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ABSTRACT

CONSERVED CHARGES IN ASYMPTOTICALLY (ANTI)-DE SITTER
SPACETIME

GULLU, IBRAHIM
M.S., Department of Physics

Supervisor: Assoc. Prof. Dr. Bayram Tekin

August 2005, 77 pages.

In this master’s thesis, the Killing vectors are introduced and the Killing equa-
tion is derived. Also, some information is given about the cosmological con-
stant. Then, the Abbott-Deser (AD) energy is reformulated by linearizing the
Einstein equation with cosmological constant. From the linearized Einstein equa-
tion, Killing charges are derived by using the properties of Killing vectors. Us-
ing this formulation, energy is calculated for some specific cases by using the
Schwarzschild-de Sitter metric. Last, the Einstein-Gauss-Bonnet model is stud-
ied. The equations of motion are calculated by solving the generic action at

quadratic order. Following this, all energy calculations are renewed for this model.

Some useful relations and calculations are shown in Appendix (A-B) parts.

Keywords: de-Sitter spacetime, Killing vector, Conserved charges.
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ASIMPTOTIK (ANTI)-DE SITTER UZAYZAMANINDA KORUNAN
YUKLER

GULLU, IBRAHIM
Yiiksek Lisans, Fizik Bolumi

Tez Yoneticisi: Assoc. Prof. Dr. Bayram Tekin

Agustos 2005, 77 sayfa.

Bu master ¢aligmasinda, Killing vektorler tanimlandi ve Killing denklemi ¢ikarildi.
Ayrica evrenbilimsel sabit, de-Sitter ve Anti-de Sitter uzaylar1 hakkinda bilgi ver-
ildi. Sonra, Abbott-Deser (AD) enerjisi, evrenbilimsel sabitli Einstein denklemi
dogrusallagtirilarak yeniden formiile edildi. Dogrusallagtirilmig Einstein denkle-
minden, Killing vektorlerin ozellikleri kullanilarak Killing yiikleri (Deser-Tekin
denklemi) gikarildi. Schwarzschild-de Sitter metrigi kullamlarak 6zel durumlar
i¢in enerji hesaplandi. Son olarak Einstein-Gauss-Bonnet (GB) modeli galigildi.
Ikinci dereceden genel eylem ¢oziilerek hareket denklemleri hesaplandi. Bundan

sonra, tiim enerji hesaplamalar: bu model igin tekrarlandi.

Bazi faydali hesaplamalar ek (A-B) kisimlarinda gosterilmistir.

Anahtar Kelimeler: de-Sitter uzayzamani, Killing vektor, Korunan yiikler.
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CHAPTER 1

INTRODUCTION

Conserved quantities, such as energy-momentum, electric charge, angular mo-
mentum, baryon number etc., are important in the description of physical phe-
nomena. In the presence of gravity, definition of certain conserved charges (espe-
cially the energy) become rather tricky. Our task in this thesis is to give a review
of the techniques of defining conserved charges in asymptotically (Anti)de-Sitter
spaces developed by Abbott-Deser (AD) [3] and Deser-Tekin (DT) [1]. We will
carry out the computations in great detail. These methods are an extension of
the Arnowitt-Deser-Misner (ADM) [4] methods which work for asymptotically

flat geometries.

We define the global charges primarily in D dimensional quadratic theories.
We first present a reformulation of the original definition of conserved charges in
cosmological Einstein theory; then we derive the generic form of the energy for
quadratic gravity theories in D dimensions and specifically study the ghost-free

low energy string-inspired model: Gauss-Bonnet (GB) plus Einstein terms [1].



A definition of gauge invariant conserved (global) charges in a diffeomorphism-
invariant theory rests on the “Gauss law” and the presence of asymptotic Killing
symmetries. More explicitly, in any diffeomorphism-invariant gravity theory, a
vacuum satisfying the classical equations of motion is chosen as the background
relative to which excitations and any background gauge-invariant properties (such
as energy) are defined. Two important model-independent features of these
charges are: First, the vacuum itself has zero charge; secondly, they are ex-
pressible as surface integrals [1, 2, 3, 4].

In the first chapter, we will define the Killing vector field and give some
useful properties of it. Then we will see how Einstein equations can be linearized
to reformulate the AD energy. Using that reformulation, we will calculate the
energy in (A)dS spaces. Following that we will look at the Einstein-GB model.
We will then state our conclusion and describe some open questions. In the two

Appendices, we will give some useful calculations that will help us in this journey.



CHAPTER 2

KILLING VECTORS

Tensor calculus is largely concerned with how quantities change under coordi-
nate transformations. It is of particular interest when a quantity does not change,
i.e. remains invariant, under coordinate transformations. For example, coordi-
nate transformations which leave a metric invariant are of importance since they
contain information about the symmetries of a Riemannian manifold. In an ordi-
nary Fuclidean space, there are two sorts of transformations: descrete ones, like
reflections, and continuous ones, like translations and rotations. In most appli-
cations, these latter types are the more important ones and they can in principle
be obtained systematically by obtaining the so-called Killing vectors of a metric,

which we now discuss below.

A metric g4 is invariant under the transformation 2% — 2'* if ¢/, (y) = gap(y)
for all coordinates y°. An infinitesimal coordinate transformation is x* — 2/ =
x* + eX*(z) where X denotes the vector field and z* denotes a vector in that

field.



Differentiating z'* gives

ox'®  Ox° oX?
ozt Oxb ox

and the metric transforms

ox'cdz't |, .,
gab($) = O 8$b gcd(‘Q: ) :

Then z* — 2'® will be an isometry if

axlc ax/d .
gab<x> = Oz Wgcd(x )

0 9,
= (axa(xc + eXC)> (axb(xd + eXd)> Ged(2€ + €X°)
We expand g¢.q(z¢ 4+ €X*¢) using the Taylor’s theorem,

gaw(z) = (65 + e@aXc)(ég + e@bXd){gcd(x) + €X0egea(x) + ...}
() = gea(0S + e@aXc)(5g + eabXd) + €X0cgealx) (65 + e@aXc)((Sg + eabXd),
= gar(2) + {9aaObX? + 90 X* + X Oegaur} + O(€%),
= a0 X* + 500, X" + X Oegar = 0.
Where we use Einstein sum convention. Now define:

'Ca;gab = Xcacgab + gcaach + gcbaaXc'

In the first term we make ¢ — e transformation, in the second and third term

¢ — d that gives us

Lo = X OeGap + 9aaOpX® + gra0a X = 0.



This is called Lie derivative and since in the expression for a Lie derivative of
a tensor, all occurrences of the partial derivatives may be replaced by covariant

derivatives. Therefore we can make the 9, — V, substitution, that is

XV eGab + 9aaVo X+ gpaVaX? = 0.

Since we work in a metric compatible system Vg, = 0, we have

9aaVo X + gV X4 = 0.

Finally we have

VX, + Vo X, =0, (2.1)

where X, is a vector field that leaves the metric invariant and such a vector field
is called a Killing vector [5, 6].

The importance of Killing vectors comes from the symmetry considerations.
Translational or rotational symmetries will give us conserved quantities. With the

first, we can get energy and momentum; and with the latter, angular momentum.



CHAPTER 3

MODELS WITH A COSMOLOGICAL CONSTANT

A characteristic feature of general relativity is that the source for the gravita-
tional field is the entire energy-momentum tensor. In non-gravitational physics,
only changes in energy from one state to another are measurable; the normaliza-
tion of the energy is arbitrary. For example, the motion of a particle with potential
energy V' (x) is precisely the same as that with a potential energy V' (z) + V4, for
any constant Vj. In gravitation, however, the actual value of the energy matters,
not just the differences between states.

This behavior opens up the possibility of vacuum energy: an energy density
characteristic of empty space. One feature that we might want the vacuum to
exhibit is that it must not pick out a preferred direction; it will still be possible
to have a nonzero energy density if the associated energy-momentum tensor is
Lorentz invariant in locally inertial coordinates. Lorentz invariance implies that

the corresponding energy-momentum tensor should be proportional to the metric,

T[SZCLC) = —Pvaclpp (31)

(where “fp” denote locally inertial coordinates and pyq. is the vacuum energy



density), since 7, is the only Lorentz invariant (0,2) tensor. This generalizes

straightforwardly from inertial coordinates to arbitrary coordinates as

T;EZQC) = —PvacGuw - (3.2)

Comparing with the perfect-fluid energy-momentum tensor 7),, = (p+p)U,U, +
PG, we find that the vacuum looks like a perfect fluid with an isotropic pressure

opposite in sign to the energy density,

Pvac = —Puac- (33)

The energy density should be constant throughout spacetime, since a gradient
would not be Lorentz invariant.
If we decompose the energy-momentum tensor into a matter piece T ;Sy ) and

a vacuum piece Tﬁ(f,j“) = —pvacYuv, the Einstein’s equation is
1 (M)
R/“/ — ing/ = 87TG<TMV - pvacg;uz) ; (34)

where R, and R are Ricci tensor and scalar, G is Newton’s constant. Soon after
inventing general relativity, Einstein tried to find a static cosmological model,
since that was what astronomical observations of the time seemed to imply. The
result was the Einstein static universe. In order for this static cosmology! to solve
the field equation with an ordinary matter source, it was necessary to add a new

term called the cosmological constant, A, which enters as

1
2

1 We now know that even with a cosmological constant, static universe is not possible.

R, — zRg,, + Ag = 87GT,,. (3.5)




The cosmological constant is precisely equivalent to introducing a vacuum energy

density

A
p’U(ZC - 87{'G

(3.6)
The terms “cosmological constant” and “vacuum energy” are essentially inter-
changeable [7].

Maximally symmetric solutions of the cosmological Einstein equation with

T,

w, are de Sitter and Anti-de Sitter spaces which we now briefly describe.

3.1 DE-SITTER SPACE

De Sitter space corresponds to a four-dimensional surface in a flat five-dim-

ensional space with metric (—, +, +, 4, +) described by

3

2 2 2 2 2
_20+Z1 +ZQ+Z3+Z4:A

A>0. (3.7)

The symmetries of this space are then the ten rotations and boosts of this five-
dimensional embedding space. Rotations among the z; — z4 clearly result in
spacelike Killing vectors. However, boosts which mix z; — z4 with 2y can lead
to Killing vectors which are timelike. The Killing vector which corresponds to a
mixing of 2z, and zj is

ga - (_24707 070>ZO)' (38)

Now

E=—22+22, (3.9)



SO

& <0, (3.10)

if and only if

|Z4| > |Z()|. (311)

This is a distinctive feature of de Sitter space which implies the existence of a
cosmological horizon.

To be more specific, consider the de Sitter space metric in the form

dr® = —dt* + [*(t)[dz” + dy® + d2], (3.12)

f(t) = exp\/il)):t . (3.13)

The Killing vector for this symmetry is

&= (—1, \/?Ax). (3.14)

1
& =14 AP (3.15)

where

Now

which is timelike in the region
Lo
§Af x| < 1. (3.16)

This ¢, ., generates a Killing energy. However the restriction (3.16) limits the region

of applicability of this quantity. In order for E(&) to act like an energy, the surface



of integration must lie inside the event horizon defined by

;Af2|x|2 ~1 3 8. (3.17)

3.2 ANTI DE-SITTER SPACE

Anti-de Sitter space is the covering space for the four-dimensional surface, in

a flat five-dimensional space with metric (-,4,+,4,-), described by

3
—zg+zf+z§+z§—22:K,A<0. (3.18)

Once again the symmetries of this space are just the rotations and boosts in

the five-dimensional embedding space. Here, however, there is a global timelike

Killing vector corresponding to the rotation mixing 2z, and zq4,

ga - (_Z470a 0)0720)7 (319)

and

&£ =—z]— 2 <0. (3.20)

Thus, &, is timelike everywhere [note that the condition (3.17) excludes the point

24 = 2zp = 0], and there is no cosmological horizon [3].

10



CHAPTER 4

REFORMULATION OF AD ENERGY

4.1 CONSERVED CHARGES

We first look at how conserved charges arise in a generic gravity theory
coupled to a covariantly conserved bounded matter source 7,,. Consider the

following equations of motion that come from a Lagrangian
®,,(9, R, VR, R? ...) = KT, (4.1)

where @, is the “Einstein tensor” of a local, invariant, but otherwise arbitrary,
gravity action and k is an effective coupling constant. We work in generic D
dimensions.

Now we will decompose our metric into the sum of two parts:

9 = g;w + h;w, (42)

where g, solves (4.1) for 7, = 0 and a deviation part h,, that vanishes suffi-
ciently rapidly at infinity and it is not necessarily small everywhere.
Separating the field equations (4.1) into a part linear in h,, and collecting all

other non-linear terms and the matter source 7,, in 7, that constitute the total

11



source, one obtains

O(g)uuaﬁhaﬂ = ’fT,uzu (43)

®,,(3, R, VR, R?,...) = 0, by assumption; the operator O(g) depends only on the
background metric g, .

The linearization of the (source free) Einstein equation
1
R;w - ig/wR + Ag,uu = 07 (44)

follows as

1 1

R;Lw - §h,ul/R - ag,ul/RL + Ah,u/ + O(hQ) + .= O,

the background terms will be zero because g, itself satisfies the field equation
(4.4). Here, [V, V,]VA = R,,°V, and R, = R,,,” and the constant curvature

vacuum g, has Riemann, Ricci and scalar curvatures that are

_ 2A

R v == q l/_ —q q v 7 45
uAvB (D— 1)(D—2) (gu 9xg — GuBdx ) ( )
Rw/ = R/L}\l/ﬁgﬂ)\ )

2A o o
= ( ) (guug)\ﬁ - guﬁgx\u)gﬁ)\ )

-1
2
-1

(D
A/(\ )(g,LwD - 52.@)\11) ’
2A
(D

o= >gW(D—1>_(DQf2)§W; (4.6)
R = Rul/gwj
2, 2A
- o™ T m-p" o

12



Using (4.7), we get:

1_ 1 2DA
R;lzu - §g,ul/RL - §huum + Ah/,w + O(h2) +..=0.

Collecting the terms we get

1_ 1
R), — 5g,WRL - thRL -

2Ah,
4L O(h? ..=0.
We define all terms of second and higher order in h,, and the matter source 7,

to be the gravitational energy-momentum tensor and write Qﬁu as

1 2
L __ L — L
=RL — g, R —
pr = T = 5 n (D —2)

hu = kT, . (4.8)

The left hand side of (4.8) obeys the background Bianchi identity

_ 1 2A
7 » S
V(R 9" Rp (D—2)

; W) =0 (4.9)

or

vV, =0. (4.10)

Therefore, we have a background conserved energy-momentum tensor. However,
the derivative in (4.9) is a background covariant, not an ordinary derivative; fur-
thermore, only integrals over divergences of contravariant vector densities have
invariant content, so (4.8) and (4.10) cannot be used directly to construct con-
served quantities. To overcome this problem we contract T*” with a Killing vector

EM that is:

VuTE) = (TN, + 5 T(V,6 + V.60 =0,

13



since T* = T"" and with the help of the Killing equation, we have the above
equation. Now the quantity (£, 7%") is a vector density whose covariant divergence

becomes an ordinary one, and gives the desired conservation law,
V(&™) = 0,(&T") =0,
or
V(=g T"E) = 0,(v—g TME,) = 0. (4.11)
Therefore the conserved Killing charges are expressed as

Q"(&) = /M dP e /=g T, = fé dS;F . (4.12)

Here M is a spatial (D—1) hypersurface and ¥ is its (D —2) dimensional boundary
and i ranges over (1,2, ...,d—2) and F'* is an antisymmetric tensor whose explicit

form will be written below [1, 4].

4.2 LINEAR FORM OF THE EINSTEIN EQUATION

In order to write the spatial volume integrals as surface integrals, we need to

carry out the linearization of the relevant tensors. In this part that is what we

shall do.

14



42.1 THE METRIC g,

We will take the signature to be (—,+,+,+,...). We know that any metric

must satisfy g,,9"* = 0, where 0g,, = h.,
Guv = g/uf + 5g,uz/ )
(gw/ + 5guu)gya = 5ua = gMV = g;w - 69!“/ .

4.2.2 LINEARIZATION OF THE CHRISTOFFEL SYMBOL

We linearize '}, ; = % 9" (00980+039ar—0,gap) With the use of g — g’ —dgH”

o

and gg, — ggv + 0gs,. That is |

1 _ _ _ 1_,,
5FZ5 = §6g‘w/(8ag/3y + 8,89a1/ - 8,,gaﬂ) + ig” (58ag51, + 68596,,, — 6&,ga5) ,
1 _ _ _
5Fgﬂ - §§“V(Va5ggy + V569ar — Vi0gag) - (4.13)

4.2.3 LINEAR FORMS OF RIEMANN, RICCI TENSORS AND

RICCI SCALAR

The Riemann tensor is
RV 5, = 0Lk, — ((LFgﬁ +Te e, — FZBF“ (4.14)

av— of3 ov )

which can be linearized as

ORapy = 9501%, — 0,015 + (017, )15 + T, 0005 — (OT74)TG, — T340T%, .

15



To find the partial derivatives of the Christoffel symbol we can use covariant

derivative,

V(0Th,) = 0Tl + 1,010, — 5,01, — I'G,6I%

oo

= 0g0%, = V(0Th,) — 4,017, + ['5,0T%, + TG,0T

oo’

and

= 9,0T" ;= V, (6T ;) — TV 6175 + T, 6T*, + T7,0T% .

«

If we insert these into our linearized Riemann tensor, we get

OR'op, = Vg(0T%,) — 5,017, + 5,004, +T5,0T0, — V., (6T 4)
+10,0T05 — Ty, 000 5 — Lol + (607, )05 + 15,000,

—(0T3p)Th, — I'gs0l,

yielding;

SR"ap, = Vg(6Th,) — V(6T ) . (4.15)

i < 3 contraction gives the linear Ricci tensor
5R#04/W - vll((srgu) - vl’((srgu) = 5Ra1/ ’

or by a <=

5Ru1/ = a(ériy) - vu(érgu) .

16



Now let us write this in terms of dg,s

5RHV = va [gag(vuégyo + v1/5g,ua' - Voég,uu>]

-V, ng(?&gau + V0900 — ?(759&”)} :
In the last term if we make the oo exchange, it will cancel the fourth term
B = V08000 + V8030 — 97V a0 = 9,551}
and we are left with
SRy = (VY0000 + V7Vo800r — Dbg — V,Vu00}, (416)

where g = h = §® hy, and V°V, =0 .

The linear part of the Ricci scalar reads

R = 5<9WRW) = (5RW)gW - R#végw7

D= T+ T+ T ) - (DQ_Q)Agwh“” ,
= OO TV, + VTV ) =
or by taking v — pu
SR = S(=20h+2V°VFhy,) — —2—Ah,
2 (D —2)
= —[Oh+ VOV h,, — (D2_2)Ah. (4.17)

17



4.2.4 LINEAR FORM OF THE EINSTEIN EQUATION

Now, we are ready to write (4.8) in terms of the deviation part of the metric.

That is,
1 2
pv — - V2 4 - Ahlﬂ/
L Ry 29 Ry, (D —2)
1, - I . _
= (O = VIV h 4 Vo VIR 4 Vo VIRY)
—1_”V(—Iflh + VoV h™® — 2 ARh) — 2 AR . (4.18)

We can also show that this equation is background covariantly constant:

_ 1, - - o o
V.GE = SV, OV + VYT VY,V R

1, e 1 9
—(=V’Oh + V'V Vah™) + AV h — —— AV, h" .
(V'O + V'Y,V )+(D_2)v TR

In the fourth term change the places of the covariant derivatives to get the first

term with an opposite sign:
0, VTP = 0,9, 90 — 9,00
L VLYV = [V, V]V R+ L 0h
In the last term, we make the 0 — p transformation

V.V, VR = [V, VL VAR 4 ¥ Eh

18



Moreover
[@lmva]vuhau — Rugu,\vAhUV+RMJU,\th>\V+RMJV>\?MhU>\

= RV — R VERY

TD- 12)?1? gy (0udon = Ga3;) V07
- (D21—\2)(§ A VAT — g VIR

+(D — 12)/213 ~9) (V'h — VR
- (DQ/_XZ)(?Jh"” NS

"o 12)?17 —oy (V= Vak).

If we make the A — o substitution the term in the first parenthesis will vanish
and we will get

2A

VARV _,uhau _
ViVeV (D-1)(D-2)

(V'h — Vah") + V0" .

In the fifth and sixth terms of V xG"", we use the same procedure. Making suitable

index substitutions we get

V'Oh = V'h + BV h
v (D_Q)V +0OV¥h,
o 2A _ 2A _
v hor = Yh— h (2D — 1
ViV Vi (D—l)(D—Q)V (D—l)(D—Q)V“ ( )
+V, Vo,V hoH .

When these results are inserted into (4.18), one will have

B3m = T ) - g T

Vg = (D —2) (D—2)(D—1)

v, h

19



A _ A - 2N
o v v - MV:
(D—2)(D—1)v h+7(D_2)Vh 7(D_2)Vuh 0.

In the first term the covariant derivative of h will cancel with the fourth term and
we change the indices of the remaining part of the first term: A — u. Thus we
conclude that the energy-momentum tensor is background covariantly constant,
that is

V.G =0, (or V, " =0). (4.19)

4.3 KILLING CHARGES

Let us recall that there are two facets of a proper energy definition: First, iden-
tification of the “Gauss law”, whose existence is guaranteed by gauge invariance;
second, choice of the proper vacuum, possessing sufficient Killing symmetries with
respect to which global, background gauge-invariant, generators can be defined;
these will always appear as surface integrals in the asymptotic vacuum [2].

In converting the volume integrals to surface integrals, let us follow a route,
which will be convenient in the higher curvature cases. We take the energy-
momentum tensor in a Killing vector field and collect terms in the covariant

derivative to get surface terms:

AN

= &=V, V" — VNV h+ VY,V ho* + V,VFho}

251/ ZV - 2€VR%V _gugwRL -

2A 4A

RS

LGN, VPh 4 VY -

20



where we used (4.16) and (4.17). We rename the indices for convenience;
second term: v — p
third term: ¢ — v,v — p
fourth term: o — p

sixth term: o — p. Thus our equation becomes

WG = &, TR — E T+ £V VIR 4 £, T
LERT TP — B T B g N g g
P Py (D — 2) (D — 2) v

To collect all terms, we use the commutator relation of a vector that gives
us the Riemann tensor. In the first, fourth, fifth and sixth terms the Killing
vectors are taken inside the covariant derivative with extra terms that will come
from the derivative of the Killing vectors. In the second and third terms, places
of derivatives must change, after that the Killing vectors can be taken inside
the derivative with two additional terms, the second comes from exchange of

derivatives. After these calculations we are left with
26,G1" = =V, (& VP RY) + (V&) (VPR™) =V ,(EPVFh) + (V ,£°)(V"h)
+V,(EPV W) — (V,€°) (V,h*) + YV ,(E,VHh) — (V ,£,) (VFh*)

+V,(§"VPh) = (V) (VPh) = Vo (§"V 1) + (V") (V. 1)

2N 2N MmN
oM T "
2A ez
ooy mope e
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The fourth, sixth and the eighth terms vanish because of the Killing equation

20,GY = N {—E VPR — EPNFh + EPN R + NI + EFNP R — EFV b}

2A _
HUEF

(V&) (VPR) = (V) (V7h) + (V,6) (V™).

2A

hw&+(p—2xp—1)

(hwgv - hgﬂ)

(D—-2)

We will look at the last three terms closely:

(vpgu)(vphw) = vp(hvagv) - hw(vpvpgu) .

Operating on (2.1) with V#, one gets

VIV,E, + VIV,E, = 0.

The second term can be written in the commutator form that is

0g, + [V*, V,]E, =0,

or simply

v — — gu
Using this relation, we have

2A

(V&) (T) = T, (96 + o

W g€,

and

2A

(V,8)(97h) = =9, (h9") + o

h&t .
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Using the property of a Killing vector, shown in the appendix (see (9.3))

2A
(D-2(D-1)

(Vo) (Vb)) = =V, (R"VHE,) — &N —Eh).

Finally collecting these results, we have
26, = V=& VPR — EPVIR 4 GV, 4 £,V + EV PR
_ET I 4 WIPE, + RRER — YVME,) (4.20)

Since the charge densities are surface terms, the Killing charges become

Q"(&) = 49@12)GD %z dS{—&, W — ENFh + €N R+ £,V R

LETh — ET WY+ WVIE, + WM — WY} (4.21)
Here dS; = /—detg dQ; where i ranges over (1,2,.....D — 2); the charge is
normalized by dividing with the (D-dimensional) Newton’s constant Gp and the
solid angle d€2p_s.

Before calculating the conserved charges QV, we check our expression to see
whether it is gauge invariant or not, and we will look if it goes to the ADM
charges in the limit of an asymptotically flat background (V; — ;) in which
case our timelike Killing vector is £, = (1,0) [1].

First we will look at the gauge-invariance. Under an infinitesimal diffeomor-

phism, generated by a vector d¢, the deviation part of the metric transforms as

Ochu = VG + Vo0, [1]. (4.22)
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First we will look at the linear Ricci scalar:

RL - (gMVRuu)La

= (5(RL = 5<(§“”Rﬁu — Rw/hl“’)

2A

= gMV(SCRﬁV B (D — 2)

Now using (4.16), we have

7" 5ch, .

1 _ _ _ _
R, = §W§5c(—|:|h;w - V,Voh+V°V,hey + VoV, hey)

2A _ _
_ GHY
(D _ 2)9 (V}LCI/ + VIJC,LL)
C E0h+ VIV, — D e
- ¢ ¢lop (D _ 2) B
With the help of (4.22), we can write
— UV = ViAw v v 4A
R, = —g"O(V,.6 + V() + VIV (Ve( + V(o) — D=2
_ o _ 4N =
= =20V#(, + V°VIV,(, + VoO¢, — mV“CM :

We look examine the second and third terms carefully:
[V, VolGu = VI'VoG = VoV,
_ 2A -
i — Iz
VIVl = (g% VeV G

Therefore, we have

2A

VOVIY () = o (4 VA, .

(D—-2)

24

VHC,



In the third term the same calculations can be done to get

vgljgg = vﬂgﬁ + Ijvggo

(D —2)

We have the background gauge invariance of the linear Ricci scalar
5<RL =0.

Therefore

2A

Schyu.
Using (4.16) and (4.22), we have
5Gh, = 5(—DVMQ, ~0V.¢, — V,V,V?¢ — V,V, V%,
+VoV, Vol + VOV NV, + VIV, NG+ VOV,VLG)

D7) (Vo + Vi) -

Just sa before, let us look at the terms that are in the second line: The fifth term

is:

wiA v 2A —~ Y70 — wid 0\ U
VoV, V., = (D —2)(D— 1)(gWV Co — GouV°C) +VV,V,(, .
The sixth term is:
VOV = (= ,G) + VIV
v #U_(D—Z)(D—l) vSu HuSV 1 vSo -
The third term is:
VA A — LT LRI AR
o O'V_(D_2>(D_1> Guv o Gov o oV uSv -
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The fourth term is:

_ - 2\ 27 _ -
VMVVCU mvug/ + (D _ 2)(D - 1) (v,ugl/ - g;u/v Co)
2\ N
+mvycu + VMVVV CU .

Collecting all these, terms we end up with
Gy, =

which means that G/, is gauge-invariant. Therefore, we have 6. R, = %Qhw-

Hence 6.Q* = 0; that is, the Killing charge is indeed background gauge-
invariant.

Now we will examine (4.21) in the limit of an asymptotically flat background,
which should yield the ADM charge. Let us just look at the mass to begin with.
With €, = (1,0), we have & = 0, § = 1 and £° = —1 in flat space with the metric
N = diag(—1,1,1,1). We have h = —hgo + h;;. Being in Cartesian coordinates,

we can take the covariant derivatives to partial derivatives (V; — ;). Hence,

M j{ dS: {E0 R — ETHY — &'h — &R + 8;hiT} |

T A0 Q)GD

Expanding the last term we have

M == gszGD% dS { alhoo alh” + alh()(] + 8 h ']}

— ij i
o 2GD7§dS{ah —Ohy;)

which is the usual ADM mass [6].
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CHAPTER 5

THE ENERGY OF SDS SOLUTIONS

Having established the energy formula for asymptotically (A)dS spaces, we can

now evaluate the energy of Schwarzschild-de Sitter (SdS) solutions.

In static coordinates, the line element of D-dimensional SdS reads

2
To\p_- r
d2 - — (1= "U\D-3 " dt2
To\D-3 r2\ 2 2 1092
+ 1_(7") —ﬁ dT' +T dQD72, (5].)

where [ = (D — 2)(D — 1)/2A > 0. The background (rq = 0) Killing vector is

= (—1,0), which 1s timelike everywhere for < 0), but remains timelike
v 1,0 hich is timelik here for AdS (I < 0), b i imelik

2

for dS (12 > 0) only inside the cosmological horizon: g,,&#¢" = —(1 — %3) [1].

l2

5.1 THE D =4 CASE

Let us concentrate on D = 4 first and calculate the surface integral (4.21)
not at r — oo, but at some finite distance r from the origin; this will not be
gauge-invariant, since energy is to be measured only at infinity. Nevertheless, for

dS space (which has a horizon that keeps us from going smoothly to infinity), let
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us first keep r finite as an intermediate step. The integral becomes

To (1—%)

= gi-n g

(5.2)

For AdS, take r — oo and we get the usual mass 3. For dS, we can only consider
small rg limit, which do not change the location of the background horizon, that

also yields 7% [1].

5.2 ENERGY FOR D DIMENSIONS

In this case h =~ 0. From the line element (5.1) goo, grr, Goo, Grr and the corre-
sponding h terms can be calculated. These are

2 2

goo = — (1 - (@)D_g - ;) y Grr = (1 - (LO)D_S - 71;)_ ’ (5.3)

r r

and the background metric components will be

) r2 ) r2 -1
goo = — 1_ﬁ y 9rr = — ]-_ﬁ y (54)

since 1o = 0 for the background. From (4.2)

oo — (@)D—:s 002007 00 _ ()P~3 (5.5)
00 =~ y 9 9 Noo = —7(_%2)2- .
hyy = S pr = (270 ) (5.6)
(= EPs - 5) 1= EP—5)

Using (4.21), we have

4 _ _ _ o
d lim 7,D72{&Jvohr0 _ govrh()o + hOOvr&] _ hrrvOgT 4 Vuhru}

0 _
Q N 167TGD =00
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where the constant factors come from the normalization constant and the inte-

gration element d.S;.

4 _ _ _ _ _ .
QO e lim ,r,D 2{€0v hrO SovrhOO 4 hOOvrérO o hrrvl)érr 4 Vohro 4 Vihm}
p T
and
47 _ —n = _ .
QO 167TGD TILIEO T’D 2{ é‘ vrhOO hoovr&] _ hTTvO§T + Vihm},

playing with indices

4 _ _ _ _ .
% tim 2 2300V, b + %G00V oE, + BTGV obr + Vih'}

0
Q 167TGD =00

and the terms in the middle cancel with each other since h = 0. Therefore we

are left with

4m = =TT 7 ], T
Q" = 167G lim P {Goog "V -h* 4+ V;h"'}
D
4m D—-27-00-00~ —rr T
= 162Gy lim 72 *{g"9™ Goog"" V. hoo + Vil }
4
= 167T7TGD lim rP=2{ -V, hoo + V:h""}
4 y ,
- 167; lim #2~2{—=8,hoo + 2T%hoo + O,h"" + TR + T b}
p T
dm D— TTZTT O =
= 167TGD Tlgglo’l“ { 0 h00+hoog 8Tgoo+8 h™" -+ h qg &grr
1o
+§hrr9 70,ij}t -

The last term can be expanded
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47

0 _
@ = 167G p r—>

1 1 iy
+§hrrgrraT§TT + ahrrglj 37@1']'} ,

where §0,g;; = - when i = j # r, therefore we have

4
" lim P2 {—0,hoo+ho0g"° 0, Goo+ 0k + RGO, Gy

0 _
Q N 167TGD r—0o0

Lets look at our expression term by term in the limit of r — oo:

1
lim 7772{=0,hoo + hoog"rGoo + OB + §hrrgrrar§rr

1,
+§hrrg]87-gij}.

D-3

T _ _
—0phgo = (D — 3)73)_2 — P28, hoo = (D — 3)rP 3.
The second term
D-2; 009 - D—2,T0\D-3 1 2r D—3 1 2 D-3
" hoog Orgoo = =1 ()T ey =0 T g = 20

PoammeE T Eepr

the third term

o = (DB ]
S r 2 Rl ()P — )

+(7)D—3(_l72)(1 —(m)ps - %2)

L Toypa D= 3P ) +

7}

S L

We will operate on this with r”=2,

rP720.0" = —(D =3y 2P —2rP3

= —(D -3y
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The fourth term is

hrrgrrargrr = v 5
(1—(2)P=3—15)
and
TD—QhrrgrraTgrr — _2T(l]7—3
1 D—2) (2)P3(1-1%
*hfm,gl]argij — ( ) (r) - 2_3 l2r)2 ’
2 (1—-()P23—1%)

1 -
TD_2§hM§”3r§z‘j = (D —2)rg>.
Hence, adding all the above we get the energy in D-dimensions

(Z C;Dz)r(??’. (5.7)

FE =

Here r¢ can be arbitrarily large in the AdS case but must be small in dS [1].

5.3 THE D = 3 CASE

Let us note that analogous computations can also be carried out in D = 3;

the proper solution to consider is

2
ds” = —(1 =19 = ) + (1= 1o = 75)7'dr” +1%d” (5.8)

for which the energy is F' = r(/2G again, but now r( is a dimensionless constant

and the Newton constant G has dimensions of 1/mass [1, 9].
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CHAPTER 6

STRING-INSPIRED GRAVITY

In flat backgrounds, the ghost freedom of low energy string theory requires the
quadratic corrections to Einstein’s gravity to be of the Gauss-Bonnet (GB) form,
an argument that should carry over to the AdS backgrounds. Below we construct
and compute the energy of various asymptotically (A)dS spaces that solve the
generic Einstein plus quadratic gravity theories, particularly the Einstein-GB
model [1, 10].

At quadratic order, the generic action is
1
1= [d°av=g{_ R+ aR+ SRS, + (12, — AR, + R} (61)

In D = 4, the GB part (v terms) is a surface integral and plays no role in the
equations of motion. In D > 4, on the contrary, GB is the only viable term,
since non-zero «, 3 produce ghosts [11|. Here k = 2Qp_»Gp, where Gp is the
D-dimensional Newton’s constant [1].

After lengthy calculations, that are shown in the appendix B, we reach the

equations of motion
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1 1 1
E(RHV - §Q#VR) + 20 R(Ry — zguvR>

+ (2a+0)(9.,0-V,. V)R
+ 29[RR,, — 2R,60p,R7" 4+ Rupp-RPT

1
— 2R,,R,° — ZgW(REW —4R2 + R?)]

1 1
+ BO(R. — §gMVR) + 28(Ruovp — ZQWRW)RUP = Tuw - (6.2)

In the absence of matter, flat space is a solution of these equations; but more
important is that (A)dS is also a solution [1]. The cosmological constant can be

found using Eq. (6.2):

1 - 1. = _ 1 -
E(RHV - ig'ul/R) + 2aR(Rpu - ig'ij)

+ (2a+8)(g.O0-V,.V,)R

+ 29[RRu — 2Ru0up R + Ryopr 717

_ 1 _ _ _
- 2R;},URI/U - ZguV(RzAap - 4R3p + RQ)]

_ 1 _ _ 1 _
b OBy = 3000 + 20 By — (0 Re) R =0, (63)
The terms that have covariant derivatives will be zero by using (4.5), (4.6) and

(4.7). The other terms can be calculated one by one:

1 -1, 2 1 2DA 1
— —q = —(——Aqg —_ = :——A7
29w ) = Ly A = 5 p—gy) = A

and the second one is

Guv

I ADA? 1 4D?A?
2 _— . — -
BB = 49 ) “ ((D — 922 41(D- 2)2>
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A2(D —4)_

= —2D e ——— v
(D=2

The next one is a bit longer than the others:
I = [RR,, —2R,,,,R7" + Ry, R,7°T

_ 1 _ _ _
—2R,, R, — Zgw,(RZ —4R%, + R?)]

TAOP
4DA? SA2 o N
= (D — 2>2 ng/ - (D _ 2)2(D _ 1) (g;u/gop - gupgay)g
4N? a9 f = = —p=0T —T—0p
+ (D _ 2)2(D _ 1)2 (gupgm’ - g/ﬂgap) (gyg - 49,9 )

8A2 1 4DA*(D-3) _
(D —2p2% ~ 4D —2)(D - 1)

If we look carefully to the second and the fourth terms, we can see that they are

of the same type and can be added together

I = LM— _LAQ—

(D _2p% T (D —2pIm
N 8A? ~ DAN(D-3)
(D—22(D—1)" " (D —2)(D— 1)
and we get
NGy
L= (D_Q)Q(D_1){4D(D—1)—16(D—1)+8—D(D—3)(D—2)}
27
= —(D_/2\>29&V)_1)(D3—9D2+26D—24),

and finally we have

(D= 4)(D-3) 5
L= (D—2)(D 1)A9“”'
Similarly
_ 1 - 4N?

QB(Ruazzp - ZguuRaP)RUp = 2B<D — 2)2(D _ 1) (guugap - g,upgaz/)ggp
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1 4DA?

L N(D—4)
“4(D 220 T

_2ﬁmgw .

Adding all these terms and equating the sum to zero, one can find

1. A*(D —4) _ (D—-4)(D—-3) ,,_ A*(D —4) _
_;Aguu - QDCYWgW - 27(D _ 2)(D _ 1)A Guv — Qﬁw%u =0,
and

1 (D — 4) (D —-4)(D -3)
“oan (=22 POV oy (64)

where A # 0 [1, 12]. Several comments are in order here: In the string-inspired
Einstein-GB model (o« = # = 0 and v > 0), only AdS background (A < 0) is
allowed (the Einstein constant s is positive in our conventions). String theory is
known to prefer AdS to dS [1, 13] and we can see why this is so in the uncom-
pactified theory. Another interesting limit is the “traceless” theory (Da = —(3),
which, in the absence of a v term, does not allow constant curvature spaces unless
the Einstein term is also dropped. For D = 4, the v term drops out, and the
pure quadratic theory allows (A)dS solutions with arbitrary A. For D > 4, (6.4)
leaves a two-parameter set (say «, ) of allowed solutions [1].

Now we will linearize the total energy-momentum tensor 7}, to first order in
h,, and define the total energy-momentum tensor 7,, as we did before. With
the help of equations in appendix A, the total energy-momentum tensor can be

calculated (shown in appendix B)

.1 4ADa . 4N AAY(D —3)(D—4)
I R R s o
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- - = 2A
+(204 + ﬁ) (g,ul/D - Vuvy + q > RL

_ 2A
+3 <Elg,fy - 1)9,WRL>

2 1 (D=9 (D —4)(D —3)
—2A h“”{2A/@+ (D_Q)Q(Da+ﬂ)+ (D—2)(D—1) } (6.5)

Using (6.4), one has 7,,(g) = 0 and the last term also vanishes, yielding

L[ 1 4AD 3
L = G {-it gt )

- oA\
+(2a + ) (g,wlj - V.V, + D= 2)gw> R
+53 <|i|g,fy 1 DQf 1)g,WRL> . (6.6)

This is a background conserved tensor (V#T),, = 0) and it is checked explicitly
in appendix B. An important aspect of (6.6) is the sign change of the  term
relative to Einstein theory, due to the GB contributions. Hence in the Einstein-
GB limit, we have T, = —QWL /K, with the overall sign exactly opposite to
that of the cosmological Einstein theory. However, this does not mean that E is
negative there [1, 14].

There remains now to obtain a Killing energy expression from (6.6), namely,
to write &, TH as a surface integral. The first term is the usual AD piece (4.21),
which we derived in chapter 4. The term in the middle (which has the coefficient
2ac+ (3), is easy to handle. First we take the indices up and than operate on this
equation with a Killing vector, say &,,

27
(D=2

E'ORY — ¢YVHV,RY + MRy (6.7)
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In the first term the covariant derivative must be taken outside to get surface

terms:
VL VORL = Vo(E"VORL) — (Vo&")(VRyL)

= Va(€"VORL) — V(R VYEM) + Ry (DEY)

2A

= V(@R - BV -

Rr&".

In the second term of (6.7), we can easily change the places of covariant and

contravariant derivatives because of the Ricci scalar Ry, that is
&'V, Ry, = &'V, V'R,
and making the v — « substitution, we have
EV V'R, = Va(E°VFRL) — (Vo) (VFRy)
= Va(§*V*Ry),
where V,£% is zero because of the Killing equation. Inserting these results into

(6.7), the surface terms can be taken out

E'ORY — ¢VVHV,RE + 'Ry

(D—-2)

L - _ 2A L
= Vuoll'VORp — RV} — Rp&" + ———R&" — Vo (§*VIRy)

(D —2)

(D —2)
= ?a{g’”?O‘RL — EQ?NRL + RL?“EO‘} .

The last term in (6.6) can be written as a surface term plus extra terms:
LOGY = &V,VG”

= Vo{& V") = (V&) (VOGL)
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where we have put the Killing vector inside the covariant derivative. In the second
term we can freely move the « indices and afterwards, we can also take terms

inside the covariant derivative with an extra term. Hence, we get
&OGH =V {& VG — GI'VE} + GHTK, .
Now we can add and subtract the terms V,{£,V*G#} and V,{G3'VHE,}
&OGL = V& VoG =& VIGY — GV, + GRVVHE, )
+HGIEE, + Va{&VHGE} — Va{ G VHE ).
If we expand the last two terms we can see that: (i) When the covariant derivative
hits on the Killing vector &, it will be zero in the first one with the use of (2.1),

because o and v are symmetric in G#”. (ii) With the help of Bianchi identity

(4.19), the term (V,G8")(V*E,) is zero. Hence we are left with
06 = Val& VG = EVIGE — GI'VeE, + GIVVHE,}
+OITE, + E VL VG = GV VG, (6.8)
Using (B.1), (B.2) and (B.3), we can write £,[1G}" as a surface term. Collect-

ing everything, the final form of the conserved charges for the generic quadratic

theory reads

_ A _
QO = {1t gD+ ) [Py 6 0
+(20+ B) [ dSi/=G{EV Ry — €V Ry + Ry VIE)

45 [ S TTETGE ~ LG — GTE + GETE ). (69
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Now let us compute the energy of an asymptotically SAS geometry that might
be a solution to our generic model. Should such a solution exist, we only require

its asymptotic behavior to be

D-3 D-3
hoy ~ + (T) R X (TO) +O(r2). (6.10)

,
It is easy to see that for asymptotically SdS spaces the second and the third lines
of (6.9) do not contribute, since for any Einstein space, to linear order

R =" h,, (6.11)

which in turn yields R, = §* R}, — [2A/(D — 2)]h = 0 and thus G}, = 0 in
the asymptotic region. Therefore the total energy of the full («, 3,~) system, for

geometries that are asymptotically SdS, is given only by the first term in (6.9),

Ep = {—1+ il 2(oéDjLﬁ)} (D_2)7"63_3, D > 4, (6.12)

(D —2) 4Gp

where «y is implicitly assumed not to vanish. For D = 4, equivalently from (6.5),

it reads (for models with an explicit A)

To

By = {1+ 2\n(da + 9)} o
4

1]. (6.13)

In D = 3, the GB density vanishes identically and the energy expression has
the same form of the D = 4 model, with the difference that rq comes from the

metric (5.8) [1].
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From (6.12), the asymptotically SdS solution seemingly has negative energy,

in the Einstein-GB model:

ry " (6.14)

While this is, of course, correct in terms of the usual SdS signs, their exact form

is [14]
ds* = goodt® + grrdr® + r*dQp_s (6.15)
2
_ —g! = 1 r
900 = Grr + 4ky(D — 3)(D — 4)
,D-372
x |1+ [1 +8y(D —3)(D — 4);2)—1] : (6.16)

Note that there is a branching here, with qualitatively different asymptotics:

Schwarzschild and Schwarzschild-AdS,

D-3
To

_ = 1—(=

goo <r> )

= (?)D‘?’ "D —;(D —4) (010

[Here we restored v, using #y(D — 3)(D — 4) = —I(2.] The first solution has the
usual positive (for positive 7y of course) ADM energy E = +(D — 2)rP =3 /4G,
since the GB term does not contribute when expanded around flat space. On the
other hand, the second solution which is asymptotically SdS, has the wrong sign
for the “mass term”. However, to actually compute the energy here, one needs

our energy expression (6.9), and not simply the AD formula which is valid only
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for cosmological Einstein theory. Now from (6.17), we have

D-3 D-3
() e = () voud), (6.18)

r

whose sign is opposite to that of the usual SdS. This sign just compensates
the flipped sign in the energy definition, so the energy (6.12) reads E = (D —
2)7"63 ~3/4Gp and the AdS branch, just like the flat branch, has positive energy,
after the GB effects are taken into account also in the energy definition. Thus,

for every Einstein-GB external solution, energy is positive and AdS vacuum is

stable [1, 14].
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CHAPTER 7

CONCLUSION

We have defined the energy of generic Einstein plus cosmological term plus
quadratic gravity theories as well as pure quadratic models in all D, for both
asymptotically flat and (A)dS spaces. The higher derivative terms do not change
the form of the energy expression in flat backgrounds. On the other hand, for
asymptotically (A)dS backgrounds (which are generically solutions to these equa-
tions, even in the absence of an explicit cosmological constant), the energy expres-
sions (6.9) essentially reduce to the AD formula [up to higher order corrections
that vanish for spacetimes that asymptotically approach (A)dS at least as fast as

SdS spaces| [1].

Among quadratic theories, we have studied the string-inspired Einstein-GB
model in more detail. This one, in the absence of an explicit cosmological con-
stant, has both flat and AdS vacua. The AdS vacuum has specific cosmological
constant and some of these are negative. These constants are determined by
the Newton’s constant and the GB coefficient. The constants that are negative

being fixed from the string expansion to be positive. The explicit spherically
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symmetric black hole solutions in this theory consist of two branches: asymp-
totically Schwarzschild spaces with a positive mass parameter or asymptotically
Schwarzschild-AdS spaces with a negative one. The asymptotically Schwarzschild
branch has the usual positive ADM energy. Using the compensation of two minus
signs in the solution and in the correct energy definition, we noted that the AdS
branch has likewise positive energy and that the AdS vacuum was a stable zero
energy state [1].

In this thesis, out of conserved charges our explicit examples were related to
the energy. In fact, with this formalism, we can easily study the angular momenta
of black holes in both asymptotically AdS and flat spacetimes.

Once a background Killing vector is given, our formalism provides us with
a conserved charge. For the case of angular momentum, we just take (in four
dimensions) the Killing vector to be £ = (0,0, 0, 1). For the details, we refer the

reader to [15].
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APPENDIX A

LINEARIZATION EXPRESSIONS FOR PURE QUADRATIC

TERMS

In this section, we will carry out the linearization of certain tensors that appear

in the equation of motion (6.2).

4 (RWWRPU) - <5Rupua)Rpg + Rupvcré (RM)

— <6Rupya>gap§90Ra9 + Rupugé<gapg90Ra9)

2

—ap-0o Aa
<5Rupua)g g (D _ 2) Jab

+R,upua{_(5gap)geaéa9 - gap(égQU)Rao + gapgea(SRoﬁ}

Using (4.6) and (4.7), we get

2
(D —2)

A + R;,Lpllo' {_(5gap)990 Aga@

(5(Rupva>Rm) = 5Rupwgap5g(D_2)

— g (6g") AGao + gapgagstae}

(D -2)
—ap 2
= (5Rupua)9 WA

_ 2 2
+RMPVU {_(590/)) (D _ 2)A - (59/]0) (D —_ 2)A + gapgeaéRaG} .
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Inserting (4.5) in R0

92 4N?

(Bume ) = 557 ~ oD
2A

+ (D—1)(D —2) (GwFpo = GuoGow)

4A
op
X {59 (D—2)

expanding the parentheses in the second line we get

2 (hl“’ - glﬂ’h)

h

9 4AN? 4N?
poY Lo g
O Bpro 1) (D — 2)ARW (D—1)(D — 2)2h“” T-nD -2
_ 8A” g.,h+ sA° h
(D—1)(D— 229" T (D -1y (D — 22"
2A L /= —fo so 0 14
FD—1)(D— ) enlIwd 70 = 000

By inserting the definition of A = gagh®?

§(RupeR”) = 2 AR+ N h
upvo - (D—Q) uv (D—l)(D—2)2 puv
4A2 - af = 2A L - =af
T =D =2 et (gD o) e
2A .
- (D-1)(D - z)RW
RLOA(D — 1) — 2ARE 2
= ( [ ( ) /W) + 4A h’#u
(D —1)(D—2) (D —1)(D —2)?
2 2A
_ A_ — af
-2 -1 -2""
. 2A I

R Vfae
(D—1)(D —2)" o099
where ﬁ/\gae = Rap,

208D -2)
(D—-1)(D-2) ™
4A2 2A L —Oa

Yoot o g

0 (Rupva R?)
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and the last term in the parentheses is equal to R*. We end up with

4A? 2A

2A
D-nD-22" "

Hupr B) = 5=

L
R, +

Now we will linearize R, p5q 12,77
I(RupoaRS ) = ((5R#pm)l:2,,p"a + RMPM(SRV'DM )
We follow the same path here

5(RupaaRvaa) = <5Rupoa)gpﬁggeganéw9n+Rup0a5(9pﬂgaaganRuﬁ9n)

2A

= D10 = 2) w575 G000 — Gundn)

_Rupaa((ggpﬁ)ggeganévwn - Rupoagpﬁ@gae)ganéuﬁ%

_Rupaagpﬁgae(égan)éuﬁ%] + R,upaagpﬁgagganéRuﬁen .

Using (4.5), we have

2A

O(Rypoalty”") = (D-1)(D-2)

{(0Ryp0a) (07 85 5°" — 67 65 5°")

+ (guo—gpa - guagm)gpﬁ (5909 )gan van}

4N?
“(D-17(D-2p

x{(69°7)57° 3" (GuoGpa — GuaGpo)(GooGsy — GunTse)
+3°°(69°°) 3" (GuoGpa — GuaGpo ) (GueGan — GunGse)

+gpﬁ§09(6gan)<guagpa - guagpa)(gVHgﬁn - gungﬂB)} )
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expanding the parentheses we get

2A (
(D—1)(D—-2)
+85 60 §*" S Rypoy — 07162 57° S Rypon }

4A?
“(D- 12D -2)

0 (Rumeupm> 5R/mm)gan - (5Ru9av)§eg

5109728, — 616,)(Gv6gm — Gundse)
+5909(§pﬁ§u052 - 5552)@1/99517 — Gungse)

+69°(6005 — 5% Gua03) (GuoTsn — GunTse) } -

We rewrite the indices according to the Kronecker delta factors

. 20 B "
S BRupwalt™) = 5y =gy (ORuma)d™ & (OFuo)g"
(6 Rppun) 7" — G0 Ryoy}
AN o o
(D —1)%(D - 2)? {097(8,,07 GuoGpn — 0, 07, Gms0

_52 (Sz gungﬁn + 62 6;‘; gungﬁe)
+69°°(67 67 GuoGuvo — 07 64 GuaGony — 62 67 GuoGan + 05 07 GunGse)

+0g°"(6), 0% GuoGsn — 05, O GumTso — 05 07 GuaGsn + 05 0F GuaJum) }

8A L 2A B
N (D_l)(D—Q) R‘uy_ (D_l)(D_Q)(hm/_gm/h}
(D- S?D ) (4hgy — 6hyy + 2Dhy,)

collecting terms, we end up with

poay _ 8A I SA2
WBpaalt) = 5 o9y ~ = —2pp e &Y

The calculations for the Riemann tensor squared are similar but longer. We start
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as usual
5(RWUQR“'D"O‘) = (5RWMR“”U°‘ + RMPUQ(SR“”“‘
= (5Rupoa)§wé7pngaegwRﬁn% + Rupoa(S(gwgpngaegwRBnHV)

2A
— —uB =pn =06 —av o
(5Rup0a)g g'g g (D _ 2)(D _ 1) (gﬁﬁgnu gﬁuQn@)

_Rupaa{<5guﬂ)gpngaegauéﬁn9u + guﬁ(é‘gpn)gUGgaVRﬂney
+3"°5"(897)g*" Ronow + 9""5""5°° (39™" ) Rner }
+Rupoaguﬂ§pn§09§w5fgﬁn9v :

Again we insert (4.5), except for the first one which will be done later,

Ry ") = 5RO = 257 5™)
-R {(5 uﬂ)fpnfff@fow 2A (f 5 = )
e g g9 g (D — 2) (D — 1) 9pednv 9pv9ne
+5"%(3g") g7 g 24 (G809 — GpvGno)
(D—Q)(D—l) nv Bvdno
g7 (Gl — Gs0)
(D — 2)(D — 1) 360 Gnv 9pv9ne
+3"g"57 (69™) 24 (950G — GovGne) }
(D — 2>(D — 1) B809nv 9svne

2A
G a.. —a a )aCama%q SR '
+(D_2>(D_1>(gwgpa Jualps)9"" 5”97 G Bnoy

Expanding the parentheses and renaming the indices we get

2A
ppoo GG _ (§ —op o
O(Rypoal? ) (D—2)(D—1) {(5Rupaa>g g ( Rupoa)g g
+(6Rpnov) 5" 5" — (6Rpnen) 5" 5™}

_ 2A
_ KO\ =por pa) Zpo PO =OfL
Rypoa D2 D - 1){(59 )5 = (09"*)g"” + (09”*)g

—(097)g" + (64°")g™ — (64°")g"" + (69°)g" — (69°")™}
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Now inserting (4.5) in for the background Riemann tensor

2A
(D—-2)(D-1)

+(0R3000)5”° " + (6Rpye) 7" 5" }

8A2
(D-22%(D-1

+(097)g7" = (69”)g™"} -

O(Ryupoa B7) {(0Rupoa) 975" + (0 Rpupac )9 g™

)2 (g,uagpa - g/wé.apo){((sg/w)gpa - (5gua)gpo

Collecting terms we get

ppoay 2A o [ L 2A _
™) = 5yt {7 (B~ G5y )
—ap L 2A _
o (RW REEEN “"“‘”)
N e e ()

L 2A _
-7 (R~ gy )}
8A?
- (D—=22%(D-1)?

x{hD —h—h+hD+hD —h—h+hD},

and
2A 2A
Upo — —op pL —ap L
§(Rpoa R7Y) D-2D-1) {g RW+<D_2)h+g R,
2A 2A 2A
h+ 3Rl + ———=h+g" R}, h
To-y" T T ooy T e T p Ty

32A2 b
(D-22(D-1)

To get the linear form of the Ricci scalar, we remember that h = g"”h,, and
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write it in a suitable form

2A

O Bupoa ) = gy W0 e+ 07 B+ 57 Ry
H Rl 2>h} T - ;QA(D —n"
2
- oo e~ paEm
2
R R AL
2
= 22)?0 9 Ba (oo 512\(1) "
2
o= 22)?1) . 1)55”3”5” D= QZ;/?\(D —)
= BT e BB
= 22)?13 9" Few — (o 22)?1) 1) (D2j—\ 3y Jual
R A e e
o= 22)/(\1) - 1)95%5” (D - 22)1(\1) —1) (DQI—X 2)§ﬁ”hﬁy

+ (57 Rly — Rooh™) + (57 R, — Ra k™) } .

All the terms in parentheses are equal to the linear form of the Ricci scalar, finally

we have

8A
(D—-2)(D-1)

(RypoaR'P7*) = RY. (A.3)
Let us calculate §(RR,,, ), that is,

§(RR,,) = (6R)R,, + ROR,, .
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Using (4.6) and (4.7), we find

2DA

— L =
d(RR,,) = (D - Q)Ruv + (D - Q)Q#VRL. (A.4)
The R?,R,, term can be linearized as follows:
5(RU[LRVO') - 5(900R9uRua) - (5R9/J,)Ruagae + Rap,((sRl/U)gae - RQ,LLRVO'(SQUG )
using the same procedure we get it as
2A 2A
(R vo - d 1 g°° Gvo Gopu (0 vo g°°
4\?
~0uad9”
g@ug g (D . 2)2
4\ I 4\?
— mR‘U’V — mhuy . <A5>
For linearizing wa, the same procedure can be applied
R, = O0(R™R,,)=05(g""g""RosRy.)
= (6Ro3)g"" 5"’ Ry + Ropg"’g" (0 Ry) — Rop(69"")g"" Ry,
_Réﬁguo(dgyﬁ)Rmx
2A 2A
_ G0 v Gl v
(5R9ﬁ)g 9 " Guv (D — 2) + 9989 g (5R;w) (D — 2)
_ g AA? ~ o ANZ
_gaﬁ((;gu@)g ﬁgwm - geﬁ(5g ﬁ)guﬁgm/m
2A —v, —v,
= m{(539ﬁ)559 b+ (0Ruw)05g 7y
4\? o 5 _
—m{(csg“e)%gw, — (dg ﬁ)559pu}
2N —vp D vi3 gy I 1224
= - 2){<5Ruﬂ)g — Rypdg™ + (0R,u)7™ — Ruwdg"'}
4N\
= (D_Q)RL, (A.6)
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where we have used (4.6).

We know that

5(Ruaupgap) = (5Ruaup)gap - Rual/p(sgap = RL

(78

and

(0Rpunp)g”” = RE, + Ryuppdg™
27

= . Guv9op = JupJor )R’
Ruu+(D_1)(D_2)<gugp gupg )
2A
= R, — Py — Gurh) - A.
With the help of (4.7) we get
. ~ 4AD
§(R?) = 2RSR = 2RR" = D9 RE. (A.8)

Using (8.3), (8.6) and (8.8) we can calculate the linearization of the GB combi-

nation as
O Bonp = 4By + 1) = (5= 15;/(\D R (D1 6—A2)RL i (éA—Dz)RL
- &= S](\D gy (D" = 5D + 6"
- S?D 5 (D= 3D - 2R
— WRL : (A.9)

2

Let us calculate the GB density of a cosmological space: Using (4.5), the R?, o0

term can be calculated,

> D PTAPT 2A = = ~ = \=T0-A\B-py-oa D
R72')\po' = RT)\IDJR AT — (D — 1)(D _ 2) (g‘rpg)\a - gﬂ'ag)\p)g Gg)\ﬁgp'yg Reﬁ'ya
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AN?
D=1 =27

8968 g7 g7 — 6265 57'57) (GovFse — GoaTsy)

- (D- 1?2A(D - 2)2(D2 — 0305 = 050, + D?)
4N2 8A?
N (D_1)2(D—2)22D(D_1) B (D—l)(D—2)2D' (8-10)

For calculating RZ, we use (4.16)

4A?

R’ = R,,R’" = R,,Ra5" 5" = mgopﬁﬁogaﬁgp ’
— (041—\22)25% = (D4/_\22)2D, (A.11)
and for R? we use (4.7)
R? = (D4_A22)2D2. (A.12)

Hence the GB density, which is RZ,,, — 4R2, + R?, can be calculated with the

help of (8.10), (8.11), and (8.12) as

_ _ _ ]AZ2 16A2 4\2
2 P2 2 _ _ 2
Foxpe = 4ty + I D-DD—22" -2z 22"
_ N o3 (A13)
- (D-1)(D-2) ' '
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APPENDIX B

KILLING ENERGY EXPRESSION FOR GENERIC

QUADRATIC THEORY

In this section we are going to derive equations of motion coming from the action
(6.1). We will look at term by term and carry out the calculations, ending with
collecting all terms together. We are going to take all terms in dg"” parenthesis

for finding the variation.

1 1 1
I, = /de\/—_gER =6, = /de\/—gﬁRJr /dDw;(\/—g)*R

K
1
5(\/_9) = _iv_gg;wég'wj
p 1 1 L
o, = /d xg(\/—géR—?/—ggm,ég R)
R = 69" Ruw) = (09")Ryuv + 9" 6(Ry)
0(R.) = Vaol'y, —V,dly,

oR = (6g")R, + 9" (Vaoly, — V,.0T5,)
The second term is zero and we are left with

OR = (0g"") R ,
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and

1 1
]1 == /dD.fC;\/ _g(Ruy - §g,u,l/R)6g’uy .

Next

5::/W%E@m:m@:/fﬂﬂmﬁmm+wgw&m}
1
o = /de\/—g&{—igW@g“”)RQ + 2ROR}
R(6R) = (6¢")R. R+ Rg" (5R,,)

Rg"™(0R,,) = Rg"™(Vaol', —V,.0l5,),
(in the second term we make the change : u < « )

Rg"(0Ru) = R(Vag"ole, — Vag® oIt

= Vao{R(g"0I7, — g™ol},)} — (9"017, — g*ol), ) (VaR)
The first term is zero.
Rg™ 5 Ry = (0T, — g%, VR |
using (4.13), we get

1
ngj<6RMV) = {zgaug;w(Vuégm/ + vllég,tw - vaég;w>

1
- igul/gow(vu(sgmf + Vl/(sgau - Vodgm/)} VaR,

(in the second term : ¢ < v)

1
ngj<6R#V> = {zgaugucT(Vuégm/ + Vllég,tw - vad%w)
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_ ;gwgw(vuagyo + Vo0guu — vyég,w)} (VaR)
- {;2g*“’g‘””(vyf59W - Vaégw)} (VaR)
= "79"(V169u0)(VaR) — 679" (V409,u) (VaR)
= 9"9"{Vu((0gus)VaRt) = (VuVaR)dgpo}

+9"7 9" { =V ((09u)VaR) + (Vo VaR)dgu}
= —g""¢"(V,VaR)0gu0 + 9" 9" (Vo VaR)6g,u
= — " (VOVaR)0gu0 + (V*VR)dg,,

= Guo(@R)Ig" — (V,V, R)og""
and taking ¢ — v in the first term
Rg""(0Ry) = 9w (@AR)0g" — (V. V, R)Gg™ .
Therefore
R(OR) = 69" Ry R + 9, ([OR)0g™ — (V,,V, R)Og"
and we end up with

1
512 = /de\/ —goz{_ﬁguuRQ + Q(RWR + gﬂ»l/DR - V“VVR)}(;QW

1

_ / dPay/=g{20R(R,, — 19 R) + 2090~ V,.V,) RYog"

For the 3 part we do similar manipulations

I; = /dDa:ﬂRfW\/—g

o7



Ty = [ B R R S/) + (R B+ R GR)y5)
— / dPxB{ R, R*5(v/=9) + (6 Ru) R* /=g + Ru6(9"“9"" Rap)v/—g}

= 6l; = / deB{—;x/—_ggap(@”’J)RuuR‘” + (0Rw )R/ ~g
+Ru[(59") 9" Rap + 9"*(09"") Rag + 9" 9" (§Rup)]V/—g}
= [ AP aBV A 0p(607) By B+ (5 R
+R,(09")9"" Rag + Ry g" (69" ) Rap + Ruvg"“ 9"’ (6 Rag) }
— [ a8V 369" Ra B + () R
+ Rua(09")9% Ry + R3g™ (59" Ry + Ry 9" (0 Ras)}
= [ a8V 0 R R+ R Rua+ R R} (697)
+/ deff\/—_g{(éRw)R“” + (9Rap) R}

_ / APz B/ —g{(~ gW RypR7 + 2R, R,5) (69" + 2(6 R, ) R" }

Let us look to the second term, that is

R"(6R,,) = R"™(Vaol%, — V,0T%,)
= RMV,0T%, — R™V,0TS,
= Va(R™6TS,) — (6T%,)VoR™ — Vo (RO6TY,) + (612, ) Vo R

= (oI, )V R™ — (01, ) Vo R .
The first and the third terms are boundary terms. Using (4.13),

1
R'LW((;R#V) - §g#ﬁ(vuégllﬂ + vu5guﬁ - Vﬁagw)(vaRw)
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_;gaﬁ(vuagw + V0095 — V589, ) (VaR™)
= ;g“’g(vy&luﬁ)(vaRw)
_ _;guﬁagw(vyvam") + ;gaﬂéguﬁ(vﬂaR“”>

1 1
+§gaﬂagug(v,,va3ﬂ”) - §gaﬁ(5gu,,(VgVaRw) .

In the third term we change v with p

1
RY(0Rw) = 50u809" (VuVal™) + g700,5(V,. Vo ")

+;5gﬂ”(vava1~zw) .
In the first term [ goes to v
R¥(6R) = 30u(TaVaR™)0g™ + (V0 R)5g,;
+;(DRW)59"” .
The first term can be calculated by using the Bianchi identity

1
va(Raﬁ - §gaﬁR) = Oa

1
Vo R = 5gaﬁvaz«z

1
VsVaRY = 5g@ﬁvﬁvm
1

ViVl RY = 5vava,
af 1
VsVaRY = ng.
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The second term can be calculated as follows:

Vi VaR'Y = [V, Vo] RY + V, VR
= Rua"A\RY + R sR"™ + V.V, R

= RoR™ + R,o"\R" + V.V, R"
from Bianchi identity the last term is %VQV”R and

1
9PV NVoR" 59,5 = R°\RMSg,5+ R, \R"5g,5 + §vﬁvvz-25g,,ﬁ
1
= —RpR 09" — Rp R 6977 — §V5VVR6g”ﬁ
1
= —R,R6¢" — RpunR™ 69" — 5 VuVuRog"

1
= (=R,sR°, + R,p,,R" — 5 VuVuR)og"
And the § part of our integral becomes

5 = [ dPapy=g {—;gﬂngpRgp +2RR,,,
+ S0u(OR) — (VuVLR) + @R) | 69
A N {—;guuRng"p Y 2RR 0,
+ (OR) = 3,(OR) = (V) + OR,) o9

1
0l = /de\/ —g {25(Rual/p - ZQWRUp)RUp

1
+ 0By = 39 B) + B9l = V, VL) R} 09"

In the v part, that is, Iy = dex\/—gv(wapa — 4RZV + R?), we will only find

the variation of the first term. Others have already been calculated.
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Our starting point is as before,

5, = / Aoy {6(vV=9) B2,y + V=90(R2,,,) }
D L op
—4/d TN/ —(g {2”)/(R;wup - ZQMVRUP)R

+ 0(Rw — ;QWR) + (g — V,NV)R} 69"
+ / dPz\/—g {273(1% - igwR) +27(9, 0 — VNV)R} 09"
5, = [ @Pev=gn {—; I (8G™) Ry R+ (R ) RHP
+ Rupo 6 (R™77)}
51y = [P/ {069 Roago BV
+ 6(9usR% 10 ) R + Ryupod(9"° g7 g R* ﬁea)} >
= [ 4P {500 B + (00) o R
+ R (89" )R gga + R, 5(69°7) R 5pa
+ R (09" ) R g0 + (GR ) R + R, (GR" gga) }
5T, = [ 4P 50 (00 B + (300 (R e B
+Rp, (09" ) R’ 190 + Ra™, (89" R gy,

+R,’, (69" VR gye + (OR”,,0) R5"" + R (SR’ ) } -
In the last term we make the y — (3,3 — v,0 — p, @ — o transformations.

1
51, = [ AP0 G L0 00 ) Ry + (0"~ Ruso B
+Rﬁy9aRBy0a + RaﬁeuRaﬁOu

"’RpﬁuaRpﬁua} + 2(5R5Vpo)RﬂVpU} :
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In the term R,%,*R’g5,,, we make the changes o — p,0 — «a, < v to get

oI, = / dD:c\/—_gv{—;guu(ég“”)fopg
+(69" H{—Rupoo Ru™ + R " R’ ypo + 2R,° " R g0}
+2(0RP,,5)R5"}

51, = / de@v{—;guy(ég“”)R%pa
+(09" )= Ruppo 9uo R + guo R Rppgn + 2R, R’ pua}

+2(0R°,,0)R5""7} .

In the term g,,URB"eaRguga, the suitable transformations are v < p,o0 < 0, a —

p:

oI, = / dD:v\/—_m{—;guy@g“”)fom
+(69" ) {—Ruppoguo R + 946 R’ Rayop + 2R, " R o}
+2(0R? 0 ) R5"7}
5t = [ Py 00~ 5 R
+2R,5 R 5,0) + 2(6R” 0 ) R5"}
ol = / de\/—_gv{@g“”)(—;gwR%m + 2R *Rypua)
+2(0R" ,5,)R5""}
51 = [ a6 ) (=0 o + 200 R R

2
+2(6R? 5, ) R5"} .
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Setting 6 < a, p — o in g,p R’ R,5,,, We have

1
ol = / d727/=g7{ (89" ) (= 59 Brgp + 201 B Ry o)

+2(0R",5,)R5""} .

guaRoﬁo‘eRaﬂue = ngaeggRyegﬁ

= RuegﬁRueaﬂ

and making the substitutions y «<» v,0 — 0,0 — p, 3 — 7 will give us R,7?"R;5 -

and
ol = / de\/—_gv{(@“”)(—;gwRim + 2R, Ry pr)
+2(0R" ,5,)R5""} .
The last term is
R (0R" yp) = Ry 7P (OR" o)
where we have changed [ with p. Using (4.15)
RS7P(6R",6p) = R,S7P(V0IY, —V,0T0,),
= RV, — R,V ,0I%,),
= R,V I, — R,V ).
Here we only change the names of indices (p with o):
R,)7P(6R",,p) = 2R,V 0T,

= 2V, (R,”PIY,) — 2(V, R, *)dLY, .
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Using (4.13)

1
R,P(R",,,) = —Q(VURMW”)Eg“ﬁ(VVdgpﬁ + V09,8 — V3up)

= —{V.(V,R""5g,5) — (V,V,R*")5g,s
+V (Vo R?5g,5) — (V, Vo R7P)5g,5
~V5(VoR??8g,,) + (V5V,R")5g,,}
= (V,V,R*")5g,5 + (V,V,R*"")5g,5 — (V3V,R*"")ég,,,
= —(V,V,Rs",)69"" + (V,V,Rs,7")5g""

_(vﬂvaRﬂuap)agW) )
for obtaining d¢g"”, we make suitable changes in the indices

R,7P(OR,5,) = —(VsV,R,,)6¢" + (V,V, R, ")6g"

—(VVaR%,7,)5g™ .

The term in the middle will vanish because of symmetry and anti-symmetry of u
and v indices.

R,"P(OR",5,) = 2(VsV,R",7,)5g" .

In the Bianchi identity we have
VURa/gw, + V“Ra@,a + VVRagcw =0,
when we replace the ¢ index with «

vaRaﬂm/ + V,uRaﬂua + VZ/Raﬂa,u = O:
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changing indices: a« — o, f — v, u — [, v — pu we get
VURU,,gM + VgRaww -+ VMR"Wg =0
= V.R,p,=VsR, —V,Ry3,

= VV,R%,5,=V°VsR,, — V°V,R,;3,

= V3V,R°,°,=0R,, — V;V,.RS'.
The last term can be written

VsV.R," = [Vs, VIR, +V,VsR,",
= Rgu R\’ + Rs," R, +V,VsR,7,
1
= Rgu R\’ + RuR> + 5gyﬂvuvﬁR,

= —Rus, R\’ + RnR,> + ;VMVVR,
making suitable index transformations we have
VsV,R,” = — R0, R + R R, + ;V,N,,R.
Therefore we get

1
5Ty = [ P G (g Ry + 2R Ry

+2(20R,, + 2R,50, R — 2R, R, — V,V,R)}
and

1
61y = / dD:c\/—m(5g“”){(—ggwRiAgp+2Ru”’”3wm)
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+2(20R,.,, + 2R,100,R7* — 2R, R,” — V,V,R)}

1 1
_4/deV —9{2v(Ruovp — ZQMVRGP)RGP + (R — ig;wR)

+’Y(9/w - VuVV>R}(59W)
1
+ [ oV = DR B = G0 + 2908 = ViV RYGS™),
— 1
514 B /de _97(5glw){_§gle72')\0p + QRVUPTRIWPT

1
—(4Ruop + 4R R — 29, Rop) 7P + 2R(Ry — Zgle)} )

and

1
oL = [ 2/ =gy (69" {39 By + 2R Rropr

1
—4R,-R,° — 4R 15, R°" + 29,, Rs, R°? + 2R(R,,,, — ZQ“VR)} .

At last we will add these integrals and get the equations of motion:

I = L+L+13+1,

1 1
— [t =i L)

1
+ [ @P2y/=g{20R (R (9 F) + 20(g0 — V,.V,) R} (39")

1

1
—i—/de\/—g{Zﬂ(RW,,p - ZgWRUp)RUp + FO(R,., — igw’R)

+5(9WD - VMVV)R} (59W)

v 1 opT
+ / dPz/=gy(0g" ){_§gMVRf2r)\ap+2RV " Ryuopr

1
—4R,,R,” — 4R,6,, R’ + 29,, Ry, R°" + 2R(R,,, — ZQWR)} ,

1 1
= [ @Pav=5{ (R = 3980
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1
+2aR(R,, — ZgWR) + (2a+ 8)(g,,0—-V,V,)R

+2v[RR,, — 2R,60,R°? + Ry pr R7PT

1
_2R,LL0RVG - 7g,LLl/(R2 - 4R<27p + Rz)]

4 TAOP

1 1
+B0(R,. — §g;wR) + 28(Ruovp — ZguVRop)Rop}(égW) .

Hence the equations of motion is

1 1 1
E(RMV — EgMVR) + QQR(RMV — zg’w/R)
+(2a+ 08)(9,,0-V,V,)R

+2v[RR, — 2R,60,R°? + Ry16pr R7PT

1
—2R,R,” — ZgW(RQ

TAOP

2 2
— 4R, + R7)]

1 1
+ﬁD(RNV - §ngR) + 26<R,um/p - ZQWRU,))RJ’) = T -

In this part we will find the linearized form of equations of motion that we
derived in the previous section. Then we will check if it is a background conserved
tensor or not. At last the generic form of Killing charges will be found.

Let us start with the O(R,, — 1g,,R) term of the previous equation.
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1 1

1 I = 1, - 1 _
0(ORw = 59uBR) = @ORw)" = 39u0R" = ShuBR = 29, )" R.

The last two terms vanishes and we get

1 _ _ 1
@OR.)" — 3 gwOR" = ORL, + (O) R — 3 9., aR"

_ 1 _
The linearization of Box operator is,

@rd = (V'Va)rguw,

Vagw =0 = (Vaguw)r =0,
= (Va)rguw + Vahu =0
= (Va)gw = —Vahu ,

Vaguw =0 = V*Vag, =0
= (VVagu)L =0,
= (V)eVabuw + V(Va) LG + Dl = 0,

and we know that

(V)VaGuw =0.

Therefore,

(D)ng/ = (Vava)Lguu = (va)Lvaguu + v0[(vo¢)L.§_7,u1/ = _Ijh;wa
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1 _ 1 _ 2A
S(@Rw — =G = ORy, — 5GuOR" + ————0h,
QR = 398R) = BR}, = 55,08 + 55— 0h,

_ 1 2A
- D(Rﬁu - ig#VRL + (D — 2) hlw)

=

The other terms can be linearized as usual and we get

_ 1 1_ 1 _

T = Tu(g)+ E(Rﬁu - §9WRL - §h;wR)
L(P L 5 R e T
+2aR* (R, — ig#,,R) +2aR(R,, — ZQWR - ZhWR)

+(2a+ B) (g0 — V,.V,)R"

+27[6(RR,) — 20(RyusupR’) + 0(Ryuopr RLOPT)

1
~20(R,oR,%) — Zg,wa(}ziw —4RZ + R?)
1 _ _ _
_ZhMV(RzAap - 4Rc2rp + Rz)]

_ 1 1
+5Dg/,[;y + 26{5<RuaupR p) - Zg,uva(R?Tp) - ZhMVRczrp}‘
Using (4.5), (4.6), (4.7), and equations of appendix A, we can reorganize the

above equation: Lets start with adding and subtracting ( D2‘/_\2) to the first term.

B O B M, 1,
A - K/(R;LV 2g,UJ/R (D . 2) huy + (D _ 2) huy zhul}R)

_ Lo =D)AL

— n(g“”+ (D—2) hu) = k(QW—AhW).

We make the same things in the « terms

I T 1 1
B = 2 (RLRW — (0w R R+ RRL, — 25, RR" 4hWR2)
2A 1 2DA 2DA
_ 9 REg. — ~g. R L
“QD—@ I = gD =gy H e D g
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1 2DA

L
19 p—g)tt

1 4D?A?
1™ (D=232)"

adding and subtracting %hw we have

_ 4aDA o 1 1 1
5= o=y (R“” 39w OB = (g B
2A 2A 1 2DA
-yt ooy 4h“”<D—2>> ’
and
4daDA 4ah_ _,  2a(D —4)DA?
- JRY — o
5= oy T o M

For the v term we do the same calculations and we end up with

2AD 2A
— 2 L — L
¢ 7{<D—2>RW+<D—2>~‘”“”R

oA, 20 . AN
_2<<D—1>RW+<D—2><D—1>9“”R fo—2rm-p™
SN, 8A2 ,
oD -0"™  D=22D-1)"™
M, A
~ A g g
1 4(D—3)A_, 1 4D(D —3)A?
T Y T A -1)(D—2) W}’
ARE,
= Ay RP(P ~ ) 4D ~2) +8 8D 1)
+(D_Ag’;”(g_1)[2(l?—1)—4—(D—3>(D—2)]
+(D_/;)2h&”)_1)[—16+8(D—1)—D(D—3)(D—2)]},
— D e (D H(D 1)
Ag,, R*
R URE i CRRICE
Ah, D? —5D? —2D + 24
RCED T S Al
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again we add and subtract - 2)h
4vA(D — 3)(D — 4) 1 I 2A
€= (D—2)(D—1) U, = 30kt _(D—Q)h’“’
2A A(D? —5D? — 2D + 24)

o= ap—nm_3m-1"

after some easy calculations we can get

4yA(D — 3)(D — 4) 29A2(D — 3)(D — 4)

L —
“TTo-20m-1 T D-m-1 "™
After the same calculations, the § terms can be written as
B 2A L 2A R
D = 2\ Bt g
4\? A, A%’D

R ) S R K 2)2’“‘”}
O ABN 26,
= Do T pogmh

B 28N, B 28A*(D — 4)h

(D — 1) (D—2)2 "™

We add all these to get the following result,

Tuw(h) = Tu(g)+ G,

1 4ADa 4A3 4Ay(D — 3)(D — 4)
{ (D-1) (D-1)(D-2) }

( D2/_\ Q)QW)RL
+H00k, ~ gy )
—2A%h,, {2/1\»; + ((g — 24))2 (Do + 3) + 7(%)__2?((5__1?;) } .
With the help of
-1 _ (D4 +(D - 4)(D - 3)

ST B A ) S T B )
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we have

4y(D-4)(D—-3) 2 4AND-4)_  4A(D-4)

D-1)(D-2)  x (D-22 " (D-27

and the constant terms of G/, becomes

1 4ADa  4A3  4Ay(D —3)(D —4)

K (D—2)+(D—1) (D —1)(D —2)
1 4ADa  4A3 2 4A(D-4) AN(D — 4)

s Ty =) k=22 P bo2p”
_ 1 4D 3
RV E

and, T'(g) = 0 that we show in our work, we left with

B I 4AD 3

2N
(D — Q)QHV)RL

+(2a+ 3)(guO— V.V, +

2A

D)

Lets check if it is a background conserved tensor or not. We already know
that GJ, is background conserved tensor. Therefore, we will only show that the

derivatives of the last two terms are zero.

_ - - 2A
(= o — L
V(50 = ViV + g0k
_ v rArL A9 L v L
= VOR! OV R o+ 55 VR

If we change the places of the derivatives of the first term we find

2A

i v L
CEDNG

V.OR" =0V, R" —
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and

__ _ 2N =
L L L
V. OR" —OV, R + D Q)V,,R

V,RY—0OV,RF + V,Rl=0.

= OV - (D—2) (D —2)

Let us look to the V#(OGY, — %@WRL) it is VOG), — ([?_Xl)?,,RL. The

VHOG, can be written as

pv

VgL, = VM, VOVGE +EVEGE
= VOV VG, + [V, VPIVsG,
= V73" Ve, VilGr, + 3" [Ve, V5 VIGy,

= VP9 (Rop, G, + Rop,GL)

+7" (Rog”\V*Gh, + Rog VPGS, + Rop*VGL,) .

Using (4.5) we get

_ 2A _
VrEGE = —2 LG GE
W = =25 —yip—2) V9 Gne
Using (4.8) the gwgﬁo term can be written as
1 2A
wooL . uo RL o= L
9"G, 9" (Byie = 590 D 2)h;w)
1 2A
= §"“R,, — -DR"— ———h
9" e = PR =5

Here we use the linear Ricci tensor (4.16)

GGl = 59" (Do = Vi Voh + VAV ohg, + VPV hs,)
1 2A

—_ZDRLY _
2 k (D —2)
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and we end up with

(2-D)

—uo L L
9 ="—75 1t
where the V*OG/, term will equal to
_ 2N _
o L _ L
Vg, (D — 1)V,,R .
Therefore,
_ _ 2N — 2N -
o L RL — RL o RL =0.
VHOG,, (D_l)v (D—l)v (D—l)v

Hence, T}, is background conserved tensor.
There remains now to obtain a Killing energy expression from below equation,

namely, to write £, 7" as a surface integral.

1 4AD
76T = G, -t m@@ + (Dﬁ_ 1>)}

oA
(D — 2)9“”)RL

+(2a + 3) (g -V, V, +

2A
D-1)

+ﬁ(|jg£u - g;wRL) .

Here is some useful equations that will help us in this purpose.

From (2.1) we have

- 2A

I:I&/ = - (D _ 2) gw\gA ) (Bl)

and

Vo VHGY = [Va, VHGE + VIV, G

= Raya)\géy + Rau’/}\ggA
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using (4.5) and (4.6) we find

2AD

T KOV Qv —uy
VQV QL (D—Q)(D—l) L +g (D—l)RL
Therefore,
e = 2AD _ _
noov _ wo e
GV = o eI € oy (B.2)

From Bianchi identity we have

Ruve” + Rop® + Ryo” = 0.
Multiplying this equation with &5 we get
Ruo®Cs + Rop’é5 + Ryoil’é5 =0,
and using the commutator property of Riemann tensor we have
[vw vl/]gcr + [vm vu}gv + [vw vo]gu =0.

Expanding these commutators and using the Killing vector equation we get

and in the second term we change the places of ¢ and p with a minus sign where

it will be a commutation with the first term,

V., V,JE = =V, V,.E

Rmxoﬁgﬂ = _vavugu
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changing indices 0 — a, u < (8
_Rﬁya“gu = vav,@gy
Ruaﬁl/gu = ?a?ﬁgu

again using (4.5) we have

- 2A _
Vocvﬁgl/ = (D — 1)(D _ 2) (gggal/ - g;‘jgaﬁ)fu 5
= (D _ 1)(D _ 2) (gaugﬁ - gaﬁgy) . (Bg)
Therefore,
N S
(2) LDEZ/— (D—Q) L£u7
(i) EVavigy = 0 _ggr L _ap,,

(D —2)(D —1)
(iii) —G'VLVHE, = —G "V V5E,
2A
(D —1)(D —2)

A
“o_ptt

So that &,0G7 — (Dzi\l)g“RL can be written as

2A

(D—1)

p

G016 R = VG VUG - VG — G + 619
(e AR A
e Rt R
o= 12)/(\17 —y &L - (1)2f ¢ e
and
GO0 — oo R = VGG — 696 ~ GV + VI
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4N —
GEC

With the help of chapter 4, we can write

4AD S+ 6] 4A3

D-2* - T ooam-
+(20+ B)Vo{E*VARL — E*VHRL, + R VHE*}

c c v 1 a v
LT = &G {——+ &91

+ﬁ?a{gyﬁaggu - gyﬁuggl’ - ZV?OCEV + gg”ﬁuéy} .
The first two terms can be added to have

_ _ 1 8A
&I = & ZV{—; + W(O‘D +06)}
+(2a + B)Va{€'VORy — VI Ry + RLVIE}

+OV{E VG = E,VHGY = GV, + GIVIE Y,
and taking the surface terms where @ — ¢

_ A _
@O = -+ gD+ M) [0y
+(20+ ) [ dS/=g{E"V' Ry — EV Ry + RLVAE)

48 [ dS/THETGE 6 TGE — GIVE, + GEVE)

This is the final form of the conserved charges for the generic quadratic theory.
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