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ABSTRACT

TIME-BASED WORKFLOW MINING

Cantürk, Deniz

M. Sc., Computer Engineering

Supervisor : Assoc. Prof. Dr. Nihan Kesim Çiçekli

May 2005,  71 pages

Contemporary workflow management systems are driven by explicit

process models,  i.e.,  a completely specified workflow design is  required in

order to  enact a given workflow process.  Creating a workflow design is  a

complicated  time-consuming  process  and  typically  there  are  discrepancies

between the actual workflow processes and the processes as perceived by the

management.  Therefore,  new techniques  for  discovering  workflow models

have been required. Starting point for such techniques are so-called “workflow

logs" containing information about the workflow process as it is actually being

executed. In this thesis, new mining technique based on time information is

proposed. It is assumed that events in workflow logs bear timestamps. This

information is  used in to  determine task orders and control  flows between

tasks. With this new algorithm, basic workflow structures, sequential, parallel,

alternative and iterative (i.e., loops) routing, and advance workflow structure

or-join can be mined. While mining the workflow structures, this algorithm

also handles the noise problem.   

Key words: Workflow management, data mining, workflow mining, process

mining, workflow logs.
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ÖZ

ZAMAN TEMELLİ İŞAKIŞI TAYİNİ

Cantürk, Deniz

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi: Doç. Dr. Nihan Kesim Çiçekli

Mayıs 2005,  71 sayfa

Çağdaş  iş  akışı  yönetim  sistemleri  açık  işlem  modelleri  tarafından

sürdürülmektedir. Örneğin, tanımlanmış iş akışı işlemlerinin sahnelenebilmesi

için tüm ayrıntılarıyla belirtilmiş bir iş akışı tasarımına ihtiyaç duyulmaktadır.

Bir iş akışı tasarımı oluşturmak karmaşık ve zaman alıcı bir işlemdir ve de asıl

iş  akışı  işlemleri  ile  yönetimin  algıladığı  işlemler  arasında  farklılıklar

bulunmaktadır. Bu nedenle iş akışı modeli keşfeden yeni yöntemlere ihtiyaç

duyulmaktadır. Bu yöntemlerin başlangıç noktası ise "iş akışı günlüğü" diye

adlandırılır  ve  işletilmiş  iş  akışı  işlemleri  bilgisi  içerir.  Bu  tezde  zaman

bilgisine  dayalı  yeni  bir  iş  akışı  çıkarım  yöntemi  önerilmektedir.  İş  akışı

günlüklerinin  zaman  bilgisi  içerdiği  kabul  edilmektedir.  Bu  zaman  bilgisi

faaliyetler  arası  kontrol  akışlarını  ve  faaliyet  sıralarını  belirlemede

kullanılmaktadır.  Bu  önerilen  yeni  yöntem ile  temel  iş  akışı  yapıları  olan

ardışık, paralel, alternatif ve döngüsel yönlenmeler ve ileri iş akışı yapısı olan

veya-katılımı  çıkarımları  yapılabilmektedir.  İş  akışı  yapılarının  çıkarımları

esnasında iş akışı günlüğündeki parazit problemi de ele alınmaktadır.

Anahtar Kelimeler: İş Akışı Yönetimi, Veri Keşfi, İş Akışı Keşfi, İşlem Keşfi,

İş Akışı Günlüğü
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CHAPTER 1

INTRODUCTION

Workflow concept is first used in manufacturing and the office. Process in

manufacturing  industry  and  the  office  is  studied  to  improve  the  efficiency  by

dealing with the standard aspects of the work activities [10]. Workflow consists of

activities that are executed in a coordinated way by different resources. In other

words  workflow is the coordination of a collection of activities to achieve a goal.

An activity (task) is a definition of work to be done. It defines the work in different

ways such as file with textual description, a form, an email or a computer program

[15]. A resource that performs the task may be a person, a machine or a software

system. A resource starts the workflow by performing the beginning task in the

workflow. Then other tasks are performed in a coordinated way until the goal is

achieved or a task in the route of final task is aborted. The tasks that are performed

in the period from the start to stop constitutes a workflow instance.

Execution of the activities in a workflow can be coordinated by a human

controller  or  a  software  system.  Such  a  software  system  is  called  workflow

management system [15].  Workflow management system has the ability to record

the execution information of any task involved in the workflow, to  workflow log

files. Workflow log contains important information since this is recorded when the
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task  takes  place.  This  recorded  information  should  be  the  validation  of  the

workflow  design.  To  validate  a  designed  workflow,  another  workflow  can  be

generated by using the workflow log. The process of generating the workflow from

a  workflow log  is  called  workflow  mining. If  the  generated  workflow and  the

designed  workflow  are  not  equivalent,  differences  can  be  studied  for  the

improvement of the workflow.

During  the  last  decade  workflow  management  concepts  and  technology

have been applied in many enterprise information systems. Workflow management

systems such as  Staffware,  IBM MQSeries,  COSA  offer  generic  modeling and

enactment capabilities for structured business processes [2].

By making  graphical  process  definitions,  i.e.,  models  describing the  life

cycle of a typical case (workflow instance) in isolation, one can configure these

systems  to  support  business  processes.  Besides  pure  workflow  management

systems,  many other  software  systems  have  adopted  workflow  technology,  for

example ERP (Enterprise Resource Planning) systems such as SAP, PeopleSoft,

Baan and Oracle, CRM (Customer Relationship Management)  software,  etc.  [2]

Despite  its  promise,  many problems  are  encountered  when  applying  workflow

technology. One of the problems is that these systems require a workflow design,

i.e., a designer has to construct a detailed model accurately describing the routing

of work. Modeling a workflow is far from trivial: It requires deep knowledge of the

workflow language  and  lengthy discussions  with  the  workers  and  management

involved.

Instead  of  starting  with  a  workflow  design,  we  start  by  gathering

information about the workflow processes as they take place. We assume that it is

possible to record events satisfying the following:
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• Each event refers to a task (i.e., a well-defined step in the workflow)

• Each event refers to a case (i.e., a workflow instance)

• Events are totally ordered. 

Any information system using transactional systems such as ERP, CRM, or

workflow management systems will offer this information in some form. Note that

we  do  not  assume the  presence  of  a  workflow  management  system.  The  only

assumption we make, is that it is possible to collect workflow logs with event data.

These  workflow  logs  are  used  to  construct  a  process  specification,  which

adequately models the behavior registered. We use the term  workflow mining for

the  method  of  distilling  a  structured  process  description  from  a  set  of  real

executions.

To illustrate the principle of workflow mining, we consider the workflow

log  shown  in  Table  1.  This  log  contains  information  about  four  cases  (i.e.,

workflow instances). The log shows that for the first case the tasks A, B, C, E, H, I,

J and K have been executed. For case 2 the tasks A, D and J are executed but in this

case complete event of Task D did not occur, possibly Task D is aborted, therefore

complete event could not be logged. This kind of workflow instances are called

noise, the algorithm proposed in this thesis handles the noisy traces too. For case 3,

A, D, F, G, H, I, J and K have been executed. It is different from case 1 since in

case 1, B, C and E have been executed but in case 3 D, F and G have been executed

instead. For case 4, A, B, E, H, I, J and K have been executed. It is different from

case 1 since in case 1 C has been executed but in case 4 it has not and also it is

different from case 1 since in case 3 D, F and G have been executed but in case 4 B

and E have been executed instead. Each case starts with the execution of A and

ends with the execution of K.
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Based  on  the  information  shown  in  Table  1  and  by  making  some

assumptions about the completeness of the log (i.e.,  assuming that the cases are

representative and a sufficiently large subset of possible behaviors is observed), the

process model shown in Figure 1 can be deduced. Workflow starts with task A and

finishes with task K. After executing the task A, tasks B, C, D and J are executed in

four different combinations: (i) B, C and J,  (ii) B and J, (iii) C and J and (iv) D and

J. After A one of the four combinations is executed. The split from A is a complex

split; the executed tasks after A depend on data of A. After executing B or C, E is

executed. After D is executed, F and G are executed. Split from D is called And-

Split. After F and G are executed, H is executed. Join on H is called Or-Join since,

from case 3, we know that H has been executed before F has completed but after G

has completed. After J is completed, I is executed. After H and I are executed, K,

the final task, is executed. Join on K is called And-Join, since in valid cases 1,3 and

4, K has been executed after both H and I have been completed.

By distinguishing between start events and end events for tasks it is possible

to explicitly detect parallelism and Or-Splits and Or-Joins.
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The first two columns of Table 1 contain the minimal information (case and

task information). By using the minimal information of a complete workflow log

we assume to provide process models such as the one shown in Figure 1. In many

applications  the  workflow  log  contains  a  timestamp  for  each  event  and  this

information  can  be  used  to  extract  information  about  the  performance  of  the

process,  e.g.,  bottlenecks  in the  process.  In this  thesis,  exploring ways to  mine

timed  workflow logs  is  discussed.  In the  log  shown in  Table  1  both  start  and

complete time can be seen. By the help of this timing information the proposed

algorithm can explore workflow models despite incomplete workflow logs.

Workflow mining, in the most general case, is introduced as constructing a

process model from event-based logged data. The first introduced approach, mined

workflows assumed to be containing no loops and logs assumed noise-free [5].

Next approach enhanced the previous approach to mine basic loops [18].  Later,

noise  problem  is  studied.  After  mining  workflow  from  noisy  logs  [2],  timing

information in the log is applied to mine workflows [3].  In the most recent work

on workflow mining short loops have been discovered, by using start and complete

events [19].

We have developed an algorithm for mining workflow graphs from a given

log of events. We assume that the events are recorded with their start and complete

times  in  the  log.  The  algorithm  uses  this  timing  information  to  extract  the

dependencies between the events,  and thus the tasks  that  they represent. In the

algorithm,  tasks  are  ordered  by  using  the  waiting  time  between  activities  and

execution time of tasks.   The metric  used in  ordering relation that  is  based on

timing information also allows to compete with noise and to mine or-join and short

loops.  Current  approaches  depend  on  the  counts  of  different  configurations
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therefore mined workflow does not contain any timing information. However, in

this  thesis  we  propose  an  algorithm  to  mine  timed  workflows.  The  mined

workflow,  contains  all  the  timing  information  about  the  workflow such  as  the

average execution time, average waiting time between tasks and the total workflow

duration in average.

The rest of the thesis is organized as follows. First, the related work done in

workflow mining is summarized in Chapter 2.  We discuss the current workflow

mining approaches and tools. In Chapter 3, first the definitions that are used in the

proposed algorithm are presented. Next we present the algorithm with examples.

Chapter 4 compares the result of proposed algorithm with the existing workflow

mining tools. The conclusion and the future work are presented in chapter 5.
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Table 1 An Event Log with START and COMPLETE events and occurrence times

Case Task Event Date
Case 001 TASK A START 12.09.2004 21:39:10
Case 001 TASK A COMPLETE 12.09.2004 21:39:17
Case 001 TASK J START 12.09.2004 21:39:25
Case 001 TASK B START 12.09.2004 21:39:25
Case 001 TASK C START 12.09.2004 21:39:26
Case 001 TASK C COMPLETE 12.09.2004 21:39:30
Case 001 TASK J COMPLETE 12.09.2004 21:39:34
Case 001 TASK B COMPLETE 12.09.2004 21:39:34
Case 001 TASK I START 12.09.2004 21:39:36
Case 001 TASK E START 12.09.2004 21:39:38
Case 001 TASK I COMPLETE 12.09.2004 21:39:39
Case 001 TASK E COMPLETE 12.09.2004 21:39:42
Case 001 TASK H START 12.09.2004 21:39:51
Case 001 TASK H COMPLETE 12.09.2004 21:39:53
Case 001 TASK K START 12.09.2004 21:39:59
Case 001 TASK K COMPLETE 12.09.2004 21:40:03
Case 002 TASK A START 12.09.2004 21:39:11
Case 002 TASK A COMPLETE 12.09.2004 21:39:11
Case 002 TASK J START 12.09.2004 21:39:11
Case 002 TASK D START 12.09.2004 21:39:12
Case 002 TASK J COMPLETE 12.09.2004 21:39:24
Case 003 TASK A START 12.09.2004 21:39:11
Case 003 TASK A COMPLETE 12.09.2004 21:39:11
Case 003 TASK J START 12.09.2004 21:39:11
Case 003 TASK D START 12.09.2004 21:39:12
Case 003 TASK D COMPLETE 12.09.2004 21:39:21
Case 003 TASK F START 12.09.2004 21:39:22
Case 003 TASK G START 12.09.2004 21:39:22
Case 003 TASK G COMPLETE 12.09.2004 21:39:23
Case 003 TASK H START 12.09.2004 21:39:23
Case 003 TASK J COMPLETE 12.09.2004 21:39:24
Case 003 TASK I START 12.09.2004 21:39:24
Case 003 TASK F COMPLETE 12.09.2004 21:39:26
Case 003 TASK I COMPLETE 12.09.2004 21:39:30
Case 003 TASK H COMPLETE 12.09.2004 21:39:30
Case 003 TASK K START 12.09.2004 21:39:36
Case 003 TASK K COMPLETE 12.09.2004 21:39:39
Case 004 TASK A START 12.09.2004 21:39:12
Case 004 TASK A COMPLETE 12.09.2004 21:39:13
Case 004 TASK B START 12.09.2004 21:39:14
Case 004 TASK J START 12.09.2004 21:39:14
Case 004 TASK B COMPLETE 12.09.2004 21:39:17
Case 004 TASK J COMPLETE 12.09.2004 21:39:17
Case 004 TASK I START 12.09.2004 21:39:19
Case 004 TASK E START 12.09.2004 21:39:25
Case 004 TASK E COMPLETE 12.09.2004 21:39:28
Case 004 TASK I COMPLETE 12.09.2004 21:39:30
Case 004 TASK H START 12.09.2004 21:39:31
Case 004 TASK H COMPLETE 12.09.2004 21:39:38
Case 004 TASK K START 12.09.2004 21:39:45
Case 004 TASK K COMPLETE 12.09.2004 21:39:47
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CHAPTER 2

RELATED WORK

A  workflow  is  a  collection  of  cooperating,  coordinated  activities  designed  to

accomplish a completely or partially automated process. An activity in a workflow

is performed by an agent that can be a human, a device or a program. A workflow

management system provides support for modeling, executing and monitoring the

activities in a workflow. 

The Workflow Management Coalition (WfMC) defines a reference model that

describes the major components and interfaces within a workflow architecture. In a

workflow,  activities  are  related  to  one  another  via  flow  control  conditions

(transition  information).  According  to  this  reference  model  we  identify  four

routings that is sequential, parallel, conditional and iteration. 

Among the most common frameworks for specifying workflows, control flow

graphs  are  most  appropriate  for  showing  the  execution  dependencies  of  the

activities in a workflow. It provides a good way to visualize the overall flow of

control. A typical graph specifies the initial and the final activity in a workflow, the

successor activities for each activity in the graph, and whether all of these successor

activities  must  be executed concurrently, or it  is  sufficient  to execute only one

branch depending on a condition. 
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Several recent works have addressed the problem of discovering an unknown

workflow model  of a  given process,  by looking at  the logs of a  number  of its

executions.  In  several  organizations,  it  has  become  increasingly  popular  to

document  and  log  the  steps  that  make  up  a  typical  business  process.  In some

situations,  a  workflow  model  of  such  processes  is  developed  and  it  becomes

important  to  know if  such a model  is  actually being followed by analyzing the

available  activity  logs.  In  other  scenarios  no  model  is  available  and  with  the

purpose of evaluating cases or creating new production policies one is interested in

learning a workflow representation of such activities. For these reasons empirically

building  process  models  from  logs  is  of  great  interest  and  still  relatively

unexplored.   Such  a  problem  is  called  workflow  mining because  the  usual

representation of work processes is workflow graphs.

2.1 Workflow Patterns

In this section we first review the well-defined patterns [20] that can be used in

a  workflow graph.  We  then  present  a  survey of  the  existing  workflow mining

approaches to which our work will be compared later.  

2.1.1 Basic Control Patterns

i) Sequence

An activity in a workflow process is enabled after the completion of another

activity in the same process. The sequence pattern is used to model consecutive

steps in a workflow process and is  directly supported by each of the workflow

management systems available. 
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Possible execution: {T1, T2, T3, …} 

ii) Parallel Split (AND - Split)

Parallel Split is a split of a single thread of control into multiple threads of

control in the workflow process, which can be executed in parallel, thus allowing

activities to be executed simultaneously or in any order. 

Possible executions: {T1, T2, T3, …}, {T1, T3, T2, …}

iii) Synchronization (AND - Join)

Synchronizer  is  a point  in  the workflow process  where multiple  parallel

subprocesses/activities  converge  into  one  single  thread  of  control.  It  is  an

assumption of this pattern that each incoming branch of a synchronizer is executed

only once. 

  

Possible executions: {…, T2, T3, T4}, {…, T3, T2, T4}

iv) Exclusive Choice (XOR - Split)

Exclusive choice is a pattern in the workflow process such that based on a

decision or workflow control data, one of several branches is chosen. 

10
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Possible executions: {T1, T2, …}, {T1, T3, …}, {T1, T4, …}, 

         (But not {T1, T2, T3, … })

v) Simple Merge (XOR - Join)

Simple  merge is  a  pattern  in  the  workflow process  where  two or  more

alternative branches come together without synchronization. It is an assumption of

this pattern that none of the alternative branches is ever executed in parallel.

Possible executions: {…, T2, T5}, {…, T3, T5}, {…,T4, T5}

2.1.2 Advanced Branching and Synchronization Patterns

i) Multi-choice (OR –Split)

Multi-choice is a workflow pattern in the workflow process where, based on

a decision or workflow control data, a number of branches are chosen.

Possible executions: {T1, T2, …}, {T1, T3,…},{T1, T2, T3, …},

 {T1, T3, T2, …}
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ii) Synchronizing Merge

Synchronizing merge is a pattern in the workflow process where multiple

paths  converge  into  one  single  thread.  If  more  than  one  path  is  taken,

synchronization of the active threads needs to take place. If only one path is taken,

the  alternative  branches  should  reconverge  without  synchronization.  It  is  an

assumption of this pattern that a branch that has already been activated, cannot be

activated again while the merge is still waiting for other branches to complete. This

pattern usually used for joining the threads that are created by multi-choice.

Possible executions: {T1, T2, T4}, {T1, T3, T4}, {T1, T2, T3, T4},

 {T1, T3, T2, T4}

iii) Multi-merge

Multi-merge  is  a  pattern  in  the  workflow  process  where  two  or  more

branches  reconverge  without  synchronization.  If  more  than  one  branch  gets

activated, possibly concurrently, the activity following the merge is started for any

activation of any incoming branch. 

. 

Possible executions: {T1, T2, T4, T3, T4}, {T1, T3, T4, T2, T4}, 

{T1, T2, T3, T4, T4}, {T1, T2, T3, T4, T4}
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iv) Discriminator (OR- Join)

Discriminator is a pattern in the workflow process that waits for one of the

incoming branches to complete before activating the subsequent activity. From that

moment on it  waits for all remaining branches to complete and "ignores" them.

Once all incoming branches have been triggered, it resets itself so that it can be

triggered again (which is  important otherwise it  could not  really be used in the

context of a loop). It is also known as Or-Join.

Possible executions: {T1, T2, T4}, {T1, T3, T4}, {T1, T2, T4, T3}, 

{T1, T3, T4, T2}, {T1, T2, T3, T4}, {T1, T3, T2, T4}

v) Arbitrary Cycles

Arbitrary cycle is  a pattern in the workflow process where one or more

activities    can   be    done    repeatedly.     This   pattern is also called loop. Loops

 containing one or two tasks are called short-loop

 

Possible executions: {T1, T2, T3,…}, {T1, T2, T3, T2, T3,…}, … 

2.2 Process Mining

The idea of process mining is not new. In its evolution first we see Cook

and Wolf. They have studied process discovery in the software engineering process.
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They  have  developed  three  methods  for  process  discovery  that  use  different

approaches [6]. First one uses the idea of a neural network. This one is the least

promising one of all. Second one uses purely algorithmic approach that builds a

finite state machine (FSM) where states are fused if their possible behaviors in next

k step are identical. The third one uses Markovian approach, which is the mixture

of the algorithmic and statistical methods. It can deal with noise.   

Cook  and  Wolf  improve  their  work  to  be  able  to  deal  with  concurrent

processes [7]. In the extension of their work they propose specific metrics, such as

entropy, event type counts, periodicity, and causality, in order to discover models

from event streams. However, they do not provide an approach to generate explicit

process models. On the other hand, the final goal of workflow mining is to find an

explicit workflow model. Nevertheless, in Cook and Wolf’s approach only the set

of  dependency  relations  between  events  is  discovered.  Later,  Cook  and  Wolf

provide  a  measure  to  quantify  differences  between  a  process  model  and  the

behavior that is recorded in event-based data [8]. 

2.3 Workflow Mining 

The idea of applying process mining to workflow management was first

introduced  in  [5].  This  work  is  based  on  workflow graphs.  In  this  paper,  two

problems are addressed. The first problem is to find a workflow graph from the

given workflow log. The second problem is to identify the edge conditions. For the

first problem an algorithm is provided that generates an explicit workflow model

where the nature of joins and splits are not identified. This approach does not allow

loops in the workflow graph. But it can deal with some iteration by enumerating the

tasks and folding the graph.
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Schimm [17] has introduced an approach to mine hierarchically structured

workflow processes. However, this approach requires all the splits and joins for all

tasks in the workflow model to be balanced. Herbst and Karagiannis address the

problem of workflow mining from a different point of view. They use induction in

their  approach  [11].  Their  approach also allows  concurrency.  It  uses  stochastic

activity  graph  (SAG)  in  the  intermediate  representation.  Finally  it  generates  a

workflow model  described in  ADONIS modeling language.  This  approach uses

induction to split and merge task nodes in order to find the process model. This

approach has a major difference from other approaches since it can deal with the

task that occurs multiple times in the workflow model. Graph generation is done in

a similar way as in [5]. Splits and joins are identified as whether AND or XOR in

the transformation step where the intermediate representation transformed into final

representation of ADONIS format which is in block-structured model. 

The work in [18] is characterized by the focus on workflow processes with

concurrent behavior (rather than adding ad hoc mechanisms to capture parallelism).

In [18] a heuristic approach using rather simple metrics is used to construct so-

called ‘‘dependency/frequency tables’’ and ‘‘dependency/frequency graphs’’. The

preliminary results presented in [18] only provide heuristics and focus on issues

such as noise. 

The approach described in [2] introduces an algorithm called α-algorithm.

This approach differs from these approaches in the sense that for the α algorithm it

is proven that for certain subclasses it is possible to find the right workflow model.

In [3] the α algorithm is extended to incorporate timing information; nevertheless

the timing information is not the ingredient of the algorithm. Timing information is

applied on the graph of the process model constructed by α algorithm. 
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2.3.1 Rediscovering Workflow Models

The  approach  examined  in  this  section  has  a  theoretical  basis.  In  this

approach only the subset of workflows, namely Petri Nets, are dealt with. Studies

have been done on these approaches are stated in [2,3] .In this work there are two

tools EMiT [3], and MiMo[2] implemented to verify the idea of the approach.

This approach needs the workflow logs to be complete and noise-free. With

these  ideal  conditions,  in  this  theoretical  approach,  studies  mainly  focus  on

rediscovery problem. They want to classify the workflow processes which can be

reconstructed by only using the their log information. In fact it is really hard work

since any workflow instance of a workflow model is a sequences of trace lines in a

log without of the information of split and joins in the workflow model.

The rediscovery problem is illustrated in Fig 2. Assume, L be a log consists

of the workflow instances of the process model defined by a class of Petri-Nets

WF-Net WF1. Using the information of L and the algorithm of this approach mined

WF-Net is WF2. In [3], for which class of WF-Nets the equation WF1=WF2 held is

explored.

 

Another issue explained in [2,3] is that it is not possible to rediscover all

classes at WF-Net, but with the α-algorithm presented in [2,3] most of these classes

can be rediscovered. To use α algorithm, workflow logs have to be complete i.e. If
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two events can follow each other, they will follow each other at least once in the

log, all possible sequence containment is not the case.

α - algorithm establishes four ordering relations: >w, →w, ||w and #w, that

are  derived from the  log.  a  >w b represents  b succeeds  a in  the log,  a  →w b

represents the a is followed by b in the log possibly task occurrences between a and

b. a ||w b represents a and b executed in parallel. a #w b represents a and b disjoint

tasks that is neither a follows b nor b follows a. 

This theoretical approach requires perfect information, that is the workflow

log is complete in the sense described before and everything recorded in the log is

correct and every trace lines in the log is valid i.e. log is  noise-free. In the real

world, there is no log exists that is complete and noise-free. Therefore, in the real

world, decision at the ordering of the events becomes harder. For example, if a is

directly followed by b erroneously in the log, a will be directly followed by b in the

constructed workflow and other errors might be done. Consequently, in order to

overcome this severe problem, they developed a mining technique, which depends

on heuristics. They called this heuristic approach as extended α-algorithm [19]. The

work done in the heuristics approach consists of three steps which are construction

of D/F tables, derivation of ordering relations from D/F table and reconstruction of

WF-Net.

While constructing the D/F tables, the overall occurrence count of  task a,

the count of task a directly preceded by task b, count of task a directly followed by

task b, the count of task a directly or indirectly preceded by task b but before the

previous appearance of task b, the count of task a directly or indirectly followed by

task b but before the next appearance of task a, and finally a metric that indicates

the strength of the causal relation between task a and another task b are extracted
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from the workflow log. In the second step basic relations (>w, →w, ||w and #w) in

α-algorithm are determined by using simple heuristics. At the last step workflow is

constructed by using the relations in second step.

2.3.2 Mining Workflows Having Duplicate Tasks

The approach presented in the preceding section uses graphical model to

represent the workflow. Therefore every task in the model must have a different

name  although  they have  performed  the  same  activity.  Nevertheless,  for  some

cases, it is not possible. The requirement for the unique names can be satisfied by

enumerating the activities with same name, for example notify Eng occurs twice in

Fig 3. To have different names they can be renamed as notify Eng-1, however this

renaming requires the knowledge of workflow structure. This contradicts with the

aim of workflow mining since the main goal is to find the workflow structure. 

A solution for mining workflow models with duplicate tasks is presented in

[12]. This solution contains two steps which are induction and transformation. In

the induction step stochastic activity graphs (SAG) are used to simplify the graph

generations algorithm that is put in to search procedure.

The search procedure takes some of its  idea from machine learning and

grammatical inference. This approach searches for mapping from the task instances

in  the  workflow  model.  Search  space  for  this  process  is  the  lattice  of  such

mappings. Ordering used in the mapping is generality. Mapping is considered as

more general than other or more specific than other one. This lattice is bounded

from top by most general mapping in which every task with the same name in the

workflow log mapped to only one task in the workflow model and also bounded

from  bottom  by  most  specific  mapping  in  which  every  task  instance  in  the
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workflow log is one-to-one and onto mapped to tasks in the workflow model. All

of the mappings  from top to bottom in the lattice  are  searched to find optimal

mapping. In the split operation, task instances mapped to the same task are split

into two groups and mapped to these distinct named tasks.

In fact, this approach, which is very similar to the approach presented in [5],

has a different definition for dependency relation and two additional steps which

are inserting copies  of tasks and clustering tasks  having same predecessors.  Its
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difference  from the  approach in  [16]  is  determination  of  dependencies.  In  this

approach  every  pair  of  task  taken  into  consideration  independent  from  the

intermediate  task  in  between  them,  but  only  the  pairs  of  direct  successors  is

considered to determine the dependency relation in [2,3]. This search is guided by

SAG per sample and the algorithm uses beam-search. Calculation of SAG requires

a  stochastic  sample  that  means  that  induction  algorithm  requires  n  different

ordering case for ordering the n workflow instances of some task. In [2,3] only one

ordering is enough for such cases. By using this information likelihood of the SAG

and probability of the edges and task can be calculated, common and rare tasks can

be determined.

  

The  other  step,  in  this  approach  is  the  transformation  step  in  which

constructed  SAG  is  transformed  into  block-structured  workflow  model  in  the

ADONIS [13]  format.  Transformation is  required since the SAG constructed in

induction step cannot express the parallel and alternative routings separately. This

step  can  be  divided  into  three  sub-steps.  In  the  first  sub-step  synchronization

structure of the workflow instances in the log is analyzed. Next, synchronization
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structure of the workflow model is generated. At the Last sub-step workflow model

is generated. The described algorithm is implemented by the workflow mining tool

InWoLVe [12].  InWoLVe also contains two additional induction algorithms that

are restricted to sequential workflow models. In addition InWoLVe has an ability of

interchanging process models and workflow logs with the business management

system ADONIS. InWoLVe is tested with real-life and artificial logs. Fig 3 is one

of the real-life workflow models that is generated by InWoLVe.

2.3.3 Mining Block-structured Workflows

The last approach is used for mining block-structured workflow models. It

is  different  from previous two approaches in two points.  First  it  uses  rewriting

technique instead of graph-based techniques. The other important difference in this

approach is  that  only the block structured patterns are taken into  consideration.

Goal of this algorithm is to mine minimal and complete workflow models. In the

complete workflow model all cases are covered by the mined model, in the minimal

workflow model only the recorded cases are covered. To achieve this goal it uses a

stronger  completeness  notion  than  the  notion  in  the  rediscovery  problem  that

considers only the direct succession.

In order to mine a workflow model from event-based data it is required to

have an idea on the type of mined workflow model. Types of workflow models are

different from each other in terms of the workflow language being used and the

class of the workflow models considered. Workflow meta-models are divided into

two  groups:  graph-oriented  meta-model  and  block-oriented  meta-model,  in  the

most general case. This approach is built on block-oriented meta-model. Models of

block-oriented meta-model is always well formed.

Block structured workflow models are composition of nested blocks. There
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are two types of building blocks that are constants and operands. Operands model

the process flows, constants model the tasks or nested sub-workflows. To design a

block  structured  workflow  model  one  operand  is  set  as  start  point  then  other

operands and constants are embedded to  it  until  the nested structure satisfy the

desired  structure.  Operands  are  embedded  to  enable  nesting  and  constants  are

embedded to stop nesting.

Block structured workflow model can be assumed as a tree whose leaves are

the operands and constants. Besides their tree representation, they can be expressed

as a set of terms. For example, Assume S is a sequential working operand, P is a

parallel execution operand and T1, T2, T3 are different tasks then P(S(T1,T2),T3)

means that T1 and T2 are performed sequentially and T3 is performed in parallel

both T1 and T2. By definition, all of the terms are well formed. Furthermore, with

the help of axioms on commutativity, associativity, identity and inversion, algebra

can be specified. These axioms form a basis for term rewriting systems that are

used in workflow mining. The process that constructed block-structured workflow

model from event-based workflow log consists of the following five steps that are

performed sequentially:

In the first step of the procedure, workflow log is read to build a trace for

each process instance in the log. Trace is a data structure that keeps all start and

complete events of the task instance ordered by the time of events. After building

the traces, they are combined according to their start and complete time. Each trace

group constitutes a path in the process model.

In  the  second  step,  initial  process  model  is  constructed  from  all  trace

groups. This model  is  in Disjunctive Normal Form (DNF).  A process model  in

DNF  starts  with  an  alternative  operator  and  enumerates  inside  this  block  all
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possible process flows as a block is  constructed by the algorithm and added to

alternative operator that builds the root of two models. 

The third step deals with the relation between tasks that  result  from the

random order of performing task without a real precedence between them. This

made-up precedence relation has to be identified and removed from the generated

model. To be able to identify made-up precedence relations, generated model needs

to be transformed. Transformation is done by a term rewriting system into form that

enumerates  all  sequences  of  tasks  inside  parallel  operators  embedded  into  the

overall  alternative,  then  made-up  precedence  relation  is  detected  by the  search

algorithm. In the search algorithm, the smallest subset of sequences that completely

explains the corresponding blocks in the initial model is found to determine the

made-up precedence relation. All sequences out of subset are made-up precedence

relations  and  therefore  removed.  Initial  transformation  is  reversed  by  a  term

rewriting system at the end of step.

The fourth step deals with the DNF of the process model, which is built in

the second step. Overall alternatives of the model need to be split before the point

where the decisions have to be released. So, partial alternatives matching to that

condition have to be moved. This is done by another term rewriting system. It is

built  on top of distributivity algorithm. It also merges block while shifting these

alternative operator later position in their model.

The  last  step  is  the  decision  making  step  which  is  done  by  inductive

decision tree. Induction is applied to all decision points in the workflow. This step

requires the trace data of the data of workflow to build the decision tree. By the

help of context data kept in the traces, decision tree induction builds the decision

trees.  These  trees  are  transformed  into  rules  and  then  associated  to  partial
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alternative operators. In fact this step is optional. Without performing the last step,

the condensed form of model could be obtained. However after performing the last

step the desired minimal and complete block structured workflow model  comes

out. All other details of this approach are in [17]. 

Process miner [17], is a workflow mining tool that supports mining block-

structured model. The tool reads data from the event-based data i.e. workflow logs

or XML formatted files. After reading data, it performs all the steps up to decision-

making  step.  Decision-making  step  is  not  performed  unless  context  data  are

provided.  It  has  a  graphical  interface,  so  it  displays  the  output  workflow in  a

graphical editor in the form of the diagram and a tree. In addition, it enables users

to edit the output workflow model and to export it for later use. Full description and

abilities of process miner is explained in [17].
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CHAPTER 3

MINING TIMED WORKFLOW LOGS

In this  chapter  we present  the workflow mining algorithm that  we have

developed. The algorithm takes a log of timed events and extracts the workflow

graph using the timing information of the events. Before we present the algorithm,

we  give  some  formal  definitions  that  will  be  used  in  the  explanation  of  the

algorithm. First, we formally define what the event logs are. Then, a new notion of

ordering relations on tasks based on the two event types START and COMPLETE

and  their  timestamps  is  defined.  Next,  the  measurements  that  are  used  in  the

determination  of  orderings  are  given.  Last,  identifying the  ordering relations  is

defined.

3.1 Event Logs with Two Types of Events 

Existing  approaches  do  not  consider  event  timestamp  value  [1-7,17,18].

They  do  not  consider  the  types  of  events  [1-7,17,18]  either.  Tasks  are  either

considered to be atomic or only the completion of a task is considered (i.e., just

event type COMPLETE). One way to deal with this is to consider the start and

completion  of a  task  as  two atomic  tasks.  EMiT [3]  uses  some pre-  and  post-

processing to incorporate multiple event types, but it does not incorporate this in

the  mining  algorithm  and  ordering  relations.  In  this  thesis,  we  propose  a
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fundamentally  different  approach  where  parallelism  and  or-joins  are  detected

explicitly by registering overlapping activities. There are two event types: START

and COMPLETE. Therefore, a task name, an event type and the timestamp of the

event characterize each event. 

Definition 1 (Event). Let T be a set of tasks and ts is a timestamp.  

E = T ×{START, COMPLETE}× ts is a set of events over T. (t, START, ts) ∈ E

denotes the start of some task  t with timestamp  ts and (t, COMPLETE,  ts)  ∈ E

denotes the completion of t with timestamp ts. For convenience, we also introduce

the following notation for e ∈ E: e.task refers to the task, e.type refers to the event

type  and  e.ts refers  to  the  event  timestamp.    If  e =  (t,  START,  ’12-10-2004

10:30:50’), then  e.task =  t,  e.type = START and event occurs on 12.10.2004 at

10:30:50. If e = (t, COMPLETE, ’12-10-2004 10:35:22’), then e.task = t, e.type =

COMPLETE and event occurs on 12.10.2004 at 10:35:22. 

Note that Definition 1 abstracts from other information that may be present

in the log, e.g., the performer executing the task, and data linked to the event. An

event  always  occurs  in  the  context  of  a  single  case.  The  ordering  of  events

corresponding to different cases is not important. Therefore, we consider a log to be

a set of traces where each trace corresponds to a case. 

Definition 2 (Event trace, Event log). Let E = T ×{START, COMPLETE}×ts

be a set of events over T. σ ∈ E* is an event trace and W ⊆ E* is an event log. 

Note that  the log shown in Table 1 is consistent with this  notation.  For

example, the event trace for the first case is  σ = (TASK A, START, 12.09.2004
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21:39:10)  (TASK  A,  COMPLETE,  12.09.2004  21:39:17)  (TASK  J,  START,

12.09.2004 21:39:25)(TASK B, START, 12.09.2004 21:39:25)(TASK C, START,

12.09.2004  21:39:26)  (TASK C,  COMPLETE,  12.09.2004 21:39:30)  (TASK J,

COMPLETE, 12.09.2004 21:39:34) (TASK B, COMPLETE, 12.09.2004 21:39:34)

…

Event traces are sequences. We use the following standard notation for sequences. 

Definition  3.  Let  E =  T ×{START,  COMPLETE}×ts,  σ∈ E*  a  sequence

containing n elements, and t ∈ T some task. 

1. dom(σ) = {1, 2, . . . , n} is the domain of σ, 

2. σi is the i-th element, i∈ dom(σ), 

3. t ∈ σ  iff there exists an i ∈ dom(σ) such that σi.task = t, 

4. first(σ) = σ1.task is the first task to start, and 

5. last(σ) = σn.task is the last task to complete. 

3.2 Ordering Relations 

An essential  prerequisite for process mining is the ordering of tasks.  To

define suitable ordering relations on tasks, we need to consider pairs of events with

their occurrence time, i.e.,  a START event with timestamp and a corresponding

COMPLETE  event  with  timestamp.  Therefore,  we  define  the  notion  of  task

occurrence. 

 Definition 4 (Task occurrence). Let σ∈ E* and σ = e1e2 · · · en. t(ei, ej) is a task

occurrence of t in σ iff 

1. 1 ≤ i < j ≤ n, 

2. ei.task = ej.task = t,
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3. ei.type = START,

4. ej.type = COMPLETE, and

5. ∀i<k<j (σk.task ≠ t).

Note that every event in the event trace corresponds to precisely one task

occurrence. However, for one task there may be multiple task occurrences in the

same  event  trace.  Intuitively,  a  task  occurrence  can  be  represented  as  a  line

segment. The left end is the START event and the right end is the COMPLETE

event. These line segments represent the period of time the task is being executed

and  can  be  used  to  define  succession  (i.e.,  “directly” follows), following (i.e.,

“indirectly” follows) and intersection (i.e., overlapping task occurrences). 

Definition 5 (Succession). Let W ⊆ E* an event log such that E = T ×{START,

COMPLETE}×ts.  Let  a, b ∈ T be two tasks.  a is directly followed by  b in  W,

notation a > W b, iff there exists a σ ∈ E* such that  σ = e1e2 · · ·  en and two task

occurrences a(ei, ej) and b(ek, el) in σ such that j < k and there is no task occurrence

c(ep, eq) in σ satisfying j < p< q < k. 

a is succeeded by b if and only if in at least one event trace a is “directly

followed” by b, i.e., there is not any another complete task occurrence in-between

the  two tasks  a(ei,  ej)  and  b(ek,  el).  Figure  5  illustrates  the  possible  succession

situations between two tasks T1 and T2.

Figure 5 Succession relations
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Definition 6 (Following). Let W ⊆ E* an event log such that E = T ×{START,

COMPLETE}×ts. Let a, b ∈ T be two tasks. a is followed by b in W, notation      a

>> W b, iff there exists a σ ∈ E* such that σ = e1e2 · · · en and two task occurrences a

(ei, ej) and b(ek, el) in σ such that j < k.

a is followed by b if and only if in at least one event trace a is “indirectly

followed” by b, i.e., there may be another complete task occurrence in-between the

two task a(ei, ej) and b(ek, el). Figure 6 illustrates the possible following situations

between two tasks T1 and T2.

Figure 6 Following relations

Definition  7  (Intersection).  Let  W ⊆ E*  an  event  log  such  that  E =  T  ×

{START, COMPLETE}×ts. Let  a,  b ∈ T be two tasks.  a intersects with  b in  W,

notation a ×W b, iff there exists a  σ ∈ E* such that  σ =  e1e2 · · ·  en and two task

occurrences a(ei, ej) and b(ek, el) in σ such that i < k < j  or  k < i < l. 

a intersects  with  b if  and  only if  in  at  least  one  event  trace  where  an

occurrence of a overlaps with an occurrence of b. Note that the intersection relation

is symmetric, i.e., a ×W b if and only if b ×W a. Figure 7 illustrates the possible

intersection situations between two tasks T1 and T2.
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Using the notation introduced in this section we can represent the finite set

of tasks TW = {t∈T | ∃σ∈W t∈σ}, the finite set of initial task TI = {t∈T | ∃σ∈Wt = first

(σ)} (the first task to start), and the finite set of final task TO = {t∈T | ∃σ∈Wt = last

(σ)} (the last  task to complete).  It is  also fairly straightforward to calculate  the

relations >W and ×W. The complexity of an efficient algorithm to calculate these

relations  and  sets  is  O  (n),  where  n  is  the  number  of  total  events  in  the

corresponding traces. 

The notions of TW,  TI,  TO,  >W,  and ×W are the basic  ingredients  for the

mining algorithm presented in this work. In order to prove the correctness of the

mining  algorithm we need  to  assume  some notion  of  completeness,  i.e.,  for  a

complex process with many possible  event  traces we need a log that somehow

reflects the possible behavior. 

3.3 Measurement Used in Identifying the Relations

Determining the ordering in workflow log requires some measurement. We

define the measurements based on occurrence time of the events.

Definition 8 (Average Succession Waiting Time). Let  W ⊆ E* be an event

log such that E = T ×{START, COMPLETE}×ts. Let a(ei, ej), b(ek, el) ∈ T be two

tasks where a >W b. Average succession waiting time, notation ∆ta>wb , is the average

length of the time interval between the events ej and ek.

The average succession waiting time is calculated as the division of the total

time difference between the start event of task b and the complete event of task a to

the total number of successions of a by b. 
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Definition 9 (Average Following Waiting Time). Let W ⊆ E* be an event log

such that E = T ×{START, COMPLETE}×ts. Let a(ei, ej), b(ek, el) ∈ T be two tasks

where a >>W b. The average following waiting time, notation ∆ta>>wb , is the average

length of the time interval between the events ej and ek.

 

The average following waiting time is calculated as the division of the total

time difference between the start event of task b and the complete event of the task

a to the total number of followings of a by b. 

Definition  10  (Edge  Validity  Ratio)  Let  ∆ta>wb be  the  average  succession

waiting time and ∆ta>>wb be average following waiting time. The edge validity ratio,

notation a∼b, between the activities  a and b is the ratio of the average succession

waiting time to the average following waiting time:

 

Definition 11 (Average Execution Time). Let  W ⊆ E* be an event log such

that  E =  T ×{START, COMPLETE}×ts. Let  a(ei,  ej)  ∈ T. The average execution

time, notation ∆aExec , is the average length of the time interval between the events ej

and ei.
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The average execution waiting time is calculated as the division of the total

time difference between the complete events and the start events of task  a to the

total number of occurrences of task a. 

Definition 12 (Average Intersection Time). Let W ⊆ E* be an event log such

that  E =  T ×{START, COMPLETE}×  ts. Let  a(ei,  ej), b(ek,  el)  ∈ T be two tasks

where a ×W b. The average intersection time, notation ∆ta×wb , is the average length

of the time interval between events ej and ek. fi(a,b) is the function that returns 1 or

0 according to its intersection type (see Figure 7 for the four possible intersection

types). For instance, f1(a,b) return 1 if a and b intersects as in the first case in Figure

7 else 0. f2(a,b), f3(a,b), f4(a,b) behaves similar to f1(a,b) as in second, third or forth

case respectively.

 

The average intersection time is calculated as the division of the total time

of intersection time of tasks a and b to the total number of intersections of a and b. 

Definition 13 (Task Overlapping Ratio). Let ∆aExec be the average execution

time  and  ∆ta×wb  be  the  average  intersection  time  of  tasks  a and  b.  The  task

overlapping ratio, notation a ^ b, between the activities a and b is the ratio of the

average intersection time to the minimum of average execution times of a and b
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3.4 Identifying the Routings

After establishing the basic relations >W and ×W with the time constraints,

we identify three derived relations. These derived ordering relations will be used to

detect typical routings in the process model, such as sequential(→), parallel (//),

alternative, iterative (i.e., loops) routing and their combinations. 

Definition 14 (Log-based ordering relations). Let W be an event log over E

where E = T × {START, COMPLETE} × ts. For any a, b ∈ T:

1. (Sequential) a →W b iff  a ∼ b > ε∼ and  a ^ b < εx

2. (Parallel) a //W b iff  a ^ b > εx

3. (Disjoint) a #W b iff  a ^ b < εx and a ∼ b < ε∼

To  determine  whether  a and  b are  sequential,  parallel  or  disjoint  (neither

sequential nor parallel), we use threshold values ε∼ and εx. These values are defined

heuristically. ε∼ is  considered as a threshold for succession and εx is considered as a

threshold for intersection.

From Definition 14, the following property can be inferred directly. 

Property 1. Let W be an event log over E where E = T ×{START, COMPLETE}

×ts. For any a, b ∈ T: a →W b, a #W b, or a //W b. Moreover, the relations →W, #W,

and //W are mutually exclusive and partition T ×T.  
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Definition 15 (Extra Log-based ordering relations). Let W be an event log

over E where E = T × {0, 1} × ts. For any a1,.., an, c ∈ T: where n ≥ 2 

1. ∀ai ∼ c > ⊕∼ and  ai ^ c < ⊕x   , 1 ≤ i ≤ n     ⇒    ∀ai → c

2. ∀(ai → b ∧ c→b) ⇒ ai # b

To determine this  kind of ordering,  we use threshold values  ⊕∼ and  ⊕x.

These  values  are  defined  heuristically.  ⊕∼ is  considered  as  a  threshold  for

succession  for  this  extra  ordering  and  ⊕x  is  considered  as  a  threshold  for

intersection for this extra ordering.

It is clear from the definition of join that at least two activities are needed.

In the first inequality OR-Joins are detected in the following way: Let us examine

the task  c ∈ T, whether there is an OR-Join on  c. To determine the OR-Join we

need a set of tasks from T whose element count is greater than one since for a join

at least two tasks required. This set is constructed by the tasks from T that satisfy

the first condition of Definition 15. All of tasks in T are tested, tasks which satisfy

the condition are added to the set. If the result set of testing after all tasks of T, has

an element count more than one, we can conclude that there is an OR-Join on task

c from tasks in result set. In the second inequality, incorrect edges deleted. Edges

satisfying the second condition of Definition 15 are considered to be invalid edges.

They are mined as if they are edges between tasks because of the nature of the OR-

Join. It will be clarified in section 3.5.

3.5 The Algorithm 

In this section, a new mining algorithm is presented. The algorithm consists

of two major steps: 
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1. The construction of the average values tables; 

2. Determination of the edges between tasks. 

An average values table (AVT) is constructed for each task in the workflow.

An AVT of a given task keeps the average succession waiting time, the average

following waiting time, the edge validity ratio, the average intersection time and the

task overlapping ratio of that task to every other task in workflow and The average

execution time of the task is also kept in its AVT. In the construction of the average

values table process, equations that are defined from Definition 8 to Definition 13

are used. This process is performed for all tasks that occur in the workflow log.

While determining the edges between tasks we need two passes on the AVTs. The

first pass is used to determine the edges that are sequential, parallel, alternative or

iterative (i.e., loops) routing. The second pass is used for determining OR-Join.

In the algorithm noise and incompleteness of the workflow are considered

too. In order to deal with these two facts, there are two constants, ε∼ and εx, in the

determination of the inequalities that are used against the noise and incompleteness

of  the  workflow  (see  Def.14).  During  this  study  the  ε constants  have  been

considered as follows: ε∼ = 0.45 and εx = 0.03. These values have been concluded

heuristically. It is based on the observation done on the average values tables of

known workflow diagrams.

In addition to these basic workflow constructs, multi-join that is one of the

advanced constructs can be mined by using extra inequalities and constants, defined

in definition 15, in the second pass. Similarly, the  ⊕ constants are considered as

followings  ⊕∼ =  0.80  and  ⊕x =  0.45.  These  values  have  been  concluded

heuristically too.
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3.5.1 Constructing Average Values Tables

AVT keeps  the  average  succession  waiting  time,  the  average  following

waiting time,  the edge validity ratio,  the average intersection time and the task

overlapping ratio and the average execution time of the task. Hence for every task

in  the  workflow  log  an  AVT  is  constructed.  We  assume  all  workflow  logs

considered are sorted by workflow instance case. 

While constructing the average values table, first a trace line is read from

the workflow log. Then the case, activity, event type, and event time values are

extracted from the trace line. If the extracted case value is different from current,

we reset all the temporary variables. If the extracted event type is a start event, we

keep this time in the variable of the corresponding activity event to use later. If

there were any preceding complete events, total succession waiting time and total

succession count could be calculated by using this start event time and the saved

complete time of preceding activities. Similarly the average following waiting time

could be calculated. If it is a complete event, we keep this time in the variable of

the corresponding activity event to use later. In addition, the average execution time

of  the extracted activity can be  calculated by using its  start  time;  and also the

average intersection time can be calculated by using the start time of the activities

that have started and not completed yet.  If the start time of the extracted activity is

later than the start time of that activity, then start time of the extracted activity is

used for start time of the interval. Otherwise, the start time of the earlier activity is

used, and the complete time of interval is  used as the extracted time.  After the

average  succession  waiting  time,  average  following  waiting  time,  average

execution time and average intersection time are calculated, edge validity ratio and

task overlapping ratio can be calculated.
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According  to  the  above  explanation,  constructing  average  values  table

requires full reading of workflow log just once, therefore it can be done in O(n)

where n is the count of trace lines in the workflow.

Task Count ∆aExec ∆ta>wb ∆ta>>wb a ∼ b a ^ b
A 300 3.70
B 199 4.61 0.50 0.57

C 122 5.01

D 119 5.88

E 181 3.76 4.58 4.63 0.9892

F 119 3.45

G 119 3.60

H 300 5.32 14.50

I 300 6.02 5.77 11.75 0.4908 0.12

J 300 8.82 0.33 0.98

K 300 3.58 27.02

For example, the AVT in Table 2 is constructed for Task C. First column

lists  all  tasks  in  the  workflow.  The  total  occurrences  of  the  each  task  in  the

workflow are in the second column of the table. The average execution times of

each task in the workflow are in the third column of the table. In the forth column

the average succession time of Task C is kept. For instance, nothing is written in

the forth column of first row nothing is written because Task A did not follow C in

the workflow log. In other words no complete event of C occurred just before the

start event of A occurred in log. However in fifth row of the forth column there is a

value of 4.58. This means that the start event of E occurred, on the average, 4.58

seconds immediately after the occurrence of complete events of C in the log. The

fifth  column  is  similar  to  forth  column  except  that  instead  of  immediate
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successions other followings are considered. In the sixth column the division of the

forth column to the fifth column is calculated. If there is no average succession

time from Task C to the task in workflow log, no edge validity ratio exists from

Task C to that task. In the last column the task overlapping ratio of C and the other

tasks is calculated.

3.5.2 Determining the edges between tasks

In the determination of the edges between tasks we need two passes over

the constructed AVTs. In the first pass sequential, parallel, alternative or iterative

routing edges are determined. An initial workflow graph is generated at the end of

first pass. In the second pass the graph generated in the first pass is refined for OR-

Join. The beginning time of the first activity of the workflow is considered to be the

beginning of the workflow. Therefore every other time value is calculated relative

to it

First Pass:

In the first pass of the process of determining the edges between tasks, the

algorithm works in the following way: Assume the task pair (TASK A, TASK B) is

taken to hand. First, the edge validity ratio, a ∼ b, of TASK A to TASKB and the

task overlapping ratio, a ^ b, of TASK A to TASK B are fetched from the stored 2-

Dimensional arrays (i.e. AVTs). If the first condition in Definition 14 is satisfied,

the edge value from TASK A to TASK B is set to 1 else it remains 0. This work is

done for all task pairs. Complexity of the first pass is O((tn)2), where  tn is the total

number  of  tasks  occurring  in  the  workflow.   Since,  fetching  from  the      2-

Dimensional array is done in O(1) and total number of all task pair is (tn)2,  the

overall complexity is (tn)2 * O(1)  = O((tn)2). 
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Formal description of the algorithm used in the first pass is shown in Figure

8. Here n is the number of the tasks that are occurred in the workflow log. In the

algorithm tasks are enumerated hence ti is the ith task of the workflow. ε∼ and εx are

heuristic values. The edge array keeps the determined edges. For example, edge[i]

[k]=1 means there is flow from ti to tk in the workflow. 

The output of the first pass is a 2-dimensional array representation of the

workflow graph. Table 3 illustrates an example edge table. Row-column headings

show the task names. An edge between two tasks is denoted by the value 1.

A→Wb A B C D E F G H I J K
 A 0 1 1 1 0 0 0 0 0 1 0
B 0 0 0 0 1 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0 0
D 0 0 0 0 0 1 1 0 0 0 0
E 0 0 0 0 0 0 0 1 0 0 0
F 0 0 0 0 0 0 0 0 0 0 1
G 0 0 0 0 0 0 0 0 0 0 1
H 0 0 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0 0 1
J 0 0 0 0 0 0 0 0 1 0 0
K 0 0 0 0 0 0 0 0 0 0 0
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Table 3 Edge table after first pass

for i:0 to n
for k:0 to n

if ti ~ tk > ε∼  and ti ^ tk <  εx 
   then edge[i][k]=1

end
end

end

Figure 8 Algorithm to generate the initial workflow graph



The graph in  Figure 9 is  generated according to  edge information taken

from Table 3. Nodes in graph represent the tasks that occurred in the workflow

logs. Edges in graph corresponds the control flow from one task to other tasks. The

length of the nodes in the graph is drawn proportional to the average execution time

of the tasks that they represent. The distances between nodes are proportional to the

average  waiting  times  between  tasks.  Thus  the  positions  of  the  nodes  on  the

horizontal  axis  are  determined  by using the  average waiting times  and average

execution times of the tasks.

The  graph in  Figure  9  is  the  first  attempt  to  find  the  workflow model.

However it must be refined since there might be OR-Joins in the workflow model.

In the second pass the refinement process is handled.

Second Pass:

The second pass over the AVTs is performed for mining the OR-Joins. In

this  pass,  the  following  steps  are  done:  Assume  the  tasks  are  enumerated  by

alphabetic order and the iteration is done for TASK H. First, the edge validity ratio,
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Figure 9 Induced workflow diagram after first pass



a ∼ b, of TASK A to TASK H and the task overlapping ratio,  a ^ b, of TASK A to

TASK  H  are  fetched  from  the  stored  AVTs.  Then  the  first  condition  of  the

Definition 15 is tested with the substituted values fetched above. If the condition is

satisfied, then TASK A is kept as a candidate task involved in the OR-Join into

TASK H. The same is done for other tasks. If there are at least two tasks satisfying

the condition, then the edge value between the task satisfying the condition and task

H is set to 2 to denote that it is an OR-Join. Assume TASK F and TASK G are the

tasks satisfying the condition. Then the edge values from TASK F to TASK H and

from TASK G to TASK H are set to 2. After that, the edges that must be removed

are searched. We consider only those edges that come out of the joining nodes and

terminate at some node which can be reached directly from the joined node. In our

example F and G are joining tasks and H is the joined task. Edges, which are from

F to some node that can be reached from H directly by an edge are searched. If

there are any such edges from F, they are deleted by setting their edge value to 0.

This needs to be done for TASK G and TASK H too. By Comparing Fig. 9 to Fig.

11 we can see that edges from TASK F to TASK H and edges from TASK G to

TASK H are added and edges from TASK F to TASK K and edges from TASK G

to TASK K are removed. 

Complexity of the second pass is O((tn)2), where tn is the total number of

tasks occurring in the workflow. Since, fetching from the 2-Dimensional array is

done O(1) and the total number of all task pairs is (tn)2, the overall complexity for

finding the added edges is (tn)2  * O(1)  = O((tn)2) . Since fetching the edge values

from the 2-Dimensional array is O(1) and the total number of all tasks is (tn), the

overall complexity for finding the removed edges is (tn) * O(1) = O(tn). Thus the

overall complexity is O(tn) + O((tn)2)  = O((tn)2). 
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Formal description of the algorithm used in the second pass is shown in

Figure 10. Here n is the number of tasks that are occurred in the workflow log. In

the algorithm tasks are enumerated hence ti is the ith task of the workflow. ⊕∼ and

⊕x are the heuristic values. candidate is a list that contains the tasks satisfying the

first if condition in the algorithm. candidate list is initialized to empty for each task

by clear method and tasks inserted to candidate list by add method. The edge array

keeps the determined edges For example, edge[i][k]=2 means there is a flow from ti

to tk in the workflow.  In Figure 10,  removeWrongEdges  is used for deleting the

edges from the task joining as OR-Join.

Table 4 is refined form of the Table 3. The changed values are written in

bold. As it can be seen from Table 4 edges from F to K and G to K are deleted and

new edges from F to H and from G to H are added. The edge from F to H has a

value of 2. This is to identify that this edge is an advanced control structure. It is

not because two tasks are joining. For instance, if three tasks join as OR-Join, their

edge values to the joined task will be still 2.
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for i:0 to n
    
cadidate.clear()
for k:0 to n

if tk ~ ti >  ⊕~ and tk ^ ti <  ⊕ x

then candidate.add(k)
end

end
if candidate.size() > 1 then

for j:0 to candidate.size()
 edge [candidate.get(j)] [i]=2

removeWrongEdges(candidate.get(j),i)
end

end
end

Figure 10  Formal description of the second pass



In Figure 11 the final workflow graph is shown. This graph is generated

from Table 4. If we compare the graphs in Figure 9 and Figure 11, we can see that

there is a small difference between them. The difference comes from the refinement

in the second pass. In the refinement process, edges from G to K and from F to K

are deleted and new edges from F to H and from G to H are added. Furthermore, In

Figure 11 the split from A is AND-Split and from D is AND-Split; the join on E is

AND-Join,  on  H is  OR-Join  from F and  G,  on  K  is  AND-Split.  Or-Joins  are

represented in different color in the graph.

a→Wb A B C D E F G H I J K
 A 0 1 1 1 0 0 0 0 0 1 0
B 0 0 0 0 1 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0 0
D 0 0 0 0 0 1 1 0 0 0 0
E 0 0 0 0 0 0 0 1 0 0 0
F 0 0 0 0 0 0 0 2 0 0 0
G 0 0 0 0 0 0 0 2 0 0 0
H 0 0 0 0 0 0 0 0 0 0 1
I 0 0 0 0 0 0 0 0 0 0 1
J 0 0 0 0 0 0 0 0 1 0 0
K 0 0 0 0 0 0 0 0 0 0 0
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Table 4 Edge table after second pass

Figure 11 Induced workflow diagram of second pass



In both the first and second passes  ⊕ and  ε values are used to deal with

noise  and  incompleteness  of  the  workflow log.  In  the  complete  logs  if  a  task

follows the other task in the workflow then in the log following task must be seen

just  after  the  followed  task  at  least  once.  Since  the  proposed  algorithm  uses

interval, it does not require complete log in order to detect following relation.  In

addition, in same cases the disjoint events, for instance TASK D and TASK I in

Figure  11,  has  a  succession  waiting  time  and  it  is  possible  that  TASK  D  is

succeeded by TASK I in some workflow traces. Such workflow traces are possibly

exceptional cases of the workflow log and they can be eliminated by using the ⊕

and ε thresholds values. In this example edge validity ratio of D to I is 0.23 and the

value of  ε for succession is 0.45. Since 0.23 is smaller then 0.45 the edge value

from D to  I  is  concluded as  0.  This  workflow does  not  contain  loop  if  exists

nothing is done to detect it. Loop is a cyclic routing. Routings are discovered one

by one. Hence routing in the loops discovered regardless of it pattern

3.5.3 Timed Workflow Miner (TWM)  

Timed  Workflow  Miner  (TWM)  is  the  name  of  the  tool  that  we  have

implemented.  TWM is  based on the  proposed algorithm.  TWM has three main

functions:

i. creating the workflow log, for rediscovery purposes

ii. constructing average values tables for each task in the workflow log, 

iii. generating the workflow graph.

In TWM, in order to create a workflow log, the workflow descriptor file

“WorkflowDescr.txt”  is  required.  The  workflow  descriptor  file  contains  the
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information  about  each  task  such  as  its  name,  executing  time,  waiting  time,

incoming edges, outgoing edges information. A sample workflow descriptor file is

placed  in  APPENDIX-A.  A  random  workflow  log  is  generated  from  this

description.  After  reading the  description  of  workflow is  constructed  as  in  the

description.  The control flows and executions are handled by random values. In

order to construct the average values tables this created workflow log is used. After

constructing  the  average  values  tables,  workflow model  is  generated  using  the

algorithm in section 3.5.2. Average values tables for Task-A is shown in Figure 12.

The other  constructed average values  are tables  placed in APPENDIX-B.  After

constructing the average values tables, workflow model is generated. 

In Figure 12 a snapshot of TWM is shown. The table in the Figure is the

AVT of A. In 4th column average succession time of other tasks to A, in 7th column

average succession time of A to other tasks, is shown. 6.19 seconds is the average

succession time of B to A and 4.76 seconds is the average succession time of A to

B. In 5th column average following time of other tasks to A, in 8th column average

following  time  of  A  to  other  tasks,  is  shown.  17.53  seconds  is  the  average

following time of C to A and 4.76 seconds is the average following time of A to B.

In the 6th  and 9th columns the edge validity ratios of the A to B and B to A are

shown. In the 10th column the task overlapping ratio is shown.  Messages in the list

of Figure 12 give information about the distances between the tasks and tasks that

are executed in parallel.

To identify the routings clearly TWM draws the edges with different colors.

It uses dark color edges for loops, dotted color edges for OR-Joins and light color

edges  for  the  rest.  According  to  these  colorings  the  resulting  workflow model

generated by TWM is shown in Figure 13.
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In Figure 13, a dark colored edge exists from B to A which implies there is

a loop from B to A. Light colored edges from C to D, E and F imply an AND-Split

from C. The dotted colored edges from D to G and E to G are imply on OR-Join

into the task G. The numbers on the task nodes are the average execution times of

the tasks. And the numbers on the edges are the average waiting times between

tasks. All time values are referenced from the start task; therefore a reference time

scale  is  drawn at  the  bottom of  the  generated  graph.  By using  this  time  scale

relative average starting time of the tasks in workflow can be seen.
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Figure 12  TWM showing Average Values Table of Task A
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Figure 13  Mined workflow model



CHAPTER 4

COMPARISON

In this chapter a comparison of the proposed algorithm and β-algorithm is

done. We chose the  β-algorithm since it is the latest approach introduced in the

literature. On the other hand the approach of mining block-structured workflow is

not  compatible  with  the  proposed  algorithm  since  the  proposed  algorithm  has

graph-oriented meta model and the other has a block-oriented meta model.

Proposed  algorithm  implemented  in  TWM  and  β-algorithm is  in  ProM

framework.  While  comparing  the  algorithms,  three  logs  are  taken  into

consideration.  Two  of  these  logs  obtained  from  process  mining  web  page

(www.processmining.de) and one of them is generated by TWM. Logs are sorted

according to the case numbers. The logs obtained from process mining web page

are in XML format, log generated by TWM is the in the format shown in Table 1.

First log that is used in comparison contains just three activities but it has a

loop of order 1. It is known that mining loop of order 1 and of order 2, i.e. short

loops,  is  a hard problem. Therefore this  log is  chosen to test  whether the tools

TWM and ProM can successfully mine this compact workflow model. The second

log contains loops both of order 1 and of order 2. These two logs obtained from

process mining web page and β-algorithm is introduced as an improvement of α-
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algorithm that is  capable of mining short  loops.  Therefore ProM is expected to

mine the desired workflow models. The workflow model generated by TWM needs

to be equivalent to the workflow that is generated by ProM since it is expected to

mine desired workflow model.

The third log used in comparison contains a parallel routing of order 3. It is

generated by our system TWM. This is  chosen to test whether  β-algorithm can

successfully mine  the workflow model  containing a parallel  routing of order 3.

Since TWM uses the intervals to detect successive tasks, it can successfully mine

this kind of workflow models.  The workflow model generated by ProM needs to

be equivalent to workflow that is generated by TWM because TWM is expected to

mine desired workflow.

TWM and ProM are compared for hidden task identification, complexity,

and noise in the section 4.4.  Performance analysis for TWM and ProM could not

be done since no benchmark data exists for workflow mining.

4.1 Case Study 1 : Log WA

In this case Workflow Log that is obtained from process mining web page is

considered. This log consists of 400 instances and 3043 trace lines. There are three

activities in the log, namely A, B and C. The property of the workflow being mined

is  that  it  contains an activity that  has a self-loop (loop of order 1). This  log is

chosen since β-algorithm is proposed to mine short loops of order 1 or 2. Table 5

summarizes the properties of log WA.

Name Log A
Number of cases 400
Number of entries 3043
Source www.processmining.de file:pn_ex_05.xml
Property Contains loop of order 1
Activities A , B , C
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Table 5  Log WA summary



 The workflow models generated by TWM and ProM are in Figure 14 and

Figure 15 respectively. In Figure 14, either B or C succeeds A and B has a loop into

itself and it is succeeded by C. The same structure is found by ProM as shown in

Figure 15. Table 6 and Table 7 presents the Vertex-Edge matrices of the Figure 14

and Figure 15 respectively. It can be seen that Table 6 and Table 7 are equivalent in

cell-by-cell comparison. Therefore workflow models mined from log WA by TWM

and ProM are equivalent.

Figure 14 Workflow diagram of Log WA generated by TWM

 Figure 15  Workflow diagram of Log WA generated by ProM

Table 6 Vertex–Edge matrix for Figure 14

A B C
A 0 1 1
B 0 1 1
C 0 0 0

Table 7 Vertex–Edge matrix for Figure 15

A B C
A 0 1 1
B 0 1 1
C 0 0 0
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The  representation  of  the  workflow  graphs  in  the  compared  system  is

different.  ProM  uses  Petri-Nets  to  represent  the  control  flow  of  the  mined

workflow.  TWM  uses  workflow  graph  similar  to  [5]  to  represent  the  mined

workflow model. As shown in Figure 14, TWM generates workflow graphs which

include timing information as well.  In Figure 14,  the example workflow totally

takes nearly 1100 seconds on average. The white strip at the bottom of the Figure is

the time axis referenced from the start event. For instance A takes 381 seconds, B

takes  372 seconds,  C takes  364 seconds,  B waits  147 seconds to start  after  A

finishes, to start, C waits 325 seconds after A to start, B waits 133 seconds to loop

and C waits 144 seconds after B to start. B and C look like they are concurrent

activities.  This  is  originated  from  the  calculation  of  time  values  by  using  the

averages of all occurrences of the activities, in whole log. C succeeds both A and B

so the beginning time of C is sometimes closer to A, sometimes closer to B then on

the  average  C  begins  in  mid-time  of  the  B’s  execution.  None  of  this  timing

information about the workflow model can be mined in ProM.

4.2 Case Study 2:  Log WB

In  this  case  we consider  a  workflow log  that  is  obtained  from process

mining web page again. This log consists of 200 instances and 5529 trace lines. In

the log there are eleven activities. The workflow contains a loop with two activities

(loop of order 2)  and a loop with a single activity (loop of order 1). This log is

chosen since β-algorithm is proposed for mining short loops of order 1 or 2.

Table 8  Log WB summary 

Name Log WB

Number of cases 200
Number of entries 5529
Source www.processmining.de file:pn_ex_13.xml
Property Contains loop of order 1 and 2
Activities A, B, C, D, E, F, G, H, I, K, J
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TWM  generates  the  workflow  models  shown  in  Figure  16  and  ProM

generates the workflow model shown in Figure 17. The key points of the workflow

of Log WB are the following:

(i) Log WB contains Log WA as a sub graph that contains a loop of order 1. 

(ii) Log WB contains a loop of order 2. 

 

Figure 16  Workflow diagram of Log WB generated by TWM

 
Figure 17  Workflow diagram of Log WB generated by ProM 
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It  can  be  clearly  seen  from Figure  16  and  Figure  17  that  F,  G  and  H

constitute the subgraph same as the workflow of Log WA and the loop that includes

C and D is of order 2. Table 9 and Table 10, are the Vertex-Edge matrices of Figure

16  and  Figure  17  respectively.  It  can   be  seen  that  Table  9  and  Table  10  are

equivalent in cell-by-cell comparison. Therefore workflow models mined from Log

B by TWM and ProM are equivalent.

Table 9 Vertex–Edge matrix for Figure 16

A B C D E F G H I J K
A 0 1 0 0 0 0 0 0 0 1 0
B 0 0 0 0 0 1 1 0 0 0 0
C 0 0 0 1 1 0 0 0 0 0 0
D 0 0 1 0 1 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 1
F 0 0 0 0 0 1 1 0 0 0 0
G 0 0 0 0 0 0 0 1 1 0 0
H 0 0 0 0 0 1 1 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 1
J 0 0 1 1 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0

Table 10 Vertex–Edge matrix for Fig 17

A B C D E F G H I J K
A 0 1 0 0 0 0 0 0 0 1 0
B 0 0 0 0 0 1 1 0 0 0 0
C 0 0 0 1 1 0 0 0 0 0 0
D 0 0 1 0 1 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 1
F 0 0 0 0 0 1 1 0 0 0 0
G 0 0 0 0 0 0 0 1 1 0 0
H 0 0 0 0 0 1 1 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 1
J 0 0 1 1 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0

If we examine the timing information of workflow of Log WB, C and D

seem to  begin  nearly,  at  the  same  time  but  they are  not  concurrent.  In fact  J

precedes either C or D but not both. Then there is loop from D to C or from C to D

otherwise control moves to E from C or D. Therefore, the average starting time

points of C and D relative to initial activity are nearly the same time. This structure,

shown in  Figure  18,  is  really hard  to  mine.  In order  to  be  able  to  detect  this

structure,  parallelism has to be detected correctly. Both TWM and ProM detect

parallelism accurately by using the intervals between start and complete time of the

activities.  

53



The workflow model shown in Figure 16 looks a little bit complex. It is

because of the time–based graph of the workflow model. While drawing the graph,

activities are placed according to their average beginning time and also as close as

possible to the time axis in the middle. Therefore edges between activities intersect

with each other. 

4.3 Case Study 3:  Log WC

In this case a Workflow Log that is generated by TWM is considered. This

log consists of 100 instances and 2824 trace lines. There are 12 activities in the log.

The property of the workflow is that it contains parallel routings of order 3. This

log  is  chosen  since  β-algorithm  is  insufficient  to  mine  workflows  containing

parallel routings of order3.

Table 11  Log WC summary
Name Log WC

Number of cases 100
Number of entries 2824
Source Generated by TWM
Property Contains parallel routing of degree 3
Activities TASK-A, TASK-B, TASK-C, TASK-D, TASK-E, TASK-F,

TASK-G, TASK-H, TASK-I, TASK-K, TASK-J, TASK-L

The workflow to be discovered has two parallel branches, where the first

branch includes activities A, D, F and G, H, J  and the second branch includes

activities A, B and C, E, I, J. (B and C) and D are in the first order, E and (G and F)
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are second order, H and I are third order parallel tasks. This situation illustrated in

Figure 19.

Workflow models generated by TWM and ProM are presented in Figure 20

and Figure 21 respectively (see APPENDIX C for a larger version of Figure 21).

With TWM, two branches are discovered in exactly the same as the workflow used

in log generation. However, ProM fails to generate the actual workflow graph. In

Figure 21 there are edges between (B and H) and between (C and H).  This  is

because of the approach in β-algorithm. Table 12 and Table 13 are the Vertex-Edge

matrices of the Figure 20 and Figure 21 respectively. We can see that Table 12 and

Table 13 are equivalent in cell-by-cell comparison except (A and F), (B and H) and

(C and H). We explain the reason for the incorrect edge between (B and H) and (C

and H) in the following, but the reason behind the incorrect edge between (A and F)

cannot be clearly identified during this thesis. We conclude that, workflow model

mined from Log WC by TWM is equivalent to the workflow used in log generation.

However workflow mined by ProM contains extra incorrect routings.
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Figure 20  Workflow diagram of Log WC generated by TWM

 
Figure 21  Workflow diagram of Log B obtained from ProM

Table 12 Vertex–Edge matrix for Figure 20

A B C D E F G H I J K L
A 0 1 1 1 0 0 0 0 0 0 1 0
B 0 0 0 0 1 0 0 0 0 0 0 0
C 0 0 0 0 1 0 0 0 0 0 0 0
D 0 0 0 0 0 1 1 0 0 0 0 0
E 0 0 0 0 0 0 0 0 1 0 0 0
F 0 0 0 0 0 0 0 1 0 0 0 0
G 0 0 0 0 0 0 0 1 0 0 0 0
H 0 0 0 1 0 0 0 0 0 1 0 0
I 0 0 0 0 0 0 0 0 0 1 0 0
J 0 0 0 0 0 0 0 0 0 0 0 1
K 0 0 0 0 0 0 0 0 0 1 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0

Table 13 Vertex–Edge matrix for Figure 21

A B C D E F G H I J K L
A 0 1 1 1 0 1 0 0 0 0 1 0
B 0 0 0 0 1 0 0 1 0 0 0 0
C 0 0 0 0 1 0 0 1 0 0 0 0
D 0 0 0 0 0 1 1 0 0 0 0 0
E 0 0 0 0 0 0 0 0 1 0 0 0
F 0 0 0 0 0 0 0 1 0 0 0 0
G 0 0 0 0 0 0 0 1 0 0 0 0
H 0 0 0 1 0 0 0 0 0 1 0 0
I 0 0 0 0 0 0 0 0 0 1 0 0
J 0 0 0 0 0 0 0 0 0 0 0 1
K 0 0 0 0 0 0 0 0 0 1 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0
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The incorrect implication in ProM is done in the following way: Consider

the simple workflow model Figure 22.a. Some possible event trace combinations

are shown in Figure 22.b and Figure 22.c. In Figure 22.b and Figure 22.c the length

of boxes represents the execution time of the task and tasks are placed according to

their START event time relatively.  According to Figure 22.b F indirectly follows B

and Figure 22.c  F succeeds  B.  Since B and F do not  have an intersection and

indirect  following  is  ignored,  workflow  model  in  Figure  22.d  is  mined  by  β-

algorithm. The combinations illustrated in Figure 22.b and Figure 22.c may not

constitute a single case. They can be formed many times in the execution of the

workflow depending on the execution times of tasks in each instance. The problem

is serious because many workflows contain the workflow in Figure 22.a as a sub-

workflow. 

Figure 22  States for incorrect implication
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In TWM, this incorrect implication is prevented by the edge validity ratio.

In order to add an edge between activities, edge validity ratio must be greater than

0.45. The edge between (B and H) and (C and H) has not been added since the edge

validity ratio of B and H is 0.3193 and C and H is 0.3324. In the Figure 23 these

values are shown in circle.

  

Figure 23 Average values table for  activity H

4.4 Other Issues

We have shown with examples  that  TWM is able  to  discover  the same

workflow structure as ProM can discover. We have also shown that ProM cannot

discover all Workflow structures that TWM can (see Case Study 3). In this section

we consider other issues in comparing the two systems.
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4.4.1 Noise

Workflow instances that are used in β-algorithm need to be consistent. That

is every activity in a workflow instance with a START event is required to have a

COMPLETE event  in  the  same instance  or  vice  versa.  Otherwise  that  instance

discarded.  In  TWM  all  workflow  instances  are  taken  into  consideration.  All

instances are included in the average value calculations, therefore exceptional cases

cannot change the result of the edge detection. Thus TWM can mine workflow logs

that contain incomplete data.

4.4.2 Complexity  

In [19] it is stated that the number of trace lines is the dominant factor on

the execution time of the  β-algorithm. In TWM the log is read once. Then two

passes are performed over average values tables. The workflow log can be read in

O(L) where L is the number of trace lines. The complexity of the first pass is of the

edge detection algorithm is O((tn)2) where tn is the total number of tasks occurring

in the workflow log and the complexity of the second pass is O((tn)2)  (see Sec 3.5).

Hence the total complexity of TWM is O(L+ (tn)2). For large L values O(L+ (tn)2)

converges to  O(L). Consequently, complexity of the  β-algorithm and TWM are

asymptotically equivalent.

4.4.3 Hidden Tasks

Another issue in mining workflows is the detection of hidden tasks. Hidden

task is a task in workflow that is exists in workflow and performed by an agent that

cannot  log  the  executed  task.  Therefore,  these  tasks  are  not  included  in  the

workflow logs. This is why this task is called  hidden task. By the nature of the

problem,  it  is  difficult  to  be certain  about  the  existence  of hidden tasks  in  the

mining process. 
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Our algorithm TWM might help in discovering hidden tasks in workflow

mining.  The timing information on the mined workflow graphs  can be used  to

comment  on  the  possibility  of  having  hidden  tasks.  For  instance  consider  the

workflow model mined by TWM in Figure 21. In this workflow graph the average

waiting time between the activity K and the activity J is two times longer then the

longest waiting time in the whole graph. This might be a very useful information

for the purpose of hidden task identification. Since, if a hidden task exists between

two activities the waiting time between these two activities will include the waiting

time from the first activity to the hidden task, hidden task duration and the waiting

time  from the  hidden  task  to  the  second  activity.  Thus  compared  to  the  other

waiting times,  a  relatively longer waiting time would be discovered for  hidden

tasks. Such information could not be retrieved using β-algorithm.
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CHAPTER 5

CONCLUSION

In this thesis, a new approach for mining workflow graphs is presented. The

mined workflow graph can contain all of the basic workflow patterns and also non-

free choice structures The proposed algorithm uses timed workflow logs and mine

workflows with timing information such as the average waiting times and average

execution times of the activities. While mining the workflow, first, average values

tables for each task is constructed by scanning the log once. Then two passes are

performed  on  AVTs:  the  first  pass  is  for  mining  the  basic  constructs  such  as

sequential, sequential, parallel, alternative or iterative routing. The second pass is

for  detecting the  OR-Join.  The  noise  problem is  addressed  by means  of  using

threshold  values  that  are  decided  heuristically.  The  proposed  workflow mining

algorithm is compared to other existing tools in the literature. We have concluded

that it can show the same results, if not better, in the context of case studies. In the

case studies TWM can mine the workflows that β-algorithm can mine, however β-

algorithm fails to mine the workflow that TWM can mine (see case study 3). TWM

and  β-algorithm  has  an  asymptotically  equivalent  complexity.  Performance

evaluation cannot be done because there is no benchmark data exists for workflow

mining.  Furthermore,  proposed  algorithm  mines  useful  information  for
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commenting on possible hidden task identification problem. This mining approach

can be used in different application such as mining web logs to detect navigation

graphs since navigational  routing expected  to include parallel  routing of  higher

order. 
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APPENDIX-A

A sample workflow descriptor file

TASK-A  <task name>
12000 <execution time>
12000  <waiting time>
1 <preceding task count>
1000  <split waiting time>
1 <succeeding task count>
TASK-B <succeeding task name>
NOT   <is succeeding task form loop>
0 <random(100) lower to run> 
99 <random(100) upper to run>
TASK-B  
14000 
8000 
1 
1000 
2 
TASK-A
LOOP
0 
29 
TASK-C
NOT
30 
99 
TASK-C 
12000 
10000 
1 
1000 
3 
TASK-E
NOT
0 
59
TASK-F
NOT
0 
99 
TASK-D
10000

12000 
1 
1000 
1 
TASK-G
NOT
0 
99 
TASK-E 
8000 
8000 
1 
1000 
1 
TASK-G
NOT
0 
99 
TASK-F 
18000 
8000 
1 
1000 
1 
TASK-G
NOT
0 
99 
TASK-G 
10000 
6000 
1 
1000 
1 
TASK-H 
10000 
10000 
1 
1000 
0
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APPENDIX-B

Used Average Values Tables

Figure 24 AVT for Task B
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Figure 25 AVT for Task C

Figure 26 AVT for Task D
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Figure 27 AVT for Task E

 
Figure 28 AVT for Task F
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Figure 29 AVT for Task G

Figure 30 AVT for Task H
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APPENDIX-C

Larger version of Figure 21

Figure 31 Workflow Model 
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