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AUGUST 2005



INVARIANT SUBSPACES OF POSITIVE OPERATORS ON RIESZ SPACES

AND OBSERVATIONS ON CD0(K)-SPACES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERT ÇAĞLAR
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Abstract

INVARIANT SUBSPACES OF POSITIVE OPERATORS ON

RIESZ SPACES AND OBSERVATIONS ON CD0(K)-SPACES

Çağlar, Mert

Ph.D., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Zafer ERCAN

August 2005, 29 pages

The present work consists of two main parts. In the first part, invariant subspaces

of positive operators and operator families on locally convex solid Riesz spaces are

examined. The concept of a weakly-quasinilpotent operator on a locally convex solid

Riesz space has been introduced and several results that are known for a single oper-

ator on Banach lattices have been generalized to families of positive or close-to-them

operators on these spaces.

In the second part, the so-called generalized Alexandroff duplicates are studied and

CDΣ,Γ(K,E)-type spaces are investigated. It has then been shown that the space

CDΣ,Γ(K, E) can be represented as the space of E-valued continuous functions on

the generalized Alexandroff duplicate of K.

Keywords: Riesz space, positive operator, weak quasinilpotence, CD0(K)-space,

Alexandroff duplicate.
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Öz

RIESZ UZAYLARI ÜZERİNDEKİ POZİTİF

OPERATÖRLERİN DEĞİŞMEZ ALT-UZAYLARI,

VE CD0(K)-UZAYLARI ÜZERİNE GÖZLEMLER

Çağlar, Mert

Doktora, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Zafer ERCAN

Ağustos 2005, 29 sayfa

Eldeki çalışma iki ana bölümden oluşmaktadır. İlk bölümde lokal konveks katı Riesz

uzayları üzerindeki pozitif operatörler ve operatör ailelerinin değişmez alt-uzayları

incelenmiştir. Lokal konveks katı bir Riesz uzayı üzerinde zayıf-hemen hemen-sıfır-

güçlü operatör kavramı tanıtılmış ve Banach örgüleri üzerinde tanımlı tek bir operatör

için bilinen pek çok sonuç lokal konveks katı Riesz uzayları üzerindeki pozitif ya da

pozitife-benzer operatör ailelerine genelleştirilmiştir.

Çalışmanın ikinci bölümünde genelleştirilmiş Alexandroff kopyaları olarak bilinen

uzaylar çalışılmış ve CDΣ,Γ(K, E)-tipi uzaylar tanıtılmıştır. Ardından CDΣ,Γ(K, E)-

uzayının, K’nın genelleştirilmiş Alexandroff kopyası üzerindeki E-değerli sürekli fonk-

siyonlar uzayı olarak temsil edilebileceği gösterilmiştir.

Anahtar Kelimeler: Riesz uzayı, pozitif operatör, zayıf-hemen hemen-sıfır-güçlülük,

CD0(K)-uzayı, Alexandroff kopyası.
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Chapter 1

Introduction

However simple it may seem, the concept of invariant subspace is of fundamental

importance and ubiqutious. Having its roots in finite-dimensional linear algebra, it

became, since the second quarter of the 20th century, one of the main tools to inves-

tigate and to understand the structure of operators. The general invariant subspace

problem concerns bounded linear operators on complex, infinite-dimensional, separa-

ble Hilbert spaces, which are, up to isomorphism, the space of all square-summable

sequences of complex numbers, and asks whether there exists a subspace that is

mapped to itself by such an operator. It should be noted that there are counterex-

amples to the corresponding problems on Fréchet spaces [10] and on Banach spaces

[16]. Despite the ground-breaking results such as that of V.I. Lomonosov [23] and

P. Enflo [16], which provided new directions, several reformulations of the invariant

subspace problem look quite different from the original problem and make it one

extremely difficult to settle properly. Indeed, it is almost impossible today to even

mention the most significant results in this area due to the vast literature with oodles

of different directions dedicated to it.

The picture that emerges for ordered normed spaces and Banach lattices is still

not tenable, but allows one to have clearer insights and thoroughness when compared

to the situation revealed in Hilbert and Banach spaces. It is the strong interest and

accumulated work of Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw on the

problem [1-4] that has brought to the mathematical community’s attention the extra

information and facilities gained by the natural order properties that the classical

spaces of functional analysis have.
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The main goal of the present thesis, which consists of two main parts, is twofold:

The first one is about the invariant subspace problem and it is aimed to extend

some results, chosen on an ad hoc basis from the work originally obtained in the

setting of positive operators on Banach lattices by numerous authors, to those for

positive or close-to-them operators or operator families on locally convex solid Riesz

spaces. Chapter two deals with the presentation of the invariant subspace problem

with a brief historical background and contains the classical theorem of Lomonosov

along with its basic consequences.

The purpose of Chapter three is to give the main results of this part of thesis.

Therein, several results that are known for a single operator on Banach lattices have

been generalized to families of positive or close-to-them operators or operator families.

The second goal of the thesis is to present the so-called Alexandroff duplicates

and to investigate CDΣ,Γ(K, E)-type spaces, and then to develop a representation

theorem for the space CDΣ,Γ(K, E) as the space of E-valued continuous functions on

the generalized Alexandroff duplicate of K, which is achieved in Chapter four.
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Chapter 2

The invariant subspace problem

2.1 Statement of the problem and some historical

background

From now on, the term “operator” will always mean a “linear operator” (i.e., T (αx+

βy) = αT (x) + βT (y) for all x, y in the domain of T and all α, β ∈ R or C). For

an arbitrary pair of Banach spaces X and Y , the symbol L(X, Y ) will denote the

vector space of all continuous operators from X into Y . We shall write L(X) instead

of L(X, X). In case where Y = R, L(X, Y ) is called the norm dual of X and will be

denoted by X∗.

Let T : X → X be an operator on a Banach space X. A subspace V of X is

called T -invariant if T (V ) ⊆ V . If V is S-invariant under every continuous operator

S which commutes with T (i.e., ST = TS), then V is called T -hyperinvariant. A

vector subspace is non-trivial if it is different from {0} and X. The invariant subspace

problem is the following question:

Does there exist a non-trivial closed T -invariant subspace V ⊆ X for the

continuous linear operator T on X?

This question arises naturally from the theory of eigenvectors in finite-dimensional

spaces. Recall that an eigenvalue of an operator T is a number λ such that there

exists an element x0 6= 0 with the property that Tx0 = λx0. An element x for which

the equation Tx = λx holds is called an eigenvector corresponding to the given

3



eigenvalue λ. The set

Nλ = {x ∈ X | Tx = λx}

is called the eigenspace corresponding to the eigenvalue λ. If x is an eigenvector, of

course, V = {λx | λ ∈ C} is T -invariant. But there exist operators with no eigenval-

ues in infinite-dimensional spaces [10]. So, some other concept has to be substituted

for it, and the concept of a non-trivial invariant subspace is the broadest and the

most natural one.

If X is a finite-dimensional complex Banach space of dimension greater than one,

provided that T is not a multiple of the identity operator I, Nλ is a non-trivial

closed T -hyperinvariant subspace. Indeed, this subspace is clearly closed and non-

trivial since T 6= λI; and for each x ∈ Nλ and S in the commutant1 of T , we have

TSx = STx = S(λx) = λSx, so that Sx ∈ Nλ. Hence, every non-zero operator T

on a finite-dimensional complex Banach space X of dimension greater than one has

a non-trivial, closed, hyperinvariant subspace.

If X is non-separable, then the subspace

Vx = span
{
x, Tx, T 2x, . . .

}
for a fixed point 0 6= x ∈ X is a non-trivial closed T -invariant subspace. Thus, the

invariant subspace problem is of substance only when X is an infinite-dimensional,

separable Banach space.

A similar concept occurs for the hyperinvariant subspaces: instead of taking the

iterates of T , we take all operators commuting with T , and define

Gx = span {Ax | A commutes with T} .

Then, Gx is a non-trivial, closed, T -hyperinvariant subspace.

We will mention now some milestones in the theory of invariant subspaces.

The first result about the existence of an invariant subspace is the one proved in

1935 by J. von Neumann [21]. He proved that every compact operator on a Hilbert

space has a non-trivial, closed, invariant subspace. This result of J. von Neumann

was published in a paper by N. Aronszajn and K.T. Smith [4].

1The commutant of a continuous operator T : X → X on a Banach space is the set of all

continuous operators on X which commute with T .
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In 1947, Godement [19] has proved that for certain classes of operators T , there

exist invariant subspaces having an additional property: these subspaces are invariant

for all operators commuting with T ; that is, those which are called hyperinvariant

subspaces in today’s terminology.

Although the general operator remains a mystery in Hilbert spaces, one can say

quite a bit about the invariant subspaces of a handful of specific operators, and results

of this nature are often connected with interesting theorems in analysis. This was

first realized in 1947 by A. Beurling [26], who gave a complete classification of the

invariant subspaces of the unilateral shift operator; that is, the operator on l2 defined

by (c0, c1, c2, . . .) 7→ (0, c1, c2, . . .).

J. Wermer [19] was the first who, in 1952, opening the way towards the results

about the invariant subspaces of the quasinilpotent operators2, obtained a theorem

about the existence of invariant subspaces for a class of operators T for which ‖T n‖
has a special growth.

In 1954, N. Aronszajn and K.T. Smith [4] proved that compact operators on

infinite-dimensional Banach spaces have non-trivial invariant subspaces. This result

was the generalization of J. von Neumann’s theorem to Banach spaces.

An interesting contribution to the invariant subspace problem was made in 1966

by A.R. Bernstein and A. Robinson [11], who used non-standard analysis to prove the

following result: if T is a bounded operator on a Banach space and p(T ) is compact

for some non-zero polynomial p, then T has an invariant subspace.

In 1968, W. Arveson and J. Feldman [19] have proved that if T is a quasinilpotent

operator and the closed algebra generated by T and the identity operator I contains

a non-zero compact operator, then T has an invariant subspace.

The most powerful contribution to the invariant subspace problem which as-

tounded the mathematical world came in 1973 from V.I. Lomonosov [23], who in-

troduced an elegant technique which enabled him to solve some hard problems in the

theory that pertain to compact operators. He proved that a non-zero compact opera-

tor on a Banach space has hyperinvariant subspaces. We will deal with Lomonosov’s

theorem and its basic consequences in detail in the next section.

2See Definition 3.1.1.
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Until the middle of the 1970’s, the invariant subspace problem was phrased more

stronger than our formulation above: it asked whether every continuous linear opera-

tor on a (separable) Banach space has a non-trivial invariant subspace. This question

solved negatively in 1976 by P. Enflo [16], who constructed an example of a contin-

uous operator on a Banach space without a non-trivial closed invariant subspace.

Due to his counterexample, the invariant subspace problem for operators on Banach

spaces has been confined to the search for various classes of operators for which one

can guarantee the existence of an invariant subspace.

An important consequence of Lomonosov’s theorem states that every operator T

which commutes with an operator different than the identity operator which com-

mutes with a non-zero compact operator has invariant subspaces. The question comes

naturally to know whether there are operators which are not of this type. In other

words, does the Lomonosov’s theorem and, of course, that consequence solve the in-

variant subspace problem? We know now that this cannot be true in general, since

P. Enflo solved it negatively. Moreover, it is still not known how large is the class of

operators to which Lomonosov’s theorem applies. In 1980, D. Hadvin-E. Nordgren-H.

Radjavi-P. Rosenthal [10] produced an example of an operator to which Lomonosov’s

theorem does not apply; that is, which is not in the “bicommutant” (i.e., the commu-

tant of the commutant) of the compact operators. This operator is a weighted shift

on l2.

In 1985, C.J. Read [27] gave an example of a continuous operator on l1 without a

non-trivial, closed, invariant subspace.

A positive linear operator T from a Banach lattice E into itself is said to be ideal

irreducible if there exists no non-trivial closed T -invariant ideal. In 1986, de Pagter

[25] proved that every compact quasinilpotent positive operator on a Banach lattice

has a non-trivial, closed, invariant ideal. As an immediate consequence of this result,

de Pagter [24] obtained a remarkable Andô-Krieger type of result which says that

every ideal irreducible compact positive operator on a Banach lattice has positive

spectral radius.

In 1995, Y.A. Abramovich, C.D. Aliprantis and O. Burkinshaw [4] presented their

survey which described some recent results for positive and close-to-them operators

on Banach lattices. Therein, they showed that an extensive use of the theory of
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operators on Banach lattices and of their order structure is very helpful in dealing

with the invariant subspace problem.

A collection S of bounded operators on a Banach space is said to be a multiplicative

semigroup, if for each S, T ∈ S, the operator ST also belongs to S. An algebra of

operators in which every operator is compact and quasinilpotent is called a Volterra

algebra. There are a few major recent generalizations of Lomonosov’s theorem to

algebras and semigroups. A very important breakthrough was obtained in 1984 by

V.S. Shulman [28], who proved that each non-zero Volterra algebra has a non-trivial,

closed, hyperinvariant subspace. It took more than a decade to generalize this result

to Volterra semigroups of operators. This deep and significant contribution has been

done in 1999 by Y.V. Turovskii [31], who proved that each non-zero multiplicative

Volterra semigroup has a non-trivial, closed, hyperinvariant subspace.

2.2 Lomonosov’s Theorem

Lomonosov’s theorem is one of the most important contributions to the invariant

subspace problem. We present here its original form. Recall that an operator T ∈
L(X, Y ) between two normed spaces is said to be compact if T (U) is compact in Y ,

where U is the open unit ball in X.

Theorem 2.2.1 (Lomonosov [23]). Let T be a non-zero, compact operator on an

infinite-dimensional complex Banach space X. Then T has a non-trivial, closed,

hyperinvariant subspace.

Proof. The proof is by contradiction; suppose that the assertion of the theorem is

false. In particular, this means that T lacks eigenvectors.

Take a point x1 such that Tx1 6= 0, and take x0 = λx1 for λ large enough, to get

inf {‖Tx‖ | x ∈ B(x0, 1)} > 0,

where B(x0, 1) denotes the closed unit ball with center x0. We write B for B(x0, 1).

Let R be the algebra of all operators which commute with T . We will show that

there is a point y0 ∈ X, y0 6= 0, such that

‖T ′y0 − x0‖ ≥ 1, ∀T ′ ∈ R. (2.1)
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This proves the theorem: indeed, let F = span {T ′y0 | T ′ ∈ R}. Then, F is an

hyperinvariant subspace for T , and since it does not intersect the interior of B, it

cannot be the whole space. So, all we have to do is to prove (2.1).

Assume conversely that

∀y 6= 0, ∃T ′ ∈ R, with ‖T ′y − x0‖ < 1.

Since TB is compact, we can find a finite number of operators T ′
1, . . . , T

′
n in R

such that, for all y ∈ TB, there exists an i (1 ≤ i ≤ n) with ‖T ′
iy − x0‖ < 1.

Set f(t) = 1− t if 0 ≤ t ≤ 1, 0 if not, and let Φ : TB → E be defined by

Φ(y) =

∑n
i=1 f(‖T ′

iy − x0‖)T ′
iy∑n

i=1 f(‖T ′
iy − x0‖

.

This is a continuous function on the compact TB, so its image is compact. This image

is a convex combination of those of the T ′
iy which belong to the ball B, therefore it

is contained in this ball.

So Φ◦T is a continuous function from B onto a relatively compact subset contained

in B. Set K = con(Φ ◦ T (B)), (where “con” is the convex hull). Then K is convex,

compact, and Φ ◦ T is continuous from K into K, and so has a fixed point x by

Schauder’s fixed point theorem [14]. This implies

n∑
i=1

αiT
′
iTx = x,

where

αi =
f(‖T ′

iTx− x0‖)∑n
j=1 f(

∥∥T ′
jTx− x0

∥∥)
.

We now look at the set

G =

{
z ∈ E |

n∑
i=1

αiT
′
iTz = z

}
.

This is a vector subspace, not reduced to {0} since it contains x, and of finite-

dimension since
∑n

1 αiT
′
iT is compact, and invariant by T . So, T has an eigenvalue,

which contradicts our assumption, and proves (2.1). The proof of the theorem is now

complete.
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As pointed out by Lomonosov, a slight variation of this technique shows that an

even larger class of operators have hyperinvariant subspaces.

Theorem 2.2.2 (Lomonosov [23]). If T is not a multiple of the identity on a complex

Banach space and if it commutes with a non-zero compact operator S, then T has

hyperinvariant subspaces.

Proof. In the previous argument, just replace TB by SB, Φ ◦ T by Φ ◦ S, and G

becomes

G =

{
z ∈ E |

n∑
i=1

αiT
′
iSz = z

}
,

which is still invariant under T since T commutes with S and the operators T ′
i .

Let us point out the following special case of Theorem 2.2.2.

Corollary 2.2.3. Let S, T be commuting operators on a complex Banach space such

that S commutes with a non-zero compact operator, and is not a multiple of the

identity. Then T has a non-trivial, closed, invariant subspace.

As a rather special case of this corollary, one obtains the theorem of N. Aronszajn

and K.T. Smith mentioned in the previous section.

Corollary 2.2.4. Every compact operator on an infinite-dimensional complex Ba-

nach space has a non-trivial invariant subspace.

An extension of this result, first proved by A.R. Bernstein and A. Robinson, needs

only a little work.

Corollary 2.2.5. Let X be an infinite-dimensional complex Banach space and let

T be a continuous operator on X such that p(T ) is a compact operator on X for

some non-zero complex polynomial p(z). Then T has a non-trivial, closed, invariant

subspace.

Proof. Let

p(z) =
n∑

k=0

akz
k, with an 6= 0.

If p(T ) 6= 0, then, as Tp(T ) = p(T )T , the assertion follows from Theorem 2.2.1.

9



If, on the other hand, p(T ) = 0, then anT
n = −

∑n−1
k=0 akT

k, and so

Vx = span
{
x, Tx, T 2x, . . .

}
is a T -invariant, closed subspace for every x 6= 0.
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Chapter 3

Invariant subspaces for positive

operators on locally solid riesz

spaces

The fundamental theorem of Lomonosov and its basic consequences mentioned in the

previous chapter are, alas, valid for compact operators on Banach spaces. It is of

special interest to what extend these type of results can be generalized to positive

operators on locally convex solid Riesz spaces and it is the purpose of this chapter to

extend several known results for a single operator on a Banach lattice to families of

positive or close-to-them operators on locally convex solid Riesz spaces. We refer to

[1] and [8] for the whole standard terminology and detailed information about locally

convex solid Riesz spaces, respectively.

3.1 Operator families

While studying the invariant subspace problem for positive operators extensively, the

concept of an x0-quasinilpotent operator on a Banach lattice, which was introduced

in [2], played a primary role in the work of Y.A. Abramovich, C.D. Aliprantis and O.

Burkinshaw [1-3]. This fact reads as follows.

Definition 3.1.1. An operator T on a Banach space X is said to be quasinilpotent

at a non-zero x0 if limn→∞ ‖T n(x0)‖1/n = 0.

11



It has been proved in [18] that if T is a bounded operator on a Banach space

X and x0 is a nonzero element of X, one has limn→∞ ‖T n(x0)‖1/n = 0 if and only

if limn→∞ |f ◦ T n(x0)|1/n = 0 for each f ∈ X∗, where X∗ denotes the norm dual of

X. This result enables one to introduce the following slightly more general concept

which is useful in connection with the invariant subspace problem for operators on

locally convex solid Riesz spaces.

Definition 3.1.2. A non-empty set M of non-zero linear operators on a topological

vector space X is called weakly quasinilpotent at x0 ∈ X (or, weakly x0-quasinilpotent)

if limn→∞ |f ◦Mn(x0)|1/n = 0 for each positive functional f ∈ X
′
, where

|f ◦Mn(x0)| := sup{|f ◦M1 ◦M2 ◦ · · · ◦Mn(x0)| | Mi ∈M, i = 1, 2, . . . , n}

and X
′
denotes the topological dual of X, i.e., the set of all continuous functions with

respect to the linear topology of X.

Generalizing the main result of [2] using weak quasinilpotence defined above con-

stitutes the subject matter of this section.

We shall write X+ for the set {x ∈ X | 0 ≤ x} for a space X ordered with the

partial order “ ≤ ”. An element x of an Archimedean Riesz space X is called an atom

(or, discrete) if the vector subspace generated by x is the (order-) ideal generated by

the same element. An Archimedean vector lattice X is called discrete if the band

generated by the atoms of X is X. It is well-known that an Archimedean vector lattice

X is discrete if and only if it is Riesz isomorphic to an order dense Riesz subspace of

some Riesz space of the form RI , where I denotes an index set. The commutant M′

of a set M of operators on a Riesz space X is the set of all continuous operators T

on X satisfying TM = MT for all M ∈M.

Throughout the rest of the section, X will denote a discrete Archimedean locally

convex solid Riesz space with dim(X) > 1, and x0 will denote a non-zero element of

X+. The proof of the following theorem is based on the proof of the main theorem of

[2].

Theorem 3.1.3. If M is a weakly x0-quasinilpotent set of non-zero continuous pos-

itive operators on X, then M has a common non-trivial, closed, invariant ideal.

Proof. One can suppose that X is an order dense Riesz subspace of RI for some non-

empty set I. Since X is order dense in RI , for each i ∈ I, the characteristic function
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χ{i} of {i} is in X. One may choose j ∈ I so that y = kχ{j} ≤ x0 for some non-zero

positive real number k. Moreover, one might suppose that k = 1 (otherwise, x0 can

be replaced by 1
k
x0). Let P : X → X be defined by P ((xi)i∈I) = xjy. Then, P is

continuous. Now, the following two mutually exclusive cases can be identified:

(i) If S(x0) 6= 0 for some S ∈ M, then for any T1, T2, . . . , Tm ∈ M one has

P ◦ T1, T2 . . . Tm ◦ S(y) = 0. Indeed, for any combination T1T2 . . . Tm, there exist

0 ≤ α and f ∈ X
′
+ such that P ◦ (T1T2 . . . Tm) ◦ S(y) = αy and f(y) = 1. Then, we

have

0 ≤ αny = (P ◦ (T1T2 . . . Tm) ◦ S)n(y) ≤ ((T1T2 . . . Tm) ◦ S)n(y).

This gives

0 ≤ αn = αnf(y) ≤ f ◦Mn(m+1)(y),

which implies that α ≤
∣∣f ◦Mn(m+1)(y)

∣∣1/n → 0 as n → ∞. Hence α = 0, that

is, P ◦ (T1T2 . . . Tm) ◦ S(y) = 0. We claim that, for any combination T1T2 . . . Tn,

the ideal generated by 〈{T1T2 . . . TnSy | n ∈ N, T1T2 . . . Tn ∈Mn}〉 is the required

invariant subspace, where

Mi = {T1 ◦ T2 ◦ · · · ◦ Ti | Tk ∈M, 1 ≤ k ≤ n}

Since S(x0) ∈ J, it follows that J 6= {0}. It remains only to show that J 6= X. To

see this, observe that J lies inside Ker(P ) and P (x) = 0 for each x ∈ J , so f(x) = 0.

Thus f(J) = {0}. As f 6= 0, we have that J is non-trivial.

(ii) If S(x0) = 0 for each S ∈M, then the closure of the ideal generated by x0 is

the required invariant subspace. This completes the proof.

Theorem 3.1.4. Let M be a set of non-zero continuous positive operators on X with

lim
n→∞

|f ◦Mn(x0)|1/n = 0

for each f ∈ X
′
and T be a continuous operator on X. If |T | ∈ M exists and |T | ∈

M′
+, then T has a non-trivial, closed, invariant ideal.

Proof. If S(x0) = 0 for each S ∈ M, then the closure of the ideal generated by

{|T |i (x0) | i ∈ N} is a non-trivial closed invariant ideal for T. If, on the other hand,
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0 < S(x0) for some S ∈ M, then as |T | ∈ M, by a similar argument to that of

Theorem 3.1.3, the weak x0-quasinilpotence of M implies that |f |T |n Sny|n → 0 as

n → ∞. Then {|T |i S(x0) | i = 0, 1, . . .} is the required invariant ideal of T and the

proof is complete.

The following theorem generalizes the main theorem of [2].

Theorem 3.1.5. Let M be a non-empty subset of non-zero continuous positive op-

erators on X and T be a continuous operator on X with module |T | . If |T | ∈ M′
and

Mi := {|T |i ◦M | M ∈M} is weakly x0-quasinilpotent for each i = 0, 1, . . . , then T

has a non-trivial, closed, invariant ideal.

Proof. The non-trivial invariant subspace J for T can be chosen as

J =

{
x ∈ X | |x| ≤ α

n∑
i=0

|T |i ◦ S(x0) for some α and n

}

if 0 < S(x0) for some S ∈M, and

J =

{
x ∈ X | |x| ≤ α

n∑
i=1

|T |i (x0) for some α and n

}

if S(x0) = 0 for each S ∈M, and the proof is complete.

Corollary 3.1.6 (Abramovich-Aliprantis-Burkinshaw [2]). Let X be a discrete Ba-

nach lattice with order continuous norm, S and T be non-zero operators on X such

that 0 ≤ S, the module |T | exists and S is quasinilpotent at x0. If |T |S = S |T |, then

T has a non-trivial, closed, invariant ideal.

Proof. The set Mi = {|T |i ◦ Sm | m ∈ N} is weakly x0-quasinilpotent for each

i = 0, 1, . . . . Then, by the previous theorem, T has a non-trivial, closed, invariant

ideal.

Let E be an Archimedean Riesz space such that the order dual E∼ separates the

points of E. Let us call a subset M of non-zero order continuous operators on E

order x0-quasinilpotent if limn→∞ |f ◦Mn(x)|1/n for each f ∈ E∼, where

|f ◦Mn(x)| := sup{|f ◦M1 ◦M2 ◦ · · · ◦Mn(x)| | Mi ∈M, 1 ≤ i ≤ n}.
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We can now formulate the following result for order continuous operators on E in the

light of the above-mentioned concept. Its proof is rather similar to those of Theorem

3.1.3 and Theorem 3.1.4.

Theorem 3.1.7. Let E be an Archimedean discrete Riesz space, M be an order x0-

quasinilpotent subset of non-zero positive order continuous operators on E, and T be

an order continuous positive operator on E. Then,

(i) M has a common non-trivial, order closed invariant ideal;

(ii) If |T | ∈ M, then T has a non-trivial, order closed invariant ideal if S |T | = |T |S
for all S ∈M and

lim
n→∞

|f ◦Mn(x0)|1/n = 0

for each f ∈ E∼.

3.1.1 Spaces with a Markushevich basis

Some of the results on the existence of invariant subspaces of positive operators on

Banach lattices can be extended to Banach spaces ordered by the cone generated by

a basis and this idea was first used in [3]. Among many kind of bases on a Banach

space, the so-called Markushevich bases can be viewed as a generalization of the

classical Schauder bases.

A sequence (xn, fn)n∈N in X×X
′
, where X is a Hausdorff topological vector space

with topological dual X
′
, is called a Markushevich basis ; if the span of (xn)n∈N is dense

in X, fn(xn) = 1 and fn(xm) = 0 for n 6= m, and (fn)n∈N separates the points of X. It

is obvious that any Schauder basis for a Banach space is a Markushevich basis. Also,

it is well-known that a Hausdorff topological vector space X has a Markushevich basis

whenever (X, σ(X, X∗)) and (X∗, σ(X∗, X)) are separable, and that each separable

and metrizable locally convex space has a Markushevich basis [20, 29]. The following

theorem generalizes the main result of [18] to families of positive operators on locally

convex solid Riesz spaces..

Theorem 3.1.8. Let X be a discrete, Archimedean locally convex solid Riesz space

with a Markushevich basis (xn, fn), and x0 be a positive vector of X. If T ∈ L(X) is

a non-zero, continuous, positive operator and A is a subalgebra generated by a subset
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B of L+(X) consisting of non-zero, continuous, positive operators such that T ∈ A′

(i.e., AT = TA for all A ∈ A) and AT is weakly x0-quasinilpotent, then T has a

non-trivial, closed, invariant subspace.

Proof. Since x0 > 0, there exists a j such that fj(x0) > 0. Assume, by an appropri-

ate scaling, that fj(x0) > 1. This implies that x0 − xj ≥ 0. Indeed, if i 6= j, then

fi(x0 − xj) = fi(x0) ≥ 0; and if i = j, then fj(x0 − xj) = fi(x0) − 1 ≥ 0, i.e.,

fi(x0 − xj) ≥ 0 for each i.

(i) If B(xj) = 0, i.e., A(xj) = 0 for each A ∈ A, then⋂
A∈A

{x ∈ X | Ax = 0}

is a non-trivial closed subspace of X which is T -invariant.

(ii) If B(xj) > 0, i.e., A(xj) > 0 for some A ∈ A, then consider the projection

P on X defined by P (x) = fj(x)xj. Clearly, one has 0 ≤ P ≤ I. We claim that

PTmB(xj) = 0 holds for each m ∈ N ∪ {0}. Indeed, assume that PTmB(xj) = αxj

for some α ≥ 0. Then, from the inequalities

0 ≤ αnxj = (PTmB)n(xj) ≤ (TmB)n(xj) = TmnBn(xj) ≤ TmnBn(x0)

it follows that 0 ≤ α ≤ fj(T
mnBn(x0))

1/n → 0 as n → ∞, so, α = fjT
mB(xj) = 0.

Let

V :=

〈 ⋃
A∈A

{TmA(xj) | m ∈ N ∪ {0}}

〉
.

Then, one obtains B(xj) ∈ V 6= {0}. Since PTmB(xj) = 0 for each m ∈ N ∪ {0}
and fj(xj) = 1, one has xj /∈ V . As V is T -invariant, V is the required T -invariant

subspace.

Corollary 3.1.9. If |T | exists, |T | ∈ A′
and Ai := {|T |i ◦ A | A ∈ A} is weakly

x0-quasinilpotent for each i ∈ N ∪ {0}, then T has a non-trivial, closed, invariant

ideal.
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3.2 Operators on complexified spaces

Y.A. Abramovich, C.D. Aliprantis, G. Sirotkin and V.G. Troitsky presented in [5]

some open problems and conjectures associated with the invariant subspace problem.

Therein, they observe that the case of real Banach spaces, when considered for the

search for invariant subspaces, has almost no connection with that of the complex

case. Their paper deals in detail with three conjectures on the invariant subspaces

for operators on Banach spaces, the last of which (“Conjecture 3”) is for the com-

plexification operator TC : XC → XC defined by TC(x + iy) = Tx + iTy, which is the

natural continuous linear extension of the operator T : X → X on a Banach space

X, where XC denotes the complexification of X via

XC := X ⊕ iX = {x + iy | x, y ∈ X}

equipped with the norm ||x + iy|| = supϕ∈[0,2π] ||x cos ϕ + y sin ϕ||. The conjecture

asserts that TC has no non-trivial closed invariant subspaces provided that T is an

operator without non-trivial invariant subspaces on a separable, real Banach space

X.

3.2.1 Problems related to “Conjecture 3”

An invariant closed subspace V of XC is said to be minimal, if it follows from U ⊆ V

and U a TC-invariant subspace of XC that either U = {0} or U = V. The authors

examine a problem (“Problem I”) related to the above-mentioned conjecture, namely,

whether TC has a minimal non-zero closed invariant subspace whenever T has no non-

trivial, closed invariant subspaces. Provided that such an invariant subspace exists,

some properties of this subspace are given and it is shown that Conjecture 3 fails to

be true under some occurrences.

We observe that the properties mentioned for the TC-invariant subspace W of XC

in Problem I remain also true for order bounded operators on a Riesz space E on

which a complete linear topology τ having a countable neighborhood base at θ is

defined, and that the conclusion on the failure of Conjecture 3 still holds true in that

case. Before giving this result, recall that the complexification EC of a Riesz space
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E is the additive group E × E with the scalar multiplication

(α + iβ)(x, y) = (αx− βy, αy + βx)

for all α, β ∈ R and x, y ∈ E, where, having identified x ∈ E with (x, 0) and ix with

(0, x) in E × E, x + iy is written instead of (x, y). For detailed information about

complex Riesz spaces, we refer to [24].

Lemma 3.2.1. Let (E, τ) be a τ -complete Riesz space such that the linear topology

τ has a countable neighborhood base at θ, T : E → E be an order bounded operator

without a non-trivial order- (or, uniformly-) closed invariant subspace, and W be an

invariant subspace of TC. Then, the following are satisfied:

(1) The vector subspace W is infinite-dimensional.

(2) If z = x + iy ∈ W and either x = 0 or y = 0, then z = 0.

(3) If x ∈ E, then there exists at most one y ∈ E such that x + iy ∈ W . If

z = x + iy ∈ W , then this unique y will be denoted by Sx, that is, y = Sx and

x + iSx ∈ W .

(4) Define the following vector subspace of E:

∆ = {x ∈ E | ∃y ∈ E such that x + iy ∈ W}.

Then the mapping S : ∆ → E is a linear operator with range ∆. Moreover,

S2 = −I∆ on ∆ (and so, the operator S : ∆ → ∆ is invertible).

(5) The subspace ∆ is T -invariant, and S and T commute on ∆. In particular, ∆

is dense in E.

(6) The invertible operator S : ∆ → ∆ is a closed operator.

(7) The operator S : ∆ → ∆ is continuous and ∆ = E.

Proof. (1) Assume by way of contradiction that W is finite-dimensional. Pick a basis

{z1, z2, . . . , zn} for W and let zk = xk + iyk for each 1 ≤ k ≤ n. If F is the finite-

dimensional subspace in E generated by {x1, . . . , xn, y1, . . . , yn}, then F is a non-zero

(and hence non-trivial, since E is infinite-dimensional) closed T -invariant subspace

of E, which is a contradiction. Thus, W is infinite-dimensional.
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(2) Let V := {y ∈ E | 0 + iy ∈ W}. Clearly, V is a closed subspace of E which

is also T -invariant. Indeed, notice that we have 0 + iTy = TC(0 + iy) ∈ W for each

y ∈ V , and so Ty ∈ V . To see that V = {0}, assume, on the contrary, that V 6= {0}.
Then, since T does not have any non-trivial closed invariant subspaces, V = X. This

implies that for each x ∈ X, we have x + i0 = −i(0 + ix) ∈ W. In particular, for each

z = x + iy ∈ EC, we have z = (x + i0) + (0 + iy) ∈ W, and so W = EC, which is a

contradiction. Therefore, V = {0}, and the assertion follows.

(3) If x + iy and x + iy1 are elements of W , then

0 + i(y − y1) = (x + iy)− (x + iy1) ∈ W,

and so, by part (2), we must have y = y1.

(4) The linearity of the mapping S : ∆ → E follows immediately from the

definition of addition and scalar multiplication:

(x1 + iSx1) + (x2 + iSx2) = (x1 + x2) + i(Sx1 + Sx2)

α(x1 + iSx1) = αx1 + i(αSx2).

Now, for each x ∈ ∆, we have Sx + i(−x) = −i(x + iSx) ∈ W. This implies that

Sx ∈ W and that S2x = −x for each x ∈ ∆.

(5) If x ∈ ∆, then x + iSx ∈ W, and from the TC-invariance of W , we get

Tx + iT (Sx) ∈ W. This implies that Tx ∈ ∆ and that TSx = STx. Therefore, ∆ is

T -invariant and S and T commute on ∆. Since ∆ 6= {0}, and T has no non-trivial

invariant subspaces, it follows that ∆ is dense in E.

(6) If ((xn, Sxn))n∈N is an order- (or, uniformly-) closed sequence in E × E such

that (xn, Sxn) → (x, y), then, xn + iSxn → x + iy in EC, and so, from the closedness

of W , we infer that x + iy ∈ W. This implies that x ∈ ∆ and y = Sx. Therefore, the

operator S : ∆ → ∆ is closed.

(7) As (E, τ) is τ -complete, the map (u, v) 7→ u ∨ v is uniformly continuous. So,

by [7, Thm. 2.17, p. 55], τ is a locally solid linear topology. Since τ has a countable

neighborhood base at θ, it is metrizable [7, Thm. 2.1, p. 50]. Thus, by [15, Cor. 3,

p. 94], S : ∆ → ∆ is continuous. Then S, as an operator from ∆ to E, is uniformly

continuous, so it has a continuous linear extension [7, Thm. 2.6, p. 52] S1 : E → E,

since ∆ = E. Pick a sequence (an)n∈N ⊆ ∆ such that xn
τ→ x, and note that the
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sequence (xn + iSxn)n∈N ⊆ W satisfies (xn + iSxn)
τ→ x + iS1x in EC. This implies

that x + iS1x ∈ W, and so x ∈ ∆. Therefore, ∆ = E.

We are now in a position to state the following theorems.

Theorem 3.2.2. The operator TC : W → W has no non-trivial closed invariant

subspaces, that is, W is a minimal closed invariant subspace of TC.

Proof. Since S is continuous, it follows from Lemma 3.3.1 (7) that

W = {x + iSx | x ∈ E}.

Now, assume that a non-zero closed subspace W1 of W is TC-invariant. By Lemma

3.3.1 (5), there is a dense vector subspace ∆1 of E and a linear operator S1 : ∆1 → ∆1

such that W1 = {x + iS1x | x ∈ ∆1}. It follows that S1x = Sx for each x ∈ ∆1. This

implies that S1 : ∆1 → ∆1 is continuous, and as in Lemma 3.3.1 (7), we must have

∆1 = E. Therefore, one has W1 = {x+ iSx | x ∈ E} = W , and so W is minimal.

Theorem 3.2.3. Conjecture 3 is false if and only if there exists a closed operator

S : ∆ → ∆ that commutes1 with T and satisfies S2 = −I.

Proof. The “only if” part follows from the above discussion. Now, assume the ex-

istence of the operator S : ∆ → ∆ with the above properties. Since S is closed, it

follows that W := {x + iSx | x ∈ ∆} is a non-zero closed vector subspace of EC that

is different than EC. Now, note that W is TC-invariant.

1An operator S : V → V, where V is a vector subspace of X, is said to commute with T, if V is

T -invariant and ST = TS holds true on V.
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Chapter 4

Generalized alexandroff

duplicates and CD0(K)-type

spaces

Te purpose of this chapter, whose main results are presented in [13], is to define

and investigate CDΣ,Γ(K, E)-type spaces, which generalize CD0-type Banach lattices

introduced in [6]. We state that the space CDΣ,Γ(K, E) can be represented as the

space of E-valued continuous functions on the generalized Alexandroff duplicate of

K. As a corollary, we obtain the main result of [17] and [30].

4.1 Introduction

Throughout this chapter, E will denote a Banach lattice and Ω, Σ and Γ will stand

for topologies on K, where Σ is compact, Γ is locally compact with Σ ⊂ Γ. These

spaces will be denoted by KΩ, KΣ and KΓ, respectively. The closure of a subset A

of KΩ will be denoted by clΩ(A). As usual, the space of E-valued KΩ-continuous

functions will be denoted by C(KΩ, E), or by C(K, E) if there is no possibility of

ambiguity. C0(KΩ, E) denotes the space of E-valued KΩ-continuous functions d on

K such that for each ε > 0, there exists a compact set M with ||d(k)|| ≤ ε for each

k ∈ K\M . We shall write C(KΩ) for C(KΩ, R) and C0(KΓ) for C0(KΩ, R). If KΣ

has no isolated points and KΓ is discrete, then C(KΣ, E) ∩ C0(KΣ, E) = {0}, and

CD0(KΣ, E) = C(KΣ, E)⊕C0(KΣ, E) is a Banach lattice under the pointwise order
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and supremum norm. We refer to [6], [9] and [17] for more details on these spaces.

CDΣ,Γ(K,E) will denote the vector space C(KΣ, E)×C0(KΣ, E), which is equipped

with the coordinatewise algebraic operations. It is easy to see that CDΣ,Γ(K, E) is a

Banach lattice with respect to the order

0 ≤ (f, d) ⇐⇒ 0 ≤ f(k) and 0 ≤ f(k) + d(k) for each k ∈ K

and the norm

||(f, d)|| = max{||f ||, ||f + d||},

where ||.|| is the supremum norm. If KΣ has no isolated points and KΓ is discrete,

then it is easy to see that CD0(KΣ, E) and CDΣ,Γ(K, E) are isometrically Riesz

isomorphic spaces.

Let K × {0, 1} be topologized by the open base A = A1 ∪ A2, where

A1 = {H × {1} | H is Γ-open}

and

A2 = {G× {0, 1} −M × {1} | G is Σ-open, M is Γ-compact}.

Let us denote this topological space by KΣ,Γ⊗{0, 1}, which is called the generalized

Alexandroff duplicate (in case Γ has the discrete topology, we will denote this space

by A(K)). The space A(K) has been constructed by R. Engelking [15] and it has

been generalized to arbitrary locally compact Hausdorff spaces in [12]. It is known

that KΣ,Γ ⊗ {0, 1} is a compact Hausdorff space [15, 22]. The space A([0, 1]), where

[0, 1] has the usual topology, has been constructed by P. S. Alexandroff and P. S.

Urysohn in [7] as an example of a compact Hausdorff space containing a discrete

dense subspace; this space is called the Alexandroff duplicate [22, p. 1010].

Definition which is similar to the following was introduced in [17].

Definition 4.1.1. Let ((kα, rα))α∈I be a net in K × {0, 1}, where I is an index set,

and (k, r) ∈ K × {0, 1}. We say that the net ((kα, rα))α∈I converges to (k, r), and

denote it by (kα, rα) → (k, r), if

f(kα) + rαd(kα) → f(k) + rd(k)

for each f ∈ C(KΣ) and d ∈ C0(KΓ). We denote the space K × {0, 1} equipped with

this convergence by KΣ,Γ � {0, 1}.
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The proof of the following theorem is a simple consequence of the above definition.

Theorem 4.1.2. Whether Σ ⊂ Γ or not, KΣ,Γ � {0, 1} is a Hausdorff topological

space.

4.2 Main results

In [17], it has been proved that KΣ,Γ�{0, 1} is a compact Hausdorff space under the

convergence given in Definition 4.1.1 if KΣ has no isolated points and KΓ is discrete.

For certain Banach lattices, representations of these spaces have been constructed in

[17] with the topology induced by this.

The space of continuos functions on KΣ,Γ ⊗ {0, 1} can be identified as follows.

Theorem 4.2.1. C(KΣ,Γ ⊗ {0, 1}, E) and CDΣ,Γ(K, E) are isometrically Riesz iso-

morphic spaces.

Proof. Let f : K → E be a map. Then, in order for f to belong to C(KΣ,Γ, E) it is

necessary and sufficent that

(i) k 7→ f(k, 0) is Σ-continuous; and

(ii) the map k 7→ f(k, 1)− f(k, 0) belongs to the space C0(KΣ, E).

Indeed, suppose that (i) and (ii) are satisfied. Then, k 7→ f(k, 1) is Γ-continuous,

being the sum of f(k, 1) − f(k, 0) and f(k, 0), the first of which is Γ-continuous by

(ii) and the second is Σ-continuous by (i) and hence also Γ-continuous as Σ ⊂ Γ. It

then follows that f is continuous at each point of K × {1}.

Let now k ∈ K. We will show that f is continuous at (k, 0). Let ε > 0. Then,

H := {k ∈ K | ||f(k, 1)− f(k, 0)|| ≥ ε/2}

is Γ-compact by (ii). Moreover, by (i), there is a Σ-open set G containing k such

that ||f(k, 0) − f(l, 0)|| < ε/2 for l ∈ G. Set U := (G × {0, 1})\H × {1}. Then U

is a neighborhood of (k, 0) in KΣ,Γ ⊗ {0, 1}. Further, if (l, i) ∈ U , then either i = 0,

which yields ||f(k, 0)− f(l, 0)|| < ε/2 < ε; or i = 1, yielding l /∈ H and hence

||f(l, 1)− f(k, 0)|| ≤ ||f(l, 1)− f(l, 0)||+ ||f(l, 0)− f(k, 0)|| < ε.
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This completes the “if” part.

For the “only if” part, suppose that f is continuous. Then, clearly, (i) holds. More-

over, k 7→ f(k, 1) is Γ-continuous, and hence k 7→ f(k, 1) − f(k, 0) is Γ-continuous,

too. It remains now to show that {k ∈ K | ||f(k, 1)− f(k, 0)|| ≥ ε} is Γ-compact for

each ε > 0.

Suppose that V := {k ∈ K | ||f(k, 1) − f(k, 0)|| ≥ ε} is not Γ-compact for some

ε > 0. By the compactness of (K, Σ), there exists a k ∈ K such that clΓ(G) ∩ V is

not Γ-compact for any Σ-neighborhood G of k (otherwise, V would be covered by

finitely many Γ-compact subsets and hence would itself be Γ-compact).

Let U := (G × {0, 1})\{1} be a basic open set in KΣ,Γ ⊗ {0, 1} containing (k, 0)

such that for each (l, i) ∈ U , we have ||f(l, i)− f(k, 0)|| < ε/2. As clΓ(G) ∩ V is not

Γ-compact, there is an l ∈ V ∩ (G\M). Then, both (l, i) and (l, 0) belong to U , and

hence ||f(l, 1) − f(l, 0)|| < ε. However, ||f(l, 1) − f(l, 0)|| ≥ ε as l ∈ V , which is a

contradiction.

From this, we have the map π : CDΣ,Γ(K, E) → C(KΣ,Γ ⊗ {0, 1}, E) defined by

π(f, d)(k, r) = f(k) + rd(k) for each (k, r) ∈ K × {0, 1}.

It is a straightforward observation that π is a bi-positive and one-to-one linear oper-

ator. Let f ∈ C(KΣ,Γ ⊗ {0, 1}, E) be given. Define the maps g, d : K → E via

g(k) = f(k, 0) and d(k) = f(k, 1)− d(k, 0).

Then, from the above observation, we have that (g, d) ∈ CΣ,Γ(K, E) and π(g, d) = h,

that is, π is also onto. It is also clear that ||π(f, d)|| = ||f + d||. This finishes the

“only if” part and the proof of the theorem is now complete.

Remark 4.2.2. Note that a characterization similar to the one given in Theorem

4.2.1 holds for functions with values in any metric space as follows: Let (M, d) be a

metric space and f : K × {0, 1} → M be a map. Then, f ∈ C(KΣ,Γ ⊗ {0, 1}, M) if

and only if the following conditions are satisfied:

(i) k 7→ f(k, 0) is Σ-continuous;

(ii) k 7→ f(k, 1) is Γ-continuous;
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(iii) for each ε > 0, the set {k ∈ K | d(f(k, 0), f(k, 1)) ≥ ε} is Γ-compact.

The following result is a surprising and interesting consequence of Theorem 4.2.1.

Theorem 4.2.3. KΣ,Γ ⊗ {0, 1} and KΣ,Γ � {0, 1} are homeomorphic spaces.

Proof. The assertion follows from Theorem 4.2.1 and from the fact that any compact

Hausdorff space X is homeomorphic to a subspace of (C(X)∗, w∗), where the topology

on X is the weak topology generated by all continuous functions on it.

As an immediate consequence of this theorem, we have the following result.

Corollary 4.2.4. C(KΣ,Σ ⊗ {0, 1}) and CΣ,Σ(K) are isomorphic Riesz spaces.

The proof of the following fact, which is the main result of [17], follows at once

from Theorem 4.2.3.

Corollary 4.2.5. If KΣ has no isolated points, then the spaces CD0(K, E) and

C(A(K), E) are isometrically Riesz isomorphic.

Remark 4.2.6. It follows from Corollary 4.2.5 and the Banach-Stone theorem that

the Kakutani-Krein compact space of CD0(K) is the Alexandroff duplicate A(K) of

KΣ.
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