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ABSTRACT

A NEW HYBRID MULTI-RELATIONAL DATA MINING TECHNIQUE

Toprak, Seda Dağlar

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İ. Hakkı Toroslu

May 2005, 72 pages

Multi-relational learning has become popular due to the limitations of proposi-

tional problem definition in structured domains and the tendency of storing data

in relational databases. As patterns involve multiple relations, the search space

of possible hypotheses becomes intractably complex. Many relational knowl-

edge discovery systems have been developed employing various search strategies,

search heuristics and pattern language limitations in order to cope with the com-

plexity of hypothesis space. In this work, we propose a relational concept learn-

ing technique, which adopts concept descriptions as associations between the

concept and the preconditions to this concept and employs a relational upgrade

of association rule mining search heuristic, APRIORI rule, to effectively prune

the search space. The proposed system is a hybrid predictive inductive logic

system, which utilizes inverse resolution for generalization of concept instances

in the presence of background knowledge and refines these general patterns into

frequent and strong concept definitions with a modified APRIORI-based spe-

cialization operator. Two versions of the system are tested for three real-world
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learning problems: learning a linearly recursive relation, predicting carcinogenic-

ity of molecules within Predictive Toxicology Evaluation(PTE) challenge and

mesh design. Results of the experiments show that the proposed hybrid method

is competitive with state-of-the-art systems.

Keywords: Multi-Relational Learning, ILP, Predictive Inductive Learning, De-

scriptive Inductive Learning, Inverse Resolution, Association Rule Mining, APRI-

ORI, WARMR
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ÖZ

YENİ BİR MELEZ ÇOK İLİŞKİLİ VERİ MADENCİLİĞİ TEKNİĞİ

Toprak, Seda Dağlar

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İ. Hakki Toroslu

Mayıs 2005, 72 sayfa

Verileri ilişkisel veritabanlarında saklama eğilimi ve problem tanımlamalarını tek

bir bağıntı ile yapmanın getirdiği sınırlamalar, çok ilişkili öğrenmeyi popüler hale

getirmiştir. Bilgi örüntüleri birden fazla ilişki içermeye başladıkça, örüntü arama

uzayı kolay işlenmeyecek kadar büyümüştür. Hipotez uzayının karmaşıklığı

ile başa çıkmak için farklı arama stratejileri ve örüntü dil kısıtları kullanan

birçok çok-ilişkili bilgi çıkaran sistem geliştirilmiştir. Bu çalışmada kavram

öğrenme, kavram ile kavramı gerçekleme önkoşulları arasındaki eşleştirme olarak

tanımlanmış ve ilişkisel kural madenciliği alanında buluşsal yöntem olarak kul-

lanılan APRIORI kuralı örüntü uzayını küçültmek amacı ile kullanılmıştır. Öne-

rilen sistem, kavram örneklerinden ters çözünürlük operatörü kullanılarak genel

kavram tanımlarını oluşturan, ve bu genel örüntüleri APRIORI kuralını temel

alan bir operatör yardımı ile özelleştirerek güçlü kavram tanımlamaları elde eden

melez bir öğrenme sistemi olarak tanımlanabilir. Sistemin iki farklı versiyonu,

üç popüler veri madenciliği problemi için test edilmiş ve sonuçlar önerilen sis-

temin, en gelişkin ilişkisel veri madenciliği sistemleri ile karşılaştırılabilir du-
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rumda olduğunu göstermiştir.

Anahtar Kelimeler: İlişkisel Öğrenme, Tümevaran Mantıksal Programlama, Ön-

görülü Tümevarımsal Öğrenme, Tanımlayıcı Tümevarımsal Öğrenme, Ters Çözü-

nürlük, İlişkisel Kural Madenciliği, APRIORI Algoritması, WARMR Sistemi
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CHAPTER 1

INTRODUCTION

1.1 Multi-Relational Learning

Initial knowledge acquisition systems have been developed to learn from propo-

sitional representation of problem domains. In propositional (attribute-value)

learning, every target instance and the background knowledge related to that

instance is represented by a single record in a table. This type of representation

is infeasible to specify the relations between the subparts of the instance and

one-to-many relations between the instance and its subparts. The inadequacy

in representation results in incomplete learned concept descriptions.

Due to the impracticality of single-table data representation, multi-relational

databases have become widespread in all computer-based processes. This has led

to the need for multi-relational learning systems that directly apply to relational

representations of structured problem domains. There are three key approaches

in constructing relational learning systems: [1, 2].

• The system is composed of three parts: pre-processing, hypothesis con-

struction and post-processing. In the preprocessing phase, the problem

definition in relational form is transformed into propositional one. Then,

one of the attribute-value learning systems, suitable for the data mining

task, is applied. Finally, the induced if-then rules are transformed in re-
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lational form. One of the ILP systems using this approach is the LINUS

framework [3] that utilizes an embedded deductive hierarchical database

(DHDB) interface in data transformation and one of three propositional

learning systems among ASSISTANT [4], NEWGEM [5] and CN2 [6] ac-

cording to the problem domain in induction phase. Due to the limitations

of attribute-value representation mentioned, information loss is possible in

transformation and propositional patterns are not as easily understand-

able as relational ones in a structured problem domain. Therefore, this

method is not preferable.

• Attribute-value learning systems have been upgraded to the multi-relational

counterparts in every branch of data-mining.

• New concept description systems have been introduced, in order to fulfill

the task of defining unknown relations with the help of known background

knowledge as logical programs.

Most relational upgrades of data mining systems and concept learning sys-

tems employ first-order predicate logic as representation language for back-

ground knowledge and data structures/patterns. The learning systems, which

induce logical patterns or programs valid for given background knowledge, have

been gathered under a research area, called Inductive Logic Programming (ILP),

a subfield of Machine Learning and Logic Programming [7].

The propositional data structures used in data mining area (decision trees,

if-then classification rules and association rules) have been extended to rela-

tional form in multi-relational data mining (MRDM) systems. Two most pop-

ular algorithms for inducing relational decision trees, SCART [8] and TILDE

[9], are upgrades of the propositional decision tree induction systems, CART

and C4.5, respectively. WARMR [10] upgrades the frequent item-set mining

algorithm APRIORI for discovering relational frequent patterns and association

rules. The key step of upgrading propositional distance-based algorithms is to

redefine distance measure between structured objects. RIBL [11] defines a rela-
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tional distance measure, and then adapts k-nearest neighbor approach to work

on relational data. RDBC and FORC have utilized the RIBL distance measure;

they adapt hierarchical agglomerative clustering and k-means approach to input

relational data, respectively [12].

Concept learning aims at developing search techniques that efficiently tra-

verse target concept description space consisting of logical Horn clauses. There

are various approaches designed to solve this problem: [13]

• Top-down approach using information gain as search heuristics

• Top-down approach utilizing higher-order rule schemas to constrain search

• Bottom-up approach constraining search by generalizing from concept in-

stances using inverse resolution operators

• Bottom-up approach avoiding search using relative least general general-

ization (RLGG) operator.

The first relational learning algorithm to use information gain based search

heuristics was FOIL [14]. It uses an AQ-like covering approach [15] and it

inherits the top-down search strategy from MIS [16], which is an early concept

learning system. Recently, many systems that extend FOIL in various aspects

have been introduced.

CIA [17], MODELER [18] and RDT [19] are among the methods that use

higher-order rule schemas in order to guide search for learning logical clauses.

CIA learns higher-order rule schemas from induced Horn clauses via substituting

variables for both terms and predicates. The system employs these schemas in

order to explain newly introduced concept instances. If there is no schema

that may explain the new instance, the system introduces new rules via the

rule learning system CLINT. MODELER accepts pre-defined higher-order rule

schemas instead of learning them and put additional constraints in order to

explain a concept instance as an instantiation of rule schemas. RDT utilizes the

topology of clauses as an extra constraint for instantiating higher-order rules.
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The search heuristics, information gain and higher-order rule schemas, have

no proof-theoretic basis; therefore the search space of possible concept descrip-

tions is not complete. The resolution rule that forms the basis of the logic

programming paradigm is a sound and complete inference rule. Inverting this

inference rule results in induction of refutation trees in a bottom-up fashion and

systems employing inverse resolution operators have a proof-theoretic search

strategy [13].

MARVIN [20] is the first ILP system inducing Horn clauses using an inverse

resolution generalization operator. The hypothesis language of the system does

not contain clauses with existential quantified variables and the system can not

introduce new predicates. There is no search heuristics to direct the search;

instead the oracle evaluates the quality of induced clauses.

CIGOL [21] employs three generalization operators based on inverse resolu-

tion, which are relational upgrades of absorption, intra-construction and trun-

cation operators used in DUCE [22], whereas MARVIN utilizes only absorption

operator. With these extra operators, CIGOL extends the learning capability

of MARVIN with generating new predicate definitions. However, CIGOL also

needs oracle knowledge to direct the induction process.

PROGOL [23, 24] is a bottom-up Horn clause induction system, that uses

the inverse entailment operator in induction phase. In the system, after the

positive instance is selected to be generalized, the most specific clause within

the language constraints that entails the positive instance is constructed and the

hypothesis space of clauses that are more general than this most specific clause

is searched to find a qualified concept description. Rather than depending on

the user’s knowledge in induction step, it employs an evaluation measure of how

well a clause explains all the examples with preference to shorter clauses.

GOLEM [25] is a bottom-up ILP that is based on the relative least general

generalization operator.
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1.2 Motivation

The motivation behind predictive ILP learning is to discover a complete and

consistent hypothesis that best fits to the target concept instances. Each clause

in the hypothesis represents a different structural pattern of the target concept.

The number of positive instances fit to this structural pattern is the support

of the concept clause. Predictive ILP systems do not utilize the “support”

concept in pruning the search space; however descriptive ILP systems APRIORI

and WARMR utilize the general support rule, the APRIORI trick, as a strong

search heuristics. The need for the “support” concept in predictive ILP learning

has led us to extend WARMR [10] query mining tool into a rule mining system

that discovers frequent and confident relational rules, including linearly recursive

clauses.

WARMR finds frequent relational queries employing a level-wise search strat-

egy such that each frequent query is refined by adding one literal to the query

at a time. This specialization operator results in a search space composed of

disjoint sub-trees rooted at each frequent query. The possibility of generating

recurrent candidate queries is high due to the search space structure. On the

other hand, the chance of generating infrequent candidate clauses is also high

since all the combinations of the added literal with the literals in the clause are

needed to be frequent; therefore the system keeps track of infrequent clauses as

a list, which increases the time complexity of the algorithm.

If the specialization operator joins two frequent queries that have all but one

literal in common as in candidate generation step of APRIORI, the search lattice

will be more compact and there will be no need for keeping a list of infrequent

queries. In order to effectively prune the search space, the proposed concept

learning system employs such an APRIORI-based refinement operator. Besides,

our system utilizes the same search strategy and heuristics as in WARMR: bread-

first search and the relational version of the APRIORI trick, explained in detail

in Section 2.4, respectively.

In order to be able to apply APRIORI-like specialization operator, the first
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level of the search lattice containing one-element item sets (horn clauses with

one literal in the body) should be constructed beforehand. Pure top-down ILP

systems waste time constructing clauses which cover no positive example, like

WARMR. Therefore, the proposed system generalizes target concept instances

in the presence of background knowledge as definite clauses with one literal

in the body (two literal clauses) and populates first level of the search lattice

with these generalizations so that each clause in the lattice covers at least one

positive concept example. Absorption operator of inverse resolution introduced

in [21], one of the most popular ILP generalization operators, is employed in

this bottom-up induction step.

The main difficulty relational ILP systems face is searching in intractably

large hypothesis spaces. The complexity of the hypothesis space stems from the

variables in the hypothesis clauses, especially existential variables that occur in

the body but not in the head of the clause. In order to cope with existential

variables and learn efficiently, relational ILP systems put strong declarative bi-

ases on the semantics of hypotheses. GOLEM allows only determinate existence

of literals (a determinate literal is a literal for which the values of output vari-

ables are uniquely determined for every possible set of input variable values)

via ij-determinacy [25]. Besides, many multi relational rule induction systems,

including GOLEM, PROGOL, WARMR and FOIL, require the user to deter-

mine the input-output modes of predicate arguments. Since mode declarations

require an oracle level Prolog and domain knowledge, it is risky to expect such

a declaration from a normal user. New mode induction methods that allow in-

determinate existence of the literals in clauses and also do not need novel user

knowledge about domain should be introduced. In this study, the proposed

system employs a new method that restricts the introduction of non-referenced

(one-location) existential variables in the body of the clauses with requiring basic

domain knowledge from user, based on the sound formalism in [26].

After determining the search strategy, search heuristics and hypothesis lan-

guage, the last thing to decide is the representation form of the background
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knowledge, logical form in a deductive database or tabular form in a relational

database. Most ILP concept learning systems input background facts in Prolog

language; this restricts the usage of ILP engines in real-world applications due to

the time-consuming transformation phase of problem specification from tabular

to logical format. The need for ILP engines that can be applied to tabular data

is obvious.

As a result, in this study a concept learning ILP system is proposed, which

employs relational association rule mining concepts and techniques. The system

proposed is a hybrid (top-down/bottom-up) ILP system, which utilizes inverse

resolution for generalization of concept instances in the presence of background

knowledge and refines these general patterns into frequent and strong concept

definitions with a modified APRIORI-based specialization operator.

Two versions of the proposed system are implemented, one of which is for

learning definite clauses possibly with body predicates indirectly bounded to the

head predicate and the other is for learning definite clauses with body predicates

only directly bounded to the head predicate. In this study, Java programming

language is utilized in the implementation. In the aim of improving the efficiency

of database access and satisfying the common need of storing data in a relational

database, the system employs IBM DB2 database as backend data storage.

1.3 Organization of the Thesis

Chapter 2 gives a general overview of Inductive Logic Programming, a detailed

description of inverse resolution and association rule mining. Chapter 3 explains

two version of the proposed method and compares the advantages and disad-

vantages of these two versions. Chapter 4 discusses the experimental results of

the proposed method on three real-world problems. Finally, chapter 5 includes

concluding remarks and possible improvements.
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CHAPTER 2

INDUCTIVE LOGIC PROGRAMMING

2.1 General

When human brain reasons about events, it tries to prove and deduce the result

with the help of assembled background knowledge about the event domain. So,

how is background knowledge acquired and collected in human brain? Apart

from the knowledge obtained from ancestors, human being collects some par-

ticular patterns recurring in different situations for similar future events. This

ability of generalization from specific observations, called induction, influenced

the development of Inductive Logic Programming (ILP) as a branch of Artificial

Intelligence.

ILP basically studies learning concept definitions or regularities from specific

instances in terms of prior known relations in clausal logic framework. Generally,

ILP learner is presented a set of training examples and background knowledge

in form of logic clauses, and induces concepts or frequent patterns as logical

expressions. The term hypothesis is also used for induced concept/pattern de-

scription.

Inductive learning is in fact searching for complete and consistent concept

descriptions in the space limited by description language of the ILP system [27].

The current state of art in ILP is achieving to find qualified logical hypothesis
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efficiently, i.e. in minimal learning time. Current learning systems employ con-

straints on the search space via language, search strategy or user feedback in

the sake of efficiency. These constraints are called bias [28].

Language bias is the limitations on the syntactic structure of the possible

clauses in the hypothesis space. For instance, an ILP system may require the

hypotheses to be definite clauses with at most n literals, etc. If more strict

limitations are put on the description language, the search space will be smaller

that results in an efficient learner. However, the restrictions may cause the

learner to overlook some hypotheses of good quality. Therefore, an ILP system

should balance the trade-off between the quality of hypotheses induced and the

efficiency of the system.

After the borders of the search space are determined by language bias, the

search bias should restrict which parts of the search space traversed according

to a sound heuristics. The naive approach is to traverse the permitted clauses

completely, one by one [29]. The efficiency considerations can not tolerate this

exhaustive search; some filtering methods to prune the space should be utilized.

In some interactive systems, an oracle determines the soundness criteria of

induced rules in the learning phase explicitly or implicitly [2]. These semantic

rules imposed are called declarative bias. For example, the user determines

the relations between the predicates in the background knowledge or guides the

learner via deciding on the validity of the new predicates invented through search

steps.

The biases, searching algorithm and quality criteria employed in evaluating

induced hypotheses characterize the expressiveness and performance of an ILP

system.

ILP systems can be classified into two general categories according to the

learning task: predictive learning systems and descriptive learning systems. In

predictive ILP systems, there is a specific target concept to be learned in the

light of past experiences; however, there is no specific goal in descriptive learning

and the task is to identify patterns in the data [30].
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2.1.1 Predictive Inductive Learning

In predictive ILP, the task is learning concept/class descriptions, that correctly

classify instances (and non-instances) of a specific concept, in terms of the back-

ground knowledge about the problem domain. Predictive learning can be ap-

plied to any classification or prediction problem, such as predicting carcinogenic

activity of chemical compounds based on their chemical structures [31]. In

this problem, the concept instance space is chemical compounds, the concept is

whether a compound is carcinogenic or not and the task is finding correct clas-

sification rules that map positive instances to carcinogenic class and negative

ones to non-carcinogenic class.

The problem setting of the predictive ILP learning task introduced by Mug-

gleton in [32] can be stated as follows:

Given:

• Target class/concept C,

• A set E of positive and negative example of the class/concept C,

• A finite set of background facts/clauses B,

• Concept description language L (language bias).

Find:

• A finite set of clauses H, expressed in concept description language L,

such that H together with the background knowledge B entail all positive

instances E+ and none of the negative instances E-. In other words, H is

complete and consistent with respect to B and E, respectively.

In this problem setting, completeness and consistency are the quality crite-

ria for selecting the induced hypotheses; however the definitions of these terms

require the hypotheses %100 fit the given instances, which is too strict for hy-

pothesis to have predictive power. There may be errors in the background

knowledge and training concept instances; or training examples can be sparse
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to reflect the general regularities hidden in the concept [2]. Since success of a

predictive learning system lies in the ability to generalize for unseen concept

instances correctly, predictive ILP systems should employ more relaxed quality

criterion that allow some training examples remain misclassified.

A predictive ILP system learns the target concept via searching hypothesis

space in one of two directions: top-down and bottom-up. Bottom-up approach

starts with the most specific clause containing a given positive example and gen-

eralizes the hypothesis until the concept description with the background knowl-

edge implies all positive instances. On the other hand, a top-down ILP system

begins with the most general hypothesis which covers all instances and non-

instances of the concept and diminishes the borders of the hypothesis such that

the final hypothesis covers no negative instance of the concept. MIS, FOIL and

LINUS are among the top-down predictive ILP systems and CIGOL, GOLEM

and PROGOL are among the bottom-up ones. Besides, a top-down (bottom-up)

system may employ a generalization (specialization) operator in order to adapt

the hypothesis according to given concept instances [33].

2.1.2 Descriptive Inductive Learning

Descriptive data mining differs from the predictive data mining such that the

search is not directed by a target concept. A descriptive ILP system does not

know which class or concept it is looking for in underlying database; instead it

searches for interesting frequent patterns with no single target attribute, i.e. the

consequent of the rules can be any attribute or relation in the data [34]. In other

words, the data mining system explores relationships between the tendency of

domain subjects in doing an action/having a property (buying a specific prod-

uct/having cancer genetic effect) and domain-related features of the subjects

(being female/having a specific molecular structure).

In descriptive data mining, the main objective is to find useful/interesting

and understandable patterns. Therefore, the pattern representation language

and the interestingness criterion play the main role in the success of a descriptive
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data mining system.

There are two popular techniques in descriptive data mining, which are data

summarization and clustering [30]. In data summarization field, WARMR and

CLAUDIEN are the most popular descriptive ILP systems. Additionally, RDBC

and FORC are well-known ILP systems based on relational distance-based meth-

ods to address the task of clustering.

2.2 Inverse Resolution

Bottom-up predictive ILP systems employ various generalization operators that

start the search of the hypothesis space from the most specific clause, allowed

by the hypothesis language, and generalize the clause until it can not be further

generalized without covering negative concept instances [2].

A generalization operator maps a clause to a set of clauses which are the

generalizations of the input clause based on the definition of generality rela-

tion/ordering utilized. Most ILP systems use the θ-subsumption based gener-

ality operators in the bottom-up search of clauses due to their simplicity and

tractability. θ-subsumption relation between first-order clauses can be defined

with a brief logic programming terminology abridged from [35] as follows:

term: A variable, constant or function symbol followed by n-tuple of terms

atom: Predicate symbol applied to terms

literal: Positive or negative atom

clause: A finite set of literals

existential/local variable: Variable that only occurs in the body of the clause[36]

global variable: Variable that occurs in the head of the clause[36]

definite clause: Clause containing exactly one positive literal

clausal theory: A set of clauses
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well-formed formula: Literal, clause or clausal theory

substitution: θ = X1/t1, ..., Xk/tk is a function from variables to terms. The

application of a substitution to a well-formed formula results in replacing

all occurrences of each variable Xi in the formula with the corresponding

term ti.

most general unifier (MGU): A substitution θ is a unifier for literals t1 and

t2 such that t1θ = t2θ. The substitution θ is a most general unifier of

literals t1 and t2 iff there is no unifier θ′ for which the unified term t1θ
′ is

more general than t1θ. Two literals are unifiable if they have a MGU.

θ-subsumption: Clause C is at least as general as clause C′ if and only if C

θ-subsumes C′, expressed as C ≤ C′. A clause C θ-subsumes a clause C′

if and only if there exists a substitution θ such that Cθ ⊆ C′ [37]. Two

clauses C and C′ are equivalent under θ-subsumption, if and only if C ≤ C′

and C′ ≤ C. Two clauses are variants, if they are equivalent up to variable

renaming [38].

In other words, clause C θ-subsumes C′ if there is a substitution θ that can

be applied to C such that every literal in Cθ occurs in C′. If θ= ø and C

≤ C′, then C is a subset of C′; otherwise if θ 6= ø and C ≤ C′, then C is a

subset of C′θ−1 (Cθ ⊆ C ′ ≡ C ⊆ C ′θ−1). Therefore, generalization operators

under θ-subsumption perform two syntactic generalization operations: obtain C

by applying inverse substitution to the clause C′ and/or removing one or more

literals from the clause C′.

There are two basic subsumption based generalization operators: relative

least general generalization developed by Plotkin [37] used in GOLEM and in-

verse resolution introduced by Muggleton and Buntine [21] used in CIGOL.

Inverse resolution is built on the fact that induction is the reverse operation

of deduction. The resolution rule of deductive inference allows to derive a re-

solvent clause C entailed from two given parent clauses C1 and C2, employing

SLD-resolution procedure [35]. The resolution rule has led inverse resolution
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Figure 2.1: A single resolution step

to be introduced as a tool for induction that inverts the resolution process by

generalizing C1 from C and C2 [21].

Resolution is used for inferring consequences of a clausal theory. Let’s assume

that the theory consists of two clauses C1 and C2 and the clauses contain the

literals L1 and L2, such that θ is the MGU of ¬L1 and L2, respectively. The

clauses C1 and C2 are resolved on the literals L1 and L2 when θ-substitution

is applied to the union of the clauses. The resolvent R is derived as resolved

product of C1 and C2, i.e. R = C1.C2 = (C1 - L1)θ ∪ (C2 - L2)θ. Therefore, the

theory θ-subsumes and entails the resolvent R.

The substitution θ can be uniquely factored into two exclusive substitution

θ1 and θ2 such that θ= θ1θ2, vars(θ1) ⊆ vars(C1), vars(θ2) ⊆ vars(C2) and L1θ1

= L2θ2. So, the resolvent becomes

R = (C1 − L1)θ1 ∪ (C2 − L2)θ2 (1)

In other words, resolution is able to derive the base clause of a ‘∨’ resolution

tree, given two clauses on the arms as shown in Figure 2.1.

If there are more than two clauses in the theory, then the consequence will be

derived by repeatedly applying resolution rule, resulting in a binary derivation

tree.

Suppose that the background knowledge consists of the unit ground clauses

male(joe), parent(joe, john) and the hypothesis is father(X, Y) :- parent(X,

Y), male(X). The theory is the union of the background knowledge and the

hypothesis. The problem is whether father(joe, john) can be derived from the

stated theory. It is possible to find a derivation tree with the query fact as the
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Figure 2.2: A first-order derivation tree

base clause:

• First, resolve the hypothesis and the first background fact. These two

clauses resolve on the literals L1 = male(joe) and L2 = ¬male(X) such

that θ1 = ø and θ2 = X/joe. The resolvent C of C1 = male(joe) and C2

= father(X, Y) :- parent(X, Y), male(X) is (C1 - L1)θ1 ∪ (C2 - L2)θ2 =

father(joe, Y) :- parent(joe, Y).

• Secondly, resolve the consequence of the first derivation C with the second

background fact. These two clauses resolve on the literals L′

1 = parent(joe,

john) and L′

2 = parent(joe, Y) such that θ1 = ø and θ2 = Y/john. The

resolvent of C′

1 = parent(joe, john) and C′

2 = father(joe, Y) :- parent(joe,

Y) is (C′

1 - L′

1)θ1 ∪ (C′

2 - L′

2)θ2 = father(joe, john). The binary resolution

tree is shown in Figure 2.2.

Muggleton and Buntine employed three types of generalization operators

based on inverse resolution in their CIGOL system: ∨-operator (absorption op-

erator), W-operator and the truncation operator. The proposed system utilizes

the ∨-operator in generalizing concept instances in the presence of background

knowledge. Given C1 and C, the ∨-operator finds C2 such that C is an instance

of the most general resolvent R of C1 and C2. As (R ≤ C), ∨-operator generalizes

{C1, C} to {C1, C2} [21].
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Figure 2.3: A simple ∨-operator step

In contrast to the resolution, the ∨-operator derives one of the clauses on

one arm of the ∨ tree C2, given the clause on the other arm C1 and the base

clause C as shown in Figure 2.3. From the notation of resolution C = C1.C2,

it can be derived that C2 = C/C1 and C2 is named as the resolved quotient of

C and C1 [21]. For the propositional case, the resolved quotient of two clauses

is unique since there is no unification in propositional resolution that leads to

indeterminacy, i.e. ¬L1 = L2. However, for the first-order case, it is not unique

and can be derived as a result of the algebraic manipulation of the equation (1)

as follows:

C2 = (C ∪ ¬(C1 − L1)θ1)θ
−1

2 ∪ L2 (2)

Since θ1θ2 is the MGU of ¬L1 and L2, ¬L1θ1 = L2θ2 and thus:

L2 = ¬L1θ1θ
−1

2 (3)

Substituting (3) into (2) as in Figure 2.3:

C2 = (C ∪ ¬(C1 − L1)θ1)θ
−1

2 ∪ ¬L1θ1θ
−1

2 = (C ∪ ¬C1θ1)θ
−1

2 (4)

As C and C1 are given as input, there are three unknown parameters, namely

L1, θ1 and θ−1

2 , that lead to indeterminacy in equation (4). If the background

knowledge C1 is represented by ground unit clauses, i.e. C1 = L1 and θ1 = ø

then equation (4) becomes:

C2 = (C ∪ ¬L1) θ−1

2 = (C ∪ ¬C1) θ−1

2 (5)

Therefore, the indeterminacy is reduced to the choice of the inverse substi-

tution θ−1

2 . As the following definition of inverse substitution implies, selection

of the inverse substitution θ−1

2 means the selection of the terms in (C ∪ ¬C1)
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that should be mapped to distinct variables. The ILP learners employing in-

verse resolution as a generalization operator should apply a heuristic during the

search of the inverse substitution space.

Inverse Substitution: Given a literal t and a substitution θ, there exists

a unique inverse substitution θ−1 such that tθθ−1 = t. Whereas the

substitution is a function from variables to terms, the inverse substitu-

tion θ−1 is a function from terms to variables. If the substitution is

θ = {v1/t1, ..., vn/tn}, then the corresponding inverse substitution can be

denoted by θ−1 = {(t1, {p1,1, ..., p1,m1})/v1, ..., (tn, {pn,1, ..., pn,mn
})/vn} in

which pi,m designates the places at which literal argument positions the

term ti is replaced by the variable vi. The definition of places can be ex-

tended to 2-tuple form as [literal order, argument order] for representation

of places within clauses.

In short, the objective of inverse resolution is to construct a derivation of

a positive instance e1 by introducing new hypotheses which, together with old

theory or background knowledge, entail e1. Applying ∨-operator to two clauses

inverts a single resolution step, however applying the operator repeatedly results

in inverting a whole derivation tree.

Suppose that an ILP system has the unit ground clauses male(joe), par-

ent(joe, john) as the background knowledge. It is presented with a positive

example father(joe, john) and asked to find a hypothesis such that the final

theory consisting of the hypothesis entails father(joe, john). Let’s try to find an

inverse derivation tree with the positive example as the base clause:

• First, inverse resolve the positive instance with the first background fact.

Since background fact is a ground unit clause, equation 5 applies. There-

fore, C2 = (C ∪ ¬C1)θ
−1

2 = (father(joe, john) ∪ ¬male(joe))θ−1

2 . One

of the possible inverse substitutions is {joe/X}. If we apply this inverse

substitution, the hypothesis father(X, john):- male(X) is generated.
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Figure 2.4: An inverse linear derivation tree

• Secondly, generalize the current hypothesis with the second background

fact. Since background fact is also a ground unit clause, equation 5 ap-

plies. Therefore, C′

2 = (C′ ∪ ¬C′

1)θ
−1

2 = (father(X, john) ∪ ¬male(X) ∪

¬parent(joe, john))θ−1

2 . The inverse substitution can be {joe/X, john/Y }.

So the hypothesis induced is father(X,Y ):- male(X), parent(X,Y ). The

inverse linear derivation tree is illustrated in Figure 2.4.

In a real-world data mining problem, there are many positive instances of a

concept and background facts related to that positive example, so that an ILP

learner should decide on which background facts or positive instances to use.

In order to mine complete and consistent rules, a batch ILP system should

select instances that correctly describe and sample the entire positive instance

space. In other words, each chosen sample should reflect the general relation

between the concept and background facts as the cluster of the instance space

it belongs.

For each instance, a specific combination of the background facts result into

an inverse derivation tree. Lets assume that the number of related background

facts about the current positive instance is n. Then an ILP system, employing

inverse resolution and performing exhaustive search, should traverse 2n inverse

resolution trees in order to find the most qualified rule(s). This search results

in an inefficient learning system, therefore the ILP system should prune incon-

sistent or incomplete combinations of the background facts in a sound way.
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Firstly, ILP system should not evaluate 2n inverse resolution trees one by

one separately, instead, it should apply the knowledge gained from the prior

evaluations to the later one in order to minimize the search space. One pos-

sible method is to store the unqualified rules in order to bypass the repeated

generation of these rules.

According to the definition of θ-subsumption, a subset of a clause subsumes

and is as general as the original clause itself. As a result, if a sub-clause of a

clause is not complete (does not entail a minimum amount of positive data),

the clause, a specialization of its subset is not complete, either. This rule can

be used as a pruning mechanism in such a way that, first one-element combi-

nations of background facts are evaluated and incomplete ones are eliminated

from scratch, then two-element combinations, generated from one-element ones,

are evaluated and level-by-level evaluation continues until the stopping criterion

is met. This method is in fact the popular APRIORI algorithm [39] utilized

widely in association rule mining.

2.3 Association Rule Mining

Many organizations have lots of data about their customers, personnel, products,

etc. The data mining systems aim at extracting knowledge about the stored data

in favor of data owner for improving business gain. Lets consider a supermarket

with a wide range of product. The product manager of the market should decide

on the locations of the products on the shelves, which products not to put on

the sale or which products to be sold at a discount in order to maximize the

attractiveness of the products. The best way to make good decisions relies on the

uncovered relations between products (items) in the customer transaction data

collected so far. For instance, the manager can use the information about the

products that people buy together to position items, to decide the products to

be sold at a discount or to decide whether a product should be removed from the

shelves or not. The general objective of association rule mining is to find frequent

associations built-in the subsets of the data and enhance the functionality of
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databases in a way that decision makers can query such associations. The most

popular application area of association rule extracting systems is market basket

type transactional databases. Many algorithms have been developed in order to

find interesting Boolean association rules between sets of basket items [40, 41,

42, 43].

2.3.1 Boolean Association Rule Mining

Boolean association rules are in fact propositional classification rules with no

single target attribute, in the form of X ⇒ Y where X and Y are a set of

conditions with no restriction on the consequent Y [30]. The relations between

the attributes of a single table are represented by boolean association rules. For

example, assume that there is a table of personnel working in a company with

attributes age, sex, # of children, income, title, graduate degree etc. An example

association rule is “graduate degree ≥ master ⇒ title = specialist” about the

Personnel relation. This rule shows that personnel who have a master degree or

higher tend to be in a position Specialist or higher in the company.

The most popular application area of the boolean association rule mining is

the market basket problem. In the market basket problem, the database consists

of a transaction table with columns, each of which represents a product type on

sale, and rows representing baskets that store items purchased on a transaction.

The goal of market-basket mining is to find strong association rules between

frequent item sets [44]. A sample association rule is “Coke⇒ Chips”, which can

be interpreted as “Coke causes chips to be bought”.

A frequent item set is defined as an item set with support value greater than

a support threshold, s. Support of an item set is the frequency of the item set,

defined in terms of the fraction of the baskets including item set. For instance,

if most of the baskets in the transaction base (rows in the table) consist of Coke

and Chips, then Coke, Chips is a frequent item set.

Support of an association rule X ⇒ Y is the support of the item set X ∪ Y

[45]. If the support of a rule is smaller than the threshold, then the rule can
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only explain the tendency for very small fraction of the transactions and it is

unnecessary to take it into consideration for future business plans.

A strong association rule is a rule that has confidence greater than a confi-

dence threshold, c. Confidence of an association rule X⇒ Y is evaluated by the

probability of the baskets, having the item set X, also have items Y. In other

words, the confidence of an association rule is the ratio of the number of baskets

that contain the item set X ∪ Y to the number of baskets including the item set

X [45]. If most of the baskets including Coke also include Chips, then Coke ⇒

Chips is a strong association rule.

Support shows the generality of the rule and the confidence designates the

validity of the rule. If Coke, Chips is a frequent item set and Coke ⇒ Chips is

a strong association rule, then Coke ⇒ Chips is valid for most of the baskets in

database.

Market basket problem can be formally defined as follows : Given a set of

items I = {I1, I2, I3 · · · In} and a table of transactions T = {t1, t2, t3 · · · tm}

where each transaction is represented as ti = {Ii1, Ii2 · · · Iik} and Iij ∈ I, the

association rule problem is to find all association rules X⇒ Y with support and

confidence above thresholds [45].

The common approach in market-basket area is first finding frequent item

sets and then deriving strong association rules from these frequent item sets.

In this approach, the main critical point is to extract frequent item sets from

transaction database efficiently. The naive method is to count all combinations

of items in the portfolio that appear in the transactions. If the number of item

types in the shelves is n, then each of 2n−1 item sets should be counted against

the database, which is exponential and costly. Therefore, most association rule

mining algorithms develop smart methods in order to reduce the number of

item sets to be counted [45]. The most popular and well known association rule

mining algorithm, as introduced in [41], is APRIORI.
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Table 2.1: An example Prolog database

person(seda). sibling(seda, eda). doctor(eda).
person(guzen). sibling(seda, korkut). doctor(korkut).
person(serkan). sibling(guzen, aysu). manager(aysu).

sibling(serkan, serap) teacher(serap)

2.3.2 Relational Association Rule Mining

Association rule mining aims at discovering hidden structures, also called pat-

terns, in data. In boolean association rule discovery, there is one object type and

one database table describing different features of this object type. The patterns

mined are feature sets that are common for number of objects exceeding a fre-

quency threshold. For instance, in the market-basket problem, the objects are

baskets, each item is one feature of the basket and the patterns are the frequent

item sets common in baskets.

In relational association rule mining, there are more than one object type

and the patterns are not only feature sets but also they consist of relations be-

tween objects. Relational association rule mining can be described as discovering

recurrent relational patterns in a relational database.

2.3.2.1 Relational Patterns

Feature/Item sets are not capable of representing the features of different objects

and relations among them. The propositional representation of item sets should

be upgraded to predicate sets in first-order logic framework. In first-order logic,

each relation is represented by a predicate and the objects about which the

relation is made are represented by variables in predicates. The predicate sets

are in fact first-order queries; and the main task in relational association rule

mining is to discover the interesting queries that best match the database.

For example, we have a relational database including five relations repre-

sented by Prolog facts in Table 2.1.

An example relational pattern for the above database is “people whose sibling
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is a doctor”. We can translate this query as a predicate set as follows: person(X),

sibling(X, Y), doctor(Y)

It can be derived that the queries are in fact item sets in which items are

related by variables. In other words, they are “relational item sets” [46].

Since relational item sets can include more than one object/variable, it is not

clear which object or object pairs/tuples are counted in order to evaluate the

frequency of patterns. The key predicate of counting should be determined in

the formulation of frequent relation pattern discovery problem. For Q1, there are

three alternative object sets to be counted: Only people (X), only doctors (Y)

or sibling-sibling pairs (X, Y). For each alternative, the meaning of the pattern

changes:

• If we count X, then it means we try to discover “people whose sibling is a

doctor”. The key predicate is “person”.

• If we count Y, the pattern searched is “doctors who has a sibling”. The

key predicate is “doctor”.

• If we count X-Y, it means the pattern is “two siblings one of whom is a

doctor” and the key predicate is “sibling”.

As a result, a relational pattern can be represented by a first-order query

and the key predicate with its key fields.

The support of a first-order query Q is defined as the number of instantiations

of key fields for which query Q succeeds against the database. Since the support

of a pattern is defined as relative, the frequency of the query is divided by the

total number of instantiations of key fields in the key predicate.

Let’s reconsider the query Q1. The answer set X = seda will be retrieved if

we run the query Q1 against the above database, so the support of the query

Q1 is 1. Since the key predicate is “person”, the total number of instantiations

for the variable X is 3 as the answer set for query person(X) is X = seda, X =

guzen, X = serkan. Thereafter, the support of the pattern Q1 is 1/3 = 33%.

That means that 33% of people in the database have a sibling who is a doctor.
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2.3.2.2 First-order Association Rules

Relational association rules are the causality relations between different struc-

tural features of key objects. As in relational patterns, the key object(s) that

the rule is about mainly determines the meaning of the association rule.

In boolean association rule mining, the meaning of a Boolean association

rule is unique since there is only one object in database. For instance, in market

basket problem the object is basket and an association rule, formulated as X⇒

Y, means that “if a basket includes the item set X, then it is most probable that

it also includes the item set Y”. The key object of the association rules is the

same, by default, the basket.

However, in relational association rule mining, it is possible to generate as-

sociation rules that contain objects other than the key objects and the head of

the rule does not include key object or objects. For instance, we can conclude

the following association rule from the predicate set person(X), sibling(X, Y),

doctor(Y) where “person” is the key predicate:

person(X), sibling(X,Y )⇒ doctor(Y )

Since the key predicate is “person”, the object that will be counted is X. The

rule includes the sibling Y as an object other than the key object and the key

object X is not in the head of the rule. As a Prolog clause, it can be read that

“If a person has a sibling, then this sibling is a doctor”; however, the rule, as an

association rule, relates a person’s feature of having a sibling with the feature

of the same person having a sibling who is a doctor. In the first interpretation

the key object is the sibling; in the latter, it is the person [1].

The difference in meaning of relational rules in predictive and descriptive

framework results in difference in the notation of relational rules. While rela-

tional rules are shown as X ⇒ Y in Prolog form, the association rules, called

“query extensions”, are shown as X ∼> Y [46].

The meaning of relational association rules is the same as the original mean-

ing of the Prolog definite clauses when the key predicate is the predicate in the

head of the rule and the key variables of the association rules occur in the head.
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For instance, in the above rule if the key variable is Y, then the meaning of the

association rule would be “If a person has a sibling, then it is most probable

that this person is a doctor.” It is the same as “If a person has a sibling, then

this sibling is a doctor”. Therefore, an association rule finder can be used as

a predictive data mining system with support concept if the system guarantees

that the head predicate of the rule is the key predicate and a subset of the

variables in the head consists of the key variables.

The support of a relational association rule is the support of the predicate set

in the rule. The confidence of a relational association rule X ∼> Y is defined

as the support of the pattern X ∪ Y divided by the support of the body X.

The confidence of the association rule person(X), sibling(X,Y ) ∼> doctor(Y ),

with the key object X, can be computed according to the database in Table

2.1 as follows: The frequency of person(X), sibling(X,Y ), doctor(Y ) is 1/3 as

evaluated. The frequency of person(X), sibling(X,Y ) is 1/1 since all people

have a sibling. Therefore, the confidence of the rule is 1/3 / 1/1 = 1/3.

2.4 APRIORI

APRIORI utilizes an important property of frequent item sets in order to prune

candidate item set space:

All subsets of a frequent item set must be large.

The contra positive of this property says that if an item set is not frequent

then any superset of this set is also not frequent. It can be concluded that the

item set space should be traversed from small size item sets to large ones in

order to discard any superset of infrequent item sets from scratch. In order to

apply this reasoning, APRIORI reorganizes the item set space as a lattice based

on the subset relation, as shown in Figure 2.5.

The item set lattice in Figure 2.5 is composed of possible large item sets

for items I1, I2, I3. The directed lines in the lattice represent the subset rela-

tionships, and the frequent item set property says that any set in a path below

an item set is infrequent if the original item set is infrequent. For instance, if
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Figure 2.5: The APRIORI lattice with three items

the item I1 is not found frequently in transaction baskets, then the item sets

{I1, I2}, {I1, I3} and {I1, I2, I3} are not frequent, either.

In APRIORI, an item set is called a candidate if all its subsets are frequent

item sets. An item set is large/frequent if it is candidate and the number of

occurrences of this item set in transactions is greater than the support threshold

value.

APRIORI algorithm proceeds levelwise in the lattice as follows:

Step 1. All item sets of size 1 (items itself, I1, I2, I3) are used as candidate

item sets, C1, in the first step. Find large item sets from C1 that appear

at least fraction s (support threshold) of baskets. This set of large item

sets is expressed as L1.

Step 2. Generate n+1-element candidate item sets Cn+1 from n-element large

item sets Ln by combining n-element large item sets that have n-1 items

in common.

Step 3. Scan the database to count n+1-element candidate item sets in trans-

actions and decide if they are large. The resultant set of n+1-element large
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item sets is Ln+1. Go to step 2 if Ln+1 is not empty set, otherwise go to

step 4.

Step 4. Output L1 ∪ L2 ∪ · · · ∪ Ln.

As explained in the algorithm, APRIORI makes one database scan per level.

This results in n+1 database scans, which is costly if the item set lattice is too

deep. In order to prevent this weakness of the APRIORI algorithm, most data

miners limit the maximum cardinality of a possible frequent item set.

2.5 WARMR

In [47], a relational association rule miner that discovers frequent Datalog queries,

WARMR, is presented. WARMR takes a Datalog relational database and a

support threshold as input and outputs Datalog queries that are frequent in the

input database. Since first-order predicate language allows the use of variables

and multiple relations in patterns, the patterns are more expressive than the

propositional ones; besides, the size of the pattern space is huge.

A relational association rule miner should determine a formalism to syntac-

tically constrain the query language to a set of meaningful queries. For instance,

the formalism/declarative bias should exclude queries that bind incompatible ar-

gument types, like unifying a person and a product type variables in “sibling(X,

Y), buys(john, Y)” (Y is a person in “sibling” predicate and is a product in

“buys” predicate).

In the language formalism of WARMR, WRMODE, a set of all possible

ground and non-ground atoms is explicitly presented to the system. Each vari-

able argument of each atom in the set is marked by means of three mode-labels

+, - and ∓; where + means that the variable is strictly input/bound, i.e. has to

appear earlier in the query; - means that the variable is strictly output/unbound,

i.e. must not appear earlier; ∓ means that the variable can be both input and/or

output.
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Input-output modes of the variables in the formalism constrain the refine-

ment of queries in a way that the modes determine which atoms can be added to

a query [1]. The key predicate of frequent patterns is specified in the formalism,

too. Additionally, the types of the variables can be declared as in PROGOL

[23]. An example declarative language bias specification in WRMODE notation

for the database in Table 2.1 is illustrated below.

Key = person(-) Atoms = sibling(+, -), doctor(+), manager(+), teacher(+)

As an analogy to the APRIORI trick, each meaningful sub-query, that the

declarative language bias allows, of a frequent query should be a frequent query.

The WARMR algorithm, as shown in Table 2.2 [46], thus employs a level-wise

search such that specific candidate queries Q2 are generated from simpler, gen-

eral frequent queries Q1 where Q1 -subsumes Q2.

Table 2.2: The pseudo code of the WARMR Algorithm

Inputs: database r ; WRMODE language L; support threshold minfreq
Outputs: all queries Q ∈ L with frequency ≥ minfreq

1.Initialize level d := 1
2.Initialize the set of candidate queries Q1 := ?- key
3.Initialize the set of infrequent queries I := {}
4.Initialize the set of frequent queries F := {}
5.While Qd not empty

a.Find frequency of all queries Q ∈ Qd

b.Move the queries with frequency ≤ minfreq to I
c.Update F := F ∪ Qd

d.Compute new candidates Qd+1 from Qd,
F and I using WARMR-GEN
e.Increment d by 1.

6.return F

Function: WARMR-GEN(L; I ; F ; Qd);
1.Initialize Qd+1 =
2.For each Qj ∈ Qd, and for each refinement Qj ∈ L of Qj:

a.Check whether Qj is θ-subsumed by some query ∈ I, and
b.Check whether Qj is equivalent to some query in Qd+1 ∪ F
c.If both are not true, add Qj to Qd+1.

3.return Qd+1.
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WARMR starts with the query ?− key at level 1 and generates query candi-

dates Cl+1 at level l+1 by refining frequent queries Fl obtained at level l. The

frequency of candidates Cl+1 are evaluated against the database; the queries

that have frequencies above the threshold value are moved to Fl+1. This candi-

date generation and evaluation loop continues until no more candidate query is

produced.

The main difference of WARMR from APRIORI is the candidate generation

step where queries are refined by adding one atom to the query at a time as

allowed by the mode and type declarations, instead of combining frequent sub-

queries as in APRIORI. This is due to the fact that all generalizations of a

frequent query may not be in the language of admissible patterns determined by

declarative bias; and frequent queries that have sub-queries not in the declarative

language will not be discovered. Therefore, the built-in pruning of search space

in APRIORI should be done explicitly by WARMR. The relational algorithm

explicitly keeps track of the infrequent queries and checks whether the candidate

query is a specialization of an infrequent query during every candidate generation

step.

Given the mode declarations and the database in Table 2.1, WARMR starts

the search of frequent queries at level 1 with the key predicate person(X). The

literals {sibling(X, Y), doctor(X), manager(X), teacher(X)} can be added to the

query at level 1 yielding level 2 candidate queries {(person(X), sibling(X, Y)),

(person(X), doctor(X)), (person(X), manager(X)), (person(X), teacher(X))}.

Taking the first of level 2 candidate queries, the formalism allows {sibling(X,

Z), sibling(Y, Z), doctor(X), doctor(Y), manager(X), manager(Y), teacher(X),

teacher(Y)} to be added to obtain level 3 candidate queries. The refinement

graph will continue to grow until no more candidates are remained.

After WARMR discovers all frequent queries and their frequencies, these pat-

terns can be post-processed into relational association rules that exceed given

confidence threshold value. Since relational association rules are couples of

queries that one extends the other, it is sufficient to find frequent query couples

29



(Q1, Q2) such that Q1 extends Q2 and conclude query extensions Q2 ∼> Q1−Q2.

As an example, if Q1 = person(X), sibling(X,Y ), doctor(Y ) with support = 1/3

and Q2 = person(X), sibling(X) with support = 1/1, then the resultant query

extension is person(X), sibling(X) ∼> doctor(Y ) with confidence = 1/3.

The main advantage of the WARMR system is its flexibility offered to the

user in determining the search space of possible patterns and adding background

knowledge to the database. These settings are fully isolated from the implemen-

tation. However, the mode declaration in the formalism is too hard for a normal

user to state which patterns he/she really wants to discover and it is not practi-

cal for large databases. It should not be overlooked that the user in descriptive

data mining does not know what he/she wants to find and even does not have

deep knowledge about relations in database. Therefore, the system should be

capable of pruning the search space without mode declarations, perhaps, with

only type declarations.

Explicit pruning step of WARMR requires storing a list of infrequent patterns

and traversing this list for every candidate query. The size of the infrequent

query set increases as the database structure becomes complicated and this

pruning step increases time complexity of WARMR with respect to APRIORI.
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CHAPTER 3

THE PROPOSED SYSTEM

Concept definition is in fact making associations between the concept and the

preconditions to this concept. We propose in this study a concept learning ILP

technique, which employs relational association rule mining techniques. The

technique proposed utilizes inverse resolution for generalization of concept in-

stances in the presence of background knowledge and refines these general pat-

terns into frequent and strong concept definitions with a relational upgrade of

the APRIORI refinement operator. In this chapter, two versions of this tech-

nique, which differ in syntactic bias, are discussed in detail.

3.1 Language Bias and Search Space

A concept is in fact a set of frequent patterns, embedded in the features of the

concept instances and relations of objects belong to the concept with other ob-

jects. Since the predicate calculus is capable of representation of relations via

predicates and relations between predicates via shared variables among predi-

cate arguments, first-order logical framework is chosen as the concept definition

language where concepts/relational patterns are represented by function-free

definite clauses. A clause can be interpreted as a partial definition for a con-

cept, where the head predicate identifies the defined concept and the predicates
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Figure 3.1: The graphical user interface of the Proposed System I

in the body of the clause represent the required features and relations for an

object that belongs to this concept [48].

However, first-order logic as a pattern language allows unreasonable clauses

in the search space, such as patterns where features having different data types

are related. Therefore, the proposed system puts an additional constraint on

the clause space in such a way that only predicate arguments, which have the

same data type, can be unified with the same variable name. For example,

lets assume input relational database is composed of “buy”, “customer” and

“product” facts with type declarations buy (person, item), customer (person),

product (item, color). Then clause

buy(X,Y ) : −customer(X), product(Y, red)

is in the pattern language, however the clause

buy(X,Y ) : −customer(X), product(X, red)

is not in the search space since the first arguments of the predicates “cus-

tomer” and “product” have incompatible types. The user supplies the type

declarations of predicate arguments via the system’s graphical user interface in

Figure 3.1. The user also supplies the concept to be learned via the interface.
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The system imposes a generality ordering on the concept clauses based on

θ-subsumption, which guides the search in generating candidate concept clauses.

The generality relation between clause examples of the same concept, used in

this work, is a restricted version of θ-subsumption relation expressed as follows:

[48]

A definite clause C θ-subsumes a definite clause C′, i.e. is at least as general

as C′, if and only if ∃θ such that:

• head(C) = head(C ′)

• body(C ′) ⊇ body(C)θ

In other words, the body of the clause C unifies with a subpart of body of

the clause C′.

The system utilizes “support” besides the generality ordering in pruning the

search space. In analogy to the frequent query property in WARMR, we adopt

the fact that “Each meaningful generalization of a frequent clause, with the

same head predicate, should also be a frequent clause”. The important point

in this trick is that the head of the generalizations should be the same as the

original clause in order to compare their frequencies since the head predicate is

the key predicate of the pattern and the key predicate designates the object(s)

to be counted.

The contra-positive of the above property of definite clauses says that if

a clause is infrequent, it is redundant to generate any specialization of it as

candidate concept clauses since any specialization of an infrequent clause is

also infrequent. The APRIORI lattice in Figure 2.5 can be used to illustrate the

structure of the clausal search space, where each letter represents a clause instead

of an item set and the lines in the lattice represent the generality relationship

between clauses. Any clause in a path above a clause must be frequent if the

original clause is frequent.
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3.2 Proposed System I

The system proposed employs a coverage algorithm in constructing concept def-

inition. It first selects a positive concept example, based on the order of concept

instances in the database. The most general clauses, with two predicates, that

entail the positive example are generated and then the concept rule space is

searched with an APRIORI-like specialization operator. The specialization op-

erator utilizes the frequency property of definite clauses in order to effectively

prune the search space. Among the frequent and strong rules produced, the

system selects the best clause using a criterion called f-measure [49], which is

discussed later, and repeats the rule search for the remaining concept instances

that are not in the coverage of the hypothesis clauses. The overall pseudo code

of the system is given in Table 3.6.

The proposed system will be explained in three basic sections: generalization,

refinement and evaluation.

3.2.1 First Phase: Generalization of Positive Examples

Throughout the chapter, we will use the daughter relation in Table 3.1 as a

running example. Two versions of the proposed system will be explained on this

learning task.

Table 3.1: The database of the daughter example with type declarations

Concept Instances Background Facts Type Declarations
daughter(mary, ann). parent(ann, mary). daughter(person, person).
daughter(eve, tom). parent(ann, tom). parent(person, person).

parent(tom, eve). female(person).
female(ann).
female(mary).
female(eve).

After picking a positive example, the system searches facts related to the

concept instance in the database, including the related facts that belong to the

target concept in order for the system to induce recursive rules. Two facts are
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related if they share the same constant in the predicate argument positions of

same type.

For each related fact, the system derives concept descriptions (CD) that

generalize the behavior of the concept instance (CI) in terms of the related fact

(RF). The system utilizes the absorption operator, defined in Section 2.2, to

form a V-tree for each concept instance-related fact couple (CI, RF) and derives

all possible generalizations CD on one arm of the V-tree, given the concept

instance CI as the base clause and the related fact RF on the other arm of the

tree.

CD = (CI ∪ ¬RFθ1)θ
−1

2

Since the database fact RF is ground, θ1 is empty substitution and the system

searches for generalizations of the form (CI ∪ ¬RF )θ−1

2 , i.e. all possible values

of inverse substitution θ−1

2 .

In short, concept instance and each related fact are generalized into two

literal definite clauses, in such a way that the concept instance is an instance of

the most general resolvent of the related fact and each generalization. For each

target concept fact related to the original concept instance, two literal recursive

generalizations are obtained.

In the daughter example, proposed system I selects the first concept in-

stance “daughter(mary, ann)” and then finds the related fact set of the cur-

rent concept instance {parent(ann, mary), parent(ann, tom), female(ann), fe-

male(mary)}. In the generalization phase, the system generalizes the concept

instance “daughter(mary, ann)” in the presence of each related fact via absorp-

tion operator. Now it will be shown how the system generalizes the concept

instance and the first related fact “parent(ann, mary)” into two predicate def-

inite clauses. Applying absorption operator, the concept descriptions of the

form {daughter(mary, ann) : −parent(ann,mary)}θ−1

2 are derived. The table

3.2 consists of the possible inverse substitutions and the resultant concept de-

scriptions. In the table, the inverse substitutions are in the form of (term, the

locations of the term in the clause)/variable where the locations of the term in
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the clause are represented with 2-tuples such that first entry represents the order

of the predicate in the clause and the second entry shows the argument order in

the predicate. (Both predicate and argument order start with 0 instead of 1)

Table 3.2: Two predicate concept descriptions generated by the Proposed Sys-
tem I

Concept Description Value of θ−1

2

daughter(X3,ann):-parent(ann,X3) {(mary,[0, 0][1, 1])/X3}
daughter(X1,ann):-parent(ann,X2) {(mary,[0, 0])/X1,(mary,[1,1])/X2}
daughter(mary,X6):- {(ann,[0, 1][1, 0])/X6}
parent(X6,mary)
daughter(mary,X4):- {(ann,[0, 1])/X4,(ann,[1, 0])/X5}
parent(X5,mary)
daughter(X1,ann):-parent(X5,mary) {(mary,[0, 0])/X1,(ann,[1, 0])/X5}
daughter(X1,X6):-parent(X6,mary) {(mary,[0, 0])/X1,(ann,[0, 1][1,0])/X6}
daughter(X1,X4):-parent(X5,mary) {(mary,[0, 0])/X1,(ann,[0, 1])/X4,

(ann,[1,0])/X5}
daughter(mary,X4):-parent(ann,X2) {(mary,[1, 1])/X2,(ann,[0,1])/X4}
daughter(mary,X6):-parent(X6,X2) {(mary,[1, 1])/X2,(ann,[0, 1][1,0])/X6}
daughter(mary,X4):-parent(X5,X2) {(mary,[1, 1])/X2,(ann,[0, 1])/X4,

(ann,[1, 0])/X5}
daughter(X3,X4):-parent(ann,X3) {(mary,[0, 0][1, 1])/X3,(ann,[0,1])/X4}
daughter(X3,ann):-parent(X5,X3) {(mary,[0, 0][1, 1]/X3),

(ann,[1, 0])/X5}
daughter(X3,X6):-parent(X6,X3) {(mary,[0, 0][1, 1])/X3,

(ann,[0, 1][1, 0])/X6}
daughter(X3,X4):-parent(X5,X3) {(mary,[0, 0][1, 1])/X3,(ann,[0, 1])/X4,

(ann,[1, 0])/X5}
daughter(X1,X4):-parent(ann,X2) {(mary,[0, 0]/X1),(mary,[1, 1])/X2,

(ann,[0, 1])/X4}
daughter(X1,ann):-parent(X5,X2) {(mary,[0, 0])/X1,(mary,[1, 1])/X2,

(ann,[1, 0])/X5}
daughter(X1,X6):-parent(X6,X2) {(mary,[0, 0])/X1,(mary,[1, 1])/X2,

(ann,[0, 1][1, 0])/X6}
daughter(X1,X4):-parent(X5,X2) {(mary,[0, 0])/X1, (mary,[1, 1])/X2,

(ann,[0, 1])/X4, (ann,[1, 0])/X5}

The generalization phase of the implementation is given in pseudo code form

in Table 3.3.
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Table 3.3: The pseudo code of the generalization operator in the Proposed
System I

relatedBackgroundFacts = sampleTargetFact.getRelatedFacts;
for each fact in relatedBackgroundFacts
do

1.Construct the most specific clause with two literals
that entails sampleTargetFact (sampleTargetFact ← fact)
2.Generate two predicate θ-subsumption generalizations of
this most specific clause, i.e. find all possible inverse substitutions
using inverse resolution V-operator.

end do

3.2.2 Second Phase: Refinement of Generalizations

After the generalization phase, the system populates first level of the APRIORI

lattice with two predicate concept descriptions obtained in the first phase. In the

second phase, the system refines the two predicate concept descriptions with an

APRIORI-based specialization operator that searches the definite clause space

in a top-down manner, from general to specific.

As in APRIORI, the search proceeds level-wise in the hypothesis space and it

is mainly composed of two steps: frequent clause set selection Fl from candidate

clauses Cl and candidate clause set generation Cl+1 as refinements of the frequent

clauses Fl in the previous level. We extend standard APRIORI search lattice to

capture first-order logical clauses and customize the candidate generation and

frequent pattern selection tasks for first-order logical clauses.

3.2.2.1 Frequent Clause Selection

After candidate clauses are generated, the system picks the frequent clauses in

the candidate clause set based on the support value of clauses. If the support

value of a clause is greater than the support threshold, then the clause is refined

otherwise eliminated, as in APRIORI.

In the section 2.3.2, the support computation for relational association rules

is illustrated against a deductive database. Since a relational database is used in
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place of a deductive one in the implementation phase, the support of a definite

clause should be expressed in relational query language terminology, SQL syntax.

The absolute support value of a definite clause C, the number of key objects

having the structure represented by the relational pattern in C, can be obtained

with the following SQL query [46]:

SELECT count(distinct *) FROM

SELECT key fields in the head/concept predicate

FROM relations in C

WHERE conditions expressed in the clause C

The relative support value is computed by dividing the absolute support

value by the total number of key objects:

SELECT count(distinct *) FROM

SELECT key fields in the head/concept predicate

FROM the head relation in C

For instance, the following formula computes the relative support value of

the clause “daughter(X, Y):- parent(Y, X)” for the daughter example:

Relative Support = Count1 / Count2

where count1 is found as

SELECT count(distinct *) FROM

SELECT daughter.arg1, daughter.arg2

FROM daughter, parent

WHERE daughter.arg1 = parent.arg2 AND

daughter.arg2 = parent.arg1

and count2 is found as

SELECT count(distinct *) FROM

SELECT daughter.arg1, daughter.arg2

FROM daughter

According to the database in the daughter example, this query returns the

support value of 2/2 = 1. In Table 3.4, the relative support value of each

generalization in Table 3.2 is illustrated.
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Table 3.4: The relative support values of two literal concept descriptions gener-
ated in the first phase

Concept Description Relative Support Value
daughter(X3,ann):-parent(ann,X3) 0.5
daughter(X1,ann):-parent(ann,X2) 0.5
daughter(mary,X6):-parent(X6,mary) 0.5
daughter(mary,X4):-parent(X5,mary) 0.5
daughter(X1,ann):-parent(X5,mary) 0.5
daughter(X1,X6):-parent(X6,mary) 0.5
daughter(X1,X4):-parent(X5,mary) 1.0
daughter(mary,X4):-parent(ann,X2) 0.5
daughter(mary,X6):-parent(X6,X2) 0.5
daughter(mary,X4):-parent(X5,X2) 0.5
daughter(X3,X4):-parent(ann,X3) 0.5
daughter(X3,ann):-parent(X5,X3) 0.5
daughter(X3,X6):-parent(X6,X3) 1.0
daughter(X3,X4):-parent(X5,X3) 1.0
daughter(X1,X4):-parent(ann,X2) 1.0
daughter(X1,ann):-parent(X5,X2) 0.5
daughter(X1,X6):-parent(X6,X2) 1.0
daughter(X1,X4):-parent(X5,X2) 1.0

3.2.2.2 Candidate Clause Generation

After the frequent clauses to be refined are selected, candidate clauses for the

next level of the search space are generated. Candidate clause generation is

composed of three important steps:

• The set of frequent clauses of the previous level, Fi−1, is joined with itself

to generate the candidate clauses Ci via union operator.

• For each candidate clause, a further specialization step is employed that

unifies the existential variables of the same type in the body of the clause.

• The candidate clauses that have a partially connected structure are elim-

inated via filtering.

In order to apply the union operator to two frequent definite clauses, there

are three conditions for these clauses to fulfill. First, these clauses must have
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the same head literal and bodies that have all but one literal in common in

order to be combined. Since only clauses that have the same head literal are

combined, the search space is partitioned into disjoint APRIORI sub-lattices

according to the head literal. Secondly, the system does not combine clauses

that are specializations of the same candidate clause produced in the second

step of the candidate generation task in order to prevent repeated literals in

the body of the clauses and rapid expansion of the search space. For instance,

the clauses “samegeneration(X2,X1):-samegeneration(X3,X5), parent(X5,X2)”

and “samegeneration(X2,X1):-samegeneration(X5,X5), parent(X5,X2)” are spe-

cialized from the clause “samegeneration(X2,X1):-samegeneration(X3,X5), par-

ent(X9,X2)” by unifying existential variables in the second step of the candidate

generation and are not suitable to be combined. Finally, recursive clauses are

forbidden to be combined in order to prevent rapid expansion of the search

space, i.e. the system does not allow recursive clauses except linearly recursive

ones.

If the frequent clauses are suitable to be combined, the union of the clauses

is computed with the relational extension of APRIORI concatenation operator:

C1 ∪ C2 = {C1 ∪ l21 | C12 = C1 ∩ C2θ ∧ C2θ − C12 = l21}

As shown above, union of two clauses is in fact appending the literal in C2

but not in C1 to the body of the clause C1. Before appending, the system

applies a substitution to the literal in order to rename variables in the literal

according to the variables in the first clause C1. Since there may be more than

one intersection of two frequent clauses, it is possible to produce multiple unions

of two clauses.

If the concept descriptions are refined with only union operator, the search

space will consist of clauses that have body relations/predicates directly bound

to the head predicate through head variables. The structure of such clauses can

be figured out as in Figure 3.2.

However, the system should also find clauses that have body predicates in-

directly (not directly) bound to the head predicate. These clauses are needed
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Figure 3.2: A clause with body predicates directly bound to the head predicate

to represent structured properties of the key objects. Body predicates bound

by existential variables represent the structured properties of key objects in the

logical framework, as illustrated with dotted lines in Figure 3.3.

In order to capture clauses that have relations indirectly bound to the head

predicate, the system applies a further specialization operator to each union

clause in the candidate generation task. The specialization operator unifies the

existential variables of the same type in the body of the clause. We define the

specialization operator formally as follows:

1. First the operator finds all existential variables in the union clause, that

occur only once.

E(c) = {v ∈ body(c) | occurs(v, c) = 1}

2. Then it finds all pairs of existential variables that have the same type.

P (c) = {(v1, v2) | v1, v2 ∈ E(c) ∧ type(v1) = type(v2)}

3. Each subset of the existential variable pairs except the empty set represents

a different unification set.
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Figure 3.3: A Clause with body predicates indirectly bound to the head predicate

Figure 3.4: The structure of the search space in the Proposed Systems

U(c) = {s ⊆ P (c) | s 6= {}}

4. For each unification set, a specialization of the union clause is obtained

via unifying the variable pairs in the set.

Relational upgrade of APRIORI trick indicates that “If a clause is not fre-

quent then any of its specializations can not be frequent”. In other words, the

system should not expand any infrequent clause. In the proposed system, there

are two specialization operators: adding literals via union operator and unifica-

tion of existential variables. Therefore, the structure of the search space differs

from the APRIORI lattice as in Figure 3.4.

The arrows between different levels represent the union operator and the

curves represent the specializations of unions through existential variable uni-
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fications. The frequency of union clause c3 depends on the frequency of each

clause in the previous level, from which the union is generated, c1, c2; and the

specializations in the same level c4, c5, c6 depend on the frequency of union

c3. Therefore if the union is not frequent, then the system neither expands the

clause nor computes its specializations.

Now, the question is “Does each candidate clause generated represent a

meaningful concept description?”. The answer is no since there are many con-

cept descriptions in the first level consisting of unbound relations and the union

of these clauses may also have unbound relations or partially connected struc-

ture. For instance, the clause

daughter(X3, ann) : −parent(ann,X3), parent(X28, tom).

is refined from the clauses

daughter(X3, ann) : −parent(ann,X3).

daughter(X26, ann) : −parent(X28, tom).

The clause has an unbound predicate “parent(X28, tom)” which spoils the re-

lational integrity of the concept description.

If we filter these clauses before adding them to the search space, is there

a possibility that the system misses a fully connected rule that is a superset

of a partially connected clause? Fortunately, the system does not miss any

such clause since a fully connected clause of length i has at least two fully

connected disjoint sub-clauses of length i-1, that can be joined into the original

clause. Therefore, before adding to the search space each clause should be tested

whether it is fully connected or not, except in the first level.

The system utilizes a graph-based method to decide whether a clause is fully

connected or not [50]. In this method, first-order clauses are interpreted using

a graphical representation. The system checks whether the graph of the clause

is connected or not in order to decide the partially connectedness of the clause.

Each predicate of the clause is represented by a vertex and each predicate pair

related by shared variables is represented by an indirected arc. For example, the
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Figure 3.5: A partially connected clause

clause daughter(X3, ann) : −parent(ann,X3), parent(X28, tom) is represented

by the graph in the Figure 3.5.

An undirected graph is called connected if there is a path between every pair

of distinct vertices of the graph [51]. If the graph of a clause is not connected, i.e.

it consists of connected subgraphs, each pair of which has no vertex in common,

then the clause is partially connected as in Figure 3.5.

The candidate generation task is given as a pseudo code in Table 3.5.

Table 3.5: The pseudo code of the refinement operator in Proposed System I

For each pair of the clauses k and m in the previous tree level l-1,
do the following:

a.If clausek and clausem have same group number, continue.
b.If clausek and clausem are both recursive, continue.
c.Compute the union clauses of clausek and clausem.
d.For each possible union,

i.If tree(level) does not contain the union and the
frequency of the union is above the support threshold, then

1.If the union is a fully connected clause,
add it to the level l; otherwise discard it.

2.Generate clauses by unifying existential variables in
the body clause.

3.For each clause generated, check whether it is frequent
and connected. If it is qualified, add it to the level l.
ii.Else continue.

The proposed refinement operator can be summarized as follows:

Refinement operator Given the language bias L with type declarations, the

refinement operator p maps two input clauses c1 and c2, which have all

predicates but one body predicate in common, to a set of clauses p(c1, c2)

that are the frequent specializations of the union of the input clauses (c1
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U c2) under θ-subsumption. In the formal definition,

p(c1, c2) = {c′ ∈ L | support(c′) ≥ threshold, (c1 ∪ c2) θ = c′}

where θ only unifies one occurrence existential variables in (c1 ∪ c2).

For the daughter example, the system selected the concept instance “daugh-

ter(mary, ann)”, computed the two predicate generalizations of this concept in-

stance in the presence of related facts and populated the first level of the search

lattice with these generalizations. It is time to refine the candidate clauses in

the first level using the proposed refinement operator.

The system first computes the frequent ones among two predicate candi-

date clauses via evaluating the support value of each candidate. With the sup-

port threshold value 0.8 given through the user interface, the system selects the

clauses

d(X1, X4) : −p(X5,mary). d(X3, X6) : −p(X6, X3).

d(X3, X4) : −p(X5, X3). d(X1, X4) : −p(ann,X2).

d(X1, X6) : −p(X6, X2). d(X1, X4) : −p(X5, X2).

d(X24, X25) : −p(X26, tom). d(X34, X35) : −f(X34).

d(X32, X35) : −f(X33).

with support value 1.0 as frequent and discard the rest of candidates from

the first level of the search tree. (d: daughter, p: parent, f: female)

After the frequent clause selection, the candidate clauses for the next level

are generated. Lets take the following two frequent clauses in the first level:

C1 : daughter(X3, X6) : −parent(X6, X3).

C2 : daughter(X34, X35) : −female(X34).

First, the system checks whether these clauses are appropriate for combining.

It checks:

1. Whether the head literals of clauses are equal;

daughter(X3, X6) and daughter(X34, X35) are equal in predicate level.
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2. Whether the clauses have all but one literal in common;

1-element subsets of first clause are “daughter(X3, X6)” and “parent(X6,

X3))”; the second clauses subsets are “daughter(X34, X35)” and “fe-

male(X34)”. Among these subsets, the clauses “daughter(X3, X6)” and

“daughter(X34,X35)” are equal through variable renaming. Therefore, the

clauses have 1-element literal set in common.

3. And finally, whether they are specializations/generalizations of the same

clause;

The system keeps a group number for each clause in the search lattice; the

specializations of a clause in the same level of the search lattice or gen-

eralizations of the same concept instance-related fact pair have the same

group number. C1 is a generalization of the clause daughter(mary, ann):-

parent(ann,mary) and it has the group number 1; C2 is a generalization of

the clause daughter(mary, ann):- female(mary) and has the group num-

ber 3. Thereafter, the clauses are not generalizations of the same clause

and the combination of them does not cause a redundancy.

Since the clauses are suitable, the system computes the combination of them

via the union operator.

1. First the system computes the intersection and the unifying variable re-

naming θ as in the second check and results in:

C12 = daughter(X3, X6) θ : {X34/X3, X35/X6}

2. Then, the system applies the unifying substitution to the second clause:

C ′

2 = daughter(X34, X35) : −female(X34){X34/X3, X35/X6}

C ′

2 = daughter(X3, X6) : −female(X3)

3. Then, compute the literal in C ′

2 but not in C12:

C ′

2 − C12 = {: −female(X3)}
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4. Then append this literal to the body of the first clause:

C1 ∪ C2 = {daughter(X3, X6) : −parent(X6, X3), female(X3)}

If the support of the union is above the threshold value and does not have

partial relations, it will be added to the second level of the search lattice.

After applying the union operator, the system further computes the spe-

cializations of the frequent union clauses via unifying existential variables in the

body. Since there is no existential variable in “daughter(X3,X6):-parent(X6,X3),

female(X3)”, the unification will be illustrated on a different clause. For in-

stance, the system applies the union operator to the frequent generalizations

{C1, C2} and obtains the union C3 below. Now, we will show how the system

unifies the existential variables in the body of the union C3:

C1 : daughter(X1, ann) : −parent(ann,X2).

C2 : daughter(X34, ann) : −female(X35).

C3 : daughter(X1, ann) : −parent(ann,X2), female(X35).

First the system discovers the set of existential variables in the body with its

locations, {X2[1,1], X35[2,0]} in the example. Since X2 and X35 are of the

“person” type, the set of existential variable pairs of the same type is {(X2[1,1],

X35[2,0])}. There is only one subset of existential variable pair set, which is

{(X2[1,1], X35[2,0])}, so there is only one specialization of the clause C3 as the

variable X35 is renamed as X2:

C3′ : daughter(X1, ann) : −parent(ann,X2), female(X2).

3.2.3 Third Phase: Evaluation of Frequent Clauses

For the first instance of the target concept, which has not been covered by the

hypothesis yet, the system constructs the search tree consisting of the frequent
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candidate clauses that induces the current concept instance. The system should

decide on which clause in the search tree represents a better concept description

than other candidates. In other words, the system searches which clause is the

best and is suitable to be added to the hypothesis.

Two criteria are important in the evaluation of a candidate concept rule: how

much part of the concept instances are captured by the rule and the proportion

of the objects which truly belong to the target concept among all those that show

the pattern of the rule; support and the confidence, respectively. Therefore, the

system should assign a score to each candidate clause according to its support

and confidence value.

In the evaluation phase, the system utilizes a metric, f-measure [49], based

on the support and confidence to evaluate the quality of a clause. The concept

description with the highest f-measure value is added to the hypothesis. f-

measure can be formally defined as (2 × support × confidence) / (support +

confidence).

Confidence = Count3 / Count4

where count3 is found as

SELECT count(distinct *) FROM SELECT key fields in the

body predicates that are bound in the head predicate

FROM relations in C

WHERE conditions expressed in the clause C

and count4 is found as

SELECT count(distinct *) FROM SELECT key fields in the body

predicates that are bound in the head predicate

FROM relations in the body of C

WHERE conditions expressed in the body of C

The computation of the support of a definite clause is described in Section

3.2.2.1. The confidence of a definite clause C, the probability of the key objects
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that satisfy the body literals of the clause also satisfies the head, can be obtained

with the previous formula via SQL queries.

For instance, for clause daughter(X, Y):- parent(Y, X), the following query

computes the confidence value in SQL syntax:

Confidence = Count5 / Count6

where count5 is found as

SELECT count(distinct *) FROM

SELECT parent.arg1, parent.arg2

FROM daughter, parent

WHERE daughter.arg1 = parent.arg2

AND daughter.arg2 = parent.arg1

and count6 is found as

SELECT count(distinct *) FROM

SELECT parent.arg1, parent.arg2

FROM parent

According to the daughter database, this query returns the confidence value

of 2/3.

In the daughter example, the search tree constructed for the daughter in-

stance “daughter(mary, ann)” is traversed for the best clause and the clause

“daughter(X3,X6):-parent(X6,X3), female(X3)” with support value of 1.0 and

the confidence value of 1.0 is selected and added to the hypothesis. Since all the

concept instances are covered by this rule, the algorithm terminates and outputs

the hypothesis:

daughter(X3, X6) : −parent(X6, X3), female(X3)

3.3 Proposed System II

In order to capture clauses that have relations not directly bound to the head

predicate, the proposed system allows fully existential/unbound predicates in
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Table 3.6: The Proposed System I

- Initialize the set of concept instances set I
- Initialize the hypothesis H = ∅
- Do until all the concept instances are covered by the hypothesis (I = ∅):

1.Select the first positive concept instance p from I.
2.Generalize positive instance in presence of background
knowledge via Algorithm 2 and call the set of generalizations G.
3.Initialize level d := 1
4.Initialize the set of candidate clauses C1 := G
5.Initialize the set of frequent queries F := {}
6.While Qd not empty and d ≤ maxdepth

a. Find frequency of all clauses C ∈ Cd

b. Discard the clauses with frequency below minfreq from Cd.
c. Update F := F ∪ Cd

d. Compute new candidates Qd+1 from d+1, using Algorithm 3
e. Increment d by 1.

7.Discard the clauses with confidence below minconf from F.
8. Select the best clause cbest from F using the f-measure criterion.
9.Compute the set of concept instances Ic covered by the best clause.
10.Update H := H ∪ cbest

11.Update I := I - Ibc
-Return H.

the body of clauses in the generalization step. Therefore, the first level of the

search lattice expands exponentially as the number of facts related to the current

concept instance increases. Since the size of each level l of the ARPIORI search

lattice is order of two squared the size of the level l-1, the size of the search

lattice is order of n2(d−1)
in the worst case, where n is the size of the first level

and d is the depth of the search tree.

For large scale data mining tasks like discovering structure-activity relation-

ships (SAR) that relate molecular structure with specific ability of molecules,

the background knowledge database is generally composed of 20000 records or

more, which results in an intractable problem for the proposed system I. There

is a tradeoff between the complexity and the completeness of the algorithm. In

our less complex and then less complete solution, the system tightens the limits

of the language bias in the sake of efficiency. The proposed system II does not
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allow clauses with body relations not directly bound to the head predicate in

the language.

We change the generalization and refinement operators of the proposed sys-

tem I in the second version.

The concept learning time is determined by the number of two predicate

clauses in the first level of the search space. Therefore, the generalization oper-

ator of the proposed system II differentiates in the way that it does not allow

two predicate clauses that have body predicates not bound to the head.

Besides the limitation on the body predicates, the generalization operator se-

lectively substitutes one-location existential variables (variable that is not bound

in the head and exists only once) to terms in the body predicates.

In fact, assigning one-location existential variable to an argument location

means ignoring that attribute of the predicate in describing the concept pattern.

As in [52], the predicates in the database can be classified as “utility predicates”

and “structural predicates”. Structural predicates explain the substructures of

an object; whereas utility predicates present the properties of objects. For in-

stance, for a molecule, “has atom(moleculeId, atomId)” is a structural predicate,

while “mutagenic(moleculeId)” is a utility one. In a concept description, we can

only ignore features of an object or extra properties of a structural relation.

The object itself or a relation should not be ignored if that object or relation is

added to the rule. Therefore, the system imposes a language bias such that key

arguments of predicates can not be assigned one-location existential variables.

However, if there is a one-to-many relation between key fields of a predicate

and the predicate encapsulates the properties of the key field with many arity,

then it is necessary to assign one-location existential variables to key fields.

This kind of predicates is a combination of utility and structural predicates and

should be normalized into structural and utility predicates separately. This in

fact introduces a new pre-processing step before the learning task. In the test

phase, key fields with many arity are ignored and the system does not assign

one-location existential variable to any key fields of a body predicate.
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As stated in [26], there are literals which do affect neither the support nor

the confidence of a relational association rule if added. We will call these pred-

icates as valid predicates. For instance, the target concept is “class(animal,

type)” and the background knowledge contains “habitat(animal, location)” and

“has eggs(animal)”. The predicate “has eggs(animal)” is not true for all animals

and is a distinctive property among animals. On the other hand, the fact “habi-

tat” returns always true since every animal has a habitat. Therefore, the literal

“habitat(X, Y)” does not distinguish one animal class from another if added to

the body of a rule as a new condition. In a formal way, valid predicates can be

defined as follows:

∀k1, k2, ..., kn ⇒ ∃a1, a2, ..., am predicate (k1, k2, ...kn, a1, a2, ..., am) where

ki ∈ keys and aj ∈ attributes.

We state that it is not sound to make such literals fully existential in the

generalization step via assigning existential variable to all attributes of the lit-

eral. This restriction prevents the potential redundancy in the lower levels of

the search space.

This language bias is applied to only body predicates and local variables in

the body; there is no limitation in assigning existential variables to the head

variables since existential variables in the head are necessary for clauses to be

combined in the specialization steps.

The user declares such literals (always true or not) and key fields of each

background predicate via graphical interface.

In the daughter example, the following two predicate clauses, whose body

predicates are bound to the head, are generalized from the concept instance

“daughter(mary, ann)” and the related fact “parent(ann, mary)” in the gener-

alization phase:

Since the arguments of both “daughter” and “parent” relations are all key

fields for the corresponding relations, the system does not assign existential

variable to any fields of body predicates. In comparison with the generalization

operator in the first implementation, the number of rules in the first level of the
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Table 3.7: Two predicate concept descriptions generated by the Proposed Sys-
tem II

Concept Descriptions Value of θ−1

2

daughter(X3,ann):-parent(ann,X3) mary-X3-[0, 0][1, 1]
daughter(mary,X6):-parent(X6,mary) ann-X6-[0, 1][1, 0]
daughter(X1,X6):-parent(X6,mary) mary-X1-[0, 0], ann-X6-[0, 1][1,0]
daughter(X3,X4):-parent(ann,X3) mary-X3-[0, 0][1, 1], ann-X4-[0,1]
daughter(X3,X6):-parent(X6,X3) mary-X3-[0, 0][1, 1], ann-X6-[0, 1][1,0]

search tree reduces significantly from 18 to 5 clauses.

After the generalization step, the rules in the last level of the search tree are

combined in order to retrieve candidate rules of the current level.

In the Proposed System I, an extra specialization step is employed, via uni-

fying the existential variables, to capture inner structures not directly related

to the head predicate, in other words n-depth relational patterns. In this im-

plementation, the system does not allow fully existential body predicates in the

generalization step. Therefore, an extra generalization step is employed after

combining the clauses in order to discover the first-order features, which are sets

of body literals interacting by local variables [52]. In the generalization step,

new local variables are introduced by unifying common constants of the same

type in various argument positions of body predicates.

The generalization after specialization constitutes a breach in the application

of the APRIORI rule since any generalization of the specialization of two clauses

can be more general than one of or both of the clauses. Therefore, this prevents

the top-down specialization of the APRIORI lattice. As a result, it is possible

to bypass some frequent definite clauses because of this gap.

Finally, the filtering step, which checks whether the candidate clause is con-

nected or not, is not employed in this version since the clauses are guaranteed

to be connected via head variables.

In the daughter example, the following frequent two predicate generaliza-

tion set is obtained as a result of the generalization of the concept instance
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daughter(mary, ann), in the presence of related facts, in this implementation.

{daughter(X2, X1) : −female(X2)., daughter(X8, X6) : −parent(X6, X8).}

The generalizations are appropriate for combining and the resultant clause is as

follows:

daughter(X2, X1) : −female(X2), parent(X1, X2).

Since the uncommon literals of two clauses, female(X2) and parent(X1, X2), do

not have common constants that can be variablized, there is no generalizations

of this clause. Therefore, the second level of the search space only consists of the

clause “daughter(X2, X1) : −female(X2), parent(X1, X2).” and the algorithm

terminates.

3.4 Discussion

There is a trade-off between two versions of the proposed technique. The pro-

posed system I allows the clauses including body predicates that are not directly

connected to the head predicate in the search space, whereas the second one does

not in the sake of efficiency. The efficiency of the second system lies in not allow-

ing fully existential body predicates in the generalization step. Then the ques-

tion arises, “Is not it possible to construct a combination of these systems that

does not allow fully existential body predicates in the first phase and achieves

to cover clauses with body predicates not directly connected to the head?” It

is only possible by adding literals to the body of the clauses in inner steps and

bounding these literals to only body predicates. This extra specialization step

also results in performance overhead as introducing existential variables in the

first level.
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CHAPTER 4

EXPERIMENTAL RESULTS

The experiments show how the first system can be used to learn a linear recursive

relation, and second one to predict carcinogenicity of a molecule in a large noisy

database. Additionally, two systems are compared on a benchmark ILP problem,

the task of learning finite element mesh design. Each experiment is performed

on a desktop computer equipped with 256 MB RAM and 1.80 GHz Pentium 4

processor.

4.1 Linear Recursive Rule Learning

The first test case is a complex family relation, “same-generation”, learning

problem. In the data set, 118 pairs of family members are given as positive

examples of “same-generation” relation. Additionally, 30 background facts are

provided to describe the parental relationships in the family. The task is to form

general rules to describe the “same-generation” concept.

Types of predicate arguments are provided by the user via graphical interface

and stored in a source file. Positive concept instances and background knowledge

are given as DB2 database tables. The following items show the data and user

declarations utilized by the program:

• Types
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parent(person, person).

same-generation(person, person).

• Concept instances: Same-generation relation

Person1 Person2

Seda Eda

Eda Seda

· · · · · ·

• Background knowledge: Parent relation

Parent Child

Adnan Seda

Adnan Eda

· · · · · ·

The parameters of the algorithm, support and confidence values are set to

0.3 and 0.6, respectively. Assuming that the concept description will contain

n disjunctive rules and the concept instances are shared between the rules ho-

mogenously, then the minimum support value should be 1/n. Since we assume

that the hypothesis has 3 rules, the support threshold is set to 0.3. One more

parameter, the maximum predicate count of the clause, is set to 5. With these

parameters set, the proposed system I found the following hypothesis in 8 sec-

onds: (s: samegeneration, p: parent)

s(X2,X1):-s(X3,X5), p(X5,X2),p(X3,X1).

s(X2,X1):-s(X4,X3), p(X4,X2),p(X3,X1).

s(X2,X1):-p(X5,X2), p(X5,X1).

The first two clauses show that “same generation” relation is a symmetric rela-

tion and the third relation forms the base clause of the recursive relation.

Since the second proposed system can not find clauses with body predicates

indirectly bound to the head, the first two recursive relations will not be captured
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in the hypothesis if this system tries to learn the “same-generation” relation. As

a result, second version is not capable of learning “same-generation” concept.

4.2 The Carcinogenicity Evaluation Problem

A large percentage of cancer incidents stems from the environmental factors,

such as cancerogenic compounds. The carcinogenicity tests of compounds are

vital to prevent cancers; however, the standard bioassays of chemicals on rodents

are really time-consuming and expensive. Therefore, the National Toxicity Pro-

gram (NTP) of the U.S. National Institute for Environmental Health Sciences

(NIEHS) started the Predictive Toxicology Evaluation (PTE) project in order

to relate the carcinogenic effects of chemicals on humans to their substructures

and properties using the machine learning methods [53].

In the NTP program, the tests conducted on the rodents results in a database

of more than 300 compounds classified as carcinogenic or non-carcinogenic.

Among these compounds, 298 of them are separated as training set, 39 of them

formed the test set of the first PTE challenge (PTE-1) and the other 30 chem-

icals constitute the test set of the second PTE challenge (PTE-2) for the data

mining programs [31].

Within these challenges, knowledge discovery algorithms are presented with

characteristics of molecules that may be associated with carcinogenesis as back-

ground knowledge having roughly 25,500 facts [54]:

• Atom-bond structures of molecules.

• Complex structural groups like methyl, benzene.

• Inducing potential genetic risks determined as a result of short-term bio-

assays.

• Being mutagenic or not.

• Having some structural alerts.
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In this experiment, we tested the second implementation against the PTE-1

test set using the data published in [55].

The test procedure can be decomposed in two main phases: Parameter set-

ting and model construction from the training data, testing the model on the

test set. We used 298 molecules labelled as “training set” in order to obtain

hypotheses and PTE-1 test set in order to evaluate the constructed hypotheses.

There are three important parameters in the proposed system: minimum sup-

port value (support threshold), minimum confidence value (confidence threshold)

and the maximum number of predicates in the clause. The system should decide

the optimum values of these parameters for the carcinogenesis domain.

The method for choosing the optimum values for the parameters is simple:

1. Change the values of the parameters as one parameter varies at a time.

2. With this parameter setting, obtain hypotheses describing the concept

from the training set.

3. Evaluate and record the score of the hypotheses on the test set.

4. Choose the parameter setting and the hypotheses that result in the most

accurate prediction.

In hypothesis generation phase, our technique defines both the carcinogenic-

ity and non-carcinogenicity instead of modelling only the carcinogenicity con-

cept, since labelling the chemicals as negative in carcinogenic activity that do

not show the patterns of carcinogenicity is not logical. This is due to the fact

that the database may not include all the patterns of the carcinogenicity and

some molecules may be labelled as “unknown”.

The evaluation criteria of hypotheses employed is predictive accuracy. For

each molecule in PTE-1 test set, the rules in both hypotheses are scanned to

check whether they cover the current concept instance. If the current concept

instance does not have any patterns introduced by rules of the hypotheses, then

it is labelled as “unknown”. Otherwise, the one having the highest f-measure
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Figure 4.1: Predictive Accuracy/Support Graph

value among the rules covering the current concept instance determines the

class (carcinogenic or non-carcinogenic) of the molecule. After evaluating each

molecule in the PTE-1 test set, the predictive accuracy of the hypothesis is

computed by the proportion of the sum of positive concept instances classified

as positive (true positives) and negative concept instances classified as negative

(true negatives) to the total number of the concept instances that the hypothesis

classifies. The total number of concept instances classified by the hypothesis is

also called the coverage of the hypothesis. [31].

First, we trained the system with varying values of the support threshold

while the confidence threshold and the maximum number of predicates are fixed

to 0.6 and 5, respectively. The support values and the corresponding predictive

accuracies of the resultant hypotheses are plotted in Figure 4.1.

The graph shows that a very low or very high support threshold results in

low accuracy. If the minimum support value is too high (> 0.15), then the

rules involving patterns that rarely occur are not generated. Besides, rules that

partition the concept instances into many small subsets may be generated, many

of which are not correct if it is set too low (< 0.1). Therefore, the minimum

support value in the range of [0.1, 0.15] should be preferred.

After selecting the optimum value 0.15 for the support value, we obtained

59



Figure 4.2: Predictive Accuracy/Confidence Graph

and tested theories for different confidence values in the range [0.3, 0.8]. The

test results are summarized in Figure 4.2.

Normally, the rules having 100% confidence value should appear in the final

hypothesis; however, there can be noise in the data that should be tolerated.

There is no regular behavior of the accuracy in confidence threshold values

below 0.5 and this tells us that confidence below a minimum value is not a

criterion in discriminating performance of the rules. However, accuracy steadily

decreases as the confidence increases from the value of 0.6. This can be explained

by the decrease in the coverage of the hypothesis.

As can be seen from the graph, the confidence threshold value 0.6 results

in the best predictive accuracy. To set the minimum confidence to 0.6 means

that the system tolerates 40% noise at maximum. However, 40% noise for the

carcinogenesis data is an aggregated value since the data is obtained from the

long-lasting bioassays. We can conclude that not the noise but the missing data

about molecular structures and properties in the background knowledge pulls

down the minimum confidence value.

After fixing the support and confidence values, we test the system with dif-
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Table 4.1: The carcinogenicity hypothesis of the Proposed System II

A compound is carcinogenic if
1. It tests positive in Ames biological test; or
2. It has a “halide10” group recognized by Ashby and an
aromatic halide group; or
3. It has a methyl group and a positive cytogen ca test; or
4. It has a positive cytogen ca test and cytogen sce test; or
5. It has a negative “chromosomal aberration” test; or
6. It has a “amino” and “di10” group recognized by Ashby
and an amine group; or
7. It has a positive salmonella test; or
8. It reacts the same against both salmonella and cytogen ca tests,
it tests positive in cytogen sce test and has an aromatic halide group; or
9. It has positive mouse lymph and cytogen ca tests.

ferent values of maximum clause length in the range of [6, 10]. The accuracy and

the final hypothesis is the same for all values, in other words the system does

not find any rule having more than 6 predicates. Therefore, maximum clause

length is set to 6 due to the efficiency.

With the optimum parameter settings, the hypotheses constructed by the

proposed system are illustrated in Table 4.1 and Table 4.2. The proposed system

II generated the hypotheses for the carcinogenicity and non-carcinogenicity in

10 and 15 minutes, respectively. The predictive accuracy of 68.5% is achieved

with these concept models for PTE-1 test set.

The patterns in the hypothesis of carcinogenesis, involve only results of bio-

logical tests and the presence of chemical compounds; however, there is no rule

about the molecular substructures composing of atom and bond relations. Since

there are one-to-many relations among the keys of “atom” and “bond” relations

(a molecule can have more than one atom and bond), one-location existential

variables should be assigned to these key fields, which is forbidden due to the

language bias. Therefore, the rules like “molecules having bromine element are

carcinogenic” can not be expressed since it is not possible to assign one-location

existential variable to the “AtomID” key field, as in “atm(MolID, AtomID, br,
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Table 4.2: The non-carcinogenicity hypothesis of the Proposed System II

A compound is non-carcinogenic if
1. It has a six-ring group, tests negative in salmonella test and has a
positive mouse lymph test; or
2. It has a six-ring group, tests negative in salmonella test and has a
positive mouse lymph test; or
3. It has negative salmonella and cytogen ca tests, and it is mutagenic; or
4. It has methyl and six ring groups, and has negative salmonella and
cytogen ca tests; or
5. It has amine and six ring groups, and it is mutagenic; or
6. It has a negative cytogen ca test, it is mutagenic and it has a
ketone group; or
7. It has an amine group, and it has negative salmonella and
cytogen ca tests; or
8. It tests negative in salmonella and cytogen ca tests and has a
positive mouse lymph test; or
9. It tests negative in cytogen ca test, it has a six-ring group and it has
a positive mouse lymph test; or
10. It is mutagenic, it has a positive mouse lymph test and
has six-ring and non ar 6c ring groups; or
11. It has a negative salmonella test and has six-ring, methyl, ether
and non ar 6c ring groups.

ElementCount, AtomCharge)”.

When we analyze the PROGOL’s hypothesis in [54], we come up with the

rules 1, 5 and 6 in Table 4.1. The PROGOL’s hypothesis is composed of nine

first-order clauses and five of the clauses have patterns related to the atom-bond

relations in the molecule. From this point, we can conclude that the predictive

accuracy of the proposed algorithm increases if carcinogenesis data is normalized

in a preprocessing step and also continuous data (atom charge) is handled.

The PTE-1 predictive accuracies of the state-of-art methods are listed in

Table 4.3 as in [54].

4.3 Finite Element Mesh Design

In mechanical engineering, physical structures are represented by finite number

(mesh) of elements to sufficiently minimize the errors in the calculated deforma-
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Table 4.3: The predictive accuracies of the state-of-the-art methods for the
carcinogenicity problem

Method Type Predictive
Accuracy

Ashby Chemist 0.77
PROGOL ILP 0.72

RASH Biological potency analysis 0.72
Proposed ILP + Data mining 0.685
Algorithm

TIPT Propositional ML 0.67
Bakale Chemical reactivity analysis 0.63
Benigni Expert-guided regression 0.62
DEREK Expert System 0.57
TOPCAT Statistical Discrimination 0.54

COMPACT Molecular Modeling 0.54

Default Majority Class 0.51

tion values. The problem is to determine an appropriate mesh resolution for a

given structure, that results in accurate deformation values.

Mesh design is in fact determination of the number of elements on each edge

of the mesh. The task is to learn the rules to determine the number of elements

for a given edge in the presence of the background knowledge such as the type

of edges, boundary conditions, loadings and the geometric position.

Four different physical structures called (a-e) in [56] are used for learning in

this experiment. The number of elements on each edge in these structures are

given as positive concept instances, in the form of mesh(Edge, NumberOfEle-

ments). An instance of the positive example, mesh(b1, 6), means that edge 1

of the structure b should be divided in 6 sub-edges. The background knowledge

contains information about edge types, loadings on the edges, boundary condi-

tions and relative geometric positions of the edges. Some of background facts

are as follows [57]:
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Edge Types: long, circuit, short-for-hole

Boundary Conditions: fixed, free, two-side-fixed

Loadings: not-loaded, one-side-loaded, cont-loaded

Geometrical Relations: neighbor-xy, opposite, same

There are 278 positive concept examples and 1872 background facts in the

data set. We ran both versions of the proposed technique on this data set by

deriving a set of definite clauses for the four structures (b, c, d, e) and testing

these clauses on the remaining structure (a). The classification phase evaluates

the induced hypothesis according to the number of the edges in the test structure

that are assigned the correct number of elements (correctly classified).

We set the support threshold to 0.2, the confidence threshold to 0.6 and the

maximum number of predicates in the clause to 5 for both versions. Additionally,

another restriction is applied on the final rules to be induced such that there

can be at most two structural predicates neighbor, opposite, equal in a rule due

to the tractability issues.

The first version of the proposed system ran on this data for approximately

1.5 hours and generated 36 rules that describe the edges with 1 to 12 number

of elements. Some of the rules are given in Prolog format in Table 4.4. The

hypothesis correctly classifies 18 of the 55 edges in the structure a.

Before we test the second proposed system, we determined the key fields of

the relations (the fields of type edge are the key fields) and the relations that

always return true (only “mesh” relation) via user interface. The second system

was run on the same data-set for 5 minutes and it generated 13 rules. Some of

the rules in the second hypothesis are illustrated in Table 4.5. The classification

accuracy of the second hypothesis is lower than the first one and only 7 of the

55 edges are correctly classified.

As it can be seen in Table 4.4, first proposed system found rules that include

the properties of the related edges via body predicates not directly bound to

the head. However, second system induce rules that use only the properties of

a given edge, no related edges. This fact reflects on the predictive accuracies of

64



Table 4.4: Some of the rules in the hypothesis of the Proposed System I for the
mesh problem

mesh(X2,1):- neighbor yz(X1,X2), not important(X2).
mesh(X7,2):- neighbor xy(X7,X8), short(X7).
mesh(X8,7):- neighbor xy(X8,X9), fixed(X9), not loaded(X9), long(X8).
mesh(X8,7):- opposite(X8,X5), mesh(X5,7), fixed(X5), not loaded(X8).

Table 4.5: Some of the rules in the hypothesis of the Proposed System II for the
mesh problem

mesh(X2,1):- not loaded(X2), not important(X2).
mesh(X6,1):- free(X6), not important(X6).
mesh(X4,12):- circuit(X4), not loaded(X4).
mesh(X1,12):- circuit(X1), free(X1).

the systems. On the other hand, second system discovered the rules 18 times

faster than the first system.

The predictive accuracies of the state-of-art methods listed in [57] show that

FOIL, GOLEM, MFOIL and CLAUDIEN correctly classify 17, 17, 22 and 31

of 55 edges in the structure a, respectively. The classification accuracies of the

systems are not very high. This is due to the sparseness of the data and each of

the five structures shows unique characteristics that can not be captured in the

rules [2].
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CHAPTER 5

CONCLUSION

In this study, many aspects of multi-relational data mining are examined and

discussed. The aim is to combine rule extraction methods in ILP and efficient

search strategies of data mining. As an outcome, two versions of a concept

learning tool, a modified combination of WARMR and Inverse Resolution ab-

sorption operator, is produced. The application area of the first implementation

is learning complex, mostly recursive concepts/relations. Besides, the second

limited implementation is suitable for discovering frequent patterns in large and

noisy data sets, in other words, performance-critic applications.

Both versions of the proposed system are tested on popular data mining

search areas, such as bioinformatics and mesh design, and we come up with

promising test results that are comparable with the performance of current state-

of-the-art knowledge discovery systems, such as PROGOL.

Additionally, this study introduces a new method that induces modes of

predicate arguments, referenced or non-referenced, via inputting basic domain

knowledge from the user. The non-referenced arguments are in fact one-location

existential variables; an n-argument predicate results in 2n different combina-

tions of instantiations if non-referenced variables are allowed for all argument

positions of the predicate, resulting in exponential grow of the search space. The

proposed mode induction algorithm speeds up the learning process, by determin-
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ing which predicate arguments must be referenced in the clause or which ones can

be ignored, not referenced. However, the methodology requires normalized data

set in which utility and structural predicates are isolated. Real world databases

are usually not normalized and require an embedded pre-processing normalizing

step. This normalizing step is another research area, and not employed in the

learning phase of the proposed systems.

One limitation of the proposed system is that it only handles categorical data

and can not benefit from numerical fields, like atom charge in the carcinogen-

esis test, in order to extract more strong rules. Besides, it inputs only ground

background facts and can not process background rules about domain.

The results for the prediction of carcinogenesis and mesh design show that

the combination of the merits of ILP and data mining areas result in a promising

knowledge discovery system.
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[1] S. Džeroski. Multi-relational data mining: an introduction. SIGKDD Ex-
plorations, 5(1):1–16, 2003.
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[3] N. Lavrač, S. Džeroski, and M. Grobelnik. Learning nonrecursive definitions
of relations with LINUS. In Y. Kodratoff, editor, Proceedings of the 5th
European Working Session on Learning, volume 482 of Lecture Notes in
Artificial Intelligence, pages 265–281. Springer-Verlag, 1991.

[4] G. Cestnik, I. Konenenko, and I. Bratko. Assistant-86: A knowledge-
elicitation tool for sophisticated users, in Progress in Machine Learning,
I. Bratko and N. Lavrac, Eds. Wilmslow, U.K.: Sigma, 1987, pp. 31–45.

[5] I. Mozetic. NEWGEM: Program for learning from examples. Technical
documentation and user’s guide. Reports of Intelligent Systems Group
UIUCDCS-F-85-949, Department of Computer Science, University of Illi-
nois, Urbana Champaign, IL, 1985.

[6] P. Clark and R. Boswell. Rule induction with CN2: Some recent improve-
ments. In Proc. Fifth European Working Session on Learning, pages 151–
163, Berlin, 1991. Springer.

[7] S. Muggleton. Inductive Logic Programming. In The MIT Encyclopedia of
the Cognitive Sciences (MITECS). MIT Press, 1999.

[8] S. Kramer and G. Widmer. Inducing classification and regression trees in
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