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ABSTRACT 

 

NON-DARCIAN FLOW IN A FRACTURED AQUIFER 

 

Altınörs, Adnan Altay 

Ph. D., Department of Civil Engineering 

Supervisor: Prof. Dr. Halil Önder 

 

August 2005, 147 pages 

 

Non-Darcian flow in a finite fractured aquifer is studied in this thesis. A stream 

bounds the aquifer at one side and an impervious stratum at the other. The aquifer 

consists of fractures capable of transmitting water rapidly and porous blocks which 

mainly store water. Unsteady flow in the aquifer due to a sudden or a gradual rise in 

the stream level is analysed by the double-porosity conceptual model. Governing 

equations for the flow in fractures and blocks are developed using the continuity 

equation. The fluid velocity in fractures is often too high for the linear Darcian flow 

so that the governing equation for fracture flow is modified by Forcheimer’s 

equation which incorporates a nonlinear term. Governing equations are coupled by 

an interaction term that controls the quasi-steady state fracture-block interflow. 

Governing equations are solved numerically by the Crank-Nicolson implicit scheme. 

The numerical results are compared to the analytical results for the same problem 

which assumes Darcian flow both in fractures and blocks. Numerical and analytical 

solutions give same results when Reynold’s number is less than 0.1. The effect of 

non-linearity on the flow appears when Reynold’s number is greater than 0.1. The 

larger the piezometric head gradient, the higher the flow rate and, thus, higher the 

non-linearity is. The effect of aquifer parameters on the flow is also investigated. The 

proposed model and its numerical solution is a unique application of non-linear flow 

models to the fractured aquifers. It can be used in predicting water levels in fractured 

aquifers and evaluating time dependent flow rates in the analysis of recession 

hydrographs. 

Keywords: Fractured aquifer, Non-Darcian flow, Forcheimer’s equation 
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ÖZ 

 

ÇATLAKLI AKÜFERDE DARCY KANUNUNA UYMAYAN AKIM 

 

Altınörs, Adnan Altay 

Doktora, İnşaat Mühendisiliği Bölümü 

Tez Yöneticisi: Prof. Dr. Halil Önder 

 

Ağustos 2005, 147 sayfa 

 

Bu tezde sınırlı çatlaklı aküferde Darcy Kanunu’na uymayan akım çalışılmıştır. 

Aküferi bir yanda nehir, diğer yanda ise geçirgen olmayan bir tabaka sınırlamaktadır. 

Nehirdeki su seviyesinin aniden yükselmesi sonucunda aküferde oluşan zamana bağlı 

akım ikili gözenek kavramsal modeliyle incelenmiştir. Çatlaklardaki ve bloklardaki 

akımları tasvir eden denklemler süreklilik denklemi kullanılarak elde edilmiştir. 

Çatlaklardaki akım hızı genelde doğrusal Darcy Kanunu için yüksek olduğundan 

çatlaklardaki akım denklemi, doğrusal olmayan akımı modelleyen bir ifadeyi içeren 

Forcheimer Denklemi’yle geliştirilmiştir. Akım denklemleri çatlaklar ve bloklar 

arasındaki su geçişini belirleyen bir etkileşim ifadesi ile eşleştirilmiş ve Crank-

Nicolson yöntemiyle sayısal olarak çözülmüştür. Sayısal çözümler aynı problem için 

mevcut olan, ancak çatlaklardaki akımın da doğrusal Darcy Kanunu’na uyduğunu 

kabul eden analitik çözümlerle karşılaştırılmıştır. Sayısal ve analitik çözümler 

Reynold sayısı 0.1’den küçükken aynı sonuçları vermiştir. Doğrusal olmayan akımın 

etkisi Reynold sayısı 0.1’den büyükken ortaya çıkmaktadır. Piezometrik basınç  farkı 

yükseldikçe aküferdeki akım da artmakta, dolayısıyla doğrusal olmayan akımın etkisi 

büyümektedir. Aküferin özelliklerinin akım üzerindeki etkisi de araştırılmıştır. 

Önerilen model ve sayısal çözümü doğrusal olmayan akım modellerinin çatlaklı 

aküferlere özgün bir uygulanmasıdır. Bu model çatlaklı aküferlerde su seviyesinin 

tespiti ile taşkın ve çekilme hidrograflarının analizinde zamana bağlı akımın 

tespitinde kullanılabilir.  

Anahtar kelimeler: Çatlaklı aküfer, Darcy Kanunu’na uymayan akım,  

       Forcheimer Denklemi 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Groundwater has an important role in the development and management of 

water resources. There exists an increasing demand for information on groundwater 

hydrology and hydraulics. Aquifers, which are the main resources of groundwater, 

need special attention in this regard. 

 

Aquifers are geological porous formations, or group of geological formations, 

that contain water as well as permit water to flow through. The pressure distribution 

in an aquifer, the discharge to or from an aquifer and river-aquifer or well-aquifer 

interactions have significant importance in solving various engineering problems. 

 

Aquifers often exhibit a variety of heterogeneities, such as fractures, fissures, 

cracks and macro-pores (Gerke and Genuchten, 1993). These structures affect water 

movement at macroscopic level by creating non-uniform flow fields with widely 

different velocities. 

 

Fractured aquifers, which consist of fractures and matrix blocks, are one of 

the most common types of aquifers. The flow behaviour in fractured aquifers is 

significantly different from the flow behaviour in conventional aquifers (Bai et al., 

1993). Flow of water in a fractured aquifer is primarily through high-permeability 

fractures surrounding individual porous blocks.  

 

Darcy’s law of flow describing a linear relationship between volumetric flow 

rate and pressure gradient in porous media has been the fundamental principle in 

analyzing flow in porous media. Any deviation from this linear relation may be 

defined as non-Darcian flow (Wu, 2002), in other words non-linear flow. The fluid 

velocity in fractures is often too high for the linear Darcian flow so that the flow in 
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fractures should be modeled by different relationships which incorporate non-linear 

term. 

 

The objective of this study is to investigate the behavior of non-Darcian 

groundwater flow in a finite fractured confined aquifer system using a numerical 

solution method. The proposed model is an unique application of non-linear flow 

models to the fractured aquifers. It can be used in predicting water levels in fractured 

aquifers and evaluating time dependent flow rates in the analysis of recession 

hydrographs. 

 

 The general description of the stream-aquifer system is shown in Figure 1.1. 

The aquifer is bounded by a stream at one side and an impervious layer at the other. 

The response of the aquifer to three different conditions in the stream level, i.e. 

sudden rise, linear (gradual) rise and arbitrary stage hydrograph, has been 

investigated. However, the effect of a sudden rise in the stream level on piezometric 

head distribution in the aquifer and in flow of water from the stream to the aquifer is 

the primary concern.  

 

 
 

 
 
 

Figure 1.1: Stream and finite fractured confined aquifer system (Önder, 1998) 
 

 

Following the introduction, the theoretical background of the problem is 

given in Chapter 2. First of all, physical and mathematical concepts as well as the 
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previous studies related to the problem explored in the literature are presented. 

Secondly, Darcian and non-Darcian types of flow are described. Then, the procedure 

for derivation of the governing equations, which are based on the continuity equation 

and the double porosity conceptual model is explained. The flow in fractures is 

modeled by Forcheimer’s equation and the flow in blocks is described by Darcy’s 

law. Quasi-steady transfer of water between fractures and blocks is assumed. 

 

Chapter 3 covers the numerical solution of the problem. Firstly, non-

dimensionalization procedures for the governing equations and related initial and 

boundary conditions are presented. Then, the numerical method, i.e. the Crank-

Nicolson implicit scheme, used to solve the governing equations is explained. 

Concepts of stability, consistency, convergence and accuracy are summarized and 

the discrete perturbation stability analysis is described.  

 

Chapter 4 is devoted to the solution procedure, results and discussions. 

Numerical solution gives piezometric head variation along the aquifer with time and 

rate of water flow from the stream to the aquifer. Primarily the non-Darcian effect on 

the piezometric head distribution and the flow rate has been investigated. 

Comparison of the results of the numerical solution with the results of the available 

analytical solution, which is presented by Önder (1998) for the same problem but for 

the special case of Darcian flow in fractures, has helped to determine the accuracy of 

the numerical solution and to show the non-Darcian effect on the flow in the aquifer 

more precisely. Furthermore, effects of the various aquifer parameters on the 

piezometric head distribution and the flow rate are elaborated. Finally, conclusions 

are presented in Chapter 5. 
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CHAPTER 2 

 

 

THEORETICAL BACKGROUND 

 

 

2.1  Literature Survey 

 

There exists interaction between surface water and ground water in various 

means including natural or artificial recharge or drainage, seepage from irrigation or 

river waters, precipitation, evaporation and evapotranspiration. Numerous studies 

examining these problems are available in the literature.  

 

The behaviour of groundwater flow in a finite aquifer between a stream and 

an impervious boundary under natural or artificial conditions has to be known in 

various engineering applications such as prediction of time dependent flow in the 

analysis of storm and recession hydrographs, evaluation of the base flow during dry 

seasons, predicting water levels and determination of the hydraulic properties of 

aquifers,. 

 

Figure 2.1 shows diagrammatic cross-sections through idealised finite 

confined aquifers. These aquifers are bounded at one side by a stream boundary and 

by an impermeable formation or barrier at the other. Case (a) represents a 

homogenous and uniform (single porosity) aquifer. Case (b) represents a non-

uniform aquifer which consists of two distinct homogeneous regions. Case (c) 

represents a double (dual) porosity fractured aquifer comprising a homogeneous 

fracture system within a homogeneous porous block system (Önder, 2002). 

 

A common feature in these situations is that the head varies because of a 

change in stream stage, which means the head at the stream boundary is imposed as 

an excitation (input).  
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uniform aquifer 

aquifer with two 
distinct regions 

fractured aquifer 

 

Figure 2.1: Finite confined aquifers (Önder, 2002). 

 

 

The link between the excitation and the groundwater system should be 

established in order to evaluate the responses (outputs). In prediction of the response 

of groundwater systems to diverse inputs, modelling is used as a tool to obtain 

answers to questions posed by water resource managers. Various mathematical and 

physical models have been developed. 

 

Analytical solutions for stream-aquifer interaction problems are available in 

the literature for the cases depicted in Figure 2.1. However, when the boundary 

conditions or the aquifer characteristics are variable, the response of a groundwater 

flow system to such excitations is complex and often simulated by numerical models.   
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The constant rise or drawdown condition in the stream stage is encountered 

not as frequently as the constant discharge condition from the aquifer. However, in 

the channels of flood plains, when appropriate control structures are present, the 

changes in water level may reasonably be approximated by a step rise or drawdown. 

Several researchers (Lane and Zinn, 1981, Henry and Palmer, 1981) have observed 

such field conditions created by recharge weirs which are constructed to enhance the 

rate of groundwater inflow from the streams. These observations may be considered 

as adequate evidence that a step change may occur in streams adjacent to aquifers.  

 

Rorabaugh (1960), Rorabaugh (1964), Pinder et al. (1970) and Önder (1994) 

are some examples of the researchers who have studied the flow behaviour in a finite 

aquifer system due to a sudden rise or decline of the water level in the adjacent 

stream. In these studies, aquifers composed of granular media (single porosity 

aquifers) were considered. However, a widely encountered type of aquifer is the 

fractured rock aquifer (Önder, 1998).  

 

The behaviour of naturally fractured aquifers is radically different from that 

of the conventional aquifers composed solely of inter-granular porosity  

(Bai et al. 1993). The reason for this is that fractures affect water movement at the 

macroscopic level by creating non-uniform flow fields with widely different 

velocities. Therefore, in fractured media, the application of conventional single-

porosity flow models has proven inadequate. 

 

Fractured porous media may be represented by two completely overlapping 

continua, one representing the porous matrix and the other representing the fractures. 

This type of formation, which is shown in Figure 2.2, is commonly qualified as a 

heterogeneous medium in which low permeability blocks of primary porosity are 

separated by highly permeable fractures of low volume. In a typical fractured 

medium, the fractures provide high conductivity conduits amenable to rapid 

hydraulic flows, whereas the high porosity matrix blocks contain the majority of the 

storage (Bai et al., 1993).  
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When dealing with flow in a fractured porous medium, the microscopic flow 

patterns inside the individual pores or fractures are overlooked and it is considered 

that some fictitious average flow is taking place. Therefore, the concept of 

continuum is employed. The obvious reason for employing the continuum approach 

in flow through porous medium is that it is practically impossible to describe in any 

exact mathematical manner the complicated geometry of the solid surfaces that 

bound the flowing fluid (Bear, 1979). 

 

 

 
Figure 2.2: Fractured porous medium. 

 

 

It was only in the early 1950’s that a qualitative evaluation of fluid flow and 

rock properties was undertaken, and attempts were made to interpret fissure flow 

properties. The study was carried out mainly by petroleum geologists, as the world’s 

largest and important oil production fields are associated with fractured rocks. From 

the very beginning of these investigations, it was recognized that fluid flow 

behaviour and basic reservoir parameters, namely permeability and storage capacity, 

of the fissured formation differ from the behaviour and parameters of a porous 

medium (Streltsova, 1976). 

 

 The hydrodynamic aspects of flow in fissured rocks were first considered by 

Barenblatt et al. (1960). Two overlapping continuum media, porous and fissured, 

each filling the entire domain flow domain, were assumed to represent a fractured 
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formation, consisting of an extreme system of randomly distributed and arbitrarily 

oriented fissures in a rock of primary porosity.  

 

Barenblatt et al. (1960) recognized that one can assume the permeability of 

the porous blocks in a fractured reservoir to be very low relative to the permeability 

of the fractures. This assumption was credited later by Warren and Root (1963) by 

putting this concept into a mathematical-physical statement that assumes that the 

matrix blocks are arranged in a systematic array of identical, rectangular 

parallelepipeds that provide flow to the fractures which, in turn, transport the fluid. 

Odeh (1965) attempted to generalize the concept of Warren and Root (1963) to 

accommodate a fractured reservoir in which the pattern of fractures is not known. 

This conceptual jump was consistent with the fundamental postulates of modern 

continuum theory, but it was ignored by many later researchers. Warren and Root 

(1963) and Odeh (1965) developed analytical solutions using their models. 

 

  These analytical solutions subsequently were extended by Kazemi et al. 

(1969). They presented the assumptions for which their conceptual models hold as: 

 

 The matrix porosity has a high storage capacity but low flow capacity. The 

converse is true of the fracture porosity. 

 Flow occurs only through the fracture network. Matrix flow occurs into the 

fractures. 

 Matrix flow to the fractures is quasi-steady and fracture flow is unsteady. 

 The reservoir is horizontal and infinitely large. 

 Vertical pressure gradients are negligible. 

 

Much later than these studies, Bai et al. (1993) proposed several conceptual 

flow models in order to provide more flexible tools to match geological variations in 

the fractured media and to avoid an unrealistic prediction of reservoir storage and 

flow characteristics. They are single-porosity/single-permeability, double-

porosity/single-permeability, double-porosity/double-permeability, triple-
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porosity/double-permeability and triple-porosity/triple-permeability conceptual 

models based on deformation dependent flow. 

 

 

 
 

Figure 2.3: Double-porosity/double-permeability fractured medium  

        (Bai et al., 1993). 

 
 

The double-porosity/double-permeability conceptual model of Bai et al. 

(1993), which is schematically shown in Figure 2.3, is actually the same model 

introduced by Barenblatt et al. (1960). In this model, an exchange of water between 

fractures and blocks is taken into account; however, there is no flow between any 

two blocks. Hence, the fractures provide the main path for fluid flow, whereas the 

blocks act as a source or sink to the fractures.  

 

Double porosity models assume that water flow in a fractured medium can be 

described by two equations that are coupled using a term characterizing the exchange 

of fluid between two pore regions. Central to the double porosity approach is the 

assumption that the medium can be separated into two distinct pore systems, both of 

which are treated as homogenous media with separate hydraulic properties. The 

double-porosity medium is considered to be a superposition of these two systems 

over the same volume (Dykhuizen, 1987, and Gerke and van Genuchten, 1993). The 

two pore systems interact by exchanging water in response to the pressure head 
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gradient. Hence, macroscopically, the porous medium at any point in time and space 

is characterized by two flow velocities and two pressure heads (Gerke and van 

Genuchten, 1993). 

 

Streltsova (1975) presented drawdown equations for the flow in fractures and 

porous matrix to a well discharging at a constant rate in a fractured confined aquifer 

of finite thickness, based on Darcy’s law and the equation of continuity. She assumed 

that the aquifer and the water contained in it are compressible. Initially, before 

pumping, fissures of all orientation and porous blocks are compressed equally by 

hydrostatic pressure. A reduction in the fluid pressure, as soon as pumping 

commences, causes the elastic response of the aquifer. The volume of water released 

causes horizontal flow.  

 

Streltsova (1975) also studied unsteady two-dimensional flow in a semi-

infinite unconfined aquifer adjacent to a surface reservoir, canal or river. The initial 

state of the aquifer is of uniform head distribution. A sudden rise or fall of the water 

boundary level causes a discontinuity of the heads at the boundary, creating a non-

uniform distribution of heads along the vertical, which results in the downward or 

upward variable movement of the water in the aquifer.  

 

Studies on the fractured media are often based on the assumption that the 

flow of water through fractures and porous matrix blocks complies with Darcy’s law 

which postulates a linear relation between the specific discharge (macroscopic 

velocity) and the hydraulic gradient. However, while using Darcy’s linearity for 

various problems, it is always necessary to be cautious about the applicability in the 

high velocity zone. Widely available experimental data to justify the validity and 

applicability of Darcy’s law have helped to evolve a general consensus that there is 

an upper as well as a lower limit beyond which Darcy’s linear law does not hold 

(Basak, 1977).  
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Many researchers have proposed various forms of velocity-gradient 

relationship that are mainly based on extensive experimental results. A summary of 

available relations is given by Basak (1977). 

  

The most widely used flow relations for non-Darcian flow are that of Izbash 

and Forcheimer (Basak, 1977). While Izbash’s equation is purely empirical, 

Forcheimer’s equation, though initially based on the experimental results alone, is 

found to have theoretical justification. It can be characterized as the empirical 

modification of the Darcy’s model. 

 
Basak (1976) presented an analytical solution for the case of steady-state 

unconfined flow through embankments using Forcheimer’s equation. In this study, 

the effect of non-linearity in the flow response of discharge characteristics and 

piezometric pressure distribution corresponding to the Darcian case are brought out.  

 

Basak (1977) also obtained analytical solutions using Izbash’s equation for 

two seepage problems, which are the drainage spacing in ditch drainage system and 

the steady-state seepage through a confined aquifer of variable thickness. The 

primary objective of this study was to bring out the necessity of consideration of 

non-Darcian flow at low and high velocities.  

 

Bordier and Zimmer (1999), who studied drainage systems made up of coarse 

materials, have shown experimentally that Izbash’s and Forcheimer’s equations are 

suitable to describe the flow equation in different coarse materials.  

 
Choi et al. (1996) investigated single phase fluid flow in fractured formations 

using the double-porosity conceptual flow model. They solved the governing 

equations for the flow in fractures and blocks provided by Bai et al. (1993) 

numerically using the successive over-relaxation scheme. Forcheimer’s equation was 

used to describe fluid flow through fractures while maintaining Darcian flow through 

blocks. Basic data supplied from field data were used in calculations. Numerical 
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solutions results indicate that the non-linear model predicts a higher flow rate 

compared to the Darcian model.   

 

Kohl et al. (1997) carried out field tests in order to investigate non-Darcian 

flow transients in fractured rock and concluded that a transition from Darcian flow to 

a turbulent flow regime occurs in fractures.  

 

Venkataraman et al. (1998) identified the ranges of the Reynold’s number 

where the flow through porous media is Darcian, transitional and turbulent, and 

derived a formulation for the friction factor.  

 

 

 
 

Figure 2.4: Graphical correlation of friction factor and Reynold’s number,  

        Ahmed and Sunada (1969).   
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Ahmed and Sunada (1969) pointed out that turbulence in porous media is 

small compared to the convective acceleration resulting from the curved path that the 

fluid must follow in pores. They presented the experimental data, which are shown in 

Figure 2.4, for various porous media in terms of friction factor and Reynold’s 

number, and concluded that non-Darcian flow starts to take place when Reynold’s 

number is around 0.1. 

 

Based on the previous experimental studies, Cornell and Katz (1953) also 

demonstrated that the non-linear flow of natural gas or air occurs in consolidated 

porous media (sandstones, canyon reef limestones, dolamites and porous metals) 

when Reynold’s number is slightly greater than 0.1. 

 

On the other hand, Beawers and Sparrow (1969) showed that significant 

departures of the experimental results from Darcy’s law first occur at Reynold’s 

numbers in the order of 1. 

 

Depending on the characteristic length used in the definition of Reynold’s 

number and the type of the porous material, the start of non-Darcian flow occurs 

when Reynold’s number is between 0.1 and 1. 

 

Wu (2002a) studied non-Darcian flow toward a well in fractured media 

modifying Warren and Root’s (1963) analytical solution using Forcheimer’s 

equation.  

 
Wu (2002b) also described a numerical method incorporating the Forcheimer 

equation to investigate single-phased and multi-phased non-Darcian flow in porous 

and fractured reservoirs. He verified his numerical method by comparing its results 

against those of analytical methods. Wu also found out that the quasi-steady flow 

assumption in Warren and Root’s model provides a good approximation to non-

Darcian flow cases as long as the double porosity concept applies. 
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Rafiqul et al. (1998) studied the mixed convection heat transfer in an 

infinitely long horizontal porous duct applying Darcy’s and Forcheimer’s equations. 

They stated that the scale of the axial velocity as well as the inertial parameter in the 

Forcheimer’s equation determine the flow characteristics in the duct.  

 

Şen (1986) provided an approximate analytical solution incorporating the 

Forcheimer’s equation to be used to analyse time-drawdown data observed in wells 

in coarse grained or fractured medium producing radial non-Darcian flow effects.  

 

It appears that there is a need for a further study on the non-Darcian flow in a 

fractured aquifer in general and on the one-dimensional flow in particular as it has 

not been considered in the literature.  

 

 

2.2 Darcy’s Law 

 

The theory of flow through porous media originated almost 150 years ago 

when Henry Darcy published an empirical relationship as a result of his experimental 

studies, which has since been called Darcy’s law. Darcy concluded that the rate of 

flow, Q, is proportional to the cross-sectional area, A, and the piezometric head 

difference, , and inversely proportional to the length, L, of the porous medium. 

These conclusions gave the famous Darcy’s formula: 

h∆

 

( )
L

hKA
L

hhKAQ ∆
=

−
= 21         2.1 

 

where K is the coefficient of proportionality and h1 and h2 are piezometric heads 

measured with respect to some arbitrary horizontal datum. 
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Figure 2.5: General layout of the Darcy’s experimental set up. 

 

 

Given that the piezometric head describes (in terms of head of water) the sum 

of pressure and potential energies of the fluid per unit weight, 
( )

L
hh 21 −  is to be 

interpreted as hydraulic gradient. Denoting this gradient by J and defining the 

specific discharge, q, as the volume of water flowing per unit time through a unit 

cross-sectional area normal to the direction of flow, then: 

 

KJq =          2.2 

 

where 

 

A
Qq =           2.3 

 

Thus: 

h1

h2

datum

L 

∆h 

K 

A 
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( )
KJ

L
hhKq =

−
= 21         2.4 

 

is another form of the Darcy’s formula. Darcy’s linear law may also be extended to 

flow through an inclined homogenous column of porous medium (Bear, 1979).  

 

The piezometric head, h, is expressed as 

 

s

pzh
γ

+=          2.5 

 

where z is an arbitrarily specified reference level, p is the pressure, γs is the specific 

weight, v is the kinematic viscosity, g is the gravitational acceleration and 
s

p
γ

 is the 

pressure head. 

 

There exists an energy loss due to friction in the flow through the narrow 

tortous parts of the porous medium. Actually, in Darcy’s law, the kinetic energy of 

water has been neglected as, in general, changes in the piezometric head along the 

flow path are much larger than the changes in kinetic energy. It is important to note 

that the flow takes place from a higher piezometric head to a lower head and not 

from a higher to lower pressure. 

 

The flow takes place only through the void space of the cross-sectional area 

of the column of porous medium, the remaining part being occupied by the solid 

matrix of the porous medium. Since it can be shown that the average areal porosity is 

equal to the volumetric porosity, n, the portion of the area, A, available for flow is 

nA. Accordingly, the average velocity, V, of the flow through the column is 

 

n
q

nA
QV ==          2.6 
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The coefficient of proportionality, K, appearing in Darcy’s law is called the 

hydraulic conductivity of the porous medium. It depends on properties of both the 

porous matrix and the fluid. 

 

The experimentally derived equation of motion in the form of Darcy’s law is 

limited to one-dimensional flow of a homogenous incompressible fluid. When the 

flow is three dimensional, the generalization of Darcy’s law is 

 

JKq =          2.7 

 

nqV /=          2.8 

 

where V  is the velocity vector with components Vx, Vy and Vz, and q  is the specific 

discharge vector with components qx, qy and qz in the directions of the Cartesian 

coordinates x, y and z respectively. Then the hydraulic gradient components are: 

 

x
hJ x ∂
∂

−= , 
y
hJ y ∂
∂

−= , 
z
hJ z ∂
∂

−=      2.9 

 

in the x, y and z-directions. 

 

When the flow takes place through a homogenous and isotropic medium, the 

coefficient K is a constant scalar, and the specific discharge in x, y and z-directions 

can be written as 

 

xxx nV
x
hKKJq =
∂
∂

−==        2.10 

 

yyy nV
y
hKKJq =
∂
∂

−==        2.11 
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zzz nV
z
hKKJq =
∂
∂

−==        2.12 

 

Equations 2.10, 2.11 and 2.12 apply to non-homogenous (heterogeneous) 

medium where K = K(x,y,z), as long as the medium is isotropic. 

 

 

2.3 Hydraulic Conductivity 

 

 In an isotropic medium the hydraulic conductivity, K, may be defined as the 

specific discharge per unit hydraulic gradient. It is a scalar that expresses the ease 

with which a fluid is transported through porous matrix. It is, therefore, a coefficient 

which depends on both matrix and fluid properties. The relevant fluid properties are 

density, ρ, and dynamic viscosity, µ, (or in the combined form of kinematic viscosity, 

ν). The relevant solid matrix properties are mainly grain (or pore) size distribution, 

shape of grains (or pores), tortuosity, specific surface and porosity. The hydraulic 

conductivity may be expressed as 

 

νµ
ρ kggkK ==         2.13 

 

where k is permeability or intrinsic permeability of the porous matrix, which depends 

solely on properties of the solid matrix. Various formulas relating k to the various 

properties of the solid matrix are presented in the literature. Some of these formulas 

are purely empirical (Bear, 1979).  

 

 

2.4 Non-Darcian Flow 

 

Darcy’s law postulates a linear relation between the macroscopic velocity and 

the hydraulic gradient. However, widely available experimental data, which have 

accumulated for many years, to justify the validity and applicability of Darcy’s law 
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have helped to evolve a general consensus that there is an upper as well as a lower 

limit beyond which Darcy’s linear law does not hold. Combining the works of 

various investigators over different velocities or Reynold’s numbers, Re, (based on 

macroscopic velocity) zones, the shape of velocity gradient response for any type of 

soil over a wide range of velocities can be represented by Figure 2.6. Different zones 

of flow that are expected are demarcated in the same figure. The total flow regimes 

are divided into five zones and they are: 

 

1. No flow zone: This zone is likely to exist only in case of dense porous media 

of high colloid content. In this zone, surface forces are strong enough to counteract a 

certain portion applied gradient called initial, limiting or treshold gradient and is 

denoted by J0.  

 

2. Non-Darcy prelinear laminar zone: Any surface active porous media is likely 

to show this zone. The surface forces arising out of the solid-fluid interaction due to 

strong negative charges on the clay particle surfaces and dipolar nature of water 

molecules causes the velocity-gradient response to be nonlinear and thus non-

Darcian. Various authors have suggested various forms of equations to describe the 

flow process in this zone. 

 

3. Darcian linear regime: Almost all the natural soils exhibit this zone to a 

certain extent though the width of this zone may vary widely depending on the type 

of soil. In this zone the effect of surface forces is not felt, and the influence of inertial 

forces are negligibly small compared to viscous forces.  

 

4. Non-Darcy post-linear laminar zone: This is the zone where flow is still 

laminar but a gradual increase in inertial force makes the flow deviate from Darcian 

linearity. Various available equations for this high velocity zone proposed by various 

authors. 

 

5. Non-Darcy post-linear turbulent zone: Here, the onset of turbulence is first 

noted and the substantial part applied gradient becomes dissipated in overcoming the 
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inertial forces and consequently the rate of velocity gain is very much less compared 

to earlier regimes. 

 

 Recall that for all soils, all the flow zones previously mentioned may not 

exist. For clays, the existence of the last two zones is highly improbable whereas for 

sands and other coarse inert materials, the first two zones may not exist or may not 

be noticeable within the ordinary experimental accuracy. Moreover, neither any 

unified theory nor any consistent experimental data available for critical gradients or 

velocities demarcating different zones of flow mentioned. 

 

Specific 
Discharge, q 

Truly Darcian Flow 

Non-Darcy 
Prelinear Zone 

Non-Darcian 
Postlinear 
Turbulent Zone 

Darcian 
Linear Zone 

Non-Darcian 
Postlinear 
Laminar Zone

No Fow Zone 

Hydraulic Gradient, J 

 
Figure 2.6: Probable velocity-gradient relationship over large range of velocity 

             (Basak, 1975).  

 

  

The preceding analysis points to the fact that while using Darcy’s linearity for 

various field problems, one should be careful in interpreting and using the results in 

pre-linear and post-linear regime. If the published experimental velocity-gradient 
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response for the last few decades for clays and under low gradients is any indication 

of the actual state of affair, then the majority of flow problems in clayey, loamy and 

organic soils, as well as fine grained sandy deposits under low gradients, would be 

largely met by the preliminary regime.  

 

So far as flow through coarse sand under medium to high gradient goes, it is 

more or less accepted that the flow is initially linear and, then, it enters into the post-

linear regime. Thus, it seems to be necessity to have solutions of various seepage 

problems incorporating a velocity-gradient response representing all the flow zones 

mentioned. But, unfortunately, no general equation is available which gives the 

actual shape over the entire gradient range. A single equation covering the prelinear, 

linear and post-linear regimes is very much lacking. In this mitigating circumstance, 

one of the alternatives is to use Izbash’s flow equation of the type: 

 
mMJq =          2.14 

 

which is one of the most widely used non-Darcy flow equations, the other being 

Forcheimer’s equation (Basak, 1977) which reads: 

 
2bqaqJ +=          2.15 

 

where M, m, a and b are constants and J is the hydraulic gradient (Basak, 1977).  

 

Forcheimer’s equation can be characterized as the emprical modification of 

Darcy’s equation (Choi et al., 1996). 

 

 

2.5 Forcheimer’s Equation 

 

Forcheimer’s equation is the equation most widely used to describe the non-

Darcian flow. It can be presented in the vectorial form of equation 2.15 as: 
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( )qqFh −=∇          2.16 

 

where∇  is gradient operator and q is the specific discharge vector. Furthermore: 

  

( ) bqaqF +=          2.17 

 

where F(q) is a scalar function of the magnitude of the specific discharge vector at 

any point, a and b are the Forcheimer parameters and q is the magnitude of the 

specific discharge vector: 

  

qqqq 2
z

2
y

2
x ++=         2.18 

 

where qx, qy and qz are the components of the specific discharge vector in the x, y and 

z-directions respectively.  

 

For one-dimensional flow in the x-direction, using q for qx, the Forcheimer’s 

equation takes the form: 

 

qbaq
dx
dh 2+=−         2.19 

 

or 

 

( )qqF
dx
dh

=−          2.20 

 

Note that equations 2.19 and 2.20 are same as equation 2.15 with 
dx
dhJ −= . 
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Obviously, when b=0, both equation 2.19 and equation 2.20 become 

identical with Darcy’s law: 

 

dx
dh

a
1q −=          2.21 

 

Basak (1976) has presented the reported values for Forcheimer parameters a 

and b for sand and gravel. Bordier and Zimmer (2000) also tabulated Forcheimer 

parameters for gravel, geonet and geo-composite materials. Venkataraman et al. 

(1998) summarized the published data on the properties of porous media, i.e. particle 

size, porosity, intrinsic permeability and the nonlinear parameter, b.  

 

Venkataraman et al. (1998) assumed that the linear parameter, a, depends 

upon the fluid properties and intrinsic permeability, k, on the other hand, the non-

linear parameter b is dependent upon the media properties such as size and shape of 

the media and porosity. They summarized the published data on properties of porous 

media. The list of parameters is presented in Appendix D in Table D.1. 

 

Given that the non-linear parameter b of a fractured medium should be much 

greater than that of the large sized porous media, it should be greater than the 

maximum value of in the Venkataraman’s list which is almost 1-10-3 m2/day2. Then, 

it would be appropriate to assume that b is O(10-2) for fractured aquifers. 

 

When the quadratic part is discarded, Forcheimer’s equation turns into 

Darcy’s linear model. Therefore, a is the reciprocal of the hydraulic conductivity, K.  

 

K
a 1
=     or  

a
K 1
=                2.22 

 

Ward (1964) also obtained the same expression for a as a function of intrinsic 

permeability, dynamic viscosity and specific gravity. 
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2.6 Reynold’s Number 

 

 Based on the previous studies, Venkatamaran et. al. (1998) defined the 

Reynold’s number in porous media as: 

 

ν
kqRe =          2.23 

  

where Re is the Reynold’s number, q is the specific discharge, k is the intrinsic 

permeability and ν is the kinematic viscosity. This equation can be applied to 

fractured porous media as well. 

 

Recalling that: 

 

ν
kgK =   or  

g
Kk ν

=         2.13 

 

Then, 

 

νg
KqRe =          2.24 

 

 

2.7 Continuity Equation 

 

In order to derive the continuity equation for flow the in a fractured porous 

medium, an elementary representative volume shown in Figure 2.7 is considered. 

The representative elementary volume is large enough compared to the dimensions 

of the individual blocks and fractures to allow meaningful spatial averaging and yet 

small enough to characterize variations in reservoir properties at scales of interest 

(Huyakorn and Pinder, 1983). Furthermore, it consists of a sufficient number of 

blocks and fractures having random distribution, orientation and size. 
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In a pheratic aquifer, water is stored in the void spaces and an increase in 

storage is followed by a rise in the pheratic surface. On the other hand, in a confined 

aquifer, water is stored on account of water and solid matrix compressibility and, an 

increase in storage is followed by a rise in the piezometric head. The aquifer 

storativity could be introduced as the volume of water added to a unit horizontal area 

of an aquifer per unit rise in the piezometric head (Bear, 1979). Storativity is a 

property of a confined aquifer.  
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Figure 2.7: A representative elementary volume and flow components. 
 

 

The continuity condition requires that the difference between all inflows and 

outflows should be equal to the water stored in or released from the representative 

elementary volume. Therefore, the continuity equation of the flow in the elementary 

volume can be written as: 

 

hyxStBxy
y

q
yx

x
q yx ∆∆∆=∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆∆

∂

∂
+∆∆

∂
∂

−      2.25 

 

where q is the specific discharge, S is the storage coefficient, B is the depth of the 

elementary representative volume and h is the piezometric head.   
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Dividing both sides of equation 2.25 by x∆ , y∆ , and t∆  yields: 

 

t
hS

y
q

x
q

B yx

∆
∆

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

−        2.26 

 

As  approaches to zero: t∆

 

t
hS

y
q

x
q

B yx

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

−        2.27 

 

 

2.8 Governing Equations 

 

For fractured porous media, the continuity of fluid flow both in the porous 

blocks and the fractures needs to be taken into consideration. Therefore, the 

continuity equation of the flow in the blocks can be written as: 

 

t
h

S
y

q
x

q
B b

b
bybx

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

−        2.28 

 

where the subscript, b, represents the blocks. 

 

 Assuming that Darcy’s law is valid for the flow through the porous blocks 

and that the fractured medium is homogenous and isotropic, i.e., K is constant, then 

the specific discharge equations for the blocks in the x and y-directions can be 

written as 
x
h

Kq b
bbx ∂
∂

−=  and 
y
h

Kq b
bby ∂
∂

−=  respectively. When these equations are 

introduced into equation 2.28, the mass balance equation for the blocks is obtained: 

 

t
h

S
y
h

x
h

BK b
b

bb
b ∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

2

2

2

2

      2.29 
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For one-dimensional flow through the blocks: 

 

t
h

S
x
h

BK b
b

b
b ∂

∂
=

∂
∂

2

2

        2.30 

 

On the other hand, the continuity equation to the flow through the fractures 

can be written as: 

 

t
h

S
y

q
x

q
B f

f
fyfx

∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
−        2.31 

 

where the subscript, f, represents the fractures. 

 
For the non-Darcian fracture flow, equation 2.27 should be modified by 

replacing Darcy’s law with Forcheimer’s equation . 

 

Recall that Forcheimer’s equation in vectorial form is equation 2.16: 

 

( )qqFh −=∇          2.16 

 

or 

   

( ) h
qF

q ∇−=
1         2.16 

 

If the derivative of equation 2.16 is taken with respect to x and y, then 

equations 2.31 and 2.32 are obtained: 

 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−=
∂

∂

x
h

qFxx
q ffx 1        2.31 
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( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

−=
∂

∂

y
h

qFyy
q ffy 1        2.32 

 

Recalling that  is a function of space variables, the fractured medium is 

assumed to be homogenous and isotropic in order to eliminate the non-linearity in 

equations 2.31 and 2.32. Therefore: 

( )qF

 

( ) ( )yxfqF ,≠          2.33 

 

Note that Choi et al. (1996) also made same assumption. 

 

Then, equations 2.31 and 2.32 take the form: 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−=

∂

∂
2

21
x
h

qFx
q ffx        2.34 

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−=

∂

∂
2

21
y
h

qFy
q ffy        2.35 

 

 When equations 2.34 and 2.35 are introduced into the equation 2.29, the non-

Darcian continuity equation for the fractures is obtained. 

 

( ) t
h

S
y
h

x
h

qF
B f

f
ff

∂

∂
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
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∂

∂
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2

      2.36 

 

For one-dimensional fracture flow: 

 

( ) t
h

S
x
h

qF
B f

f
f

∂

∂
=

∂

∂
2

2

        2.37 
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According to the double-porosity conceptual model, fluid transfer between 

the porous blocks and the fractures should be taken into consideration. In this regard, 

the fluid transfer rate between the blocks and fractures dν  should be added to 

equations 2.30 and 2.37: 

 

d
b

b
b

b t
h

S
x
h

BK ν−
∂
∂

=
∂
∂

2

2

       2.38 

 

( ) d
f

f
f

t
h

S
x
h

qF
B ν+

∂

∂
=

∂

∂
2

2

       2.39 

 

Notice that the signs of the fluid transfer rate term in equations 2.38 and 2.39 

are different, which means that flow occurs between fractures and blocks according 

to the pressure difference between these two media. 

 

Equations 2.38 and 2.39 are valid under the assumptions that: 

 

 Darcy’s law is valid for the flow in the blocks. 

 The flow in the fractures is non-Darcian and governed by Forcheimer’s 

equation. 

 Fractures and blocks are homogenous and isotropic. 

 The aquifer is confined and non-leaky. 

 Depth of the aquifer is constant. 

 Flow occurs only in x-direction. 

 The geometry of fractures is unaffected by chemical dissolution or 

deposition. 

 The flow is fully saturated.  
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2.9 Fluid Transfer Rate 

 

For the flow in a fractured medium, fracture-matrix interactions, in other 

words the exchange of water between fractures and blocks, can be handled with the 

double-porosity model which is presented in the existing literature (Barenblatt et al., 

1960, Warren and Root, 1963, Önder, 1998 and Wu, 2002b). The double-porosity 

model relies on quasi-steady-state flow assumption to account for fracture-matrix 

interflow (Wu, 2002b). The transfer of water between the blocks and the fractures 

occurs in quasi-steady state while the flow takes place through matrix blocks and the 

fractures. The rate of transfer depends on the pressure difference between blocks and 

fractures as well as the geometry and other properties of the fractured medium. The 

fluid transfer rate νd can be expressed as: 

 

pd ∆= ξν          2.40 

 

where ξ is the interaction term which incorporates the geometry as well as other 

properties of the aquifer and ∆p is the pressure difference. If the interaction term is 

written in terms of piezometric head difference: 

 

hsd ∆= ξγν          2.41 

 

where γs is the specific weight of the fluid. 

 

It could be interpreted that dν  is the volume of water transfer per unit 

horizontal area per unit time. Önder (1998) defined the fluid transfer rate as: 

 
( )bfbd hhT −= εν         2.42 
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where 
s

bT
γ
ε

ξ = , ε is the fluid transfer parameter and Tb is the transmissivity of blocks 

which can be defined as: 

 
 

bb BKT =          2.43 
 

Note that there is no specific reference to fracture and block geometries in 

equation 2.42, therefore this equation is consistent with the continuum theory that 

assumes no specific knowledge at the sub-continuum level. 

 

 On the other hand, several researchers have suggested various fluid transfer 

parameters considering the geometry block and fracture geometries. For example, 

Warren and Root (1963) suggested: 

 

µ
αξ bT k

=          2.44 

 

where αT is the shape factor, µ is the dynamic viscosity of the fluid and kb is the 

permeability of the matrix. For a rectangular matrix, the shape factor can be 

described as: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= 222

1118
zyx

T LLL
α        2.45 

 

where Lx, Ly and Lz are the dimensions of the rectangular matrix in the x, y, and z-

directions respectively.  

 

James and Lee (1977) also suggested: 

 

µ
αξ T=          2.46 
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and 

 

cl
nk fb

T π
ρ

α 4=          2.47 

 

where kb is the permeability of the blocks, nf is the porosity of the fractures, ρ is the 

density of the fluid, c is the half length of the fracture width and l is the half length of 

the fractures and blocks in contact. 

 

 In this study, equation 2.42 is used to calculate the fluid transfer rate between 

fractures and blocks. 

 
 

 

2.10 Initial and Boundary Conditions 
 
 

The idealized version of the flow system depicted in Figure 1.1 is shown in 

Figure 2.8. 

 

 
 

 
 

Figure 2.8: Idealized flow system (Önder, 1998). 
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The stream boundary condition is arranged for a sudden rise in the stream 

level. The stage hydrograph which represents this special case is also presented in 

Figure 2.9.  

 

 

 
s0 

 

 s0

 

 

t=0   t 

 

 
Figure 2.9: Stage hydrograph for a sudden rise in the stream level. 

 

 

The initial and boundary conditions to be satisfied by the piezometric head 

for the fractures and the piezometric head for the blocks are: 

 

000 =≤≤= tLxhhb      2.48 

000 =≤≤= tLxhh f      2.49 

0000 >=+= txshhb      2.50 

0000 >=+= txshh f      2.51 

 

00 >==
∂
∂

tLx
x
hb      2.52 

 

00 >==
∂

∂
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x
h f      2.53 
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where ho is the initial piezometric head, so is the change in the stream stage and L is 

the length of the aquifer. 

 

 

2.11    Governing Equations Presented by Önder (1998)  

for the Same Problem 

 

 Önder (1998) studied the same problem. Assuming that Darcy’s law is valid 

for the flow in blocks as well as in fractures, he derived governing equations for the 

fracture and block flows as follows: 
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       2.54 

 

d
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BK ν+
∂

∂
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∂

∂
2

2

       2.55 

 

Notice that equation 2.54 is the same as equation 2.38. 

 

Based on the previous studies of Barenblatt et al. (1960) and Warren and 

Root (1963), Önder (1998) stated that the conducting capability of the blocks is 

much less important than their storage capability in general. The aquifer data 

presented in the literature show that fracture conductivity is much greater (103 times 

or more) than the block conductivity and the storage coefficient of blocks is usually 

equal or ten times greater than the storage coefficient of fractures. Therefore, the 

term 2

2

x
h

BK b
b ∂
∂

 can be neglected compared to the term 
t

h
S b

b ∂
∂  in equation 2.54. 

Then: 

 

t
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S b
bd ∂
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=ν          2.56 
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When equation 2.56 is inserted into equation 2.55, a partial differential 

equation governing the flow in the fractured aquifer is obtained: 
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or 
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f
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∂

∂
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       2.58 

 

where 

 

bb BKT =          2.43 
 

 Furthermore, Önder (1998) calculated the groundwater flow per unit length of 

the stream into the aquifer using Darcy’s law as follows:  

 

dx
dhKKJq ==         2.2 

 

AqQ =          2.3 

 

1⋅= BA          2.59 

 

0
1

=
⋅⋅=

xdx
dhKBQ         2.60 

 

BKT =          2.61 

 

0=
=

xdx
dhTQ          2.62 
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where Q is the time dependent flow rate, q is the specific discharge, B is the 

thickness of the aquifer, K is the conductivity and T is the transmissivity. 

 

Flow from the stream into the blocks is: 

 

0=
=

x
b

bb dx
dh

TQ         2.63 

 

Flow from the stream into the fractures is: 

 

0=
=

x
f

ff dx
dh

TQ         2.64 

 

Then, the total flow is: 

 

00 ==
+=

x
f

fx
b

b dx
dh

T
dx
dh

TQ       2.65 

 

In equation 2.65, the flow from the stream into the blocks can be ignored. In 

view of the fact that the conducting capability of blocks as compared to that of 

fractures is negligibly small, this may be considered as a reasonable approximation. 

Therefore: 

 

0=
=

xf dx
dhTQ         2.66 

 

 Önder (1998) solved equations 2.58 and 2.66 analytically by applying 

integral transformations successively with regard to the space and time variables. 

Finite Fourier sine transformation was used to replace the space derivative, while the 

time derivative was replaced through the application of the Laplace transformation. 
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CHAPTER 3 

 

 

NUMERICAL SOLUTION OF THE PROBLEM 

  

 

3.1 Non-Dimensionalization of the Governing Equations and  

Boundary Conditions 

 

In order to non-dimensionalize the governing partial differential equations 

and the related initial and boundary conditions, the following dimensionless 

variables, which are similar to the variables presented by Streltsova (1975) and 

Önder (1998), may be defined as: 

 

0

0

s
hh

z b
b

−
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0

0

s
hh

z f
f

−
=          3.2  

 

L
x

=λ           3.3 

 

2LS
tT

f

f=θ          3.4  

 

The derivatives of these variables should be taken with respect to time and 

space for non-dimensionalization.  

 

The space derivative of the dimensionles variable zb is taken as: 
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0

0

s
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z b
b

−
=          3.1 

 

00 hzsh bb +=          3.1.1 

  

bb zsh ∂=∂ 0          3.1.2 

 

bb zsh 2
0

2 ∂=∂          3.1.3 

 

The space derivative of the dimensionles variable zf is taken as: 
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The space derivative of the dimensionles variable λ is taken as: 

 

L
x
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λLx =          3.3.1 
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λ22 ∂=∂ Lx          3.3.3 
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Finally, the time derivative of the dimensionles variable θ is taken as: 
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 When these derivative terms are inserted, the governing equations for the 

blocks and the fractures are transformed into non-dimensional form as follows: 

 

For the blocks, 
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For the fractures, 
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Non-dimensionalization of the initial and boundary conditions is simpler and 

as follows: 

 

Initial conditions: 

 

( ) 00, =λbz          3.25 

 

( ) 00, =λfz          3.26 

 

Boundary conditions at the stream side: 

 

( ) 1,0 =θbz          3.27 

 

( ) 1,0 =θfz          3.28 

 

Boundary conditions at the impervious side: 
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00 =
∂
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λL
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λ
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         3.32 

  

 

The dimensionless flow rate, Qd, is defined similar to Önder (1998) as: 

 

f
d Ts

QLQ
0

=          3.33 

 

 

3.2 Introductory Remarks for Numerical Solution 

 

 The non-dimensionalized partial differential equations 3.14 and 3.24 

correspond to the one-dimensional parabolic model equation 3.34 except for the 

additional coupling term νd. In the model equation, ( )txuu ,=  is the dependent 

variable and ψ is a constant coefficient. 
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∂ ψ          3.34  

 

The model equation may be solved numerically by the Generalized 

Trapezoidal method (Hirsch, 1989), in other words the Combined method. This 

method provides an implicit scheme which is second order accurate both in space 

and time, i.e. it has a temporal truncation error that is ( )2tO ∆ . To provide this 

accuracy, difference approximations are developed at the midpoint of the time 

increment. The computational molecule for this method is given in Figure 3.1.  
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i-1, n+1 i, n+1 i+1, n+1 

i-1, n i, n i+1, n 

 
 

Figure 3.1: Computational molecule for Combined method. 

 

 

In the model equation, the temporal first derivative on the left hand side can 

be approximated by first-order differencing as: 
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The right hand side of the model equation is approximated with the average 

of central difference scheme evaluated at the current and the next time step.  
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 When these approximations are inserted into the model equation, the 

discretized form of the model equation is obtained. 
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 The Combined method is equivalent to: 

 

• the simple explicit method when γ = 0 

• the simple implicit method when γ = 1 

• the Crank-Nicolson method when γ = ½ 

 

The Combined method is convergent and unconditionally stable provided that 

½< γ <1. 

 

When  γ = ½  is inserted in equation 3.37,  the  Crank-Nicolson  implicit 

scheme is obtained. 
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Notice that the dependent variable u from time step n+1 and time step n 

appear on the right hand side. Equation 3.38 is used to predict the values of u at time 

n+1, so that all values of u at time n are assumed to be known. 

 

If there are N internal mesh points along each time row, then equation 3.38 

gives N simultaneous equations for N unknown values of u along the first time row in 

terms of known initial and boundary conditions. Similarly, n=2 expresses N 

unknown values of u along the second time row in terms of the calculated values 

along the first row and so on. Therefore, the Crank-Nicolson scheme necessitates the 

solution of a set of N simultaneous equations.  

 

The modified equation of the Crank-Nicolson implicit scheme is (Neta, 2003): 
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 The Crank-Nicolson scheme has purely dispersion error so that it is prone to 

oscillations. 

 

 

3.3 Discretization of the Governing Equations 

 

The non-dimensionalized partial differential equation 3.14 governing the 

flow through the blocks is discretized by the Combined method as follows: 
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Equation 3.44 can be expressed in the form of equation 3.45: 
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The non-dimensionalized partial differential equation 3.24 governing non-

Darcian flow through the fractures is discretized by the Combined method as 

follows: 
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 Note that in equation 3.54, zf values at time step n+1 are calculated using the 

zf values at time step n. Also, the scalar function F(q) of Forcheimer’s equation is 

evaluated at time step n. In this way, the non-linear equation 3.24 is linearized.  

 

Equation 3.54 can be expressed in the form of equation 3.55: 
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Recall that when γ = ½, the Combined method is equivalent to the Crank-

Nicolson scheme. 

 

 

3.4 Calculation of the Scalar Function F(q) 

 

Calculation of the scalar function F(q) requires the calculation of the specific 

discharge q at all points in the solution domain. The specific discharge can be 
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defined by the Darcy’s equation. In this regard, the procedure for the calculation of 

F(q)  is as follows: 

 

( )qqF
dx
dh

=−          2.20 

 

( ) bqaqF +=          2.17 

 

22
yx qqq +=          2.18 

 

0=yq           3.60 

 

xqq =           3.61 

 

dx
dhKqx −=          2.10 

 

 The spatial derivative in equation 2.10 is replaced by the central finite 

difference approximation: 
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 The scalar function F(q) at any point i in the solution domain at the current 

time step n can be written as: 

 

( ) n
ix

n
i bqaqF +=         3.63 

 

The specific discharge should be calculated by using piezometric heads in 

fractures hf, because non-Darcian flow takes place through the fractures. 
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Since a is the reciprocal of the hydraulic conductivity, K: 

 

a
K 1
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Thus, the discretized form of the Forcheimer’s equation is: 
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 An alternative procedure for the calculation of the specific discharge, q, is as 

follows: 

 

qbaq
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where . xqq =

 

Equation 2.19 can be written in the form of a quadratic equation as: 
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The roots of equation 3.66 are: 
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The positive root gives the specific discharge: 
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 The spatial derivative in equation 3.68 can be replaced by the central finite 

difference approximation. Then, 
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When equation 3.69 is inserted into equation 3.63: 
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Then, 
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3.5 Discretization of the Boundary Conditions 

The derivative boundary conditions at the impervious boundary, that are 

equations 3.30 and 3.32, are discretized by the backward finite difference 

approximation as follows: 

 

For the blocks, 
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For the fractures, 
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3.6 Calculation of the Flow Rate from the Stream to the Aquifer 

 

The rate of the flow per unit width from the stream to the aquifer can be 

calculated using Darcy’s law. 

 

dx
dhKq −=          2.10 

 

In a fractured aquifer whose depth is B, the total flow from the stream to the 

aquifer is: 
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dx
dhBKQ −=          3.76 

 

Equation 3.76 could be discretized using the forward difference 

approximation. 
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where h0 is the piezometric head at the stream boundary and h1 is the piezometric 

head at the first internal mesh point. 

 

Given that the rate of the flow in the fractures is much higher than in the 

blocks, it would be reasonable to assume that the flow rate into the aquifer is almost 

equal to the flow rate through the fractures. Therefore, in equation 3.77, , or: fKK =
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Then, 
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3.7 Stability, Consistency and Convergence 

 

This section and the following section shortly summarize the information on 

the basic concepts concerning numerical methods presented by Smith (1975), 

Andersen (1995), Hoffmann and Chiang (1993), Hirsch (1989) and Fletcher (1991).  
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The conditions that must be satisfied to ensure the solution of finite 

difference equations is reasonably accurate are the convergence of the exact solution 

of the approximating difference equations to the solution of the differential equation 

and the unbounded growth or uncontrolled decay of any errors associated with the 

solution of the finite difference equations. 

 

Therefore, the convergence of finite difference equations approximating 

linear parabolic and hyperbolic equations can be investigated in terms of stability and 

consistency.  

 

Stability is related to convergence through the concept of consistency and 

they together guarantee convergence. 

 

A finite difference scheme is stable when the error remains bounded as time 

increases indefinitely. Given that the propagation of errors is the same as that of 

calculation of variables, the most fruitful way to define stability is in terms of the 

boundedness of the exact solution of the difference equations. For a stable finite 

difference scheme, local rounding errors and local truncation errors should not 

increase unboundedly with increasing time-levels of calculations. 

 

If the local truncation error at any mesh point in the solution domain tends to 

zero as the mesh lengths tend to zero, the difference equation is said to be consistent 

with the partial differential equation. The real importance of the concept of 

consistency lies in a theorem by Lax which states that if a linear finite difference 

equation is consistent with a properly posed initial value problem, then stability 

guarantees convergence. A problem is posed if the solution is unique when it exists 

and depends continuously on the initial data. 

 

 Unique solution means having only one solution which is continuous 

throughout the solution domain and its boundary and has continuous partial 

derivatives in time and space.  

 

 

55



If the solution of a partial differential equation exists and is unique, and if the 

solution depends continuously upon the initial and boundary conditions, then the 

problem is called well-posed. It is sometimes easy to attempt a solution using 

incorrect or insufficient initial and boundary conditions. Whether the solution being 

attempted analytically or numerically, such an ill-posed problem will usually lead to 

spurious results.  

 

 For initial value problems, any perturbation introduced in the solution domain 

at time t=T will only be felt for times t>T.  The future cannot influence the past. As a 

consequence, no boundary conditions may be imposed at time T. On the other hand, 

it is necessary to prescribe boundary conditions at t=0, i.e. the initial data. Because 

of the restricted zone of influence of perturbations, points in the solution domain are 

only coupled to the set of points which can influence them. This implies that the 

solution can be computed by advancing progressively (marching) in the domain. This 

is the characteristic of parabolic differential equations. All unsteady flows are 

described by initial value problems.  

 

It is sometimes possible to approximate a parabolic or hyperbolic equation by 

a finite difference scheme that is stable but which has a solution that convegences to 

the solution of a different differential equation as the mesh lengths tend to zero. Such 

a difference scheme is said to be inconsistent or incompatible with the partial 

differential equation. 

 

Given a properly posed linear initial value problem and a linear finite 

difference approximation to it that satisfies the consistency conditions, stability is the 

necessary and sufficient condition for convergence. 

 

There are three standard methods for investigating the stability of the solution 

of the finite difference equations. In the first method, the equations are expressed in 

matrix form and eigen values of associated matrix are investigated. The second 

method, namely von Neuman method uses finite Fourier series and the third method 

is the discrete perturbation analysis. 
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3.8 Accuracy 

 

 Stability, consistency and convergence has been concerned with the 

behaviour of the approximate solution in the limit 0, →∆∆ xt . However, allowing 

the grid to converge to zero size may not be realizable in practice so that approximate 

solutions for real flow problems are obtained on a finite grid and the corresponding 

accuracy is of considerable importance. In this context, an important question 

concerning numerical solutions is under what circumstances they would coincide 

with the exact solution. 

 

 Stability analysis of finite difference equations provides insight into the 

limitation on grid size that is needed to obtain stable and accurate solutions. 

However, it would not be solely sufficient to determine the accuracy of the numerical 

solution of real problems.  

 

One way of determining the accuracy of a particular algorithm on a finite grid 

is to apply it to a related but simplified problem, which possesses an exact solution. 

However, accuracy is also problem dependent, and an algorithm which is accurate 

for a model problem may not be so accurate for the (more complicated) problem of 

interest. 

 

A second technique of accessing accuracy is to obtain solutions on 

successively refined grids (assuming the computing capacity is available) and to 

check that, with successive refinement, the solution is not changing to same 

predetermined accuracy. This assumes that the approximate solution will converge to 

the exact solution in the limit 0, →∆∆ xt and that the approximate solution on the 

finest grid can be used in place of the exact solution. Since this is usually impossible 

to guarantee for real problems, it is useful to compare the computational solutions 

with reliable experimental data of known accuracy or available analytical solutions 

of the same problem. However, experimental data are usually not available in 
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sufficient detail to permit an evaluation of the global error of the solution Hoffmann 

and Chiang (1993). 

 

Assuming that the accuracy of the approximate solution can be assessed, it is 

important to consider the related question of how the accuracy may be improved. At 

the broadest level, the answer to this question may lie in making a different choice 

for the dependent variables, e.g. vorticity and stream function instead of velocity and 

pressure. Alternatively, a different choice of independent variables may be 

appropriate. For example polar coordinates will produce more accurate solutions for 

pipe flow than Cartesian coordinates for the same number of grid points (Fletcher, 

1991).  

 

For explicit schemes, selection of step size is limited for stability 

requirement. On the other hand, implicit methods, which are unconditionally stable 

allow larger time steps. However, the accuracy requirement limits the use of large 

time steps, since an increase in time steps will increase the truncation errors 

introduced in the approximation process. It should also be noted that selecting very 

small step size ought to be avoided since the accuracy of the solution is dominated by 

round-off errors. 

 

It should also be stressed that larger t∆  means larger truncation error and the 

use of implicit methods to follow exact transients may not attain desired accuracy. 

However, for a time-dependent solution in which steady state is the desired result as 

in our problem, this relative time-wise accuracy is not important.  

 

 

3.9 Discrete Perturbation Stability Analysis 

 

Discrete perturbation stability analysis is a commonly used procedure for 

determining the stability requirements of finite difference equations. In this method, 

a disturbance is introduced at a point and its effect on neighbouring points is 

investigated. If the disturbance dies out as the solution proceeds, then the numerical 
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technique used is indeed stable. However, if the disturbance grows with the solution, 

the method is unstable (Hoffmann and Chiang, 1993). 

 

To illustrate this analysis, the parabolic model equation (equation 3.34) is 

considered: 
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where ( )txuu ,=  is the dependent variable and ψ is a constant coefficient. An 

explicit finite difference equation discretized using second-order central differencing 

for the space derivative and first-order differencing for the time derivative as: 
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 Assuming that a solution at all i nodes obtained, a disturbance  is 

introduced at node i at time level n and the disturbance at time level n+1 at the node i 

is sought. Therefore, 
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Subtracting equation 3.80 from equation 3.81 produces: 
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Hence, 
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In order to prevent its growing with the solution, the error must be bounded. 

For this purpose, the absolute value of error propagation is set to be less than or equal 

to 1 Hoffmann and Chiang (1993). 
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Discrete perturbation stability analysis would also give an indication for 

selection of appropriate time step and grid size for numerical solutions to ensure 

accuracy. 
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CHAPTER 4 

 

 

SOLUTION AND RESULTS 

 

 

4.1 Basic Data and Solution Procedure  

 

The finite difference equations for the fractures and the blocks were solved 

by a FORTRAN program according to initial and boundary conditions as well as the 

basic aquifer data taken from Önder (1998). The aquifer parameters are given in 

Table 4.1. These are also shown schematically in Figure 4.1. The flow chart of the 

FORTRAN program is presented in Figure 4.2. Furthermore, the text of the program 

is given in Appendix A. 

 

 

Table 4.1: Aquifer parameters (Önder, 1998) 

 

Width of aquifer, L 800 m 

Thickness of aquifer, B 60 m 

Initial piezometric head, h0 65 m 

Constant drawdown in stream, s0 2 m 

Transmissivity of fractures, Tf 280 m2 /day 

Transmissivity of blocks, Tb 1.75x10-2 m2 /day 

Storage coefficient of fractures, Sf 1.4x10-7

Storage coefficient of blocks, Sb 1.4x10-6

Fluid transfer rate, ε 6.25x10-3 m-2
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Figure 4.1: Schematic demonstration of the aquifer parameters. 
 

 

 It is assumed that the aquifer starts 5m below the average stream level. 

 

Three dimensionless parameters, namely storativity contrast, conductivity 

contrast and diffusivity contrast were defined in order to evaluate better the effect of 

the aquifer parameters on the flow in the aquifer. These parameters were altered by 

changing the aquifer parameters in the calculations.  

 

Storativity contrast   
f

b

S
S

=η      4.1  

 

Conductivity contrast  
f

b

T
T

=κ      4.2 

 

Diffusivity contrast  
η
κε

ε
δ 2

2

4
4

L
ST

LST

bf

fb ==    4.3 

 

The dimensionless parameters as well as corresponding aquifer parameters on which 

computations were based are listed in Table 4.2. 
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INPUT   Tf  Tb  Sf  Sb  ε  L d  ho  so  a  b 

DEFINE DIMENSIONLESS ∆θ AND ∆λ 

INPUT DIMENSIONLESS I.C. AND B.C. 

SOLVE THE DISCRETIZED P.D.E. OF 
FRACTURES FOR Zf AND PRINT 

SOLVE THE DISCRETIZED P.D.E. OF 
BLOCKS FOR Zb AND PRINT 

CALCULATE THE FLOW  
RATE, Q, AND PRINT 

CALCULATE THE SCALAR 
FUNCTION, F(q)

 
 
 

Figure 4.2: Flow chart of the computer program. 

THOMAS ALGORITHM  

IF Zf(N-1) ≤ 0.999  

END 

 
ELSE STOP 

T=T+∆T 
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Another dimensionless parameter that accounts for the non-Darcian flow can 

also be defined. Wu (2002a) presented a dimensionless non-Darcy flow parameter β 

for fractured reservoirs. An analogous non-dimensional parameter β is derived for a 

strip fractured aquifer as the coefficient of 
θ∂

∂ fz
in equation 3.24, i.e., 

( )
B

TqF f is 

modified to a dimensionless non-Darcy flow parameter as: 

 

( )
q

a
b

B
TqF f +== 1β         4.4 

 

As the specific discharge, q, in equation 4.4 is a function of space and time (x 

and t), β is also a function of space and time. In order to define a representative 

dimensionless non-Darcian flow parameter which is independent of space and time, 

q in equation 4.4 is arbitrarily replaced by a constant value given by 
L
s

Kq f
0

0 = . 

Thus, the following expression is obtained: 

 

La
bs

2
0

0 1+=β          4.5 

 

In the solution of the governing equations, the actual value of β is used. In the 

presentation of the results where the objective was to explore the influence of non-

Darcian flow, i.e., the influence of b, β0 is used. 

  

The linear parameter a of Forcheimer’s equation, which is the reciprocal of 

hydraulic conductivity of the fractures, Kf, is obtained using equation 2.22. 

 

In the numerical calculations, firstly the aquifer parameters are specified. 

Initially, there is no flow in the aquifer and the water levels in the stream and in the 

aquifer were assumed to be horizontal. 
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Table 4.2: Examples to the dimensionless parameters and related aquifer parameters 

      which were used in the calculations 

 

η 

 

δ 

 

κ 

 
Tf  

m2/day 

Tb

m2/day 

 

Sf

 

Sb

 
a=1/Kf 

day/ m 

ε 
m-2

1 10 6.25*10-5 280 0.0175 1.4*10-6 1.4*10-6 0.215 0.0625 

10 0 0 280  0 1.4*10-7 1.4*10-6 0.215 0.0625 

10 1 6.25*10-5 280 0.0175 1.4*10-7 1.4*10-6 0.215 0.0625 

10 10 6.25*10-5 280 0.0175 1.4*10-7 1.4*10-6 0.215 0.625 

10 50 3.125*10-4 56 0.175 1.4*10-7 1.4*10-6 0.86 0.0625 

10 5 3.125*10-5 56 0.0175 1.4*10-7 1.4*10-6 0.86 0.0625 

10 100 6.25*10-4 280 0.175 1.4*10-7 1.4*10-6 0.215 0.625 

100 1 6.25*10-4 280 0.175 1.4*10-7 1.4*10-5 0.215 0.625 

 

 

The fluid transfer rate and the non-linear parameter b of the Forcheimer’s 

equation are assumed as 0 for calculations at the initial stage.  

 

Then, a step rise is imposed as a boundary condition in the stream and the set 

of algebraic equations for the fractures and the blocks are solved successively by 

backward substitution, i.e. the Thomas algorithm. Therefore, dimensionless 

drawdowns for the fractures and the blocks with respect to dimensionless time and 

space are obtained and printed.  

 

Calculation of the scalar function F(q) requires the computation of the flow 

rate through the fractures. Dimensionless drawdowns in the fractures and in the 

blocks are converted to dimensional drawdowns in order to calculate the flow rate at 

all mesh points.  
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Given that Equation 3.71 creates instability and gives inadequate results in 

calculation of the specific discharge, q, due to the step rise in the stream level which 

leads to very high hydraulic gradients at the initial stages of the computations, 

equation 3.65, which is based on Darcy’s law, is used to calculate q in numerical 

simulations. 

 

Having calculated the specific discharge, the scalar function F(q) is evaluated 

at all mesh points and updated for the next step calculations. Finally, the rate of the 

flow from the stream to the aquifer and Reynold’s number are calculated. 

 

Simulations are terminated when the dimensionless drawdown in the 

fractures and in the blocks are very close to 1 (drawdown never exceeds 1) at all 

mesh points which indicates that a new steady-state condition is reached. 

 

Solution of the dimensionless governing equations yields dimensionless 

drawdown in the fractures and in the blocks with respect to dimensionless time and 

space. Drawdown versus time and drawdown versus space curves can be constructed 

for various combinations of storativity, conductivity and diffusivity contrasts at 

certain dimensionless locations and times.  

 
It is reasonable to assume that an observation well, screened over the depth of 

the formation, would intersect several fractures, so the observed drawdown in the 

aquifer would be that of the fractures (Barker, 1985 and Önder, 1998). Therefore, the 

drawdown in the matrix is unlikely to be of interest and the drawdown response of 

the aquifer is primarily analyzed and presented by the drawdown in the fractures. 

 

In addition, the solution gives the dimensionless flow rate from the stream to 

the aquifer with respect to dimensionless time. Flow rate versus time curves can also 

be drawn for various combinations of storativity, conductivity and diffusivity 

contrasts. 
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4.2 Stability of the Finite Difference Equations of the Fractures  

and the Blocks 

 

 The discrete perturbation stability analysis was applied to the finite difference 

equations of the fractures and the blocks. The basic theory of this analysis is 

summarized in Section 3.9 and the mathematical procedure for application is given in 

Appendix B. 

 

A disturbance was introduced at a point i and its effect on neighbouring 

points have been investigated using a computer program. Calculations were based on 

the aquifer parameters presented in Table 4.2 and carried out by the 80th time step 

(n=80).  

 

In order to evaluate the effect of time step and grid size on the stability and 

the accuracy of the numerical solution, calculations have been carried out for six 

different values α (0.028, 0.5, 1, 2.09, 6.4 and 25.6) which is defined as: 

 

2λ
θα

∆
∆

=          4.6 

 

Figure 4.3 shows graphically the propagation of disturbance for the fractures 

when α=2.09. It is apparent from the figure that the disturbance, e, is very close to 0 

at all points except for the node i. The disturbance level at the node i is very close to 

1 and dies out at the neighbouring points immediately. This situation does not change 

in time. The disturbance level decreases in time although it very small. Therefore, the 

stability condition which is equation 3.85 is ensured. 

 

Figure 4.4 gives the propagation of disturbance, e, for the blocks when 

α=0.5. In this case, the disturbance at the node i is again very close to 1 and the 

disturbance at the nodes i+1 and i-1 is -0.447. Then, the disturbance dies out at the 

neighbouring points similar to the fractures and this situation does not change in 

time. 
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Figure 4.3: Graphical presentation of the results of the discrete perturbation 
   stability analysis for the fractures when α=2.09.  
 

n=1

n=20

n=40

n=80

i+
1i

i+
2

i+
3

i+
4

i+
5

i+
6

i+
7

i+
8

i+
9

i-1i-2i-3i-4i-5i-6i-7i-8i-9

0.999928

1.000032

1.000149

1.000304

0

0

0

0

Blocks
α=0.5

n=2

-0.447422

-0.447433

-0.447456

e=1

0

e

e

e

-0.447485

e

 
 

Figure 4.4: Graphical presentation of the results of the discrete perturbation 
   stability analysis for the blocks when α=0.5.  
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In addition, changing the aquifer parameters in the calculations does not 

affect significantly the disturbance level in the solution domain. 

 

Two examples to the results of the discrete perturbation stability analysis, one 

for the fractures when α=1 and the other for the blocks when α=0.028, are presented 

in Appendix F. 

 

The results of the discrete perturbation stability analysis show that the static 

stability is assured for the solution of the finite difference equations of the blocks and 

the fractures. However, the analysis has not given any indication for which value of α 

the numerical solution gives accurate results.  

 

 

4.3 Comparison of the Numerical Solution with the Analytical Solution - 

Determination of Appropriate Step Size and Mesh Size 

 

 The discrete perturbation stability analysis showed that the numerical solution 

of the finite difference equations for the fractures and blocks are unconditionally 

stable for all values of θ∆  and λ∆ . Therefore, it is possible to solve the 

aforementioned equations by infinite number of α values without facing any stability 

problem and to obtain an infinite number of solutions.  

 

In this regard, the accuracy of the solution is investigated by successive 

refinement of the mesh while fixing the time step. Changing α by successively 

decreasing λ∆  altered the results significantly and proved that this technique for 

determining accuracy is not applicable to the problem. 

 

Following that, the accuracy of the numerical solution is elaborated by 

comparing its results against the results of the analytical solution to the same 

problem given by Önder (1998). In this comparison, two points are to be noted:  

 

- The flow in the fractures is in non-Darcian regime in the present study. 
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- Based on the previous studies of Barenblatt et al. (1960), Warren and Root 

(1963), Streltsova and Adams (1978); Önder (1998) assumed that the 

conducting capability of the blocks is much less important than their storage 

capability, therefore the term 2

2

x
hBK b

b ∂
∂

 in equation 2.54 was neglected 

compared to term
t

h
S b

b ∂
∂

. The same assumption was also used by Wu 

(2002a) later. In the present study, this assumption is not used. 
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Figure 4.5: Zf versus θ curves at λ=0.2 for α=2.09 for different values of  θ∆  

     when α= 0.0022, η=10, δ=5 and κ=6.25*10-5. 
 

 

Numerical calculations have been carried out for different values of θ∆  and 

λ∆  for various storativity, conductivity and diffusivity contrasts. Then, 

dimensionless drawdown versus dimensionless time curves for the fractures were 

plotted at a dimensionless locations 2.0=λ , 4.0=λ  and 8.0=λ , and compared to 

the curves plotted using the available data from the analytical solution. In numerical 

calculations, the flow in the fractures assumed Darcian as in the analytical solution 

and, thus, the non-linear term of Forcheimer’s equation, b, was taken as 0. 
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Figure 4.6: Zf versus θ curves at λ=0.2 for different α values  
 when η=10, δ=5 and κ=3.125*10-5. 
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Figure 4.7: Zf versus θ curves at λ=0.8 for different α values  
 when η=10, δ=5 and κ=3.125*10-5. 
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Firstly, the effect of the time step on the solution is investigated considering 

that the stability and accuracy may be maintained over larger values of θ∆  in 

implicit methods as explained in Section 3.7. To this end, numerical calculations 

were carried out for three different time steps, i.e. θ∆ =1*10-4, 1*10-5 and 1*10-6 

while fixing α by playing with λ∆ . Then, the results obtained are compared to each 

other and the analytical solution. 

 

Figure 4.5 shows the effect of θ∆  on the solution for the case η=10, δ=10 

and κ=6.25*10-5. It is obvious from the figure that the change in θ∆  has almost no 

effect on the numerical solution if α is fixed. Therefore, larger values of θ∆  could be 

used to reduce the cost and time of calculations. 

 

Then, the effect of α on the numerical solution has been investigated. For this 

case, θ∆  is fixed to 1*10-5 and α is changed by changing λ∆ . The results have been 

compared to the results of the analytical solution at dimensionless locations 2.0=λ , 

4.0=λ  and 8.0=λ . 

 

Figure 4.6 shows the case η=10, δ=5 and κ=3.125*10-5 at 2.0=λ . It is 

obvious from the figure that numerical and analytical solutions give similar results 

when α=2.09. For this particular value of α, there is a slight difference between the 

curves of numerical and analytical solutions at early times, but the curves perfectly 

overlap at later times. The other values of α give very different results and their 

curves do not fit the analytical data.  

 

For the same case but at 8.0=λ , as in Figure 4.7, the numerical and 

analytical solutions give very close results when α=2.09. For this particular value of 

α, the difference between the curves of numerical and analytical solutions is very 

small even at early times. However, the difference is quite significant for the other 

values of α. 
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Figure 4.8: Zf versus θ curves at λ=0.2 for different α values  
 when η=10, δ=10 and κ=6.25*10-5. 
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Figure 4.9: Zf versus θ curves at λ=0.4 for different α values  
 when η=10, δ=10 and κ=6.25*10-5. 
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In Figure 4.8 where η=10, δ=10 and κ=6.25*10-5, the curve of α=2.09 again 

best fits the curve of the analytical data at 2.0=λ . However, for this case, the 

difference between these curves is more significant at early times, and the numerical 

solution gives a small delayed response. On the other hand, the numerical and 

analytical curves perfectly overlap at later times. Once more the curves for the values 

of α other than 2.09 are separated from the analytical curve. 

 

For the same case but at 4.0=λ , as in Figure 4.9, the numerical and 

analytical solutions give closer results when α=2.09. Furthermore, the deviation 

between numerical and analytical results at early times is less at this dimensionless 

location since the hydraulic gradient is small and, thus, the non-linear effect is less 

significant. 

 

Figure 4.10 demonstrates the case for η=10, δ=1 and κ=6.25*10-5 at 

2.0=λ . The curve of α=2.09 is again the most similar curve to the curve of 

analytical solution. However, there is significant difference between these curves 

except for the very late times. On the other hand, these curves follow similar 

patterns. 

 

Figure 4.11 shows the case η=10, δ=10 and κ=6.25*10-5 at 2.0=λ . 

However, in this case, α is changed by altering θ∆  while fixing λ∆  to 0.0022. It can 

be concluded from the figure that the numerical and analytical solutions give similar 

results when α=2.09. For the numerical solution, it does not matter changing either 

θ∆  or λ∆  as long as α is kept constant. 

 

It should also be stressed that the curvature of the curves is more visible when 

α=2.09. The idea behind this will be explained in the following sections while 

discussing the transition period.   
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Figure 4.10: Zf versus θ curves at λ=0.2 for different α values  
  when η=10, δ=1 and κ=6.25*10-5. 
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Figure 4.11: Zf versus θ curves at λ=0.2 for different α values  
  when η=10, δ=10 and κ=6.25*10-5. 
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In order to demonstrate more clearly how the results of numerical solutions 

fit to the results of the analytical solution, only the curves of the analytical solution 

and the numerical solution of α=2.09 are plotted on same graph for various 

combinations storativity, conductivity and diffusivity contrasts. These graphs are 

given in Appendix C.  

 

Two graphs are presented in this section for illustration. Figure 4.12 shows 

the case η=10, δ=50 and κ=3.125*10-3 where the transmissivity of fractures is high. 

At 2.0=λ , curves perfectly overlap and numerical and analytical solutions give 

almost same results.  

 

In Figure 4.13 where η=10, δ=0 and κ=0, the transmissivity of blocks is 

equal to 0. Therefore, no flow occurs in the blocks and the aquifer acts as a single 

porosity. For this case, curves show very similar patterns while there is lagging 

between them. 
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Figure 4.12: Zf versus θ curves at λ=0.2 when η=10, δ=50 and κ=3.1*10-4. 
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Figure 4.13: Zf versus θ curves at λ=0.2 when η=10, δ=0 and κ=0. 
 

 

It is clear that the closest results have been obtained when α=2.09, however it 

would be necessary to prove it quantitatively. To this end, root mean square error for 

six values α were calculated for three cases, i.e. η=10, δ=5, κ=3.125*10-5; η=10, 

δ=10, κ=6.25*10-5; η=10, δ=1, κ=6.25*10-5, using equation 4.7 (Mathews, 1988).  

 

2
1

1

21
⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

N

numericalfanalyticalf zz
N

errorRMS     4.7 

 

where N is the number of points compared. 

 

Table 4.3 shows root mean square errors calculated at the points where the 

analytical solution is available. It is obvious that minimum errors were obtained 

when α=2.09 for the said three cases. This means the difference between numerical 

and analytical results is minimum for this particular value of α.   
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Table 4.3: Root mean square errors 

 

RMS error α=0.028 α=0.5 α=1 α=2.09 α=6.4 α=25.6 

η=10, δ=5 

κ=3.125*10-5 0.178 0.112 0.064 0.012 0.145 0.332 

η=10, δ=10 

κ=6.25*10-5 0.314 0.236 0.184 0.102 0.136 0.195 

η=10, δ=1 

κ=6.25*10-5 0.170 0.141 0.120 0.088 0.158 0.212 

 

 

Therefore, it is concluded from the qualitative and quantitative comparison of 

numerical and analytical solutions that the closest results are obtained when α=2.09 

( θ∆ =0.00001 and λ∆ =0.0022 which leads 450 mesh points in the solution domain) 

and that this particular value of α ensures the accuracy of the numerical solution. In 

this regard, α=2.09 is used in the numerical calculations throughout this study. 

 

On the other hand, the deviation between numerical and analytical results at 

early times persists but at a lesser degree in general. This behaviour is an agreement 

with the expectation that at early times the hydraulic gradient is high and obviously 

the non-Darcian flow is more effective. At later times the curves again overlap. 

 

The numerical and the analytical solutions give closer results when the 

aquifer exhibits normal fractured aquifer characteristics that are the fracture 

transmissivity is much larger than the block transmissivity and the storage coefficient 

of the blocks are higher than the storage coefficient of the fractures. However, hand, 

when δ=0 as in Figure 4.13 the aquifer acts as a single porosity aquifer and the 

difference between numerical and analytical solutions is significant. 
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The reasons for the difference between the results of numerical and analytical 

solutions are worth discussing. Given that the flow through the blocks is neglected in 

the analytical solution of Önder (1998) by eliminating the term 2

2

x
hBK b

b ∂
∂

 in 

equation 2.54, a difference may be expected between the analytical and numerical 

solutions. 

 

 

4.4 Drawdown in the Aquifer 

 

Dimensionless drawdown versus dimensionless time and dimensionless 

drawdown versus dimensionless space curves are constructed for various 

combinations of the storativity, conductivity and diffusivity contrasts and presented 

in Appendix E. 

 
As an example, the case η=10, δ=10 and κ=6.25*10-5 is discussed in this 

section. Figure 4.14 shows the dimensionless drawdown versus dimensionless space 

curves for the fractures and the blocks at different times along the aquifer. It is 

apparent from the figure that the drawdown in the fractures increases faster than the 

drawdown in the blocks at earlier times so that there exists a lagging between them. 

The drawdown in the blocks and in the fractures approaches to 1 as the time goes to 

the infinity while the lagging between them decreases.  

 

Dimensionless drawdown versus dimensionless time curves of the fractures 

and the blocks at four different dimensionless locations, i.e. λ = 0.1, 0.2, 0.4 and 0.8, 

are shown in Figure 4.15 for the same case. All curves merge very close to 1, which 

means the steady-state condition is almost established in the aquifer.   
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Figure 4.14: Zf versus λ and Zb versus λ curves for η=10, δ=10 and κ=6.25*10-5

         at different times θ. 
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Figure 4.15: Zf versus θ and Zb versus θ curves for η=10, δ=10 and κ=6.25*10-5  

         at λ=0.1, 0.2, 0.4 and 0.8. 
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The behaviour of dimensionless drawdown in the aquifer is generally divided 

into three periods which are demonstrated in Figure 4.15. Initially the rate of 

increase in the drawdown is representative of fracture transmissivity and storage. 

Therefore, in the initial period, rapid flow takes place in the fractures and the 

drawdown in the fractures increases sharply. Fracture to block flow develops in the 

second period where the flow slows down as shown by a decrease of the slope of the 

drawdown curve. Accordingly, the drawdown response of the aquifer enters into 

transition and the increase in the drawdown in the fractures is slowed down. More 

water is stored in the blocks. As a result, the difference between the drawdown in the 

fractures and in the blocks decreases more rapidly. The transition period basically 

depends on the aquifer parameters. The third or final period of the drawdown 

response is homogenous but delayed in time. In this period, the drawdown in the 

fractures and in the blocks increases gradually to reach the steady-state condition.  
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Figure 4.16: (Zf -Zb) versus θ curve for η=10, δ=50 and κ=6.25*10-5 at λ=0.2. 
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Figure 4.17: Zf versus λ and Zb versus λ curves for η=10, δ=10 and κ=0  

          at different times θ. 
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Figure 4.18: Zf versus θ and Zb versus θ curves for η=10, δ=0 and κ=0  

         at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure 4.16 shows the change in difference between the drawdown in the 

fractures and the drawdown in the blocks with respect to time. It could be said that 

the difference increases at early stages up to ≅θ 10-1, then decreases due to the effect 

of transition, finally approaches to 0 as the time goes to infinity.  

 
When the transmissivity of the blocks is equal to 0, which is the case δ=0 and 

κ=0 as in Figures 4.17 and 4.18, the aquifer functions as a single porosity aquifer. 

Flow occurs only through the fractures. Given that the blocks neither transmit nor 

store water when Tb=0, fracture to block flow does not develop. Therefore, the 

drawdown in the blocks is equal to 0.   

 
Drawdown versus time and drawdown versus space curves can also be 

plotted for various combinations of the storativity, conductivity and diffusivity 

contrasts. To this end, the dimensionless drawdown as well as dimensionless time 

and space variables should be converted to the dimensional ones by arithmetic 

operations using the relevant non-dimensionalization parameters. 

 

Figures 4.19 and 4.20 give drawdown versus space and drawdown versus 

time curves respectively for the case η=10, δ=10 and κ=6.25*10-5. 

 
 

4.5       Effect of the Non-Linear Forcheimer Parameter, b, 

on the Drawdown in the Fractures 

 

The main objective of this study is to investigate the non-Darcian flow 

behaviour in the aquifer, particularly in the fractures. The non-Darcian flow in the 

fractures is primarily governed by the non-linear parameter b in Forcheimer’s 

equation. Therefore, the effect of this on the drawdown response of the aquifer was 

investigated by changing it while fixing the other aquifer parameters in the numerical 

calculations. 
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Figure 4.19: hf versus x  and hb versus x curves for  η=10, δ=10 and κ=6.25*10-5

          at different times t. 
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Figure 4.20: hf versus t and hb versus t curves for η=10, δ=10 and κ=6.25*10-5  

          at x=80, 160, 320 and 640m. 
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Numerical runs were carried out for five different values for b, i.e. 0, 0.005, 

0.05, 0.1 and 0.5. Figures 4.21, 4.22, 4.23 and 4.24 show dimensionless drawdown 

versus dimensionless time curves for the fractures at a dimensionless location λ=0.2 

for Tf=280m2/day, Tf=1400m2/day, Tf=2800m2/day and Tf=5600m2/day respectively. 

Recall that changing b naturally changes the dimensionless parameter β0. 

 

It was mentioned in Section 2.5 that when b=0, the flow in the fractures is 

Darcian. On the other hand, it is obvious that b=0.5 is a very extreme and unrealistic 

value compared to the values of b presented in Table D.1. However, these values 

were used in the calculations in order to evaluate the effect of non-linearity on the 

flow in the aquifer more precisely.  

 

Figure 4.21 gives the dimensionless drawdown versus dimensionless time 

curves for five different values of non-linear parameter, b, when Tf=280m2/day. It is 

apparent from the figure that all curves perfectly overlap which means the non-

Darcian effect on the flow is negligible, even non-existent. Reynold’s number 

calculated at the initial stages is around 1*10-2. Furthermore, the results of the 

numerical solution are identical with that of the analytical solution.  

 

Therefore, it can be concluded that non-linearity has no effect on the flow 

when Tf=280m2/day and Re is quite small, so that Darcian flow takes place both in 

the fractures and blocks.  

 

When Tf is increased five times to 1400m2/day, any difference among the 

curves of Figure 4.22 is only slightly detectable except for the extreme value b=0.5. 

In this case, Reynold’s number at the initial stages is around 0.1, and the non-Darcian 

effect starts to become apparent. 

 

It is evident from Figure 4.23 that the curves differ considerably when Tf is 

increased to 2800m2/day where Reynold’s number at the initial stages is around 0.3. 

Therefore, the effect of the non-linear Forcheimer parameter becomes significant as 

Tf  and Re increase. 
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Figure 4.21: Zf versus θ curves at λ=0.2 for different non-linear parameter, b, 
          when Tf=280m2/day. 
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Figure 4.22: Zf versus θ curves at λ=0.2 for different non-linear parameter, b, 
          when Tf=1400m2/day. 
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Furthermore, for the case Tf=5600m2/day as in Figure 4.24, the non-Darcian 

effect is much more significant as the Reynold’s number at the initial stages is 

around 0.8. 

 

It could be concluded that the increase in Tf also increases the specific 

discharge in fractures as well as the Reynold’s number, thus making the non-linear 

effect on the flow more and more significant.  

 

The specific discharge is the function of the hydraulic gradient, J, and the 

transmissivity of the fractures. The hydraulic gradient is maximum when x and t 

approach to 0. As Tf increases, q also increases, and therefore the non-Darcian effect 

becomes more significant. 

 

It should also be mentioned that the increase in b augments the non-linearity 

in the flow, the gradient of the drawdown response as well.  

 

The effects of transmissivty of the fractures and Reynold’s number on non-

Darcian flow are presented in Table 4.4. The results obtained are consistent with the 

ones available in the literature (Beavers and Sparrow, 1969; Ahmed and Sunada, 

1969; Cornell and Katz, 1953).  

 

 

Table 4.4: The effects of transmissivty of the fractures and Reynold’s number  

                  on non-Darcian flow 

 

Tf (m2/day) 280 1400 2800 5600 

Re 0.01 0.1 0.3 0.8 

Non-Darcian 

effect 
none slight significant

very 

significant 

 

 

87



 

 

10-4 10-3 10-2 10-1 100 101

θ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zf

βο=3.7 .
βο=1.54
βο=1.27
βο=1.027
βο=1

Tf=2800m2/day
Tb=0.0175m2/day

Sf=1.4E-7
Sb=1.4E-6

a=0.0215

λ=0.2 κ=6.25Ε−6 η=10

(b=0.5)
(b=0.1)
(b=0.05)
(b=0.005)
(b=0)

 
 

Figure 4.23: Zf versus θ curves at λ=0.2 for different non-linear parameter, b, 
          when Tf=2800m2/day. 
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Figure 4.24: Zf versus θ curves at λ=0.2 for different non-linear parameter, b, 
          when Tf=5600m2/day. 
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4.6 Effect of the Storativity Contrast, η, on the Drawdown in the Fractures 

 

 Numerical calculations are carried out changing the storativity contrast while 

fixing the conductivity contrast and the other parametrs in order to evaluate the effect 

of the storage coefficient of the fractures and the blocks on the drawdown response 

of the aquifer.  

 

Figures 4.25, 4.26, 4.27 and 4.28 give dimensionless drawdown versus 

dimensionless time curves for different storativity contrasts, η, at a dimensionless 

location λ=0.2 for κ=6.25*10-4, κ=1.25*10-4, κ=6.25*10-5 and κ=1.25*10-5 

respectively. 

 

It apparent from the figures that the transition period becomes longer as η 

becomes larger. Therefore, the quasi-steady flow from the fractures to the blocks 

increases. On the other hand, the transition starts lately when the transmissivity of 

fractures gets higher. The reason for this is that the rapid flow in the fractures retards 

the quasi-steady fracture-block flow to occur. 

 

η=1 means storage coefficient of the fractures and the blocks are equal. For 

this case, the aquifer functions almost as a single porosity aquifer and transition 

period does not occur. 

 

If the storativity contrast is not very large, i.e. η=5 or η=10, the transition 

period takes place in relatively shorter time. However, the transition period is quite 

long for the case η=50. It is also worth mentioning that starting points of deviation 

from the single porosity aquifer is dictated by the conductivity contrast κ.  As κ 

decreases, deviation takes place lately. In Figure 4.25, where κ=6.25*10-4, deviation 

starts when Zf=0.25-0.35 and θ=3x10-3, on the other hand, when κ=1.25*10-5, as in 

Figure 4.28, deviation takes place lately, when Zf=0.85-0.90 and θ=100. 
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Figure 4.25: Zf versus θ curves at λ=0.2 for different storativity contrasts, η, 

          when κ=6.25*10-4. 
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Figure 4.26: Zf versus θ curves at λ=0.2 for different storativity contrasts, η, 
          when κ=1.25*10-4. 
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Figure 4.27: Zf versus θ curves at λ=0.2 for different storativity contrasts, η, 
          when κ=6.25*10-5. 
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Figure 4.28: Zf versus θ curves at λ=0.2 for different storativity contrasts, η, 
          when κ=1.25*10-5. 
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4.7 Effect of the Conductivity Contrast, κ, on the Drawdown in the   

Fractures 

 

 Effect of the fracture and block transmissivities on the drawdown response of 

the aquifer is investigated by keeping the storativity contrast and other parameters 

constant while changing the conductivity contrast in numerical calculations.  

 

Figures 4.29, 4.30 and 4.31 show dimensionless drawdown versus 

dimensionless time curves of the fractures for different conductivity contrasts κ at a 

dimensionless location λ=0.2 for η=1, η=10 and η=50 respectively. 

 

When η=1, as in Figure 4.29, the aquifer acts almost as a single porosity 

aquifer, therefore the transition period is not clearly apparent. Flow in the aquifer is 

mainly dictated by the storativity contrast and the effect of the conductivity contrast 

is not significant.  

 

It is evident from Figure 4.30 that the transition period is longer when η=10. 

Starting time of the transition controlled by κ. As κ decreases, transition takes place 

later. The reason for this is that, as mentioned in the previous section, if the 

transmissivity of fractures is much larger than that of the blocks, a rapid flow takes 

place in the fractures retarding the quasi-steady fracture-block flow to occur. On the 

other hand, the length of the transition period is the function of the storativity 

contrast, η.  

 

Figure 4.31 shows the case η=50 where the storage coefficient of the blocks 

is much larger than that of the fractures. In this case, the transition period is quite 

long and large amount of water can be transferred to and stored in the blocks. 

 

Finally, it can be concluded that the length of the transition period is 

controlled by η and starting time of the transition period is dictated by κ. 

 

92



 

10-4 10-3 10-2 10-1 100 101

θ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zf

κ=1∗Ε−1
κ=1∗Ε−2
κ=1∗Ε−3
κ=1∗Ε−4
κ=1∗Ε−5
κ=1∗Ε−6
κ=0

η=1

λ=0.2

 
 

Figure 4.29: Zf versus θ curves at λ=0.2 for different conductivity contrasts, κ, 
          when η=1. 
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Figure 4.30: Zf versus θ curves at y=0.2 for different conductivity contrasts, κ, 
          when λ=10. 

 

 

93



 

 

4.8     Effect of the Fluid Transfer Parameter, ε, on the Drawdown  

in the Fractures 

 

Effect of the fluid transfer parameter, ε, on the piezometric drawdown 

response of the aquifer is investigated by changing the said parameter while fixing 

the others in numerical calculations. 

 

Figure 4.32 shows dimensionless drawdown versus dimensionless time 

curves of the fractures for different ε values at a dimensionless location λ=0.2 for 

η=10 and κ=6.25*10-5. 

 

The effect of the fluid transfer parameter on the drawdown response is 

somehow similar to the effect of conductivity contrast κ. When ε is small, the rate of 

water transfer between the fractures and the blocks is also small. In this case, flow 

occurs mainly in the fractures and almost no water is stored in the blocks at early 

times. Transition period starts lately. As ε increases, more water is transferred to the 

blocks and water transfer starts relatively earlier. 

 

 

4.9 Effect of the Non-Linear Forcheimer Parameter, b, on the Flow Rate 

 

The effect of the non-linear parameter, b, on the rate of flow from the stream 

to the aquifer is investigated by changing the said parameter while keeping the others 

constant in numerical calculations. 

 

Numerical runs were carried out for five different values for b, i.e. 0, 0.005, 

0.05, 0.1 and 0.5. Figures 4.33, 4.34, 4.35 and 4.36 demonstrate dimensionless flow 

rate versus dimensionless time curves for these values of b for Tf=280m2/day, 

Tf=1400m2/day, Tf=2800m2/day and Tf=5600m2/day respectively. Changing b 

naturally changes the dimensionless parameter β0. 
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Figure 4.31: Zf versus θ curves at λ=0.2 for different conductivity contrasts, κ, 
          when η=50. 
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Figure 4.32: Zf versus θ curves at λ=0.2 for different fluid transfer parameters, ε. 
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As it was mentioned in Sections 2.5 and 4.5, the flow in the fractures is 

Darcian when b is equal to 0. On the other hand, 0.5 is a very extreme and unrealistic 

value for b and it was used in calculations in order to understand better the effect of 

non-linearity on the flow in the aquifer.  

 
Figure 4.33 shows the dimensionless flow rate versus dimensionless time 

curves when Tf is 280m2/day. All curves perfectly overlaps except for the curve of 

b=0.5. The non-linear effect is slightly visible at early times only for this extreme 

value. Therefore, the non-linear parameter b has almost no influence on the flow rate 

when Tf is 280m2/day.  

 

Should Tf is increased five times to 1400m2/day, the difference between the 

curves of Figure 4.34 become visible. Therefore, the non-linearity affects the flow 

rate significantly. 

 

Furthermore, when Tf is increased to 2800m2/day as in Figure 4.35, the 

influence of non-linearity on the flow rate is quite significant even for the very small 

value of b=0.005. For the case Tf=5600m2/day as in Figure 4.36, the non-Darcian 

effect is much more significant. 

 

Given that the total flow is the area under each curve, it can be concluded that 

the rate of the flow from the stream to the aquifer increases as the non-linear term, b, 

increases. 

 

As the increase in Tf makes the non-Darcian effect more significant it also 

increases the flow rate.  

 

Flow rate is maximum at early times up to θ = 10-3 - 10-2. It stays constant for 

a while, then decreases almost linearly. All of the curves merge at later stages. That 

means flow rate is quite small so that the effect of non-linearity is disappeared. 

 

96



 

θ

Q
d

10-5 10-4 10-3 10-2 10-1 100 10110-2

10-1

100

101

102
βο=1.027 .
βο=1.0054
βο=1.0027
βο=1.00027
βο=1

Tf=1400m2/day
Tb=0.0175m2/day

Sf=1.4E-7
Sb=1.4E-6

a=0.043

κ=1.25Ε−5

(b=0.5)
(b=0.1)
(b=0.05)
(b=0.005)
(b=0)

 
 

Figure 4.33: Qd versus θ curves for different non-linear parameters, b, 
                   when Tf=280m2/day. 
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Figure 4.34: Qd versus θ curves for different non-linear parameters, b, 
                    when Tf=1400m2/day. 
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Figure 4.35: Qd versus θ curves for different non-linear parameters, b, 
                   when Tf=2800m2/day. 
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Figure 4.36: Qd versus θ curves for different non-linear parameters, b, 
                   when Tf=5600m2/day. 
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4.10 Effect of the Storativity Contrast, η, on the Flow Rate 

 

 The effect of the fracture and block storage coefficients on the flow rate was 

investigated by keeping the conductivity contrast and the other parameters constant 

and changing the storativity contrast in numerical calculations.  

 

Figures 4.37, 4.38, 4.39 and 4.40 show dimensionless flow rate versus 

dimensionless time curves for different storativity contrasts for κ=6.25*10-4, 

κ=1.25*10-4, κ=6.25*10-5 and κ=1.25*10-5 respectively. 

 

It can be concluded from the said figures that as η gets larger, the amount of 

water transmitted to and stored in the blocks becomes more, so that the rate of the 

flow from the stream to the aquifer increases.   

 

η=1 means storage coefficients of the fractures and the blocks are equal. For 

this case, the aquifer functions as a single porosity aquifer and transition does not 

occur. 
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Figure 4.37: Qd versus θ curves for different storativity contrasts, η, 

          when κ=6.25*10-4. 

99



 

 

θ

Q
d

10-5 10-4 10-3 10-2 10-1 100 10110-2

10-1

100

101

102
η=1
η=5
η=10
η=50

Tf=140m2/day
Tb=0.0175m2/day

κ=1.25Ε−4

 
 

Figure 4.38: Qd versus θ curves for different storativity contrasts, η, 
          when κ=1.25*10-4. 
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Figure 4.39: Qd versus θ curves for different storativity contrasts, η, 
          when κ=6.25*10-5. 
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For the other cases, i.e. η=5, η=10 and η=50, the effect of the transition is 

significant and starting points of deviation from the single porosity aquifer is dictated 

by the conductivity contrast, κ.   

 

As κ decreases, deviation takes place later so that total flow from the stream 

to the aquifer decreases.  
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Figure 4.40: Qd versus θ curves for different storativity contrasts, η, 
          when κ=1.25*10-5. 

 
 

 

4.11 Effect of the Conductivity Contrast, κ, on the Flow Rate 

 

 The effect of fracture and block transmissivities on the flow rate was 

investigated by keeping the storativity contrast and the other parameters constant and 

changing the conductivity contrast in numerical calculations. Figures 4.41, 4.42 and 

4.43 demonstrate dimensionless flow rate versus dimensionless time curves of the 

fractures for different conductivity contrasts, κ for η=1, η=10 and η=50 respectively. 
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When η=1, as in Figure 4.41, the aquifer acts almost as a single porosity 

aquifer, therefore conductivity contrast does not affect the flow rate significantly. 

Flow in the aquifer is mainly dictated by the storativity contrast and the influence of 

transition on the flow rate is not considerable.   

 

For the case η=10 as in Figure 4.42, the effect of transition on the flow rate is 

significant. As the storage coefficient of the blocks becomes large, more water is 

transferred from the fractures to the blocks. In this regard, more water is transmitted 

to and stored in the aquifer so that the rate of the flow from the stream to the aquifer 

is more.  

 

Figure 4.43 shows the case η=50 where the storage coefficient of the blocks 

is much larger than that of the fractures. In this case, the effect of conductivity 

contrast on the flow rate is more significant. 
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Figure 4.41: Qd versus θ curves for different conductivity contrasts, κ, when η=1. 
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Figure 4.42: Qd versus θ curves for different conductivity contrasts, κ, when η=10. 
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Figure 4.43: Qd versus θ curves for different conductivity contrasts, κ, when η=50. 
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On the other hand, starting and finishing times of the transition are controlled 

by the conductivity contrast, κ. As κ decreases, transition takes place later. However, 

the duration of the transition for all cases is almost equal.  

 

For a very small value of κ, i.e. κ=1.25*10-6, the transition takes place quite 

lately and the flow rate is less. Given that the total flow is the area under each curve, 

earlier transition results in more flow.  

 

 

4.12   Linear Rise in the Stream Level 

 

Numerical calculations have been carried out in order to evaluate the 

drawdown response of the aquifer to a linear rise in the stream level. 

 

The boundary condition at the stream side is arranged according to the stage 

hydrograph which is shown in Figure 4.44. The dimensionless drawdown in the 

stream linearly increases to 1 by θ=1, and then stays constant. 

 

 

sd

1 

1 
  θ 

Figure 4.44: Stage hydrograph for linear rise in the stream level. 
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Figure 4.45 presents the dimensionless drawdown versus dimensionless 

space curves for the fractures and the blocks for the case η=10, δ=10 and 

κ=6.25*105. It is apparent from the figure that the drawdown in the fractures 

increases faster than the drawdown in the blocks and there exists a lagging between 

them. However, the difference between the drawdown in the fractures and the 

drawdown in the blocks is not as large as in the case of step rise in the stream level. 

For the linear rise case, the drawdown in the blocks gets closer to the drawdown in 

the fractures at early times and they approach to 1 as the time goes to the infinity. 

 

Figure 4.46 gives the dimensionless drawdown versus dimensionless time 

curves for the fractures and the blocks at dimensionless locations λ=0.1, 0.2, 0.4 and 

0.8 for the same combination of the dimensionless parameters. It is obvious in the 

figure that the drawdown behavior of the fractures and the blocks are quite similar 

and the linear rise in the stream level does not lead transition.  

 

The reason for this is that rapid flow does not take place in the fractures as 

the drawdown in the stream level increases linearly. Fracture to block flow develops 

at early stages so that the difference between the drawdown in the fractures and the 

drawdown in the blocks starts to decrease earlier. In this regard, the blocks store and 

transmit water homogenously in time.  

 

It could also be seen from the drawdown curves of the fractures at λ=0.1 and 

0.2 in the same figure that there exists a turning point at θ=1 which implies the 

increase in the drawdown in the fractures slows down after the water level in the 

stream becomes constant.  

 

In addition, it might be said that the far end of the aquifer is not affected 

much from the linear rise in the stream level. 
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Figure 4.45: Zf versus λ and Zb versus λ curves for η=10, δ=10 and κ=6.25*10-5

         at different times θ for the linear rise in the stream level. 
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Figure 4.46: Zf versus θ and Zb versus θ curves for η=10, δ=10 and κ=6.25*10-5  

         at λ=0.1, 0.2, 0.4 and 0.8 for the linear rise in the stream level. 
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4.13  Response of the Aquifer to an Arbitrary Stage Hydrograph 

 

Drawdown response of the aquifer to an arbitrary change in the stream stage 

is studied. Figure 4.47 shows a hypothetical dimensionless arbitrary stage 

hydrograph on which calculations are based. It is apparent from the figure that the 

dimensionless stream stage sd increases slowly to 0.2 by θ=2.2, gradually to 0.8 

between θ=2.2 and θ=8.8, then sharply to 1 by θ=11 and after that time decreases in 

the same manner. 

 

The boundary condition at the stream side was arranged according to the 

hydrograph in the computer program. Numerical calculations have been carried out 

for two cases which are Tf=280m2/day2 and Tf=1400 m2/day2.  All the other aquifer 

parameters are fixed in calculations. 

 

  sd

1 

0.8 

0.2 

θ  2.2  8.8 13.2 15.4  17.6

 
Figure 4.47: Arbitrary stage hydrograph. 

 

 

Figure 4.48 gives the dimensionless drawdown versus dimensionless time 

curves for the fractures and the blocks at dimensionless locations λ=0.1, 0.2, 0.4 and 
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0.8 for the case Tf=280 m2/day2. It could be seen in the figure that the drawdown in 

the aquifer follows the pattern of the stage hydrograph, but delayed in time. Firstly, 

water flow takes place from the stream to the aquifer and then the water stored in the 

aquifer flows back to the stream. The drawdown in the aquifer does not reach to 1 

except for in the vicinity of the stream. For example, the dimensionless drawdown in 

the fractures is around 0.94 and 0.77 at dimensionless locations λ=0.1 and 0.8 

respectively.  

 

The drawdown behaviours of the fractures and the blocks in this case are 

quite similar. In addition, the drawdown in the blocks is very close to the drawdown 

in the fractures. Transition period does not occur although the stream stage increases 

sharply at certain stage. It might be said that the exchange of water between the 

fractures and the blocks is spreaded over the whole flow period. 

 

Figure 4.49 presents the dimensionless drawdown versus dimensionless time 

curves for the fractures and the blocks at dimensionless locations λ=0.1, 0.2, 0.4 and 

0.8 for the case Tf=1400 m2/day2.  

 

In this case, the drawdown behaviours of the fractures and the blocks are 

different. The drawdown response of the blocks is retarded in time. Furthermore, the 

drawdown in the blocks is not as high as the drawdown in the fractures. These would 

be explained by the higher fracture transmissivity which results in rapid flow in the 

fractures that increases the drawdown in the fractures faster than the drawdown in the 

blocks.  The exchange of water between the fractures and the blocks is spreaded over 

the whole flow period.  

 

The drawdown in the fractures and in the blocks does not reach to 1 except 

for in the vicinity of the stream.  For example, at dimensionless locations λ=0.1, the 

drawdown in the fractures is around 0.94 and the drawdown in the blocks is around 

0.86.  
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Figure 4.48: Zf versus θ and Zb versus θ curves for Tf=280 at λ=0.1, 0.2, 0.4  
          and 0.8 for the arbitrary stage hydrograph. 
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Figure 4.49: Zf versus θ and Zb versus θ curves for Tf=1400 at λ=0.1, 0.2, 0.4  
          and 0.8 for the arbitrary stage hydrograph. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

 This study presents a numerical solution for non-Darcian groundwater flow in 

a finite fractured confined aquifer system. A stream bounds the aquifer at one side 

and an impervious stratum on the other. The response of the aquifer to three different 

conditions in the stream level, i.e. sudden rise, linear (gradual) rise and arbitrary 

change in the stream stage, has been investigated. 

 

 The governing equations based on the double porosity conceptual model with 

quasi-steady transfer of water between the fractures and the blocks have been derived 

from the continuity equation. The fluid velocity in fractures is often too high for the 

linear Darcian flow to be valid, so that the governing equation for fracture flow is 

modified using Forcheimer’s equation which incorporates a nonlinear term. On the 

other hand, the flow in the blocks is Darcian.  

  

 The governing equations are solved numerically by Crank-Nicolson implicit 

scheme. The accuracy of the numerical solution has been verified by comparing it to 

available analytical solution for the special case of Darcian flow in the fractures. The 

numerical solution has given good approximation to the analytical solution. 

 

 Solution of the governing equations yields drawdown in the fractures and in 

the blocks with respect to time and space as well as the rate of the flow from the 

stream to the aquifer. 

  

 The behaviour of the drawdown is divided into three periods. Initially, the 

rate of increase in the drawdown is representative of fracture transmissivity and 

storage. The drawdown in the fractures increases faster than the drawdown in the 
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blocks, so that there exists a lagging between them. As fracture to block flow 

develops, the drawdown response enters into a transitional period and the increase in 

the drawdown of the fractures is slowed down. The final period of the drawdown 

response is that of homogenous single porosity medium but delayed in time and the 

drawdown in the fractures and the blocks increase gradually to reach the steady state 

condition. 

 

 The flow through a finite fractured confined aquifer is controlled by 

dimensionless parameters representative of aquifer characteristics, namely storativity 

contrast, η, conductivity contrast, κ, and diffusivity contrast, δ. When the flow in the 

fractures is non-Darcian, the non-linear term of the Forcheimer’s equation, b, has 

significant effect on the flow.  

 

 The storativity contrast dictates the duration of the transition period, on the 

other hand, the conductivity contrast determines the starting time of the transition. 

  

 When the transmissivity of the blocks is equal to 0, which are the case 

conductivity and diffusivity contrasts are equal to 0, the fractured aquifer functions 

as a single porosity aquifer. Hence, the flow occurs only in the fractures and the 

drawdown in the blocks is equal to 0. 

 

The numerical and the analytical solutions give closer results when the 

aquifer exhibits normal fractured aquifer characteristics which are the fracture 

transmissivity is much larger than the block transmissivity and the storage coefficient 

of the blocks are equal or fairly higher than the storage coefficient of the fractures. 

 

The non-Darcian effect primarily depends on the specific discharge which is 

a function of fracture transmissivity and hydraulic gradient. The specific discharge in 

the fractures rises as the transmissivity of fractures and the hydraulic gradient 

increase, so that the non-linear term of the Forcheimer’s equation takes effect. The 

higher the flow rate, the higher the non-linearity.  
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 The non-linear effect on the flow starts to take place when Reynold’s number 

is greater than 0.1. If Reynold’s number is less than this value, the non-Darcian effect 

is negligible, even non-existent. The non-Darcian effect becomes more and more 

significant parallel to increase in Reynold’s number.  

 

 The existing analytical solution is based on the condition that the flow in the 

blocks and the fractures are Darcian. Consequently, the numerical and the analytical 

solutions have been compared for the case Reynold’s number is less than 0.1, which 

is the limit value for Darcian flow, and good approximations have been obtained. 

  

 The transition period as well as the effect of the storativity contrast and the 

conductivity contrast on it could be seen more clearly if the dimensionless flow rate 

versus dimensionless time curves are examined.  

 

As the storativity contrast increases, more water can be stored in the blocks 

so that more water is transferred from the fractures to the blocks primarily during the 

transition period. This also increases the rate of the flow from the stream to the 

aquifer since more water can be taken by the fractures.  

 

The increase in the conductivity contrast also increases the flow rate. 

However, the effect of the conductivity contrast on the flow rate depends on the 

storativity contrast which dictates the duration of the transition period.  

 

 The rate of the flow from the stream to the aquifer increases as the non-linear 

term, b, increases provided that Reynold’s number is greater than 0.1. The increase in 

the transmissivity of fractures and the hydraulic gradient also makes the non-Darcian 

effect on the flow rate more significant.  

 

 The proposed model is a unique application of non-linear flow models to the 

fractured aquifers. It can be used in predicting water levels in fractured aquifers and 
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evaluating time dependent flow rates in the analysis of recession hydrographs and 

flow towards an excavation site or tunnel located in a fractured aquifer. 

 

In the mathematical formulation of the proposed model the piezometric head, 

which is the sum of pressure and elevation heads, is selected as main dependent 

variable. However, in most previous studies, pressure head is taken as dependent 

variable. 

 

In this study, only one-dimensional flow in the aquifer considered. The study 

can be extended to two-dimensional flow. 

 

Another valuable method to assess the validity of any flow model and its 

numerical solution is to compare its results with field observations. Therefore, such a 

work is recommended.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

113



 

 

REFERENCES 

 

 

Andersen, J. D., “Computational Fluid Dynamics: The Basics with Applications”, 

McGraw Hill, 1995  

 

Bai, M., Elsworth, D. and Roegiers, J., “Multi-porosity/Multi-permeability Approach 

to the Simulation of Naturally Fracture Reservoirs”, Water Resources Research, Vol. 

29(6), 1993, pp. 1621-1633 

 

Barenblatt, G. I., Zheltov, I. P. and Kochina, I. N, “Basic Concepts in the Theory of 

Seepage of Homogeneous Liquids in Fractured Rocks (Strata) ”, Journal of Applied 

Mathematics and Mechanics, Vol. 24(5), 1960, pp.1286-1303. 

 

Basak, P., “Steady non-Darcian Seepage through Embankments”, Journal of 

Irrigation and Drainage, ASCE, December 1976, pp. 435-443 

 

Basak, P., “Non-Darcy Flow and its Implications to Seepage Problems”, Journal of 

Irrigation and Drainage, ASCE, December 1977, pp. 459-473  

 

Bear, J., “Hydraulics of Groundwater”, McGraw-Hill, 1979 

 

Bordier, C. and Zimmer, D., “Drainage Equations and Non-Darcian Modeling in 

Coarse Porous Media or Geosynthetic Materials”, Journal of Hydrology, Vol. 228, 

2000, pp. 174-187 

 

Choi, E. S., Cheema, T. and Islam, M. R., “A New Dual-porosity/Dual-permeability 

Model with non-Darcian Flow through Fractures”, Journal of Petroleum Science and 

Engineering, Vol. 17, 1997, pp. 331-344 

 

114



 

Clossman, P. J., “An Aquifer Model for Fissured Reservoirs”, Society of Petroleum 

Engineers Journal, Vol. 15, 1975, pp. 385-398 

 

Cornell, D. and Katz, D. L., “Flow of Gases through Consolidated Porous Media”, 

Ind. Eng. Chem., Vol. 43, 1953, pp.2145,  

 

Duguid, J. O. and Lee, P. C. Y., “Flow in Fractured Porous Media”, Water Resources 

Research, Vol. 13, No: 3, June 1977, pp. 558-566 

 

Fletcher, C. A. J., “Computational Techniques for Fluid Dynamics”, Springer-

Verlag, Vol.1, Second Edition, 1991  

 

Gerke, H. H. and van Genuchten, M. T., “A Dual-porosity Model for Simulating the 

Preferential Movement of Water and Solutes in Structured Porous Media”, Water 

Resources Research, Vol. 29, No: 2, February 1993, pp. 305-319 

 

Gilman, J. R. and Kazemi, H., “Improvements in Simulation of Naturally Fractured 

Reservoirs”, Society of Petroleum Engineers Journal, 1983, pp. 695-707 

 

Henry, J. L. and Palmer, J. R., “Natural and Artificial recharge of Groundwater in the 

Callide Valley”, Proceedings of the Groundwater Recharge Conference, Australian 

Government Publishing Service, Canberra, Australia, 1980, pp. 72-87 

 

Hirsch, C., “Numerical Computation of Internal and External Flows”, John Wiley 

and Sons Interscience Publications, Vol.1, 1989   

 

Hoffmann, K. A. and Chiang, S. T., “Computational Fluid Dynamics for Engineers”, 

A Publication of Engineering Education System, Wichita, Kansas, Vol. 1, 1993 

 

Huyakorn, P. S. and Pinder, G. F., “Computational Methods in Subsurface Flow”, 

Academic Press NY, 1983 

 

115



 

“Introduction to Computational Fluid Dynamics”, Annual Lecture Series Note, von 

Karman Institute for Fluid Dynamics, Brussels, January 1998 

 

Islam, R. and Nandakumar, K., “Mixed Convection Heat Transfer in Porous Media 

in the non-Darcy Regime”, The Canadian Journal of Chemical Engineering, Vol. 66, 

February 1988, pp. 68-74 

 

Kazemi, H., Seth, M. S. and Thomas, G. W., “The Interpretation of Interference 

Tests in Naturally Fractured Reservoirs with Uniform Fracture Distribution”, Journal 

of the Society of Petroleum Engineering, Vol. 9, 1969, pp. 463-472 

 

Katz, D. L. and Lee, R. L., “Natural Gas Engineering, Production and Storage” 

McGraw Hill, 1990 

 

Kohl. T. et al., “Observation and Simulation of Non-Darcian Flow Transients in 

Fractured Rock”, Water Resources Research, Vol. 33(3), 1997, pp. 407-418 

 

Lane, W. B. and Zinn, P., “Recharge from Weir Storage”, Proceedings of the 

Groundwater Recharge Conference, Australian Government Publishing Service, 

Canberra, Australia, 1980, pp. 47-59 

 

Mathews, J. H, “Numerical Methods for Computer Science, Engineering and 

Mathematics”, Prentice-Hall International Editions, 1988 

 

Neta, B., “Numerical Solution of Partial Differential Equations”, Lecture Notes, 

Naval Postgraduate School, California, 2003 

 

Önder, H., “Unsteady Groundwater Flow in a Stream-Fractured Aquifer”, Flow and 

Transport in Porous Media (Edited by Verruijit, A. and Barends, F. B. J.), 

EUROMEC 143, 1981, pp. 63-68, Balkema, Rotterdam, the Netherlands.   

 

116



 

Önder, H., “Non-Steady Flow Type Curves for Strip Aquifers with Constant 

Drawdown, Journal of Irrigation and Drainage, ASCE, Vol. 10, No: 4, July/August 

1994, pp. 732-741 

 

Önder, H., “Determination of Aquifer Parameters of Finite Confined Aquifers from 

Constant Drawdown Non-Steady Type Curves”, Hydrological Sciences, 39(3), June 

1994, pp. 269-280 

 

Önder, H., “Analysis of One-Dimensional Groundwater Flow in a non-Uniform 

Aquifer”, Journal of Hydraulic Engineering, August 1997, pp. 732-736 

 

Önder, H., “One-Dimensional Transient Flow in a Finite Fractured Aquifer System”, 

Hydrological Sciences, 43(2), April 1998, pp. 243-265 

 

Önder, H., “Predicting Groundwater Flow Behaviour in non-Uniform Aquifers in 

Contact with a Stream: An Extension to Ditch Drainage”, Kluwer Academic 

Publishers (Edited by K. W. F. Howard and R. G. Israfiov), 2002, pp. 407-423 

 

Pinder, G. F., Breedhoeft, J. D. and Cooper, H. H., “Determination of Awuifer 

Diffusivity from Aquifer Response to Fluctuations in River Stage”, Water Resources 

Research, Vol. 5(4), 1969, pp. 850-855 

 

Rorabaugh, M. I., “Use of Water Levels in Estimating Aquifer Constants in a Finite 

Aquifer”, Commission of  Subterranean Waters, IAHS Publications, No: 52, 1960, 

pp. 314-323 

 

Rorabaugh, M. I., “Estimating Changes in Bank Storage and Groundwater 

Contribution to Stream Flow”, Commission of Subterranean Waters, IAHS 

Publications, No: 63, 1964, pp. 432-441 

 

Smith, G. D., “Numerical Solution of Partial Differential Equations: Finite 

Difference Methods”, Oxford University Press, Second Edition, 1978 

117



 

 

Streltsova, T. D., “Hydrodynamics of Groundwater Flow in a Fractured Formation”, 

Water Resources Research, Vol. 12(3), 1976, pp. 405-414  

 

Streltsova, T. D., “Unsteady Unconfined Flow into a Surface Reservoir”, Journal of 

Hydrology, Vol. 27, 1975, pp. 95-110  

 

Streltsova, T. D., “Well Testing in Heterogeneous Formations”, John Wiley, 1988 

 

Venetis, C., “Finite Aquifers: Characteristic Responses and Applications”, Journal of 

Hydrology, Vol. 22, 1970, pp. 53-62 

 

Venkatamaran, P. and Rao, P. R. M., “Darcian, Transitional and Turbulent Flow 

through Porous Media”, Journal of Hydraulic Engineering, August 1998, pp. 840-

846 

 

Warren, J. E. and Root, P. J., “The Behaviour of Naturally Fractured Reservoirs”, 

Society of Petroleum Engineering Journal, Vol. 3, 1963, pp. 245-255 

 

Wu, Y. S., “An Approximate Analytical Solution for non-Darcy Flow towards a 

Well in Fractured Media”, Water Resources Research, Vol. 38, No: 3, 2002a 

 

Wu, Y. S., “Numerical Simulation of Single-Phase and Multiphase Non-Darcy Flow 

in Porous and Fractured Reservoirs”, Transport in Porous Media, Vol. 49, pp. 209-

240, 2002b 

 
 

118



 
APPENDIX A  

 
 

Computer Program 
 
    
 
      DOUBLE PRECISION ZB(10000),ZF(10000),FQ(10000),TETA(10000) 
      DOUBLE PRECISION A(10000),B(10000),C(10000),D(10000) 
      DOUBLE PRECISION HF(10000),HB(10000),Y(10000) 
      DOUBLE PRECISION TH(10000),FLOW(10000) 
      DOUBLE PRECISION SB,SF,TB,TF,EPS,DT,DL,Q 
 
C   CONSTANTS 
C   THICKNESS OF THE AQUIFER, M 
      BA=60. 
C   LENGTH OF THE AQUIFER, M 
      XL=800. 
C   INITIAL PIEZOMETRIC HEAD, M 
      H0=65. 
C   CONSTANT DRAWDOWN IN THE STREAM, M 
      S0=2. 
C   TRANSMISSIVITY OF THE BLOCKS, M**2/DAY 
      TB=0.0175 
C   TRANSMISSIVITY OF THE FRACTURES, M**2/DAY 
      TF=280.0 
C   STORAGE COEFFICIENT OF THE BLOCKS 
      SB=0.0000014 
C   STORAGE COEFFICIENT OF THE FRACTURES 
      SF=0.00000014 
C   SHAPE FACTOR, M**-2 
      EPS=0.0625 
C   CONSTANTS OF THE FORCHEIMER EQUATION, DAY/M, DAY**2/M**2 
      AF=0.215 
      BF=0.05 
 
C   COEFFICIENT OF THE COMBINED METHOD 
C   CRANK-NICOLSON 
      GAMA=0.5 
C   TIME STEP 
      DT=0.00001 
C   MESH SIZE 
      DX=1.75 
      DL=DX/XL 
      N=1/DL 
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      ETA=SB/SF 
      DELTA=4*XL**2*EPS*TB*SF/(TF*SB) 
 
C   INITIAL CONDITIONS 
 
      DO I=1,N 
      ZB(I)=0 
      ZF(I)=0 
      HF(I)=H0 
      HB(I)=H0 
      END DO 
 
      DO I=2,N-1 
      FQ(I)=AF 
      END DO 
 
C    COMPUTATIONS 
 
C    TIME  
       T=0. 
100 T=T+DT 
 
C    BOUNDARY CONDITIONS 
       ZB(1)=1 
       ZF(1)=1 
 
       HF(1)=H0+S0 
       HB(1)=H0+S0 
 
C    FRACTURES 
       DO I=2,N-1 
       A(I)=(BA*DT*GAMA/(FQ(I)*TF*DL**2)) 
       B(I)=1+(BA*DT*2*GAMA/(FQ(I)*TF*DL**2)) 
       C(I)=(BA*DT*GAMA/(FQ(I)*TF*DL**2)) 
       D(I)=ZF(I)+(BA*DT*(1-GAMA)/(FQ(I)*TF*DL**2))*(ZF(I+1)-2*ZF(I) 
       +ZF(I-1)+(XL**2*EPS*TB*DT/TF)*(ZB(I)-ZF(I))) 
       END DO 
 
       B1=ZF(1) 
C    BN=ZF(N) 
       BC1=1. 
       BC2=0. 
 
       CALL THOMAS(N,DL,A,B,C,D,B1,BN,BC1,BCN,TH) 
       DO I=2,N 
       ZF(I)=TH(I) 
       HF(I)=S0*ZF(I)+H0  
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       END DO 
C   OUTPUT 
 
C    BLOCKS 
       DO I=2,N-1 
       A(I)=SF*TB*DT*GAMA/(SB*TF*DL**2) 
       B(I)=1+SF*TB*DT*2*GAMA/(SB*TF*DL**2) 
       C(I)=SF*TB*DT*GAMA/(SB*TF*DL**2) 
       D(I)=ZB(I)+(SF*TB*DT*(1-GAMA)/(SB*TF*DL**2))*(ZB(I+1)-     
       2*ZB(I) 
       +ZB(I-1))-(XL**2*EPS*TB*SF*DT/(SB*TF))*(ZB(I)-ZF(I)) 
       END DO 
 
       B1=ZB(1) 
C    BN=ZB(N) 
       BC1=1. 
       BC2=0. 
 
       CALL THOMAS(N,DL,A,B,C,D,B1,BN,BC1,BCN,TH) 
       DO I=2,N 
       ZB(I)=TH(I) 
       HB(I)=S0*ZB(I)+H0  
       END DO 
C    OUTPUT 
 
C    FORCHEIMER EQUATION 
       DO I=2,N-1 
       FQ(I)=AF-(BF/(2*AF*2*DX))*(HF(I+1)-HF(I-1)) 
       END DO 
 
C    FLOW RATE 
       Q=TF*((HF(1)-HF(2))/DX) 
C    OUTPUT 
 
C    LOOP 
       IF(ZF(N-1).LT.0.999) THEN 
       GO TO 100 
       ELSE    
       STOP 
       ENDIF 
 
       END 
 
 
C    THOMAS ALGORITHM 
       SUBROUTINE THOMAS(N,DL,A,B,C,D,B1,BN,BC1,BCN,TH) 
       DOUBLE PRECISION E(10000),F(10000) 
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       DOUBLE PRECISION A(10000),B(10000),C(100000),D(10000) 
       DOUBLE PRECISION TH(10000),DL 
       IF(BC1.EQ.1.) THEN 
       E(1)=0 
       F(1)=B1 
       ELSE 
       E(1)=1 
       F(1)=-B1*DL 
       ENDIF 
 
       DO I=2,N-1 
       E(I)=A(I)/(B(I)-C(I)*E(I-1)) 
       F(I)=(D(I)+C(I)*F(I-1))/(B(I)-C(I)*E(I-1)) 
       END DO 
 
       IF(BC2.EQ.1.) THEN 
       TH(N)=BN 
       ELSE 
       TH(N)=(F(N-1)+BN*DL)/(1-E(N-1)) 
       ENDIF 
 
       DO I=N,2,-1 
       TH(I-1)=E(I-1)*TH(I)+F(I-1) 
       END DO 
 
       END 
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APPENDIX B 

 

Application of Discrete Perturbation Stability Analysis 

 

 

Stability of the finite difference equations of the fractures and the blocks are 

investigated by discrete perturbation stability analysis. Basic theory of this method is 

presented in Section 3.9. 

 

The finite difference equation for the fractures is: 
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In order to reduce mathematical labor in the application of the method, the 

following variables have been used.  
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Then, equation 3.54 takes the form: 
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In order to determine the disturbance  at time level n+1 at the node i, a 

disturbance  is introduced at node i at time level n. 
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Subtracting equation B.3 from equation B.4 produces the disturbance equation: 
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If the mathematical operations are furthered: 
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For the node i+1 at time level n+1: 
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Subtracting equation B.11 from equation B.12 produces: 
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If the mathematical operations are furthered: 
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For the node i-1 at time level n+1: 
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Subtracting equation B.19 from equation B.20 produces: 
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If the mathematical operations are furthered: 

 

( ) n
i

n
i

n
i eee

21
1

2
1 1

1
α

α
αα Γ

−=⎟
⎠
⎞

⎜
⎝
⎛

Γ+
Λ

−
Γ

−Γ+ +
−      B.22 

 

( ) n
i

n
i

n
i eee ⎟

⎠
⎞

⎜
⎝
⎛

Γ+
Λ

−
Γ

+
Γ

−=Γ+ +
− α

ααα
1

1
22

1 1
1      B.23 

 

( ) n
i

n
i ee

α
α

Γ+
Λ

−=Λ+Γ +
− 1

1
1        B.24 

 

( )( )
n
i

n
i ee

αα Γ+Λ+Γ
Λ

−=+
− 1

1
1        B.25 

 

Notice that equation B.25 is identical with equation B.18 and, thus, the error 

propagation is symmetrical in the solution domain. 
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For the node i+2 at time level n+2: 
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Subtracting equation B.26 from equation B.27 produces: 
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If the mathematical operations are furthered: 
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 Applications can be extended further in order to see how the disturbance 

proceeds. However, it is reasonable to stop here to show the application of the 

discrete perturbation stability analysis to the finite difference equation for the 

fractures as the mathematical labour increases substantially during the calculation of 

disturbance at each neighbouring point. Therefore, a computer program is needed to 

calculate the disturbance in every node at later time steps.   

 

Discrete perturbation stability analysis has been also applied to the finite 

difference equation for the blocks. The finite difference equation for the blocks is: 
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Equation 3.44 can be written as in the form of equation B.3, however for this case: 
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Then, equation 3.44 becomes: 
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 Application of discrete perturbation stability analysis to the finite difference 

equation for the blocks yields the same disturbance equations with the finite 

difference equation for the fractures, however Γ and Λ are different. For this reason, 

there is no need to present the disturbance equations for the blocks here. 
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APPENDIX C  
 
 

Comparison of Numerical and Analtical Solutions 
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Figure C.1: Comparison of numerical and analytical solutions at λ=0.2  

   when α=2.09 and η=10, δ=1 and κ=6.25*10-5. 
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Figure C.2: Comparison of numerical and analytical solutions at λ=0.8  

   when α=2.09 and η=10, δ=1 and κ=6.25*10-5. 
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Figure C.3: Comparison of numerical and analytical solutions at λ=0.4  
                                when α=2.09 and η=10, δ=0 and κ=0. 
 

 

10-4 10-3 10-2 10-1 100 101

θ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zf

Analytical
Numerical

η=1
δ=10
κ=6.25Ε−5
ε=0.0625
Tf=280m2/day
Tb=0.0175m2/day
Sf=1.4E-6
Sb=1.4E-6
a=0.215
b=0

λ=0.2

 
 

Figure C.4: Comparison of numerical and analytical solutions at λ=0.2  
   when α=2.09 and η=1, δ=10 and κ=6.25*10-5. 
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Figure C.5: Comparison of numerical and analytical solutions at λ=0.2  
     when α=2.09 and η=10, δ=10 and κ=6.25*10-5. 
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Figure C.6: Comparison of numerical and analytical solutions at λ=0.8  
     when α=2.09 and η=10, δ=10 and κ=6.25*10-5. 
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Figure C.7: Comparison of numerical and analytical solutions at λ=0.2  
     when α=2.09 and η=10, δ=5 and κ=3.125*10-4. 
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Figure C.8: Comparison of numerical and analytical solutions at λ=0.4  
     when α=2.09 and η=10, δ=5 and κ=3.125*10-4. 
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Figure C.9: Comparison of numerical and analytical solutions at λ=0.2  
       when α=2.09 and η=10, δ=100 and κ=6.25*10-4. 
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APPENDIX D 

 

Published Data on Porous Media 

 

 

Table D.1: Published data on porous media (Venkataraman et al., 1998) 

 

Medium Particle Size (cm) Porosity (%) k (m2) b (day2/m2) 

Glass Spheres 2.50 39.20 6.67 3.7*10-6

Glass Spheres 2.00 38.30 5.02 6.0*10-6

Glass Spheres 2.89 41.31 16.9 3.6*10-6

Crushed Rock 1.31 47.00 2.29 9.0*10-6

Crushed Rock 2.89 48.73 9.28 4.2*10-6

Glass Spheres 1.84 38.27 8.14 7.5*10-6

Gravel 2.83 46.50 8.83 7.5*10-6

Crushed Rock 2.01 45.88 6.59 7.6*10-6

Crushed Rock 2.99 46.60 26.9 3.9*10-6

Glass Spheres 2.89 39.82 33.1 5.2*10-6

Glass Spheres 1.56 39.50 8.49 8.9*10-6

Gravel 8.40 - 204 2.0*10-6

Glass Spheres 1.56 35.53 7.2 1.31*10-5

Gravel 1.30 47.90 3.76 1.74*10-5

Gravel 1.20 37.30 1.69 2.77*10-5

Gravel 1.20 35.70 1.81 2.51*10-5

Crushed Rock 1.44 41.50 4.53 1.54*10-5

Marble 1.58 - 17.5 1.03*10-5

Marble 2.46 - 22.4 8.8*10-6

Marble 1.56 - 24.7 8.4*10-6

Marble 1.56 - 12 1.38*10-5

Gravel 0.64 47.00 0.85 5.23*10-5

Crushed Rock 1.40 44.40 9 1.63*10-5
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Table D.1 (continued) 

 

Crushed Rock 1.90 44.08 14.2 1.45*10-5

Sand 0.0625 40.70 0.03 3.35*10-4

Marble 1.60 - 11.9 1.57*10-5

Sand 0.49 - 1.4 4.93*10-5

Glass Spheres 1.56 35.58 13.5 1.94*10-5

Glass Beads 0.027 37.00 0.01 9.41*10-4

Glass Beads 0.038 37.00 0.01 6.70*10-4

Glass Beads 0.32 - 0.67 8.35*10-5

Glass Spheres 0.30 - 0.64 8.58*10-5

Gravel 0.17 43.60 0.23 1.47*10-4

Gravel 0.29 42.30 0.35 1.18*10-4

Gravel 0.40 38.40 0.98 7.10*10-5

Crushed Rock 1.68 44.50 15.9 1.72*10-4

Crushed Rock 0.29 42.00 0.29 1.26*10-4

Gravel 1.10 - 10.3 2.14*10-5

Sand 0.16 39.90 0.12 2.35*10-4

Crushed Rock 1.07 44.11 8.5 2.81*10-5

Crushed Rock 0.69 47.20 4.24 4.07*10-5

Crushed Rock 0.93 43.00 5.36 34.6*10-5

Sand 0.14 - 0.10 32.1*10-4

Sand 0.26 - 0.22 2.21*10-4

Marble 0.47 - 1.7 7.68*10-5

Gravel 2.50 - 40 1.62*10-5
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APPENDIX E 
 

Raw Data 
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Figure E.1: Zf versus θ and Zb versus θ curves for η=10, δ=1 and κ=6.25*10-5  
        at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure E.2: Zf versus λ and Zb versus λ curves for η=10, δ=1 and κ=6.25E-5  

        at different times θ. 
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Figure E.3: Zf versus θ and Zb versus θ curves for η=10, δ=5 and κ=3.125*10-5  
         at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure E.4: Zf versus λ and Zb versus λ curves for η=10, δ=5 and κ=3.125*10-5

        at different times θ. 
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Figure E.5: Zf versus θ and Zb versus θ curves for η=10, δ=50 and κ=3.125*10-4  
         at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure E.6: Zf versus λ and Zb versus λ curves for η=10, δ=50 and κ=3.125*10-4

        at different times θ. 
 

 

139



10-4 10-3 10-2 10-1 100 101

θ
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Zf
an

d
Zb

Zf .
Zf
Zf
Zf
Zb
Zb
Zb
Zb

η=10
δ=100
κ=6.25Ε−4

ε=0.625

Tf=280m2/day
Tb=0.175m2/day

Sf=1.4E-7
Sb=1.4E-6

a=0.215
b=0.05

Zf
Zf

Zb
λ=
0.
1

λ=
0.
1

Zf
Zf

Zb

Zb
Zb

λ=0.1
λ=0.2
λ=0.4
λ=0.8
λ=0.1
λ=0.2
λ=0.4
λ=0.8

λ=
0.
2

λ=
0.
2 λ=

0.
4

λ=
0.
4 λ=
0.
8

λ=
0.
8

 
 

Figure E.7: Zf versus θ and Zb versus θ curves for η=10, δ=100 and κ=6.25*10-4  
        at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure E.8: Zf versus λ and Zb versus λ curves for η=10, δ=100 and κ=6.25*10-4

        at different times θ. 
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Figure E.9: Zf versus θ and Zb versus θ curves for η=1, δ=10 and κ=6.2510-5  
        at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure E.10: Zf versus λ and Zb versus λ curves for η=1, δ=10 and κ=6.25*10-5  
          at different times θ. 
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Figure E.11: Zf versus θ and Zb versus θ curves for η=100, δ=1 and κ=6.25*10-4  
          at λ=0.1, 0.2, 0.4 and 0.8. 
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Figure E.12: Zf versus λ and Zb versus λ curves for η=100, δ=1 and κ=6.25*10-4

          at different times θ. 
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APPENDIX F:  

Some Examples to the Results of the Discrete Perturbation  

Stability Analysis 

 

Fractures, α=1 

n=2      n=20 

i e     i e    

1 0.999987330983642   1 1.00014531858685   

2 1.214456593200893E-005  2 1.777678436649515E-005 

3 2.665947541869868E-006  3 2.809499480667030E-006 

4 5.691843983674877E-007  4 3.983568626902148E-007 

5 1.176595204951565E-007  5 4.522843568367277E-008 

6 2.335725688740841E-008  6 2.102011617557553E-009 

7 4.386226494641318E-009  7 -9.080741835615392E-010 

8 7.556432872267478E-010  8 -4.185284881320092E-010 

9 1.106008834601498E-010  9 -1.215503505513980E-010 

10 1.004114355561356E-011  10 2.914915436903099E-011 

11 -1.360395117703012E-012  11 -6.080627655557356E-012 

12 -1.169343858051408E-012  12 -1.089217874111837E-012 

13 -4.645839187422533E-013  13 -1.509278946542314E-013 

14 -1.505227927949204E-013  14 -7.523447271485539E-015 

15 -4.411431248209550E-014  15 4.995266250001851E-015 

16 -1.214530798077058E-014  16 2.690547025812294E-015 

17 -3.196997436422308E-015  17 9.476056158153797E-016 

18 -8.119958777633418E-016  18 2.824815454374401E-016 

19 -1.999427168407695E-016  19 7.622157493475481E-017 

20 -4.782466202477497E-017  20 1.909209349061834E-017 

21 -1.110929348986663E-017  21 4.478191742461287E-018 

22 -2.499810141503706E-018  22 9.818212612082294E-019 

23 -5.418446738369576E-019  23 1.981872488140921E-019 

24 -1.119205208147700E-019  24 3.586244780027734E-020 
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n=40      n=80 

i e     i e    

1 1.00020691569197       1 1.00028788862618 

2 2.063251242749762E-005  2 2.226910774632987E-005 

3 2.199179723618916E-006  3 1.596473530552725E-006 

 4 1.687948501916633E-007  4 6.154626522551607E-008 

5 -1.495265194121089E-010  5 -4.922500084129996E-009 

6 -3.393417556139809E-009  6 -1.238488458332900E-009 

7 -8.151943958838417E-010  7 -9.188292398146603E-011 

8 -1.149463346067754E-010  8 1.060828813648876E-011 

9 -4.787914048719059E-012  9 4.395414005447673E-012 

10  3.150905691085266E-012  10 6.598039574199019E-013 

11 1.322139711959445E-012  11 1.765968841147041E-014 

12  3.406691617290022E-013  12 -1.869970369584940E-014 

13 6.600585746674639E-014  13 -5.953930242505560E-015 

14 8.871439779862425E-015  14 -9.956933343447358E-016 

15 1.682522632475994E-016  15 -8.058111050625546E-017 

16 -4.008468020762001E-016  16 3.952770192238805E-017 

17 -1.776255223206486E-016  17 -1.986436392329295E-018 

18 -5.379773285173396E-017  18 1.307547382772330E-017 

19 -1.338450022525268E-017  19 -6.991234290453813E-018 

20 -2.807213926440180E-018  20  4.904082453009036E-018 

21 -4.990332915931270E-019  21 -2.908694466218092E-018 

22 -3.623664312032857E-020  22 1.536904344359163E-018 

23 -1.309673206609401E-020  23 -7.329636665031148E-019 

24 1.921554484513330E-020  24 3.038094323020712E-019 

25 -8.051662946666679E-021  25 -1.093975631774749E-019 
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Blocks, α=0.028 

n=2      n=20 

i e     i e    

1   0.999997500000897       1 1.00005065702351      

2 -0.880929406001033       2 -0.880971251064848      

3 -1.488377666900599E-007  3 -1.488519067483620E-007 

4  -2.514694212995627E-014  4 -2.515052572888492E-014 

5 -4.248711281755626E-021  5 -4.249518581966272E-021 

6 -7.178426491153233E-028  6 -7.180131481823250E-028 

7 -1.212833809399204E-034  7 -1.213179494116068E-034 

8 -2.049148028519368E-041  8 -2.049829431288974E-041  

9 -3.462145934787928E-048  9 -3.463461682932932E-048 

10 -5.849481983216952E-055  10 -5.851982917117074E-055 

11 -9.883014788074100E-062  11 -9.887709799227779E-062 

12 -1.669788565577820E-068  12 -1.670661147553091E-068 

13 -2.821197694755010E-075  13 -2.822806012014251E-075 

14 -4.766565418500617E-082  14 -4.769509235118791E-082 

15 -8.053368940108594E-089  15 -8.058725332195135E-089 

16 -1.360660047458392E-095  16 -1.361629691887871E-095 

17 -2.298908417729225E-102  17 -2.300655921630779E-102 

18 -3.884129561221574E-109  18 -3.887266629825770E-109 

19 -6.562446042655817E-116  19 -6.568058131318091E-116 

20 -1.108760595751720E-122  20 -1.109761476977400E-122 

21 -1.873310730024976E-129  21 -1.875090795024948E-129 

22 -3.165059350659440E-136  22 -3.168217277638470E-136 

23 -5.347538202091645E-143  23 -5.353127823492740E-143 

24 -9.034953741664127E-150  24 -9.044827090277840E-150 

25 -1.526504085227134E-156  25 -1.528244788719437E-156 
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n=40      n=80 

i e     i e    

1 1.00010661480228       1 1.00021853964696      

2 -0.881015300647803       2 -0.881103406421415      

3 -1.488667921087004E-007  3 -1.488965661787224E-007 

4 -2.515429830608529E-014  4 -2.516184459230804E-014 

5 -4.250368475233430E-021  5 -4.252068580491992E-021 

6 -7.181926471333388E-028  6 -7.185517258136418E-028 

7 -1.213543434854866E-034  7 -1.214271507410521E-034 

8 -2.050546837235713E-041  8 -2.051982079594113E-041 

9 -3.464846984829786E-048  9 -3.467618523750154E-048 

10 -5.854616120839586E-055  10 -5.859884503291687E-055 

11 -9.892653241415202E-062  11 -9.902544204351747E-062 

12 -1.671579923575863E-068  12 -1.673418302566143E-068 

13 -2.824499514044826E-075  13 -2.827888169365575E-075 

14 -4.772609046979004E-082  14 -4.778811925694599E-082 

15 -8.064365701316070E-089  15 -8.075652785359053E-089 

16 -1.362650768330827E-095  16 -1.364694146584942E-095 

17 -2.302496161719044E-102  17 -2.306178988351873E-102 

18 -3.890570256260859E-109  18 -3.897181969319341E-109 

19 -6.573968329211203E-116  19 -6.585797147595472E-116 

20 -1.110815549821454E-122  20 -1.112925276727627E-122 

21 -1.876965506879040E-129  21 -1.880717883466293E-129 

22 -3.171543194051796E-136  22 -3.178200515035705E-136 

23 -5.359014934460721E-143  23 -5.370799312410637E-143 

24 -9.055226169401047E-150  24 -9.076043047397701E-150 

25 -1.530078224883763E-156  25 -1.533748535169277E-156 
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