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ABSTRACT

TWO-DIMENSIONAL FINITE VOLUME WEIGHTED
ESSENTIALLY NON-OSCILLATORY EULER SCHEMES WITH
DIFFERENT FLUX ALGORITHMS

Ali Aktiirk
M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. I. Sinan Akmandor

July 2005, 130 pages

The purpose of this thesis is to implement Finite Volume Weighted
Essentially Non-Oscillatory (FV-WENO) scheme to solution of one and two-
dimensional discretised Euler equations with different flux algorithms. The
effects of the different fluxes on the solution have been tested and discussed.

Beside, the effect of the grid on these fluxes has been investigated.
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Weighted Essentially Non-Oscillatory (WENO) schemes are high order
accurate schemes designed for problems with piecewise smooth solutions that
involve discontinuities. WENO schemes have been successfully used in
applications, especially for problems containing both shocks and complicated
smooth solution structures. Fluxes are used as building blocks in FV-WENO
scheme. The efficiency of the scheme is dependent on the fluxes used in scheme

The applications tested in this thesis are the 1-D Shock Tube Problem,
Double Mach Reflection, Supersonic Channel Flow, and supersonic Staggered
Wedge Cascade.

The numerical solutions for 1-D Shock Tube Problem and the supersonic
channel flow are compared with the analytical solutions. The results for the
Double Mach Reflection and the supersonic staggered cascade are compared with

results from literature.

Key Words: Weighted Essentially Non-Oscillatory, Riemann solver,
HLLC Flux, MUSTA flux, RUSANOV flux, LAX FRIEDRICHS flux.
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IKi BOYUTLU, SONLU HACIiMLIi, AGIRLIKLI OLARAK
ESASTAN SALINIMSIZ, DEGIiSiK AKI ALGORITMALARINA
SAHIP EULER SEMALARI

Ali Aktiirk
Yiiksek Lisans, Havacilik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. I. Sinan Akmandor

Temmuz 2005, 130 sayfa

Bu tezin amaci sonlu hacimli ve agirlikli olarak esastan salinimsiz (FV-
WENO) semasmin bir ve iki boyutlu ayriklastirilmis Euler denklemlerinin
¢Oziimilinde degisik aki algoritmalar1 ile uygulanmasidir. Degisik akilarin FV-
WENO semasi lizerinde ki etkileri denenmis ve tartisilmistir. Bunun yaninda ag

yapilarinin bu aki algoritmalarina etkisi aragtirilmistir.
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WENO semalar, yiiksek dereceli hassasiyete sahip semalardir ve diizgiin
¢Ozlim alan pargalarinin i¢indeki deger kirilma problemleri i¢in tasarlanmustir.
WENO semalar1 06zellikle hem soklar hem karmasik piiriizsiiz ¢oziim yapilari
igin basaril1 sekilde kullanilmistir. Aki algoritmalarit FV-WENO semalarinin

kurucu 6geleridir. FV-WENO semalarinin verimi aki algoritmalarina bagimlidir.

Bu tez de, tek boyutlu sok tiipii problemi, ikili Mac yansimasi , ses lstii

kanal akis1 ve ses lstii verev kenarli kaskad uygulamalarina yer verilmistir.

Tek boyutlu sok tiipii problemi ve ses lstii kanal akislarinin sayisal
¢oziimleri analitik ¢oziimler ile karsilastirlmistir. Ikili Mac yansimasi sonuglar
ve ses listii verev kenarli kaskad sonuglar1 ise yayinlanmis bulunan sonuglarla

karsilastirilmstir.
Anahtar kelimeler: Agirlikli olarak esastan salinimsiz, Riemann

Problemi, HLLC akisi, MUSTA akisi, RUSANOV akisi, LAX FRIEDRICHS

akist .
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CHAPTER 1

INTRODUCTION

Nowadays, constructing high order accurate and robust schemes for simulation
of compressible fluid flow has a growing interest. These are the schemes relied on
interpolation of discrete data. The approximation theory constructs a basis for this
interpolation. If smoothness of the function inside the interpolation stencil is provided, a

wider interpolation stencil yields a higher order of accuracy.

Traditional higher order accurate schemes are relied on fixed stencil
interpolations. To build second order interpolation polynomial; one should look one to
the left and right cell boundaries and the center of the cell itself. Whereas, fixed stencil
interpolation of second or higher order accuracy would have an oscillatory behaviour
near a discontinuity. These oscillations are called as Gibbs Phenomena in spectral

methods. [1]

All attempts are done to eliminate or reduce such oscillations near discontinuites.
One of these attempts is to use explicit artificial viscosity. Artificial viscosity term 1is
added to the solution to overcome these oscillations. However these artificial viscosity

terms should damp the oscillations while maintaining the order of accuracy.

Another approach to eliminate or reduce the oscillations is to apply limiters .
The spurious oscillations are eliminated or reduced by reducing the slope of a linear
interpolant ,or by using a linear rather than a quadratic interpolant near the shock. The
importance of these schemes is to apply limiters carefully, so that TVD ( total variation
diminishing ) property can be achieved for one dimensional nonlinear scalar problems
or linear systems. One of the disadvantage of this method is the reduction of the order

of accuracy of the interpolation near discontinuity. Therefore, by applying limiters, the

1



accuracy necessarily degenerates to first order near smooth extrema. The TVB (total
variation bounded) modifications to the limiter in Shu [2] and Cockburn and Shu [3] are

suggested to fix this disadvantage [4,5,1,6].

ENO (Essentially Non- Oscillatory ) scheme is the first succesful attempt to get a
self similar , uniformly high order accurate , essentially non-oscillatory approximations
to the smooth functions. The ENO schemes were first introduced by
HartenEngquist,Osher and Chakravarthy in 1987 [7]. In [7] Harten, Enquist,Osher and
Chakravarthy searched for different ways of measuring the local smoothness. Once the
local smoothness is measured, the local stencil can be determined. That constitutes a
basis for the hierarchy that begins with one or two cells, then adds one cell left at a time
to the stencil from the neighbours on the left and, right based on the size of two
relavent Newton divided differences. However, there are other reasonable ways to
select the stencil based on the local smoothness. One of them is to compare the
magnitudes of the highest degree divided differences among all the neighbour stencils
and picking the one with the least absolute value. The method proposed in [7] is the
most robust for a wide range of grid sizes. ENO schemes are uniformly higher order
accurate  and resolve the shocks with sharp and monotone transitions. Also these
schemes are suitable for the problems that are both containing shocks and complicated

flow structures.

ENO scheme is uniformly higher order accurate right up to the discontinuity.
This is achieved by adaptively choosing stencil based on the absolute values of divided
differences. However , some remarks can be made for ENO scheme. First of all, the
round of error perturbation near zeros of the solution and its derivatives can be changed
by stencils . That is, propagation direction of stencil choosing procedure can be changed
by this error. In the smooth regions, the free adaption of the stencil is not required. In
addition this can cause loss of accuracy when applied to hyperbolic PDE [8] ENO
scheme is computationally expensive because it contains many logical “if structures in

the stencil choosing procedure.



WENO (Weighted Essentially Non-Oscillatory) scheme is a more recent attempt
to improve upon ENO in these points. The basic idea is to use a convex combination of
all candidate stencils to form the reconstruction instead of using only one of them. Each
candidate stencils is assigned a weight. That weights determines the contribution of the
stencil to the final approximation. The stencil which is near discontinuity would have the
smallest weight while the stencil which is far away from the discontinuity would have
the biggest weight. Weighted ENO schemes were first introduced by Liu,Osher and
Chan [9].

Two approaches are commonly used to formulate WENO scheme. These are
finite difference and finite volume formulations. The finite difference version based on
the point values while the finite volume version based on the cell averages. That is, the
finite difference WENO scheme approximates the numerical fluxes at the points while
the finite volume WENO scheme approximates the flow variables at the cell centers, and
then calculates the numerical fluxes. Jiang and Shu [10] developed multi dimensional
finite difference WENO scheme with improved accuracy. Also, Balsara and Shu have
efficiently implemented finite difference WENO scheme in their work [11]. Friedrichs
[12] applied WENO with multi dimensional finite volume formulation and also, Hu and
Shu [13,14] applied WENO with multi dimensional finite volume formulation with
improved accuracy. Levy, Puppo and Russo [15] used WENO scheme for 1-D finite
volume based on a staggered grid and Lax-Friedrichs formulation. Besides the structured
grid, Weighted ENO schemes can be applied to the unstructured meshes. Hu and Shu
[13,14] also presented third and fourth order WENO reconstruction in their work. A
lower order reconstruction procedure can be found in [16].Another work for unstructed

WENO scheme is done by Shi, Hu and Shu in [17].

In this thesis, the finite volume formulation of WENO scheme is used because it
can be applied with arbitrary meshes provided that WENO reconstruction is available.
Finite difference formulation has some drawbacks in application to arbitrary meshes. To
apply finite difference formulations, the domain should be predominantly rectangle or
smoothly mapped to a rectangle. If the domain aspect ratio is dispropationate the

transformation parameters can disturb the order of accuracy. Therefore, It is more

3



convenient to use finite volume formulations. The formulations are done for structured
meshes because it is easier to apply WENO reconstruction on structured meshes
compared with unstructured meshes. In Unstructured meshes , it is very hard to find
propagation direction . Also reconstruction procedure for unstructured meshes is more
expensive than structured meshes. For example for third order reconstruction , one
should use the information of neighbour cells and neighbours of neighbour cells. That
is, for 3" order reconstruction 10 cells should be used. Whereas in structured meshes

for 3™ order reconstruction only five cells are used .

In two space directions the flux computation in WENO schemes involves the
use of a high-order Gaussian quadrature for integration over cell sides. WENO
reconstructed values are needed for each Gaussian integration point. More information
about the Gaussian integration can be found in the work of Toro and Titarev [18]. The

Gaussian integration is also used in this thesis .

After Reconstructed flow variables are obtained by Finite Volume WENO
scheme, the final step is to calculation of fluxes with building block algorithms. This
thesis proposes to use different fluxes as building block in WENO scheme. The first
flux is the HLLC flux which is an approximate riemann solver. The HLLC does not use
linearizations of the equations and works well for the low density problems and sonic
points without any fixes. References [19,20] give detailed information about the HLLC
type Riemann solver. The second flux is the Rusanov flux [20, 21] . Rusanov flux is a
first order upwind flux and a basic approximate riemann solver. The third flux is the
Lax-Friedrichs flux. The Lax-Friedrichs solution is weighted average of the solution of
the riemann problem with the left and right neighbours states as data. It is an upwind
biased scheme. References [20,22,23] give detailed information about Lax-Friedrichs
scheme. The last flux is the Upwind Multi-Stage (MUSTA) flux. This family of fluxes
successes upwinding by solving the local riemann problem at the cell interface
nmerically rather than analytically by means of simple and computationally
inexpensive first-order centred method. References [18,24,25,26] give detailed

information about MUSTA scheme.



In this thesis these different fluxes are used in WENO scheme with different
mesh sizes. Then these schemes are compared in accuracy. All of the fluxes are tested

in same boundary conditions and time discretization.

In METU, Department of Aerospace Engineering, there has been two thesis
addressing WENO schemes. One of them is done by Ebru Sarigol [27] on WENO
schemes with finite difference formulations. The other work is done by Monier EL-
Farra [28] on WENO schemes with finite volume formulations . He has applied WENO

schemes on test case problems and tested uniform and non uniform grid coefficients.

Although there are studies that investigate the different flux algorithms on weno
scheme, all of these works are done on rectangular or non-complicated domains. The
significance of this thesis is that it is the first study that employs different fluxes in
WENO schemes on complicated geometries with different size of meshes, such as
turbomachinery cascade geometries, non-rectangular geometries... This would help to
solve complicated problems with higher order of accuracy without numerical

oscillations.

The progress of this study includes the modification of finite difference WENO
code and application of the code to the complicated geometries , generation of two-
dimensional finite volume WENO code and application of it to the complicated

geometries ,and using different fluxes in formulation of WENO schemes.

First of all, the finite difference WENO code that is supplied by Shu [1] is
modified to apply non-rectangular geometries. This modification is done by adding
transformation metrices to the original code. Then this code is applied to the complex
geometric problems. However, It is concluded that insertion of transformation mertices
brings some errors to the solution. So that the solutions obtained are not in the desired
order of accuracy. Therefore , a two dimensional finite volume WENO code is
developed by Monier El-Farra and the present auther. That code is applied to the
complicated geometries and provided us desired order of accuracy. Then, different
fluxes are applied to the algorithm to see the effect of fluxes on complex geometries in

this thesis.



The rest of this thesis is organized as follows. In Chapter 2 , Euler equation and
the general semi-discrete WENO reconstruction procedure are described. In Chapter 3,
The numerical fluxes and boundary conditions are explained. In Chapter 4, five
different test case problems and the solutions of these problems are described. These are
Shock tube problem in one-dimension, also in two dimensions Double Mach Reflection
problem, channel flow problem, and wedge cascade problems. Finally Chapter 5

includes discussion and conclusion of the study.



2.1.

CHAPTER 2

2-D EULER EQUATIONS AND WENO
DISCRETIZATION

Governing Equations

The two-dimensional Euler equations are expressed as;

o 0 0 0

(Continuity) a(p) + &(pu) + N (V) =0

(x - Momentum) 2( )+i( 24 )+i( v)=0
o PV TP TP oy PV =

(y - Momentum) 2( )+£( V)+i( +p)=0

y ot el ox P oy AN+ p)=

(Energy) g(pE)+£(pEu+ pu)+£(pEv+ pv)=0
ot OX oy

Where Vv is the y-velocity

Equations (2.1) through (2.4) are expressed in flux vector form as
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2.1)

(2.2)

(2.3)

(2.4)



Q o ag_

—+—+—=0
ot ox oy 2.5)
where
P pu e
2
Q= P , f= PP , and Q= €uv is the y-flux
N Puv AN+ P
PE (PE + pu (PE+ p)v

2.2.  Finite Volume Formulation in Two Space Dimensions

Consider two-dimensional hyperbolic systems in conservation form

@4_@4_8_9:0
ot ox oy

Where Q(x,y,t) is the vector of unknown conservative variables and f(Q) and
g(Q) are physical flux vectors in x and y coordinate directions respectively. The semi-

discrete finite volume methods begin by considering a control volume I in x-y space

Iy = [Xi—1/2’xi+1/2]xI_yj—l/Z’yj+1/2J I<i<N I<j< N, (2.6)

X

And the grid sizes are given by

AX = Xi,15 — Xiy)s =12 N, 2.7)

ij = yj+1/2 — yj—l/Z j = 1,2, ......... N N

Integrating 2.5 over the control I;; , we obtain the following semi-discrete
relations

aQ;® 1 1
d—{[:_g[f i+1/2,) f i-1/2,] j _E[gi,jﬂ/z_ gi,j—l/zj (2.8)

Where Qj; (t) is the space average of the solution in cell I; at time t



1 Yis1/2 Xisi/a

t)d&d (2.9)
sy ) JQEnndgn

Q)=

And fi+1/2,j and gi,j+1/2 are space averages of physical fluxes over cell faces

at time t:

Yijr2

1
fi+1/2,j (t) = r I f (Q(Xi+1/2’ y))dy
y Yij-1/2 (2.10)

1 Xi+1/2
o W)=—|f . d
g.+1/2,J ( ) AX Xijl‘/z (Q(Xa y]+1/2 )) X

Expressions 2.9 and 2.10 are so far exact relations, but can also be used in
construction of higher orderaccurate semi-discrete schemes if Qjj(t), fij and gij are

regarded as numerical approximations to the corresponding exact quantities.

The first step to discretize the integrals over the faces using suitable Gaussian

numerical quadrature .

A

1 N
fi+1/2,j :A_yz f QX125 Yo D, (2.11)
a=1

Where the subscript a correspond to different Gaussian integration points and
weights K, Expression 2.11 involves point-wise values of Q whereas the scheme
evolves the call averages of Q. Thus the second step in evaluating the fluxes is to
reconstruct the point-wise values of the solution from the cell averages and obtain high-
order accurate approximations to the values of the at the integration points. In WENO
schemes this is achieved by means of weighted essentially non-oscillatory (WENO)
adaptive-stencil reconstruction procedure which estimates the smoothness of the solution
and constructs the reconstruction polynomial in such a way so as to avoid interpolation
across discontinuities. After reconstruction is carried out at each face we have two sets
of values of Q, corresponding to  Xj+1/2 -0 and Xj+12 + O which often called

minus and plus boundary extrapolated values.



Q_i+1/2,a = Q(Xi+1/2 -0, ya)

N (2.12)
Qivi2a = Q(Xi+1/2 +0, ya)
And the numerical fluxes given as;
fi+1/2,j = Z wah(Qi;1/2,yj+ﬂaAy9Qi++l/2,yj+ﬂaAy) (2.13)
gi,j+l/2 = Z a)ah(Q;+,gan,j+1/29Q;+ﬂam,j+1/2) (214)

a

h in (2.13) and (2.14) is the one-dimensional monotone flux .

2.3.  WENO Reconstruction in Two Space Dimensions

The Reconstruction problem we face is the following. Given spatial averages of a

scalar function q(x, y) in a cell I ;

1 Yis1/2 Xisy/2
[ a(x, y)dydx

Yi-1/2 Xi-1/2

Q; =

AXAY (2.15)

The point-wise value of q at Gaussian integration points (xi+1/2,ya) is going to
be computed so that the reconstruction procedure is conservative and these reconstructed
values are of higher order of accuracy. The way to accomplish this is to use dimension
by dimension reconstruction. Dimension by dimension reconstruction consists of a
number of one-dimensional reconstruction sweeps. The dimension-by-dimension
reconstruction is more simpler and less computationally expensive than other
reconstruction methods so that in this thesis the dimension-by dimension reconstruction

method will be used throughout.

The left Q and right Q' extrapolated values are needed. For the left

i+1/2,y, i+1/2,y,

values, the stencil consists of cells I;; such that;
i—k<i<i+k , j-k<j<j+k (2.16)

For the right values, the stencil consists of cells for which i1+1-k <i<i+1+Kk

and j varies according to (2.16).
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The reconstruction for 2-D consists of two steps:

In the first step, one-dimensional WENO reconstruction in X coordinate

direction for all values of j with respect to y coordinate direction is performed.

Yi+1/2

Wiii/2, :A_y. IV+(Xi+1/2,Y)dy (2.17)
J Yjan

Yi+1/2

Wiipnj = A_ J.Vi(ximz: y)dy

i Yi-1/2

+

In the second step, reconstructed values Vi,

are obtained by applying one-

dimensional reconstruction to W, , ; in the y coordinate direction.

In the second step (the y-sweep) the weights are designed to achieve high

accuracy for Gaussian integration point Y, ; the values of these weights are tailored to a

specific Gaussian integration rule used to discretize (2.13). The numerical experiments
in [18] show that the best results in terms of accuracy and computational cost for 3™ and
4™ order WENO reconstruction are obtained if the following two-point (forth order)

Gaussian quadrature is used:

1
-1 1
P(&)dS = (p(—J + (p[—J (2.18)
oA )15
The WENO sweep in the X coordinate direction corresponds to the left and right

reconstructed values at X;,,,, whereas the Yy -sweep needs values at the Gaussian points
y,, for the two-point quadrature (2.18) those are ¢ iAf(Z\/g). It appears that the

weights and reconstruction formulas for the Gaussian integration points Yy, have not

reported in the literature so far. However, [21] gave explicit formulas and weights for
the two-point Gaussian integration for 3™ and 4™ order WENO reconstruction which we

use 1in this thesis.
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2.4. One - Dimensional WENO Reconstruction

Before explaining the WENO reconstruction, it is worth to consider the

reconstruction for finite volume schemes in general.
2.4.1. Reconstruction from Cell Averages

The first approximating problem in solving hyperbolic conservation laws using

cell averages (finite volume schemes) is the following reconstruction problem [1] .
Given the cell averages of a function Vv(X)

1 Xit1/2

V= jv(g)dg i=12,..,N (2.19)

! Xic1/2

in which the computational domain is defined as a<x<b and the grid is

defined by

a<X, <X3 <. XX ;<X ,<b (2.20)
17 A
2 2 2 2

The cells, cell centers, and cell sizes are defined by

(2.21)

where N is the number of cells
One wants to find a polynomial p,(x) of degree at most k —1, for each I,, such

that it is a k™ order accurate approximation to the function v(x) inside I

P, (X) = V(X) + O(AX"), xel., i=1.,N (2.22)

In particular, this gives approximation to the function v(X) at the cell boundaries

+

Vijn = pi(XiH/z) > Visig = pi(Xi—l/Z) > i=1..,N (2-23)

12



which are k" order accurate.

To solve the above problem, the following procedure is described:

Given the location |, and the order of accuracy k, we first choose a stencil
s

S ={l,_, v} , 1,520 (2.24)

where r is the number of cells to the left, s is the number of cells to the right
with
r+s+l1=Kk.

There is a unique polynomial of degree at most K —1=r+s, denoted by p(x)

(the subscript 1 is removed when there is no confusion) , whose cell average in each of

the cells in the stencil S(i) agrees with that of v(X)

Xjr1/2

Ljp(g)dgzvj , j=i=Ti+s (2.25)
AX

1 X2

This unique polynomial p(X) is the k™ order approximation we are looking for.
Another consideration for solving the previous problem is that, approximations
to the values of v(x) at the cell boundaries (2.23) are also needed. Since the mappings

from the given cell averages V.

; in the stencil S(i) to the values v;,,,, v, , in (2.23)

are linear, there exist constants C; and C,., which depend on the left shift r of the

>
stencil S(i) in (2.24), on the order of accuracy k, and on the cell sizes AX; in the

stencil, but not on the function Vv itself.

This relation is such that:

=
I _ . _
Visa = § :ervi—r+j > Viis =2, CiVii (2.26)
=0 j

13



~

with C, =C

rj r-1,j

The difference between the values with + superscripts at the same location

(Xi,1,, OF X;_;,,) 1s due to the possibility of different stencils for cell |, and cell I,,,.

This difference is explained in the sketch below

Hi1i H Hi+10 Hi+1o Hj+] Hi+i0

= *
Vicira L ) (V) Vil Vi

So at location (X,,,,), V;,,,, for cell |, has a (-) superscript and at the same
location it has a (+) superscript for cell |,,, and so on. If the left shift r is identified with
the point of reconstruction X;,,,, not with the cell I, itself, then the + superscripts can

be dropped.

The C; constants are given in [1] as:

k k
X ;=X
K ;ql_—()[ i+% i-r+q—
I=m g=m,I
Cy=| X & AXi_r ;- (2.27)
m=j+l1
X —
I1=_O[ i—-r+m-—— i—r+l—
I=m

The C, constants are related to the grid that is why they are referred to as grid
coefficients. Equation (2.27) is used to evaluate the grid coefficients (C; constants) for
any grid (uniform and non-uniform). However, for uniform grids, since AX; = AX =

constant, C,; doesn’t depend on i or AX any more. So equation (2.27) reduces to:

14



l#m gq=m,

Cri k
m=j+1 H|=o (m—I)

l=m

k k
K ZI:O Hq:o I(r—q+1)
-3

(2.28)

Values for C,; constants are listed in Table (2.1) for order of accuracy between 1

and 7 [1].

Now as a summary for this section:

g peeneeneenns Vi (Notice that K —r =s+1)

There are grid coefficients (C,; constants) such that the reconstructed values at

the cell boundary X;,,,,
k-1
Vian = Zcrjvi—rﬂ' (229
i=0

is the k™ order accurate:
Viiss =V(X;,1,0) +O(AX") (2.30)

If the left shift r in (2.24) is the same for all locations i, then the stencil is fixed.

For a globally smooth function V(X), the best approximation is usually obtained either

by a central approximation r=5s—1 for even k or by a one point upwind biased

approximation r =S or r =s—2 for odd k [1].

2.5.  WENO Approximations in 1-D (In Scalar Case)

For solving hyperbolic conservation laws, one is interested in the class of

piecewise smooth functions. A piecewise smooth function V(X) is smooth except at
finitely many isolated points. At these points, V(X) and its derivatives are assumed to

have finite left and right limits.

If the function Vv(X) is only piecewise smooth, a fixed stencil approximation

described in the previous section may not be adequate near discontinuities and it may
lead to oscillations. These oscillations happen because the stencils contain the

discontinuous cell for X; close enough to the discontinuity. As a result the

15



approximation property (2.22) is no longer valid in such stencils. From her the idea of
choosing an adaptive stencil among the candidate stencils to form the reconstruction has
arose and led to the Essentially Non-Oscillatory ENO scheme which has been modified
later to produce the weighted ENO (WENO) schemes.

Table 2-1. The C,; constants [1].

k[x | j=0 =1 =2 =3 j=4 j= =6
AE!
0 1
-1 | 32 -1/2
2lo | 172 1/2
1] -1/2 3/2
1| 1176 776 1/3
g0 | 13 5/6 1/6
1| -1/6 5/6 1/3
2 | 13 776 11/ 6
1| 25/12 | -23/12 | 13712 -1/4
1 13/12 | -5/12 1/12
411 | y12 | 7/12 7/12 -1/12
> | 1712 | s/12 | 13/12 1
3 | -1/4 13/12 | 23712 | 25/12
-1 | 137/60 | -163/60 | 137760 | -21/20 1/5
0| 1/5 77/60 | -43/60 | 17/60 -1/20
s [ ] -1/20 [ 9720 47/60 | -13/60 1/30
2 | 1730 | -13/60 | 47/60 9/20 -1/20
3 | -1/20 | 17/60 | -43/60 | 77/60 1/5
4| 1/5 221720 | 137760 | -163/60 | 137/60
-1 | 49720 | -71720 | 79720 | -163760 | 31/30 1/6
0| 1/6 29/20 | 21720 | 37760 | -13/60 | 1/30
1 | -1/30 | 11730 | 19/20 | -23/60 7/60 -1/60
62 | 1760 | -2/15 | 37760 37/ 60 -2/15 1/60
3 | -1/60 | 7760 | -23/60 | 19720 11/30 | -1/30
4 | 1/30 | -13/60 | 37/60 | -21/20 | 29/20 1/6
5 | -1/6 31/30 | -163/60 | 79/20 | -71/20 | 49720
-1 |363/140 | -617/140 | 853,140 |-2341/420 | 667/210 | -43/42 1/7
0 Ve | 2237140 | -197/140 | 1537140 |-241/420 | 37/210 | -1/42
1| -1/42 | 13/42 | 153/140 | -241/420 | 109/420 | -31/420 | 1/105
|2 [ 1/105 | -19/210 | 107/210 | 319/420 [-101/420 [ 5/84 | -1/140
3 | -1/140 | 5/84 | -101/420 | 319/420 | 107/210 | -19/210 | 1/105
4 | 1/105 | -31/420 | 109/420 | -241/420 | 153/140 | 13/42 | -1/42
5 | -1/42 | 37/210 | -241/420 | 1537140 |-197/140 | 223/140 | 1/7
6 | 1/7 | -43/42 | 667/210 |-2341/420 | 853/140 | -617,/140 | 363 /140
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WENO [9,10] is based on ENO and it is a trial to improve upon ENO in the
mentioned remarks about ENO. The basic idea of WENO is to use a convex

combination of all of the candidate stencils instead of using only one of them (as in

ENO).

Suppose the k candidate stencils are:

S, () ={X_, s Xy} 5 F =0, k=1 (2.31)

Those stencils produce k different reconstructions to the value v,,,,,.

According to (2.29)
k-1

v O =3CyVi,; =0, k-1 (2.32)
j=0

WENO reconstruction would take a convex combination of all v\",, defined in

(2.32) as a new approximation to the cell boundary value v(X,,,,,)

k-1

Vi = Za)rvi(:l)/z (2.33)

r=0

It should be clear that the key to the success of WENO would be the choice of

the weights o, .

For consistency, it is required that

k-1
0,20 , Yo =1 (2.34)

r=

To understand (2.34), one should remember the fixed stencil approximation. In
the fixed stencil approximation only one stencil is used everywhere in the solution
domain. This approximation assuming that this stencil contributes 100% to the solution
so as if this stencil is multiplied by one. For the WENO case, there are more than one
stencil used, each one of them contributes with some amount, which can’t be negative,

and also the total contribution should be 100% (or one). These weights determine the
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amount of contribution of each stencil. As a result, none of them is negative and their

summation is one (i.e., (2.24)).

If the function Vv(X) is smooth in all of the candidate stencils (2.31), there are
constants d, such that

k-1

drvi(+rl)/2 :V(Xi+1/z)+O(AX2kil) (2.35)

Viag =
r=0

It is noticed that d, is always positive and due to consistency (as explained for @, )

k

>d, =1 (2.36)

-1
r=0

The order of accuracy in (2.35) expected to be (2k—1) in smooth regions

because for the k stencils contain (2k —1) cells so it is (2k —1)" order.
In this smooth case, to keep the order of accuracy (2k —1) , then w, should be
o =d +0Ax*") , r=0,...,k-1 (2.37)

So

k-1 k-1 k-1

(r n _ (r)
Za)rviil/z _ZdrViL/z - Z(G)r _dr)(viil/z _V(Xi+1/2))
r=0 r=0 r=0

k-1

" O(AXK)O(AXK) = O(AX ) (2.38)
r=0
Which would imply (2k —1)™ order of accuracy

k-1
Vi = D 0V, = V(X)) + O(AX* ) (2.39)
r=0

The form of the weights is based on the following considerations:
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When the function v(X) has a discontinuity in one or more of the stencils (2.31),
the corresponding weights @, should essentially be zero, which implies that there is no
contribution for the stencils that contain discontinuity.

A final consideration, the weights should be computationally efficient. Thus,

polynomials or rational functions are preferred over exponential type functions.

Considering the three remarks above, the following form of the weights came

into picture [10].

0 =—t =0kl (2.40)

d

a, :m (241)

€ here is a small number always greater than zero which is introduced to avoid

the denominator to become zero. We take e=10" throughout our numerical

calculations.

p,.’s are the smooth indicators of the stencil S, (i). S, is used in calculation of

weights and it constructs weights such that the discontinuity is avoided inside the

stencil.

After extensive experiments, a robust choice of smooth indicators is obtained

[10]
" [ g [ 2P0
= A 2] dx 2.42
ﬂr Z:J;il [ alx ] ( )
where p,(X) is the reconstruction polynomial on the stencil S, (i) (Lagrange
Polynomial).

As an example, for k =3, (2.42) gives the following smoothness indicators [10]
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13

B, =—(V, =2V, +V, )2+%(3\7i—4\7. +V,,)°

0 E i+1 i+2 i+1 i
13 _ o, 1 _ 2
181 = E(Vi—l _2Vi +Vi+1) +Z(Vi—1 _Vi+1) (2.43)

B =W =20, 0+ (T 47, 30

Since the order of WENO scheme is (2k —1)™, equation (2.43) gives a fifth order

scheme.

It is worth to summarize this section (the WENO reconstruction for the scalar

case) in the following procedure:

Given the cell averages {Vi} of a function v(x), for each |, we obtain (2k —1)"

order approximation to the function v(X) at the cell boundary v, ,,, V., in the

following steps:

Obtain the k reconstructed values v, of k" order accuracy in (2.32) based on
the stencils S, (i) in (2.31) for r =0,.....,k —1. Also obtain the k reconstructed values

v

) of k™ order accuracy using (2.26), again based on the stencils (2.31) for

Find the constants d, such that (2.35) and

k-1

~

2k-1
Viii, = drvi(—rl)/z =V(X_;,,) + O(AX™")

r=0
For example for k=3 case , (2k-1)=5 candidate cells should be used . Three

stencils, each containing three cells, are formed. That can easily be seen on figure 2.1 .
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2d Subhsection =1 dy

Wi .
b 4 h 4
i-2 i1 i \tq i+l i+
£ T £
15t Subsection Zrd Subsection
=0 do =2 da

Figure 2.1. Explanation of weights and stencil choosing process for vi:i

By symmetry d ~=d,, . . Also for k=3 the weights d can be seen at

k-1-

figure 2.2

md Syhsection r=1 dp

Wi
h ] h
i-2 i-1 4 i i+l i+2
Y F Y
4 Zubsection 15t Subzection
=2 dj r=0 dg

Figure 2.2. Explanation of weights and stencil choosing process for vii»

Find the smooth indicators £, in (2.42) forall r =0,.......k —1.

Form the weights @, and @, using (2.40), (2.41) and

&, = o= ro0nke (2.44)
> G, (e+5,)
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Find the (2k —1)™ order reconstruction

k-1 k-1
(r) _ ~ ()
Vi OV, s Vi, =) 0V, (2.45)
r=0 r=0

2.6. Characteristic -wise FVV WENO Reconstruction

As mentioned before, the finite volume WENO reconstruction is used for
evaluating the left and right flow variables Q;;,,, at the cell boundary (X;,,,, ). Those

values are important for solving equations (2.13 and 2.14) and finding the flux at the cell

A

interface i.e., f .

Before carrying out the WENO reconstruction, it is worth to mention that there
are mainly two types of WENO reconstruction for system of equations. The component-
wise and the characteristic-wise WENO reconstruction types. It is easier to apply
WENO scheme in a component-by-component fashion. In the finite volume case this

means that the reconstruction is made using WENO for each component of Q separately
to obtain Q;;,,,.The component-by-component version of WENO is simple and cost

effective. It works well for many problems especially when the order of accuracy is not
high (2™ or sometimes 3"). However, for more demanding test problems, or when the
order of accuracy is high, this method doesn’t work well. Instead a more costly but much
more robust characteristic decomposition is needed. In this work, only the characteristic
— wise version is implemented.

The characteristic — wise FV.  WENO scheme is explained in upcoming

procedure: Given the cell averages for the flow variables Q for all i, at each fixed

Xi.1,, we do the following:
Compute the average state Q,,,,, using Roe averaging method.

Compute the right eigenvectors R, left eigenvectorsR™", and the eigenvalues A

‘s of the Jacobian matrix f'(Q,,,,,). The left eigenvectors are useful in transforming the

flow properties (or the physical variables) into the characteristic variables, where the

right eigenvectors are used in transforming back into the physical space.
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Transform all the given cell averages which are in the physical space into

characteristic variables using the left eigenvectors.
V; =R7(Q,,,)Q; . ] inaneighborhood of i
Perform the WENO reconstruction procedure for each component of the
characteristic variables V;obtained in (c) to get the corresponding component of the

: +
reconstructionV,,, , .

Transform back into the physical space using the right eigenvectors. After

+

obtaining V;,,,, from WENO reconstruction, those characteristic variables are

transformed into physical space by utilizing the right eigenvectors.

* _ +
Qi+1/2 - RVi+1/2

Now these variables are the ones to be used in the flux calculation.

2- Finally, apply an exact or approximate Riemann solver to compute the flux at

the cell interface fi+1 ,, forall i in (2.13 and 2.14) then form the scheme (2.8).

2.7.  Application of Piece-wise Parabolic WENO Approximation

In this section the fifth order characteristic-wise finite volume WENO scheme is

going to be applied to calculate the fluxes fi+1/2,j and §;;,,,, in (2.13) and (2.14). Only

the fm 1».; flux calculation is considered knowing that the §; ;,,,, flux is calculated in

exactly the same fashion. In the steps below we assume the grid to be uniform and

Cartesian.

Given the cell averages for the flow variables Q for all (i, j), at each fixed

(Xi.1,2,Y) we do the following:

Compute the average state Q,,,,,; using Roe averaging method for 2-D Euler

equations. From (2.5)
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PrL PrL
| Prlr | PrilrL
Qr. =

PriVrL PriVre
Pr Er Pr(Hpl + Pr)

where R refersto (i+1,]), L refersto (i, J), and RL refersto (i+1/2, j)

The average quantities are obtained from [23] as:

PrL =V PrPL
_\/EUR+ P Ug

U, =

RL JZ+Jp—L
v _\/EVR"' P VL
RL =

(2.46)
NEENA

H., :\/pRHR+ pLH,

Jor o

Using gas dynamics relations, other quantities can easily be obtained

8y = (7= D(He ~1/2(u +v23)) (2.47)
a2
P = RLPRL
4

Compute the eigenvalues and the corresponding right and left eigenvectors. [35]
provides these eigenvalues and eigenvectors for 3-D case and the 2-D ones have been

obtained from these eigenvectors.
The eigenvalues for 2-D Euler equations are given by [23] ;
ﬂ'l = /11 (Qi+1/z,j) =Up. —ap.

2’2 = )*z (Qi+1/2,j) =Ug
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A=A, (2.48)
/14 = /14 (Qi+1/z,j) =Ug +ap

The corresponding eigenvectors (right eigenvectors) are

1 0 1 1
R = UpL — gL 0 UrL UpL +8gL (2‘49)
VRL 1 VRL VRL
HRL _URLaRL VRL 1/2(UF2QL +VFZQL) HRL +uRLaRL
And the inverse eigenvectors (left eigenvectors) are
1/2(b2+1t0) —1/2(tl+ra) —-1/2t3 t2
-V 0 1 0
R = R (2.50)
1-b2 t1 t3 —bl
1/2(b2-1t0) —1/2(t1l-ra) —-1/2t3 t2
where
ra=1/a;

bl=(y-1)*ra’
b2 =1/2(ul +Vvi )*bl

t0=ug *ra
tl=bl*ug
t2=1/2bl

t3=bl*vy

Transform all the given average values Q into characteristic variables by using
Vv=R'Q (2.51)
Apply one-dimensional reconstruction in the x-coordinate direction to each

component of V to obtain v, and v, ,

For k =3, since in this step, all the weights are the same as in the one-

dimensional reconstruction equations (2.40)-(2.41),

For k =3
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Using (2.32) v"

i+1/2

k-1
=>C,, ., r=0l2
i=0

— 0 _ v v
(r - 0) Vija = CooVi +C01V +Cozvi+2

i+1

(r=1) Vi(i)l/Z =CVi +C Vi +C (2.52)

i+1

_ 2 _ V2 V2
(r=2) Vi =ChVi, +C, Vi +C LY,

k=1
Similarly using (2.26) (for WENO it becomes) v =>"C,V,_.,; , r=0,1,2
j=0

Remember C; =C,

— 0 _ v v v
(I’ - 0) Vida = C—lOVi + C—llv + C—IZV

i+1 i+2

(r=1) Vi(lz/z =C00Vi—1 +C01\7' +C02\7- (2.53)
(r=2) Vi(—zl)/z = Clovi—z + Cllvi—l + Clzv'

For uniform grid (the case we used in our 1-D numerical test cases),

using Table (2.1) for the C,; values at k =3, and substituting these values we get

I 5_ 1_

Vi(fl)/z =§Vi +gVi+1 gvnz

Wi ==V 427 42T @254
1_ 7_ 11_

Vi(fl)/z :5 i-2 _gvl—l +ZV

And
11 7 1

v = —V =V  +—V,

i-1/2 6 i 6 i+1 3 i+2
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v, (2.55)

d, == | dlzg, d, = (2.56)

d,=d, =— , d=d =2, d,=d, =, (2.57)

The smooth indicators S, are given by (2.42) for k =3.

Now using equations, (2.40) and (2.41), the weights can be calculated as:

where the weights are defined as;

d, d, d,

ay=———, a=—-, a,=——=——

(e +ﬂo) (€ +ﬂ1) (€ +:Bz)

a a a

a)o =—0’ a)l =—1’ a)z =—2

(a,+a,+a,) (ay+a,+a,) (ay+a,+a,)
_ d, - d, N d,
Oy =" "35> o =7 O =" "7

(e+p,) (e+p5) (e+p,)
- a ~ a ~ a,

0 —
, = » W =—— ~ ~
0 (&/0 +&1 +&2) (ao +CZ1 +a2)

W) =—Z———=Z < C
? (a, +a,+a,)

From (2.45) the variables at the cell boundaries are evaluated

- _ (0) Q)]
Visa = OyVi, T @V,

i+1/

(2)
) TV, (2.58)
+ (V) ~ () ~ ,(2)
Visijg = Og\Vis ), T OV, T 0V, (2.59)

Finally, substituting from (2.54) and (2.55) we get
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_ 1 _ _ _ _ _ _
Vidoy = ga)o (2V;; +5Vi, _Vi+2,j)+ga)l (Vi +5Vi +2Vi, )
2.60
. ) ) (2.60)
+ sz (vi_z,j =TV +11vi’j)
N 1 - _ _ _ | B _ _
Visijay = ga)o(l WV, =7V, +2Vi+2,j)+ga)l (Vi +5Vi; = Vi)
2.61)

1 - _ _ _
+ ga)z(—vi_z,j +5vi_1’j +2vi’j)

Apply the one-dimensional reconstruction to Vi, and Vv,  to obtain the

i+1/2y, at the Gaussian integration points « .

reconstructed values v/",, ~and v

Two-point Gaussian quadrature (i.e., « =1 and a =2)is used.
For a =1

For the first Gaussian integration point (X;,,,,,Y,) the optimal d, constants are

given by [18] as follows:

210—4/3 11 210443
doz—, dlz_’ d2:—
1080 18 1080

using equations (2.40) and (2.41) for v/, , , the weights are calculated as:

d, d, d,
aOR = 20 alR = 2 aZR = 2
(€ +Bor) (€+pBR) (€ +Br)
QR QR 2%

= > DR [
(g +a1g +yR)

Do

= . =
(aor + g +yR) (aor + g +AyR)
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R denotes to the values evaluated for v, , , . The smoothness indicators s are

calculated according to (2.42) but as a function of V", , .

The reconstructed value v/, , , is given by [18] as:

1 (2.62)

v, =0 |:ui + (3ui - 4ui+l +U,, )f} + a)IR|:ui - (_ u, +u, )\/§i|
+ a)2R|:ui - (3ui - 4ui—l +U,, )f}

where u; =V, ,  obtained in (2.62)

Now the same procedure above is repeated for v;, , ,

Again using equations (2.40) and (2.41) for v;,,, , , the weights are calculated as:

(B Gy To(e+p)’

(04 a a
oL o, = n L, = 2L
(ag +ay +ay) (oo +ay +ay)

Wy = 5
(ag +ay +ay)

L denotes to the values evaluated for v, ,, , . The smoothness indicators S s are

calculated according in (2.42) as a function of v, , , -

The reconstructed value v;,,, , is given by [18] as:

\3

Vi7+1/2,y1 = a)OL|:Wi + (3WI - 4Wi+1 W, )\1/2§:| i a)lL|:Wi - (_ o )12:| (263)

+ o, |:Wi - (3W| - 4Wi—1 +W,, )\1/3}
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where W, =V;,,,, , obtained in (2.63).

For a=2

For the second Gaussian integration point (X;,,,,,Y,) the optimal d, constants
are given by [18] as follows:

210443 11 L 21043
" 1080 "1’ > 1080

Using these constants and following the same procedure in (A), we get the

following reconstructed values at the second point Gaussian integration:

Vitl 2y2 Q)OR|:ui - (3ui - 4ui+1 + ui+2 )fi| + a)lR|:ui - (ui—l - um )\/§i|

12
+ a)m[u, +(3u, —4u_, +u )ﬁ}
12
vi_+l/2,y2 =0, |:Wi - (3W| - 4Wi+1 +W.,, )\1/25} + a)lL|:Wi - (Wifl - W, )\1/2§i|

+ a)z{wi +(3w, —4w_ +w, )\f}

(2.64)

where u; =v',, ,and w; =v_,, are obtained from (2.61) and (2.62)

respectively. Also, figure 2.3 shows reconstructed and gaussian points for one cell.
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Feconstruction in second
dimension by Gaussian
guadrature
P (Gaussian integration points)
.

1 Yo H - TR
X Yp & : . 3 M1z ¥p Reconstructed
' . ma‘nles b); ane
| e Ensiona
X % -7 WENO scheme
e | [EREEE ¢ s
Xan Yo ’ ‘ Xin Ya

Figure 2.3. Reconstructed points and gaussian integraion points for one cell

Again the + values are required at the same location (X, ,,,,Y, ). Note that

+ gt
Vi+1/2,ya - Vi—1/2+1,ya
N . N . . .
So once Vi, ,,, is found, v;,,,, , 1s easily obtained.

Transform back into physical space using

* _ +

Qi+1/2,yl - RVi+1/2,y1
+ _ +

Qi+1/2,y2 - RVi+1/2,y2

Apply an approximate Riemann solver to the variables at each Gaussian

integration point (as will be explained in chapter 3)

The flux at the cell faces fm /2. 18 now computed using Gaussian quadrature

method as follow:

A

fi+1/2,j = h(Qijrl/Z,yl’QiJ:—l/Z,yl)* K1+ h(Qij-l/z,yZ’Qi:l/z,yZ) *K2 (2.65)

where K1 and K2 are the Gaussian weights, for this two-point case [36]:

Kl=1
K2=1
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Once the fluxes at the cell faces are calculated, we can form the scheme (2.8) and

calculate the RHS of this equation.

Note that fi_l 2 = fi+1 /2.1.j» S0 we need only to calculate fi+1 /.j values.
Also, as mentioned before, the g, ;,,,, flux is obtained in entirely the same way.

The procedure and formulation in the example, is valid for uniform Cartesian
grids. For non-rectangular grids the formulation is similar. However, instead of using the
Cartesian velocity components, the tangential and normal components are used.
Derivation and formulas for the tangential and normal velocity components are set in

Appendix (A).
2.8. Time Discretization

So far only the spatial discretization of (2.5) is considered. In this section we
consider the time discretization. There are many types of time discretization; the one

used is 3™ order Runge — Kutta method.

A class of TVD (total variation diminishing) high order Runge — Kutta methods
is developed in [9]. These Runge — Kutta methods are used to solve a system of initial

value problems of ODE’s written as:

dQ
ety (2.66)

resulting from a method of lines spatial approximation to a PDE such as:

Q __HQ (2.67)
ot OX
Clearly, in our case, L(Q) in (2.66) is the WENO approximation to the

derivative — @ in the PDE (2.67).
X

Solving (2.66) with 1* order Euler forward time stepping:

Q™ =Q" +AtL(Q") (2.68)
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Assuming (2.68) is stable in a certain norm:

HQ”” < HQ (2.69)
under a suitable restriction on At
At < At (2.70)

then we look for higher order RK methods in which the stability
condition (2.69) holds. But still this RK method may have a different restriction on At

At < CAt, 2.71)

where C is the CFL coefficient for the high order time discretization.

Note that the stability condition (2.69) for the 1* order time stepping (2.68) can
easily be attained in many cases for one-dimensional problems. However, for multi —
dimensional conservation laws, the same stability condition can not be obtained (2.69)

with the first order Euler stepping (2.68).

For example, if it is used for multi — dimensional conservation laws for which
TVD is not possible but maximum norm stability can be maintained for high order
spatial discretization plus forward Euler time stepping, then the same maximum norm

stability can be maintained if TVD high order time discretization is used.

In [9], a general RK method for (2.67) is written in the form:

p-1

QP = (aka<k)+At,8pkL(Q(p))) , p=1L...,m (2.72)

=~

Q(O) — Q(n) Q(m) — Q(n+l)
b

If all the coefficients are nonnegative, i.e., &, >0, B, =0, then (2.71) is just a

convex combination of the Euler forward operators, with At replaced by &At , since
a
pk

. -1
by consistency zszoapk =1.

Lemma [9] The Runge — Kutta method (2.71) is TVD under the CFL
coefficient (2.70).

33



. apk
C=min— (2.73)
Pk ﬂpk

provided that «, >0, S, >0.
The optimal third order TVD Runge — Kutta method is given by [9]

Q(l) — Q(n) +AtL(Q(n))

Q@:%Qm+%Qm+%muQm) (2.74)

Q(nH) :%Q(n) +§Q(2) +§Aﬂ_(Q(2))

with a CFL coefficient ¢ =1 in (2.73).

The third order Runge — Kutta method without TVD is given as:
Q(l) — Q(n) +%ATL(Q(n))

Q(Z) — Q(n) +AtL(Q(1))

1 1 1 2
) _ = (M + = ® + — @ +—AtL @
0 2Q 3Q 6Q 3 Q)

The difference between TVD RK and RK without TVD is explained below:

The total variation of a discrete scalar solution is defined by:
V(Q=>|Q,. —Qj

i
The scheme is said to be TVD if

V™) <TV(Q")

Thus for time discretization, if the norm in (2.69) is chosen to be the total

variation norm, then the terminology becomes TVD time discretization.

(2.74) Is the way used for time discretization in this thesis.
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CHAPTER 3

NUMERICAL FLUXES AND BOUNDARY
CONDITONS

In this chapter we first briefly review the fluxes to be used in the framework of

our schemes. Then we briefly describe the boundary conditions used in algorithm.

3.1 The HLL Approximate Riemann Solver

Harten, Lax and Van Leer [22] put forward the following approximate Riemann

solver
Q, if %ssL
Qx,t)=1Q™  if S, s%ssR
Qx if %ZSR
where (3.1)
thl _ SRQR _SLQL + FL — FR
SR _SL

Where Qhll is the constant state vector, Sp and S are the fastest signal velocities
perturbing the initial data states Qr and Qg respectively. Fig 3.1 shows the structure of
this approximate solution of the Riemann problem, called the approximate Riemann
solver. Note that this approximation consists of just three constant states separated by
two waves. The star region consists of a single constant state; all intermediate states

"M The corresponding

separated by intermediate waves lumped into the single state Q
flux F" along t-axis is found from relations with the exact integrand replaced by the

approximate solution. (3.1)
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Note that F™ £F(Q™).

F'"=F, +S,(Q" -Q,) or

(3.2)
Fh” — FR +SR(Qh” _QR)

t Star Region

L 4

Figure 3.1. Approximate HLL Riemann Solver. Solution in the Star Region
Consists of a single state Q"' separated from data states by two waves of speeds S; and

Sr

Note that relations 3.2 are also obtained from applying Rankine- Hugoniot

Conditions across the left and right waves respectively.

SpF. =S Fr +S.S;(Qr — Q)
SR _SL

=L (3.3)
Procedures to estimate the wave speeds S; and Sy are given in Section 3.3. The

converged solution of HLL approximate Riemann Solver is the physical, entropy

satisfying, solution of conservation laws. One of the requirements is the consistency

with the integral form of the conservation laws.

A shortcoming of the HLL scheme is exposed by contact discontinuities, shear
waves and material interfaces. These waves are associated with the multiple eigenvalue

A2 = A3 = U See Fig. 3.2. This defect of HLL scheme may be corrected by restoring the
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missing waves. Accordingly Toro, Spruce and Speares [37] proposed so called HLLC
scheme, where C stands for Contact. In this scheme the missing middle waves are put

back into the structure of the approximate Riemann Solver.

Implementation of HLL Flux

In order to implement the HLL Riemann Solver one performs the following

steps:
l. Compute the Wave Speeds Sy and Sg accordign to any of algorithms of
section 3.3
2. Compute the HLL flux according to equation (3.1) and find Fj; ;.

(u-a) (u+a)

Flowr Flowr
Wariahles on Wariahles on
left side right side

Figure 3.2. Structure of the exact solution of the Riemann problem for the x-split
three dimensional Euler equations. There are four wave families associated with the

eigenvalues u-a, u (multiplicity 2) and u+a
3.2 The HLLC Approximate Riemann Solver

The HLLC scheme is a modification of the HLL scheme described in previous
section, whereby the missing contact and shear waves are restored. Consider Figure 3-1

,in which the complete structure of the solution of the Riemann problem is contained in
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a sufficiently large control volume [ Xy Xg ] x [ 0, T ]. Now in addition to the slowest

and fastest signal speeds S, and Sg we include a middle wave of speed S+, corresponding

to the multiple eigenvalue A, =A3 =u See Fig 3-3

The HLLC approximate Riemann solver is given as follows;
Q, if %s S,
) Q. ifs <><s,
Qx.b) = ' (34)
Q.. ifS. s% <s,
Q, if %z S,
where
S.-S Sg - S. (3.5)
hil — L .+ R .
Q (SR—SLJQL (SR—SL O
t
St 5 Sr
\ Q4 | lexr| /

o

Figure 3.3. HLLC approximate Riemann Solver. Solution in the Star Region

consists of two constant states separated from each other by a middle wave of speed S*

38



Figure 3.3 shows the structure of the HLLC scheme, By applying Rankine-

Hugoniot conditions across each of the waves of speeds Si, S+, Sg , we obtain

Fo=F +S.(Q. —Q)
Fir =Fz +5.(Qx —Qu) (3.6)
F*R = FR +SR(Q*R _QR)

The aim is to find the vectors Q*L and Q*R so that the fluxes F*L and F*R

can be determined from equation (3.6). We impose the following conditions on the

approximate Riemann Solver.

u*|_ = u*R = u*

PsL = Psg = Ps (3.7)
Vg =V, Ve = Vi

Set S«=Ux

Now equations (3.6) can be re-arranged as;

QL = SLQ*L - F*L (3.8)
QR = S*Q*R - F*R

Where Qr and Qg are known constant vectors. Finally the solution vector is;

- 1 -
S >
—Uu
U*D =pD [ﬁ VD (39)
D * E
—D+(S*—uD){S*+L}
| Po Po(Sp —Up) ]

Where D=L and D=R. Therefore the fluxes F+« and F:«z in Equation (3.6)

completely determined.

In view of Equation (3.4) the HLLC flux for the approximate Godunov method

can be written as;
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F if 0<S,

e _ F. =F_+S (Q..-Q,) if S, <0<S,
s |Fi = Fr +5:(Qie ~Qq if S, <0<S,
Fe if 0>S,

(3.10)

Where Q- and Q+g are given by Equation (3.9).

Implementation HLLC Flux

To implement the HLLC Riemann solver , one performs the following steps.

1. Compute the wave Speeds S, S+ and Sg according to any of the algorithms of
section 3.3

2. Compute the appropriate states according to equation (3.9)

3. Compute HLLC flux according to equation (3.10)

3.3 Wave- Speed Calculations

In order to determine completely the numerical fluxes in both the HLL and
HLLC Riemann solvers we need to provide an algorithm for computing the wave
speeds. For the HLL solver one requires Sy and Sg. For the HLLC scheme one requires
in addition an estimate for the speed of the middle wave S«. There are essentially two
ways for calculating Sy, S« and Sg. To calculate the speeds directly is the most popular
way of calculating wave speeds. A more recent approach relies on pressure-velocity
estimates for the Star Region; these are then utilized to obtain S;,S« and Sgr using exact

wave relations.
3.3.1. Direct Wave Speed Calculations

The most popular approach for calculating the bounds for the minimum and
maximum signal velocities present in the solution of the Riemann problem is to provide

wave speeds Sp. and Sg. It suggested as [38];
S, =u_-a, Sg =U; +a; (3.11)

And
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S. =min(u —a ,Ug —ag,) Sg=(U_ +a,,ug +ag) (3.12)

These calculations make uses of data values only. It is also being used Roe

average eigenvalues for the left and right non-linear waves are used, that is

S, =u-a, S, =u+a (3.13)

Where u and a are the Roe-average particle and sound speeds respectively,

given as follows

&:\/ZUL+ PrUR
Voo +pe

where H=(E+p)/p (3.14)

Hz\/pLHL+ prHg

Vo pe

3.3.2. Pressure-Velocity Based Wave Speed Calculations

1/2

a:{(y—l)(ﬁ—o.sﬂz)}

A different approach for finding wave speedestimate was proposed by Toro [37].
Whereby one first finds an estimate for the pressure p= in the Star Region and then one
derives estimates for Sy and Sg. This is a simple task and several reliable choices are
available. For the HLLC scheme of the previous section one also requires an estimate for
the particle velocity us; this is easily achieved, as approximations for p+ and u+ are
closely related. The second approach derives a wave speed estimate S+ from the

estimates Sy and Sg using conditions (3.7).

Suppose we have estimates p+ and u« for the pressure and particle velocity in the

Star Region. Then we choose the following wave speeds
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S, =u_.-a.0q,, S.=u. Syz=U;+az0; (3.15)
Where

12
o= {H@l(p*/pn—l)} it p.>p, o

This choice of wave speeds discriminates between shock and rarefaction waves
If the D wave (D=L or D=R) is a rarefaction then the speed Sp corresponds to the
characteristic speed of the head of the rarefaction, which carries the fastest signal. If the
wave is shock wave then the speed corresponds to an approximation of the true shock
speed; then the speed used are exact but the pressure ratio across the shock is

approximated, because the solution for p«is an approximation.

As indicated earlier, there is an alternative way of computing the middle wave
speed S« in the HLLC Riemann Solver. Given the wave speeds Sp and Sg, by assuming
S+=Ux in equations (3.8) one obtains the following solutions for the pressure in the Star

Region
P = P +pL(SL _UL)(S* _UL)a P«r = Pg +pR(SR _UR)(S* _UR) (3-17)

From the condition Equation (3.7) p«.=p+r Which leads to an expression for the

speed S+ purely in terms of the assumed speeds S; and Sk , namely

g _Pr =P +pU (S —UL) ~ Prlg(Sg —Ug) (3.18)

PL(S. —U )= Pr(Sg —Ug)
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3.4 Lax Friedrichs Flux

This scheme is an first order scheme and obtained from forward in time and
central in space approximations to partial derivatives. The Lax-Friedrichs solution at cell
I is a weighted average of the solution of the Riemann Problem with the left and right

neighboring states as data, at time t= At/2 .

The conservation laws in one-dimension states that;
Q +F(Q),=0 (3.19)

Also the integral form of the conservation equation is defined as;

QU= FQUt,12) = F(Q(K, ) (3.20)

Xi-1/2

d
dt

=AYD [

S

L

BARY! Zilna X

Figure 3.4. Control Volume V=[Xi-1/2 ,Xi+1/2] x [0,At/2] on x-t plane
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When the control volume displayed on Figure 3-4 used in (3.20)

At

Xiti2 1 Xiv12 L 2 ~
[ Qe —atdx= [ Q0+ [FQ(X,.,,,0)dt -
Xi—1/2 Xi_1/2 0
M (3.21)
2 ~
[FQ(X,,,,tdt
0
Where
1 Xi+1/2 ~ At
n+l1 — X,— dX
Q' =— X_j Q)
(3.22)

where é is the solution of Riemann Problem RP(Q},,Q:,,)

Substitute (3.22) into (3.21).

TR R n I At ,_, n
Q" :E(Qi—l +Qi) +5§(Fi—l -F) (3.23)

Also; If we discretize (3.19) on C.V. V=[Xi.12,Xi+12] X [0,At/2] (Forward in time

and Central in space);

n+ n At n n
Qi l =Qi +§(Fi—l/2 - Fi+l/2 (3.24)

After substuting (3.24) into (3.23) we get Lax-Friedrichs intercell flux as;

1 n n 1 AX n n
Fik::/z ZE(Fi + Fi+l)+EE(Qi+l _Qi ) (3-25)

This is the conventional numerical flux for the Lax-Friedrichs scheme when
applied to systems of conservation laws (3.19). The Lax-Friedrichs method is monotone,

when applied to systems of conservation laws (3.19).
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3.4.1. Monotone Schemes

Useful class of methods for systems of conservation laws (3.19) is those which

are monotone.
Q"' =H (Qin_kLu 9"'9Qin+kR ) (3.26)
With ki, and kg two non-negative integers,
Monotone scheme is a scheme if H is a non-decreasing function of each of its

arguments.

aHn >0 Vj (3.27)
Q!

This property in turn is the discrete version of the following property of the exact
solution of the conservation law. (3.19) : If two initial data functions Vp(X) and Uy(X) for
(3.19) satisfy vo(x) >uo(x) for all x , then their corresponding solutions V(X,t) and u(x,t)
satisfy v(x,t) >u(x,t), t>0. Hence monotone schemes mimic a basic property of exact

solutions of conservation laws (3.19)

Theorem 3-1 Monotonicity and the Flux

A three point scheme of the form is given by (3.24) for non-linear conservation

law (3.19) is monotone if ;

a n n a n n
ﬁ fi+l/2(Qi ’Qi+l)20 and @ fi+1/2(Qi 7Qi+1)£0 (328)

That is, the numerical flux f,,,,(Q,Q",) is an increasing function of its first

argument and a decreasing function of its second argument.
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3.4.2. Application of Monotonicty and flux theorem to the Lax-Friedrichs Method.

For general conservation law (3.19) the Lax-Friedrichs flux is given by (3.25);

1, _, n 1 AX ., N
I:i|+_;:/2 :E(Fi _Fi+1)+§A_t(Qi -Qil)

When condition (3.28) applied monotonicity is ensured provided

1< A% @
AX (3.29)
where A(q) =0f/0q  is the characteristic speed

That is, provided the CFL stability condition is enforced properly, the Lax-

Friedrichs method is monotone.
3.5 Lax-Wendroff Scheme

Recall the solution of the Riemann problem by invoking the integral form of the

conservation laws (3.19) .

Xi+1/2 ~
I QHL(X,E)dX
2 2

i-1/2

1
n+— 1
2
Qi% AX
(3.30)
where Q , is thesolution of Riemann Problem RP(Q[,Q!,,)

i+—
2

As done for Lax-Friedrichs scheme one may replace the integral involving the
solution of the Riemann problem by invoking the integral form of conservation laws.
Analogously; in the C.V V=[Xi.12,Xi+12] x [0,At/2];

1
n— 1 1 At
FYW =F 2, 2=—_Q"+Q" )+——(F"-F" 3.31
! (Q 1 ] Qi+% 2(Q| QHI) 2 AX( i |+1) ( )
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3.6 First-Order Centred (FORCE) Flux

The FORCE flux [20] is a recent centred flux which is an arithmetic mean of the
Lax-Friedrichs and Lax-Wendroff fluxes. The numerical viscosity of the FORCE flux is

smaller than that of the Lax-Friedrichs flux by a factor of two.

F.FIORCE :%(F LW + F LFJ

1 N n net n AX n n
F rore :Z(Fi 2R Q)R - QL - Q )] (:32)
2

i+—
2

1
N+ 1 n n 1 n n
Q /7 =E(Qi+l +Q; )+§(Fi -F)

i+—
2

3.7 Rusanov Flux

For a given Riemann problem we can identify a positive speed S*. Then by

choosing S; = -S"and Sg=S" in HLL flux (3.3) one obtains a Rusanov flux [39].
1 n n 1 + n n
FiiU/SzANOV = E(Fi +F5) _ES (Qm - Qi ) (3.33)
As to the choice of the speed S*, Davis [38] considered.

S' = maxﬂui -

u.,—a

u; +q

Ui -2, Ui +a] (3.34)

Actually, the above speed is bounded by;

S* = max{ |ui +a,

Ui + 35, | (3.35)

s M+l

Another possible choice is S'=S",ax, the maximum wave speed present at
appropriate time found by imposing Courant Stability condition. That is ; S is related to

the time step At and the grid spacing Ax via ;
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s _ C.AX
max At

(3.36)

Courant number is chosen to be Cep=1 one has S'=Ax/At, which results in the

Lax-Friedrichs numerical flux (3.25)

3.8 The Upwind MUSTA Fluxes

A very simple and general approach to the construction of numerical fluxes,
which combines the simplicity of centred fluxes and the good accuracy of the Godunov
method is Multi-Stage (MUSTA) approach [18,25,26]. The key idea of the original
MUSTA is to open the Riemann fan by evolving in time the initial data Qr, Qr

Q =Q x<0

o 0
a a0 Q“’“)‘{QR:QM x>0

Riemann solvers recognize all waves in the Riemann fan and therefore provide
good resolution of delicate features of the flow, such as contact discontinuities and Shear
waves. Incomplete Riemann solvers (HLL Flux) do not recognize the intermediate
waves in the Riemann fun and lump them all in one state. Centred fluxes (Lax-
Friedrichs, Lax-Wendroff, FORCE Flux ...etc) can be regarded as very rough Riemann

Solvers in which the Riemann fan is not opened at all.

The MUSTA approach develops upwind numerical fluxes by utilizing centred
fluxes in a multi-stage predictor-corrector fashion. Effectively, MUSTA can be regarded
as an approximate Riemann solver in which the predictor step opens the Riemann fan
and the corrector step makes use of the information extracted from the opened Riemann
fan, which is precisely the information needed for the upwind numerical flux. The
advantages of this multi-stage predictor —corrector solver are its simplicity and

generality.

The key idea of MUSTA 1is to open Riemann fan by solving local Riemann

Problem (3.37) numerically rather than analytically. The existing discontinuity is
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resolved by applying in the corrector step a simple flux, such as a centred flux. A

particularly successful flux , constructed on the basis of the centred FORCE flux, is used

in corrector step.

Implementation of MUSTA Flux

In order to implement the MUSTA Flux one performs the following steps:
1. For initialization of the iteration , set k=1 and QL(I) =Q and QR(D =Qr
2. Evaluate the Fluxes at k=1

FL O =F(Q.Mand Fr® =F(Qx"")

3. Evaluate the centred FORCE Flux at k=1.

QU =@ +Q!)+ (FL - F
1 AX
EO L[ E® 4oF® LEY 2200 Q"
i+1/2 4( L (QM) R At (QR QL )j

4. New Flow variables for following iteration step is calculated. By simple
discretization (Forward in time and Forward in space) of Euler equation across

control volume of Figure3-5

QL QR

Figure 3.5 .The Control Volume For Simple discretization.

Q" = Q"+ (R - F,
X

At

" F.(I) _F(I)
A 2 )

i+1/2

Qélﬂ) — Qél) +
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5. Goto Step 1

The procedure is stopped at the end of Stepl if desired number of stages k has
been reached. Practical Investigations [18] suggests that a number of stages between 3
and 4 gives numerical results that are comparable with those from the most accurate of
fluxes, namely, the first order Godunov upwind flux used in conjunction with the exact

Riemann solver.

3.9 Boundary Conditions

Here five different types of boundary conditions are discussed. They are: inflow,
outflow, wall (body surface), symmetry, and periodic boundary conditions. Also

information about ghost points is mentioned.

3.9.1. Inflow Boundary Condition

The inflow boundary condition is defined as the location for which \yﬁ) is

. P P P . . .
negative. Where, V =u I +V J and K is the unit vector normal to the boundary in an

outward direction.

For supersonic inflow, since all the eigenvalues are positive, which means that
four characteristics enter into the domain and therefore four analytical boundary
conditions may be specified. In this thesis, the inflow boundary is set at the free-stream

that is the values U, V, p, and p are specified at the free-stream condition as can be

seen at Figure 3-6.

u=u,
V=V,

p=p,
P=DP,
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supersonic inflow

Figure 3.6. Properties of Supersonic inflow BC.
In this Thesis, Test cases require only supersonic inflow boundary condition. No

subsonic inflow Boundary condition is required.

3.9.2. Outflow Boundary Condition

. . . 4 . ...
The outflow boundary is defined as a location for which V - R is positive.

For supersonic outflow, again all the eigenvalues are positive, so all the
characteristics leave the domain. Then the information at the boundary is received from
the interior points of the domain. Therefore, no boundary condition is specified at the

exit.

Supersonic outflow

/

+
<

Timace-1 Imax

Figure 3.7. Properties of Supersonic Outflow BC.
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The properties at the outflow boundary are extrapolated from the interior points.

In the test cases, zero™ order extrapolation is used (See Figure 3-7)

Qimax,j = Qimax—l,j (337)

If the outflow is subsonic, then two of the eigenvalues are positive (outgoing)
and one is negative (incoming from outside). Therefore, one analytical boundary
condition may be specified and the other two are extrapolated from the interior domain

in the same fashion as in the previous subsection. This condition is illustrated in Figure

(3-8) :

Subsonic outflow

e

Iima-1 Imax

Figure 3.8. Properties of Subsonic Outflow BC.

3.9.3. Wall Boundary Condition (Body Surface)

In Euler equations, since the flow is inviscid, the slip condition is used at the

surface. So the flow must be tangent to the solid wall, thus:
P % Y . .
V. l‘]j =0, V=u IP+V 5) , K is the unit vector normal to the wall.

There are many ways for determining the boundary condition at the wall, the

following one is used:
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Density: The density is extrapolated from the interior points. Using zero™ order

extrapolation:
Pijs = Pijs  (for upper wall)
Pijs = Pijsn  (for lower wall)

s Stands for the wall location.

Velocity Components: The velocity components at the surface (wall) are

determined as follows [34]:

The velocity vector and unit vector normal to the lines of constant 7 are given

(3.38)
Using metrics relations
1 1
nx:_jyfﬁ ny:jxf
where, J =Xy, —X, Y, is the Jacobian.
Y, =y(0, D=y, =D
X, =X(1, ))=x(, j=1) (3.39)

X§ = X(ia J)_X(I _la J)
y; :X(i: J)_X(I _la J)

Substituting into (3.38), we obtain:

—y i ax §
R __7¢ 3
VXE+Y:

Now the normal component V,  is determined as follows:
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p PP (-y.l+x )
—\/ . _ . 4 5
Vo, =V ILI)”—(UI+Vj) —x2+ -
et Ye
—u V X
v - _UYe VX (3.40)

nin 2 2
VX T Ye

similarly, the tangential component V,, is obtained as:

1/2

() —u +VX
th _ VV _Vnz,,]l/z _ (uz +V2) _ ( yj 25) (3.41)
VXe e
Arranging the equation above yields:
ux.+v
V,, = X FVYe (3.42)

n 2 2
VXe T Y

Equations, (3.40) and (3.42) determine the normal and tangential components of

. P . . .
velocity V at the surface. In these equations, U and v are evaluated at known interior

points, where, X, and Yy, are evaluated at the surface. Solving equations (3.40) and

(3.42), the flow velocities U and Vv at the surface are obtained as:
Ug =XV, +y:V,,

Vv, = ygvm —x§V

nn

Pressure: The wall pressure is typically specified by applying the normal
momentum equation in the generalized coordinates. We apply the normal momentum
equation in the generalized coordinated to make it valid for orthogonal and non-

orthogonal grids also for curved and straight walls.

The pressure is extrapolated using the normal momentum equation is [34]:

op

op
%(xg +Y?) :g(xgxn +Y:Y,)+ U (X V- y,.u) (3.43)

where, U =u Yy, VX,
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Solving (3.43), the pressure at the surface is obtained.

Besides the Slip condition that is required for Solving Euler Equation. For
Solving Double Mach Reflection Test Case, One requires some special treatment for the
wall boundary condition. For Double Mach Reflection (DMR) Problem, reflective wall
BC is used. Apart from slip Boundary condition, for reflective boundary condition

velocity normal to the wall face is reflected with conserving its direction.

3.9.4. Symmetric Wall Boundary Condition

The symmetric boundary is used for configurations, which are symmetric as

shown in the Figure (3.9).

Axis of Symmetry

mex!-l

Jinase

Figure 3.9. Symmetric Boundary Condition

The grid line j= jmax is set below the axis of symmetry and the line

J = Jmax+1 is set above the axis of symmetry.

From physical point of view, the following constraints hold for the flow and

thermodynamics [29]:
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pi,jmax = pi,jmax+1

ui,jmax = ui,jmax+1
Vi,jmax = _Vi,jmax+1

i, j max i, j max+1

3.9.5. Periodic Boundary Conditions

The periodic boundary conditions are applied in the cascade problem. The

cascade is considered as an infinite number of identical blades stacked on top each other.

The periodic boundary conditions are explained as follow:

J =tz

L 4

-I=jmax-1

L 4

.]=jmjn+1

Figure 3.10. Periodic boundary condition

Qi,J min :Qi,j max—1

1%

pu
Qi,jmax :Qi,jmin+1 Where Q =

o

pE

3.9.6. Ghost Points

The most natural way of treating the boundary conditions for the WENO scheme

is to use only the available values inside the computational domain when choosing the
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stencil. In other words, we only consider convex combination of the all the candidate
stencils, which are completely contained inside the computational domain. That’s why
we set all the necessary ghost points outside the computational domain to make sure that

they don’t contain any used stencil.

The ghost points needed for the WENO reconstruction are set out side the
computational domain. In other words, only stencils completely contained inside the

computational domain are used in the computations.

The values at the ghost points are extrapolated from the values at the boundary

conditions.
Q g = ch

where g denotes for ghost points and bc denotes for boundary condition.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter , finite volume WENO scheme is tested for different problems
using different fluxes. These fluxes are HLLC flux, MUSTA flux, Lax-Friedrich flux
and Rusanov Flux. When applied with WENO scheme so they are named as; WENO-
HLLC, WENO-MUSTA,WENO-LF and WENO-RUSANOV. The flowchart of the
corresponding algorithm is given in Appendix A. The scheme is tested for one and two
dimensions. For 1-D , a shock tube problem is used. For 2-D, Double Mach Reflection

problem, Supersonic Channel Flow problem and Wedge Cascade problem are used.

4.1 One Dimensonal Results

The 1-D Shock Tube Problem [29] involves severe flow structures involving

shock wave, contact surface and expansion waves.

4.1.1. Problem Description

A shock tube is a device which is used in the experimental investigation of
several physical phenomena such as shock structure and aerothermodynamics of

supersonic/hypersonic vehicles.

A shock tube is a relatively long and a constant area tube which is divided into
two sections by a diaphragm. The problem is shown in figure 4.1 . The section including
the high pressure gas is called the driver section and denoted by 2 in figure 4.1. Also the
section including low pressure gas is called the driven section and denoted by 1 in

figure 4.1.
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Complete specification of driver and expansion gases is sufficient to provide the

solution for the shock tube problem which is also known as Riemann Problem.

Once the diaphragm is ruptured, a normal shock propagates into the low pressure

region 1 and a series of expansion waves propagates into the high pressure region 2.

Driver section Driven(or expansion) section
High pressure gas 2 Low pressure gas

x=00 - Diaphragm x=L
P
P

2
T — .

;
0.0 L X

Figure 4.1. Shock Tube at the initial state and corresponding pressure distribution [29]
In this thesis two standard tests cases are investigated. These are the Sod’s
problem [30] and the Lax’ s Problem [31]. These test cases are using different Riemann

Type initial data:

Qif x<0

Qx0)= {QR if x>0
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4.1.2. The Sod ’s Problem

For the Sod’ s problem the Riemann Type initial data is defined as;

o] [1.000]
Q. =|u, |=|0.000
| P | [1.000 ]
[pe | [0.125]
Qq =| Uy [=]0.000
| P: | [0.100

This problem is investigated with Finite Volume WENO scheme with different

fluxes. Results can be seen at Figures 4.2-6
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Figure 4.2. Solution of Sod’s problem with HLLC flux at t=0.25 and CFL=0.6
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Figure 4.3. Solution of Sod’s problem with Lax-Friedrich flux at t=0.25 and CFL=0.6
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Figure 4.4. Solution of Sod’s problem with Musta flux at t=0.25 and CFL=0.6 .
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Figure 4.6. Comparison of all the fluxes for Sod’s Problem
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Figure 4.2-5 shows the solution of the sod’s problem . Figures contain density,
velocity, pressure and internal energy plots. The solution of the sod’s problem consists
of a left rarefaction, a contact discontinuity and a right shock wave. These figures shows
that all the fluxes fit the exact solution of the problem. The decreasing pressure and
associated negative slopes are well predicted. In addition Figure 4.6 shows comparison
of the fluxes. In at the begining of the left rarefaction region (Figure 4.6 (a)) all the
fluxes behaves same while at the end of the region (Figure 4.6 (b)) It can be observed
that HLLC flux is the best. Also at the contact surface regions (Figure 4.6 (c) and (d))
HLLC flux and Lax-Friedrich ( LF) have more accurate results than Musta and Rusanov
fluxes. In the right shock region (Figure 4.6 (e)), Musta and Lax Friedrichs fluxes have
better results than other. It can be observed that HLLC flux is good at rarefaction region

while Lax Friedrichs is good at shock wave region.

4.1.3. The Lax ’s Problem

For the Sod’ s problem the Riemann Type initial data is defined as;

o] [0.445]
Q. =|u, |=]0.698
| P | [3.528]
[pe ] [0.500]
Qq =| Ug |=]0.000
P, | 0571

This problem is again investigated with Finite Volume WENO scheme with

different fluxes. Results can be seen at Figures 4.7-11
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Figure 4.7. Solution of Lax’s problem with HLLC flux at t=0.13 and CFL=0.6.
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Figure 4.8. Solution of Lax’s problem with Lax-Friedrich flux at t=0.13 and CFL=0.6.
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Figure 4.9. Solution of Lax’s problem with Musta flux at t=0.13 and CFL=0.6.
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Figure 4.10. Solution of Lax’s problem with Rusanov flux at t=0.13 and CFL=0.6.
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Figure 4.11. Comparison of all the fluxes for Lax’s Problem

Figure 4.7-10 shows the solution of the lax’s problem . Figures contain density,
velocity, pressure and internal energy plots. This problem is a very severe test problem
with sharp density gradients increase and decrease. The solution of the lax’s problem
consists of a left rarefaction, a contact discontinuity and a right shock wave. These
figures shows that all the fluxes fit the exact solution of the problem. In addition Figure
4.11 shows comparison of the fluxes. In rarefaction fan all the fluxes behaves same. Due
to short rarefaction region . The behaviour of the Hllc flux cannot be observed clearly.
But the difference in the fluxes can be seen at contact end shock wave regions. In the
begining of the contact region (Figure 4.11 (a)) Lax-Friedrich and HLLC fluxes gives
more accurate results. Also at the end of the contact region (Figure 4.11 (b)) Lax
Friedrich flux is bacoming more accurate than others. As stated before in shock wave

regions (Figure 4.6 (c) and (d)) Lax-Friedrich Flux is the best .
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4.2 Two Dimensional Results

The First 2-D problem is Double Mach Reflection problem . The second one is
the 2-D channel problem. Also in this problem Grid refinement study is carried out. The

final one is the 2-D turbomachinery cascade problem.

In this section the contour plots of flow regions, pressure and mach number
plots and the convergence history of the probles are showed. The convergence is

calculated by the logarithm of the max. Residual.

)

4.2.1 Double Mach Reflection (DMR )

Convergence :logQRESIDUAL

max

This is a standart test case problem for high resolution schemes and first
introduced by Woodward and Colella [32]. The flow can be set up experimentally by
driving a shok down a tube which contains a wedge . At first the simple planar shock
meets the walls of the tube at right angles but when wall begins a complicated shock

reflection occurs [32].

This test problem involves a Mach 10 shoc in air (y=1.4) which initially makes
60° angle with a reflecting wall. Also, the undisturbed air ahead of the shock has a
density of 1.4 and a pressure of 1. The computational domain for this problem is chosen

to be a rectangle [0, 4] x [0, 1] (figure 4.12)

1.0

0.0 x=1/6 Reflecting Wall 0

Figure 4.12. The Computational Domain

The reflecting wall lies along the bottom of the problem domain, starting at

x=1/6. The shock makes 60° angle between the x-axis and extends to the top of the
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problem domain at y=1. The short region from x=0 and x=1/6 along the bottom
boundary at y=0 always assigned values for the initial post-shock flow. This flow
conditions are calculated by Rankine-Hugoniot equations [33]. That boundary condition
attaches the reflected shock to the lower wall. Initially, the left side of the shock is also
assigned values for post-shock flow whereas the right side of the shock is assigned
values to enable all gradients zero. The values along the top boundary are set to give the
exact motion of initial 10 Mach shock. That is boundary is assigned to values which

does not dissipate the initial 60° incoming 10 Mach shock.

For this test problem two different sizes of the grids are tested. One of them is
with 120 x 30 sizes where the other one is with 480 x 120 sizes. Solutions are obtained

with same CFL number (CFL=0.6) and at time t=0.2.

Results with 120 x 30 Grid sizes

The results of four fluxes for 120x30 grid size are presented. The computational
domain and the mesh used in calculations can be seen at figure 4.13. The mesh is
uniform with Ax=Ay=1/30 . Near this domain ghost cells are used in computations. They
are used with symmetric type boundary conditions. Density plots can be seen in figures

4.14.

0.8

0.6 F

0.4 H

0.2

Figure 4.13. The computational domain and grid used in computations
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Figure 4.14. The Result of DMR problem with 120x30 grid size: (a) HLLC Flux,
(b) Lax-Friedrich Flux, (c) WENOMusta Flux and (d) Rusanov flux
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This is a test problem which clearly shows the resolution of the scheme. As can
be observed from the figure 4.14 the HLLC flux (figure 4.14 (a)) and musta flux (figure
4.14 (c)) shows higher resolution than other flux algorithms. Also, It is noted that
appearance of the Kelvin-Helmholtz instability (rolling) of the slip surface is physically
unstable features of the flow. That depends on the mesh and the scheme used. For the
same sizes of the meshes the schemes can be compared by that region. That region
shows the numerical dissipation of the scheme. The more instability means less
numerical dissipation when same mesh sizes considered. Therefore, The HLLC flux
shows the least numerical dissipation. Whereas the Lax-Friedrichs flux shows the most

numerical dissipation.

Results with 480 x 120 Grid sizes

In this section, the results of four fluxes for 480x120 grid sizes are presented.
The computational domain and the mesh used in calculations can be seen at figure 4.15.
The mesh is uniform with Ax=Ay=1/120. Also density plots can be seen in figures 4.16.
and figures 4.17.

0255
0es

0245
0s4

0225

0.s3

0825

Figure 4.15. The computational domain and grid used in computations
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Figure 4.16. The Result of DMR problem with 480x120 grid size (a) HLLC Flux,
(b) Lax-Friedrich Flux, (c¢) Musta Flux and (d) Rusanov flux
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Figure 4.17. Zoomed area of the figure 4.16 : a) HLLC Flux, (b) Lax-Friedrich Flux,
(c) Musta Flux and (d) Rusanov flux

The dependency of the problem on mesh density can easily be determined by
comparing figures 4.15 and 4.16. The increase of the mesh size also does increase the
instability. So that increasing the mesh sizes increase the resolution of the problem.
Closer views of the instabilities are considered for higher mesh sizes. (Figure 4.17.)
Some comments can be made on numerical scheme. As concluded before HLLC flux
has the least numerical dissipation. However it reflects the most oscillatory behaviors.
After HLLC Musta scheme has less numerical dissipation than the others. Most

dissipative scheme is the Lax-Friedrich scheme.
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4.2.2 Supersonic Channel Flow

Supersonic channel flow problem has a more elaborated domain than Double
Mach Reflection problem. This problem is defined in [29]. The supersonic channel flow

domain is showed at figure 4.18.

Top Boundary

Figure 4.18. Geometry of the channel
The existence of the compression and expansion corners will lead to the
formation of oblique shock and expansion waves. The reflection and interaction of the

shock and expansion waves will be illustrated in the results.

The flow enters the channel from the left at supersonic speed. The flow is
assumed air (specific heat ratio y=1.4) with free stream pressure p=1.0 and density
p=1.0. The solution is obtained for M =2.0 . The flow initial conditions are specified

as the free stream conditions over the entire domain.

Since the flow is full supersonic for each Mach number, the properties at the inlet
boundary are all assigned to the free stream values, whereas the properties at the exit
boundary are extrapolated from the interior of the domain. The wall boundary condition
is applied to the lower surface (channel wall) where for the upper surface (top boundary)

symmetric boundary conditions are used.

For this test problem the grid refinement study is carried out. Four grids densities

are used in calculations. These grids can be seen at figures 4.19 — 22.
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Figure 4.21. The Grid#3 with size 241x131

Figure 4.22. The Grid#4 with size 318x150
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Results are obtained for four grid sizes and these results are compared. So, the
results are presented for each flux with different sizes of the grid. Then, the behavior of

fluxes for each grid is also presented.

4221 WENO-HLLC results

The pressure contours of the results are shown at figures 4.23-26.
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Figure 4.23. Pressure contours for grid#1 (82x45) for Weno-HLLC
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Figure 4.24. Pressure contours for grid#2 (119x65) for Weno-HLLC
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Figure 4.26. Pressure contours for grid#4(318x150) for Weno-HLLC

It can be observed clearly from pressure contours that the mesh size affect the

resolution of the solution. At the biggest mesh size, the thinnest shock wave can be seen.

However grid#3 has also good results when resolution is considered. Figure 4.27 shows

the pressure distribution along the channel wall. Figure 4.28 shows the convergence

histories of the results.
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Figure 4.27. Pressure distribution on channel wall for Weno-HLLC

Figure 4.27 shows that when mesh size increased, the resolution is also increased
but with the resolution oscillations are included to the solution. These oscillations can be
damped with more grid clustering. In the grids used all the grid clustering parameters are

kept constant.
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Figure 4.28. The convergence history of the WENO-HLLC scheme with different mesh

sizes (a) Grid#1, (a) Grid#2, (a) Grid#3 and (a) Grid#4

When the convergence history of the scheme is shown in Figure 4.28. It is
concluded that the scheme does not have strong convergence Maximum 1 order of

convergence is obtained. This is a drawback of the WENO scheme, convergence of the

WENO scheme is very poor. [1].
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4.2.2.2 WENO-Lax-Friedrichs results

Figures 4.29-32 shows the pressure contours of the results. Figure 4.33 shows

the pressure distribution along the channel wall

convergence history of the scheme.

whereas figure

4.34 shows the
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Figure 4.29. Pressure contours for grid#1 for Weno-LF
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Figure 4.33. Pressure distribution on channel wall for Weno-LF
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Figure 4.34. The convergence history of the WENO-LF scheme with different mesh
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When pressure contours (Figures 4.29 -32) ,and pressure distribution (Figure

4.33) are considered It is seen that Lax-Friedrich scheme is less sensitive to the mesh

size than HLLC flux .Also the convergence history , figure 4.34 ,

Friedrich converges faster than HLLC .
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4.2.2.3 WENO-MUSTA results

Figures 4.35-38 shows the pressure contours of the results. Figure 4.39 shows

the pressure distribution along the channel wall

convergence history of the scheme.

whereas figure 4.40 shows the
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Figure 4.35. Pressure contours for grid#1 for Weno-MUSTA
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Figure 4.39. Pressure distribution on channel wall for WENO-MUSTA
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Figure 4.40. The convergence history of the WENO-MUSTA scheme with different
mesh sizes (a) Grid#1, (a) Grid#2, (a) Grid#3 and (a) Grid#4

The figures showed that WENO-MUSTA scheme does also behaves like the
other schemes (HLLC and MUSTA). However, Musta flux bring much oscillations to
the solutions compared with Lax-Friedrichs flux. The convergence histories are
approximately same. Musta flux hardly converges for coarse grids whereas Lax-

Friedrichs flux converges well.
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4.2.2.4 WENO-RUSANOV results

Figures 4.41-44 shows the pressure contours of the results.

the pressure distribution along the channel wall

convergence history of the scheme.

Figure 4.45 shows

whereas figure 4.46 shows the
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Figure 4.42. Pressure contours for grid#2 for Weno-RUSANOV
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Figure 4.44. Pressure contours for grid#4 for Weno-RUSANOV
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Figure 4.45. Pressure distribution on channel wall for Weno-RUSANOV
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Figure 4.46. The convergence history of the WENO-RUSANOYV scheme with different

mesh sizes (a) Grid#1, (a) Grid#2, (a) Grid#3 and (a) Grid#4

Result for the Rusanov scheme is like the other schemes which has been

explained before. However , The convergence history of the Rusanov scheme is worse.
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4.2.2.5 Result of the Grid Refinement Study

For grid refinement study four fluxes are tested with four grid sizes. The result of

each flux is considered separately. Figures 4.47-50 shows all the results obtained for

each grid.
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Figure 4.47. The pressure distribution on channel wall for all the fluxes and with grid#1
(82x45)
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Figure 4.48. The pressure distribution on channel wall for all the fluxes and with grid#2
(119x65)
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Figure 4.49. The pressure distribution on channel wall for all the fluxes and with grid#3
(241x131)
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Figure 4.50. The pressure distribution on channel wall for all the fluxes and with grid#4
(318x150)

It can be considered form the figures 4.47-50 that if the mesh used in
computations is coarser than it would affect resolution of the solution and solution
would have some oscillations near discontinuity. If mesh used is finer than solution
would be oscillatory. But the difference of these oscillations is in the magnitude. For
coarser grid oscillations are bigger in magnitude whereas for finer grid oscillation would

be higher in frequency.

For 2-D supersonic channel problem the best results are obtained by grid#3

(241x131). All the fluxes except HLLC flux fits the analytical solution very well.
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4.2.3Supersonic Wedge Cascade Results

The supersonic wedge cascade test case is first introduced in [34]. Four flux
schemes are tested with this testcase and also two different grids are used . The
difference of the grids is the skewness of the grid along the boudary of the cascade. The

geomerty of the cascade is shown at figure 4.51.

Chutlet

Periodic Boundaries
Pressure Surface

. Cascade

" Blade

Suction Surface

Periodic Boundaries
Inlet

Figure 4.51. The supersonic wedge cascade geometry and boundary conditions.

The flow at the inlet of the cascade control volume is supersonic with M=1.6.
The outflow is also supersonic. Therefore supersonic inlet and outlet boundary
conditions are employed. In cascade blade walls, classical wall boundary conditions are
employed. In the periodic surfaces, shown at figure 4.51, periodic boundary conditions

are employed.

The analytical solution of this problem is obtained by Hirsh in [34] using the

oblique shock relations and the characteristic theory. The structure of this cascade allows
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for shock reflection and shock suppression through the pressure and suction surfaces of
the cascade blade. The leading edge of the cascade wedge leads to an oblique shock
attached to the nose of the upper blade with a 45° inclination to the incoming flow
Then, the shock reflects from the lower blade with 48.2° reflection angle. This reflected
shock is suppressed with the wall inclination of the pressure side. The analytical (Exact)

solution of this cascade blade can be viewed in figures 4.52-53.

Mach Suction side
number — —— Pressure side
1.5
1.5-
- T T 1 pm———-
I
}
1.3 !
|
|
1.2 L
1.14
0£ T 5 5 : T T :
2 3 4 5
L.E T.E

Figure 4.52. Analytical (Exact) Mach number distribution on the blade pressure and
suction sides [34]

The flow variables at the inlet are assumed as; M=1.6 ,p=1. and P=1. Initially All

the computational domain is set to these variables.
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Figure 4.53. Shock structure that is found by Analytical solution [34]

The results of the solution are presented as follows. First the results that are
obtained by the grid (grid #1) with more skewed geometry near the blade wall boundary
are presented. For the first grid case two CFL numbers are tested to see the effect of the
CFL number on the solutions. Then the results that are obtained by the grid (grid #2)

with less skewed geometry near the blade wall boundary is presented.

4.2.2.6 Results obtained by grid#1

The computational domain and the mesh used can be viewed in figure 4.54. As
can be observed from the figure grid lines near the cascade blade wall boundaries are

highly skewed. Also the mesh size is 464 x 50.
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Figure 4.54. The Grid#1 for wedge cascade geometry

The results for this case are obtained for four different fluxes. Also the effect of
the CFL number on the fluxes is investigated. Two different CFL numbers (0.2 and 0.6)

are used. These four fluxes are also checked for the sensitivity of CFL numbers.

The result of HLLC flux can be viewed at figures 4.55-58 . Figures 4.55 and 4.56
shows the mach number contours of the results at CFL number 0.2 and 06 respectively.
Figure 4.57 shows Mach number distributions at blade walls. Figure 4.58 shows

Convergence histories of the results.
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Figure 4.55. Mach number contour obtained by WENO HLLC scheme for CFL=0.2
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Figure 4.56. Mach number contours obtained by WENO HLLC scheme for CFL=0.6
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Figure 4.57. Mach Number distributions along the wedge cascade walls for both CFL
numbers

When compared with Figure 4.53, it is seen that Figures 4.55 and 4.56 have
reasonable shock wave structures. Also the mach numbers after each shock wave agree
closely with the analytical ones. Some comments can be made about the resolution of
the scheme. It can be concluded that the resolution of first two shock waves are very

well. But the resolution of expansion fan is not so good.
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Figure 4.58. Convergence History graphs for WENO-HLLC scheme (a) CFL =0.2 ,(b)
CFL=0.6

Due to the periodic boundary condition, there is an artificial discontinuity which
originates from the end of the suction side. That disturbs the solution and affects the exit

portion of the cascade.

The mach number distributions that are shown at figure 4.57 show that there is
not so much difference between the two CFL numbers. However low CFL number result

in mach contours with less oscillations and better resolution.

When the convergence graphs are investigated it can be concluded that WENO —
HLLC scheme has very weak convergence and also low CFL numbers converges better

than high CFL number.

The result of Lax Friedrichs flux can be viewed at figures 4.59-62
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Figure 4.59. Mach number contour obtained by WENO LF scheme for
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Figure 4.60. Mach number contour obtained by WENO LF scheme for CFL=0.6
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Figure 4.61. Mach Number distributions along the wedge cascade walls for both CFL
numbers

The shock structure obtained by Lax-Friedrich scheme is also acceptable when
compared with analytical results. However resolution of the scheme is not as high as the
WENO-HLLC scheme. When mach numbers are taken into account, The Lax-Friedrich

flux 1s more accurate than HLLC flux.
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Figure 4.62. Convergence History graphs for WENO-LF scheme (a) CFL =0.2 ,(b)

CFL=0.6

The Mach number distributions given in figure 4.61 shows a good agreement of

the results with the analytical ones. The scheme has exactly same behavior for two CFL

numbers but the convergence history graphs shows that CFL. number of 0.2 is a better

choice for Lax-Friedrich flux.

The result of MUSTA flux can be viewed at figures 4.63-66
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Figure 4.63. Mach number contour obtained by WENO-MUSTA scheme for CFL=0.2
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Figure 4.64. Mach number contour obtained by WENO-MUSTA scheme for CFL=0.6
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Figure 4.65. . Mach Number distributions along the wedge cascade walls for both CFL
numbers

The results presented in figures 4.63 and 4.64 present very reasonable shock
structure. Also the mach numbers after each shock wave is quite good when compared to
the figure 4.53 . If Musta flux is compared to HLLC , Musta flux attains more accurate

results but Hllc flux can presents results with higher resolution .
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Figure 4.66. Convergence History graphs for WENO-MUSTA scheme
(a) CFL =0.2, (b) CFL=0.6

Figure 4.65 shows the comparison of results obtained by MUSTA flux with the
analytical solution of the problem. WENO-MUSTA scheme fits the analytical results for
suction side of the cascade but for the pressure side of the cascade, the obtained results
are not so good as the suction side‘s .When the results are compared with the Lax —
Friedrichs and HLLC fluxes, It can be observed that results obtained by MUSTA flux is
better that the one by HLLC flux and worse than the one obtained by Lax-Friedrich.

Like the other fluxes, MUSTA flux has a low sensitivity to the CFL number. The
convergence history graphs obtained by WENO-MUSTA scheme shows that lower CFL

number would have more stable results.

The last flux is Rusanov flux, the result of RUSANOV flux can be viewed at
figures 4.67-70.
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Figure 4.67. Mach number contour obtained by WENO-RUSANOV scheme for
CFL=0.2
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Figure 4.68. Mach number contour obtained by WENO-RUSANOV scheme for
CFL=0.6
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Figure 4.69. Mach number distributions along the wedge cascade walls for both CFL

numbers

Figures 4.67 and 4.68 show the mach contours of the results obtained by WENO-

RUSANOV scheme. If the results are compared with the other results, It can be

observed that there is not so much difference on the structure of the shock waves and the

distribution of the mach numbers.
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Figure 4.70. Convergence History graphs for WENO-LF flux (a) CFL =0.2,

(b) CFL=0.6

Figure 4.69 shows the Mach number distribution on the pressure and suction
sides of the cascade blade. Distribution of the Mach number along the pressure side of
the blade agrees with the analytical solution of the problem. However mach number
distribution along the suction side does not fit as close as the pressure side. As the other

schemes, there is no effect of the CFL number.

Also, figure 4.70 shows the convergence history graphs of the scheme. It can be
observed that WENO-RUSANOYV scheme is more stable than other schemes. Moreover,

choosing low CFL number increases the stability very little.
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Figure 4.71. Comparison of the Mach number distribution of all the fluxes for grid#1

and for CFL=0.2

Figures 4.71 and 4.72 shows the effect of the fluxes on the Mach number

distribution along the pressure and suction side of the cascade blade.

It can be concluded that for the pressure side MUSTA flux gives the best

agreement with the analytical results. Actually, all the fluxes gives very similar results .
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Figure 4.72. Comparison of the Mach number distribution of all the fluxes for grid#1
and for CFL=0.6

Because of very complicated shock wave structure, it is hard to obtain acceptable
results for suction side of the cascade. Results of the fluxes are more distinguished for
suction side. The best fit with analytical result is obtained with Lax-Friedrich flux.
Other fluxes except HLLC flux have also very similar results. HLLC flux has
underestimated the mach numbers after the shock waves. Moreover, increase in the CFL

number can only be sensed by WENO-HLLC scheme.
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4.2.2.7 Result obtained by grid#2

The computational domain and the mesh used can be viewed in figure 4.73. As
can be observed from the figure grid lines near the cascade blade wall boundaries are not

highly skewed as grid#1. The aim is to see the effect of the mesh near wall boundary to

the solution. The mesh size used is 464 x 70.
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Figure 4.73. The Grid#2 for wedge cascade geometry

The results for this case are obtained for four different fluxes. Constant CFL

number (CFL=0.6) is used in results. The results are presented in following figures.

110



18

16

14

12

10

WENO-HLLC CFL=0.6

'
ol

16

14

12

10

18 |- WENO-LF CFL=0.6

'
]

Figure 4.75

. Mach number contour obtained by WENO-LF scheme
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Figure 4.76. Mach number contour obtained by WENO-MUSTA scheme
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Figure 4.77. Mach number contour obtained by WENO-RUSANOV scheme
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Figure 4.78. Comparison of Mach Number distributions obtained by WENO-HLLC
scheme for different grids

It can be observed form figure 4.78 that by the decreasing skewness of the grind
along the boundaries result of HLLC flux is improved. Also according to figure 4.74

resolution of the scheme is increased and the shock wave thicknesses on the pressure

side of the cascades wall is decreased.

113



EXACT PRESSURE SIDE
—— —— EXACT SUCTION SIDE
—F— WENO-LF SUCTION SIDE GRID#1
—-A—— WENO-LF PRESSURE SIDE GRID#1
WENO-LF SUCTION SIDE GRID#2
1.7 — WENO-LF PRES

(JRE SIDE GRID#2

1.6 & OO OO

15

14

1.3

Mach Number

12

11

o
P
N
w
I
(65]

Position (X)

Figure 4.79. Comparison of Mach Number distributions obtained by WENO-LF scheme
for different grids

Unlike HLLC flux, using grid#2 with the Lax-Friedrich flux does not have
obvious results. If the location where the first shock wave is occurred on the middle of
the pressure side is considered, grid#2 disturbs the solution of the Lax-Friedrich.

Whereas, the solution is improved after the expansion fan. (Figure 4.79)

Moreover, figure 4.75 shows that the resolution of the scheme is increased by

using grid#2
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Figure 4.80. Comparison of Mach Number distributions obtained by WENO-MUSTA
scheme for different grids

Figure 4.80 and Figure 4.81 show that using grid#2 has disturbed the results of
WENO-MUSTA and WENO-RUSANOV schemes. As Lax-Friedrich flux, MUSTA

flux has some improved profile after the expansion fan.
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Figure 4.81. Comparison of Mach number distributions obtained by WENO-
RUSANOYV scheme for different grids

The solution obtained by Rusanov flux has been disturbed by less skewed

meshes near the boundary. Using grid#2 provides no advantage for Rusanov flux.
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Figure 4.82. Convergence History of the schemes (a) WENO-HLLC, (b)WENO-LF, (c)

concluded before, WENO schemes does not have strong convergence. The weakest

WENO-MUSTA, (d)WENO-RUSANOV

Figure 4.82 shows the convergence history of the schemes for grid#2, As

scheme is the WENO-HLLC scheme.
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Figure 4.83. Comparison of Mach number distributions for all schemes for grid #2

Finally, in figure 4.83 all the fluxes are compared for grid#2. Using less skewed
girds has some advantages and disadvantages. Firstly, it provided more sharp fits for the
shock and expansion fan of the pressure. Also it has provided the solution of HLLC flux

to be more accurate. However, it has disturbed the solution for the other fluxes.
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CHAPTER 5

CONCLUSION

This thesis aimed to develop higher order FV-WENO scheme with different
flux algorithms for solving two-dimensional Euler equations on complicated

structures. The scheme and fluxes are tested for one and two-dimensions.

FV-WENO scheme has provided superior performance for 1-D Shock tube
problem. Almost all the fluxes fit the exact solution of the problem. The difference in
fluxes can be seen only when critical regions are closely investigated. The critical
regions involve; expansion fan, contact surface, shock wave regions. In expansion
fan region, the HLLC flux has the best fit with the exact solution. Also in contact
surface and shock wave regions, the result of Lax-Friedrich flux is the best one. The
Rusanov and Musta fluxes also have approximate results with Lax-Friedrich flux.
These superior solutions were expected for FV- WENO schemes in 1-D. Also the

behavior of HLLC flux shows the ability of the flux to open the Riemann fan.

For 2-D, three test case problems are used to test the scheme and fluxes.
Initially the Double Mach Reflection (DMR) problem is solved. DMR is a classical
test case for higher-order schemes. DMR problem involves complicated shock wave
structure but the computational domain is rectangular and smooth. The resolution of
the schemes can be obtained by DMR problem. Generally, FV-WENO scheme has
logical results for this test case. Two sizes of the grids are used for this case. The
coarser grid result shows the resolution of all flux algorithms. HLLC flux gives
higher resolution. After that, Musta flux has good resolution as HLLC flux. The
Rusanov and Lax-Friedrich fluxes have worse resolution than the other ones. In

finer grid case, some conclusions can be drawn about numerical dissipation of the
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algorithms. The more instability means less numerical dissipation when same size of
meshes is considered. So, HLLC flux the least dissipative scheme. After that, Musta
flux has also less numerical dissipation. But Lax-Friedrich and Rusanov schemes are

the most dissipative schemes.

Secondly, the scheme and fluxes are tested with 2-D supersonic channel flow
problem. This test case problem involves shock structure. However, different than
DMR problem; the computational domain is more complicated. The mesh is not
smooth as in the DMR case. Also for this test case problem, a grid refinement study
is done. In this study four fluxes are tested with four different sizes of the meshes.
When the pressure distribution along the bottom wall is investigated, it can be
concluded that the grid size affects HLLC flux mostly. Other fluxes behave almost
same with different sizes of grid. As another conclusion HLLC flux is not suitable
for complex geometries. Because it oscillates more than other fluxes where all the
fluxes approximately fits the analytical solution. All the fluxes have good resolutions

with bigger mesh size.

As a last one, the scheme and fluxes are tested with Staggered wedge cascade
problem. In this test case problem, the computational domain is very complicated
when compared with the others. Beside computational domain, boundary conditions
imposed also makes problem complicated. For this test case different CFL numbers
and different grids are used. In the first grid, the meshes near the wall boundary are
highly skewed. For this mesh size two different CFL numbers are tested. Generally,
all the fluxes are approximately same character for two different CFL numbers. FV-
WENO scheme gives a reasonable result for this test case problem. However, the
resolution of the results is not as good as the ones obtained for rectangular smooth
domains. When all the fluxes are compared it can be observed that the most
acceptable result is obtained by Lax-Friedrichs fluxes. The result of HLLC flux has
underestimated the solution. In the second grid the meshes near the boundary are less
skewed than the other fluxes. By doing this shock capturing property of the fluxes is
improved. It can be concluded the grid dependency of the flux algorithms are

increased when computational domain becomes complicated.
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These results shows that FV-WENO scheme is very efficient on 1-D. In two-
dimensions scheme is only efficient for smooth rectangular domains. When the
domain gets complicated the accuracy and efficiency of the scheme is decreased.
Also the accuracy of FV-WENO is much dependent on flux algorithms used.

For the efficiency of the scheme centered flux algorithms (Lax-Friedrichs,
Rusanov) are feasible for the scheme. Because they are accurate and simple to use.
The computational time required for FV-WENO scheme is very big. To use FV-
WENO for very complicated shock structure and smooth computational domain is
logical . But to use FV-WENO for complex computational domains would decrease

the accuracy of the scheme.

As future works, 2-D FV WENO scheme can be extend in 3-D. Also in 2-D,
FV-WENO scheme can be tried with multigrid methods. About the fluxes, the order
of accuracy of the fluxes can be increased by using different features of the fluxes
together. An implicit scheme can be developed. For 2-D; Unstructured FV-WENO

reconstruction can be developed.
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APPENDIX

A. CODE DESCRIPTION AND FLOW CHARTS

The code consists of 8 subroutines: the MESH, INIT, BC, FLUX_ X, FLUX_Y,
WENO,CFLC, RK, and STORE. In the MESH subroutine, grid is read and the ghost
points are set outside the computational domain, also dx and dy needed for the spatial
integration are calculated at each grid point. Needed metrics for the boundary conditions
and for finding normal and tangential velocity components are also calculated here. The

grid coefficients constants are evaluated in this subroutine.

In the INIT subroutine, the CFL number and the initial conditions are set, and the

boundary conditions are set in the BC subroutine.

In FLUX X subroutine, first the Cartesian velocity components u and v are

transformed into normal and tangential components using:

Vn:uforvfy
JEL+ &
Vt:Vé:x_ué:y

JEL+ &

those are the velocity components to be used though out this subroutine.

Then, Roe-averaging is applied. The eigenvalues and the corresponding

eigenvectors and inverse eigenvectors are calculated. WENO subroutine is called in
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which the reconstruction is performed to obtain the fluxes at the cell faces. After getting

the fluxes, the ones corresponding to x and y momentum equations f,,f are

transformed back into Cartesian using:

Ex — fxgx_ fy":{:y
JE+ &

Fy - f, &+ 1,8,
JEE+ &

In FLUX_Y subroutine, again the Cartesian velocity components u and v are

transformed into normal and tangential components using:

unp,+vn,
Vi, = 2 2
ny 1y
V77x_U77
V= 2 2y
ny 1y

those are the velocity components to be used though out this subroutine.

Then, Roe-averaging is applied. The eigenvalues and the corresponding
eigenvectors and inverse eigenvectors are calculated. WENO subroutine is called in
which the reconstruction is performed to obtain the fluxes at the cell faces. After getting

the fluxes, the ones corresponding to x and y momentum equations f,,f are

transformed back into Cartesian using:
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fxnx_ fy77y

Fx = 2 2
Jnt+n?

Fy = fon,+ fom,
ne+1n,

In the WENO subroutine, One dimensional WENO reconstruction is applied
Also The fluxes ,(HLLC ,MUSTA, Lax-Friedrich and Rusanov) are implemented.

In the CFLC subroutine, the time increment dt is calculated.

The time discretization is carried in the RK subroutine using 3" order TVD RK

method.

Iterative procedure includes: BC, FLUX X, FLUX_Y, WENO, CFLC and RK
subroutines. Finally the results obtained from the RK subroutine are stored in the
STORE subroutine.

The following flow chart explains the code:
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Generating Mesh, setting the ghost point
Idetrics calculations, and gnd coefficients calculations

!

"

setting the initial conditions J
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3 i —
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'
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F 3

Store

Figure A.1. Algorithm flow chart [28]
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