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ABSTRACT

MULTIVIEW 3D RECONSTRUCTION OF A SCENE
CONTAINING
INDEPENDENTLY MOVING OBIJECTS

Tola, Engin
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. A. Aydin Alatan

August 2005, 156 Pages

In this thesis, the structure from motion problem for calibrated
scenes containing independently moving objects (IMO) has been
studied. For this purpose, the overall reconstruction process is
partitioned into various stages. The first stage deals with the
fundamental problem of estimating structure and motion by using
only two views. This process starts with finding some salient
features using a sub-pixel version of the Harris corner detector.
The features are matched by the help of a similarity and
neighborhood-based matcher. In order to reject the outliers and
estimate the fundamental matrix of the two images, a robust
estimation is performed via RANSAC and normalized 8-point
algorithms. Two-view reconstruction is finalized by decomposing
the fundamental matrix and estimating the 3D-point locations as a
result of triangulation. The second stage of the reconstruction is

the generalization of the two-view algorithm for the N-view case.



This goal is accomplished by first reconstructing an initial
framework from the first stage and then relating the additional
views by finding correspondences between the new view and
already reconstructed views. In this way, 3D-2D projection pairs
are determined and the projection matrix of this new view is
estimated by using a robust procedure. The final section deals
with scenes containing IMOs. In order to reject the
correspondences due to moving objects, parallax-based rigidity
constraint is used. In utilizing this constraint, an automatic
background pixel selection algorithm is developed and an IMO
rejection algorithm is also proposed. The results of the proposed
algorithm are compared against that of a robust outlier rejection
algorithm and found to be quite promising in terms of execution

time vs. reconstruction quality.

Keywords: 3D Scene Reconstruction, Independently Moving

Objects, Robust Estimation.



Oz

BAGIMSIZ OLARAK HAREKET EDEN NESNELER ICEREN BIR
SAHNENIN COKLU RESIMLERDEN 3 BOYUTLU SAHNE YAPISININ
GIKARILMASI

Tola, Engin
Yiksek Lisans, Elektrik ve Elektronik Mihendisligi B6limu

Tez Yoneticisi: Dog. Dr. A. Aydin Alatan
Agustos 2005, 156 Sayfa

Bu tezde bagimsiz hareket eden nesneler igeren kalibre edilmemis
sahnelerdeki hareketten yapi problemleri incelenmektedir. Bu
amacla gericatim streci ¢ asamaya bolinmustlr. Birinci kisim, 3-
B yapl ve hareketi sadece iki resim kullanarak tahmin etme
problemidir. Bu slreg, Harris kdse bulucusunun piksel-alti
uyarlamasi kullanilarak, guirbtz 6zelliklerin bulunmasiyla baslar.
Bu o6zellikler benzerlik ve komsuluk 6zellikleri temelli bir egleyiciyle
iliskilendirilirler. Aykiri drnekleri atmak ve temel (fundamental)
matrisi hesaplayabilmek icin RANSAC ve normallestirilmis 8-nokta
algoritmalari kullanilarak, giirbiiz bir kestirim uygulanir. Iki
goéruntliden gericatma, temel matrisi parcalarina ayirma ve 3B
noktalarin yerlerinin, Uggenlestirme kullanilarak bulunmasiyla
sonuglandirilir. Gericatmanin ikinci asamasi, iki gérintd igin elde
edilmis olan algoritmanin N-goérintd icin genellestiriimesidir. Bu

amaca, ilk olarak birinci asamadaki algoritma kullanilarak

Vi



baslangic iskeletinin kurulmasi ve ilave goéruntulerin daha énceden
iskelete katilmis gorintilerle iliskisini elde edilmesiyle, ulasilir. Bu
sekilde, 3B-2B izdlisim noktalari elde edilir ve bu noktalardan,
gurblz bir islemle yeni gérintinin izdisim matrisi hesaplanir.
Son bdélim, badimsiz hareket nesneler igeren sahnelerde
gericatma ile iliskilidir. Hareketli nesneleri atmak icin paralaks
temelli katilik siniri kullanilmaktadir. Bu siniri kullanmak igin,
otomatik bir arkaplan piksel segici algoritma gelistirilmis ve bu
sinira dayanan bir bagimsiz nesneleri c¢ikartma algortimasi
onerilmistir. Onerilen algoritmanin sonuglari girbiiz bir aykiri
ornek eleme algoritmasiyla kiyaslanmistir ve sonuglar islem
zamani-yapilandirma kalitesi acisindan oldukca Umit verici

bulunmustur.

Anahtar Kelimeler: 3B Sahne yapilandirmasi, Bagimsiz Hareket

Eden Nesneler, Gurbliz Tahmin
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CHAPTER 1

INTRODUCTION

In recent years, due to significant amount of devoted resources,
there had been a lot of progress in 3-D display technologies.
Publicly unpopular glass-based 3-D visualization solutions are
currently being replaced with their glass-free counterparts, which
are auto-stereoscopic displays. It is nhow possible to purchase an
auto-stereoscopic display for a reasonable price and hence, the
manufacturers are producing stereo displays for not only the
professional applications, but also the consumer market. However,
the content, which can be viewed by using these devices, is not
vastly available. Hence, 3-D visualization is still only privileged to
the researchers and professionals. It should be noted that in order
to produce content, it is also possible to capture new data, which
is compatible with these devices, by the help of some extra
hardware, such as stereo cameras or LIDAR devices. Obviously, it
will be a waste of resources, if one does not use the 3-D
information which is available in a typical mono-view camera
recording. Apart from this fact, it should also be remembered that
for many years, mankind has already collected images and videos
via mono-view cameras. Instead of re-capturing new data or
losing already available content, such information sources should

be converted into the appropriate format for such 3-D displays.



The discipline that relates image formation to 3-D scene structure
is a very exciting branch of study and it has attracted much
attention over the years and as a result, a new field of study,
called as computer vision, has emerged. Vision researchers are
working on algorithms to estimate 3-D information by using only
images or single camera shots for the past 20 years. Currently,
the evolved algorithms are mature enough to give good
representations of the scenes without requiring much human

intervention.

1.1 Scope of the Thesis

This thesis is devoted to the problem of developing the
fundamental building blocks of a complete 3-D scene
reconstruction system that operates on calibrated image
sequences, which might also contain independently moving
objects, as well as the stationary background. After processing of
the mono-view in a cascaded set of algorithms, the system finally
produces a 3-D sparse (Virtual Reality Modeling Language, VRML)

model of the scene for visualization purposes.

In this thesis, as well as a complete 3-D scene reconstruction
system, different triangulation algorithms, which are quite critical
while locating the 3D points in space, are also compared and a
novel algorithm to reject the independently moving objects within
the scene is proposed. The outputs for two different outlier
rejection techniques are evaluated and some hypotheses are

validated through simulations.



1.2 Outline of the Thesis

In Chapter 2, some background information is given about camera

models and the epipolar geometry.

Chapter 3 is devoted to the basic building blocks of the 3D
reconstruction algorithm from two calibrated images. These blocks
include correspondence estimation, robust computation of the
fundamental matrix, computation of the relative pose and
orientation between the views and triangulation. Different
methods for triangulation are presented and the chapter ends with

some simulation results.

Chapter 4 discusses the generalization of the two-view
reconstruction to the multiple views. The presented algorithm
starts with an initial framework and each new frame is inserted
into the system, sequentially. Finally, the whole structure is

refined through a general bundle adjustment.

Chapter 5 considers the multiple view reconstruction problem with
independently moving objects within the scene. A novel algorithm
is presented for this purpose and these results are compared with

that of the sequential algorithm, given in Chapter 4.

Finally, Chapter 6 gives a summary of the thesis and concluding
remarks about certain blocks of the algorithm. Some future work

plan is also suggested in this last chapter.



CHAPTER 2

CAMERA MODEL AND EPIPOLAR GEOMETRY

In this chapter, some background information, which is necessary
to better understand the developed procedures and analyze the
presented material, is discussed briefly. The chapter contains
some information about the camera models and the epipolar
geometry. Most of the following definitions follow the text in [1-2]
and hence, the reader should refer to these resources for more
detail.

2.1 Camera Model

A camera model is a simple transformation that relates the 3-D
world coordinate system and a 2-D image plane in order to
simulate the imaging process of an optical camera. This
transformation is usually represented in matrix form and when the
projection is considered over points, the matrix is a 3x4 matrix,
called Projection Matrix ( P ), which maps homogeneous 3-D world
coordinates to homogeneous 2-D image plane coordinates. The
projection matrix encapsulates information about the intrinsic
parameters of the camera, such as focal length and principal
point, as well as the extrinsic parameters, rotation and

transformation.



Throughout this thesis, finite projective camera model is assumed
and hence, in this chapter, basic definitions of this camera model
will be introduced, starting from a simple model and generalizing
it by adding degradations. Then, a nonlinear distortion of the
camera lens will be taken into account and explained, briefly.
Finally, camera calibration, which is a procedure to estimate the
parameters of the camera matrix, will be outlined and a popular

algorithm to easily accomplish this task will be presented.

2.1.1 Finite Camera Model

In this section, the most basic camera model, pinhole camera
model, is explained and more general models are also introduced

by considering imperfections for this model.

2.1.1.1 Basic pinhole model

Basic pinhole camera model (see Figure 2.1) assumes that a 3-D
point in space is projected onto the image plane by drawing a line

from the 3-D point to the center of projection.

~ ' e X
b’ﬁ—r— Z
) P T
, principal
camera| | | axis
center Image
plane

Figure 2.1: Basic pinhole camera geometry
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The intersection of this line with the image plane is the point of
projection. The projection operation is shown in Figure 2.2. fis the
focal length, P is the principal point, X is a 3-D point and x is the
projection of X. The center of the projection is called as the
camera center and it is also known as the optical center. The ray,
which is perpendicular to the image plane, passing through the
camera center, is called principle axis. Lastly, the point of
intersection of this ray with the image plane is known as principal

point.

A
Y . X
X
L 1rﬂs‘fz
ok * -
o S - Z
f

Figure 2.2: Side view of the projection of a 3-D point

A 3-D point X is projected to a point x. If the coordinates of the

point X is taken as (X Y Z)', then the projected coordinates can

be easily calculated as (f)VZ Y/ F] from the similarity of

triangles.

x v 2y > X4 fr o) (2.1.1)



By using homogeneous coordinates, this transformation can be

represented in matrix form.

X

] [F o0 o0]%| [Foo
fyl=lo £ o o|”|=|o r of1j0]” (2.1.2)
z| lo o1 0|% |oo 1 z
1 1
Then,
fx X F0OO
x=PX with x=|fy|, X=|Y|and P=||0 f 0 0](2.1.3)
z i 0010

where the P matrix is entitled as the camera projection matrix.

2.1.1.2 Updating the model to include origin shifts

Basic pinhole camera model assumes the center of the image
plane as the origin. However, in general, the lower left corner is
utilized as the image origin. The mapping for this case can be

shown as

X v 2] > Xfpe Mfep] (214

and in matrix form



X+p,z f 0 p, O X f 0 p, ))f
fr+p,z|=l0 f p, o|”|=|0 £ p, [110] | (2.1.5)
z oo 1 0|%] |oo 1
1 1
x =K[I'| 0]Xc (2.1.6)

where the K matrix is denoted as the camera calibration matrix.
This matrix is the most important parameter in 3-D reconstruction
problems and if it is known beforehand, the frames are referred as

“calibrated”, otherwise as “uncalibrated”.

The 3-D coordinates are denoted by Xc¢ to notify that they are
measured with respect to a coordinate system that is embedded
to the camera coordinate system. The next section presents the
change in the camera projection matrix, when a different

coordinate system is used.

2.1.1.3 Updating the model to include coordinate system

changes

In the current projection matrix, it is assumed that the 3D
coordinates are measured with respect to the camera coordinate
system. When the 3D coordinates are measured with respect to
another coordinate system, the projection matrix has to be

updated accordingly.



e R.t
- O Y
camera coordinate | -
system (CCS) world coordinate
X system (WCS)

Figure 2.3: Transformation between world and camera coordinate systems

In Figure 2.3, the coordinate system, which is used to measure
the 3D points, is called as the world coordinate system (WCS)
whereas the other one as the camera coordinate system (CCS).
Denoting the rotation and translation between the two coordinate
systems with R and t, the relation between a coordinate that is

measured with CCS and WCS is written as,
Xeam = R(X - C) with t = —RC (2.1.6)
Hence, (2.1.6) is updated to,
X =K[[|0Xeam 2 x=K[I[|OJR | t)X > x =K[R | t]X (2.1.7)
and hence

x =PX with P =K[R | t] (2.1.8)



The parameters that are contained in the K matrix are entitled as
intrinsic parameters, while the rotation matrix and translation
vector are denoted as the exterior parameters of a camera. The
estimation of these parameters is termed as interior calibration

and exterior calibration, respectively.

2.1.1.4 Updating the model to pixel units

The derived camera projection matrix ignores the fact that a non-
isotropic scaling in x and y-direction might occur. This disorder
could occur in today’s CCD cameras, when the pixel manufacturing
results in non-square pixels. In order to avoid introducing unequal
scale factors in each direction the camera projection matrix is

multiplied by

diag(myx, my, 1) (2.1.9)

where my and my are the number of pixels per unit distance in x

and y directions. The calibration matrix becomes

o, 0 X,
K=|0 ¢« VY, (2.1.10)
0O 0 1

o, and ¢, are the focal lengths in x- and y-directions and (Xo,Yo)

is the principal point in terms of pixel dimensions.
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2.1.1.5 Updating the model to include skew

The skew parameter in the camera calibration matrix is due to the
tilt of the pixels. When the pixels are not manufactured to have a
90-degree angle, the skew is non-zero. In today’s cameras, the
skew may be considered, as zero. However, for the former

cameras, this degradation has to be considered.

o =arctan(1/s)

[ e/
A

Figure 2.4: Skew in pixels

The final camera calibration with skew parameter is obtained as

ay S X,
K=0 a v, (2.1.11)
0 0 1

2.1.1.6 Final words

When a camera has a calibration matrix of the form, as in
(2.1.11), it is called as finite projective camera. It has 11 degrees
of freedom (5 internal and 6 external parameters), as a 3x4
homogeneous matrix. The camera center can be obtained as the

right null vector of the projection matrix.
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2.1.2 Radial distortion

The imaging operation is assumed to be perfectly linear up to this
point. However, due to a phenomenon, called lens distortion, the
process is in fact nonlinear. The degree of lens distortion increases
as the focal length decreases. In Figure 2.6, a typical example for

lens distortion is presented.

radial distortion inear image

correction

Figure 2.5 Radial distortion [1]: Left image represents the image before
correction and right image is the corrected linear image.

The lens of the camera projects the points in the scene
nonlinearly, according to their distance from the origin of the

image plane, thus, this distortion is called as radial lens distortion.

Figure 2.6: Radial distortion example [1]: Notice the distortion in the linear

lines in the left image. Right image is the corrected one; lines are straight in

this image.
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A solution to this problem is to apply a nonlinear transformation to
the image pixels in order to remove the effects of distortion.
However, it is crucial to correct this distortion in the right place.
The distortion takes place in the projection of world coordinates

onto the image plane before the application of calibration matrix.

{Xﬂ = KL(PIT 1 0K, (2.1.12)

d

2.1.2.1 Radial Distortion parameters

As stated before, the radial distortion occurs according to the
radial distance of a pixel to the optical center. This distortion
should be compensated for in some of the applications, such as
reconstruction problems. The un-distortion function is modeled as
a Taylor series expansion of the radial distance, since it depends

on this value.
L(r) =l + Kir + K,r* +..... (2.1.13)

where r=(x-x.)>+(y-y.)* and (x.,y.) being the optical

center.

X

cap

y cap

Xc + L(r)(x - Xx¢)

(2.1.14)
Ye + LAY -Ye)

In the above equation, x and y are the measured pixel coordinates

and x_, and y_, are the corrected pixel coordinates. L(r) function

13



is only defined for the positive values of r and L(0) = 1. The
parameters of the radial distortion are also considered among the
internal parameters of a camera. The estimation of these
parameters is accomplished by minimizing a cost function, which
measures the deviation of the model from a linear counterpart. In
most of the systems, it is sufficient to estimate only the first two
values of the expansion and furthermore adding more parameters
to the un-distortion operation is avoided, in order not to cause

numerical problems.

2.1.3 Camera Calibration

Camera calibration is the process of obtaining camera intrinsic
parameters [1,2]. It is one of the most important steps in 3D
computer vision for the extraction of 3D information from the
captured scene. Structure and motion problems require a high
level of accuracy of the camera matrix due to the nonlinearity of
the problem of 3-D scene reconstruction. Moreover, without an
accurate camera matrix, most of the algorithms are expected to
fail to converge or converge to a physically meaningless solution.
This important problem has been studied extensively by the
researchers over the years [2-9]. Taxonomy of the methods can
be proposed roughly in 4 categories, according to the dimension of

the utilized calibration pattern [8]:
e (Calibration with 3-D patterns
e (Calibration with 2-D patterns
e Calibration with 1-D patterns

e Calibration with 0-D patterns (self calibration)

14



2.1.3.1 Calibration with 3-D patterns:

In this approach, camera calibration is performed by using a 3D
pattern (see Figure 2.7), whose structure is known with a very

high precision in 3-D space.

Figure 2.7: A 3D calibration pattern [11]

For example, the calibration procedure explained in [2] uses a 3D
calibration pattern and it has been shown that, the calibration can
be performed very efficiently [8]. Another example of this
approach is the famous paper, by Tsai [4]. Tsai’'s method involves
a 2D plane undergoing a precisely known translation, which also
results with an information for the 3™ dimension. Although, the
results of the Tsai's method are quite precise, it is a difficult

procedure to achieve in practice.

2.1.3.2 Calibration with 2-D patterns:

The methods in this part involve observing a planar pattern (see
Figure 2.8) from a limited number of views [6, 9]. The motion of

the plane is unspecified, in contrast to the Tsai’s technique [4],

15



and the required calibration pattern can be prepared by anyone

easily and the results are quite acceptable.

Figure 2.8: 2D Calibration Pattern [6]

In Zhang’'s method [6], a coplanar calibration pattern is captured
a few times with different orientations by moving either the
camera or the model plane. The world coordinate system is
assumed to be aligned with the model plane, i.e. calibration
pattern is on z = 0 plane and the x- and y-axes are parallel to the
pattern features. The feature points are automatically detected
from the captured images. As in [4], only this information is used

in order to extract intrinsic, extrinsic and distortion parameters of

the camera.

The estimation of the unknown calibration parameters in principle
is quite similar to the method by Tsai [4]. The major difference is
the absence of strict motion requirement for the camera to gather
some depth information. The assumption of coinciding the z=0

plane with the calibration pattern simplifies the formulation of the

16



procedure. For more details of Zhang’'s method, the readers

should refer to Appendix A.

2.1.3.3 Calibration with 1-D patterns:

Calibration pattern by using 1-D objects (see Figure 2.9) has not
been studied extensively in comparison to the other classes of
calibration.

_ | a—— .
Figure 2.9: 1D calibration pattern [8]

The method in [8] involves observing a linear pattern that is
moved around a fixed point. This method is especially important,
when multiple cameras are to be calibrated, where the calibration

objects are required to be observed simultaneously [8].

2.1.3.4 Calibration with 0-D patterns (Self Calibration):

In self-calibration, no calibration pattern is used and therefore can
be considered as a 0-D approach, since it only requires point
matches between different views [1, 2, 3, 5, 6]. The rigidity of the

scene [2] is used to compute the internal parameters of the

17



camera and if the images are captured by the same camera with
constant internal parameters, three images are enough to
compute the camera internal and external parameters, which are

used to compute 3D structure of the scene [1, 3].

In self-calibration problem, the only available data are the images
captured from various locations and orientations to estimate the
camera intrinsic parameters. There are many different methods
for self-calibration. As pioneers, Maybank and Faugeras [14]
proposed a method, in which the nonlinear quadratic equations,
called as Kruppa equations, are constructed by using Fundamental
matrices and unknown camera matrices. After this pioneering
work, these equations are attempted to be solved in different
ways [14, 15, 16, 18, 19]. In another type of self-calibration
method [22, 23], the camera intrinsic parameters are obtained by
using the relation between the virtual conic and the camera
intrinsic parameters. These methods later update the projective
reconstruction to a metric reconstruction. In a marginally recent
method by Pollefeys [24], calibration is performed in a stratified
way. First of all, a projective reconstruction of the scene is formed
and then, this is updated to affine by using the position of the
plane of the virtual conic determined by solving a number of
constraints [25]. Finally, this reconstruction is updated to metric
by using the estimated camera intrinsic parameters, determined

by solving the general camera self-calibration equations.

2.2 Epipolar Geometry and the Fundamental matrix

Epipolar geometry is the geometry of two views of a scene

captured from different locations or orientations. It depends on
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the camera intrinsic parameters, as well as the relative rotation
and translation of these views. It is independent of the scene
structure and can be expressed with a 3x3 matrix, denoted as
Fundamental matrix. Since the Fundamental matrix encapsulates
both the intrinsic and the extrinsic relations, it can be used to
obtain a projective reconstruction of the scene. If the intrinsic
parameters of the cameras are known, fundamental matrices are
enough to complete a metric reconstruction of the scene. In fact,
for the calibrated camera case, fundamental matrices may be
further reduced to a normalized form, which is called as Essential

matrix [27].

In this section, the relationship between two perspective views of
a scene is to be explained. The concepts, such as epipole, epipolar
line and epipolar constraint are introduced to the reader and the
algebraic representation of these geometric concepts -
Fundamental matrix - will be derived as well a brief explanation of

its properties.

2.2.1 Epipolar geometry

Epipolar geometry is the study of two perspective views by the
help of projective geometry tools. It investigates the relations and
constraints that are imposed on certain geometric elements of the

structure formed by camera locations and orientations.

In Figure 2.10, the plane formed by the two camera centers and
the 3D point is called as epipolar plane. For different 3D points,

there exist various epipolar planes. However, they all pass from
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the line formed by two camera centers, C and C’, called the
baseline. The intersections of the baseline with the image planes
are defined as epipolar points (or epipoles). These points are the

projections of the camera centers onto the other image plane.

X

Epipolar Plane

Figure 2.10: Epipolar Geometry: C and C’ are camera centers. X is any 3D

point and x, x” are its projections on different cameras

The location of the epipole depends both on the extrinsic and
intrinsic parameters of the cameras. Therefore, changing the
location and orientation of the image planes also relocates the

epipole.

An epipolar line is the intersection of an epipolar plane with the
image plane. Since all epipolar planes contain the baseline, all

epipolar lines pass from the epipole.
As it can be observed from Figure 2.11, it is not possible to

determine the exact location of the 3D point given only an image

of the point in one image plane and the camera centers. In fact,
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only the line that contains that 3D point can be obtained, since no
information about the depth of the point exists. However, for
calibrated cameras, the position of the correspondent point in the
second image is constrained to a line by the help of epipolar

geometry.

epipolar line for x

Figure 2.11: Back-projected point ambiguity: For a pair of calibrated cameras

(C and C’' known), knowing only x will not be sufficient to find the 3D point X.

Since all epipolar lines pass from the epipole, given two epipolar
lines, the location of the epipole can be computed easily by a
cross product. Examples for different camera configurations can

be seen in Figure 2.12 and Figure 2.13.

_ _ Eﬁyﬁ-&m\,ﬁ-&\-\ﬁ\} S Ep———

o 7%

Figure 2.12: Parallel camera case [1]
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5

Figure 2.13: Converging camera case [1]

2.2.2 Fundamental matrix

The epipolar geometry describes the relation between two
perspective images and Fundamental matrix is the algebraic
relation of this geometry. Fundamental matrix is used to represent
a geometric mapping between a point and a line in a stereo image

pair. It encapsulates camera intrinsic and extrinsic information.

It is observed in the previous section that for a given point in the
first image, there exists a line, /I, which contains the match of the
first point. This line is in fact the projection of the ray in 3-space
that emits outward from the camera center to the selected point
X.

X = (2.2.1)

This mapping can be represented by a 3x3 matrix (which is in fact

the Fundamental matrix and the derivation of this matrix is given
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in the next sections.) and this matrix is a projective mapping of a
point to a line.

2.2.2.1 Geometric derivation

Let the transformation of a point x in the first image to the second

image be performed by using a plane.

~_ >

T
x /0
o
C /

Figure 2.14: Transformation via a plane.

This transformation can be achieved by using any plane and it is
called a homographic transformation, H [1]. Therefore, the
homographic correspondence of x in the second image x' can be

obtained as,

X'=H x (2.2.2)
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The point X' has to be on the epipolar line that contains the
correct match of the point x, since the ray which passes through
x and the first camera center is not disturbed. Hence, the

epipolar line equation can be obtained as,

I'= exX'= e H.x = Fx where F = [e'|.H (2.2.3)

X T

F is the fundamental matrix and []X expression is the cross

product in the matrix form which is defined for an arbitrary vector

0O -c b
g=la b c[ asgl,=| ¢ 0 -al.
-b a 0

It is observed from this derivation that there exists an equivalent
class of fundamental matrices that can be used to represent the

same setting of cameras. Furthermore, since [e'], term has rank

X

2, the fundamental matrix is also of rank 2. This is meaningful,
since the fundamental matrix represents a mapping from a point
(2D) to a line (1D), thus should have rank 2.

2.2.2.2 Algebraic Derivation

The expression of the fundamental matrix in terms of two

projection matrices P and P’ is first derived by [26].
The equation for the back-projected ray can be given as:

X(A) = P*x + AC (2.2.4)
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where A is any positive real number, C is the first camera center
and P* is the pseudo inverse of the first projection matrix to give

the relation P*P =1. Since PC =0, one gets

PX (1) = x (2.2.5)

For any given A, X (1) corresponds to a 3-D point on this ray.

Therefore, the projection of this 3-D point onto the second image

plane is given as,

X'=PX(A) = P'P*x + AP'C = P'P*x + €' (2.2.6)

Finally, the cross product of this point with the epipole will yield

the epipolar line equation.

exx'=ex(P'P*x + Ae') = [e'].P'P*x = Fx (2.2.7)

Finally, one reaches the following relation for F :

F =le'], P P* (2.2.8)

2.2.2.3 Epipolar Constraint

Since the fundamental matrix maps a point in the first image to a
line in the second image, the correct match of this point should be

on this line. This relation can be expressed as,
I'= Fx (2.2.9)
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I'"x'=x"1'"s x"Fx=0 (2.2.10)

This expression is called as the epipolar constraint and it is a quite
important equality, since it enables estimation of the fundamental
matrix without any necessity for the camera internal or external
parameters. There exist many algorithms which only use point
correspondences to estimate the fundamental matrix [1,2]. Once
the fundamental matrix is computed, it is possible to compute the

camera calibration matrix and the extrinsic parameters.

2.2.2.4 Properties of the Fundamental matrix

Fundamental matrix, as explained above, is a projective mapping
from a point to a line (i.e. F is a correlation). Hence, it maps the
elements of two-dimensional space to the elements of one-
dimensional space. Therefore, it is of rank 2. This result can also
be observed from the fact that if two lines are corresponding
epipolar lines, then any point on the first line should be mapped to
the second line for which there is no inverse mapping and hence,

F is not of full rank.

It is observed that every epipolar line mapped by the fundamental
matrix passes through the epipoles. Therefore, it is not surprising
to find the positions of the epipoles at the right and left null
spaces of the fundamental matrix. For a brief summary of the
properties of the fundamental matrix, one should refer to Table
2.1
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Table 2.1: Properties of the fundamental matrix

. F is a rank-2 homogeneous matrix with 7 degrees of
freedom.

. Epipolar constraint: If x and x’ are corresponding image
points then x'" Fx =0

. Epipolar lines:
o [I'=Fx is the epipolar line corresponding to x
o | =FT"x'is the epipolar line corresponding to x’
. Epipoles:
o Fe=0
o F'e'=0

. Formulation of F:
o with projection matrices: F =[e'| P'P* where P*
is the pseudo-inverse of P
o transformation via a plane: F =[e'| H, where

H,, is any homographic transformation

2.2.3 Essential Matrix

Essential matrix is the normalized version of the fundamental
matrix, which is introduced to the literature by Longuet-Higgins
[27]. It is also sometimes denoted as normalized fundamental
matrix and includes information only about the rotation and the
translation of the image planes. It is independent of the camera

calibration parameters and hence, it is denoted as normalized.

Given two projections of a 3D point X, as x =PX and x'=P'X,
the normalized image coordinates can be easily found as

Xcap = K71X and chapz K'_l X'. Xcap and chap are |ndependent Of

their respective calibration matrices and the new projection

matrices K'P and K''P' are called normalized projection

27



matrices. The fundamental matrix between the normalized

coordinates are called as the essential matrix and it is equal to

[1],

E=txR (2.2.11)

\

Figure 2.15: Normalized image coordinate system

The epipolar constraint between the image coordinates and the
fundamental matrix exists between the essential matrix and the

normalized image coordinates, as well:

X.TEx_ =0 (2.2.12)

The relationship between the fundamental matrix and the

essential matrix also exists:

E=KTFK (2.2.13)

Since the parameters of the calibration matrices are excluded,

essential matrix has only 5 degrees of freedom: rotation and
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translation has each three degrees of freedom, whereas the

overall scale ambiguity decreases the freedom by one.
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CHAPTER 3

3D SCENE RECONSTRUCTION FROM TWO-
VIEWS

This chapter presents a scene reconstruction algorithm at sparse
points from two calibrated views. Sparseness is meant in the
sense that the reconstructed scene does not contain the depth
information for all the pixels of an image, but only a small subset
of them can be estimated. On the other hand, calibrated term
denotes the availability of the internal parameters of the recording

cameras, a priori.

The chapter is organized as 6 sections. The first one presents the
outline of a typical 3-D reconstruction algorithm and following four
sections gives some detailed information about the main blocks of
this algorithm. Finally, the simulation results are presented in the

last section to asses the performance of this algorithm.

3.1 Outline of the reconstruction method

Although, there might be different solutions to the 3-D scene

reconstruction problem, the two-view reconstruction algorithm,
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which is utilized in this thesis, can be summarized in 4 main steps

(see Figure 3.1):

= Finding a set of putative correspondence pairs

» Estimating the fundamental matrix between these views

= Computing the pose of the views with respect to each other
and calculating the camera matrices of the views

= For each pair of correspondence, determining a point in 3-D

space that project to these points.

In order to estimate the relative geometry between two images, it
is necessary to find some point matches between these views. The
first step of the reconstruction algorithm is therefore the
estimation of a set of putative correspondences. During the
estimation of correspondences, some differentiable features of the
images should be obtained. The computation of the salient
features and the following matching processes are explained in
Section 3.2.

Given a set of correspondences, it is now possible to estimate the
geometric relation between these two images by using the
epipolar constraint. Given at least eight correspondences, it is
possible to estimate the fundamental matrix in a linear manner. If
more than eight correspondences are present, then the solution
can be determined by any least squares method. The estimation,
however, is not a straightforward process, in case of a set of
correspondences containing outliers. In such a situation, a robust
method is required. Section 3.3 discusses the estimation of the

fundamental matrix in a robust manner.
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Once the Fundamental matrix is estimated, Essential matrix is
calculated as a result of basic matrix operations from the available
calibration information. The computation of the projection
matrices, however, requires rotation and translation parameters
between the two views. Therefore, the decomposition of the
Essential matrix into rotation and translation parameters is

necessary. This process is explained in Section 3.4.

Finally, once a set of correspondences and the projection matrices
of the views are determined, only the estimation of the positions
of the object points remains. This process is usually denoted as
triangulation. Some extra constraints should be considered in the
estimation of 3-space points, such as their invariance to certain
transformations and their projection errors. Triangulation is
another important step, since the final output of the system is
obtained at this stage. In Section 3.5, five different triangulation

methods are explained and lastly, an optimal one is introduced.

General outline of the reconstruction algorithm is given in Figure
3.1.
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Figure 3.1: Outline of the reconstruction method
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3.2 Finding correspondence pairs

Every image of a scene contains abundant information for the
problem of estimating the relative geometry between these
frames. Therefore, it is rational to reduce the processed
information by using the most distinct properties of the images for
estimation. For this purpose, features, salient primitives of
images, are extracted. Although, many other interest points can
be selected, the usual approach is to use corners on the images,
as salient primitives. The two-dimensional location of a corner is
called as a feature point, and the 3-D position of such a corner is

termed as an object point.

A correspondence pair is a pair of feature points from different
images to which an object point is projected. The correspondence
estimation problem is to find the location of a given pixel in a
different image. In most of the cases, the only input is the
intensity map of the image and from this map, one would like to
find the position of the searched pixel. This objective is not a
trivial operation, since the transformation that a pixel might
undergo is quite diverse. Some of these transformations are
rotation, translation, scale changes, affine transformation,

intensity changes due to illumination and the camera variations.

It is observed in Section 2.2.2 that from a set of correspondence
pairs, it is possible to estimate the fundamental matrix and hence
the geometric relations between the inspected image pair.
Therefore, correspondence estimation is a crucial step in scene

reconstruction problems. In order to achieve this goal, one should
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first detect certain features from the frames at hand. In the next
section, this topic is elaborated, while the following section

discusses correspondence estimation problem.

3.2.1 Feature point detection

Feature points are discernable, salient elements of an image such
that it is possible to find a match of the feature in another image
of the same scene. This definition simply states that the feature

points should be traceable.

There are many approaches that try to detect feature points in
different ways [13, 42, 43, 49, 50, 52]. The method by Harris and
Stephens [13], for example, depends on image gradient
evaluation. This method is insensitive to illumination changes and
translation differences. It is one of the most widely used feature
extractor, which performs quite well for small camera movement,
where captured images do not change in a large extent.
Mikolajczyk, et al. [42], on the other hand, present a more
complex feature detector, whose features are insensitive to affine
transformations, including scale changes. Their method obtains
invariant feature points under arbitrary moving conditions for
various scales. However, this method has a quite high
computation requirement and it is unnecessary to utilize such an
approach for an input set from a video sequence which is not very

arbitrary.

It has been shown that [43] Harris corner detector finds feature

points in image sequences more consistently than many other
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feature detectors. Therefore, in this thesis a modified version of
the Harris corner detector with a subpixel resolution has been

used.

3.2.1.1 Algorithm Overview:

Harris corner detector examines the gradients of the image
intensity values and it aims to select the features by choosing
points that has strong intensity changes in both x- and y-
directions. In this way, the method eliminates the problem of
selecting edge pixels that are not suited for tracking and matching
tasks due to their tendency for giving similar matching scores with

the remaining pixels in an edge (see Figure 3.2).

Figure 3.2: Harris corner detector does not prefer the feature in the left image.

However, due to its high gradient value, the right one will be chosen

An approximation to the intensity dissimilarity between an image

patch and a slightly shifted patch can be represented as [13]:

D(Ax, Ay) {iﬂM[Ax Ayl with M= | EX}[IX 1, JX(x, y)dxdy

y

(3.2.1)
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where I, and I, refer to the intensity derivatives in x- and y-

directions and w(x,y) is a smoothing operator.

The computation of M matrix for discrete valued images should be

obtained via summation and M matrix will become:

I
R (3.2.2)
I, }

where .f_ represents the smoothed image intensity gradients.

It is desired to have large eigenvalue terms for the M matrix, since
it gives a measure of the intensity change around the considered
pixel. If both of the eigenvalues are large, then this situation
should indicate a peak shaped change. In order to ensure large
eigenvalues without calculating them explicitly, Harris proposed to

use a measure of the form,
R = det(C) — k * trace*(C) (3.2.3)

This measure is called as the Harris cornerness measure [13]. The
feature points are selected at those pixels which give high

cornerness values.

Once the corner pixels are detected by the Harris corner detector,
a subpixel resolution corner is determined by fitting a bi-quadric
polynomial to the cornerness surface in a window. Details of bi-
quadric polynomial fitting are presented in Appendix B. In this

implementation, the value of k has been taken as 0.04 (a
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suggestion also made by Harris [13]) to provide preference
against high contrast pixel step edges. The feature point

extraction algorithm is summarized below.

Algorithm 3.2.1: Feature point extraction

Compute the image gradients in the x and y directions

1

2. Apply an NxN Gaussian filter to the image gradients.

3. Compute the M matrix and the R measure for every pixel

4. By sliding a window of NxN, find the points that are local
maxima and have R values greater than a threshold

5. Fit a bi-quadric polynomial to the R surface in the NxN
neighborhood of selected corners and compute the
coordinates that give maximum cornerness value (R) from the

fitted polynomial.

3.2.1.2 Conclusion

The presented algorithm for feature extraction is tested for the
gain in the error measure. It is observed from the experiments
performed (Table 3.2) that for a relatively minor computational
load, subpixel accurate feature-detection increases the
performance considerably. Moreover, during these experiments, it
is observed that if the support rectangle size (N) of the fit is
chosen different from the size of the Gaussian filter, then more
than one local maximum might be obtained within the support.
Such a situation should surely disrupt the detection of the true
maxima due to the inferior approximation of the fit. Therefore, it
is recommended to use same sized filters and windows throughout

the process.
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3.2.2 Finding putative matches

Once the salient features for the two images are extracted, one
should use a procedure for finding the correspondence of a feature
in the second image. This problem is denoted as the matching
(association) problem. There are many proposed algorithms for
the solution of this problem. The simplest method is the
correlation-based matching [44]. In this method, the features are
matched according to their correlation score with each other in a
predefined pixel neighborhood. Although, this method might be
used for images with some small disparity, it is not very suitable
for general views. In order to improve this method, imposing
some extra constraints on such candidate matches have been
proposed [36, 45, 46]. Neighborhood constraint is one of such
limitations to minimize erroneous matches. In this type of
matching, an extra score is calculated for the goodness of the
match by considering the neighbor match states and through a
relaxation procedure, the correspondences are established. These
methods are, in fact, quite successful for small or medium
baseline settings [44]. In this thesis work, the aim is to
reconstruct a scene from video frames and thus, the level of
success and complexity of the neighborhood-based methods are
quite sufficient. Therefore, this type of a matching algorithm has

been selected for the implementation.

3.2.2.1 Matching through correlation

Given a feature point in the first image, a set of candidate

matches is formed by using a normalized cross correlation

39



measure. The operation is performed in a search area that
restricts the distance of a pixel that may traverse. This is sensible
due to the small baseline assumption. The correlation window is

usually selected as a square window of size NxN (see Figure 3.3)

x0 x1 x0
,  correlation I search radius
' patch .
yor---1 -/ YO -4
y1
image 0 image 1

Figure 3.3: Correlation operation: Correlation patch and the search radius

Normalized cross correlation (NCC) is defined as [1]

ZZ[IO(XO +1, Yo +j)_I0(Xoryo)II1(X1 +i Y +j)_I1(X1IY1)]

(2n+17 o’ (L)x o*(L,)

NCC (p,, B,) = (3.2.4)

1 n n ) . '
m Z ka(x +i,y +J) is the average
i=—n j=-n

where I,(x,y)=
intensity value at point (x,y) of I,,k=0,1 and o(Il,) is the
standard deviation of the image I, in the neighborhood

(2n +1)x(2n +1) of (x,y), which is defined by:

(L (X +i,y + )= L(x,y))

- Gn iy (3.2.5)

2.

o(l,) = =)

n n
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The measure in (3.2.5) ranges from -1 (for the two
correspondences totally "“mismatch”) till 1 (for the two
correspondences exactly the same). Utilization of only NCC as a
matching constraint does not yield good results (See Figure 3.4,
Figure 3.5, and Table 3.1). From Table 3.1, it can easily be
observed that for surfaces that contain repetitive textures, NCC
might return high values for the geometrically incorrect points.
Therefore, another mechanism is necessary in order to

disambiguate matches.

Figure 3.5: Details for the local regions around the marked pixels in Figure
3.4. Upper regions are taken from the first image and lower regions are taken
from the second image. Note the similarities between the patches at the upper

and lower rows for different columns.
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Table 3.1: NCC scores for all possible combinations of the image
patches.

0.8518 | 0.4412 | -0.0284 | -0.1795 | -0.1907 | 0.5583 | 0.5011 | 0.5704
0.2467 | 0.8817 | -0.2159 | 0.0868 | 0.0997 | 0.2214 | 0.2348 | 0.2560
0.0048 | -0.2532 | 0.9446 | 0.0570 | 0.4038 | 0.2000 | -0.0198 | 0.0188
-0.2527 | 0.0747 | -0.0120 | 0.7930 | 0.7012 | -0.2370 | -0.2892 | -0.3637
-0.2090 | 0.0459 | 0.4001 | 0.2350 | 0.7642 | -0.1993 | -0.2322 | -0.2122
0.5947 | 0.2872 | 0.1879 | -0.1801 | -0.2308 | 0.9645 | 0.7482 | 0.7749
0.7252 | 0.3607 | 0.0121 | -0.2000 | -0.2280 | 0.7920 | 0.9228 | 0.9010
0.7343 | 0.3389 | 0.0378 | -0.2996 | -0.2591 | 0.7516 | 0.8488 | 0.9554

In the above table, columns are the image patches taken from the
first image (first row of Figure 3.5) and rows are the image
patches taken from the second image (second row of Figure 3.5).
Notice that for some matches NCC still gives “good results” for
wrong matches (good results: light shaded matches at the off-

diagonals).

3.2.2.2 Disambiguating matches

A point in one image might be matched to more than one point in
the other image, while yielding high correlation measures (see

Table 3.1). Such a collection is called as candidate match set.

There are a number of methods proposed to solve these
uncertainty problems [45, 46, 36]. The procedure that is preferred
in this system uses the neighborhood constraint [36] together
with a relaxation process. The inspiration of the algorithm is its
allowance of the candidate matches to structure themselves by

propagating some constraints throughout the set, such as
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permanence and uniqueness, by using the neighborhood

constraint.

3.2.2.2.1 Strength of a candidate match

Let there exist a candidate match (m,;, m,;) where m,; is a point
in the first image and m,; is a point in the second image.
Representing the neighbor set of m,, by N(m,;) and the neighbor
set of m,;, by N(m,;), which are formed by the feature points that
are located within a disc of radius R around m; and m,,,

respectively. The essence of the neighboring constraint is that if

the (my;, m,;) candidate match is a good match, then it is highly

probable to find more matches in the neighbor set of these two
points such that the position of these neighbors relative to the

original points m,, and m,; are similar. Conversely, if the
(my;,m,;) match is an inferior one, then one should expect to find

a small number of matches or even not any at all in the

neighborhood set.

The formal expression of this rationale is called as strength

measure and it is equal to

Ckl5(m1' m2'.n1k nZI)
SM(mli,mzj)=C,-j Z ir Jj! ’

m - (3.2.6)
e N(my) | eV 1+ dist(my;, my;; Ny, Ny))

where ¢, and c, are the normalized cross correlation scores
explained in the previous section and dist(m,,, m,;;n,.,n,) is the

average distance of the pairing which is calculated as,
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[d(my;, my;) +d(ny,ny)]

: (3.2.7)

d/st(ml,,mzj;nlk,nz,) =

with d(m, n) is the Euclidean distance between m and n. The final

term left is the gain of pairing,

e/« if (ny,n,)is acandidate

My, My Ny, Ny) = match and r<e, (3.2.8)
0 otherwise

where r is the relative distance of the pairing given as

_ |dist(my, n,) - d(m,, ny)

| (3.2.9)
d/St(mli, mzj; n1kI n2/)

and €&, is a threshold on the relative distance difference.

A= dimyis maj) dp=diny, ny)  dmng=d(my,nyk)  dimng = d( maj,ng))

dl+d2 dmﬂl_dmnz

DiStJWG = dist{ myj, maj; My n2|) =

2 DiStAVG

Figure 3.6: Strength measure equations
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The strength measure of (3.2.6) has some preferable properties to
worth mentioning. Firstly, the idea of finding more matches
around a good candidate match is included to the measure by the
summation term which effectively counts the neighbors. Secondly,
the weighting is carried out according to the relative distance term
(r). This selection is due to the second part of the assumption that
the position of the neighbor matches relative to the original points
to be similar. This approach, in fact, is justified by the premise
that an affine transformation can be used to approximate the
change between the neighborhoods of candidate matches, which
are considered in a small area. Another property of this weighting
is that it is a strictly monotonous function. This monotony makes
distant matches less effective on the overall measure, compared
to the close ones. The overall weighting function has also been
normalized according to its distance to the match. This
normalization has a similar influence on the measure, since being
monotonous for close matches effect the strength compared to the
distant matches more. Lastly, max expression helps to include
only the closest match of the neighbor set, if there is more than

one match.

image 1 image 2

Figure 3.7: Non-symmetricity problem of the strength measure [36]
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The overall measure has also an important disadvantage: it is not
symmetric. The strength value will be different for a candidate

match pair (my;,m,;) if more than one point in the N(m,;)

neighborhood gives the maximal values with the same point in the

N(m,;) set (see Figure 3.7).

This problem can be avoided easily with a slight modification in
the matching algorithm. For this end, before computing the

summation, if more than one point from the N(m,;) neighborhood

scores maximal value with the same point from the N(m,;)

neighborhood, only the point that results with larger point is
counted. In this way, when the order of the images is reversed,

the same strength measures will be calculated.

3.2.2.3 Relaxation procedure

The strength measures of all the candidate match pairs formed in
the correlation phase are calculated in the previous section. At this
step, establishing correspondences according to these strength
values should be the next aim. The relaxation method [34] is a
solution for this problem. In this approach, the best matches
throughout the whole set are selected and then, the remaining
points are matched within themselves. Clearly, this is an iterative
procedure. The formal expression for relaxation can be given as

follows,

While ( !convergence )

{

« Update matches by looking at the SM values
« Reduce the set of unmatched points
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Updating matches can be performed in a number of approaches.
One method is the winner-take-all, which is introduced by
Rosenfeld [47]. In this method, for two points to be declared as a
match, none of them should have a greater SM value with another
point. For every iteration of the relaxation, the matches, which are
selected as explained, are immediately stated as correct and due
to the uniqueness constraint, all the remaining strength measures
associated with the matched points, are removed from further
consideration. In the next iterations, this approach should result in
finding more matches that are not assigned or eliminated before.
This method works similar to a steepest descent procedure and
hence, it is relatively quite fast, but sometimes, as in all the

steepest descent approaches, it may stuck to a local minima.

On the other hand, a slightly modified version of this method is
more robust to the local minima problem. The name of the
method is some-winners-take-all [36]. In this method, not all of
the matches are stated as correct, but only the best « -percent of
them are selected. The “goodness” is decided by the use of two
tables. The first table is the list of all matches and their SM values
sorted in a decreasing order according to the SM values. The
second table is also a list of matches; but its second column is
formed by the ambiguity score of the matches. This second table
is also sorted according to its second column in a decreasing
order. The ambiguity of a match is defined as the difference of the

ratio of the highest two SM scores of it with 1 i.e.,

U,=1-S2 /5P (3.2.10)
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From these two tables, only the matches that are within the first
o -percent of both of the tables are selected. The rest of the
method is similar to the first one: SM values associated with the
matched points are extracted from the overall set and in the next
iteration new matches are found from the reduced set. Due to its
more robust structure, some-winners-take-all approach is adopted

into our system.

Algorithm 3.2.2: Correspondence estimation

1. Estimate the candidate match set for feature points in the
first and second image. For every feature point of the
first image, compute the NCC score with the feature points
in the second image within a disc of radius R and choose
the ones that give high scores over some threshold
(Equation 3.2.4).

2. Compute SM values for every candidate match according to
Equation 3.2.6

3. Relaxation
Until convergence

a. Compute sorted SM and ambiguity tables
Choose candidate matches that are present in the @& -
percent of both of the tables and mark them as
“correct”.

c. Remove the SM values associated with the selected
candidate matches

d. If no other candidates remain or the SM scores of the

best match in an iteration 1is below some threshold,

terminate the loop

3.2.2.4 Conclusion

Feature matching operation by using only the normalized cross
correlation (NCC) measure has been found out to be insufficient

for the repetitive textured regions (Table 3.1). For this reason, a
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neighbor-based matching measure together with NCC, called the
strength measure (SM), is included to the algorithm. The results

are improved to be satisfactory (see Figure 3.8).

G e o A ! .-__.__. L -. = q‘l _J I -_ -4 hy i el N e ‘_. y -. ik : |

Figure 3.8: Comparison of single NCC vs NCC+SM results. In the left image,
the results for using only the similarity measure can be observed. In the right
image NCC is used together with SM. Most of the outliers due to the repetitive

texture of the scene are eliminated.

3.3 Robust Computation of the fundamental matrix

As explained in the previous chapters, Fundamental matrix is an
algebraic relation that relates the geometry between two
perspective images of a scene. It is used to represent a geometric
mapping between a point and a line in a stereo image pair. This
relation must hold for all the correspondences of the image pair.
Therefore, this property might also be utilized as a consistency

measure for the computed correspondence pairs.

It is known that the fundamental matrix can be estimated from
the computed correspondences of the scene. In fact, from eight
given correspondences, it is possible to find a unique solution for F

defined up to a scale factor. This approach is denoted as the 8-
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Point Algorithm, which is introduced by Longuet-Higgins for the
computation of the essential matrix for the case of calibrated
cameras [27]. The method does not impose the rank 2 constraint,
and hence, it has been found out to be very sensitive to noise [28,
29, 21]. However, a clear advantage of this algorithm against
more complex algorithms is its linearity, hence its speed and ease
in implementation. On the other hand, Hartley [31] has shown
that after making a slight modification to this algorithm by
normalizing the correspondences, its performance increases
significantly and becomes comparable with the best iterative
methods. The modified version of the 8-point algorithm is called
as the normalized 8-point algorithm and in this thesis, this

algorithm is exploited.

3.3.1 8-Point Algorithm

The epipolar constraint
xTFx=0 (3.3.1)

can be reformulated to be a linear equation in terms of F

parameters.

u'f=0 (3.3.2)
where

-
u= [u1u21 Vil U, u\vy,,ViVy, Vo, Uy, vy 11]

(3.3.3)
f= [F111F121F13IF21IF221F23IF311F321F33]T
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ul u2
with x =|v, | and x'=|v, | representing a point match.
1 1

From all point matches, stacking these equations row by row, a
set of linear equations in the form of Af =0 is obtained, where fis
the column vector containing the elements of the fundamental
matrix and A is the equation matrix. The fundamental matrix is
defined up to a scale and therefore the magnitudes of the
elements in the f vector are not important. Hence, adding an

additional constraint ||f||=1 to avoid the trivial solution will not

change the problem.

For finding a unique solution to (3.3.3), at least eight point
correspondences are required. If more than eight matches are
utilized, then the system becomes over-determined. For an over-
determined system to have a non-zero solution, the rank of the A
matrix must be at most eight. However, in the existence of noise,
(i.e., for correspondences found from a real stereo pair) A matrix
might have a rank value of nine. In this case, it will be not
possible to find a non-zero solution for the Af =0 relation.
Instead, the solution to this problem will be the least-squares

solution of minimizing |Af| subject to the |f| =1 constraint. It is

known that the solution to this problem is the unit eigenvector,
corresponding to the smallest eigenvalue of A’A [35]. Instead of
finding the eigenvalues and eigenvectors of A’A, singular value
decomposition (SVD) can also be used (see [35] for more details
on SVD).
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Figure 3.9: Rank of the fundamental matrix [1]: Left image shows the epipolar
lines for a rank 3 fundamental matrix. Notice that the lines do not converge at a
single point. In the right image on the other hand, lines coincide at a single
point. Rank-2 constraint has been forced while obtaining this fundamental

matrix.

The fundamental matrix is a rank-2 homogeneous matrix and fail
to enforce this property to the solution might cause problems. If
this constraint is not enforced, the epipolar lines will not meet at a
single point and most of the algorithms should fail, since they
depend on this property of the Fundamental matrix (See Figure
3.9). The linear solution of the fundamental matrix does not force
this property and to correct this deficiency, one approach is to find
another Fundamental matrix that is nearest to the computed

solution. This problem is stated formally as,

Minimize the Frobenius Norm |F - F'| subject to rank(F') =2

(3.3.4)

The solution to (3.3.4), F’, is determined as:

If F =USV™ where S = diag(s,,s,,s;)ands, > s, > s,

(3.3.5)
Then F'=Udiag(s,,s,, 0V’
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The last part of the algorithm below is called as the constraint
enforcement, whereas the first part is the linear solution for the

fundamental matrix.

Algorithm 3.3.1: 8-Point Algorithm

’

Given n > 8 corresponding point pairs, Xi, ..., Xa, Xi, ., Xa

1. Form the rows of the A matrix from 8 point correspondences

as

.
u=[ uu,, v, U, uVv,, v\v,, vy, u,v,, 1]
2. Compute the SVD of the A matrix.

A=USVT 2> f = last column of V where diagonal elements
of S are in decreasing order.

3. Reshape the f matrix to its 3x3 form

4. Compute the SVD of F matrix and set the smallest element of
the S matrix to zero. Recalculate the F matrix from the

modified S.
If F=USV™ whereS =diag(s,,s,,s;)ands, >s, > s,
then F'=Udiag(s,,s,,0)V"

3.3.2 Normalized 8-Point algorithm

Although the algorithm presented in the previous section is very
simple to implement and it is linear, it is very sensitive to noise
[28, 29, 21]. In order to correct this problem, a simple
transformation of the utilized data has been shown to be quite
useful [31]. This version of the algorithm is usually denoted as the
normalized 8-point algorithm and its performance is shown to be
quite successful [31]. Apart from the normalization part, the rest

of the algorithm is same.
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The performed normalization is a translation and a scaling of each
image, so that the centroid of the reference points is shifted to the
origin of the new coordinates and the root-mean-square (RMS)

distance of the points from the origin is equal to /2.

Algorithm 3.3.2: Normalized 8-Point Algorithm

Given n > 8 corresponding point pairs, X1, ..., Xn, X1, ..., X3,

1. Normalization: Transform the image coordinates according

the )?,-=TX,- and )%',ZT'X'- where T and T’ are the

]

normalizing matrices consisting of a translation and

scaling
J2 var 0 —2m, var™
T = 0 J2vart —v2m, var™
0 0 1
where (my , m, ) is the mean of the image points and var is
the variance of the distances of the points to the
centroid

2. Compute the F matrix using the 8-point algorithm and the
transformed coordinates using Algorithm 3.3.1. Output is
the F’ matrix

3. Denormalization: Compute the F matrix for the denormalized

correspondences as, F = T'T F'T

3.3.3 Outlier rejection

In Section 3.2, it is explained how to find some putative point
correspondences. Although the results of the algorithm show that
many correspondences still can be obtained, there also exist many
outliers. Clearly, a reliable estimation of the fundamental matrix
can not be achieved by using all of these correspondences. Some

robust mechanism has to be used in order to get rid of the
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erroneous matches and estimate the fundamental matrix more

precisely.

There are many algorithms for estimating a model and the
supporting set that obeys this model in the presence of outliers
[32, 34, 48]. Random sample consensus (RANSAC) [32] is one of
the mostly used robust estimator and for reasons to become clear
in the next subsection; RANSAC is preferred for the scene

reconstruction algorithm in this thesis.

3.3.3.1 Random sample consensus (RANSAC)

The organization of the RANSAC is simple and potent. In this
method, some subsets of the data are selected randomly and the
model is estimated by only using this small subset, recursively.
The size of the random samples is usually selected as the smallest
sufficient number that is required to determine the model
parameters. The goodness of the model is determined by the full
data set. Usually, goodness measure is the number of data points
that are “consistent” with the model. The resulting best model is
saved and the recursion is finished, when the likelihood of finding
a better model becomes arbitrarily low, or a maximum number of

iteration is reached.

The strength of RANSAC results from the fact that selecting a
single random subset that is not contaminated by outliers is
sufficient to find a good solution. It is noted that RANSAC can
handle more than 50 % of outlier ratios depending on the

complexity of the model [33].

55



While using RANSAC during the estimation of the fundamental
matrix, an error measure is required to decide whether the points
are inliers or not. There are different error measures that can be

used, while one of them is being Sampson error [1]:

(mzrfF my; )2 _

Si = 2 2 T T
(lei)l + (lei)z + (F m2i)f + (F m2i)2

(3.3.6)

where (v)m representing the m* entry for a column vector v.

Sampson error is the first order approximation of the reprojection
error, which has a geometric interpretation, and therefore, it is
quite reasonable to use this measure. The computation of the
geometric error is quite complex and involves the estimation of
both the model and perfect projection points. Sampson error, on
the other hand, is a good approximation to it and it is easy to
implement. Due to these reasons, Sampson error is used during

the robust estimation of the fundamental matrix.

The selection of the random samples is also another crucial
matter. The samples should be selected randomly; however they
must not be close to each other. Such a situation will be useless,
since the estimated model will not represent the general structure
of the data. As a remedy to this problem, a regular random
selection approach, based on bucketizing, can be employed [36].
In this method, the data set is divided into a regular grid, like nxn,
and points are assigned to these buckets. In order to avoid
selecting close points, first, 8 different buckets are selected and

then one point is selected from each bucket (see Figure 3.10).
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Figure 3.10: Bucketizing [36]

Some of the buckets may have more points in themselves,
compared to other buckets. Therefore, their probability of
selection should be higher than other buckets for the points to
have equal probabilities to be selected. This can be realized in this

manner: for a total of k buckets, divide [0-1] unit segment into k

k
intervals such that the interval length is equal to the p,/Zp,
i=1

k
where p, is the number of data points in i"" bucket and Zp,. is the
i=1

total number of points. While selecting the bucket, a random
number generator is used to select a nhumber between [0-1] and
the bucket containing the selected number will be marked as
chosen (see Figure 3.11). For the implementation in this thesis,

the grid width is selected as n=8.
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Figure 3.11: Interval and bucket mapping [36]

Another important point to mention is the number of iterations
required for the RANSAC; in other words the major question is
“when should the iterations stop?”. The point of termination can

be calculated as follows:

The number of iterations, N, is chosen sufficiently high
to ensure with a probability, p, that at least one of the
random samples of s points is free from outliers. Suppose
e 1s the probability that any selected data point is an
outlier (thus, w=l-e is the probability that it is an

inlier). Then, N should be equal to:

log(1-(1-e)°) o

The overall algorithm for the robust computation of the

fundamental matrix can be summarized as follows:
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Algorithm 3.3.3: Robust computation of the Fundamental

Matrix

Repeat for N times,

1.

Select a random sample of 8 correspondences and compute the
fundamental matrix, F, Dby using the normalized 8-point
algorithm given in Algorithm 3.3.2.

Calculate the error e by using the Sampson error (Equation
3.3.6) for each putative match for the fundamental matrix
obtained e.

If they are below a threshold, then count them as inliers,
otherwise as outliers.

Choose F with the largest number of inliers, and reject
those pairs which yield e > t for this particular F.
Recalculate the number of iterations N using the Equation
3.3.7

If number of iterations is larger than N, terminate.
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Figure 3.12: Examples for RANSAC (a)BILTEN, (b) Lueven Castle, (c) Church:
Images on the left show the motion vectors before RANSAC and images on the
right show the motion vectors after RANSAC. It can be observed that RANSAC

rejects outliers with a good performance.

3.3.4 Nonlinear optimization of F parameters

In the previous sections, the robust estimation of fundamental
matrix is explained for a data, which is contaminated with outliers.
Such a robust estimation also provides a set of data points that
are consistent with the estimated model. The estimated
fundamental matrix is the result of a linear algorithm and hence,
the error due to the consistent data set (inliers) can be decreased
in a great extent by nonlinear optimization. The Sampson error,
given in Equation 3.3.6, is used once more as the error measure
to be consistent with the previous step. However, during
minimization, Levenberg-Marquardt (LM) algorithm [30, 35] is

employed. The minimization is performed over the whole set of
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inliers and the estimated fundamental matrix from the previous
step is considered as the initial point. The minimized cost is the

total Sampson error given as:

=25 (3.3.8)

where S, is calculated as given in (3.3.6)

A detailed explanation on Levenberg-Marquardt algorithm can be

found in Appendix C.

Table 3.2: Improvements by using subpixel accurate

correspondence values and a non-linear minimization algorithm.

Subpixel Accuracy Pixel Accuracy
After
Before LM After LM Before LM LM
Iteration number 1000 1000
Average Inlier
841 841
Number
Sampson Error 4.12865 0.82323 6.54395 0.92315
Sampson Error per
0.00491 0.00098 0.00778 0.00110
Inlier
Epipolar constraint
0.10213 0.04255 0.59159 0.10056
error power
Epipolar constraint
error power per 0.00012 0.00005 0.00070 0.00012
inlier

Table 3.2 shows the results of applying the LM algorithm. The
experiments are performed over 10 different image pairs and the

average number of inliers obtained by RANSAC after a constant
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number of 1000 iterations is 841. The procedure is repeated for
the coordinates both in pixel and subpixel resolution. Two different
error measures are calculated: Sampson error (Equation 3.3.6)
and the epipolar error (Equation 3.3.1). It can be easily observed
from the table that utilization of subpixel resolution coordinates
over that of pixel resolution decreases the error. Moreover, LM
improves the error performance for both of them. Therefore, in
this implementation, nonlinear minimization is applied with
subpixel resolution coordinates during the estimation of the

fundamental matrix.

3.3.5 Algorithm for robust Fundamental matrix

estimation from two images

The resulting algorithm for the automatic estimation of the
epipolar geometry between two image pairs by using RANSAC is

obtained as follows:

Algorithm 3.3.4: F matrix computation algorithm starting from a

pair of images

1. Find the interest points in each image
2. Compute a set of putative correspondences based on
correlation similarity and neighborhood constraints
3. Robustly estimate the fundamental matrix:
Repeat N times, where N is estimated according to
Equation3.3.7 at each iteration
a. Select a random sample of 8 correspondences and
compute the fundamental matrix F, using the
normalized 8-point algorithm given in Algorithm
3.3.2.
b. Calculate the error e by using the Sampson error
(Equation 3.3.6) for each putative match for the

fundamental matrix obtained e.
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c. If they are below a threshold count them as inliers,
otherwise as outliers.

d. Choose F with the 1largest number of inliers, and
reject those pairs which vyield e > t for this
particular F.

e. If number of iterations is larger than N, terminate.

4. Nonlinear Estimation: Recalculate the fundamental matrix
using all correspondences counted as inliers by minimizing
the cost function given in Equation 3.3.6 by using the

Levenberg-Marquardt algorithm.

epipole

Figure 3.13: Displacement vectors between correspondence pairs and the
estimated epipole of BILTEN image

3.4 Solving for Rotation and Translation

Two different views of a single rigid scene are related by the so-
called epipolar geometry, which is described by a 3x3 singular
matrix. If the intrinsic parameters of the images are known a
priori, the image coordinates can be transformed into normalized
image coordinates [1, 52], and the matrix is known as the

Essential matrix [27, 52]; otherwise, the matrix is denoted as the
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Fundamental matrix [1]. Remembering the relationship between

the fundamental matrix and the essential matrix [12]:

E = KTFK (3.4.1)

where K is the camera calibration matrix, the normalization for the
measured correspondences can be determined as:
me; =K'm (3.4.2)

T -1 90
mye=K™m and

where m and m’ are the real coordinates on the first and second

images and m., m'y are coordinates of the first and second

camera matrix projected by normalized camera model.

If the first camera coordinate frame is selected as the world
coordinate frame, the rotation matrix R and the translation vector
t both describe the transformation of the second camera
coordinate frame with respect to the first camera coordinate frame
(see Figure 3.14)

A

0
first camera

seconhd camera

Figure 3.14 : Relative camera positions
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Thus, any point M = [MX,My,MZ]T with respect to the first camera

coordinate frame is transformed to the point M'= [M'X,M'y,M‘Z]T

with respect to the second coordinate frame by using the relation
below:

M= RM +t (3.4.3)

Then, the points are projected onto the first and second image
planes by using the normalized camera model. Thus, the image

points become:

u Mx/Mz u' M'X/M'Z
me=|v|=|M /M, |, m.=|v'|=|m, /M| (3.4.4)
1 1 1 1

Combining (3.4.3) and (3.4.4), one should get,
M', m.=M,Rm, +t (3.4.5)
If [t| = O, one should obtain

Rm, +t° where t° -t (3.4.6)

N

M', . M,
m.=
el el

Therefore, the rotation matrix R can be calculated, if n
corresponding points (m,,m' ) are given. In addition, if the
translation vector t does not vanish, the translational direction,

represented by a unit vector t°, can also be estimated. Since only
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the direction of the translation vector can be determined, the
absolute 3D coordinates of the corresponding points cannot be
obtained. This phenomena is called “scaling ambiguity” [52] and it
means that only the scaled version of the scene can be
determined after R and t° are estimated. From (3.4.3), note that
M’, RM and t are coplanar. So, t x RM is perpendicular to M and

hence,

M'(t x RM) =0 where E=¢xR (3.4.7)

3.4.1 Linear Algorithm for determining R and t

In (3.4.7), it has been shown that E is the cross product of t and
R. By modifying this expression slightly, one can get the following

relation:
E=le, e, e]=|kfxr, kfxr, kfxr] (3.4.8)

where £ is a unit vector in the direction of t, k is the unknown

magnitude of t and r.’s are the column vectors of the rotation

matrix R. From (3.4.8), it can be shown that [52],
t Le,t Le, andt Le, (3.4.9)
Hence,

_ o eixe
e <]

(o 1Y

fori#j, i,j=1,2,3 & k* =0.5* (e +e3 +€e?)

(3.4.10)
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Finally, after some vector algebra, rotation matrix can be obtained
as [52]:

r :{%f(ezxe3)}f+%(ele) (3.4.11)

and similar derivations can be achieved for r, and r,. However,

this approach is known to be extremely susceptible to errors,

which makes it almost useless in a practical application.

3.4.2 Robust algorithm for determining R and t

It is known that E matrix is perpendicular to the t vector due to

(3.4.9). Hence, the following relation should hold:

ETt=0 (3.4.12)

However, due to the noise present in the estimation of the E

matrix, it is more realistic trying to find the solution for

A

E™t

A

min t=1 (3.4.13)

t

subject to

instead of trying to solve (3.4.12).

It is known that the solution of the optimization problem min|Ax|

subject to |x| =1 is the eigenvector associated with the smallest

eigenvalue [35]. Hence, the solution for t can be determined as

the unit eigenvector of E"E for smallest eigenvalue.
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The rotation matrix in the presence of noise can be obtained by

minimizing mRinHRT[— t.] —ETH subject to “R is a rotation matrix”.

Instead of performing a minimization, the solution can be found

using quaternion notation [52]. A matrix B is defined as,

0 (C,-D)

3
B = B’ B. h B =
2.B/8 where B =| , "\ b sc).

such that C=[-t.], and D =E’ (3.4.14)

Then, the eigenvector (g) associated with the minimum

eigenvalue of the B matrix is the optimal quaternion. Using this

quaternion, R can found as [52],

Qs +d; —G> —qs  2*(q:G, — Goq5)  2*(q.G5 +GoGs)
R=1|2%(q,9, +GsG;) G5 —-q; +G> — G5 2*(G,9; — Goq;)
2*(G,G5 —Goq,) 2*(9:G, +Goq:) G5 —G7 —q; +G;

where q:[qo q a4 CI3]T (3.4.15)

The linear algorithm, although theoretically correct, does not
always vyield correct estimates of rotation and translation due to
the noise in the E-matrix estimate. Therefore, the robust
algorithm is usually preferred in any scene reconstruction

algorithm.
3.5 Finding the location of 3D points

One of the most important stages in structure estimation is the
triangulation step, in which the position of a point in 3-D, is tried
to be estimated from point correspondences. This section

describes the methods for computing the position of a point in 3-D
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coordinates, given its projection in two views and the respective
camera projection matrices. It is assumed that the fundamental
matrix is estimated up to a good accuracy and there are errors in
the corresponding images of the points. Under these assumptions,
the back-projected rays should not meet at a single point in 3-
space in general and therefore, simple triangulation might not give
good results. It is therefore necessary to employ noise resistant
techniques to estimate the position of a point in 3-space. Apart
from noise, the calibration parameters of the camera are not
always available in the reconstruction step and in order to build up
the data necessary for the automatic calibration, projective (or
affine) invariant depth values are also necessary [1, 54]. Hence, it
is another important property of the triangulation method to be

projective (or affine, which ever the reconstruction is) invariant.

In the following sections, most common triangulation methods are
examined and compared. These methods can be classified into 4
major groups: midpoint method [56], linear methods [2], iterative
linear methods [55] and finally, polynomial triangulation method
[55].

3.5.1 Problem Definition:

It is assumed that the fundamental matrix (F) from which camera
matrices can be constructed, are known with great accuracy and

the computed matching points are assumed to be noisy.
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The epipolar relationship

x'T Fx =0 (3.5.1)

must be satisfied, if there is a point, X, in 3D space, such that
x=PX and x'=P' X . Since it is assumed that the measured
image points are noisy, back-projected rays will not intersect at a

point in 3-D space in general.

Denoting a triangulation method, which is used to compute a 3-D

point, by T, X is represented with

X=T(x,x',P,P") (3.5.2)

A method is said to be invariant under transformation H, if

T(x,x',P,P')=H'T(x,x',PH™,P'H™) (3.5.3)

It is desired to have a triangulation method that is invariant under
the appropriate class of transformations in which the
reconstruction is to be performed. For example, for the case of
projective reconstruction, it is not very suitable to minimize 3D
errors, since distance measures are not preserved in a projective
coordinate system. The solutions for such minimizations should be
different for the every projective reconstruction that is considered
[1]. Instead of dealing with this large set of different
reconstructions, it is more rational to minimize a geometric cost
function that is invariant to the desired level of transformations.

The reprojection error cost function:
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I'=d(x,X)* +d(x',X"')> subject to the constraint X7 Fx =0 (3.5.4)

In the following sub-sections, major triangulation methods in the
literature are described and lastly, a projective invariant method is

also presented.

3.5.2 Midpoint Method:

A popular approach for triangulation is selection of the midpoint of
the common perpendicular to the back-projected rays of the
matched points (see Figure 3.15) [56]. This method behaves
worst under projective and affine transformations, since
“perpendicularity” is not an affine and "“midpoint” is not a
projective concept [55]. Hence, it should be used only for the

Euclidean reconstruction problems.

Figure 3.15: Midpoint method
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The back-projection of the points to rays can be calculated from
the two points that are on the ray: camera center C and the point
P*x, where P" is the pseudo-inverse of the projection matrix P.

The pseudo-inverse is calculated as P* =P"(PP’)" for which

PP™ =1. The point P"x should be on the ray, since it projects to

the image point x. Then, joining these two points forms the ray:
X(A) =P x+ AC (3.5.5)

Once, two ray equations are obtained, the midpoint at which the

lines are closest to each other are taken as the solution.

3.5.3 Linear Triangulation Methods:

Linear triangulation method [1, 54] is the most common method

due to its ease in implementation. Consider the projection
equation m=PM where m=wu v 1) with (u,v) are the
observed point coordinates and w is the unknown scale factor. If
the i row of the projection matrix is denoted as p], the relation

m = PM can be written as,

wu = p/M
wv = pJM (3.5.6)
w=piM

and rearranging

(up; —p{)M =0

3.5.7
(vp! — )M = 0 (3:57)
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The corresponding pixel to m on the other image will result
another set of equations similar to (3.5.7). The problem now can

be stated as,

up; - p{

) vpl — pl

Find M such that AM =0 where A5 "> "2

ups;—p;

VI plg_plg
py u u'

with P=|pJ land m=w|v |, m=w'| V' (3.5.8)

p3 1 1

A non-zero solution to this problem can be found in various ways.

3.5.3.1 Linear-Eigen Method:

The solution to the " AM =0 problem” cannot be found exactly due
to the noise present in the A matrix and hence, some cost
function should be defined. In the Linear-Eigen method, M is

determined from the well-known |AM|=0 subject to |M|=1

optimization. The solution to this problem is the unit eigenvector

corresponding to the minimum eigenvalue of the A’ A matrix [35].

Although, this method is quite easy to implement, it is not suitable
for projective or affine reconstructions. This case can be observed
by applying a transformation H to the camera matrices such that
P and P' are transformed to PH™ and P'H™. In this case, A

becomes AH™ and a point M is then equivalent to a point HM in
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the sense that they will give the same errors (AM =e and
AHHM =e). However, the condition |[M|=1 is not invariant

under projective or affine transformations. Hence, linear-eigen

method is not projective or affine invariant in general.

3.5.3.2 Linear Least Squares Method:

Linear LS method solves the AM =0 problem by fixing the fourth
parameter of M vector to 1. In this approach, AM =0 relation is
transformed into a “4 equations, 3 unknowns” problem. A solution
to this over-determined problem can be obtained by using

pseudo-inverse or SVD [35].

This method assumes that the solution is not on the plane at
infinity by setting the fourth parameter to 1. This assumption
becomes a problem for the projective reconstruction, where points
can be on the plane at infinity. Apart from the points on the plane

at infinity, this method is also not suitable for the projective
reconstruction, since [x,y, z,1]" is not invariant under a projective
transformation H. On the other hand, since the affine
transformation does not change the plane at infinity, [x,y,z,1] is

invariant to affine transformations. Hence, the linear LS method is

affine invariant.

3.5.4 [Iterative Linear Triangulation Methods:

Linear triangulation methods minimize |AX| which do not have

any geometric meaning at all. Due to this fact, some inaccuracies

might occur in the results. By weighting the rows of the A matrix,
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however, a better solution can be obtained [55]. Iterative linear
methods, tries to find the solution by changing the weights of the
A matrix in (3.5.8) adaptively, so that the adapted A matrix gives

a measure of a geometric error function.

It can be shown that, by properly weighting the A matrix, the
iterative procedure will be equal to the minimization of the cost
function in (3.5.4). In the solution of the BAX = 0, both of the
linear-eigen and linear LS solutions can be used and the
corresponding methods are named as Iterative Eigen and Iterative

LS, respectively. Details for these methods can be found in [55].

These methods are more easy to implement, as well as do not
need a separate initialization algorithm and have a simple
stopping criteria, compared to the other iterative least squares
minimization algorithms, such as Levenberg-Marquardt [30].
However, like most of the algorithms that include iteration, there
is no guarantee for convergence and these methods fail to
converge about 5% of the time [55]. Although, these methods are
not projective invariant, it is stated in [55] that they are quite

insensitive to projective transformations.

3.5.5 Polynomial Triangulation

The noisy point matches in general will not satisfy the epipolar
constraint and therefore their back-projected rays will not form a
single 3-D point in space. However, in [55] it is shown that, by
defining a cost function, which minimizes the reprojection error,

an optimal solution can be found. It is also possible to reach this
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optimal solution by using a nonlinear optimization method, such
as Levenberg Marquardt for the cost function given in (3.5.4). By
reformulating the problem, however, polynomial triangulation
method minimizes this reprojection error in a non-iterative

manner.

Midpoint
Method Polynomial

Solution Triangulation
Solution

": of the PT method
. original point
: reprojected MM result

Figure 3.16: Polynomial Triangulation (PT): PT finds the closest points on the
pencil of epipolar lines and estimates the location of the 3D point using these
points. Midpoint method (MM), on the other hand, minimizes the 3D error by

selecting the midpoint of the closest point of back-projected rays.

In this method, the problem is reduced to finding the roots of a 6™
degree polynomial in one variable by parameterizing the pencil of
epipolar lines. The method then finds the pair of matched epipolar
lines closest to the given pair of point matches. After the closest
epipolar lines are determined, the closest points to the matched

points on these lines are selected and the 3D point in space is
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calculated by using these matches which satisfy the epipolar
constraint exactly. Since these points satisfy the epipolar
constraint, their back-projected rays meet in space at a single

point.

The method is projective and affine invariant, since it minimizes a
cost function, which is invariant under projective and affine
transformations. Moreover, the method is provably optimal in the
sense that under the assumption of a Gaussian noise model, the
most probable reconstruction is the one that minimizes the
reprojection error and polynomial triangulation exactly minimizes
this cost function [55].

3.5.5.1 Reformulation of the minimization problem:

For a given pair of correspondences u <> u', one should seek for
U < 0" in order to minimize the reprojection error given in (3.5.4),
such that {'" FG=0. Since the points satisfying the epipolar
constraint must lie on the epipolar lines, the cost function
definition may be modified without making any change in the final

output:

Minimize d(u, 2)? + d(u', 1')? (3.5.9)

where A4 and A' are chosen from the all possible epipolar lines. If
the line equations that minimize the above error given in (3.5.9)
are obtained, then the points J < ' can be found easily by
projecting the original pair to their respective lines. The algorithm

is thus obtained as follows:
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Algorithm 3.5.1: Polynomial triangulation algorithm

1. Parameterize the pencil of epipolar lines of the first

image as a function of a single variable, i.e., ﬂ(t)

2. Find the corresponding epipolar 1line by using the

fundamental matrix F, i.e, ﬂ}(t)

3. Express the distance function d(U,/’L(t))z +d(U',/1'(t))2 as a

function of t.

4. Find the value of the t which minimizes the cost function.

The above minimization problem can be solved non-iteratively by
rearranging the terms of the cost function. In the end, the
minimizer of this cost function can be obtained by solving a 6%

degree polynomial.

3.5.5.2 Details of minimization

By applying a rigid transformation in order to place the
correspondences to the origin and shifting the epipoles to (1,0,f)"
and (1,0,f')", one may simplify the cost equation without
changing the result. However, the fundamental matrix has to be
compensated for the rigid transformation (i.e.,
F(1,0,f)" =(,0,f')F =0). In order to move the origin to the

correspondence pixel locations, the pixel is transformed by,

1 0 —-u,
L={0 1 -v, (3.5.10)
00 1

where (uo,Vo) is the correspondence point location.
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Similarly, in order to rotate the images such that the epipoles are

on the respective x-axes, a rotation in the form of

cos(f) -sin(@) O
R =|sin(@) cos(@) O (3.5.11)
0 0 1

is applied. Corresponding rotation angles 6 are found from the

equality,
RLe=(1,0,f)" (3.5.12)

By developing the left-hand side, an equation for € can be found

as.

sin(@)(e, — esu,) + cos(8)(e, —esu,) =0 (3.5.13)

Frojected Point

Epipolar
line

e

Translated

U point Epipole (1,0

(oL

Figure 3.17: Polynomial triangulation

An overall transformation of T = RL and T'=R'L' is applied to the

correspondence pairs u and u’, respectively. After applying these
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transformations, however, fundamental matrix has to be adapted
as well. The transformation applied to the fundamental matrix is
F =T'F,T" where F, denotes the original matrix before carrying
out transformations T and T'. The final fundamental matrix

becomes,

ff'd —f'c —fd
F=|-fb a b (3.5.14)
—fd ¢ d

Consider a point (0,t,1)"; the epipolar line passing through this
point is found by (0,t,1)"x(1,0,f)" =(tf1,-t)" and the
corresponding epipolar line in the second image is obtained by
F(0,t1)" =(-f'(ct +d),at + b,ct +d)". Hence, the cost of this
point is

t? (ct +d)?

= 3.5.15
1+ (tF)  (at+b) +F2(ct +d) ( )

In order to find the minimum value for this function, one should

take its derivative and equate it to zero. The derivative of (3.5.15)

is equal to:
ST _ 2t? _ 2(ad - bc)(at + b)(ct +d) _
St (1+(tF)*)?  ((at+b)? +Ff2(ct +d)*)* 0 (3.5.16)
Rearranging the terms,
r(t) = t((at + b)* + ' (ct + d)?)?
—(ad - bc)(a + (tF)*)*(at + b)(ct + d) (3.5.17)

=0
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The final equation is a sixth degree polynomial of a single variable.
By solving the roots of this polynomial, one can find up to six
different real roots. The roots of a polynomial can be obtained by
calculating the eigenvalues of the companion matrix. The real root
giving the minimum error according to (3.5.15) is selected as the

minimizer, t,. Then, for finding the closest points on these lines to

the points u and u’, the origin (since the images are transformed
in order to place the points to the origin) is projected onto the
epipolar lines A(t,) and A'(t,).

The projection of (0,0) onto the line A(t,) to find & is calculated

by,
6 =%  and 0 =—fo _ where A(t,) = (ft, 1-t,)" (3.5.18)
1+t A R i &5

Next, the projection of (0,0) onto the line A'(t,) to find &' is

calculated by,

[y

where A'(t',)=F|d, | (3.5.19)
1

_ o B _/2/3
S N

where (I3, I3, I3) denotes the line parameters.

The resulting point coordinates are obtained, according to the
transformed coordinate systems. In order to find the actual point

locations, T and T'' transformations are applied to the
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calculated points. Finally, after the & and &' points are
determined, linear-eigen triangulation method is applied in order
to find the 3D object point. Since the J « {'points satisfy the
epipolar constraint exactly, their back-projected rays must meet in
space at a single point. This step concludes the polynomial

triangulation algorithm.

3.5.6 Simulations on Triangulation Algorithms

Among the presented algorithms in the previous sections, four of
them are tested for evaluating their performance against
projective and Euclidean reconstructions under additive Gaussian
noise. The utilized methods are polynomial triangulation, midpoint
method, linear-eigen and linear least-squares methods. For
different levels of additive Gaussian noise, median of the
reprojection error powers are calculated. The results are given in
Figure 3.18 and Figure 3.19.

e

o Polynomial
Triangulation
v Linear

Least-Squares | i : : i
40 - R Laueeet LY - (SCEURTEEELRE

o Linear Eigen
Midpoint

£0 p----

30 -~

median reprojection error power

Figure 3.18: Reprojection error for projective reconstruction
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The tests are performed over synthetic data and to measure the
invariance of the method, a projective transformation is applied to
each camera matrix. The projective transformation is chosen so

that first camera projection matrix is of the form [I | 0]. This is a

significant distortion, since the normal projection matrix is of the

form [K | 0] where K is the calibration matrix. It is observed from

Figure 3.18 that polynomial triangulation behaves best under
projective transformation. On the other hand, midpoint method
gives the worst results and should be avoided. In Figure 3.19,
almost all of the methods behave equally and can be used

alternatively for Euclidean reconstruction problems.

Wr—————7 77 7 T T T 1

12k 0 Polynomial ..o
Triangulation | | : :
v Linear , : i
10p---- Least-Squares ~1 jrooe T o -
o Linear Eigen

Midpoint

_______________________

median reprojection error power

noise

Figure 3.19: Reprojection error for Euclidean reconstruction
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3.6 Simulation results

The complete algorithm, which takes two calibrated images as
input to return 3-D locations for the automatically found
correspondences, is tested with various types of images for very
different camera matrices. Some of the results captured from the
VRML output illustrate the performance of 3-D reconstruction. In
all the figures below, (a) and (b) present, the input images,
whereas (c), (d), and (e) are the top, frontal and side views,

respectively (see Figure 3.20).

Top View

Side View

X

Front View

Figure 3.20: Viewing angles: Triangle prisms denote the camera locations and

orientations
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Figure 3.21: 3-D reconstruction results for Bilten data
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Figure 3.22: 3-D reconstruction results for Cityhall Sequence[58]
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Figure 3.23: 3-D reconstruction results for Merton College[59]
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Figure 3.24: 3-D reconstruction results for Leuven Castle [24]



CHAPTER 4

3D RECONSTRUCTION FROM MULTIPLE VIEWS

The estimation of the 3D model of a scene is an ongoing research
topic in computer vision. There are many applications of this
research in robot navigation, visual automation, virtual reality and
computer graphics. The aim of obtaining accurate models of a
scene from, not only frame pairs but also a sequence of images
has always obtained much attention. The method by Tomasi and
Kanade [39] uses an affine factorization algorithm to extract the
structure of the scene from image sequences. The most important
restriction of the algorithm is that it makes an orthographic
projection assumption. Beardsley et al. [38] and Pollefeys et al.
[37], on the other hand, employ a sequential algorithm to extract
and update a projective reconstruction of a scene. In these
sequential algorithms, for every new frame, the location and
orientation of the scene with respect to an initial reconstruction is
re-calculated and some new 3-D points are initialized. In this way,
the final structure and motion information is built up gradually.
While the first approach [37] computes a projective
reconstruction, the latter one [38] upgrades the structure to

metric.
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In this chapter, an iterative algorithm [37] to reconstruct a scene
from several images is presented. The simplest case of this
problem is the two view case, which is explained in the previous
chapter. The problem might be defined as the process for
combining information, which is gathered from images captured at
different locations, orientations and even different viewing
parameters. In order to find a solution, the following assumptions
are made: the camera parameters of the images are known a

priori in all of the images and the scene is completely stationary.

The algorithm starts with the initial reconstruction of a scene from
two images in order to obtain a common structure. Next, the
position and orientation for the further views is computed in this
setup. At the addition of a new frame, the initial reconstruction is
refined and upgraded. In this manner, the pose of the views that
do not have any common features with the initial reconstruction
can be calculated. After the estimation of motion and structure for
all of the sequence frames, the estimation is further refined by

using a procedure entitled, as bundle adjustment [40, 41].

4.1 Initial structure computation

The initial reconstruction step produces an initial framework that is
used to build upon all other views. Two frames are chosen from
the sequence and reconstruction is performed, as it is explained in
the previous chapter. The reconstruction frames must be general
enough to be compatible with other views. These frame pairs must
not be formed of frames, containing dominant planes or rotation-

only-configurations. For such degenerate cases, the reconstruction
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might fail. The initial 3-D structure computation algorithm is

already presented in the previous chapter.

4.2 Addition of a new view

In the previous section, the initial reconstruction is briefly
explained. This section explains how to add a new view to the
framework. First of all, the pose of the new view is detected and
then new structure points are initiated to wupdate the

reconstruction through triangulation.

4.2.1 Pose estimation

The pose of the new frame with respect to the current framework
can be obtained by utilizing the correspondences of the new view

with a previous view and the structure points.

5
T .. omw o "wm ",
- - = r am =

Unknown
P(i+1)

C(i-1) T
C)
Figure 4.1: Pose estimation: 3D-2D correspondences are obtained by using the

relation between the structure and the correspondences estimated from frames
f] and fi+1.
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First of all, the epipolar geometry between the new view and a
previously inserted view is obtained by using the robust
technique, which is explained in Section 3.2. As a next step, 2-D
points, whose 3-D structure points are already calculated, are

selected from the obtained correspondence set (see Figure 4.1).

From the above figure, it is observed that, during the addition of a
new frame fi,1, if @ correspondence point between fi1; and f; is also
matched to a point in the frame fi.;, then one can form a set of
points composed of 3D-2D projection pairs for fi+1, since the
location of the structure point associated to this point has already
been calculated in the previous iteration by the relation between fi.
1 and fi. In this way, the projection information for the new frame
can be calculated by a number of points with such property. The
projection matrix of this new frame,fi;; , is calculated by using a
robust algorithm, similar to the one used in the computation of

the fundamental matrix.

4.2.1.1 Computation of the projection matrix from 3D-2D

correspondences

The relation between the elements of a projection pair X; <> X

is given by the following relation:

X,
u; v
m, = PM, where m, =|v, |and M, = Zl (4.2.1)
w; ’
1
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By rearranging (4.2.1), one can obtain

u, = P1TMi
v, =P/M, where P/ is the k™ row of the P matrix (4.2.2)
W, = P3TMi

It is known that image plane coordinates of the m vector is

obtained by the relations

x, =Y andy, = /= (4.2.3)
W w

i
i i

By using the relations given in (4.2.2), one can find easily

uP/M, —w,P/M, =0

(4.2.4)
v.P/M, —w,P/M, =0
and modifying the equation above
P
—wMT T M7
W/7M/ 0 ) U,M/T P2 -0 (425)
0 -w,M;, v,M, p
3

Hence, for a pair of 3D - 2D projection pairs, two homogeneous
equations are found. Since the projection matrix has eight degrees
of freedom, four pairs of projection pairs are sufficient to find a
unique solution for P defined up to scale. Stacking all the
equations obtained from projection pairs (possibly more than 4), a

system of linear equations in the form of

Ap=0 (4.2.6)
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can be obtained, where A is the measurement matrix and

p= [PlT P/ P3T]T, projection matrix elements. The solution to this
problem subject to |p| =1 constraint (since scale does not matter)

is, as indicated before, equal to the eigenvector associated with

the smallest eigenvalue of the A matrix.

During the estimation of the projection matrix, as in the
normalized 8-point algorithm, the normalization step is also
applied to the data points in order to improve the conditioning of
the problem. The normalization is applied on the 3D points as a
translation in order to move the centroid to the origin and a

scaling to make the variance of the distance of 3-D points to the

origin +/3. A similar normalization is also applied to the 2D points,

whereas this time the variance is modified to be /2.

Algorithm 4.1.1: Normalized P-Matrix estimation from

projection pairs

Given n>3 3D-2D correspondence pairs
1. Compute the mean and variance of the distances to the

centroid for both 3D and 2D points.
2. Form matrices 7;D and 7}0 such that the 7;Dn7 and 7;DA4
are the normalized 2D and 3D coordinates, respectively.

3. Form the A matrix from the projection pairs according to

Equation 4.2.5.

4. Find the SVD of the A matrix such that A =USV’ and the
solution vector is the column of the V matrix associated
with the smallest diagonal entry of the S matrix ( i.e.,
smallest singular value of A )

5. Compute the projection matrix P’ for the denormalized data

points as, P'=T,5PT,,
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4.2.1.2 Robust estimation of the projection matrix from

projection pairs

Similar to the case during the estimation of the fundamental
matrix, some robustness is required in order to ensure a correct
computation of the projection matrix, in case of contaminated
data. For this purpose, RANSAC-based computation of the
projection matrix is adopted (for details of the RANSAC algorithm,
refer to Section 3.2.3).

The error measure in order to decide whether a point is an inlier
or not is decided by using the reprojection error, which is formally
defined as:

Reprojection Error =d(m, PM)? (4.2.7)

where d(m,PM) returns the distance between the 2-D image point

and the projection of 3-D scene point.

Algorithm 4.2.1: Robust P-Matrix Estimation

Given n>3 3D-2D correspondence pairs
Repeat N times
1. Select 4 pairs of 3D-2D correspondences randomly and
estimate a projection matrix following the Algorithm 4.1.1
2. Find the number of pairs consistent with the estimated
model using the reprojection error (Equation 4.2.7)
3. Choose P with the largest number of inliers, and reject
those pairs which yield e > t for this particular P.
4. Recalculate the number of iterations N using the formula

given in Equation 3.2.7.

96



4.2.1.3 Refinement of the projection matrix

After the robust estimation of the projection matrix, a nonlinear
stage also exists in order to refine the projection matrix.
Levenberg-Marquardt algorithm is used to minimize the
reprojection error given in (4.2.7) with respect to the parameters
of the projection matrix. However, direct minimization of the P
matrix parameters will yield erroneous results, since the elements
of P matrix are not independent from each other. Therefore, the
minimization should be carried out on the individual rotation and
translation parameters. In order to achieve this form, the rotation
matrix should be represented in quaternion form (see Appendix
E).

4.3 Initialization of new structure points

For the points, which have not been associated to a 3-D point,
some new 3-D structure points should be estimated by using the
calculated projection matrices for the current and the previous
frames through triangulation (Section 3.4). This approach will
ensure the estimation of the pose of the views, which do not have
common features with the initial framework. Moreover, it is
possible to initiate higher number of 3-D points for the scene for
obtaining more information. It is observed during the simulations,
choosing points that are present in at least more than 3 views
ensures the elimination of spurious matches and improves the

overall structure in the final reconstruction.
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4.4 Refining structure and motion

Once the structure and motion has been computed for all of the
frames in the sequence, a final global refinement is applied. For
this purpose, bundle adjustment [40] method is used. Bundle
adjustment is the problem of refining a visual reconstruction to
produce jointly optimal 3D structure and viewing parameter
(camera pose and/or calibration) estimates. This procedure is
optimal in the sense that the parameter estimates are obtained by
minimizing a model fitting error function. The estimation is also
joint so that the solution is both optimal with respect the structure
and camera variations at the same time. “Bundle” refers to the
light rays joining the 3D points and the camera centers which are
attuned optimally according to both feature and camera positions.
In this method, all of the structure and camera parameters are

adjusted together in one bundle.

The cost function for minimization can be selected as follows:

N> > d(my, B(M,)Y (4.4.1)

min
M; i=1 j=1

R,

This cost function jointly minimizes the errors due to noise during
model estimation and locations of the 3D points. Therefore, the
minimization problem has a vast parameter space. The direct
minimization of this cost will need quite a long time to converge.
However, a sparse version of the bundle adjustment should
improve the execution time considerably. Therefore, a sparse

variant of the bundle adjustment is preferred [41]. More
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information about sparse bundle adjustment is given in Appendix
D.

The minimization over the projection matrix parameters is not

performed directly, whereas the rotation and translation

parameters are again utilized separately.

99



4.5 Multiple view reconstruction algorithm

Multiple view reconstruction algorithm is summarized in the below
diagram. Briefly, the algorithm first estimates an initial
reconstruction and then inserts each frame with respect to this
framework. Finally, the overall reconstruction is refined employing
a global bundle adjustment. In Figure 4.2, the structure of the

multiple-view reconstruction algorithm is given.

Initial
Reconstruction
for the first two

views
Adding a new view
A\ 4
Find 2D .
matches which already e
between the > have a 3D 4 > P(i+1) —
frames i and oint Robustly
i+1 P
Decompose
Computeand | | p(i+1)to | | ApplyLMto |
|n|t|aI|ze_ new [¢ R(i+1) and [ P-Matrix [°
3D Points t(i+1) Parameters
\ 4
Sparse
Bundle
Adjustment

Figure 4.2: Multiple view reconstruction algorithm
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4.6 Simulation results

In the figures below, some of the multiple view reconstruction
results are presented. The results are given in different viewing

angles (see Figure 3.20).

. J‘L"?-

Figure 4.3: Leuven Castle Sequence

101



[40)t

LYY

1= -

B
‘:ﬂ-’ N ; ';"_'.:."I i
W%
v""ﬁﬁy
¥
S 24 !‘ gog:
TR ﬁﬁ- PR 2 n
N : \-% 5_{‘ f"'.'l'
-;. ‘_..‘:t J J'— """ """“.1-

NI 2% E TS N St

Figure 4.4: Leuven Castle Sequence results, illustrated from different viewing angles. Each triangle prism represent a camera

location from which a picture is taken.



Figure 4.5: Model House Sequence
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Model house sequence results

Figure 4.6



Figure 4.7: Chapel Sequence Images
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Figure 4.8: Chapel Sequence Results



CHAPTER 5

3D RECONSTRUCTION FROM MULTIPLE VIEWS
CONTAINING INDEPENDENTLY MOVING
OBJECTS

5.1 Introduction

In the previous chapters of this thesis, an algorithm is presented
in order to estimate the fundamental matrix between two views
robustly, while rejecting the correspondence outliers (Algorithm
3.3.4). The implemented algorithm is suitable for static
environments. In this chapter, the performance of this algorithm
in sequences which contain independently moving objects (IMO) is
investigated. Moreover, a novel algorithm in order to improve the
computation time of the outlier rejection is also proposed. For the
sake of completeness, some background information is given in
the following sections about parallax-based rigidity constraint,

which is the backbone of the proposed algorithm.

5.2 Plane+Parallax Decomposition

3D parallax is the variations in the 2D motion vectors of the
projected scene points due to changes in the depth of the scene
structures, when the camera makes a significant translational

motion [60]. There are single- and multi-layered approaches to
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handle different situations where the parallax is not very
significant [60]. However, if the parallax effect starts to increase,
in case of more complex 3D scenes, then plane+parallax

decomposition approach should be utilized, as suggested in [60].

In plane+parallax decomposition, motion vectors of the scene are
decomposed into two components: plane and parallax. The 2D
parametric registration process is performed by a single global 2D

parametric transformation between a pair of images:

{u(x,y)} :[p1X+pzy+Ps +PyX* + PoXy (5.2.1)
VX, ¥)] | PsX + Py + P ++PyXY + Pgy’

where u(x,y) and v(x,y) are the motion vectors at point (x,y). By
estimating the parameters p; in (5.2.1), the plane registration

transformation is computed.

The plane registration step removes all the effects of camera
rotation, zoom and calibration without explicitly calculating them
[60, 61]. This result can also be understood from the fact that the
planar motion caused by rotation or zoom does not depend on
plane depth. In other words, all the planes at different depth
layers will be registered also, once a plane is registered in terms
of rotation and zoom of the camera. Therefore, the residual image
motion after the plane registration should be due only to the
translational component of the motion of the camera and to the
deviation of the scene structure from a planar surface. Thus, the
residual motion field is an epipolar flow field. An epipolar flow field

is a field of vectors that are structured subject to an epipole [60]
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(see Figure 5.2). These observations led to the so called

plane+parallax decomposition of the scene.
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Figure 5.1: Geometric interpretation of the plane+parallax decomposition [60]

In Figure 5.1, the geometric interpretation of the plane+parallax
decomposition is illustrated. In this figure, P=(X,Y,Z)" and
P’=(X,Y,Z"" are the Cartesian coordinates of a scene point with
respect to two different camera views and p=(x,y) and p’=(x’y")
denote the projections of these points onto the camera planes,
respectively. In Figure 5.1, Il denotes a real (or a virtual) planar
surface in the scene, which is registered by a parametric
registration approach. The 2D image displacement of the point P is

then calculated as
u=p-p=u,+u (5.2.2)

where u, is the planar part of the image motion and p is the

residual planar parallax in 2-D motion. The homography due to Il

can be modeled as a 2-D parametric transformation, which is in
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general a projective transformation, and an approximation to this

transformation can be approximated by

y;—?(é—ﬁw) “if T, #0
Uy =p-p, , H= {7 (5.2.3)
v if T, =0
d,
where p, is an image point in the first frame which results from
warping the corresponding point p' in the second image by the 2D
quadratic transformation of the plane . e denotes the epipole
and d. denotes the distance of the second camera center from the

plane. y is called as the projective 3D structure of point P [60]

and it is a measure of 3-D shape of point P. It is equal to the ratio
of the perpendicular distance of point P to the planar surface I to

the depth of the point P with respect to the first camera (y= H/Z
see Figure 5.1). The final term E=(TX,Ty,TZ)T is the translation.

For the derivation of this equation, the readers should refer to
[60].
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Figure 5.2: Epipolar field of the residual parallax displacements [60]

The parallax equation, given in (5.2.3), suggests the existence of
an epipole, where all residual motion vectors expand from or

diverge to. Therefore, if the epipole is recovered, all that remains
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for detecting the moving objects is to identify the vectors, which
do not obey this common rule. The estimation of the position of
the epipole, therefore, strictly affects the performance of the
independent moving object detection problem. However, it will be
observed in the next section that without calculating the epipole

explicitly, it is still possible to find a metric to detect IMO’s.
5.3 Parallax-based rigidity constraint

It is explained in Section 5.2 the methodology to compute the 3-D
projective structure of a point. The relative 3D projective structure

of two points having y, and y, is defined as:

e 1y (Ap,)
- 22wy (5.3.1)
72 zul(pr)J_

where, as shown in Figure 5.3, p; and p, are the image locations
of two points and Ap, =p,, - p,, IS the vector connecting the

warped coordinates (v, denotes a vector perpendicular to v).
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-

Figure 5.3: Pair-wise parallax-based shape constraint
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This constraint (Equation 5.3.1) directly relates the relative
projective structure of two points without an explicit epipole

relation.

In [60], it is stated that, relative 3D projective structure of a pair
of points does not change with respect to the camera motion.
Therefore, by observing the value of this constraint, it is possible
to detect independently moving objects. This constraint is defined

formally as:

— T — j —KkT — k
:Uz (pr)i _JUZ (pr)L — 0 (5.3-2)

—ijiT, — —kT , —
1y (AP, s (Ap,)

where 4., are the parallax displacement vectors of the two

points between the reference frame and j frame, ﬁf,ﬁs are the
parallax vectors between the reference frame and k™' frame, and

(A/_:Jw)j,(AEW)k are the corresponding distances between the

warped points.

By using this constraint, it is possible to discriminate between the
background and IMOs in three frames, given a motion vector that

must be selected from the background.
5.4 Algorithm to eliminate matches due to IMO’s

As it is observed in the previous section, by the help of parallax-
based rigidity constraint, it might be possible to detect

independently moving objects in three consecutive frames.
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However, in order to accomplish this, the constraint strictly
requires a motion vector pair (one between the first two frames
and another between the second and third frame), which must
belong to a background point. In order to achieve this aim, a

novel algorithm is proposed within the next sections.

54.1 Plane Registration

The plane registration process involves the estimation of eight
parameters from the motion vectors of two images (Equation
5.2.1). However, all of the motion vectors cannot be used for this
purpose, since there may be outliers as well as many non-planar
surface vectors. The dominant plane estimation, therefore, has to
be completed by using a robust procedure. Similar to the
procedure for the estimation of the projection matrix in Section
4.2 (or the estimation of the fundamental matrix in Section 3.3, in
the plane registration step), RANSAC is employed for the robust
estimation of the “dominant plane”. Once the parameters for the
dominant plane are estimated, the residual parallax components

of the motion vectors are calculated as the next step.

5.4.2 Background seed selection algorithm

Background seed selection is a critical step in removing IMO
contributions from the correspondence set. Parallax-based rigidity
constraint should be utilized for this purpose; it constrains 3-D
structure of all stationary background points. The parallax-based
rigidity constraint, although, forces the change in the relative 3-D
structure to remain zero, this does not always hold due to noise.

Therefore, only choosing a random vector and counting the
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number of vectors that obey the constraint will not solve the
problem of the background vector selection. Moreover, the errors
in the parallax-based rigidity constraint differ, when one changes

the support (background) vector of the constraint (4, in Equation

5.3.2). Therefore, simple thresholding will not be the solution to
this problem, since the threshold should also be changed

adaptively for different scenes.

The proposed novel solution to this problem can be explained as
follows: N different support vectors are chosen and the number of
vectors that are outside a certain neighborhood around one of the
support vectors (i.e. candidate background seed point), which
obey the rigidity constraint within a small threshold, are counted.
After testing all support vectors in this manner, the candidate
seed point, yielding the maximum number of supports, is chosen

as the background seed.

The support vectors are also selected according to the magnitude
of the residuals. The magnitude range of the residual vectors is
divided into N equal intervals and a support vector is selected
from every interval (see Figure 5.4). This selection method is
adopted due to the fact that the plane registration step usually
leaves behind vectors with small residual from the dominant
plane. Therefore, the vectors on this dominant plane must not be
selected, since their small norm is due to noise. On the other
hand, the vectors with large residuals are not reliable, since they
might be outliers. Hence, in order to cover the whole range of

vectors such a procedure is proposed.

Another important aspect of the proposed selection criteria is

elimination of the vectors within the neighborhood of the support
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vector, while calculating the number of vectors that obey the
rigidity constraint. In this manner, it is possible to eliminate
possible points belonging to an IMO, which mostly has its support
vectors within its neighborhood. If this constraint is not used, one
might find the change in the rigidity constraint still to be a small
number to erroneously declare an IMO point to become a
background seed, while, unfortunately, most of the support pixels
are belonging to the IMO itself. On the other hand, this constraint
reduces the number of the consistent vectors to an IMO-belonging
support vector. This situation is not a problem for the background
vectors, since they are not confined (i.e. localized) to a single

region.
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Figure 5.4: Residual motion vectors sorted according to their norms: y axis is

the norm and x axis is the pixel number

5.4.3 Application of the parallax-based rigidity

constraint by the background seed

At this stage, all the correspondence vectors are tested by using

parallax-based rigidity constraint with the previously selected
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background seed pixel. In order to increase the robustness of the
algorithm, more than one background pixel can be used to
discriminate between background and IMO vectors. A vector is
decided to belong to a background point, if, out of M different
supports, it is within the first p-percent of the sorted cost
calculated according to (5.2.2) at least K times. ( K < M and K is
larger than some threshold). Hence, the following algorithm is
obtained for rejecting IMO contributions, as well as any kind of
outliers, in the correspondence set. A summary of the algorithm is

given below:

Algorithm 5.4.1: Using ©parallax based rigidity

constraint to reject IMO'’s

1. Apply plane registration to the motion vectors between the
first two frames as well as the second and third frames by
using RANSAC

2. Find the background seed

a. Sort the residual motion vectors according to their
norms

b. Choose N support vectors with equal distance from
each other in terms of their norm values

c. Calculate the number of vectors that obey the
parallax based rigidity constraint with threshold t;
for each of the support vectors. Do not consider the
vectors within d; distance to the support vector.

d. Choose the vector with the maximum number as the
background seed

3. Select M vectors yielding the smallest error with the
background seed and calculate the parallax based rigidity
constraint errors for each of these support vectors

4. Sort the elements of these sets according to their errors
and select the vectors that are within the first p-percent
of the sets.

5. Choose the vectors that are selected more than K times

(K<M) as background pixels and discard the rest.
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5.5 Simulation results

In this section, the results of the Algorithm 5.4.1 and the
comparison tests of this algorithm with the outlier rejection
technique explained in Section 3.3 (Algorithm 3.3.4), is presented.
In the figures and table below, Algorithm 3.3.4 is denoted as
RANSAC and Algorithm 5.4.1 is mentioned as IMOR. Another
comparison is achieved by using both of the algorithms
consecutively. This method is also abbreviated as IMOR+RANSAC.

In the implementation of IMOR, the following parameters are
chosen N = 20, t; = 1e-5, d; = 60, p=0.7, M=10 and K = 6.
During simulations, the following image sets are utilized: Figure
5.5 and 5.7 contain an artificial IMO, inserted into the scene,
whereas Figure 5.9 includes a natural case. In these figures, the
results are presented in the following manner: (a), (b) and (c)
sub-figures are the input image triplets, where (d) depicts the
resulting correspondence vectors found by the matching algorithm
given in Algorithm 3.3.2 for the first two images. Subfigure (e)
shows the resulting displacement vectors selected by IMOR as
background and (f) shows the results of the RANSAC algorithm.
Finally, the rejected vectors by IMOR are shown in (g).
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Figure 5.5 IMO Rejection Example 1
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Figure 5.6: Reconstruction from images Figure 5.5 (a), (b), and (c) using
IMOR+RANSAC
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Figure 5.7: IMO Rejection Example 2
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Figure 5.8: Reconstruction from images Figure 5.7 (a), (b) and (c) using
IMOR+RANSAC
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Figure 5.10: Reconstruction from images given in Figure 5.9 a, b and c using

IMOR+RANSAC algorithm.

As it is observed from these results, IMOR algorithm gives
comparable results with the RANSAC, although it cannot always
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eliminate all of the outliers. However, IMOR is advantageous
compared to RANSAC due to its much shorter execution time. It
should be noted that RANSAC is an iterative algorithm with the
number of iterations is not fixed, whereas IMOR is a single step
approach. Hence, it is possible to use IMOR before RANSAC to
eliminate most of the outliers and then use RANSAC to refine the
results. In this manner, with a small number of iterations, a

comparable reconstruction quality may be achieved in less time.

Table 5.1. Comparison Table: RANSAC vs IMOR+RANSAC

Iteration | Duration| Wrong Outliers Inlier Total Vector
S Not
Number | (msec) |Rejections Number Number
Detected

RANSAC 1626 4968 11 3 971 1651
IMOR - 31 156 33 856 1651
IMOR+
RANSAC 21 112 158 1 824 1651

In Table 5.1, the results of aforementioned three algorithms are
presented. The tests are performed over different data sets (7
different image triplets) and the results are calculated by simple
averaging. “Wrong Rejections” column in the table refers to the
number of true inliers that are labeled as outliers by the
algorithms, whereas “Inlier Number” column refers to the number
of correspondences, algorithms declare as inliers. The number of
correct inliers detected by the algorithm can be found from the

table by taking the difference of fifth and fourth columns.

It can be inferred from Table 5.1 that the IMOR algorithm cannot
detect a large number of outliers, and therefore, the fundamental

matrix estimate computed by using this contaminated set will give
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inferior results. As expected, the reconstruction by using only the
IMOR algorithm has been unacceptable during the performed
simulations. Although, the results of the RANSAC algorithm alone
yields very accurate reconstruction results, utilization of the IMOR
algorithm as a preprocessing step before RANSAC decreases the
execution time of the overall outlier rejection algorithm
considerable, approximately 40 times. Therefore, it is proposed to
jointly utilize the outlier rejection algorithms in a cascaded manner
(IMOR+RANSAC). This combination yields quite improvement for
execution time without losing much from the reconstruction

quality.
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CHAPTER 6

CONCLUSION

6.1 Summary of the thesis

In this thesis, structure from motion problem is addressed for
calibrated scenes, including the cases containing independently
moving objects. For this purpose, the reconstruction process is
divided into sections and each stage is presented separately. The
first stage is the fundamental problem of estimating the structure
and motion by using only two views. Then, the method is further
generalized for more than two view case: the multiple view
reconstruction. Finally, multiple views containing independently
moving objects (IMOs) are examined and a novel method is
proposed by using the parallax based rigidity constraint in order to

reject IMOs as well as outliers.

The first section is the computation of the scene structure and
motion parameters from two calibrated images. This process
starts by finding some point matches between two images. In
order to match points for different images, it is necessary to
extract salient features from these images. For this purpose, a
modified version of the Harris corner detector is utilized. The
detector is modified such that the results can be obtained in

subpixel accuracy. After the extraction of salient features, a
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moderately simple algorithm (in terms of computation complexity)
is used in order to match these point features. The matching is
performed by examining two main criteria: normalized cross
correlation (NCC) and strength measure (SM). NCC is used to
measure the similarity of image patches around the feature
positions and SM is used to introduce smoothness to the motion
vectors by using neighborhood information. Once a set of putative
correspondences are determined, the next step is the estimation
of the fundamental matrix, which encapsulates the motion
parameters of the cameras. For this purpose, normalized eight
point algorithm is utilized. This algorithm estimates the
fundamental matrix linearly by using only eight correspondences.
It is a fast, non-iterative algorithm and its results are comparable
to other iterative methods. Although, the estimation results are
satisfactory for a set, which is contaminated with outliers, it is
necessary to use a robust method to improve its performance. In
order to introduce the necessary robustness, a statistical method,
random sample consensus (RANSAC), is exploited. RANSAC
operates by estimating the model from small random sets of the
input and testing the goodness of the model iteratively. The
iterations are stopped, when the process is guaranteed to yield a
good estimate statistically. The linear robust estimation of the
fundamental matrix is followed by a nonlinear minimization
algorithm in order to improve the estimate. Levenberg-Marquardt
(LM) minimization algorithm is used over the whole set of points
labeled as inliers by the RANSAC method. Once the fundamental
matrix is estimated and refined, it is decomposed into its motion
parameters. Since the calibration information is known, the
essential matrix is computed and then, it is decomposed into

rotation and translation parameters. By utilizing these parameters,
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projection matrices are computed. Finally, using a triangulation
algorithm, the positions of the 3D points are calculated. The
utilized triangulation algorithm is a projective invariant method

which involves finding the roots of a sixth degree polynomial.

The second section is the generalization of the two view algorithm
for more than two views. This step is performed by first
constructing an initial framework and then building-up the
reconstruction of the remaining frames relative to this framework.
The initial reconstruction is computed by using the two-view
reconstruction algorithm. For adding a new view to the
framework, the relative pose and location of this frame is
estimated by a robust procedure. A set of projective pairs are
formed by relating the framework points and matches computed
with the new frame and a previously inserted frame. The
projection matrix is then estimated from this projective pairs by
using RANSAC. Once the projection matrix is found, by the help of
triangulation, some new 3D points are initialized for the
framework. Finally, the overall structure is refined via bundle
adjustment. This adjustment involves the minimization of the total

reprojection error over the whole camera and point locations.

The last section is devoted to the reconstruction from a sequence
containing independently moving objects. In order to detect the
moving objects, the parallax-based rigidity constraint is used. In
the application of this constraint, a background pixel has to be
presented to the system as an input with user intervention. For
avoiding this interaction, a novel method is proposed for an

automatic background pixel selection algorithm. Moreover, in
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order to make the system more robust, the results of more than

one background pixels are fused.

6.2 Discussions

In the feature detection part of the algorithm, it is observed from
the experiments performed (Table 3.2) that for a relatively minor
computational load, subpixel accurate feature-detection increases
the performance considerably. The resolution is increased to
subpixel level by biquadric polynomial fitting (see Appendix B) to
the Harris cornerness surface in every local patch. The support
rectangle size (N) of the fit is chosen as same with the size of the
Gaussian filter used in the Harris detector (N=3). The fitting is
tested for different values of the support size (N), and it is
observed that if a local maximum exists within the support, the
detection of the true maxima may be disrupted due to the inferior
approximation of the fit. Therefore, it is recommended to use
same sized filters and windows throughout the process in order to

avoid local maximum.

Feature matching operation by using only the normalized cross
correlation (NCC) measure has been found out to be insufficient,
especially for the repetitive textured regions. In the performed
experiments, the patches within the repeating regions still yield
acceptable results for erroneous matches due to the nature of the
measure (Table 3.1). For this reason, a neighbor-based matching
measure together with NCC, called the strength measure (SM), is
included to the algorithm. The results are improved to be
satisfactory (see Figure 3.8 for repetitive textured region results).

Although, the complexity of the matching increases by reducing
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the number of false matches and increasing correct match
number, the required number of iteration for the subsequent

robust fundamental matrix estimation stage is reduced.

During the estimation of the fundamental matrix, it is observed
that, by a non-linear minimization algorithm, the performance can
be improved (Table 3.2). The Levenberg-Marquardt (LM)
algorithm is selected for the minimization purposes. From the test
results, it is obvious that LM minimization is a crucial part of the
overall algorithm and it should not be skipped. Moreover, as a
future study, in the robustification stage while incorporating
RANSAC algorithm, the goodness of the fundamental matrix may
be tested over a random set, instead of using all of the putative
matches. This will surely decrease the computation time, however

the performance of the system has to be considered.

In order to locate the position of the 3D points from the computed
correspondences, four algorithms, namely midpoint method,
linear-eigen method, linear least-square method and polynomial
triangulation method, are tested. It is observed from Figure 3.18
that polynomial triangulation behaves best under projective
transformation. On the other hand, the midpoint method gives the
inferior results and should be avoided. As it is observed from
Figure 3.19, almost all of the methods behave equally and can be

used alternatively for Euclidean reconstruction problems.

Multiple view reconstruction method presented in Chapter 4
makes use of projection pairs in order to relate new frames with
the current framework, i.e., projection pairs are used to calculate

the projection matrix of the new view. However, it is not
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guaranteed to have an outlier-free set of projection pairs and,
therefore, it is required to use a robust method in the estimation
as well. During the simulations involving the direct (non-robust)
estimation of the projection matrix, the algorithm lost track of the
cameras in most cases and the reconstructions are unacceptable
due to the erroneous estimation of the orientation and location

information.

Finally, a new approach for using parallax-based rigidity
constraint, in order to reject outliers and also independently
moving objects, is proposed. In the exploitation of this constraint,
it is necessary to locate a pixel that is guaranteed to be on the
background. By calculating the change of the projective 3D
structure of a point from the residual parallax vectors with respect
to this selected background point, the point is decided to be an
inlier or an outlier. In the experiments, it is noticed that the
selection of this background point is quite critical. It should not be
selected on the dominant plane due to the fact that the remaining
residual vectors on the dominant plane are mostly due to noise
and errors made in the plane registration stage. Moreover, it is
also noticed that a threshold based system will be inadequate to
discriminate between background and foreground vectors due to
the dependency of the errors to input scene conditions. Hence, it
is proposed to use a selection algorithm for the best consistent
matches. On the other hand, the main problem of this method is
its requirement to specify the percentage of the background
vectors to the overall set. If it is specified less than the correct
value, some background vectors will be rejected and if it is more,

some outliers will remain. However, this is not a serious problem
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for large sets of vectors, since losing some background vectors by

specifying a modest percent can be still tolerable.

6.3 Future Work

The consecutive frames of a video sequence have very small
baseline distances. Therefore, the tested system could not
calculate the rotation and translation parameters reliably for such
consecutive video frames. In order to adapt the system to take
video input, some measure to compute the distance between the
frames might be included. In this manner, during the inclusion of
a new frame to the system, the new frame might be related to
more than one frame which are detected to be close. Another
issue is the uncalibrated camera case. A self-calibration routine
should be included to the system in order to have more flexibility
with the input images. Finally, a dense matching and
reconstruction may be incorporated in order to form more detailed

reconstructions.
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APPENDIX A

ZHANG'S CAMERA CALIBRATION ALGORITHM

In this relatively recent method, a coplanar calibration pattern is
captured a few times with different orientations by moving either
the camera or the model plane. The world coordinate system is
assumed to be aligned with the model plane, i.e. calibration
pattern is on z = 0 plane and the x- and y-axes are parallel to the
pattern features. The feature points are automatically detected
from the captured images. As in [4], only this information is used
in order to extract intrinsic, extrinsic and distortion parameters of

the camera.

The estimation of the unknown calibration parameters in principle
is quite similar to the method by Tsai [4]. The major difference is
that no strict motion is defined for the camera to gather some
depth information. The assumption of coinciding the z=0 plane
with the calibration pattern simplified the formulation of the
procedure a lot. A homography between 3D and 2D measured

image coordinates of the system is defined, as
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u i/( X X
sivi=Ar, b b t] _|=Ar r, tlY|=HY (A.1)
0
1 1 1
1
where H=1[h, h, h,] and
. 5 N u B X
sm=HM, m=|v|iand M =|Y (A.2)
1 1

Given an image of the model plane, a homography can be
estimated easily [1]. An estimate of the H can be determined by

using nonlinear least square methods, after minimizing,

.

, _

&=y ,.||m,. —-mi| where m, = TL I_71T Mi (A.3)
f_73 Mi h2 M,-

Such a minimization can be performed by using Levenberg-
Marquardt method. However, an initial guess is required, as usual.
This initial guess is obtained as the right singular vector of L,
where L is equal to the concatenation of equations obtained by

rearranging (A.2), i.e.,

MT 0T —uMT

- ~ |x=0 (A.4)
or M" —vMT
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After finding the homography, this matrix is decomposed into A, R

and t by the following procedure: from Equation A.1, one has,
[h, h, hy]=Alr, r, t] (A.5)
Since columns of the R matrix are orthonormal, one should have

hTATAh, =0
hTATAh, = h] AT A h, (A.6)

It can be shown that B= A7 A" has five distinct parameters [6].
Performing the same strategy as it is achieved for the solution of
H, one can compute the parameters of the B matrix easily. Once B

is estimated, A matrix parameters are obtained by,

Vo = (B1,Bi5 — By1By3) /(B3 By, - 5122

A =By —[Bf +Vo(B,,B,5 - B,;B,3)1/ By,
o= J1/B,

p =By, /(B,B,, — B,

y=-Bn,a’B/ 2
Up = Wo!/B—-Bsa* [ A

(A.7)

Once A is determined, the extrinsic parameters for each image is

readily computed

r, = JAh,
DM e a= 1A = 1/)A (A.8)
I3 =nXn
t = 1A,
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After the initial estimates are determined, all of the parameters
including lens distortion are refined using a non-linear

minimization technique over the cost function:

r=33%Im, -m(aR,t,m, (A.8)

n
i=1 j=1

where ﬁv(A,R,.,t,,Mj) is the projection of the point M; in image J,
according to Equation A.l.
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APPENDIX B

BIQUADRIC POLYNOMIAL FITTING TO THE
CORNERNESS SURFACE

For a given corner pixel we would like to fit a biquadric

polynomial. For every (x,y,R) pair, in the N-neighborhood of the

pixel, there exist N equations of the form
K x? +Ky? + Kox, vy, + K x, + Ky, + Kg =R, (B.1)

where (x;,y;) values are computed taking the (x,y) as the

origin.

Stacking these equations in the form of AX = B where

X; yi X1Y1 x, y, 1
PR O R Y 2SN O S (B.2)

2 2
Xuw  Yiw  XwowYww  Xww Y L

B:[R1 R, . .. RNXN]T (B.3)

X =[K, K, K; K; Ks Ks]T (B.4)
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one should get a system of linear equations. Solving for X using

the pseudo inverse of the A matrix,
X =(ATA)A'B (B.5)

and computing the peak of the polynomial by taking the derivative
of (B.1) with respect x and y separately and equating those

equations to zero, the following relations are obtained

KK - 2K,K,

« KK, - 2KK,
° T 4KK, - KK,

O AK K, - KK,

and y (B.6)

Hence, the final corner pixel value is (x+x0, y+y0)

145



APPENDIX C

LEVENBERG-MARQUARDT MINIMIZATION
ALGORITHM

The Levenberg-Marquardt (LM) algorithm is an iterative technique
that is used to solve non-linear least squares problems. It has
become a standard technique and used extensively in many
computer vision problems. LM is a combination of steepest
descent and the Gauss-Newton method. By changing a single
parameter, the algorithm swings between these two methods.
When the current estimate of the solution is away from the correct
one, algorithm operates in the steepest descent mode and when
the solution is close to the correct one, it operates in the Gauss-

Newton mode.

Let f be a functional which maps a parameter vector p to an

estimated measurement vector)A<, X = f(p). An initial parameter
vector, p,, and a measurement vector, X, is provided as well, and
it is desired to find the best result, minimizing the squared
distance HeHz with error € = X — X, . LM algorithm approximates
the functional f with a linear function around the current

parameter vector p. For a small |5,

, the Taylor series expansion

of f leads to
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f(p+6,)~F(p)+J5, (C.1)

where J is the Jacobian matrix. LM tries to find the best

parameter vector p+ iteratively. Hence, it is required to find a

H5PH that minimizes the error

b= 1(p 3,2 = x P13, = e - 30

The solution to the minimization of problem of |l¢ - J&,| is
J"(e-1718,)=0 (C.2)

J716,=J"¢ (C.3)
The matrix J'J is an approximation to the second order
derivatives, the Hessian matrix. Instead of solving (C.3), LM
solves a modified version of this equation, denoted as the

augmented normal equations:

(J7J+ s, =", >0 (C.4)

where A is called as the damping term. The update of A s
performed according to the change in error term. If the update
term causes the error to decrease, then the change is accepted
and A term is decreased. On the other hand, if the error
increases, the damping term is increased and (C.4) is solved again
with the new A without accepting any change until the error is
reduced. For the practical use of the LM algorithm, the method by
Laurakis [30] is implemented. The pseudo-code for the algorithm

is:
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Algorithm C.1:

Input: Given a vector function f:R" — R"withn>m, a

measurement vector x e R"and an initial parameters estimate

p, € R™

Output: A vector p* € R"minimizing |x — f(p)||2

k=0;v:=2;p:=p,y;
A=J"Je,=x-f(p);g:=T¢,;
stop := (”g”m Sg)iu=Tmax,  n(A;);
while(not stop) and (k < k.,
k=k+1,
repeat
Solve (A + )5, = g;
if( H5pH S €2||p” )
stop := true;
else
pnew =p+ 5P’
p:=(le,| =[x = F(Prew ) /(5] (1S, + 9));
if p>0
P = Prews
A:=J"J;e,=x-f(p);g=J"¢,;
stop = (|g]_ < &,);

Hi= u*max(% 1-Qp-17)v=2;

else
u:=pu*v,vi=2*y;
endif
endif
until(p > 0) or (stop)
endwhile
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APPENDIX D

SPARSE BUNDLE ADJUSTMENT

This section shows the development of a sparse bundle
adjustment algorithm, which is obtained by using the LM
algorithm presented in Appendix C. The development and the

notation mostly follow the technical report in [41].

Assume that n 3D points are seen in m views and let x; be the

projection of the i point on the j*" image. Bundle adjustment (BA)
is the refinement of a set of initial camera and structure
parameter estimates for finding a set of parameters that
accurately predict the locations of the observed n points in the set
of m available images. Representing the j* camera parameters as

a;, and i"" point as b,, the minimized cost function is the total

reprojection error:

mir_mzid(Q(aj,b,-),x,j)2 (D.1)

n
b i1 73

where Q(a;,b;) is the predicted projection of the i point on the j*

image and d(x,y) represents the Euclidean distance between

inhomogeneous points, denoted by x and y. The projection
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expression Q(a;,b;) is defined general enough to allow any
camera and structure parameterization. If the dimension of a; is

equal to d; and the dimension of b, is equal to d;, then the above

minimization has a total dimension of nd,+md;, which is a quite

large number, even for a moderate sized BA problem.
The formulation of the BA is given as,

A parameter vector containing the whole structure and

motion parameters is represented as:
P=(a,a),.....a., bl ,b)....b} ) (D.2)

and the measurement vector containing all the measured image

coordinates is represented as:

X = (X{ e Xy Xay e X v X X)) (D.3)

Let the initial parameter vector be Py, and for each parameter
estimate, the estimated measurement vector be X. The

relationship between Py and X is given by

X = f(P) (D.4)
with
X = )%1Tll XImI)%leI )%szl """ )%;1/ .)%;'m)r (D.5)

where X, = Q(a;,b,)
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Thus, BA is equal to minimizing the squared error £ where

€ = X — X over P. This minimization problem may be solved using
the LM algorithm in order to iteratively solve the augmented

normal equations:

(J71+ A3, =", A>0 (D.6)

where J is the Jacobian of f and & is the sought update to the P

estimate.

The sparseness of the above problem will be explained by using
n=3 points and m=2 views without losing any generality to keep

the demonstration manageable.

The measurement vector is X = (X{,,X{,,X3,,X3,,X3,,X3,)7 and the

parameter vector becomes P =(a/,al,b/,b;,b]) . Notice that

oX. oX.. oX ;;
Xy _ 0,Vj # kand Xy _ 0,Vi # k. Let A; and B;; denote —% and
9a, ob, da,

X ..
ab’J , respectively. The LM updating vector & can be partitioned

into camera and structure parameters as (5!,6,)" and further as
(65,6L,64,6L,,85,)". Using the outlined notation, the Jacobian

can be calculated as

A, 0 B, 0 O
O A, B, 0 O
X _|Ay 0 0 By 0 (D.7)
P |0 A, O B, O
A, 0 0 0 B,
0 A, O 0 B,]




From (D.7), it is clearly observed that the Jacobian matrix is a
sparse matrix. Substituting this expression into the J'J term in
the left hand side of (D.6),

3
ZAIEAII 0 AIlBll A;-IBZI A37’—1831

i=1

3
0 Z Alg Ai2 AlTZBlZ A;ZBZZ A;—ZB32
i=1

2
JJ=| BLA;  BLA, Y BB 0 0 (D.8)
j=1
2
BleA21 BszAzz 0 ZBZTJ'BZJ' 0
j=1
2
B3TlA31 B3T2A32 0 0 Z B3TJB3J'
- j=1

ijr

3 2
Denoting the Y AfA; , > BB, , and Al,B, by U;, V; and W, the
i=1 j=1

above matrix is equal to

u 0 W, W, W,

0 U W, W, W,
JI1=\W, w., Vv, 0 0 (D.9)

w), w, 0 V, O

W, w, 0 0

Using (D.7), the right hand side of (D.6) can be expanded as
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;
Ai€n

;
AL,

DRI

Bl €, (D.10)

1

.
I

MN

82]82]
1

.
1l

MN

B31831

[
I
fuy

3
Denoting ) Afe, and ZB e, by € a;, and €p, respectively, (D.7)
i=1

can be written as

U, 0 W, W, W |d, €a1
0 u, W, W,, Wi |d,; Ea
WlT1 Wsz v 0 0 [0y | =& (D.11)
W2T1 Wsz 0 Vv, 0 | Jp Epo
_W3T1 W3T2 0 0 Vi || 0ps| | s3]
U o Vl* 0O O
Denoting U' = L)l U*} Vi=l0 V, O and
2 O O V3*
W, W, W

31} where * denotes the augmentation of the
W12 WZZ W32

diagonal elements, allows the augmented normal equation to be

further compacted to
il L (D.12)
w’' v, £,
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The solution of the above equation may be found by left

multiplying the equation with
p— *_1
{I wv } (D.13)

resulting

* *1 T _ *-1
Ut —wvwT 08, ] fe, WV, (D.14)
w’” V', £

From this equation, the first the update term ¢, is found from the
upper equality and then substituting for J,, the value of the ¢, is

found.
U -WVWT)5, =g, -WV g, (D.15)
Vs, =g, -WT'5, (D.16)

The rest of the algorithm is same as the LM algorithm outlined in
Algorithm C.1. The only difference is the calculation of the update

terms. They are calculated using Equations D.15 and D.16.
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APPENDIX E

QUATERNION REPRESENTATION OF THE
ROTATION MATRIX

A quaternion represents a three-dimensional rotation as a four-

component row vector of unit length:

g =|n,sin(@/2) n,sin(6/2) n,sin(8/2) cos(¢/2)|=1[q, q.]
(E.1)

with q] =g [+ g2 =1

This definition uses the axis-angle form of rotation information. In
this form, a rotation is specified by an axis and a rotation angle.

The axis is (n,,n,,n,) and the rotation angle is 6. The rotation is

performed according to the right-hand rule.

The relation between the rotation form and axis angle form is

given as:
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R =exp(6[n],) =I+[n], sin6+[n]:(1 - cos o) (E.2)

where

0 -n, n
[, =|-n, 0 -n, (E.3)
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