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ABSTRACT 

A NUMERICAL PROCEDURE FOR THE NONLINEAR ANALYSIS OF 

REINFORCED CONCRETE FRAMES WITH INFILL WALLS 

Güney, Murat Efe 

M. Sc., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. M. Uğur Polat 

July 2005, 125 pages 

 

Materially non-linear analysis of reinforced concrete frame structures with infill 

walls requires appropriate mathematical models to be adopted for the beams and the 

columns as well as the infill walls. This study presents a mathematical model for 

frame elements based on a 3D Hermitian beam/column finite element and an 

equivalent strut model for the infill walls. The spread-of-plasticity approach is 

employed to model the material nonlinearity of the frame elements. The cross-

section of the frame element is divided into triangular sub regions to evaluate the 

stiffness properties and the response of the element cross-section. By the help of the 

triangles spread over the actual area of the section, the bi-axial bending and the 

axial deformations are coupled in the inelastic range. A frame super-element is also 

formed by combining a number of frame finite elements. 

Two identical compression-only diagonal struts are used for modeling the infill. The 

equivalent geometric and material properties of the struts are determined from the 

geometry of the infill and the strength of the masonry units  
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A computer code is developed using the object-oriented design paradigm and the 

models are implemented into this code. Efficiency and the effectiveness of the 

models are investigated for various cases by comparing the numerical response 

predictions produced by the program with those obtained from experimental 

studies. 

Keywords: non-linear finite element method; reinforced concrete frames; 3D frame 

element; spread-of-plasticity; infill wall model; object-oriented design. 
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ÖZ 

DOLGU DUVARLI BETONARME ÇERÇEVELERİN DOĞRUSAL 

OLMAYAN ANALİZİ İÇİN SAYISAL BİR YÖNTEM 

Güney, Murat Efe 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. M. Uğur Polat 

Temmuz 2005, 125 sayfa 

 

Dolgu duvarlı betonarme çerçeve yapıların malzeme açısından doğrusal olmayan 3 

boyutlu analizinde gerek kiriş ve kolonlar için, gerekse de dolgu duvarlar için 

uygun matematiksel modelleriin seçilmesi gerekir. Bu çalışmada kolon ve kirişler 

için Hermit tipi kiriş elemanına dayanan bir çerçeve sonlu elemanı modeli ile dolgu 

duvarlar için eşdeğer çapraz çubuk modeli verilmektedir. Betonarme çerçeve 

elemanlarının malzeme açısından doğrusal olmayan analizi için plastisitenin 

dağılımı yaklaşımı kullanılmıştır. Çerçeve elemanının rijitlik özellikleri ile 

deformasyona olan tepkisini hesaplamak üzere elemanın gerçek kesiti üçgenlere 

bölünmüştür. Tüm kesit alanı üzerine yayılmış bu üçgenler vasıtsıyla çift eksenli 

eğilme deformasyonları ile eksenel deformasyonlar plastikleşme sonrası 

birbirleriyle ilişkilendirilmiştir. Ayrıca birden çok çerçeve sonlu elemanı 

kullanılarak bir çerçeve super elemanı oluşturulmuştur. 

Duvar modeli olarak iki adet eşdeğer ve yanlızca basınç altında çalışan çapraz 

çubuklar kullanılmıştır. Çubukların alanı ve uzunlukları duvarın geometrik 

özellikleri ve dolgu bloklarının malzeme özellikleri kullanılarak belirlenmiştir. 
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Yukarıda belirtilen modellerin uygulamasını içeren bir bilgisayar programı nesne 

yönelimli tasarım anlayışıyla geliştirilmiştir. Çerçeve elemanının etkinliği test 

edilmiş, ayrıca programın sonuçları deney verileriyle karşılaştırılmıştır. 

Anahtar Sözcükler: Doğrusal olmayan sonlu elemanlar yöntemi; betonarme 

çerçeveler; 3 boyutlu çerçeve elemanı; plastisitenin dağılımı; dolgu duvar modeli; 

nesne yönelimli tasarım. 
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CHAPTER 1  

INTRODUCTION 

1.1 Statement of the Problem 

Most of the structures, today, are designed based on the results of a linear elastic 

analysis and the principle of superposition. However, a realistic assessment of an 

existing structure requires a nonlinear analysis. This is especially important in the 

process of retrofitting and upgrading such structures for various reasons.  

Since the nonlinear analysis of real life structures is computationally very 

expensive, most of the analysis tools simplify the problem by, for instance, dividing 

the structure into 2D frames, neglecting the bi-axial bending, assuming the 

plasticity will take place at certain preset locations along the length of the members 

and neglecting the gradual yielding of the member cross-section. However, as a 

result of the rapid improvements in the computer technology in recent years, some 

procedures, which are computationally more expensive and more precise, are being 

proposed by researchers.  

Frame members and the infill walls are the main components of a typical frame 

structure. Although the infill walls are mostly considered as non-structural 

elements, it is known that they have important impact on the behavior of the frames. 

Several researches have been performed and some procedures have been proposed 

in the literature to model the nonlinearity of these components. A brief summary of 

such procedures are given below together with the key features of the object- 

oriented design in finite elements programming for their implementation. 

1



 

1.2 Literature Survey 

Nonlinear analysis of the frame structures has been studied by researchers for a very 

long time. Research results reported in the literature show that the presence of infill 

walls changes the behavior of the structure drastically. Therefore, their influence on 

the frame structures should not be neglected. 

1.2.1 Infill Models 

The behavior of infilled frames has been investigated by many researchers. Studies 

show that the interaction of the infill and the bounding frame determines the 

behavior of the structure. However, a detailed inclusion of the infills in the finite 

element model of the frame structures renders the model bulky and sluggish beyond 

practical limits. Therefore, there has always been an effort to represent their 

influence on the rest of the structure by a simplified model. Stafford Smith [1] 

proposed two pin- connected equivalent diagonal struts for modeling the infill 

walls. The model is based on the elastic theory. He has related the effective width of 

the diagonal strut with a dimensionless relative stiffness parameter as given below. 

4
4

2sin
hIE

tE

cc

i θλ ⋅
=        (1.1) 

Here,  

iE

t

 : Elastic modulus of infill 

 : Thickness of infill 

θ  : Angle between diagonal and horizontal of infill 

h

IE

 : Height of infill 

cc  : Bending stiffness of columns 
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Having seen the large gap between the theoretical and the experimental results, 

Stafford Smith [2] and Mainstone & Weeks [3] have separately proposed an 

empirical relationship between the effective width of an equivalent strut and the 

stiffness parameter of Smith [2] for masonry infills. 

There are also methods proposed by different researchers, which are based on the 

theory of plasticity. Woods [4] performed limit analysis of plasticity to determine 

the collapse load of infilled frame systems with the assumption of perfect plasticity. 

He has introduced a frame/infill strength parameter, and an empirical penalty factor 

to reduce the infill strength. Liauw & Kwan [5] have simplified this technique. 

However, they have neglected the shear forces at the frame/infill interface. They 

have proposed four types of failure modes by considering the plastic hinges on 

frames and infill crushing at corners. Both methods adjusted the infill strength in 

order to narrow the gap between the theoretical and the experimentally observed 

results. Saneinejad & Hobbs [6] have stated that the limit analysis based on the 

assumption of perfect plasticity may not be realistic since no plastic collapse 

mechanism develops at the peak load. Instead, a lower-bound solution was 

proposed by considering the infill crushing at the corners. 

Force equilibrium of a frame with an infill wall under lateral load is shown below in 

Figure 1.1. 
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Figure 1.1: Frame Force Equilibrium, Saneinejad & Hobbs [6] 

Saneinejad & Hobbs [6] have calculated the collapse load as: 

h
lthtH jpj

bbccc 2)1(
MM )( +

++−= αταασ     (1.2) 

Here, cσ  and bτ are the uniform frame infill contact normal and shear stresses, 

respectively; cα , bα are the normalized contact lengths of the column and the beam, 

respectively; , l  and t  are the height, length and thickness of the infill, 

respectively;  is the joint resisting plastic moment on loaded corner and  is 

the moment at the unloaded corner at collapse load level. 

h

MpjM j

For multistory structures Saneinejad & Hobbs [6] have proposed a pin connected 

equivalent diagonal strut with the cross-sectional area given as: 

θ

τ
α

σ
αα

cos

)1(
c

b
b

c

c
cc

d
f

tl
f

th
A

+−
=       (1.3) 

In Equation (1.3)  represents uniform compression strength. This equation was 

further modified for stability of infill and shear sliding of masonry infilled frames 

cf
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according to ACI 312.1-89 [7] and ACI 530-88 [8] respectively. Later Madan et al. 

[9] extended this model with hysteric rule that accounts for strength and stiffness 

degradation as well as pinching resulting from opening and closing of the gaps 

between the infill and the bounding frame. 

Based on the model developed by Saneinejad & Hobbs[6], a three-strut model was 

proposed by El-Dakhakhni W. W., Elgaaly M. & Hamid A.A. [10]. In this model 

the shear stress developing between the infill and the frame is neglected. In other 

words, the friction coefficient between the infill and the frame is taken as zero, 

based on the suggestions of Flanagan et al. [11]. El-Dakhakhni W. W. et al. [10] 

proposed three equivalent struts which have a total area given as: 

θ
αα

cos
)1( ht

A cc−
=         (1.4) 

 
Figure 1.2: Concrete masonry-infilled steel frame model [10] 

Distribution of the total area among the diagonal struts is shown in Figure 1.2. It 

was stated that three-strut model had better simulated the moment distribution along 

beams and columns. It should be noted, however, that this method only considers 

the infill corner crushing which is the most common type of failure mode in infilled 

steel frames. 

Shing P.B. and Mehrabi A.B. [12] stated that no single analytical model can 

account for all possible load resistance mechanisms. It was also noted that the limit 

analysis methods that account for a variety of possible failure modes are the most 

promising approaches. They have summarized the failure mechanisms as given in 

Figure 1.3. It was also stated that the mechanism that results in the lowest lateral 
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resistance is the dominant failure mechanism and the corresponding load determines 

the maximum lateral load. Mainly, five failure mechanisms and the corresponding 

frame and infill load resistances proposed by Shing and Mehrabi [12] are as 

follows. 

 
Figure 1.3: Failure Mechanisms of infilled frames [12] 

FAILURE MECHANISM 1 

This mechanism corresponds to horizontal sliding failure of the infill at mid-point. 

The lateral resistance in this case is the sum of the shear forces in the columns and 

the residual shear resistance of the wall. The resistance of the frame is governed by 

the hinges formed at one end and the mid-height of each column.  
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Figure 1.4: Failure Mechanism 1 [12] 

FAILURE MECHANISM 2 

Here, the shear failure develops at one or more locations in the columns. This is the 

main distinction form the mechanism 1. Lateral resistance is the sum of the ultimate 

shear resistance of the windward column, the shear force in the leeward column and 

the residual shear resistance along the horizontal crack of infill. 

 

 
Figure 1.5: Failure Mechanism 2 [12] 
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FAILURE MECHANISM 3 

In this mechanism masonry reaches the crushing strength along the wall to frame 

interface. Also, plastic hinges develop near the beam-to-column joints and at points 

B as shown in Figure 1.6. 

 
Figure 1.6: Failure Mechanism 3 [12] 

FAILURE MECHANISM 4 

Infill reaches its compressive strength at corners and plastic hinges are formed at 

both ends of the column. The wall-to-column interface has a parabolic distribution 

along the contact length. 
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Figure 1.7: Failure Mechanism 4 [12] 

FAILURE MECHANISM 5 

In this mechanism the infill and the frame are considered as two parallel systems 

with compatible displacements at the compression corners. The lateral resistance is 

the sum of the flexural resistance of the frame and the residual shear resistance of 

the wall. 

 
Figure 1.8: Failure Mechanism 5 [12] 
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Shing and Mehrabi [12] have also remarked that the Mechanism 5 is dominant for 

the specimens with weak infills. On the other hand, Mechanism 2 dominates for the 

specimens with strong infills. 

Various material models were proposed for the equivalent struts. According to the 

available literature, the stressed part of the infill panel is a diagonal region 

connecting the loaded corners of the frame. Similarly, the material properties of the 

infill are governed by the properties in diagonal direction. 

Saneinejad & Hobbs [6] have proposed secant modulus of elasticity of their 

diagonal strut as: 

d

c

c

c
d

fdf
E

∆
⋅

==
ε

        (1.5) 

where is the diagonal deflection of the infill at the peak load and is the 

diagonal length of the infill and  is effective compressive strength of the infill. 

d∆ d

cf d∆  

may be related to lateral deflection  h∆  by θcoshd ∆=∆ . Saneinejad & Hobbs [6] 

have given a lateral deflection value at peak loads based on the nonlinear finite 

element analyses as follows.  

333.022 )(cos8.5 bcch h ααθε +=∆       (1.6) 

where cε  is the infill strain at peak uniaxial (unconfined) compression, other terms 

are as defined previously. Saneinejad & Hobbs [6] states that the initial stiffness of 

the strut can be taken as twice its secant stiffness. 

El-Dakhakhni W. W. et al. [10] have given the elastic modulus of the panel in a 

diagonal direction as: 

θθθ
θ

4

90

2

0

9004

0

sin1cos)12
(cos1

1

EGE
v

E

E
++−+

=
−

   (1.7) 
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The ultimate compressive strength  was related to the by the same factor 

relating .to . Knowing  and the strain corresponding to the peak 

load 

θ−mf ' θE

90' −mf 90E θ−mf ' θE

pε was calculated. Additionally, a tri-linear relation was proposed for the 

material model of the struts as given in Figure 1.9. 

 
Figure 1.9: Simplified tri-linear relations: a) stress–strain relation of concrete 

masonry; b) typical force–deformation relation for struts [10] 

1.2.2 Nonlinear Frame Element Models 

Nonlinearity is divided into two parts. First one is the material nonlinearity and the 

second is the geometric nonlinearity. In this study only the material nonlinearity is 

considered. Therefore, a review of the literature only about this source of 

nonlinearity is given here. 

There are mainly two approaches in handling the material nonlinearity. In the first 

approach the nonlinearity is assumed to happen at discrete locations of the beam. 

Plastic hinges with zero lengths are assembled at certain points of the frame 

(generally at the member ends) to take he material nonlinearity into account. Some 

early studies about plastic hinges were performed by Heyman, J [18], Porter FL and 

Powell GH [19] and Nigam NC [20]. In these studies a single yield surface was 

proposed which behaves perfectly plastic after a certain strain level. Later, plastic 

hinges composed of several yield surfaces were proposed to take gradual yielding of 

the section into account by El-Tawil and Deierlein [21] and Liew and Tang [22]. 

Second approach for the materially nonlinear analysis of the frames is the spread of 

plasticity procedure. Here, a number of control points are selected along the frame 
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element and the element cross-section is discretized into fibers (or monitoring 

grids). Meek and Lin [24] investigated nonlinear analysis of closed thin-walled 

beams and columns with the spread of plasticity approach. Bild et al. [25] has 

proposed a formulation to determine the strength of the steel frames under bi-axial 

bending and torsion. Teh and Clarke [26] claimed that interaction between the axial 

force and the bi-axial moment could be modeled more accurately by using plastic 

zone approach. They have proposed a co-rotational formulation for materially and 

geometrically nonlinear analysis of steel frames composed of the compact tubular 

sections and open sections. They derived governing equations using virtual work 

principle, and used von Mises yield criterion with an associated flow rule. Effect of 

torsional warping was neglected in their study. 

Jiang et al. [27] stated that most of the studies about the spread of plasticity had 

dealt with planar frames or behavior of the members and little work has performed 

for large scale 3D analyses. They employed an updated Lagrangian formulation for 

the formulations of the small displacement element stiffness matrix and geometric 

stiffness matrix. They discretized element cross section into a number of monitoring 

fibers. Yielding of the fibers was determined according to the von Mises yield 

criterion and associated flow rule. Discretized cross section of Jiang et al. [27] is 

given in Figure 1.10. 
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Figure 1.10: Discretization of the frame’s cross section in the spread-of-plasticity 

analysis [27] 

Additionally Jiang et al. [27] used mixed element technique for the analysis of a 

large scale 3D steel structure. In mixed element technique they have used beam-

column elements and spread-of-plasticity elements concurrently. 

Researchers mostly used displacement based frame elements in the studies 

summarized up to now. Neuenhofer A, Filippou FC [28] has evaluated the accuracy 

and effectiveness of the displacement based and force based frame elements. They 

stated that displacement based elements gave approximate results for nonlinear 

problems and to obtain more accurate results one must refine the mesh or use higher 

order polynomials to approximate the actual displacement fields along the element. 

They also stated that in flexibility approach, force fields of the element could easily 

be reproduced by using force interpolation functions in the absence of geometric 
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nonlinearity. This was because the force equilibrium conditions are rather simple to 

satisfy for a frame element. Constant axial force and linearly varying moment give 

the exact force field if there is no distributed load on the element. Neuenhofer A, 

Filippou FC [28] also noted that it was hard to integrate flexibility based state 

determination of an element into a displacement based nonlinear program. 

However, they claim that recent proposals overcome this shortcoming by using an 

iterative state determination approach to calculate the stiffness matrix and the 

response of the element. However, this is a computationally intensive approach. 

Finally, they have proposed a non-iterative state determination approach for 

flexibility based frame elements.  

Recently, Taylor et al. [29] proposed a frame finite element, which was formulated 

with three-field variational form, which was based on Hu-Washizu variational 

principle. Axial force, moment and discontinuous strain fields were approximated at 

each element. They have considered the effect of axial, bending and shear for 

material nonlinearity. It is stated that the formulations created a shear deformable 

element, which is free of locking. The formulations are for 2D case and valid for the 

case of small displacements. 

1.2.3 Object-Oriented Finite Element Programming 

Many researchers have studied the potential of object-oriented finite element 

programming for structural problems. It is stated in the literature that object-

oriented programming is very suitable for developing robust and efficient 

algorithms to scientific problems. Commend and Zimmerman [31] summarizes the 

key features of object-oriented design as follows: 

• Robustness and modularity: encapsulation of the data 

Each object stores its data and procedures under a single class. Additionally 

members of the class may be hidden from the other components of the program. 
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• Inheritance and polymorphism: the hierarchy of the classes 

Every object is an instance of a class, which is an abstract data type. Classes can 

be built in a hierarchy. A derived class inherits the members and procedures of 

its parent class. Additionally, procedures of the classes may act differently 

according to the type of the object, which is called polymorphism. 

• Non-anticipation and state encapsulation 

It is stated that if the content of a method does not depend on the state of the 

variables, then robustness of the code will increase. 

Object-oriented designs up to now mostly came up with the following finite element 

objects: node, domain, element, load, material model etc. Node object stores its 

degrees of freedom and displacements. Domain is composed of the elements, nodes, 

loads and other components of the finite element method. Components of the 

domain can be queried or new components can be added to the domain. Element 

class represents the base class for finite elements. Loading of the system is defined 

by load class. Finally, element’s material properties are stored in material model 

class.  

McKenna [16] stated that existing object-oriented finite element designs considered 

the analysis class as a black box, since its operations were opaque. He has proposed 

an analysis class, which has an interface that allows the use of different analysis 

algorithms. Supplying adequate class instances for the constructor of the analysis 

class, the class defines its components for the solution algorithm. Later, analysis is 

performed using the components of the analysis class.  

Pelerin & Pegon [34] separated the domain from the problem type to increase the 

modularity of the program. Additionally they have proposed a new intermediate 

class for handling the data like stiffness matrix, mass matrix etc. in an efficient way.  
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1.3 Aim of the Study 

Objective of this study is to develop a tool for the nonlinear analysis of 3D 

reinforced concrete frame structures with or without infill walls. For this purpose a 

3D Hermitian beam finite element is used which is based on the usual Euler-

Bernoulli assumptions. Spread of plasticity approach is used to take the material 

nonlinearity into account. Here, the cross-section of the frame element is discretized 

into triangular elements to monitor gradual yielding of the cross section. Since the 

frame finite element gives approximate displacement field for the nonlinear case, a 

frame member is further discretized into several sub elements along its length. 

Additionally, an infill model, which is mainly based on, the model proposed by 

Saneinejad and Hobbs [6] is used to take the infill walls into account. 

Later, a program is developed for the nonlinear analysis of the R/C frame structures 

which includes implementation of the items stated above. Program is developed 

using the object-oriented design to allow the changes and addition of new finite 

elements or some other components to the code in the future.  

Next, the parameters affecting the accuracy of the solution are investigated. Some 

sample problems are solved to determine the optimum values of these variables. 

Later, the response predicted by the proposed procedure is compared with the 

experimental data available. 

Finally, the limitations of the program and a guideline for the future studies are 

given. 
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CHAPTER 2  

FORMULATIONS 

2.1 Infill Wall Modeling 

2.1.1 

lthtH

Equivalent Strut Model 

The most popular approach for infill modeling is taken in this study and the 

masonry infill is modeled by two diagonal struts connecting the opposite corners of 

the frame. For the equivalent area of the struts, basically, the model proposed by 

Saneinejad and Hobbs [6] is used. The equivalent strut area is given in Equation 

(1.3). The ultimate load capacity of the infill is also taken as proposed by 

Saneinejad and Hobbs [6] 

bbccc αταασ +−= )1(        (2.1) 

where cα and bα are the normalized lengths of contact between the infill and the 

beam and the column, respectively. Their upper-bound values of these contact 

lengths are defined as. 
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where and are the effective plastic moment capacities of the column and 

the beam, respectively and  is the effective joint plastic moment which is the 

smaller of the beam or column plastic moment capacity. In Equation (2.2) and 

Equation (2.3) 

pcM M

M

pb

pj

0cσ and 0bσ  are the nominal contact stresses defined as. 

420
31 r

fc
c

µ
σ

+
=         (2.4) 

20
31 µ

σ
+

= c
b

f

f

' '

        (2.5) 

in which  is the factored (effective) compressive strength of the infill taken as 

 where  is the masonry strength. 

c

39.0 mf mf µ  is the frictional coefficient along the 

frame-infill interface. El-Dakhakhni et al. [10] proposes that (masonry strength 

parallel to bed joints) and (masonry strength normal to bed joints) can be used 

for the masonry strengths in Equation (2.4) and Equation (2.5), respectively. 

'

'

0−mf

90−mf

A study reported by Flanagan et al. [11] shows that the model proposed by 

Saneinejad and Hobbs [6] overestimates the corner-crushing load by as much as 

twice the actual capacity based on the experimentally observed results. They 

performed a parametric study for the coefficient of friction µ  in the formulation of 

Saneinejad and Hobbs [6]. It is reported that taking 0=µ  gives the best results 

with a mean ratio of 74%. 

In light of the above discussion Equations (2.2) and (2.3) can be rewritten in the 

following forms as given by El-Dakhakhni et al. [10]. 
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Also, the Equations (2.4) and (2.5) can be expressed as: 

'

'

'

00 −= mc fσ          (2.8) 

900 −= mb fσ          (2.9) 

Finally, the ultimate horizontal load for corner crushing reduces to the following 

form. 

htfH ccm αα )1(0 −= −         (2.10) 

Hence, the ultimate load for the diagonal strut can be written as: 

θcos
)1(0 htf

R ccm= − αα' −

2.1.2 

        (2.11) 

Material Model for the Equivalent Struts 

Saneinejad and Hobbs [6] suggest equivalent uniform stress block for the stress 

distribution at the middle of the infill wall. Uniform stress block is used to check the 

stability of the middle of the infill. In this study width of the stress block is used to 

determine the initial stiffness of the infill wall together with the modulus of 

elasticity of the infill in diagonal direction. This approach is acceptable since stress 

distribution along the diagonal is known to be the similar at the initial stages of 

loading. Width of the uniform stress block (effective width of the infill) is given as: 
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θcos/5.0 hw =         (2.12) 

Here h is the height of the infill, and θ is the angle between the diagonal of the infill 

and the horizontal line. Using the effective width of the infill, initial stiffness of the 

infill can be found as: 

l
K θ=

wtE

E E

         (2.13) 

Where w is effective width of the infill, t is the thickness of the infill and l is the 

length of the diagonal of the infill and Eθ is the modulus of elasticity of the infill in 

diagonal direction. Knowing and  (Young’s moduli in the directions parallel 

and normal to the bed joints respectively) El-Dakhakhni et al. [10] state that 

modulus of elasticity in 

0 90

θ  direction can be found by Equation (1.7). It is also stated 

that using Equation (1.7) results with values about %80 of . This is consistent 

with the test results reported by Bennet et al. [13]. Bennet et al. [13] reports 

modulus of elasticity of the masonry prisms loaded in different orientations. 

According to the results ratios of and to has a mean of %78. 

Therefore may be related to  as: 

θE E

, EE E E

E E

EE =

E

'

'

90

455.22 5.67 90

θ 90

908.0θ          (2.14) 

90 can be found from the Equation (2.15) given by Bennet et al. [13] which relates 

prism strength of the masonry and modulus of elasticity at the half of the prism 

strength. 

5.168.0 9090 += −mfE         (2.15) 

Here  is modulus of elasticity in vertical direction (GPa) and  is masonry 

prism strength in vertical direction (MPa). 

90E 90−mf

Additionally prism strength of the masonry is related to unit strength of masonry in 

vertical direction by Bennet et al. [13] as: 
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9.03.0 9090 += −− um ff '

'

E

'

'

        (2.16) 

Therefore knowing the unit masonry strength ,  can be determined using 

Equation (2.16), then and E

90−uf 90−mf

90 θ are found using Equations (2.15) and (2.14) 

respectively. 

To determine R from Equation (2.11), one needs to know  (prism strength in 

horizontal direction). Based on the results of the past experiments presented by 

Bennet et al. [13], linear regression analysis is performed to determine relationship 

between unit masonry strength and prism strength in horizontal direction. Equation 

found is given as: 

0−mf

18.111.0 00 += −− um ff        (2.17) 

The displacement at the ultimate load and corresponding strain value can be 

expressed as: 

K
R

=∆           (2.18) 

lu =ε ∆          (2.19) 

where R  is given in Equation (2.11) and l  is the lengths of the diagonal struts. For 

the material model of the struts El-Dakhakhni et al. [10] proposed a yield plateau 

with a length of 0.002. Additionally, in the material model the stress of the strut 

goes down to zero at a strain value of 0.01. Using these values a material model 

similar to the one proposed by El-Dakhakhni et al. [10] is constituted. Figure 2.1 

shows the material model of the diagonal struts in terms of the variables given in 

this chapter. 
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Figure 2.1: Stress strain relationship of the equivalent diagonal struts 

2.2 Nonlinear Frame Element 

2.2.1 Displacement Based Frame Element 

Displacement based Hermitian beam finite element with the usual Euler-Bernoulli 

assumptions is used in this study for modeling the frame elements. The nodal 

displacements of a 2D Hermitian beam element are shown in Figure 2.2.  

 
Figure 2.2: Degree of freedoms of 2D Euler-Bernoulli  beam 

The shape functions used for approximating the transverse displacement field along 

this element are shown in Figure 2.3. 
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Figure 2.3: Hermitian cubic shape functions for the beam element in local 

coordinates [41] 

Expressions of the shape functions in terms of the local coordinate ξ are. 

)2()1(
4

2

1 ξξ +⋅−⋅=v
eN 1  

)1()1(
8

2

1 ξξθ +⋅−⋅⋅= lN e 1  

)2()1(
4

2

2 ξξ −⋅+⋅=v
eN 1  

)1()1(
8

2

2 ξξθ −⋅+⋅⋅= lN e 1        (2.20) 

The transverse displacement field along the beam can be approximated in terms of 

the element shape functions and the nodal displacements as.  
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The curvature of the beam can be expressed in terms of the nodal displacements by 

the help of the B matrix. B matrix relates the nodal displacements to the curvature 

strain of the element. 

⎥⎦
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lll
B ξξ

e⋅=κ

      (2.23) 

uB          (2.24) 

Tangential stiffness matrix and the response of the element can be expressed as in 

Equation (2.25) and (2.26), respectively. 
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l
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1

v v

       (2.26) 

In Equation (2.26), M is the distributed moment along the element.   

The element formulation given for a planar beam can generalized for a 3D beam 

element. The nodal displacements to be considered are shown in Figure 2.4. 

Transverse displacements in the local xy plane can be approximated by the nodal 

displacements , , 1y 2y 1zθ  and 2zθ . Similarly, the transverse displacements in the 

local xz plane can be approximated by the nodal displacements v , , 1z 2zv 1yθ  and 

2yθ . Therefore, the 2D formulation can easily be generalized to 3D. However, it 
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should be noted that some adjustment in the signs of shape functions are necessary 

for bending in xz plane. 

 
Figure 2.4: Degrees of freedoms of 3D beam element 

The shear deformations are neglected in this formulation. Hence, the element 

formulation is valid for shallow beams, which is usually the case in practice. 

Besides the transverse displacements an uncoupled and linearly varying axial 

displacement field is assumed along the element. The axial strain-displacement 

matrix of the element is of the form 

[ 11−⋅=
l

B ]1          (2.27) 

Using the B matrix the stiffness matrix and the axial response of the bar element 

can be determined as 
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       (2.29) 

Note that F in Equation (2.29) is the axial force distributed along the length of the 

frame element. 

Material Model for the Frame Element 

Material nonlinearity of the beam is modeled by the spread-of-plasticity approach. 

In steel frames plastic hinges may be used for the nonlinear analysis since the 

plastification occurs at certain locations such as member ends. However, in 

reinforced concrete frames, the plastic region is usually not localized but generally 

spread along the member length and over the cross-section. In order to monitor the 

spread of plastification, the element cross-section is divided into a number of 

triangular subregions at some pre-selected critical points along the member length. 

In this study, these point are either equally spaced along the member or they are 

selected as the Gaussian integration points. First step in the calculation of the 

element response and the element tangential stiffness matrix is the calculation and 

then integration over the cross-section of the element stresses (Figure 2.5). 

Integrations in Equations (2.25), (2.26), (2.28) and (2.29) along the element are 

performed afterward. 
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Figure 2.5: Discretization of the element cross-section at monitoring locations 

along the reinforced concrete frame element. 

When calculating the element response the curvature in both directions and the axial 

strain due to axial deformations are coupled. The normal strain created by the 

curvature is calculated first at the centroid of each triangular sub-region. Later, the 

axial strain due to axial deformations (which is the same for all triangular sub-

regions) is added to the strain due to curvature. Then, the axial force response is 

calculated for each triangle and the moment response is obtained about a reference 

point on the section by taking the moment about this point of the triangular element 

forces. The reference point is chosen to be the attachment point of the element for 

compatibility. 
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Figure 2.6: Strain distribution over the element cross-section for a given axial 

strain and curvature. 

Hognestad parabola shown in Figure 2.7 is used for the stress-strain relationship of 

concrete. The effect of confinement is neglected for simplicity. Additionally, it is 

assumed that the concrete takes no tension. An idealized bilinear elasto-plastic 

material model with strain hardening is used for calculating the steel response. 

 

Figure 2.7: Hognestad Parabola [30] 
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2.2.3 Tangential Stiffness Matrix for Coupled Material Model 

The axial and the flexural response of the linear Hermitian frame element are 

uncoupled. However, as stated earlier, the axial and the flexural response become 

coupled in the nonlinear plastic range. In other words, a displacement or a rotation 

corresponding to one of the degrees of freedom will generally produce forces and 

moments at each of the other degrees of freedom. If the stiffness matrix of a regular 

frame element is used for the response calculations in the inelastic phase by 

ignoring this coupling effect, each load increment requires a large number of 

iterations to converge. Therefore, the stiffness matrix should be reconstructed by 

considering this coupling effect.  

A numerical procedure is adopted for computing the tangential element stiffness 

matrix in the inelastic range. First, a tangential sectional rigidity matrix is formed at 

each integration point by using a numerical procedure as follows. 

The current strain state at the section is incremented by a small amount ∆εxx in the 

axial x-direction and the corresponding increase in the sectional response is 

calculated. As shown in Figure 2.8, in general, an axial force increase of ∆Nxx 

accompanied by moment response increments of ∆Myx and ∆Mzx about the y and z 

axes is calculated.  
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Figure 2.8: Response of the section for small axial strain increment 

These response increments are then divided by the given axial strain increment ∆εxx 

to obtain the tangential section rigidity parameters for a unit axial strain.  

The procedure is repeated by applying small curvature increments ∆κy and ∆κz 

about y- and z-axes, respectively, and calculating the corresponding increments in 

the axial force and the moment response of the section, as shown in Figure 2.9.  

 
Figure 2.9: Response of the section for small curvature strain increments 
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Finally, the sectional rigidity matrix can be expressed as 
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Having obtained the sectional rigidity matrices at each integration point along the 

frame element, it is possible to obtain the coupled tangential element stiffness 

matrix by the basic definition of nodal stiffness coefficients. A unit value is 

prescribed for each of the element degrees of freedom in turn while keeping the rest 

of them at zero. The axial strain or curvature increment corresponding to this 

pivotal degree of freedom is calculated at each integration point and this strain 

increment is converted to axial force and moment increments at the section using 

the sectional rigidity matrix at the integration point. Finally, the element response 

vector is obtained by integrating these incremental sectional responses via Equation 

(2.26) and (2.29). This way, a column of the element tangential stiffness matrix 

corresponding to the pivotal degree of freedom is obtained. 

First, unit values corresponding to axial degrees of freedom v  and v  are 

imposed separately. Later, the strain values corresponding to these unit axial 

displacements are calculated at the integration points by using the strain-

displacement matrix of the bar element. As shown in 

1x 2x

Figure 2.10 the strain 

distribution corresponding to axial displacements at element nodes is constant along 

the element length. Therefore, the sectional response for the imposed axial 

displacements at integration points can be obtained using the sectional rigidity 

matrix as follows. 
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Figure 2.10: Strain distribution along frame element caused by unit axial 

displacement at element ends. 
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Equations (2.31) to (2.33) give the axial force and moment responses at the 

integration points for a given unit axial displacement at the start node of the 

element. Similarly, Equations (2.34) to (2.36) give the axial force and moment 

response at the integration points for a given unit axial displacement at the end node 

of the element. 

This procedure is repeated by imposing a unit value for each of the remaining 

degrees of freedom , , 1yv v 2y 1zθ , 2zθ , , , 1zv v 2z 1yθ  and 2yθ . Relevant equations 

are used for computing the member end forces, which are nothing but the nodal 

stiffness coefficients. Finally, these nodal stiffness coefficients are assembled into 

proper locations in the element tangential stiffness matrix. 

2.3 Condensation and Constraint Equations 

2.3.1 Condensation of the Frame Elements 

The displacement field assumed over an element is approximate in the inelastic 

range. In order to improve the accuracy of the predicted displacement response in 

the inelastic range each frame element is further divided into a number of sub 

elements. This, in turn, increases the total number of unknowns and the number of 

equations to be solved. Consequently, the solution time increases drastically. Static 

condensation is used to eliminate the internal degrees of freedom and keep each 

frame element as a single macro element. This way, the total number of equations to 

be handled is kept at a reasonable level for the whole system. 

In this study each frame element is subdivided into several finite elements. Later the 

internal degrees of freedoms are condensed out as shown in Figure 2.11. Here, the 

displacement components with the subscript c are those to be condensed out. 
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Figure 2.11: Condensation of the frame element into the end degree of freedoms 

Condensed stiffness matrix and the member end forces are given below. In the 

following formulation the terms with the subscript a are those to be kept and the 

terms with the subscript c are those which are to be condensed. 
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       (2.38) 

Where; 

)( ccccacaacondensed KKKKK ⋅⋅−=       (2.39) 

cccacacondensed RKKRF ⋅⋅−=       (2.40) 

Response and current load state of a super element should also be condensed out 

since the nonlinear computations are performed with the structural degree of 

freedom. However, it is the residual forces that will be used for further calculations. 

Therefore, the residual forces are calculated at super element level and later they are 

condensed out. 

It is more efficient to apply the coordinate transformation to frame super element 

after the condensation of the internal degrees of freedom. Less effective approach is 

transforming each beam finite element to global coordinates and later condensing 

the internal degrees of freedom. This will certainly take considerably more time 

than the former approach especially if the number of subdivisions in the super 

element is high. Moreover, in order to take the rigid zones into account one needs 

property matrices of the super element in local coordinates not in global ones. 
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2.3.2 Constraint Equations and Rigid Zones 

The element degrees of freedom may be different from global structural degrees of 

freedom for several reasons. Two of them are considered in this study. 

• Rigid End Zones: Rigid zones exist at member ends where beams and 

column are connected. 

• Incompatibility between the centroid of the section and the material points 

on the structure where the global degrees of freedom are defined. Spread-of-

plasticity formulation is performed by assuming the centroid of the section 

as the reference point. However, this may not, and usually is not, the 

material point on the structure where the global degrees of freedom are 

defined. 

The element degrees of freedom at element end points 1 and 2 and the structural 

degrees of freedom defined at nodal points m1 and m2 on the structure are shown in 

Figure 2.12 for a typical element. If it is assumed that the centroid of the element’s 

end section and the material point where the structural degrees of freedom are 

defined are both in the same rigid zone (this is usually the case) than, for a typical 

element, the constraint equations can be written as follows (Wilson [35]). 
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Figure 2.12 : Frame element’s and global degree of freedoms  
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xx θθ =  
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zz θθ =  

Alternatively, these equations can be written in a matrix form as follows 

uTu ⋅=          (2.43) 
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The element stiffness matrix and the load vector transformed to master nodes can 

then be expressed as. 

TKTK Tm ⋅⋅=         (2.45) 

RTR Tm ⋅=          (2.46) 

Constraint modifications are performed before the element matrices are transformed 

to global coordinate system. For the frame super-elements, the condensation of the 
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internal degrees of freedom is carried out first before the constraint equations are 

imposed on the remaining degrees of freedom. 

After completing the analysis of the system the structural displacements need to be 

transformed back to the element local coordinate system. This is accomplished by 

using the Equation (2.43). 

The procedure stated above assumes a rigid zone between the element ends and the 

points on the structure where the structural degrees of freedom are defined. 

However, the portion of the frame element that remains in this region is neither 

axially nor torsionally rigid. It has an axial and torsional rigidity similar to the rest 

of the element. To take this fact into account the tangential stiffness matrix 

constructed before the equation solution phase and the displacements that are back-

substituted after analysis are further modified as follows. 

Forming the element stiffness matrix using L shown in Figure 2.13 as the flexible 

length renders it stiffer then it actually is for axial deformations. To compensate for 

this extra stiffness the relevant terms of the stiffness matrix are multiplied by the 

modification factor given below. 

L
dxdx 21 +c 1 −=         (2.47) 

L1 2
m1 m2

dx1 dx2

 

Figure 2.13: Member end offsets of the frame in axial direction 

The terms of the element stiffness matrix that are modified with the coefficient c are 

shown below: 
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Similarly, the axial strains along the element are overestimated since the flexible 

length of the element is taken smaller than it actually is. Therefore, the axial 

displacements at the member ends are modified as follows: 
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The axial forces will remain the same, so there is no need to modify them. 

A similar adjustment is also due for the torsional stiffness coefficients, 

displacements and loads. Since the material is assumed to be linear in torsion, the 

adjustment is accomplished through modifying the terms T6,6 and T12,12 in the 

transformation matrix of Equation (2.44) by multiplying them by a correction 

factor: 
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L
dxdxcT 211 +

−=         (2.50) 

2.4 Solution Algorithm 

The nonlinear solution procedure is composed of many linear trial solutions of the 

system. First, the load increments are determined. Then, each load increment is 

applied on the system and a linear solution for the current loading level is 

performed by using the tangential stiffness matrix of the structure. The iterations are 

continued until the response of the structure becomes equal to the total loading 

currently on the structure.  

In the elasto-plastic analysis of the structures the loading sequence changes the final 

response. The self-weight and other permanent loads must be applied on the 

structure first for a realistic solution. Therefore, the solution strategy should include 

a sequential loading scheme of the structure. It is also important to have an option to 

adjust the number of increments for each loading stage separately. Since it is 

usually unlikely to have serious plastification self-weight and other permanent 

loads, the analyst may want to step these sequences with less number of increments. 

The same goes for the earlier stages of lateral loads. 

For the solution of the nonlinear structural equations the modified Newton Raphson 

algorithm (see Section 2.4.1) is preferred rather than the full Newton Raphson 

iterations However, since the material nonlinearity is modeled with the spread-of- 

plasticity approach which divides the cross section into many triangular monitoring 

elements, stiffness of the beam elements may vary sharply especially in the first 

iteration and when the yield state of the section changes. This leads to oscillations 

in the displacement increments and may lead the system to an incorrect solution. In 

some occasions load increments may fail to converge. To eliminate this short come, 

abnormal changes in the element’s state are monitored and the solution algorithm is 

changed to full Newton Raphson when a numerical instability is detected. If the 
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same situation remains after changing the solution algorithm, than the solution for 

that load increment is accepted as correct. 

2.4.1 Modified Newton Raphson Algorithm 

In the modified Newton-Raphson algorithm (Figure 2.14) the stiffness of the 

structure is not updated for each linear solution. Instead, the same tangential 

stiffness is used for a certain number of iterations. After some number of fruitless 

iteration the stiffness matrix is updated to accelerate the convergence and reduce the 

solution time. 

 

Figure 2.14: Modified Newton Raphson Algorithm 

2.4.2 Solution Algorithm for Prescribed Displacements 

In the case of displacement loading on the structure such as support settlements, a 

special solution algorithm is needed to convert these displacements to a set of nodal 

forces. When performing a linear solution, the nodal displacements can be 

converted to nodal forces as follows. 
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cacaaaa UKUKF ⋅+⋅=        (2.52) 

aaacaca UKUKF ⋅=⋅− )(        (2.53) 

where U  are the prescribed nodal displacements. However, for non-linear analysis 

the support displacements are assembled to the corresponding element’s degrees of 

freedom incrementally and the system of equations is solved iteratively until no 

residual force remains on the degrees of freedom. To increase the numerical 

stability and decrease the number of iterations needed, the displacements U

c

a 

obtained from Equation (2.53) can be back-substituted into the corresponding 

element’s nodes for each displacement increments Uc. While doing this it is best to 

use the tangential stiffness matrix at the current time and to take the load vector Fa 

as zero. 

2.4.3 Mixed Element Technique 

In some structures, e.g., steel structures, the element plastification occurs at certain 

locations of the structure. Moreover, it does not even occur up to a certain level of 

loading. It is obvious that with the use of Hermitian beam elements mesh 

refinement does not change the solution in the linear phase. Consequently, starting 

the computations with a fully discretized system leads to unnecessary intensity. 

Using the mixed element technique can alleviate this shortcoming. In the mixed 

element technique each structural frame member is modeled with a single frame 

finite element initially. After plastification occurs for an element, it is replaced with 

a super-element which consists of a certain number of frame finite elements. While 

replacing the element the displacement boundary conditions and the equilibrium 

should be satisfied for the substitute element. Unfortunately, this method is not 

suitable for reinforced concrete members since the plastification occurs at very low 

load levels (tensional cracking of concrete). 
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CHAPTER 3  

DESIGN OF THE ANALYSIS PROGRAM 

3.1 Design Environment 

For the development of the analysis program C++ programming language is chosen. 

C++ is an object-oriented programming language. Object-oriented design has many 

advantages like sustainable development, easy design and reuse of the code. 

Additionally using the features of the object-oriented programming interface of the 

program can easily be defined. This provides a good framework for the libraries 

since the unnecessary details are hidden from the user.  

Main features of the object-oriented design are: data abstraction, encapsulation, 

polymorphism and inheritance. 

Real world problems are too complicated to be managed as whole. So the problem 

is divided into several objects and each object is considered separately. Objects are 

different from each other, however some have similarities. Abstraction is emphasis 

of these similarities by creating a class which has common attributes and procedures 

for a set of objects. Encapsulation means storing the data and the procedures under 

a single class. Additionally some procedures and data of the class can be protected 

from the outside use.  

For the objects that have additional features that are not abstracted in the base class, 

a new class can be derived from the base class. In that situation derived class 

contains the procedures and members of the base class. This is called inheritance. 

By the help of inheritance only the additional features are implemented for an 

object since others are inherited from the base class. Moreover certain procedures of 
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the object may be different from the base class. Using polymorphism, procedures of 

the derived class can act differently by overriding existing procedures of the base 

class. 

Components of nonlinear structural analysis can easily be represented by the 

objects. At the first glance elements, loads, structure and material models can be 

thought as main objects of the problem. Details of the design are given in the next 

chapter. 

For the development tool Microsoft Visual C++ 6.0 is used. User interface of the 

analysis module is developed with OpenGL (Open Graphics Library) and MFC 

(Microsoft Foundation Classes).  

OpenGL is a library for performing 3D graphical operations. It is a procedural 

library which can be used building graphical models using geometric primitives 

such as points, lines and polygons. For the details oen can check out the related 

reference. 

MFC is a c++ library for windows programming. It includes classes for creating 

dialogs, views, frames etc. For the details about MFC you can check out the related 

reference. 

3.2 Architecture 

Program is developed in object-oriented manner; similar objects are grouped and 

derived from the same abstract class. Mainly a domain object is used to store 

elements, substructures, loads and boundary conditions of the main structure. This 

class is named as CStrSystem. Additionally functions those are necessary for 

nonlinear solutions such as forming tangential stiffness matrix, response 

calculations, back-substitution of the global displacements to the nodes of the 

elements are implemented. For the initialization of the class CStrSystem, an 

intermediate class called CSystemIntegrator is implemented. CSystemIntegrator 

gets definition of the structure either from an input file or some other appropriate 
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source. It creates instances of necessary classes such as elements, material 

properties of elements and assigns them to related container objects according to the 

definition of the structure. Additionally DOF numbering is performed by the class.  

Each structural element is derived from an abstract base class named CSElements. 

An element class which is derived from CSElements must override member 

functions that computes tangential stiffness matrix of the element, converts 

distributed load to member end forces, calculates response of the element and 

assigns material model of the element. 

Material properties of the elements are represented by the class CMaterialElements. 

Following classes are derived from this class: 

1. CFrame3dLinear: Linear material model of 3D frame element. 

2. CFrame3dNonLinear: Linear material model of 3D frame element. Two 

classes are derived from this class. 

a. CFrame3dNonLinearUncoupled: Moment response in local y-y 

direction, in local z-z direction and axial response are uncoupled. 

b. CFrame3dNonLinearCoupled: Moment response in local y-y 

direction, in local z-z direction and axial response are coupled. 

3. CBar3dLinear: Linear material model of 3D bar element  

4. CBar3dNonLinear: Non-linear Material model of 3D bar element. 

Substructures or super elements are considered as special objects which have 

similarities both with CStrSystem and CSElements. They are similar to CStrSystem 

object since some number of elements forms a substructure. Nevertheless they are 

assembled to CStrSystem object to form the whole structure. Therefore they may 

also be treated as an element of the structure. Considering the situation, 

CSubStrSystem class is derived from both CSElements and CStrSystem. Assembly 
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of the substructure is handled by the functions of CSElements and the domain 

object CStrSystem stores the elements of the substructure. 

Both CSElements and CStrSystem class definitions include a member class for 

handling the structural equations. This class is named CKFMath which contains the 

stiffness matrix, load vector and displacement vector of the structure/element. 

Additionally vectors that hold total load and response are stored by the class to be 

used for nonlinear analysis. 

Constraint equations, static condensation and transformation of the element 

matrices from local coordinates to global coordinates are all categorized as 

modifications to the structural equations. Accordingly the classes that are related to 

these operations are derived from the same abstract base class which is called 

CModifyEquations. Classes that are derived from CModifyEquations must override 

functions which perform modifications of stiffness matrix and load vector. 

Additionally they must override the function that back-substitutes modified 

displacements to original displacements. After creating an instance of class which is 

derived form CModifyEquations, it must be assigned to a corresponding CKFMath 

class which stores the structural/element stiffness matrix and load vector. More than 

one CModifyEquations object can be stacked on each other. In this case the 

modifications will be performed starting with the first CModifyEquations object 

that is assigned to the CKFMath class. Three classes that are derived from 

CModifyEquations are listed above. 

1. CTransformation: Modifies the structural equations for transformation of 

degree of freedoms from one coordinate system to another. 

2. CCondensation: Modifies the structural equations for static condensation of 

certain degree of freedoms. 

3. CConstraint: Modifies the structural equations for degree of freedoms 

constrained with each other. 
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Loading of the system is stored in a class which is called CLoadSystem. Load cases 

are contained by this base class. Each load case is represented by CLoadCases class. 

A load case consists of two types of loads. First one is nodal forces and the other 

one is element loads. There are also two types of element loading: distributed load 

and point load. As stated before it is responsibility of the element to convert loads 

on it to fixed end forces. 

For sequential loading of the structure CSequentialLoading class is derived from 

CLoadSystem. This class stores the load cases at each sequence and their weights. It 

is also responsible for carrying the system to next load increment. It is performed by 

stepping the nodal loads and element forces to next load increment. 

In nonlinear solution, history of the system should be stored for future use. 

CSystemStorage class is implemented to store the system instances at the end of 

each load increment. It stores the CSystemInstances classes. Each 

CSystemInstances class instance is a copy of the CStrSystem class at a certain stage 

of solution. At the end of the nonlinear solution the amount of CSystemInstances 

classes that are stored in CSystemStorage class will be equal to total number of load 

increments. 

For geometric operations 3D point and vector classes are implemented. Two classes 

works interactively by operators working with each other. 

Matrix operations are performed with an available matrix library. The library is 

named as TBCI NumLib. Mainly it contains vector and matrix classes and related 

operations. It has also special types of matrices like band matrix. An LU solver is 

implemented in the library that works with the band matrices. Details about the 

library can be reached from the related reference. Some extensions were added to 

the library such as sub-matrix operations. Duration of the solution is calculated with 

an open source duration class CDuration. 

For the graphical representation of the system following classes are used. 

CDrawMain class initializes the OpenGL view for a given window handle. It also 

draws the drawing objects it includes for each refreshments of the view. Drawing 
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objects are represented by the abstract base class DOMain. Each drawing object that 

is derived from DOMain should implement its own drawing on the screen. 

3.2.1 Class Hierarchy & Relationship between Classes. 

Classes in the analysis program and their relationships are shown in Figure 3.1. 

Rumbaugh notation (Rimbaugh et al. [17]) is used for the relationships of the 

classes. Classes are represented inside rectangles in Rumbaugh notation. Mckenna 

FT [16] summarizes the relationships of the classes in object oriented design and 

their representations in Rumbaugh notation as follows: 

• knows-a: Object of the one class knows about the object of the another 

class. It is shown by a line connecting rectangles.  

• is-a: This term is used for a class that is derived from a parent class. It is 

represented by a line with a triangle between the classes. 

• has-a: has-a relation is for a class which consists of a number of other 

classes. It is represented by a diamond in the aggregate class and line from 

the diamond to the component classes. 

Using above notations a class diagram similar to the one drawn by Mckenna [16] is 

formed as given in Figure 3.1. Similarly relationship between the classes 

CSElements, CStrSystem CKFMath and CModifyEquations are drawn in Figure 

3.2.
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Figure 3.1 : Class Diagram of the Nonlinear Analysis Program 
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Figure 3.2: Relationship between classes CStrSystem, CSElements, CKFMath and 

CModifyEquations 

3.2.2 Class Members and Procedures 

Classes implemented in the program are listed here with their procedures and 

members. Basic definition is also given for each class. In members and procedures, 

items apart from those defined in the inherited class, are listed. Procedures that are 

listed under the name of pure virtual functions are needed to be defined for each 

derived class. If not the class cannot be instantiated.  

3.2.2.1 CStrSystem  

Definition:  

It is the domain object that stores everything about the structure. Only a single 

instance of this class is created during execution of the program. 

Inherits From:  

None 
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Members: 

• Array storing CSElements class instances 

• Array storing CSubStrSystem class instances 

• Array storing CMaterialElements class instances 

• CLoadSystem class instance 

• CSystemStorage class instance 

• CSystemIntegrator class instance 

• CKFMath class instance for structural equations. 

Main Procedures: 

• Adds element/substructure to domain. 

• Queries an element/substructure of the domain. 

• Defines a new material property for the domain 

• Sets/queries the loading of the system 

• Back-substitutes the displacement to the elements 

• Calculates the response of the system for the current displacement increment 

• Steps the loading of the system to next load increment 

• Forms initial and tangential stiffness matrix of the whole structure 

• Solves the system for the current loading state 

• Writes structural, load, displacement matrices to a specified file 
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3.2.2.2 CSystemIntegrator 

Definition: 

This class forms the system according to a valid system definition. Definition may 

be done by file input or setting the variables of this class directly. The job of this 

class ends after initialization of the system which is creation of the elements and 

their material models and performing other necessary initializations before analysis. 

Although CStrSystem includes a pointer to this class instance, it is independent of 

this class. 

Inherits From:  

None 

Members: 

• Array storing the coordinates of the nodes. 

• Array storing the elements’ connectivity. 

• Array storing local y-axes of the 3D frames. 

• Array storing the element types used in the structure. 

• Array storing the material model for each element type used in the structure. 

• Array storing the nodal loads of the structure. 

• Array storing the element loads of the structure. 

• Array storing the support conditions of the structure. 

• Array storing the degree of freedoms. 

• CStrSystem class instance. 
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Main Procedures: 

• Reads input file and fills the member variables of the class. 

• Forms degree of freedoms of the class according to the active degree of 

freedoms. 

• Creates CStrSystem class instance, creates the elements which are used in 

structure and assigns them to the structure. 

• Creates the load cases and assigns them to the structure. 

3.2.2.3 CSElements 

Definition:  

This is abstract base class for structural elements. Since it is abstract, class cannot 

be instantiated. Structural elements should be derived from this class. 

Inherits From:  

None 

Members: 

• CKFMath class instance for structural equations 

• Coordinates of the element 

• Assembly information of the element 

• Connectivity of the element 

• CMaterialElements class instance which stores the material properties of the 

element 

• Element specific information such as degree of freedoms, node number, 

degree of freedom per node etc... 
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• Latest displacement of the element 

Main Procedures: 

Pure Virtual Functions 

Pure virtual functions are one of the key concept of abstraction. Followings are the 

list of pure virtual procedures that must to be implemented in each derived class. 

The operation that needs to be performed in these functions is summarized below. 

• Computation of the response of the element for a given displacement field 

• Computation of the tangential stiffness matrix of the element  

• Computation of the fixed end forces for a given distributed load 

Other Procedures: 

• Sets/queries the global coordinates of the element. 

• Sets/queries the connectivity of the element. 

• Assembles the stiffness matrix or load vector of the element to global 

stiffness matrix and global load vector according to the assembly info of the 

element. 

• Assembles the global displacement vector back to element. 

• Calculates the residual forces on the element and sets them to the next load 

increment. 

• Computes response by calling related pure virtual function and performing 

common necessary operations for element (such as modification in load 

vector due to transformation, condensation etc…). 

• Computes tangent stiffness matrix by calling related pure virtual function of 

the element and performing common necessary operations for element (such 
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as modification in stiffness matrix due to transformation, condensation 

etc…). 

3.2.2.4 CBar3d 

Definition:  

This class represents 3D bar element. 

Inherits From:  

CSElements 

Members: 

• Vector storing the local x axis of the bar element. 

• CTransformation class instance for coordinate transformation of the bar 

element from local coordinates to global ones. 

Main Procedures: 

• Computes the tangential stiffness matrix of the bar element. 

• Computes the response of the bar element. 

• Calculates the local axis of the bar element according to its coordinates 

3.2.2.5 CFrame3d 

Definition:  

This class represents 3D frame element. 

Inherits from: 

CSElements 

 

55



 

Members: 

• Vectors storing local x, y and z axis. 

• CTransformation class instance for coordinate transformation of the beam 

element from local coordinates to global ones. 

Main Procedures: 

• Sets the direction of the local y axis of the beam element. 

• Computes the tangential stiffness matrix of the beam element. 

• Computes the response of the beam element. 

• Calculates the local axis of the beam element according to its coordinates. 

• Calculates the shape function of the beam element for a given local 

coordinate. 

• Calculates the strain-displacement (B) matrix for a given local coordinate. 

• Calculates the curvatures of the beam element for a given displacement 

field. 

3.2.2.6 CSubStrSystem 

Definition:  

This is abstract base class for substructures. It has two parents which are 

CSElements and CStrSystem. This approach is not very common and it is arguable. 

Later this class may be modified like deriving it from one of them or neither of 

them. 

Inherits From:  

CSElements and CStrSystem  
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Main Procedures: 

Pure Virtual Functions 

The operation that needs to be performed in these functions is summarized below. 

• Generation of internal elements of the substructure. Creating instances of the 

internal elements, performing the necessary initializations, and also 

assigning static condensation if there exist. 

Other Procedures: 

• Back-substitutes the displacements to the elements in substructure. 

• Calculates the residual force and sets it as the next load increment. 

• Assembles the stiffness matrix and load vector of the substructure to global 

stiffness matrix according to the assembly info of the substructure. 

3.2.2.7 CFrameSubStr 

Definition: 

It is 3D frame super element. It may also be called as super element. This class is 

initialized similar to a single frame element in system integrator. Various frame 

super elements can be instantiated using this class. The class can easily be extended 

to have a custom frame super element. 

Inherits From:  

CSubStrSystem 

Members: 

• Vector storing local y axis of the substructure. 

• Integer storing the type of the substructure. 
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Main Procedures: 

• Generates the internal elements of the substructure. 

• Sets the orientation of the substructure by defining the local y axis. 

3.2.2.8 CWallSubStr 

Definition: 

This class models the infill walls of the structure. It is composed of two diagonal 

bars which only work in compression. 

Inherits From:  

CSubStrSystem 

Members: 

• Array storing the bounding frame elements. 

• Material properties of the wall such as modulus of elasticity in horizontal 

and vertical directions and prism strength of the wall. 

• Thickness of the wall. 

Main Procedures: 

• Generates the internal elements of the substructure. 

3.2.2.9 CLoadSystem 

Definition: 

Loading information of the system is stored in this class. This class basically stores 

the load cases of the system. Special loading types (i.e. sequential loading) can be 

derived from this class. 
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Inherits From: 

None 

Members: 

• Array storing load case instances 

Procedures: 

• Adds load case to the class. 

• Queries load cases. 

3.2.2.10 CSequentialLoading 

Definition: 

This class is used for sequential loading of the structure. It is responsible for 

assigning load vector of the structural system according to the loading sequence. 

Inherits From: 

CLoadSystem 

Members: 

• Array storing load vector for each sequence 

• Array storing the number of increments for each sequence. 

• Array storing load cases and their weights for each sequence. 

Procedures: 

• Adds a sequence of loading for given load cases and their weights. 

• Forms the load vector of the structure for the next increment of loading. 
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• Steps back the structure to the previous load increment. 

3.2.2.11 CLoadCases 

Definition: 

This class stores a load case for the structure. 

Members: 

• Nodal load vector. 

• Nodal displacement vector. 

• Distributed and point loads of the elements. 

3.2.2.12 CKFMath 

Definition: 

Structural stiffness matrix, load vector and displacements are stored here. 

Additionally total load and response records are kept here for nonlinear solution. 

There is an instance of this class in each CSElements and CStrSystem classes. 

Modification in structural equations such as transformation of coordinates or 

condensation can be assigned to the class. 

Inherits From: 

None 

Members: 

• Stiffness matrix. 

• Modified stiffness matrix. 

• Load vector. 

60



 

• Modified load vector. 

• Displacements. 

• Modified displacements. 

• Response vector. 

• Total load vector. 

• Array storing CModifyEquations class instances. 

Procedures: 

• Sets number of degree of freedoms. Allocates memory for structural 

matrices stored in the class. 

• Queries number of degree of freedoms. 

• Solves the current system. 

• Assigns next loading increment to total load minus response vector. 

• Modifies the stiffness matrix according to the CModifyEquations class 

instances. 

• Modifies the load vector according to the CModifyEquations class instances. 

• Back-substitutes the displacement vector according to the 

CModifyEquations class instances. 

3.2.2.13 CModifyEquations 

Definition: 

This is abstract base class for the modifications in structural equations. Derived 

classes should implement procedures of the class which modifies the stiffness 

matrix, load vector and displacements. 
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Inherits From: 

None 

Members: 

• Pointer to the unmodified stiffness matrix. 

• Pointer to the modified stiffness matrix 

• Pointer to the load vector. 

• Pointer to the modified load vector. 

• Pointer to the displacement vector. 

• Pointer to the modified displacement vector. 

• Original stiffness matrix stored after modification is applied. 

• Original load vector stored after modification is applied. 

Main Procedures: 

Pure Virtual Functions 

The operation that needs to be performed in these functions is summarized below. 

• Modifying the stiffness matrix. 

• Modifying the load vector. 

• Back-substituting the displacement vector. 

Other Procedures: 

• Assigns pointer to the unmodified and modified stiffness matrix to related 

class member. 

62



 

• Assigns pointer to the unmodified and modified load vector to related class 

member. 

• Assigns pointer to the unmodified and modified load vector to related class 

member. 

3.2.2.14 CTransformation 

Definition: 

This class handles transformation of degree of freedoms from one coordinate axis to 

another (generally from local axis to global). 

Inherits From: 

CModifyEquations 

Main Procedures: 

• Modifies the stiffness matrix. 

• Modifies the load vector. 

• Back-substitutes the load vector. 

• Sets transformation properties from three base vectors. This procedure is 

used for 3D frame elements. 

• Sets the transformation properties from one vector. This procedure is used 

for bar elements. 

3.2.2.15 CCondensation 

Definition: 

This class handles condensation of certain degree of freedoms. It is used in 

substructures and super elements. 
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Inherits From: 

CModifyEquations 

Members: 

• Number of degree of freedoms to be retained. 

• Inverse of the stiffness matrix. 

• Sub-matrices to be used for condensation operation. 

Main Procedures: 

• Modifies the stiffness matrix. 

• Modifies the load vector. 

• Back-substitutes the load vector. 

• Sets number of degree of freedoms to be retained after condensation. 

3.2.2.16 CConstraint 

Definition: 

This class is used for rigid zone constraints of the frame elements.  

Inherits From: 

CModifyEquations 

Main Procedures: 

• Modifies the stiffness matrix. 

• Modifies the load vector. 

• Back-substitutes the load vector. 
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• Forms the constraint equations by taking four points’ coordinates as input. 

3.2.2.17 CMaterialElements 

Definition: 

This is base class for the material properties of the elements. 

Inherits From: 

None 

Members: 

• Array of pointer to the elements whose material properties are defined by 

this class. 

Procedures: 

• Stores the pointer of the CSElements class instance. 

3.2.2.18 CFrame3dLinear 

Definition: 

Class defines linear material properties of a 3D frame element. 

Inherits From: 

CMaterialElements 

Members: 

• Modulus of elasticity of the frame. 

• Moment of inertia about local y-y axis. 

• Moment of inertia about local z-z axis. 

65



 

• Area of the cross section 

• Shear modulus of cross section. 

• Torsional constant for cross section. 

3.2.2.19 CFrame3dNonlinear 

Definition: 

This is abstract base class that defines nonlinear material properties of a 3D frame 

element. 

Inherits From: 

CMaterialElements 

Members: 

• Initial modulus of elasticity of the frame. 

• Initial moment of inertia about local y-y axis. 

• Initial moment of inertia about local z-z axis. 

• Area of the cross section 

• Shear modulus of cross section. 

• Torsional constant for cross section. 

Main Procedures: 

Pure Virtual Functions 

The operation that needs to be performed in these functions is summarized below. 

• Calculating response according to a given strain filed. 
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• Calculating tangential stiffness matrix according to a given strain filed. 

3.2.2.20 CFrame3dNonLinearUncoupled 

Definition: 

Response and the tangential stiffness matrix are calculated by assuming moment 

about y-y axis, moment about z-z and axial force are uncoupled. Therefore relation 

between curvature and moment about y-y axis and z-z axis should be defined 

separately. Additionally a linear relationship between axial strains and stresses is 

assumed. This model can predict the response of the beam elements accurately. 

However in columns coupled material model should be used since there is 

significant amount of axial force in columns. In addition to that, under certain load 

conditions, bi-axial bending occurs. 

Inherits From: 

CFrame3dNonlinear 

Members: 

• Array storing the negative moment values in y-y direction for specified 

strain increments. 

• Array storing the positive moment values in y-y direction for specified strain 

increments. 

• Array storing the negative moment values in z-z direction for specified 

strain increments. 

• Array storing the positive moment values in z-z direction for specified strain 

increments. 

Procedures: 

• Calculates response according to a given strain filed. 
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• Calculates tangential stiffness matrix according to a given strain filed given. 

• Reads nonlinear material properties from an input file. 

• Writes nonlinear material properties to an output file.  

3.2.2.21 CFrame3dNonLinearCoupled 

Definition: 

Response and the tangential stiffness matrix are calculated by coupling moment 

about y-y axis, moment about z-z and axial force. This material model gives more 

realistic results. However it is computationally more intensive. Additionally whole 

system needs more iteration to converge for a load increment when structure is 

composed of elements with this material type. First cross section is meshed using a 

FORTRAN dynamic link library. Meshed section is stored in the class to prevent re-

meshing. Response and stiffness properties of the section are computed using the 

meshed section stored in the class again by using FORTRAN dynamic link library.  

Inherits From: 

CFrame3dNonlinear 

Members: 

• Various variables storing the cross section properties and discretized cross 

section. 

Procedures: 

• Calculates response according to a given strain filed. 

• Calculates tangential stiffness matrix according to a given strain filed given. 

• Reads section geometric and material properties from an input file. 

• Writes section geometric and material properties to an output file. 
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3.2.2.22 CBar3dLinear 

Definition: 

This class stores the linear properties of the 3D bar properties. 

Inherits From: 

CMaterialElements 

Members: 

• Modulus of elasticity of the bar. 

• Cross sectional area of the bar. 

3.2.2.23  CBar3dNonLinear 

Definition: 

This class is for nonlinear 3D bar element with multi-linear material model.  

Inherits From: 

CMaterialElements 

Members: 

• Array storing modulus of elasticity for certain strain levels. 

• Array storing strain levels at which hardening begins. 

• Array storing stress values correspond to the strain levels stated above. 

Main Procedures: 

• Defines material model by giving stress value and modulus of elasticity. 

• Calculates the stress for a given strain. 
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• Calculates the tangent modulus of elasticity for a given strain state. 

3.2.2.24 CNonLinSol 

Definition: 

This class is the abstract base class for the nonlinear solution algorithms. It has a 

pure virtual function ‘solve’ that needs to be overridden in each derived class. In 

addition to that class includes some common procedures for each nonlinear solution 

algorithm. 

Inherits From: 

None 

Members: 

• CStrSystem class instance. 

• Error tolerance of the solution in percentage. 

• CDuration class instance for determining the solution time. 

Main Procedures: 

Pure Virtual Functions 

The operation that needs to be performed in these functions is summarized below. 

• Solving the system that is stored as member variable of the class 

Other Procedures: 

• Check whether the system is converged according to the given load. 

• Check whether the system is converged according to the given 

displacements.  
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• Starts the timer of CDuration. 

• Stops the timer of CDuration 

• Reports the iterations. 

• Reports the displacements after each convergence. 

3.2.2.25 CConstantStiffness 

Definition: 

This class solves the system with Modified Newton Rapshon algorithm. It uses the 

initial stiffness matrix throughout the solution. 

Inherits From: 

CNonLinSol 

Procedures: 

• Solves the system. 

3.2.2.26  CModifiedNewtonRapshon 

Definition: 

It starts solution with initial stiffness matrix. After a number of iterations that are 

not converged the stiffness matrix is updated. Later the same stiffness is used until 

iterative solution does not give satisfactory displacement increments. 

Inherits From: 

CNonLinSol 

Procedures: 

• Solves the system. 
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3.2.2.27 CModifiedNewtonRapsonWC_1 

Definition: 

Implementation of the class is the same with the CModifiedNewtonRapshon except 

this one changes the algorithm to Full-Newton Raphson when solution converges to 

an unrealistic result.  

Inherits From: 

CNonLinSol 

Procedures: 

• Solves the system. 

3.2.2.28 CModifiedNewtonRapsonDisplacement 

Definition: 

This class is capable of solving a system which is under the effect of pre-described 

displacement. 

Inherits From: 

CNonLinSol 

Procedures: 

• Solves the system. 

3.2.2.29 CSystemStorage 

Definition: 

This class keeps the record of the structural system at each increment of the load. It 

mainly includes an array of CSystemInstances objects. 
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Inherits From: 

None 

Members: 

• Array of pointer to the CSystemInstances class instances. 

• Pointer to the CStrSystem class instance. 

Procedures: 

• Saves the current state of the system. 

• Restores the system at the given index. 

3.2.2.30 CSystemInstances 

Definition: 

This class stores the system, particularly its elements. State of the elements are 

stored by copying the elements. 

Inherits From: 

None 

Members: 

• Array of pointer to the CSElements class instances. 
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CHAPTER 4  

CASE STUDIES 

4.1 Numerical Test Problems 

The validity and the effectiveness of the proposed algorithm are tested by a number 

of numerical test problems. The performance of the numerical scheme is influenced 

by a number of parameters that can affect the predicted response directly. Mesh 

density of the cross section, the number of integration points taken along the beam, 

discretization of the frame element along its length are some of them. First, the 

program results are verified for linear and nonlinear cases. Later, the parameters of 

the solution algorithm are investigated to find their optimum values. Especially, a 

frame super-element that expected to represent the behavior of the structure within 

an acceptable level of accuracy is investigated. Finally, the structural response 

predicted by the program is compared with the experimental results available. 

4.1.1 Linear Case 

To verify the results produced by the program for linear structures, a one-bay 

single-story space frame structure shown in Figure 4.1 is used. All beams and the 

columns in the example structure have identical geometric and material properties. 

The structural analysis program SAP2000 v8.2.3 is used for comparison. 

Material and geometric properties of the frame elements in some consistent units 

are as follows. E = 2.0x107, Iyy = 2.0x10-4, Izz = 2.0x10-3, J =1.0x10-4, A = 2.0x10-2 

and v = 0.2. The load is applied at node 2 in global x-direction is F= 5000. 
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Figure 4.1: Geometry of the sample frame (in some suitable units) 

The load is applied in a number of steps. Since the material models of the frame 

elements are linear, the solution is expected to converge in a single iteration for 

each load increment. This is observed to be the case. The final displacement 

response of the structure is given in Table 4.1 together with the response predicted 

by SAP2000. 
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Table 4.1 : Displacements given by the program and SAP2000 

Node Number DOF 
Displacements 

(Code Developed) 
Displacements 

SAP2000 
 Ux 0,070322 0,070322 

 Uy -0,013354 -0,013354 
 Uz 0,008911 0,008911 

node:2 θx -0,003083 -0,003083 
 θy 0,027544 0,027544 
 θz 0,023681 0,023681 
    
 ux 0,058741 0,058741 
 uy 0,013354 0,013354 
 uz -0,008911 -0,008911 

node:4 θx 0,003083 0,003083 
 θy 0,021773 0,021773 
 θz 0,019465 0,019465 
    
 ux 0,003474 0,003474 
 uy -0,013354 -0,013354 

node:6 uz 0,000957 0,000957 
 θx -0,003083 -0,003083 
 θy 0,001679 0,001679 
 θz 0,023681 0,023681 
    
 ux 0,003428 0,003428 
 uy 0,013354 0,013354 

node:8 uz -0,000957 -0,000957 
 θx 0,003083 0,003083 
 θy 0,001636 0,001636 
 θz 0,019465 0,019465 

 

Table 4.1 shows that, as expected, the program gives the same results as SAP2000 

for linear structures. 

Later, another analysis is performed by considering the rigid zones of length 0.1 at 

the member ends of the beams and top of the columns. The results are listed in 

Table 4.2. 
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Table 4.2: Displacements given by the program and SAP200 when rigid zones are 

taken into account 

Node Number DOF 
Displacements 

(Code Developed) 
Displacements 
SAP2000 

 ux 0,062692 0,062692 
 uy -0,012518 -0,012518 
 uz 0,009509 0,009509 

node:2 θx -0,003408 -0,003408 
 θy 0,024799 0,024799 
 θz 0,021574 0,021573 
    
 ux 0,051174 0,051174 
 uy 0,012518 0,012518 
 uz -0,009509 -0,009509 

node:4 θx 0,003408 0,003408 
 θy 0,018884 0,018884 
 θz 0,017148 0,017148 
    
 ux 0,003572 0,003572 
 uy -0,012518 -0,012518 

node:6 uz 0,001135 0,001135 
 θx -0,003408 -0,003408 
 θy 0,001756 0,001756 
 θz 0,021574 0,021573 
    
 ux 0,003519 0,003519 
 uy 0,012518 0,012518 

node:8 uz -0,001135 -0,001135 
 θx 0,003408 0,003408 
 θy 0,001712 0,001712 
 θz 0,017148 0,017148 

 

From Table 4.2 it is clear that the results produced by the program developed are in 

perfect agreement with those given by SAP2000 when the rigid zones at element 

ends are considered. 
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4.1.2 

y

Nonlinear Case 

4.1.2.1 Coupled Material Model for Frame Elements 

Coupled material model of the frame element is verified using a simply supported 

beam structure. The geometry and the cross-sectional details of the structure are 

given in Figure 4.2. The beam is modeled by a single frame element. The 

concentrated end moments are applied incrementally at both ends to create a single 

curvature along the element. The curvature values at each load increment are 

recorded and they are compared with the moment-curvature diagram of the element 

cross-section. The moment-curvature diagram of the reinforced concrete section is 

obtained by the code RCMOD given by Polat [36]. A modified version of the same 

code is used for the material model of the frame element in this study. Therefore, 

the results obtained from RCMOD and the program developed in this study is 

expected to match. The analyses are later repeated in the presence of an axial load. 

The results of the analyses are presented in Figure 4.3, Figure 4.4, and Figure 4.5. 
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Figure 4.2: Test of the material model of the beam element under constant moment 

and axial load 

78



 

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

0.00E+00 2.00E-02 4.00E-02 6.00E-02 8.00E-02 1.00E-01 1.20E-01

Curvature (1/rad)

M
om

en
t (

kN
m

)
RCMOD [36]

Program of this study

 

Figure 4.3: Moment-curvature relationship about y axis produced by the program 

of this study and RCMOD [36] 
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Figure 4.4: Moment-curvature relationship about positive z axis produced by the 

program of this study and RCMOD [36] 
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Figure 4.5: Moment curvature relationship about negative z axis produced by the 

program of this study and RCMOD [36] 

The same analysis is repeated in the presence of an axial load of 1600 kN to test the 

material model under a more practical situation. The axial load is applied to the 

beam as the first sequence of loading and then the end moments are applied. The 

results are presented below. 
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Figure 4.6: Moment-curvature relationship about negative z axis under axial load 

produced by the program of this study and RCMOD [36] 
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Figure 4.7: Moment-curvature relationship about negative z axis under axial load 

produced by the program of this study and RCMOD [36] 
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Figure 4.8: Moment-curvature relationship about y axis under axial load produced 

by the program of this study and RCMOD [36] 
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4.1.3 Efficiency and Effectiveness of the Frame Element 

4.1.3.1 Influence of the Number of Integration Points 

Gauss-Legendre integration is used for numerical integration of the frame elements. 

With n Gauss integration points a polynomial function of order 2n-1 can be 

integrated exactly. In the linear case using 2 Gauss integration points is sufficient to 

obtain the exact results since the B matrix and the curvature along the beam varies 

linearly. Consequently, the expressions such as BT .EI.B and BT .M are second degree 

polynomials. However, when the material model of the beam element is nonlinear 

using a larger number of integration points is normally needed since the order of the 

expressions increases. However, when the spread-of-plasticity approach is adopted 

as the material model, it is not possible to specify the exact order of integration 

since the exact order of the integrant expressions is not clear. Therefore, the effect 

of the number of integration points to be used for the numerical integration is 

investigated next. 

A cantilever column shown in Figure 4.9 is used as a test structure to explore the 

effect of the number of integration points (integration order) on the predicted 

response. The cross-sectional details of the structure are as given in Figure 4.2. The 

lateral tip displacements calculated for a lateral load of F=12.74 kN, which is very 

close to its ultimate value, are reported in Table 4.3. From Table 4.3 it is clear that 

increasing the number of Gauss integration points used do not increase the accuracy 

of the solution significantly. Nevertheless, using fewer numbers of Gauss 

integration points decreases the solution time drastically. 
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Figure 4.9: Cantilever column used to test the effect of the number of Gauss points 

used on the solution accuracy. 

Table 4.3: Lateral tip deflection for different number of Gauss integration points 

used for computations 

Number of Gaussian Points Number of Beam 
Elements 2 3 4 5 

1 0.13801 0.139351 0.139186 0.139117 
3 0.152701 0.15274 0.152736 0.152752 
5 0.186641 0.186599 0.186686 0.186644 

20 0.448504 0.448502 0.448505 0.448502 

 

The effect of the frame super-element mesh density on its predictive capacity is 

investigated with the test structure shown in Figure 4.10. The cross-sectional details 

of the structure are again as given in Figure 4.2. The structure is analyzed using 

different meshing schemes for the frame super-elements representing the beam and 

the columns. The load is applied until total collapse of the structure. The results are 

given in Figure 4.11, Figure 4.12 and Figure 4.13. 
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Figure 4.10: Portal frame for testing the influence of mesh density on the predictive 

capacity of the frame super-element. 
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Figure 4.11: Force-displacement relationship at the loaded node of the portal frame 

for 3 equal-length divisions of frame super-elements. 
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Figure 4.12: Force-displacement relationship at the loaded node of the portal frame 

for 5 equal-length divisions of frame super-elements 
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Figure 4.13: Force-displacement relationship at the loaded node of the portal frame 

for 20 equal-length divisions of frame super-elements 
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Examination of the results of these test problems reveals that using more than 2 

Gauss integration points does not increase the accuracy of the solution. 

4.1.3.2 Mesh Density of the Cross Section  

Discretization of the cross-section of the frame elements is investigated. For this 

purpose a cantilever column of Figure 4.14 is used. The cross-sectional details of 

the column are as shown in Figure 4.2. 
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Figure 4.14: Analysis of a cantilever column with varying cross-sectional mesh 

densities. 

The frame super-element is modeled with 20 equal length finite beam elements. 

Analyses are performed for cross section that is divided into 100, 500, 1000, 1500 

and 2000 triangular elements. Frame is subjected to a lateral load of 12.74 kN that is 

near its ultimate load capacity. Force-displacement relationships are shown in 

Figure 4.15. 
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Figure 4.15: Force-displacement relations of a cantilever column with different 

cross-sectional mesh densities 

Inspection of Figure 4.15 shows that it is possible to predict the response even with 

a rather coarse mesh up to a load level very close to its ultimate capacity. Taking 

the response for the case with a cross-sectional mesh density of 2000 elements as 

the true response the relative error for coarser cross-sectional mesh densities are 

shown Table 4.4. 

Table 4.4: Relative error in the predicted tip deflection for varying cross-sectional 

mesh densities. 

100 Elements 500 Elements 1000 Elements 1500 Elements 
%16.354 %1.764 %0.508 %0.200 
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From Table 4.4 it is clear that increasing the mesh density of the cross-section 

beyond 1000 elements does not increase the accuracy significantly. Therefore, a 

mesh density of 1000 triangular elements is used in the rest of the study. It should 

be noted that using even 500 elements is sufficient to meet the precision demand in 

most practical situations. 

4.1.3.3 Mesh Schemes along the Frame Super-Element 

In real-life frame structures the degree of plastification varies along the length of 

the frame element. For instance, the level of stressing is quite high at the member 

ends when the structure is subject to lateral loads during an earthquake while their 

middle portions are relatively less stressed. Therefore, the use of a graded meshing 

of the elements as opposed to uniform meshing is expected to be more effective. In 

an attempt to explore the effect of mesh density and the relative effectiveness of 

various graded meshes the test structure of Figure 4.14 is modeled by using a 

uniform mesh of 5, 10, 50 and 100 elements and graded mesh of 3, 7, and 9 

elements shown in Figure 4.16. The relative size of each sub-element in the graded 

mesh is also indicated in Figure 4.16. 

1 8 1

1 3 5 7 5 3 1

3 5 7 5 3 11 9

(1 )

(2 )

(3 )
7  

Figure 4.16: Special graded meshing of frame super-elements. 

The cantilever column structure of Figure 4.14 is analyzed for the two mesh types 

with various mesh densities. The force-deflection relationship at the tip is obtained 

as shown in Figure 4.17. 
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Figure 4.17: Force-displacement relationships of the frame super-element for 

various densities of uniform and graded mesh. 

The maximum deflection of the frame for the case of a uniform mesh with 50 

elements is taken as the true response and the relative departure from the true 

response of the other meshing schemes and densities are given in Table 4.5. 

Table 4.5: Relative departure from the true response of various meshing schemes 

and densities for the frame super-element. 

5 Elements 10 Elements 3 Elements* 7 Elements* 9 Elements* 
%-59.399 %-13.701 %-15.510 %-13.170 %-4.477 

 

It is obvious from Figure 4.17 and Table 4.5 that, for the finite element modeling of 

the frame super-element, the graded meshing schemes of Figure 4.16 are clearly 
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more effective than the uniform meshing with comparable densities. Moreover, 9-

elements graded mesh seems to be the most effective one for modeling the frame 

super-element in the plastic range. 

In order to further investigate the super-element meshing schemes and densities, the 

portal frame structure of Figure 4.10 is analyzed again. The loading is applied 

incrementally until collapse and the elements are modeled with uniform and graded 

meshes of varying densities. The response predictions for uniform meshing schemes 

are in Figure 4.18 and those for the graded mesh schemes are shown in Figure 4.19. 
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Figure 4.18: Load-deflection relationships for various uniform mesh densities of 

the frame super-element. 
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Figure 4.19: Force-displacement relationships for various graded mesh densities of 

the frame super-element 

It is again seen that the use of a graded meshing scheme for the frame super-

elements makes them more effective. 

4.2 Comparison of the Program Results with Experimental Measurements 

First response predictions of the program are compared with the experimental 

results of a beam without shear reinforcement under four-point loading. 

As part of another study on the strengthening of reinforced concrete frames with 

masonry walls, some experiments have been performed in the Materials of 
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Construction Laboratory. The data obtained from these experiments are available 

and used for the verification of the proposed numerical procedure in Section 4.2.2 

and Section 4.2.3.  

4.2.1 Beam under Four-Point Loading 

A lightweight reinforced concrete beam is tested under four-point loading by 

Walraven, JC [23]. There is no web reinforcement in the beam. The geometry and 

the cross-sectional details of the beam are given in Figure 4.20. The concrete cubic 

compressive strength and bar yield strength is given as 34.2 MPa and 440 MPa, 

respectively. Experimental data obtained are given in Figure 4.21 by Pamin J & 

Bors R [39]. 

P P

1φ20 + 
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Figure 4.20 : Beam under four-point loading [39] 
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Figure 4.21: Load-deflection diagram for the beam under four-point loading [39] 

The test is simulated by the program for two cases: First, it is assumed that the 

concrete takes tension according to the stress-strain diagram given in Figure 4.22. 

Later, the analysis is repeated by assuming that the concrete will not take any 

tension. Material models of concrete and the steel are taken as C35 and S420a 

respectively. The beam is divided into three frame super elements at the location of 

the point loads. Each frame super element is composed of equally spaced 50 frame 

finite elements. The load deflection diagrams that are predicted by the program 

developed in this study are given in Figure 4.23. 
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Figure 4.22: Stress-strain relationship for concrete in tension [42] 
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Figure 4.23: Load deflection diagrams predicted by the program developed in this 

study together with the representation of the experimental data with 

two straight lines. 

Figure 4.23 shows that the program developed gives satisfactory results compared 

with the experimental data. Overestimation of the stiffness of the beam at the final 

stages of loading can be explained with the perfect bond assumption of the program. 

Finally, it should be noted that considering concrete will take no tension becomes a 

valid assumption after the load level where tension cracks occur in concrete. 

4.2.2 R/C Frame Only 

The sketch of the bare frame specimen used in the experiments is shown in Figure 

4.24 and the cross-sectional details of the frame members are given in Figure 4.25. 
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Figure 4.24: Experimental setup and the bare fame test specimen. 
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Figure 4.25: Cross-sectional details of the frame members used in the experiments. 

The concrete class of the test frame specimen is C20 and the steel class of the 

reinforcement is S420a. There are load cells attached to each actuator hydraulic 

cylinder. A cyclic load is applied by actuators 1 and 2. Displacements are measured 

by LVDTs, which are located as shown in Figure 4.24. After processing the raw 
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data recorded during experiments, the load-displacement curve for the load cell 1 

and LVDT 3 is obtained as given in Figure 4.26. 
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Figure 4.26: Experimentally observed load-displacement relation of test specimen 

for load cell 1 & LVDT 3 

The experimental specimen is modeled numerically with the program as given in 

Figure 4.27. Here, rigid zones are only considered at connections 5 and 6. The load 

is applied at Node 5. The characteristic strengths of steel and concrete are used in 

the calculations. The analysis is performed by neglecting the self-weight of the 

frame. Initially, fixed support conditions are assumed at nodal points 2 and 10. The 

calculated displacement corresponding to each load increment at node 5 is plotted in 

Figure 4.28. 
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Figure 4.27: Finite element model of the test specimen used for analysis. 
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Figure 4.28: Experimentally measured and numerically predicted behavior of the 

R/C frame (fixed ends) 

The actual support conditions of the test frame are complicated. However, a close 

examination of the support devices shows that it is closer to a pin rather than a 

clamp. As a result, the modeling the frame as given in Figure 4.27 creates a stiffer 

system. Therefore, the same analysis is performed again using pin support 
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conditions at Node 10 and a roller support at Node 2. The load-displacement 

relationship of Node 5 is presented in Figure 4.29. It is expected that the actual 

behavior of the frame will be between these two limit states. 
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Figure 4.29: Experimentally measured and numerically predicted behavior of the 

R/C frame (pin ends) 

Based on the response predicted by the program it is observed that the numerical 

model is stiffer than the actual structure. Beside the obvious fact that the 

displacement based finite element models are always stiffer than the actual 

structures, part of the reason for this discrepancy can be attributed to the following 

details not included in the mathematical model. 

• The loading is cyclic in the experiments and it is possible that some strength 

reduction is experienced by the frame members as a result of damage caused 

by load reversals. 

• The loading was not continued up to failure since the same damaged frames 

were planned to be used again after strengthening. 
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• It is possible that some local crushing of concrete occurred during 

experiments at support locations and at the point where the load is applied as 

a result of high local stresses. This is not accounted for in the numerical 

simulation. 

• Strength reduction in the frame members of the test specimen is possible due 

some slippage of the rebars whereas a perfect bond is assumed in the 

numerical model. 

4.2.3 R/C Frame with Masonry Infill 

In another experiment, an identical R/C frame with masonry infill was tested. The 

same experimental setup was used and each bay was filled with a 9cm thick 

masonry wall as shown in Figure 4.30. 

63 4 521
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Support 3 Support 4

Support 2Support 1  

Figure 4.30: R/C frame with masonry infill 

The test was conducted by applying the load monotonically in one direction only. 

The load-displacement variation recorded by the load cell attached to Actuator1 and 

LVDT3 is shown in Figure 4.31. 
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Figure 4.31: The load-displacement diagram of the frame with masonry infill 

(Actuator1 – LVDT3) 

The R/C frame is modeled by using 9-element graded mesh scheme for the frame 

super-elements. The infill walls are modeled by two diagonal compression-only 

struts described previously in Section 2.1.1. To determine the material properties of 

the masonry infill relevant to the strut model used, the masonry units are tested in 

the vertical and horizontal directions. The unit strength of the masonry block is 

determined as 8.5 (MPa) in the vertical direction, and 13.5 (MPa) in the horizontal 

direction. The equivalent strut model parameters are then calculated by the 

equations given in Section 2.1.2. 

The response calculations of the numerical model are done by incrementally 

increasing the load applied at Node 5 until total collapse of the structure. The 

calculations are repeated once for the case of clamped end conditions and once for 

the case pin end conditions at support nodes. The results are presented in Figure 

4.32 and Figure 4.33, respectively. The numerically predicted load level and the 

location of the first infill damage, the damage pattern and the progression of the 

damage state follows very closely those which are experimentally observed. The 

final collapse of the structure predicted by the numerical model comes after the 
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capacity of the outer bay infill walls is exhausted. This is simultaneously followed 

by collapse of the R/C frame under excessive load released by the failing infills. 

This ultimate capacity was not reached in the experimental program in order not to 

damage the specimen excessively since it was planned to be used again after repair 

and strengthening of the damaged infills by the application of FRP on their surfaces. 
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Figure 4.32: The numerically predicted and the experimentally measured response 

of the R/C frame with masonry infill (fixed ends) 
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Figure 4.33: The numerically predicted and the experimentally measured response 

of the R/C frame with masonry infill (pin ends) 

4.3 Non-linear Analysis of a Sample 3D Structure 

A sample 3D structure is analyzed to test the program. Geometry of the structure is 

given in Figure 4.34. Section properties are given in Figure 4.25. In this example for 

columns section type A and for beams type B is used. Concrete and steel classes of 

the frame members are C20 and S420a respectively. All frame members are 

modeled with specially discretized 9 frame finite elements (see Figure 4.16). Cross 

section of the frame elements are subdivided into 2000 triangular elements. 

Two sequence of loading is applied to the structure. First same support 

displacement u is applied at the nodes shown in Figure 4.34. Value of the support 

displacement is 7 mm. Then system is loaded laterally. Point loads on structure are 

shown in Figure 4.34. The loads F1a and F2a are 1.5 times of the loads F1b and F2b 

respectively. Additionally loads on the second storey are two times of the 

corresponding loads in the first stories. Load displacement diagrams of loads F2a 

and F2b corresponding displacements are drawn in Figure 4.35.  
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Figure 4.34: Sample 3D structure 
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Figure 4.35: Load displacement diagram for the load F2a and F2b and the 

corresponding displacements 
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Deflected shape of the system after imposing the prescribed displacements is given 

in Figure 4.36 with magnifying the displacements by a factor of 50. In addition to 

that deflected shape of the system at the final state is given in Figure 4.37 and 

Figure 4.38. 

It should be noted that the solution time of the problem is about 200 seconds for a 

computer with AMD 1700+ CPU. 

 

Figure 4.36: Deflected shape of the sample 3D structure after imposing prescribed 

support displacements (looking through positive x direction) 
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Figure 4.37: Deflected shape of the sample 3D structure at the final stage of 

loading (looking through positive x direction) 
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Figure 4.38: Deflected shape of the sample 3D structure at the final stage of 

loading (looking through the same direction as in Figure 4.34) 
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CHAPTER 5  

SUMMARY AND CONCLUSIONS 

5.1 Summary 

In this study modeling nonlinearity of masonry infilled reinforced concrete frames 

are investigated. Reinforced concrete frames are modeled with 3D displacement 

based Hermitian beam finite elements. Material nonlinearity of the frame elements 

is modeled by the spread-of-plasticity approach. Cross section of the frame is 

divided into monitoring triangles at the integration points. This allows monitoring 

the gradual yielding of the cross-section. Bending and the axial displacements are 

coupled in the inelastic range. Therefore, a special tangential stiffness matrix is 

derived that couples the displacements. Newly derived tangential stiffness matrix is 

not symmetric. Therefore the full matrix is stored in a band form. Constraint 

equations are implemented for the frame element by assuming that the member end 

nodes are in the rigid zone. Constraint equations are further modified since these 

zones are assumed as axially and torsionally flexible. 

A super element is formed by using a number of sub elements since the predicted 

displacement response of the elements is only approximate in the inelastic range. 

Internal degrees of freedoms of the super element are condensed out.  

For modeling the infill wall, a non-linear infill wall model which only considers the 

corner crushing failure mode of the infill is presented and used in this study.  

For the implementation of the procedure, a program is developed with object-

oriented approach. The components of the procedure stated above are each 

represented with a separate object.  
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Finally, some case studies are performed to test the program. Different 

discretization schemes of the frame members are tested. Moreover, some other 

parameters controlling the solution such as the number of integration points used 

and the discretization of the element cross-section are tested. The response 

predictions of the program are compared with the available experimental data. 

5.2 Limitations 

Limitations and the assumptions of the nonlinear analysis program are listed below. 

• Shear deformations are neglected for the frame element. Formulations 

include flexural and axial deformations only. 

• Warping effect is neglected. 

• Torsional behavior of the frame element is assumed to be linear. 

• Geometric nonlinearity is neglected. 

• Hardening of the steel is neglected. Additionally, no hysteretic damage 

model is adopted in the program. 

• Web reinforcement and its contribution to concrete strength (due to 

confinement) are neglected. 

• In the infill wall formulation, only the corner crushing of the infill wall is 

taken as the limit state. Other limit states like the shear failure and diagonal 

crushing are not taken into account. 

• While binding the element degrees of freedom to the structural degrees of 

freedom the space between the two is assumed to be rigid. 
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5.3 Conclusions 

A numerical procedure is suggested for the nonlinear analysis of reinforced 

concrete frames with infill walls. The use of the spread-of-plasticity approach for 

the frame elements in the inelastic range makes it possible to observe the gradual 

yielding of the cross-section. The axial and the bending deformations of a 

reinforced concrete frame element in the inelastic range are, in general, coupled and 

this coupling effect can easily be handled in this approach since the element cross-

section is taken into consideration by its actual geometry. However, this procedure 

is computationally more intensive than other approaches such as using isolated 

concentrated plastic hinges at various locations along the member. It is seen that 

ignoring this coupling effect in the formulation results in an excessive number of 

equilibrium iterations for convergence to equilibrium state in each load increment. 

Therefore, a more populated stiffness matrix is formulated that couples axial and 

the bending displacements of the section. However, the resulting stiffness matrix is 

not symmetric. Therefore, symmetric storage schemes and solvers cannot be used 

anymore.  

It is observed that the elasto-plastic super elements, which are composed of several 

nonlinear 3D frame finite elements, overestimate the ultimate load capacity of the 

actual frames when the predicted response is compared with a limited number of 

experimental results. This may be due to a lack of hysteretic damage model for the 

frame elements of this study since the actual experiment are performed under cyclic 

loading. Additionally, the capacity of the reinforced concrete sections may be less 

than the one expected due to uncertainties such as bond damage during cyclic load 

applications. 

The response of frames with infill walls predicted by this procedure is also 

satisfactory. A better correlation with the experimental results is observed in a case 

study involving infill walls. However, this may be partly due to the fact that in the 

experimental study the loading was monotonic in one direction only. 
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The program developed in this study for the nonlinear analysis of reinforced 

concrete frames with infill walls is a good framework for the future studies. It is 

developed considering the possible extensions in the future. Additional components 

can easily be implemented by deriving from existing classes or creating new classes 

that is consistent with the current design. 

5.4 Recommendations for Future Studies 

Following are suggested for future studies. 

• The response predictions of the procedure are needed to be verified with 

more experimental data. 

• The program can easily be adopted for steel frames by introducing steel 

material properties into the DLL, which calculates the sectional response. 

• Infill model can be extended to take other failure modes into account. 

• Other structural members can be implemented in the program. 

• Shear deformations can be included in the beam finite element to model 

deep beams and columns.  

• Force based and mixed formulated elements may be implemented and tested 

to see whether they give more realistic results with less number of elements. 

• Accuracy of the frame elements can further be tested. Alternative 

discretization schemes can be explored.  

• Performance of the program can be improved by various optimizations. 

• In addition to the band solver, a profile solver can be implemented. 

• Since the spread-of-plasticity approach is used to model the material 

nonlinearity, iterations may converge to some un-realistic states, or even not 
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converge in some occasions. This is due to the rise and falls in the tangential 

stiffness of the structure. A better solution strategy can be implemented to 

avoid such numerical instabilities. 

• In the case studies, it is observed that up to a certain load level, the frame 

element behaves basically as a linear element. Additionally, it is seen that 

the initial stiffness of the frame members can be very well predicted with a 

fewer number of elements. Consequently, the system can be modeled with 

frame members that are discretized into smaller number of elements 

initially. Later, as plastification starts, members can be substituted with the 

super elements with finer meshes.  

5.4.1 Extending the Code 

Since the program is developed in an object-oriented manner any extensions should 

comply with the principles of design for the sustainable development of the code. 

For instance, to add a new finite or structural element to the code a new class shall 

be derived from the base class CSElements. For connecting the newly derived 

element with the rest of the code necessary functions should be overridden. This 

requirement is also dictated by the compiler since the common functions that 

integrate the element with the domain object and the solution algorithm are declared 

as pure virtual functions. This means that a newly derived element could not be 

instantiated unless these pure virtual functions are not implemented. The same 

applies to the other components of the program. 

111



 

REFERENCES 

1. Stafford Smith B “Lateral stiffness of infilled frames.” Journal of Structural 

Division (ASCE) (1962): 88(6): 183-199. 

2. Stafford Smith B “Methods for predicting the lateral stiffness and strength 

of multi-storey infilled frames.” Building Science (1967): 2: 247–257. 

3. Mainstone RJ & Weeks GA “The influence of bounding frame on the 

racking stiffness and strength of brick walls.” Proceedings of the 2nd 

International Conference on Brick Masonry, Stoke-on-Trent, UK, (1970): 

165–171. 

4. Wood RH “Plasticity, composite action and collapse design of unreinforced 

shear wall panels in frames.” Proceedings of the Institute of Civil Engineers 

(1978): 65(2): 381–441. 

5. Liauw TC & Kwan KH “Unified plastic analysis for infilled frames.” 

Journal of Structural Engineering (ASCE) (1985): 111(7): 1427–1448. 

6. Saneinejad A & Hobbs B “Inelastic design of infilled frames.” Journal of 

Structural Engineering (ASCE) (1995): 121(4): 634–650. 

7. “Building cod requirements for structural plain concrete and commentary” 

(1989) ACI 312.1-89 Am. Concrete Inst.(ACI), Detroit, Mich 

8. “Building code requirements for masonry structures ” (1988) ACI 530-

88/ASCE 5-88, Am. Concrete Institute (ACI), Detroit, Mich 

9. Madan A, Reinhorn AM, Mander JB & Valles RE “Modeling of 

masonry infill panels for structural analysis.” Journal of Structural 

Engineering (ASCE) (1997) 123(10): 1295–1302. 

112



 

10. El-Dakhakhni WW, Elgaaly M & Hamid AA “Three-Strut Model for 

Concrete Masonry-Infilled Steel Frames.” Journal of Structural Engineering 

(2003) 129(2): 177-185. 

11. Flanagan, RD, Bennett RM, & Barclay GA ‘‘In-plane behavior of 

structural clay tile infilled frames.’’ Journal of Structural Engineering (1999) 

125(6), 590–599. 

12. Shing PB and Mehrabi AB “Behavior and analysis of masonry-infilled 

frames.” Prog. Struct. Engng Mater. (2002)  4:320–331. 

13. Bennet RM, Kurt AB, Flanagan RD “Compressive properties of structural 

clay tile prisms.” Journal of Structural Engineering 1997:  123(7): 920-926 

14. Silicon Graphics Inc. “OpenGL Programming Guide”, Addison-Wesley 

Publishing Company, 1997. 

15. MSDN (Microsoft Developers Network) “Microsoft Foundation Class 

Library”, (2005) http://msdn.microsoft.com/library/default.asp?url=/library/ 

en-us/vcmfc98/html/ mfchm.asp 

16.  Mckenna FT & Fenves GL “Object-oriented finite element programming: 

frameworks for analysis, algorithms and parallel computing”, PHD 

Dissertation, University of California, Berkeley, 1997. 

17. Rumbaugh, J, Blaha M, Premerhani W, Eddy F & Lorensen W 

“Object-Oriented Modeling and Design” Prentice-Hall (1991), Englewood 

Cliffs, New Jersey 07632. 

18. Heyman J “Plastic design of portal frames.” Cambridge University Press 

(1957), Cambridge, England. 

19. Porter FL & Powell GH ‘‘Static and dynamic analysis of inelastic framed 

structures.’’ Rep. No. EERC 71-3, Earthquake Engineering Research 

Center, (1971) University of California at Berkeley, California. 

113



 

20. Nigam, NC ‘‘Yielding in framed structures under dynamic loads.’’ J. Eng. 

Mech. Div., (1970) 96(5), 687–709. 

21. El-Tawil S & Deierlein GG ‘‘Stress-resultant plasticity for frame 

structures.’’ J. Eng. Mech. (1998), 124(12), 1360–1370. 

22. Liew JYR & Tang LK ‘‘Advanced plastic-hinge analysis for the design of 

tubular space frames.’’ Eng. Struct. (2000), 22(7), 769–783. 

23. Walraven, JC “The influence of depth on the shear strength of lightweight 

concrete beams without shear reinforcement.” (1978) TU-Delft Report no. 

5-78-4, Stevin Laboratory, Delft University of Technology 

24. Meek JL, Lin LW “Geometric and material nonlinear analysis of thin-

walled beam–columns.” ASCE Journal of Structural Engineering (1990), 

116(6), 1473–90. 

25. Bild S, Chen G, Trahair NS “Out-of-plane strength of steel beams.” ASCE 

Journal of Structural Engineering (1992), 118(8), 1987–2003. 

26. Teh LH, Clarke MJ “Plastic-zone analysis of 3D steel frames using beam 

elements.” ASCE Journal of Structural Engineering (1999), 125(11), 1328–

37. 

27. Jiang XM, Chen H, Liew JYR “Spread-of-plasticity analysis of three 

dimensional steel frames.” Journal of Constructional Steel Research 58 

(2002), 193-212 

28. Neuenhofer A & Filippou FC “Evaluation of nonlinear frame finite 

element models.” J. Struct. Eng. (1997) ASCE 123, 958–966. 

29. Taylor RL, Filippou FC, Saritas A, Auricchio F “A mixed finite element 

method for beam and frame problems” Computational Mechanics 31 (2003), 

192–203.  

114



 

30. Hognestad E, “A study of Combined Bending and Axial Load in R.C. 

Members” University of Illinois Enginering Exp. Sta. Bull. No.399, (1951) 

31. Commend S, Zimmermann T “Object-Oriented Nonlinear Finite Element 

Programming: a Primer” Advances in Engineering Software 32 (2001), 8, 

611-628. 

32. Zimmermann T, Dubois-Pélerin Y, Bomme P “Object-oriented finite 

element programming: I Governing principles” (1992) Computer Methods 

in Applied Mechanics and Engineering (98) 

33. Dubois-Pélerin Y, Zimmermann T, Bomme P “Object-oriented finite 

element programming: II A prototype program in Smalltalk” (1992) 

Computer Methods in Applied Mechanics and Engineering (98). 

34. Lerin YD & Pegon P “Improving modularity in object-oriented finite 

element programming” Commun. numer. methods engin., vol. 13, (1997) 

193-198 . 

35. Wilson EL “Three dimensional static and dynamic analysis of structures.” 

Computers and structures Inc., (2000) Berkeley, California. 

36. Numerical applications with object oriented design, “TCBI NumLib”, 

(2005) http://plasimo.phys.tue.nl/TBCI/ 

37. Polat, MU “RCMOD – A Code for the Response Calculation of Reinforced 

Concrete Sections”, Department of Civil Engineering, METU, 06531, 

Ankara, Turkey (2005) 

38. Bathe, KJ “Finite Element Procedures”, Prentice-Hall,(1996) New Jersey 

39. Pamin J, Bors R “Simulation of crack spacing using a reinforced concrete 

model with an internal length parameter” (1998) Archive of Applied 

Mechanics (68) 613-625 

115



 

40. Computers & Structures Inc. “SAP2000 – Structural Analysis Program” 

(2003), California Berkeley. 

41. Carlos AF “Introduction to Finite Element Methods” Department of 

Aerospace Engineering Sciences and Center for Aerospace Structures 

University of Colorado (2004). 

42. Ersoy U “Reinforced Concrete” Department of Civil Engineering, METU, 

06531, Ankara, Turkey (2000). 

116



 

APPENDIX A 

USING THE PROGRAM 

 
After locating necessary DLL files on the search path of the executable file, 

program can be run by double-clicking the file named Tez_Prog.Exe. Later user 

should click “Read from Input File” button from the toolbar of the program. 

Program will prompt for an input file in a browser window. If a valid input file is 

entered, geometry of the structure should appear on the screen. After seeing the 

structure on the screen, analysis can be performed by clicking “Analyze” button on 

the toolbar. Program will solve the system updating the view of the system after 

each loading step. After analysis is completed, user can walk through the load steps 

by clicking rewind and forward buttons on the toolbar. Strain of the frame and bar 

members can be investigated by right clicking on the members after the analysis is 

completed. 

View of the system can be adjusted anytime with the following keys. 

• Ctrl + Left Mouse Botton + Mouse Move : Rotates the model. 

• Ctrl + Right Mouse Buttton + Mouse Move : Zooms the model. 

• Shift + Left Mouse Botton + Mouse Move : Pans the model. 
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APPENDIX B 

INPUT FILE FORMAT 

 
Input file consists of keywords defining the types of the data immediately followed 

by the actual data in the next line(s). For example, to input number of supports of 

the structure as 2, one needs to write: 

NumSupport 
2 

To state there are fixed supports on nodes 1 and 4, followings need to be written. 

Supports 
1 1 1 1 1 1 1  
4 1 1 1 1 1 1  

All keywords are listed with the definitions below. Under the definition of each 

keyword, type of data is given with the following convention. For integer numbers 

symbol ‘#’ and real numbers symbol ‘#.#’ is used. In addition to that Symbol ‘b’ is 

used for the Boolean terms. Alternatively term ‘string’ states that given input is a 

text. Each of these items starts with a number to refer in the definition. The block of 

symbols that remains between the brackets ‘<’ and ‘>’ indicates that same format is 

used for more than one times to define a multiple data. Using this convention 

example given previously for the supports can be represented as follows. 

NumSupport 
1# 
 
Supports 
<1# 2b 3b 4b 5b 6b 7b> x NumSupport 
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Definitions of the keywords are given in the order of appearance in the input file. 

This order may not be followed; however, related items should obey an order 

logically. For example number of supports should be given before the definition of 

the supports. It should be noted that units of the program is kN and m. Keywords 

that are used in the input file and their definitions are: 

• NSType: Nonlinear solution algorithm used for the solution of the problem. 

NSType 
1# 

1#

1 :Constant Stiffness 

2 :Modified Newton Raphson 

3 :Modified Newton Raphson that changes to full Newton Raphson when the 

equilibrium cannot be satisfied with the iterations. 

4 :Modified Newton Raphson that can handle prescribed support 

displacements. 

• NumElemTypes: Number of element types that is defined in the structure. 

NumElemTypes 
1# 

• ElemTypes: Element type definitions that is used in the structure. 

ElemTypes 
<1string 
2# (optional) 
3string 
4string or 4#.# 5#.# …> x NumElemTypes 

1string 

This is mathematical model of the element to be used; alternatives are: 
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FR3D    :3D frame finite element 

BAR3D   :3D bar finite element 

FRAMESUBELEMNO :Frame super element which is formed with equally 

spaced frame finite elements 

FRAMESUB   :Frame super element which is formed with specially 

discretized frame finite elements 

WALL    :Infill wall super element which is formed with two 

compressive struts. 

2# 

This is an optional field and should not be used with the element types other than 

FRAMESUBELEMNO and FRAMESUB. This variable is number of frame finite 

elements that will be used in the frame super element. 

3string 

Material model used for the element. This field is not used for WALL super 

element. 

LINEAR  :Linear material model for BAR3D, FR3D, 

FRAMESUBELEMNO and FRAMESUB.  

NONLINEAR  :Nonlinear material model of FR3D, BAR3D, 

FRAMESUBELEMNO and FRAMESUB  

NONLINEARCP :Nonlinear material model of FR3D, FRAMESUBELEMNO 

and FRAMESUB. 

4string 
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This is name of the input file to be read to form material model of the element type. 

This field is used for material model NONLINEARCP and NONLINEAR for frame 

finite elements and frame super elements. 

4#.# 5#.# ... 

These are real numbers which are used for forming the material model of linear and 

nonlinear 3D bar finite element, linear 3D frame finite element and infill wall super 

element. 

For linear 3D bar finite element 4#.# represents the modulus of elasticity of the bar 

and 5#.# represents the area of the bar. 

For nonlinear 3D bar finite element a series of stress and modulus of elasticity 

values are given to form multi-linear stress strain relationship of the bar.  

For liner 3D frame finite element 4#.#, 5#.#, 6#.#, 7#.# and 8#.# are modulus of 

elasticity, moment of inertia about local y-y axis, moment of inertia about local z-z 

axis, torsional constant of the section and area of the section respectively. 

For infill wall super element, 4#.#, 5#.#, 6#.#, 7#.# and 8#.# are modulus of 

elasticity of the unit masonry in vertical direction, strength of the unit masonry in 

vertical direction, modulus of elasticity of the unit masonry in horizontal direction, 

strength of the unit masonry in horizontal direction and thickness of the infill wall 

respectively. 

• NumNode: Number of nodes of the structure 

NumNode 
1# 

• Coord: Coordinates of the nodes 

Coord 
<1#.# 2#.# 3#.#> x NumNode 

1#.#, 2#.# and 3#.# are x, y and z coordinates of the node respectively. 
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• NumElem: Number of elements that is used in the structure. 

NumElem 
1# 

• Connect: Connectivity of the elements together with the element types 

Connect 
<1# 
2# 3#> x NumElem 

1# is the index of the element type used for the element. 2# and 3# are start and end 

nodes of the frame and bar elements.  

An extra term 4# is given next to 3# for infill walls. The terms 2#, 3# and 4# 

represents the indices of the frame elements bounding the wall. The bounding 

frames can either be entered clockwise or counter clockwise. 

• OrientFrame: Vector defining the direction of the local y axis of the frame 

elements. 

OrientFrame 
<1# 
2#.# 3#.# 4#.#> x ( Number of frame finite elements plus frame super elements) 

1# is index of the frame, 2#.#, 3#.# and 4#.# defines the vector that is in local y 

direction of the frame. 

• NumSupport: Number of supports exist on the structure. 

NumSupport 
1# 

• Support: Location and types of the supports. 

Support 
<1# 2b 3b 4b 5b 6b 7b > x NumSupport 
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1# is the node index which the support exists. 2b, 3b, 4b, 5b, 6b and 7b are the 

restraints at dofs ux, uy, uz, θx θy and θz of the node respectively. If the value is 1 

then the displacement or rotation of the degree of freedom is prevented. 

• NumLoad: Number of point loads on the structure. Each NumLoad entry 

defines the number of point loads for different load cases. First NumLoad 

defines the number of point loads for load case 1, second defines for load 

case 2 etc... 

NumLoad 
1# 

• Load: Definition of the point loads are given under the item. Each Load 

entry defines the point loads for different load cases. If there exists a loading 

on a degree of freedom which is restrained, than the loading is automatically 

recognized as prescribed displacement. 

Load 
<1# 2#.# 3#.# 4#.# 5#.# 6#.# 7#.#> x NumLoad  

1# is the node number on which the load is applied. 2#.#, 3#.#, 4#.#, 5#.#, 6#.# and 

7#.# are the loading values on the dofs ux, uy, uz, θx θy and θz of the node 

respectively. 

• NumEdgeLoad: Number of edge loads on elements of the structure. Each 

NumEdgeLoad entry defines the number of edge loads for different load 

cases. First NumEdgeLoad defines the number of edge loads for load case 

1, second defines for load case 2 etc... 

NumEdgeLoad 
1# 

• EdgeLoad: Definition of the edge loads are given under the item. Each 

EdgeLoad entry defines the edge loads for different load cases.  

EdgeLoad 
<1# 2#.# 3#.# 4#.#> 
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1# is the element index on which the load is applied. 2#.#, 3#.# and 4#.# are the 

distributed load values in x, y and z direction. 

• NumNodeDisps: Number of nodes whose displacements will be reported 

after each load step. 

NumNodeDisps 
1# 

• MonitDisps: Displacements of these degrees of freedoms are reported in a 

file after each loading step.  

MonitDisps 
<1# 2b 3b 4b 5b 6b 7b> x NumNodeDisps 

1# is the node number whose displacements will be monitored. 2b, 3b, 4b, 5b, 6b 

and 7b determine the monitored degree of freedoms of the node. 

• SeqLoad: The items under this keyword define the sequence of loading of 

the structure. 

SeqLoad 
1# 
<2# 
3# 4#.# …> x 1# 

1# is the number of sequence of loading. 2# is the number of iterations for the 

loading sequence. 3# and 4#.# are the index of the load case and weight of the load 

case that forms the sequence. Many load cases and weight of the load cases can be 

given to form a sequence. Combination of the given load cases by considering the 

load weights will be taken to find the total load of the sequence. 

• DimProblem: This key defines the degree of freedoms that are active in 

global sense.  

DimProblem 
1b 2b 3b 4b 5b 6b 
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1b, 2b, 3b, 4b, 5b and 6b are translation degree of freedoms in x, y z direction and 

rotational degree of freedoms in x, y, z direction respectively. For instance a 2D 

problem can be solved in xz plane by defining DimProblem as: 

DimProblem 
1 0 1 0 1 0 

125


