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ABSTRACT

A STUDY ON IDENTIFYING MAKAMS
WITH A MODIFIED BOLTZMANN MACHINE

Taskin, Kemal

M.Sc., Department of Cognitive Sciences
Supervisor: Prof. Dr. Hasan Giirkan Tekman

Co-Supervisor: Prof. Dr. Semih Bilgen

July 2005, 70 pages

Makams are well-defined modes of classical Turkish music. They can be taken as the
Turkish music counterparts of Western music tonal structures at a certain level.
Nevertheless, makams have additional features such as the usage of specific notes
resulting from their different architecture and the special use of scales (i.e. progression).
The main goal of this study is to construct a platform for identifying makams through a

computer program by proposing a machine learning mechanism. There are restrictions

v



on the mechanism related to the characteristics of the task. Such a mechanism should
represent real-time sequential input with continuous values, should handle possible
errors in this input and show immediate learning with limited data. These restrictions are
valid and necessary for an analogy with the act of listening to music. A Boltzmann
machine, modified for this purpose is designed, implemented and used in this study as
this learning mechanism. Two characteristics of this study define its significance. First,
this study is on the structural features of makams of classical Turkish music. Second,
the identifying mechanism is a Boltzmann machine having a different schema than

statistical identification tasks in tonality induction.

Keywords: Boltzmann Machines, Classical Turkish Music, Makam
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A STUDY ON IDENTIFYING MAKAMS
WITH A MODIFIED BOLTZMANN MACHINE

Tagkin, Kemal

M.Sc., Department of Cognitive Sciences
Supervisor: Prof. Dr. Hasan Giirkan Tekman

Co-Supervisor: Prof. Dr. Semih Bilgen

July 2005, 70 pages

Makamlar klasik Tiirk miiziginin iyi tanimlanmis modlaridir. Belli bir dereceye kadar,
batt miiziginde bulunan tonal yapilarin Tiirk miizigindeki karsiliklar1 olarak
gortlebilirler. Bununla birlikte makamlarin, kendi yapilar1 dolayisiyla belirli notalarin
ve 1skalalarin 6zel kullanimlar (seyir) gibi ek 6zellikleri bulunur. Bu c¢aligmanin temel
amaci bir makine 6grenmesi diizenegi Onererek bir bilgisayar programi araciligiyla

makamlar1 taniyacak bir diizlem olusturmaktir. Bdylesi bir diizenegin {izerindeki

vi



kisitlamalar ise ger¢ek zamanli ve sirali, olasi hatalari igeren, reel say1 kiimesinden gelen
girdileri ifade etmek ve siirli sayidaki 6grenme ve deneme verisi ile calisma yetenegine
sahip olabilmektir. Bu kisitlamalar diizenegin miizik dinlemeyle bir analoji kurabilmesi
icin gecerli ve gereklidir. Bu calisma i¢inde bu amagla degistirilmis bir Boltzmann
makinesi dgrenme diizenegi olarak tasarlandi, kodland1 ve kullanildi. Iki karakteristik
ozelligi bu ¢alismay1 dzel kilmaktadir. Ilk olarak, bu galisma klasik Tiirk miizigindeki
makamlarin yapisal ozellikleri iizerinedir. Ikinci olarak ise, kullanilan tanimlama
mekanizmasi istatistiksel tanimlama mekanizmalarindan farkli bir yola sahip olan

Boltzmann makineleridir.

Anahtar Kelimeler: Boltzmann Makineleri, Klasik Tiirk Miizigi, Makam
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CHAPTER 1

INTRODUCTION

Musical pieces consist of pitches. Throughout these pieces, pitches are not
selected at random. There are well-defined structures that define their usage. Moreover,
pitches of musical pieces have hierarchical relations among them. Musical pieces
usually tend to move towards certain pitches, which are known as the tonal centers (or
the tonics in Western music). The problem of finding such tonal centers from notes of
musical pieces is known as tonality induction. In past years, tonality induction has been
a popular topic in musicology, computer science, psychology and other related
disciplines. Various methods of pattern recognition and neurocomputation have been
applied to tonality induction with impressive results. Among these methods, Bayesian
classification algorithms, self-organizing maps and adaptive resonance theory based
networks can be mentioned (Bharucha, 1987; Griffith, 1994; Temperley, 2004). This

study is an addition to these studies with two important differences.

First difference is the target music culture. This study is on identifying the tonal

structures of classical Turkish music: makams. Specifically, it consists of designing and



implementing a computer program, which takes lists of values representing fundamental
frequency sequences of pitches in musical pieces and returns their makams. The
problems to be faced are similar to tonal induction tasks to a certain degree, such as
representing event hierarchies or representing tonal neighborhood. However, in order to
design a makam identification model, additional dynamics must be included. The
origins of these dynamics are the characteristics of this music culture. These dynamics

will be summarized in the second chapter.

Second difference is the computational method for the model. A modified
Boltzmann machine is used for makam identification in this study. It is modified in
order to accept sequential input and have directional connections to represent the act of
listening to music in real-time. Boltzmann machines are chosen for the model for
several reasons. In general, the main reason is that Boltzmann machines are a form of
associative memory and associative memories, specifically Boltzmann machines, have
cognitive and biological plausibility. Background on the issue is covered in the fourth
chapter. It is worth mentioning at this point that biological plausibility is limited to
denote the strength of the analogy between the model and the human neurological
system. Similarly cognitive plausibility stands for the strength of the analogy between
the model and the act of listening to music. For instance, similarities on presentation of
the pieces and on the sufficient number of training pieces for identification are included

in such an analogy.

One of the central aims of this study is to design a dynamic network architecture,
which depends on purely local information for the problem of tonal induction and do it
on classical Turkish music. To what degree this aim is succeeded, will be discussed

before the end of the last chapter.



1.1. Outline
The thesis is divided into six chapters.
Chapter 1 (this chapter) is an introduction to the study and its content.

Chapter 2 is an introduction to the classical Turkish music. It includes the
principles of this music and presents the elements specific to it. A short introduction to
music theory, describing fundamental phenomena related to the study, precedes this
introduction. There is also a discussion of two schools on classical Turkish music in this
chapter, in order to stress the ambiguity on some of these elements such as genres and

progression.

Chapter 3 is the literature survey for the study. Throughout this chapter, studies
on tonality induction are referred and a short history of tonality induction is given. Aim
of this chapter is to discuss tonality induction and its differences from and similarities to

this study.

Chapter 4 is a background and discussion of biological plausibility on associative
memories and Boltzmann machines. This chapter summarizes associative memory by
referencing Hopfield networks and Boltzmann machines. It is preceded by a short

introduction to artificial neural networks.

Chapter 5 is the description of the design of the model. It includes the overall
methodology as well as the specific algorithms and representations used in it. Test

results for the model are also presented in this chapter.



Chapter 6 contains a discussion on the model, its strength, weaknesses and its

cognitive claims, recommendations for future research and a summary of the study.



CHAPTER 2

INTRODUCTION TO CLASSICAL TURKISH MUSIC

2.1. Background on Music Theory

Main elements of music are musical pitches, which are denoted by musical notes.
In music, pitches are not used as continuous series. Rather there are discrete steps from
pitch to pitch (Dowling & Harwood, 1986 chap. 4). These steps are called intervals and
their sizes vary among cultures. Octave interval however, is quite common. The
interval between two pitches is an octave, if their fundamental' frequencies are in a ratio
of two to one. Definition of the octave interval leads to another definition, namely the
pitch classes. Pitch classes are pre-defined values representing the tonal hierarchies for

scales. They correspond to sets of pitches that have frequency ratios of powers of two.

! Pitches are composed of simultaneous vibrations of several components at different frequencies. These
frequencies are approximately integer multiplies of a fundamental frequency (Justus & Bharucha, 2002),
which dominates the perceived pitch.



2.1.1. Tonal Material

Frequency is a continuous parameter; however number of pitches within an
octave is finite. A fundamental division of the octave is mentioned by Dowling and

Harwood:

“..the octave should be divided into a series of minimal intervals, all equal in size, which are
added together to construct all intervals used in melodic scales.” (Dowling & Harwood, 1986

chap. 4).

This division of the octave varies among the cultures drastically. For instance in
Western music octave is divided into twelve intervals (semitones), in Arabic music they
are divided into twenty-four intervals (quarter tones) and in classical Turkish music the
division is to ﬁfty-three2 (Ozkan, 1984 pp. 54-65). In western music, all semitones in an
octave constitute the chromatic scales. These tones constitute the tonal material in

music (Dowling & Harwood, 1986 chap. 4).

2.1.2. Tuning Systems and Scales

Not all possible tones from the tonal material are used in musical pieces. Instead
of this, subsets of these tones are used in each musical piece. These subsets can be
represented as certain interval patterns, called (melodic) scales. Theoretically, a scale
can be formed by any interval pattern within an octave. However, this is not the case in
actual composition. For instance, in Western music there are two types of scales: major

and minor. They have the sequence of intervals T-T-S-T-T-T-S, T-S-T-T-S-T-T

? Western musicologists also denote music cultures having smaller intervals than their music as
microtonal.



correspondingly, where T denoting a whole tone (a frequency ratio of 2"%) and S

213 1t is worth mentioning that this is not a

denoting a semi tone (a frequency ratio of
restriction. In other music cultures situation may be different. For instance in classical

Turkish music whole tones are divided to nine equal intervals that are named commas,

instead of semi tones that divides wholes tones to two.

2.1.3. Tonal Hierarchies

It is common for each music culture, that pitches in a scale have different
priorities; they are not used equally distributed throughout the musical pieces. For
instance, the first pitch of the scale (denoted as the tonic in Western music) has more
influence on the scale than the second pitch of the scale. Moreover, all other pitches of
the scale are in some form of a structural hierarchy (Krumhansl, 1990 chap. 4) that
defines tendencies and expectancies to certain pitches in scales. Music cultures having
such a hierarchy are said to be tonal. Another form of hierarchical relation in music is
the event hierarchy. Event hierarchies define the significant usage of pitches in the
context. Following a discussion on the tonal hierarchies of north Indian music Bharucha

describes the contrast between these two hierarchies:

“Event hierarchies describe the encoding of specific pieces of music; tonal hierarchies embody
our tacit or implicit knowledge of the abstract musical structure of culture or genre. The tone C
may occur many times in a musical piece; each occurrence is a distinct musical event. But all the
occurrences are instances of a class of tones (tokens of a type) denoted by “C.” In the context of a
given piece of music, an event hierarchy represents the functional significance of each occurrence
of a C relative to the other sounded tones, whereas a tonal hierarchy represents the functional

significance of the class of all C’s relative to the other pitch classes.” (Bharucha, 1984).



To sum up this music theoretical introduction, music is composed of pitches
corresponding to certain fundamental frequency values and they constitute the tonal
material of music. Well-defined interval patterns defined on these pitches form tuning
systems and these tuning systems have certain structures, which are known as scales.
Scales are used with hierarchical tonal organizations in music and these organizations
vary among music cultures. These hierarchies also have great influence on the
perception of music and any music recognition algorithm, independent of its structure,

should have a mechanism for them either explicitly or implicitly.

2.2. Classical Turkish Music

Classical Turkish music is thought to have originated from the music of early
mid-eastern and Persian cultures; which, in turn, originated from the music of mid-Asian
Turks (Yilmaz, 2001 pp. 7-15). Most probably up to 14th & 15th centuries
(corresponding to the rise of Ottoman Empire), this music interacted with Byzantine and
Arab music and evolved into the classical Turkish music of the present day (Judetz,
1996, Tanrikorur, 2003a; During & Mirabdolbaghi & Safvat, 1991). These centuries are
not the end of the evolution of this music; they are mentioned here since they contain the

oldest written musical data having similar characteristics to today’s music.

There are a number of characteristic features of this music. First of all, classical

Turkish music is not polyphonic. There is a single melody at a single instance of time



throughout the piece. The emphasis in this music is the melody, instead of harmony”.
This is one of the reasons for the fact that classical Turkish music is known as modal
(instead of tonal). However, following the notation of Castellano & Bharucha &
Krumbhansl (1984), it can be argued that this music is still tonal only with a different
tonal hierarchy. Counter argument on this claim is that in tonal music, the main problem
turns out to be emphasizing the tonal hierarchies by harmony in musical pieces, which
contain modulations (changing the tonal center of the piece) among different scales
continuously. On the other hand, classical Turkish music is known as modal, because
modulation is not the central issue in this music. Second feature to be mentioned in the
context is the richness of the usage of time. Usage of time; the usage of rhythmic
features is an essential part of this music culture, just as all other music cultures.
Throughout the evolution of classical Turkish music, many rhythmic patterns (known as
ustil) have been introduced. The variety of these patterns constitutes an essential part of
classical Turkish music’s significance. This part of classical Turkish music is beyond
the scope of this study and hence it will not be discussed here further. Detailed

information on this issue can be found at Ozkan (1984 pp. 557-688).

A third characteristic feature is the usage of pitch, which has certain differences,
compared to other music cultures such as Western and Arab music. In its simplest
terms, pitch intervals are smaller in terms of consecutive differences of frequencies,
providing a basis for the tonal richness of classical Turkish music. There is a huge
variety in the usage of tonal structures (Tanrikorur, 2003b pp. 139-165). Although the

basic idea of tonality has many common points with respect to Western music, the usage

3 Moreover, techniques such as arpeggio and elements such as chords are not used traditionally. The usage
of arpeggio in kanun is very lately adopted from Western music and it is still being rejected in many
musical forms by the performers.



of scales in classical Turkish music is more flexible in terms of using pitch intervals. It
also involves a number of significant sub-structures, which will be mentioned

throughout this introduction.

This study is concerned with these tonal structures, leaving usils and other
features untouched; and hence within this perspective tonal dimension of classical

Turkish music will be examined here in detail.

2.3. Makams

In classical Turkish music, tonal structures correspond to makams. Instead of
two different modes (major & minor scales) of Western music, there are more than 30
makams” (in use today) in classical Turkish music’. Makams define the usage of pitch
in this music with their additional structural properties. However, there is not a certain
agreement on the ways in which these properties are defined. There are a number of
systems, which were followed (and are being followed) and accepted in the history of
this music. These systems are Urmevi - Meragi System, Rauf Yekta Bey School, Arel —

Ezgi School and Kantemiroglu School (Akdogu, 1996).

* Makam (plural makams) is used in this study. Other commonly used term, mostly in Arab originated
texts is maqam (plural magamat).

> Tanrikorur (2003b) claims that the actual number is 587, however many of these are today known to be
produced for different kinds of social reputation in 18th and 19th centuries, in the late Ottoman era.

10



L. Miicennep

S. Miicennep

Comma

Cargah 1 2 3 4 5 6 7 8 9 Neva

Bakiyye

Tanini

Figure 2.1: Small intervals and their naming in classical Turkish music. In this example, small intervals
between Cargah and Neva are shown. However, there are also 9 small intervals between Neva and Acem;
Hiiseyni and Rast; Rast and Diigah; Dligah and Biselik. There are 4 small intervals between Acem and

Hiiseyni and Biselik and Tiz Cargah. Complete pitch names can be found at Appendix.

Among all these systems, one can observe that the main differentiation was on
determination of intervals and their different nomenclature. However in present day, on
determination of (small®) intervals and their naming there is a certain agreement (Figure
2.1, Table 2.1). On the other hand, there are different points of view in the definition of

makams, especially between Arel — Ezgi School and Kantemiroglu School.

6 According to Arel-Ezgi school, there are three types of intervals. A small interval corresponds to 1
comma, a medium interval is either a tetra chord or a penta chord and a large interval corresponds to an
octave (Yilmaz, 2001 pp. 37-39).

11



Table 2.1: Small intervals in classical Turkish music. Another interval is residual duple
(A) with a value of 12, 13 or 14 commas. Yet another interval, which is rarely used, is

missing bakiyye (E) with a value of 2 or 3.

(Small) Intervals Symbols Flat Sharp Values
[ e

Comma (koma) F {J| ;_l- 1 comma
Lo L

Bakiyye B b ! 4 commas
g i
I >

Small Miicennep’ S t’-. -? 5 commas
-

Large Miicennep K 5 8 commas

Tanini T - 9 commas
W

2.4. Makam in Arel - Ezgi School

According to this school, there exist medium intervals or genres (a term, which is
used for both tetra-chords and penta-chords (Ayari & McAdams, 2003)), which consist
of additions of three of four small intervals®. These medium intervals constitute the

structure of makams: A simple makam is an addition of a tetra-chord to a penta-chord

7 Miicennep (miicenneb) is an Arabic word originated from cenb, which means to be side part. It was
introduced to the field by a philosopher and musicologist Farabi.

% At this point it is worth mentioning that the term genre will be used for referring to these intervals from

this point. A well known meaning attributed to genres is the musical style such as rock or pop, however it
is not related to the meaning that is attributed in this study.

12



(or vice versa) corresponding to a scale having a primary karar’ note, a secondary karar
note (the point of addition), a certain progression and a number of other features
(Yilmaz, 2001 pp. 70-79; Ozkan, 1984 pp. 93-94). A list of these features and short

explanations for them in Arel - Ezgi School is as follows:

Primary karar is the first note of the scale. It is mostly observed at the end of the

refrain'® parts (Figure 2.2).

Secondary karar is the point of addition of the two medium intervals. This is the
very important note of the makam and is stressed much throughout the piece.

Introduction parts of makams usually end with secondary karar notes.

Other important notes are as follows: Tiz karar is the note, which is one octave
above the primary karar (tonic). Asma karar is specific to a makam. It denotes a note,
which is stressed in parallel with the secondary karar. Yeden (leading note) is the note
one tone (or 5 commas) below the primary karar. It has different effects on makam

according to its distance to the primary karar.

Progression is one of the key features of a makam as well in classical Turkish
music. There are different makams that have the same scales and same karar notes.
However, they are differentiated according to their progressions. For instance Rast and
Yegah both have the same scale (Rast-Diigah-Segah-Cargah-Neva-Hiiseyni-Evig-
Gerdaniye), however Rast is an ascending and Yegah is a descending makam in Arel-

Ezgi notation.

? Karar is the Turkish word for stability. Hence the primary karar is the primary stability note (tonic), etc.

' Turkish word for this is feslim, which is an exact translation of delivery or submission.

13
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Figure 2.2: Introduction and refraining parts of Hicaz song Gérmedim Omriimiin Asiide Gegcen Demini by
Kadri Sencalar. Hicaz is an ascending-descending makam in terms of progression and hence the piece
starts with the secondary karar (denoted by Roman numeral I). The introduction ends with again
secondary karar. Refraining part ends with primary karar, independent of the type of the progression
(numeral II). Ascending-descending progressions do not have certain beginning phrases; they can also
start with the primary karar. Here, the composer denotes primary karar by stressing it as the very first note
in the piece. These very first notes take place in classical Turkish music usually to initialize the

performance (by a drum).

Arel - Ezgi School classifies progression into three sub-groups: Ascending,
descending, ascending-descending. The classification is as follows: In ascending
makams the progression starts with the lower tetra-chord or penta-chord, most probably
around the primary karar, with a tendency to tiz karar. In descending makams the

progression starts around the tiz karar and moves towards the secondary karar. And

14



finally in ascending-descending makams the progression starts around the secondary

karar and tends to move towards the primary karar.

There are two more types of makams. Transposed makams are the transpositions
of simple makams and compound makams are makams, in which there are compounds
of genres in any unsystematic way (with respect to Arel — Ezgi). At this point, it is
worth mentioning that this systematization fails to explain many simple makams
(according to Urmevi - Meragi System and Kantemiroglu School) in its conjecture and
classifies them as compound makams, just because they are not additions of certain

genres.

Table 2.2: Genres in Arel - Ezgi School and their values (ID’s are introduced for

simplicity in this study).

Tetra-chords ID Values  Penta-chords ID Values

¢argah tetra-chord I T-T-B cargah penta-chord 1 T-T-B-T
buselik tetra-chord II T-B-T buselik penta-chord 2 T-B-T-T
kiird1 tetra-chord III B-T-T kiirdi penta-chord 3 B-T-T-T
rast tetra-chord v T-K-S rast penta-chord 4 T-K-S-T
ussak tetra-chord \% K-S-T hiiseyni penta-chord 5 K-S-T-T
hicaz tetra-chord VI S-A-S hicaz penta-chord 6 S-A-S-T
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The genres summarized by this school in the construction of principle makams

and these makams are given in the tables'' 2.2 and 2.3.

Table 2.3: Simple makams, represented as additions of genres.

Makams Additions
Cargadh 1+1
Biselik 2+VI
Kiirdi 1+2
Rést 4+1V
Ussak V+2
Hiiseyni 5+V
Neva V+4
Hicaz VI+4
Hiimayun VI+2
Uzzal 6+V
Zengiile (Zirgtile) 6+VI
Karcigar V+6
Stznak 4+VI

2.5. Makam in Kantemiroglu School

The important difference between this school and Arel-Ezgi school is mostly
related to their different definitions on progression. According to Kantemiroglu'?,

makams are unique structures that can only be explained by their own progressions. All

" The notation of Ayari & McAdams, 2003 will be followed throughout the study: Genres begin with
lowercase; makams begin with uppercase.

12 Kantemiroglu is the name used by Turks for Prince Dimitrie Cantemir, a governor of Bogdan province
and a musicologist (Judetz, 1996 pp. 7-11).
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other properties of them (primary and secondary karar notes, yeden, etc.) are derived

from these progressions.

One of the main differences between Kantemiroglu and Arel — Ezgi schools is
demonstrated in this example: Kantemiroglu describes makams without referencing to
genres. He defines a makam only by its unique progression. This definition of makam
also finds strong support in the present day (Karadeniz, 1983). The attributed meanings
to progression by these two schools are also different. In Arel — Ezgi School,
progression is a feature, which is independent of the context; whereas in Kantemiroglu

School, it is the makam itself. Kantemiroglu’s example to Muhayyer is as follows:

(Eng.) “From its own note (muhayyer) it moves up to tiz-hiiseyni and down to asiran and returns
to diigah; ending up with a karar. The makam is even a beloved and noble one. Because even if
a progression begins from diigdh and an arrival on neva takes place and a karar occurs on agiran
from there, it would only correspond to Neva. However, Muhayyer has two special chapters; one
consisting of the progression mentioned, which started from hiiseyni and a second one in which it
continues the progression through all the high-pitched notes coming to hiiseyni, stating it exactly
and most usually from neva it moves down to ¢argah suddenly and fondling saba a little it moves

to karar note diigah and finishes the progression affirming itself.”

(Ottoman Tur.) “Kendi perdesinden tiz-hiiseyniye dek ¢ikar ve asirdna degin iner ve gene avdet
ediip diigahda karar-1 istirahat kilar. Makam-1 merkum gerci ulu ve aziz makamdir. Zira, diigdh
perdesinden hareket-i agdze siirQi olunsa bile bu nevaya gelinse ve andan avdet olunup asiran
perdesinde karar kilinsa, safi Neva makamui icra olunur. Ve lakin Muhayyer makaminin iki fasl-1
mahsusu vardir, biri budur ki, hareket-i agizesini daima hiiseyni perdesinde siiru eyler. Ikincisi
sudur ki, tiz perdeleri ile tamam-1 hareket eyledikten sonra hiiseyni perdesine geliip ve tamam

hiiseyni perdesini gosterdikten sonra neva perdesini ekseri ugup, birdenbire ¢argdh perdesine
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diiser ve biraz saba perdesini oksayup diigah kararina gider, ve anda bittamam kenduyi icra-i

beyan eder.” (Akdogu, 1996)

All features defining the makam; primary karar, secondary karar, yeden, asma
karar and tiz karar are included in a single description; which Kantemiroglu calls the

progression.

Progression phenomenon is a rather fuzzy concept, which will be one of the
subtopics to be discussed in later chapters. As a last remark on it, it must be stated that,
in the present day, a different and a simpler definition of progression also exists in the
literature. A number of musicologists and performers (for instance T. Aydogdu; a kanun
player in Turkey Institution of Radio and Television) simply define progression only
with the very beginning and ending phrases of musical pieces. This simpler version of
Arel — Ezgi School’s progression claims that a makam is descending only if it begins
with the tiz karar and tends to move towards the primary karar. Similarly, it is
ascending only if it begins around the primary karar and tends to move towards the
primary karar again. A similar rule applies to ascending-descending makams, with a
difference that they begin around the secondary karar. This point of view again has
problems in it. Specifically, the issue seems clear when the makam is descending:
available data (musical pieces in literature) are in parallel with it. Pieces begin with (or
rarely, around) the tiz karar when their makam is said to be descending. However, the
difference between ascending and ascending-descending makams is not so clear. Even
observing such pieces will point out this ambiguity, it can be tracked from the Turkish
music theory books and writings. In the case of Kiirdi for instance, references are in a

sort of debate on whether this makam is ascending or ascending-descending. Ussak and
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Hicaz makams are again fuzzy in terms of their progressions (Karadeniz, 1983; Yilmaz,

2001).

As a conclusion to this discussion on makams, it can be suggested that there are
two main points of views in the field: Arel — Ezgi and Kantemiroglu schools. Arel —
Ezgi School can be taken as a systematization attempt to classical Turkish music, in the
light of the raw explanations corresponding to makams. It is accepted and preferred
today mostly for educational purposes. However, as mentioned before, it has still
problems such as the existence of genres. Today, a number of musicologists claim that
genres do not exist in definitions of makams and they only exist for classification
purposes. Kantemiroglu School, on the other hand, makes a classification only on the

primary karar notes and the progression.

Although one can find other issues differentiating these schools, these two points
of view are in agreement on many aspects. For instance, according to both schools, a
makam is a structure with a well-defined progression of a number of sequential notes
having primary and secondary karar notes even though Kantemiroglu School does not
have an explicit remark on secondary karar notes. To sum up, makam has a number of
definitions in different schools, having similar as well as different ideas on it. Hence, a
task of understanding makams should investigate these similarities, in order to track for

the differences.
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CHAPTER 3

RELATED WORK

Since there is no significant study on the structural properties or features of
classical Turkish music'®, this chapter concentrates on the studies related to this study on
two different aspects. One is on makam identification (single study of Ayari &

McAdams, 2003) and the other is on tonality induction.

3.1. Perception of Modal Structures in Arab Music

A closely related article to this study is the article of Ayari & McAdams (2003).
In this article, the identification and segmentation performances of two groups of
listeners (all musicians or musicologists) on a single taksim (in Rast) were compared.
Taksim is a well-structured form in classical Turkish music, Persian and Arab music.
The steps of a traditional taksim performance are well defined in the context. It is most
similar to improvisation of Western music families at a certain level. Nevertheless it is

argued that it has some structural characteristics independent of context, most

3 A study on pitch clustering for musical pieces in classical Turkish music must be counted at this point
as an introduction attempt to makam identification by Akkog (2002).
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importantly its relatedness to makams (modes of classical Turkish music): Each taksim
is governed by a certain makam (or makams with transitions). One of these groups in
Ayari & McAdams’ study consisted of Arab listeners and the other group consisted of
European listeners. The task was to make segmentations according to the makam being

played while listening to the performance.

Results were as expected.  Although there were no criteria given for
segmentation, it was observed that both groups tended to construct certain strategies.
European listeners based their segmentations on the primary and secondary karar notes
and one octave higher notes of primary karars. Segmentations according to the
development of the phases and the modal changes were also observed. The strategies of
Arab listeners on the other hand, were more complex. They tended to segment the piece
into modal cells, most of the time corresponding to presentations of certain genres. And
from this point they tried to see the whole picture by combining these cells in a
hierarchical way. On the other hand, European listeners had difficulty in detecting
modal changes. Only some of them detected changes in modal structures; yet they could

not identify them.

3.2. Tonality Induction

Makam identification task consists of determining the structural features of the
makam of a musical piece from its sequence of notes. Tonality induction, a task that is
targeted to harmonic Western music, is very similar to makam identification in this
sense. The central aim of tonality induction is to identify the tonal structure (in its

simplest terms, tonic) of pitch sequences. Tonality induction algorithms include
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transitions (modulations) in these sequences except the very early algorithms in the field.
Differences between makam identification and tonality induction do exist, mostly related
to the differences between two music cultures (namely, classical Turkish music and
Western music). Some of these differences are the absence of harmony in the former
one and the absence of progression as a distinctive feature in the latter one. However,
their purposes are the same: finding the tonal centers of the musical pieces. Hence, it
can be suggested that tonality induction studies serve as a background for the task of

makam identification.

To begin with, there is a certain psychological background of perception of
tonality. Pitches and chords can be perceived as appropriate or inappropriate when
followed by a musical segment according to whether they are within the same key with
that segment or not (Krumhansl & Shepard, 1979; Krumhansl, 1990 chap. 4).
Moreover, melodic sequences that follow tonal patterns are remembered better
(Dowling, 1978; Cuddy & Cohen & Mewhort, 1981; Deutsch, 1980). When describing
the algorithms in the field, one can see that this psychological background is put into
them externally. In other words, a considerable number of algorithms work on the pitch
sequences having the information on what a key is and most usually what the
characteristics of keys are. For instance they use experimental data in order to calculate
prior probabilities or musicological knowledge in order to construct their network

structures.

One of the earliest tonality induction algorithm is the general-to-specific
concept-learning algorithm of Longuet-Higgins and Steedman (1971). This algorithm
scans a musical piece left to right and for each pitch it eliminates all keys whose scales

do not contain that pitch. Surely pitches outside the scale cause the algorithm to fail.
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However this is not the actual problem of the algorithm since it is possible to improve
this algorithm so that it decides according to the best probable key instead of the 100%
correct key by applying a method such as version spaces (Mitchell, 1997 pp. 29-36). A
number of solutions to this problem are also offered by the authors themselves. For
instance if the algorithm fails at the first scan, then it looks at the first pitch of the
sequence and decides according to this pitch. The main problem about this algorithm on
the other hand is that it returns a single answer for a single piece and can not account for
modulations. Vos and Van Geenen (1996) developed this idea further to handle this
problem. Their algorithm runs on a sliding window of forty consecutive pitches in a
single piece and for each pitch it increases the probability of the keys that contain it in
their scales. It can be considered as a naive Bayesian classifier with equal prior
probabilities for each key (Mitchell, 1997 pp. 154-199). A more complete tonality
induction algorithm based on Bayesian classification method is the algorithm of
Temperley (2004). This algorithm finds the most probable tonal centers of segments (of
the piece) by finding the most probable structure from the surface of the piece (pitches

of the piece):

p(structure | surface) = p(surface | structure) p(structure) (Eq. 1)

p(surface)

In order to find the most probable structure, one must know the probability of the
surface given the structure for every possible structure and prior probabilities for each
structure. However, once these probabilities are known, this method finds the best

fitting structures to surfaces.
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For each instance in a musical piece the structure corresponds to a key, defining
the tonal center. For a pitch sequence, Temperley defines prior structure probabilities as
the modulations in these keys such that the most probable situation is staying at the same
key. For the next step he determines the surface probabilities given the structures. For
this purpose he refers to key profiles. Key profiles are likelihood values of twelve pitch
classes derived from the chromatic scale of Western music for each twenty-four keys

(twelve major and twelve minor).

Even though this Bayesian method gives most successful results in terms of
correctness, there is an issue, which is not given an explanation on. Temperley admits
that the algorithm works with exponential complexity and it is not feasible in its current
form. He also asserts that this problem can be solved by using some kind of dynamic

programming techniques, leaving the discussion at this point.

Krumhansl-Schmuckler key finding algorithm (Krumhansl, 1990 chap. 4) is yet
another approach to tonality induction. The algorithm correlates twelve-valued key
profile vectors to the twelve-valued input vector, which is linearly dependent to the total
durations of pitch classes. Finally, the algorithm decides on the key, which has the

highest correlation value. The correlation value is defined by the following formula:

e 2 &)
S -3 Y (y-7)")>

(Eq. 2)

where 7 is the correlation value, x is the input vector, X is the average of the input

vector, y is the key profile and y is the average key profile. In contrast to the approach
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of Longuet-Higgins and Steedman this algorithm returns a key at each point in the
musical piece by defining x incrementally. Izmirli & Bilgen (1996) is another
algorithm, which is similar to Krumhansl-Schmuckler key finding algorithm in this
sense. In this algorithm authors propose a method to evaluate the tonal context at any
point in the piece. This algorithm also works on the key-pitch relations. In other words,

the effect of each pitch on the tonal context is well known.

An enhancement to Krumhansl-Schmuckler key finding algorithm is the
algorithm of Toiviainen and Krumhansl (2003). This algorithm proposes a recursive
algorithm (on time), passing the pitches sequentially as arguments in a piece. Forgetting
and updating mechanisms, which are defined on a pitch memory vector, are defined
internally. This memory vector is updated by each presentation of a pitch. This idea
that is proposed in this algorithm is similar to the one that will be presented in this study

in the sense that both include an implicit memory on pitch sequences.

Another key finding algorithm is the connectionist framework named MUSACT
of Bharucha (1987). Bharucha proposes a three-layer neural network, in which the first
layer represents pitches, second layer represents chords and the third layer represents
keys. These layers have connections in between activating each other so that a pitch is
only connected to the chords it is a member of. Algorithm scans the pitch sequence left
to right and for each pitch activate the associated node. This node activates the nodes of
the second layer and those nodes activate the third layer. With this spreading activation,
the algorithm becomes capable of deciding on a key for each instance of this scan.
Learning in this algorithm is a competitive one. In other words, connection weights
between the layers are adjusted so that activation of one node causes a deactivation of

other nodes in a layer.
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The last algorithm to be mentioned in this section is the ART (adaptive
resonance theory) model of Griffith (1994). ART has a number of applications in
different levels of music perception (Griffith & Todd, 1994). In his article, Griffith
proposes an ART2 (Carpenter & Grossberg, 1987) network for the purpose of inducing

the tonal centers of musical pieces'”.

All approaches, except the ART2 approach of Griffith, implement the sense of
key explicitly. In other words, the system knows what a key is by having the
information on key profiles or prior probabilities of keys. They decide on a key
probabilistically. Because of this reason, they can be classified as statistical approaches.
This study is similar to Griffith’s approach in this sense. It proposes no additional
assumptions such as the key profiles or information about the chords. Such information
are stored (implicitly) in the connections of the networks and developed during training.
Another similarity between this study and the ART2 approach of Griffith is that both
algorithms propose a way of learning to predict the tonality (in case of this study,
makams). It is worth mentioning that MUSACT is a connectionist model, however its
connections (not the connection weights) and hence the activation schema is pre-
defined. Later this approach is preceded by four different unsupervised SOM
mechanisms (Tillmann et al., 2000). These mechanisms were hierarchical and similar to
the original MUSACT network structure in this sense. They are presented to 12
dimensional input stimuli corresponding to representations of pitches that are present in
different chords and expected to classify these different input stimuli. However, this

cannot be counted as a feature of MUSACT, rather it is a tautology in the sense that the

' Yet another similar ART2 based network is SONNET-1 by Page (1994). However this particular study
will not be mentioned here because of its similarity to Griffith (1994).
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authors try to verify MUSACT’s musicological findings by an externally designed

SOM.

There is a similarity between the studies that are presented in this section and the
algorithm that will be presented in this study. This similarity is the input representation
of the algorithms. All algorithms in this section take the pitches of the musical pieces as
input and build their evaluation criteria on this input. The situation is the same in this
study, as will be described in the fifth chapter. Another approach is to take the
consecutive pitch intervals as input and try to identify interval patterns instead of pitch

or pitch-class patterns.

To summarize, these studies do not constitute a complete list of studies in
tonality induction (see Temperley, 2001 chap. 7; Krumhansl, 2004), however provide
insights of considerable importance for this study. Some of these are MUSACT’s
sequential presentation of pitches onto a finite set of nodes and Toiviainen and
Krumhansl’s memory for auditory continuity. The actual implementations of these

insights are described in the fifth chapter, where the model is presented in detail.
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CHAPTER 4

BACKGROUND ON BOLTZMANN MACHINES

4.1. On Artificial Neural Networks

An artificial neural network (ANN) is a set of artificial neurons or nodes
connected to each other with artificial connections. These nodes have computational
information processing abilities and transfer information through their connections
within the network. Information processing mechanisms, network structures, and form
and number of connections are the most important characteristics of different network

designs.

Artificial neural networks are inspired by the nervous system, more specifically
by the neurons and the synapses between these neurons. However, this similarity is not
a complete one. There are a number of important differences. First of all, there are a
huge number of neurons in the human brain, whereas artificial neural networks are most
of the time problem dependent and their sizes are small. Since ANN’s are problem
dependent (they are designed in order to solve specific problem or for specific problem

domains) architectures of these network’s nodes are also problem dependent. On the
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other hand, knowledge on the information processing mechanisms in the human brain is
incomplete. Rather than the nervous system as a whole, models are developed for
specific portions of this system such as various mechanisms in memory (Amari, 1977,
Norman & O’Reilly, 2003), visual object recognition (see Carpenter & Grossberg (1992)
for a list of studies) or auditory perception (Grossberg & Govindarajan & Wyse &

Cohen, 2004; Hendrik & Blankertz & Obermayer, 2000).

Most common ANN’s in the literature are multi-layer neural networks, self-
organizing maps, hidden Markov models (HMM), numerous types of associative

networks and adaptive resonance theory (ART).

4.2. Associative Memory

Associative memory is a representation, which stands for computational
structures that have the capability of storing a finite number of patterns, in a binary form
(Gorodnichy, 2001; Kohonen, 1978 chap. 1; Austin, 1996 chap. F1.4). The
representation consists of two matrices. The first matrix is one-dimensional and stores
class vectors (to be trained and retrieved). The second matrix is two-dimensional and
stores values that represent relations among the elements of the first matrix. Storing (the
word training is also used) phase of the patterns vary among different structures of the
associative memory and specific algorithms used. For instance, these training patterns
can be stored directly with a mathematical formula or with a stochastic algorithm.
Retrieval (recalling'’, testing) phase, on the other hand, consists of initializing the

memory with the input pattern and starting the categorization task. Memory is

' In (associative memory) literature the word recall is commonly used for this phase. However, retrieval
will be used in this study for this phase in order to avoid ambiguity.
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initialized by setting the units of the memory to values that represent input data.
Categorization task involves an algorithm that updates the memory content (the values
of nodes) ending in the pattern that resembles to the input most closely. Each memory
configuration (list of node values) corresponds to a state in the system. Each state has an
energy value defined on nodes and connections. Central aim of the training phase in
associative memories is to construct stable states for stored patterns, such that no single
change in a node value should be able to decrease the system energy. These stable
states are called attractors. However, because of the state representations of associative
memories are implicit (depend on the values of nodes and connections) false attractors
occur in the system, along with the stored patterns. In order to design a computationally
robust associative memory, two precautions are necessary in this sense: Designing the
training phase in a way that eliminates such false attractors and avoiding getting stuck in
them in retrieval phases. One such method for this purpose is simulated annealing,

which will be described in later sections.

There are various algorithms designed on the principles of associative memory.
Two of them will be described in this chapter because of their relatedness to the study.

These are Hopfield networks, and Boltzmann machines'®.

4.3. Hopfield Networks

Hopfield networks are known to be the most commonly used auto associative
memory systems. Auto association term implies that input patterns and output patterns

are same. Furthermore in Hopfield networks, nodes of the network correspond to both

' The focus in this study is on the neural networks; however associative memory phenomenon is not
limited with neural network implementations (Gorodnichy, 2001; Neto & Fontanari, 1998).
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input and output patterns. In Hopfield network case, nodes of the network correspond to

the elements of the binary strings of the patterns.

The standard Hopfield network (Hopfield, 1982) is a fully connected network

with McCulloch-Pitts neurons having two states:

&= sgn(z w;§, —6) (Eq. 3) (assuming &, = 0 for simplicity).
J

where & is the state of the i"™ neuron with values {-1,1}, w; is the connection weight
between the i™ and the jth neurons and @ is the loop-back connection (Figure 4.1).

Connection weights are symmetric:

W, =W .. (Eq. 4)

ij ji

Figure 4.1: Typical Hopfield network. Hopfield networks are fully connected. In this particular figure,
the network has five nodes, corresponding to 5 dimensional input and again 5 dimensional output. Since it

is fully connected, there are 5*(5-4)/2 = 10 number of connections.
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The pattern retrieval algorithm is as follows:

Initialize the network nodes to the input pattern

Until the network reaches to a stable state

Apply (Eq. 3)
Return the state of the network &

Network updating cycle can be designed in a number of ways. In synchronous
update all nodes are updated in a single network state in parallel. In asynchronous
update, on the other hand, either nodes are selected at random to be updated or they are

updated in parallel with some probability.

In a standard Hopfield network, storing patterns is straightforward. It consists of
determining the weight matrix of the network with respect to the set of class patterns and

a learning rule. This learning rule in Hopfield networks is a form of Hebbian learning:
1

Wy =—D ¢l (Eg. 5)
N H

where 1 corresponds to each pattern and N is the learning rate, which is problem

specific.

A last word on Hopfield networks should be on the convergence of retrieval task
and hence the energy function. Hopfield defines an energy function on the network as

follows:
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E=-Y zz w,EE, (Eq. 6)

which decreases monotonically in each update operation, which can be verified through

the following equations:

AH == w66+ .68, (Eq. 7)
AH = 2;2 w,&, (Eq. 8)
AH =2 w,é —2w, (Eq. 9)

in which the first term in the equation is negative due to (Eq. 3) and second term is again
negative (or zero) due to the structure of the network. Since the energy of the network is
monotonically decreasing and E is bounded, the network is guaranteed to reach a stable
state, which will be one of the stored patterns'’. w, values represent the self-
connections of nodes. In almost all implementations these values are set to zero for

simplicity.

'7 Only limitation on this process is using an asynchronous updating mechanism.
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4.4. Boltzmann Machines

A Boltzmann machine can be considered to be a Hopfield network with disjoint
input, output and hidden nodes (units) (Hinton & Sejnowski, 1986; Duda & Hart &
Stork, 2001 chap. 7; MacKay, 2003 chap. 43). In contrast with Hopfield networks, input
patterns and output patterns are two disjoint sets of nodes. Moreover, there is a third set

of nodes other than these two sets, which is known to be the hidden layer (Figure 4.2).

output
nodes } h

visible
nodes

input j
nodes

Figure 4.2: A Boltzmann machine with 3 input and 2 output nodes.

Pattern retrieval'® is similar to the auto-associative memories, however hetero-
associative (Davey & Adams, 2002) strategy brings a problem in the Boltzmann
machines: Defining the pattern-storing algorithm according to the training set. The
problem is that the system cannot be guaranteed to have the stored patterns only. This

means that there may appear local minimum points on the energy landscape (that will be

'8 Again it is worth mentioning that another word fest is used instead of retrieval in some related texts.
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defined in the following sections), which correspond to false attractors in a Boltzmann
machine. The problem is solved with an incremental updating algorithm; however it

again leaves local minimum points in the system.

The idea behind Boltzmann machines is to train the network by updating nodes
(according to the energy definition of Hopfield networks) with input and output nodes
clamped and update the weights according to the differences in the weights with respect
to another instance of the machine, which is trained with only input nodes are clamped.
Clamping a node, in Boltzmann machines, corresponds to assigning a final value to that
node and making it static. After clamping a node the Boltzmann machine is in a
situation that it must find the minimum energy configuration with that node having its
final value. Network updating on the other hand corresponds to changing the values of

the nodes, which will be described with an algorithm at the end of this section.

The Boltzmann machine training algorithm (Deterministic Boltzmann Learning)

is as follows (Duda & Hart & Stork, 2001 chap. 7):

Until the network reaches a stable state (a pre-defined convergence criterion
met)

Randomize nodes

Update network with input and output nodes clamped
Store node values to [s;s;] A & clamped

Randomize nodes

Update network with only input nodes clamped

Store node values to [s;s;] cfdamped

Update each weight value
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The weight updating rule is as follows:

W, =w, +17/T((s,s )

i j ol o clamped _[Sisj ]aiclamped
where 77 is the learning rate, T is the temperature, s; is the i"™ node, [sisi] 1s si*s; and the
notations o' and o correspond to clamped input layer and clamped output layer.

Network updating in this scope is as follows:

Until a pre-defined convergence criterion met
Select a node at random
If energy of the node is greater than zero do
si=(-1)* s

4.4.1. Simulated Annealing

During the network update procedure of the Boltzmann machines, a stochastic
mechanism, which is known as simulated annealing, is used (Duda & Hart & Stork,
2001 chap. 7; MacKay, 2003 chap. 43). According to this mechanism, the nodes of the
network are updated with a certain probability in order to increase the energy instead of
decreasing it. This probability is controlled by a cooling schedule, in which the network
update procedure becomes more stable in each step. The metaphor with the temperature
phenomenon rises from this point. At a high temperature, system tends to behave in a
more randomized manner. There are various cooling schedules in the literature;
however their aim is the same: saving the system from getting stuck at local minimum

points, which are false attractors (Figure 4.3).
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The important point is that the local minima mentioned here are the false
attractors among the class patterns. These false attractors exist in the Boltzmann
machines and not in the Hopfield networks. The difference from Hopfield networks is
that the training phase in Boltzmann machines is stochastic, similar to the retrieval phase

(Hinton & Sejnowski, 1986).

Energy Landscape

System Energy
""‘ Current network state

7

Unlesired local minima

Target class

Another defined class

Figure 4.3: Demonstration of the energy space of a Boltzmann machine. As in all associative networks,
nodes and connections of the Boltzmann machine represents an energy landscape and each state of the

network corresponds to a point on the surface of this landscape.

4.5. Biological Plausibility of Associative Memories

Associative memories have update rules based totally on local information. That
is, an update operation of a single node depends solely on its connection weights and the
values of the nodes, which are connected to it (the node to be updated) through these

connections. It is also thought to be similar in a biological system (Kohonen, 1978 chap.
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1). The opposite situation is the existence of a global controller, which will not be able
to save the system against dangers such as catastrophic interference'” (Davey & Adams,

2002).

A second similarity of associative memories with biological systems is on the
structure of Boltzmann machines. Boltzmann machines have a very fast learning phase.
It stores a pattern in a few number of epochs, whereas the same pattern can be stored in
hundreds or thousands of epochs in other supervised learning networks such as multi-

layer neural networks.

Boltzmann machines have also an additional biological claim. The claim is the
identity of the training and retrieval phases. In both phases, applied algorithm is the
same (annealing the system). The only difference is clamping or not clamping the
output layer. Identity of the algorithm makes more sense in terms of an analogy
between these machines and nervous system, compared to models such as Hopfield

networks?’.

There are also studies in neurophysiology related to the topic. Amari (1977) and
Little (1974) showed in different studies that biological neurons, which constitute

networks, tend to converge to persistent states in the brain.

On the other hand, there are problems considering such biological plausibility.
For instance, it must be admitted that Hopfield networks have the problem of being

monotonic. For each set of classes there can be generated erroneous input data, with

19 Forgetting old patterns due to the high elasticity of the network.

2 As a remark, Hopfield networks have similar retrieval schema to Boltzmann machines, however they do
not have a training phase at all. Connection values are set directly.

38



which the network is guaranteed to get stuck at a local minimum?®'. However, as
mentioned in this chapter, an associative memory design, namely Boltzmann machines

mostly eliminate this problem by applying simulated annealing.

Another question about biological plausibility of associative memories is the
spiking behavior of nodes. In the standard designs of all associative memory networks,
the nodes can either be set to —1 or 1 and whether this is the situation in the nervous
system or not, is of suspect. However, it should be noted that this over-simplification
does not imply a limitation on the associative memory design. In this study, a counter

example to such an over-simplification will also be presented.

! One of the improvements on Hopfield networks is the work of Segura (2001), in which the network
behaves stochastic in the learning phase.
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CHAPTER 5

A MODIFIED BOLTZMANN MACHINE

A modified Boltzmann machine design for makam identification is described in
this chapter. In the first section the cognitive plausibility of the network is discussed.
Details of the design and the test results are given in the succeeding sections. Full

source code in C# and the data structure are available at http://thesis.kemaltaaskin.net.

5.1. Requirements for an Analogy between a Makam Identification Model and the

Act of Listening to Music

Biological (and hence to a certain degree, cognitive) plausibility of associative
networks is already discussed in the third chapter. However, an associative network
requires a number of additional similarities to the act of listening to music when the
problem is classification and cognition of musical pieces. These additional similarities
in this particular study are implementing continuous behavior and implementing the

sequential presentation of pitches.
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5.1.1. Implementing Sequential and Continuous Presentation of Pitches

This property is implemented with the help of a pre-network layer. In this layer,
the auditory input-to-fundamental pitch transformation (i.e. pitch extraction) is assumed
to be performed and the actual input nodes to the network (corresponding to the sixty-
three most common pitches of classical Turkish music) are fired. Sequential
presentation is implemented with the continuous values of these nodes and the decay
mechanism applied to them. This layer works independent of the core Boltzmann
machine. Processes such as the transformation of auditory input are left beyond the
scope of this study. However, it is worth mentioning that such improvements and deep
analysis of such topics are possible in this model by leaving the other layers and the core

mechanism of the model untouched.

Because of this property, this implementation can be seen as a network structure
with a dynamic programming technique. The complexity of the algorithm is
independent of the piece length and hence the decision procedure can be threaded, i.e. it
can run at parallel independent of the presented input data. This means that at any point
of the retrieval phase, network has a certain answer to the classification problem. These
properties are analogous to the music cognition of human, which makes dynamic
programming techniques (and specifically this modified Boltzmann machine)
cognitively plausible in this sense, comparing to the relevant statistical methods, which
require calculations of probabilities on selected portions of input stimuli (or the entire

stimuli).
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5.2. Model Design

5.2.1. Overview

Model consists of a core Boltzmann machine and a pre-network input processing
system (Figure 5.1). In the pre-network input processing system, the nodes are
sequentially set to the fundamental frequency values of the pitches and with certain
algorithms provide values to the second layer continuous input (SLCI) and the
progression node.  Modifying these algorithms is sufficient to improve this
simplification of the real life situation (that a listener does not hear pure tones) and
leaving the core Boltzmann machine untouched. This is the main reason that this pre-

network input processing system is modeled as a separate layer.

Separate from the pre-network system, there are two major modifications on the
standard Boltzmann machine. First of these modifications is on the connections. Within
the model, there are two unidirectional connections between each pair of nodes (instead
of a single omnidirectional node). Hence, the influences of two nodes on each other are
not equal. This also provides a basis for asymmetric connections, such that when one of
these unidirectional connections is broken, the influence becomes one-way. This is the
case in the connections from the progression node to the output layer. The question of
mathematical equivalence of such a system to a standard Boltzmann machine is beyond

the scope of this study.

Second modification is on the working mechanisms of the nodes in SLCIL. In
addition to the behavior of standard nodes of Hebbian learning, nodes of this layer have
two mechanisms: decaying, self-clamping. Details of these mechanisms will be

described in following sections.
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Figure 5.1: Overview of the modified Boltzmann machine. The box with the dashed line is the core
Boltzmann machine. Progression node is also included in this box. Directional lines imply one-way
connections from each node of the source layer to each node of the destination layer. Bidirectional lines
imply similar connections with transitivity (connections in both directions). Dashed lines imply different

forms of special connections, which will be described separately.

5.2.2. Pre-Network Input Mechanism

This mechanism consists of pre-network input layer and first layer discrete input.
Pre-network input consists of ¢ number of nodes such that all nodes are set to —1 at the
beginning of each musical piece. With the presentation of each pitch in the piece, value
of the ¢™ node is set to the adjusted value of the pitch presented and values of nodes in

the layer are shifted. Value of the i"™ node is replaced by the value of the (i+1)th one
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(database  design  for  these  representations are also  available at

http://thesis.kemaltaskin.net).

Adjusting mechanism is a function from frequency values of pitches to [0,1].
The function used in this study is simple as shown in (Eq. 10). Since the model involves
a simple transformation from fundamental frequency values to pitches in this layer, this
function shows no deficiency. It has no cognitive claims for this moment; however a
detailed analysis and improvement on this layer should require a more realistic

implementation for this function also.

value,
Val”ead/usted = Jrequency 2000 (Eq. 10)

According to (Eq. 10), node values will be in [0,1] since the pitch with the

maximum frequency in the pitch database is Tiz Hiiseyni having a value of 1319,95.

First layer discrete input has sixty-three nodes, corresponding to the most
commonly used pitches in classical Turkish music (Table 5.1). In parallel to the shifting
mechanism of pre-network input layer the nodes of the first layer discrete input are
updated as follows: The k™ node of this layer, which corresponds to the pitch currently

being played, is set to 1 and all other nodes are set to —1.
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Table 5.1: Complete span of pitches that are used in the simulations. 63 pitches are used

in the study beginning from Kaba Yegah ending in Tiz Hiiseyni.

Pitch Freq. Pitch Freq. Pitch Freq.
Kaba Yegéh 146,67 Gevest 371,21 Acem 695,42
Kaba Hiiseyni Asiran 184,99 Dik Gevest 386,29 Dik Acem 706,06
Kaba Rést 195,57 Rést 391,14 Evig 732,77
Kaba Zengiile 208,79 Nim Zirgiile 412,04 Mahur 742,41
Kaba Diigah 220,00 Zirgiile 417,66 Dik Mahur 772,58
Kaba Kiird1 231,82 Dik Zirgiile 426,67 Gerdaniye 782,28
Kaba Dik Kiirdi 234,87 Diigah 440,00 Nim Sehnaz 824,30
Kaba Segah 244,26 Kiirdi 463,64 Sehnaz 835,15
Kaba Biiselik 247,48 Dik Kiirdi 469,87 Dik Sehnéz 868,57
Kaba Cargah 260,77 Segah 488,52 Muhayyer 880,00
Kaba Nim Hicaz 270,05 Biselik 494,98 Siimbiile 927,28
Kaba Hicaz 274,69 Dik Buselik 505,23 Dik Siimbiile 939,74
Kaba Dik Hicaz 278,44 Cargah 521,54 Tiz Segéh 977,04
Yegah 293,34 Nim Hicaz 540,10 Tiz Biselik 989,92
Kaba Nim Hisar 309,03 Hicaz 549,39 Tiz Dik Biselik 1010,46
Kaba Hisar 313,23 Dik Hicaz 556,88 Tiz Cargah 1043,08
Kaba Dik Hisar 320,00 Neva 586,69 Tiz Nim Hicaz 1080,20
Huiseyni Asiran 329,99 Nim Hisar 618,06 Tiz Hicaz 1198,78
Acem Asiran 347,71 Hisar 626,46 Tiz Dik Hicaz 1113,76
Dik Acem Asiran 353,03 Dik Hisar 640,00 Tiz Neva 1173,38
Irak 366,38 Huseyni 659,97 Tiz Haseyni 1319,95

In the pre-network input mechanism, there is no learning in the connections and
the node values are set programmatically. This layer only serves as a feeding

mechanism for the SLCI, which can be seen as the actual input to the model. Last
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function of the pre-network input mechanism is the activation of the progression node,

which will be described in the corresponding section.

5.2.3. Second Layer Continuous Input

SLCI has 63 nodes, equal to the first layer discrete input. Each node of this layer
is connected to a single node in the first layer discrete input. The relation is one-to-one
and onto. In other words, each node of this layer is connected to exactly one node of the
first layer discrete input. Whenever a node of this discrete layer is set to 1 the node in
SLCI, which is connected to it is also set to 1. Even though the nodes of this layer join
the energy function of the core Boltzmann machine, their values are determined from the

pre-network input mechanism.

An important property of these nodes is that they can also have continuous
values. This is because of the decaying mechanism. In parallel to the node updating
algorithm defined within the deterministic Boltzmann machine algorithm, values of

these nodes tend to decay. Decaying occurs with a logarithmic function:

value(t)—1 (Eq. 11)

value(t,,,) =

where I represents the instance of time.

The function is logarithmic and this fact causes quick forgetting and decrease in
the performance of the network. However, quick forgetting is necessary for robustness.
Robustness implies decision procedures, which guarantee producing same result (either

correct or wrong) with the same input data. In computational terms, stimuli of the
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musical pieces are erroneous. Pitches that are out of the current makam are rarely
(compared to the pitches of the scale) used in musical pieces. Musical pieces rarely
contain pitches only from a single scale. There can be pitches in a musical piece that do
not belong to the scale of that piece’s makam. Hence, a tonality induction system should
have a mechanism to reduce the effect of such pitches in order to be robust in this sense.
In other words, a tonality induction system should avoid including these pitches in its
evaluation mechanism. This is the reason for using a logarithmic function. However,

this brings another problem.

In a standard Boltzmann machine, in both training and retrieval®® phases input
nodes are clamped: they are not subject to updating. However, they are not clamped in
this model initially. The reason is to have a point of analogy with the act of listening to
music. Before listening to a musical piece, listener is usually not presented to the
pitches, their probabilities and sequence. This instead occurs during the listening
process. The situation is represented by a mechanism called self-clamping. The idea of
self-clamping is as follows: If a pitch is being played too often, corresponding node
clamps itself to 1 until the end of the piece. Being too often is represented by the

following algorithm:

Clamp the node if corresponding pitch is played more than k times.

where

*(|| notes —45)

o | +3  (Eq.12)

total ||

played ||
15*|| notes

|| notes

2 Learning (instead of training) and unlearning (instead of testing) words are also commonly used.
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and it is a pre-defined algorithm inside the network®. Clamping input nodes is a step in
training and retrieval phases in a standard Boltzmann machine applied in order to make
robust classifications. However in noisy situations such as input vectors having missing
values, Boltzmann machine also finds the values of the nodes (nodes that are
corresponding to the missing input vectors), since the connections are bi-directional.
Starting the phases with all input nodes unclamped and applying self-clamping along
with the sequential input is again almost robust because of this behavior of Boltzmann
machines. To summarize, logarithmic forgetting and self-clamping gives the model the
ability of ignoring out-of-scale pitches without sacrificing the decaying mechanism.
However, at this point it must be mentioned it is also possible to increase the
performance of self-clamping, a similar mechanism such as self-unclamping can be

introduced when pitches are no longer played.

5.2.4. Progression Node

Progression layer is designed to be a single node. It is partially out of the core
Boltzmann machine. Its value is determined with an externally defined algorithm
whereas it joins the energy function of the core Boltzmann machine: there are directional

connections from progression node to each node in the output layer.

Value of the progression node is determined by the following algorithm:

# Any form of mechanism can be used here. Among them, self-organizing maps and multi-layer networks
can be counted. However, the cognitive strength of the overall model would not increase or decrease
among any choice for this mechanism. In any case, there would be a need of a pre-defined algorithm. The
choice of the current algorithm is arbitrary.
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Set direction and coefficient to zero
Starting from the current pitch, trace back to n pitches. Do for each pitch
If the frequency value of the pitch is less than its successor
Decrement direction
Else
Increment direction
If direction is greater than zero
Set coefficient to 1
Else
Set coefficient to —1

Update progression node

where updating rule is

value = coefficient * (1—- 0,04 * direction) (Eq. 13)

and value is the value of the progression node. Multiplier coefficient 0.04 is a design
choice and depends on the number of total nodes in the core Boltzmann machine. This
value is chosen after a number of arbitrary tests. At this point the only remark for these
tests is that greater coefficients make this value divergent or reduces its effect to the

nodes that it is connected.

Progression node is partially in the core Boltzmann machine, considering this
algorithm. The main reason behind this design issue is the fact that progression is
defined locally on the pitch sequence. The conclusion is that given a sequence of a
number of pitches there exists a decision mechanism whether the sequence is ascending
or descending. The phenomenon is known as pitch contour and it is shown that even

human infants are sensitive to contour (Trehub & Trainor, 1993). Hence, defining the
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value of the progression node externally does not decrement the model’s plausibility. It
should be noted that better representations for progression or better algorithms for
determining its value than (Eq. 13) may also be found in this sense. The only criterion
for such representations (or algorithms) is to give a tendency to the value of this node to
1, if the pitch sequence has an ascending progression and —1, otherwise. As a corollary,
it will be dominated by neither 1 nor —1 and hence the network energy will be

independent of it when the pitch sequence has an ascending-descending character.

5.2.5. Hidden Layers and Output Layer

In a standard Boltzmann machine, there is a single hidden layer consisting of
nodes connected to each other as well as to the input and output layers. The design of

this modified Boltzmann machine is similar to the standard one in this sense.

Output layer consists of nodes, each representing a single makam. In this layer, a
form of competition is implemented such that clamping this layer in the training phase
corresponds to clamping the node of the makam of the musical piece to 1 and others to —
1. In general, the clamped values correspond to the stored classes, defined in the scope
of the particular problem. Number of nodes in this layer is implemented to be
parametric, however set to 5 in the current study, since the input musical pieces are from

5 different makams: Mahur, Hicaz, Kiirdili Hicazkar, Hiizzam and Nihavend.

5.2.6. Overall Training and Retrieval Algorithm

Modified Boltzmann machine algorithm involves a number of modifications on
the deterministic Boltzmann machine algorithm, described in the third chapter.

However, the characteristics of the algorithm remain unchanged.

Remark on the deterministic Boltzmann machine algorithm:
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Until the network reaches a stable state (a pre-defined convergence criterion
met)

Randomize nodes

Update network with input and output nodes clamped
Store node values to [s;s;] 2 & clamped

Randomize nodes

Update network with only input nodes clamped

Store node values to [s;s;] cfdamped

Update each weight value

This algorithm can be modified to have twin networks, in which one of them is

used for training, and the other is for retrieval:

Until the network reaches a stable state (a pre-defined convergence criterion
met)

Randomize training and retrieval networks
Update training network with input and output nodes clamped
Update retrieval network with only input nodes clamped

Update each weight value according to the differences between nodes of two
networks.

The next modification on the algorithm is related to the sequential presentation
of pitches in the input layer. Deterministic Boltzmann machine must be modified such
that it must be run in another loop, which represents the pitch sequence. Illustration of

this modification is as follows:
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Randomize training and retrieval networks
Initialize training and retrieval networks
Until the pitch sequence ends, do for each pitch
Feed network with the pitch

Until a number of epochs, which depends on the length of the
pitch linearly, do

Update training network with output nodes clamped
Update retrieval network
Apply decaying and self-clamping processes

Update each weight value according to the differences between nodes of two
networks.

For a single training stimulus (a sequence of pitches, corresponding to a musical
piece with a certain makam) the algorithm starts by randomizing and initializing the
networks. Initializing networks corresponds to clamping the output layer®* for training
network. Feeding network with pitches corresponds to update the pre-input network

mechanism with pitches and updating the second layer continuous input.

Updating networks by updating the connections between the nodes and applying
decaying and self-clamping procedures in the second layer continuous input are the steps

performed for each pitch.

After the whole sequence of pitches is presented, weights are updated with a
similar rule of the deterministic Boltzmann machine and training is finished for a single

piece.

* And clamping the genre subset, if being tested.
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5.3. Test Results

Testing” procedure applied in this study is as follows: The available data are
separated into two disjunctive groups. One of these groups is used for training and the
other is used for retrieval. Available data involve particular representations of musical
pieces from five makams (Table 5.2). Makam selection is arbitrary. However, training
and retrieval pieces are selected such that they include the least number of transitions to

other makams.

Pieces in the training group are fed to the network for training, each for once
(Table 5.3). Following this phase, pieces in the retrieval group are given to the network

for testing, each for a single test. Test results are given in tables 5.4 and 5.5.

Table 5.2: Distribution of pieces among makams.

Prim. Sec. # of training # of test
Makam Karar Karar Yeden  Genres Progression pieces pieces

Mahur Rast Neva Gevest 1-1 Desc. 2 5
Hicaz Diigdh | Neva Rast VI-4 Asc.-Desc. 2 9
Hiizzam Segah | Neva Kiirdi 4-VI1 Asc.-Desc. 2 7
Kiirdili Rast Cargah Acem 11-2 Desc. 2 5
Hicazkar Asiran

Nihavend | Rast Neva Irak 2-11 Asc.-Desc. 2 9

% Testing in this sentence implies the verification of the model, not the specific testing algorithm applied.
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Table 5.3: Training pieces and their makams. Composers of the pieces are given in

parenthesis.

Piece Name Makam
Maéhur Pesrev (Rauf Yekta Bey) Méhur
Sabah Olsun Ben Su Yerden Gideyim (1. Aga) Mahur
Hicaz Mandira (Anonymous) Hicéaz
Aski Seninle Tatti Hicranla Yandi Goniil (F. Tokay) Hicéaz
Askinla Yanan Kalbimi Sahralara Attin (T. Er) Hiizzam
Kadere Bak (A. Sensoy) Hiizzam
Girdim Yarin Bahgesine Giil Dibinde Giilizar (O. N. Akin) Kiirdili Hicazkar
Derbeder Bir Asikim Yurdum Evim Viranedir (Z. Duygulu) Kiirdili Hicazkar
Nihavend Yiiriik Semai (Tanburi Ali Efendi) Nihévend
Nihavend Pesrev (H. S. Arel) Nihévend

Table 5.4: Correct test result counts by makams.

Makam Correct Test Results
Mahur S outof 5
Hicaz 6 out of 9
Hiizzam 7 out of 7
Kiirdili Hicazkar 4 out of 5
Nihavend 7 out of 9
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Table 5.5: Test results by pieces.

Piece Name Makam Result
Mahur Sarki (N. Kokdes) Mahur Mahur
Hicaz Pesrevi (G. G. Han) Hicaz Hicaz
Hicaz Saz Semaisi (F. Karamahmudoglu) Hicaz Hicaz
Sarkimi Senin I¢in Yazdigin Bilseydin Mahur Mahur
Hicaz Saz Semaisi (M. Erev) Hicaz Mahur
Goniil Verdim Bir Civane (Selim, I1T) Hiizzam Hiizzam
Manolyam (Z. Miiren) Kiirdili Hicazkar  [Kiirdili Hicazkar
Ayrilik Ne Demek (S. Nevruz) Hiizzam Hiizzam
Hicaz Sarki (Sevki Bey) Hicaz Hicaz
Kiirdili Hicazkar Pesrevi (T. Cemil Bey) Kiirdili Hicazkar  [Kiirdili Hicazkar
Adalardan Bir Yar Gelir Bizlere (V. A. Arsoy) Hicaz Hicaz
Sazlar Calinir Camlicanin Bahgelerinde (V. A. Ersoy) Hicaz Mahur
Muftunun Oldum (A. Mithat Efendi) Kiirdili Hicazkar  [Kiirdili Hicazkar
Yiice Dagdan Esen Riizgar (S. Pinar) Mahur Mahur
Baglandi Goniil Ziilfiine Bir Yosma Civanin (S. Ahmed Efendi) |Hiizzam Hiizzam
Zilfiin Gorenlerin Hep Baht1 Siyah Olurmus Nihavend Nihavend
Nihavend Sarki (Rifat Bey) Nihavend Nihavend
Nihavend Pesrev (R. Fersan) Nihavend Nihavend
Camlarda Safak Rengi Gibi (V. A. Ersoy) Nihavend Hicaz
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Table 5.5: Test results by pieces (continued)

Piece Name Makam Result
Giizel Bir Goz Beni Att1 Bu Derin Sevdaya (O. N. Akin) Nihavend Nihavend
Diin Gece Saz Meclisine (M. Sabahattin) Nihavend Mahur
Nihavend Saz Semaisi (G. G. Han) Nihavend Nihavend
Hiizzam Pegrevi (T. Osman Bey) Hiizzam Hiizzam
Sen Bilmiyordun (T. Er) Nihavend Nihavend
Su Gogsiim Yirtilip Baksan (C. Cagla) Hiizzam Hiizzam
Gokyliziinde Yalniz Gezen Yildizlar (T. Alpay) Nihavend Nihavend
Mah Yiiziine Asikanim (Ismail Dede Ef)) Hicaz Hicaz
Karanfil Tirkiisii (Anonymous) Hicaz Hicaz
Nigde Ninnisi (Anonymous) Hiizzam Hiizzam
Kusak Tiirkiisli (Anonymous) Hiizzam Hiizzam
Bagdadin Hamamlar1 (Anonymous) Mahur Mahur
'Yarim Elimden Gitti (Anonymous) Hicaz Mahur
Koparan Sinemi Agyar Elidir (B. Sen) Kiirdili Hicazkar  [Nihavend
Bir Kendi Gibi Zalimi Sevmis Santyormus (L. Atli) Kiirdili Hicazkar  [Kiirdili Hicazkar
Ne Dogan Giine Hilkmiim Geger (M. N. Selguk) Mahur Mahur
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5.4. A Corollary on Makam Neighborhood

Boltzmann machines decide on the principle of system energy, i.e. they reduce
their energy to the possible minimum value in the presence of the input stimuli by a
certain energy reduction algorithm. That is how they make a classification. In the
minimum energy state the output layer represents the correct classification and any

change made on the values of this layer will increase the system energy.

As a corollary it can be stated that, with an input stimulus fed to network and the
output layer is clamped with the correct classification, the system will reach the

minimum energy state after the energy reduction algorithm.

In the current model makams are represented in the output layer with 1 in their
corresponding node and -1 in the other nodes. For example, Hicaz corresponds to [-1,1,-
1,-1,-1] and Hiizzam corresponds to [-1,-1,1,-1,-1]. Given such a configuration and the
model, a neighborhood among the classes can be established by a set of input stimuli.
The idea is to present the input stimuli (musical pieces) with the modified Boltzmann
machine algorithm (as described in section 5.2) and then to calculate the system energy
for all possible®® output layer configuration by clamping the output layer accordingly.

The complete algorithm for this procedure with a single piece is as follows:

%% possible configurations that represent classes.
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For a single piece do the following for each makam:
Randomize retrieval network

Initialize retrieval network by clamping the current (neighbor) makam to
1

Until the pitch sequence ends, do for each pitch
Feed network with the pitch

Until a number of epochs, which depends on the length of the
pitch linearly, do

Update retrieval network with output nodes clamped
Update retrieval network
Apply decaying and self-clamping processes

Store the energy of the network as the neighborhood value of the
neighbor makam

Sort the values and return the list

Then the neighborhood relation will correspond to the average neighborhood of
the energy values. However, it is obvious that such a corollary will require a more

complete data set, from greater number of makams; which is not the case in this study.

Theoretically, this algorithm sorts the neighbor makams according to the
similarities of makams such as the number of common pitches in the scales and the
identity of the progression. In practice, one of the most common realizations of makam
neighborhood is transition. A transition is a move from one makam to another within a
piece. Hence a possible method for verifying the results should be to extract the
transitions in the training pieces and compare them with the results drawn from the
model. Another idea should be to ask experts which makams are closer to each other (in
terms of neighborhood). However, verification of the makam neighborhood claim is

beyond the scope of this study and is left as a topic for future studies.
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CHAPTER 6

DISCUSSION

This study is on the design and implementation of a Boltzmann machine for the
particular task of makam identification. For this purpose the standard Boltzmann
machine, which is described in the fourth chapter is modified. The modifications on this
model are described in the fifth chapter. Preliminary test results are also given in the
same chapter. It is obtained from these results that 29 of 35 test pieces from five

different makams are classified correctly; corresponding to a %83 success rate.
Deficiencies of the model on the other hand, are as follows:

The results are far above the chance level (considering %20 for 5 makams),
however they can be taken as successful except the pieces in Hicaz. If the pieces in
Hicaz are removed, the correctness rate equals to %88 representing 23 correct
classifications from 26 pieces. The only explanation that will be given here for this

(Hicaz) failure will be a number of facts related with this makam. First of all, Hicaz is a
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makam?’, which has no specific progression characteristic. Pieces in Hicdz can be
ascending, descending or ascending-descending. A second fact is that this makam uses
Evig in ascending portions (of pieces) and Acem in descending portions, which increases
the system energy by reducing the number of clamped nodes in the second layer
continuous input. The last fact to be mentioned is that in Hicaz pieces, Dik Hisar is used
almost with the same frequency of Hiiseyni, which is the regular pitch of the scale of this

makam. This fact also increases the system energy due to the same reason.

These problems can definitely be taken as reasonable facts for such a failure;
however it must be noted that in real life such a problem related to Hicaz does not exist.
In contrast, Hicaz is known as one of the most popular makams today and it can be
suggested that identification of this makam in real life is even easier because of a
number of reasons, including the difficulties of the model related to this makam. For
instance, frequent usage of Evi¢ along with Acem is a difficulty for this model; on the
other hand it makes identification easier in real life. Another distinctive property of
Hicaz is the 13-comma interval between Dik Kiirdi and Nim Hicdz. Hence it can be
concluded that this modified Boltzmann machine cannot account for this problem and
there may be a need of improvements that will unify with these characteristics of Hicaz.
For instance, in order to represent an unstable character in the progression layer, this
layer can be re-designed to have two nodes or a single node by a pure continuous valued

algorithm instead of the previously proposed algorithm (Eq. 13).

Another set of problems arises from the implementation details on the structure

of the model. In the modified Boltzmann machine, as well as the standard one there are

" Formally Hicaz is not a name of a single makam. It denotes a makam family involving (generic) Hicaz,
Hicaz Hiimaytn, Uzzal, and Zirgileli Hicaz. However, in the study generic Hicaz is referred by the word
Hicaz.
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a number of random variables. These variables are the count of nodes in the hidden
layer (H) and the connection weight update coefficient (o). There are certain strategies
for specifying these variables (Duda & Hart & Stork, 2001 chap. 7). The problem is, the
optimum values for these variables change over the number of input and output nodes
and the number of connections. Hence, these variables must be adjusted if for example
to classify 10 makams instead of 5. A solution to this problem is to design the
Boltzmann machine with a greater and fixed number of nodes in its output layer and

adjust its parameters accordingly.

6.1. Future Work

One of the key outcomes of this study is that it brings a considerable number of
problems besides its success on the test data. It is shown that identifying makams with a
modified Boltzmann machine is possible by applying a new mechanism called self-
clamping on sequential input data. This sequential input data is a simplified abstraction
of actual auditory input, in which the fundamental frequency values of pitches are used.
Moreover, because of such a simplification, pre-network input mechanism becomes a
straightforward mapping device from the sequential input data to the second layer
continuous input. However, it is possible to implement a spectral analysis mechanism in
this layer and improve the model in this sense without modifying the core Boltzmann

machine.

A second improvement on the model should be on representing the intervals
between pitches. Such a representation does not exist in the current model because

nodes of the second layer continuous input contain no geometric relation among
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themselves. In other words, no information about the fundamental frequencies of
pitches exists in this layer. This is a serious problem for the model in terms of the
strength of its analogy with the act of listening to music. Within this model, which has
no representation for pitch intervals, it is not possible to classify transposed makams®*
correctly. The problem is that, the classification is done according to the pitches alone
(in addition to the progression node), which are represented topologically. Because of
this problem a simulation on the existence of genres cannot be done on this
representation. Moreover, a mechanism that can represent pitch intervals may increase
the performance of the algorithm on Hicdz because of its characteristic 13-comma
interval between Dik Kiirdi and Nim Hicaz. A possible solution to this problem within
the makam identification context is to design a Boltzmann machine with a different
input representation such that the input layer to the core Boltzmann machine contains the
information of scale patterns, a limited number of reference pitches and the information
of progression. Such a representation will also give better insight on the existence of
genres. As mentioned before, it is not possible to have a clear answer to this problem
with this modified Boltzmann machine. However, representing interval patterns on the
input layer will also represent genres within the same layer and require no additional
representations other than the regular hidden layers of the standard Boltzmann machine.
For instance, in terms of observing the existence of genres, (nodes of) the hidden layer
will become suitable for tracking their activations in order to search for specific

activations for specific interval patterns.

% In classical Turkish music, makams are usually transposed (pitches of the scale are shifted, leaving the
pitch intervals constant) most of the time in order to unify with the singer’s vocal range. The ambiguity
rises because of the Arel-Ezgi notation. Makams, having the same pitch intervals in their scales have
different progressions. In contrast with the Arel-Ezgi school, there is no transposed makams in classical
Turkish music. When makams are transposed, they still remain the same makam actually. For instance in
Karadeniz (1983) there is no reference to such makams. He refers only to simple and compound makams.
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Considering the 12 basic genres of Arel-Ezgi school, further studies can be
proposed. A future work on their existence can be to design an experiment on their
perception. An experiment, in which these genres are presented to the participants along
with some randomly generated interval patterns, should give further insight on the issue.
The question of whether these 12 basic genres have perceptual advantages or not, will be

revealed with such an experiment.

Another topic for future work is to generalize the model for polyphonic music in
order to apply it to Western music and to compare it with the previous tonality induction
algorithms. In its current form, the model can take only one input stimulus at a time.
However, it is also possible to modify it further for polyphonic music by duplicating the
pre-network input mechanism and its connections to second layer continuous input such
that each pre-network input mechanism represents one melody. Such a duplication of
the pre-network input mechanism will require an assumption that the Boltzmann
machine is able to discriminate the melodies into different channels before taking them
as input. One related research is on harmonizing musical pieces by Boltzmann machines
(Bellgard & Tsang, 1994), which proves that the analogy with the energy function of

these machines can work with polyphonic music.

Progression determination algorithm can also be improved as a future work. For
this purpose, experiments on perception of contour can be reviewed or new experiments
can be designed. The main purpose of such an investigation will be to identify the

relation between progression and contour.

Finally, an important topic for future work is to track the system energy in order

to identify makams and track modulations throughout the pieces. For this purpose, the
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output layer of the modified Boltzmann machine can be monitored for each element of

the pitch sequence.

6.2. Conclusion

Main purpose of this study was to present a makam identification scheme by
proposing Boltzmann machines as the computational model and classical Turkish music
as the target music culture. Despite the problems it has, the idea of a modified
Boltzmann machine for makam identification is promising. Proposals are given for the
deficiencies of the model in the previous section as future work. Yet the idea is
promising since it provides a mechanism, which is cognitively plausible to a certain
degree. In other words, it proposes an analogy with the act of listening to music.
Besides the biological plausibility of associate memories, model provides mechanisms
for accepting sequential input, (computational) identity of training and retrieval phases,
independence of piece lengths in terms of computational complexity, quick learning
(with a plausible and faithful number of pieces compared to networks such as the one in
Todd’s (1989) approach or multi-layer networks in general) and plasticity and evaluating
makam neighborhoods. Analysis on issues such as tracking contour and evaluation of
self-clamping are, on the other hand, are left untouched. The algorithms that are
provided for these issues are shown to be sufficient for this study in particular; however

they are subjects to future work.

This study could also be counted as an application of associative memories on
tonality induction, despite the fact that tonality induction has a number of differences

from makam identification.
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To summarize, this study was an attempt to identify makams from fundamental
pitch frequencies and was the first such study with Boltzmann machines and certain
perceptual limitations applied. The important outcome is that it is observed that
Boltzmann machines can be modified to be suitable for such a task and makam
identification can be a well-defined task in machine learning. I believe that further
investigations and studies on this particular topic will deepen the knowledge on makams

and hence classical Turkish music.
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APPENDIX
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