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ABSTRACT

CP-VIOLATING EFFECTS IN B DECAYS BEYOND THE STANDARD
MODEL

BASHIRY, VALI
Ph.D., Department of Physics
Supervisor: Prof. Dr. T. M. Aliyev

June 2005, 102 pages.

In this thesis, using a general model independent form of the effective Hamiltonian,
the CP-violating asymmetries in the b — d¢*/~ transition, when one of the leptons is
polarized, is investigated. The sensitivity of the CP-violating asymmetries on the new
Wilson coefficients are analyzed.

Next, in the frame work of the same formalism, the polarized lepton pair forward—
backward asymmetries in B — K*¢*/~ decay are studied. We present the general ex-
pression for the nine double—polarization forward-backward asymmetries. It is obtained
that, the zero point position of the forward—backward asymmetries of the doubly—
polarized lepton pair does not depend on long distance effects but depends on short
distance dynamics. Furthermore, it is shown that the zero position of App is very sen-
sitive to the sign of the new Wilson coefficients. When sign of the Wilson coefficients
is positive (negative) the zero position of the forward-backward asymmetries shifts to

the left(right) compared to the SM.

v



Moreover, the dependencies of the nine double—polarization forward—backward asym-
metries on new Wilson coefficients, and the correlation of the averaged nine double—
polarization forward—backward asymmetries with branching ratio, have been studied. It
is observed that, the study of the nine double—polarization forward—backward asymme-
tries can serve as a good test in establishing new physics beyond the Standard Model.
Finally, we observed that there are exist such regions of new Wilson coefficients for
which the nine double—polarization forward—backward asymmetries considerably de-
part from the SM result, while the branching ratio coincides with that of the SM
prediction. In other words, new physics effects can be established by analyzing polar-

ized forward-backward asymmetry in this region of the new Wilson coefficients.

Keywords: B Physics, Rare decays, CP-Violation, Beyond The Standard Model.



oY/
STANDART MODEL OTESINDE B BOZUNUMLARINDA CP-BOZULUMU

BASHIRY, VALI
Doktora, Fizik Bolumi
Tez Yoneticisi: Prof. Dr. T. M. Aliyev

Haziran 2005, 102 sayfa.

b — d¢*T¢~ bozunumunda, leptonlarin polarize olmasi durumunda, modelden bagimsiz
etkin Hamiltoniyenin en genel hali kulanilarak, CP-bozulumu aragtirilmig ve CP-bozulum
bakigimsizliginin yeni Wilson katsayilarina duyarhlig: incelenmistir.

Aym formulasyon cercevesinde, B — K*/T/~ bozunumunda cift leptonlarin polar-
ize oldugu durumunda On-arka yoniindeki bakigimsizliga bakilmg ve 9 on-arka ¢ift po-
larize bakigimsizliginin ifadeleri bulunmugtur. Ayrica 6n-arka yonlerdeki ¢ift polarize
olmus leptonlarin sifir nokta konumunun ancak yakin mesafe etkilerinin dinamigine
bagl oldugu saptanmigtir. Buna ek olarak, on-arka yonlerdeki ¢ift polarize olmug lep-
tonlarin sifir nokta konumunun, Wilson katsayilarinin arti(eksi) degerlerinde, Standart
Modelin 6ngordigii konumun sol (sag) tarafina kaydig gozlenmigtir.

Daha sonra 9 c¢ift polarize 6n-arka yonlerdeki bakigimsizligin yeni Wilson katsayilarina
olan baghligimin yanisira ortalamasinin dallanma orani ile olan bagintis1 incelenmigtir.
9 ¢ift polarize 6n-arka yonlerdeki bakigimsizhigin aragtirilmasinin Standart Model (SM)
otesindeki yeni fizik etkilerinin incelenmesi agisindan yarar saglayacag gozlenmigtir.

Son olarak, Wilson katsayilar: i¢in dallanma oraninin SM 6ngoriisii ile ayni oldugu ve

vi



¢ift polarize 6n-arka yonlerdeki bakigimsizligin SM ongoriilerinden farkli oldugu bir
bolge bulunmustur. Boylece bu bolgede yeni fizik etkenlerinin ortaya ¢ikabilmesi

i¢in ¢ift polarize bakigimsizliginin incelenmesi yeterlidir.

Anahtar Kelimeler: B fizigi, Nadir bozunumlar, CP-Bozulumu, Standart Model

Otesi.
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CHAPTER 1

INTRODUCTION

Experimental discovery of the rare B — X,y and B — K*v decays opened a
new window in investigation of the Flavour Changing Neutral Current (FCNC)
processes [1]. On the experimental side, this is due to the fact that the study of
the FCNC decays will provide a precise determination of the Cabbibo-Kobayashi-
Maskawa (CKM) matrix elements, which are free parameters of the Standard
Model (SM), leptonic decay constants of heavy mesons etc. On the theoretical
part, investigation of the FCNC decays allows us to check the predictions of the
SM at the one-loop level [2]. For these reasons investigations on the rare radiative
and semileptonic decays of the B meson receive special attention. Such decays

are also very useful in looking for ” New Physics” beyond the SM.

In this thesis, theoretical analysis of the semileptonic inclusive b — d¢¢~
transition[3] and exclusive B — K*{*{~ decay[4] is presented in a model inde-
pendent way, using the most general form of the effective Hamiltonian including

all possible forms of interactions. In b — d¢*¢~ transition we investigate CP



violation effects in branching ratio with and without lepton polarization, using
the above-mentioned framework. We investigate forward-backward asymmetry
in the exclusive B — K*{T¢~ decay by taking into account polarizations of both
leptons.

As we noted, we mainly focuce on the polarization effects of the leptons, since
measurement of the lepton polarizations is one of the most efficient way to estab-
lish new physics beyond the SM [5] - [17].

A contemporary tool in investigating weak decays is the Operator Product Ex-
pansion (OPE). Using OPE, an effective Hamiltonian [18]-[23] can be represented
in the form , Hesf ~ 3 C;0;. The meaning of this expression is that any low
energy weak process can be written in terms of the perturbative short distance
Wilson coefficients, C;, and the matrix elements < O; > of the operators which
represent the long distance effects. Estimation of these matrix elements is hard

since they belong to the non-perturbative sector of the QCD.

It is well known that theoretical analysis of inclusive decay channels, are rather
easy but their experimental discovery is quite hard. For the exclusive decays, it
is contrary to the case, i.e., their experimental detection is easy but theoretical
studies have their own drawbacks. That is, basically, due to the fact that the
matrix elements of the effective Hamiltonian between final and initial meson

states, which are parameterized in terms of form factors, are needed.

The first step in the analysis of the Semileptonic B decays is the derivation



of the effective Hamiltonian. The effective Hamiltonian, as mentioned above and
discussed in 2.2, is first obtained by the Feynman diagram technique at large
mass scale. Then using the re-normalization group equation we can calculate the
effective Hamiltonian at low energy scale (in our case, u = m;). These two steps
are carried out in the framework of the perturbative approach. In further inves-
tigation of the exclusive B — (K K*){*T¢~ decays, we need the matrix elements
(M ‘H eff ‘ B). These matrix elements cannot be calculated in the framework
of the perturbative approach and its calculation demands non-perturbative ap-
proach such as Chiral Theory [24], Three-point QCD Sum Rules [25], and Light
Cone QCD Sum Rules [26],[27]. In this thesis, we have used the Light Cone QCD

Sume Rules Method for predictions of the form factors.

The thesis is organized as follows; in Chapter 2, we present a brief overview of
the SM of the electroweak interactions by introducing the theoretical framework
in analyzing the tree level decays and the FCNC processes. In this chapter,
we also discuss briefly Cabibbo-Kobayashi-Maskawa(CKM) matrix, as well as,
appearance of CP violation in the standard model. In chapter 3 we present
comprehensive analysis of CP-violating effects in branching ratio for the b —
d¢* ¢~ decay using the most general form of the effective Hamitonian. We present
analytical expression of the CP-violating effects in both cases and give numerical
results. Chapter 4 is devoted to the analysis of the forward-backward asymmetry

in B — K*¢{*¢~ decay in a model independent way.



FCNC: Flavor Changing Neutral Current.

OPE: Operator Product Expansion.

CKM: Cabibbo-Kobayashi-Maskawa matrix.

QCD: Quantum Chromodynamics.

CP: Charge, Parity operators.

SM: Standard Model.



CHAPTER 2

FLAVOR PHYSICS AND CP VIOLATION

2.1 Introduction

Symmetries are the critical ingredients of any local field theory. Symmetry
properties of a theory leads to the conserved quantities (Noether theorem). There
are two type of symmetries: continuous(Lie group symmetries) and discrete sym-
metries(Parity, Time reversal, etc). We call those symmetries ”Good” if physics
is invariant under those transformations. Mathematically it means: We have an

operator (7 ,t) which under rotation it transforms in the following manner:

(7, 1) — Rp(T 1) z 7

t—t. (2.1)
Under Parity transformation, the space and time coordinates transform as
P: 7 —-T ,t—>t, (2.2)

respectively,

and under Time reversal, the transformation rules are

T: @ —7 ,t— —t (2.3)



Parity operator acts on the Dirac spinor as:

PY(Z,t) = v(=%,1),
Poop(T, 1) = +65,(6,(—1,1)),

PA—y)(Z,t) = 1 —y)9(Et) = (1+)700(—E,1).  (2.4)

Here the subscript s(p) in ¢ means scalar(pseudoscalar). And 7’s are Dirac ma-
trices. Thus under parity transformation left-handed particles are transformed
to the right—handed ones.

Let us briefly discuss how charge conjugation operator C act on the Dirac spinor.
Obviously, this operator transforms a particle to an antiparticle or vice versa.

Under C operation, 1 transforms as
b — CY (2.5)

where C' = ivy97, .

Using this expression let us consider how currents (for example we consider vector
and axial vector currents which exist in the SM) transform under C operation.
Using Eq.(2.5) we obtain

El 7uw2 L> —%%ﬂ% 3

1Y Y502 < Doy Ys¢1- (2.6)

Let us consider the combined CP transformation

E17u¢2 5 Ez’hﬂﬁla (2.7)



V1 YuY5¢2 2, VoY Ys¥i- (2.8)

All these results are summarized by the CPT theorem: any local, Lorentz in-
variant field theory is invariant under CPT transformation. From here we can
conclude that if CP is violated, then T invariance must also be violated.

In this connection the following question might appear: How does CP violation

appear in the Standard model. In the next section we try to answer this question.

2.2 CP violation in the Standard Model

It is well known that Lagrangian of the Standard model contains the following
parts: kinetic term of Yang Mills(YM) fields Ly = _i?uv ?W, where ?W is

Yang-Mills field strength tensor,
?p,u = a,uzu - allzu - Zg[zua Xl/]a (29)

and vector arrow means that B is a vector in isospin space. The next term
in the Lagrangian of the Standard Model indicates the local interaction between

fermions and gauge(YM) fields i.e.

Lo=> 0Q;iPQ;+ > L;iPL;. (2.10)
Here D, is the covariant derivative defined as

Y
D, =0,—igW,T — ig% By (2.11)



Note that in this expression (); and L; involve the left and right handed fermions,
respectively.
The other term in the Lagrangian is the so-called Higgs part, which is responsible

to give mass to the fermions:
Ly =D,HD"H)' - V(H) (2.12)
And the last term
Ly => Qi HTju; + h.c. (2.13)

is the so-called Yukawa term which describes interactions of fermions with Higgs
fields and after spontaneously breaking of the symmetry the fermions obtain mass.
Usually, two basis have been used in the SM : interaction and mass basis.

L is diagonal in the mass basis
Ly = Ly = ZQZL < H> szuz + h.c. = ZﬂLiMijuRj + h.c. (214)

Obviously, one basis can be obtained from another one by the unitary transfor-

mation, i.e.
dY — VIEd;, (2.15)
ud — Vg, (2.16)

where (VULTVuL)Z'j = (SZJ

Under such transformation the mass matrices become diagonal, i.e.

VdLTMaV;lR = (md) mg, mb)a



VULTMOZVUR = (mu’mc’mt)‘ (217)

However, in the mass basis Lg is not diagonal. Indeed,

g _ _
Lo ~ —=Up7udy,W"+ h.c.+13705.(Z, 7, 9) (2.18)

V2

— iﬂLz’(VULTVdL)z'jdjW“+ﬂLz’(VULTVUL)z'jUJj(Z, 7, 9)-

V2

From this expression we get an essential result, namely, the neutral current La-
grangian is flavor diagonal in the mass basis, while charged current is not.

In other words, flavor changing neutral currents are absent in the SM at tree
level.

Denoting V = Voxy = VEIVE, for the charged current Lagrangian we get
EG ~ VCKMﬂL'YudLWu + h.c. (219)

The matrix Vg is called as Cabibbo-Kobayashi-Maskawa matrix.
Let us analyze how this interaction Lagrangian transforms under CP transforma-
tion
Lo ~ W;ng’YNU'LiV;'E + W,IﬂLﬁudLiVi;
B Whagny de Vi + W dpiy urVig. (2.20)
If L5 is CP invariant we have

Vij =V =V (2.21)

Obviously, if Vj; is real then there is not any CP violation effect. The complex

coupling, i.e. Vi; # V% is a necessary condition to have CP violation.



2.2.1 Phase Structure of the CKM Matrix

We have the freedom to redefine the up- and down-type quark fields in the

following manner|[28]:
U — exp(i&y)U, D — exp(i€p)D. (2.22)

If we perform such transformationsin (2.19), the invariance of the charged-current
interaction Lagrangian implies the following phase transformations of the CKM
matrix elements:

Vup — exp(i€y) Vyp exp(—iép). (2.23)
Using these transformations we can eliminate un-physical phases. It can be shown
that the parametrization of the general N x N quark-mixing matrix, where N
denotes the number of fermion generations, involves the following physical pa-
rameters:

NN = 1) + S(N = )N ~2) = (N ~1)" (2.24)

(DO | —

~ /

Euler;ngles comple; phases

If we apply this expression to the case of N = 2 generations, we observe that there
is no phase, i.e. CP is conserved. And only one rotation angle — the Cabibbo
angle Oc [29] — is required for the parametrization of the 2 x 2 quark-mixing

matrix, which can be written in the following form:
cosfc sinfc

Vo = : (2.25)
—sinfz cosfc

10



where sin fc = 0.22 can be determined from K — 7wfv decays. We conclude that
for CP violation in SM we need at least three generations, as pointed out by
Kobayashi and Maskawa in 1973 [30]. On the other hand, in the case of N = 3
generations, the parametrization of the corresponding 3 x 3 quark-mixing matrix
involves three Euler-type angles and a single complex phase.

In the “standard parametrization” advocated by the Particle Data Group (PDG)[37],

the three-generation CKM matrix takes the following form:

—1d
C12€13 §12€13 s13e 13
) = i i
Vokm —812C93 — C12593513€""®  C12Co3 — S12593513€"1* 523C13 , (2.26)
1013 1013
512523 — C12C23513€ —C12523 — 512C23513€ C23C13
where ¢;; = cosf;; and s;; = sin6;;. Performing appropriate redefinitions of

the quark-field phases, the real angles 6,5, 53 and 6;3 can all be made to lie in
the first quadrant. The advantage of this parametrization is that the generation
labels 7,7 = 1,2, 3 are introduced in such a manner that the mixing between two
chosen generations vanishes if the corresponding mixing angle 6;; is set to zero.
In particular, for 63 = 613 = 0, the third generation decouples, and the 2 x 2
submatrix describing the mixing between the first and second generations takes
the same form as (2.25).

Experimentally, It was established that there is hierarchy of the strengths of the
charged-current processes at quark-level: transitions within the same generation

are governed by CKM matrix elements of order O(1), those between the first

11



< — 0(1)

i -1
s L’ ‘\ c == 0(10 )

e

. 7 )
--- 0(10°)

7 \,\’ 3
bt o(16”)

Figure 2.1: Hierarchy of the quark transitions mediated through charged-current
processes.

and the second generation are suppressed by CKM factors of O(107!), those
between the second and the third generation are suppressed by O(1072), and
the transitions between the first and the third generation are even suppressed by
CKM factors of O(1073) Fig. 2.1. In the standard parametrization (2.26), this

hierarchy is reflected by
519 =0.22 3> 893 = O(107%) > 513 = O(107?). (2.27)

For phenomenological applications, it would be useful to have a parametrization
of the CKM matrix where it contains the hierarchy explicitly (see Eq.( 2.29)). In
order to derive such a parametrization, it is convenient to introduce a set of new

parameters, A\, A, p and 7, by imposing the following relations [32]:
S19 = A =022, so3= AN, 513700 = AN (p —in). (2.28)
If we now go back to the standard parametrization (2.26), we obtain an ezact

parametrization of the CKM matrix as a function of A (and A, p, n), allowing us

12



to expand each CKM element in powers of the small parameter \. If we neglect

terms of O(\*), we arrive at the famous “Wolfenstein parametrization” [31]:

1— 1) A AN (p — in)
Vokw = 5\ -1y AN +O0Y,  (2:29)
AN(1—=p—in) —AN 1

which makes the hierarchical structure of the CKM matrix very transparent and
is an important tool for phenomenological considerations.

For several applications, next-to-leading order(NLO) corrections in A play an
important role. Using the exact parametrization following from (2.26) and (2.28),
they can be calculated straightforwardly by expanding each CKM element to the

desired accuracy in A [32]:

1 1
Vua =1— 5)‘2 - é)‘4 + O(A6)a Vus = A+ 0(/\7), Vup = AA?’(,O - ZT)):

1
Ve = =X+ S AN [L = 2(p + im)] + O(N'),

Ve=1- %/\2 _ éxm +442) + O, (2.30)
Vo= AN+ OO), Vig= AN [1 = (p+in) (1 %v)] + OO,
Vis = —AN + %A(l —20) A" — ANt + O(N%), Vi =1-— %AQX* + O(X%).
It should be noted that the matrix element
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receives, by definition, no power corrections in A within this prescription. If we

follow [32] and introduce the generalized Wolfenstein parameters

1 1
pP=p (1 - —,\2) ., N=n (1 — —,\2) : (2.32)
2 2
we may simply write, up to corrections of O(\7),
Via= AN (1 —p—in). (2.33)
Moreover, to an excellent accuracy, we have
Vus =X and Vg = AN, (2.34)

as these quantities receive only corrections at the \” and \® levels, respectively. In
comparison with other generalizations of the Wolfenstein parametrization found
in the literature, the advantage of (2.30) is the absence of relevant corrections
to Vs and Vi, and that Vi, and Vj4 take forms similar to those in (2.29). Let
us finally note that physical observables, for instance CP-violating asymmetries,
cannot depend on the chosen parametrization of the CKM matrix, i.e. have to be
invariant under the phase transformations specified in (2.23).

As we have just seen, in order to be able to accommodate CP violation within the
framework of the SM through a complex phase in the CKM matrix, at least three
generations are required. However, this feature is not sufficient for observable
CP-violating effects. To this end, further conditions have to be satisfied, which

can be summarized as follows [33]:

(m —m?2)(m? — m2)(m? —m2) (m —m?)(m? —m3) (m? —m3) x Jop # 0, (2.35)
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where
Joo = [Im(ViaVisViaViu)| (i # 4, a #5). (2.36)

The mass factors in (2.35) are related to the fact that the CP-violating phase of
the CKM matrix could be eliminated through an appropriate unitary transfor-
mation of the quark fields if any two quarks with the same charge had the same
mass. Consequently, the origin of CP violation is closely related to the “flavour
problem” in elementary particle physics, and cannot be understood in a deeper
way, unless we have fundamental insights into the hierarchy of quark masses and
the number of fermion generations.

The second element of (2.35), the “Jarlskog invariants” Jcp [33], can be inter-
preted as a measure of the strength of CP violation in the SM. It does not depend
on the chosen quark-field parametrization, i.e. it is invariant under (2.23), and
the unitarity of the CKM matrix implies that all combinations [Im(V;oV;sVi5V,)|
are equal to one another. Using the standard parametrization of the CKM matrix

introduced in (2.26), we obtain

2 .
JCP = 512513523C12C23C13 S1 513. (237)

Since the current experimental information on the CKM parameters implies a
value of Jop at the 107° level, CP violation is a small effect in the SM. However,
new complex couplings are typically present in scenarios for new physics(NP)

[36, 38], thereby yielding additional sources of CP violation. As far as the Jarlskog
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parameter introduced in (2.36) is concerned, we obtain the simple expression

Jop = NS A%, (2.38)

which should be compared with (2.37). Note that all nine elements of CKM
matrix, predicted from the theory, can be detrimined by experimental result.
In order to determine the magnitudes |Vj;| of the elements of the CKM matrix,

we may use the following tree-level processes:

Nuclear beta decays, neutron decays = |Vyq/-

o K — mlv decays = |V

e v production of charm off the valence d quarks = |V,4|.

e Charm-tagged W decays (as well as v production and semileptonic D de-

cays) = |Vl

e Exclusive and inclusive b — cfv decays = |V

e Exclusive and inclusive b — ufv decays = Vi)

e t — blv processes = (crude direct determination of) V).

If we use the corresponding experimental information, together with the CKM

unitarity condition, and assume that there are only three generations, we arrive
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at the following 90% C.L. limits for the |V;;| [37]:

0.9741-0.9756  0.219-0.226  0.0025-0.0048
Verm| = | 0.219-0.226  0.9732-0.9748  0.038-0.044

0.004-0.014 0.037-0.044  0.9990-0.9993

2.2.2  Unitarity Triangles of the CKM Matrix

The unitarity of the CKM matrix, which is described by

VCLM Vexm =1 = Voku - Vc];{M,

(2.39)

(2.40)

leads to a set of 12 equations, consisting of 6 normalization and 6 orthogonality

relations. The latter can be represented as 6 triangles in the complex plane [34],

all having the same area, 2Sx = Jcp [39]. Let us now have a closer look at these

relations: those describing the orthogonality of different columns of the CKM

matrix are given by

VuaVis + Ve V*+thv;’; = 0,
W—’ ~——
o) O(A) O(X5)
Vus Jb_*_‘/cs‘/cz_’_‘/ts tz = 0,
——— N N —
O()\4) O(A2) O()\Z)
Vud +Vch,,+ V;:d = 0,
H/—/ W—/

(p+in) AX3 fA/\3 (1—p—in) AN3

(2.41)
(2.42)

(2.43)

whereas those associated with the orthogonality of different rows take the follow-

ing form:

V:chdJrV*V +V,,Vcb = 0,
~——

o) C’J(A) 0(/\5)
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VeaVia + ViVis + VgV = 0, (2.45)

o) o) o)

VeVia +VaVis+ ViV = 0. (2.46)
(I—p—im)AX3  —AX>  (p+in)AN®

Here we have also indicated the structures that arise if we apply the Wolfenstein
parametrization by keeping just the leading, non-vanishing terms. We observe
that only in (2.43) and (2.46), which describe the orthogonality of the first and
third columns and of the first and third rows, respectively, all three sides are of
comparable magnitude, O(\?*), while in the remaining relations, one side is sup-
pressed with respect to the others by factors of O(\?) or O(\*). Consequently,
we have to deal with only fwo non-squashed unitarity triangles in the complex
plane. However, as we have already indicated in (2.43) and (2.46), the corre-

sponding orthogonality relations agree with each other at the A3 level, yielding
[(p+in) + (=1) + (1 — p— in)] AN® = 0. (2.47)

Consequently, they describe the same triangle, which is usually referred to as the
unitarity triangle of the CKM matrix [35]. Let us first have a closer look at the
former relation. Including terms of O()\®), we obtain the following generalization
of (2.47):

(5 +i7) 4+ (=1) + (1 — p— i) AN + O(\) = 0, (2.48)
where p and 7] are as defined in (2.32). If we divide this relation by the overall
normalization factor A\3, and introduce

/ 1
RbE p2+ﬁ2:x

Vub

2.49
Vcb ’ ( )
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o
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o
’Y\ B + Re Y ¢
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Figure 2.2: The two non-squashed unitarity triangles of the CKM matrix, as
explained in the text: (a) and (b) correspond to the orthogonality relations (2.43)
and (2.46), respectively.

1
Ri=y(1-p2+7" =+ o

2.50
Al (2.50)

we arrive at the unitarity triangle illustrated in Fig. 2.2 (a). It is a straightforward
generalization of the leading-order case described by (2.47): instead of (p,7n), the
apex is now simply given by (p,77) [32]. The two sides R, and R;, as well as the
three angles «, 8 and v, will show up at several places throughout this thesis.

Moreover, the relations

Ry

= Y AN 2
Vub ‘Vub‘ & A)\ (1 — )\2/2

) e Via=|Vle ® = ANRe ™ (2.51)
are also useful for phenomenological applications, since they make the depen-
dences of v and [ explicit; they correspond to the phase convention chosen
both in the standard parametrization (2.26) and in the generalized Wolfenstein

parametrization (2.30).
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2.2.3 Towards an Allowed Region in the p-7 Plane

It is possible to constrain — and even determine — the apex of the UT in the
p-n plane with the help of experimental data. However, it is useful to sketch
the corresponding procedure — the “CKM fits” — already now, consisting of the

following elements:

e The parameter R, introduced in (2.49), which involves the ratio |Vi,/Ves|.
It can be determined experimentally through b — wfév and b — cfv decay
processes. Following these lines, we may fix a circle in the p-7 plane that

is centred at the origin (0,0) and has the radius Ry.

e The parameter R, introduced in (2.50), which involves the ratio |Vi4/Vel.
It can be determined with the help of the mass differences AM,, of the
mass eigenstates of the neutral B;- and B,-meson systems. Experimental
information on these quantities then allows us to fix another circle in the

p—7 plane, which is centred at (1,0) and has the radius R;.

e Finally, we may convert the measurement of the observable ¢, which de-
scribes the CP violation in the neutral kaon system that was discovered in

1964, into a hyperbola in the p—7 plane.

In Fig. 2.3, we have illustrated these contours; their intersection allows us to de-
termine the apex of the UT within the SM. The curves that are implied by AM,

and ¢ depend on the CKM parameter A and the top-quark mass m;, as well as on
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Figure 2.3: Contours in the p—7 plane, allowing us to determine the apex of the
UT.

certain perturbatively calculable QCD corrections and non-perturbative parame-
ters. Consequently, strong correlations between the theoretical and experimental
uncertainties arise in the CKM fits. From the analysis of the experimental results,
like B — B®, K° — K mixing, b — cfv, b — ulv, etc, decays, the typical ranges

for the UT angles are obtained:

70° < a < 130°, 20° < B <30° H0° gy 700 (2.52)

On the other hand, CP violation in the B-meson system provides various strate-
gies to determine these angles directly, thereby offering different ways to fix the
apex of the UT in the p—7 plane. Following these lines, a powerful test of the
CKM mechanism can be performed. This very interesting feature is also reflected
by the tremendous efforts to explore CP violation in B decays experimentally in

this decade. Before having a closer look at B mesons, their decays, the theoretical
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tools to deal with them and the general requirements for having non-vanishing

CP asymmetries, let us first consider the classifications of the B decays.

2.3 DECAYS OF B MESONS

The B-meson system consists of charged and neutral B mesons, which are

characterized by the

and

valence-quark contents, respectively. The characteristic feature of the neutral B,

(¢ € {d, s}) mesons is the phenomenon of B{-B)) mixing (the counterpart of K°-

K° mixing). As far as the weak decays of B mesons are concerned, we distinguish

between leptonic, semileptonic and non-leptonic transitions.

2.3.1 Leptonic Decays

The simplest B-meson decay class is the leptonic decays of the kind B~ — /v,

as illustrated in Fig. 2.4. If we evaluate the corresponding Feynman diagram, we

arrive at the following transition amplitude:

TY;

>

Dirac spinors

2
g — e} gOL,B — —
Vi | ] @A)
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hadronic ME



Figure 2.4: Feynman diagram contributing to the leptonic decay B~ — /v.
where ¢y is the SU(2);, gauge coupling, V,; the corresponding element of the
CKM matrix, o and § are Lorentz indices, and My denotes the mass of the
W gauge boson. It should be noted that in W-boson propagator we omitted
the term proportional k,kg/m?%, since using equation of motion one can show
that this term is proportional to my(m, + my)/m?, << 1. So this term can be
safely neglected. Since the four-momentum k that is carried by the W satisfies

k* = M% < M3,, we may write

Gap Gap _ 8C"YF
_Gab -, _daB s 2.2
- T, 27, (ﬂg> o (22)

where Gf is Fermi’s constant. Consequently, we may “integrate out” the W

boson in (2.1), which yields

Ty = S0V [ar™ (1 — 7)) (Ofaya(1 — 13)blB). (2.3)

V2

In this simple expression, all the hadronic physics is encoded in the hadronic

matriz element

(0]74(1 — v5)b| B7),
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Since the B~ meson is a pseudoscalar particle, we have

(0[urab| B™) =0, (2.4)

and may write

(0uyaysb| B~ (k)) = ifpka, (2.5)
where fg is the leptonic B-meson decay constant of the B-meson, which is an im-
portant input for phenomenological studies. In order to determine this quantity,
which is a very challenging task, non-perturbative techniques, such as lattice [40]
or QCD sum-rule analyses [42], are required. For example, QCD sum rules pre-
dicted that fp = 140 MeV[41]. If we use (2.3) with (2.4) and (2.5), and perform
the corresponding phase-space integrations, we obtain the following expression

for the decay rate:

12? 2 2 %ﬁ ? 2
(B~ — (D) = Gr Vs |2Mpm (1 e ) , (2.6)
( ) 87r| ¢ M%) B

where Mp and my denote the masses of the B~ and /¢, respectively. Because
of the tiny value of |Vy;| oc A* and a helicity-suppression mechanism, we obtain
unfortunately very small branching ratios of O(1071%) and O(10°7) for £ = e and
¢ = p, respectively [43]. The helicity suppression is not effective for £ = 7, but
— because of the required 7 reconstruction — these modes are also very challeng-
ing from an experimental point of view. A measurement of leptonic B-meson
decays would nevertheless be very interesting, as it would allow an experimen-

tal determination of fg, thereby providing tests of non-perturbative calculations
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Figure 2.5: Feynman diagram contributing to semileptonic B — D*(nt)lp
decays.

of this important parameter.! The CKM element |V,;| can be extracted from

semileptonic B decays, which is our next topic.

2.3.2 Semileptonic Decays

Semileptonic B-meson decays of the kind shown in Fig. 2.5 have a structure
that is more complicated than the one of the leptonic transitions. If we evaluate

the corresponding Feynman diagram for the b — ¢ case, we obtain

2
g — e ga — D,
Ty = — ﬁ‘fcbluw (1 =)u] lk?—iﬂ | %] SD+|07ﬁ(1 — 75)b| By) - (2.7)

Dirac spinors hadronic ME

Because of k? ~ M3 < M3,, we may again — as in (2.1) — integrate out the W

boson with the help of (2.2), which yields

G _
T = —=Vay [uey*(1 = v5)0,] (D*|eva(1 = 75)b| BY), (2.8)

V2

I Leptonic decays of D,y mesons allow the extraction of the corresponding decay constants
fpy.,, which are defined in analogy to (2.5). These measurements are an important element of
the CLEO-c research programme [44].
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where all the hadronic physics is encoded in the hadronic matrix element
(DF[eva(1 = 75)b By),

Since the BY and DT are pseudoscalar mesons, we have
(D*|eva75b| Bg) =0, (2.9)

and remaining matrix element can be parameterized in terms of two formfactors

as follows:

(D 0 e B = () [0+ 1o = (M2 ) o ety (ME 2R g,

(2.10)
where ¢ = p — k, and the F ¢(¢?) denote the form factors of the B — D tran-
sitions. In order to guarantee the finiteness of the form factors at ¢> = 0, the
condition Fi(¢?> = 0) = Fy(¢? = 0) must be satisfied. In order to calculate these
parameters, which depend on the momentum transfer ¢, again non-perturbative

techniques (lattice, QCD sum rules, etc.) are required.
e FCNC: Flavor Changing Neutral Current.
e NP: New Physics.
o UT: Unitary Triangle.
e PDG: Particle Data Group.

o ME: Matrix Element.
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CHAPTER 3

GENERAL ANALYSIS OF CP VIOLATION IN POLARIZED

b— d¢t{~ DECAY

3.1 Introduction

Rare B meson decays, induced by the flavor changing neutral current (FCNC)
b — s(d) transitions, provide one of the most promising research area in particle
physics. Interest to rare B meson decays has its roots in their role being poten-
tially the precision testing ground for the standard model (SM) at loop level and
looking for new physics beyond the SM [45]. Experimentally, these decays will
provide a more precise determination of the elements of the Cabibbo—Kobayashi—
Maskawa (CKM) matrix, such as, Vi, (¢ = d, s,b), Vi and CP violation. In FCNC
decays, any deviation over the SM results is an unambiguous indication for new
physics. The first observation of the radiative B — Xy decay by CLEO [46],
and later by ALEPH [47], have yielded |VjV}i| ~ 0.035, which is in confirmation

with the CKM estimates.

Rare semileptonic decays b — s(d)¢*¢~ can provide alternative sources for
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searching new physics beyond the SM, and these decays are relatively clean com-
pared to pure hadronic decays. The matrix elements of the b — s¢*¢~ transition
contain terms describing the virtual effects induced by the tf, c¢ and uu loops,

which are proportional to Vi Vii|, [V V| and [V, V.5 |, respectively.

Using the unitarity condition of the CKM matrix and neglecting |V,;V,%| in
comparison to |V Vi and |V, V|, it is obvious that, the matrix element for the
b — stt¢~ decay involves only one independent CKM matrix element, namely,

|VisVii|, so that CP—violation in this channel is strongly suppressed in the SM.

As has already been noted, b — ¢f*¢  decay is a promising candidate for
establishing new physics beyond the SM. New physics effects manifest themselves
in rare B decays in two different ways; either through new contributions to the
Wilson coefficients existing in the SM, or through the new structures in the
effective Hamiltonian, which are absent in the SM. Note that, the semileptonic
b — q¢T¢~ decay has extensively been studied in numerous works [48]-[6], in the
framework of the SM and its various extensions. Recently, the first measurement
of the b — s¢*t¢~ decay has been reported by BELLE [7] and is in agreement
with the SM expectation. Therefore, this result puts further constraint on any

extension of the SM.

In this chapter we examine CP-violating effects for the case when one of the
leptons is polarized, in model independent framework, by taking into account a

more general form of the effective Hamiltonian. It should be noted here that
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similar calculation has been carried out in the SM in [8].

One efficient way in establishing new physics beyond the SM is the measure-
ment of the lepton polarization [9]-[70]. This issue has been studied for the
b — sTtt7 transition and B — K*¢(*¢~, B — K/{*¢  decays in a model inde-
pendent way in [64] and [69, 70], respectively.

This chapter is organized as follows. In section 2, using the most general form
of the four—Fermi interaction, we derive model independent expressions for the
CP-violating asymmetry, for polarized and unpolarized leptons. In section 3 we

present our numerical analysis.

3.2 Formalism

In this section we present the necessary expressions for CP-violating asym-
metry when lepton is polarized and unpolarized, using the most general form
of four—Fermi interactions. Following [62, 64], we write the matrix element of

the b — d¢* ¢~ transition in terms of the twelve model independent four-Fermi

Interactions
Ga . = ¢ R tot 7 7 H
M = Emb‘/;d CSdeW?Lbﬁq/ E-I—CBRde?Rqu/ L+ Crdryubr byt ey,

+ CE%CZL’YMZ)LZR’YMER + CRLCZR’}’ubRZL’)/NgL + CRRCZR’)/MZ)RER’}’MER

+ Crrrrdrbrlilr + Crirrdrbrlilr + Crrrrdrbrlrlr + Crirrdrbrlrlr
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+ CTCZUWI)EU“"K + iC’TEeu,,agdo’“’bEaaﬁK} , (3.1)

where L and R stand for the chiral operators L = (1 —+;)/2 and R = (1+;)/2,
respectively, and C'x are the coefficients of the four—Fermi interactions. The first
two terms, Cs;, and C'ggr are the nonlocal Fermi interactions which correspond to
—2msC'$f ! and —meCff 7 in the SM, respectively. The next four terms are the
vector type interactions with coefficients C%%, C1%, Cgrr, and Cgrgr. Two of these
vector interactions containing the coefficients C%%} and C!% do already exist in

the SM in the forms C'gf F — ¢y and Cgf I 4+ C, respectively. Therefore Ct and

C% can be represented as

Ctt = C5f — Oy + Cr

clot = CM 4+ Cyo+ Cri (3.2)

where Cp;, and CLg describe the contributions of new physics. The following
four terms with coefficients Crrrr, Crrrr, Crrrr and Cgrrr describe the scalar
type interactions, and the last two terms with the coefficients Cp and Crp are
the tensor type interactions. It should be noted here that, in further analysis we
will assume that all new Wilson coefficients are real, as they are in the SM, while

only C'gf ! contains imaginary part and it is parameterized in the following form

C =&+ MG, (3.3)
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where

A = Vubvqfd
u V;‘,b‘/;& )

and
€ = 4.128 + 0.138w(8) + g(rine, §)Co(ring) — %g(md,é)(&; +C)
_ %g(mb, $)(ACy + AC4 + 3Cs + Cy) + 3(303 +Cy43Cs+Cy)
§o = [g(rie, 8) — g(1y, 8)](3C1 + Ca) (3.4)

where mq = mq/mb, 5= q2, CO(N) = 301 + CQ + 303 + 04 + 305 + 06, and

4 2 5+ 45

w(3) = -gﬁ - Lia(8) = 5 (3 (1 = §) = 2T (1 9
25(1+38)(1—-28), .. 5+95— 68
Tsa—ara+n) " T s sares (3:5)

represents the O(a;) correction coming from one gluon exchange in the matrix
element of the operator Oy [71], while the function g(r,, §) represents one-loop

corrections to the four-quark operators O;-Og [72], whose form is

A 8 R 8 4 2
g(mq, 8) = ) ln(mq) + 97 + §yq - 5(2 + yq) (3.6)

_ \l—yq\{ﬁ(l—yq)lln<i\/7\/%)—m]+0(yq—1)arctan< ! )}

where y, = 412 /3.

In addition to the short distance contributions, B — X4¢*¢~ decay also re-
ceives long distance contributions, which have their origin in the real %u, dd and
¢c intermediate states, i.e., p, w and J/v¢ family. There are four different ap-

proaches in taking long distance contributions into consideration:
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a) HQET based approach [73],

b) AMM approach [74],

c) LSW approach [75],

d) KS approach [70].

In the present work we choose the AMM approach, in which these resonance con-
tributions are parameterized using the Breit-Wigner form for the resonant states.
The effective coefficient C’gf f including the p, w and J/1 resonances are defined

as

Cs = Cy(u) + Yres(3) (3.7)

3

a2

F(V — E+E_)MV,
CO(u) + X, [3C1 (1) + C: Ki—— T
{ (00 + 00100 + Cuml) X s M

I(V; = £+07) My,

Y;‘es =

— g (1, 8) [3C1 (1) + Co(p)] (3.8)

Vi=pw

The phenomenological factor K; has the universal value for the inclusive B —
X £t4~ decay K; ~ 2.3 [76], which we use in our calculations.

As we have already noted, CP asymmetry can appear both for the cases when
lepton is polarized and unpolarized, and hence, along this line, we will present
the expressions for the differential decay rate for both cases when the lepton is
polarized and unpolarized. Starting with Eq. (3.1), after lengthy calculations we

get the following expression for the unpolarized decay width:

dl'  G’o’mj

45 = 3976875 Vi V|2 AV2(1, 8, 0)0A(3) (3.9)
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where § = ¢*/m2, v = /1 — 47 /§ is the velocity of the final lepton, 1, = my/my,
and \(a, b, ¢) = a® + b? + ¢ — 2ab — 2ac — 2bc is the usual triangle function. The

explicit expression of the function A($) can be written as

8
A(8) = 16(1 — 8) Re{@@ﬁﬁ +3)(2+3)[|Corl* + 85 (|Cr|” + 4|Crl”) ]

8 A a 0 0 * 32 A A *
— (@i +8) (CFF + C1%) Chp = 112 + 8) (Cr — 2Crp) Cpg
4 ~Af A ~ ~ ~ O 0
— 35(280mF = 8) — (2 + 3)] (|CLLP + [CLR + |Crel® + | Crl?)

— 2(2mf — 3) (\CLRLR|2 + |Crecrl* + |Crrre” + |CRLRL\2)
+ 81y [2 (Ci"i(C%)* + CRLC;{R) —(CLrLrCLrpr, + CRLLRC}ELRL)]
- 47?74[ (Ciolt/ - Eoftz) (Crrr — CLrre) + (Crr — Crr) (Crrrr — Chire)

— 12 (C% + Ci%) (C — 2C3) — 12(Cr, + Cra) (G5 +2C55) | } (3.10)

Our result agrees with the one given in [62], except the term multiplying the
coefficient Ny(s) in [62]. The differential decay width for the CP conjugated

process can be obtained from Eq. (3.8) by making the replacement
A=A de, CH =€ + 06 — CH =¢ 4+ X6,

The lepton polarization has been firstly analyzed in the SM in [70] and [10],
where it has been shown that additional information can be obtained about the
eff

quadratic functions of the Wilson coefficients C’;f f , Cg’’ and C'y. In order to

calculate the final lepton polarization, we define the orthogonal unit vectors €7,
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er and €y in such a way that, in the rest frame of leptons they can be expressed

as
sih=(0,67) = (0, é—:|> ,
= 0) - (05 F)
st = (0,87) = (0,ey x&7) |
st = (0,52’) = (O,%) ,
=0 = (535)
sit = (0,81) = (0,e¥ x &) ,

where p_, p, and p, are the three-momenta of the leptons £, £*, and the strange
quark in the center of mass frame (CM) of £~ £ respectively, and the subscripts
L, N and T stand for the longitudinal, normal and transversal polarization of
the lepton. Boosting the unit vectors s; and s} corresponding to longitudinal
polarization by Lorentz transformation, from the rest frame of the corresponding

leptons to the ¢~ ¢ CM frame, we get
() en = (Bl
cM me melp-|)
(SL )CM (m[ ) my ‘ﬁ7| ) ( . )

while s3¥ and s}* are not changed by the boost.

The differential decay rate of the b — d¢*™¢~ decay, for any spin direction 7

of /T, where 7T is the unit vector in the rest frame of /T, can be written in the
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following form

d(s,7%) _1(dl } . o
%:§<£>0[1+(Pf@ervaF@fv“rPﬁeﬁ)-n*] . (312)

where (dI'/d§)y corresponds to the unpolarized differential decay width (see Eq.
(3.9)) for the b — d¢*¢~ decay. The differential decay width for the b — d¢*¢~

decay, can simply be obtained by making the replacement

dl(s,i¥)  dl(s,@T)
i az

where dT'/d3 is obtained from dI'/d§ by replacing C¢/f = € + A& to C =

& + Ai&o. The polarizations Pp, Py and Pp are defined as

dr dr
(A7 = &) — — (17 = —&7) A7
PF(3) = & 4 = = 3.13
e P e (3.13)

withi=L, N, T.
The explicit expressions for the longitudinal polarization asymmetries P, and

+
P are

o 32(1— 8w N
P = BT rola (et - i) G

— 2(1428) (|CHLP = [CIA? + |Cru = [Crnl? ~ 128CrCi)

+ gﬁu@ + §) (CT - 2CTE) CER + me[ (CIEOLt - CE"E) (CERLR + CZRRL)
+ (Cre — Crr) (Crrrr + Crrre) — 4 (30205 - Eoftz) (Cr —2Crp)

— 4(Crr, — 3Cgr) (CT + QC}E)] — §(|C'LRLR\2 — [Crrrol®

+ |Crerrl® — |Crire)® + 128C}CTE) },
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and

32(1 — s)v ~to Ao .
P = U e < (cit - o) O

+ 2(1+28) (|CHP = (YR + Cus? = Crn? +128C1 )

+ ng(Q +8) (Cr — 2Crp) Chr+ 277%@[ (C’E"E - CV%{) (CZRLR + CzRRL)
+ (Cre — Crr) (Chrrr + Chrore) +4 ( °IT — 3620}%) (Cr —2Ctp)

+ 4(3Crr — Crr) (Cr + QC}E)] - §(|CLRLR\2 — |Crrre/?

+ |Creorl® = |Crore|® +128C;Cri) }

The normal asymmetries, Py and Py, are;

- dr(1 — 5)vV/5 8 . 0 ot ) e
Py = - - S (et - o) G

+ 81| CI4(CI%)" — CriCip — 2 (Crrer + Crrrr) (Ci — 2Cip)
— 2(CrLr + Crrrr) (Cr + 2CTR) ] + 4[ (Crrer + CLrrr) Crir
+ CYiCrrrr + CieCrrir + CrrChirr, + CrrChiLr — 4Cre (CF 4 2CTg)

O * * 16
— 4C1% (C7 = 2075) | =

(Cr —2Crg) C,’;R} :

(1l — 5 S
An( s)v\/glm

8 P ~to ~to *
Py = IV S (et - i) i

+ 81| — CI(CI%)" + CriCia + 2 (Crrrr + Crrrs) (Cq — 2C )
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2 (CreLr + Crerr) (CT + QC}E)] - 4[ (Crrrr + Crrrr) Cir
+ CllCrrir + CltCrrrr + CriChiirr + CrrChirr + 4CTL (CF — 2CT )

16 N .
+ 4CRR (C; + 2C;E)] —+ ?CBR (CT — QCTE) } .

The transverse asymmetries, Pr and Pj, are;

8m(1—35 8 .
. _% Re{ = SulConl + i (301 + CLt) i
— 2(1+ 8)i (|C15)” = [Cral?) + 413 | — CI(CI%)" + CrrCig

2(Crrrr — Crrre) (Cr — 2C7g) + 2(Crerr — Crere) (Cr + QC;E)]

+ 2(1 — 8)my (|C'zofz|2 — |CRL|2) —28(Crrer — Crrre) Chp

_.|_

w>| Co

(4175 + 8)Cpr (CF — 2C7p) + 410 [CtOtCLRLR CreClrrr
+ CreChirr — OrrChipr — 12077 (O — 2075) + 12Cre (Cr + QC;E)]
+ 2(2mm — 3) [CzOLtCzRRL ~ CrrClrir + CreChipr — CrrChrpr

4C1% (C — 2C35) — 4Cx (Cr + 26%)] + 256mgCTC;E} :

and

CIJ>|OO

1 —
P = _8(1-3) Re{ me|Crl” + 41 (C1% + 3C1%) g

CAVE
+ 2(1 _ 8) (| tut‘Z ‘CRR|2) _ 4m€S[Ctot(Ctot) CRLC;R

2(Crrer — CrLrrr) (C] —2CTe) + 2(CriLr — Crurr) (CF + QC';E)]

— 2(1 + 8)r, (\Ct”t > — \CRLIQ) +25(Crrer — Crrre) Chr
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_|_

w>| Co

(47] + 8)Cr (Cf — 2C5) + 4 | C14 Ch s, —

~tot v
LRCLRLR

+ CrrChpns — CrrCrppr — 12C1% (Cr — 2C5) + 12Ckr (Ch + 205 )|

+ 2(27?%%@ - §) [Czolt,czRLR - éﬁzciRRL + CRLC;-’ELLR - CRRCELRL

+ 4C% (Ch — 2C%5) — ACRR (Cr + 26%)] + 256m£CT0;E} :

It should be noted here that, these polarizations were calculated in [62], using

the most general form of the effective Hamiltonian. Our results for P, and Py

agree with the ones given in [62], while the transversal polarizations Py and Pjt

both differ from the ones given in the same work. In the SM case, our results

for Py, Py and Pr coincide with the results of [8]. It is quite obvious from

the expressions of P; that, they involve various quadratic combinations of the

Wilson coefficients and hence they are quite sensitive to the new physics. The

polarizations Py and Pr are proportional to m, and therefore can be significant

for 7 lepton only.

Having obtained all necessary expressions, we can proceed now to study the

CP-violating asymmetries. In the unpolarized lepton case, the CP-violating dif-

ferential decay width asymmetry is defined as

where

dr\  (dl
), \di),

Acp(é) -

dry , (dr
i), \ds),

dT (b — de+e-)
d3

dr
ds
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and (d['/d3), can be obtained from (dI'/d3), by making the replacement
O =6+ 06 = G =6+ 06 (3.15)
Using Eqgs. (3.12) and (3.14), we get for the CP-violating asymmetry

(5

A(8)

£(3)
A(8) + A(8) ’
£(3)

~ —2Im[\,] (3.16)

and X(8), whose explicit form can easily be obtained using Eqgs. (3.10) and (3.14).

5(5) = 52 (1= §){2(1+29)(210 + 8) Im165] ~ 3613 Tml(Cr — 207)6))

— (14 28)(2m} + 8) Tm[(Cr, + CLr)&] + 12C7(2mF + §) Tm[&] . (3.17)

In the presence of the lepton polarization, CP asymmetry is modified and the
source of this modification can be attributed to the presence of new interference
terms which contain C¢// (in our case C% and C%). We now proceed to calculate
this new contribution.

In the polarized lepton case, CP asymmetry can be defined as

S Saﬁ_) ~
ACP(g) — dS dS

(3.18)

where

dU _ dU(b— dete= (i) dl*  dL(b — det(i+)e)

s d3 » and, = = d3
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The differential decay width with lepton polarization for the b — d¢*™ ¢~ chan-
nel is given by Eq. (3.12). Analogously, for the corresponding CP conjugated

process we have the expression

dr 1 (dl
7F) — = 14+ PHET.qm)| . 3.19
() 2(d§)0[+,(ez ) (3.19)
With the choice i~ = #i*, P;" can be constructed from the differential decay

width analogous to Eq. (3.13). At this stage we have all necessary ingredients
for calculation of the CP-violating asymmetry for the lepton £~ with polarization
7i = €. Inserting Eqgs. (3.12) and (3.19) into Eq. (3.18), and setting i~ = 7™,

the CP-violating asymmetry when lepton is polarized is defined as

1 (dl R 1 (dl L
3 (), om0 -5 (G, e rre o)

Aor = dry , (d
ds /), ds /,
Taking into account the fact that €7y = —€7 v, and € = é;, we obtain
r r r r
(), (), (&)= ()
§ § § §
Acp = - 0 0 4 0 0 . (3.20)

T2 (@ (@
i), \d3),

Using Eq. (3.9), we get from Eq. (3.20),

dry -, (dr
i), \ds),

{Acp(3) £ 0ALp(5)} (3.21)

where the upper sign in the definition of § Acp corresponds to L and N polariza-

tions, while the lower sign corresponds to T polarization.
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The §AL p(5) terms in Eq. (3.21) describe the modification to the unpolarized

decay width, which can be written as
. —4Im[/\u](521( )
0ALp(8) = ,
CP( ) ( ) ( )
§¢(3)
As)

Q

—2Im[\,] (3.22)

We present the explicit forms of the expressions for §%%(3), (i = L, N, T), since

their calculations are straightforward.

ST = %(1 — 814 28w m[(Crp — Cop — 2C10)EL] (3.23)

5EN(§) _ —87T(1 _ §)\/§U{ — Re[(CLRRL + CLRLR)@K]

+ 21 Re[(Crz — Crr — 2C10)&]} (3.24)

327 (1 — 3)
NG
— 8 Tm[(Crr, + CLr)E] + 2 Im2C76 + 3616]} (3.25)

5ET(§) — _ { — (47?2? + §) Im[(CT — 2CTE){.:;]

3.3 Numerical analysis

In this section we will study the dependence of the CP asymmetries Agp(3)

and 0ALp(8) on § at fixed values of the new Wilson coefficients. Once again, we
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should remind the reader that in the present work all new Wilson coefficients are
taken to be real. The experimental result on b — sy decay put strong restriction
on Cpgg, i.e., practically it has the same value as it has in the SM. Therefore,
in further numerical analysis we will set Cggr = —20§f I Throughout numerical
analysis, we will vary all new Wilson coefficients in the range —4 < Cx < 4. The
experimental bounds on the branching ratios of the B — K(K*)u*p~ [77, 78] and
B — ptu~ [79] suggest that this is the right order of magnitude for vector and
scalar type interactions. Recently, BaBar and BELLE collaborations [10, 77] have
presented new results on the branching ratios of B — K¢/~ and B — K*{T(~
decays. When these results are used, stronger restrictions are imposed on some
of the new Wilson coefficients. For example, —2 < Cr;, < 0, 0 < Cgr, < 2.3,
—1.5 < Cr <15 and —3.3 < Crg < 2.6, and rest of the coefficients vary in the
region —4 < Cx < 4. Furthermore, in our analysis we will use the Wolfenstein
parametrization [80] for the CKM matrix. The currently allowed range for the
Wolfenstein parameters are: 0.19 < p < 0.268 and 0.32 < n < 0.40 [81, 28],
where in the present analysis they are set to p = 0.25 and n = 0.34 [8].

We start our numerical analysis by first discussing the dependence of Acp on

§ at fixed values of Cj, i.e., C; = —4;0;4 which can be summarized as follows

e For the b — du*u~ case, far from resonance regions, Acp depends strongly
on Crr. We observe that, when Cy, is positive (negative), the value of Acp

decreases (increases), while the situation for the Cpr case is the opposite
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Figure 3.1: The dependence of Agp on § for the b — du™p~ transition, at fixed
values of Crr.

way around (see Figs. (3.1) and (3.2)). If the tensor interaction is taken
into account, Acp practically seems to be zero for all values of Cr and Crg.
Furthermore, Acp shows quite a weak dependence on all remaining Wilson

coefficients and the departure from the SM result is very small.

e For the b — d7t7~ case, in the region between second and third v reso-
nances, Acp is sensitive to Crr, Crrrr, Crrrr, Cr, and Crg, as can be
seen from the Figs (3.3), (3.4), (3.5), (3.6) and (3.7), respectively. When
Crr and Cpgpr are positive (negative), they contribute destructively (con-
structively) to the SM result. The situation is contrary to this behavior for
the Crrr scalar coupling. In the tensor interaction case, in the second and

third resonance region, the magnitude of A¢p is smaller compared to that
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Figure 3.3: The same as in Fig. (3.1), but for the b — d7 7~ transition, at fixed

values of Cg.
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Figure 3.4: The same as in Fig. (3.3), but at fixed values of Crgrr.-

of the SM result. But, it is quite important to observe that Acp asymmetry
changes its sign, compared to its behavior in the SM, when C; (Crg) is
negative (positive). Therefore, determination of the sign and magnitude

of Acp can give promising information about new physics.

The results concerning § Acp for the b — du™ i~ decay can be summarized as

follows:

e In the region 1 GeV?/m? < § < 8 GeV?/m}, which is free of resonance con-
tribution, CP asymmetry due to the longitudinal polarization of y lepton is
dependent strongly on Cp, and is practically independent of all remaining
vector interaction coefficients. When Cpp is negative (positive), JAcp is

larger (smaller) compared to that of the SM result (see Fig. (3.8)).
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Figure 3.5: The same as in Fig. (3.3), but at fixed values of Cpgpr.

Figure 3.6: The same as in Fig. (3.3), but at fixed values of Cy.
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Figure 3.7: The same as in Fig. (3.3), but at fixed values of Crg.
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Figure 3.8: The dependence of §A%, on § for the b — du™u~ transition, at fixed
values of Cr, when one of the final leptons is longitudinally polarized.
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Figure 3.9: The same as in Fig. (3.8), but at fixed values of Cpgrr.
e 0A%L, depends strongly on all scalar type interactions. As an example we
present the dependence of 6Acp on Crrpr, in Fig. (3.9). The terms pro-

portional to tensor interaction terms contribute destructively to the SM

result.

For the b — d7+7~ case, we obtain the following results:

e JAL, depends strongly on the tensor type interactions and when C7 is neg-
ative (positive) it constructive (destructive) contribution to the SM result.
For the other tensor interaction coefficient Crg, the situation is contrary to

this behavior (see Figs. (3.10) and (3.11)).

e Similar to the u lepton case, §A%p is quite sensitive to the existence of all
scalar type interaction coefficients. When the signs of the coefficients Cgrr,

and Crrrr are negative (positive) the sign of §A%p is positive (negative),
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Figure 3.10: The same as in Fig. (3.8), but for the b — d7"7~ transition, at
fixed values of Cr.

in the region § > 0.6 (see Figs. (3.12) and (3.13)). Note that in the
SM case the sign of AL, can be positive or negative. Therefore in the
region § > 0.6, determination of the sign of AL, can give unambiguous
information about the existence of new physics beyond the SM. For the
remaining two scalar interaction coefficients Crrrr, (Crrrr), the sign of
SAL, is negative (positive) (see Figs. (3.14) and (3.15)). Again, as in the
previous case, determination of the sign and magnitude of §A%, can give

quite valuable hints for establishing new physics beyond the SM.

Since transversal and normal polarizations are proportional to the lepton mass,
for the light lepton case, obviously, departure from the SM results is not substan-

tial for all Wilson coefficients. On the other hand, for the b — d¢~¢" transition,
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dALp (1 =T or N) is strongly dependent on Crr (see Fig. (3.16)), Crr (see Fig.
(3.17)) and scalar type interactions. Note that, the dependence of AL, on Cr

and Crg is quite weak.

Finally, we would like to discuss the following question. As has already been
mentioned, Acp, as well as  Acp, are very sensitive to the existence of new physics
beyond the SM. The intriguing question is that, can we find a region of Cx, in
which Acp agrees with the SM result while ) Acp does not. A possible existence
of such a region will allow us to establish new physics by only measuring d Acp.
In order to verify whether such a region of C'x does exist or not, we present
the correlations between partially integrated Acp and dAcp in Figs. (3.18)—
(3.20). The integration region for the b — du*p~ transition is chosen to be
1 GeV?/mi < § < 8 GeV?/m}, and for the b — dr™7~ transition it is chosen
as 18 GeV?/m? < § < 1. These choices of the regions are dictated by the

requirement that Acp and JAcp be free of resonance contributions.

In Figs. (3.18)—(3.19) we present the correlations § AL, and A%, asymmetries,
when one of the leptons is longitudinally polarized, for the x4 and 7 lepton cases,
respectively. In Fig. (3.20) we present the flows in the (AL, and §AL,) plane,
when the final lepton is transversally polarized. From these figures we observe
that, indeed, there exists a region of new Wilson coefficients in which A¢p agrees
with the SM prediction, while §Acp does not (in Figs (3.18)—(3.20), intersection

point of all curves correspond to the SM case).
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The numerical values of §AY, and AY, are very small and for this reason we
do not present this correlation. As a final remark we would like to comment that,
similar calculation can be carried out for the B — pf™¢~ decay in search of new
physics, since its detection in the experiments is easier compared to that of the
inclusive b — d¢*¢~ decay.

In conclusion, we study the CP-violating asymmetries, when one of the final
leptons is polarized, using the most general form of effective Hamiltonian. It is
seen that, 0Acp and Acp are very sensitive to various new Wilson coefficients.
Moreover, we discuss the possibility whether there exist regions of new Wilson
coefficients or not, for which Acp coincides with the SM prediction, while Acp
does not. In other words, if there exists such regions of C'x, this means new physics
effects can only be established in § Acp measurements. Our results confirm that,

such regions of C'x do indeed exist.
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Figure 3.11: The same as in Fig. (3.10), but at fixed values of Crg.

I Crrrr, = —4 -----
02 S Crrrr = 0 ——
L [ - LRRL = F4 ==~
L - e N/
L i \\. T T N
0.1 __ ,l ¥ \'\,vv/ ]
L I
0.0
0.1 ]
02 _
| L L L L | L L L L | L L L L | L L L L
0.6 0.7 0.8 0.9 1.0
S

Figure 3.12: The same as in Fig. (3.10), but at fixed values of Cpggy.
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The same as in Fig. (3.10), but at fixed values of Cpgpr.
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The same as in Fig. (3.10), but at fixed values of Crpry.
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Figure 3.15: The same as in Fig. (3.10), but at fixed values of Cgrr.
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Figure 3.16: The same as in Fig. (3.10), but when
transversally polarized, at fixed values of Cg.
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Figure 3.17: The same as in Fig. (3.16), but at fixed values of Cgg.
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Figure 3.18: Parametric plot of the correlation between the partially integrated
AL, and § AL, as a function of the new Wilson coefficients C'x, for the b — dp™p~
transition, when one of the final leptons is longitudinally polarized.
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CHAPTER 4

POLARIZED LEPTON PAIR FORWARD-BACKWARD
ASYMMETRIES IN B — K*¢*¢{~ DECAY BEYOND THE

STANDARD MODEL

4.1 Introduction

As we mentioned(see e.i, chapter 3 ), rare B meson decays, induced by flavor
changing neutral current (FCNC) b — s(d)¢*£~ transitions provide a promising
ground for testing the structure of weak interactions. These decays which are
forbidden in the standard model (SM) at tree level, occur at loop level and are
very sensitive to the gauge structure of the SM. Moreover, these decays are also
quite sensitive to the existence of new physics beyond the SM, since loops with
new particles can give considerable contribution to rare decays. As we see in
chapter 3 the new physics effects in rare decays can appear in two ways; one
via modification of the existing Wilson coefficients in the SM, or through the
introducing of some operators with new coefficients. Theoretical investigation
of the B — X, /¢~ decays are relatively more clean compared to their exclu-

sive counterparts, since they are not spoiled by nonperturbative long distance
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effects, while the corresponding exclusive channels are easier to measure experi-
mentally. Some of the most important exclusive FCNC decays are B — K*vy and
B — (m,p, K, K*){t¢~ decays. The latter provides potentially a very rich set of
experimental observable, such as, lepton pair forward-backward (FB) asymme-
try, lepton polarizations, etc. Various kinematical distributions of such processes
as B — K(K*){t¢ [82, 83, 84], B — w(p)¢*¢~ [85], Bsa — £T¢ [86] and
By 4 — ¢~ [87] have already been studied. Experimentally measurable quan-
tities such as forward-backward asymmetry, single polarization asymmetry, etc.,
have been studied for the B — K*¢*¢~ decay in [82, 88, 89, 90]. Study of these
quantities can give useful information in fitting the parameters of the SM and put
constraints on new physics [91, 92, 93]. It has been pointed out in [94] that the
study of simultaneous polarizations of both leptons in the final state provide, in
principle, measurement of many more observable which would be useful in further
improvement of the parameters of the SM probing new physics beyond the SM.
It should be noted here that both lepton polarizations in the B — K*r*7~ and
B — K/{1¢~ decays are studied in [95] and [96], respectively. As has already been
noted, one efficient way of establishing new physics effects is studying forward—
backward asymmetry in semileptonic B — K*/1T/~ decay, since, Arp vanishes
at specific values of the dilepton invariant mass, and more essential than that,
this zero position of Azp is known to be practically free of hadronic uncertainties

93],
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The aim of the present chapter is studying the polarized forward-backward
asymmetry in the exclusive B — K*{*/~ decay using a general form of the ef-
fective Hamiltonian, including all possible forms of interactions. Here we would
like to remind the reader that the influence of new Wilson coefficients on various
kinematical variables, such as branching ratios, lepton pair forward-backward
asymmetries and single lepton polarization asymmetries for the inclusive B —
Xs(a)0L~ decays (see first references in [92, 94, 97]) and exclusive B — K{t4~, K*0T0~, v4T(~
e, plte~ [82, 83, 87, 90, 98, 99] and pure leptonic B — £7 £~ decays [86, 100]
have been studied comprehensively.

Recently, exiting results have been announced by the BaBar and Belle Col-
laborations for experimental study of the B — K*{*¢~ decay. As far as the
results for the branching ratio of the B — K*{/*¢~ decay measured by these

Collaborations are gives as

/

(115735 +£0.8+0.2) x 10°7 [101],

BB — K170 =

\ (0.885:35) x 10°° [102] .

This chapter is organized as follows. In section 2, using a general form of the
effective Hamiltonian, we obtain the matrix element in terms of the form factors
of the B — K™ transition. In section 3 we derive the analytical results for the
polarized forward—backward asymmetry. Last section is devoted to the numerical

analysis, discussion and conclusions.
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4.2 Matrix element for the B — K*¢*¢~ decay

In this section we present the matrix element for the B — K*{T¢~ decay
using a general form of the effective Hamiltonian. The B — K*{*/~ process
is governed by b — s/~ transition at quark level. The effective Hamiltonian
for the b — s¢*¢~ can be written in terms of the twelve model independent

four—Fermi interactions in the following form:

Gra . ¢ - g _
Hepr = Var Vtthb{CSL sw,w? Lbiy*"l + Cgp sw,w? Rb "¢
+ CEOE §L’YubL ZL’YMKL + Czolg §L’7ubL ZR")/“ER + CRL gR’YubR ZL’)/HKL
+ Crr 5rVubr LrY"lr + Crrrr 5.bR Crlr + Crirr SrbL UrlR

+ CLRrRL SLbr ZREL + CrrrL SrbL ZREL + Cr EO'M,,Z)EO'NVE

+ iCrg P 50,,b Zaaﬂﬁ} , (4.1)
as we see chapter 3, L and R in are defined as

I—7s
L= R
2 2

and C'x are the coefficients of the four—Fermi interactions. Here, few words about
the above Hamiltonian are in order. In principle, Os, being a member of the stan-
dard model operators, as well as operators of the type Szbrq1,qr, where q repre-
sents a quark field, give contributions to the b — s£*/~ transition at one-loop
level. The Hamiltonian given in Eq. (4.1) should be understood as an effective

version of the most general one, where the above-mentioned contributions are
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absorbed into effective Wilson coefficients which depend on ¢? in general. The
first two coefficients in Eq. (4.1), Cs;, and Cpgg, are the nonlocal Fermi inter-
actions, which correspond to —2m,CS'/ and —2m,CS'7 in the SM, respectively.
The following four terms with coefficients Crr, Crr, Crr and Crg are the vector
type interactions. Two of these interactions containing C%%} and C1% do already
exist in the SM in the form (CE// — Cy) and (CE/Y + Cyp). Hence, the explicit
form of C¥9 and C% are represented Eq. (3.2) allows us to conclude that C1%
and C!, describe the sum of the contributions from SM and the new physics.
The terms with coefficients Crrrr, Crrrr, Crrrr, and Cgr gy, describe the scalar

type interactions. The remaining last two terms lead by the coefficients C'r and

Crg, obviously, describe the tensor type interactions.

The exclusive B — K*¢*{~ decay is described in terms of the matrix elements
of the quark operators in Eq. (4.1) over meson states, which can be parameterized

in terms of the form factors. Obviously, the following matrix elements

(K" |57,(1 £75)b| B) ,
(K* |5i0,,q" (1 + 75)b| B)
(K*|5(1 % 5)b| By

(K" [s0,,b| B)

are needed for the calculation of the B — K*{*/~ decay. These matrix elements
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are defined as follows:

(K" (P~ €) [37u(1 £ 5)b| B(ps)) =

*V o 2V C]2 . %
—€uvro€ p;‘(*q ﬁ + zeu(mB + mK*)Al(q2) (42)

. « A 2 . 2mpe %
Filps +pr)ulee) 2+(QWBK* F igy qQK (eq) [As(¢®) — Ao(a”)] .

(K" (pk+, ) [510u,q" (1 £ v5)b| B(pB)) =

A€o €™ Pi-q"T1 (¢%) + 2i [EZ(mQB —m%.) — (pp + pK*)H(e*q)] To(q?) (4.3)
q2
+2i(e"q) [qu — (ps + pm)uW] T3(¢°) ,

B — Mk~

(K*(p-,€) [50,ub] B(pp)) =

. * o 2 * a
{ — )N o+ i)+ 5y — ) [T36?) - T )]

1
¢

2

[T1 (¢%) — Ta(¢®) — zqiTs)(qQ)] (6*(1);0?(@"} - (4.4)

m% — m.

where ¢ = pp — pg+ is the momentum transfer and ¢ is the polarization vector
of K* meson. In order to ensure finiteness of (4.2) at ¢° = 0, we assume that
A3(¢* = 0) = Ap(¢® = 0) and T1(¢> = 0) = To(g*> = 0). The matrix element
(K*|5(1 & v5)b| B) can be calculated from Eq. (4.2) by contracting both sides
of Eq. (4.2) with ¢* and using equation of motion. Neglecting the mass of the

strange quark we get

(K*(prc-+€) 501 % 18)0] B(p)) = — | F 2imi- ("a) Aola?)] (4.5)

my
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In deriving Eq. (4.5) we have used the relationship
2mic A3(q°) = (mp +mic) Ai(¢°) — (mp — mi-) A2(¢%)

which follows from the equations of motion.
Using the definition of the form factors, as given above, the amplitude of the

B — K*¢*{~ decay can be written as

Ga
M(B = K07y = —V,V*
( ) 4\/§7T tb Vs
g {W(l — )¢ [ = 241608 Pk — iB1g}, + iBa(€"q) (P + i) + iB3(" ) g,
0y (1 4 5)4 [ — 201 €ro €™ D@ — iDig;, +iDs(e"q) (pB + PK+)u + iDg(s*q)qu]
+E(1 = 75)[iBa(e"q)] + £(1 + 75)¢[iBs(e"q)]

+4EU“V€(iOT€“V)\U) [ — 2T15*)‘(p3 +pr+)’ + Bge* g7 — B7(5*q)pK*)‘q"]

+16CTEZUWE[ —2Te™(pg + pr+)” + Bee™q” — B7(6*q)pK*“q”} , (4.6)
where
V T

A = (CF¥ +Cr)— = 2(C Cst)— ,

1 (Crr + RL)mBJFmK* (Cpr+ SL)q2

T.
Bl = (CzoLt — C’RL)(mB —+ mK*)Al — 2(CBR — CSL)(m% — m%*)q—j y
Ctot — Cry 1 ¢

By, = L ™A, _2(Cgr—Cst)— | Ty + ——————T.

2 me +mge 2 (Csr SL)q2 2+mQB_m%(* 3|

Az — Ay

q2

T3

¢’

By = Q(CE]E — CRL)mK* + Q(CBR - CSL)
01 = Al(Cz",-f — Ciolt% . CRL — CRR) s

D1 = BI(CEOIE — Czo}tz s CRL — CRR) .
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Dg = BQ(CE? — Czoé s CRL — CRR) s

D3 = B3(C£0£ — Czo}_% s CRL — CRR) .
TN e *
B, = —2(CrLrrt — CrLrL) K Ag ,
mpy
TN g *
Bs = —2(Crrir — CrLLR) KA,
mp
T, — T
Bs = 2(mp—mj.) 1q2 2,
4 q2
B7 = ? (Tl —_— T2 —_— 4/]’”}23 — m%(* T3> . (47)

From this expression of the decay amplitude, for the differential decay width

we get the following result:

with

A

dl e G?a’m i . .
5(3 — K'707) = QTTE,B |V?:ths|2 )‘1/2(1’TK*7 $)vA(S) , (4.8)

2
= -m3 Re| — 6mpnis\(B: — Di)(B; — B)

3?1{*8

— 12m%m2s\{ BB + (Bs — Dy — D3) B — (By + By — D) D} }
+ 6miings(1 — P )A(By — Do) (B} — Bj)

+ 12mym2é(1 — ig-)A(By — Dy)(Bj — D)

+ 6mm\s*(By — Bs)(B; — D)

+ 4837k 3{3B1 D} + 2mpAAC }

+ 48m%mys\2(By + Do) BiCipy

— 16m x50 — HA] |2 + )

— mp3(2m; — $)A |Ba* + |Bs[* }
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— 48miygd(1 — i — )M (By + D) BiCiys + 2(By + Do) B Cip}
— 6mymZsA{2(2 + 2. — 8)B,Dj — 3 |(Bs — Ds)|” }

+ 96mpmgd(\ + 1275+8)(By + D1)BiCips

+ 8m%82{v? |Cr[” + 4(3 — 20%) |Crl* H{4(A + 127x-5) | Bo|”

— AmEA(L — Fx- — 8)Bs B} + mp X |Bo|* }

— AmAN{ (2 — 2k +8) + 8(1 — ixc- — 8) } (BLB; + Dy D)

+ 8{67k-3(3 + %) + A3 — )} |Bif* + D1 }

— 2m A2\ - 3(1 — x)?] = ASH{ |Bof + Dy )

+ 128mp {47 (207 - A — 1275+ (1 — g ) — A3]

+ 8[AF g A + 127« (1 — Fpex ) + )\g]} Cr|* | T3/

+ 512mp{3[47 - A + 1275 (1 — g ) + A3]

+ 8127 k- (1 — 75 ) + A(S — 87xc-)]} [Crl” | T

— 64m38*{v” |Cr[* + 4(3 — 20%) |Crp|* H{2AN + 1274+ (1 — Fc-)| Bs Ty
— mEA(1+ Bike — 3) BT} }

+ 768mE et - SA(Ay + C)CET

— 192mpmed|\ + 1275« (1 — 7e)](By + D1)Chp T

+ 192mrisA(L + 3ix — $)A(By + Do) CrpTY] (4.9)

where § = ¢*/m%, Fi- = m%./m% and \(a, b, ¢) = a® + b*> + ¢* — 2ab — 2ac — 2bc,

e = my/mp, v =4/1 — 4137/ is the final lepton velocity.
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The definition of the polarized F'B asymmetries will be presented in the next

section.

4.3 Polarized forward-backward asymmetries of leptons

In this section we calculate the polarized F'B asymmetries. For this pur-
pose, we define the following orthogonal unit vectors sgt“ in the rest frame of ¢+,
where ¢+ = L, N or T correspond to longitudinal, normal, transversal polarization

directions, respectively (see also [82, 89, 91, 95]),

sih=(0,6) = (0, %) ,

si' = (0,85) = (0, é i%\) :

st = (0,&7) = (0,ey x &) ,

st = (0,5;) = (0,%) ,

= 0) = (07

syt = (0,&f) = (0,&% x &) , (4.10)

where p7 and px are the three-momenta of the leptons /T and K* meson in
the center of mass frame (CM) of £~ £ system, respectively. Transformation of
unit vectors from the rest frame of the leptons to CM frame of leptons can be

accomplished by the Lorentz boost. Boosting of the longitudinal unit vectors sj-f“
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yields

Pzl Ep-
(SEEN)CM - ( » ’ -Z'F ’ (4.11)
me " me [Py
where p, = —p_, E; and m, are the energy and mass of leptons in the CM

. .. . + +
frame, respectively. The remaining two unit vectors sy, s7" are unchanged

under Lorentz boost.
The definition of the unpolarized and normalized differential forward-backward

asymmetry is (see for example [103])

1 42T /0 42T
App =7 {idr 5 Cgf;d; , (4.12)
o dada™ +/_1 dadz "

where z = cosf is the angle between B meson and ¢~ in the center mass frame
of leptons. When the spins of both leptons are taken into account, the App will

be a function of the spins of the final leptons and it is defined as

) (e ]

46) = (
{ldQF(g,s*— =i5,5t=j) &PT(,5 =05 =)

dsdz dsdz
d°’T(3,§- = —i,§t =7) dT'(5,5 =—i,57 =—))
dsdz dsdz ’
= Arp(5~ :Z§+ 25‘) —App(5™ = ?,§'+ = —j) —App(5~ = —;,§+ =9
+ App(3~ = -1, =—)) . (4.13)

Using these definitions for the double polarized F'B asymmetries, we get the

following results:
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LL = ijAm%\/XU Re[ — m%me/\{ll(Bl — Dy)B;C — (By + Bs)(B; + DS)}
+ dmiyigM (1 — #x-) (By — Dy)BiCj + §(Bs — D) BiCy )
— 1ig(1 = ire- — 8){ B{ (Bs + Bs — 8BCrr) + Di(Bs + Bs + 8BsCr) }
+ 8mpfi-§(A1 B} — C1D}) + 128migriig-3(A — C1)BiCig
+ 2m3M (Bs — Bs) BiCj + 2(By + Bs) BiCyp }
— 8mprg(1 — i) (1 — Pg= — 8)(By — Dy) BiCr
— 4mp(1 — ix- — 8)3{(Bs — Bs)B;Cy.+ 2(Ba + Bs) BiCi
+ 2mprig(Bs — D;;)BZ;C}} = 266mpritic- (1 = i) (A1 — CI)T} O
— 16my(1 — 5ig- — §)(By — DT Cih
+ 16m%my(1 — fr-) (1 + 37k — 8)(By — Do) T Co

+ 8mp(1+ 3¢k — 8)3{2(Ba + Bs)T{Cypp + (Ba — Bs)T{C

+ 2mprng(Bs — Ds)T; Cr}] (4.14)
8
LN — T AmQB\/EAU Im | — 1i1g(B1 D} + myABy D) + dmigingt - V3 A, CF
K*

- QmBE{Be(CT — QC’TE)Bik + BG(CT + QCTE)DI}
— my3M{ B:(Cr — 2C75) B} + By(Cr + 2C7r) D} |
— 16mnines (4 Bs|” + mpA [Br|” ) CrCip

+ mEiy(1 — 7 — 8)(BLD} + ByD})
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A

NL
FB

+ mi3(1 — - — 3){(BI By +2B;Bs) (Cr — 20rp)

+ (DiB7 +2D;3Bg)(Cr + QCTE)}

— 64m237?u§{ — miy(1 — Fx — §)Re[BsB;] + 4 |T1|* — 4Re[ B¢ T7]
+ 2m(1 + 37k — §)Re[ By T;]}COrCig

+ 16mific-3{ (A1 = CCLTY = 2(A + C1)CiTy )

+ 4mp${ B;(Cr — 2Crg)Ts + D}(Cr + 2Crp)T |

— 4m35(1 + 3ig- — §){B;(0T —2075)Ty + D3(Cr + QCTE)Tl}] : (4.15)

8
T 3Fpe8A

my Vs v Im| — 1y (B1D}] + mABy D3) + dmipingi s+ 54, C}
+ 2mp3{ Bs(Cr + 2Cr) Bf + Bs(Cr — 20r5) D5}

+ m5B§)\{B7(C’T +2Crg)B; + B:(Cr — QCTE)D;}

+ 16mimings (4| Bs|” + miA|Be|* ) CrCiy

+ mimy(1 — 7+ — 8)(BLD} + B,D})

— m}3(1 — i — $){(B{ B + 2B} Bs)(Cr + 2Crp)

+ (D} B + 2D;Bg)(Cr — 2Cr) }

+ 64minind{ — mp(1 — Fie — )Re[BeBj] + 4 |T1[* — 4Re[ BT

+ 2m%(1+ 37k — 8)Re[ By 171 }OrChp

+ 16mbx-8{ (A1 — CL)CHTY + 2(AL + C1)CiT7 }

— 4mpd{ B;(Cr + 2C18)T: + D;(Cr — 2Cr5)T: }
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+ 4mp5(1 + 3k — §){B§(CT + 2C7g)T + D3(Cr — 2CTE)T1}] , (4.16)

1, = i EARe[ e |By + Dif + A By + Dof
+ At -3{ | A1+ C1 [ )
— 64miyigs [Crpl” {4 |Bs|” + miA [ Br|” — 4m(1 — #x- — 8)BeB; |
+ 2m%my(1 — ig- — 8)(By + Dy) (B3 + Dj)
+ 2m(1 — fi- — 8){4m(2B3 Bs + B{By)(Cr + 2Crr)
— 8(2B3Bg + BfBy;)(Cr — QC’TE)}
— 4mp{4iZ| B Bs(Cr + 2Crs) — BeD;(Cr — 20rs)]
— 8[B; Bs(Cr — 2Cr5) — BsD; (Cr + 2Crs)] }
— 2my {4 [B; B:(Cr + 2Crp) — BiD3(Cr — 2Cry)|
— §[B;Bi(Cr — 2015) — BeD3(Cr + 2Crs)| )
— 2miy(1 — ixe- — §){4Mm}(2Bs D; + B;D})(Cr — 2Cr)
— 3(2B¢ D3 + B; DY) (Cr + QCTE)}
+ 256m23ﬁu{2§ |CTE|2 [QBGTf —mp(1 4 3k — §)B7T1*]

+ 4|11 [k

Crl* + (475 — 3) [Cral” |}
+ 32miy e {4} [(A1 + C1)CHTT + 2(A1 — C1)CypTT]
+ §[A1(Cr — 2Crp) Ty + C; (Cr + 2Crp)Ti| }

+ 8mp{4m}(Cr + 2Cr) — $(Cr — 2Cr) {{ Bf — my(1+ 3k — §) B} } Ty
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— 8mp{4mj(Cr — 2Crr) — 8(Cr + 2Cr) {{ D} — mp(1 + 3ik- — $) D5 }Th] |

(4.17)

T = VA Re i B + Dif* + b By + Dol
- 4m§3mﬁk*{ A+ Cy }
+ 64miings [Crpl” {4 |Bs|” + miA | Br|” — 4m3(1 — #x- — 8)BeB; |
— 2miriy(1 — Fi» — 8)(B1 + D1)(B; + D)
+ 2m(1 — f- — 8){4m (2B; Bs + B} By)(Cr — 2Crg)
— §(2B;Bs + B{B)(Cr + 20r5) )
— 4m3{4fn§ [Bst(CT —2Crg) — BeDi(Cr + 2CTE)]
— §[B}Bs(Cr + 2Cri) — BsD;(Cr — 2C1s)| }
— 2mA {4} | B} B:(Cr — 2Crg) — B:D}(Cr + 2Crp))|
— §[B3Bi(Cr + 2Crs) — B:D3(Cr — 2C1s)| }
— 2m}(1 — ix- — 8){43(2Bs D; + B:D})(Cr + 2Cr)
— §(2BsD; + B:D;)(Cr — 2Crs) )
- 256m23ﬁu{2§ |CTE|2 [QBGTf —mp(1 4 3k — §)B7T1*]

+ 4|11 [k

Crl* + (45 — 3) [Cral” |}
— 32mi e { g (A1 + C)CHTT — 2(Ay — C1)CrpT] ]
+ §[A1(Cr + 2CrE)Ty + C5(Cr — 2Crp)Ti| }

— 8mp{4m;(Cr + 2Cr) — §(Cr — 2Crg) {{Df — mp(1 + 3¢k~ — $) D3 }Th

71



NT
FB

.ATN

FB

+ 8mp{4m}(Cr — 2Crg) — 8(Cr + 2Crp) {{ B — mb(1 + 3¢k~ — §)B;} , T]
(4.18)

- %%m%\/x Im | miyngSA{ (Bs — Bs)(B; + Dj) + 8B;Cr(B; — D})

+ 8m33B;Crp(Bs — Dy) }

— 2mipmgS\(Bs + Dy)(B; — Dj)

+ dmiring(1 — Fic- )M 2m 3B Cp o (By — Dy) + B Dj )

+ 2mAm25(1 4 37k« — 5)(B.B; — D, D3)

+ 1g(1 — ix- — 8){mps| — Bj(Bs — Bs + 16BsCrr)

— Dj(Bs — Bs — 16BsCrg) + 2mpri (B + D1)(B; — D;)|

+ 4[1i B, D} + 4m}8*BeCr(B; — D3)| }

— 16mpmed(1 — 7x=)(1 — g — 8) (B2 — D3) BiCrpg

+ 2mEmiA + (1 — 7x)(1 — 7g= — 8)](B; Dy + B3 D))

+ 32mme8(1 — i) (1 + 37 — 8)(Ba — Do) Cip Ty

— 8mps(1+ 3ix- — §){4mmy(By — D1)Ci Ty — 2mp3(By — Bs)CpTy

— 4m%ines(Bs — Ds)CrpTy + mpdv®(By + B5)C;T1*}

— 4m}5*(1 — ix- — 8){2(Bas — Bs)B;Cp — v*(Ba + B5) B;C; }

+ 2mp° M 2(By — Bs)B;Cyp — v*(Ba + Bs)BiCr}| | (4.19)

2

- fK*gAmQB‘AIm [mnesA{(Bs — Bs)(B; + Dj) + 8B:Cris(B; — Dj)
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+ 8m%4B;Ciyp(Bs — Ds) )

— 2mym;3\(By + D) (Bs — D})

+ dmpme(1 — 7A'K*))\{2mB§B;C;E(B2 — Do) + me?D;}

+ 2mpg3(1 + 3ik- — §)Im(B, B; — D1 Dj)

+ 1g(1 — Fx- — 8){mps|B;(B) — Bs + 16BsCrg)

+ Dj(Bs — Bs — 16BsCri) — 2mpring(By + D1)(B; — Dj)]

+ 4[1ieBy D} + 4my3° BoCr(B; — D;)] }

— 16mime8(1 — Px-) (1 — Fx- — 8)(Ba — Dy) BiCrpy

+ 2mBmg A+ (1 — 7x)(1 — Fg+ — 8)](Bf D2 + B3 D)

+ 32m%mes(1 — P ) (1 + 3F g+ — 8)(By — Do) Cirp Tt

— 8mps(1 + 3ix- — §){41mu(By — D1)CypTT — 2mp3(By — Bs)CppTy
— 4mlyigd(By — D)Ci Ty + mydv®(By + Bs)CiT7 )

— 4m% 8 (1 — - — 8){2(Bs — Bs) B; Gy — v*(Bs + Bs) B; C; }

+ 2mps?A{2(By — Bs) BiCy — v*(By + Bs)BiCr )| | (4.20)

2 ~ * /Y% * *
NN — Am%\/Xv Re[ — mymeA{4(B1 — D) BiCy + (By + Do) (B] + By)}
+ 4mpmeM{(1 = i) (Ba — Do) B;Cy + 5(Bs — D) B;C}
+ 2m%3M{(By — Bs)B;Cy — 2(By + Bs) B;Cy }

+ mg(1 = Fx- — 8){B;(Bs + Bs + 8BsCr)
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+ Di(Bs+ Bs —8BsCr) |

— 8mEme(1 — g ) (1 — #g» — 5)(By — Dy) BiCi

— 4dmp§(1 — Fgs — §){(B4 — Bs)B;Cr — 2(By + Bs)Bg O
+ 2mprng(Bs — Ds)B;Cy }

+ 16m5me(1 — 7xe) (1 + 3 g — 8)(By — Do) Cy T

+ 8mpd(1 + 3ixc- — $){(Bs — B5)CyTy — 2(By + Bs)CyT7 }
— 167(1 + 3+ — §)(By — Dy)CATy

+ 16mprins(1+ 3k — 8)(Bs — D3)Cy 17| (4.21)

AT = TKQ Amf’;g\/Xv Re[mymoM{4(By — D1)B;Cy + (By + Do) (B} + B;) }
— dmprng(1 — 7g-)A(By — Dy)BiC
— 2m33\{(By — Bs)BiC; — 2(By + Bs) B;Ci
+ 2mprg(Bs — D3)BiCy }
— 2(1 — ige- — 8){rhg[ B} (Ba + B + 8BsCr)
+ D}(Bi + Bs — 8BsCr)| — 4mps|(Bs — Bs) B;C; — 2(Bs + Bs) BiCig
+ 2muprng(Bs — Ds)BiCy] }
+ 8mEmy(1 — 7g-) (1 — #ge — 8)(By — Do) BCi
— 16mEme(1 — 7x+) (1 + 3Pk — §)(By — Do) O3 Ty

— 8mps(1 + 3k — 8){(Bs — Bs)C7 T} — 2(By + Bs)CiT; |
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+ 161y(1 + 3fxc- — 8){(B1 — D1)C3T — my3(Bs — D3)Cy Ty }] (4.22)

In these expressions for A?B, the first index in the superscript describes the
polarization of lepton and the second index describes that of anti—lepton.

It should be noted here that, the double—polarized F'B asymmetry for the
B — K777~ and b — s7t7~ decays are calculated in the supersymmetric model

in [104].

4.4 Numerical analysis

In this section we analyze the effects of the Wilson coefficients on the polarized
F'B asymmetry. The input parameters we use in our numerical calculations are:
|VisVie| = 0.0385, mg- = 0.892 GeV, m, = 1.77 GeV, m, = 0.106 GeV, m, =
4.8 GeV, mp = 5.26 GeV and I'g = 4.22 x 10 ** GeV. For the values of the
Wilson coefficients we use C5M = —0.313, C5™ = 4.344 and C{M = —4.669.
It should be noted that the above-presented value for C§ corresponds only to
short distance contributions. In addition to the short distance contributions, it
receives long distance contributions which result from the conversion of cc to the
lepton pair. In this work we neglect long distance contributions. The reason for
such a choice is dictated by the fact that, in the SM the zero position of Agg
for the B — K*¢*{~ decay is practically independent of the form factors and
is determined in terms of short distance Wilson coefficients C5™ and CM (see

[88, 93]) and sy = 3.9 GeV?. For the form factors we have used the light cone
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QCD sum rules results [105, 106]. As a result of the analysis carried out in this
scheme, the ¢ dependence of the form factors can be represented in terms of

three parameters as

F() = —

- ~ A2
1—ap§+ bpé®

where the values of parameters F'(0), ar and bp for the B — K* decay are listed

in Table 4.1.

Table 4.1: B meson decay form factors in a three-parameter fit, where the radia-
tive corrections to the leading twist contribution and SU(3) breaking effects are
taken into account.

F(0) arp br

AB-K” 0.34+0.05 0.60 —0.023
AB-K 028+0.04 1.18  0.281
V Bk 0.46 +£0.07 155  0.575
TE~K 0.1940.03 1.59  0.615
TE-K 0.1940.03 0.49 —0.241
TE-K 0.13+£0.02 1.20  0.098

The new Wilson coefficients vary in the range —|Cyo| < |Ci| < |Cro|. The
experimental value of the branching ratio of the B — K*¢*{~ decay [101, 102]
and the bound on the branching ratio of the B — p*p~ [8] suggest that this is
the right order of magnitude for the vector and scalar interaction coefficients. It
should be noted here that the experimental results lead to stronger restrictions

on some of the Wilson coefficients, namely —1.5 < Cr < 1.5, —3.3 < Crg < 2.6,

76



LL .
App(B — K pt)

0.0 5.0 10.0 15.0 20.0

q2

Figure 4.1: The dependence of the double-lepton polarization asymmetry A%LL
on ¢? at four fixed values of Cpp, for the B — K*u™u~ decay.

—2 < CLr, Crr < 2.3, while the remaining coefficients vary in the range —4 <

Cx < 4.

In Fig. 4.1(4.2) we present the dependence of the ALL on ¢ for the B —
K*ptp~ at four fixed values of Cprr(Crgr) @ —4,—2,2,4. From these figures we
see that nonzero values of the new Wilson coefficients shift the zero position of

LL corresponding to the SM result. When Cy;, gets negative (positive) values,
the zero position of ALY shifts to the left (right) in comparison to that of the

zero position in the SM.

Our analysis shows that the zero position of ALL for the B — K*u*p~ decay
is practically independent of the existence of other Wilson coefficients. For this
reason we do not present the dependence of ALL on ¢? at fixed values of the

remaining Wilson coefficients.
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Figure 4.3: The dependence of the double-lepton polarization asymmetry AZL
on ¢? at four fixed values of Cr, for the B — K*u*p~ decay.
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Figure 4.5: The same as in Fig. (4.3), but at four fixed values of Crg.
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Figure 4.6: The same as in Fig. (4.4), but at four fixed values of Crpg.

Figs. 4.3(4.5) and 3.4(3.6) depict the dependence of ALL and ALL on ¢?
at four fixed values of C7(Crg). We observe from these figures that the zero
positions of ALL and ALL are very sensitive to the existence of tensor interactions.
More essential than is that in the SM case ALL and ALY do not have zero
values. Therefore, if zero values for the polarized A%L and ALL asymmetries are
measured in the experiments in future, these results are unambiguous indication
of the existence of new physics beyond the SM, more specifically, the existence

of tensor interactions.

In the case of B — K*77~ decay, the zero position for the double polarization
asymmetries A’g g is absent for most of the new Wilson coefficients, and hence,
it could be concluded to be insensitive to the new physics beyond the SM, or

the value of A%, is quite small, whose measurement in the experiments could
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practically be impossible. For this reason we do not present the dependencies of
A%, on ¢? at fixed values of Cy for the B — K*r 7~ decay.

As is obvious from the explicit expressions of the forward—backward asymme-
tries, they depend both on ¢? and the new Wilson coefficients C'x. As a result
of this, it might be difficult to study the dependence of the polarized forward—
backward asymmetries A}Z p on these parameters. However, we can eliminate the
dependence of the polarized A% 5 on ¢? by performing integration over ¢? in the
kinematically allowed region, so that the polarized forward-backward asymmetry
is said to be averaged. The averaged polarized forward-backward asymmetry is

defined as

(mB—mK*)Z .. dB
1y g 2
A ) AFBdQqu

< ZI?‘B> - /[(m];»—mK*)2 @d 9
4

m% dq 2

In Fig. (4.7), we present the dependence of <A{a§3> on Cx for the B —
K*utp~ decay. The common intersection point of all curves corresponds to
the SM case. We observe from this figure that, <.A1L;%> has symmetric behavior
on its dependence on Cr and Cr g with respect to zero position, and remains
smaller compared to the SM result. The only case for which < §%> > < §%>5M
occurs for the positive values of the vector interaction coefficients. Therefore, if
we measure in the experiments < JLQLB> > < 1L$LB>5M’ it is a direct indication of

new physics beyond the SM, and this departure is to be attributed solely to the
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Figure 4.7: The dependence of the averaged forward-backward double-lepton
polarization asymmetry <.AIL;%> on the new Wilson coefficients C'x, for the B —

K*putu~ decay.

2.0 4.0

<A%‘%>(B — K*r777)

Figure 4.8: The

same as in Fig. (4.7), but for the B — K*777~ decay.
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Figure 4.9: The same as in Fig. (4.8), but for the averaged forward—backward
double-lepton polarization asymmetry <.A,L£3>

existence of vector type interactions.

The situation is even more informative for the B — K*7t7~ case. In Figs.

(4.9) and (4.10), we present the dependencies of < §%> and < f,«%> on the new

Wilson coefficients C'x. From Fig. (4.9) we observe that, with respect to the

zero value of the Wilson coefficients, <.A{a%> increases if Cgr, Crrrr and Cgrgr

increase, while it decreases when Crrrr increases.

From Fig. (4.9) we see that the dependence of < IL,%> on the tensor interaction

is stronger. When Cr, Crg and Cp g are negative (positive) and vary from —4 to

zero (from zero to 4) <Af£> decrease (increase). Additionally, we observe that

with increasing values of Cry and Cgg, <A1L;7é> increases. This figure further

depicts that <AIL;§>, for practical purposes, is not sensitive to the existence of

scalar interactions. On the other hand, <A%g > and <A£§> are very sensitive to
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Figure 4.10: The same as in Fig. (4.8), but for the averaged forward—backward
double-lepton polarization asymmetry < £1L9>

the presence of tensor and scalar interactions (see Figs. (4.10) and (4.11)).

It is clear from these results that several of the polarized forward—backward
asymmetries show sizable departure from the SM results and they are sensitive to
the existence of different type of interactions. therefore, study of these observable

can be very useful in looking for new physics beyond the SM.

Obviously, if new physics beyond the SM exists, there hoped to be effects
on the branching ratio besides the polarized App. Keeping in mind that the
measurement of the branching ratio is easier, one could find it more convenient
to study it for establishing new physics. But the intriguing question is, whether
there could appear situations in which the value of the branching ratio coincides

with that of the SM result, while polarized Arp does not. In order to answer
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Figure 4.11: The same as in Fig. (4.8), but for the averaged forward—backward
double-lepton polarization asymmetry <.A]1}’ N >

this question we study the correlation between the averaged, polarized (Arg)
and branching ratio. In further analysis we vary the branching ratio of B —
K*utp~ (K*7%77) between the values (1 —3) x 107¢ [(1 — 3) x 1077], which is
very close to the SM calculations. Note that, we do not take into account the
experimental results on branching ratio since they contain large errors, and it
would be better to wait for more improved experimental results.

Our conclusion for the B — K*utu~ decay, in regard to the above-mentioned
correlated relation, is as follows (remember that, the intersection of all curves

corresponds to the SM value):

o for <A%~%>, such a region is absent for all Cx,

o for (ALL) such a region does exist for Cr and Crg (see Fig. (4.13)).
FB
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Figure 4.12: The same as in Fig. (4.8), but for the averaged forward-backward
double-lepton polarization asymmetry <Ag 5 >

T T e I A  mes
- ‘7‘e<<7<7€’_______6, »»»»» [Shal=
L e J
-7
i _.e- J
- ///O'/ i
005} e .
+ L e
\1 I
*1 i
N e gmdglRREST e ey @i
1 0.00 - e=%= oK e R A A O Bt
ad L —10<Cp <10 —=— 6
g L 05 < Crp <05 --o-- K
iqCQ r —4.0§CLL§4.0”%” S
N -005F —4.0<Cpgp <4.0 @ -
< 40 < Cpy <40 —e- - ]
~ 3 —4.0<Crr <4.0--a-- \\&\ e
F —4.0 < Crrpr < 4.0 —— \\G\\\ -
F —4.0 < Crrrr <4.0 -~——-- &\\\S\‘\\ 7
-0.10 - —4.0 < Cgrpr, < 4.0 ------ ‘\\\G\\‘—s— —
I —40 S CRLLR S 40 ********** O-—--o
]
20.0 24.0 28.0 32.0 36.0

10°xB(B — K*up*)
Figure 4.13: Parametric plot of the correlation between the averaged forward-
backward double-lepton polarization asymmetry < fm%> and the branching ratio
for the B — K*u*u~ decay.
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Figure 4.14: Parametric plot of the correlation between the averaged forward-

backward double-lepton polarization asymmetry <A1Lm%> and the branching ratio
for the B — K*rt7~ decay.
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Figure 4.15: The same as in Fig. (4.14), but for the the correlation between the

averaged forward-backward double-lepton polarization asymmetry < IL%> and
the branching ratio.
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Figure 4.16: The same as in Fig. (4.15), but for the the correlation between the

averaged forward-backward double-lepton polarization asymmetry < g£> and
the branching ratio.

The situation is much more attractive for the B — K*7t7~ decay. In Figs.
(4.14)—(4.18), we depict the dependence of the averaged, forward—backward po-
larized asymmetries <A§%>; <A1LWT5.> - <A§%>; <A¥£> R~ <A1ng>; <A%V> and
< ITﬂl;>, on branching ratio. It follows from these figures that, indeed, there exist
certain regions of the new Wilson coefficients for which, mere study of the po-

larized App can give promising information about new physics beyond the SM.

In summary, in this chapter we present the analysis for the forward-backward
asymmetries when both leptons are polarized, using a general, model independent
form of the effective Hamiltonian. We obtained that the study of the zero position

of <.A1Lp%> can give unambiguous conformation of the new physics beyond the SM,
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Figure 4.17: The same as in Fig. (4.16), but for the the correlation between the

averaged forward-backward double-lepton polarization asymmetry <.A]1¥g > and
the branching ratio.

since when new physics effects are taken into account, the results are shifted with
respect to their zero positions in the SM. Moreover, we find that the polarized
Arp is quite sensitive to the existence of the tensor and vector interactions.
Finally we obtain that there exist certain regions of the new Wilson coefficients for
which, only study of the polarized forward-backward asymmetry gives invaluable

information in establishing new physics beyond the SM.

e I'B: forward—-backward.

L: Longitudinal.

e N: Normal.

e T: Transversal.
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Figure 4.18: The same as in Fig. (4.17), but for the the correlation between the

averaged forward-backward double-lepton polarization asymmetry <.A}T771;> and
the branching ratio.
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CHAPTER 5

CONCLUSION

In this thesis we study the CP-violating asymmetries in b — d¢*¢~ decay, without
and with one of the final leptons is polarized, using the most general form of
effective Hamiltonian. We have obtained that, CP-asymmetries for unpolarized
case (Acp) and when one of the final lepton is polarized (§ Acp) are very sensitive

to various new Wilson coefficients:

e For the b — du*p~ case, far from resonance regions, Acp exhibit strong
dependence only on vector type interactions with Wilson coefficients Cpp,
and CLgr. Acp is zero for tensor type interactions and it shows quite weak
dependence on all remaining Wilson coefficients and the value of Acp very

close to SM prediction.
e For the b — dr™7~ case, in the region between second and third ¢ reso-
nances, Acp is sensitive to Crgr, Crrrr, CrrrL, Cr, and Crg.

When Cpg and Crgyr are positive (negative), they contribute destructively
(constructively) to the SM result. The situation is contrary to this behavior

for the CLgrgr scalar coupling. In the tensor interaction case, in the second
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and third resonance region, the magnitude of Acp is smaller compared to
that of the SM result. But, it is quite important to observe that Acp
asymmetry changes its sign, compared to its behavior in the SM, when
Cr (Crg) is negative (positive). Therefore, determination of the sign and

magnitude of Agp can give promising information about new physics.

The results concerning 6 Acp for the b — du™ i~ decay can be summarized as

follows:

e In the region 1 GeV?/m? < § < 8 GeV?/mj}, which is free of resonance con-
tribution, CP asymmetry due to the longitudinal polarization of x4 lepton is
dependent strongly on Cr, and is practically independent of all remaining
vector interaction coefficients. When Cy;, is negative (positive), Acp is

larger (smaller) compared to that of the SM result.

e JA%L, depends strongly on all scalar type interactions. The terms propor-

tional to tensor interaction terms contribute destructively to the SM result.
For the b — d77~ case, our main results are:

e 0A%L, depends strongly on the tensor type interactions .
e Similar to the yu lepton case, §A& is quite sensitive to the existence of all
scalar type interaction coefficients. Note that in the SM case the sign of

dALp can be positive or negative. Therefore in the region § > 0.6, deter-

mination of the sign of A%p can give unambiguous information about the
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existence of new physics beyond the SM. For the remaining two scalar inter-
action coefficients Crrrr (Crrrr), the sign of dA%L, is negative (positive).
Again, as in the previous case, determination of the sign and magnitude of
S AL, can give quite valuable hints for establishing new physics beyond the

SM.

Since transversal and normal polarizations are proportional to the lepton mass,
for the light lepton case, obviously, departure from the SM results is not substan-
tial for all Wilson coefficients. On the other hand, for the b — df~¢* transition,
dALp (i = T or N) is strongly dependent on Crg and scalar type interactions.

Note that, the dependence of AL, on Cr and Crg is quite weak.

Finally, we have found the existence of regions where Acp coincides with the
SM prediction, while d Acp does not. This indicates that the new physics effects

can only be established in § Acp measurements for those regions.

Using the same formalism we present the analysis for the forward—-backward
asymmetries for B — K*/T¢~ when both leptons are polarized. We have found
that several polarized forward—backward asymmetries show sizable departure
from the SM results and they are sensitive to the existence of different type
of interactions. Therefore, study of these observable can be very useful in looking

for new physics beyond the SM.
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The results for B — K*u™ = decay can be summarized as following:

e Nonzero values of Cr, (Cpr) shift the zero position of ALL (¢?) correspond-
ing to the SM result. Our analysis shows that the zero position of A%k (¢?)
for the B — K*u*u~ decay is practically independent of the existence of

other Wilson coefficients.

e The zero positions of AL (¢?) and ATE(g?) are very sensitive to the ex-
istence of tensor interactions. More essential than is that in the SM case
LT (¢?) and ALL(¢?) do not have zero values. Therefore, if zero values

for the polarized AEL(¢?) and ALL(¢?) asymmetries are measured in the
experiments in future, these results are unambiguous indication of the ex-
istence of new physics beyond the SM, more specifically, the existence of

tensor interactions.

In the case of B — K*7t7~ decay, the zero position for the double polariza-
tion asymmetries A%5(¢?) is absent for most of the new Wilson coefficients, and
hence, it could be concluded to be insensitive to the new physics beyond the SM,
or the value of A? 5(¢%) is quite small, whose measurement in the experiments

could practically be impossible.

We also analyzed the problem where new physics can be established only by

measurement, of the polarization asymmetries, when branching ratio coincide with
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SM result. For the B — K*utu~ decay, we obtained that such region is exist

only for { AZL) when tensor interactions are exist.
y FB

As for the B — K*7t7~ decay, we obtained that there exist certain regions
of the new Wilson coefficients for which, branching ratio coincide with SM pre-
dictions while polarized asymmetries exhibit strong departure from SM results.
Therefor experimental study of the Agrp can give promising information about

new physics beyond the SM.
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