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ABSTRACT 

 
A STUDY ON IDENTIFYING MAKAMS 

WITH A MODIFIED BOLTZMANN MACHINE 

Taşkın, Kemal 

 

M.Sc., Department of Cognitive Sciences 

Supervisor: Prof. Dr. Hasan Gürkan Tekman 

Co-Supervisor: Prof. Dr. Semih Bilgen 

 

July 2005, 70 pages 

 

Makams are well-defined modes of classical Turkish music.  They can be taken as the 

Turkish music counterparts of Western music tonal structures at a certain level. 

Nevertheless, makams have additional features such as the usage of specific notes 

resulting from their different architecture and the special use of scales (i.e. progression). 

The main goal of this study is to construct a platform for identifying makams through a 

computer program by proposing a machine learning mechanism.  There are restrictions 
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on the mechanism related to the characteristics of the task. Such a mechanism should 

represent real-time sequential input with continuous values, should handle possible 

errors in this input and show immediate learning with limited data. These restrictions are 

valid and necessary for an analogy with the act of listening to music. A Boltzmann 

machine, modified for this purpose is designed, implemented and used in this study as 

this learning mechanism.  Two characteristics of this study define its significance. First, 

this study is on the structural features of makams of classical Turkish music.  Second, 

the identifying mechanism is a Boltzmann machine having a different schema than 

statistical identification tasks in tonality induction. 

Keywords: Boltzmann Machines, Classical Turkish Music, Makam 
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ÖZ 

 
A STUDY ON IDENTIFYING MAKAMS 

WITH A MODIFIED BOLTZMANN MACHINE 

Taşkın, Kemal 

 

M.Sc., Department of Cognitive Sciences 

Supervisor: Prof. Dr. Hasan Gürkan Tekman 

Co-Supervisor: Prof. Dr. Semih Bilgen 

 

July 2005, 70 pages 

 

Makamlar klasik Türk müziğinin iyi tanımlanmış modlarıdır.  Belli bir dereceye kadar, 

batı müziğinde bulunan tonal yapıların Türk müziğindeki karşılıkları olarak 

görülebilirler.  Bununla birlikte makamların, kendi yapıları dolayısıyla belirli notaların 

ve ıskalaların özel kullanımları (seyir) gibi ek özellikleri bulunur.  Bu çalışmanın temel 

amacı bir makine öğrenmesi düzeneği önererek bir bilgisayar programı aracılığıyla 

makamları tanıyacak bir düzlem oluşturmaktır.  Böylesi bir düzeneğin üzerindeki 
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kısıtlamalar ise gerçek zamanlı ve sıralı, olası hataları içeren, reel sayı kümesinden gelen 

girdileri ifade etmek ve sınırlı sayıdaki öğrenme ve deneme verisi ile çalışma yeteneğine 

sahip olabilmektir. Bu kısıtlamalar düzeneğin müzik dinlemeyle bir analoji kurabilmesi 

için geçerli ve gereklidir.  Bu çalışma içinde bu amaçla değiştirilmiş bir Boltzmann 

makinesi öğrenme düzeneği olarak tasarlandı, kodlandı ve kullanıldı.  İki karakteristik 

özelliği bu çalışmayı özel kılmaktadır.  İlk olarak, bu çalışma klasik Türk müziğindeki 

makamların yapısal özellikleri üzerinedir.  İkinci olarak ise, kullanılan tanımlama 

mekanizması istatistiksel tanımlama mekanizmalarından farklı bir yola sahip olan 

Boltzmann makineleridir. 

Anahtar Kelimeler: Boltzmann Makineleri, Klasik Türk Müziği, Makam 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Musical pieces consist of pitches.  Throughout these pieces, pitches are not 

selected at random.  There are well-defined structures that define their usage.  Moreover, 

pitches of musical pieces have hierarchical relations among them.  Musical pieces 

usually tend to move towards certain pitches, which are known as the tonal centers (or 

the tonics in Western music).  The problem of finding such tonal centers from notes of 

musical pieces is known as tonality induction.  In past years, tonality induction has been 

a popular topic in musicology, computer science, psychology and other related 

disciplines.  Various methods of pattern recognition and neurocomputation have been 

applied to tonality induction with impressive results.  Among these methods, Bayesian 

classification algorithms, self-organizing maps and adaptive resonance theory based 

networks can be mentioned (Bharucha, 1987; Griffith, 1994; Temperley, 2004).  This 

study is an addition to these studies with two important differences. 

First difference is the target music culture.  This study is on identifying the tonal 

structures of classical Turkish music: makams.  Specifically, it consists of designing and 
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implementing a computer program, which takes lists of values representing fundamental 

frequency sequences of pitches in musical pieces and returns their makams.  The 

problems to be faced are similar to tonal induction tasks to a certain degree, such as 

representing event hierarchies or representing tonal neighborhood.  However, in order to 

design a makam identification model, additional dynamics must be included.  The 

origins of these dynamics are the characteristics of this music culture.  These dynamics 

will be summarized in the second chapter. 

Second difference is the computational method for the model.  A modified 

Boltzmann machine is used for makam identification in this study.  It is modified in 

order to accept sequential input and have directional connections to represent the act of 

listening to music in real-time.  Boltzmann machines are chosen for the model for 

several reasons.  In general, the main reason is that Boltzmann machines are a form of 

associative memory and associative memories, specifically Boltzmann machines, have 

cognitive and biological plausibility.  Background on the issue is covered in the fourth 

chapter.  It is worth mentioning at this point that biological plausibility is limited to 

denote the strength of the analogy between the model and the human neurological 

system.  Similarly cognitive plausibility stands for the strength of the analogy between 

the model and the act of listening to music.  For instance, similarities on presentation of 

the pieces and on the sufficient number of training pieces for identification are included 

in such an analogy. 

One of the central aims of this study is to design a dynamic network architecture, 

which depends on purely local information for the problem of tonal induction and do it 

on classical Turkish music.  To what degree this aim is succeeded, will be discussed 

before the end of the last chapter. 
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1.1. Outline 

The thesis is divided into six chapters. 

Chapter 1 (this chapter) is an introduction to the study and its content. 

Chapter 2 is an introduction to the classical Turkish music.  It includes the 

principles of this music and presents the elements specific to it.  A short introduction to 

music theory, describing fundamental phenomena related to the study, precedes this 

introduction.  There is also a discussion of two schools on classical Turkish music in this 

chapter, in order to stress the ambiguity on some of these elements such as genres and 

progression. 

Chapter 3 is the literature survey for the study.  Throughout this chapter, studies 

on tonality induction are referred and a short history of tonality induction is given.  Aim 

of this chapter is to discuss tonality induction and its differences from and similarities to 

this study. 

Chapter 4 is a background and discussion of biological plausibility on associative 

memories and Boltzmann machines.  This chapter summarizes associative memory by 

referencing Hopfield networks and Boltzmann machines.  It is preceded by a short 

introduction to artificial neural networks. 

Chapter 5 is the description of the design of the model.  It includes the overall 

methodology as well as the specific algorithms and representations used in it.  Test 

results for the model are also presented in this chapter. 
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Chapter 6 contains a discussion on the model, its strength, weaknesses and its 

cognitive claims, recommendations for future research and a summary of the study. 
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CHAPTER 2 

 

INTRODUCTION TO CLASSICAL TURKISH MUSIC 

 

 

2.1. Background on Music Theory 

Main elements of music are musical pitches, which are denoted by musical notes.  

In music, pitches are not used as continuous series.  Rather there are discrete steps from 

pitch to pitch (Dowling & Harwood, 1986 chap. 4).  These steps are called intervals and 

their sizes vary among cultures.  Octave interval however, is quite common.  The 

interval between two pitches is an octave, if their fundamental1 frequencies are in a ratio 

of two to one.  Definition of the octave interval leads to another definition, namely the 

pitch classes.  Pitch classes are pre-defined values representing the tonal hierarchies for 

scales.  They correspond to sets of pitches that have frequency ratios of powers of two. 

                                                 
1 Pitches are composed of simultaneous vibrations of several components at different frequencies. These 
frequencies are approximately integer multiplies of a fundamental frequency (Justus & Bharucha, 2002), 
which dominates the perceived pitch.  
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2.1.1. Tonal Material 

Frequency is a continuous parameter; however number of pitches within an 

octave is finite.  A fundamental division of the octave is mentioned by Dowling and 

Harwood: 

 

“..the octave should be divided into a series of minimal intervals, all equal in size, which are 

added together to construct all intervals used in melodic scales.” (Dowling & Harwood, 1986 

chap. 4). 

 

This division of the octave varies among the cultures drastically.  For instance in 

Western music octave is divided into twelve intervals (semitones), in Arabic music they 

are divided into twenty-four intervals (quarter tones) and in classical Turkish music the 

division is to fifty-three2 (Özkan, 1984 pp. 54-65).  In western music, all semitones in an 

octave constitute the chromatic scales.  These tones constitute the tonal material in 

music (Dowling & Harwood, 1986 chap. 4). 

2.1.2. Tuning Systems and Scales 

Not all possible tones from the tonal material are used in musical pieces.  Instead 

of this, subsets of these tones are used in each musical piece.  These subsets can be 

represented as certain interval patterns, called (melodic) scales.  Theoretically, a scale 

can be formed by any interval pattern within an octave.  However, this is not the case in 

actual composition.  For instance, in Western music there are two types of scales: major 

and minor.  They have the sequence of intervals T-T-S-T-T-T-S, T-S-T-T-S-T-T 

                                                 
2 Western musicologists also denote music cultures having smaller intervals than their music as 
microtonal. 
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correspondingly, where T denoting a whole tone (a frequency ratio of 21/6) and S 

denoting a semi tone (a frequency ratio of 21/12).  It is worth mentioning that this is not a 

restriction.  In other music cultures situation may be different.  For instance in classical 

Turkish music whole tones are divided to nine equal intervals that are named commas, 

instead of semi tones that divides wholes tones to two. 

2.1.3. Tonal Hierarchies 

It is common for each music culture, that pitches in a scale have different 

priorities; they are not used equally distributed throughout the musical pieces.  For 

instance, the first pitch of the scale (denoted as the tonic in Western music) has more 

influence on the scale than the second pitch of the scale.  Moreover, all other pitches of 

the scale are in some form of a structural hierarchy (Krumhansl, 1990 chap. 4) that 

defines tendencies and expectancies to certain pitches in scales.  Music cultures having 

such a hierarchy are said to be tonal.  Another form of hierarchical relation in music is 

the event hierarchy.  Event hierarchies define the significant usage of pitches in the 

context.  Following a discussion on the tonal hierarchies of north Indian music Bharucha 

describes the contrast between these two hierarchies: 

 

“Event hierarchies describe the encoding of specific pieces of music; tonal hierarchies embody 

our tacit or implicit knowledge of the abstract musical structure of culture or genre.  The tone C 

may occur many times in a musical piece; each occurrence is a distinct musical event.  But all the 

occurrences are instances of a class of tones (tokens of a type) denoted by “C.” In the context of a 

given piece of music, an event hierarchy represents the functional significance of each occurrence 

of a C relative to the other sounded tones, whereas a tonal hierarchy represents the functional 

significance of the class of all C’s relative to the other pitch classes.” (Bharucha, 1984). 
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To sum up this music theoretical introduction, music is composed of pitches 

corresponding to certain fundamental frequency values and they constitute the tonal 

material of music.  Well-defined interval patterns defined on these pitches form tuning 

systems and these tuning systems have certain structures, which are known as scales.  

Scales are used with hierarchical tonal organizations in music and these organizations 

vary among music cultures.  These hierarchies also have great influence on the 

perception of music and any music recognition algorithm, independent of its structure, 

should have a mechanism for them either explicitly or implicitly. 

 

2.2. Classical Turkish Music 

Classical Turkish music is thought to have originated from the music of early 

mid-eastern and Persian cultures; which, in turn, originated from the music of mid-Asian 

Turks (Yılmaz, 2001 pp. 7-15).  Most probably up to 14th & 15th centuries 

(corresponding to the rise of Ottoman Empire), this music interacted with Byzantine and 

Arab music and evolved into the classical Turkish music of the present day (Judetz, 

1996; Tanrıkorur, 2003a; During & Mirabdolbaghi & Safvat, 1991).  These centuries are 

not the end of the evolution of this music; they are mentioned here since they contain the 

oldest written musical data having similar characteristics to today’s music. 

There are a number of characteristic features of this music.  First of all, classical 

Turkish music is not polyphonic.  There is a single melody at a single instance of time 
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throughout the piece.  The emphasis in this music is the melody, instead of harmony3.  

This is one of the reasons for the fact that classical Turkish music is known as modal 

(instead of tonal).  However, following the notation of Castellano & Bharucha & 

Krumhansl (1984), it can be argued that this music is still tonal only with a different 

tonal hierarchy.  Counter argument on this claim is that in tonal music, the main problem 

turns out to be emphasizing the tonal hierarchies by harmony in musical pieces, which 

contain modulations (changing the tonal center of the piece) among different scales 

continuously.  On the other hand, classical Turkish music is known as modal, because 

modulation is not the central issue in this music.  Second feature to be mentioned in the 

context is the richness of the usage of time.  Usage of time; the usage of rhythmic 

features is an essential part of this music culture, just as all other music cultures.  

Throughout the evolution of classical Turkish music, many rhythmic patterns (known as 

usûl) have been introduced.  The variety of these patterns constitutes an essential part of 

classical Turkish music’s significance.  This part of classical Turkish music is beyond 

the scope of this study and hence it will not be discussed here further.  Detailed 

information on this issue can be found at Özkan (1984 pp. 557-688). 

A third characteristic feature is the usage of pitch, which has certain differences, 

compared to other music cultures such as Western and Arab music.  In its simplest 

terms, pitch intervals are smaller in terms of consecutive differences of frequencies, 

providing a basis for the tonal richness of classical Turkish music.  There is a huge 

variety in the usage of tonal structures (Tanrıkorur, 2003b pp. 139-165).  Although the 

basic idea of tonality has many common points with respect to Western music, the usage 

                                                 
3 Moreover, techniques such as arpeggio and elements such as chords are not used traditionally. The usage 
of arpeggio in kanun is very lately adopted from Western music and it is still being rejected in many 
musical forms by the performers. 
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of scales in classical Turkish music is more flexible in terms of using pitch intervals.  It 

also involves a number of significant sub-structures, which will be mentioned 

throughout this introduction. 

This study is concerned with these tonal structures, leaving usûls and other 

features untouched; and hence within this perspective tonal dimension of classical 

Turkish music will be examined here in detail. 

 

2.3. Makams 

In classical Turkish music, tonal structures correspond to makams.  Instead of 

two different modes (major & minor scales) of Western music, there are more than 30 

makams4 (in use today) in classical Turkish music5.  Makams define the usage of pitch 

in this music with their additional structural properties.  However, there is not a certain 

agreement on the ways in which these properties are defined.  There are a number of 

systems, which were followed (and are being followed) and accepted in the history of 

this music.  These systems are Urmevî - Meragî System, Râuf Yektâ Bey School, Arel – 

Ezgi School and Kantemiroğlu School (Akdoğu, 1996). 

 

 

 

                                                 
4 Makam (plural makams) is used in this study. Other commonly used term, mostly in Arab originated 
texts is maqam (plural maqâmat). 
 
5 Tanrıkorur (2003b) claims that the actual number is 587, however many of these are today known to be 
produced for different kinds of social reputation in 18th and 19th centuries, in the late Ottoman era. 
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Figure 2.1: Small intervals and their naming in classical Turkish music. In this example, small intervals 

between Çârgâh and Nevâ are shown.  However, there are also 9 small intervals between Nevâ and Acem; 

Hüseynî and Rast; Rast and Dûgah; Dûgah and Bûselik.  There are 4 small intervals between Acem and 

Hüseynî and Bûselik and Tiz Çârgâh.  Complete pitch names can be found at Appendix. 

 

 

Among all these systems, one can observe that the main differentiation was on 

determination of intervals and their different nomenclature.  However in present day, on 

determination of (small6) intervals and their naming there is a certain agreement (Figure 

2.1, Table 2.1).  On the other hand, there are different points of view in the definition of 

makams, especially between Arel – Ezgi School and Kantemiroğlu School. 

 

 

 

                                                 
6 According to Arel-Ezgi school, there are three types of intervals. A small interval corresponds to 1 
comma, a medium interval is either a tetra chord or a penta chord and a large interval corresponds to an 
octave (Yılmaz, 2001 pp. 37-39). 
 

 Comma 

Bakiyye 

S. Mücennep 

L. Mücennep 

Tanini 

Çârgâh Nevâ     1        2           3 4     5        6          7   8     9 
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Table 2.1: Small intervals in classical Turkish music. Another interval is residual duple 

(A) with a value of 12, 13 or 14 commas.   Yet another interval, which is rarely used, is 

missing bakiyye (E) with a value of 2 or 3. 

(Small) Intervals Symbols Flat Sharp Values 

Comma (koma) F 
  

1 comma 

Bakiyye B 
  

4 commas 

Small Mücennep7 S 
  

5 commas 

Large Mücennep K 
  

8 commas 

Tanini T   9 commas 

 

 

2.4. Makam in Arel - Ezgi School 

According to this school, there exist medium intervals or genres (a term, which is 

used for both tetra-chords and penta-chords (Ayari & McAdams, 2003)), which consist 

of additions of three of four small intervals8.  These medium intervals constitute the 

structure of makams: A simple makam is an addition of a tetra-chord to a penta-chord 

                                                 
7 Mücennep (mücenneb) is an Arabic word originated from cenb, which means to be side part. It was 
introduced to the field by a philosopher and musicologist Farabî. 
 
8 At this point it is worth mentioning that the term genre will be used for referring to these intervals from 
this point. A well known meaning attributed to genres is the musical style such as rock or pop, however it 
is not related to the meaning that is attributed in this study. 
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(or vice versa) corresponding to a scale having a primary karar9 note, a secondary karar 

note (the point of addition), a certain progression and a number of other features 

(Yılmaz, 2001 pp. 70-79; Özkan, 1984 pp. 93-94).  A list of these features and short 

explanations for them in Arel - Ezgi School is as follows: 

Primary karar is the first note of the scale.  It is mostly observed at the end of the 

refrain10 parts (Figure 2.2). 

Secondary karar is the point of addition of the two medium intervals.  This is the 

very important note of the makam and is stressed much throughout the piece.  

Introduction parts of makams usually end with secondary karar notes. 

Other important notes are as follows: Tiz karar is the note, which is one octave 

above the primary karar (tonic).  Asma karar is specific to a makam.  It denotes a note, 

which is stressed in parallel with the secondary karar.  Yeden (leading note) is the note 

one tone (or 5 commas) below the primary karar.  It has different effects on makam 

according to its distance to the primary karar. 

Progression is one of the key features of a makam as well in classical Turkish 

music.  There are different makams that have the same scales and same karar notes.  

However, they are differentiated according to their progressions.  For instance Rast and 

Yegâh both have the same scale (Rast-Dügâh-Segâh-Çârgâh-Nevâ-Hüseynî-Eviç-

Gerdâniye), however Rast is an ascending and Yegâh is a descending makam in Arel-

Ezgi notation. 

                                                 
9 Karar is the Turkish word for stability. Hence the primary karar is the primary stability note (tonic), etc. 
 
10 Turkish word for this is teslim, which is an exact translation of delivery or submission. 
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Figure 2.2: Introduction and refraining parts of Hicâz song Görmedim Ömrümün Âsûde Geçen Demini by 

Kadri Şençalar. Hicâz is an ascending-descending makam in terms of progression and hence the piece 

starts with the secondary karar (denoted by Roman numeral I).  The introduction ends with again 

secondary karar.  Refraining part ends with primary karar, independent of the type of the progression 

(numeral II).  Ascending-descending progressions do not have certain beginning phrases; they can also 

start with the primary karar.  Here, the composer denotes primary karar by stressing it as the very first note 

in the piece.  These very first notes take place in classical Turkish music usually to initialize the 

performance (by a drum). 

 

Arel - Ezgi School classifies progression into three sub-groups: Ascending, 

descending, ascending-descending.  The classification is as follows: In ascending 

makams the progression starts with the lower tetra-chord or penta-chord, most probably 

around the primary karar, with a tendency to tiz karar.  In descending makams the 

progression starts around the tiz karar and moves towards the secondary karar.  And 
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finally in ascending-descending makams the progression starts around the secondary 

karar and tends to move towards the primary karar. 

There are two more types of makams.  Transposed makams are the transpositions 

of simple makams and compound makams are makams, in which there are compounds 

of genres in any unsystematic way (with respect to Arel – Ezgi).  At this point, it is 

worth mentioning that this systematization fails to explain many simple makams 

(according to Urmevî - Meragî System and Kantemiroğlu School) in its conjecture and 

classifies them as compound makams, just because they are not additions of certain 

genres. 

 

Table 2.2: Genres in Arel - Ezgi School and their values (ID’s are introduced for 

simplicity in this study). 

Tetra-chords ID Values Penta-chords ID Values 

çârgâh tetra-chord I T-T-B çârgâh penta-chord 1 T-T-B-T 

bûselik tetra-chord II T-B-T bûselik penta-chord 2 T-B-T-T 

kürdî tetra-chord III B-T-T kürdî penta-chord 3 B-T-T-T 

râst tetra-chord IV T-K-S râst penta-chord 4 T-K-S-T 

uşşâk tetra-chord V K-S-T hüseynî penta-chord 5 K-S-T-T 

hicâz tetra-chord VI S-A-S hicâz penta-chord 6 S-A-S-T 
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The genres summarized by this school in the construction of principle makams 

and these makams are given in the tables11 2.2 and 2.3. 

 

Table 2.3: Simple makams, represented as additions of genres. 

Makams Additions 

Çârgâh 1+I 

Bûselik 2+VI 

Kürdî III+2 

Râst 4+IV 

Uşşâk V+2 

Hüseynî 5+V 

Nevâ V+4 

Hicâz VI+4 

Hümâyun VI+2 

Uzzâl 6+V 

Zengüle (Zirgüle) 6+VI 

Karcığar V+6 

Sûznâk 4+VI 

 

2.5. Makam in Kantemiroğlu School 

 The important difference between this school and Arel-Ezgi school is mostly 

related to their different definitions on progression.  According to Kantemiroğlu12, 

makams are unique structures that can only be explained by their own progressions.  All 

                                                 
11 The notation of Ayari & McAdams, 2003 will be followed throughout the study: Genres begin with 
lowercase; makams begin with uppercase. 
 
12 Kantemiroğlu is the name used by Turks for Prince Dimitrie Cantemir, a governor of Boğdan province 
and a musicologist (Judetz, 1996 pp. 7-11). 



 17

other properties of them (primary and secondary karar notes, yeden, etc.) are derived 

from these progressions. 

 One of the main differences between Kantemiroğlu and Arel – Ezgi schools is 

demonstrated in this example: Kantemiroğlu describes makams without referencing to 

genres.  He defines a makam only by its unique progression.  This definition of makam 

also finds strong support in the present day (Karadeniz, 1983).  The attributed meanings 

to progression by these two schools are also different.  In Arel – Ezgi School, 

progression is a feature, which is independent of the context; whereas in Kantemiroğlu 

School, it is the makam itself.  Kantemiroğlu’s example to Muhayyer is as follows: 

 

(Eng.) “From its own note (muhayyer) it moves up to tiz-hüseynî and down to aşîrân and returns 

to dügâh; ending up with a karar.  The makam is even a beloved and noble one.  Because even if 

a progression begins from dügâh and an arrival on nevâ takes place and a karar occurs on aşîrân 

from there, it would only correspond to Nevâ.  However, Muhayyer has two special chapters; one 

consisting of the progression mentioned, which started from hüseynî and a second one in which it 

continues the progression through all the high-pitched notes coming to hüseynî, stating it exactly 

and most usually from nevâ it moves down to çârgâh suddenly and fondling sabâ a little it moves 

to karar note dügâh and finishes the progression affirming itself.” 

 (Ottoman Tur.) “Kendi perdesinden tiz-hüseynîye dek çıkar ve aşîrâna değin iner ve gene avdet 

edüp dügâhda karar-ı istirahat kılar.  Makam-ı merkum gerçi ulu ve aziz makamdır.  Zira, dügâh 

perdesinden hareket-i agâze şürû olunsa bile bu nevâya gelinse ve andan avdet olunup aşîrân 

perdesinde karar kılınsa, safi Nevâ makamı icra olunur.  Ve lakin Muhayyer makamının iki fasl-ı 

mahsusu vardır, biri budur ki, hareket-i agâzesini daima hüseynî perdesinde şüru eyler.  İkincisi 

şudur ki, tiz perdeleri ile tamam-ı hareket eyledikten sonra hüseynî perdesine gelüp ve tamam 

hüseynî perdesini gösterdikten sonra nevâ perdesini ekseri uçup, birdenbire çârgâh perdesine 
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düşer ve biraz sabâ perdesini okşayup dügâh kararına gider, ve anda bittamam kenduyi icra-i 

beyan eder.”  (Akdoğu, 1996) 

  

 All features defining the makam; primary karar, secondary karar, yeden, asma 

karar and tiz karar are included in a single description; which Kantemiroğlu calls the 

progression. 

 Progression phenomenon is a rather fuzzy concept, which will be one of the 

subtopics to be discussed in later chapters.  As a last remark on it, it must be stated that, 

in the present day, a different and a simpler definition of progression also exists in the 

literature.  A number of musicologists and performers (for instance T. Aydoğdu; a kanun 

player in Turkey Institution of Radio and Television) simply define progression only 

with the very beginning and ending phrases of musical pieces.  This simpler version of 

Arel – Ezgi School’s progression claims that a makam is descending only if it begins 

with the tiz karar and tends to move towards the primary karar.  Similarly, it is 

ascending only if it begins around the primary karar and tends to move towards the 

primary karar again.  A similar rule applies to ascending-descending makams, with a 

difference that they begin around the secondary karar.  This point of view again has 

problems in it.  Specifically, the issue seems clear when the makam is descending: 

available data (musical pieces in literature) are in parallel with it.  Pieces begin with (or 

rarely, around) the tiz karar when their makam is said to be descending.  However, the 

difference between ascending and ascending-descending makams is not so clear.  Even 

observing such pieces will point out this ambiguity, it can be tracked from the Turkish 

music theory books and writings.  In the case of Kürdî for instance, references are in a 

sort of debate on whether this makam is ascending or ascending-descending.  Uşşak and 
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Hicaz makams are again fuzzy in terms of their progressions (Karadeniz, 1983; Yılmaz, 

2001). 

As a conclusion to this discussion on makams, it can be suggested that there are 

two main points of views in the field: Arel – Ezgi and Kantemiroğlu schools.  Arel – 

Ezgi School can be taken as a systematization attempt to classical Turkish music, in the 

light of the raw explanations corresponding to makams.  It is accepted and preferred 

today mostly for educational purposes.  However, as mentioned before, it has still 

problems such as the existence of genres.  Today, a number of musicologists claim that 

genres do not exist in definitions of makams and they only exist for classification 

purposes.  Kantemiroğlu School, on the other hand, makes a classification only on the 

primary karar notes and the progression. 

Although one can find other issues differentiating these schools, these two points 

of view are in agreement on many aspects.  For instance, according to both schools, a 

makam is a structure with a well-defined progression of a number of sequential notes 

having primary and secondary karar notes even though Kantemiroğlu School does not 

have an explicit remark on secondary karar notes.  To sum up, makam has a number of 

definitions in different schools, having similar as well as different ideas on it.  Hence, a 

task of understanding makams should investigate these similarities, in order to track for 

the differences. 
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CHAPTER 3 

 

RELATED WORK 

 

 

Since there is no significant study on the structural properties or features of 

classical Turkish music13, this chapter concentrates on the studies related to this study on 

two different aspects.  One is on makam identification (single study of Ayari & 

McAdams, 2003) and the other is on tonality induction. 

 

3.1. Perception of Modal Structures in Arab Music 

A closely related article to this study is the article of Ayari & McAdams (2003).  

In this article, the identification and segmentation performances of two groups of 

listeners (all musicians or musicologists) on a single taksim (in Râst) were compared.  

Taksim is a well-structured form in classical Turkish music, Persian and Arab music.  

The steps of a traditional taksim performance are well defined in the context.  It is most 

similar to improvisation of Western music families at a certain level.  Nevertheless it is 

argued that it has some structural characteristics independent of context, most 

                                                 
13 A study on pitch clustering for musical pieces in classical Turkish music must be counted at this point 
as an introduction attempt to makam identification by Akkoç (2002).  
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importantly its relatedness to makams (modes of classical Turkish music): Each taksim 

is governed by a certain makam (or makams with transitions).  One of these groups in 

Ayari & McAdams’ study consisted of Arab listeners and the other group consisted of 

European listeners.  The task was to make segmentations according to the makam being 

played while listening to the performance. 

Results were as expected.  Although there were no criteria given for 

segmentation, it was observed that both groups tended to construct certain strategies.  

European listeners based their segmentations on the primary and secondary karar notes 

and one octave higher notes of primary karars.  Segmentations according to the 

development of the phases and the modal changes were also observed.  The strategies of 

Arab listeners on the other hand, were more complex.  They tended to segment the piece 

into modal cells, most of the time corresponding to presentations of certain genres.  And 

from this point they tried to see the whole picture by combining these cells in a 

hierarchical way.  On the other hand, European listeners had difficulty in detecting 

modal changes. Only some of them detected changes in modal structures; yet they could 

not identify them. 

  

3.2. Tonality Induction 

 Makam identification task consists of determining the structural features of the 

makam of a musical piece from its sequence of notes.  Tonality induction, a task that is 

targeted to harmonic Western music, is very similar to makam identification in this 

sense.  The central aim of tonality induction is to identify the tonal structure (in its 

simplest terms, tonic) of pitch sequences.  Tonality induction algorithms include 
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transitions (modulations) in these sequences except the very early algorithms in the field.  

Differences between makam identification and tonality induction do exist, mostly related 

to the differences between two music cultures (namely, classical Turkish music and 

Western music).  Some of these differences are the absence of harmony in the former 

one and the absence of progression as a distinctive feature in the latter one.  However, 

their purposes are the same: finding the tonal centers of the musical pieces.  Hence, it 

can be suggested that tonality induction studies serve as a background for the task of 

makam identification. 

 To begin with, there is a certain psychological background of perception of 

tonality.  Pitches and chords can be perceived as appropriate or inappropriate when 

followed by a musical segment according to whether they are within the same key with 

that segment or not (Krumhansl & Shepard, 1979; Krumhansl, 1990 chap. 4).  

Moreover, melodic sequences that follow tonal patterns are remembered better 

(Dowling, 1978; Cuddy & Cohen & Mewhort, 1981; Deutsch, 1980).  When describing 

the algorithms in the field, one can see that this psychological background is put into 

them externally.  In other words, a considerable number of algorithms work on the pitch 

sequences having the information on what a key is and most usually what the 

characteristics of keys are.  For instance they use experimental data in order to calculate 

prior probabilities or musicological knowledge in order to construct their network 

structures. 

 One of the earliest tonality induction algorithm is the general-to-specific 

concept-learning algorithm of Longuet-Higgins and Steedman (1971).  This algorithm 

scans a musical piece left to right and for each pitch it eliminates all keys whose scales 

do not contain that pitch.  Surely pitches outside the scale cause the algorithm to fail.  
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However this is not the actual problem of the algorithm since it is possible to improve 

this algorithm so that it decides according to the best probable key instead of the 100% 

correct key by applying a method such as version spaces (Mitchell, 1997 pp. 29-36).  A 

number of solutions to this problem are also offered by the authors themselves.  For 

instance if the algorithm fails at the first scan, then it looks at the first pitch of the 

sequence and decides according to this pitch.  The main problem about this algorithm on 

the other hand is that it returns a single answer for a single piece and can not account for 

modulations.  Vos and Van Geenen (1996) developed this idea further to handle this 

problem.  Their algorithm runs on a sliding window of forty consecutive pitches in a 

single piece and for each pitch it increases the probability of the keys that contain it in 

their scales.  It can be considered as a naive Bayesian classifier with equal prior 

probabilities for each key (Mitchell, 1997 pp. 154-199).  A more complete tonality 

induction algorithm based on Bayesian classification method is the algorithm of 

Temperley (2004).  This algorithm finds the most probable tonal centers of segments (of 

the piece) by finding the most probable structure from the surface of the piece (pitches 

of the piece): 

 

p(surface | structure) p(structure)
p(structure | surface) =

p(surface)
 (Eq. 1) 

 

In order to find the most probable structure, one must know the probability of the 

surface given the structure for every possible structure and prior probabilities for each 

structure.  However, once these probabilities are known, this method finds the best 

fitting structures to surfaces. 
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For each instance in a musical piece the structure corresponds to a key, defining 

the tonal center.  For a pitch sequence, Temperley defines prior structure probabilities as 

the modulations in these keys such that the most probable situation is staying at the same 

key.  For the next step he determines the surface probabilities given the structures.  For 

this purpose he refers to key profiles.  Key profiles are likelihood values of twelve pitch 

classes derived from the chromatic scale of Western music for each twenty-four keys 

(twelve major and twelve minor). 

Even though this Bayesian method gives most successful results in terms of 

correctness, there is an issue, which is not given an explanation on.  Temperley admits 

that the algorithm works with exponential complexity and it is not feasible in its current 

form.  He also asserts that this problem can be solved by using some kind of dynamic 

programming techniques, leaving the discussion at this point. 

Krumhansl-Schmuckler key finding algorithm (Krumhansl, 1990 chap. 4) is yet 

another approach to tonality induction.  The algorithm correlates twelve-valued key 

profile vectors to the twelve-valued input vector, which is linearly dependent to the total 

durations of pitch classes.  Finally, the algorithm decides on the key, which has the 

highest correlation value.  The correlation value is defined by the following formula: 

 

12 2 2

( )( )

( ( ) ( ) )

x x y y
r

x x y y

− −
=

− −

∑

∑ ∑
 (Eq. 2) 

 

where r  is the correlation value, x  is the input vector, x is the average of the input 

vector, y  is the key profile and y  is the average key profile.  In contrast to the approach 
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of Longuet-Higgins and Steedman this algorithm returns a key at each point in the 

musical piece by defining x  incrementally.  İzmirli & Bilgen (1996) is another 

algorithm, which is similar to Krumhansl-Schmuckler key finding algorithm in this 

sense.  In this algorithm authors propose a method to evaluate the tonal context at any 

point in the piece.  This algorithm also works on the key-pitch relations.  In other words, 

the effect of each pitch on the tonal context is well known. 

An enhancement to Krumhansl-Schmuckler key finding algorithm is the 

algorithm of Toiviainen and Krumhansl (2003).  This algorithm proposes a recursive 

algorithm (on time), passing the pitches sequentially as arguments in a piece.  Forgetting 

and updating mechanisms, which are defined on a pitch memory vector, are defined 

internally.  This memory vector is updated by each presentation of a pitch.  This idea 

that is proposed in this algorithm is similar to the one that will be presented in this study 

in the sense that both include an implicit memory on pitch sequences. 

Another key finding algorithm is the connectionist framework named MUSACT 

of Bharucha (1987).  Bharucha proposes a three-layer neural network, in which the first 

layer represents pitches, second layer represents chords and the third layer represents 

keys.  These layers have connections in between activating each other so that a pitch is 

only connected to the chords it is a member of.  Algorithm scans the pitch sequence left 

to right and for each pitch activate the associated node.  This node activates the nodes of 

the second layer and those nodes activate the third layer.  With this spreading activation, 

the algorithm becomes capable of deciding on a key for each instance of this scan.  

Learning in this algorithm is a competitive one.  In other words, connection weights 

between the layers are adjusted so that activation of one node causes a deactivation of 

other nodes in a layer. 
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  The last algorithm to be mentioned in this section is the ART (adaptive 

resonance theory) model of Griffith (1994).  ART has a number of applications in 

different levels of music perception (Griffith & Todd, 1994).  In his article, Griffith 

proposes an ART2 (Carpenter & Grossberg, 1987) network for the purpose of inducing 

the tonal centers of musical pieces14. 

 All approaches, except the ART2 approach of Griffith, implement the sense of 

key explicitly.  In other words, the system knows what a key is by having the 

information on key profiles or prior probabilities of keys.  They decide on a key 

probabilistically.  Because of this reason, they can be classified as statistical approaches.  

This study is similar to Griffith’s approach in this sense.  It proposes no additional 

assumptions such as the key profiles or information about the chords.  Such information 

are stored (implicitly) in the connections of the networks and developed during training.  

Another similarity between this study and the ART2 approach of Griffith is that both 

algorithms propose a way of learning to predict the tonality (in case of this study, 

makams).  It is worth mentioning that MUSACT is a connectionist model, however its 

connections (not the connection weights) and hence the activation schema is pre-

defined.  Later this approach is preceded by four different unsupervised SOM 

mechanisms (Tillmann et al., 2000).  These mechanisms were hierarchical and similar to 

the original MUSACT network structure in this sense.  They are presented to 12 

dimensional input stimuli corresponding to representations of pitches that are present in 

different chords and expected to classify these different input stimuli.  However, this 

cannot be counted as a feature of MUSACT, rather it is a tautology in the sense that the 

                                                 
14 Yet another similar ART2 based network is SONNET-1 by Page (1994). However this particular study 
will not be mentioned here because of its similarity to Griffith (1994). 
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authors try to verify MUSACT’s musicological findings by an externally designed 

SOM. 

 There is a similarity between the studies that are presented in this section and the 

algorithm that will be presented in this study.  This similarity is the input representation 

of the algorithms.  All algorithms in this section take the pitches of the musical pieces as 

input and build their evaluation criteria on this input.  The situation is the same in this 

study, as will be described in the fifth chapter.  Another approach is to take the 

consecutive pitch intervals as input and try to identify interval patterns instead of pitch 

or pitch-class patterns. 

 To summarize, these studies do not constitute a complete list of studies in 

tonality induction (see Temperley, 2001 chap. 7; Krumhansl, 2004), however provide 

insights of considerable importance for this study.  Some of these are MUSACT’s 

sequential presentation of pitches onto a finite set of nodes and Toiviainen and 

Krumhansl’s memory for auditory continuity.  The actual implementations of these 

insights are described in the fifth chapter, where the model is presented in detail. 
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CHAPTER 4 

 

BACKGROUND ON BOLTZMANN MACHINES 

 

 

4.1. On Artificial Neural Networks 

An artificial neural network (ANN) is a set of artificial neurons or nodes 

connected to each other with artificial connections.  These nodes have computational 

information processing abilities and transfer information through their connections 

within the network.  Information processing mechanisms, network structures, and form 

and number of connections are the most important characteristics of different network 

designs. 

Artificial neural networks are inspired by the nervous system, more specifically 

by the neurons and the synapses between these neurons.  However, this similarity is not 

a complete one.  There are a number of important differences.  First of all, there are a 

huge number of neurons in the human brain, whereas artificial neural networks are most 

of the time problem dependent and their sizes are small.  Since ANN’s are problem 

dependent (they are designed in order to solve specific problem or for specific problem 

domains) architectures of these network’s nodes are also problem dependent.  On the 
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other hand, knowledge on the information processing mechanisms in the human brain is 

incomplete.  Rather than the nervous system as a whole, models are developed for 

specific portions of this system such as various mechanisms in memory (Amari, 1977; 

Norman & O’Reilly, 2003), visual object recognition (see Carpenter & Grossberg (1992) 

for a list of studies) or auditory perception (Grossberg & Govindarajan & Wyse & 

Cohen, 2004; Hendrik & Blankertz & Obermayer, 2000). 

Most common ANN’s in the literature are multi-layer neural networks, self-

organizing maps, hidden Markov models (HMM), numerous types of associative 

networks and adaptive resonance theory (ART). 

 

4.2. Associative Memory 

Associative memory is a representation, which stands for computational 

structures that have the capability of storing a finite number of patterns, in a binary form 

(Gorodnichy, 2001; Kohonen, 1978 chap. 1; Austin, 1996 chap. F1.4).  The 

representation consists of two matrices.  The first matrix is one-dimensional and stores 

class vectors (to be trained and retrieved).  The second matrix is two-dimensional and 

stores values that represent relations among the elements of the first matrix.  Storing (the 

word training is also used) phase of the patterns vary among different structures of the 

associative memory and specific algorithms used.  For instance, these training patterns 

can be stored directly with a mathematical formula or with a stochastic algorithm.  

Retrieval (recalling15, testing) phase, on the other hand, consists of initializing the 

memory with the input pattern and starting the categorization task.  Memory is 

                                                 
15 In (associative memory) literature the word recall is commonly used for this phase. However, retrieval 
will be used in this study for this phase in order to avoid ambiguity. 
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initialized by setting the units of the memory to values that represent input data.  

Categorization task involves an algorithm that updates the memory content (the values 

of nodes) ending in the pattern that resembles to the input most closely.  Each memory 

configuration (list of node values) corresponds to a state in the system.  Each state has an 

energy value defined on nodes and connections.  Central aim of the training phase in 

associative memories is to construct stable states for stored patterns, such that no single 

change in a node value should be able to decrease the system energy.   These stable 

states are called attractors.  However, because of the state representations of associative 

memories are implicit (depend on the values of nodes and connections) false attractors 

occur in the system, along with the stored patterns.  In order to design a computationally 

robust associative memory, two precautions are necessary in this sense: Designing the 

training phase in a way that eliminates such false attractors and avoiding getting stuck in 

them in retrieval phases.  One such method for this purpose is simulated annealing, 

which will be described in later sections. 

There are various algorithms designed on the principles of associative memory.  

Two of them will be described in this chapter because of their relatedness to the study.  

These are Hopfield networks, and Boltzmann machines16. 

 

4.3. Hopfield Networks 

Hopfield networks are known to be the most commonly used auto associative 

memory systems.  Auto association term implies that input patterns and output patterns 

are same.  Furthermore in Hopfield networks, nodes of the network correspond to both 

                                                 
16 The focus in this study is on the neural networks; however associative memory phenomenon is not 
limited with neural network implementations (Gorodnichy, 2001; Neto & Fontanari, 1998). 
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input and output patterns.  In Hopfield network case, nodes of the network correspond to 

the elements of the binary strings of the patterns. 

The standard Hopfield network (Hopfield, 1982) is a fully connected network 

with McCulloch-Pitts neurons having two states: 

 

sgn( )i ij j i
j

wξ ξ θ= −∑   (Eq. 3) (assuming 0iθ =  for simplicity). 

 

where iξ  is the state of the ith neuron with values {-1,1}, ijw  is the connection weight 

between the ith and the jth neurons and θ  is the loop-back connection (Figure 4.1). 

Connection weights are symmetric: 

ij jiw w=     (Eq. 4) 

 

 

 

 

 

 

Figure 4.1: Typical Hopfield network.  Hopfield networks are fully connected.  In this particular figure, 

the network has five nodes, corresponding to 5 dimensional input and again 5 dimensional output.  Since it 

is fully connected, there are 5*(5-4)/2 = 10 number of connections. 
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The pattern retrieval algorithm is as follows: 

 

 Initialize the network nodes to the input pattern 

 Until the network reaches to a stable state 

  Apply (Eq. 3) 

 Return the state of the network ξ  

 

Network updating cycle can be designed in a number of ways.  In synchronous 

update all nodes are updated in a single network state in parallel.  In asynchronous 

update, on the other hand, either nodes are selected at random to be updated or they are 

updated in parallel with some probability. 

In a standard Hopfield network, storing patterns is straightforward.  It consists of 

determining the weight matrix of the network with respect to the set of class patterns and 

a learning rule.  This learning rule in Hopfield networks is a form of Hebbian learning: 

 

1
ij i jw

N
µ µ

µ

ξ ξ= ∑    (Eq. 5) 

 

where µ corresponds to each pattern and N is the learning rate, which is problem 

specific. 

A last word on Hopfield networks should be on the convergence of retrieval task 

and hence the energy function.  Hopfield defines an energy function on the network as 

follows: 
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1
2 ij i j

i j

E w ξ ξ= − ∑∑   (Eq. 6) 

 

which decreases monotonically in each update operation, which can be verified through 

the following equations: 

 

'
ij i j i j

j i j i

H w ξ ξ ξ ξ
≠ ≠

∆ = − +∑ ∑   (Eq. 7) 

2 i ij j
j i

H wξ ξ
≠

∆ = ∑    (Eq. 8) 

2 2i ij j ii
j

H w wξ ξ∆ = −∑   (Eq. 9) 

 

in which the first term in the equation is negative due to (Eq. 3) and second term is again 

negative (or zero) due to the structure of the network.  Since the energy of the network is 

monotonically decreasing and E is bounded, the network is guaranteed to reach a stable 

state, which will be one of the stored patterns17.  iiw  values represent the self-

connections of nodes.  In almost all implementations these values are set to zero for 

simplicity. 

 

                                                 
17 Only limitation on this process is using an asynchronous updating mechanism. 
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4.4. Boltzmann Machines 

A Boltzmann machine can be considered to be a Hopfield network with disjoint 

input, output and hidden nodes (units) (Hinton & Sejnowski, 1986; Duda & Hart & 

Stork, 2001 chap. 7; MacKay, 2003 chap. 43).  In contrast with Hopfield networks, input 

patterns and output patterns are two disjoint sets of nodes.  Moreover, there is a third set 

of nodes other than these two sets, which is known to be the hidden layer (Figure 4.2). 

 

 

 

 

 

 

 

 

Figure 4.2: A Boltzmann machine with 3 input and 2 output nodes. 

 

Pattern retrieval18 is similar to the auto-associative memories, however hetero-

associative (Davey & Adams, 2002) strategy brings a problem in the Boltzmann 

machines: Defining the pattern-storing algorithm according to the training set.  The 

problem is that the system cannot be guaranteed to have the stored patterns only.  This 

means that there may appear local minimum points on the energy landscape (that will be 

                                                 
18 Again it is worth mentioning that another word test is used instead of retrieval in some related texts. 
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defined in the following sections), which correspond to false attractors in a Boltzmann 

machine.  The problem is solved with an incremental updating algorithm; however it 

again leaves local minimum points in the system. 

The idea behind Boltzmann machines is to train the network by updating nodes 

(according to the energy definition of Hopfield networks) with input and output nodes 

clamped and update the weights according to the differences in the weights with respect 

to another instance of the machine, which is trained with only input nodes are clamped.  

Clamping a node, in Boltzmann machines, corresponds to assigning a final value to that 

node and making it static.  After clamping a node the Boltzmann machine is in a 

situation that it must find the minimum energy configuration with that node having its 

final value.  Network updating on the other hand corresponds to changing the values of 

the nodes, which will be described with an algorithm at the end of this section. 

The Boltzmann machine training algorithm (Deterministic Boltzmann Learning) 

is as follows (Duda & Hart & Stork, 2001 chap. 7): 

 

Until the network reaches a stable state (a pre-defined convergence criterion 
met) 

 Randomize nodes 

 Update network with input and output nodes clamped 

 Store node values to [sisj]α
i
α
o
clamped 

 Randomize nodes 

 Update network with only input nodes clamped 

 Store node values to [sisj]α
i
clamped 

 Update each weight value 
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The weight updating rule is as follows: 

 

 / ([ ] [ ] )i o iij ij i j i jclamped clamped
w w T s s s s

α α α
η= + −  

 

where η  is the learning rate, T is the temperature, si is the ith node, [sisj] is si*sj and the 

notations αi and αo correspond to clamped input layer and clamped output layer. 

Network updating in this scope is as follows: 

 

 Until a pre-defined convergence criterion met 

  Select a node at random 

  If energy of the node is greater than zero do 

   si=(-1)* si 

 

4.4.1. Simulated Annealing 

During the network update procedure of the Boltzmann machines, a stochastic 

mechanism, which is known as simulated annealing, is used (Duda & Hart & Stork, 

2001 chap. 7; MacKay, 2003 chap. 43).  According to this mechanism, the nodes of the 

network are updated with a certain probability in order to increase the energy instead of 

decreasing it.  This probability is controlled by a cooling schedule, in which the network 

update procedure becomes more stable in each step.  The metaphor with the temperature 

phenomenon rises from this point.  At a high temperature, system tends to behave in a 

more randomized manner.  There are various cooling schedules in the literature; 

however their aim is the same: saving the system from getting stuck at local minimum 

points, which are false attractors (Figure 4.3). 



 37

The important point is that the local minima mentioned here are the false 

attractors among the class patterns.  These false attractors exist in the Boltzmann 

machines and not in the Hopfield networks.  The difference from Hopfield networks is 

that the training phase in Boltzmann machines is stochastic, similar to the retrieval phase 

(Hinton & Sejnowski, 1986). 

 

 

Figure 4.3: Demonstration of the energy space of a Boltzmann machine. As in all associative networks, 

nodes and connections of the Boltzmann machine represents an energy landscape and each state of the 

network corresponds to a point on the surface of this landscape. 

 

4.5. Biological Plausibility of Associative Memories 

Associative memories have update rules based totally on local information.  That 

is, an update operation of a single node depends solely on its connection weights and the 

values of the nodes, which are connected to it (the node to be updated) through these 

connections.  It is also thought to be similar in a biological system (Kohonen, 1978 chap. 
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1).  The opposite situation is the existence of a global controller, which will not be able 

to save the system against dangers such as catastrophic interference19 (Davey & Adams, 

2002). 

A second similarity of associative memories with biological systems is on the 

structure of Boltzmann machines.  Boltzmann machines have a very fast learning phase.  

It stores a pattern in a few number of epochs, whereas the same pattern can be stored in 

hundreds or thousands of epochs in other supervised learning networks such as multi-

layer neural networks. 

Boltzmann machines have also an additional biological claim.  The claim is the 

identity of the training and retrieval phases.  In both phases, applied algorithm is the 

same (annealing the system).  The only difference is clamping or not clamping the 

output layer.  Identity of the algorithm makes more sense in terms of an analogy 

between these machines and nervous system, compared to models such as Hopfield 

networks20. 

There are also studies in neurophysiology related to the topic.  Amari (1977) and 

Little (1974) showed in different studies that biological neurons, which constitute 

networks, tend to converge to persistent states in the brain. 

On the other hand, there are problems considering such biological plausibility.  

For instance, it must be admitted that Hopfield networks have the problem of being 

monotonic.  For each set of classes there can be generated erroneous input data, with 

                                                 
19 Forgetting old patterns due to the high elasticity of the network. 
 
20 As a remark, Hopfield networks have similar retrieval schema to Boltzmann machines, however they do 
not have a training phase at all. Connection values are set directly. 
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which the network is guaranteed to get stuck at a local minimum21.  However, as 

mentioned in this chapter, an associative memory design, namely Boltzmann machines 

mostly eliminate this problem by applying simulated annealing. 

Another question about biological plausibility of associative memories is the 

spiking behavior of nodes.  In the standard designs of all associative memory networks, 

the nodes can either be set to –1 or 1 and whether this is the situation in the nervous 

system or not, is of suspect.  However, it should be noted that this over-simplification 

does not imply a limitation on the associative memory design.  In this study, a counter 

example to such an over-simplification will also be presented. 

 

 

                                                 
21 One of the improvements on Hopfield networks is the work of Segura (2001), in which the network 
behaves stochastic in the learning phase. 
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CHAPTER 5 

 

A MODIFIED BOLTZMANN MACHINE 

 

 

A modified Boltzmann machine design for makam identification is described in 

this chapter.  In the first section the cognitive plausibility of the network is discussed.  

Details of the design and the test results are given in the succeeding sections.  Full 

source code in C# and the data structure are available at http://thesis.kemaltaaskin.net. 

 

5.1. Requirements for an Analogy between a Makam Identification Model and the 

Act of Listening to Music 

Biological (and hence to a certain degree, cognitive) plausibility of associative 

networks is already discussed in the third chapter.  However, an associative network 

requires a number of additional similarities to the act of listening to music when the 

problem is classification and cognition of musical pieces.  These additional similarities 

in this particular study are implementing continuous behavior and implementing the 

sequential presentation of pitches. 
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5.1.1. Implementing Sequential and Continuous Presentation of Pitches 

This property is implemented with the help of a pre-network layer.  In this layer, 

the auditory input-to-fundamental pitch transformation (i.e. pitch extraction) is assumed 

to be performed and the actual input nodes to the network (corresponding to the sixty-

three most common pitches of classical Turkish music) are fired.  Sequential 

presentation is implemented with the continuous values of these nodes and the decay 

mechanism applied to them.  This layer works independent of the core Boltzmann 

machine.  Processes such as the transformation of auditory input are left beyond the 

scope of this study.  However, it is worth mentioning that such improvements and deep 

analysis of such topics are possible in this model by leaving the other layers and the core 

mechanism of the model untouched. 

Because of this property, this implementation can be seen as a network structure 

with a dynamic programming technique.  The complexity of the algorithm is 

independent of the piece length and hence the decision procedure can be threaded, i.e. it 

can run at parallel independent of the presented input data.  This means that at any point 

of the retrieval phase, network has a certain answer to the classification problem.  These 

properties are analogous to the music cognition of human, which makes dynamic 

programming techniques (and specifically this modified Boltzmann machine) 

cognitively plausible in this sense, comparing to the relevant statistical methods, which 

require calculations of probabilities on selected portions of input stimuli (or the entire 

stimuli). 
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5.2. Model Design 

5.2.1. Overview 

Model consists of a core Boltzmann machine and a pre-network input processing 

system (Figure 5.1).  In the pre-network input processing system, the nodes are 

sequentially set to the fundamental frequency values of the pitches and with certain 

algorithms provide values to the second layer continuous input (SLCI) and the 

progression node.  Modifying these algorithms is sufficient to improve this 

simplification of the real life situation (that a listener does not hear pure tones) and 

leaving the core Boltzmann machine untouched.  This is the main reason that this pre-

network input processing system is modeled as a separate layer. 

Separate from the pre-network system, there are two major modifications on the 

standard Boltzmann machine.  First of these modifications is on the connections.  Within 

the model, there are two unidirectional connections between each pair of nodes (instead 

of a single omnidirectional node).  Hence, the influences of two nodes on each other are 

not equal.  This also provides a basis for asymmetric connections, such that when one of 

these unidirectional connections is broken, the influence becomes one-way.  This is the 

case in the connections from the progression node to the output layer.  The question of 

mathematical equivalence of such a system to a standard Boltzmann machine is beyond 

the scope of this study. 

Second modification is on the working mechanisms of the nodes in SLCI.  In 

addition to the behavior of standard nodes of Hebbian learning, nodes of this layer have 

two mechanisms: decaying, self-clamping.  Details of these mechanisms will be 

described in following sections. 



 43

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Overview of the modified Boltzmann machine. The box with the dashed line is the core 

Boltzmann machine.  Progression node is also included in this box.  Directional lines imply one-way 

connections from each node of the source layer to each node of the destination layer.  Bidirectional lines 

imply similar connections with transitivity (connections in both directions).  Dashed lines imply different 

forms of special connections, which will be described separately. 

 

5.2.2. Pre-Network Input Mechanism 

This mechanism consists of pre-network input layer and first layer discrete input.  

Pre-network input consists of c number of nodes such that all nodes are set to –1 at the 

beginning of each musical piece.  With the presentation of each pitch in the piece, value 

of the cth node is set to the adjusted value of the pitch presented and values of nodes in 

the layer are shifted.  Value of the ith node is replaced by the value of the (i+1)th one 

OUTPUT LAYER 

STANDARD HIDDEN LAYER 

SECOND LAYER CONTINUOUS INPUT(SLCI) 

FIRST LAYER DISCRETE INPUT 

PRE-NETWORK INPUT LAYER 

Progression 
Node 
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(database design for these representations are also available at 

http://thesis.kemaltaskin.net). 

Adjusting mechanism is a function from frequency values of pitches to [0,1].  

The function used in this study is simple as shown in (Eq. 10).  Since the model involves 

a simple transformation from fundamental frequency values to pitches in this layer, this 

function shows no deficiency.  It has no cognitive claims for this moment; however a 

detailed analysis and improvement on this layer should require a more realistic 

implementation for this function also. 

 

2000
frequency

adjusted

value
value =   (Eq. 10) 

 

According to (Eq. 10), node values will be in [0,1] since the pitch with the 

maximum frequency in the pitch database is Tiz Hüseynî having a value of 1319,95. 

First layer discrete input has sixty-three nodes, corresponding to the most 

commonly used pitches in classical Turkish music (Table 5.1).  In parallel to the shifting 

mechanism of pre-network input layer the nodes of the first layer discrete input are 

updated as follows: The kth node of this layer, which corresponds to the pitch currently 

being played, is set to 1 and all other nodes are set to –1. 
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Table 5.1: Complete span of pitches that are used in the simulations. 63 pitches are used 

in the study beginning from Kaba Yegâh ending in Tiz Hüseynî. 

Pitch Freq. Pitch Freq. Pitch Freq. 

Kaba Yegâh 146,67 Geveşt 371,21 Acem 695,42 

Kaba Hûseyni Aşîran 184,99 Dik Geveşt 386,29 Dik Acem 706,06 

Kaba Râst 195,57 Râst 391,14 Eviç 732,77 

Kaba Zengüle 208,79 Nim Zirgüle 412,04 Mâhur 742,41 

Kaba Dügâh 220,00 Zirgüle 417,66 Dik Mâhur 772,58 

Kaba Kürdî 231,82 Dik Zirgüle 426,67 Gerdâniye 782,28 

Kaba Dik Kürdî 234,87 Dügah 440,00 Nim Şehnâz 824,30 

Kaba Segâh 244,26 Kürdî 463,64 Şehnâz 835,15 

Kaba Bûselik 247,48 Dik Kürdî 469,87 Dik Şehnâz 868,57 

Kaba Çârgâh 260,77 Segâh 488,52 Muhayyer 880,00 

Kaba Nim Hicâz 270,05 Bûselik 494,98 Sümbüle 927,28 

Kaba Hicâz 274,69 Dik Bûselik 505,23 Dik Sümbüle 939,74 

Kaba Dik Hicâz 278,44 Çârgâh 521,54 Tiz Segâh 977,04 

Yegâh 293,34 Nim Hicâz 540,10 Tiz Bûselik 989,92 

Kaba Nim Hisar 309,03 Hicâz 549,39 Tiz Dik Bûselik 1010,46 

Kaba Hisar 313,23 Dik Hicâz 556,88 Tiz Çârgâh 1043,08 

Kaba Dik Hisar 320,00 Nevâ 586,69 Tiz Nim Hicâz 1080,20 

Hûseyni Aşîran 329,99 Nim Hisar 618,06 Tiz Hicâz 1198,78 

Acem Aşîran 347,71 Hisar 626,46 Tiz Dik Hicâz 1113,76 

Dik Acem Aşîran 353,03 Dik Hisar 640,00 Tiz Nevâ 1173,38 

Irâk 366,38 Hûseynî 659,97 Tiz Hûseynî 1319,95 

 

In the pre-network input mechanism, there is no learning in the connections and 

the node values are set programmatically.  This layer only serves as a feeding 

mechanism for the SLCI, which can be seen as the actual input to the model.  Last 
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function of the pre-network input mechanism is the activation of the progression node, 

which will be described in the corresponding section. 

5.2.3. Second Layer Continuous Input 

SLCI has 63 nodes, equal to the first layer discrete input.  Each node of this layer 

is connected to a single node in the first layer discrete input.  The relation is one-to-one 

and onto.  In other words, each node of this layer is connected to exactly one node of the 

first layer discrete input.  Whenever a node of this discrete layer is set to 1 the node in 

SLCI, which is connected to it is also set to 1.  Even though the nodes of this layer join 

the energy function of the core Boltzmann machine, their values are determined from the 

pre-network input mechanism.   

An important property of these nodes is that they can also have continuous 

values.  This is because of the decaying mechanism.  In parallel to the node updating 

algorithm defined within the deterministic Boltzmann machine algorithm, values of 

these nodes tend to decay.  Decaying occurs with a logarithmic function: 

 

1

( ) 1
( )

2
i

value t
value t +

−
=   (Eq. 11) 

 

where t  represents the instance of time. 

The function is logarithmic and this fact causes quick forgetting and decrease in 

the performance of the network.  However, quick forgetting is necessary for robustness.  

Robustness implies decision procedures, which guarantee producing same result (either 

correct or wrong) with the same input data.  In computational terms, stimuli of the 



 47

musical pieces are erroneous.  Pitches that are out of the current makam are rarely 

(compared to the pitches of the scale) used in musical pieces.  Musical pieces rarely 

contain pitches only from a single scale.  There can be pitches in a musical piece that do 

not belong to the scale of that piece’s makam.  Hence, a tonality induction system should 

have a mechanism to reduce the effect of such pitches in order to be robust in this sense.  

In other words, a tonality induction system should avoid including these pitches in its 

evaluation mechanism.  This is the reason for using a logarithmic function.  However, 

this brings another problem. 

In a standard Boltzmann machine, in both training and retrieval22 phases input 

nodes are clamped: they are not subject to updating.  However, they are not clamped in 

this model initially.  The reason is to have a point of analogy with the act of listening to 

music.  Before listening to a musical piece, listener is usually not presented to the 

pitches, their probabilities and sequence.  This instead occurs during the listening 

process.  The situation is represented by a mechanism called self-clamping.  The idea of 

self-clamping is as follows: If a pitch is being played too often, corresponding node 

clamps itself to 1 until the end of the piece.  Being too often is represented by the 

following algorithm: 

 

 Clamp the node if corresponding pitch is played more than k  times. 

where 

 
|| || *(|| || 45)

3
15* || ||
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total

notes notes
k

notes

−
= +   (Eq. 12) 

                                                 
22 Learning (instead of training) and unlearning (instead of testing) words are also commonly used. 
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and it is a pre-defined algorithm inside the network23.  Clamping input nodes is a step in 

training and retrieval phases in a standard Boltzmann machine applied in order to make 

robust classifications.  However in noisy situations such as input vectors having missing 

values, Boltzmann machine also finds the values of the nodes (nodes that are 

corresponding to the missing input vectors), since the connections are bi-directional.  

Starting the phases with all input nodes unclamped and applying self-clamping along 

with the sequential input is again almost robust because of this behavior of Boltzmann 

machines.  To summarize, logarithmic forgetting and self-clamping gives the model the 

ability of ignoring out-of-scale pitches without sacrificing the decaying mechanism.  

However, at this point it must be mentioned it is also possible to increase the 

performance of self-clamping, a similar mechanism such as self-unclamping can be 

introduced when pitches are no longer played. 

5.2.4. Progression Node 

Progression layer is designed to be a single node.  It is partially out of the core 

Boltzmann machine.  Its value is determined with an externally defined algorithm 

whereas it joins the energy function of the core Boltzmann machine: there are directional 

connections from progression node to each node in the output layer. 

Value of the progression node is determined by the following algorithm: 

 

 

                                                 
23 Any form of mechanism can be used here. Among them, self-organizing maps and multi-layer networks 
can be counted. However, the cognitive strength of the overall model would not increase or decrease 
among any choice for this mechanism. In any case, there would be a need of a pre-defined algorithm. The 
choice of the current algorithm is arbitrary. 



 49

 Set direction and coefficient to zero 

 Starting from the current pitch, trace back to n pitches.  Do for each pitch 

  If the frequency value of the pitch is less than its successor 

   Decrement direction 

  Else 

   Increment direction 

 If direction is greater than zero 

  Set coefficient to 1 

 Else 

  Set coefficient to –1 

 Update progression node 

 

where updating rule is 

 

*(1 0,04* )value coefficient direction= −  (Eq. 13) 

 

and value is the value of the progression node.  Multiplier coefficient 0.04 is a design 

choice and depends on the number of total nodes in the core Boltzmann machine.  This 

value is chosen after a number of arbitrary tests.  At this point the only remark for these 

tests is that greater coefficients make this value divergent or reduces its effect to the 

nodes that it is connected. 

Progression node is partially in the core Boltzmann machine, considering this 

algorithm.  The main reason behind this design issue is the fact that progression is 

defined locally on the pitch sequence.  The conclusion is that given a sequence of a 

number of pitches there exists a decision mechanism whether the sequence is ascending 

or descending.  The phenomenon is known as pitch contour and it is shown that even 

human infants are sensitive to contour (Trehub & Trainor, 1993).  Hence, defining the 
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value of the progression node externally does not decrement the model’s plausibility.  It 

should be noted that better representations for progression or better algorithms for 

determining its value than (Eq. 13) may also be found in this sense.  The only criterion 

for such representations (or algorithms) is to give a tendency to the value of this node to 

1, if the pitch sequence has an ascending progression and –1, otherwise.  As a corollary, 

it will be dominated by neither 1 nor –1 and hence the network energy will be 

independent of it when the pitch sequence has an ascending-descending character. 

5.2.5. Hidden Layers and Output Layer 

In a standard Boltzmann machine, there is a single hidden layer consisting of 

nodes connected to each other as well as to the input and output layers.  The design of 

this modified Boltzmann machine is similar to the standard one in this sense. 

Output layer consists of nodes, each representing a single makam.  In this layer, a 

form of competition is implemented such that clamping this layer in the training phase 

corresponds to clamping the node of the makam of the musical piece to 1 and others to –

1.  In general, the clamped values correspond to the stored classes, defined in the scope 

of the particular problem.  Number of nodes in this layer is implemented to be 

parametric, however set to 5 in the current study, since the input musical pieces are from 

5 different makams: Mâhur, Hicâz, Kürdîli Hicâzkâr, Hüzzâm and Nihâvend. 

5.2.6. Overall Training and Retrieval Algorithm 

Modified Boltzmann machine algorithm involves a number of modifications on 

the deterministic Boltzmann machine algorithm, described in the third chapter.  

However, the characteristics of the algorithm remain unchanged. 

Remark on the deterministic Boltzmann machine algorithm: 
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 Until the network reaches a stable state (a pre-defined convergence criterion 
met) 

 Randomize nodes 

 Update network with input and output nodes clamped 

 Store node values to [sisj]α
i
α
o
clamped 

 Randomize nodes 

 Update network with only input nodes clamped 

 Store node values to [sisj]α
i
clamped 

 Update each weight value 

 

This algorithm can be modified to have twin networks, in which one of them is 

used for training, and the other is for retrieval: 

 

Until the network reaches a stable state (a pre-defined convergence criterion 
met) 

 Randomize training and retrieval networks 

 Update training network with input and output nodes clamped 

 Update retrieval network with only input nodes clamped 

Update each weight value according to the differences between nodes of two 
networks. 

 

The next modification on the algorithm is related to the sequential presentation 

of pitches in the input layer.  Deterministic Boltzmann machine must be modified such 

that it must be run in another loop, which represents the pitch sequence.  Illustration of 

this modification is as follows: 

 

 



 52

Randomize training and retrieval networks 

Initialize training and retrieval networks 

Until the pitch sequence ends, do for each pitch 

 Feed network with the pitch 

Until a number of epochs, which depends on the length of the 
pitch linearly, do 

   Update training network with output nodes clamped 

   Update retrieval network 

   Apply decaying and self-clamping processes 

Update each weight value according to the differences between nodes of two 
networks. 

 

For a single training stimulus (a sequence of pitches, corresponding to a musical 

piece with a certain makam) the algorithm starts by randomizing and initializing the 

networks.  Initializing networks corresponds to clamping the output layer24 for training 

network.  Feeding network with pitches corresponds to update the pre-input network 

mechanism with pitches and updating the second layer continuous input. 

Updating networks by updating the connections between the nodes and applying 

decaying and self-clamping procedures in the second layer continuous input are the steps 

performed for each pitch. 

After the whole sequence of pitches is presented, weights are updated with a 

similar rule of the deterministic Boltzmann machine and training is finished for a single 

piece. 

 

                                                 
24 And clamping the genre subset, if being tested. 
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5.3. Test Results 

Testing25 procedure applied in this study is as follows: The available data are 

separated into two disjunctive groups. One of these groups is used for training and the 

other is used for retrieval. Available data involve particular representations of musical 

pieces from five makams (Table 5.2). Makam selection is arbitrary. However, training 

and retrieval pieces are selected such that they include the least number of transitions to 

other makams. 

Pieces in the training group are fed to the network for training, each for once 

(Table 5.3).  Following this phase, pieces in the retrieval group are given to the network 

for testing, each for a single test.  Test results are given in tables 5.4 and 5.5. 

 

Table 5.2: Distribution of pieces among makams. 

Makam 

Prim. 

Karar 

Sec. 

Karar Yeden Genres Progression 

# of training 

pieces 

# of test 

pieces 

Mâhur Râst Nevâ Geveşt 1-I Desc. 2 5 

Hicâz Dügâh Nevâ Râst VI-4 Asc.-Desc. 2 9 

Hüzzâm Segâh Nevâ Kürdî 4-VI Asc.-Desc. 2 7 

Kürdîli 

Hicâzkâr 

Râst Çârgâh Acem 

Aşîran 

III-2 Desc. 2 5 

Nihâvend Râst Nevâ Irâk 2-III Asc.-Desc. 2 9 

 

 

 

 

                                                 
25 Testing in this sentence implies the verification of the model, not the specific testing algorithm applied. 
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Table 5.3: Training pieces and their makams. Composers of the pieces are given in 

parenthesis. 

Piece Name Makam 

Mâhur Peşrev (Rauf Yektâ Bey) Mâhur 

Sabah Olsun Ben Şu Yerden Gideyim (İ. Ağa) Mâhur 

Hicâz Mandıra (Anonymous) Hicâz 

Aşkı Seninle Tattı Hicranla Yandı Gönül (F. Tokay) Hicâz 

Aşkınla Yanan Kalbimi Sahralara Attın (T. Er) Hüzzâm 

Kadere Bak (A. Şensoy) Hüzzâm 

Girdim Yârin Bahçesine Gül Dibinde Gülizar (O. N. Akın) Kürdîli Hicâzkâr 

Derbeder Bir Aşıkım Yurdum Evim Virânedir (Z. Duygulu) Kürdîli Hicâzkâr 

Nihâvend Yürük Semâi (Tanburi Ali Efendi) Nihâvend 

Nihâvend Peşrev (H. S. Arel) Nihâvend 

 

Table 5.4: Correct test result counts by makams.  

Makam Correct Test Results 

Mâhur 5 out of 5 

Hicâz 6 out of 9 

Hüzzâm 7 out of 7 

Kürdîli Hicâzkâr 4 out of 5 

Nihâvend 7 out of 9 
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Table 5.5: Test results by pieces. 

Piece Name Makam Result 

Mahur Şarkı (N. Kökdeş) Mâhur Mâhur 

Hicaz Peşrevi (G. G. Han) Hicâz Hicâz 

Hicaz Saz Semaisi (F. Karamahmudoğlu) Hicâz Hicâz 

Şarkımı Senin İçin Yazdığımı Bilseydin Mâhur Mâhur 

Hicaz Saz Semaisi (M. Erev) Hicâz Mâhur 

Gönül Verdim Bir Civane (Selim, III) Hüzzâm Hüzzâm 

Manolyam (Z. Müren) Kürdîli Hicâzkâr Kürdîli Hicâzkâr 

Ayrılık Ne Demek (S. Nevruz) Hüzzâm Hüzzâm 

Hicaz Şarkı (Şevki Bey) Hicâz Hicâz 

Kürdîli Hicazkar Peşrevi (T. Cemil Bey) Kürdîli Hicâzkâr Kürdîli Hicâzkâr 

Adalardan Bir Yar Gelir Bizlere (V. A. Arsoy) Hicâz Hicâz 

Sazlar Çalınır Çamlıcanın Bahçelerinde (V. A. Ersoy) Hicâz Mâhur 

Muftunun Oldum (A. Mithat Efendi) Kürdîli Hicâzkâr Kürdîli Hicâzkâr 

Yüce Dağdan Esen Rüzgar (S. Pınar) Mâhur Mâhur 

Bağlandı Gönül Zülfüne Bir Yosma Civanın (S. Ahmed Efendi) Hüzzâm Hüzzâm 

Zülfün Görenlerin Hep Bahtı Siyah Olurmuş Nihâvend Nihâvend 

Nihavend Şarkı (Rıfat Bey) Nihâvend Nihâvend 

Nihavend Peşrev (R. Fersan) Nihâvend Nihâvend 

Çamlarda Şafak Rengi Gibi (V. A. Ersoy) Nihâvend Hicâz 
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Table 5.5: Test results by pieces (continued) 

Piece Name Makam Result 

Güzel Bir Göz Beni Attı Bu Derin Sevdaya (O. N. Akın) Nihâvend Nihâvend 

Dün Gece Saz Meclisine (M. Sabahattin) Nihâvend Mâhur 

Nihavend Saz Semaisi (G. G. Han) Nihâvend Nihâvend 

Hüzzam Peşrevi (T. Osman Bey) Hüzzâm Hüzzâm 

Sen Bilmiyordun (T. Er) Nihâvend Nihâvend 

Şu Göğsüm Yırtılıp Baksan (C. Çağla) Hüzzâm Hüzzâm 

Gökyüzünde Yalnız Gezen Yıldızlar (T. Alpay) Nihâvend Nihâvend 

Mah Yüzüne Aşıkanım (İsmail Dede Ef.) Hicâz Hicâz 

Karanfil Türküsü (Anonymous) Hicâz Hicâz 

Niğde Ninnisi (Anonymous) Hüzzâm Hüzzâm 

Kuşak Türküsü (Anonymous) Hüzzâm Hüzzâm 

Bağdadın Hamamları (Anonymous) Mâhur Mâhur 

Yarim Elimden Gitti (Anonymous) Hicâz Mâhur 

Koparan Sinemi Ağyar Elidir (B. Şen) Kürdîli Hicâzkâr Nihâvend 

Bir Kendi Gibi Zalimi Sevmiş Sanıyormuş (L. Atlı) Kürdîli Hicâzkâr Kürdîli Hicâzkâr 

Ne Doğan Güne Hükmüm Geçer (M. N. Selçuk) Mâhur Mâhur 
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5.4. A Corollary on Makam Neighborhood 

Boltzmann machines decide on the principle of system energy, i.e. they reduce 

their energy to the possible minimum value in the presence of the input stimuli by a 

certain energy reduction algorithm. That is how they make a classification. In the 

minimum energy state the output layer represents the correct classification and any 

change made on the values of this layer will increase the system energy. 

As a corollary it can be stated that, with an input stimulus fed to network and the 

output layer is clamped with the correct classification, the system will reach the 

minimum energy state after the energy reduction algorithm. 

In the current model makams are represented in the output layer with 1 in their 

corresponding node and -1 in the other nodes. For example, Hicâz corresponds to [-1,1,-

1,-1,-1] and Hüzzâm corresponds to [-1,-1,1,-1,-1]. Given such a configuration and the 

model, a neighborhood among the classes can be established by a set of input stimuli. 

The idea is to present the input stimuli (musical pieces) with the modified Boltzmann 

machine algorithm (as described in section 5.2) and then to calculate the system energy 

for all possible26 output layer configuration by clamping the output layer accordingly. 

The complete algorithm for this procedure with a single piece is as follows: 

 

 

 

 
                                                 
26 Possible configurations that represent classes. 



 58

 For a single piece do the following for each makam: 

Randomize retrieval network 

Initialize retrieval network by clamping the current (neighbor) makam to 
1 

Until the pitch sequence ends, do for each pitch 

 Feed network with the pitch 

Until a number of epochs, which depends on the length of the 
pitch linearly, do 

   Update retrieval network with output nodes clamped 

   Update retrieval network 

   Apply decaying and self-clamping processes 

Store the energy of the network as the neighborhood value of the 
neighbor makam 

 Sort the values and return the list 

 

Then the neighborhood relation will correspond to the average neighborhood of 

the energy values.  However, it is obvious that such a corollary will require a more 

complete data set, from greater number of makams; which is not the case in this study. 

Theoretically, this algorithm sorts the neighbor makams according to the 

similarities of makams such as the number of common pitches in the scales and the 

identity of the progression. In practice, one of the most common realizations of makam 

neighborhood is transition. A transition is a move from one makam to another within a 

piece. Hence a possible method for verifying the results should be to extract the 

transitions in the training pieces and compare them with the results drawn from the 

model. Another idea should be to ask experts which makams are closer to each other (in 

terms of neighborhood). However, verification of the makam neighborhood claim is 

beyond the scope of this study and is left as a topic for future studies. 
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CHAPTER 6 

 

DISCUSSION 

 

 

This study is on the design and implementation of a Boltzmann machine for the 

particular task of makam identification.  For this purpose the standard Boltzmann 

machine, which is described in the fourth chapter is modified.  The modifications on this 

model are described in the fifth chapter.  Preliminary test results are also given in the 

same chapter.  It is obtained from these results that 29 of 35 test pieces from five 

different makams are classified correctly; corresponding to a %83 success rate. 

Deficiencies of the model on the other hand, are as follows: 

The results are far above the chance level (considering %20 for 5 makams), 

however they can be taken as successful except the pieces in Hicâz.  If the pieces in 

Hicâz are removed, the correctness rate equals to %88 representing 23 correct 

classifications from 26 pieces.  The only explanation that will be given here for this 

(Hicâz) failure will be a number of facts related with this makam.  First of all, Hicâz is a 
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makam27, which has no specific progression characteristic.  Pieces in Hicâz can be 

ascending, descending or ascending-descending.  A second fact is that this makam uses 

Eviç in ascending portions (of pieces) and Acem in descending portions, which increases 

the system energy by reducing the number of clamped nodes in the second layer 

continuous input.  The last fact to be mentioned is that in Hicâz pieces, Dik Hisar is used 

almost with the same frequency of Hüseynî, which is the regular pitch of the scale of this 

makam.  This fact also increases the system energy due to the same reason. 

These problems can definitely be taken as reasonable facts for such a failure; 

however it must be noted that in real life such a problem related to Hicâz does not exist.  

In contrast, Hicâz is known as one of the most popular makams today and it can be 

suggested that identification of this makam in real life is even easier because of a 

number of reasons, including the difficulties of the model related to this makam.  For 

instance, frequent usage of Eviç along with Acem is a difficulty for this model; on the 

other hand it makes identification easier in real life.  Another distinctive property of 

Hicâz is the 13-comma interval between Dik Kürdî and Nim Hicâz.  Hence it can be 

concluded that this modified Boltzmann machine cannot account for this problem and 

there may be a need of improvements that will unify with these characteristics of Hicâz.  

For instance, in order to represent an unstable character in the progression layer, this 

layer can be re-designed to have two nodes or a single node by a pure continuous valued 

algorithm instead of the previously proposed algorithm (Eq. 13). 

Another set of problems arises from the implementation details on the structure 

of the model.  In the modified Boltzmann machine, as well as the standard one there are 

                                                 
27 Formally Hicâz is not a name of a single makam. It denotes a makam family involving (generic) Hicâz, 
Hicâz Hûmâyûn, Uzzâl, and Zirgûleli Hicaz. However, in the study generic Hicâz is referred by the word 
Hicâz. 
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a number of random variables.  These variables are the count of nodes in the hidden 

layer (H) and the connection weight update coefficient (α).  There are certain strategies 

for specifying these variables (Duda & Hart & Stork, 2001 chap. 7).  The problem is, the 

optimum values for these variables change over the number of input and output nodes 

and the number of connections.  Hence, these variables must be adjusted if for example 

to classify 10 makams instead of 5.  A solution to this problem is to design the 

Boltzmann machine with a greater and fixed number of nodes in its output layer and 

adjust its parameters accordingly. 

 

6.1. Future Work 

 One of the key outcomes of this study is that it brings a considerable number of 

problems besides its success on the test data.  It is shown that identifying makams with a 

modified Boltzmann machine is possible by applying a new mechanism called self-

clamping on sequential input data.  This sequential input data is a simplified abstraction 

of actual auditory input, in which the fundamental frequency values of pitches are used.  

Moreover, because of such a simplification, pre-network input mechanism becomes a 

straightforward mapping device from the sequential input data to the second layer 

continuous input.  However, it is possible to implement a spectral analysis mechanism in 

this layer and improve the model in this sense without modifying the core Boltzmann 

machine. 

 A second improvement on the model should be on representing the intervals 

between pitches.  Such a representation does not exist in the current model because 

nodes of the second layer continuous input contain no geometric relation among 
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themselves.  In other words, no information about the fundamental frequencies of 

pitches exists in this layer.  This is a serious problem for the model in terms of the 

strength of its analogy with the act of listening to music.  Within this model, which has 

no representation for pitch intervals, it is not possible to classify transposed makams28 

correctly.  The problem is that, the classification is done according to the pitches alone 

(in addition to the progression node), which are represented topologically.  Because of 

this problem a simulation on the existence of genres cannot be done on this 

representation.  Moreover, a mechanism that can represent pitch intervals may increase 

the performance of the algorithm on Hicâz because of its characteristic 13-comma 

interval between Dik Kürdî and Nim Hicâz.  A possible solution to this problem within 

the makam identification context is to design a Boltzmann machine with a different 

input representation such that the input layer to the core Boltzmann machine contains the 

information of scale patterns, a limited number of reference pitches and the information 

of progression.  Such a representation will also give better insight on the existence of 

genres.  As mentioned before, it is not possible to have a clear answer to this problem 

with this modified Boltzmann machine.  However, representing interval patterns on the 

input layer will also represent genres within the same layer and require no additional 

representations other than the regular hidden layers of the standard Boltzmann machine.  

For instance, in terms of observing the existence of genres, (nodes of) the hidden layer 

will become suitable for tracking their activations in order to search for specific 

activations for specific interval patterns. 

                                                 
28 In classical Turkish music, makams are usually transposed (pitches of the scale are shifted, leaving the 
pitch intervals constant) most of the time in order to unify with the singer’s vocal range. The ambiguity 
rises because of the Arel-Ezgi notation. Makams, having the same pitch intervals in their scales have 
different progressions. In contrast with the Arel-Ezgi school, there is no transposed makams in classical 
Turkish music. When makams are transposed, they still remain the same makam actually. For instance in 
Karadeniz (1983) there is no reference to such makams. He refers only to simple and compound makams. 



 63

 Considering the 12 basic genres of Arel-Ezgi school, further studies can be 

proposed.  A future work on their existence can be to design an experiment on their 

perception.  An experiment, in which these genres are presented to the participants along 

with some randomly generated interval patterns, should give further insight on the issue.  

The question of whether these 12 basic genres have perceptual advantages or not, will be 

revealed with such an experiment. 

 Another topic for future work is to generalize the model for polyphonic music in 

order to apply it to Western music and to compare it with the previous tonality induction 

algorithms.  In its current form, the model can take only one input stimulus at a time.  

However, it is also possible to modify it further for polyphonic music by duplicating the 

pre-network input mechanism and its connections to second layer continuous input such 

that each pre-network input mechanism represents one melody.  Such a duplication of 

the pre-network input mechanism will require an assumption that the Boltzmann 

machine is able to discriminate the melodies into different channels before taking them 

as input.  One related research is on harmonizing musical pieces by Boltzmann machines 

(Bellgard & Tsang, 1994), which proves that the analogy with the energy function of 

these machines can work with polyphonic music. 

 Progression determination algorithm can also be improved as a future work.  For 

this purpose, experiments on perception of contour can be reviewed or new experiments 

can be designed.  The main purpose of such an investigation will be to identify the 

relation between progression and contour. 

 Finally, an important topic for future work is to track the system energy in order 

to identify makams and track modulations throughout the pieces.  For this purpose, the 
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output layer of the modified Boltzmann machine can be monitored for each element of 

the pitch sequence. 

  

6.2. Conclusion 

Main purpose of this study was to present a makam identification scheme by 

proposing Boltzmann machines as the computational model and classical Turkish music 

as the target music culture.  Despite the problems it has, the idea of a modified 

Boltzmann machine for makam identification is promising.  Proposals are given for the 

deficiencies of the model in the previous section as future work.  Yet the idea is 

promising since it provides a mechanism, which is cognitively plausible to a certain 

degree.  In other words, it proposes an analogy with the act of listening to music.  

Besides the biological plausibility of associate memories, model provides mechanisms 

for accepting sequential input, (computational) identity of training and retrieval phases, 

independence of piece lengths in terms of computational complexity, quick learning 

(with a plausible and faithful number of pieces compared to networks such as the one in 

Todd’s (1989) approach or multi-layer networks in general) and plasticity and evaluating 

makam neighborhoods.  Analysis on issues such as tracking contour and evaluation of 

self-clamping are, on the other hand, are left untouched.  The algorithms that are 

provided for these issues are shown to be sufficient for this study in particular; however 

they are subjects to future work. 

This study could also be counted as an application of associative memories on 

tonality induction, despite the fact that tonality induction has a number of differences 

from makam identification. 
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To summarize, this study was an attempt to identify makams from fundamental 

pitch frequencies and was the first such study with Boltzmann machines and certain 

perceptual limitations applied.  The important outcome is that it is observed that 

Boltzmann machines can be modified to be suitable for such a task and makam 

identification can be a well-defined task in machine learning.  I believe that further 

investigations and studies on this particular topic will deepen the knowledge on makams 

and hence classical Turkish music. 
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