
 

 
 
 
 
 
 

 
ACCELERATION OF DIRECT VOLUME RENDERING WITH TEXTURE 

SLABS ON PROGRAMMABLE GRAPHICS HARDWARE 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

HACER YALIM 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR  

THE DEGREE OF MASTER OF SCIENCE 
IN 

COMPUTER ENGINEERING 

 
 
 
 
 

JUNE 2005 



 

 
Approval of the Graduate School of Natural and Applied Sciences 
 
 
 

 
Prof. Dr. Canan Özgen 
Director 

 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 
 
 
 

 
Prof. Dr. Ayşe Kiper 
Head of Department 

 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
 
Assoc. Prof. Dr. Veysi İşler    Assoc. Prof. Dr. Ahmet Coşar 
 Co-Supervisor      Supervisor 
 
 
Examining Committee Members  
 
 
Prof. Dr. Bülent Özgüç (BİLKENT UNV.,CENG) 
 
Assoc. Prof. Dr. Ahmet Coşar   (METU, CENG) 
 
Prof. Dr. Adnan Yazıcı    (METU, CENG) 
 
Assoc. Prof. Dr. Ferda Nur Alparslan  (METU, CENG) 
 
Assoc. Prof. Dr. İsmail Hakkı Toroslu (METU, CENG) 



 

iii 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also declare 
that, as required by these rules and conduct, I have fully cited and referenced 
all material and results that are not original to this work. 
 
 
 
      Name, Last name : 
  
      Signature              : 

 
 
 

 
 



 

iv 

 

ABSTRACT 

 

 

ACCELERATION OF DIRECT VOLUME RENDERING WITH TEXTURE 

SLABS ON PROGRAMMABLE GRAPHICS HARDWARE 

 

 

 

Yalım, Hacer 

MSc., Department of Computer Engineering 

Supervisor      : Assoc. Prof. Dr. Ahmet Coşar 

Co-Supervisor: Assoc. Prof. Dr. Veysi İşler 

 

June 2005, 69 pages 

 

 

 

This thesis proposes an efficient method to accelerate ray based volume rendering 

with texture slabs using programmable graphics hardware. In this method, empty 

space skipping and early ray termination are utilized without performing any 

preprocessing on CPU side. The acceleration structure is created on the fly by 

making use of depth buffer efficiently on Graphics Processing Unit (GPU) side. In 

the proposed method, texture slices are grouped together to form a texture slab. 

Rendering all the slabs from front to back viewing order in multiple rendering 

passes generates the resulting volume image. Slab silhouette maps (SSM) are 

created to identify and skip empty spaces along the ray direction at pixel level. 

These maps are created from the alpha component of the slab and stored in the depth 

buffer. In addition to the empty region information, SSM also contains information 



 

v 

about the terminated rays. The method relies on hardware z-occlusion culling that is 

realized by means of SSMs to accelerate ray traversals. The cost of generating this 

acceleration data structure is very small compared to the total rendering time. 

 

 

 

Keywords: Direct volume rendering, graphics hardware, empty space skipping 



 

vi 

 

ÖZ 

 

HACİM DATA GRAFİK SUNUMUNU DOKU DİLİMLERİ KULLANARAK 

PROGRAMLANABİLİR GRAFİK İŞLEMCİDE HIZLANDIRMAK 

 

 

 

Yalım, Hacer 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi          : Doç. Dr. Ahmet Coşar 

Ortak Tez Yöneticisi: Doç. Dr. Veysi İşler 

 

Haziran 2005, 69 sayfa 

 

 

 

 

Bu tez çalışması ışın tabanlı hacim grafik sunum metodlarını doku dilimleri 

kullanarak programlanabilir grafik işlemcilerde hızlandırmaya yönelik yeni bir 

yaklaşım önermektedir. Yöntem, boş alanları atlama ve erken ışın sonlandırma 

tekniklerini ana işlemci tarafında ön işlemeye gerek duymadan uygular. Hızlandırma 

yapıları grafik işlemci tarafında derinlik belleğini verimli bir şekilde kullanarak 

oluşturulurlar. Önerilen çalışmada, ince doku dilimleri bir araya getirilerek kalın 

doku dilimleri oluşturulur. Bu kalın dilimlerin önden arkaya çizdirilmesi ile hacim 

görüntüsü elde edilir. Dilimlerden silüet haritaları oluşturulur ve bu haritalar piksel 

düzeyinde boş alan atlama ve erken ışın sonlardırma işleminde kullanılırlar. Dilim 

silüet haritaları dilimlerin geçirgenlik özelliğinden faydalanılarak oluşturulurlar ve 

derinlik ara belleğinde tutulurlar. Silüet haritaları yalnızca hacimdeki boş alanları 



 

vii 

değil, aynı zamanda erken biten ışınların bilgisini saklamakta da kullanılırlar.  

Yöntem, ışın izleme sürelerini hızlandırmak için donanım destekli z-gizleme 

metodunu silüet haritalarından faydalanarak kullanır. Hızlandırma yapılarını 

oluşturma maliyeti toplam görüntü oluşturma zamanına oranla oldukça düşüktür. 

  

 

 

Anahtar Kelimeler: Hacim görüntüleme, grafik işlemci programlama, boşluk atlama 

yöntemi ile hızlandırma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     To My Family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

ACKNOWLEDGMENTS 

 

 

 

I wish to express my deepest gratitude to my supervisor co-supervisor Assoc. Prof. 

Dr. Veysi İşler and Assoc. Prof. Dr. Ahmet Coşar for their guidance, advice, 

criticism, encouragements and insight throughout the research.  

 

I would also like to thank Şükrü Alphan Es for his suggestions and valuable 

comments during this thesis study.  

 

This study was partially supported by the Tübitak-Bilten. I would like to thank to 

Dr. Uğur Murat Leloğlu and Işıl Gürdamar for their support. Moreover, I would like 

to express my deep appreciation to Devrim Tipi Urhan for her support during the 

thesis study. 

 

Finally, I would like to thank to my husband for everything. 

 



 

x 

TABLE OF CONTENTS 

 

 

 

ABSTRACT............................................................................................................... iv 

ÖZ .............................................................................................................................. vi 

ACKNOWLEDGMENTS ......................................................................................... ix 

TABLE OF CONTENTS............................................................................................ x 

LIST OF TABLES....................................................................................................xii 

LIST OF FIGURES .................................................................................................xiii 

CHAPTER ................................................................................................................. 1 

1 INTRODUCTION ............................................................................................... 1 

1.1 Transfer functions ......................................................................................... 2 

1.1.1 Iso-value Contour Surfaces.................................................................... 3 

1.1.2 Region Boundary Surfaces .................................................................... 4 

1.2 Physical Background .................................................................................... 5 

1.2.1 Emission-absorption model ................................................................... 5 

1.2.1.1 Absorption only .................................................................................. 6 

1.2.1.2 Emission only ..................................................................................... 6 

1.3 Direct Volume Rendering Algorithms.......................................................... 8 

1.4 Literature Survey ........................................................................................ 10 

1.4 Objective ..................................................................................................... 13 

1.5 Scope........................................................................................................... 13 

1.6 Outline ........................................................................................................ 14 

2 GRAPHICS HARDWARE................................................................................ 15 

2.1 Evolution of Graphics Hardware ................................................................ 15 

2.2 Programmable Vertex and Fragment Processors........................................ 23 

2.2.1 Programmable Vertex Processor ......................................................... 23 

2.2.2 Programmable Fragment Processor ..................................................... 25 



 

xi 

2.3 Programming Interfaces.............................................................................. 27 

2.3.1 Shading Languages .............................................................................. 27 

3 TEXTURE BASED VOLUME RENDERING................................................. 30 

3.1 2D Texture Based VR................................................................................. 30 

3.1.1 Algorithm............................................................................................. 31 

3.1.2 Advantages and Disadvantages ........................................................... 34 

3.2 3D Texture Based VR................................................................................. 34 

3.2.1 Algorithm............................................................................................. 35 

3.2.2 Texture Coordinate Generation ........................................................... 36 

3.2.3 Advantages and Disadvantages ........................................................... 37 

4 ACCELERATED DIRECT VOLUME RENDERING WITH TEXTURE 

SLABS .................................................................................................................. 40 

4.1 Algorithm.................................................................................................... 40 

4.1.1 Empty Space Skipping (ESS) .............................................................. 42 

4.1.2 Early Ray Termination (ERT) ............................................................. 43 

4.2 Implementation ........................................................................................... 44 

4.3 Kernel Operations ....................................................................................... 48 

4.3.1 Slab Silhouette Map (SSM) Kernel ..................................................... 48 

4.3.2 Ray Traverser Kernel........................................................................... 52 

4.3.3 ERT Kernel .......................................................................................... 55 

5 DISCUSSION AND RESULTS........................................................................ 57 

6 CONCLUSION AND FUTURE WORKS ........................................................ 63 

6.1 Future Works .............................................................................................. 65 

REFERENCES ......................................................................................................... 66 

 



 

xii 

 

LIST OF TABLES 

 

 

 

Table 1: Performance Results of the Experiments................................................... 59 

Table 2: Total Kernel Execution Times (in ms) ...................................................... 62 

 



 

xiii 

LIST OF FIGURES 

 

 

Figure 2.1: Graphics Hardware Pipeline.................................................................. 17 

Figure 2.2: First Generation GPUs (1995) .............................................................. 18 

Figure 2.3: Raster Operations Unit and per-fragment tests ..................................... 19 

Figure 2.4: Fixed Function Pipeline (T&L Unit on GPU side) ............................... 20 

Figure 2.5: T&L Unit on GPU side ......................................................................... 21 

Figure 2.6: Third Generation Programmable Vertex Processor .............................. 22 

Figure 2.7: Fourth Generation Programmable Vertex Processor ............................ 23 

Figure 2.8: Vertex Processor Flow Chart ................................................................ 24 

Figure 2.9: Fragment Processor Flow Chart............................................................ 26 

Figure 2.10: Software Architecture with Shading Languages................................. 28 

Figure 3.1: Object-Space Axis-Aligned Data Sampling.......................................... 31 

Figure 3.2: Texture Set for Three Object Space Axis.............................................. 32 

Figure 3.3: Sample Points for Different Slice Sets.................................................. 33 

Figure 3.4: Image-Space Axis Aligned Texture Slices............................................ 35 

Figure 3.5: Bounding Cube...................................................................................... 37 

Figure 3.6: Rearrangement of Texture Slices According to View Direction .......... 38 

Figure 4.1: Viewport Aligned Texture Slices and Texture Slabs ............................ 41 

Figure 4.2: Summary of the Algorithm ................................................................... 44 

Figure 4.3: Flow of Kernels and Their Effect to Pbuffer. ....................................... 47 

Figure 4.4: Pseudo-code of the Algorithm .............................................................. 47 

Figure 4.5: Depth Generation Function ................................................................... 49 

Figure 4.6: Early Depth Test Initialization .............................................................. 50 

Figure 4.7: Cg Source Code of CSSM Kernel......................................................... 51 

Figure 4.8: Cg Source Code of Ray Traverser Kernel............................................. 53 



 

xiv 

Figure 4.9: Traversal Through the Full Regions.. ................................................... 54 

Figure 4.10: Initialization of OpenGL States for Ray Traverser Kernel ................. 55 

Figure 4.11: Cg Source Code of ERT Kernel.......................................................... 56 

Figure 5.1: Rendering Results of the Datasets......................................................... 57 

Figure 5.2: First 10 SSMs of the Engine Model ...................................................... 60 

Figure 5.3: First 10 SSMs of the Teapot Model ...................................................... 61 

Figure 5.4: First 10 SSMs of the Skull Model......................................................... 61 

 

 



 

 

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

 

 Volume rendering is used, in this thesis, as a basis for developing techniques 

that allow the visualization of three-dimensional scalar data. Volume rendering is 

utilized in many application areas such as computational fluid dynamics, scientific 

modeling and visualization, and medical imaging.  

 Continuous three-dimensional volume data is discretized with different 

sampling grid structures. In medical imaging, these data sets are generated with 

tomographic measurements available from Computer Tomography (CT) scanners, 

Positron Emission Tomography (PET) scanners and Magnetic Resonance Images 

(MRI) in the form of uniform rectilinear grids. On the other hand, there are also 

unstructured grid structures based on tetrahedron, triangular prism, or square 

pyramid. These structures are mostly used in finite element simulations. In the scope 

of this thesis, volume data sets arising from CT and MRI measurements are 

considered and hence we restrict this work to uniform rectilinear grids.  

 Each volume element in the uniform grid is called a voxel and every voxel 

holds a density (scalar) value. The aim of a volume rendering algorithm is to 

determine the visibility of each voxel and visualize it by considering its density. 

 There are two main approaches to volume rendering [23]. The first approach 

is based on extracting conventional computer graphics primitives from the volume 

grid. The primitives can be surfaces, curves and points, which can be displayed 

using polygon based graphics hardware [1]. These methods are called in general as 

Indirect Volume Rendering (IVR) or Surface Rendering methods. Different 

approaches in IVR use different primitives with different scales. The assumption 



 

 

 

 

 

 

 

 

 

 

2 

 

 

 

 

 

here is that, a set of iso-surfaces exists in the volumetric data and that extracted 

polygon mesh can model every surface, including very small surfaces, as the true 

object structures with acceptable quality. However, IVR methods do not provide a 

general solution. Visualization of fuzzy or cloud-like semi-transparent data is not 

appropriate with this method.  

 Second group of volume rendering approaches render volume elements 

directly. That is, no intermediate conversion is required to extract surface 

information from the volume data. These methods are called Direct Volume 

Rendering (DVR) methods. In these methods, all volumetric voxels contribute to the 

final image. In contrast to IVR methods, DVR methods are appropriate for 

displaying weak or fuzzy surfaces as well as iso-surfaces. 

 In the following sections, the basics of volume rendering methods are 

described briefly. Next, an overview of direct volume rendering algorithms is given 

and a summary of the literature on the acceleration techniques in the context of 

volume rendering is presented. 

1.1 Transfer functions 

 A volume can be modeled by a data grid, where each grid vertex contains a 

particle with certain density. Optical properties of these particles, like color and 

opacity, are required to be able to render the content of the volume. For this purpose, 

transfer functions are defined to map scalar density values to the optical parameters. 

For instance, mapping different tissue types in medical images to different color and 

alpha values is critical for true perception of volume content. This is called data 

classification. Data classification enables viewer to focus on the areas where 

valuable information is located. For example, mapping certain scalar values to high 

alpha (opacity) values and mapping the rest to lower values enables the visualization 

of certain iso-surfaces. The interior parts, as well as iso-surfaces, can also be 

visualized as clouds with varying density and color mapping.  



 

 

 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 In our study, two different transfer functions are implemented and utilized; 

iso-value contour surfaces and region boundary surfaces. These are the two different 

classification methods introduced by Marc Levoy [5]. Since main goal of this thesis 

is achieving real-time rendering, complex transfer functions are out of the scope of 

this thesis. 

1.1.1 Iso-value Contour Surfaces 

 The basic principle in determining the iso-value surface is assigning an 

opacity value to all the voxels having the same density value. However, with this 

simple model, the generated image cannot contain multiple concentric semi-

transparent objects. Hence, the assignment of opacity values is made utilizing the 

approximate surface gradients. The algorithm first assigns vα  value to voxels with 

selected density vf . In addition to them, voxels with density values close to vα  are 

assigned opacities close to vf . The transfer function is stated in (1). 

 

 

   0

)()()()(  0)(   
)(

)(11

)(  0)(   1

)(

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎪
⎪

⎭

⎪
⎪

⎬

⎫

∇+≤≤∇−>∇
∇
−

−

==∇

=

otherwise

xfrxffxfrxfandxfif
xf

xff
r

fxfandxfif

x iiviii
i

iv

vii

vi αα (1) 

 

 According to this function, in the neighborhood of selected density value vf , 

opacity is decreased inversely proportional to the magnitude of local gradient vector. 

The neighborhood is represented with r , which is the pre-specified thickness value 

of the transition region. This thickness is kept constant throughout the volume.  

 The approximate surface gradient for voxel v in grid position (xi,yj,zk) is 

calculated using the operator as shown in (2). 

 



 

 

 

 

 

 

 

 

 

 

4 

 

 

 

 

 

[ [ ]

[ ]

[ ] ]),,(),,(
2
1

,),,(),,(
2
1

,),,(),,(
2
1)(

11

11

11  

−+

−+

−+

−

−

−=∇

kjikji

kjikji

kjikji

zyxfzyxf

zyxfzyxf

zyxfzyxfvf

   (2) 

 

 For the classification of more than one iso-surface in a single image, the 

classification of each iso-surface is performed separately and then combined with 

the formulation given in (3). 

 

∏
=

−−=
N

n

initot xx
1

))(1(1)( αα     (3) 

 

 Where, N different density values are combined, each with different opacity 

values and different/same transition regions. totα  is the resultant opacity value of the 

current voxel. 

1.1.2 Region Boundary Surfaces 

 Volume data obtained from CT scan of human body contains predictable 

density values for different biological tissue types. Region boundary surface 

detection is based primarily on the assumption that density values of a certain tissue 

type falls into a small neighborhood of a certain density value. With this 

assumption, different tissue types are assigned to different opacity values and all can 

be visualized in one volume image. It is well suited to use region boundary surface 

classification for medical volume data with different tissue types rather than iso-

surface contour classification.  

 The method proposed in Levoy’s work has a constraint that one tissue type 

can touch at most two other tissue types. If this criterion is violated, the method can 

not classify some of the voxels unambiguously. In this respect this method is too 

restricted. However, as stated earlier, classification is not the main part of this thesis 



 

 

 

 

 

 

 

 

 

 

5 

 

 

 

 

 

study and we implemented this basic method considering its restrictions. The 

transfer function is given below. 

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
≤≤⎥

⎦

⎤
⎢
⎣

⎡
−
−

+⎥
⎦

⎤
⎢
⎣

⎡
−
−

∇=
+

+

+

+
+

otherwise

vfxfvfif
vfvf
xfvf

vfvf
vfxf

xfx
nin

nn

in
v

nn

ni
v

ii
nn

0

)()()( 
)()(
)()(

)()(
)()(

)()(
1

1

1

1
1 αα

α

(4) 

 

 For Nn ,..2,1= , and selected density values have the property that 

)( nvf < )( 1+nvf  and tissue of vn touches only to the tissues vn-1 and vn+1. Moreover, 

the surface gradient calculation is performed using equation (2). 

1.2 Physical Background 

 Light transport theory forms the basis for all of the physically based 

rendering methods [6, 17]. Supposing that a volume is composed of small particles 

with certain densities, the light passing through a volume grid is affected by optical 

properties of these particles with absorption, scattering or emission. Scattering of 

light is a complex procedure that is usually neglected by volume rendering 

approaches. Hence, in this study, an emission-absorption model is selected to model 

the behavior of light. Light passing through a participating medium is affected from 

optical properties of individual particles and the total affect of each particle is 

modeled with a differential equation to express the light flow in the medium. For a 

continuous medium, absorption, emission and scattering occur at every 

infinitesimally small segment of the ray. 

1.2.1 Emission-absorption Model 

 Emission absorption model could be understood when emission and 

absorption are stated individually first.  



 

 

 

 

 

 

 

 

 

 

6 

 

 

 

 

 

1.2.1.1 Absorption Model 

 The particles in the participating medium absorb the light that they intercept. 

This is modeled as shown in equation (5). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗= ∫

s

dttII
0

0 )(exp   y)(s, τ ,    (5) 

 

where y)(s,I  is the intensity of light at distance s that is received at location y on 

the image plane, 0I  is the initial intensity of the light. )(tτ  is the extinction 

coefficient which defines the rate the light is occluded (the opacity value of the 

particles). In the formula, second term (the exponential function) gives the 

transparency of the medium between 0 and s. 

1.2.1.2 Emission Model 

In contrast to absorption of light, a medium adds light to the ray by reflection 

of external illumination. This is modeled as (6). 

 

∫+=
s

0 dttg  IysI
0

)( ),( ,     (6) 

 

where, )(tg  is emission term. 

The emission absorption model is defined combining to 5 and 6 as below: 

 

dtdxxtgdttI0ySI
S S

t

S

∫ ∫∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∗=

00

)(exp)()(exp  ),( ττ ,  (7) 

 

where, S is the length of the ray segment and the second term is the integral that 

calculates the contribution of the source term )(tg  at each position t  by multiplying 

it with the transparency of the ray between t and eye (S). This model is referred to as 



 

 

 

 

 

 

 

 

 

 

7 

 

 

 

 

 

Volume Rendering Integral (VRI) that computes the amount of light that is received 

at location y on the image plane.  

 To solve this equation numerically, a discretization is performed along the 

ray to approximate the analytical integration. Integration range is partitioned into n 

equal intervals (hence each segment element has a length of S/n), the formula 

becomes as in (8). 

 

)...)))...(((         

   ),(

011211

11i1

0

Itggtgtg

tgtIySI

nnnnn

n

ij

j

n

i

n

i

i

++++=

+≈

−−−

+===
∏∑∏   (8) 

 

 This iterative solution to emission-absorption model is the fundamental to 

almost all of the direct volume rendering methods. This expression is referred to as 

discretized VRI (DVRI). 

 A particle can absorb, reflect or emit the incoming light according to its 

specular, diffuse and emission material properties. The model expressed in equation 

(8) can be expressed for each light component with wavelength λ, as the amount of 

light coming from direction r that is received at location y on the image plane as: 

 

∑ ∏
=

−

=

−⋅=
n

i

i

j

jii sssCryI
0

1

0

))(1()()(),( ααλλ    (9) 

 

where, opacity α = 1-transparency. )(sCλ  is the light of wavelength λ reflected or 

emitted at location s in the direction r. VR algorithms calculate color and opacity 

values at discretized sample points is  and composite them from front to back order 

according to (9).  

 VR algorithms can be distinguished by how they obtain color and opacities. 

In this respect, algorithms are classified as pre-shaded VR and post-shaded VR. The 

main point is the order of classification and shading when interpolating ray samples. 



 

 

 

 

 

 

 

 

 

 

8 

 

 

 

 

 

It is called post-shaded, if density value is interpolated first and then color and 

opacity components are determined. On the other hand, if color and opacity values 

are initially calculated for all the vertices and these values are interpolated at the 

sample points before classification, it is called pre-shaded algorithm. Post-shading 

gives more accurate results than pre-shading which tends to give blurry images. For 

pre-shaded algorithms, equation (9) is valid. To express post-shaded algorithms, 

interpolation function is included as: 

 

∑ ∏
=

−

=

−⋅=
n

i

i

j

jii sfsfsfCryI
0

1

0

)))((1())(())((),( ααλλ    (10) 

 

where, )(xf  gives interpolated density value at point x, )(xC  and )(xα transfer the 

density values to color and alpha components respectively. The images contain fine 

detail when the density values are interpolated first and then classified. In this thesis, 

post-shading is utilized in the calculation of DVRI.  

1.3 Direct Volume Rendering (DVR) Algorithms 

 In contrast to Indirect Volume Rendering (IVR) techniques, which display 

only the surface primitives, Direct Volume Rendering (DVR) techniques display the 

contents of all voxels utilizing the model stated with equation (8). 

 In general, DVR algorithms can be classified in three main groups as image-

order methods, object-order methods and fourier-space methods. Image-order 

methods calculate the final color for each pixel of the resulting image. Hence, 

starting points in these methods are pixels on the image plane. Ray casting [5] and 

share-warp [15] methods are in this category. On the other hand, object order 

methods calculate the contribution of each voxel to the resultant image. Starting 

points in this case are voxels (object cells). Splatting [9, 3], cell projection [8] and 

3D texture based methods [16] are grouped in this category. Fourier-space methods 

generate the volume image working in frequency domain. In a preprocessing step 



 

 

 

 

 

 

 

 

 

 

9 

 

 

 

 

 

the volume data (3d) is transformed to frequency-domain. Then the projection image 

is created by extracting a slice image. Finally, this 2d projection is transformed back 

to spatial domain with inverse fourier transform [11]. 

 In Volume Ray Casting, rays are cast from the observers’ eye point through 

the volume data. For each ray a vector of sample colors and opacities are obtained 

by resampling the voxels at evenly spaced locations. The obtained values are 

composited using DVRI from front-to-back or back-to-front order to yield a single 

color and opacity value for that ray. Finally, the resultant color is projected on the 

viewing plane. This process is done for each image pixel.  

 In Shear-Warp Factorization methods an appropriate shear transform is used 

to efficiently access volume data along a slice. With an appropriate shear-transform 

volume data is transformed to object space. By this way, sampled slices are mapped 

to actual planes in volume data, which enables doing sampling more efficiently for 

any viewing direction. Then, the obtained image is warped to transform back to 

original viewing direction.  

 Splatting methods do rendering by first sorting the voxels from back to front 

order and then composite the projections of each cell into a resultant image. These 

projections are called footprints (splats) of cells. Different splatting algorithms use 

different representations of volumetric data with different splat sizes.  

 Texture Mapping Based methods, take advantage of hardware assisted 2D 

and 3D texture mapping utilities of graphics hardware. These methods represent the 

volume data as a stack of 2D textures or as a 3D texture. Rendering is performed 

using the hardware support of graphics units. These methods are fairly faster than 

the methods described above, however they have high memory requirements. 

 In the following section, works in the literature about acceleration methods 

for DVR is listed and hardware accelerated texture based algorithms are 

summarized.  



 

 

 

 

 

 

 

 

 

 

10 

 

 

 

 

 

1.4 Literature Survey 

 One of the challenges of DVR methods is their rendering speeds. Displaying 

the contents of every cell through a viewing direction is a costly process. Therefore, 

these methods suffer from the long-display times. Starting from the earlier days of 

volume rendering methods, many researchers have devoted their times on refining 

these methods.  Many acceleration techniques have been developed to have real-

time control over volume data. 

 The acceleration methods differ significantly in terms of the principal 

methodology they use and the kind of data structures they can display. All of these 

techniques depend on the classification of features in the data in a pre-processing 

step. Early acceleration methods used hierarchical data structures such as K-d trees 

[6] and octrees [5] to skip empty regions of volume data to reduce the number of 

samples needed to construct the final image. Afterwards, several works focused on 

hierarchical data structures [9], [10]. These data structures provide acceleration of 

rendering homogenous regions as well as empty regions. However, usage of 

complex data structures (such as octrees) has extra memory requirements. 

Considering these disadvantages, later techniques explored other forms of encoding 

schemes such as look-aside buffers, proximity clouds [17], and shell encoding [12] 

to skip empty spaces. These methods are more successful than hierarchical 

techniques. This is because of the encoding scheme they use. Information about 

empty regions is indexed with the same indices used for volume data.  

 Recently the number of volume rendering techniques that make use of 

hardware assisted texture mapping has increased. The idea of using 3D textures for 

rendering volumetric images of substantial resolution is first mentioned in SGI 

Reality Engine [13]. Cullip and Neumann [14] and Cabral’s [16] work are among 

the first papers using 3D texture mapping hardware to accelerate volume rendering. 

These early approaches loaded the pre-calculated shading results into a 3D texture 

and used texture-mapping hardware for visualization. However, shading calculations 

have to be redone whenever the viewing parameters change. Van Gelder et al. [19] 



 

 

 

 

 

 

 

 

 

 

11 

 

 

 

 

 

proposed Voltx that utilizes hardware assisted 3D texture mapping with a light 

model. In their approach the 3D volume texture is reloaded whenever viewing 

direction changes. Later, Westerman and Ertl [20] introduced new approaches about 

accelerating volume rendering with advanced graphics hardware implementations 

through standard APIs like OpenGL. They mentioned using color matrix for shading 

and shaded volume on the fly. In their approach, there is no need to reload volume 

texture when viewing parameters change. Meibner et al. [22] extended their 

approaches giving support for semi-transparent volume rendering. They introduced 

multiple classification spaces using graphics hardware. Volume texture is stored 

only once and the rest of the calculations are performed on GPU part. Rezk-Salama 

[24] et al. used multi-texturing and multistage rasterization utilities of Nvidia 

GeForce graphics cards to improve both the performance and image quality of 2D 

texture based approaches. This work aimed to introduce a method to visualize 

volume data interactively on low cost consumer graphics cards which have no 

hardware support for trilinear interpolation. Engel et al. [25] proposed a method to 

decrease the number of texture slices without loosing rendering quality using multi 

textures and advanced per-pixel operations on programmable graphics hardware. 

They explained pre-integrated classification to sample continues scalar field without 

the requirement for increasing sample rate, hence improved the rendering 

performance. Pre-integration is completed in a preprocessing step and dependent 

textures are utilized to efficiently render the volume data. 

 In addition to these advances in volume visualization using 3D texture 

mapping hardware, new acceleration techniques directed their ways to apply 

classical acceleration techniques like empty space skipping and early-ray 

termination to 3D texture based methods exploiting the new generation 

programmable graphics hardware chips. New approaches designed their algorithms 

and data structures in order to take advantage of internal parallelism and efficient 

programmability of the dedicated graphics hardware utilities [27, 28, and 29]. The 

study of this thesis belongs to this category. Empty regions in volume data are the 

parts, which have zero opacity or an opacity value that are unimportant for 



 

 

 

 

 

 

 

 

 

 

12 

 

 

 

 

 

visualizing. Skipping those regions has no effect on the final image. In [29], a 

volume ray casting method is offered, which uses an octree hierarchy to encode 

empty regions. The information in this data structure is calculated in a pre-

processing step on CPU and loaded into a 3D texture. GPU utilizes this information 

to skip empty spaces. Furthermore, early ray termination is performed on GPU by 

checking accumulated opacity value against a predetermined threshold in an 

intermediate pass and exploiting early z-test utility of ATI 9700 graphics cards. On 

the other hand, in [28], volume is partitioned into sub-volumes containing similar 

density properties using growing boxes [27]. The sub-volumes are rendered in 

visibility order and they are reorganized whenever the viewing direction changes. 

For this purpose an orthogonal BSP tree structure is constructed. Empty sub-

volumes are skipped utilizing this structure. In addition to skipping empty regions, 

an orthogonal opacity map is created to skip occluded pixels on GPU. Occluded 

pixels are determined in sub-volume level by checking the projections of sub-

volumes to the occlusion map.  

 In this thesis, a new acceleration method for volumetric ray casting 

algorithms on Graphics Processing Units (GPU) is explained. This algorithm 

creates and uses a special representation of volume regions for skipping empty 

spaces efficiently. To do this, the method exploits the programmability of the new 

generation graphics chips. The creation of this information is done in real-time and 

its burden on display times is very small compared to volume rendering times. 

Hardware assisted 2D and 3D textures are used extensively to transfer data between 

CPU and GPU. Using this method, rendering is performed at least two-times faster 

than the original volume ray casting method. Both [29] and [28]  utilize particular 

data structures, octrees and BSP trees respectively, created on the CPU side to store 

empty space information for acceleration. The approach in this study differs from 

[28] and [29] in that; no explicit data structure on the CPU side is created to encode 

volume space information. Instead, the information is created on the fly on GPU 

side without doing any pre-processing.  



 

 

 

 

 

 

 

 

 

 

13 

 

 

 

 

 

1.4 Objective of the Thesis 

 The objective of the thesis is to achieve volume visualization using 

programmable graphics hardware and to accelerate this visualization again by using 

advanced features of GPU. Hence, the objective can be divided into two main parts. 

 The first issue is to work on the volume rendering methods and to select a 

method that generates good quality volume images. After determining this method, 

the next step is to implement it using classical software based methods.  

The second issue is to analyze and design a new algorithm using advanced 

features of the GPU. Therefore, initial objective here is studying GPU programming 

and accumulating knowledge in this subject. The next objective is adapting the 

selected method to work efficiently on programmable GPU. Final objective is to 

create an acceleration structure on GPU and accomplish high quality visualization of 

volume data in real-time. 

1.5 Scope of the Thesis 

 There are different approaches to volume visualization problem. The study 

has to consider both image quality and rendering time while selecting the method. In 

this respect, the scope of this thesis is limited to ray casting based direct volume 

rendering algorithms using texture mapping hardware, as ray casting methods 

provide high quality images.  

 Using programmable graphics units efficiently in volume visualization is 

among the main research topics of this study. For improving rendering times, the 

development of new acceleration structures on a programmable GPU is added to the 

scope. In addition to them, the study covers the data classification part of volume 

rendering. However, advanced classification techniques are beyond the scope of this 

study. 



 

 

 

 

 

 

 

 

 

 

14 

 

 

 

 

 

1.6 Outline 

 The outline of the thesis is as follows. In the second chapter, an overview of 

graphics hardware is provided. In the third chapter, the details of the texture based 

volume rendering techniques are given. In Chapter 4, the proposed acceleration 

method is explained in detail. In the subsequent chapter, a discussion about the 

features of proposed method takes place providing the sample test results. Finally, a 

conclusion is made and future works are stated. 



 

 

 

 

 

 

 

 

 

 

15 

 

 

 

 

 

 

CHAPTER 2 

GRAPHICS HARDWARE 

 

 

 The basic concepts of the graphics hardware are outlined in the following 

sections. Since the proposed acceleration method relies on the advanced features of 

the programmable graphics units, this information serves as a reference for the GPU 

concepts mentioned in this thesis. Nowadays, programmability of graphics hardware 

exists in many general purpose consumer PCs. 

 The outline of this chapter is as follows. Firstly, evolution of graphics 

hardware is briefly explained. Following that, programmable vertex and fragment 

shaders are introduced. Finally, programming interfaces are mentioned and popular 

shading languages are stated. 

2.1 Evolution of Graphics Hardware 

 The GPU on commodity graphics cards are evolving at incredible rates not 

only in the processing power but also in the flexibility and programmability since 

2001. With the recent advances, GPU become a very fast general purpose stream 

processing hardware. Their performance is increasing faster than the ratio stated in 

Moore’s law, especially in arithmetic power. It is because of the specialized nature 

of GPUs that makes it easier to utilize additional transistors for computation. There 

are many forces driving to this speedy improvement. The constant redoubling of the 

computer power with semiconductor industry is one of the fundamental forces. 

Another one is the tendency of people on simulating the 3d world in computer 

environment. Moreover, the incredible grow rate of the game and entertainment 

market results in more demand on faster GPUs. 



 

 

 

 

 

 

 

 

 

 

16 

 

 

 

 

 

 According to the advances in graphics hardware, the evolution of GPUs is 

divided into four generations by industry observers [34]. From one generation to the 

next, the performance and the programmability of GPUs have increased.  

 Before the production of GPUs, companies like Silicon Graphics (SGI) and 

Evans & Sutherland had designed their special purpose graphics hardware which 

was very expensive. Many of today’s important concepts have been introduced with 

these graphics chips. Hence, these works are considered to be the starting points of 

the evolution of new generation GPUs. In the following paragraphs, evolution of 

GPUs and the graphics pipeline is briefly summarized. 

 Hardware graphics pipeline is composed of the two fundamental stages at the 

top layer: Geometry stage and Rasterization stage (Figure 2.1). Each of these stages 

has a pipeline structure inside. In the application side, the scene is represented with 

many 3D triangles. The triangles that are sent to the graphics unit for visualization 

are first entered to the geometry stage of the pipeline. For each vertex of triangles, 

model-view projection transformation is performed to find the vertex’s 2D screen 

positions. In addition to the position information, some of the vertex related 

attributes are calculated in this stage. This stage generates 2D triangles as the 

outputs. These triangles are sent to the rasterization stage.  

 In the rasterization stage, view frustum culling and clipping is performed and 

the visible parts of the triangles are rasterized. Rasterization is the task of 

determining the pixels covered by a geometric primitive. The result of this operation 

is a set of fragments and a set of pixel positions. Fragment is defined as a state that 

is required to update a particular pixel in the frame buffer. Vertex attributes like 

color, texture coordinates and normals are interpolated and assigned as fragments’ 

attributes. Then shading is performed according to these parameters. Finally, a 

sequence of visibility tests are applied to the fragments and the frame buffer pixels 

are modified according to the results of these tests. 

 

 

 



 

 

 

 

 

 

 

 

 

 

17 

 

 

 

 

 

 
 
Figure 2.1: Graphics Hardware Pipeline 
 
 
 
 After this overall explanation of graphics pipeline, the evolution of the GPUs 

and corresponding pipeline stages can be understood easily.  

 Deering et al. designed GPU architecture with a pipeline of triangle 

processors and a pipeline of shader processors utilizing an inexpensive VLSI 

solution in 1988 [2]. Following that, GPUs are designed to include several triangle 

processors to use triangles in the geometry rasterization. Those early GPUs can 

perform the pre-transformed rasterization of triangles and have the ability to map 

one or two textures onto the geometries. The GPUs that are produced until 1998 are 

grouped as the first generation GPUs (see Figure 2.2). In this generation, pixel 

updates are started to be achieved on GPU side. On the other hand, vertex 

transformations are still performed by the application, which means that the load of 

the geometry stage is on CPU side. Also, the set of mathematical operations on GPU 

side is very limited. Examples of GPUs in this generation are NVidia TNT2 and 

ATI Rage. In 1998, the texture unit in Figure 2.2 was replaced with multi-texture 

unit. 

 

 

 

2D triangles3D trianglesApplication 
Stage 

Geometry 
Stage 

Rasterization 
Stage Pixels



 

 

 

 

 

 

 

 

 

 

18 

 

 

 

 

 

 
 
Figure 2.2: First Generation GPUs (1995) 
 

 

 

 As it is shown in Figure 2.2, rasterization stage contains three main units; 

rasterizer, texture unit and raster operations unit. Raster operations unit (ROU) 

performs many per-fragment tests before modifying the frame buffer. These tests are 

shown in Figure 2.3. As stated earlier each fragment has interpolated attributes for 

position, color, alpha and depth values. In ROU, as a first step, screen position (2d) 

parameters are tested against scissor rectangle in scissor test. Next, fragment’s alpha 

value is tested against a reference value in the alpha test. Then, for the stencil test, 

stencil buffer value at corresponding screen position is tested against a stencil 

reference value. Following stencil test, depth value of the fragment is tested against 

the z-value at corresponding screen position. Finally, alpha blending is performed 

with the incoming fragment’s color values and corresponding color value of the 

color buffer. The order of the tests is exactly as stated here.  

 

 

 

CPU GPU 
Rasterization Stage 

System 

Memory 

Geometry Stage 

2D triangles 

Textures 

Rasterizer Texture 
Unit

Raster 
Ops Unit

Video Memory 

2D triangles Textures 
Frame 
Buffer 

PCI 
Bus



 

 

 

 

 

 

 

 

 

 

19 

 

 

 

 

 

 
 
Figure 2.3: Raster Operations Unit and per-fragment tests 
 
 
 
 
 The second generation GPUs were produced in 1999 and 2000. In this 

generation, vertex transformation and lighting (T&L) has started to be computed on 

GPU side rather than CPU (see Figure 2.4 and Figure 2.5). Moreover, the set of 

mathematical operations of GPU to combine textures and coloring is expanded to 

include signed mathematical operations and cube map textures. However, GPUs are 

still in the fixed function pipeline mode and have no programmability features in 

this generation. Examples of second generation GPUs are NVidia GeForce 256 and 

ATI Radeon 7500. 

 
 
 
 
 
 
 
 
 
 
 

Frame Buffer 

Raster Ops. Unit 

 

Fragments Rasterizer Texture 
Unit 

Screen pos(x,y)

Alpha value

Depth value

Color value

Scissor Test

Stencil Test

Alpha Test

Depth (Z) Test

Alpha 
Blending

Stencil 
Buffer 

Z-buffer 

Color 
Buffer 

Stencil ref. value



 

 

 

 

 

 

 

 

 

 

20 

 

 

 

 

 

 
 
 

 
 
 
Figure 2.4: Fixed Function Pipeline (T&L Unit on GPU side) 
 
 
 
 

GPU 
Geometry Stage 

CPU 

 Video Memory 

System Memory 

Application 
Stage 

3D Triangles 

Textures 

Transform 
And 

Lighting 
Unit 

3D Triangles

Rasterizer 

Register 
Combiner 

Raster Ops 
Unit 

Texture 
Unit

Textures Frame Buffer AGP 
Bus 



 

 

 

 

 

 

 

 

 

 

21 

 

 

 

 

 

 
 
Figure 2.5: T&L Unit on GPU side 
 
 
 
 
 The third generation GPUs were introduced in 2001 (see Figure 2.6). The 

GPUs in this generation provide vertex programmability. By this way, the 

application can specify the sequence of instructions for vertex processing instead of 

the fixed function T&L modes specified by graphics APIs. Therefore, these GPUs 

provide more pixel-level configuration variety. However, they are still not truly 

programmable; there is no flow control support in vertex shaders.  

Rasterizer, on the other hand, predicts the fragments that will fail the z-test 

and discards them. This is called early-z-culling. With this efficient test, 

unnecessary processing for invisible fragments is avoided. In this generation, texture 

T&L Unit 

Lighting Unit 

Transform Unit 

 Modelview Matrix 

Object 
Space 

Eye 
Space 

World 
Space 

Clip 
Space 

Screen 
Space 

World 
Matrix 

View 
Matrix 

Projection 
Matrix 

Viewpor
t Matrix 

Vertex Color 

Lighting 
Properties 

Material 
Properties 

Diffuse and 
Specular Color of 

Vertex 



 

 

 

 

 

 

 

 

 

 

22 

 

 

 

 

 

shader provides more addressing and texture operations. Examples of third 

generation GPUs are NVidia GeForce3-4 and ATI Radeon 8500. 

 

 

 

 
 
 
Figure 2.6: Third Generation Programmable Vertex Processor 
 
 
 

 

 The fourth and the last generation GPUs are the ones produced since 2002 

(see Figure 2.7). Both vertex programming and pixel programming are supported by 

the GPUs of this generation. By this way, complex vertex transformations and pixel 

shading operations can be performed with the vertex and fragment programs loaded 

on GPU. In the first GPUs of this generation, vertex shaders support static and 

dynamic flow control, while fragment shaders support only static flow control. 

However, later GPUs which were produced in 2004, support both dynamic and 

static flow control for vertex and fragment shaders. In static flow control, a 

conditional expression in the shader program varies per batch of triangle basis, 

GPU 
Rasterization Stage Geometry Stage

CPU 

Video Memory 

System Memory 

Application 
Stage 

3D Triangles 

Textures 

VERTEX 
SHADER  
(no flow 
control) 

3D Triangles

Rasterizer 
(Z-culling)

Register 
Combiner 

Raster Ops 
Unit 

Texture 
Unit

Textures Frame Buffer AGP 
Bus



 

 

 

 

 

 

 

 

 

 

23 

 

 

 

 

 

while in dynamic flow control the condition varies per vertex/pixel basis. Examples 

are NVidia GeForce FX family GPUs and ATI Radeon 9700. 

 

 

 

 
 
 
Figure 2.7: Fourth Generation Programmable Vertex Processor 
 
 

 

2.2 Programmable Vertex and Fragment Processors 

 Programmable vertex and fragment processing units are the hardware units 

that run the loaded vertex and fragment programs. With this structure vertex and 

fragment units have programmability in addition to their configurability. In this 

section, the basics of the fragment and vertex processors are briefly introduced. 

2.2.1 Programmable Vertex Processor 

 The flow chart of a typical vertex processor is shown in Figure 2.8.  

GPU 
Rasterization 

Stage 
Geometry Stage 

CPU 

Video Memory 

System Memory 

Application 
Stage 

3D Triangles 

Textures 

VERTEX 
SHADER 
(Static and 

dynamic flow 
control) 

3D Triangles

Rasterizer 
(Z-culling) 

Texture 
Unit

Textures Frame Buffer AGP 
Bus

FRAGMENT 
SHADER 

 (Static and 
dynamic flow) Raster 

Ops 
Unit



 

 

 

 

 

 

 

 

 

 

24 

 

 

 

 

 

 

 

 

 
 
Figure 2.8: Vertex Processor Flow Chart [34] 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

25 

 

 

 

 

 

 
 
 

In the flow chart, initially each vertex attributes such as position, color, 

texture coordinates are loaded into the vertex processor. Until the termination, the 

vertex processor fetches the next instruction and executes it. There are register 

banks that contain vector values such as position, normal and color. These registers 

are accessible from the instructions. There are three different types of registers: 

 Input registers: These are the read-only registers that contain the attributes 

particular to a vertex that are specified by the application. 

 Temporary registers: These registers can either be read or written and they 

are used for computing intermediate results. 

 Output registers: These registers are used only for writing. The results of 

vertex programs are written to these registers. When the vertex program terminates, 

the output registers contain the final transformed vertex information. 

2.2.2 Programmable Fragment Processor 

 Fragment processors support texture operations in addition to the 

mathematical operations. The texture samples are fetched according to the given 

texture coordinates. The flow chart of a programmable fragment processor is 

displayed in Figure 2.9. Just as programmable vertex processors, programmable 

fragment processors contain different types of registers as input registers, temporary 

registers and output registers.  

 Input registers, different from the ones in vertex processor; contain the 

interpolated per-fragment attributes obtained from the per-vertex parameters.  

 Temporary registers contain intermediate results as in the vertex processor. 

 Output registers contain the color value of a fragment. 



 

 

 

 

 

 

 

 

 

 

26 

 

 

 

 

 

 
 
 
 
Figure 2.9: Fragment Processor Flow Chart [34] 
 
 
 
 

 



 

 

 

 

 

 

 

 

 

 

27 

 

 

 

 

 

2.3 Programming Interfaces 

 Graphics applications are developed using Graphics Application 

Programming Interface (API). An API is the software layer between the graphics 

hardware device driver and high-level languages. These interfaces prevent the user 

from learning device specific low-level coding. The quality and efficiency of 

graphics applications depend on these interface implementations. In an ideal world, 

an API should add no additional overhead on the applications and it should be 

platform independent. Moreover, it should provide support for the advances in 

graphics hardware. The most well known graphics APIs are OpenGL [32] and 

Direct3D [30]. OpenGL is widely used in industrial and scientific applications, 

while Direct3D is usually preferred in game programming and entertainment 

applications. OpenGL is an open standard while Direct3D belongs to Microsoft. 

Direct3D API is based on Component Object Based (COM), hence its usage is 

restricted to Windows platforms. In this thesis, OpenGL API is chosen for 

implementation with C++ language.  

2.3.1 Shading Languages 

 There is an increasing rate in the power of graphics processors. With 

programmable GPUs, real-time shading capabilities are expanded from one-pass 

simple shading and simple texturing to multi-pass rendering and to the texture 

combiners. However, as GPUs become more powerful, programming them becomes 

more complicated and difficult without existence of high-level shading languages. 

Producing complicated affects with assembly languages is actually very difficult. 

Especially, starting from the fourth generation of GPUs, the assembly codes’ length 

exceeds thousands of lines. Hence, recently, the need to high-level shading 

languages increased dramatically. Graphics developers want easier programming, 

and code reusing features when programming graphics units.  

 Considering these situations, new researches are directed to the design and 

implementation of high-level shading languages. Renderman is the first shader 



 

 

 

 

 

 

 

 

 

 

28 

 

 

 

 

 

language that is developed at Pixar in 1988 [4]. It is still a good choice by graphics 

developers when high quality rendering is required. But it does not work in real-

time, generally used for offline rendering. From then, many researches are directed 

to the development of real-time high-level shading languages. In 1998, PixelFlow 

Shading System (with shader language and its compiler) is proposed at University of 

North Carolina as the first real-time shading system [21]. In 2001, Real-time 

Shading Language is proposed at Stanford University [26]. In this work, the 

abstraction level of the shading language is increased to a level that causes no 

performance penalties. Then, in 2002, Microsoft provided a high-level shading 

language called HLSL [33]. Same year Nvidia introduced Cg [34]. Next year, in 

2003, Architecture Review Board (ARB) provided OpenGL Shading Language as 

GLSL [35]. HLSL, Cg and GLSL languages, different from the early shading 

languages, give support for many of the previous languages. That is, they work with 

many general purpose languages like C, C++ and Java; many APIs like OpenGL, 

Direct3D and with previous shading languages like PixelFlow, RenderMan, Real-

Time Shading Language. These high-level shading languages take place between 

API layer and GPU layer in software architecture as shown in Figure 2.10. 

 

 

 

 
 
Figure 2.10: Software Architecture with Shading Languages 

OpenGL Direct3D 

Application Layer 

GLSL Cg HLSL

GPU 



 

 

 

 

 

 

 

 

 

 

29 

 

 

 

 

 

 

 HLSL is developed by Microsoft and it works with Direct3D API. Similarly, 

GLSL is developed by ARB specific to OpenGL API; it requires OpenGL 2.0. On 

the other hand, Cg is designed as a platform independent and architecture neutral 

shading language. In this respect, it is one of the first GPGPU languages that is 

widely used in many platforms with different languages. In this thesis all the vertex 

and fragment shaders are developed using Cg language. Refer to the Cg Reference 

Manuals for the specifications of the language in detail [34]. Details of Cg language 

and programming are kept beyond the scope of this thesis report. 

 In general, a graphics program that utilizes shaders initially specifies the 

vertex and/or fragment shaders using graphics API calls. Then, the specified shaders 

are enabled. In the program, texture loading and geometry specifications take place 

as its usual way, using API calls. For each vertex of the geometries, loaded vertex 

program is executed on vertex processor of the GPU. Similarly, loaded fragment 

shader on fragment processor is executed for each fragment. Collection of records 

requiring similar computation like vertex positions, voxels, etc. is referred to as 

stream. Functions specified in the vertex and fragment shaders are applied to each 

element in the stream. These functions are referred to as kernels. Kernels usually 

have high arithmetic intensity and the dependencies between stream elements in 

kernels are very few.  

 After the brief introduction about GPUs, programmable vertex and fragment 

processors, it is time to make an introduction to texture based volume rendering 

algorithms. There exists a brief discussion about 2d and 3d texture based volume 

rendering methods in the next chapter. 



 

 

 

 

 

 

 

 

 

 

30 

 

 

 

 

 

 

CHAPTER 3 

TEXTURE BASED VOLUME RENDERING 

 

 

 In this thesis, we studied on texture based volume rendering algorithms and 

accelerated 3d texture based volume rendering defining a new acceleration structure. 

Before describing the details of our acceleration method, it is wise to explain the 

basic principles of texture based volume rendering algorithms. This section is a brief 

introduction to texture based VR methods. 

 Sampling of volume data is one of the major components of volume 

rendering algorithms. It requires interpolation for each sample point throughout the 

ray. Therefore, its additional cost to the total rendering time is very high. Utilizing 

the graphics chip’s hardware support for interpolation, which exists in the texturing 

subsystem, hence considerably reduces the load of CPU. Texture based methods 

utilize the hardware support of texture units for interpolation in sampling 

calculations. Therefore, these techniques are fairly faster than the software based 

VR methods. 

 Texture based methods are classified as 2d texture based methods and 3d 

texture based methods. The details of these methods are clarified in the following 

subsections. 

3.1 2D Texture Based VR 

 Graphics pipeline does not support volumetric objects as rendering 

primitives. Rasterizer supports only the polygonal rendering primitives. Therefore, 

volume data content should be decomposed into planar polygons for direct volume 



 

 

 

 

 

 

 

 

 

 

31 

 

 

 

 

 

rendering. These polygons are referred to as proxy geometries. There are different 

ways of doing the decomposition. 

 Today, many graphics boards support 2d texture mapping hardware. Hence, 

utilizing the texture hardware for sampling (interpolation) is advantageous. 2d 

texture mapping hardware provides bilinear interpolation. In this respect, this 

method gives similar results with the software implementation of shear-warp 

method explained in section 1.3. In the next section the basic principles of the 

algorithm is explained. Following that, the advantages and disadvantages of this 

method are discussed. 

3.1.1 Algorithm 

 

 
 
Figure 3.1: Object-Space Axis-Aligned Data Sampling 
 
 

 

 The main part of the algorithm is the definition of proxy geometry. The 

volume is decomposed into a stack of object-axis aligned polygon slices according 

to the current viewing direction. In Figure 3.1, slicing planes are defined parallel to 

YZ plane and every slice is rendered as a texture mapped polygon. When texture 

parameters are assigned truly, the texturing hardware maps the true sampling 

parameters onto that proxy geometry. These polygons are blended from back to 

front viewing order to obtain the resultant volume image. While blending, 

y z

x

Proxy geometry



 

 

 

 

 

 

 

 

 

 

32 

 

 

 

 

 

composition of sample colors and alpha values are performed utilizing DVRI (see 

section 1.2). 

 True arrangement of volume slices is the most important part of this 

algorithm. The slicing is performed on the object space with respect to three major 

axes. When viewing direction changes, the slicing polygons should be reorganized 

according to the new view direction to give the true volume image. For example, 

considering Figure 3.1, if initial view direction is through x axis, slices are located 

parallel to the view plane and we can obtain a proper volume image. Assume that 

with the same slices, the view direction is set through z axis, then the slices become 

orthogonal to the view plane and we obtain vertical lines instead of volume content 

as the resultant image. Hence, for each view direction change, reorganization of 

volume slices is required. However, the reorganization of texture slices on the fly is 

very costly. For this reason, as it is done in the shear-warp method, for three main 

object axis, x, y and z, texture sets are prepared in a preprocessing step (see Figure 

3.2) and stored in the memory. 

 

 

 

 
 
Figure 3.2: Texture Set for Three Object Space Axis  
 
 
 

y z

x 

XY slices YZ slicesXZ slices 



 

 

 

 

 

 

 

 

 

 

33 

 

 

 

 

 

 The true slicing set is chosen according to the minimal angle between the 

current view direction and the slice normal. However, in some situations, from one 

major view direction to the next, the change in the image intensity can be fairly 

visible. This artifact is called popping effect. The cause of popping effect is the 

abrupt changes in the locations of the sample points depending on the sudden 

change between two slice sets. The reason of this artifact is depicted in Figure 3.3. 

In Figure 3.3-c, the displacement from one slice set to the other can easily be 

visualized. 

 

 

 

 
 
Figure 3.3: Sample Points for Different Slice Sets (a and b). c shows the 
superposition of a and b. 
 
 
 
 

 There are some solutions to decrease the popping effect. One of them is 

decreasing the length between two consecutive sample points. This is accomplished 

by inserting intermediate slices between two slices. By this way, sampling distances 

are decreased and the abrupt intensity changes between two different viewing 

direction is reduced. Another solution is defining image-space axis-aligned slicing 

c ba 



 

 

 

 

 

 

 

 

 

 

34 

 

 

 

 

 

planes, which implies making slices parallel to the view plane all the time. However, 

it requires defining slices in arbitrary orientations in the object space. Preparing 

slices in arbitrary orientations on the fly is very time consuming and not feasible 

with 2d texture mapping methods. This approach is used in 3d texture based 

methods and will be clarified in the next section. 

3.1.2 Advantages and Disadvantages 

 2d texture based methods have some advantages and disadvantages. 

Rendering times and high availability are the advantages of this method. On the 

other hand bilinear sampling, inconsistent sampling rates, visual artifacts and high 

memory requirements are among the disadvantages of this method. 

 First, using preprocessed three object axis aligned slices enables the 

visualization with very high performance. Texture unit accomplishes the 

interpolation. There remains only the blending operation from back to front viewing 

order. Hence, rendering can be realized with high performance. Another advantage 

of this method is its availability. Considering that nowadays all the graphics chips 

support 2d texture mapping, this method works in almost all the graphics cards.  

 Contrary to these advantages, there are some disadvantages. Obtaining high 

quality images with this method is difficult because of the bilinear interpolation 

done during sampling. Moreover, when slice sets are changed from one major axis 

to the next, sampling distances change abruptly. This causes inconsistent sampling 

rates and popping effects. As a final point, the method requires the preparation of 

the slice sets for each major axis before rendering. These stacks of slices are stored 

in the memory, which requires high storage capacity.  

3.2 3D Texture Based VR 

 As proposed in the previous section, visual artifacts can be reduced by 

defining image-space axis-aligned slices rather than object-space axis alignment. 

The reason of utilizing 2d object-space axis aligned polygon slices are due to the 

earlier graphics chips’ bilinear interpolation support. Preparation of slices in 



 

 

 

 

 

 

 

 

 

 

35 

 

 

 

 

 

arbitrary orientations on the fly is very costly with these graphics units. However, 

new generation graphics cards give support for the trilinear interpolation in their 

texturing subsystems. This capability enables changing the orientations of the proxy 

geometries dynamically according to the new view direction. 

3.2.1 Algorithm 

 3d texture based volume rendering algorithms are built on the trilinear 

interpolation support of texture units in the new generation graphics hardware. All 

the texture slices are arranged parallel to the view plane in 3d texture based VR 

methods. This is as shown in Figure 3.4. 

 

 

 

 
Figure 3.4: Image-Space Axis Aligned Texture Slices. 
 
 
 
 

 Independent from the orientation of the volume object, the viewer’s line of 

sight is orthogonal to the texture slices. This is accomplished in OpenGL using 3d 

texture mapping API calls. In 3d texture mapping, each proxy polygon vertex is 

assigned a point in the texture space (see section 3.2.2). The graphics cards’ texture 

unit maps texture content to the vertices and carries out the required interpolation 

slices parallel to view plane volume orientation proxy geometry 



 

 

 

 

 

 

 

 

 

 

36 

 

 

 

 

 

between these vertices. It is like Gouraud shading, except that; here the interpolation 

parameters are textures rather than colors. 

3.2.2 Texture Coordinate Generation 

 In 3d texture mapping algorithms each quad vertex is assigned a point in 

texture space [19]. The graphics unit provides proper texture coordinate values for 

the whole polygon surface by interpolating the coordinates at the vertices. Then 

texture mapping is completed according to the assigned texture coordinates. 

Interpolation of texture coordinates is performed even for the outside of the range 

[0, 1]. However, the color values fetched outside this range is clamped to [0, 1]. In 

the method, the corner vertices of the quads are assigned with the texture 

coordinates out of the range [0, 1]. Inner parts of the quads will have in-range values 

by means of the interpolation. The slicing planes are always kept parallel to the view 

plane in screen space while the volume texture can be oriented in texture space.  

 Assume that, we defined a coordinate system (x,y,z) that originates from the 

center of the volume. As known, the texture space counterparts of these coordinates 

are (s,t,r). A bounding cube is created such that it is centered at the origin and it 

contains the whole volume inside its body for all different orientations of the 

volume. This is accomplished by equating one side of the bounding cube to the 

length of the diagonal of the volume. The bounding cube can be called as proxy 

volume. The view plane aligned quad slices are actually the slices of this bounding 

cube parallel to xy plane in this bounding cube’s object space. The intension here is 

to visualize the volume from different directions, with different rotation angles in 

three coordinate axes. Screen size bounding cube provides this. The idea is 

displayed in Figure 3.5, below. 

 

 

 



 

 

 

 

 

 

 

 

 

 

37 

 

 

 

 

 

 
Figure 3.5: Bounding Cube. One side of the bounding cube (d) is equal to the 
diagonal of the original volume.  
 
 
 
 
 Main idea assigning proper texture coordinates for the vertices of the 

bounding cube. The formulization of the texture coordinates are explained in [19] in 

detail. According to this work, the following formulas generate the proper texture 

coordinates. 

)/()
2
1()( xNxnxxs xx ∆∆+=  

)/()
2
1()( yNynyyt yy ∆∆+=  

)/()
2
1()( zNznzzr zz ∆∆+=  

 

where, the volume has resolution (nx, ny, nz) and spacing in the world coordinates are  

(∆x, ∆y, ∆z). Moreover, since the texture map resolutions are represented by powers 

of two; Nx, Ny and Nz are the least powers of two that are greater than nx, ny and nz.  

3.2.3 Advantages and Disadvantages 

 3d texture based VR methods have both advantages and disadvantages. First 

advantage of this algorithm is that it generates high quality images. In contrast to 2d 

d

z y 

x 

view direction 

volume 
data 

bounding 
 cube 

d

slices parallel to 
view plane 



 

 

 

 

 

 

 

 

 

 

38 

 

 

 

 

 

texture based algorithm, 3d texture based algorithm utilizes trilinear interpolation 

for sampling volume data. The resultant images have same quality with the ray 

casting methods, if sampling distances are prepared equally in both methods. The 

second advantage is that, orientation of the texture slices prevents the occurrence of 

visual artifacts, like popping effect. Hence, high quality interactive visualization 

without popping effect is possible with this method. 

 On the other hand, for any change in the viewing direction, reorganization of 

the texture slices is strictly necessary. All the time, slices should be oriented parallel 

to the view plane (see Figure 3.6).  However, this can be avoided by setting the 

parallel planes as explained in the section 3.2.2 and modifying only the texture 

transformation matrix. By this way, the view direction is kept constant, but only the 

orientation of the volume content in texture space is changed. This has the same 

effect with the view direction change in world space. 

 

 

 

 

 
Figure 3.6: Rearrangement of Texture Slices According to View Direction. 
 
 
 
 
 
  



 

 

 

 

 

 

 

 

 

 

39 

 

 

 

 

 

 Moreover, the method works only with the graphics chips that give support 

for the 3d texture mapping. Hence, this method works with the new generation 

graphics cards.  



 

 

 

 

 

 

 

 

 

 

40 

 

 

 

 

 

 

CHAPTER 4 

ACCELERATED DIRECT VOLUME RENDERING WITH 

TEXTURE SLABS  

 

 

 

 This chapter is about the accelerated DVR technique based on the texture 

slabs that we worked on during the thesis study. During the thesis study different 

components of volume rendering algorithms are studied such as volume data 

classification, volume rendering on both CPU and GPU, and acceleration. At first, 

ray casting based DVR methods and texture based DVR methods are studied and 

implemented on both CPU and GPU. After obtaining sufficient experience on GPU 

programming and volume rendering techniques, the study is directed to the design 

of a new acceleration structure that utilizes the advanced features of the 

programmable graphics hardware. As a result of this study, we obtained a promising 

acceleration with the proposed acceleration structure and rendering method. The 

method works very efficiently on general purpose graphics cards. 

 First, the fundamentals of the texture slab based DVR algorithm are 

explained in the following section. Next, the implementation on GPU is given. 

Subsequently, the main GPU kernels are explained in detail.  

4.1 Algorithm 

 Rendering unit in our method is a texture slab, which is a group of 

consecutive rectangular texture slices that are parallel to the view-plane (see section 

3.2 for details). Texture slices and texture slabs are depicted in Figure 4.1. 



 

 

 

 

 

 

 

 

 

 

41 

 

 

 

 

 

 
 
Figure 4.1: Viewport Aligned Texture Slices and Texture Slabs. 
 
 
 
 

 The proposed algorithm generates the volume image in multiple passes. It 

means that, the application sends the geometric primitives to the graphics pipeline 

several times during the generation of the resultant image. In each pass slices of a 

slab are rendered from front-to-back viewing order. To initiate rendering of a slab a 

screen sized quad is sent to the GPU. In this manner, screen pixels correspond to the 

rays.  

 Rendering a texture slab is performed by setting proper texture coordinates 

corresponding to the current slabs’ starting texture slice. This can be thought as 

volume rays are cast through the entrance slice of a slab and traverses inside the slab 

until reaching the ending slice. In this respect, this method is a volume ray casting 

method that utilizes hardware texture support of GPUs. Rays that exit from a slab 

enters to the next slab in the subsequent passes. Along the ray path, volume data is 

sampled in fixed intervals. Therefore, each ray sample actually corresponds to a 

point on a texture slice.  



 

 

 

 

 

 

 

 

 

 

42 

 

 

 

 

 

 After the data classification, voxels are assigned the opacity values according 

to the voxel’s scalar density value. These opacity values tell much about the 

property of a voxel. A fully transparent voxel has an opacity value of 0. This type of 

voxels contribute nothing to the resultant image. Therefore, rendering these voxels 

is unnecessary and time-consuming especially when per fragment operations are 

highly loaded with lighting calculations and texture fetch operations. To avoid 

processing of those voxels some acceleration techniques are used such as empty 

space skipping and early ray termination.  

 At this point, it is wise to give some definitions, such as full region, empty 

region, empty space skipping and early ray termination that help understanding the 

concepts related to our acceleration technique. Full region is composed of the 

voxels with opacity values greater than zero or equal to some certain value that we 

want to visualize. Empty region, in contrary to full region, is composed of the voxels 

with zero opacity or some certain opacity values that we are not interested in 

visualizing. According to these definitions, it is easy to define Empty Space 

Skipping and Early Ray Termination concepts, which are the two very important 

concepts for the volume rendering acceleration techniques.  

4.1.1 Empty Space Skipping (ESS) 

 During the ray traversal, a ray passes from many voxels with different 

properties throughout the ray direction. As it is stated before, rendering the voxels 

belonging to empty regions is unnecessary. Hence, many acceleration techniques 

aim to determine these empty regions before rendering. This information is used to 

skip the samples inside the voxels that are in one of the empty regions. Skipping the 

voxels in empty regions and rendering only the voxels in full regions is referred to 

as Empty Space Skipping. ESS accelerates the rendering time considerably, 

especially when volume content is sparse. 



 

 

 

 

 

 

 

 

 

 

43 

 

 

 

 

 

4.1.2 Early Ray Termination (ERT) 

 During the ray traversal, a ray continuously accumulates the color and 

opacity values of the samples through the ray path according to DVRI (see section 

1.2). When opacity value of a ray comes very close to 1, the ray color does not 

change considerably any more. What we mean is that, the pixel corresponding to 

that ray becomes opaque and change in the pixel color is perceptually brought to a 

standstill. Therefore, processing the remaining samples through the ray direction is 

unnecessary. Stopping the traversal after that sample does not change the resultant 

image. This is called early ray termination. It is called early because traversal is 

ended before the ray actually leaves the entire volume. ERT, when used with ESS, 

significantly accelerates the rendering time, especially when the volume data 

contains opaque objects. 

 ESS and ERT methods are utilized by many acceleration algorithms as 

explained in section 1.4. All of these techniques create some data structures on the 

CPU side in a pre-processing step to encode the content of volume data. These data 

structures are then utilized in ESS to skip empty voxels. The difference of our 

algorithm is that; the data structure we used is created on the fly on GPU side. 

Hence, it does not require a pre-processing step to encode volume content. 

Generating the acceleration structure on the fly on GPU is the main contribution of 

this thesis study.  

 

 

 



 

 

 

 

 

 

 

 

 

 

44 

 

 

 

 

 

 
 
Figure 4.2: Summary of the Algorithm. 
 
 
 
 
 
 A brief summary of the algorithm is as the following (see Figure 4.2). Before 

rendering each slab, its silhouette map is created for the non-terminated regions 

using the advanced features of the GPU. The Slab Silhouette Maps (SSMs) are used 

to determine empty regions and early ray terminations. Two different fragment 

programs are loaded on GPU to modify the contents of SSMs. One of these 

programs reads the slab’s alpha content and encodes the empty spaces according to 

this information into SSM. The second fragment program reads the accumulated 

density information obtained after ray traversal. This program determines the early 

terminated rays and encodes this information into SSM according to the 

accumulated density information. As a result, SSM contains information about the 

empty regions of the slab as well as the terminated rays. As the contents of the 

silhouette map are stored in the depth buffer, graphics hardware can utilize them in 

early depth tests to skip empty regions and to prevent processing of terminated rays. 

4.2 Implementation 

 We used OpenGL and Cg with fp40 profile for the implementation. A 4-

component half-float pixel buffer (PBuffer) with 2 color buffers and a depth buffer 



 

 

 

 

 

 

 

 

 

 

45 

 

 

 

 

 

is employed to perform operations. PBuffers are very useful for multi-pass 

algorithms. They enable reading back the contents of the frame buffer very 

efficiently. Utilizing PBuffers, a program can modify the contents of the frame 

buffer in one pass and then read the contents as textures in another pass. Since our 

algorithm is a multi-pass algorithm we utilized the PBuffers much. During rendering 

one of the color buffers of the PBuffer is set as the drawing target, while the other 

one is accessed as the texture source in an alternating fashion.  

 The algorithm relies on early z-occlusion culling for computation masking. 

For this purpose GL_ext_depth_bounds_test and OpenGL standard depth test 

functions are exploited. The details of SSM creation and its utilization are made 

clear in the following sections. 

 Our volume renderer calssifies volume data according to classification 

scheme proposed by Marc Levoy (see section 1.1 for details) and creates 3D volume 

texture before the rendering stage. As a result of the classification, RGB (red-green-

blue) components of the volume texture are set with the approximate surface 

gradients and alpha component is set with the opacity values that are assigned to 

each voxel.  

 An orthographic projection is used for the projection of the volume into 

image plane. The view frustum is defined as a bounding cube of the original 

volume, such that for all different transformations the volume data is kept inside the 

frustum. This is achieved by defining the side length of the frustum equal to the 

diagonal of the volume. The texture space coordinate assignment to the slice 

vertices of the bounding cube are calculated exactly as in the formula stated in 

section 3.2.2. Keeping the texture coordinates constant at the vertices, the volume 

transformation is performed in texture space. Hence a texture transformation matrix 

is created that gives the same effect with the world space transformation of the 

volume. By this way, interpolated texture coordinates outside the range [0, 1.0] are 

clamped and nothing is visualized in these regions. The fragments that are mapped 

to the texture coordinates in [0, 1.0] range contain the volume image and generates 

the resultant image. The algorithm allows changing view position and direction 



 

 

 

 

 

 

 

 

 

 

46 

 

 

 

 

 

interactively. All the texture coordinates sent through the rendering pipeline, 

including the eye and the light position, are transformed into the volume texture 

space. Traversals and shading operations are performed directly in the texture space. 

 Considering the GPU as a stream processor, a series of vertex and fragment 

programs are utilized as for the kernels. The main kernels are depicted in Figure 4.3. 

In the figure, the blue arrows indicate the buffers bound as textures to a kernel. Red 

arrows show the rendering targets. The algorithm is constructed on three main 

kernels, which are responsible for creating the slab silhouette map (CSSM kernel), 

traversing rays (Ray Traverser kernel) and modifying depth buffer for early ray 

terminations (ERT kernel). CSSM kernel uses the slab textures and renders the 

processing results into depth buffer. After that, the content of the depth buffer is 

referred to as SSM, as mentioned earlier. Ray Traverser kernel traverses through the 

non-terminated rays in non-empty regions and makes shading calculations. To 

determine non-terminated rays and non-empty regions, kernel utilizes SSMs. The 

shading results are accumulated to the color buffer. Finally, ERT kernel reads from 

the recently modified sections of the accumulated color buffer and modifies the 

SSM. It is important to note that SSM is never cleared in the course of rendering so 

as to keep the terminated ray information. The pseudo code of the algorithm is given 

in Figure 4.4. 



 

 

 

 

 

 

 

 

 

 

47 

 

 

 

 

 

 
 
Figure 4.3: Flow of Kernels and Their Effect to Pbuffer. 
 
 
 
 
 1- Make initializations 
  -Initialize lighting parameters 
  -Compose texture transform matrix 
  -Reset front, back and depth components of PBuffer 
 2- For each slab  
 3- Set current draw and accumulation texture buffer 
 4- Determine depth values for full and empty regions (see 
Figure 4.5) 
 5- Create SSM (only for non-terminated rays) 
 6- Traverse Slab (only full regions) 
 7- Copy the modified parts of draw buffer to texture buffer
 8- Check Early Ray terminations (only for the last modified 
rays) 
 9- End for 
 10- Return resultant accumulation buffer 
 
Figure 4.4: Pseudo-code of the Algorithm . 



 

 

 

 

 

 

 

 

 

 

48 

 

 

 

 

 

4.3 Kernel Operations 

 This section covers the detailed explanations for the kernel operations. 

4.3.1 Slab Silhouette Map (SSM) Kernel  

 Assume that SSMk represents the SSM of the k’th slab. Rays are cast from 

the front slice of the slab and traversed throughout the ray direction until the last 

slice of the slab is processed. SSM is created after this traversal. To clarify the SSM 

creation, some definitions are essential: 

1- Parametric ray equation: 

 tDOtR kk ∗+=)(  

where: 

  k:  slab index, 

  t :  slice index in a slab, 

  kO :  origin of the ray on the k’th slab, 

  D:  normalized direction of the ray. 

and inside each slab, 0≤t<N holds. Here N is the total number of slices in a slab. 

2- VAT[P] : the opacity value of a volume alpha texture at P, where P is a point 

in texture space. 

 As it is stated earlier, the proposed algorithm is based on the early z-test 

feature of the new generation GPUs. We utilized this functionality by means of 

depth bounds testing. However, depth bounds testing on current graphics cards puts 

some restrictions to work properly. It works properly only if depth function is set to 

GL_LESS before any depth write operation. In this case, the depth buffer can only 

be modified if the current fragment’s depth value is less than the value stored in the 

depth buffer. Because of these reasons, a special formulization is required for the 

selection of proper depth values. Actually, the algorithm contains many depth write 

sections during rendering. Hence, we developed a mechanism to determine the 

proper depth value. For each modifications of the SSM the method sets 

monotonically decreasing depth values to the depth buffer. According to the 



 

 

 

 

 

 

 

 

 

 

49 

 

 

 

 

 

definitions 1 and 2, above, it is helpful to define empty and full regions formally as 

below. 

 Empty regions in slab k corresponding to the pixels through the ray R, satisfy 

the following equation. 

 

[ ] 0)(   ,0    , =<≤∀ tRVATNttfor k . 

 

 Similarly, we refer to the regions of slab k corresponding to the pixels 

through the ray R, as full regions if they satisfy the following equation. 

 

[ ] 0)(         ,0     , ><≤∃ tRVATsatisfieswhichNtt k . 

 

 According to these definitions, fragment depth values for SSMk are set along 

with the function below. 

 

⎭
⎬
⎫

⎩
⎨
⎧

+−
−

=
regionemptyfork

regionffork
kdepth

  )12(1
 ull    21

)(
τ

τ
 

 

Figure 4.5: Depth Generation Function. 
 
 
 
 
Where, τ  is the decrement factor, which is set to 0.001 in the application. It allows 

assigning an adequate amount of decreasing numbers for the empty regions in (0, 1] 

range during the rendering passes. The depth bounds test initialization parameters 

should be set properly before rendering in order to efficiently utilize early z-testing 

feature of the GPUs. The source code for the initialization is as shown in Figure 4.6. 

 

 

 



 

 

 

 

 

 

 

 

 

 

50 

 

 

 

 

 

   
            glDepthMask(GL_TRUE); 
  glEnable(GL_DEPTH_TEST); 
  glDepthFunc(GL_LESS); 
  glEnable(GL_DEPTH_BOUNDS_TEST_EXT); 
  glDepthBoundsEXT(depthEMPTYminus,1.0f); 
  glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE); 
 

 
Figure 4.6: Early Depth Test Initialization. 
 
 
 
 

 SSM creation is achieved as follows. Initially, the depth buffer is cleared to 

1. Then, the vertex and texture coordinates of the current slab’s starting slice are 

sent to the rendering pipeline along with some kernel parameters. The parameters 

are the sampling distance of each slice in texture space, number of sample points in 

a slab and ray direction. CSSM kernel sets SSM parameters for full and empty 

regions for a fragment according to the function defined in Figure 4.5. Color buffers 

are kept intact during rendering; only the depth buffer is modified. Cg source code 

of the CSSM kernel is shown in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

51 

 

 

 

 

 

 
  fixed sum_res = 0; 
  half3 currTexCoord = texCoord; 
  for(int i=0;i<number_of_slices_in_a_slab;i++) 
  { 
   sum_res += tex3D(texVolume,currTexCoord).a; 
   currTexCoord += directedTextStep; 
  } 
  depth = (sum_res>0) ? fullDepthVal : emptyDepthVal; 
 

 
 
Figure 4.7: Cg Source Code of CSSM Kernel. Alpha component of the volume 
texture is sampled according to the current texture coordinate for all texture slices 
in the slab. Current texture coordinate is iterated according to the parametric ray 
equation in the ray direction in order to get the texture coordinates of the 
subsequent slices. if alpha component of any sample has a value greater than 0 
towards the ray direction, depth value is set with fullDepthVal. Otherwise it is set by 
emptyDepthVal. fullDepthVal and emptyDepthVal parameters are uniform 
parameters that are set by the application according to the formula stated in Figure 
4.5.  
 
 
 
 
 When ‘depth’ parameter is set to a value, the depth buffer is modified with 

that value, if it is an appropriate value as for the depth function. Assume that the 

depth buffer content for corresponding fragment is set to X and depth function is set 

to GL_LESS. When fragment program sends a value Y to the depth buffer, X is 

replaced with Y only if Y < X. Otherwise, Y is ignored. Therefore, the depth 

modification formulation is necessary to effectively use the depth range [0, 1]. This 

is why a monotonically decreasing order is chosen for modifying the depth buffer. 

 Another purpose of this acceleration technique is providing an efficient 

mechanism while creating the acceleration structure. Hence, the additional cost of 

creating silhouette map to the total rendering time is decreased to minimal by means 

of utilizing depth bounds test. The idea is based on the fact that traversing through 

the terminated regions is redundant. Hence, the depth bounds test is enabled before 

sending geometries to the CSSM kernel on the application side and the depth 



 

 

 

 

 

 

 

 

 

 

52 

 

 

 

 

 

bounds are set to [1-(2k+1)τ-δ,1], where δ < τ. This range includes both empty and 

full regions but excludes terminated rays. Therefore, while creating the SSM, 

processing of the rays for terminated regions are efficiently avoided.  

4.3.2 Ray Traverser Kernel 

 Ray traverser kernel is the main kernel that performs the traversal of the rays 

through the ray directions and determines the color of the corresponding pixels. The 

shading calculations according to the optical properties of the voxels are performed 

in this kernel. Moreover, the accumulated color and alpha values of the previous 

slabs are fetched and composited with the current slab’s shading results by means of 

PBuffers in this kernel. The Cg code of the Ray Taverser kernel is shown in Figure 

4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

53 

 

 

 

 

 

  
half3 directedTextStep = directedTextStepParam; 
for(int i=0;i<_slabSliceCount;i++) 
{    
 volColor = tex3D(texVolume,currTextCoord); 
 Asrc = volColor.a; 
  
 // lighting part 
 L = normalize(objSpaceLightPos - currTextCoord); 
 N = volColor.xyz;  
 half3 V = normalize(objSpaceEyePos - currTextCoord); 
 half3 H = normalize(L+V); 
 diffuseLight = dot(N,L); 
 half specularLight = dot(N,H); 
 
 half4 lighting = lit(diffuseLight, specularLight, shininess);
    
 half3 shade = Kd_lightColor * lighting.y + Ks_lightColor *
lighting.z; 
 Csrc = globalAmbient + shade; 
    
 Cdst = Cdst + (1-Adst)*Asrc*Csrc; 
 Adst = Adst + (1-Adst)*Asrc; 
    
 currTextCoord +=  directedTextStep; 
} 
   
color = half4(Cdst,Adst); 
 

 
 
Figure 4.8: Cg Source Code of Ray Traverser Kernel. 
 
 
 
 

 Ray Traverser kernel fetches the surface gradients and opacity values from 

the volume texture and shades the volume slab according to phong shading. The 

resultant color and alpha samples are blended with the accumulated color and alpha 

values with the following formula, since the slicing is performed from front to back 

viewing order (See DVRI in section 1.2 for the details). 

 

  Cdst = Cdst + (1- αdst)αsrcCsrc 

  αdst = αdst + (1- αdst) αsrc 



 

 

 

 

 

 

 

 

 

 

54 

 

 

 

 

 

 The content of this kernel is heavily loaded on behalf of arithmetic 

calculation. Therefore, traversing through each slice sample and accumulating the 

color and alpha values is very costly. Encoding the empty and terminated regions 

into SSM and discarding those fragments accelerates the rendering significantly. 

Hence, this kernel utilizes SSMk to avoid processing of empty or terminated regions. 

The depth bounds test is enabled again and the depth test bounds are set to [1-

(2k+1)τ+δ,1] range. This range guarantees that, only the fragments in the full 

regions are processed by this kernel. The fragments out of this range have no 

valuable information for the visualization, hence skipped before entering to this 

kernel (Figure 4.9).  

 

 

 

 
 
Figure 4.9: Traversal Through the Full Regions. The two quads on the left side 
belong to the first slab of the volume; the ones on the right side belong to the second 
slab. Front quads hold the SSMs of the slabs. The ray traverser kernel only 
processes the pixels in the white part of the SSMs. Opacity of the  first slab is set 
very high in the first pass and the regions covered by the first SSM in the second 
slab is marked as early terminated region. Hence, in the second SSM, the gray 
values inside the head are set as the early terminated regions. The gray values 
outside the head are set as the empty spaces. Hence processing in these parts is 
avoided. 
 
 



 

 

 

 

 

 

 

 

 

 

55 

 

 

 

 

 

 The initialization of the OpenGL states and the depth bounds are set as 

shown in Figure 4.10. 
 
 
 
   
   
            glDepthMask(GL_FALSE); 
  glEnable(GL_DEPTH_TEST); 
  glDepthFunc(GL_LESS); 
  glEnable(GL_DEPTH_BOUNDS_TEST_EXT); 
  glDepthBoundsEXT(depthEMPTYplus,1); 
  glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE); 
 

 
Figure 4.10: Initialization of OpenGL States for Ray Traverser Kernel. Depth 
bounds are set to [1-(2k+1)τ+δ, 1] for the k’th slab. 
 
 
 
 

4.3.3 ERT Kernel 

 After the ray traverser kernel, the contents of the current color buffer are set 

with the accumulated color and alpha values. In the next rendering pass, ERT kernel 

is loaded on GPU and fragments are processed with this kernel.  

 When the accumulated opacity value of a fragment comes very close to 1, 

subsequent rendering passes do not add visible contribution to the final color value. 

Therefore, ERT modifies SSMk such that fragments with high enough opacity 

values are no longer processed in the following rendering passes. In other words, 

early ray termination is performed.  

 ERT kernel uses accumulation color buffer as source texture and modifies 

the SSM considering the predetermined opacity threshold. The depth buffer values 

corresponding to the terminated rays are set to 0. Setting depth values to 0 blocks 

those areas such that neither CSSM kernel nor the Ray Traverser kernel can make 

further execution in these areas. This is because of the fact that, the depth bounds 

testing is utilized in these kernels with the lower depth bound for the computation 



 

 

 

 

 

 

 

 

 

 

56 

 

 

 

 

 

masking is set always greater than 0. SSM modification code with ERT kernel is 

depicted in Figure 4.11. 

 

 

 
 
 textureDensity = texRECT(accumTexture,texCoord).a; 
 clampToZeroOne = saturate(alphaThreshold– textureDensity); 
 depth = sign(clampToZeroOne)*fullDepthVal; 
 
 
Figure 4.11: Cg Source Code of ERT Kernel. The alpha component of the 
accumulated color buffer is fetched using texRECT routine. Then, this value is 
compared against the alphaThreshold. If accumulated opacity is greater than the 
threshold, depth is set to 0, representing the terminated region. Otherwise it is set to 
fullDepthValue, representing unterminated and non-empty region for the following 
rendering passes. alphaThreshold, fullDepthVal and accumTexture are aplication 
specified uniform parameters. 
 

 

 

 

 The additional cost of execution time of the ERT kernel is minimized yet 

again with the depth bounds testing. Checking only the most recently modified 

regions in the SSM is sufficient to determine the latest terminated rays. Processing 

this kernel on the empty regions is pointless. In addition to that, processing ERT 

kernel for the previously terminated regions is also redundant. Because, only the 

most recently updated rays have the potential of accumulating high opacity values. 

For this purpose the SSMk is used once more as a calculation mask. The depth 

bounds are set to the [1-(2k+1)τ+δ,1] range. This range spans only the most recently 

modified regions by the ray traverser kernel. By this way, additional time caused by 

this kernel is reduced extensively.  



 

 

 

 

 

 

 

 

 

 

57 

 

 

 

 

 

 

CHAPTER 5 

DISCUSSION AND RESULTS 

 

 

   

 
 
 
Figure 5.1: Rendering Results of the Datasets. (a) skull (256x256x256), (b) engine 
(256x256x128), (c) bonsai (256x256x256), (d) teapot (256x256x178), (e) foot 
(256x256x256), (f) aneurism (256x256x256). 
 
 

  



 

 

 

 

 

 

 

 

 

 

58 

 

 

 

 

 

 The proposed stream programming algorithm for volume ray casting using 

texture slabs has many benefits over the traditional texture based volume rendering 

algorithms. In addition to providing equal sample rate through the ray direction, the 

algorithm reduces the amount of fragments to be processed. The reduction increases 

especially if the volume contains opaque structures or empty spaces.  

 We have performed our experiments on Pentium 4, 2.4GHz PC with 512MB 

RAM using GeForce 6800 Ultra graphics card. We used six datasets to assess the 

performance of our algorithm. Volume data sets are obtained from [31]. The 

rendering results are shown in Figure 5.1. Size of the viewport is set to 5122. The 

data sets are rendered with several methods for comparison, including classic texture 

slice based rendering method (SB), slab based rendering method with early ray 

terminations and empty space skipping enabled (ASLAB) and without early ray 

terminations and empty space skipping (SLAB). In SB method, we render the texture 

slices in front to back viewing order. The rendering times and relative acceleration 

of our method is given in Table 1 and Table 2. The execution speed depends on 

many factors including the number of ray samples (total slice count), selected 

shading method, image size, volume size etc. In these experiments, the maximum 

number of volume samples through the ray directions is selected as 15×30 (15 slabs 

with 30 slices each and hence 450 sample points trough the ray directions). One 

point light source is used for shading. For consistency, we strictly conformed to the 

same settings while taking the experiment results for all the algorithms defined 

above. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

59 

 

 

 

 

 

Table 1: Performance Results of the Experiments. 

 

 SB SLAB ASLAB Processed 
Fragments 

Speedup 

aneurism 307 263 82 5.7% 374% 
teapot 294 251 81 12.3% 362% 
bonsai 296 251 86 9.9% 344% 
engine 441 380 75 5.3% 588% 
foot 307 262 91 10.29% 337% 
skull 306 262 129 21.9% 237% 
 
 

 

 

 In Table 1, SB corresponds to slice based volume rendering time, SLAB 

corresponds to slab based rendering time without SSMs, ASLAB corresponds to 

accelerated slab based rendering time. Moreover, Processed Fragments shows the 

percentage of total processed fragments in ASLAB and Speedup shows the 

acceleration percentage of ASLAB against SB. Time results are all in milliseconds. 

As the results in Table 1 show, activating the early ray termination method and 

empty space skipping using SSMs provide huge performance gains. The percentages 

shown in the table validates the speedup, such that the rendering time decreases in 

accordance with the number of processed fragments. Among the dataset, engine 

largely benefits from early ray terminations as most of the rays are terminated in the 

outer shells of the model. It is displayed in Figure 5.2. According to the SSMs and 

Table 1, only 5.3% of the fragments are in the full regions and processed during 

rendering.  



 

 

 

 

 

 

 

 

 

 

60 

 

 

 

 

 

 
 
Figure 5.2: First 10 SSMs of the Engine Model. Orange color ( ) represents the 
processed regions. Black colors ( )for early terminated regions. Remaining gray 
colors are for empty regions. Empty regions and early terminated regions are 
discarded. 
 

 

 

 

Aneurism on the other hand, benefits from empty space skipping, as most of 

the slab regions are empty. 

 Similarly for teapot, the speedup is due to the empty space skipping; 

although almost no rays are terminated because of the transparent material 

properties. SSMs of teapot data are displayed in Figure 5.3. Only 12.3% of the total 

fragments are processed during rendering. Most of the fragments fall into the empty 

regions for this data. 

 

 



 

 

 

 

 

 

 

 

 

 

61 

 

 

 

 

 

 
 
Figure 5.3: First 10 SSMs of the Teapot Model. Empty space skipping is utilized 
much. Early ray terminations are rare. 
 
 
 

 

 As for the skull model, there are a few empty regions. However, due to the 

opaque material properties, there are large numbers of early ray terminations. 

Hence, in total 21.9% of the fragments are processed. SSMs of the skull model are 

shown in Figure 5.4. 

 

 

 

 
 
Figure 5.4: First 10 SSMs of the Skull Model. Empty space skipping is little. 
However, there are many early ray terminations.  



 

 

 

 

 

 

 

 

 

 

62 

 

 

 

 

 

 

Table 2: Total Kernel Execution Times in Milliseconds. 

 

 CSSM Ray 
Traverser 

ERT Total 

aneurism 31 42.7 1.2 82 
teapot 29 44.7 1 81 
bonsai 26.7 53 1.1 86 
engine 31 39 2 75 
foot 28 57.5 1.2 91 
skull 23 99 1.7 129 
 

 

 

 

 We have developed our method based on the observation that the silhouette 

map generation is significantly cheaper than complex ray traversals and shading. 

This situation can be clearly verified from Table 2. Although the ray traversal kernel 

ignores the empty and terminated regions, it is still slower than the silhouette map 

generation. Also note that, the additional cost of running ERT kernel is very small 

compared to the total rendering time. Therefore it does not cause a bottleneck in the 

algorithm. Our platform facilitates using long fragment programs, looping and data 

dependent branching. Therefore, it is possible to combine all of the main kernels 

into one large kernel. However, we decided to split the kernels as described in 

chapter 4, so that the algorithm can work with minor modifications in the GPUs 

which do not support the mentioned features. 

 The pleasing results of the tests performed on test data sets obviously depict 

the effectiveness of our acceleration algorithm.  



 

 

 

 

 

 

 

 

 

 

63 

 

 

 

 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

 

 

 

 In this thesis study, we proposed a new acceleration technique for the 3d 

texture based volume rendering methods, which utilizes the programmable graphics 

hardware and occlusion z-culling. We applied empty space skipping and early ray 

termination acceleration techniques to the slice based volume rendering. By the 

proposed acceleration structure, volume datasets are visualized in high quality at 

interactive frame rates. 

 The study covers three major components. One of them includes studying 

and implementation of ray casting based and 3d texture based volume rendering 

methods utilizing standard graphics APIs. In this part, main components of a volume 

renderer are created such as determining transfer function, data classification and 

shading calculations. These fundamentals are utilized during the study. 

 The second component of the study includes gaining knowledge about 

stream programming. Programming graphics hardware units requires knowledge 

and experience about stream programming. In this part different rendering 

techniques are studied using advanced features of new generation GPUs. The basic 

principles, difficulties and bottlenecks of GPU programming are discovered. 

Programming is made using Cg language. 

  The third part includes adaptation of the standard volume rendering 

algorithms on GPU. The algorithms are redesigned such that they can work 

efficiently with the logic of stream programming. Both ray casting based and 3d 

texture based volume rendering methods are adapted to work on GPUs. Main kernel 



 

 

 

 

 

 

 

 

 

 

64 

 

 

 

 

 

designs and implementations are completed in this part. Utilization of both methods 

is realized by defining texture slabs as the rendering units. Texture slices are sent to 

GPU as in standard 3d texture based methods while fragment programs perform 

volume ray casting inside a slab. After adapting the basic part of the volume 

rendering, the focus of the study is directed to the acceleration method. Utilizing the 

experiences we obtained during the study about programmable graphics hardware, 

we created an acceleration structure on GPU side. This structure uses the occlusion 

z-culling feature of the graphics unit. The acceleration structure does not require any 

pre-processing on CPU part for volume region encoding. It is created on the fly on 

GPU part. This acceleration structure is utilized for empty space skipping and early 

ray terminations.  

 The results of our acceleration method showed that rendering is performed 

with huge performance gains with the proposed acceleration structure. For some 

volumetric data sets, the volume content is composed of empty regions and opaque 

objects. Processing only a tiny percentage of the whole volume is sufficient for 

generating the final volume image. With our acceleration method, empty regions are 

discarded efficiently in pixel basis and only the full regions are processed. Since the 

rendering time is proportional to the number of fragments processed, discarding 

fragments corresponding to empty regions accelerates the rendering time 

significantly. Moreover, the proposed algorithm is designed in a way that the time 

required to create of the acceleration structure is very small compared to the ray 

traversal time. This is the second advantage of the algorithm. 

 In summary, we worked on the acceleration of 3d texture based volume 

rendering method utilizing the advanced features of the programmable graphics 

hardware. The proposed algorithm runs on new generation general purpose GPUs 

very efficiently. Interactive visualization of the volume data is achieved with high 

image quality with the proposed acceleration method. 



 

 

 

 

 

 

 

 

 

 

65 

 

 

 

 

 

6.1 Future Works 

 We are currently working on accelerating the creation of the silhouette maps 

further. This is possible by sending the projected polyhedral faces defined by the 

intersection of the volume and slab regions to the rendering pipeline, instead of 

screen sized quads. This can be achieved automatically by setting appropriate 

OpenGL clipping planes. In addition to that, more acceleration can be achieved by 

using lower resolution volume alpha texture for SSM generation, as it decreases the 

required bandwidth. 

 Furthermore, in addition to the empty, full and terminated region 

information, an additional attribute may be added into SSMs for homogenous region 

encoding. This can be achieved on the fly by tracking equal opacity values during 

ray traversal. Homogenous region encoding accelerates the execution time of the ray 

traverser kernel, which is the real bottleneck of the direct volume rendering 

algorithms. Therefore, homogenous region encoding can provide additional 

performance gains, when used with empty space skipping and early ray 

terminations. 

 



 

 

 

 

 

 

 

 

 

 

66 

 

 

 

 

 

 

REFERENCES 

 

 

 

 [1] W. E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm”, ACM SIGGRAPH’87, pp.163-169, 1987. 
 

[2] M. F. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt. “The Triangle 
Processor and Normal Vector Shader: A VLSI System for High Performance 
Graphics”, Proceedings of SIGGRAPH’88, vol. 22, pp. 21–30, August 1988. 
 

[3] L. Westover, “Footprint Evaluation for Volume Rendering”, SIGGRAPH’90, pp. 
367-376, 1990. 
 

[4] S. Upstill, “The RenderMan Companion”, Addison-Wesley, 1990. 
 

[5] M. Levoy, “Display of Surfaces from Volume Data”, IEEE Comp. Graph. , vol. 
9, no. 3, pp. 245-261, 1990. 
 

[6] K. R. Subramanian, and D. S. Fussel, “Applying Space Subdivision Techniques 
to Volume Rendering”, Proceedings of Visualization’90, pp. 150-158, 1990. 
 

[7] W. Krueger, “The Application of Transport Theory to the Visualization of 3D 
Scalar Fields”, IEEE Visualization Proceedings, pp. 273-280, 1990. 
 

[8] J. Wilhelms and A. Van Gelder , “A Coherent Projection Approach for Direct 
Volume Rendering”, Proceedings of SIGGRAPH, 1991, vol 25, no. 4, pp 275-284, 
1991. 
 

[9] D. Laurm P. Hanrahan “Hierarchical Splatting: A Progressive Refinement 
Algorithm for Volume Rendering”, Proceedings of SIGGRAPH’91, pp. 285-288, 
1991. 
 



 

 

 

 

 

 

 

 

 

 

67 

 

 

 

 

 

[10] J. Danskin and P. Hanrahan, “Fast Algorithms for Volume Ray Tracing”, 
Workshop on Volume Visualization, pp. 91-98, 1992. 
 

[11] T. Malzbender, “Fourier Volume Rendering”, ACM Transactions on Graphics, 
vol. 12, pp. 233–250, 1993. 
 

[12] J. K. Udupa, and D. Odhner, “Shell Rendering”, IEEE Computer Graphics and 
Applications, pp. 58-67, 1993. 
 

[13] K. Akeley, “Reality Engine Graphics”, Proceedings of SIGGRAPH’93, pp. 
109–116, August 1993. 
 

[14] T. J. Cullip, and U. Neumann, “Accelerating Volume Reconstruction with 3D 
Texture Mapping Hardware”, Technical Report TR93-027, Department of Computer 
Science, University of North Carolina, Chapel Hill, 1993. 
 

[15] P. Lacroute and M.Levoy, “Fast Volume Rendering Using a Shear-Warp 
Factorization of the Viewing Transform”, Proceedings of SIGGRAPH’94, pp. 451-
458, 1994. 
 

[16] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering and 
Tomographic Reconstruction Using Texture Mapping Hardware”, Symposium on 
Volume Visualization, pp. 91-98, 1994. 
 

[17] D. Cohen, and Z. Shefer, “Proximity Clouds: An Acceleration Technique for 
3D Grid Traversal”, The Visual Computer, vol. 10, no. 11, pp. 27-38, 1994. 
 

[18] N. Max, “Optical Models for Direct Volume Rendering”, IEEE Transactions on 
Visualization and Computer Graphics,vol1, pp. 99-108, 1995. 
 

[19] A. V. Gelder, K. Kim, “Direct Volume Rendering with Shading via Three-
Dimensional Textures”, ACM Symposium on Volume Visualization’96, R. Crawfis 
and C. Hansen, Eds., pp. 23–30, 1996. 
 

[20] R. Westermann and T. Ertl. “Efficiently Using Graphics Hardware in Volume 
Rendering Applications”, Proceedings of SIGGRAPH’98, pp. 169–178, 1998. 
 

[21] M. Olano, and A. Lastra, “A Shading Language on Graphics Hardware: The 
PixelFlow Shading System”, Proceedings of SIGGRAPH’98, pp. 159-168, 1998. 



 

 

 

 

 

 

 

 

 

 

68 

 

 

 

 

 

 

[22] M. Meißner, U. Hoffmann, and W. Straßer, “Enabling Classification and 
Shading for 3D Texture Mapping Based Volume Rendering”, Proceedings of IEEE 
Visualization’99, pp. 207–214, 1999. 
 

[23] J.Huang, K. Mueller, R. Crawfis, D. Bartz, M. Meißner, “A Practical 
Evaluation of Popular Volume Rendering Algorithms”, IEEE Symposium on 
Visualization, pp. 81-90, 2000. 
 

[24] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Interactive 
Volume Rendering on Standard PC Graphics Hardware Using Multi-Textures and 
Multi-Stage Rasterization”, Proceedings of Eurographics/SIGGRAPH Graphics 
Hardware Workshop 2000, pp. 109-118, 2000. 
 

[25] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated Volume 
Rendering Using Hardware-Accelerated Pixel Shading”, Siggraph/Eurographics 
Workshop on Graphics Hardware 2001, pp. 9-16, 2001. 
 

[26] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan, “A Real-Time 
Procedural Shading System for Programmable Graphics Hardware”, Proceedings of 
SIGGRAPH 2001, pp. 159-170, 2001. 
 

[27] W. Li, and A. Kaufman, “Texture Partitioning and Packing for Accelerated 
Texture-Based Volume Rendering”, Graphics Interface 2003, pp. 81-88, 2003.  
 

[28] W. Li, and K. Mueller, and A. Kaufman, “Empty Space Skipping and 
Occlusion Clipping for Texture-Based Volume Rendering”, IEEE Visualization 
2003, pp. 317-324, 2003. 
 

[29] J. Krüger and R. Westermann, “Acceleration Techniques for GPU-based 
Volume Rendering”, IEEE Visualization 2003, pp. 287-292, 2003. 
 

[30] N. Thompson, “3D Graphics Programming for Windows 95”, Microsoft Press, 
1996. 
 

[31] Real World Medical Datasets Home Page, http://volren.org, last access date 
June 2005. 
 

[32] Official OpenGL Website, http://www.opengl.org, last access date June 2005. 



 

 

 

 

 

 

 

 

 

 

69 

 

 

 

 

 

 
[33] Microsoft DirectX Home Page, http://www.microsoft.com/windows/directx, 
last access date June 2005. 
 

[34] NVidia Developer Home Page, http://developer.nvidia.com, last access date 
June 2005. 
 

[35] OpenGL Shading Language, http://www.opengl.org/documentation/oglsl.html, 
last access date June 2005. 


