medium is subjected to uniform time-dependent
dynamic inputs at the inner and/or outer surfaces. The body is assumed to be initially
at rest. The layers are assumed to be perfectly bonded to each other. The material of

the viscoelastic layer is modelled as standard linear solid.

The case in which the inner surface of the viscoelastic cylinder is a moving
boundary is further investigated in this chapter. This is similar to the solid propellant
rocket motor cases. The solid propellant is modelled as a viscoelastic material which
in turn is modelled as standard linear solid; whereas, the rocket motor case is a fiber-
reinforced filament wound cylindrical composite. As the solid propellant burns, the
inner surface moves outwards, decreasing the thickness of the viscoelastic layer

representing the solid propellant.

The governing field equations of isotropic viscoelasticity and anisotropic
elasticity are applied to the inner viscoelastic layer and each outer elastic layer,
respectively, and the solutions are required to satisfy the continuity conditions at the

interfaces of the layers, the boundary conditions at the inner and outer surfaces and
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the initial conditions.

Method of characteristics is employed to obtain the solutions. Method of
characteristics is suitable because the governing equations are hyperbolic. In the
method of characteristics, the governing partial differential equations are transformed
into a system of ordinary differential equations each of which is valid along a
different family of characteristic lines. These equations are suitable for numerical
integration and computer programming. Furthermore, different interface, initial and
boundary conditions can be handled easily in the method of characteristics. The
convergence and stability of the method are well established. Sharp variations in the
field variables at the wavefronts can be accommodated in the method of
characteristics. Details of the method of characteristics can be found in Courant and
Hilbert [132]. The way it is applied in this study, however, is closer to that applied by
McNiven and Mengi [133].

2.2 The Fundamental Equations of the Linear Theory of Elasticity for Orthotropic
Materials and Viscoelasticity Theory for Isotropic Materials in Cylindrical
Coordinates

This part summarizes the basic equations of the theory of linear viscoelasticity
and anisotropic elasticity in cylindrical coordinates. These equations are the stress
equations of motion, strain-displacement relations and the stress-strain relations for a
generally orthotropic elastic material and isotropic viscoelastic material. Derivations
can be found in Refs [134-136]. The constitutive equations of orthotropic layers are

expressed in the transformed form of stiffness coefficients [137-138].

The stress equations of motion in cylindrical coordinates for a three dimensional

body are [134].

~Ow 0’u,

90, 199, , 00y O = (2.1a)
¢

r

or r 00 0z

r
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oo, +l 00, N oo,

+ +f, =
o Troo e TyO0T =P
(2.1b)
do,. 100, oo, 1 o%u.
+— + +—0o, +f, =
or r 00 oz r ”~ /: paﬂ

where f,, f,, f, are the body forces associated with », @ and z directions, u,, u,
and u, are the displacement components ando,,is the radial stress, o, is the

circumferential stress, o, 1is the axial stress and ©,,,0,.,0, are shear stress

zz

components.

Strain-displacement relations can be expressed as

Ou,
822_

0z

(2.2)

gy =i|Ho Mg 10U,

2\ or r r o060

1(0Ou, ou,

== +
T2l or

1({10u, ou,
i B +—

2\r 0Oz 0z

where ¢,,,&y and &, are the normal strain components associated with »,6 and

rro

z directions, and ¢,,, €,,, &, are the shear strain components.

rz?

15



The stress-strain relations for an orthotropic material in coordinates aligned with the

principal material directions can be expressed as [134-136]

oy =C 18 +Cpépy +Cisé3
0y =Ch1& + Cpépy + Cpéys

033 = C5161) + Cip6p + Ci3655
(2.3)
03 =2C8x

o3 = 2Cs58;

o1y =2Cé),

where Cl.j are the stiffnesses in contracted notation. It should be noted that the

principal material directions in a fiber reinforced lamina are the fiber direction (1-

direction) and the directions normal to the fiber direction (directions - 2 and 3).

In our problem, however, the principal material directions of orthotropy do
not coincide with coordinate axes that are geometrically natural to the solution of the
problem. In our problem, the natural body coordinates are cylindrical coordinates
r,0 and z, where r is the radial coordinate, & is the polar angle and z is the
coordinate in the axial direction of the filament wound cylindrical composite, see
Fig. 2.1. Thus, the stress-strain relations are transformed from the principal material
directions to the body coordinates (cylindrical coordinates). The results can be

expressed as:

0. =C . +Cy&, +Che, +2C e,
Opp = Ch6.. +Cpepy +Cpe, +2C8,
(2.4a)

0, =Cye. +Cyhéey +Cye, +2C e,

O-rH = 2C36 gr@ + 2C45 grz

16



Grz = 2C458r6’ + 2CVSSgrz
(2.4b)
Op =Cisé.. +Cy&pp + Cs€,, +2C 8,

where (ny are the transformed stiffness coefficients for an orthotropic material which

can be expressed as,

™

L =m*C,, +2m*n*(C,, +2C,, )+ n*C,,

Cpp =n*m*(C, +Cyy —4C )+ (n* +m*)C,y

™

o 2
3 =mCy+nCy

16 = nm[mz(Cn -C, _2C66)+”2(C12 —C,, +2C )]

™

C,, =n*C,, +2m*n*(C,, +2C, )+ m*C,,

™

B3 = n2C13 +m2C23
526 = nm[nz(cll -Cp _2C66)+ mz(clz —Cy, +2C )]

533 =Cy (2.5)

™

36 = mn(C13 - Cza)

™

) 2
wu=mCy+nC

™

45 = mn(css _C44)
555 =n"Cyy +m’Cy
566 = nzmz(C” -2C, +C22)+(n2 _mz)ceé

and the other C ; are zero.
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Figure 2.1. Filament wound fiber-reinforced circular cylindrical composite.

In Egs.(2.5), C; are the stiffness coefficients referred to the principal material

directions, m = cos¢ and n =sin¢, where ¢ is the angle between the z-axis and the

principal direction 1, the fiber direction, see Fig. 2.1.

The stiffness coefficients,C;;, of an orthotropic material can be expressed in

terms of engineering constants associated with the principal material directions as

_1=0505 _ Dy T U53L;5,
11 — ’ 12 — )
E,E;A E,E,A
_ U3 T 03Uy _ Uy T U303
13 — H 21 — 5
E,E;A E,E;A
_1=v305 _ U3 0 U5 (2.6)
22 — s 31 — s .
E\E;A E,E;A
_ Uy T U035 _1-v0y
Cy = ’ BT oA
E,E;A E,E,A
Cyy =Gy, Css =Gy,
Ces = G12
where
A= (1= 01,01 VU3, V1303 = 205,03015)

E\E, Es



and E,, E, and E; are Young’s moduli in the principal material directions 1, 2, 3,
respectively, v,,,0,,, U3, 0;,,0,;,0;, are Poisson’s ratios, and Gy, G,5, G, are the

shear moduli in the 1-3, 2 -3 and 1-2 planes.

The stress-strain relations for a linear isotropic and homogeneous viscoelastic

material in differential equation form are expressed as [133]:

R(DY, = 0(D)s;

2.7)
P (D)o = Or(D)éy
where
n "
R(D)=3 a,D" 0/(D) =3 b, D"
k=0 k=0
(2.8)
ny my
P,(D)=) ;D" 0,(D) = d,D*
k=0 k=0
In these equations, ay, by, ck, dx are specified material constants and
ak ' '
DF = — - InEgs. (2.7),0; , ¢, are the components of stress and strain deviators
ot

defined as follows:

! 1
o; =0y —§5U-Gkk
(2.9)
! 1
&j =& _§5z_'/5kk

In Egs. (2.7-2.9), indicial notation is used. In this notation i and ;j represent
the », @, z in cylindrical coordinates. A repeated index implies summation. For

example, e 1s equal to the sum of ¢,,, &y, €., in cylindrical coordinates, that is,

zzZ
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gkk = grr + 896’ + gzz (210)

Furthermore, &;; is the Kronecker’s delta defined as:

_{1 = @.11)

Under certain conditions, Egs. (2.7) can also be written in integral form as:

0, ()= G 08, (0)+ [ 6,1~ 1) 2 o1 2.12)
0 T

O ik (r, t) =G, (e (r,0)+ j. G, (t - T)aagkk (r,t)dz- (2.13)
0 T

where Gi(t) and G;(t) are shear and bulk relaxations functions, respectively, and r is

the position vector of the particle considered.

In our study, we model the viscoelastic material with standard linear solid.

The standard linear solid involves three parameters and can be represented as shown

in Fig. 2.

e AVAVAVAVAV
@{ i VAVAVAVS \/_}Ea

Figure 2.2. Model of viscoelastic material: standard linear solid.
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The stress-strain relations in differential form for the standard linear solid are
expressed in the same form as given in Egs. (2.7). The operators, however, are

defined as follows:

1 1
R(D)=Y aD" QD)= b.D"
k=0 k=0
(2.14)
1 1
P(D) =) ¢,D" 0,(D) =Y d D"
k=0 k=0

This completes the summary of the basic equations of viscoelasticity and anisotropic

elasticity in cylindrical coordinates.

2.3 Formulation of the Problem

As stated in Section 2.1, viscoelastic cylinders enclosed in filament wound
cylindrical composites consisting of n different generally orthotropic, homogenous
and linearly elastic fiber-reinforced layers is investigated in this chapter. The body is
referred to a cylindrical coordinate system, where the radial distances are measured
by the coordinate ». Boundary, initial and interface conditions of the problem imply
that the responses of the body are axisymetrical, that is all the field variables are
functions of » and t, only. Moreover, the only nonvanishing displacement

component is u,, that is, the displacement component in the radial direction.

The governing equations for the viscoelastic layer and for a typical fiber-
reinforced cylindrical layer will now be given. For the problem considered in this
chapter, the components of the displacement field in cylindrical coordinates can be

expressed as:

u, =u,(r,t); uyg=u, =0 (2.15)
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For the three-dimensional case, the stress equations of motions in cylindrical
coordinates system are given in Section 2.1 by Egs. (2.1). For the problem

considered in this study, these equations for the viscoelastic layer reduce to;

5 ) ON ) 82 )
o (0, —0w ") _ V "’2 (2.16)
or r ot

Equation (2.16) represents the stress equation of motion in the radial direction for the
viscoelastic layer. The equations in the € and z-directions are satisfied identically. In

(v v)

the equation, o, " represents the normal radial stress and o, represents the

circumferential normal stress. Furthermore, p, is the mass density of the viscoelastic

layer and ur(v) is the displacement component in the 7 - direction for the viscoelastic

layer. In Eq. (2.16), the body forces are taken zero.

The stress equation of motion for the viscoelastic cylinder can be expressed in terms

of stress deviators as

o ) 2. (v)
ij+o-” O _, 0 (2.17)

In Eq. (2.17), 0',,,_(”) , 0'99(”) are the stress deviators defined in section 2.2 by Egs.

(29)and o, = O'kk(v) . It should be noted that the subscript v and the superscript v in

parentheses denote that the quantity refers to the viscoelastic layer.

For the three-dimensional case, the stress-strain relations of linear isotropic
and homogenous viscoelastic material were given by Egs. (2.7). These equations for

the standard linear solid take the following forms:
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aoo-rr + a ~ - bOgrr(V) + bl =
ot ot
! ’
' ] ' )
v oo y oe
4,0, +a,—2—=b,g,," +b —L— (2.18)
ot ot
oo os
ot ot
’ !
The strain-displacement relations for the strain deviators &, , &, and
g, =¢, +&, +¢&_ forthe problem considered can be expressed as:
' ) )
w 1|, 0u u
grr( ) —— 2 r _ r
3 or r
' ) )
1| u ou
g, ==| 21— (2.19)
3 r or
ou 49 u )
gv — r r
or r

In writing Eqgs. (2.19), we made use of Eqgs. (2.2), Eq. (2.9); and the axisymmetrical

nature of our problem.

Taking into consideration Egs. (2.19), we can rewrite Eqgs. (2.18) as

' ) ) ) )
a_o Q) +—80'21 +lb_08 Q) _gb_o_ur +lb_lavr _%b_ovr

O g0 s =0(2.20)
a, ot 3a, 3a, v 3a oOr 3a r
C_oo_ . ao_v _ﬁg ) _ﬁur(v) _iavr(\/) _ﬂvr(‘/) o
¢ o ¢ " ¢, r ¢ O ¢ r

23



where

) )
g " = Ou, v O = Ou, (2.21)
or ot

The stress equation of motion for the outer layers is of the same form as Eq. (2.17).
In this case, however, the subscript v and the superscript v in parentheses denoting
the viscoelastic layer should be replaced by the subscript and superscript in
parentheses characterizing the generally orthotropic elastic layer under consideration.
The outer layers are assumed to be homogeneous, generally orthotropic and linearly
elastic. Hence, the constitutive equations in terms of stress deviators and

displacements for a typical layer can be expressed as,

rlly 1y 2~ | ou, l~x 1~ 2~ |Ou,
o, +|:§C22 +§ 12—5 32i| p +[§Cl3 +§C32—§C33 or =0
' ~ 1l 2~ |u |1x 15 2 u,
O o +[_C32 +§C12 _§C22}7+[§C33 +§C13 _Eczs} o =0 (2.22)
e e %
o —|Cyy +Cp, + sz Cyy+Cyy +C,y =0

~ ~

where 512,513,C22,C23,532,C~333 are the transformed stiffness coefficients for a

generally orthotropic material which can be expressed as in Egs. (2.5) of Section 2.2.

! !

Furthermore, o, , o, are stress deviators and o =0, + 0, +o_ . Differentiating

Eqgs (2.22) with respect to time, we obtain:

Cpy +

W | =

oo, [~ 1~ 2~ v
—+[§C22+§C12_§C32}7 {

(%i+B@2 +

l~ 2~ |oOv,
§C32 _§C33} =0

l~ 2~ |v I ~ l~ 2~ |Ov
—C,—=Cy, | —+|=C;; +=C;, —=C ~=0 (2.23
31273 22} . {3 3 3 23} or ( )

R N e SR CB]GV i
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In the above equations v, is the radial particle velocity of a typical generally

orthotropic layer defined as:

ou
y =—-= 2.24
= o (2.24)

The formulation of the problem is completed by stating the boundary, interface and
initial conditions. The boundary conditions at the inner surface » = a and the outer

surface r = ¢ can be expressed, respectively, as

o, (@) + J0.an)=—POH@ or v, (@) =V OH()
(2.25)

O'W(")’ (c,t)+ %an (c,t)==F()H(t) or v, (a,t) = G()H (1)

where P(t),V (t), F(t), G(¢) are prescribed functions of time ¢, H(¢) is the Heaviside

) (n)
aua’ ’aué Jare the radial particle velocity
4 t

step function, and v,",v " =(

pertaining to the viscoelastic cylinder and the n’th orthotropic layer. The subscript n
and superscript n in parentheses denote that the quantity refers to the outermost
orthotropic layer. The layers are assumed to be perfectly bonded to each other.
Hence, the interface conditions at the interface » =b between the viscoelastic

cylinder and the innermost orthotropic layer, require that,

o " (by1) +%av b.=0," (b.1)+ %al (b,1);

(2.26)
u, " (b,t)y=u " (b,1)

where the subscript 1 and the superscript 1 in parentheses are used for the quantities

referring to the first innermost orthotropic layer.
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For a typical interface between the layers designated by F and F +1, Egs. (2.26)

take the form,

o, d, )+ éaF d,n=0,"" (d,1) +§0F+1 (d,1)

(2.27)
u, " (d,ty=u'""(d,1)

where the subscript F and superscript F in parenthesis denote the layer which
precedes the interface and subscript /' +1 and superscript F +1 in parentheses
denote the layer which follows the interface. In the above equation, d is the radial

coordinate of the interface considered.

The layered body is assumed to be initially at rest; thus, at = 0, we have

uw,”(r,0)=v."#0=0; u (r0)=v,"(,0)=0 (2.28)

The formulation of the problem is thus complete. The governing field equations, Egs.
(2.20), (2.21),, (2.29-2.30), (2.23), (2.24), (2.52-2.53) are applied to the viscoelastic
and orthotropic layers, and the solutions are required to satisfy the boundary
conditions at the inner and outer surfaces, Eq. (2.25), the continuity conditions at the
interfaces, Eqgs. (2.26-2.27), and quiescent initial conditions, Egs. (2.28). Method of

characteristics is employed to obtain the solutions.

2.4 The Method of Characteristics and the Canonical Form of the Governing
Equations for the Viscoelastic Layer

In order to apply the method of characteristics, we write the governing equations as a
system of first order partial differential equations. For this purpose, were write stress

equation of motion, Eq. (2.17), in the form:
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! !
) )
(o) — O
1 06,V 1 0o, 1( i » j ov

__ - - + =0 (2.29)
p, oOr 3p, or p, r ot
Furthermore, we have the compatibility equation:
P ) 0 )
b M (2.30)
ot or

Now, the system of governing first order partial differential equations, Egs. (2.20),

(2.21)2, (2.29-2.30) can be written in matrix form as:

AU, +BU, +C=0 (2.31)

where A and B are six by six matrices defined as:

01 0 00O
001 00O
A= 000100 (2.32)
000010
1 00 00O
00 0 0 0 1]
0 0 _ L 0 L 0
Py 3p,
0 _2h 0 0 0 0
3q,
b
B=(0 — 0 0 0 0 (2.33)
3a,
0 _4 0 0 0 0
G
0 -1 0 0 0 0
0o 0 0 0 0 0
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and C and U" are six-dimensional column vectors given as:

_ , , _
) )
1 (O-rr _696’ j
Py r
) (v)
W o _2b o b 1bv,
a, " 3a, " 3a, v 3a, r
= ) )
C=lay o' _2byu," 1b v _2b v, (2.34)
a " 3a v 3a " 3a 7
1 1 1 1
) )
a, d o _du” dv,
v grr
cl c] c] r Cl r
0
)
F
rr
)
-
’
v) Grr(V)
U" = ' (2.35)
)
O o
O-V
)
_ur .

() o)
U, = —agt : "= _ag (2.36)
v

Before we derive the canonical equations from Eq. (2.31), we first establish
the characteristic lines along which these equations are valid. The characteristic lines

are governed by the characteristic equation [132]

detB-V,A)=0 (2.37)
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where V, = g defines the characteristic lines on the (» —¢)plane.
t

In view of Eqgs. (2.32-2.33), the characteristic equation, Eq. (2.37), can be

expressed as:

0 -¥, - 0 - o0
P, 3p,
0 - 2 v, 0 0 0
3a,
bl
det(B-V,A)=| 0 — 0o -7, 0 0 |=
3a,
0 _4 0 0 -V, 0
¢
-V, -1 0 0 0 0
| 0 0 0 0 0 -V,

—Vv6+( b, _d, JV4:O (2.38)

The roots of Eq. (2.38) are:

rO=c, 1P=—, r0=rY=r9=r9=0 (239

Vv v

where
1 (2, a\]"
c, = {— [—1 + —1]} (2.40)
3p\a ¢

V) are the characteristic values and the characteristic lines are defined as:
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—= = along C,V

dl‘ v v g v

dr = v(z) =—c, along C,? (2.41)
dt

dr _ v =0 (i=3-6) along C,"

Integration of Eq. (2.41) gives the families of characteristic lines C

(i = 1 - 6) which can be written as:

Cv(l) :r —c,t = constant
C ). —
, 1r—ct=constant

(2.42)

C,“ :r = constant (i =3- 6)

These families of characteristic lines are shown in the (r—¢) plane in Fig. 2.3. We

note that Cv(l) describes a family of straight lines with slope ¢

whereas C,®

Vo

describes a family of straight lines with slope —c, on the (r—¢) plane. Moreover,

C (i)

v

(i =3- 6) describes straight lines parallel to the ¢ —axes, see Fig. 2.3.

In establishing the canonical form of the governing equations, we define the

left-hand eigenvectors Lv(i) (i=1-6) corresponding to the characteristic values

VO (i=1-6) as:

(B -V, OAT)L,O =0 (i=1-6) (2.43)

where 7' denotes the transpose.
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C"vtz] Do, i @ C"lm r-ot AW
=const, Zconst. \J =const.
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A’? A 2 A
| SN
ér l,r ! /i 4 ! T a
A
| A2 A ; A3
ME
i ; L 4
T
: T " . R |
— ATy — —Aly — | | | Y et 08P rhey BT n
v -U lasti Ml' f_\.r-i 1 | =const, "o =const. m . nth 13}’61'
vigcoelasic : i orthotropic
| Al !

Figure 2.3. Network of the characteristic lines on the (r —¢) plane.



Solving Egs (2.43), in view of Egs. (2.32-2.33), we can write the left-hand

eigenvectors as:

0 i 0] 0
pVCV - pVCV _1 01
0 —2 -
L, = (1) ;L@ = 1| L®= NE L®=| be
3pvcv - 3pvcv 3a1d1
0 0 0 0
0 0 LT 1
(2.44)
o .
0 0
0
L® = 1% Lv(6) — 0
d, 0
— 0
€
1 1]

The left-hand eigenvectors in Eq. (2.44) are multiplied by arbitrary constants which

are not written for the sake of brevity.

The canonical equations can be written as

du"” (2.45)
t

Lv(i)TA +Lv(")TC=0

which hold along %: Vv(” (i=1-6). In Eq. (2.45), the superscript 7 defines

transpose, di denotes the total time derivative along the characteristic line and LV([)
t
is the left-hand eigenvector given by Egs. (2.44). For the derivations of Egs. (2.37)
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and Egs. (2.45) see Appendix A. By substituting Egs. (2.44) into Eq. (2.45) and

taking into consideration Egs. (2.32-2.35), we get the canonical equations explicitly

as

¢ 4

dt  p,c, dt 3p,c, dt  3pc, |\ q Z _3pvcv r’

_dvr<v)+ 1 darr(v)+ 1 do, 1 (2b0+d0j8 o 1 (dl b_1j1 o

¢ a

along % = Vv“) =c (2.46)

along — =V, =—¢, (2.47)
do (V)’ do (V), b 1 v a ») 2a (v)’ b, 1 »)
_ r 2 49 1= ’ 0 . __00-99 + 0o~ . — 0
dt dt a, r a, a, a, x
along % = va =0 (2.48)
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!

do,"” b do, 1 [db _b, grr(v)+b L o_% W _ b
dt 3da, dt 3a,\ d,

L(zbo J%Jiu “ o

3a, d )r’
along dar _ =0 (2.49)
dt
_do, +idg”w —C—OGV +ﬁ8,.r(v) +ﬁv"w +ﬁu"w =0
dt ¢ dt ¢ c ¢ r ¢ r
along dr _ y =0 (2.50)
dt
o)
vr(w _ du, _
dt
r _
along —=V""=0 2.51
g =V (2.51)

2.5 The Method of Characteristics and the Canonical Form of the Governing
Equations for the Orthotropic Layers

The stress equation of motion for a typical orthotropic layer in terms of stress

deviators can be written as

' [O-rr - 0-67(9 )
9, + 100 + =p v, (2.52)
or 3 or r Ot

Furthermore, we have the compatibility equation,
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0, _ 0 _y (2.53)
ot or

Now, the system of the governing first-order partial differential equations,

Egs. (2.23-2.24), (2.52-2.53), for a typical layer can be written in matrix form as

HU, +1IU, +J=0 (2.54)

where H and I are the six-by-six matrices defined as

010000
001000
0007100
H= (2.55)
0000T10
100000
0000 0 1]
0 0 Lo Ly
p 3p
0 [%513+%532—§N33j 0 0 0 0
I=1g G@%@—%Qj 0 0 0 0 (2.56)
0 —(Cy+Cy+Cy) 0 0 0 0
0 -1 0 0 0 0
0 0 0 0 0 0

and J and U are column vectors given by
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1 (O-rr _096’)
_; .
1~ 1x 2~ v,
(§C22+§C12_§C32j7
J=|(1~ 1= 2= 2.57
(gcn *3 12—§sz)7 @57)
~ ~ ~ vr
_( 32+C22+ 12)_
r
0
L _v” .
v}”
O-I’}”
Uu=| 7 (2.58)
O
(e
L u" .

In Eq. (2.54), comma denotes partial differentiation as mentioned previously.

Applying the characteristic equation in view of Egs. (2.55-2.56), we have

0 -V -y 2oy
p 3p
1l 1=~ 2=~
0 (§C13+§C32—§C33] -V 0 0 0
det(I-VH)=| (1533+1513—3523j 0o -7V 0 0|
3 3 3
0 —(Cyy +Cp, +Cpy) 0 0 -V 0
-V -1 0O 0 0 0
|0 0 0 0 0 -V|
1l 1= 2~
(3C13+3C32_3C33j 5 +5 _'_5
V4 V2+ ( 33 23 13) :0 (259)
p 3p

The roots of Eq. (2.59) can be obtained as
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V=c, VP =—, VO=r9=y=0 (2.60)

where

c= =% 2.61)

The characteristic families of straight lines in the (r — t) plane for a typical

orthotropic layer are then defined by:

% =y =c along C"
t
dr 6)) ©)
7 =V =—c along C (2.62)
§=V(” =0 along C” (i=3-6)
t

Integration of Egs. (2.62) gives the families of characteristic lines C"” (i =1-6) as:

C" .y —ct = constant

C® :r+ct = constant (2.63)

C" :r = constant (i =3 —6)

These families of characteristic lines are shown in the (» —¢) plane in Fig. 2.3.

The canonical forms of the governing equations along the characteristic lines

can be written as
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dU
—+
dt

LY H LY 1=0 along % =y i=(1-6) (2.64)

where H, I, U are given by Egs. (2.55, 2.56, 2.58) and L" is the left-hand

eigenvector defined by:

a -vPH"HLY =0 along C? (2.65)
Applying Eq. (2.65), the left-hand eigenvectors can be computed as
p— -— — — I O |
-1 -1 1
1 1
- - lx 1x 2x
ols Jos (3C13+3C32_3 33)
0 0
M _ @ e ~ - - .
L L LT = __1 L = (1C33+lcl3_zc23j ’
3pc 3¢ 3 3 3
0 0 0
0 | 0 | 0
- 1 -
(2.66)
0 | _ _ o
0 0 0
1 0 0
l~x 1~ 2~ 0 0
L(4): _(C +-C.-=C j . L(5)_ L(ﬁ)_
3 33 3 13 3 23 s _1 LR 0
(C33 + C23 + C13) 633 + 523 + 513 0
0 1 1
{ L i Lt

Since the left-hand eigenvectors of the typical orthotropic layer are found, the
canonical equations then can be obtained by applying Eq. (2.64) and taking into
consideration Eqs. (2.55-2.58) and Eq. (2.66) . This gives the canonical equations for
a typical orthotropic layer as
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-dv. 1 do 1 do o
+

- rr 4 o _ _r:O
dt pc dt 3pcdt pr pr pcr
dr
along — =V =¢ 2.67
g (2.67)
_dvr _Ldarr _ 1 d_o-+o-rr _699 +C32£=O
dt pc dt 3pcdt pr pr pcr
along & =7 = —¢ (2.68)
ol 1x 2~ ,
~do, 3732759 4o,
dt l~ 1~ 2~ dt
§C33+§C13_§C23
(€00~ - CiC + Gy + €y 4 G
gczz 33_C22C13_C33C12+C12C23+ 32C13+C32C23 v
=0
" 1~ 1~ 2~ -
5 33+§C13_§ 23
along T _yo =g (2.69)
2~ 1= 1
—dO'% §C23 _§C13 _§C33d_0'
dt Cz3 + C13 + C33 dt
20 n las x 1x s 25~ 15 =
( C32C13 _*C22C33 +*C32C33 _*Czaczz + 13C22 + C12C23j
3 3 3 3 3 v,
+ — — — L =0
C23+C13+ 33 r
along dr _ V=0 (2.70)
dt
_dG ~ ~ ~ dgi‘l‘ ~ ~ ~ V}"
dt +(C33+C23+C13)7+(C32+C12+C22)7:O
dr
along — =V =0 2.71
g~ (2.71)

39



along % =V =0 (2.72)

2.6 Integration of the Canonical Equations for the Viscoelastic Layer

The canonical form of the governing equations for the viscoelastic layers that
are valid along the characteristic lines were derived in Section 2.4 and given by Eqgs.

(2.46-2.51). These equations can be written in matrix form as:

dU(V)
dt

E —FUY =0 (2.73)

where the matrices E and F are given as:

0o -1 L 0 L 0
PyCy 3pvcv
0 -1 —L o 3 ! 0
pvcv pvcv 274
E = 0 0 -1 -2 Z? (2.74)
o 0 o -1 -9
3d,a,
ﬁ 0 0 0 -1 0
¢
| 0 0 0 0 0 —1]
2b d
F”:31 (_”_0], P (dl_bIJI’
pvcv al cl 3pvcv cl al r
(2.75a)
1 (1 a 1
ESZ__(_ ° ]a Fy=—,
pv r alcv pvr
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3pvcvcl ’ :3pvcv cl a_l r
2b, d d b
F21:_3;[_0__0]’ F22=— 1 (1_ 1]17
pvcv al cl 3pvcv cl al r
1 (1 a 1
F23___(__ 0 j: F24__:
pv r alcv pvr
d, b
Fy = ~o ) Py =— : ( O__Ojl,
3pvcvcl 3pvcv cl al r
b
Fy = _a_1%’ Fy :%a (2.75b)
1 1
2 b
£y ﬂ’ F36___Ol’
a, a, r
g (b, oo bl
3a,\ d, a, r
a b,c
F,==", F=——
44 a, 45 3d,a,
bd d
F46__L 2by +—-* l» Fy=——",
3a, d, )r ¢
d 1 c
Fs, _c_l;s Fss_c_0=
1 1
d, 1
I _C_O;a Fo=-1
1

all the other F;, =0.

The material constants in the constitutive equations of the standard linear solid given
by Egs. (2.14) can be expressed in terms of the parameters of the shear and bulk
moduli which yield more physical insight. To this end, we consider the stress-strain

relations for a linear isotropic and homogeneous viscoelastic material in integral
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form given in Section 2.2 by Eqgs (2.12-2.13). Shear and bulk moduli for the standard

linear solid can be written as [133]:

t

Gl ()= GlF + (GIO + GIF)e "
(2.76)

_t
Gz ()= GzF + (Gzo - G2F )e "

In Egs. (2.76), the constants 7, and 7, are the relaxation times of shear and

bulk moduli, respectively, and

G =G, (oo), Gy =G, (O)
(2.77)
Gyr =G, (Oo)a Gy =Gy (0)
The constants in Egs. (2.14) and Egs. (2.76) are related according to
b b a
Gy =—, Gp =—, 7 =—
a 0 dg
(2.78)
d d
Gzo__l’ G2F:_O’ T2=i
G Co Co

By substituting Egs. (2.78) into Egs. (2.74-2.75), we can express the matrices
E and F in terms of the parameters of the shear and bulk moduli of the standard solid

as
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0 -1 ! 0 ! 0
pvcv 3chV
0o -1 - ! 0 - ! 0
chV 3chV
E=| 0 0 -1 -2 0 0 (2.79)
G
0 0 0 -1 -——% 9
3G,,
G, 0 0 0 -1 0
0 0 0 0 0 -1
1 2G G 1 1
:3 ( o ZF]a F, = ( 20_G10)_a
pvcv Tl T2 3lovcv
1 (1 1 1
pv r 2-10\/ pvr
1 1 (G, G,)1
- > F'16 = )
3pvch2 3pvcv z-2 z-l r
1 2G G 1 1
- ( A —2F J ) Fy, =- (Gzo - GlO)_ , (2.80a)
3p,c, 1 7, 3p,c, r
1 (1 1 1
pv r z.lcv pvr
1 1 (G, G, )1
= , F26 = — T
3pvcv12 3pvcv 2'2 7'-1 r
Gu, oL
r Tl
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F34 = F35 0,

z-1
F36 ﬁl , F41 _l[GIOGZF _ GIF j ,

T, r 3\ Gy, 2
G
F42 =—— F44 = i’
r T,
(2.80b)
_ Gy F - _l Gy Gyr | 2G; l
45 s 46 H
3G,,7, 30G, 7, T, )r
G 1
F51—_i’ Fo, ==Gy —,
[}

FsszLa F56__G2Fl’

7, T, F
F62 =-1,
all the other F;, =0

where the wave velocity ¢, defined by Eq. (2.40) can now be expressed as
1
2G,, +G,, |2
¢, = (MJ (2.81)
3p,

The canonical equations, Egs. (2.73), can be written in a more compact form in

indicial notation as:
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—4 _-FU"Y (i=1-6, j=1-6) (2.82)

where a repeated index implies summation over its range. At this stage, it should be
pointed out that the numerical procedure starts from the - axis in the (r — t) plane,

and uses the various integration elements shown in Fig. 2.3. A typical interior
integration element in the viscoelastic layer shown as element V in Fig. 2.3 is drawn
separately in Fig. 2.4. The canonical equations are integrated along the characteristic

lines as

A

J&,°

4;

U ) A
Lt = j F.U "dt (2.83)
[/ :
dt :

where 4, and A are two consecutive points along the characteristic lines CV(”
(1' =1—6), Fig. 2.4. Performing the integration in Eq. (2.83) using the trapezoidal

rule, we obtain:
1
E,, [Uj<V>(A) - Uj(v)(Ai)] _ EAt[FZ.j(A)Uj(V)(A) + Fij(Ai)Uj(V)(Ai)]

1 1
L (V) _ _ (V)
{Ej -3 AtFl.j(A)}Uj (4) = [E, ) AtFij(Ai)}Uj (4)

or
G, (AU, V() =H, (4)U,"(4) (i=1-6,j=1-6) (2.84)

where
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G, (A) = E, ——AtF (A)

H;(A)=E,; +1A

£ (4)

Fi¥:

I Ar,

A (=3-6)

hr,

(2.85)

Figure 2.4. Typical interior integration element in the viscoelastic layer.

In Egs. (2.85), At is the time interval between two consecutive points along the
characteristic lines C,", C,”, ¢, (i =
Eqgs.(2.84-2.85), a bar under an index implies that summation convention is not
applied to that index and U,"(4), U,"’(4,) represents the values of the field
variables at point 4 and 4,, respectively. The elements of E; and F) are given in

Egs. (2.79-2.80). Equations (2.84) represent six equations defined by i =1-6, and

for each value of the free index i, there is a summation over j which takes the values

j =1-06. Thus, when the field variables U j(v) are known at points A, (i =1-6), the

3- 6) see Figs. (2.3-2.4). Furthermore, in
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values of the field variables U _/.(v) at point A can be determined from Egs. (2.84). In

other words, using the triangular mesh shown in Fig. 2.4, the values of the field

variables at a specific point along any line parallel to the »—axis in the solution

region, see Fig. 2.4, can be found in terms of the known values of the field variables

defined at points on the previous line. It is compact and suitable to express the

equation in this form for computer programming.

2.7 Integration of the Canonical Equations for the Orthotropic Layers

The canonical form of the governing equations for a typical orthotropic layer

derived in Section 2.5 and given by Eqgs. (2.67-2.72) can be represented in matrix

form as;

D—+NU=0

where the matrices D and N are given as;

0 L
3pc
0 il
(93 + €23 B 2€33) 0
(C33 + C13 - 2C23) - - -
—1 (2€23 _(313 _(333)
3(Cp, +Cp, +Cy)
-1
0
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C _
lezil’ N13__1»
per por
1 ~-C, 1
Ny=—. Ny, =—2
or peor
-1 1
Ny =—, Ny =—.,
pr pr
No. =— (C22C33 B C22C13 B C33C12 + C12C23 B C32C23 + C32C13) (2 88)
32 ~ ~ ~ > .
(C33 2C23 +C13)V
N. = _(C22C33 + C22C13 _Czs 32 _C12C23)
42 ~ ~ ~ ,
( 33t C23 03
stz_(C32+C22+C12)’ N62:1=

r
all the other N i = 0

The unknown vector U is defined by Eq. (2.58).

The canonical equations valid along the characteristic lines of a typical orthotropic
layer can be integrated in a completely analogous manner as those of the viscoelastic

layer. We obtain,

DU, (4)-U,(4)]= %At[NU. (AU (A)+ N, (4)U ,(4,)]

{Dy —%AtNl.j (A)}Uj (4) = {Dy +%AtNU (A,.)}U‘, (4)

or
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S,U(A)=Z,(4)U,(4,) (i=1-6, j=1-6) (2.89)

where

1
S; =Dy _EAtNij(A)

(2.90)

1
Zy =Dy +— AN, (4)

In Egs. (2.90), Af is the time interval between two consecutive points along the
characteristic lines, same as that of the viscoelastic layer, see Fig. 2.3 The elements

D; and N, are given by Eqs. (2.87-2.88), and U, defines the components of the
unknown vector for a typical orthotropic layer. Furthermore, U,(4) and U ,(4,)

define the values of U, at points 4 and 4, (i =1-6), respectively.

2.8 Modification of the Equations for the Boundary and Interface Elements

For the boundary element ‘B1°, an element on the inner boundary » =a as
shown in Fig. 2.3, we should modify Egs. (2.84) in order to satisfy the boundary

conditions.
When the layered body is subjected to time dependent dynamic input at its

inner surface, Egs. (2.25),, the integrated canonical equations, Egs. (2.84), remain the

same for (i=2-6, j=1-6)whereas, the integrated canonical equation for

(i=1, j =1-6)should be replaced by the boundary condition

0',,,(V)'(A) + %av (A)=-P(4) or V.")(4) =V (4) (2.91)
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Now, for the interior element ‘V’, shown in Fig. 2.3, Egs. (2.84) are capable

of determining the values U j(v) for (i =1-6, j =1-6) without any modification.

As for the interface element ‘M’ an element on the interface between the
viscoelastic layer and the orthotropic layer labelled as layer 1, we should make use of
combining the sets of Eq.(2.84) and Eq. (2.89) together with the interface conditions.

The interface conditions require the continuity of the surface tractions and

displacements at the interface, that is the stress component o, of the viscoelastic
layer is equal to the stress component O',r(l) of the first orthotropic layer and the

particle velocity (v,(v)) of the viscoelastic layer is equal to particle velocity (vr(l)) of

the first orthotropic layer at points on the interface. We can write the governing

equations for this element as:

) ) . s
G, (AU, (4) = H, (AU, (4)  (i=13456; j=1-6)

(2.92)
S,U(A)=Z,(4)U," (4, (i=2-6, j=1-6)
supplemented by the interface conditions
» 1 ' 1
Urr (A) + EGV (A) = Grr (A) + E Gl (A) (293)
and
v, (4) =v," (4) (2.94)

The composite bodies considered in this thesis consist of n different,
orthotropic, homogenous and linearly elastic filament wound layers. Equations (2.89)
were derived for a typical layer. This typical layer can be considered as the m th
layer and all the quantities pertaining to the m th layer will be denoted by subscripts

m or superscripts m in parantheses. For a composite case consisting of n layers, m
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takes the values m=1,2,...,n. Thus, the integrated equations for the interior element K

in the m th layer can be written as

S, "U " (A) = 2, (AU, (4)(i=1-6, j=1-6)  (2.95)

where Sl.j(m) and Zij('") can be obtained from Egs. (2.90) by simply putting

superscripts m in parentheses over all the quantities appearing in these equations. In
this thesis, the inner orthotropic layer is assumed to be layer 1 and the outermost

orthotropic layer is assumed to be n.

For the boundary element B, on the outer surface r =c(see Fig. 2.3), Egs. (2.89)

need to be modified. Equations for i =1, 3 -6 remain the same, that is
(myr (n) _ 7 (n) _ C i
S; U, (A)=2,"(4)U, " (4) (=13456; j=1-6) (2.96)

whereas, the equation for i = 2, should be replaced by
o, (A)+ é% (A)y=-F(4)  or V.""(A)=G(4) (2.97)

depending on whether surface tractions or particle velocity is prescribed..

We have another type of element where Egs. (2.89) need to be modified. These
elements which are called the interface elements of orthotropic layers correspond to
points A at the interfaces. The number of interfaces depend on the number of layers
and since we have n layers, we have (1 —1) interfaces which will be denoted by (L2,
Los,....... ,Lm-1m)), see Fig. 2.3. For a point A at the interface between the layers m

and m+1, element L(yym+1), Fig. 2.3, Eqs.(2.89) are modified as
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S, U, " (A) =2, (AU, (4) (i=13456; j=1-6)
(2.98)
Sl-j(mH)Uj(mH) (A) — ZU(mH) (Al )Uj(m+1) (AE) (l — 2 . 6, ] — 1 _ 6)

where the superscripts m in paranthesis denote the layer which precedes the interface
and m+1 denotes the layer which follows the interface. Equations (2.89) for i =2 for
m th layer and i =1 for the layer m+1 are replaced by the interface conditions

requiring the continuity of surface tractions and displacements, which are

o, (4)+ %o—m (A=0c,"" +%am (A4) (2.99)

and

v " (A)=v. " (4) (2.100)
Thus, modification of the equations for the interface and boundary elements is

completed. Equations (2.98-2.100) represent twelve equations to determine the

(m) (m+1) .. . .
twelve unknowns, U, (4) and U," " (4), pertaining to points on the interface of

the layers m and m+1.

2.9 Ablating Inner Boundary

In this section, we investigate the case in which the inner surface of the
viscoelastic cylinder enclosed in filament wound cylindrical composites is a moving
boundary. This is the case in solid propellant rocket motor cases. As the propellant
burns, the inner surface moves outwards, decreasing the thickness of the viscoelastic
layer representing the solid propellant (see Fig. 2.5). As can be seen from Fig. 2.5,
equations for the elements ‘T’ and ‘P’ should be obtained by properly modifying the
previously derived equations for the inner and boundary elements of the viscoelastic

layer.
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In order to find the values of the field variables U j(v) at points A of the

boundary element ‘T’, we make use of Egs. (2.84) together with Eq.(2.91). However,
the coefficients G;(4) and H ,(4,)and the values of the field variables at points 4,,

that is U,(4,), should be modified properly. For this purpose, the values of G,
(i=2-6, j=1-6)at point A should be calculated using the known G, values of

the former and later points (points F and L at Fig. 2.6) with interpolation technique.

Formulation of this calculation can be written in equation form as

G, (4) =

G.(L)-G,(F)
. A d Arp + G, (F) (2.101)
where Ar, and Ar, are the distances shown in Figs. (2.5-2.6) and G;(L) and

G, (F) denote the values of G at points ‘L’ and ‘F’, respectively, Fig. 2.6.

Furthermore, the values of Hl.j (i=2-6, j=1-06)at points ‘A,’ and ‘A3’ of the

element ‘T’ should be modified using their known values at points ‘ P'’, ‘Q’ and ‘S’,

see Fig. 2.6. These can be calculated through interpolation as

1'1’2,-(5)—1'75,-(Q)A
Ar

v

Hz_; (Az) =

ry+ H,,(0) (2.102)

1L13_,~(Q)—1'7f3,~(1°')A

Hsj(Aa)z .
PO

rp + Hy, (P) (2.103)

where Ar,,,, Ar,, Ar, are the distances shown in Fig. 2.6 and can be calculated as

below
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burn

t+T,

Ar., =

g 2Tbum
Arpy =Ar, —Ar, (2.104)
ArQ = ZArp,

In Egs. (2.104), ¢ is the time corresponding to point A of typical boundary element T

and 7, is the burning time of the whole solid propellant. In other words, 7, is

burn

the time required to reach zero thickness for viscoelastic layer.

We must further find the values of vector U j(v) at points A, and A3 of element ‘T".

This can be achieved by interpolating known values of the field variables at points

‘P'’,‘Q’ and ‘S’ as shown in Fig. 2.6 and can be written in equation form as

u"$)-U,"Q

» Ary +U," () (2.105)

Uj(V) (Az) —

Q) M pr
Uj (Q) - Uj (P )
Arpg

U, (4,)= Ar, +U " (P') (2.106)

In Egs. (2.105-2.106), U, (P"), U,""(Q) and U,"’(S) denote the values of the

field variables Uj(v) at points ‘ P, ‘Q’ and ‘S’, Fig. 2.6.

The modifications of the coefficients and the values of the field variables in Egs.
(2.84) for the inner element ‘P’ will now be considered. For the element, location of
the point A; can be seen on Fig. 2.6. As can be seen from the figure, equations of

H,, (j=1-6) for point A; needs modification. This can be done by modifying the

time difference and the position values in the equation. For the former one Azt is

used instead of Ar after that point. For example H,, (Al) takes the form below
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1
Gzo - GIO)

; FvN (2.107)

where A#t is the time difference and r(4,) is the position of the point A4, of element

P as shown in Fig. 2.6 and A#f can be evaluated using the following equation

Att = AP, — Ar, (2.108)

Furthermore, the values of U j(v) for point A4, of element ‘P’ should be evaluated by

interpolation from known values of the field quantities at points ‘W’ and ‘V’ shown

in Fig. 2.6. This can be written as

) )
U wy-u,"mw)

) _
U, (4)= "

(At —An)+ U, ) (2.109)

where U j(v) (V) and U j(v) (W) are the known values of the field variables at points

‘V’and ‘W’ , see Fig. 2.6.

For the points A of inner element ‘S’, Eq. (2.84) do not need any modification.

2.10  The Solution Procedure

At this point, the integration of the canonical equations is completed. Before
discussing the numerical examples, we explain below, the numerical procedure in

more detail. For this purpose, we refer to the network of characteristic lines, Fig. 2.3.

» O ()

Our goal is to establish the solution U, = (8 . ,U%M,av,u,m)

rr

for the viscoelastic layer and U, = (5 v.,o Jgg,a,u,) for the orthotropic layers

22 o
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at all points of the network of characteristics lines shown in Fig. 2.3. To achieve this,
we start at the origin and proceed along r —axis where the values of, U i(v), U, are

all equal to zero because of quiescent initial conditions. Then, we proceed into the

)

region by computing U, ', U, at the points of the network with the order

1,23 123" . etc(Fig. 2.3).

To explain the numerical procedure, we refer to five different elements, namely, the
inner boundary element ‘B,’, the inner viscoelastic layer element ‘V’, the interface
element ‘M’ between viscoelastic layer and first orthotropic layer, the inner
orthotropic element ‘K’, the interface element ‘L’ between orthotropic layers, and the
outer boundary element ‘B,’, see Fig. 2.3. Knowing that all the field variables are
zero on the r—axis, we start the solution at point 1 which is point A on the

boundary » =a and is denoted by element ‘B;’ in Fig. 2.3. The analysis of the

boundary element ‘B’ involves finding the six components of U l.(v) at the point A in
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terms of their values at the points A, and A, (i=3-6) and the given boundary

condition at the inner surface. The integrated equations giving the values of U l.(v) at
the point A are Eqgs. (2.84) for (i=2-6, j =1-06) together with Eq. (2.91) where the
inner boundary surface is subjected to uniform time dependent dynamic inputs. As
we advance in the (r —7)-plane, we come to an interior point A in the viscoelastic
layer which is denoted by element ‘V’ in Fig. 2.3. Similarly, the analysis for the
interior element ‘V’ involves establishing the six components of U i(v) at the points A
in terms of their values at the points A;, A, and A, (i =3- 6) which at this stage are

all known. The equations giving these values were obtained in section 2.6 as Egs.
(2.84). Next element in the solution process is ‘M’ which represents points A at the

interface of the viscoelastic and innermost orthotropic layers. The analysis of this
element involves finding the values of U," and U,"”, (i =1-6), from the integrated
canonical equations, Egs. (2.92) and the interface conditions given by Egs. (2.93-
2.94). Next type of the element in the solution process is, the inner element ‘K’ in the

m th layer and the analysis involves the determination of the values of U, at the
points A in terms of their values at points A;, A, and A, (i =3—6). This is

accomplished by employing Egs. (2.95). For an interface element ‘L’ at the interface
of layers m and m+1, the values of the field variables at point A can be determined
from the integrated canonical equations, Eqs. (2.98), together with the interface
conditions given by Egs. (2.99-2.100). Finally, in the analysis for the boundary
element ‘B,’ at » = ¢, the values of the field variables at point A are determined from

Egs. (2.96-2.97). This completes the description of the numerical procedure to obtain
the values of the field variables U l.(v) and U, (i=1-06) at points A of the network of

the characteristic lines. For this purpose, a computer program in the FORTRAN

language is written and the numerical computations are carried out at the computer.
For the ablating inner boundary solutions, we investigate the problem with

two different boundary lines. Equations for the two boundary lines are different from

each other because the rates of decrease of the solid rocket propellant for the two
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cases are taken different. The equations of these boundary lines in the (r —¢) plane

can be stated as follows.

100

t= —(r - a) : boundary line BL, (2.110)
CV

tzﬂ(r—a): boundary line BL, (2.111)
c

v

In the first equation, Eq. (2.110), the rate of decrease is the highest while for the last
equation, Eq. (2.111), it is the smallest. In other words, Eq. (2.111) has smaller slope

with respect to ¢ — axis as compared to Eq. (2.110).

Our aim in using two different line equations is, to find U j(v) (j=1-6) and
U,(j=1-6) in the viscoelastic cylinder enclosed in filament wound cylindrical

composites for two different decreasing rates is to see the effects of the rate of
decrease of the thickness of the viscoelastic layer on the stresses in the remaining of
the viscoelastic layer and the filament wound cylindrical laminate enclosing the
viscoelastic layer. Numerical values for the material properties and the geometric
parameters are exactly the same as the numerical values of the examples considered

in the non ablating cases.

In the case of an ablating inner boundary, the integrated canonical equations for the
boundary element ‘B;” and the inner element ‘V’ for some inner points in the
immediate vicinity of the ablating boundary need to be modified. This modification
was described in some detail in section 2.9. As in the case of non-ablating boundary,
we start at the origin and proceed along the » — axis, where at all the points the field
variables are zero due to quiescent initial conditions. Then, we proceed to point 1,
Fig. 2.5. Point 1’ is a boundary point described by element ‘T’. Hence, we use Egs.
(2.84, 2.91) with the modifications defined by Egs. (2.101-2.103, 2.105) to find the
field quantities at point 1'. Then we proceed to point 2'. This is an interior point in

the immediate vicinity described by the interior element ‘P’ and therefore, we use
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Egs. (2.84) with the modifications defined in Egs. (2.106, 2.107), in order to find the
values of the field variables at this point. After finding it, we pass to point 3'. This is
also an interior point, but described by element ‘S’ and hence we can use Egs. (2.84)
without any modification. We know the values of the field variables at points 2, 3
and 4 and we can find the response of point 3'. The values of the field variables at
points 4", 5", 6', .... are computed in the same way as that of the non ablating

boundary case, employing the same equations with the same elements.

We wrote a computer program for this case and carried out all the
computations through the computer. The computer program is written in FORTRAN

language as well.

2.11  Numerical Examples and Discussion of the Results

In the numerical examples, the inner surface is assumed to be subjected to a
uniform time dependent pressure and the outer surface is free of surface tractions,

that is, the boundary conditions, in view of Egs. (2.25), are

a,/”' (a,t)+ %av (a,t) = —P()H ()
(2.112)

o, (c,t)+ %O‘n (c,H)=0

In the method of characteristics, we are free to choose any time dependency for the
applied pressure. In the problems, we choose a step-time variation with an initial
ramp, see Fig. 2.7. In this figure, we notice that the applied pressure is zero at t =0,
linearly rises to a constant value P, during a rise time of A7 and remains constant
thereafter. The initial ramp in the pressure variation eliminates the complicated
circumstances of having first-order discontinuities in the field variables at the wave
fronts. Furthermore, it is physically more realistic as a boundary condition than a step

time variation without a ramp.
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Figure 2.7. Variation of radial pressure applied at the inner surface.

The numerical computations are carried out and the results are displayed in

terms of non-dimensional quantities. These non-dimensional quantities are defined as

- r - Ic, - C,
r=—, t= , cv=—"7=1
a a c,

— pv — p)‘l - cn
po=tr=l. p,=tr o=t
pv pv CV

(2.113a)

— = = E E E
(EI,EZ,E?r):( 12, 227 32}7
pvcv pvcv pvcv
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— = = G G G
(GIZ,GIZ,GB):( 2 232},
pch pch pch

(21,?2){&,%}, (2.113b)

o G G G G
(GIO,GZO,GIF,GZF):[ 102 s 202 5 1F2 5 ZFZJ,
pvcv pvcv pVCV pvcv

where the non-dimensional quantities are designated by bars. Furthermore, a is the

radius of the inner surface and p,,c, are the mass density and wave velocity of the

viscoelastic layer, respectively.

First, several examples will be given to verify the wvalidity, efficiency and
effectiveness of the method employed. In the first example of verification, the
dynamic response of a viscoelastic cylinder encased in an isotropic, homogeneous
and linearly elastic layer is investigated. The viscoelastic and elastic layers are
perfectly bonded to each other. The inner surface of the viscoelastic layer is
subjected to a uniform time dependent pressure where the time variation is chosen as
a step function with an initial ramp, see Fig. 2.7, and the outer surface is free of
surface tractions, Eqs (2.112). The encased viscoelastic cylinder is initially at rest.
This problem was solved by Turhan and Sen [139] and Sen [144] by employing the
method of characteristics. Sen’s [144] solution was further verified by the solution of
Chou and Greif [43] for a special case. The solution of this problem in our treatment

is obtained as a special case of a viscoelastic cylinder encased in a filament wound
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fiber-reinforced cylindrical composite consisting of three generally orthotropic layers
with stacking sequence -30/0/90 starting from the inner layer. The viscoelastic

material is modelled as standart linear solid in this study as well as Refs. [139, 144].

Two different materials (one more viscous) were chosen for the viscoelastic layer.

The material properties are taken as Refs. [133, 139]

A) Material 1: (more viscous material properties)

G =0.7; Gir =0.14; Gn =16, G =04;

(2.114)
- - — - c
1=1.5; 72 =2.5; p=1; cv=—"2=1

CV

B) Material 2: (less viscous material properties)
G =0.7; Gir =0.28; G =16 G =08

(2.115)
71 =3; 7, =5 p=1; e =1

The non-dimensional material properties for the elastic case were taken in [139] as

—_ y) _ U
A=—C_ =457, n=—"_-636,
PyC, P.C,
(2.116)
p€=&=4’ C‘e=c—e=2
Py ¢,
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where 4 and u are Lame’s constants and p, and c, are the density and particle

wave velocities of the isotropic elastic layer.

In our treatment of the problem in this study, we take the material properties of the
three generally orthotropic layers the same and such that they represent three
identical isotropic elastic layers with the same dimensionless material properties
given by Eq. (2.116). The thickness of the layers are chosen such that the total
thickness of the multilayered elastic case is the same as the thickness of the elastic
layer of Refs. [139,144]. The material properties of the viscoelastic layer in our
treatment are taken the same as these given by Egs. (2.114-2.115). The material

properties of the orthotropic layers in our treatment are taken as

El ZEz =E3 =11.691; 512 2513 2523 =3.96
(2.117)

Uy, =Uy =03 =03 =0, =0;, =03

The geometric properties of the case cylinders of Refs. [139,144] and those

considered in this treatment are

a=1; b=2; c=23 (2.118)

The curves for denoting the variations of the non-dimensional radial normal stress

- arr(v) / B, with the dimensionless time ‘= tc,/a at the location r=r/a=1.5 and
the non- dimensional circumferential normal stress o,,/F, with 1= tc,/a at

location r=2.15 for nonablating inner surface are given in Figs. (2.8, 2.9),

respectively. Location r=1.5 is in the viscoelastic layer, whereas r=2.151is in the
outer elastic case. The curves for viscoelastic material 1 obtained from Refs.
[139,144] and those obtained in this study as a special case are almost identical and
they are given as the same curves in Figs. (2.8, 2.9). The curves for viscoelastic
material 2 are not given in Refs. [139,144]. They are given in this study to show the

effects of viscosity of the viscoelastic layer. Material 2 is less viscous than material 1
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and this is revealed in the curves by a slower attenuation of the stress levels due to

material internal friction. The case of ablating inner surface defined by
t=500(-~1):  boundary line BL, 2.119)

is considered in Fig. 2.10. The curves in this figure denote the time variations of
o, ! P, at the location r=2.151in the outer elastic layer for both the ablating and

non-ablating inner surfaces. The curves are for viscoelastic material 1. The curves of
Refs. [139,144] and these obtained in this study coincide and they are shown as one

curve in Fig. 2.10. These excellent agreements verify the validity of our solutions.

In the second example of verification, transient dynamic response of a
multilayered medium consisting of five generally orthotropic layers with the stacking
sequence 30/-30/90/0/90 is considered. A uniform pressure with a stepwise time
variation as shown in Fig. 2.7, is applied on the inner surface and the outer boundary
is free of surface tractions. This problem was solved by Turhan and Ghaith [140]
which was verified, for a special case, by the solution of Chou and Greif [43]. The
numerical computations are carried out for T300/5208 graphite/epoxy composite

with the non dimensional properties

(2.120a)
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v, =v,; =0.238, v,; =049

a=1, b=15, (2.120b)

|

;=01 (i=1-5), p, =1 (i=1-5)

This problem is solved in this study by modifying our computer program to include
only the generally orthotropic layers without the viscoelastic layer. The solution
obtained in this study is exactly the same as that given in Ref. [140] and the curves

giving the time variations of the non-dimensional radial and circumferential normal

stresses at location r =1.25 are given in Fig. 2.11.

We now present some results for the case of viscoelastic cylinders encased in
filament wound fiber- reinforced cylindrical composites which is the basic problem
investigated in this chapter. The inner surface is subjected to a uniform time
dependent pressure and the outer surface is free of surface tractions, that is, the

boundary conditions are given by Eqs (2.112). The pressure function P(¢) has a step-

time variation with an initial ramp as shown in Fig. 2.7. The body is assumed to be
initially at rest; hence, the initial conditions are as given in Egs. (2.28). The layers are
assumed to be perfectly bonded to each other, and therefore, the interface conditions
are as defined by Egs. (2.26-2.27). The multilayered body consists of a viscoelastic
layer whose material is modeled as standard linear solid and three generally
orthotropic elastic layers with stacking sequence -30/0/90 starting from the inner
layer. The numerical computations are carried out using solid propellant material
properties for inner viscoelastic layer and S2 glass/epoxy composite material
properties for orthotropic elastic outer layers [141-142]. The non-dimensional

material properties then can be written as
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A) Propellent properties

G =0.006;  Gir =0.002; G = 2.988;
(2.121)
G =0.805; 71=14; 72 =3.8; p,=1;
B) S2 glass/epoxy properties
L,; =U;, =0.33; Uy = U3 =0, =0, =0.236;
G =20.786; Gis =G =19.591 (2.122)
E\ =163.693; E>=FE; =54.564
p=1588
* —— inner layer, Viscoelastic material 1 (more
\ TA'SCOUS) . . .
% 08 C \NJ W\
i N 0 A L
g 06 7 4 U‘H’H ﬂV; ﬂm. J} /N“\Wf/’nl WM%'M“"V S P N e L T -
AT R
é 0.4 (’ ‘L
. 0.2 ‘
!

Figure 2.8. Variation of radial normal stress —o, /F, with time ¢ at location

7 =1.5 in the viscoelastic layer for non-ablating inner surface.
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non - dimensional circumferential stress

—— inner layer, viscoelastic material 1 (more
viscous)

inner layer, viscoelastic material 2

0 5 10 15 20 25

non - dimensional time

30|

Figure 2.9. Variation of circumferential normal stress o, / B, with time ¢ at

location r = 2.15 for non-ablating inner surface.

| R N/

non - dimensional circumferential stress

stationary

—— ablating with boundary line B2

0 5 10 15 20 25

non - dimensional time

30)

Figure 2.10. Variation of circumferential normal stress o, / P, with time { at

location 7 =2.15 for ablating and non ablating inner surfaces.
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Figure 2.11.Variations of non-dimensional stresses with time ¢ at location

r=1.25 for the cylindrical laminate with five generally orthotropic

layers.

The numerical results are illustrated in curves in Figs. (2.12-2.18). In Fig. 2.12, the
variation of — o, " / P, with time ¢ at the location r =1.5 is displayed. In the figure,
three curves are given, one for the stationary inner surface and the other two for
ablating inner boundaries. Equations of ablating inner boundary lines in the (I_"—;)
plane are given by Eqgs. (2.110, 2.111). The curves denote the effects of reflections at
the inner (; =1), and outer (7_" = 2.3) boundaries, and reflections and transmissions at

the interfaces of the layers. Furthermore, the curves denote the effects of material
internal friction due to the fact that the body is four layered and first layer is
viscoelastic. The effect of geometric dispersion is also apparent in the curves. The
pattern of sudden increases and decreases in the stress levels is due to the arrival of
reflected, re-reflected and transmitted waves generated at the inner and outer
boundaries and the interfaces between the viscoelastic and elastic orthotropic layers.
We note that the mass densities and wave velocities of all the orthotropic elastic plies

are the same, hence reflections at the interfaces between orthotropic layers are not
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distinctive in the curves. In the values of stress levels up and down, we can also see
the effects of viscoelasticity and the cylindrical geometry of the layered body. If the
four layers were made of elastic materials with the same properties and the geometry
of the body were plane instead of cylinder, the jumps in the stress levels would be
equal to 1 and dimensionless stress levels would be either 0 or 1 which is a well
known fundamental result in wave propagation. In the curves of Fig. 2.12, we see
that the non-dimensional radial stress — o, / P, reaches values as high as 2. This is
quite striking. Normally, the radial stress does not reach that high values in ordinary
elastic or viscoelastic layers. The reason it is so high here is due to the distinguished
properties of the solid propellant which is quite close to being incompressible. We
also note that the radial stress is compressive in the time range considered. This is
also a desirable situation for smooth combustion of the propellant. The curves for the
ablating inner boundary cases show similar features especially in the neighborhood
of the time of arrival of the disturbance. As time passes on, differences in the curves
become more distinct. This is due to the differences in the rates of decrease of the

thickness of the viscoelastic layer. The curve with the bold color is for the boundary
line B2 defined by the equation t= 500(; —1). When we compare this curve with the

curve having a solid line and grey color which is for the stationary inner boundary,

curves differ very little from each other. On the other hand, the curve for the
boundary line B1 defined by the equation ‘= 100(;— 1) deviates more significantly

for large times from that of the stationary inner boundary case. Thus, naturally, as the

rate of decrease gets larger, the differences in the curves increase.

Fig. 2.14 shows the variation of the non-dimensional stress — o, / P, with time t

at location r =2 (interface). The curve in this figure exhibits similar features as those
of Fig. 2.12. We note that the peak stress levels get smaller for the problem as we go-
away from the inner surface (z_f = 1), see Figs. (2.12, 2.14). This is due to the material

internal friction and geometric dispersion.

Figures (2.13, 2.15) denote the variations of the non-dimensional circumferential

normal stress —o,," /P, with time ¢ at points r=1.5 and 2 (interface),
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respectively, of the multilayered medium. These curves reveal similar trends. The
effects of reflections at the boundaries, reflections and transmissions from interface

between viscoelastic and first orthotropic layer, internal friction and body geometry
are exhibited in these curves, as well. We note from these curves that o, /P, is
overhelmingly negative. Furthermore, we note that the trend and the values of the
stress levels for o, / P, are very similar to those of &, / P, at the locations and
time ranges considered. This is due to the incompressible nature of the propellant.
We also note from the two figures that, the peak levels of the stress o, /P, are

higher at location 7=1.5 than at » = 2. This is due to the internal friction in the

viscoelastic layer and geometric dispersion.

Figures (2.16, 2.18) show the variations of the circumferential normal stress
G, /P, and o, /P, with time ¢ at locations r=2 (interface) and 2.15,
respectively. These figures display similar trends. We note from the figures that the
major stress in the orthotropic layers is ¢, / B, which may assume values as high as
11 for r=2 (interface) and 18 for 7 =2.15. At the interface r = 2, we note that the
circumferential normal stress o, / P, suffers discontinuities. It may reach values as

high as 11 in the orthotropic side, whereas in the viscoelastic side of the interface it
remains less than 2, see Figs. (2.15, 2.16). We further note that o, /F, for
orthotropic layers is basically tensile, whereas in the viscoelastic layer which
represents a solid propellant, it is basically compressive. The circumferential stress
being compressive in the viscoelastic layer is a desired situation for solid propellants.
In addition to the stationary inner boundary curve, Fig. 18 includes two different
ablating boundary curves as well. It is seen from the figure that the curves for the

stationary surface and ablating boundary surface denoted as BL, differ little from

each other. This is because BL, defined by equation ‘= 500(; - 1) in the (; - z:)-plane

is a slowly moving boundary. However, the curve pertaining to the boundary BL,

represented by equation t= 100(;—1), deviate more significantly from the curve
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related to the stationary boundary. This is because ablating boundary BL, is a fast

moving boundary.

Finally, Fig. 17 displays the variation of radial normal stress — arr(z) / B, with respect

to time ¢ at location » = 2.15 . This curve also denotes the effects of reflections and

transmissions at the boundaries and interfaces. Jumps in the stress levels decrease as

time ¢ increases. This is due to body geometry and viscoelasticity of the first layer.
When we compare this figure to the non-ablating curve of Fig. 12, the differences are
due to the position of the location considered. Since the point is close to the outer
boundary and the interface, the jumps at the stress levels are more frequent in this
figure compared to the curve of the non-ablating case of Fig. 12. This is also due to
the fact that wave velocity in the orthotropic layer is nearly seven times to that in the
viscoelastic layer and the thickness of the orthotropic layers is one-tenth of that of

the viscoelastic layer.

§ U
[ | non - ablating
|
f ablating with boundary BL2
\‘ ‘ ‘L ablating with boundary line BL1
Y

non - dimensional radial stress
L
S:—
=
=_—
o
5

\

0 2 4 6 8 10 12 14 16 18

non - dimensional time

Figure 2.12. Variation of radial stress — o, "’/ P, with time ¢ at location r=1.5

in the viscoelastic layer for the ablating and non-ablating inner
surfaces.
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Figure 2.13. Variation of circumferential stress — o,/ P, with time ¢ at location

7 =1.5 in the viscoelastic cylinder for non-ablating inner surface.
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Figure 2.14. Variation of radial stress — o, "’/ P, with time ¢ at location r =2,

the interface between the viscoelastic and first orthotropic layer, for
non-ablating inner surface.
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Figure 2.15. Variation of circumferential stress — o,/ P, with time ¢ at location

=2, the interface between the viscoelastic and first orthotropic layer
for non-ablating inner surface.
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Figure 2.16. Variation of circumferential stress o,, "/ P, with time ¢ at location

= 2, the interface between the viscoelastic and first orthotropic

layer, for non-ablating inner surface.
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Figure 2.17. Variation of radial stress —o,.*'/ P, with time ¢ at location 7 =2.15 in

the second orthotropic layer for non-ablating inner surface.
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Figure 2.18. Variation of circumferential stress o,,”/ P, with time ¢ at location

r=2.15 in the second orthotropic layer for ablating and non-ablating

inner surfaces.
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CHAPTER 3

THERMOMECHANICAL RESPONSE OF FIBER-REINFORCED
CYLINDRICAL COMPOSITES

3.1 Introduction

In this chapter, transient dynamic response of filament wound cylindrical
composites will be investigated. Thermal effects, in addition to mechanical effects,
are taken into consideration as well. A generalized thermoelasticity theory which
incorporates the temperature rate among the constitutive variables and is referred to
as temperature-rate dependent thermoelasticity theory is employed. This theory
predicts finite heat propagation speeds. This theory has been developed and used in
many steady state and transient wave propagation problems, among which we can
site [97-121]. An exhaustive review of the literature on these theories known as

thermoelasticity with second sound is given in Ref. [122-124].

The body considered in this chapter consist of n-different generally orthotropic,
homogeneous and elastic layers. In each ply, the ply orientation angle may be
different. The body is a hollow circular cylinder with a finite thickness in the radial
direction, whereas it extends to infinity in the axial direction. The multilayered
medium is subjected to uniform time-dependent dynamic inputs at the inner and/or
outer surfaces. The body is assumed to be initially at rest. The layers are assumed to

be perfectly bonded to each other.

The governing field equations of anisotropic temperature rate dependent
thermoelasticity will be applied to each layer and the solutions are required to satisfy
the continuity conditions at the interfaces of the layers, the boundary conditions at
the inner and outer surfaces and the initial conditions. In the following parts of this

chapter, governing field equations are explained briefly.
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Method of characteristics is employed to obtain the solutions. Method of
characteristics is suitable for this thermoelastic problem as well, because the
governing equations of the temperature rate dependent thermoelasticity are

hyperbolic unlike those of classical thermoelasticity.

3.2 Basic Equations of the Temperature Rate Dependent Thermoelasticity (TRDTE)
for Orthotropic Materials in Cylindrical Coordinates

This part summarizes the basic equations of temperature rate dependent
thermoelasticity (TRDTE) for orthotropic materials. Equations for the anisotropic
TRDTE with no symmetry are obtained from Chandrasekharaiah [122] and more

information can be obtained from this reference.

Constitutive equations of TRDTE together with the energy equation for
homogenous and anisotropic materials for the three-dimensional body in Cartesian

coordinates can be written as [122];

o, =Coun — By (T +af)

y

pS = (pc/To)(Ton')—(%

0

]ri B¢, (3.1)

q; =—(clT+k.ATA)

gt
q:; = p(R—STO)

In Egs. (3.1), T is the temperature deviation from the initial uniform reference

temperature 7, ie, T =T'—T,, where T" is the absolute temperature. Also, Cy, is
the elasticity tensor, £ is the thermoelasticity tensor, k; is the thermal conductivity
tensor and c is the specific heat per unit mass, in the isothermal state. Further, ¢, is

the heat flux, S is the entropy per unit mass and «, ¢, @;, 0,,c; are new material

constants not encountered in classical thermoelasticity (CTE). Furthermore, the last
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of Egs. (3.1) is the energy equation in which R is the intensity of the internal heat

source per unit mass. In addition to these, following symmetry conditions hold good;

Cijkl = Cklij = Cjikl = Cijlka ﬂy = ﬁji: kij = kji (3.2)

We note that, in Egs. (3.1-3.2), indicial notation is used and from now on, the rules

pertaining to its use will be employed, otherwise it will be indicated.

For an orthotropic material with three orthogonal planes of symmetry the

second rank symmetric thermoelasticity tensor f; takes the form;

By 0 0
[Bl=] 0 By O (3.3)
0 0 By

This is the form referred to the principal material directions 1,2 and 3. The

transformed thermoelasticity tensor components referred to the body coordinates

r, 8, z (cylindrical coordinates, see Fig. 2.1) can be expressed as;

B =m* P +n° By

B =" By +m’ By, (3:4)
B =B

B = mnpy —mnp,,

where m =cos¢g, n=sin¢g and ¢ is the angle between the z-axis and the principal

material direction 1, the fiber direction, see Fig. 2.1.

The symmetric thermal conductivity tensor k; has six independent components for

an anisotropic material with no symmetry. However, for an orthotropic material with
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three orthogonal planes of symmetry, the thermal conductivity tensor referred to the

principal material directions takes the form below.

[k]=| 0 ky, O (3.5)

The transformed thermal conductivity tensor components referred to the body

coordinates r, 8, z can be expressed as;

k,, =n’k, +m’k,, (3.6)
krr = k33

k, = mnk, —mnk,,

Furthermore, it can be shown that the material constants ¢, in Eqs. (3.1),,(3.1)3

are zero for an orthotropic material having three orthogonal planes of symmetry.

Thus, the equations for a generally orthotropic thermoelastic layer can be

written in cylindrical coordinates as;

constitutive equations for stress components
O-zz = 5ll(c"zz + 5]2809 + 5]38rr + 25168& - ﬂzz (T + aT)
Ogp = 521‘922 + 522599 + 5238}’)’ + 2526892 —Bao (T +0‘T) (3.7a)

0, =Cy&,. +Cyéh +Cye,, +2Cxe, — B, (T"'aT)
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0,5 =2Cy8,) +2C5,.
0, = 25458r9 + 2555517 (3.7b)

0y =Cé,, +Copp +Cse8,, +2CE, — Py, (T +aT)

where 54.,. are the transformed stiffness coefficients for a generally orthotropic

material, see Egs. (2.5),
constitutive equation for the entropy dencity

oS = (pC/To)(T"'aoT)"‘ﬂzzgzz + Bot.o + Boo + Powoo + B, (3.8)

energy equation

10 10q, Oq .
- ——0 4+ = = p(R- ST, 3.9
g )+ o+ T = plR-ST,) (3.9)

Fourier law of heat conduction

oT
=k =
qr rr 8r
10T oT
=k~ —k, 3.10
To= w00 "* 2 G.19)
__y lor _, or
qz zﬁrae zz 82

This completes the summary of the basic equations of temperature-rate dependent

thermoelasticity in cylindrical coordinates for generally orthotropic materials.
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3.3 Formulation of the Problem

As stated in Section 3.1, transient dynamic response of filament wound
cylindrical composites consisting of n different generally orthotropic, homogenous,
thermoelastic layers is investigated in this chapter. The body is referred to a
cylindrical coordinate system where the radial distances are measured by the
coordinate ». Boundary, initial and interface conditions of the problem dictate that
the responses of the body are axisymetrical, that is all the field variables are
functions of rand t, only. Moreover, the only non-vanishing displacement

component is u, , that is, the displacement component in the radial direction.

For the three dimensional case, the stress equations of motions in cylindrical
coordinates are given in Section 2.2 by Egs. (2.1). For the problem considered in this

study, these equations for a typical layer can be expressed in the form,

(O-rr _0_99) _ azu

1 0o,
— -
p or r ot’

: (3.10)
where the body forces are taken zero.
For the three dimensional case, the constitutive equations for stress

components of orthotropic thermoelastic materials were given by Egs. (3.7). In our

problem, these equations for the relevant stress components o, and o, take the

following forms for the typical orthotropic layer:

3.11)
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Fourier law of heat conduction, the constitutive equation for the entropy density and
the energy equation for our axi-symmetrical problem, can be written, respectively, in

view of Egs. (3.8 —3.9) as.

or
+k —=0
qr rr 8’/’
4r %9 | hs1 — 0 (3.12)
r or

u ou, pc :
S — By —— B, ———(T+a,T)=0
p ﬂ&ﬁ r ﬂrr ar To( 0 )

where the internal heat source R is taken zero.

Differentiating Egs. (3.11), (3.12); and (3.12); with respect to ¢, and eliminating S
from the energy equation, Eq. (3.12)3;, we obtain

aarr

o

~ V. o~ OV
-C, —-Cy;,—+ +af3, —=0
81‘ 32 7 33 67’ ﬂrr¢ ﬂrr 82‘
oo ~ Vv ~ Ov 0
w0 S pgrap, Lm0
(3.13)
TL£+Laqr+ﬂ€€V_r+ﬂrrévr +ﬁ¢+&a0%20
o T, or r or T, I, 0
%4_ rr%:()
ot or
where
oT ou
=—; vy =—7= 3.14
¢ o r o (3.14)
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The formulation of the problem is completed by stating the boundary, interface and
initial conditions. The boundary conditions involve both mechanical and thermal
parts. At each point of the boundary surface, surface tractions or displacements and
temperature deviations or heat fluxes should be prescribed. Thus the boundary

conditions at the inner surface, » = a can be expressed as

o (a,t)=-P(OH() or  V.(at)=V(@EH({) and

(3.15)
T(a,t)=T ())H (1) or q,.(a,t) = Q)H (1)
and at the outer surface » = b as
o,(bt)y=-F@)H(t) or V.(b,t)=V (t)H(t) and
(3.16)

T(b,t) =t (NH (1) roq.(a)=0 (OH()

o

where P(1), V(t), T'(t), O@t), F(t), V'(¢), t'(t), O (¢) are prescribed functions

of ¢t and H(t) is the Heaviside step function.

Since the bodies are assumed to be initially at rest, all the field variables are zero at
t =0. The layers of the bodies are assumed to be perfectly bonded to each other.

Hence, the interface conditions imply that the normal stress o .., the displacement

component u,, the temperature deviation 7 and the heat flux ¢, are continuous

across the interfaces of the layers.

The formulation of the problem is thus complete. The governing field equations, Egs.
(3.13), (3.14), (3.10) are applied to each layer and the solutions are required to satisfy
the continuity conditions at the interfaces, the boundary conditions at the inner and
outer surfaces Eqs. (3.15-3.16) and zero initial conditions. Method of characteristics

is employed to obtain the solution.
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3.4 The Method of Characteristics and the Canonical Form of the Governing
Equations

In order to apply the method of characteristics, we write the governing equations as a
system of first-order, partial differential equations. The system of the governing first

order partial differential equations, Egs. (3.13), (3.14), (3.10) can be written in matrix

form for a typical orthotropic layer as:

PU,, +QU, +R=0 (3.17)

where Pand Q are seven by seven matrices defined as:

af, 0 1 00 0 0
af, O 0 1 0 0 0
;ﬁaOOOOOOO
P=1"" 0 00100 (3.18)
0 -100000
0 0 0000 1
0 0 000 1 0
0 -C, 0 0 0 0 0
0 -C,, 00 0 00
oﬂﬂooioo
TO
Q=|k, 0 0 0 0 0 0 (3.19)
0o 0 L0 0 00
yo,
0 0 00 0 00
(0 0 0 0 0 0 0]

and Rand U are seven dimensional column vectors given as:
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1 er vr pc
Poo ro T, ¢ (3.20)

(3.21)

In Eq. (3.17), U is the unknown vector and comma denotes partial differentiation:

=Z, v, -% (3.22)
' ot : or

Before we derive the canonical equations from Eq. (3.17), we first establish

the characteristic lines along which these equations are valid. The equation

governing the characteristic lines can be written as

det(Q-7P)=0 (3.23)

where V = dr defines the characteristic lines on the (r —¢) plane.
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In view of Egs. (3.18-3.19), the characteristics equation, Eq. (3.23), is

expressed as:

—Vap, -C, -V 0 0 0 0]
—~Vap, -C, 0 -V 0 0 0
%
_rpea, B. 0 0 1 0 0
T, T,
det(I-VH)= ko 0 (1) 0 =y 0 0= (3.24)
0 -V — 0 0 0 0
Yo,
0 0 0 0 0 0 -V
0 0 0 0 0 -V 0]
V3 (VZaIBrrZTO B V20a02p533 + V4ca0p2 +krr533 _krer) — 0 (325)
AT,
The roots of Eq. (3.25) can be obtained as:
VO =c, VW ==, VP =c,, V¥ ==,
(3.26)
V(S) V(6) V(7) =0
where
pkrr _ﬂrrzaTO + 533pca0
1 =
cl = 2pcao _2ca0 + krr2p2 _Zkz’pﬂrrzaoTO _3C33krrpzca0 + ﬂrr4a2T02
=28, al,Cyypea, + p°Cycay’
(3.27a)
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pkrr _ﬂrrzaTO + 533pca0
1 ~
6’2 - 2ca0 \/krr2p2 - 2krrpﬂrr2aoTO - 2C33krrpzca0 + ﬂrr4a2T02

2pca, , - U
=2p, al ,Cypea, + p°Cyyc a,

(3.27b)

V@ (i=1-7) are the characteristic values and the characteristic lines are defined

as:

— =V =c along C"

—=V? = along C%

Zoy® =g, along C% (3.28)

dr

i y® =—c, along C"
t

% =y =y®@=y? =0 along C*

Integration of Eq. (3.28) gives the families of characteristic lines C"” i=(1-7)as;

C" :r—c,t = constant
C? :r+c,t = constant
C® :r—c,t = constant (3.29)
C® :r+c,t = constant

C" :r = constant (i=5-17)
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These families of characteristic lines are shown in the (r —t) plane in Fig. 3.1. We
note that C” and C® describe families of straight lines with slopes ¢, and c, ,
respectively, while C® and C'¥ describe families with slopes — ¢, and —c, . on the

(r—1t) plane. Moreover, C") (i =5—7)describes straight lines parallel to the

t —axis , see Fig. 3.1.

The canonical forms of the governing equations along the characteristic lines can be

written similar to Egs. (2.64) as:

LNP% +L7'Q=0 along % =V@i=(1-7) (3.30)

where P, Q, U are given by Egs. (3.18, 3.19, 3.21) and L is the left-hand

eigenvector which, similar to Eq. (2.65), is defined as:

Q" -VPP")LY =0 along C" (i=1-7) (3.31)

Applying Eq. (3.31), the left-hand eigenvectors can be computed as

1 1
0 0
Cyy —pe,” Cyy — pe,”
B.. B,
LV =| 1 (533—,0012] S VA (533—,0012] (3.32a)
Tic B e B

P PG

0 0
L O | L O .
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0 0
533 _pczz 533 _pczz
B, B,
LY = 1 533 - pey’ , LY =] -1 533 - pey’
Tyc, [ B, ] Tyc, [ B, ]
P, —PCy
0
L . L 0 .
(3.32b)
Cs Css Css
1 1 1
L(S) — 0 L(6) — 0 L(7) — 0
0 | 0o | 0
0 0 0
0 1 0
. 0 0| 1]

Since the left-hand eigenvectors of the orthotropic layers are found, then the
canonical equations can be obtained by applying Eg. (3.30) and taking into
consideration Egs. (3.18-3.20). Performing the matrix products, we get the following

set of canonical equations:

= 2 = 2
a,B,,+(C33_pcl )an @4_ 1 (C33_pcl )dqr +darr
t c ; t t
ﬂrr TO d TO 1 ﬂ}r d d

MJMIMM[WM%y

dv ~
-p,c,——+|—-Cy, +
po I dt [ * ﬂaﬁ ﬂ I r T 0 ﬁ r r T 0 IB I

B ) B
r

dar
along —=y" = 3.33
g d ¢ ( )
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Figure 3.1. Description of the network of characteristic lines for the thermoelastic layered medium.



. (5 pcz) v 1(6 —pcz)q pc(5 _pcz)
~+-C > Loy — 238 7L J A 33 I
+ pc, d +( 3w+ By 8. J F T, 5. " + T, 7 B, |¢
l(o-rr_o-gg)zo
,
dr
along —=V® =—¢ 334
£ dt 1 ( )

(aﬂrr +(C33_p622),00a0jd¢+ 1 (533 —pczz)dqr do,

+
ﬁrr T() dt TOC2 ﬂrr dt dt

533 _pczz)]"r+1(533 —PHCQZ)qur(pc (533 —pc22>

dv ~ (
-pc, ——+|-C;, +
PCy ( 2+ B B, r T, B., ’ T, B

a 8, }»

o, ~ow)_,
r

+c,

dr
along — =V = 335
- “ (3.35)

[aﬁ” +M pe %J ap 1 (Cy-pe,)da, Lo,

g, T, dt Ty, P, dt  dt
dv, [ ~ Cy—pc,’ )|y, 1 (Cy—pc,’)g, Cyy —pe,”
+pe, ot —C32+,6’99(3372) 7+7(3372)7+ E(Biz)Jrﬁw y
dt ﬁrr r T(J IBrr r T(J IBrr
e, 9o,
r
along =V =—, (3.36)
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Cy d¢ =~ Cy = v, 523 do,, 00 523
aﬂﬁﬁ _NaﬂrrJ ( ~ C — = — 7 + ﬂﬁﬂ_Tﬁrr ¢
( 3 dt * Cy ) Cy dt dt Cy
+ du, -v, =0
dt
e
along —=V© = (3.38)
S

623
aﬂﬂﬁ _NaﬂrrJ ~
( C33 d 33 33 dt d 33
ar _
dt

3.5 Integration of the Canonical Equations

The canonical form of the governing equations for the typical orthotropic layer

which are given Eqs (3.33-3.39) can be represented in matrix form as;

pU _Nu=-o (3.40)

dt

where the matrices D and N are given as;

Cyy —pe,’ | pe
D, =-ap, +( 33'3”. 1 J Tol a, D,, =-pc,,
1 (C,, —pc’
D, =1, D = P11 (3.41a)
TOCI ﬂrr
Cyy — pe,” | pe
D21 _aﬂVr+[ 33ﬂrr | J Tola, D22 :pcl’
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1 (533 - pclz)

D :1, D =
z z TOCI ﬂrr
Cyy — ey’ | pe
D;, =-ap, +( > 8. : } Tol @, Dy, =—pc,,
~ 2
ot o)
TOCZ ﬂrr
Cyy — pc;” | pe
D, =1 _ 1 (533_,0022)
43 =1 45 >
TOCZ ﬂrr
C C
DSl = aﬂ,,r ~—23+aﬂ99, D53 = —~—23, (341b)
Cy, Cy
D, =1 D, = &
54 , o =P, ==+ Py,
Cy
C
D63 =—2 D64 =1,
Cy,
D1 b, —ap, o
67 — 71 _aﬂrr ~ +a2ﬂ5¢9
33
D73__@’ D74:1’
Cy
Dy =1,
all the other D,; =0
~ 2
N __pc(c33_pcl) i
11 TO ﬂrr |2
(3.42a)
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Ny=-t,

ezt

O a2

Ny, = ( ol +ﬁﬂ—i’(c33— f))l,
—

vt

N, - _(_ eurle e, - pc;)J_,

N, =072,

B 1
N, = ( C32+i(C33 pczz) >
ﬂrr
_ (~33_p022)1
N45 - BE
ﬂrrTO r
~ C, ~ |1
stz_ C32~_23_C22 ;v
33
~ C, ~ |1
Ny =— Cy, =2 =Cyy |- +1
G, r
Cy

all the other N ;= 0.

and the unknown vector U is given by Eq. (3.21).
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The integration of the canonical equation along the characteristic lines of a typical
layer can be done in exactly the same way as was done in Chapter 2 through Egs.

(2.82-2.85). The integrated equations thus obtained are
S;U,(AD)=2Z,(4)U,(4) (i=1-7, j=1=-T7) (3.43)

where
1
Sy =Dy =5 AtN;(4)
(3.44)

1
Zy =Dy + AN, (4)

i

e

Ar Ar

Figure 3.2. Typical interior integration element in the orthotropic layer.

In Egs. (3.44), At is the time interval between two consecutive points along the

characteristic lines C"” (i :1—7), see Figs. (3.1-3.2). Furthermore, in Egs.(3.43-
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3.44), a bar under an index implies that summation convention is not applied to that

index and U, (4), U i (4,) represents the values of the field variables at points 4 and

A, respectively. To compute the values of field variables at 4, and A4, in terms of
the values of the field variables at points 4,, 45 and A4,, we use a linear

interpolation between 4, and 4, and 4, and 4., (see Fig. 3.1). This gives

UJ(AS)_UJ(AI)

Uj(A3): Ara1+Uj(Al)

(3.45)
Uj(AZ)_Uj(AS)

Ar

U,(4,)= Ar,s +U  (4y)
where Ar is the distance between two consecutive vertical straight lines in (r 1)

plane for the typical layer. Furthermore, Ar,, and Ar,, are define as,

Ar, = Ar—c,AT
(3.46)
Ar, =c,AT

The elements of D, and N are given in Eqs.(3.41-3.42). Equations (3.43) represent
seven equations defined by i =1-7, and for each value of the free index i, there is a
summation over j which takes the values(j =1—7). Thus, when the field variables
U, are known at points 4, (i =1-7), the values of the field variables U ;atpoint 4
can be determined from Eqgs. (3.43). In other words, using the triangular mesh shown
in Fig. 3.2, the values of the field variables at a specific point along any line parallel
to the » —axis in the solution region, see Fig. 3.1, can be found in terms of the known

values of the field variables defined at points on the previous line. It is compact and

suitable to express the equations in this form for computer programming.
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3.6 Modification of the Equations for the Boundary and Interface Elements

The integrated canonical equations, Egs. (3.43), are valid for interior points
represented by interior elements, e.g., element M, see Fig. 3.1. For points on the

boundaries and at the interfaces, these equations need to be modified.

For the boundary point “L” on the inner surface » = a, Fig. 3.1, the integrated
canonical equations, Egs. (3.43), remain the same for i =2,4—-7; j =1—7, whereas,
the integrated canonical equations for i=13;j=1-7should be replaced by the

boundary conditions, Egs. (3.15),

o,V (4)=-P(4) or VY (4)=v(4) and
(3.47)
T,(A) =T"(4) or q," (4) = 0(4)

depending on whether the surface tractions or particle velocities and temperature
deviations or heat fluxes are prescribed on the inner surface » =a. The subscript 1
and superscript 1 in parentheses denote that the quantities refer to layer 1, the

innermost layer.

Let us recall that the composite bodies considered in this chapter consist of n
different, orthotropic, homogeneous and thermoelastic fiber reinforced layers.
Equations (3.43) were derived for a typical layer. This typical layer can be
considered as the m th layer and all the quantities pertaining to the m th layer will be
denoted by subscripts m or superscripts m in parentheses. For a body consisting of n
layers, m takes the values m=1,2,...,n. Thus, the integrated equations for the interior

element M in the m th layer (see Fig. 3.1) can be written as

S, U (A) =2, (4)U," (4) (i=1-7, j=1-7) (3.48)
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where Sl.j('") and Zij('") can be obtained from Egs. (3.44) by simply putting

superscripts m in parentheses over all the quantities appearing in the equation. In this
thesis, the innermost orthotropic layer is assumed to be layer 1 and the outermost

orthotropic layer is assumed to be n.

Equations (3.43) should be modified for the outer boundary element “P”, as well. In
this case, integrated canonical equations, Eqgs. (3.43), remain same for

i=1,35-7,j=1-7,thatis,
Mrr M 7 (n) _ Ci
S, U (=2, (4)U, " (4) i=135=-T7j=1-7 (3.49)
whereas, the equations for i = 2, 4; j =1— 7 should be replaced by,

o, (Ad)=-F(A) or V" (4)=V"(4) and
(3.50)

T(4)=1"(4) or q," (4)=0"(4)
depending on what is prescribed on the outer boundary » =b.

We have another type of element where Egs. (3.43) need to be modified. These
elements which are called the interface elements correspond to points A at the
interfaces. The number of interfaces depend on the number of layers and since we

have n layers, we have (n—l) interfaces which will be denoted by (Nia,

Nozpeevennn ,Nun-1)m)), see Fig.3.1. For a point A at the interface between the layers m
and m+1, element N(mym+1), Fig. 3.1, Eqgs.(3.43) are modified as

S, U " (A) =2, (4)U," (4) i=1,35-7,j=1-7
(3.51)
S[j(m-%—l)Uj(M-%—l) (A) — le(m-%—l) (A£ )Uj(m-%—l) (A£) i= 2, 4’ 5_ 7’ _] =1-7
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where the superscripts m denote the layer which precedes the interface and m+1

denotes the layer which follows the interface. Equations (3.43) for i = 2,4 for m th
layer and i = 1,3 for the layer m+1 are replaced by the interface conditions requiring

the continuity of radial stress, o, , particle wave velocity, v, , temperature deviation,

rro

T, and heat flux, g, . These conditions can be expressed as,

o, " (A)=0,""(4)

v, " ()=, (4)
(3.52)
T,(4)=T,.,(4)

q,""(A)=q,""(4)

Thus, modification of the equations for the interface and boundary elements is

completed. Equations (3.51-3.52) represent fourteen equations to determine the
fourteen unknowns, U j(m) (4) and U j(m“) (A), pertaining to points on the interface of

the layers m and m+1.

The solution procedure is exactly the same as that explained in Section 2.10. We
establishing the solution U, = (4,v,,0,.,6,,.9,.T,u, ) at all points of the network of
characteristic lines shown in Fig. 3.1. We start at the origin, proceed along the
r —axis and advance into the solution region determining the values of U, at the
points of the network with the order 1',2",3'.......1",2",3",....etc, see Fig. 3.1. In this
process, we employ the integrated canonical equations for the boundary element ‘L’,
interior element ‘M’, interface element ‘N’, and the outer boundary element ‘P’, Fig.
3.1.These equations are discussed in detail above. For this purpose, a computer
program in the FORTRAN language is written and the numerical computations are

carried out at the computer.
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3.7 Numerical Examples and Discussion of the Results

In the numerical examples involving the multilayered medium, it has been
assumed that the inner surface, » =a, is subjected to a uniform pressure and a
uniform temperature deviation, while the outer surface r =5 is free of surface
tractions and kept at zero temperature deviation. Thus, the boundary conditions at the

inner (r = a) and outer (r = b) surfaces can be expressed, respectively, as

o, (a,t)=—P(t)H (1), T(a,t)=T ()H () or T(a,t)=0
(3.53)
o, (b,t)=0, T(b,1)=0

In the method of characteristics, we are free to choose any time dependency for the
applied pressure and temperature deviation. In the problems, we choose a step-time
variation with an initial ramp, see Fig. 2.7 and Fig. 3.3. In the figures, we notice that
the applied pressure and temperature deviation are zero at ¢ =0, linearly rises to a

constant value P, and 7, , respectively, during a rise time of A7 and remain constant

thereafter. The initial ramp in the pressure variation and temperature deviation
eliminates the complicated circumstances of having first-order discontinuities in the

field variables at the wave fronts and it is physically more realistic.

The numerical computations are carried out and the results are displayed in

terms of non-dimensional quantities. These non-dimensional quantities are defined as

M

— - 14 - Ic
p:ﬁ’ V:T, 1= L
pl L a
(3.54a)
- = —= E E E - T
(E1:E29E3): 1 2 ? 2 : 2 | c=c¢ 02
1) 1) 1) 1)
PiCr P, Pif; )
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m2’ m2’ m?2

— = = G G G -
(Glz,Gw,Gza)[ 12 L = ], sza
Pif; Pif; P, a

— = o o - u
60
(O'rr,O-HH)—(—”z,—ZJ, ur =—,

P PC a
(3.54b)
- = c c _ T
(Cl,Cz):[ R fl)], o =k, —,
L G P, a
— 2 5 B£.T, BT, p.T, | = T
(ﬁmﬂzz’ﬂ%)[ 11(1())2’ 22(32’ 33(1(;2 aT:F,
Picy Picy Picr 0
o @)
o - -«
o = %t , q = qrs, 2o = N
a Pic; a
@
where cL(” =_.|—2—in Egs. (3.54) is the uncoupled mechanical longitudinal wave
P

speed in layer 1 and the non-dimensional quantities are shown by putting bars over
them. Furthermore, a is the radius of the inner surface and p, is the mass density of

the innermost layer 1.

First, an example of verification will be given. In this example, a whole space
containing a cylindrical hole is considered. A uniform pressure is applied on the
surface of the cylindrical hole, and the transient dynamic response of the whole space
is investigated by employing the TRDTE theory. The boundary conditions on the

cylindrical surface r = a are taken as

o, (a,t)=-PH(t); T(a,t)=0 (3.55)
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where P, is a constant and H(¢)1s the Heaviside unit step function. The body is
initially unstressed, at rest and at a constant reference temperature 7,. The whole

space is isotropic, homogenous and linearly elastic. This problem was solved by
Harmain, Wegner and Haddow [120] by employing the method of characteristics.
The solution of this problem in our treatment is obtained as a special case of the
general multilayered problem. The computer program developed in this thesis for
multilayered medium consisting of n generally orthotropic layers is employed. By
suitably choosing the material constants and the geometric parameters of the
orthotropic layers, the solution for the homogenous isotropic whole space containing
a cylindrical whole is obtained as a special case. The non-dimensional material
properties of the orthotropic layers in our treatment, which gives the same material

properties as chosen in [120] for the isotropic whole space, are taken as

p=L=1, kn=k, Tg =0.0003192,
P pep ag

— - - E E, E

Ei=E,=E;=— 2 = 3220.675,

G G G
122 — 23 — 132 20254’

PCr ch2 j293

612 2523 :EB =

(3.56a)

Dy, =0y =0y, =0, =0, =0, =033, a=-—=322700
ag

- = - T T T
ﬂ11:ﬂ22:ﬂ33:ﬂ11 ;) :ﬂ22 20 :ﬂ33 20 :0015’
PeL PCL PeL
¢=c—%=0.007, a=a-t=00l,
c ag
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o =a, L =001, r=_ (3.56b)
ag ag

C,; . : o
where ¢, = \/ (2,u +ﬂ) = \/ 3 is the uncoupled mechanical longitudinal wave
P P

speed, and the constant g is a non-dimensional scaling parameter used by Harmain,
Wegner and Haddow [120] to present the results for times several order of magnitude

larger than the relaxation time constant. Furthermore, the constant non-dimensional

uniform pressure applied at the cylindrical surface is taken as Po =0.001.

The variations of non-dimensional temperature deviation 7', non-dimensional heat

flux ¢ and non-dimensional radial stress o, with dimensionless » =r/ag at times

1=0.2,0.4,0.6, 0.8, 1.0 are given in Figs. (3.4-3.6), respectively. As seen from Figs.
(3.4-3.6), the curves of Harmain, Wegner and Haddow [120] coincide with the

curves obtained from our treatment.

We shall now present some results for multilayered media consisting of generally
orthotropic layers. In the first example investigated, we consider a cylindrical
laminate consisting of alternating isotropic layers, which we denote as layers 1 and 2.
The laminate consists of five layers with the sequence 1/2/1/2/1 starting from the
innermost layer. The material properties of the orthotropic layers are chosen such

that they represent isotropic layers. The non-dimensional properties are taken as,

iy

Figure 3.3. Variation of temperature deviation at the boundary.
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P =1,

EV=E® =EY =0.675,

G =Gx" =G = 0.254,

a=1, ko =6.569x107"°, ¢ =0.005,

Ell(l) = ﬂzz(l) = ﬂ33(1) =0.003,

a"” =a," =0.00000002316,
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p,=L2-0872,
P

EY =E% =E® =1.038,
Gi? =G»® =Gi3 =039 ,

@) @) @) @) @) @)
Uyy =03 =0y =055 =0y =0, =033, (3.57b)

Enm 2222(2) 2233(2) =0.003,

¢ =0.006, k. =3.941x107",

2 = ae® =0.00000002316

In Egs. (3.57), the non dimensional quantities are shown by putting bars over them,
and subscripts 1 and 2 or superscripts 1 and 2 in parentheses, respectively, denote

that the quantities belong to layer 1 or 2.

Furthermore, the non dimensional thickness of the layers are equal to ho=hy=0.1,
and the network of characteristic lines used in the numerical analysis is defined by
At =0.00025 . In the examples, the boundary conditions are as given by Egs. (3.53).
The applied pressure at the inner surface r=a=1isa step function with an initial
ramp as given in Fig. 2.7. It is zero at t= 0, then linearly rises to a constant value

Py =0.001 during a rise time of At =0.00025 after which it remains constant. The

applied temperature at the inner surface is either a step function with an initial ramp

as given in Fig. 3.3 with To =0.08 or 0.3 or it is zero. This is expressed explicitly in
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each figure. In all cases, the outer surface r=b is free of surface tractions and the

temperature deviation is kept zero.

Results of the numerical computations are given in Figs. (3.7-3.10). The curves are
given for the cases when the thermal effects are neglected and when they are taken

into account, which in the sequel are described as non-thermal and thermoelastic
solutions, respectively. Variations of the non dimensional stress — o, with time ¢ at

location 7 =1.15 is given in Fig. 3.7. The curves denote clearly the dispersion caused
by the thermal effects in the wave profiles. In the curve representing the non thermal
solution in which thermal effects are neglected, the sudden changes in the stress
levels correspond to the arrivals of reflected and refracted waves from the interfaces
and boundaries of the composite body at the position considered. In the thermoelastic
solutions in which thermal effects are taken into account, the curves display a similar
character. However, due to the thermal dispersion, the sudden changes in the elastic
solution now become smoothly varying curves. The maximum values of the radial
normal stress for thermoelastic solutions increase as inner temperature deviation
increases, especially for higher non-dimensional times. The radial stress remains
mostly compressive both in non thermal and thermoelastic solutions. This is

especially the case for thermoelastic solutions.

The curves of Fig. 3.8 display the variations of the dimensionless normal stress Ca

with ¢ at »=1.15, the middle of the second layer of the multilayered media. The
normal circumferential stress is basically tensile; whereas, for short durations of
time, it may become compressive as seen in Fig. 3.8. In addition to the solutions
obtained by employing the TRDTE theory, the elastic solutions with thermal effects
neglected are also given in the figure. We further note that the effects of thermal
changes are more significant for the circumferential stress and the circumferential

stresses are much higher than the normal stresses.

The curves of Fig. 3.9 show the variations of the non-dimensional radial stress —o,

with time ¢ at location r=1.25. These curves display similar features as those of
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Fig. 3.7. In addition to the effects of reflections and refractions from the interfaces
and boundaries and thermal dispersion, we can see the effects of geometric
attenuation in these curves as well. The maximum levels of the stresses in the curves

of Fig. 3.9 are considerably lower than those of Fig. 3.7, because the location
r=125 compared to r=1.15 is further away from the inner boundary. In fact

maximum value of — o, in the curves of Fig. 3.9 is approximately 0.0011, whereas

it reaches values as high as 0.0015 in Fig. 3.7.

In the curves of Fig. 3.10, the variations of the dimensionless circumferential normal

stress oo with ¢ at the location 7 =1.25, which corresponds to the middle of the
third layer from the inner surface, are displayed. These curves show similar trends as
those in in Fig. 3.8. The maximum stress levels are much lower. The effects of

thermal dispersion seem to be relatively more pronounced in these curves then those

of Fig. 3.8.
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Figure 3.7. Variation of radial stress o, with time 7 at r=1.15, for the laminate

with alternating isotropic layers.
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Figure 3.10. Variation of circumferential stress ow with ¢ at r=125, for the

laminate with alternating isotropic layers.

Next, we shall investigate an example involving a filament wound fiber-reinforced
cylindrical composite which is the basic problem investigated in this chapter. The
boundary conditions given by Eqgs. (3.53) are considered with the pressure function
P(t) and temperature deviation 7'(¢) given as in Fig. 2.7 and Fig. 3.3. The
multilayered bodies considered consist of five generally orthotropic elastic layers
with stacking sequence 30/-30/90/0/90 and 30/-30/30/-30/30 starting from the
innermost layer. The numerical computations are carried out using S2 glass/epoxy
material properties for generally orthotropic layers [141]. The non-dimensional

material properties then can be written as

p=1, To=1, ¢=0.027
(3.58a)
(E1,E2,E3)=(2.323,0.787, 0.787),
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(Gi2.G1s.Gs )=(0.278, 0.278, 0.295),

kn» =6.943x107"

(B.1. B0 B )= (0.024,0.015,0.015) (3.58b)

a = 0.00000001585, a, = 0.00000001585
L,; =0;, =033,

Uy, =05 =0, =0;, =0.236

Furthermore, the non-dimensional thicknesses of the layers are equal to hi=0.1

i=(1-5), and the network of characteristic lines used in the numerical analysis is

defined by At =0.00025 . The applied pressure at the inner surface r=a=1 given
in Fig. 2.7 is zero at =0, then linearly rises to a constant value Po =0.001 during a

rise time of Af = 0.00025, after which it remains constant.

Results of the numerical computations are given in the form of curves in Figs. (3.11-
3.16) The curves are given for the cases when the thermal effects are neglected and

when they are taken into account.

The temperature deviation prescribed at r=lisa step function with an initial ramp,

see Fig. (3.3), with Ty =0.00, 0.01, 0.02 or 0.04. This is pointed out explicitly in

each figure. In all cases, the outer surface r=b=1.5 is free of surface tractions and

temperature deviation is zero.

Variation of the non-dimensional stress — o, with time ¢ at location » =1.15 for a
multilayered body having stacking sequence 30/-30/90/0/90 is shown in Fig. 3.11.
The curves of Fig. 3.11, correspond to non-thermal and three thermoelastic solutions,

in which the temperature deviations at the inner surface are 0.00, 0.01 and 0.02 while
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the outer surface temperature deviation kept zero. The curves denote clearly the
dispersion caused by the thermal effects in the wave profiles. In the curve
representing the solution in which thermal effects are neglected, the sudden changes
in the stress levels correspond to the arrivals of reflected and refracted waves from
the interfaces and boundaries of the composite body at the position considered. In the
thermoelastic solutions in which thermal effects are taken into account, the curves
display a similar character. However, due to the thermal dispersion, the sudden
changes in the non-thermal solution now become smoothly varying curves. There is
considerable difference between the non-thermal solution and the solutions when
thermal effects are taken into account even in the case when the temperature
deviations at the inner and outer boundary surfaces are kept at zero. We note that
these differences become more apparent as time passes. Furthermore, the differences
are larger as the temperature deviation prescribed at the inner surface gets higher. We

also note that the radial stress remains basically compressive.

Figure 3.12 displays the variations of the dimensionless normal stress o with ¢ for

a multilayered body having stacking sequence 30/-30/90/0/90 at the location r=125
which represents the middle of the third layer of the laminate. The normal
circumferential stress is basically tensile; whereas, for short durations of time after
the arrival of the wave front at the location considered, it may become compressive
as seen in Fig. 3.12. The curves represent the non-thermal solution together with the
thermoelastic solutions in which the dimensionless temperature deviations at the
inner surface take the values 0.00, 0.01, 0.04. The curves display similar features.
However, due to thermal dispersion, the sudden changes in the non-thermal solution
become smoothly varying curves in the thermoelastic solutions. The differences
between non-thermal and thermoelastic curves are smaller for small inner surface
temperature deviations. Higher temperature deviations at the inner surface yield
thermoelastic curves which differ more significantly from the non-thermal one,
especially for larger times. We further note that the circumferential normal stress is
the dominant stress for the laminate, since it reaches nearly four times higher stress

values than the radial one.
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The curves of Fig. 3.13 show the variations of the dimensionless normal stress oo

with ¢ for a multilayered body having stacking sequence 30/-30/90/0/90 at r =145,
which corresponds to the middle of the fifth orthotropic layer. The curves of the non-
thermal solution together with the thermoelastic solutions where the temperature
deviation at the inner surface are 0.0 and 0.04 are shown in the figure. The curves

display similar trends as those of Fig. 3.12.

Variation of the non-dimensional stress — o, with time ¢ at location r=1.15 for a
multilayered body having stacking sequence 30/-30/30/-30/30 is shown in Fig. 3.14.
The curves of the non-thermal solution together with the thermoelastic solutions
where the temperature deviations at the inner surface are 0.00, 0.01 and 0.02 are
shown in the figure. The curves display similar trends as those of Fig. 3.11. The
curves of the figure have smaller maximum stress values relative to the curves of

Fig. 3.11.

Figures (3.15-3.16) show the variations of the dimensionless normal stress o with

¢ at locations »=1.15 and r= 1.45, for a multilayered body having stacking
sequence 30/-30/30/-30/30. The curves of the non-thermal solution together with the
thermoelastic solutions where the temperature deviations at the inner surface are 0.0,
0.01 and 0.04 are shown in the figure. The curves display similar trends as those of
Fig. 3.12 and Fig. 3.13. Effects of geometric attenuation can be seen in these figures
since the curves of Fig. 3.16 reach smaller stress values than those of Fig. 3.15.

When we compare the curves of Figures 3.12 and 3.13, however, we see that the

stress levels at r=1.45 are higher than those at r=1.15 in spite of geometric
attenuation. This is because of the effects of the stacking sequence of the layers.
Even though all the other properties are the same, the stacking sequence in Figs.
(3.12-3.13) is 30/-30/90/0/90; whereas, in Figs. (3.15-3.16), it is 30/-30/30/-30/30.
This shows that the effects of stacking sequence on the wave profiles can be quite

significant.
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Figure 3.11. Variation of radial normal stress —o, with time ¢ at location

r=1.15, for the laminate with generally orthotropic layers having

stacking sequence 30/-30/90/0/90.
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Figure 3.13. Variation of circumferential normal stress oo with time ¢ at location

r=1.45, for the laminate with generally orthotropic layers having
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CHAPTER 4

THERMOMECHANICAL RESPONSE OF VISCOELASTIC CYLINDERS
ENCLOSED IN FIBER-REINFORCED CYLINDRICAL COMPOSITES

4.1 Introduction

In this chapter, transient dynamic response of viscoelastic cylinders enclosed in
filament wound cylindrical composites will be investigated. Thermal effects, in
addition to the mechanical effects, are taken into consideration as in the previous

chapter.

The body considered in this chapter consists of n+1-layers, the inner layer being
isotropic, homogenous and linearly viscoelastic, while the outer part being fiber-
reinforced composite consisting of n-different generally orthotropic, homogeneous
and linearly elastic layers. In each ply, the ply orientation angle may be different.
The body is a hollow circular cylinder with a finite thickness in the radial direction,
whereas it extends to infinity in the axial direction. The multilayered medium is
subjected to uniform time-dependent dynamic inputs at the inner and/or outer
surfaces. The body is assumed to be initially at rest. The layers are assumed to be

perfectly bonded to each other.

The governing field equations of generalized thermo-viscoelasticity with two
relaxation times is applied to the inner viscoelastic layer in addition to the application
of the governing field equations of generalized anisotropic thermoelasticity to the
outer layers and the solutions are required to satisfy the continuity conditions at the
interfaces of the layers, the boundary conditions at the inner and outer surfaces and
the initial conditions. In the following section of this chapter, governing field
equations of generalized viscoelasticity are explained briefly [125-131]. Governing
equations of the generalized anisotropic thermoelasticity applied to the outer layers

are already discussed in detail in the previous chapter.
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Similar to Chapter 2 and Chapter 3, method of characteristics is employed to
obtain the solutions. Method of characteristics is suitable because the governing

equations are hyperbolic

4.2 Basic Equations of the Generalized Thermo-Viscoelasticity for Isotropic
Materials in Cylindrical Coordinates

In this section, we summarize the basic equations of generalized thermo-
viscoelasticity with two relaxation times for isotropic materials as applied to the

viscoelastic layer considered in this study. In our treatment in this chapter, we take

!

the constitutive equations for the stress deviators o; as in Eq. (2.7); in differential

equation form with P (D) and Q,(D)defined by Eq. (2.14), or as in Eq. (2.12) in
integral form where the shear modulus G, (t) is given by Eq. (2.76);. These are the
constitutive equations for stress deviators in terms of strain deviators for standard
linear solid. Assuming that the relaxation effects of the volume properties of the

material are ignored, we can write for the general theory of thermo-viscoelasticity

with two relaxation times
o, =3Kle, -3, (1, - T, + a1, )| @.1)

(v

where o, =, and K is the bulk modulus defined in terms of Lame’s constant A

4]

and 4 as K :/1+§ 4 . Furthermore, o, ' is the coefficient of linear thermal

expansion and subscript v and the superscript v in parentheses denote that the
quantity refers to the viscoelastic layer, same as in Chapter 2. Other parameters in
Eq. (4.1) are the same as defined in the previous chapters. Generalized thermo-
viscoelasticity is a relatively new subject which is not treated widely in the literature

yet. Taking the constitutive equations as described above is quite new.

In the case of isotropic thermo-viscoelastic materials, Eqgs. (3.1)23 4 reduce to,
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vav = (pvcv /TO )(TV + aO(V)Tv)+ ﬂvgv

C— (42)

qi,i(V) =P, (R - SVTO)

We note that in the above equations, indicial notation is used as was done in the

previous chapters when it was appropriate.

This completes the summary of the basic equations of generalized thermo-

viscoelasticty as applied to the viscoelastic layer considered in this study.

4.3 Formulation of the Problem

The body is referred to a cylindrical coordinate system where the radial
distances are measured by the coordinate ». As in Chapters 2 and 3 boundary, initial
and interface conditions of the problem require the responses of the body to be
axisymetrical. Thus all the field variables are functions of rand t only, and the only

non-vanishing displacement component is u, , that is the displacement component in

!

the radial direction. The constitutive equations for the stress deviators o, given by

(2.7)1 and (2.14), for the three-dimensional case now reduce to Egs. (2.20),, for the

axisymmetrical problem investigated in this chapter. The constitutive equation for

o, = akk(v) given by Eq. (4.1) for the three-dimensional case takes the following

form for the axisymmetrical problem:

ou o) or

o, —3K 3k 4 9Ka, T +9Ka, " ~ =0 (4.3)

v

or r

In writing Eq. (4.1), we used Eq. (2.19); for the dilatation ¢, =€kk(v). For our

axisymmetrical problem, Egs. (4.2) take the forms:
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) v)
u ou"  pe o7
S — L — L \T+ea, 'T|=0
pv v ﬁv " ﬂv 8}” TO ( 0 )
oT
q," +k,—>=0 (4.4)
or

™) ™)
oq . .
4 +_q, +p,81,=0
r or

In preparation for the application of method of characteristics, we differentiate Eq.

(4.3) with respect to ¢, and obtain

0 ) v) 0
O 3k kY oka, g, +9Ka, Ve, im0 (45)
ot or r t
where
oT
P, =—" (4.6)
ot

Differentiating Eq. (4.4); with respect to time t and eliminating Sv from Eq. (4.4)s,

we get

) () ()

)
lg 14, +3KaT(V)aL+3KaT(”)v’—+%¢V
I, r I, or or r T,
5 4.7)
pvcv ao(")ﬁ:O
T, ot
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)

. . ou
where in the above equations v, = ——

is the particle velocity of the viscoelastic

layer which was defined in Chapter 2 by Eq. (2.21),. The stress equation of motion

for the viscoelastic layer is the same as Eq. (2.29) in Chapter 2. We also have a

(49

compatibility equation between the normal strain &, and particle velocity

v,(v) which is given by Eq. (2.30). The formulation of the governing field equations
for the thermo-viscoelastic layer is now complete. These are Egs. (2.20)12, (2.21),,

(2.29-2.30), (4.5), (4.6), (4.4), and (4.7) involving the field variables ¢, v.",

A

! !

o, 0, , 0, u, ¢, q" and T, ie., nine equations with nine unknown

field variables. The governing field equations for a typical generally orthotropic
thermoelastic layer are the same as those given Chapter 3, i.e., Egs. (3.10) and (3.13-
3.14). These equations represent seven equations with seven unknown field variables

$,v,,0,,0.,q,, T and u, for each orthotropic layer.

The formulation of the problem is completed by stating the boundary, interface and
initial conditions. As boundary conditions, surface tractions or displacements and
temperature deviations or heat fluxes can be prescribed at the boundary surfaces.

Thus, the boundary conditions at the inner surface, » = a, can be expressed as

Gr;w'(a,t)%av(a,t):_p(t)H(t) or ¥,"(a,)=V(1)H(t) and

(4.8)
T,(a,t) =T (OH() or q,"(a,t)= Q@)H(7)
and at the outer surface r = b as
o, (b,t)+ éav (a,t)=—F()H (1) or V."(b,ty=V"(t)H(t) and
(4.9)

T,(b,t) =1 (H() or q,"(b,t)= Q" (b,))H(t)
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where P(t), V(t), T (t), O@), F(t), V'(¢), t(t) and Q' (¢) are prescribed
functions of ¢ and H (¢) is the Heaviside step function. Furthermore, subscript v and

superscript v in parentheses refer to the viscoelastic layer and subscript » and
superscript n in parentheses refer to the outermost orthotropic layer, that is, the layer

adjacent to the outer boundary surface.

Since the bodies are assumed to be initially at rest, all the field variables are zero at
t =0. The layers of the bodies are assumed to be perfectly bonded to each other.

Hence, the interface conditions imply that the normal stresso ., the displacement

component u,, the temperature deviation 7' and the heat flux ¢, are continuous

across the interfaces of the layers.

The formulation of the problem is thus complete. The governing field equations, Eqgs.
(2.20)12, (2.21)2, (2.29-2.30), (4.4),, (4.5), (4.6) and (4.7) are applied to the
viscoelastic layer and Egs. (3.13), (3.14), (3.10) are applied to the orthotropic elastic
layers, and the solutions are required to satisfy the boundary conditions at the inner
and outer surfaces, Eq. (4.8, 4.9), the continuity conditions at the interfaces and
quiescent initial conditions. Method of characteristics is employed to obtain the
solution. Application of method of characteristics to the governing field equations of
the viscoelastic layer will be explained in this chapter in the next section. For
orthotropic layers, application of the method of characteristics and integration of the

canonical equations along the characteristic lines are the same as in Chapter 3.

4.4 The Method of Characteristics and the Canonical Form of the Governing
Equations for the Thermo-Viscoelastic Layer

In order to apply the method of characteristics, we write the governing equations as a
system of first order, partial differential equations. The system of the governing first
order partial differential equations, Eqs. (2.20);2, (2.21),, (2.29-2.30), (4.4),, (4.5),

(4.6) and (4.7) can be written in matrix form as:
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AU, " +BU, " +C=0 (4.10)

where A and B are nine by nine matrices defined as:

0 -1 0000 0 0 0
00 1000 0 0 0
00 0100 0 0 0
0 0 001 0 9Ka,"2, 0 0
)
A={0 0 0000 2% ¢ 9 .11
TO
00 0000 0 1 0
1 0 0000 0 0 0
00 0001 0 0 0
0 0 0000 0 0 1]
o o Lo 00 0o
P, 3p,
0o -2% 9 0 0 00 0 o0
3q
o 1% 9 0 0 00 0 o0
3 q,
B=[0 -3k 0 0 0 0 0 0 0 (4.12)
0 3Ka,” 0 0 0 ooTio
0
0 0 00 0 0%k 0 O
0 -1 00 0 00 0 0
0 0 00 0 00 0 0
0o 0 00 0 00 0 O]

and C and U" are nine-dimensional column vectors given as:
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M ’ ’
) Q)
O-rr _0-949
1
Py r
) )
Gy _2b o Lbou T 1y,
a " 3a, " 3a r 3a r
) )
Gog oo _2bu " 1b o _2by,
00
a, 3a, r 3a " 3a, r
C= V(V)
Q)
-3K ’r +9Ka, '@,
) )
1 q o) PCy
L +3KC(T +T¢v
o F 0
0
0
)
_vr
i -9,
-
r
)
,
!
)
O-rr
!
9]
)
U(V):
JV
ur(V)
9,
)
q,

(4.13)

(4.14)

In Eq. (4.10) U" is the unknown vector and comma denotes partial differentiation

as defined in Eq. (2.36).

Before we derive the canonical equations from Eq. (4.10), we first establish

the characteristic lines along which these equations are valid. The characteristic lines

are governed by the characteristic equation (2.37).
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In view of Eqgs. (4.11-4.12), the characteristic equation, Eq. (2.37), can be

expressed as:

0 v, R 0 0 0
Py 3p,
0 _2h -V, 0 0 0 0 0 0
3 aq,
0 lﬁ 0o -V, 0 0 0 0 0
3a,
detB-V,A)=| 0 -3k 0 0 -V, 0 -9Ke"ay, 0 0 |-
() p,C,x ® 1
0 3Ka, o 0 o0 o -H£5% p _— 9
TO TO
0 0 0 0 0 k, -V, 0
-V, -1 0 0 0 0 0 0 0
o 0 0 -V, 0 0 0
| 0 0 o 0 0 0 0 0 —v,]
Q) ) Q) v?
pvcvao V9 _ ﬂ_i_gﬁcvao + KcvaO + 9K2aT av V7
T, Iy 3a T, T, Py
2b k, 1 Kk
+(——1 - —+—VJV5 =0
3a, p, T, pJT,
(4.15)
The roots of Eq. (4.15) are:
PO Ze®, y@=c® @ p@_ O
(4.16)

where
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Q) ) ) 2?2
3p. k., +2G,p,c,a, +3Kp ca, +271Ka, ol

9k 7 p 2 —12p %k "G e.a,” —18p 7k Ke a,"”

2 2
) _ \/g + 162pvkr(V)K2aT(V) avTO + 4G102pvzcv2a0(V)

6p.Ne.a" 4|+ +12G,, p,%c, a," K +108G, p,c.a," K e, a,T,

v

—_—

2 2 2 (n? 3 o 2
+9K°p,c,’a, +162K pca, o, «a/T,

4. W @2
+729K e, o, T,

(4.17)

Q) Q) ) 2 32
3p.k, " +2G,p,ca,  +3Kp,coa, +271Ka,  alT,

ok 7 p 2 —12p %k VG, —18p%k, VKe o,

r

2 2 2
+162p,k, VK, a, T, + 4G, p,’c, a,"

=

v _

6p,yc,a,"” 1= 112G p, e, o, " K +108G, p,c,a," K2, a, T,

v

—_—

v)

2 2 2 2
+9K%p e la,’ 162K p c,a, ", a T,

4
+ 729K *a,"” 2T,

where Eq. (2.78)), is used to express the wave velocities in terms of G,,, a parameter

of shear modulus, instead of a, and b,, and the bulk modulus K, in addition to other

material parameters appearing in the expressions.

V) are the characteristic values and the characteristic lines are defined as:

ar _ v =c along C,"

dt

dr @ ) @

o v = along C, (4.18a)

dr 3
oy P = along C,%
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dr @) o) @)
— =" == along C
dt v 2 g Y
(4.18b)
—‘Z =77 =0 along C,” (i=5-9)

Integration of Eq. (4.18) gives the families of characteristic lines C* i =(1-9)as;

C, " :r—c¢,"t = constant
C,? :r+¢,"'t = constant
3) . M, _
C,” :r—c, 't =constant (4.19)
C,“ :r+¢,"'t = constant

CV(” :r = constant (i=5-9)

These families of characteristic lines are shown in the (—¢) plane in Fig. 4.1. We
note that C," and C,* describe families of straight lines with slopes ¢,"’ and ¢,",

respectively, whereas CV(Z) and CV(4) describe families of straight lines with slopes

(v

—¢," and —¢,"

_on the (»—1) plane. Moreover, Cv(i) (i =5-9)describe straight

lines parallel to the 7 —axis , see Fig. 4.1.

In establishing the canonical equations, we define the left-hand eigenvectors

Lv(i) (i =1-9) corresponding to the characteristic values Vv(i ) (i=1-9)as
(B -7, AL, @ =0 (i=1-9) (4.20)

Solving Eqgs (4.20), in view of Egs. (4.11-4.12), we can write the left-hand

eigenvectors as:
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LV =

L(Z) —

3KaT(V) :

B ) )
T,c, " 3Ka,

1 ) " -
3Ka,

1 1

B ) )
Tyc, 3Ka,

B 1 ) CZ(V)_
3Ka,

) )
T,c," 3Ka,

2b 1 K }
3 a, pvcl(v pvcl(v)
¢ 25 1 K
3 a pvcl(V) pvcl(V)

25 1 K
3 a, pvcl(V) pvcl(\/)
o 2b 1 K

) )
pvcl

(v
3 al Iovcl

3vaZ(V)
2b, 1 K }

) pvcz(‘/)
2b, 1 K }

) )
vaZ

—_ o
3 al vaZ

{Cz(v) B

N G
3 al vaZ
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L =

1

-1
pvcz(V)
0
-1
3IOVCZ(V)
1 o 2 b 1 K
3Ka R )
T 1 PyEs PvCy
1 W 2b 1 K
— C [ — —
Tocz(V) 3KaT(V) 3a pvcz(V) pvczm
0] 0 ] 0 ]
1 A 3a
2 2 b, 2 b,
1 0 0
0 1 0
ol, L(ﬁ) 0 , L(7) 0
0 0 0
0 0 1
0 0 0
0 0] 0
L(8)

SO~ O O O O o o o
=
N

—_ 0 O O O O o o o
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The left-hand eigenvectors in Eq. (4.21) are multiplied by arbitrary constants as in

the previous chapters which are not written for the sake of brevity.

The canonical equations can be written as in Eq. (2.45) which hold along dr = Vv(i)

(i=1-9). In this case, however, Lv(i) is the left-hand eigenvector given by Egs.

(4.21). By substituting Egs. (4.21) into Eq. (2.45) and taking into consideration Egs.

(4.11 - 4.14), we get the canonical equations explicitly as

along % =y =" (4.22)
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_ dt - pvcl(\) dt - 3p Cl(v) dt
~ 3Ka,"a, p,ca,” o 2b 1 K dg"
ptcl(‘) 3I<aT(V)T'0 1 3 al pvcl(‘/) pvcl(V) dt
1 1 w 2b 1 K \dg"
) ) 3a ) o gt
TOCI 3Ka 1 PG P

3KO‘TMTO 3a, pc, P.C r
’ ’ )
+ L_ 1 ay o 1 s m 1 biu, o
propea ) pr® 3pe™ay
along =P == (423)
dv,"” L] do," 1 do
a  pec,"” dt 3pc," dt
3K0!T(v)a B pvcvao(v) e _%Zi 1 K %
P, Cz(v) 3KO!T(‘)T0 : 3 a, p,c, P, cz(v) dt
1 1 w 2b 1 K dg"
TOCZ(V) 3K0{T(V) 3 a, pvcz(v) pvcz(v) dt
+ 1 b71_ K _le ) _gﬁ 1 _ K vr(V) _g bO 1 c W)
3pv02(V) al pvc2(V) 3 al pvcl(V) vaZ(V) r 3 al vaZ(V) !
3KaT(V) _ Iovcv ) _%ﬁ 1 _ K
+ ) ) €2 3 ») ) ?,
P2 3Ka; T, a4 pc, PCs
)
_ 1 o 2b 1 K g,
v 2 v v
3K0{T( )TO 3 a, pvcz( ) pvc2( ) r
’ ’ )
+ L'F 1 aio o ) —LO' ) + 1 biour —0
v r 06 -
pr pe,” @ P 3p,¢,V a;

v

along % =y =c" (4.24)

132



dt pvc2(V) dt 3/0\102(‘)) dt
3Ka,"a, p,ec,a,"” . ® 26 1 K a4,
p.c,"” 3Ka,"'T, ’ 3a, pc, p.e,” ) di
1 1 w 2b 1 K )dg"
Toc2(V) 3K0‘T(V) 3a pvc2() pvcz(V) dt
N S S VR N S0 | LU VR
3/0\»02(‘) a, vaZ(‘) 3a1 pvcz(v) pvcz(V) r 3a] IOVCZ(‘) i

_(3%@_ = [ e Baﬁ
2 v

p»cz() 3K0‘T(V)To 3a pvczm pvcz(V)
1 w 2b 1 K |g"
3KaT(L)TO 3 4, pvcz(v) pvcz(V) r
1 1 a vr 1 vr 1 b M,(V)
P ()70 ooy - ()70 =0
pvr pvcg al pvr 3/0VC'2 al r
d]" v
along —=V"=—-" (4.25)
dt
! !
ldarr(v) do_%(\)) ld_o (V)r +d0 o _lb_our(V) _lb_lvz(V) o
2 dt dt 2a, " a, 2a, r 2a r
1 (©)
along =V " =0 (4.26)
’
9a, ,do," w_ dg™ 9a 3by ,u,” 9 v,"
___lK rr + v+9KaT()v¢ _ OKW __OKr __Kr
2 b, dt t dt 2 b 2 b, ro 2 r
+2Ke, " +9Ka,"p, =
1
dr
along = = Vv(6) =0 (4.27)
t
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r

) ™ ) )
3aydo, " de,” 3ay ' b ow_lbu " v~

___Grr +_grr A5 T A
2 b, dt dt 2 b, b, 2b r 2 r
dl" (7)
along —=V""=0 4.28
g =V (4.28)
)
du, ~ L)
dt
dr ®)
along —=V"=0 4.29
g =V (4.29)
dT
224 =0
% P,
dl/' )
along —=V"=0 4.30
g =V (4.30)

4.5 Integration of the Canonical Equations for the Thermo-Viscoelastic Layer

The canonical form of the governing equations for the thermo-viscoelastic layer
which are given by Eqs (4.22-4.30) can be represented in matrix form as in Eq.

(2.73) where in this case the matrices E and F are given as:

E,=-1,
1
E = ,
N 3pvcl(V)
(4.31a)
P | 3Kke,Ma,  pea w 2b 1 K
17 o o e SRR
P.E 3Ka; T, a4 p,c PyE
3 1 1 v 2 1 K
E18 Te ) 3Ka (V)[ 1 _EGIO v (V)]a
0C1 T P.C P.C



-1, E, =
pvcl
1
3pvcl(V) ,
— SKaT(V)a pvcvaov c )
pvcl(V) 3KaT(V)TO 1

(O

(4.31b)

1
1, Ey=—r
pvc2
1
3pv02(V) ’
3Ka,"a, p.ca, w2 1 K
) o | €2 ~3 0w Ch
PCy 3Ka;, T, 3 pe, PCs
1 ) 1 K
) ¢ ~7 G0 Ol o |
Tyc,  3Kay 37 pe P.Cy
1
1, Ep=—s
vaZ
3 1
3pvcz(V) ,
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1
Eg = E’ Es, = 1,
(4.31c¢)
E. = —2LK . E, =1,
2 Gy,
E, =9Ka,"a,, E, =1,
31
E,=—, E, =1
BTy N 99
all the other Eij =0.
2G 1
}?11 = E - ) D)
PG
o K , 2 | k |1
Fy=- o G0~ ) _(Cl( ) _EGIO R <v>] >
_3pvcl Iovcl pvcl Iovcl r
1 1 1 1
Fy=—— o | F,=—, (4.32a)
pvr pvcl z-1 pvr
Flg =~ 1 Sie l
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1 v 2 1 K 1
Fig = ™) ¢ —=Gy v o |2
3Ka, T, 37 p0 p.e )T
2 1 G
= 3 ) —,
pvcl Tl
1 K v 2 1 K
Fy, = ) Gy — ) _(cl 3 Gy o (v)]
3lovcl pv 1 Iovcl Iovcl
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F, =——f— F,=——
71 G, 1, 27,
=21 _16G,11
? 210G, 226G, T

(4.32d)
F, =1, F,, =1,

all the other FU =0

The unknown vector U®” can be written as Eq. (4.14).
Applying the same mathematical operations as in Eqgs. (2.82-2.83), we obtain the

integrated canonical equations along the characteristic lines for the thermo-

viscoelastic layer as

) _ ) . .
GZ.J.(A)UJ. (A)—Hij(Ai)Uj (Ai) (i=1-9,;=1-9) (4.33)
where

1
G;(A)=E; - EAIE]' (4)
(4.34)

1
H,,(4) = E, + AIF, (4)

In Egs. (4.34), At is the time interval between two consecutive points along the
characteristic lines C," (i =1-9), see Fig. 4.1. Furthermore, in Eqs.(4.33 - 4.34), a

bar under an index implies that summation convention is not applied to that index
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and U_/.(V) (4), U,"(4,) represent the values of the field variables at points 4 and

J

A; , respectively, as in the previous chapters.

To compute the values of field variables at 4, and A,, we use a linear interpolation
between the points 4,and A,and A,and A (see Fig. 4.1) using Eqgs. (3.45) by

simply putting subscript v or superscript v in parentheses on the related elements.

The elements of £, and F; are given in Eqgs.(4.31-4.32). Equations (4.33) represent

ij
nine equations defined by i =1-9, and for each value of the free index i, there is a

summation over j which takes the values(j =1-9). Thus, when the field variables
U, are known at points 4, (i =1-9), the values of the field variables U ;atpoint A4

can be determined from Egs. (4.33). In other words, the values of the field variables
at a specific point along any line parallel to the » —axis in the solution region, see
Fig. 4.1, can be found in terms of the known values of the field variables defined at
points on the previous line. It is compact and suitable to express the equations in this

form for computer programming.

For the orthotropic layers of the problem considered in this chapter, canonical forms
of the equations, integrated forms of the equations along the characteristic lines are
the same as those of Chapter 3. These are Eqgs. (3.33 — 3.39) and Eqgs. (3.43). These

equations are not rewritten here for the sake of brevity.

4.6 Modification of the Equations for the Boundary and Interface Elements

Equations (3.43) and Eqgs. (4.33) are valid for the interior points of the layers
of the multilayered body and should be modified for points A on the boundaries and
interfaces. The modified form of Eqgs. (3.43) for the interfaces between the
orthotropic layers and outer boundary element are the same as those of Egs. (3.49-

3.52).
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For points A on the inner boundary, which is denoted by the element “L” in
Fig. 4.1, the integrated canonical equations, Eqgs. (4.33), remain the same for
i=2,4-9;j=1-9, whereas, the integrated canonical equations for i =13, =1-9

should be replaced by the boundary conditions on the inner surface r = a:

o-,,r(v)!(A)+%o-v(A):—P(A) or V.(4)=V(4) and

(4.35)
T(A)=T"(4) or q,"(4)=0(4)

As for the interface element °S’, an element on the interface between the viscoelastic
layer and the orthotropic layer labeled as layer 1, we should make use of combining
the sets of Eq.(3.43) and Eq. (4.33) together with the interface conditions. The
interface conditions require the continuity of the surface tractions, displacements,
heat flux and temperature at the interface. For the interface element ‘S’, then the

integrated canonical equations, Eqs. (3.43) remain the same for i=1, 3, 5-7,

whereas, Egs. (4.33) remain the same for i = 2, 4, 5-9; thus, we have

(9 _ () P -
(4.36)
Orr @ _ 1 M - .
s,U () =2,"4)U " (4) i=2,4,5-7, j=1-7

Equations (3.43) for i =2, 4 and Egs. (4.33) for i =1, 3 should be replaced by the

interface conditions
@ 1 M
0, (N+50,(H=0,"(4)

v (4)=v.V(4) (4.37a)

T,(A) =T, (4)
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7" () =q,"(4) (4.37b)

Thus, modification of the equations for the interface and boundary elements is

completed. Equations (4.36-4.37) represent sixteen equations to determine the
sixteen unknowns, U j(v) (4) and U j(l)(A) j =(1-16), pertaining to points on the

interface between the viscoelastic layer and first orthotropic layer.

Without getting into details, the numerical procedure employed here is of the same

form as that employed in the previous chapters.

4.7 Numerical Examples and Discussion of the Results

In the numerical examples, it is assumed that the inner surface r=a is
subjected to a uniform time dependent pressure and a uniform temperature deviation
and the outer surface » = b is free of surface tractions and the temperature deviation

is kept at zero, that is, the boundary conditions are

a,,,(v),(a,t) + %av (a,t)=-P(O)H(t), T,(a,t)=T (t)H(t)

(4.38)
o, (b,t)=0, T,(b,1)=0

In the method of characteristics, we are free to choose any time dependency for the
applied pressure and temperature deviation. In the examples, we choose a step-time
variation with an initial ramp, see Figs. (2.7, 3.3). In the figures, we notice that the

applied pressure and temperature deviation are zero at ¢ = 0, linearly rise to constant
values F, and TO*, respectively, during a rise time of Ar and remain constant

thereafter. The initial ramp in the pressure variation and temperature deviation
eliminates the complicated circumstances of having first-order discontinuities in the

field variables at the wave fronts.
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The numerical computations are carried out and the results are displayed in
terms of non-dimensional quantities. These non-dimensional quantities are defined

as

- r - Ic - u
r:_: __07 Ur =—
a a a
) v
ur(V) —_r , Vr(V) — ! , , = pv _1
a ¢ P,
—_— V‘ —_—
L Ny}
CO pv

— = = E E E
(EI,EZ,E:’)):[ 129 229 32J9
pvco vaO vaO

(6o om)= [a— EJ (4.39)

27 2
pch pvco

_ r_ r_ o ) o ) o
(O_rr(\/) ,O-HQ(V) ;O-vj — " 06 v

— = = G G G
(Glz,GlZ,GB):( 2, 232J,
pvc() pvc() vaO

(EIO,EIF,K):( Giy Gir K J

2 2 2
vaO pch IOVCO
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(qrjqr( )):[— —]’

372 3
pvco pch

(Bnngzpﬁn):(ﬂ“% ﬂzzTo 1833T0 ] ,

2 2 2
IOVCO vaO pvco

—_— = oc, o,C
(a,ao) = (_O,ﬂj’

a a

a a
(4.39b)

—- T — T
To=-"=1, T=—,

TO TO
- T - T
Czcoz’ cvzcvoz,

vaO pvco
%”’ = krr T03 s %" =kv T03 ’ a © _aT(V)TO

pvco a vaO a

where ¢, = \/% (2G,, +3K) is the uncoupled mechanical longitudinal wave speed
P

v
for viscoelastic layer and a bar over the elements designates non-dimensional

quantities. Furthermore, a is the radius of the inner surface and p, is the mass

density of the typical viscoelastic layer.
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We now present some results for the response of viscoelastic cylinders enclosed in

filament wound fiber- reinforced cylindrical composites. The multilayered body is
subjected to boundary conditions given by Eqs. (4.38) with P(z) and 7" (¢) defined

as in Figs. (2.7,3.3); it is initially at rest and the layers are perfectly bonded to each
other. The body consists of three generally orthotropic elastic layers with stacking
sequence -45/90/30 starting from the first orthotropic layer and one viscoelastic

innermost layer. The non-dimensional material properties are taken as

(G0, G, K)=(0.857,0.735,0.429)
p, =1, ar” =0.008,

ao"” =0.00000001844

R
Il

¢, =0.022, 71 =3688000

(kv k. )=(4.549x107 5.958x10")

p, =135 i=(1-3), To=1, c=0.02 (4.402)
(E1,E2,E3)=(2.318, 0.785, 0.785),

(G2, G, G )=(0.277,0.277,0.294),

(8112 BBy )=(0.024, 0,015, 0.015)

a =0.00000001585, a, = 0.00000001585
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L,; =0;, =033,
(4.40b)

Uy =05 =0, =0, =0.236

The thicknesses of the viscoelastic layer and the orthotropic layers are all equal to

h,=0.1 (i=1-3), and the network of characteristic lines used in the numerical

analysis is defined by At =0.0002 . The applied pressure at inner surface is zero at

1=0, then linearly rises to a constant value Po =0.001 during a rise time of

At =0.0002 after which it remains constant. The applied temperature deviation at

the inner surface is taken as To* =0.08.

Results of the numerical computations are given in Figs. (4.2-4.8). The curves are
given for the cases when the thermal effects are neglected and when they are taken
into account, which in the sequel are described as non-thermal and thermal solutions,

respectively.

Variations of the non-dimensional stress — o, with time ¢ at location 7_’=1.05,

corresponding to the middle of the viscoelastic layer, are displayed in Fig. 4.2. The
curves denote the effects of reflections at the inner (;=1), and outer (;=1.4)

boundaries, and reflections and transmissions at the interfaces of the layers. Figure
4.2 includes two curves, one is for the non-thermal solution and the other is for the
solution where thermal effects are taken into consideration. The curves of Fig. 4.2
denote clearly the dispersion caused by the thermal effects in the wave profiles. In
the curve representing the non-thermal solution, the sudden changes in the stress
levels correspond to the arrivals of reflected and refracted waves from the interfaces
and boundaries of the composite body at the position considered. In the thermal
solution, the curves display a similar character. However, due to the thermal
dispersion, the sudden changes, in the non-thermal solution now become smoothly
varying curves (see Fig. 4.2). The maximum values of the radial normal stresses are

smaller in the thermal solution than in the non-thermal solution. The radial stress
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remains mostly compressive. From Fig. 4.2, one sees that the disturbances propagate

faster when thermal effects are taken into consideration.

Figure 4.3 shows the variations of the dimensionless normal stress o with ¢ at the
location 1.05, middle of the viscoelastic layer of the multilayered medium. The
normal circumferential stress remains tensile for thermal and non-thermal solutions
except short duration, near the time of arrival of the wave front. Thermal solution
displays a similar character with non-thermal one. However, due to the thermal
dispersion, the sudden changes in the non-thermal solution now become smoothly
varying curve. For the position considered, thermal effects are significant for the
circumferential stress. Different from the radial stress trend, circumferential stress
levels are higher for some non-dimensional time intervals in the thermal solution.
Furthermore, we note from the figure that, circumferential stress is the significant
stress for the layer and position considered, since it reaches nearly three and a half

times higher stress values than the radial one.

Figure 4.5 shows the variations of the dimensionless normal stress oo with time ¢

at the location r=1.15, the middle of the first orthotropic layer. We note that
circumferential normal stress reaches higher values in the first orthotropic layer than
those in the viscoelastic layer. Figure 4.5 includes non-thermal solution, as well as
the thermal solution with temperature deviation at the inner boundary taken as 0.08.
Due to the thermal dispersion, the sudden changes in the non thermal solution now
become smoothly varying curves as in the curves of previous figures. The sudden
changes in the stress levels due to reflections and refractions are more distinct and
significant in these curves compared to the curves of Fig. 4.3. The fact that the
circumferential normal stress is the dominant stress is more valid for the elastic

orthotropic layer which can be seen from the comparison of the curves of Figs. (4.5,

4.4)

In Fig. 4.4, the variation of radial stress o, with time ¢ at location r =1.15 is given.
The curves of Fig. 4.4 display similar features as those of Fig. 4.2. The sudden

changes in the stress levels due to reflections and refractions of waves at the
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boundaries and interfaces in the non-thermal solution leave their places to smoothly

varying curves in the thermal solution due to thermal dispersion. The radial stress

o, in the curves of Fig. 4.4 may assume tensile values as well; whereas, in the
curves of Fig. 4.2, it was primarily compressive. The maximum values of the radial
normal stress are smaller in the thermal solution than in the non thermal solution. We
note from the curves in Fig. 4.4 that the disturbances propagate faster when thermal

effects are taken into consideration.

Figures (4.6-4.8) display the time variations of the radial normal stress o, and
circumferential normal stress g at the interface between second and third
orthotropic layers. The radial stress o, is continuous across the interface and its

time variation at the location r=1.3 is given in Fig. 4.6; whereas, co s

discontinuous across the interface and its time variations at the points just before and

just after the interface, i.e., at r=13-0 and r=13+0 are shown in Figs. (4.7,
4.8), respectively. The curves in these figures display similar trends as the curves in
the previous figures. The sudden changes in the stress levels in the non-thermal
solutions are more distinct and pronounced in these curves and they are smoothed out
in the case of thermal solutions. The radial stresses assume tensile stresses as well

and the extreme stress levels are smaller in the thermal case, Fig. 4.6. The

circumferential stress o suffers considerable jumps at the interface which may

reach values twice as high, see Figs. (4.7, 4.8).
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CHAPTER S

CONCLUSIONS

In this thesis, transient dynamic response of viscoelastic cylinders enclosed in
filament wound cylindrical composites is investigated. The multilayered medium
consists of n+1 layers, the inner layer being viscoelastic, while the outer fiber
reinforced cylindrical laminate consists of n-different generally orthotropic,
homogeneous and linearly elastic layers. The problems investigated in this thesis can
be grouped under three categories. In the first category, presented in Chapter 2,
transient dynamic response of the viscoelastic cylinder enclosed in filament wound
cylindrical laminate, with thermal effects neglected, is investigated. In the numerical
examples, the inner surface is subjected to a uniform pressure which varies in time as
a step function with an initial ramp, and the outer surface is free of surface tractions.
Solid propellant material properties are used for the viscoelastic layer. Curves

displaying the variations of the nondimensional radial stress o, /F, and

circumferential normal stress o, / P, with time ¢ at different locations in the inner

viscoelastic and outer elastic layers show striking properties. At points in the

viscoelastic layer, both o, /Fand o, /F, are compressive, their values and

variations are very close to each other and they reach values as high as -2. At points
in the outer generally orthotropic layers and in the time interval considered, however,

o, / P, is basically compressive and o, / P, is basically tensile. The highest levels
of o, /P, are around -1, whereas o, /F, may reach values as high as 18. This
striking difference in the trends of the time variations of the stresses o, /P, and
o, ! P, in the inner viscoelastic and outer orthotropic layers is due to the propellant

material properties of the viscoelastic layer. The fact that the normal stresses in the
viscoelastic layer are compressive is a desired property for solid propellants. The
case of ablating inner surface is investigated as well. This is an important advantage

of the method of characteristics. Handling of a moving boundary, which may be a
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formidable task in many methods of solution, can be achieved without much
difficulty in the method of characteristics. Furthermore, for verification purposes,
solutions are obtained for two special cases and the results are compared with those

already existing in the literature and excellent agreements are found.

In the second category of problems, presented in Chapter 3, the
thermomechanical response of fiber-reinforced cylindrical composites consisting of n
generally orthotropic linearly elastic layers is investigated. Thermal effects, in
addition to the mechanical effects, are taken into consideration as well. A generalized
thermoelasticity theory which incorporates the temperature rate among the
constitutive variables is employed. This theory is known as temperature-rate
dependent thermoelasticity (TRDTE) theory or generalized thermoelasticity with two
relaxation times. This theory predicts finite speeds for thermal disturbances. In the
numerical examples, uniform time dependent pressure and temperature deviation
varying in time as step function with initial ramp are applied at the inner surface, and
the outer surface is free of surface tractions and kept at zero temperature deviation.

The numerical results are displayed in curves showing the variations of normal

stresses o and o g with time at different locations in the cylindrical laminate.
Curves where thermal effects are neglected are also given in the figures. The curves
clearly reveal the effects of reflections and refractions of waves from the boundary
surfaces and the interfaces of the layers. The sharp changes in the stress levels in the
non-thermal solution are smoothed out in the thermal solutions due to thermal
dispersion. The effects of the stacking sequence of the layers and the effects of
geometric dispersion on the wave profiles are also apparent. The stress levels
decrease as we go away from the inner surface due to geometric dispersion; but in
some cases, due to the stacking sequence of the layers, the stress levels at further
points are higher than at points closer to the inner surface. The generalized
thermoelasticity theory employed in this thesis is a linear theory; hence, it is valid for
small temperatures deviations. The curves reveal that the effects of thermal
dispersion may be significant even for small temperature deviations prescribed at the

inner surface, especially for large times after the arrival of the waves.
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A verification example solved as a special case of the general formulation
presented in this thesis is compared with the solution existing in the literature and it
is shown that the two solutions are almost identical. This verification example shows
that generalized thermoelasticity theory employed in this thesis describes accurately

the response for very short times and for very small distances.

In the third category of problems, presented in Chapter 4, the transient
dynamic response of an isotropic viscoelastic layer enclosed in a fiber-reinforced
cylindrical laminate consisting of n generally orthotropic elastic layers is
investigated. The elastic layers are governed by the equations of generalized thermo-
viscoelasticity in which relaxation effects of the volume are neglected. Generalized
thermo-viscoelasticity is a relatively new subject which is not treated widely in the
literature yet. The constitutive equations as employed in this thesis are quite new.
Numerical results displayed in curves are given for the cases when the thermal
effects are neglected and when they are taken into account which are described as
non-thermal and thermal solutions, respectively. The boundary conditions considered

are similar to the ones considered in the second category of problems. The curves

show the time variations of o, and o at different locations and they reveal that
disturbances propagate faster when thermal effects are taken into consideration.
Radial stress in the inner viscoelastic layer is basically compressive; whereas, in the
outer orthotropic layers, it may assume tensile values as well. The dominant stress is
the circumferential normal stress in both the viscoelastic and the elastic layers; but
the ratio of the maximum levels of the circumferential stress to radial stress is higher
in the orthotropic elastic layers than in the viscoelastic layer. Thermal dispersion
smoothes out the distinct sudden changes in the stress levels of the non-thermal
solutions and this is more apparent in the radial stress variations. The effects of
reflections, refractions, and the effects of stacking sequence of the elastic layers are

similar to those in the previous problems.

Four computer programs are written in this thesis. The first computer
program handles the problems discussed in the first category with non-ablating inner

surface, Chapter 2. In the second program, the first program is modified to take care
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of the ablating inner boundary. The third program handles the transient dynamic
response of filament wound cylindrical laminates consisting of n generally
orthotropic thermoelastic layers, problems in the second category, Chapter 3. Finally,
the last computer program handles the problems discussed under the third category,

Chapter 4.

As a final comment for future research, this work can be extended to two-
dimensional problems in multilayered elastic, and/or viscoelastic media by
employing a technique which combines the method of characteristics with the

Fourier transform, for example.
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APPENDIX A

METHOD OF CHARACTERISTICS
In this appendix, the derivations of the basic equations used in the method of
characteristics, namely, the characteristic equation and the canonical equations will

be given. Let the system of governing 1-D partial differntial equations be given in

matrix form as
AU, +BU, +C=0 (A.1)

where A and B are (mxm) square matrices, C is an m dimensional vector and U is

m-dimensional unknown vector

u=U,Uu,U,,..U,) (A.2)

The unknown field variables U,,U,,U,,.....U, are functions of the space variable x

and the time variable t. The system of governing equations, Eq. (A.1), is assumed to
be linear, i.e., Aand B are functions of x and t only and C is a linear function of
U,ie.,

C=DU+E (A.3)

where D is an (mxm) matrix and E is m-dimensional vector both of which are

functions of x and t, only. Furthermore, comma denotes partial differentiation in
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Eq. (A1), ie, U,, =6_U and U, =8—U.
ot ox

Let x=x(t) define the equation of the singular point (wave front) at which the field
variables and/or their derivatives may suffer discontinuities. The plot of x(t) is given

in Fig. A.1. If f denotes a function of x and t, the jump of f(x,¢)at the singular

point is defined and denoted as

[fl=r-r (A4)

where the supercripts + and — denote the values of the function on the disturbed and

undisturbed sides of the singular point, respectively.

Now, assume that Uis continuous and the first derivatives of U are
discontinuous on the singular point x=x(t), i.e., [U]=0, [U,,]#0, [U,,]#0 on

x=x(t).

=x(t)

Figure A.1. Position of the singular point.

Writing Eq. (A.1) on positive and negative sides of x=x(t), noting that A, Band

C are continuous on x=x(t), and taking the difference, we obtain on x=x(t)
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Alu,,]+B[U,, ]=0 (A.5)

The kinematical condition of compatibility gives on x=x(t)

]2
ot ox

where V denotes the propagation velocity of the singular point (wave front).

Substituting Eq. (A.6) into Eq. (A.5), we get
(B-VA)W =0 (A7)

where W = [U,x ] This is an eigenvalue problem and W is the eigenvector and V is

the eigenvalue. For non trivial solution
det(B-VA)=0 (A.8)

Equation (A.8) is called the characteristic equation. Solving the equation we find m
roots (characteristic values), i.e, V" = (V(l),V<2),V<3), ........ ym ) If the roots are real
then the system is called hyperbolic and each ¥ corresponds to i” family of

characteristic curves C”. This characteristic family can be determined by solving

the following equation:

c® :% =V x=x(at) for  i=12...m (A9)

where ' are integration constants. The family of the curves

CcV,C?......C"™ constitues the characteristic manifold.

Now, we shall put Eq. (A.1) into canonical form. For this purpose, we define

the left hand eigenvector L corresponding to ¥ as

175



LY (B-V©A)=0 (i=1-m) (A.10)

or

(B —yOATILY =0 (i=1-m)) (A.11)
Pre-multiply Eq. (A.1) by L®" (i=1-m) and substituting

LY B=y LY A i=(1-m) (A.12)

from Eq. (A.10), we can write

L“)TA(U,,+V("’U,X)+L(i)TC 0 on C© (A.13)

Noting that V' = % and the quantity in paranthesis in Eq. (A.13) is equal to %,

we can write

L(”TA% +L2'C=0 (A.14)
t

which holds along (dx/dt): V@ (i=1-m). Eqgs. (A.14) are called the canonical

equations. In these equations d/dt denotes the total time derivative along the
characteristic lines. Thus, through the application of the method of characteristics,
the system of governing partial differential equations, Egs. (A.1), is transformed into
a system of ordinary differential equations., Eqs. (A.14), each of which is valid along

a different family of characteristic lines.
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APPENDIX B

MANUALS FOR COMPUTER PROGRAMS

In this study, four program are written in order to perform the calculations discussed
in Chapter 2, 3 and 4, respectively. One is for the mechanical response of viscoelastic
cylinders enclosed in filament wound cylindrical composites called MECHANICAL.
Second is the modified form of MECHANICAL calculating the field variables for
ablating inner boundary case. This second program is called MOVING-
MECHANICAL. Third program is called THERMO-MECHANICAL and calculates
field variables for n-layered filament wound cylindrical composites. The last
program is for the thermomechanical response of viscoelastic cylinders enclosed in
filament wound cylindrical composites. This program is called INVISTHERMO-
MECHANICAL. The programs have similar structure and contain parts with the

following functions:

INPUT: Reads the input file “INP”, writes geometric and material properties of each

layer in the output file “out”.

MATRIX: Evaluates the matrices G, and H,;, Eq. (2.84), Eq. (4.33), S;and Z;,

Eq. (2.89), Eq. (3.43).

VECTORSOLVE: Evaluates the vector H, U, (4,), Eq. (2.84), Eq. (4.33),

Z,U,(4,),Eq. (2.89), Eq. (3.43) and call sabroutine sol.

SUBROUTINE SOL: Solves the system of complex linear equations at every point

A of the solution region.
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OUT: Write the field variables in the output files ‘OUT’.

B1. Input data file for MECHANICAL

The program MECHANICAL is written for non-ablating problem in Chapter 2. The

input file of this program is composed of the following parts:

PO, RO, RO1

XA, DX1, DX, DT

TAU1, TAU2

G10, GIF, G20, G2F

IMAX'

ANGI1, ANG2, ANG3

NU23, NU32, NU31, NU13, NU21

NU12, G23, G13, G12, E2

E3, El

The parameters can be defined as follows;

PO: inner pressure

RO: density of viscoelastic layer

RO1: density of the orthotropic layers
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XA inner radius of the body

DX1: increment in the r-axis for the viscoelastic layer

DX: increment in the r-axis for the orthotropic layers

DT: increment in the t-axis

TAU1: relaxation time for shear moduli

TAU2: relaxation time for bulk moduli

G10: initial shear relaxation moduli

G1F: final shear relaxation moduli

G20: initial bulk relaxation moduli

G2F: final bulk relaxation moduli

JMAX: number of increments

ANG1, ANG2, ANG3: ply angles of the orthotropic layers

NU23, NU32, NU31, NU13, NU21, NU12: Poisson’s ratios of orthotropic layers

(23, G13, G12: Shear moduli of orthotropic layers

E2, E3, E1: Young moduli of orthotropic layers in principal material directions

B2. Input data file for MOVING-MECHANICAL
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The program MOVING-MECHANICAL is written for ablating problem in Chapter
2. The input file of this program is composed of the parts containing previous
section. In addition to this parameters program needs parameter called “SLOPE”,

that is the slope of the ablating boundary line.

B3 Input data file for THERMO-MECHANICAL:

The program THERMO-MECHANICAL is written for the problems in Chapter 3.
The input file of this program is composed of the following parts:

XA, DX, DT, PO

TETO, TETA, IMAX

INANG, INANGI1, INANG2, INANG3, INANG4

NU23, NU32, NU31, NU13, NU21

NU12, G23, G13, G12, E2

E3, El

RO, KOND, AF, AFO

BTI1, BT2, BT3, Cp

The parameters can be defined as follows;

XA: inner radius of the body

DX: increment in the r-axis for the layers
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DT: increment in the t-axis

PO: inner pressure

TETO: initial uniform temperature

TETA: temperature deviation from the initial uniform temperature 7,

JMAX: number of increments

INANG, INANGI, INANG2, INANG3, INANG4: ply angles of the orthotropic

layers

NU23, NU32, NU31, NU13, NU21, NU12: Poisson’s Ratios of orthotropic layers

G23, G13, G12: Shear moduli of orthotropic layers

E2, E3, E1: Young moduli of orthotropic layers in principal material directions

KOND: conductivity of first orthotropic layer

B4 Input data file for INVISTHERMO-MECHANICAL.:

The program INVISTHERMO-MECHANICAL is written for the problems in
Chapter 4. The input file of this program is composed of the following parts:

XA, DT

TETO, IMAX, PO

TETA
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DX1, KONDV

G10, GIF, RO1

AFT1, AF1, Cpl, AFOL1

BULKI1

TAU1

DX

INANG, INANGI1, INANG2

NU23,NU32, NU31, NU13, NU21, NUI2

G23,G13, G12, E2

E3, El

RO, AF, AFO

BTI1, BT2, BT3, Cp

KOND

The parameters can be defined as follows;

XA: inner radius of the body

DT": increment in the t-axis
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TETO: initial uniform temperature

JMAX: number of increments

PO: inner pressure

TETA: temperature deviation from the initial uniform temperature 7,

DXI1: increment in the r-axis for the viscoelastic layers

KONDV: conductivity of viscoelastic layer

G10: initial shear relaxation moduli for viscoelastic layer

GIF: final shear relaxation moduli for viscoelastic layer

ROT1 density of inner viscoelastic layer

AFT1 thermal expansion coefficient of viscoelastic layer

AF1, AFO1: thermal relaxation times for viscoelastic layer

Cpl: specific heat for viscoelastic layer

BULKI: bulk moduli for viscoelastic layer

TAUI: relaxation time for shear moduli for viscoelastic layer

DX: increment in the r-axis for the orthotropic layers

INANG, INANGI1, INANG2: ply angles of the orthotropic layers.
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NU23, NU32, NU31, NU13, NU21, NU12: Poisson’s Ratios of orthotropic layers

G23, G13, G12: Shear moduli of orthotropic layers

E2, E3, E1: Young moduli of orthotropic layers in principal material directions

RO: density of orthotropic layers

AF, AFO: thermal relaxation times for orthotropic layers

BT1, BT2, BT3: Elements of thermoelasticity tensor.

Cp: specific heat for orthotropic layers

KOND: conductivity of orthotropic layers

184



CURRICULUM VITAE

PERSONAL INFORMATION :

Surname : SEN

Name : Ozge

Date of birth : 10 October 1972
Place of birth : Ankara - TURKEY
Nationality : Turkish

Permanent address : Giines Sitesi 5. Blok No:8

Yagamkent Mah./Cayyolu
Ankara ,TURKEY  Tel:
Mobile Tel:
Work address : TUBITAK-SAGE

+90 (312) 242 05 66
+90 (532) 223 88 06

Turkish Scientific & Technical Research Council

Defense Industries Research & Development Institute
PK. 16, 06261 Mamak — ANKARA / TURKEY

Tel:  +90 (312) 590 91 33
Fax: 490 (312) 590 91 48-49

E-mail: osen(@sage.tubitak.gov.tr

Marital status : Married

185



PROFESSION:

Physics, B.Sc., Engineering Science, M.Sc., METU

EDUCATION :

School

Primary School

Hamdullah Suphi Ilkokulu
Emek, Ankara, TURKIYE

Secondary School

Bahgelievler Ortaokulu
Emek, Ankara, TURKIYE

High School

Cumhuriyet Lisesi

Emek,Ankara, TURKIYE

University

METU
Department of Physics

Ino6nii Blv., Ankara, TURKIYE

METU
Department of Engineering

Sciences

Ino6nii Blv., Ankara, TURKIYE

Years/Diploma, Subject

1978 — 1983
(Primary School
Diploma)

1983 — 1986
(Secondary School
Diploma)

1986 — 1989
(High School Diploma /in

math. & science division

1989 — 1994
(B.Sc., Solid State Physics)

1995 — 1998

(M.Sc. , “Computational
Mechanics”, Transient
Dynamic Response of
Encased Viscoelastic

Cylinders)

186



METU 1999 — 2005

Department of Mechanical (Phd. , “Computational

Engineering Mechanics”, Transient

Inénii Blv., Ankara, TURKIYE  Dynamic Response of
Viscoelastic Cylinders
Enclosed in Filament Wound

Cylindrical Composites)

LANGUAGE SKILLS:

Native Language : Turkish
Other Languages : English

PUBLICATIONS:

e 0. Sen, Transient Dynamic Response of Encased Viscoelastic Cylinders, MSc

Thesis, Department of Engineering Sciences, METU, September 1998.

e 0. Sen, Failure Analysis of Solid Propellant Rocket Motor Nozzle, ANSYS
Users Seminar, October 1999.

e D. Turhan, O. Sen, Transient Wave Propagation in Encased Viscoelastic

Cylinders, SIAM 2000, pp. 202-207.

e O. Sen, D. Turhan, Dynamic Response of Viscoelastic Cylinders Enclosed in
Filament Wound Cylindrical Composites, EUROMECH 2003, pp. 87 Abstract
Booklet.

187



TECHNICAL TRAINING AND SEMINERS :

e Viscoelasticity and Viscoplasticity -Relaxation Processes in Glass-, Anton
Matzenmiller, Institut fiir Mechanik of the Fachbereich 15 University
Gesamthochschule Kassel Mdnchebergstr. 7 34109 Kassel, October 1999, METU,
ANKARA, TURKEY.

e Engineering Knowledge in Crack Initiation and Growth in Metallic and
Composite Materials, Dr. Bob CARLSON, Georgia Institute of Technology, June, 19
2001, TAI, ANKARA, TURKEY.

e French-Turkish Symposium on Composite Materials, November, 26-27 2001,
ITU Maden Fakiiltesi, ISTANBUL, TURKEY.

¢ Basic Quality Concepts & Institution Culture

TUSSIDE Gebze, Kocaeli, TURKEY, March-2002

e Heat Transfer Analysis for defense, aerospace and electronic Industries and
Infrared Radiation Signature, Ralph Habig, Thermo-Analystic Inc. September 20
2002, METU, ANNKARA, TURKEY

e Strain Gage Seminar— BIAS Engineering — 2003, TUBITAK SAGE, ANKARA,
TURKEY

e Passive Thermal Control — Dr. Mehmet ARIK, Dr. Ad Delil, Dr. Volodymyr
Baturkin, Dr. Boris KOSOY, September 22-24 2003, ANTALYA, TURKEY.

e PAT 301-302 Seminar —Bias Engineering — 2004, TUBITAK-SAGE, ANKARA
TURKEY.

188



WORK EXPERIENCE :

Organization
METU
Department of Civil Engineering

In6nii Blv., Ankara, TURKIYE

Organization
TUBITAK-SAGE
Structure Mechanics

Ankara, TURKIYE

COMPUTER EXPERIENCE:

Mathematical Software:
Technical Software:
AUTOCAD

Programming Language:
Graphical Software:

Project Management Software:

Years Job
Aug. 1995 — Research Assistant
Sep. 1998
Years Job

Sep. 1998 —  Senior Research Engineer

Matlab, Mathcad vs.
ANSYS, MARC, PATRAN, NASTRAN,

FORTRAN, PASCAL.

Photoshop, Paint Shop Pro
MS Project

189



