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ABSTRACT

THE ELECTRONIC BAND STRUCTURE OF III (In, Al, Ga)-V (N, As, Sb)

COMPOUNDS AND TERNARY ALLOYS

Mohammad, Rezek Mahmoud Salim

Ph.D., Department of Physics

Supervisor: Prof. Dr. Şenay Katırcıoğlu

July 2005, 155 pages.

In this work, the electronic band structure of III (In, Al,Ga) - V (N,As, Sb)

compounds and their ternary alloys have been investigated by density functional

theory (DFT) within generalized gradient approximation (GGA) and empirical

tight binding (ETB) calculations, respectively.

The present DFT-GGA calculations have shown direct band gap structures

in zinc-blende phase for InN , InAs, InSb, GaN , and GaAs. However, indirect

band gap structures have been obtained for cubic AlN , AlSb and AlAs com-

pounds; here, the conduction band minima of both AlN and AlAs are located at

X symmetry point, while that of AlSb is at a position lying along Γ – X direction.

An important part of this work consists of ETB calculations which have been

parameterized for sp3d2 basis and nearest neighbor interactions to study the band

gap bowing of III(In, Al)- V(N,As, Sb) ternary alloys. This ETB model provides

a satisfactory electronic properties of alloys within reasonable calculation time

compared to the calculations of DFT. Since the present ETB energy parameters
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reproduce successfully the band structures of the compounds at Γ and X symme-

try points, they are considered reliable for the band gap bowing calculations of

the ternary alloys.

In the present work, the band gap engineering of InNxAs1−x, InNxSb1−x,

InAsxSb1−x, Al1−xInxN , Al1−xInxSb and Al1−xInxAs alloys has been studied

for total range of constituents (0 < x < 1). The downward band gap bowing

seems the largest in InNxAs1−x alloys among the alloys considered in this work.

A metallic character of InNxAs1−x, InNxSb1−x and InAsxSb1−x has been ob-

tained in the present calculations for certain concentration range of constituents

(N,As) as predicted in the literature. Even for a small amount of contents (x),

a decrease of the electronic effective mass around Γ symmetry point appears for

InNxAs1−x, InNxSb1−x and InAsxSb1−x alloys manifesting itself by an increase

of the band curvature. The calculated cross over from indirect to direct band gap

of ternary Al alloys has been found to be consistent with the measurements.

As a last summary, the determinations of

the band gaps of alloys as a function of contents, the concentration range of con-

stituents leading to metallic character of the alloys, the change of the electronic

effective mass around the Brillioun zone center (Γ) as a function of alloy contents,

the cross over from indirect to direct band gap of the alloys which are direct on

one end, indirect on the other end,

are main achievements in this work, indispensable for the development of mate-

rials leading to new modern circuit components.

Keywords: Electronic Band Structure, InN , InAs, InSb, AlN , AlSb, AlAs,

GaN , GaAs, InNxAs1−x, InNxSb1−x, InAsxSb1−x, Al1−xInxN , Al1−xInxSb,

Al1−xInxAs, Density Functional Theory (DFT), Empirical Tight Binding (ETB),

Band Gap Bowing.
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ÖZ

III (In, Al, Ga) - V (N, AS, Sb) BİLEŞİK VE ÜÇLÜ ALAŞIMLARININ

ELEKTRONİK BAND YAPILARI

Mohammad, Rezek Mahmoud Salim

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Şenay Katırcıoğlu

Temmuz 2005, 155 sayfa.

Bu çalışmada, III (In, Al,Ga)-V (N, As, Sb) bileşiklerinin band yapıları,

genelleştirilmiş dereceli yaklaşım (GGA) içinde yoğunluk fonksiyonu kuramı (DFT)

ile hesaplanmış, ve bu bileşiklerin üçlü alaşımlarının band yapılarının elde edilmesi

de dış güdümlü sıkı bağ kuramı (ETB) hesaplarıyla sağlanmıştır.

Sonuçlandırılan DFT-GGA hesaplamalarına göre, band yapı olarak InN , InAs,

InSb, GaN ve GaAs doğrudan band geçişli, AlN , AlAs ve AlSb bileşikleri ise

dolaylı geçişlidir. Yukarıda belirtilen son grup bileşiklerde, iletim bandının mini-

mumu AlSb için Γ–X yönünde bir konumda bulunurken, AlN ve AlAs bileşiklerinde

ise X simetri noktasındadır.

Bu çalışmanın önemli bir bölümü olan ETB hesaplamaları, III (In,Al)-V

(N,As, Sb) üçlü alaşımlarının band aralık bükülmesini incelemek için sp3d2 bazlı

ve en yakın komşu etkileşmeli olarak parametrize edilmiştir. Bu ETB modeli,

alaşımların kabul edilebilir elektrik özelliklerini DFT hesaplamalarına göre çok

daha kısa hesaplama zamanı içinde verir. Sonuç olarak, ETB enerji parametreleri
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Γ ve X simetri noktalarında bileşiklerin band yapılarını başarıyla ürettiklerinden,

üçlü alaşımların band aralık bükülme hesaplamalarında güvenle kullanılmıştır.

Bu çalışmada InNxAs1−x, InNxSb1−x, InAsxSb1−x, Al1−xInxN , Al1−xInxSb

ve Al1−xInxAs alaşımlarının band aralık değişimi, toplam katkı oranı (0 < x < 1)

işlevinde incelenmiştir. Bu çalışmadaki alaşımlar arasında en fazla aşağı doğru

band aralık bükülmesinin InNxAs1−x alaşımına ait olduğu bulunmuştur.

Literatürde öngörülen InNxAs1−x, InNxSb1−x ve InAsxSb1−x’in metallik karak-

terleri, belirli katkı (N, As) aralığı içinde ETB hesaplamalarıyla elde edilmiştir.

Öte yandan InNxAs1−x, InNxSb1−x ve InAsxSb1−x alaşımlarının Γ simetri nok-

tası çevresinde band bükülmesinin artması ile kendini gösteren elektron etkin

kütle azalması saptanmıştır. Al1−xInxN , Al1−xInxSb ve Al1−xInxAs alaşımları

için hesaplanan dolaylı band aralığından doğrudan band aralığına geçiş noktasının

deneysel sonuçlarla uyumlu olduğu bulunmuştur.

Bu çalışmanın son bir toparlaması olarak,

katkı oranı işlevinde alaşımların band aralığının bulunması, alaşımların

metalik özellik gösterdiği katkı aralığının saptanması, Brillioun zone merkezi (Γ)

çevresinde katkı oranı işlevinde elektron etkin kütle değişiminin saptanması, bir

ucunda dolaylı band geçişli, diğer ucunda doğrudan band geçişli üçlü alaşımlarda

katkı oranı değişiminin dolaylı / doğrudan band geçişine karşılık gelen değerinin

bulunması,

yeni devre bileşenlerine yol açabilecek malzemelerin belirlenmesini sağlayan başlıca

sonuçlardır.

Anahtar Kelimeler: Elektronik Band Yapı, InN , InAs, InSb, AlN , AlSb, AlAs,

GaN , GaAs, InNxAs1−x, InNxSb1−x, InAsxSb1−x, Al1−xInxN , Al1−xInxSb,

Al1−xInxAs, Yoğunluk Fonksiyonu Kuramı (DFT), Dış Güdümlü Sıkı Bağ Ku-

ramı (ETB), Band Aralığı Bükülmesi.
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CHAPTER 1

INTRODUCTION

Nowadays semiconductors can be grown with varying composition, a few atomic

layers at a time. As a result the number of possible new electronic devices and

materials for more application and the quality of the existing devices is increasing

much more.

The III nitride (InN , AlN and GaN) semiconductors are potentially useful

at high frequency, microwave and short-wave-length electroluminescent devices.

InN , AlN and GaN are used for the fabrication of high speed heterojunction

transistors [1] and low cost solar cells with high efficiency [2]. They are also

increasingly used for visible light emitting diodes (LEDs) [3, 4] and laser diodes

(LDs) [5–8] for the amber, green, blue and UV regions of the spectrum and also

as the basis for high power, high temperature electronic devices [9, 10].

The III-Arsenide compounds (InAs, AlAs and GaAs) are the most used semi-

conductors in device technology. InAs has a high electron mobility, it may prove
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an important material for use in high speed electronics [11, 12]. The second com-

pound of As, AlAs, has been widely used as a barrier material in modulation-

doped heterostructures and quantum well of a lattice matched heterojunctions

[13, 14].

The III-Antimonide compounds (InSb and AlSb) characterized by their low

energy gaps compared with the other III-V compounds. InSb has the lowest

energy gap of any of the binary III-V materials, which makes it an interesting

narrow gap semiconductors from the point of view of optical spectroscopy and

optoelectronic applications [15]. This property often allows the fabrication of

infrared imaging systems, free space communications, and gas phase detection

systems [16, 17]. The bulk AlSb has been considered as a potential materials for

infrared detectors and optical holographic memories [18, 19]. Epitaxial AlSb has

been used as a component of resonant tunneling diodes [20].

Because of the large difference between the electronic band gap (the energy

difference between the bottom of the conduction band and the top of the valence

band), alloying semiconductors from III-V group are of particular importance for

optoelectronic devices; optoelectronic devices can be designed that cover a wide

spectral range.

The ternary alloys of In, InNxAs1−x, InN1−xSbx and InAs1−xSbx, together

with the alloys of Ga, GaAsxN1−x and GaSbxN1−x, are the potential materials

for room temperature infrared detectors, gas sensors and lasers operating in near

2



infrared (0.9-1.3 µm), mid - infrared (2-5 µm) and far infrared ( 8- 12 µm) re-

gions [21, 22, 24–31]. It has been reported that the Al1−xInxN alloys can have

applications as a cladding layer or an active layer for LEDs and LDs emitting an

extremely wide spectral region covering from deep ultraviolet (UV) to infrared

[32], and as a potential material for thermoelectric power devices [33]. The AlAs

based ternary Al1−xInxAs alloys have been reported as an important buffer layer

materials between InAs and substrate in the technology of optoelectric devices

such as lasers and single electron transistors [34, 35]. Recently, Al1−xInxAs al-

loys have been grown also for ultra fast switching device applications [36]. On the

other hand the epitaxial growth of AlInAs on GaAs has been reported as a can-

didate material for triple function solar cells in a very efficiency [37]. The ternary

AlInSb alloys have been used as a buffer layer for multiple quantum lasers [38].

Recently, it has been reported that, AlInSb alloys can be also potential materials

to fabricate high efficiency low cost photovoltaic cells and photodetectors [39].

The experimental data about the III-V compounds and their ternary and

quaternary alloys are limited by a few data which are available only at high

symmetry points (Γ, X) in the Brillouin zone. This situation will put, as always,

new demands on theorists to predict the properties of exotic semiconductors

before the materials even fabricated. The theoretical methods which can be used

for this purpose can be classified according to the input data:
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1. First principles calculations (ab-initio calculations): In these kind of calcu-

lations only the atomic number and the number of the atoms are used as an

input for the calculations. Full potential linearized augmented plane wave

(FP-LAPW) method based on density functional theory (DFT) within local

density approximation (LDA) [40, 41] or generalized gradient approxima-

tion (GGA) [40–42], and Hatree-Fock [43] method are extremely used first

principles calculational methods in the literature.

2. Empirical methods: This kind of calculational methods need interaction

energy parameters which are externally obtained from either experimental

measurements or the first principles calculational results. The
−→
k .−→p [44,

45], empirical pseudopotential [46] and empirical tight binding [47, 48] are

widely used empirical methods in the literature.

In the present work, FP-LAPW method within GG approximation is carried

on InN , InAs, InSb, AlN , AlSb, AlAs, GaN , and GaAs compounds to find out

the electronic band structure of them. Because of the time consuming problem

in the first principles calculations of alloys, ETB method is mainly used in the

present work to study the band bowing of InNxAs1−x, InNxSb1−x, InAsxSb1−x,

Al1−xInxN , Al1−xInxSb and Al1−xInxAs alloys. The present FP-LAPW cal-

culational results of the compounds are used in the derivation of ETB energy

parameters of the alloys.
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This thesis is organized as follows: In chapter II, the calculational methods

used in this work are explained and formulated, in chapter III, V and VI, the

electronic band structure of InN , InAs, InSb and AlN , AlSb, AlAs and GaN ,

GaAs has been studied, respectively. The band gap bowing of the InNxAs1−x,

InNxSb1−x, InAsxSb1−x and ternary alloys of AlN , AlAs and AlSb with In has

been studied in chapters IV and V, respectively, Finally, conclusion of the whole

present work is outlined in chapter VII.
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CHAPTER 2

THEORY OF CALCULATION

2.1 Introduction

As a result of recent successes in describing and predicting properties of mate-

rials, atomistic simulations in general and electronic structure calculations in par-

ticular have become increasingly important in the fields of physics and chemistry

over the past decade, especially with the advent of present-day, high-performance

computers. Assuming a knowledge of the types of atoms comprising any given

material, a computational approach enables us to answer two basic questions:

• What is the atomic structure of the material?

• What are its electronic properties?

Besides this, it would be nice to get the answer to another question:

• How can we modify the bonding between atoms or the material chemical

content to create novel materials with predetermined properties?
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A number of methods to derive answers to these questions have been developed.

These methods for computing the structure and properties of materials can con-

ditionally be divided into two classes: those that do not use any empirically

or experimentally derived quantities, and those that do. The former are often

called ab-initio, or first principles methods like density functional theory (DFT),

while the latter are called empirical or semi-empirical like empirical tight binding

(ETB). The ab-initio methods are particularly useful in predicting the properties

of new materials and for predicting trends across a wide range of materials.

The calculation of the energy levels of electrons in solids, that is the determi-

nation of the energy bands, is a central theoretical problem of solid state physics.

Knowledge of these energies and of electron wave function is required, in princi-

ple, for any calculation of more directly observable properties including electrical

and thermal conductivities, optical dielectric function, vibrational spectra and so

on.

In practice, phenomenological models are often employed which apparently

do not require such specific information, however, it means a task for fundamen-

tal theory to account for the values obtained for the parameters of such a model.

The parameters of the considered models are the functions of the crystal potential

which can, in principle, be determined from the results of a sufficiently complete

energy band calculation.
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In the present work, the sufficiently complete energy band structure of com-

pounds, such as InN , InAs, InSb, AlN , AlSb, AlAs, GaN and GaAs, has been

obtained by the combination of first principle and empirical calculations based

on density functional and tight binding theories, respectively. The theories of the

calculational methods considered in this work have been outlined in the following

sections.

2.2 First Principles Calculational Theory

A solid is a collection of heavy, positively charged particles (nuclei) compared

to lighter, negatively charged particles (electrons). If the structure composed of

N nuclei and each has Z electrons, then, the theorists came face to face with a

problem of N (nuclei) + Z N (electrons) electromagnetically interacting particles.

This is a many-body problem, and because these particles are so light compared

with classical scale, it is a quantum many body problem. In principle, to study

the materials and their properties, the theorist has to solve the time independent

Schrödinger equation.

ĤΨ = EΨ (2.1)

Here, Ψ is the wave function of all participating particles and Ĥ is the exact

many-particle Hamiltonian for this system.

Ĥ = − h̄2

2

∑

i

∇2−→
Ri

Mi

− h̄2

2

∑

i

∇2−→ri

me

− 1

4πε0

∑

i,j

e2Zi

| −→Ri −−→rj |
+
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1

8πε0

∑

i 6=j

e2

| −→ri −−→rj | +
1

8πε0

∑

i 6=j

e2ZiZj

| −→Ri −−→Rj |
(2.2)

The mass of the nucleus at
−→
Ri is Mi, the mass of the electron at −→ri is me. The

first term in equation (2.2) is the kinetic energy operator for the nuclei (T̂n),

the second for the electrons (T̂e). The last three terms correspond to Coulomb

electron-nuclear attraction (V̂en), electron-electron repulsion (V̂ee) and nuclear-

nuclear repulsion (V̂nn), respectively. It is out of question to solve this many body

problem exactly. In order to find acceptable approximate eigenstates (acceptable

solution to Schrödinger equation (2.1)), three approximations at different levels

can be used, they are:

• Born-Oppenheimer Approximation (BO),

• Hartree and Hartree-Fock Approximation (H, HF),

• Density Functional theory (DFT),

These approximations make the calculations easy to be handled by transforming

the many body problem to one body problem.

2.2.1 Level 1: The Born-Oppenheimer approximation

One of the most important approximation in materials science is the Born-

Oppenheimer approximation. It is used in the vast majority of methods. The

essence of the approximation is that the nuclei are much heavier and therefore
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much slower than the electrons. One can hence ‘freeze’ them at fixed positions and

assume the electrons to be in instantaneous equilibrium with them. In another

words, only the electrons are kept as players in this many body problems. The

nuclei are deprived from this status, and reduced to a given source of positive

charge; they become ‘external’ to the electron cloud. After the application of this

approximation the problem is left with a collection of ZN interacting negative

particles, moving in the (now external or given) potential of the nuclei. So the

nuclei do not move any more, their kinetic energy is zero and the first term in

equation (2.2) disappears and the last term reduces to a constant. Therefore

the many body problem is left with the kinetic energy of the electron gas, the

potential energy due to electron-electron interactions and the potential energy of

the electrons in the (now external) potential of the nuclei. The new many body

Hamiltonian is written formally as

Ĥ = − h̄2

2

∑

i

∇2−→ri

me

+
1

8πε0

∑

i6=j

e2

| −→ri −−→rj | −
1

4πε0

∑

i,j

e2Zi

| −→Ri −−→rj |

or

Ĥ = T̂e + V̂ee + V̂ext (2.3)

2.2.2 Level 2: Hartree and Hartree-Fock Approximation

The quantum many body problem obtained after the first level approximation

(Born-Oppenheimer) is much simpler than the original one, but still difficult to

solve. In Hartree approximation [43], the solution of many-electron Hamiltonian
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is transformed to solve one-electron Hamiltonian by assuming the electrons are

independent from each other. By this assumption the total wave function for the

electrons is written as:

Ψ(r1, r2, ..., rN) =
N∏

i

ψ(ri) (2.4)

Where ψ(ri) is the electron wave function. Using this definition of the wave

function the electron density is represented by:

ρ(r) =
N∑

i

| ψi(r) |2 (2.5)

The total Hamiltonian can be written as:

Ĥ = − h̄2

2me

∑

i

∇2−→ri
− 1

4πε0

∑

i

∑

j

∫ eZj | ψ(ri) |2 d3ri

| −→Rj −−→ri |
+

1

8πε0

∑

i

∑

j

| ψ(ri) |2| ψ(rj) |2 d3rjd
3ri

| −→ri −−→rj | (2.6)

or

Ĥ = T̂o + VH [ψ] (2.7)

The Schrödinger equation becomes non-linear and requires for the self-consistency

procedure.

(T̂o + VH [ψ])Ψ = EHΨ (2.8)

Here, T̂0 is the functional for the kinetic energy of a non-interacting electron gas,

VH stands for the electron effective potential and EH is the functional of electron

energy using Hartree approximation. In order to solve an equation of this type,
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one starts with some trial solution Ψ(o)(normally atomic orbitals wave function is

used) which is used to construct the potential. Solving the nonlinear Schrödinger

equation (2.8) with this potential, one can obtain a new solution Ψ(1) which is

used in turn to build a new potential. This procedure is repeated until the ground

state Ψ(i) and the corresponding energy Ei do not deviate appreciably from those

in the previous step.

Hartree product wave functions suffer from several major flaws that serve to make

them physically unrealistic:

• Hartree products do not satisfy the Pauli Antisymmetry Principle which

states that the sign of any many-electron wave function must be antisym-

metric (i. e. change sign) with respect to the interchange of the coordinates,

both space and spin, of any two electrons. The Antisymmetry Principle is a

postulate of quantum mechanics derived from relativistic arguments and is,

at the end, equivalent to the more standard statement of the Pauli Principle

which prevents two electrons with the same spin from occupying the same

spatial orbital.

• Hartree product force a particular electron to occupy a given spin orbital de-

spite the fact that electrons are indistinguishable from one another. Lastly,

because the Hartree product wave function is constructed on the assumption

that the electrons are non-interacting, there exists a non-zero probability
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of finding two electrons occupying the exact same point in space.

Later this wave function is modified to include the spin of the electron by the

Hartree-Fock approximation [49]. This approximation is an extension of the above

Hartree approximation to include the permutation symmetry of the wave function

which leads to the exchange interaction. Exchange is due to the Pauli exclusion

principle, which states that the total wave function for the system must be an-

tisymmetric under particle exchange. This means that when two arguments are

swapped the wave function changes sign as follows:

Ψ(r1, r2, ..., ri, .., rj, .., rN) = −Ψ(r1, r2, ..., rj, .., ri, .., rN) (2.9)

Where ri includes coordinates of position and spin. Therefore no two electrons

can have the same set of quantum numbers, and electrons with the same spin

cannot occupy the same state simultaneously.

Instead of using the simple product form of the wave function shown in Eq (2.4),

a Slater determinant wave function [50] which satisfies antisymmetry is used. As

a result of the antisymmetry wave function, Eq (2.8) can be written as:

EHF = T̂o + VH (2.10)

EHF is the functional electron energy using Hartree-Fock approximation, T̂0 is

the functional for the kinetic energy of a non-interacting electron gas and VH

stands for the electron effective potential. The solution steps of Eq. (2.10) are

the same as they are defined for Hartree Eq. (2.7).
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Hartree-Fock approximation performs very well for atoms and molecules, and

therefore used extensively in quantum chemistry. For solids it is less accurate,

however. In the present work, the electronic band structure of compounds and

ternary alloys has been studied by DFT which is more modern and probably more

powerful with respect to HF approximation.

2.2.3 Level 3: Density Functional Theory

Density Functional Theory formally established in 1964 by two theorems due

to Hohenberg and Kohn [40]. The traditional formulation of these theorems is as

follows:

• There is a one-to-one correspondence between the ground-state density

ρ(−→r ) of a many-electron system (atom, molecule, solid) and the external

potential, Vext. An immediate consequence is that the ground-state expec-

tation value of any observable quantity, Ô, is a unique functional of the

exact ground-state electron density

〈Ψ | Ô | Ψ〉 = Ô[ρ] (2.11)

• Second theorem: For Ô being the Hamiltonian, the ground-state total en-

ergy functional (H[ρ] ≡ EVext [ρ]) is of the form:

EVext [ρ] = 〈Ψ | T̂ + V̂ | Ψ〉︸ ︷︷ ︸
FHK[ρ]

+〈Ψ | V̂ext | Ψ〉 (2.12)
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or

EVext [ρ] = FHK [ρ] +
∫

ρ(−→r )Vext(−→r )d−→r (2.13)

where, the Hohenberg-Kohn density functional FHK [ρ] is universal for any many-

electron system. EVext [ρ] reaches its minimal value (equal to the ground-state

total energy) for the ground state density corresponding to Vext.

We do not prove these theorems here, but ponder a few implications of the three

keywords, invertibility (one-to-one correspondence, ρ −→ Vext), universality and

variational access (minimal value).

• Invertibility: the one-to-one correspondence between ground-state density

and external potential is intriguing. It is obvious that a given many-electron

system has a unique external potential, which by the Hamiltonian (Eq. 2.2)

and the Schrödinger equation yields a unique ground-state many particle

wave function. From this wave function, the corresponding electron density

is easily found. An external potential hence leads in a well-defined way to

a unique ground-state density corresponding to it. But intuitively it looks

like the density contains less information than the wave function. If this

would be true, it would not be possible to find a unique external potential

if only a ground-state density is given. The first theorem of Hohenberg

and Kohn tells exactly that this is possible. The density contains as much

information as the wave function does (i.e. everything you could possibly

know about an atom, molecule or solid). All observable quantities can be
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retrieved therefore in a unique way from the density only, i.e. they can be

written as functionals of the density.

• Universality (the universality of FHK [ρ]): Eq. 2.13 is easily written down

by using the density operator, and supposing the ground-state density is

known, the contribution to the total energy from the external potential

can be exactly calculated. An explicit expression for the Hohenberg-Kohn

functional, FHK , is not known. But anyway, because FHK does not contain

information on the nuclei and their position, it is a universal functional for

any many-electron system. This means that in principle an expression for

FHK [ρ] exists which can be used for every atom, molecule or solid which

can be imagined.

• variational access: the second theorem makes it possible to use the varia-

tional principle of Rayleigh-Ritz in order to find the ground-state density.

Out of the infinite number of possible densities, the one which minimizes

EVext [ρ] is the ground-state density corresponding to the external potential

Vext(−→r ). Of course, this can be done only if (an approximation to) FHK [ρ]

is known. But having found ρ, all knowledge about the system is within

reach. It is useful to stress the meaning of the energy functional EVext [ρ]

once more. When it is evaluated for the ρ density corresponding to the

particular Vext for this solid, it gives the ground state energy. When it
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is evaluated for any other density however, the resulting number has no

physical meaning.

The practical procedure to obtain the ground state density of DFT was satisfied

by Kohn and Sham equation published in 1965 [41]. In Kohn Sham equation,

the correlation energy is defined as this part of the total energy which is present

in the exact solution, but absent in the Hartree-Fock solution. The total en-

ergy functionals Ee[ρ] and EHF [ρ] corresponding to the exact and Hartree-Fock

Hamiltonian (Eq. 2.10) respectively, are:

Ee = T + V (2.14)

and

EHF = To + (VH + Vx)︸ ︷︷ ︸
V

(2.15)

Here T and V are the exact kinetic and electron-electron potential energy func-

tionals, T0 is the functional for the kinetic energy of a non-interacting electron

gas, VH stands for the Hartree contribution and Vx for the exchange contribu-

tion. By subtracting equation (2.15) from equation (2.14), the functional for the

correlation contribution appears to be

Vc = T − T0 (2.16)
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The exchange contribution to the total energy is defined as the part which is

present in the Hartree-Fock solution, but absent in the Hartree solution. Obvi-

ously, with the Hartree functional given by

EH = T0 + VH (2.17)

It can be defined as

Vx = V − VH (2.18)

With this knowledge, we can rewrite the Hohenberg-Kohn functional in the fol-

lowing way

FHK = T + V + To − To

= To + V + (T − To)︸ ︷︷ ︸
Vc

(2.19)

= To + V + Vc + VH − VH (2.20)

= To + VH + Vc + (V − VH)︸ ︷︷ ︸
Vx

(2.21)

= To + VH + (Vx + Vc)︸ ︷︷ ︸
Vxc

(2.22)

(2.23)

Here Vxc is the exchange-correlation energy functional. We don’t know it formally,

as it contains the difficult exchange and correlation contributions only. If we

assume for a while that we do know Vxc, we can write explicitly the energy

functional:

EVext [ρ] = T0[ρ] + VH [ρ] + Vxc[ρ] + Vext[ρ] (2.24)
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One could use now the second Hohenberg-Kohn theorem to find the ground state

density, but then we would have won nothing by our transformation. Instead,

one can interpret the above expression also as the energy functional of a non-

interacting classical electron gas, subject to two external potentials: one due to

the nuclei, and one due to exchange and correlation effects. The corresponding

Hamiltonian (called the Kohn-Sham Hamiltonian) is

ĤKS = T̂0 + V̂H + V̂xc + V̂ext (2.25)

or

ĤKS = − h̄2

2me

−→∇2

i +
e2

4πε0

∫ ρ(−→r′ )
| (−→r −−→r′ ) |d

−→r′ + V̂xc + V̂ext (2.26)

where, the exchange-correlation potential is given by the functional derivative

V̂xc =
δVxc[ρ]

δρ
(2.27)

The theorem of Kohn and Sham can now be formulated as follows: The exact

ground-state density ρ(−→r ) of an N-electron system is

ρ(−→r ) =
N∑

i=1

ψ∗i (
−→r )ψi(−→r ) (2.28)

where, the single-particle wave functions ψi(−→r ) are the N lowest-energy solutions

of the Kohn-Sham equation

ĤKSψi = εiψi (2.29)

And now, we did won a lot. To find the ground-state density, one don’t need to

use the second Hohenberg-Kohn theorem any more, but one can rely on solving
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familiar Schrödinger (like noninteracting single particle ) equations. The alter-

native of using the regular Schrödinger equation, would have led to a far more

difficult system of coupled differential equations, because of the electron-electron

interaction. Be aware that the single-particle wave functions, ψi(−→r ), are not the

wave functions of electrons. They describe mathematical quasi-particles, with-

out a direct physical meaning. Only the overall density of these quasi-particles

is guaranteed to be equal to the true electron density. Also the single-particle

energies, εi, are not single-electron energies. Both the Hartree operator VH and

the exchange-correlation operator Vxc depend on the density ρ(−→r ), which in turn

depends on the ψi(−→r ) which are being searched. This means that we are deal-

ing with a self-consistency problem: the solutions, ψi(−→r ), determine the original

equation (VH and Vxc in HKS), and the equation cannot be written down and

solved before its solution is known. An iterative procedure (see Fig. 2.1) is needed

to escape from this paradox. Some starting density ρo is guessed, and a Hamilto-

nian HKS1 is constructed with it. The eigenvalue problem is solved, and results

in a set of ψi from which a density ρ1 can be derived. Most probably ρo will

differ from ρ1. Now ρ1 is used to construct HKS2, which will yield a ρ2, etc. The

procedure can be set up in such a way that this series will converge to a density

ρf which generates a HKSf which yields as solution again ρf , this final density

is then consistent with the Hamiltonian. The Kohn − Sham scheme described

above was exact, apart from the preceding Born-Oppenheimer approximation, no
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Figure 2.1: Flow chart for the nth iteration in the self-consistent procedure to
solve Hartree− Fock or Kohn− Sham equations
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other approximations were made. But we neglected so far the fact that we do not

know the exchange-correlation functional. It is here that approximations enter

this theory. A widely used approximation - called the Local Density Approxi-

mation (LDA)- is to postulate that the exchange-correlation functional has the

following form:

ELDA
xc =

∫
ρ(−→r )εxc(ρ(−→r ))d−→r (2.30)

This postulate is somehow reasonable; it means that the exchange-correlation

energy due to a particular density ρ(−→r ) could be found by dividing the mate-

rial in infinitesimally small volumes with a constant density. Each such volume

contributes to the total exchange correlation energy by an amount equal to the

exchange correlation energy of an identical volume filled with a homogeneous

electron gas, which has the same overall density as the original material has in

this volume. No law of nature guarantees that the true Exc is of this form, it is

only a reasonable guess. By construction, LDA is expected to perform well for

systems with a slowly varying density. But rather surprisingly, it appears to be

very accurate in many other (realistic) cases too. A next logical step to improve

on LDA is to make the exchange-correlation contribution of every infinitesimal

volume not only dependent on the local density in that volume, but also on the

density in the neighboring volumes. In other words, the gradient of the density

will play a role. This approximation is therefore called the Generalized Gradient

Approximation (GGA). Although GGA performs in general slightly better than
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LDA, there are a few drawbacks. There is only one LDA exchange-correlation

functional, because there is a unique definition for εxc. But there is some freedom

to incorporate the density gradient, and therefore several versions of GGA exist

(first drawback). Moreover, in practice one often fits a candidate GGA-functional

with free parameters to a large set of experimental data on atoms and molecules.

The best values for these parameters are fixed then, and the functional is ready to

be used routinely in solids. Therefore such a GGA-calculation is strictly spoken

not an ab-initio calculation, as some experimental information is used (second

drawback). Nevertheless, there exist GGA’s that are parameter free.

2.2.4 Level 4: Solving the equations

Irrespective whether one has used HF or DFT as level 2, 3 approximation,

one ends up with an infinite set of one-electron equations of the following type:

(− h̄2

2me

−→∇2

m +
e2

4πεo

∫ ρ(−→r′ )
| −→r −−→r′ |d

−→r′ + Vα + Vext)

︸ ︷︷ ︸
Ĥsp

ψm(−→r ) = εmψm(−→r ) (2.31)

here, m is an integer number that counts the members of the set, we call Ĥsp the

single-particle Hamiltonian. For HF, Vα is the exchange operator. The ψm are

true one-electron (or single-particle) orbital for HF. Exchange is treated exactly,

but correlation effects are not included at all. They can be added only in elabo-

rations on the HF-method. For DFT, Vα is the exchange-correlation operator, in

the L(S)DA, GGA or another approximation. Exchange and correlation are both
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treated, but both approximately. The ψm are mathematical single-particle or-

bital. The similarity between the Hartree-Fock and Kohn-Sham equations means

that the same mathematical techniques can be used to solve them. ‘Solving’ in

most methods means that we want to find the coefficients cm
p needed to express

ψm in a given basis set φp:

ψm =
P∑

p=1

cm
p φp (2.32)

The wave functions ψm belong to a function space which has an infinite dimen-

sion, P is therefore in principle infinite. In practice one works with a limited set

of basis functions. Such a limited basis will never be able to describe ψm exactly,

but one could try to find a basis that can generate a function that is ‘close’ to

ψm. Having chosen a basis (and hence a finite value for P) we realize that we can

tackle the equations (2.31) as an eigenvalue problem. For a given m, substitute

equation (2.32) in (2.31), and left-multiply with 〈φi | (i = 1, .., P ).




. . . . . . . . .

... 〈φi | Ĥsp | φj〉 − ε〈φi | φj〉 ...

. . . . . . . . .







cm
1

...

cm
p




=




0

...

0




(2.33)

We recognize here the matrix elements of the single-particle Hamiltonian in the

basis states, and the overlap matrix elements Sij . Remember that the overlap

matrix is a unit matrix if the basis set is orthonormal. Diagonalization of the

Hamiltonian matrix will lead to P eigenvalues and P sets of coefficients that
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express each of the P eigenfunctions in the given basis (if more eigenfunctions are

needed, P must be increased). The larger P, the better the approximation of the

eigenfunction, but the more time-consuming the diagonalization of the matrix in

equation (2.33).

2.3 Empirical Tight Binding Theory

The Empirical Tight-Binding method can be employed for calculating char-

acteristics of both periodic and amorphous solids, as well as atomic clusters. The

ETB approach works by replacing the many-body Hamilton operator with a pa-

rameterized Hamiltonian matrix and by solving the Schrödinger equation in an

atomic-like set [47]. The set is not, in general, explicitly constructed, but it is

atomic-like in that it has the same symmetry properties as the atomic orbitals.

A small number of basis functions are usually used, those roughly corresponding

to the atomic orbitals in the energy range of interest. For example, when mod-

eling AlN , the 1s, 2s and 2p in Al and 1s in N can be neglected, and only 3s,

3p and 3d in Al, 2s and 2p in N orbitals can be considered. ETB approxima-

tion or Linear Combination of Atomic Orbitals (LCAO) is the method of solving

the Schrödinger equation for a multiatomic system by expanding the electronic

eigenstates of the effective one-electron Hamiltonian in a sum of atomic orbitals

[47, 48]. In a periodic solid the use of Bloch’s theorem [51] reduces the size of
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the Hamiltonian to the number of orbitals per unit cell. This is a drastic sim-

plification where the wave vector
−→
k turns out to be a good quantum number.

According to these facts the electron wave function can be written as follows:

| ψµ(−→r )〉 =
1√
N

∑

Ri

ei
−→
k .
−→
R i | φµ(−→r −−→R i)〉 (2.34)

where, | φµ(−→r − −→R i)〉 is the atomic orbital at the i th atom at site Ri, µ corre-

sponds to one of the atomic orbitals (s, px, py, pz, ...). This method enables the

calculation of an approximate one-body Hamiltonian matrix whose eigenvalues

are taken to approximate the allowed electronic energies and the eigenvectors are

states. In the usual implementation of ETB calculations, the basis, | φµ〉, are

taken to be orthonormal on the same site ( 〈φµ | φν〉 = δµν). The sum of the

occupied energy eigenvalues is the attractive electronic contribution to the total

energy. To compute the system (ions+electrons) energy a repulsive interaction

must be added to the electronic part. ETB is the simplest approach enabling an

estimate of the many-body forces characteristic of covalently bonded materials.

Since ETB is simple and illustrative of many concepts in electronic structure of

amorphous solids, it is considered to be good method to calculate the electronic

band structure of ternary alloys. By considering a supercell module (large unit

cell with periodic boundary condition) of an amorphous solid with N atoms and

atomic coordinates, (Ri)
N
i=1, it is possible to view the (Ri)

N
i=1 as specifying a set of

basis vectors for a crystal with a very large and topologically complex unit cell.

Such a large unit cell possesses a band structure as does any periodic system.
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But, since the cell is supposed to represent an amorphous system, it must be

large to have credibility. The one body Hamiltonian matrix of the large system

is then

Hµν =
1

N

∑

Ri,Rj

ei
−→
k .(
−→
R i−

−→
R j)〈φµ(−→r −−→R i) | Ĥ | φν(−→r −−→R j)〉 (2.35)

where, Ĥ is the Hamiltonian operator. As the matrix elements in this represen-

tation depend in detail on the network topology, it is convenient to work with

molecular coordinates specifying the interatomic hopping. The Hamiltonian ma-

trix eigenvalue problem then reads the usual orthogonal eigenvalue problem as

follows:

Ĥ | ψm〉 = Em | ψm〉 (2.36)

Where, the electronic eigenvalues are supposed to be approximated by Em. For

electronic density of state calculations or questions of the spectral signature of

a defect, an exact diagonalization of Hamiltonian matrix is sufficient. But in

general, since the orbitals on different sites are not orthogonal i.e. 〈φµ | φν〉 6= δµν ,

the Schrödinger equation (Eq. (2.36) leads to the secular determinant.

| Hµν − ESµν |= 0 (2.37)

For an energy value of E

Sµν = 〈φµ | φν〉 (2.38)

is the overlapping matrices. For an arbitrary cluster of atoms the size of each

of the matrices H and S is equal to the total number of orbitals. Hµν and Sµν
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become functions of
−→
k and the solution of the secular equation generates the

band structure E(
−→
k ).

In order to build the Hamiltonian matrix, the interactions between the orbitals

(from Eq. 2.35 to Eq. 2.38) are obtained by either experimental measurements or

first principles calculations as it is done in the present work. The solution of the

secular equation given in Eq. 2.37 can easily produce the band structure of valence

and conduction bands. One should keep in mind that the energy eigenvalues in

the valence and conduction band regions should be equal to the corresponding

eigenvalues, one got from the first principles calculations.

2.4 Calculational Steps of the Work

In the present work, the total energy and the electronic band structure of

InN , InAs, InSb, AlN , AlAs, AlSb, GaN and GaAs in zinc-blende phase has

been calculated using first principles calculations based on DFT by means of full

potential linearized augmented plane wave (FP-LAPW) method given in WIEN2k

package [52]. In this method the unit cell is divided into (I) non-overlapping

atomic spheres (muffin tin spheres (MT)) and (II) an interstitial region. In two

types of regions different basis sets are used:

• Inside the atomic sphere, of radius RMT , a linear combination of radial
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functions times spherical harmonics Ylm(r) is used. In Eq. (2.32)

φKn =
∑

lm

(Alm,Knul(r, El) + Blm,Knu̇l(r, El))Ylm(r̂) (2.39)

Where, ul(r, El) is the regular solution of the radial Schrödinger equation for

energy El and the spherical part of the potential inside the sphere, u̇l(r, El)

is the energy derivative of ul evaluated at the same energy El. A linear

combination of these two functions constitute the linearization of the radial

function; the coefficients Alm and Blm are functions of Kn determined by

requiring that this basis function matches (in value and slope) each plane

wave (PW) of the corresponding basis function of the interstitial region.

The radial functions ul and u̇l are obtained by numerical integration of the

radial Schrödinger equation on a radial mesh inside the sphere.

• in the interstitial region a plane wave expansion is used.

φKn =
1√
w

eiKn.r (2.40)

Where,
−→
Kn =

−→
k +

−→
Kn;

−→
Kn are reciprocal lattice vectors and k is the wave

vector inside the first Brillouin zone. Each plane wave is augmented by an

atomic-like function in every atomic sphere.

The solutions to the Kohn-Sham equations are expanded in this combined

basis set of LAPW’s according to the linear variation method

Ψk =
∑
n

cnφKn (2.41)
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and the coefficients cn are determined by the RayleighRitz variational principle.

The convergence of this basis set is controlled by a cutoff parameter RmtKmax

value, where Rmt is the smallest atomic sphere radius in the unit cell and Kmax

is the magnitude of the largest K vector in Eq. (2.41). In the present work, this

parameter was taken to be 8–12. In the MT spheres, the l- expansion of the non-

spherical potential and charge density is truncated at l= 12 for the wave function

of the binary compounds studied in this work. The number of plane waves used

in the expansion of Eq. 2.41 are 1240, 2300, 2799, 381, 2346, 1852, 1065 and 2150

for InN , InAs, InSb, AlN , AlSb, AlAs, GaN and GaAs, respectively. The

iteration process of all the total energy calculation (Fig. 2.1) has been repeated

until the calculated total energy of the considered compound converged to less

than (0.1) mRy.

In the present work, the total energy of the system has been calculated as a

function of the separation between the atoms and the positions of the electrons.

The total energy has been defined in WIEN2k by the addition of the repulsion

energy of nuclei to the total electronic energy. The variation of the total energy

values with respect to the different sized unitcells has been fitted to Murnghan’s

equation [53] to find out the equilibrium lattice constant of the structures con-

sidered in this work.

In this work, Eq. (2.31) has been solved in the muffin tin spheres and inter-

stitial regions numerically using WIEN2k program. The continuity of the wave
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function and it’s derivative for all the taken k vectors were satisfied at the bound-

ary between the muffin tin spheres and interstitial regions. The resulted wave

function has been used in the DFT cycle (Figure 2.1) until the SC wave func-

tion has been found. The band structure of the compounds considered in this

work has been calculated by the final wave function of the SC cycle. It is widely

used in the literature that the standard DFT calculations can produce the band

structure of the semiconductor compounds correctly, but give smaller energy gaps

at high symmetry points compared to experimental results. On the other hand,

the time consuming is very important handicap in performing the first principles

calculations on large systems and alloys. ETB is fairly straightforward and easy

to implement for large systems and alloys. It provides reliable accuracy in a very

short calculational time. In the present work, to study the band bowing of III

(In, Al) - V (N , As, Sb) alloys the advantages of the DFT and ETB calculations

have been considered to be combined. Therefore electronic structure calculations

of compounds by DFT have been followed by ETB.

First, the band gaps of the compounds calculated by DFT/FP-LAPW-GGA

have been corrected empirically using experimental values. Secondly, the ETB in-

teraction energy parameters have been derived from the eigenvalues of DFT/FP-

LAPW-GGA calculations.

Slater- Koster model of ETB was extensively used in the literature with mini-

mal sp3 [54] basis and interaction only between nearest neighbor atoms to find out
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valence band energy dispersion of compounds correctly. But this model fails to

calculate the indirect gap of semiconductors satisfactorily, especially at X point.

The underestimated band structures calculated by ETB can be improved ei-

ther including the interatomic interactions beyond the nearest neighbors (second

nearest, etc..) or higher atomic states on each atom. In the present work, we

are convinced that the second way is the most appropriate physically, and most

useful practically in semiconductors. Adding distant interactions (like second

nearest neighbor) introduces extra parameters for which we don’t know the vari-

ations with distance (they don’t follow the square distance law 1/d2), while the

inclusion of higher states proceeds naturally. Vogl, et al [55] had found that

supplementing the sp3 basis by a single excited s– state on each atom, called

the s∗–state, was sufficient to rectify this shortcoming of the conduction bands.

On the other hand, the successfully reproduced indirect energy gaps of III − V

compounds by pseudopotential method [56] showed that, the influence of the d

orbitals to the lowest conduction state is large at Γ, X and L points. By consid-

ering this fact, in the present nearest neighbor ETB calculations, the excited first

and second d orbitals, d1 (dz2) and d2 (dx2−y2) are taken into account as well as

sp3.

The Hamiltonian matrix of sp3d2 interaction orbitals with 12×12 dimension is

given in Fig. 2.2. Since all the orbitals in sp3d2 set have the same symmetry group,

the first nearest neighbor interactions between anion and cation are defined by
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only thirteen different types of ETB energy parameters. They are Esa, Epa, Eda,

Esc, Epc, Edc, Vss, Vxx, Vxy, Vscpa, Vsapc, Vdapc, Vdcpa. Here, the d-d and

s-d orbital interaction energies (Vdd and Vsd) between the cation and the anion

are considered to be small and neglected. In ETB Hamiltonian the interaction

energy parameters are weighted by complex constants, g0, g1, g2, g3, resulted from

the tetrahedrally coordinated four nearest neighbor atoms in Eq. (2.35). The

g0, g1, g2 and g3 can be formulated explicitly as follows:

g0(
−→
k ) = cos(

kxa

4
) cos(

kya

4
) cos(

kza

4
)− i sin(

kxa

4
) sin(

kya

4
) sin(

kza

4
)

g1(
−→
k ) = − cos(

kxa

4
) sin(

kya

4
) sin(

kza

4
) + i sin(

kxa

4
) cos(

kya

4
) cos(

kza

4
)

g2(
−→
k ) = − sin(

kxa

4
) cos(

kya

4
) sin(

kza

4
) + i cos(

kxa

4
) sin(

kya

4
) cos(

kza

4
)

g3(
−→
k ) = − sin(

kxa

4
) sin(

kya

4
) cos(

kza

4
) + i cos(

kxa

4
) cos(

kya

4
) sin(

kza

4
) (2.42)

where, the coefficients y and k present in front of some of the entries of the

Hamiltonian matrix are − 1√
3

and 2√
3
, respectively. The letters a and c in front of

the orbitals and the energy parameters stand for anion and cation, respectively.

In ETB calculations of compounds, the solution of the secular equation at Γ and

X symmetry points gives nine independent equations:

Γ1c + Γ1v = Esa + Esc (2.43)

Γ15c + Γ15v = Epa + Epc (2.44)
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Vss = −
√√√√

((
Γ1c − Γ1v

2

)2

−
(

Esa − Esc

2

)2
)

(2.45)

Vxx =

√√√√
((

Γ15c − Γ15v

2

)2

−
(

Epa − Epc

2

)2
)

(2.46)

Vxy =

√√√√
((

X5c −X5v

2

)2

−
(

Epa − Epc

2

)2
)

(2.47)

Vpcsa =

√√√√
(

(Esa −X1c) (Esa −X1v) (Epc + Eda −X1v −X1c)

(Esa − Eda)

)
(2.48)

Vpasc =

√√√√
(

(Esc −X3c) (Esc −X3v) (Epa + Edc −X3v −X3c)

(Esc − Edc)

)
(2.49)

Vd1apc =

√√√√3

4

(
(Eda −X1c) (Eda −X1v) (Epc + Esa −X1v −X1c)

(Eda − Esa)

)
(2.50)

Vd1cpa =

√√√√3

4

(
(Edc −X3c) (Edc −X3v) (Epa + Esc −X3v −X3c)

(Edc − Esc)

)
(2.51)

The interaction energy parameters of ETB have been derived from the eigenvalues

of FP-LAPW studied for the compounds at the first stage of the work. The above

equations have been solved for each compound by a simulating program which also

finds the remaining four energy parameters (Esa, Epa, Eda, Edc) by minimizing

the difference between the eigenvalues of ETB and FP-LAPW. After finding the

energy parameters, the ETB Hamiltonian matrix (Fig. 2.2) is built for sp3d2 basis

and nearest neighbor interactions. The Hamiltonian matrix is diagonalized along

the chosen directions to reproduce the band structure of the compounds.

Since the application of first principles calculational methods on large scaled

systems such as alloys with different concentration of constituents is limited in
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Figure 2.2: The ETB Hamiltonian matrix for the sp3d2 model.
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time, the semiempirical or empirical methods are required to calculate the elec-

tronic band structure of alloys for full range of the compositions. In the present

work, the electronic band structure of (A1−xBxC and ABxC1−x) type ternary al-

loys composed of III-V elements has been calculated by ETB for the total range

of x (0 < x < 1). The unit cells of the ternary alloys are defined by Vegard’s law

[57] as follows:

aABxC1−x = (x)aAB + (1− x)aAC (2.52)

or

aA1−xBxC = (1− x)aAC + (x)aBC (2.53)

where, aABxC1−x , aA1−xBxC , aAC , aBC and aAB are the lattice constants of the al-

loys and compounds considered in this work, respectively. Since only the nearest

neighbor interactions are taken into account, the self energy parameters (Esa,

Esc, Epa, Epc, Eda, and Edc) of the corresponding III (In, Al, Ga) - V (N , As,

Sb) group elements are included in the present ETB calculations directly. The

other ETB energy parameters (Vss, Vxx, Vxy, Vscpa, Vsapc, Vdapc, Vdcpa)

needed for the electronic band structure calculations of alloys have been obtained

from those of corresponding compounds using Vegard’s law [57]. The concentra-

tion dependent interaction energy parameters can be formulated by r−2 scaling

method [48]; particularly, the Vss energy parameter can be written as follows:

V ssABxC1−x =
(x)(d2

AB × V ssAB) + (1− x)(d2
AC × V ssAC)

d2
ABxC1−x

(2.54)
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or

V ssA1−xBxC =
(1− x)(d2

AC × V ssAC) + (x)(d2
BC × V ssBC)

d2
A1−xBxC

(2.55)

where, d2
AC , d2

BC , d2
AB, d2

ABxC1−x
and d2

A1−xBxC are the bond length square of the

binary compounds and the alloys, respectively. The rest of the energy parameters

of ETB for the alloys considered in this work are calculated using similar formu-

lations. The ETB Hamiltonian matrix of the alloys is built for sp3d2 basis and

nearest neighbor interactions using the same method defined for the compounds.

The Hamiltonian matrix is diagonalized along the chosen directions to find out

the concentration dependent eigenvalues of the alloys. Finally, the variation of

the fundamental band gap energy (EΓ
g ) of the alloys has been studied as a func-

tion of concentration (x) because of the importance of the band gap engineering.

The bowing parameter, b, which shows the deviation of the energy gap (EΓ
g )

from linearity has been calculated by the best fit of our results to the following

expression:

EΓ
gABxC1−x

(x) = xEΓ
gAB

+ (1− x)EΓ
gAC

− bx(1− x) (2.56)

or

EΓ
gAxB1−xC

(x) = xEΓ
gAC

+ (1− x)EΓ
gBC

− bx(1− x) (2.57)

Here, EΓ
gAB

, EΓ
gAC

, EΓ
gABxC1−x

and EΓ
gAxB1−xC

are the fundamental band gap energies

of the compounds and alloys considered in this work, respectively.
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CHAPTER 3

THE ELECTRONIC STRUCTURE OF InN, InAs AND InSb

COMPOUNDS

3.1 Introduction

There is currently considerable interest in compounds of In with Nitrogen,

Arsenic and Antimony, because of their optical and high temperature device

applications. Among these compounds, InN is a highly potential material for

the fabrication of high speed heterojunction transistors [1] and low cost solar cells

with high efficiency [2]. Pure InN was predicted to have the lowest effective mass

for electrons in all the III-nitride semiconductors [1] which lead to high mobility

and high saturation velocity. Recently, several groups have grown high quality

hexagonal (w-InN) and zinc-blende (c-InN) structural InN films by modern

growth techniques, such as metal organic chemical vapor deposition (MOVPE)

and plasma - assisted molecular beam epitaxy (MBE) [58–63]. The w-InN and c-

InN films have been mostly grown on sapphire and GaAs (or Si, GaP) substrates,

respectively. In these works [58–62], a buffer layer, particularly, AlN or InAs

has been usually grown on the substrate to improve the quality of the InN

38



films. In a very recent work [63], the c-InN has been grown on r-plane sapphire

successfully without the use of additional buffer layer. The growth of w-InN

and c-InN films have been characterized by many techniques such as, X-ray

Diffraction, Raman spectra, reflection high energy electron diffraction (RHEED).

The photoluminescence (PL) spectra of high quality w-InN films have illustrated

that the band gap energy of InN is smaller than the commonly accepted value of

1.9 eV [64]; it is a round 0.65-0.90 eV [58, 59]. The recent experimental works on

c-InN have mainly focused on the characterization of the films [60, 61, 62, 63].

The band gap energy of c-InN films has not been reported experimentally, but

it has been found around 0.44-0.74 eV by the results of ab-initio calculations

[65, 66]. These newly reported values of w-InN and c-InN are compatible with

the wavelength of the optical fiber. Therefore, the w-InN and c-InN films will

have very important potential to fabricate high speed laser diodes (LDs) and

photodiodes (PDs) in the optical communication systems.

The other two compounds of In, InAs and InSb are interesting narrow gap

semiconductors from the point of view of optical spectroscopy and optoelectronic

applications [15]. Since InAs has a high electron mobility it may prove an im-

portant material for use in high speed electronics [11, 12]. The high quality InAs

material has been grown with certain advantages by different growth techniques

such as liquid phase epitaxy (LPE) [67], MBE [67–70], and MOCVD [26, 67]. The

quality of grown doped [67] and undoped [26, 68–70] InAs materials has been
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appraised by mainly PL spectroscopy [26, 67–74] at different temperatures. In

the works on undoped homoepitaxial InAs (i.e. InAs / InAs), the energy of the

first PL peak which corresponds to the band gap of InAs has been reported in

the range of 399-418 meV at low temperatures (T= 4.2- 10 K). The band gap of

undoped heteroepitaxial InAs has been measured to be 416 meV and 399 meV

at 4.6 K for the GaAs and Si substrates, respectively [68]. In Ref. [26], the energy

of the first infrared-PL peak has been reported as 415 meV at 10 K. In an early

work, Dixon and Ellis [75] measured the band gap of InAs as 420 meV at 18 K by

transmission experiment. In another early work given in Ref. [76], the band gap

of InAs is measured to be 0.41 eV at 0 K by direct interband magneto-optical

transitions. The calculated band gap value of InAs by first principles [77] and

empirical [78–82] methods are all in the range of 0.37-0.42 eV.

The other compound of In, InSb, calls attention to have the smallest energy

gap of any of the binary III-V materials. This property often allows the fabri-

cation of infrared imaging systems, free space communications, and gas phase

detection systems [16, 17]. There are many reports on the growth of InSb by

MBE [83] and MOCVD [26] techniques. In a recent work [84], good quality InSb

has been also grown by LPE technique. GaAs, Si and InSb (bulk like) have been

mostly used substrates in all growth works. The possible lattice-mismatching be-

tween InSb and substrate in heteroepitaxial growths has been tried to be removed

by the growth of buffer layers such as InSb and AlSb [83] on the substrate. The
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quality of grown homoepitaxial InSb (InSb/ InSb) materials has been analyzed

by mainly PL [26] and infrared spectra [84] measured at different temperatures.

In Ref. [26] the energy of the first PL peak which corresponds to the band gap

of InSb has been reported as 235 meV at 10 K. At the same temperature, the

energy gap of InSb corresponds to infrared spectra has been measured to be 0.23

eV [84]. In Ref. [74], the direct band gap of InSb was given as 0.235 and 0.23 eV

at 1.8 and 77 K, respectively. Rowell [85] measured the band gap value of InSb

as 235 meV by infrared-PL at 5.1 K. In an early work given in Ref. [76], the band

gap of InSb measured to be 0.24 eV at 0 K by direct interband magneto-optical

transitions. In their experimental works, Littler and co-workers [86] measured

the band gap energy of InSb as 0.2352 eV. In a very recent work [87], the direct

band gap of InSb has been measured to be 0.18 eV. In the literature, the band

gap of InSb has been calculated to be in the range of 0.18-0.26 eV by self con-

sistent pseudopotential (PP) [88], nonlocal PP [78], tight binding [79], empirical

pseudopotential (EPP) [80], relativistic self consistent linear muffin tin orbitals

(LMTO) [89], density functional theory-local density approximation (DFT-LDA)

[77, 90] and DFT-generalized Khon Sham scheme [91] methods.

In the present work, the electronic band structures of InN, InAs and InSb

have been calculated by empirical tight binding (ETB) method. The aim of this

work is to derive the energy parameters of ETB providing well defined valence
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bands and energy gaps for InN, InAs and InSb. Therefore these energy pa-

rameters can be used for the electronic band structure calculations of large sized

systems, such as the alloys of these compounds. The ETB energy parameters

of the compounds based on the present first principles calculations are listed in

Table 3.1. The electronic band structures of InN , InAs and InSb calculated by

both DFT and ETB are separately discussed in the following sections and the

results are concluded in the last chapter.

Table 3.1: Empirical matrix elements of the sp3d2 Hamiltonian in eV.

InN InAs InSb
Esa −11.6558 −7.9244 −5.5942
Esc −2.6424 −2.8927 −3.2074
Epa 4.6235 0.0000 0.0000
Epc 4.8241 3.7660 2.8711
Eda 15.7403 9.3469 7.7705
Edc 12.6942 7.7964 5.9425
Vss −5.8787 −5.1076 −4.4532
Vxx 5.0545 0.7172 0.2715
Vxy 7.3168 3.6286 2.9182
Vpcsa 0.8742 4.1592 4.0969
Vpasc 4.8020 3.4948 2.8601
Vdapc 4.1776 4.7535 4.1220
Vdcpa 0.0000 0.1638 0.2738
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3.2 The results

3.2.1 InN

The zinc-blende structure of InN is characterized by the lattice constant,

a. At the first stage of the work, the equilibrium value of a is determined by

calculating total energy of InN by FP-LAPW for a set of volumes and fitting

these to the Murnaghan equation [53]. We have adopted the value of 0.95 Å

for In and 0.87 Å for N as the MT radii. The electronic configuration of InN

is In: Kr (4d105s25p1) and N : He (2s22p3). In the calculations, the electrons

of In in (1s22s22p63s23p63d104s24p64d10) are defined as the core electrons and

distinguished from the valence electrons of In in (5s25p1). Similarly, the inner

shell electrons of N in (1s2) are distinguished from the valence band electrons of

N in (2s22p3) shell. The curve of the total energy versus the lattice volume is

shown in Fig. 3.1. The equilibrium lattice constant of c-InN is calculated to be

4.967 Å. The present lattice constant of c-InN is given in Table 3.2 together with

the experimental and other calculated lattice constant values of c-InN presented

in the literature. The present lattice constant of c-InN (4.967 Å) is found to be

very close to the experimental result of 4.97 Å [60]; it is only 0.3% smaller than

the other experimental results 4.98 [106] and 4.986 [63] Å. On the other hand,

our lattice constant is also close to the lattice constant values of 4.968 [105], 4.964

[104], 5.017 [66], and 5.004 [97] calculated by DFT-Local Density Approximation
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Figure 3.1: Total energy of c-InN versus the lattice volume.

(LDA). The present lattice constant is approximately 0.34% greater than the

other value of 4.95 Å calculated by (LMTO) [92], and pseudopotential plane wave

(PPPW)-GG approximation [65, 93]. Another lattice constant value of 5.067 Å

[104] calculated by DFT within GGA is greater than the present value by 2%.

The present lattice constant is less than the value (5.03 Å) [103] of FP-LAPW

by 1.25%. With respect to the lattice constant values (4.92 and 4.929 Å) of FP-

LMTO [96, 102] our result is high by (0.8-0.95)%. The values of a calculated by

PP [94, 100] are very close to our result; the discrepancy is about (0.06-0.32)%.

But the discrepancy is 0.7% with respect to the corrected lattice constant value

of another PP calculations [95].
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Table 3.2: The theoretical and experimental lattice constant values (ath, aexp) in Å for
InN , InAs and InSb in cubic phase.

Compound ath aexp

InN 4.967a, 4.95b,c,d 4.98t, 4.97u

(4.97, 5.05)e 4.986w

4.932f , 4.929g

4.953h, (5.004, 5.109)i

4.974j, 5.01k

4.983l, 5.06m

5.017n, 4.92o

5.03p, (4.964, 5.067)r

4.968s

InAs 6.194a, 5.906b′ , 5.85c′ 6.058e′ , 6.036f ′

(6.063, 5.94)d′ 6.06g′

InSb 6.643a 6.4782h”, 6.47937i”

6.34b”, 6.36c” 6.49j”

(6.34, 6.464)d”

6.42e”, 6.478f”

apresent work, bRef. [92], cRef. [65], dRef. [93], eRef. [94], fRef. [95], gRef. [96],
hRef.20 in Ref. [95], iRef. [97], jRef. [98], kRef. [99], lRef. [100], mRef. [101],
nRef. [66], oRef. [102], pRef. [103], rRef. [104], sRef. [105], tRef. [106], uRef.
[60], wRef. [63], b′Ref. [114], c′Ref. [116], d′Ref. [115], e′Ref. [111], f ′Ref. [112],
g′Ref. [113], b”Ref. [120], c”Ref. [114], d”Ref. [115], e”Ref. [121], f”Ref. [122],
h”Ref. [117], i”Ref. [118], j”Ref. [119]
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At the second stage of the work, the FP-LAPW method within the frame

work of the DFT has been employed to calculate the band structure of c-InN .

Since, this work is planned to be extended the bowing parameter calculations of

alloys correspond to InN in the next chapter, we have focused mainly on the

energy gaps at high symmetry points. It is found that, band gap of InN is direct

in zinc-blende phase. Furthermore, the variation of energy bands is in agreement

with the results of previous reports [65, 66, 92, 97, 107]. The present band edge at

Γ point is non parabolic as it was reported in these works. Since we are unaware

of reports of experimental investigations of the electronic properties of c-InN ,

we couldn’t compare the present band gap values with the experimental facts.

But, the present band gap at Γ point (EΓ
g ) is found to be very small (-0.012

eV) with respect to the values given by first principles calculations [65, 66]. The

similar negative direct band gap energies [95, 97, 101, 103] and small positive

ones [92, 99] were reported before in the literature. In the present work, the

calculated negative direct energy gap originated from DFT calculations has been

adjusted to the value of 0.59 eV by addition of necessary energy corresponding

to the effect which is not included in the calculations initially. The half of the

energy difference between 0.59 eV and the present direct band gap is added to the

conduction and valence band state energies equally in the same manner defined in

Ref. [108]. Similarly, the negative value of EΓ
g in Ref. [92] and the small value of

EΓ
g in Ref. [65] have been corrected by inclusion of some external potentials and
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quasiparticle corrections, respectively. In the present work, the adjusted direct

band gap value of 0.59 eV is taken from Ref. [65]. The same direct band gap

value has been used in a very recent EPP calculations of InN [107]. The direct

band gap value of 0.59 eV has been decided by the feedback calculations; the

adjusted direct band gap of c-InN has been tested by electronic band structure

calculations of c-InxGa1−xN alloys. The direct band gap of InxGa1−xN alloy is

calculated to be 3.198, 3.065, 2.967 and 2.647 eV for the In concentrations of

0.03, 0.07, 0.10 and 0.20, respectively. These present direct band gap values of

c-InxGa1−xN alloys are found to be very close to the direct band gap values of

3.2, 3.1, 3.0 and 2.875 eV which are measured by PL spectra of c-InxGa1−xN

films for the same concentrations of In at K [109]. In these feedback calculations,

the ETB method has been employed and the corresponding energy parameters

have been derived from the present eigenvalues of FP-LAPW with respect to the

adjusted direct band gap of InN . The ETB energy parameters of GaN used in

the present calculations are present in sec. 6.2.1.

Since the present energy parameters of ETB in feedback calculations produce

the experimental direct band gap energies of c-InxGa1−xN alloys for different

concentration of In we have surely adjusted the direct band gap value of c-InN

to 0.59 eV. The adjusted energy band structure of c-InN by FP-LAPW is shown

in Fig. 3.2. Table 3.3 gives the important features of the present and previously

reported band structures for c-InN at high symmetry points. The energy gaps
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Figure 3.2: The energy band structure of c-InN by FP-LAPW(adjusted) (dotted
line) and ETB (solid line).
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at X and L (EX
g , EL

g ) which are enlarged to the values of 3.375 and 4.249 eV

are in good agreement with the results reported in Refs. [65, 66, 74] and [65, 66],

respectively.

In the following step of the present work, the energy parameters of ETB have

been derived for c-InN from the band structure of DFT (Fig. 3.2) by the fitting

process explained in ch. 2. The band structure of c-InN recalculated by ETB is

shown in Fig. 3.2. The imported features of the band structure at high symmetry

points are listed in Table 3.3. In view of Fig. 3.2, we note that there is a close

agreement between the band structure of c-InN by ETB and DFT at Γ and

X points. Hence, the derived energy parameters of ETB can be used surely in

the band structure calculations of c-InN and its alloys. The direct band gap of

c-InN recalculated by ETB is exactly the same with the adjusted value of 0.59

eV in DFT calculations. The present direct gap of ETB is 20% smaller than the

value of ab-initio self consistent calculations in which the experimental lattice

constant value (4.98 Å) of c-InN was used within LDA and the Bagayoko, Zhao,

Williams (BZW) implementation of the linear combination of atomic orbitals [66].

The present EΓ
g is only 9.2% smaller than the value of 0.65 eV calculated by the

theoretical lattice constant of c-InN in the same report [66]. The present direct

band gap value of c-InN is exactly the same with its corrected value reported in

Ref. [65]. The present EΓ
g of c-InN is approximately 16% smaller than the value

calculated by DFT-LDA [95] and LDA based semi-empirical methods [110]. On
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Table 3.3: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for c-InN compared to other
experimental and theoretical calculational results. All energies are in eV.

DFT a ETBa theoretical
(adjusted) LDA−BZW b EPP c DFT − LDF d

Γv
1 −14.557 −14.557 −14.179

Γv
15 −0.332 −0.332 0.000 0.000 0.000

Γc
1 0.258 0.258 0.654 0.592 0.435

Γc
15 9.779 9.779 9.762 9.597 10.174

Xv
1 −11.704 −11.704 −11.309

Xv
3 −5.031 −5.031 −4.750 −4.795 −4.687

Xv
5 −2.594 −2.594 −2.209 −1.481 −1.687

Xc
1 3.043 3.043 4.182 4.758 2.903

Xc
3 7.012 7.012 6.898 5.102 6.322

Lv
1 −12.127 −12.608 −11.762

Lv
1 −5.969 −4.399 −5.571 −4.967 −5.229

Lv
3 −1.159 −1.718 −0.834 −0.460 −0.557

Lc
1 3.917 1.951 4.032 3.213 3.831

Lc
3 9.683 10.173 8.434 10.040 6.954

Γv
15 − Γc

1 0.59 0.59 (0.738, 0.65)b 0.592c 0.592d

0.70e,f

Γv
15 −Xc

1 3.375 3.375 4.182b 4.758c 2.903d

2.51e

Γv
15 − Lc

1 4.249 3.670 4.032b 3.213c 3.831d

5.82e

Γv
1 − Γv

15 14.225 14.225 14.179b 14.79g

apresent work, bRef. [66], cRef. [107], dRef. [65], eRef. 20 in Ref. [95], fRef. [110],
gRef. [103]
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the other hand, exactly the same energy gap at X point is obtained for c-InN by

both ETB and DFT calculations. The present band gap values at X and L points

are closer to the corresponding values given in Refs. [65, 66, 74] and [65, 66, 107],

respectively. It is found that the present band gap energies of c-InN by ETB at

high symmetry points (Γ, X, L) are in more agreement with the results of the

calculations based on DFT within LDA-quasi particle corrections [65]. In the

present ETB calculations, the valence band width is calculated to be 14.225 eV

which is very close to the value of 14.179 eV calculated by DFT within LDA-BZW

implementation [66]. The present valence band width of c-InN is also close to

the value of 14.79 eV, although, the direct band gap value was calculated to be

-0.48 eV in the same work [103].

3.2.2 InAs

In the present work, the equilibrium value of the lattice constant for InAs

is determined by the total energy calculations based on DFT /GGA-FPLAPW.

The total energy calculations are carried on a set of volumes and fitted to Mur-

naghan equation [53]. We have adopted the value of 1.2 Å for In and 1.15

Å for As as the MT radii. The electronic configuration of InAs is In: Kr

(4d105s25p1) and As: Ar (3d104s24p3). In the calculations, the electrons of In

in (1s22s22p63s23p63d104s24p64d10) are defined as the core electrons and distin-

guished from the valence electrons of In in (5s25p1). Similarly, the inner shell
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Figure 3.3: Total energy of InAs versus the lattice volume.

electrons of As in (1s22s22p63s23p63d10) are distinguished from the valence elec-

trons of As in (4s24p3). The curve of the total energy versus the unitcell volume

is shown in Fig. 3.3. The equilibrium lattice constant of InAs is calculated to

be 6.194 Å. The present lattice constant of InAs is given in Table. 3.2 together

with the experimental and other calculated lattice constant values of InAs pre-

sented in the literature. In an early work [111], the lattice constant of InAs

was measured to be 6.058 Å at room temperature. Another experimental lattice

constant value of InAs was given as 6.036 Å in Ref. [112]. In a resent work [113],

the value of 6.06 Å has been extracted from the reflectance difference spectra of

the InAs grown on InP . The present lattice constant of InAs at 0 oK is about
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2.2 - 2.6 % greater than these measured values at room temperature. The lattice

constant values of both 5.906 and 5.94 Å have been calculated by ab-initio pseudo

potentials [114, 115]. In another theoretical work, the lattice constant of InAs

has been calculated as 5.85 Å by generalized density functional theory (GDFT)

within LDA (GDFT/LDA) [116]. It is found that, the present equilibrium lat-

tice constant value of 6.194 Å is in more agreement with the value of (6.063 Å)

DFT/LDA-FPLAPW [115] than the values of ab-initio pseudopotential [114, 115]

and GDFT/LDA calculations [116]. The difference is only 2.2%.

In the present work, the energy band structure of InAs has been calculated

by DFT/FP-LAPW-GGA for the present equilibrium lattice constant value of

InAs. We have concentrated mainly on the energy gaps at high symmetry points.

It is found that, band gap of InAs is direct. The variation of energy bands

is in agreement with the result of nonlocal PP calculations [78]. The present

band structure of InAs is also very close to the band structure of ETB [55]

except along Γ − X direction. The band structure has a maximum point along

Γ − X direction in both present and nonlocal PP calculations [78], but in ETB

calculational results [55] it approaches to X point constantly by passing through

a point of inflection. In the present calculations, the energy values of the main

features at high symmetry points (ΓV
1 , XV

1 , XV
3 , XV

5 , LV
3 ) are in good agreement

with the corresponding values measured by PL spectra [71]. But, the direct

band gap of InAs (0.277 eV) is found to be smaller than its experimental values
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reported in Refs. [68, 26, 72, 73, 74, 75, 76]. The present narrow direct band gap

of InAs has been adjusted to the value of 417 meV which is recommended in

Ref. [5], with respect to the available experimental values. The half of the energy

difference between 417 meV and the present direct band gap is added to the

first conduction and last valence band state energies equally in the same manner

defined in Ref. [108]. The adjusted energy band structure of InAs by DFT/FP-

LAPW-GGA is shown in Fig. 3.4. Table 3.4 gives the important features of

the present and previously reported band structures for InAs at high symmetry

points. The present energy gaps at X and L points are enlarged to 1.787 and

1.461 eV, respectively by adjustment.

In the following stage of the work, the energy parameters of ETB have been

derived for InAs from the band structure of DFT (Fig. 3.4) by the fitting process

explained in Ch. 2. The recalculated band structure of InAs by ETB is shown in

Fig. 3.4. The important features of the band structure at high symmetry points

are listed in Table 3.4. As it is observed in Fig. 3.4, the valence band structure of

InAs by ETB follows that of DFT along both Γ−X and Γ−L directions closely.

The variation of the first conduction band energy of InAs is similar in both ETB

and DFT results along Γ−L direction. The first state energies of the conduction

band by ETB deviate from the present results of DFT along Γ − X direction

and approach to the X point constantly. The similar variation was plotted by

ETB calculations for sp3s∗ interactions of InAs in Ref. [55]. The energy gaps
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Table 3.4: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for InAs compared to other
experimental and theoretical calculational results. All energies are in eV.

DFT a ETBa theoretical experimental
(adjusted) DFT b TBc EPP d PLe

Γv
1 −11.102 −11.102 −11.52 −12.69 −12.69 −12.3

Γv
15 −0.132 −0.132 0.00 0.00 0.0

Γc
1 0.285 0.285 0.42 0.37 0.37

Γc
15 3.898 3.898 3.68 4.39 4.39

Xv
1 −9.419 −9.419 −9.39 −10.20 −10.20 −9.8

Xv
3 −5.230 −5.230 −6.16 −6.64 −6.64 −6.3

Xv
5 −2.205 −2.205 −2.41 −2.47 −2.47 −2.4

Xc
1 1.655 1.655 2.33 2.28 2.28

Xc
3 2.331 2.331 2.77 2.66 2.26

Lv
1 −9.875 −9.924 −10.03 −10.99 −10.92

Lv
1 −5.237 −5.237 −6.03 −6.87 −6.23

Lv
3 −1.003 −1.418 −1.01 −1.05 −1.26 −0.9

Lc
1 1.329 1.425 1.13 1.50 1.53

Lc
3 4.601 3.614 5.20 5.84 5.42

Γv
15 − Γc

1 0.417 0.417 0.42b 0.37c,d 0.418f 0.418i,j, 0.416k,l

0.417g 0.419h 0.420m, 0.415n

Γv
15 −Xc

1 1.787 1.787 2.33b 2.28c,d 1.433k

1.398h

Γv
15 − Lc

1 1.461 1.587 1.13b,k 1.50c 1.53d

1.110h

Γv
1 − Γv

15 10.970 10.970 11.52b 12.69c,d

apresent work, bRef. [77], cRef. [79], dRef. [78], eRef. [71], fRef. [81], gRef. [5],
hRef. [80], iRef. [74], jRef. [71], kRef. [68], lRef. [72], mRef. [75], nRef. [76]
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Figure 3.4: The energy band structure of InAs by FP-LAPW (adjusted) (dotted line)
and ETB (solid line).
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of InAs at Γ and X points are found to be exactly the same by both present

ETB and DFT calculations. The present EΓ
g value of 0.417eV is very close to

the corresponding values of EPP [80] and ETB [81] calculations. The present EΓ
g

is only 0.71% smaller than the value of 0.42 eV calculated by DFT within LDA

[77]. The present direct band gap of InAs is about 12.7% greater than the value

reported by both tight binding calculations within Green’s functional approach

[79] and nonlocal EPP calculations [78]. The present EX
g is in the range (1.394

- 2.33 eV) of the values calculated by different methods [68, 77–80]. The EL
g

of ETB is found to be closer to the corresponding values given by tight binding

[79] and EPP [78] calculations than the values of DFT-LDA [77] and EPP [80]

calculations. The width of the valence band is found to be the same by both

present ETB and DFT/GG-FP-LAPW calculations; it is about (4.77- 13.55) %

smaller than the values reported in Refs. [77–79].

3.2.3 InSb

The equilibrium lattice constant value of InSb is determined by total en-

ergy calculations based on DFT within GG approximation. The total energy for

a set of volumes has been calculated by FP-LAPW method and fitted to the

Murnaghan equation [53]. We have adopted the value of 1.058 Å for In and

1.058 Å for Sb as the MT radii. The electronic configuration of InSb is In: Kr

(4d105s25p1) and Sb: Kr (4d105s25p3). In the calculations, the electrons of In
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Figure 3.5: Total energy of InSb versus the lattice volume.

in (1s22s22p63s23p63d104s24p64d10) are defined as the core electrons and distin-

guished from the valence electrons of In in (5s25p1). Similarly, the inner shell

electrons of Sb in (1s22s22p63s23p63d104s24p64d10) are distinguished from the va-

lence band electrons of Sb in (5s25p3) shell. The total energy of InSb as a function

of unit cell volume is shown in Fig. 3.5. The calculated total energy of InSb

is found to be minimum with the lattice constant value of 6.643 Å. The present

lattice constant of InSb is given in Table. 3.2 together with the experimental and

other calculated lattice values of InSb presented in the literature. In a very early

work [117], the lattice constant of InSb was measured as 6.4782 Å at room tem-

perature by electron diffraction method. The similar experimental value (6.47937

Å) was given in Ref. [118]. Besides, the temperature dependence of the lattice
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constant of InSb was given also in Ref. [118] in the range of 10-60 oC. Another ex-

perimental lattice constant value of 6.49 Å was tabulated in Ref. [119] for InSb.

The present lattice constant of InSb is about (2.3- 2.5 )% greater than these

measured values. In the literature, the first theoretical lattice constant values for

InSb were given by ab-initio pseudopotential calculations [114, 115, 120]; they

were 6.36 and 6.34 Å, respectively. The present lattice constant value of InSb is

about (4.4 - 4.7)% greater than these pseudopotential calculational results. The

first full potential calculations for InSb was also studied by Massidda et al [115].

They found that, the lattice constant of InSb by DFT/LDA-FP-LAPW calcula-

tions had better agreement with the experimental results than those of ab-initio

pseudo potential calculations [114, 115, 120]. The following two lattice constant

values (6.42 and 6.478 Å) in Table. 3.2 were again calculated by full potential

calculations [121, 122]. The present equilibrium lattice constant value of 6.643 Å

is found to be about (2.5 - 3.4)% greater then these first principles calculational

results[121, 122].

In the present work, the energy band structure of InSb has been calculated

by DFT/FP-LAPW-GGA for the present lattice constant of InSb. As it was

aimed for the previous two compounds, InN and InAs, the band structure of

InSb is evaluated mainly by the energy gaps at high symmetry points. In the

present first principles calculations, the energy gap of InSb is found to be direct.

The present order between the energy gaps, EΓ
g < EL

g < EX
g , is the same as it
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was reported in all previous theoretical works [77–80, 88–90, 121]. Besides, the

variation of the bands is found to be similar with the results given in these works

[77–80, 88–90, 121]. In both present and previously reported results [88–90, 121]

the energy variation of the highest valance band and the lowest conduction band

can be characterized by a very sharp slope at Γ point. The present energy of the

first conduction band state has a maximum along Γ-X and Γ-L directions. This

variation is exactly the same with the DFT/LDA-FP-LAPW results of Guo et al

[121]. But in the other calculations [80, 88, 90], the energy of the first conduction

band state approaches to L point with an approximately constant slope. In the

present work, the EΓ
g of InSb is found to be small (0.08 eV) as the uncorrected

direct band gap values reported in the previous works [89, 90, 121]. The present

semimetallic band structure of InSb at Γ point is corrected empirically. The

EΓ
g is shifted to its experimental value of 0.235 eV [26, 74, 85]. The half of the

energy difference between the present direct band gap and 0.235 eV is added to

the first conduction and last valence band state energies equally. The adjusted

energy band structure of InSb by DFT/FP-LAPW-GGA is shown in Fig. 3.6.

Table 3.5 gives the important features of the present and previously reported

band structures for InSb at high symmetry points. The enlarged energy gaps

at L and X points are very close to the values of 0.82 and 1.55 eV, respectively

which were calculated by DFT/LDA-FP-LAPW [90].

In the present work, the energy parameters of ETB have been obtained for
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Figure 3.6: The energy band structure of InSb by FP-LAPW (adjusted) (dotted line)
and ETB (solid line).
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Table 3.5: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for InSb compared to other
experimental and theoretical calculational results. All energies are in eV.

DFT a ETBa theoretical exp.
(adjusted) Non.PP b DFT c TBd PLe

Γv
1 −9.167 −9.167 −11.71 −10.52 −11.71 −11.71

Γv
15 −0.029 −0.029 0.00 0.00 0.0

Γc
1 0.206 0.206 0.25 0.24 0.25

Γc
15 2.822 2.822 3.16 2.66 3.16

Xv
1 −7.530 −7.530 −9.20 −8.54 −9.20 −9.0

Xv
3 −4.950 −4.950 −6.43 −5.84 −6.43 −6.4

Xv
5 −1.859 −1.859 −2.25 −2.52 −2.45 −2.4

Xc
1 1.493 1.493 1.71 1.71 1.71

Xc
3 1.564 1.564 1.83 2.23 1.81

Lv
1 −8.040 −7.986 −9.95 −9.13 −10.03

Lv
1 −4.691 −4.315 −5.92 −5.79 −6.81

Lv
3 −0.836 −1.398 −1.44 −1.08 −1.06 −1.05

Lc
1 0.810 1.401 1.03 0.70 0.99

Lc
3 3.608 2.799 4.30 4.13 5.46

Γv
15 − Γc

1 0.235 0.235 0.25b,d 0.24c,f 0.2351g 0.235k,l,m

0.18h 0.21i 0.26j 0.2352n

0.24o

0.18p

0.23r

Γv
15 −Xc

1 1.522 1.522 1.71b,c,d 0.6618g 1.55h 1.79o

1.82i

Γv
15 − Lc

1 0.839 1.430 1.03b 0.70c 0.99d

0.9743g 0.82h 1.02i

Γv
1 − Γv

15 9.138 9.138 11.71b,d 10.52c 11.57h 11.7u

10.9s (10.83, 11.05)t 11.2w

apresent work, bRef. [78], cRef. [77], dRef. [79], eRef. [71], fRef. [89], gRef. [80],
hRef. [90], iRef. [91], jRef. [88], kRef. [26], lRef. [85], mRef. [74] nRef. [86], oRef.
[76], pRef. [87], rRef. [84], sRef. [121], tRef. [122], uRef. [123], wRef. [124]
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InSb by the fitting process from the present band structure of DFT (Fig. 3.6).

The recalculated band structure of InSb by ETB is shown in Fig. 3.6. The

important features of the ETB band structure at high symmetry points are listed

in Table 3.5. The valence band structure of InSb is found to be exactly the same

by both present ETB and DFT calculations. The sharp and smooth variations

of the band structure of InSb around Γ and X points, respectively have been

produced successfully by the present ETB energy parameters. The energy gaps

of InSb at Γ and X points are found to be exactly the same by both ETB and

DFT calculations. The present EΓ
g value of 0.235 eV is very close to the values

calculated by EPP [80], DFT-LDA [77] and relativistic self consistent LMTO

scheme [89]. The present EΓ
g is about (6 - 9.6)% smaller than the corresponding

value calculated by nonlocal PP [78], tight binding Green’s functional approach

[79] and self-consistent PP [88]. The corrected band gap energy values reported

in Refs. [90, 91] are about (12-30)% smaller than the present EΓ
g . The calculated

band gap at X point is very close to the value of 1.55 eV which was obtained by

the corrected results of DFT/LDA calculations [90]. The discrepancy between the

present and the available experimental value [76] of EX
g is about 15%. The ETB

calculations of InSb give quietly high band gap energy at L point with respect

to the values reported in literature [77–91]. On the other hand, the width of the

valence band is the same for both present ETB and DFT calculations, but it is

about (13-22)% smaller than the available experimental [123, 124] and theoretical
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results [77–79, 90, 121, 122].
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CHAPTER 4

THE ELECTRONIC BAND STRUCTURE OF InNxAs1−x,

InNxSb1−x AND InAsxSb1−x ALLOYS

4.1 Introduction

There is currently considerable interest in InN , InAs and InSb because of

their optical and high temperature device applications. InN is a highly potential

material for the fabrication of high speed heterojunction transistors [1] and low

cost solar cells with high efficiency [2]. InAs and InSb are interesting narrow gap

semiconductors from the point view of optical spectroscopy and optoelectronic

applications [125]. Since InAs has a high electron mobility, it may prove an

important material for use in high speed electronics [11, 12]. InSb calls the

attention to have the smallest energy gap of any of the binary III-V materials.

This property often allows the fabrication of infrared imaging systems, free space

communications and gas phase detection systems [16, 17].

A new class of semiconductor alloys in which one of the constituent elements

is replaced by an element with highly dissimilar properties has been discovered

recently. These new ternary semiconductor alloys exhibit a range of unexpected
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characteristics. Particulary, the addition of a small amount of nitrogen in InAs

and InSb compounds leads to spectacular changes of the electronic properties

[21, 22, 87, 126–132]. On the other hand, the substitution of a small amount of

As in InSb indicates the similar drastic changes on the electronic properties of

InSb compound [23–29, 133–136]. The most important effect of the substitutions

in these InNxAs1−x, InNxSb1−x and InAsxSb1−x alloys is large reduction of the

fundamental band gap of InAs and InSb. In the literature, the aim dependent

reduction of fundamental energy band gap has been regulated by the substituent

compositions in InNAs, InNSb and InAsSb [21–29, 87, 126, 129–133, 135] alloys

grown by molecular beam epitaxy (MBE) [22, 24, 25, 27, 87, 130–132], metal

organic chemical vapor deposition (MOCVD) [21, 26, 28, 126, 129], Bridgman

[29] and hotwall epitaxy (HWE) [136] methods. Therefore these ternary alloys

are potential materials for room temperature infrared detectors, gas sensors and

lasers operating in near infrared (0.9-1.3 µm), mid - infrared (2-5 µm) and far

infrared ( 8-12 µm) regions [21, 22, 24–29]. In the literature, the most of the work

on InNxAs1−x, InNxSb1−x and InAsxSb1−x alloys are experimental. To the best

of author knowledge, there are a limited number of works [22, 87, 127, 128, 131,

132, 134, 135] in which the electronic structure of these ternary alloys has been

studied theoretically. In most of these theoretical works, the ternary alloys were

defined by only specific concentrations of N and As [22, 87, 127, 131, 132, 135].

In the present work, the electronic structure of InNxAs1−x, InNxSb1−x and
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InAsxSb1−x have been calculated by employing the empirical tight binding (ETB)

method. The calculations have been performed on alloys to introduce the band

gap bowing corresponding to the whole range of nitrogen and arsenic concentra-

tions. The results of the alloys considered in this work are separately discussed

in the following sections and concluded in Chapter 7.

4.2 Electronic structure of alloys

4.2.1 InNxAs1−x

In III-V semiconductors, the replacement of a few percent of the group V

element by small, highly electronegative and isoelectronic nitrogen atoms results

in a drastic reduction of the fundamental band gap of approximately 100 meV

per atomic percent of nitrogen [137, 138]. This effect of N has been confirmed for

InNxAs1−x alloys experimentally [21, 126, 130] with the concentration x < 18%.

The InNxAs1−x alloys with the N concentration range of 0 < x < 0.061 have been

grown by MOCVD for the first time by Naoi et al [126]. They indicated that, all

their samples had direct transition band structures and the increase in nitrogen

content made the band energy smaller, with a minimum band gap energy of 0.12

eV for InAs0.939N0.061 [126]. Therefore the band gap of InAs was able to be

decreased by approximately 260 meV with the inclusion of only 6.1% of nitrogen

at room temperature. In another work [130], the photoluminescence (PL) peak

energy was observed to be decreased with N composition in the InAsN layer of
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the InAsN/InGaAsP multiple quantum well; A 1% nitrogen increase in alloy

composition caused a shrinkage of 31 meV on the transition energy at 10 K. The

smallest transition energy was reported as 0.190 eV when the nitrogen content in

InAsN wells was determined to be 18% for the InNAs/GaAs multiple quantum

wells [21].

In theoretical side, the bowing parameter of the band gap as a function of x

has been studied using tight-binding method by Yang et al. [127] for x=0.25, 0.5

and 0.75 ordered InNxAs1−x alloys defined within a unit cell. The band gap of

InAs calculated in this work [127] was decreased by ∼0.48 eV by the inclusion

of 50% of nitrogen. In a recent work [128], the tight-binding calculations have

been carried out both maximally N -rich and As-rich cluster configurations for

InNxAs1−x alloys defined in a supercell. This study [128] has indicated that the

band gap of InNxAs1−x decreased to zero when x=0.17 and x=0.50 for maximally

N -rich and As-rich cluster configurations, respectively. In the same work [128],

the variation of the band gap of these configurations in InNxAs1−x alloys was

also studied for x > 0.75 but not for the metallic region.

In the present ETB work, the electronic band structure of InNxAs1−x has

been calculated for the full range of nitrogen concentration (0 < x < 1). The

lattice constant of the cubic unit cell (working cell) is defined for each gradually

increased nitrogen concentration (x) by use of the equilibrium lattice constant

values of InAs and InN in Vegard’s law equation (Eq. 2.52). The present ETB
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energy parameters for InNxAs1−x based on sp3d2 orbital set and nearest neighbor

interactions are defined by r−2 law (Eq. 2.4). The ETB energy parameters of

InAs and InN used in this calculation are given in Table 3.1. The present ETB

band structure results of InNxAs1−x alloys have been analyzed by the variation

of both energy band gap and conduction band edge around Γ due to the increase

of nitrogen concentration. Fig. 4.1 displays the present fundamental band gap

(EΓ
g ) variation of InNSb as a function of nitrogen concentration. The EΓ

g starts

to decrease from the bulk value of InAs (0.417 eV at 0 K) and reaches to its

minimum value at x=0.46. In Fig. 4.1, the EΓ
g passes to negative values at

x=0.12 (cross point). The overall bowing parameter has been calculated to be

4.06 eV.

Since the room temperature experimental results belong to the epitaxially

grown InNAs instead of bulk samples, we couldn’t compare the present EΓ
g val-

ues of 0 K with the PL peak energies directly for x < 0.061. In Ref. [126], the PL

peak energies corresponding to the fundamental gap energies of InNxAs1−x were

measured to be 0.34, 0.28 and 0.21 eV for x= 0.014, 0.019 and 0.034, respectively.

Therefore the band gap of InNxAs1−x is decreased by 0.04, 0.1 and 0.17 eV, re-

spectively with respect to the room temperature band gap value of InAs (0.38

eV). In the present work, approximately the same amount of decreased band gap

energies have been calculated for the same values of x except at x=0.014; they

are 0.013, 0.08 and 0.15 eV with respect to the band gap energy of InAs (0.417
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Figure 4.1: Band-gap energy vs composition (x) for InNxAs1−x alloys.
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eV at 0 K) considered in this work. On the other hand, the present cross point

of the bowing is more agreement with that (0.15) of the tight-binding calcula-

tions for maximally N -rich clusters in InNxAs1−x alloys [128] than that (0.5)

of the ETB calculations for ordered InNAs alloys [127]. The negative energy

gaps of InNxAs1−x alloys obtained in the present work were not calculated in

these works [127, 128], but they are predicted. The value of the overall bowing

parameter calculated in this work is comparable with the value of 4.22 eV which

was recommended in Ref. [139].

The calculated conduction band profiles of InNxAs1−x alloys for x= 0.0, 0.02,

0.06 and 0.12 are shown in Fig. 4.2. It is observed that the conduction band edge

is nonparabolic for intrinsic InAs as it was reported in the literature (sec. 3.2.2).

In the view of Fig. 4.2, we note that the increase of N concentration decreases

the values of conduction band edge and causes the interaction between the ni-

trogen level and the conduction band edge in InNxAs1−x alloys. Furthermore,

the increase of N concentration (x=0.02, 0.06) in InNxAs1−x alloys increases

the curvature of the conduction band edge around Γ point. Therefore a small

amount of N concentration decreases the electron effective mass in InNxAs1−x

alloys around Γ point.
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Figure 4.2: The conduction band dispersion calculated for InNxAs1−x alloys with x =
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4.2.2 InNxSb1−x

InSb has the smallest band gap of any of the binary III-V semiconductors

with an atmospheric transition window in the range of mid-infrared (3-5 µm). It

was experimentally indicated that [22, 87, 131, 132], this atmospheric transition

can access the range of (8-15 µm) when a small fraction of antimony is replaced

by nitrogen in InSb. Time resolve optical measurement [131] have been used to

observe an absorption edge of 15 µm at 290 K in an alloy with a nominal com-

position of InN0.006As0.994. In a recent work [22], the variation of the band gap

of InSb through incorporation of nitrogen was assessed optically by observation

of the emission spectra from InNSb LEDs and the transmission of light through

the material. In the same work [22], the room temperature experimental results

are modelled by
−→
k .−→p method and the sharp band gap decreasing of InNxSb1−x

has been reported for nitrogen concentration in the range of 0 < x < 0.01. The

smallest band gap has been calculated to be 0.065 eV with respect to the nitrogen

concentration of 0.01 [22]. On the other hand, the high-resolution electron energy

loss spectroscopy (HREELS) of the nitrided layer in InNxSb1−x alloys indicated

that a negative band gap alloy has been formed by the nitrogen-induced shift of

the conduction band [87]. In the same work, the room temperature HREELS re-

sults of InNSb alloy has been modelled by
−→
k .−→p model and the negative bowing

of the band gap was obtained for a wider range of 0 < x < 0.1 [87]. Besides,

the
−→
k .−→p calculational results [87] have given negative band gap in the nitrogen
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range of 0.02 < x < 0.1; the conduction band minimum is below the valance

band maximum indicating that the alloy is semimetallic.

In the present ETB work, the electronic band structure of InNxSb1−x alloys

has been calculated for the full range of nitrogen concentration. The dimension

of the unit cell (working cell) is calculated using the equilibrium lattice constant

values of InN (4.967Å) and InSb (6.643Å) (Table 3.2) in Eq. 2.52. The self

interaction ETB energy parameters of compounds used in this work are taken

from Table 3.1. The other ETB energy parameters are scaled for InNSb alloys

by r−2 law [48] as it is explained in sec. 2.4. In the present band structure

study, we have concentrated on the variation of the fundamental gap energy and

conduction band edge around the Γ point with respect to the increasing of the

nitrogen concentration in InNSb alloy. Fig. 4.3. displays the variation of the EΓ
g

due to the concentration of nitrogen for InNxSb1−x alloys. The variation gives

a large bowing with the smallest energy gap value at x=0.46. The InNxSb1−x

alloys are found to be metallic in the range of 0.14 < x < 0.76. The calculated

overall bowing parameter is 2.57 eV.

According to the recent resolved optical measurements [131], HREELS [87]

and response wavelength measurements of LEDs [22], the band gap of the epitax-

ially grown InNxSb1−x alloys had a very sharp variation for small concentrations

of nitrogen; the EΓ
g decreased by ∼ 100 meV with respect to the room temper-

ature band gap value of InSb (0.18 eV) in the nitrogen concentration range of
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Figure 4.3: Band-gap energy vs composition (x) for InNxSb1−x alloys.
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0 < x < 0.006. In the same range, the present reduction in the band gap is

calculated to be only 15 meV with respect to the band gap value of InSb (0.235

eV) at 0 K. Therefore the
−→
k .−→p model calculations [22, 87] of the experimen-

tal band gap values give a cross point (x=0.022, 0.011) much smaller than ours

(x=0.14) normally. On the other hand, the present ETB calculations give the

smallest band gap value of -0.24 eV at x=0.46, but approximately twice of this

band gap value was obtained in
−→
k .−→p model calculations [87] by the nitrogen

concentration of 0.1. Fig. 4.4 displays the variation of the conduction band edge

of InNxSb1−x alloys around Γ point for x= 0.0, 0.02, 0.06 and 0.14. As it is

reported above, Fig. 4.4 shows that the values of the conduction band edge are

decreased in InNxSb1−x alloys with increase of nitrogen concentration. Further-

more the curvature of the conduction band edge is increased by increasing of

nitrogen concentration (x= 0.02, 0.06, 0.14). Therefore a small amount of nitro-

gen concentration in InNxSb1−x alloys is sufficient to increase the speed of the

conduction electrons. This result was also reported by
−→
k .−→p model calculations

of InNxSb1−x alloys [131, 132].

4.2.3 InAsxSb1−x

InAsxSb1−x alloys with a small amount of As content have attracted consid-

erable interest because of their potential for the fabrication of infrared sources

and detectors. Although the energy gap of InAs (0.417 eV at 0 K) is larger than
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Figure 4.4: The conduction band dispersion calculated for InNxSb1−x alloys with x =
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that of InSb (0.235 eV at 0 K) by 0.18 eV, a small amount of As in InSb is

sufficient to decrease the band gap of InSb to the values correspond to the long

wavelengths in 8-12.5 µm spectral range. The variation of the optical properties

of InAsxSb1−x was first investigated on bulk-grown polycrystalline samples by

Woolley and Warner [133]. The lowest energy gap was measured to be 0.1 eV

in this work [133], for x = 0.35. InAsxSb1−x materials over the complete com-

position range 0 < x < 1 have been grown on InAs and characterized by X-ray

diffraction and optical absorption measurements at room temperature and 10 K

[24, 25]. The band gap energies of these materials correspond to the cutoff wave-

lengths of 12.5 and 8.7 µm were measured to be 0.099 and 0.14 eV for x = 0.32 at

room temperature and 10 K, respectively [24, 25]. In Ref. [140], the lowest band

gap of InAsxSb1−x has been reported to be 0.1 for x =0.4. Huang et al [28] in-

vestigated the band gap variation of InAsxSb1−x alloys as a function of complete

composition range by PL spectra and measured the lowest band gap of 0.14 eV

for x = 0.4 at 10 K. In a recent work [29], the infrared transmission spectra of

InAsxSb1−x alloys in single bulk crystal structure show a continuous decrease in

optical energy gap with the increase of As content in InSb. In this work [29], the

room temperature absorption edges correspond to the fundamental energy gaps

were measured to be 0.16 and 0.15 eV for x= 0.02 and 0.05 , respectively. To the

knowledge of authors, there are only two theoretical works [134, 135], in which

the band gap bowing of the of InAsxSb1−x alloys has been predicted by empirical
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pseudopotential calculations.

In the present ETB work, the electronic band structure of InAsxSb1−x has

been calculated for full composition range of As. The equilibrium lattice constant

values of InAs (6.194 Å) and InSb (6.643 Å) (Table 3.2) have been used to

calculate the dimension of the unit cell by Vegard’s law equation (Eq. 2.52). The

present lattice constant values have been compared by only the available room

temperature lattice constant values of two alloys; [24, 29] the present lattice

constant value of 6.62 and 6.48 Å for x= 0.05 and 0.35 are close to the measured

lattice constant values of 6.4606 [29] and 6.3 Å [24] corresponding to the same

As compositions, respectively. This similarity confirms the validity of Vegard’s

law in the lattice constant calculations of InAsxSb1−x alloys.

In ETB band structure calculation of InAsxSb1−x alloys, the nearest neighbor

and sp3d2 orbital interactions are taken into account. The ETB energy parameters

of InAs and InSb are given in Table 3.1. The self interaction ETB energies have

been used in the calculations directly, but Vss, Vxx, Vxy, Vscpa, Vsapc, Vdapc

and Vdcpa have been scaled according to r−2 law [48] for InAsxSb1−x alloys, as it

is explained in sec. 2.4. In the present band structure study, we have investigated

the variation of the fundamental band gap and conduction band edge with respect

to the complete concentration range of As. Fig. 4.5 displays a variation of EΓ
g

as a function of x. In view of Fig. 4.5, we note that the overall bowing for

Γ point transition is large and downward. The energy gap starts to decrease
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Figure 4.5: Band-gap energy vs composition (x) for InAsxSb1−x alloys.

80



from the band gap value of InSb (0.235 eV at 0 K) and reaches to the lowest

value at x = 0.41. Furthermore, InAsxSb1−x alloys are metallic in the range of

0.21 < x < 0.63. The predicted bowing parameter by the best fit of our results

to the expression given in Eq. 2.56 is 1.5649 eV.

In the literature, the bowing parameter was predicted to be 0.596 eV at room

temperature by optical absorption [23]. The bowing parameter of InAsSb alloys

estimated from low temperature PL measurements was reported to be higher

than its value at room temperature; it was 0.6853 [25] and 0.672 eV [26] at 0

K. The bowing parameter predicted by EPP calculations for InAs0.5Sb0.5 alloy

were 0.7 [134] and 0.72 eV [135]. Since the present ETB energy parameters are

adjusted to have the band gap values of bulk InSb and InAs at 0 K only, the

present overall bowing parameter is found to be quiet high with respect to the

reported values in the literature [25, 26, 135, 134, 23].

The present band gap values of InAsxSb1−x alloy have been compared with

the PL spectra energies measured at T = 10 and 79 K for certain concentrations of

As. the present band gap value of 0.163 eV is 19 % smaller than the PL value [25]

of 0.20 eV for x = 0.05. The discrepancy increases to 39% when the concentration

of As is 0.08 [25]. On the other hand, the present band gap value of 0.239 eV is

23 % smaller than the PL value of 0.31 eV for x = 0.87 (As rich InAsSb alloy)

[25]. In this experimental study [25] the end point energy (at x = 1) corresponds

to the band gap value of InAs was measured to be ∼ 0.5 eV instead of ∼ 0.4
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eV. However, the present end point energy at x = 1 is in close agreement with

the value of literature. The present band gap value of 0.04 for x = 0.15 is much

smaller than the corresponding PL value [28] of 0.135 eV measured at 10 K. On

the other hand, the calculated band gap value of 0.19 eV at x = 0.83 (As rich

InAsSb alloy) is greater than the corresponding low temperature PL value of

0.13 eV [28]. The present band gap value of 0.303 eV for x = 0.917 is found to

be 11% smaller than the measured value of 0.34 eV for the InAs0.917Sb0.083 alloy

grown on a lattice matched substrate (GaSb) at 79 K [27]. The PL peak energies

of the InAs0.71Sb0.29 and InAs0.85Sb0.15 alloys at 10 K were reported to be 0.2

and 0.28 eV, respectively [26]. The corresponding values are found to be 0.066

and 0.22 eV by present ETB calculations.

In the present ETB calculations, the concentration of As (x = 0.41) corre-

sponds to the lowest band gap of InAsxSb1−x is very close to the value of 0.38

given by PL measurements [25].

Fig. 4.6 displays the variation of the conduction band edge of InAsxSb1−x

alloys around Γ point for x = 0, 0.02, 0.06 and 0.15. It is found that the

increase of the concentration of As in InAsxSb1−x increases the curvature of the

conduction band edge around Γ point relatively. Therefore a small amount of As

concentration in InAsxSb1−x alloys decreases the effective mass of the conduction

electrons around Γ point.
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Figure 4.6: The conduction band dispersion calculated for InAsxSb1−x alloys with x
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CHAPTER 5

THE ELECTRONIC BAND STRUCTURE OF AlN, AlSb, AlAs

AND THEIR TERNARY ALLOYS WITH In.

5.1 Introduction

The III-V compounds, AlN , AlSb and AlAs, are important for their sev-

eral electronic and optoelectronic applications. For example, AlN is a candidate

material for short wavelength light emitting diodes (LEDs), laser diodes (LDs)

and optical detectors as well as for high temperature, high power and high fre-

quency devices [6, 7, 8]. Because AlN has a wide band gap, a high melting point

and a high thermal conductivity. The bulk AlSb with its reported band gap

of 1.7eV [141] has been considered as a potential material for infrared detectors

and optical holographic memories [18, 19]. Epitaxial AlSb has been used as a

component of resonant tunneling diodes [20]. The third compound considered in

this work, AlAs, has been widely used as a barrier material in modulation-doped

heterostructures and quantum well of a lattice matched heterojunctions [13, 14].

In recent years, some of the ternary alloys of AlN , AlSb and AlAs with In

have been investigated to find out the new potential materials for electronic and
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optoelectronic devices. It has been reported [32] that the Al1−xInxN alloys can

have applications as a cladding layer or an active layer for LEDs and LDs emit-

ting an extremely wide spectral region covering from deep ultraviolet (UV) to

infrared. In another recent work [33], the Al1−xInxN alloys have been considered

as a potential material for thermoelectric power devices. The AlAs based ternary

Al1−xInxAs alloys have been reported as an important buffer layer materials be-

tween InAs and substrate in the technology of optoelectric devices such as lasers

and single electron transistors [34, 35]. Recently, Al1−xInxAs alloys have been

grown also for ultrafast switching device applications [36]. On the other hand the

epitaxial growth of AlInAs on GaAs has been reported as a candidate material

for triple function solar cells in a very efficiency [37]. The ternary AlInSb alloys

have been used as a buffer layer for multiple quantum lasers [38]. Recently, it

has been reported that, AlInSb alloys can be also a potential material to fabri-

cate high efficiency low cost photovoltaic cells and photodetectors [39]. Because

of the electronic and optoelectronic applications of AlN , AlSb and AlAs men-

tioned above, the electronic band structure of these binary semiconductors has

been extremely studied in the literature theoretically by either first principles

and empirical calculational methods [5, 55, 82, 92, 95, 82, 103, 116, 142–154].

In first principles calculations based on DFT [5, 92, 95, 97, 116, 143–146, 149,

152–154], the electronic band structure of binary compounds has been calculated

to be very close to the experimental results by including certain approximations
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such as local density (LD), generalized gradient (GG) and (GW) (dressed Green’s

function, G, and dynamical screened interaction, W). But the computational ef-

fort of these methods are still prohibitive for applications to systems containing a

large number of atoms like alloys [152]. Actually, the first principles calculations

have been limited by certain concentrations of constituents of alloys [152]. On the

other hand, the empirical approaches such as empirical pseudopotential (EPP)

and empirical tight binding (ETB) methods provide an attractive possibility for

the electronic structure calculations of large sized systems with small sets of ba-

sic functions [142, 55, 82, 147, 150, 153]. By considering this fact, in the present

calculations which extend to the electronic band structure of ternary alloys, we

have used ETB method. The emphasis in those calculations was on describing

well the valence bands and energy gaps. To establish the accuracy of the method

and to obtain the necessary tight binding parameters, the electronic properties

of the bulk AlN , AlSb and AlAs were studied first. The ETB energy parameters

of the compounds based on the present first principles calculations are listed in

Table 5.1. In the present chapter, the electronic band structure of compounds

and the band gap bowing of Al1−xInxN , Al1−xInxAs and Al1−xInxSb alloys are

separately discussed in the following sections and the results are evaluated in the

last chapter.
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Table 5.1: Empirical matrix elements of the sp3d2 Hamiltonian in eV.

AlN AlAs AlSb
Esa −10.6965 −6.5244 −6.0802
Esc −0.1173 −2.7693 −1.8607
Epa 3.8001 1.9987 0.2317
Epc 8.5553 2.1653 2.6651
Eda 19.9097 9.2488 7.7373
Edc 18.5374 9.0209 6.7137
Vss −9.0416 −6.8414 −5.8402
Vxx 6.8000 2.4485 1.2375
Vxy 8.6429 4.5432 3.6401
Vpcsa 6.8676 5.7843 4.2739
Vpasc 7.4512 4.3012 4.0837
Vdapc 9.2931 4.8533 4.0107
Vdcpa 0.0000 3.6816 3.6724

5.2 Electronic band structure of compounds

5.2.1 AlN

The zinc-blende structure of AlN is characterized by the lattice constant,

a. At the first stage of the work, the equilibrium value of a is determined by

calculating total energy of AlN by FP-LAPW for a set of volumes and fitting

these to the Murnaghan equation [53]. We have adopted the value of 0.9 Å for

Al and 0.846 Å for N as the MT radii. The electronic configuration of AlN is

Al: Ne (3s2, 3p1) and N : He (2s22p3). In the calculations, the electrons of Al in

(1s22s22p6) and in ( 3s23p1) are defined as the core and valence band electrons,

respectively. Similarly, the inner shell electrons of N in (1s2) are distinguished

from the valence band electrons of N in (2s22p3) shell. The equilibrium lattice

87



Table 5.2: The theoretical and experimental lattice constant values (ath, aexp) in Å for
AlN , AlAs and AlSb in cubic phase.

Compound ath aexp

AlN 4.3956a 4.365i

4.342b

4.394c

4.336d 4.38j

4.40e

4.337f

4.32g

4.345h

AlSb 6.233a 6.135n

6.06k,l

6.127m

AlAs 5.738a

5.59k

5.614l,o 5.652n

5.60p

5.69p

5.78p

5.648r

5.62s 5.660t

apresent work, bRef. [95], cRef. [97], dRef. [149], eRef. [103], fRef. [155], gRef.
[101], hRef. [102], iRef. [156], jRef. [157], kRef. [116], lRef. [159], mRef. [5],
nRef. [158], oRef. [168], pRef. [165], rRef. [166], sRef. [167], tRef. [164]

constant of c-AlN calculated in this work is given in Table 5.2 together with the

experimental and other calculated lattice constant values of c-AlN presented in

the literature.

The lattice constant of c-AlN obtained by the present volume optimization

calculations seems to be accurate when compared with the available experimental

value of 4.38Å [157]. The present lattice constant is approximately 0.68% greater

than the other experimental value (4.365 Å) corresponds to X-ray diffraction
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[156]. On the other hand, our lattice constant is very close to the lattice constant

values of 4.394 Å [97] and 4.40 Å [103] calculated by plane wave pseudopotential

(PWPP) and FP-LAPW methods, respectively. In both our and these calcu-

lations, the exchange correlation energy is defined by GG approximation. The

present lattice constant of c-AlN is approximately (1.15 − 1.73)% greater than

those calculated by FLMTO [101, 102] and PWPP [95, 155] methods within LDA.

The present value of a is also 1.36% greater than the lattice constant calculated

by Hartree-Fock (HF) including density functional corrections [149].

At the second stage of the work, the FP-LAWP method within the frame work

of the DFT has been employed to calculate the band structure c-AlN . Since the

aim of this study extends to the calculation of the bowing parameters of ternary

alloys correspond to AlN , we have focused mainly on the energy gaps at high

symmetry points. It is found that, the band gap of AlN is indirect in zinc-blende

phase, furthermore, the variation of energy bands is in agreement with the results

of previous reports [95, 97, 143, 145, 146, 149, 152]. But, the present indirect

band gap at X point (3.31 eV) is found to be narrower than its experimental

value of 5.34 eV [151]. The same result was reported before [108]; the energy gaps

calculated by DFT were found to be smaller than the corresponding experimental

energy gaps. The present narrow energy gap of DFT at X point has been adjusted

to the experimental indirect band gap of 5.34 eV [151] by addition of necessary

energy corresponding to the effects which are not included in the calculations

89



initially. The adjusted energy band structure of c-AlN by FP-LAWP is shown in

Fig. 5.1. Table 5.3. gives the important features of the present and previously

reported band structures for c-AlN at high symmetry points. The energy gaps

at Γ and L which are enlarged to the values 6.094 and 9.280 eV are in agreement

with the results reported before [5, 143].

At the third stage of the work, the energy parameters of ETB have been

derived for c-AlN from the band structure of DFT (Fig. 5.1) by the fitting process

explained in sec. 2.4. The band structure of c-AlN recalculated by ETB is shown

in Fig. 5.1. The important features of the band structure at high symmetry

points are listed in Table 5.3. The close agreement between the band structure

of c-AlN by ETB and DFT at Γ and X points (Fig. 5.1) carries out that, the

energy parameters of ETB can be used surely to calculate the band structure of

alloys corresponding to c-AlN . The present indirect energy gap which is fitted

to the experimental value of 5.34 eV is close to the calculated values of 4.9 [143]

and 5.49 eV [153]. In these theoretical works, the first principle quasiparticle GW

calculations [143] and TB calculations [153] with sp3d5s∗ nearest neighbor model

have been used for the band structure of c-AlN . In the present ETB work, the

energy gaps are calculated to be 6.094, 5.34 and 8.150 eV at Γ, X and L symmetry

points, respectively. The present energy gap value at Γ (EΓ
g ) is very close to the

value of 6.00 eV calculated by first principles calculations with quasiparticle GW

approach [143]. The present energy gap value at X (Ex
g ) is 12.35% smaller than
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Figure 5.1: The energy band structure of c-AlN by FP-LAPW (adjusted) (dotted
line) and ETB (solid line).
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Table 5.3: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for cubic AlN compared to
other experimental and theoretical results. All energies are in eV.

DFT a ETBa theoretical exp.
(adjusted) LAPW b LDAc GW c

Γv
1 −15.882 −15.882 −14.8 −15.1 −17.0

Γv
15 −1.026 −1.026 0.01 0.0(3) 0.0(3)

Γc
1 5.068 5.068 4.2 4.2 6.0

Γc
15 13.381 13.381 12.3 12.3(3) 14.6(3)

Xv
1 −13.266 −13.266 −12.0 −12.3 −14.3

Xv
3 −5.862 −5.862 −4.9 −5.0 −5.6

Xv
5 −2.786 −2.786 −1.8 −1.8(2) −2.1(2)

Xc
1 4.313 4.313 3.2 3.2 4.9

Xc
3 9.545 9.545 8.4 8.4 10.5

Lv
1 −13.885 −13.811 −12.7 −12.9 −14.9

Lv
1 −6.798 −5.282 −5.9 −4.0 −6.7

Lv
3 −1.506 −2.631 −0.5 −0.5(2) −0.6

Lc
1 8.254 7.124 7.3 7.3 9.3

Lc
3 10.742 11.372 9.7 11.0(2) 13.2

Γv
15 − Γc

1 6.094 6.094 4.2b 4.2c 6.0c

4.58d 6.00e 4.75f

4.13f

Γv
15 −Xc

1 5.34 5.34 3.2b 3.2c 4.9c,e 3.38d

3.40d 4.45g 4.26g 5.34l

4.35h 3.31i 5.49j

4.5k 6.2k

Γv
15 − Lc

1 9.280 8.150 7.3b, 7.69d 7.3c 9.3c,e

Γv
1 − Γv

15 14.856 14.856 14.8b 15.1c 17.00c

15.01g (14.83, 14.87)i 15.41j

apresent work, bRef. [152], cRef. [143], dRef. [92], eRef. [5], fRef. [97], gRef.
[149], hRef. [95], iRef. [103], jRef. [153], kRef. [148], lRef. [151].

92



the corresponding value reported in Ref. [143]. In Vurgaftman et al. review paper

[5] the energy gap of c-AlN at X and Γ points were recommended as 4.9 and 6.00

eV, respectively. The present energy gap values at Γ and L symmetry points are

greater than the corresponding gaps calculated by DFT+LDA [143, 152], LMTO

(linear muffin tin orbital)+LDA [92]. In the present work, the valance band width

is calculated to be 14.856 eV which is very close to the values of 14.87 [103] and

14.8 eV [152] calculated by FP-LAPW method within the local density approach.

5.2.2 AlSb

AlSb which is always in the zinc-blende phase is characterized experimentally

by the lattice constant value of 6.135 Å [158]. In the present work, the equi-

librium lattice constant of AlSb is obtained by FP-LAPW following the same

calculation steps defined in the previous section for AlN . In the FP-LAPW cal-

culations, we have adopted the value of 0.9Å for Al and 1.2 Å for Sb as the

MT radii. The electronic configuration of AlSb is Al: Ne (3s2, 3p1) and Sb: Kr

(4d105s25p3). The electrons of Al in (1s22s22p6) and in ( 3s23p1) are defined as

the core and valence band electrons, respectively. Similarly, the inner shell of Sb

in (1s22s22p63s23p63d104s24p64d10) are distinguished from the valence electrons

of Sb in (5s25p3). The equilibrium lattice constant of AlSb calculated in this

work is given in Table 5.2 together with the experimental and other calculated

lattice constant values given in the literature. The present lattice constant value
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of 6.233 Å is approximately 1.6% greater than the experimental value which is

measured by X ray diffraction [158]. The lattice constant value of AlSb was given

to be 6.06 Å by PPPW calculations [159, 116]. The present value of a is also

greater (2.85%) than the value of these theoretical works. On the other hand,

the present value of a is 1.73 % greater than the recommended value given in

Ref. [5].

The FP-LAPW method within the frame work of the DFT has been employed

to calculate the band structure of AlSb. The band gap structure of AlSb is found

to be indirect along Γ−X direction. The variation of the bands is similar with the

results given in the literature [82, 150, 154]. But, as it is obtained for AlN , the

band gap of AlSb E4
g by DFT is small (1.287 eV) with respect to its experimental

value of 1.686 eV at 27 K [158, 160]. Similar result is found for the energy gap at

Γ; it is smaller than corresponding energy gap (2.384 eV) measured at 25 K [160].

In the present work, the calculated narrow indirect gap of AlSb along the Γ−X is

adjusted to the corresponding experimental value as it is explained in Ref. [108].

The adjusted band structure of AlSb is shown in Fig. 5.2. The adjusted energy

gap is located at 0.825% of the way along Γ−X. The energy gaps at L and Γ are

found to be 1.981 and 2.526 eV with respect to the broadened indirect energy gap,

respectively. The order between the energy gaps, EΓ
g > EL

g > E4
g is the same as

it was reported in Refs. [147, 161, 162]. Table 5.4 gives the important features of

the present and previously reported band structures for AlSb at high symmetry
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points. In the present work, the ETB energy parameters needed for the band

structure calculations of ternary alloys corresponding to AlSb have been derived

from the adjusted DFT eigenvalues (Table 5.4) by a fitting process explained in

sec. 2.4. The band structure of AlSb recalculated by ETB is shown in Fig. 5.2.

The important features of the band structure are listed in Table 5.4. The energy

gaps at4 and Γ points (1.659 and 2.526 eV) are approximately the same for ETB

and DFT, results. (Fig. 5.2). The present indirect energy gap with the value of

1.659 eV is located at Kx = 0.45, Ky = Kz = 0 along Γ − X direction. The

same position was obtained in Ref. [150] by TB calculations within the genetic

algorithm. The present value of E4
g by ETB calculations is (0.54-15.28)% smaller

than the measured and calculated values reported in Ref. [141, 116, 160, 161, 158].

The present E4
g is only 2.72% greater than the corresponding value of TB-genetic

algorithm [150]. The present EL
g is 21.28% greater than its experimental value of

2.33 eV [162]. On the other hand, the width of the present valence band (9.893

eV for both DFT and ETB) is closer to the corresponding values of DFT+LDA

[77] and TB-genetic algorithm approaches [150] than that of the PP method given

in Ref. [147].

5.2.3 AlAs

In the present work, the equilibrium lattice constant of AlAs corresponding

to the total energy minimization has been found to be 5.738 Å by FP-LAPW

95



Table 5.4: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for AlSb compared to other
experimental and theoretical calculations results. All energies are in eV.

DFT a ETBa theoretical exp.
(adjusted) DFT b PP c TBd

Γv
1 −10.180 −10.180 −10.77 −11.10 −10.975

Γv
15 −0.287 −0.287 0.00 0.00 0.00 0.00e

Γc
1 2.239 2.239 2.05 2.23 2.3 2.38e

Γc
15 3.184 3.184 3.50 3.52 5.075 3.740e

Xv
1 −8.036 −8.036 −8.72 −9.09 −6.995

Xv
3 −5.639 −5.639 −5.44 −6.01 −3.192 −2.80f

Xv
5 −2.390 −2.390 −2.31 −2.54 −2.858 −2.40f

Xc
1 1.573 1.573 2.08 1.64 1.632 1.69e

Xc
3 1.579 1.579 3.02 1.84 2.614

Lv
1 −8.085 −8.606 −9.30 −9.70

Lv
1 −5.438 −4.697 −5.58 −5.91

Lv
3 −1.165 −2.060 −0.90 −1.48

Lc
1 1.695 2.539 1.94 1.84

Lc
3 3.823 2.591 4.84 4.29 2.33e

Γv
15 − Γc

1 2.526 2.526 2.05b 2.23c 2.3d 2.384k

2.384g 2.30h 1.41i 2.30k

2.11i

Γv
15 −∆ 1.685 1.659 1.615d 1.686g 1.57h 1.686k

1.06i 1.53i 1.956j 1.62k

2.009j 1.65l

Γv
15 − Lc

1 1.981 2.826 1.94b 1.84c 3.476d 2.33e

2.327g

Γv
1 − Γv

15 9.893 9.893 10.77b 11.10c 10.975d

a present work , b Ref. [77], c Ref. [147], d Ref. [150], e Ref. [162], f Ref. [163], g

Ref. [141], h Ref. [82], i Ref. [154], j Ref. [116], k Ref. [158, 160], l Ref. [161].
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Figure 5.2: The energy band structure of AlSb by FP-LAPW(adjusted) (dotted line)
and ETB (solid line).
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calculations based on DFT within GG approximation. In FP-LAPW calcula-

tions, we have adopted the value of 0.85Å for Al and 1.15 Å for As as the MT

radii. The electronic configuration of AlAs is Al: Ne (3s2, 3p1) and for As: Ar

(3d104s24p3). The electrons of Al in (1s22s22p6) and in ( 3s23p1) are defined as

the core and valence band electrons, respectively. Similarly, the inner shell of

As in (1s22s22p63s23p63d10) are distinguished from the valence electrons of As in

(4s24p3). The experimental, present and other calculated lattice constant values

of AlAs are given in Table. 5.2. The present lattice constant value is approxi-

mately 1.37 % and 1.52 % greater than the values of 5.6606 Å [164] and 5.652

Å [158] measured at T= 0oC and T=0 K, respectively. On the other hand, the

present value of a is (0.84 - 2.64)% greater than its calculated values reported in

Refs. [116, 159, 165–168]. The present lattice constant is normally much closer

to those of DFT within GGA functional of Perdew and Wang (PW) [165] and

Hamprecht, Cohen, Tozer and Handy (HCTH) [165] than the values of DFT

calculated by LD approximation [159, 165, 166].

In the present FP-LAPW calculations, the energy gap of AlAs is indirect at

X point. In most of the theoretical works [108, 116, 147, 165, 168, 169, 170],

the indirect energy gap of AlAs located at X point, but in Refs. [5, 150, 159], it

located along Γ−X direction. In the present work, the energy gap at L point is

found to be larger than the direct gap (EΓ
g ); this result is consistent with some

calculations [147, 166, 169, 170] and in disagreement with others [5, 147, 150, 168]
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in which EL
g is smaller than EΓ

g . The present EX
g (1.860 eV) and EΓ

g (2.526 eV)

are found to be smaller than the available experimental energy gaps [162, 170] at

X and Γ points. As it is done for both AlN and AlSb, the discrepancy between

the present and experimental energy gap of AlAs at X point has been lowered by

fitting the present indirect energy gap to its experimental value of 2.25 eV [171].

Fig. 5.3 shows the band structure of AlAs with adjusted energy gaps at X, Γ

and L points. The important features and adjusted energy gaps of DFT calcula-

tions for AlAs are given in Table 5.5.

In the present work, the ETB energy parameters necessary for the electronic

band structure of ternary alloys correspond to AlAs have been derived from the

present eigen values of DFT (adjusted), by least square fitting. The recalculated

band structure of AlAs by ETB has been shown in Fig. 5.3. The important

features and energy gaps of ETB calculations are listed in Table 5.5 together

with the experimental and other calculational values for comparison. In both

present ETB and adjusted DFT calculations, the energy gap at Γ point is found

to be 2.815 eV. The value of the present direct band gap is (6.7 - 12.30)% smaller

than the direct band gap values reported by TB calculations within generic [150],

Slater-Koster [147] and semi-empirical [168] algorithms. On the other hand the

present EΓ
g is (0.89 - 12.6)% greater than the corresponding values given by

ETB-orthogonal plane wave (OPW) [169] and DFT-LDA calculations [170]. The

value of present EL
g (3.566 eV) is approximately (0.75 - 1.2 eV) greater than

99



-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 41 81

W                 L                 
�

       vector                    X                           K

E
n

e
rg

y
 (

e
V

)

k vector 

Figure 5.3: The energy band structure of AlAs by FP-LAPW (adjusted) (dotted line)
and ETB (solid line).
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Table 5.5: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for AlAs compared to other
experimental and theoretical calculations results. All energies are in eV.

DFT a ETBa theoretical exp.
(adjusted) ETBb ETBc DFT d

(GF ) (LCAO)
Γv

1 −11.741 −11.741 −11.66 −11.48 −11.95
Γv

15 −0.369 −0.369 0.00 0.00 0.00
Γc

1 2.448 2.448 3.21 2.50 2.79
Γc

15 4.532 4.532 4.57 4.57 4.48
Xv

1 −9.776 −9.776 −9.42 −9.61 −9.63
Xv

3 −5.652 −5.652 −5.54 −5.20 −5.69
Xv

5 −2.462 −2.462 −1.97 −2.01 −2.38
Xc

1 1.882 1.882 2.25 2.38 2.37
Xc

3 2.614 2.614 2.61 2.81 3.84
Lv

1 −10.331 −10.159 −10.21 −10.14 −10.28
Lv

1 −5.750 −4.880 −5.87 −5.22 −5.95
Lv

3 −1.172 −2.230 −0.71 −0.80 −0.88
Lc

1 2.512 3.198 2.73 2.57 2.81
Lc

3 3.823 3.850 4.58 5.25 5.86
Γv

15 − Γc
1 2.815 2.815 3.21b 2.50c 2.79d 3.13i

3.018e 3.130f 2.88f

2.048g 2.9h 3.14h

Γv
15 −Xc

1 2.25 2.25 2.25b 2.38c 2.37d 2.229i

2.1714,e 2.223f , 2.14f 2.25j

2.234,h 2.254,h 1.26k

1.32k 1.42k 1.39k

1.81k 1.66k 2.18l

2.32m 2.543n

Γv
15 − Lc

1 3.566 3.566 2.73b 2.57c 2.81d

2.351e 2.581f , 2.91f

2.35h 2.53h

Γv
1 − Γv

15 11.373 11.373 11.66b 11.48c 11.95d

15.728e 12.020h 12.41h

a present work , b Ref. [79], c Ref. [172], d Ref. [77], e Ref. [150], f Ref. [147], g

Ref. [159], h Ref. [5],i Ref. [162], j Ref. [170], k Ref. [165], l Ref. [108],
m Ref. [158] , n Ref. [116]
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the corresponding values given in the literature [5, 147, 150, 168–170]. The

discrepancies between the present and experimental [162] energy gaps at Γ and

L points are approximately 10.0% and 40.0%, respectively. The present valence

bandwidth value of 11.373 eV (Table 5.5) is very close to the values given by

ETB-OPW [169], ETB-LCAO [168] and DFT-LDA [170] calculations. Therefore,

the present ETB energy parameters of AlAs can be considered to be weak for

the L point, but they are sufficiently strong to give the valance bandwidth and

the energy gaps at X and Γ symmetry points.

5.3 Electronic structure of ternary alloys

5.3.1 Al1−xInxN

Although most of the work reported so far refers to the stable wurtzite phase of

the Al1−xInxN alloys, the metastable cubic modification arises as an alternative

for device applications. The successful growth of cubic Al1−xInxN films [171] was

followed by the theoretical investigations on their thermodynamical structural

and electronic properties [173–178].

In the present work, the electronic structures of Al1−xInxN alloys in cubic

phase have been calculated by ETB. Wright and Nelson [173] showed that Ve-

gard’s law [57] is valid to define the unit cell of the AlInN alloy; because the

equilibrium unit cell volume was only 0.4% smaller than its average value. By

considering this fact, here we simply used the Vegard’s law equation (Eq. 2.53)
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to obtain the indium concentration (x) dependent lattice constant values (aav) of

Al1−xInxN alloys corresponding to the lattice constant values of AlN (4.395Å)

and InN (4.967Å) (present work, Table 5.2). Since only the nearest neighbor in-

teractions are taken into account, the disposable interaction parameters of ETB

obtained for AlN and InN are sufficiently used for the electronic structure cal-

culations of Al1−xInxN alloys as explained in sec. 2.4.

The variation of the direct and indirect band gap energies (EΓ
g and Ex

g ) as a

function of In concentration (x) is plotted in Fig. 5.4 for Al1−xInxN in zinc blende

phase. Fig. 5.4 also comprises the average EΓ
g and EX

g values of concentration

(x), by using the band gap energies of Al1−xInxN alloys calculated as a function

of AlN (EΓ
g = 6.094 eV and EX

g = 5.34 eV) and InN (EΓ
g = 0.59 eV and

EX
g =3.375 eV) (Table 3.3). The values of the EΓ

g and EX
g have been found to be

deviated from the linear behavior of EΓ
g (av) and EX

g (av). In view of Fig. 5.4,

we note that the overall bowing for both Γ and X point transitions are small and

downward. The small deviation of Eg from linearity might be explained by small

mismatching between the lattice constant values of AlN and InN . In the present

work, the bowing parameter, b, which shows the deviation of Eg from linearity has

been calculated by the best fit of our results to Eq. 2.57. The resulting bowing

parameters for EΓ
g and EX

g of Al1−xInxN alloy are given in Table 5.6. The

corresponding bowing parameters reported in Refs. [101, 173, 174, 176, 178, 180–

182] are listed in Table 5.6 for comparison. In general, the bowing parameters
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Figure 5.4: Dependence of EΓ
g (solid line), EX

g (dotted line), EΓ
g (av) (zig-zag line) and

EX
g (av) (dashed line) of Al1−xInxN on the In composition (x).
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Table 5.6: The bowing parameters (in eV) for direct and indirect transitions of alloys
at Γ and X symmetry points

Alloys b(EΓ
g ) b(Ex

g )

Al1−xInxN 1.2521a 0.5051a

2.53b,c,d 1.45b

1.32e −0.51e

2.729f 3.624f

6.9g

3.5h

2.384i

2.726j

2.5k 0.61k

Al1−xInxSb 0.578a 0.609a

0− 0.43l

0.445j

Al1−xInxAs 2.664a 3.324a

0.729j

0.24− 0.74l −0.5− 0.0l

0.52m

0.74n

0.24o

0.86p

apresent work, bRef. [174], cRef. [173], dRef. [179], eRef. [176], fRef. [178], gRef.
[180], hRef. [101], iRef. [181], jRef. [182], kRef. [139] , mRef. [190], lRef. [5],
nRef [188], oRef. [158], pRef. [189]
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obtained previously at Γ and X points for Al1−xInxN alloys are high because of

using high energy gaps for both InN and AlN at the end points [101, 139, 173,

174, 176, 179–182]. The bowing parameters obtained for wurtzite Al1−xInxN

alloys by optical absorption spectroscopy [101, 181, 180, 183] are evidently larger

than those of cubic Al1−xInxN alloys studied by either empirical [174, 177] or first

principles calculations [173, 175, 176, 178]. The present bowing parameter (1.252

eV) predicted for the energy gap along Γ −→ Γ of Al1−xInxN alloy is close to the

value of b (1.32 eV) predicted by the results of first principle calculations [176].

On the other hand, the energy gap calculated by optical absorption spectroscopy

[184] for wurtzite Al1−xInxN alloys was found to be 5.80, 5.48 and 5.26 eV for the

concentrations (x = 0.01, 0.04 and 0.08), while in the present work, the calculated

energy gap for the same concentrations (x = 0.01, 0.04 and 0.08) is found to be

5.315, 5.240 and 5.142 eV, respectively. The present energy gaps of c-AlInN are

normally smaller than those of wurtzite AlInN . The direct energy gaps calculated

by pseudopotential formalism within Virtual Crystal Approximation (VCA) [174]

were 5.29 and 4.87 eV for Al0.92In0.08N and Al0.83In0.17N alloys, respectively.

The values are greater than the calculated values in this work by 0.95% and

1.1%, respectively. In the present work, the predicted bowing parameter of EX
g

is positive and its numerical value (0.505 eV) is close to the corresponding value

of 0.61 eV reported in Ref. [139].
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In the present work, the indirect to direct band gap transition has been exam-

ined and found that the X to Γ energy gap transition occurs at x = 0.185. Hence

the cubic Al1−xInxN is a direct band gap semiconductor when the In concentra-

tion x is greater than 0.185. This boundary of concentration was predicted to be

0.18 [173], 0.19 [176], 0.244 [178] and 0.5 [174] in other reports. Since the present

bowing parameter for EΓ
g is similar with the corresponding value reported in

Ref. [176], the indirect to direct band gap transition is occurred at approximately

x ≈ 0.19 by both calculations.

5.3.2 Al1−xInxSb

Although Al1−xInxSb alloys have been well known potential materials for the

fabrication of multiple quantum lasers [38], photovoltaic cells and photodetec-

tors [39] they have not been extensively studied in the literature. However, to

fully characterize these photonic and high speed electronic devices, it is necessary

to know the energy band structure of Al1−xInxSb as a function of either Al or

In concentration accurately. In an early work [185], the variation of EΓ
g as a

function of x ranging from 0.10 to 0.60 measured by absorption spectroscopy for

Al1−xInxSb at 300 K. In subsequent electroreflectance measurement, the varia-

tion of EΓ
g was given by Isomura et al. [186], for InSb rich Al1−xInxSb at 300

K. In a recent work [187], the fundamental energy gap has been determined for
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Al1−xInxSb alloy system in the Al concentration range from 0 to 0.25 by trans-

mission spectroscopy at both 300K and 4.2 K. In another recent work [102], the

optical band gap bowing has been calculated by a phenomenological model fo-

cusing to x=0.5 of Al1−xInxSb. According to the best knowledge of authors,

there is not any systematical work in the literature studying the electronic band

structure of Al1−xInxSb alloy system theoretically, starting from the electronic

band structure of constituents (AlSb and InSb). In the present work, the unit

cell volume of the Al1−xInxSb has been defined [57] depending on In concen-

tration x and the lattice constant values of AlSb (6.233Å) and InSb (6.643 Å)

(present work). The electronic band structure calculations of Al1−xInxSb alloys

system have been performed by ETB as explained in sec. 2.4. In electronic band

structure calculations of Al1−xInxSb alloys, the present energy parameters are

used for AlSb and InSb, respectively, for this purpose.

Fig. 5.5 displays the variation of the direct and indirect band gap energies as a

function of In concentration x. In the same figure, the variation of average direct

and indirect energy gaps are given as a function of In concentration x for com-

parison. In view of Fig. 5.5, we note that the overall bowing for Γ point transition

is small and downward. Similarly, bowing for X point transition is downward but

the values of Ex
g are highly deviated from the corresponding values of EX

g (av).

The calculated bowing parameters by the best fit of our results to the expression

108



0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Concentration of In (x)

E
n

e
rg

y
 (

e
V

)

Figure 5.5: Dependence of EΓ
g (solid line), EX

g (dotted line), EΓ
g (av) (zig-zag line) and
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g (av) (dashed line) of Al1−xInxSb on the In composition (x).
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given in Eq. 2.57 are 0.578 and 0.609 eV for EΓ
g and EX

g , respectively. The varia-

tion of EΓ
g was exactly linear in the room temperature absorption measurements

of InSb rich Al1−xInxSb alloys [185, 187]. However, in the electroreflectance mea-

surements [186], the variation of EΓ
g deviated from the linear behavior with the

bowing parameter of 0.43 eV. Since the electroreflectance measurements was con-

sidered to be more precise than the absorption measurements, the range of 0-0.43

eV was recommended for the bowing parameter of EΓ
g in Ref. [5]. The present

bowing parameter (0.578 eV ) for the variation of EΓ
g is not in this recommended

range, and it is 30% greater than the bowing parameter given in Ref. [182]. Since

the variation of EX
g as a function of In concentration x was not studied in the

literature, we are not able to compare our bowing parameter of Ex
g . The present

bowing parameters for EΓ
g and EX

g of Al1−xInxSb alloy are given in Table 5.6

together with the corresponding values given in the literature.

In view of Fig. 5.5, the X and Γ valleys cross at a composition of x=0.39.

Therefore Al1−xInxSb has direct transition after x=0.39. This composition is in

good agreement with the crossover composition reported in Ref. [185].

5.3.3 Al1−xInxAs

The electronic band structure of Al1−xInxAs alloy with the indium concen-

tration around 0.52 has been intensively studied in the literature, because of its

application in Ga0.47In053As/Al0.48In0.52As heterostructure system that is lattice
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matched to InP . Furthermore, the energy band gap variation of AlInAs at Γ

symmetry point has been also studied for the full range of the indium concentra-

tion both experimentally [5, 158, 188, 189] and theoretically [182, 190].

In the present work, the electronic band structure of Al1−xInxAs alloys in

cubic phase has been calculated by ETB as explained in sec. 2.4. The Vegard’s

law equation (Eq. 2.53) has been employed to calculate the In concentration (x)

dependent lattice constant (aav) values of Al1−xInxAs alloys corresponding to the

lattice constant value of AlAs (5.738Å) and InAs (6.195Å)(present work) bina-

ries. The energy parameters used in the present ETB calculations (correspond to

sp3d2 orbitals) are reported in the present work for AlAs and InAs, respectively.

The variation of the direct and indirect band gap energies (EΓ
g and EX

g ) as a

function of In concentration x is plotted in Fig. 5.6 for Al1−xInxAs.

Fig. 5.6 also comprises the average band gap energies of Al1−xInxAs alloys

calculated as a function of concentration x, by using the band gap energies of

AlAs (EΓ
g = 2.815eV and EX

g = 2.25eV )(Table 5.5) and InAs (EΓ
g = 0.417eV

and Ex
g = 1.787eV )(Table 3.4). In view of Fig. 5.6, we note that the overall

bowing for both Γ and X point transition is large and downward. The predicted

bowing parameters by the best fit of our results to the expression given in Eq. 2.57

are 2.664 eV and 3.324 eV for EΓ
g and EX

g , respectively. The present bowing

parameters for EΓ
g and EX

g of Al1−xInxAs alloy are given in Table 5.6 together

with the corresponding values reported in Refs. [5, 158, 182, 188, 189, 190] for
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Figure 5.6: Dependence of EΓ
g (solid line), EX

g (dotted line), EΓ
g (av) (zig-zag line) and
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comparison. The all bowing parameters of EΓ
g predicted by theoretical results

[182, 190] and experimental observations [158, 188] are in the range (0.24−0.74eV )

recommended in Ref. [5]. But the bowing parameter of 0.86 eV predicted by

ellipsometric study [189] is outside of this range. The present bowing parameter

of Al1−xInxAs for EΓ
g has found to be also bigger than the recommended range.

In view of Fig. 5.6, the X and Γ valleys cross at a composition of x = 0.38.

On the other hand the present bowing parameter of Ex
g is positive in contrast to

the negative value of its recommended value given in Ref. [5]. Furthermore, the

present calculated bowing parameter of EX
g for each In concentration x is in the

range of 3.072-3.296 eV.
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CHAPTER 6

THE ELECTRONIC BAND STRUCTURE OF GaN AND GaAs

COMPOUNDS

6.1 Introduction

Gallium nitride (GaN) is an attractive material for microelectronic and opto-

electronic applications. GaN with the band gap of 3.1 - 3.5 eV is a very promising

material for a large range of applications, such as emitters and detectors for vis-

ible and UV light, for high frequency, high temperature and power devices [6,

191–193]. The stable GaN has been grown in hexagonal (h) (wurtzite, α phase)

structure. However, the production of GaN thin films of cubic (c) (zinc-blende,

β phase) crystals has been satisfied by the recent progress in crystal growth tech-

niques. Recently, the high quality pure c-GaN epilayers of several µm have been

successfully grown on MgO (1×1) [194], 3C-SiC(100) [195, 196, 197, 198, 199, 200,

201], GaAs (100)[198, 199, 202, 203], Si-doped GaAs (100) [204], and Si(100) [205]

by gas phase and plasma assisted molecular beam epitaxy (MBE) [194–205] and

metalorganic chemical vapor deposition (MOCVD) [202, 204].

The interest in c-GaN has been growing recently. Because the c-GaN has
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some attractive advantages for device applications such as higher electron drift

velocity [203] and lower band gap energy than w-GaN [194–200, 202]. The funda-

mental band gap of c-GaN was measured to be 3.35, 3.26 and 3.216 eV at room

temperature by photoluminescence (PL) spectra reported in Refs. [197, 198, 202],

respectively. The room temperature band gap value of c-GaN was 3.45, 3.272

and 3.2 eV in cathodoluminescence (CL) and optical absorption measurements

reported in Refs. [195, 198, 203], respectively. In modulated photoreflectance

measurements [194], the room temperature direct gap of GaN was 3.231 eV.

Petalas et al. [205] measured the room temperature band gap as 3.17 eV by

spectroscopic ellipsometry. All these band gap values are greater than 3.0 eV

and smaller than the room temperature band gap values of w-GaN (3.5 eV) [167]

measured in the same experimental setups. The discrepancies between the mea-

sured band gaps may originate from different crystal quality, such as background

carrier concentrations and inhomogeneity of epilayers.

On the other hand, the fundamental band gap of c-GaN was measured to be

3.268, 3.291 and 3.302 eV at 10 K by PL [194, 202] and modulated photore-

flectance [194] measurements, respectively.

In the literature, there are large theoretical efforts to properly describe the

structural and electronic properties of c-GaN [92, 94, 97, 103, 143, 167, 205–

214]. But yet, there is no fully consistent result, especially on the fundamental

gap of the compound. The direct band gap values by density functional theory
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(DFT) within local density approximation (LDA) were found to be smaller than

the measured values; the difference is approximately 1.5 eV. The underestimated

value of the band gap was improved by quasiparticle correction GW (dressed

Green’s function, G, and dynamical screened interaction, W) functional correction

in Ref. [143] and the difference was decreased to ∼ 0.2 eV. In Ref. [94] the

improved band gap value of c-GaN was found to be 3.8 eV by self interaction and

relaxation corrections. In both DFT - linear muffin thin orbital (LMTO) and DFT

- full potential linear augmented plane wave (FP-LAPW) generalized gradient

approximation (GGA) calculations, the band gap values were found around 2.4

eV [205, 210]. The empirical pseudopotential band structure calculations for c-

GaN have predicted the room temperature band gap values which are 0.3 -0.1

eV less than that of w-GaN [206, 208].

GaAs is an ideal material for high speed and optoelectronic devices. Because

the emission of light is very effective and the electron mobility is very high in

GaAs compared to other semiconductors. Besides, due to the nearly perfect lat-

tice match of GaAs to AlAs, it is possible to grow superlattices, heterostructures

and alloys from GaAs and AlAs in order to create a new artificial materials

with tunable electronic and optical properties. The structural and ground state

electronic properties of bulk or epitaxially grown GaAs have been studied by

X-ray photoemission [71, 215], electroreflectance [216], angle resolved photoemis-

sion [217], ellipsometry [218] and PL [219–221] measurements. GaAs is a direct
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band gap material with EΓ
g < EL

g < EX
g ordering provided by a direct proof

in electroreflectance measurements [216]. The fundamental band gap of GaAs

was measured to be 1.632 eV at He temperature by angle-resolved photoemission

[217], EΓ
g was 1.5189 eV at 1.6 K with the scanning rotating analyzer ellipsometer

[218]. In Refs. [220, 221], the PL spectra of GaAs were measured as a function of

temperature and the direct band gap of GaAs were obtained as 1.5194 and 1.519

eV at 0 K.

The electronic energy band structure of GaAs has been also subject of many

theoretical works [147, 150, 222–227]. The majority of the first principles band

calculations employ the LDA for calculation of exchange-correlation effects. The

direct band gap in GaAs is typically calculated (non relativistically) 1.1 -1.21

eV [222, 223] as opposed to the experimental value, 1.519 eV (T = 0 K). The

discrepancy between the experiment and theory was found to be increased when

the relativistic effects are included; the indirect band gap of GaAs was found

(relativistically) to be in the range of 0.25 -0.64 eV [225, 226]. The underestimated

values of EΓ
g of DFT-LDA calculations are corrected to 1.47 [226] and 1.42 [227]

eV by a quasi particle - GW approximations. In a recent work [147] the electronic

band structure of GaAs was calculated by ETB with spds* basis. In this work,

the band gap value of GaAs was fitted to its experimental value of 1.519 eV. In

another recent work [150], the band gap of GaAs was calculated to be 1.424 eV

by ETB - sps* calculations within a genetic algorithm approach.
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Table 6.1: Empirical matrix elements of the sp3d2 Hamiltonian in eV.

GaN GaAs
Esa −9.4409 −7.1494
Esc −2.6598 −4.2967
Epa 3.5174 1.7151
Epc 6.5587 1.7851
Eda 19.2403 10.0743
Edc 18.3328 7.8739
Vss −7.8046 −6.8523
Vxx 5.6790 1.9926
Vxy 8.2889 4.7066
Vpcsa 7.0460 5.5137
Vpasc 6.3688 4.3876
Vdapc 8.3554 4.9370
Vdcpa 0.0000 3.7868

In the present work, the electronic band structure of GaN and GaAs in zinc-

blende phase has been calculated by empirical tight binding (ETB) method which

is parameterized by the first principles calculational results of GaN and GaAs.

The aim of this work is to derive the energy parameters of ETB providing well

defined valence bands and energy gaps for GaN and GaAs. Therefore these

energy parameters can be simply used in further calculations correspond to the

electronic band structure calculations of ternary and quaternary alloys of GaN

and GaAs. In the present work, the ETB energy parameters of sp3d2 for cubic

GaN and GaAs are listed in Table 6.1. The electronic band structures of the

compounds are separately discussed in the following sections and the conclusions

are given in chapter 7.
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6.2 The results

6.2.1 c-GaN

The zinc-blende structure of GaN is characterized by the lattice constant,

a. The equilibrium value of a is determined by calculating the total energy of

c-GaN using FP-LAPW for a set of volumes and fitting these to the Murnaghan

equation [53]. We have adopted the value of 2.2 Å for Ga and 1.85 Å for N as

the MT radii. The electronic configuration of GaN is Ga: Ar (3d104s24p1) and

N : He (2s22p3). In the calculations, the electrons of Ga in (1s22s22p63s23p6)

are defined as the core electrons and distinguished from the valence electrons of

Ga in (3d104s24p1). Similarly, the inner valence band electrons of N in (1s2)

are distinguished from the valence band electrons of N in (2s22p3) shell. The

curve of the total energy versus the lattice constant is shown in Fig. 6.1. The

equilibrium lattice constant of c-GaN is calculated to be 4.562 Å. The present

lattice constant is given in Table. 6.2 together with the experimental and other

calculated lattice constant values of c-GaN presented in the literature.

The present value of a for c-GaN is found to be very close to the result of 4.53 Å

[196] measured by X-ray diffraction measurements. The present value of a is only

(1.4 -1.6) % greater than other experimental results, 4.5 [203] and 4.49 Å [195];

they are measured by X-ray diffraction and optical absorption measurements,

respectively. On the other hand, our lattice constant of c-GaN is also very
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Figure 6.1: Total energy of c-GaN versus the lattice volume.

close to the values of 4.56 [94], 4.55 [209], 4.552 [103] and 4.59 [97] calculated

by pseudopotential with self interaction correction (PP-SIC), DFT/FP-LAPW-

GGA with quasi particle correction, DFT/FP-LAPW-LDA, and DFT/PPPW-

GGA, respectively. The discrepancy between the present lattice constant and

the one (4.518 Å) calculated by DFT/PPPW-LDA is only 0.97 %. The present

lattice constant of c-GaN is (1.6 -3.14) % greater than the values calculated

by FHI96MD, CASTEP, VASP codes [208], zero temperature Green’s function

formalism [211], non-corrected PP [94], self-consistent linear muffin tin orbital

(SCLMTO) [92], and FP-APW-local orbitals methods [214].
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Table 6.2: The theoretical and experimental lattice constant values (ath, aexp) in Å for
GaN and GaAs in cubic phase.

Compound ath aexp

GaN 4.562a, 4.433b 4.5j

(4.45, 4, 56)c 4.49k

(4.518, 4.59)d 4.530l

(4.423, 4.462, 4.452)e

4.55f , 4.552g, 4.49h

4.4615i

GaAs 5.632a 5.65325r

5.570m

5.6660n, 5.6416o

5.6518p

apresent work, bRef. [92], cRef. [94], dRef. [97], eRef. [208], fRef. [209], gRef.
[103], hRef. [211], iRef. [214], jRef. [203], kRef. [195], lRef. [196], mRef. [223],
nRef. [150], oRef. [5], pRef. [222], rRef. [215]

We have employed DFT/FP-LAPW-GGA method in the band structure cal-

culations of c-GaN . It is found that the band gap of GaN is direct in zinc-blende

phase, furthermore, the band structure is in close agreement with the DFT-LDA

results of previous reports [94, 103, 143, 213, 214]. The present DFT calculations

within GG approximations do not give any new feature on the band structure

of DFT-LDA, only the present EΓ
g (2.25 eV) of c-GaN is slightly greater than

the previously reported values of DFT-LDA [103, 104, 213, 214]. But the present

fundamental band gap of c-GaN is still greater than the values reported by PL

and modulated photoluminescence measurements [194, 202] at 10 K. This is a

widely accepted result that the DFT-GGA (or LDA) electronic band structures

are qualitatively in good agreement with the experiments in what concerns the
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ordering of the energy levels and the shape of the bands, but whose band gap

values are always smaller than the experimental data.

The present narrow direct band gap of c-GaN has been corrected empirically

with respect to its experimental value of 3.3 eV [194]. The difference between the

eigenvalues of the first conduction band and last valence band states calculated

at the same k point is enlarged by an amount of the energy difference between

the present direct band gap and 3.3 eV. Therefore the present fundamental band

gap of c-GaN is improved without change of the ordering of the energy levels

and the shape of the bands. The adjusted energy band structure of c-GaN by

DFT/FP-LAPW-GGA is shown in Fig. 6.2. Since the Ga 3d orbitals are treated

as valence orbitals in the calculations, the d bands are strongly hybridized with

the bottom s-like valence bands (N 2s) which results in a large splitting away from

Γ point. Therefore Ga 3d valence state electrons lead to increase of the valence

bandwidth. On the other hand, p-d hybridization at the top of the valence band

decreases the band gap of c-GaN . Table. 6.3 gives the important features of the

present and previously reported band structures for c-GaN at high symmetry

points. The present energy gaps at X and L points are also enlarged to 4.927

and 5.684 eV, respectively by direct band gap adjustment.

In the following stage of the work, the energy parameters of ETB have been

derived for c-GaN from the present band structure of DFT/FP-LAPW-GGA

(Fig. 6.2) by the fitting process explained in sec. 2.4. The recalculated band
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Figure 6.2: The energy band structure of c-GaN by FP-LAPW(adjusted) (dotted line)
and ETB (solid line).
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Table 6.3: A summary of the important features, energy gaps, and valence bandwidths
of the present DFT (adjusted) and ETB band structure for c-GaN compared to other
experimental and calculational results. All energies are in eV.

DFT a ETBa theoretical
adjusted DFT DFT DFT EPP EPP

LDAb LDAc QP c

Γv
1 −14.560 −14.560 −15.7 −16.3 −17.8

Γv
15 −0.841(3) −0.841(3) 0.0(3) 0.0(3) 0.0(3) 0.000 0.000

Γc
1 2.459 2.459 1.9 2.1 3.1 3.308 3.213

Γc
15 10.917 10.917 10.2 10.6 12.2 10.098 10.248

Xv
1 −12.516 −12.516 −11.6 −13.0 −14.8

Xv
3 −6.649 −6.649 −6.1 −6.5 −6.9 −6.294 −5.923

Xv
5 −3.389 −3.389 −2.7 −2.8 −3.0 −2.459 −2.086

Xc
1 4.086 4.086 3.2 3.2 4.7 4.428 4.585

Xc
3 7.507 7.507 6.7 6.9 8.4 6.010 6.265

Lv
1 −13.011 −12.864 −12.1 −13.8 −15.5

Lv
1 −7.525 −6.217 −7.0 −7.4 −7.8 −6.812 −6.644

Lv
3 −1.748 −2.776 −1.0(2) −1.0(2) −1.1(2) −0.834 −0.772

Lc
1 5.422 4.843 4.8 5.0 6.2 5.149 5.510

Lc
3 9.339 10.119 8.6 9.1 11.2 10.416 10.606

Γv
15 − Γc

1 3.3 3.3 1.9b 2.1c 3.1c 3.308d 3.213e

1.8f 2.18g 2.33g 3.383h 1.6i

3.8i 1.9J 3.17j 2.4k 1.72l

2.41m 1.93n 1.6o

exp. 3.268p 3.302p 3.291q

Γv
15 −Xc

1 4.927 4.927 3.2b 3.2c 4.7c 4.428d 4.585e

6.3f 3.36g 3.36g 4.571h 3.25n

Γv
15 − Lc

1 6.263 5.684 4.8b 5.0c 6.2c 5.149d 5.51e

5.8f 4.93g 4.99g 5.636h 4.73n

Γv
1 − Γv

15 15.515 13.718 15.7b 16.3c 17.8c 13.6i 16.7i

15.57l 16.17n

apresent work, bRef. [213], cRef. [143], dRef. [212], eRef. [207], fRef. [205], gRef.
[92], hRef. [206], iRef. [94], jRef. [208], kRef. [209], lRef. [103], mRef. [210],
nRef. [214], oRef. [97], pRef. [194], qRef. [202]
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structure of c-GaN by ETB is shown in Fig. 6.2. The important features of the

band structure at high symmetry points are listed in Table 6.3. As it is observed

in Fig. 6.2, the valence band structure of c-GaN by ETB follows closely that

of DFT a long both Γ–X and Γ–L directions. The splitting of the top of the

valence band position around W point in all DFT results is closed to X point in

the present ETB calculations. The similar result was also obtained in EPP [206]

and SCLMTO [92] calculations. The first state energies of the conduction band

by ETB deviate from the present results of DFT around the mid point of Γ–X

and X–K directions. But the energy gaps of c-GaN at Γ and X points are found

to be exactly the same by both calculations. The present EΓ
g value of 3.3 eV is

very close to the values of DFT-LDA calculations corrected by a quasi particle,

GW, and SIRC-PP [143, 94].

The present ETB band gap value of c-GaN is also very close to the values of

3.308, 3.213 and 3.383 eV calculated by EPP method [206, 207, 212]. The dis-

crepancy between the present and uncorrected direct band gap values of c-GaN

calculated by DFT-LDA [94, 97, 103, 143, 208, 209, 213, 214], SCLMTO [92]

and zero temperature Green’s function formalisms within random phase approx-

imation [210, 211] is (0.9-1.7) eV. The present Ex
g is very close to the value of

DFT-LDA calculations corrected by quasi particle and GW [143]. The value of

Ex
g is (7.5-11.3) % greater than that of EPP calculations [206, 207, 212]. Since

the present ETB calculations are parameterized with respect to the solution of
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the secular equation at only Γ and X points, the present ETB results can not

exactly give the result of the present DFT calculations at L point. The EL
g of

ETB is found to be smaller than that of the present DFT calculations. It is ∼

8.3 % smaller than the value resulted in corrected DFT-LDA calculations [143].

On the other hand, the present EL
g is very close to the values calculated by EPP

[206, 207]. The present valence bandwidth of c-GaN calculated by ETB is smaller

than that of the present and other DFT calculations [103, 143, 213, 214] in which

Ga 3d orbitals are treated as the valence band orbitals. Although the present

valence bandwidth is small compared to the result of SIRC-PP [94], it is very

close to that of the PP calculations [94].

6.2.2 GaAs

The equilibrium lattice constant value of GaAs is obtained by total energy

calculations based on DFT within GG approximation. The total energy for a

set of volumes has been calculated by FP-LAPW method and fitted to the Mur-

naghan’s equation [53]. We have adopted the value of 2.2 Å for Ga and 2.2

Å for As as the MT radii. The electronic configuration of GaAs is Ga: Ar

(3d104s24p1) and As : Ar (3d104s24p3). In the calculations, the electrons of Ga in

(1s22s22p63s23p63d10) are defined as the core electrons and distinguished from the

valence electrons of Ga in (4s24p1). Similarly, the inner valence band electrons of

As in (1s22s22p63s23p63d10) are distinguished from the valence band electrons of
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Figure 6.3: Total energy of c-GaAs versus the lattice volume.

As in (2s22p3) shell. The total energy of GaAs as a function of unit cell volume

is shown in Fig. 6.3.

The calculated total energy of GaAs is found to be minimum with the lattice

constant value of 5.632 Å. The present lattice constant value of GaAs is given

in Table 6.2 together with the experimental and other calculated lattice constant

values of GaAs presented in the literature. In an early work [215], the lattice

constant of GaAs was measured to be 5.65325 Å by X-ray photoemission spectra.

The present lattice constant of GaAs is very close to this measured value; the

discrepancy is just 0.37 %. In linear combination of Gaussian orbitals (LCGO)-
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LDA [222] calculations, the lattice constant of GaAs, was taken as 5.6518 Å. In

PP-LDA [223] and ETB [150] calculations, the total energy was minimized with

the lattice constant value of 5.570 and 5.6660 Å, respectively. The present lattice

constant is closer to the recommended lattice constant value of 5.6416 Å [5] than

those calculated by PP-LDA [223] and ETB-genetic algorithm [150].

The present electronic band structure of GaAs calculated by DFT/FP-LAPW-

GGA is found to be similar with the results of LCGO-LDA [222], DFT-LDA

(adjusted, relativistically) [224], PP-LDA (LMTO-LDA) [225] and ETB-spds*

[147] calculations. As it is given in the literature, the ordering between the

present energy gaps is EΓ
g < EL

g < EX
g . The present energy gaps are all smaller

than their measured values. As it is mentioned in the previous section, this is

the weakness of the all DFT calculations; the variation of the band structure

follows the measurements with small gaps at the high symmetry points. In the

present work, the fundamental gap of GaAs is found to be 1.265 eV. This value

is comparable with the corresponding values calculated by DFT-LDA [226], PP-

LDA [223] and LMTO-LDA (non relativistically) [225]. The underestimated band

gap values are corrected empirically by enlarging the gaps by an amount of energy

equals to the difference between the present calculated and measured value of the

fundamental band gap of GaAs (1.519eV). Therefore, the variation of the band

structure of GaAs is held rigid, only the eigenvalues are changed equally. This

correction is considered to be necessary before the derivation of ETB energy
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parameters of GaAs. The adjusted energy band structure of GaAs by DFT/FP-

LAPW-GGA is shown in Fig. 6.4. Table 6.4 gives the important features of

the present and previously reported band structures for GaAs at high symmetry

points. The value of Ex
g was measured to be 1.981 and 2.01 eV at 0 and 5 K

by electroreflectance and PL measurement, respectively [216, 219]. In the same

works [216, 219], the measured value of EL
g was 1.815 and 1.84 eV. The present

enlarged energy gap at X point (1.748 eV) is closer to its measured values (1.981

and 2.01 eV) than the ones calculated by DFT-LDA [226], PP-LDA [223], LCGO-

LDA [222] and PP-GW [227]. Although the present EL
g is not as close to the

measurements [216, 217, 219] as the other corrected ones [147, 226, 227], it is

quite corrected with respect to the results of standard DFT-LDA calculations

[222, 223, 226].

In the following step of the work, the energy parameters of ETB have been

derived for GaAs from the present eigenvalues of DFT (Fig. 6.4) by the fitting

process explained in sec. 2.4. The band structure of GaAs recalculated by ETB

is shown in the Fig. 6.4. The important features of the band structure at high

symmetry points are listed in Table 6.4. In view of Fig. 6.4, we note that there is

a close agreement between the band structure of GaAs by ETB and DFT around

Γ and X points. The band gaps of GaAs at Γ and X points are found to be the

same exactly in both present ETB and DFT/FPLAPW-GGA calculations. As

it is pointed out above, the present Ex
g is close to the measurements(1.98, 2.01
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Figure 6.4: The energy band structure of c-GaAs by FP-LAPW(adjusted) (dotted
line) and ETB (solid line).
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Table 6.4: A summary of the important features, energy gaps and valance bandwidths
of the present DFT (adjusted) and ETB band structure for GaAs compared to other
experimental and calculational results. All energies are in eV.

DFT a ETBa theoretical exp.
adjusted spd2 DFT DFT PP PP ETBe f

LDAb GW b LDAc GW d

Γv
1 −12.772 −12.722 −10.52 −11.71 −13.03 −12.910 −13.1

Γv
15 −0.243 −0.243 0.00 0.00 0.0 0.00 0.00 0.00

Γc
1 1.276 1.276 0.56 1.47 1.10 1.22 1.519 1.632

Γc
15 3.743 3.743 3.70 4.52 4.48 4.500 4.53

Xv
3 −6.919 −6.919 −6.62 −6.70

Xv
5 −2.957 −2.957 −2.66 −2.73 −2.61 −2.91 −2.929 −2.80

Xc
1 1.505 1.505 1.38 2.08 1.51 1.90 1.989 1.51

Xc
3 1.763 1.763 1.55 2.30 2.47 2.328 2.35

Lv
1 −6.804 −5.972 −6.46 −6.70

Lv
3 −1.397 −2.436 −1.07 −1.11 −1.11 −1.28 −1.084 −1.30

Lc
1 1.386 2.196 1.04 1.82 1.30 1.64 1.837 1.85

Lc
3 4.625 3.390 4.57 5.41 5.40 5.047 5.47

Γv
15 − Γc

1 1.519 1.519 0.56b 1.47b 1.10c 1.22d 1.21m 1.632f

1.61m 1.519g

1.5189j

1.5194l

1.52h

Γv
15 −Xc

1 1.748 1.748 1.38b 2.08b 1.30c 1.64d 1.837e 1.51f

1.61m 1.981h

2.01i

Γv
15 − Lc

1 1.629 2.439 1.04b 1.82b 1.51c 1.90d 1.989e 1.85f

1.37m 1.815h

1.84i

Γv
1 − Γv

15 12.479 12.479 12.33c 13.03d 12.91e 12.35m 13.1f

apresent work, bRef. [226], cRef. [223], dRef. [227], eRef. [147], fRef. [217], gRef.
[162, 167], hRef. [216], iRef. [219], jRef. [218], kRef. [221], lRef. [220], mRef.
[222]
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eV) [216, 219]; the discrepancy is (12-13)%. Although the ETB valence band

structure follows the present eigenvalues of DFT closely (Fig. 6.4) along Γ-X

direction, it is deviated along Γ-L direction. On the other hand, the maximum

seeing on the first conduction band state along Γ–X direction (Fig. 6.4) is shifted

towards the X point in the result of ETB calculations. Along Γ–L direction the

first conduction band state structure of ETB is quite different than the structure

calculated by DFT. Since the present ETB energy parameters are adapted for

only the external values at Γ and X points, EL
g is not found to be close to that

of DFT calculations. The width of the valence band is found to be the same in

both present ETB and DFT calculations. The present valence bandwidth of both

calculations is closer to its measured value of 13.1 eV [217] than the results of

PP-LDA [223] and LCGO-LDA [222] calculations.
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CHAPTER 7

CONCLUSIONS

In the present work, the electronic band structure of III (In, Al,Ga)- V (N, As, Sb)

compounds and their ternary alloys have been investigated by DFT within GG

approximation and ETB calculations, respectively.

The III-V compounds have been considered in zinc-blende phase defined by

their equilibrium lattice constants obtained from the present calculations of total

energy minimization. The lattice constants of InAs, InSb, AlSb, AlAs and GaN

compounds have been calculated within a small discrepancy (≤ 2.5%) compared

to experimental values. An excellent agreement appears between the present

calculated and available experimental values of lattice constant for InN , AlN

and GaAs compounds.

The present DFT-GGA calculations have shown direct band gap structures

in zinc-blende phase for InN , InAs, InSb, GaN , and GaAs. However, indirect

band gap structures have been obtained for cubic AlN , AlSb and AlAs com-

pounds; here, the conduction band minima of both AlN and AlAs are located
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at X symmetry point, while that of AlSb is at a position lying along Γ – X di-

rection. The energy gaps found by the present DFT-GGA calculations for the

above cited compounds at high symmetry points have the same ordering as the

experimental gaps, but the calculated ones remain systematically smaller. This

is a widely accepted result in the literature for all standard DFT calculations.

These underestimated band gap values have been empirically corrected using the

experimental ones for InAs, InSb, AlN , AlSb, AlAs, GaN , and GaAs com-

pounds. Due to the lack of experimental results, the calculated direct band gap

value of InN has been attempted to improve considering the gap value supplied

by corrected DFT- local density approximation (LDA) calculations given in the

literature.

An important part of this work consists of ETB calculations which have been

parameterized for sp3d2 basis and nearest neighbor interactions to study the band

gap bowing of III(In, Al)- V(N, As, Sb) ternary alloys. The energy parameters

of ETB have been derived from the eigenvalues of the present DFT calculations

carried on all compounds considered in this work. Since the band gap values

of the compounds are responsible for the band gap engineering of their ternary

and quaternary alloys, we have concentrated to have well defined band gaps for

compounds at high symmetry points.

It is found that, the ETB energy parameters can reproduce the valence band
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structure of InN , InAs and InSb satisfactorily. The ETB valence band struc-

ture of compounds follows the valence band structure of DFT/FP-LAPW-GGA

closely. The valence bandwidth of the compounds is exactly the same for both

present ETB and DFT calculations. Furthermore, they are comparable with the

reported theoretical and experimental results. The energy variation of the first

conduction band state of the compounds does not follow the corresponding en-

ergy variation of the present DFT calculations closely. However, the ETB energy

band gap values of the compounds are exactly the same with those of DFT/FP-

LAPW-GGA at Γ and X points. The present EL
g of ETB is also very close to

that of DFT for InAs. But for the other compounds, InN and InSb, the ETB

energy parameters seem to be insufficient to give the present energy gap of DFT

at L point. However, the calculated EL
g values of the compounds by ETB are still

comparable with the corresponding theoretical values given in the literature.

In the present work, the conduction band dispersion has been analyzed around

Γ point for the alloys considered in this work with small contents (x). It is found

that a small amount of N and As in InNxAs1−x, InNxSb1−x and InAsxSb1−x

alloys, respectively decreases the electron effective mass around Γ point. The

decrease of the electron effective mass in InNxSb1−x is realized to be relatively

greater than in InNxAs1−x alloys by a small increase of nitrogen concentration.

The ETB energy parameters of AlN , AlSb, AlAs obtained from the present

first principles calculations have been tested by recalculating the energy band
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structure of the compounds. The band gap and the valence bandwidth values

of c-AlN by ETB are found to be very close to the corresponding values given

in the literature. The good agreement between the present and experimental

equilibrium lattice constant values of c-AlN might have a contribution to obtain

good band gap energies. In the present ETB calculations, the indirect band gap

of AlSb is found to be close to its experimental value, but the direct band gap

has a small discrepancy with its experimental value. A small discrepancy is also

found between the present and reported valence bandwidth values of AlSb. In

ETB calculations of AlAs, the indirect band gap is small(∼ 0.3 eV) with respect

to the largest discrepancy (∼ 1 eV) belongs to a theoretical result reported before.

The valence band width of AlAs is found to be close to the corresponding values

given in the literature.

The ETB energy parameters of GaN and GaAs obtained from the present first

principles calculations have been also tested by recalculating the energy band

structure of the compounds. Since the present ETB equations are formulated

only at Γ and X points, they are defective in the calculation of EL
g for c-GaN and

GaAs. But, it is found that the ETB energy band gap values of the compounds

are exactly the same with those of DFT/FP-LAPW-GGA at Γ and X points.

In the literature, the first optical transition of the ternary and quaternary

alloys of the semiconductor compounds was generally defined at either Γ or X

point. Since the present ETB energy parameters successfully reproduce the band
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structures of the compounds at Γ and X symmetry points, they are considered

reliable for the band gap bowing calculations of the InNxAs1−x, InNxSb1−x,

InAsxSb1−x, Al1−xInxN , Al1−xInxSb and Al1−xInxAs. The ETB energy param-

eters of compounds have been scaled by r−2 and used in Vegard’s law to find out

the interaction energy parameters of the alloys considered in this work.

The calculated fundamental band gap values of these ternary alloys for differ-

ent concentration of N and As have been compared with the available room or low

temperature PL peak energies of the corresponding samples grown epitaxially on

the substrate. According to the knowledge of authors, this is the first study that

calculates the band structure of bulk InNxAs1−x, InNxSb1−x and InAsxSb1−x

alloys for complete range of contents.

The present bowing of the band gap has been found to be sharp for small N

concentration in InNxAs1−x alloys as it was resulted by the room temperature

PL measurements. The calculated bowing parameter is close to the value recom-

mended in the literature. Since InNxAs1−x alloys have not been investigated in

the large range of N , the metallic characteristics of them found in the present

work was not observed experimentally, but it was predicted both experimentally

and theoretically. The present band gap bowing of InNxSb1−x alloys has not

found to be as sharp as the room temperature reported results for small concen-

trations of N . Because of this the cross point found in the present work is much

greater than that of the
−→
k .−→p calculations which model the room temperature

137



PL measurements.

In the present work, the change of the band gap for small concentrations of

As in InNxSb1−x alloys has found to be small with respect to the variation of the

PL peak energies of the corresponding samples at low temperatures. The present

ETB calculations showed that InNxSb1−x alloys have a large band gap bowing

and metallic character in the range of 0.4 < x < 0.63. In the literature, the

bowing parameter of InNxSb1−x alloys at low temperature was reported to be

high with respect to its room temperature values. The present bowing parameter

has been found to be also greater than the bowing parameters measured at 10

K and room temperature. Since the band structure of the materials depend on

temperature, we couldn’t find the close agreement between the present band gap

values calculated at 0 K and the band gap values measured at low and room

temperatures. But, it is found that the present ETB energy parameters of bulk

InN , InAs and InSb are able to supply the general feature of the band gap

bowing for InNxAs1−x, InNxSb1−x and InAsxSb1−x alloys.

In the present work, the band structure of Al1−xInxN , Al1−xInxSb and

Al1−xInxAs have been calculated and the variation of EΓ
g and EX

g has been

investigated with respect to the In concentration x. The present bowing for Γ

and X point transitions is found to be downward for all Al1−xInxN , Al1−xInxSb

and Al1−xInxAs alloys. This result is the same in most of the theoretical reports

given in the literature. But, the numerical value of the bowing parameter for EΓ
g
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and EX
g of alloys is various in the literature. The difference between the calculated

bowing parameters of EΓ
g and EX

g for the same alloys might be originated from

both different energy gaps and lattice constant values of the compounds used in

their calculations.
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[65] F. Bechstedt, and J. Furthmüler, J. Crystal Growth 246, 315 (2002).

[66] D. Bagayoko, L. Franklin, and G. L. Zhao, J. Appl. Phys. 96, 4297 (2004).

[67] M. Fisher and A. Krier, Infrared Phys. and Technol. 38, 405 (1997).

143



[68] R. D. Grober, H. D. Drew, J. Chyi, S. Kalem and H. Morkoc, J. Appl. Phys.
65, 4079 (1989).

[69] X. Marcadet, A. Rakouska, J. Prevot, G. Glastre, B. Vinter, and V. Erger,
J. Crystal Growth 227, 609 (2001).

[70] G. H. Kim, J. B. Choi, J. Y. Leem, J. Y. Leem, J. I. Lee, S. K. Noh, J. S.
Kim, S. K. Kang, and S. I. Ban, J. Crystal Growth 234, 110 (2002).

[71] L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley,
Phys. Rev. B 9, 600 (1974).

[72] Z. M. Fang, K. Y. Ma, R. M. Cohen, and G. B. Stringfellow, Appl. Phys.
Lett. 59, 1446 (1991).

[73] Y. Lacroix, C. A. Tran, S. P. Watkins, and M. L. W. Thewalt, J. Appl.
Phys. 80, 6416 (1996).

[74] Semiconductors - Basic Data, edited by: O. Madelung, ( Berlin; Springer,
1996). ISBN 3-540-60883-4.

[75] J. R. Dixon and J. M. Ellis, Phys. Rev. 123, 1560 (1961).

[76] W. A. Harrison, Electronic structure and the properties of solids (Freeman,
San Fransisco, 1980).

[77] M. Huang and W. Y. Ching, J. Phys. Chem. Solids Vol. 46, 977 (1985).

[78] J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

[79] D. N. Talwar and C. S. Ting, Phys. Rev. B 25, 2660 (1982).

[80] N. Bouarissa and H. Aourag, Infrared Phys. and Technol. 38, 153 (1997).

[81] J. P. Loehr and D. N. Talwar, Phys. Rev. B 55, 4353 (1997).

[82] G. Theodorou and G. Tsegas, Phys. Rev. B 61 10782 (2000).

[83] T. D. Mishima and M. B. Santos, J. Vac. Sci. Technol. B22, 1472 (2004).

[84] V. K. Dixit, B. Banial, V. Venkataraman, H. L. Bhat, G. N. Subbanna, K.
S. Chandrasekharan, and B. M. Arora, Appl. Phys. Lett. 80, 2102 (2002).

[85] N. L. Rowell, Infrared Phys.and Technol. 28, 37 (1988).

[86] C. L. Littler and D. G. Seiler, Appl. Phys. Lett. 46, 986 (1985).

144



[87] T. D. Veal, I. Mahboob, and C. F. McConville, Phys. Rev. Lett. 92, 136801
(2004).

[88] E. J. Mele and J. D. Joannopoulos, Phys. Rev. B24, 3145 (1981).

[89] M. Alouani, L. Brey, and N. E. Christensen, Phys. Rev. B 37, 1167 (1988).

[90] R. Asahi, W. Mannstadt, and A.J. Freeman, Phys. Rev. B 59, 7486 (1999).

[91] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B
53, 3764 (1996).

[92] N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).

[93] M. Fuchs, J. L. F. Da Silva, C. Stampfl, J. Neugebauer, and M. Scheffler,
Phys. Rev. B 65, 245212 (2002).
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[161] K. Strössner, S. Ves, C. K. Kim, and M. Cardona, Phys. Rev. B 33, 4044
(1986).

[162] Semiconductors, Intrinsic properties of Group IV elements and III-V, II-
VI and I-VII compounds, edited by K. -H. Hellewege , O. Madelung and
Landolt-Bornstein, New Series, Group III, Vol. 22, pt. a. (springer-Verlag,
Berlin 1987).

[163] D. H. Ehlers, F. U. Hillebecht, C. T. Lin,. E. Schönherr, and L. Ley, Phys.
Rev. B 40, 3812 (1989).

[164] M. Ettenberg and R. J. Pfaff, J. Appl. Phys. 41, 3926 (1970).

[165] P. P. Rushton, S. J. Clark, and D. J. Tozer, Phys. Rev. B 63, 115206
(2001).

[166] B. I. Min, S. Massida, and A. J. Freeman, Phys. Rev. B 38, 1970 (1988).

[167] Physics of Group IV Elements and III-V Compounds of Landolt-Bornstein,
numerical data and Functional Relationships in Science and Technology:
Newseries, Group III, Vol. 17. a, edited by O. Madelung, M. Schultz and H.
Weiss (Springer, Newyork, 1982).

[168] G. S. Spencer, A. C. Ho, J. Menéndez, R. Droopad, H. Fathollanejad, and
G. N. Maracas, Phys. Rev. B 50, 14125 (1994).

[169] G. C. Osbourn and D. L. Smith, Phys. Rev. B 19, 2124 (1979).

[170] M. Guzzi, E. Grilli, S. Oggioni, J. L. Staelhi, C. Bosio, and L. Pavesi, Phys.
Rev. B 45, 10951 (1992).

[171] S. J. Pearton, J. W. Lee, J. D. Mackenzie, C. R. Abernathy, and R. J. Shui,
Appl. Phys. Lett. 67, 2329 (1995).

[172] D. J. Stukel and R. N. Euwema, Phys. Rev. 188, 1193(1969).

149



[173] A. F. Wright and J. S. Nelson, Appl. Phys. Lett. 66, 3465 (1995).

[174] S. Bounab, Z. Charifi, and N. Bouarissa, Physica B 324, 72 (2002).

[175] L. K. Teles, L. M. R. Scolfaro, J. Furthmüller, F. Bechstedt, and J. R.
Leite, Phys. Stat. Sol. (b) 234, 956 (2002); J. Appl. Phys. 92, 7109 (2002).

[176] L. K. Teles, J. Furthmüller, L. M. R. Scolfaro, A. Tabata, J. R. Leite, F.
Bechstedt, T. Frey. D. J. As, and K. Lischka, Physica E 13, 1086 (2002).

[177] D. N. Talwar, D. Sofranko, C. Mooney, and S. Tallo, Mat. Sci. and. Engi-
neering B 90, 269 (2002).

[178] W. W. Lin, Y. K. Kuo, and B. T. Liou, Jpn. J. Appl. Phys. 43, 113 (2004).

[179] T. V. Shubina, V. V. Mamutin, V. A. Vekshin, V. V. Ratnikov, A. A.
Toropov, A. A. Sitnikova, S. V. Ivanov, M. Karlsteen, U. Södervall, M.
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