

“DEVELOPMENT OF A PC NUMERICAL CONTROL SYSTEM FOR HIGH VOLTAGE

SPHERE GAP CONTROL”

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR KASAP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2005

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of

Science.

 Prof. Dr. İsmet Erkmen

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope

and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Mirzahan Hızal

 Supervisor

Examining Committee Members:

Prof. Dr. Ahmet Rumeli (METU EE)

Prof. Dr. Mirzahan Hızal (METU EE)

Prof. Dr. Muammer Ermiş (METU EE)

Prof. Dr. Nevzat Özay (METU EE)

Msc. Ulaş Karaağaç (TÜBİTAK BİLTEN)

I hereby declare that all information in this document has been obtained and presented in
accordance with academic rules and ethical conduct. I also declare that, as required by
these rules and conduct, I have fully cited and referenced all material and results that are
not original to this work.

 Name, Last name:

Signature :

 iii

ABSTRACT

DEVELOPMENT OF A PC NUMERICAL CONTROL SYSTEM FOR HIGH VOLTAGE

SPHERE GAP CONTROL

KASAP, Onur

M.Sc. , Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mirzahan Hızal

June 2005, 153 Pages

In this thesis, a high precision motion and position control system has been developed and applied

to a high voltage sphere gap control and measurement system. The system is able to support up

to 3-axes position and motion control. The control system includes a microcontroller card, three

DC servo motor driver cards and a data storage unit. To provide communication between

computer and motion control system, the Universal Serial Bus (USB) port is used.

The microcontroller card is equipped with an USB interface and a PIC (Peripheral Interface

Controllers) microcontroller. This microcontroller controls the dedicated motion control

processors (LM629), on servo motor driver cards and read/write operations of data storage unit,

which consists of a Multi Media Card.

Keywords: High voltage sphere gap, DC servo motor motion control, PIC microcontroller,

LM629, Multi Media Card (MMC)

 iv

ÖZ

YÜKSEK VOLTAJ KÜRE ARALIĞINI KONTROL AMAÇLI BİR BİLGİSAYAR SAYISAL

KONTROL SİSTEMİNİN GELİŞTİRİLMESİ

KASAP, Onur

Yüksek Lisans , Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mirzahan Hızal

Haziran 2005, 153 sayfa

Bu tezde, yüksek hassasiyetli bir hareket ve pozisyon kontrol sistemi geliştirilmiş ve bir

yüksek gerilim küre aralığının ayarlanmasında ve ölçümünde kullanılmıştır.. Sistem üç eksene

kadar hareket ve pozisyon kontrolünü desteklemektedir. Kontrol sistemi bir adet

mikrodenetleyici kartı, üç adet DC servo motor sürücü kartı ve bilgi depolama ünitesi

içermektedir. Bilgisayar ve hareket kontrol sistemi arasındaki iletişimi sağlamak için USB portu

kullanılmıştır.

Mikrodenetleyici kartı USB arayüzü ve PIC mikrodenetleyicisi ile donanmıştır. Bu mikroişlemci

servo motor sürücü kartları üzerindeki, hareket için adanmış işlemcileri (LM629) ve Multi Media

kartı içeren depolama ünitesinin okuma yazma işlemlerini kontrol etmektedir.

Anahtar Kelimeler: Yüksek voltaj küre aralığı , DC servo motor hareket kontrolü, PIC

mikrodenetleyici, LM629, Multi Media Kart

 v

To My Family

 vi

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Prof. Dr. Mirzahan Hızal for his

encouragements, guidance and supervision.

I wish to thank Mehmet Akyüz for his suggestions on software.

Finally, I would like to thank Seren Yüksel for her precious help, great support and

understanding. I believe without her this thesis would not have been completed.

 vii

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………. iii
ABSTRACT………………………………………………………………................................ iv
ÖZ………………………………………………………………………….. v
ACKNOWLEDGEMENTS………………………………………………...............................vii
TABLE OF CONTENTS…………………………………………………viii
LIST OF TABLES………………………………………………………................................. xi
LIST OF FIGURES……………………………………………………….............................. xii

CHAPTERS ...1
1.INTRODUCTION ..1

1.1 Sphere Gaps ...1
1.2 Computer Numerical Control (CNC) Application ...5
1.2.1 CNC Machine Tools ..7
1.3 Control Systems ...7

1.3.1 Open-Loop Control ...8
1.3.2 Closed-Loop Control...9
1.3.3 Position Control Systems ..10

1.3.3.1 Position Transducers ...10
2.CONTROL MOTOR TYPES ...14

2.1 Step Motors ..14
2.1.1 Drive Circuits ..16

2.1.1.1 Flux Direction Control ..17
2.1.1.2 Current Control ..17

2.1.2 Torque-Speed Characteristics..18
2.2 Servo Motors..19

2.2.1 DC Servo Motors...19
2.2.1.1 Drive circuit ..19
2.2.1.2 Speed Control..21
2.2.1.3 Torque-Speed Characteristics ...22

2.2.2 AC Servo Motor ..23
2.2.2.1 Construction and Operating Principle...23
2.2.2.2 Torque Control..24
2.2.2.3 Speed Control..25
2.2.2.4 Torque- Speed Characteristic..25

3. MOTOR CONTROL HARDWARE ...27
3.1 General Overview to PIC Microcontroller...30

3.1.1 PIC 16F877 Microcontroller ...31
3.1.2 General Architecture ...32
3.1.3 Clocking Scheme/Instruction Cycle ..34
3.1.4 CPU AND ALU ..35

3.1.4.1 CPU Registers ...37
3.1.5 Program Memory Organization and Program Counter38

3.1.6 Data Memory...40
3.1.7 Hardware Features...41

 viii

3.1.7.1 I/O Ports ..41
3.1.7.2 Timers ...42
3.1.7.3 USART ...42
3.1.7.4 Capture/Compare/PWM Modules...42
3.1.7.5 A/D Converter...42
3.1.7.6 Synchronous Serial Port (SSP) Module ...43

3.2 Digital I/O Interface ...45
3.2.1 USB Hardware ..46

3.2.1.1 Connectors ..46
3.2.1.2 Electrical ...47
3.2.1.3 Speed Identification ..48
3.2.1.4 Power Distribution ..48

3.2.2 USB Protocols ...49
3.2.2.1 Common USB Packet Fields...49
3.2.2.2 USB Packet Types ..50

3.2.3 Endpoints...51
3.3 Microcontroller Card..52
3.4 Precision Motion Controller LM629..56

3.4.1 Hardware Architecture ..58
3.4.2 Motor Position Decoder ..59
3.4.3 Velocity Profile (Trajectory) Generation ..59
3.4.4 PID Compensation Filter...61
3.4.5 Motor Outputs ...63
3.4.6 LM629 Reading and Writing Operations ..63
3.4.7 User Command Set..64
3.4.8 Programming LM629..65

3.5 Data Storage...71
3.6 Data Storage Circuit...77
3.7 Motor driver circuit ..79
3.8 Buffer Circuit ...80

4. MOTOR CONTROL SOFTWARE...83
4.1 PIC Programming ..85

4.1.1 PIC Basic Pro ..85
4.2 Firmware Description ...88
4.2.1 Storage Part ...89
4.2.2 LM629 Part ...91
4.2.3 Data processing Part..94
4.2.4 Subroutines..97

4.2.4.1 MMC Subroutines...97
4.2.4.2 LM629 subroutines ...98

5. CONCLUSION..101
REFERENCES.. 103
APPENDIX A: MACHINE CODES...107
APPENDIX B: DLP-IO26 USB Interface and Schematic ..108

B.1) FTU245AM...108
B-2) SCHEMATIC DIAGRAM ...113

APPENDIX C: MOTOR DRIVER...114
APPENDIX D: BUFFER CIRCUIT...116

D.1) SN54/74LS245 OCTAL BUS TRANSCEIVER ..116

 ix

D.2) DM74LS241 Octal TRI-STATE… Buffers/Line Drivers/Line Receivers117
APPENDIX E: PIC BASIC PRO...118

E.1) PicBasic Pro Basics ..118
E.2) PicBasic Pro Statement Reference ...124

APPENDIX F: PIC Pin Variables and Functions ..125
APPENDIX G: FIRMWARE..126
APPENDIX H: SPI Command Set..150

 x

LIST OF TABLES

Table 1-1 Sphere gap with one terminal grounded breakdown voltages............................... 2
Table 2-1 H-BRIDGE modes of operation.. 20
Table 3-1 Basic features of PIC 16F877... 31
Table 3-2 Direct and Indirect Addressing of Banks.. 40
Table 3-3 USB pin functions.. 47
Table 3-4 Description of DLP-IO26 40 pin header pins... 55
Table 3-5 LM629 User Command Set.. 64
Table 3-6 Initialization Module (with Hardware Reset)... 67
Table 3-7 Filter Programming Module.. 69
Table 3-8 Trajectory Programming Module.. 70
Table A-1 Mid-Range MCU Instruction Set.. 107
Table D-1 Truth Table of LS245.. 116
Table E-1 PIC Basic Pro Math Operators.. 122
Table E-2 Comparison Operators... 123
Table E-3 Logical Operators.. 123
Table F-1 PIC Pin Variables and Functions... 125
Table H-1 Command Classes in SPI Mode.. 150
Table H-2 SPI Bus command description.. 151

 xi

LIST OF FIGURES

Figure 1-1 Vertical and Horizontal Arrangements of Spheres.. 3
Figure 1-2 A Typical Microprocessor-based Open-loop Control……………..................... 8
Figure 1-3 Block diagram of a closed-loop control of a stepping motor……...................... 9
Figure 1-4 Generalized positioning control system…………………………...................... 10
Figure 1-5 Basic rotary photo electric transducer…………………………......................... 12
Figure 1-6 Output signals of a photo electric encoder…………………….......................... 12
Figure 1-7 Magnetic Encoder……………………………………….................................... 13
Figure 2-1 Step motor drive circuit scheme…………………………………...................... 16
Figure 2-2 A typical torque-speed characteristics of a stepping motor……........................ 18
Figure 2-3 Bidirectional BDC motor drive (H-BRIDGE) circuit…………......................... 20
Figure 2-4 Speed – Torque Characteristic of PMDC motor……………............................. 23
Figure 2-5 AC Servo motor control block diagram…………………………….................. 24
Figure 2-6 A typical torque-speed Characteristic of AC servo motor………….................. 26
Figure 3-1 General Overview of the Design…………………………………..................... 27
Figure 3-2 Sphere Gap Setting... 28
Figure 3-3 3-axes Position and Motion Controller.. 29
Figure 3-4 XY Positioning Table.. 29
Figure 3-5 PIC 16F877 Block Diagram……………………………………....................... 32
Figure 3-6 Harvard vs. von Neumann Block Architectures…………………..................... 33
Figure 3-7 Clock/Instruction Cycle…………………………………………....................... 34
Figure 3-8 Instruction Pipeline Flow………………………………………........................ 35
Figure 3-9 Operation of the ALU and W Register…………………………........................ 36
Figure 3-10 Status Register ………………………………………….................................... 37
Figure 3-11 Architectural Program Memory Map and Stack………………......................... 38
Figure 3-12 Loading of PC in Different Situations…………………………......................... 39
Figure 3-13 PIC16F877 Pin Diagram…………………………………….…........................ 41
Figure 3-14 SSPSTAT: Synchronous Serial Port Status Register……………...................... 44
Figure 3-15 SSPCON: Synchronous Serial Port Control Register…………......................... 44
Figure 3-16 USB connector Types………………………………………….......................... 47
Figure 3-17 Full and Low Speed Device with pull up resistor ………………...................... 48
Figure 3-18 Block diagram of DLP-IO26……………………………………....................... 53
Figure 3-19 The interface between FT8U245AM and Microcontroller……......................... 54
Figure 3-20 DLP-IO26 40 pin header………………………………………......................... 56
Figure 3-21 LM628 and LM629 Typical System Block Diagram……………..................... 57
Figure 3-22 Hardware Architecture of LM629………………………………....................... 59
Figure 3-23 Typical Velocity Profiles………………………………………........................ 60
Figure 3-24 Position, Velocity and Acceleration Registers…………………....................... 61
Figure 3-25 LM629 PID control block diagram……………………………......................... 61

 xii

Figure 3-26 PWM Output Signal Format ………………………………….......................... 63
Figure 3-27 Status Byte Bit Allocation………………………………………...................... 66
Figure 3-28 Interrupt Mask/Reset Bit Allocations……………………………..................... 67
Figure 3-29 Filter Control Word Bit Allocation……………………………......................... 68
Figure 3-30 Trajectory Control Word Bit Allocation………………………......................... 70
Figure 3-31 MMC Pinout and pad assignment... 72
Figure 3-32 MultiMediaCard/RS-MultiMediaCard Block Diagram..................................... 72
Figure 3-33 Data Transfer Formats…………………………………………........................ 73
Figure 3-34 MMC Read and Write operations………………………………....................... 74
Figure 3-35 I2C EEPROM Pinout diagram and Pin functions………………...................... 75
Figure 3-36 I2C Device Address Format……………………………………....................... 75
Figure 3-37 I2C Write Operation……………………………………………....................... 76
Figure 3-38 I2C Read Operation……………………………………………........................ 77
Figure 3-39 MMC Data Storage Circuit... 78
Figure 3-40 X axis Motor Driver Circuit……………………………………........................ 80
Figure 3-41 Buffer and line control circuit of X axis………………………......................... 82
Figure 4-1 Trajectory Example……………………………………………......................... 84
Figure 4-2 Programming Device……………………………………………....................... 87
Figure 4-3 General Overview of the Firmware……………………………….................... 88
Figure 4-4 Flow Chart of Data Storage Part…………………….....………….................... 90
Figure 4-5 Flow Chart of LM629 Part…………………………………….......................... 93
Figure 4-6 Flow Chart of Data Processing Part……………………………….................... 96
Figure B-1 FT8U245AM Block Diagram…………………………………......................... 110
Figure B-2 DLP-IO26 Schematic Diagram…………………………………....................... 113
Figure C-1 Functional Block Diagram of LMD18201………………………...................... 115
Figure D-1 Logic and Connection Diagram of LS245………………………...................... 116
Figure D-2 Pinout and Logic Diagram of LS541……………………………..................... 117

 xiii

CHAPTER 1

INTRODUCTION

In this study, the developed position and motion control system is used in two applications:

1) Controlling the sphere gap setting for measurement of high voltages.

2) Controlling the motion and position of a three axes machine.

1.1 Sphere Gaps

Sphere gaps are commonly used for the measurement of the peak value of high voltages and as

a result of extensive investigations calibration tables giving breakdown voltages corresponding

to various gap lengths for different sizes of spheres have been prepared.

The Table 1-1 gives the breakdown voltages for a standard sphere gap of the specified sphere

size and spacing. The standard accuracy is ±3% for gaps less than half the sphere diameter and

5% for gaps larger than that. The Table 1-1 is for a gap with one terminal grounded, typically a

vertical gap. There are two columns for each sphere size depending on whether it is a positive or

negative impulse. The column A shows AC, DC, either polarity and full negative standard

impulse voltages (one sphere grounded) and the column B shows positive polarity standard

impulse voltages and impulse voltages with long tails

As the field gets more uniform (i.e. the gap is a smaller fraction of the sphere diameter), the

difference in voltage for the two polarities becomes less. In general, voltages for spheres larger

than the largest for which there is a voltage will be the same. That is, 200 cm spheres with a 0.5

cm gap will breakdown at the same voltage as a 15 cm sphere at the same spacing.

 1

Table 1-1: Sphere gap with one terminal grounded breakdown voltages (in KV) at Standart

Temperature and pressure (760 mmHg , 20 oC)

 2

For sphere s of particular diameter, the field in the gap becomes less uniform as the gap length

increases from a sphere radius to a sphere diameter. It is recommended that the spacing should

not exceed a sphere radius.

In general the spheres are mounted with the axis of the sphere gap vertical and the lower sphere

is earthed as shown in Figure 1-1. When measurement of a symmetrical applied voltage has to

be made, the spheres are arranged horizontally and both the spheres are insulated. The

breakdown voltage characteristic will then be slightly different.

Figure 1-1: Vertical and Horizontal Arrangements of Spheres

In the figure 1-1, A is the height of the spark point above earth plane, B is the radius of space

free from external structures and Rs is the series resistor.

The relationship between applied voltage to spheres, diameter of spheres and gaps is given by

the below equation.

 3

 S
S
D

K
U ..1

.S
757,0175,27 ⎟

⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

δ
 (1.1)

U: applied voltage, KV

D: Sphere diameter, m

S: Sphere Gap, m

T
P386.0=δ

 (1.2)

P is air pressure, T is air temperature

K: Geometrical parameter depends upon the ratio of gap spacing to sphere radius.

The factors that affect the high voltage measurements with sphere gap:

• Standard sphere gaps

• Tolerances on size, shape and state of surface

• Construction of the shanks of the sphere

• Height of the spheres above the horizontal ground plane

• Clearance around the spheres

• High voltage conductor

• Protective series resistance in the measurement of alternating, direct and impulse voltages

• Irradiation

• Correction factors for varying atmospheric conditions

Arranging the distance between the spheres is very difficult and time consuming process. As

described above for accurate measuring of high voltage, the sphere gap distance must be very

precise. In modern applications, a remote controlled position controller system is used to control

the sphere gap to save time and take measure to high voltage’s lethal hazard.

 4

1.2 Computer Numerical Control (CNC) Application

The operation of mechanical devices requires some form of control, whether manual, automatic,

through a computer program, or by remote control. Manufacturing machines need control

systems that primarily repeat well-defined movements with high precision and in a minimum of

time, permitting the mass production of products of uniform quality with a minimum human

intervention. [5]

For mass production such automated machinery is frequently arranged sequentially so that, at

each stage, an additional operation or operations may be carried out. This type of manufacture

is the most efficient yet devised.

A control system which has been designed according to traditional principle is referred to as a

mechanical, electrical, pneumatic, or hydraulic control, depending on classification of its main

components. These controls have a major disadvantage in that their sequence of operations is

fixed. Changes in operational sequence due to product changes cause considerable downtime

while the electrical circuitry and mechanical elements of the control are being changed to

achieve the new control characteristics required. A major portion of setup time is needed to

effect adjustment of the control devices.

For these reasons, machines with traditional controls are not appropriate for flexible

manufacturing. A new control concept has been developed, which meets the following criteria:

• No manual intervention necessary during the machining process

• Storage of part programs that are quickly retrievable

• Precisely defined and simultaneous movements of as many machine axes as possible

• Quickchange tooling and autochange feed and spindle speed facilities

This new controller concept demands programmable machines that offer rapid and error-free

response to changing manufacturing demands and which are “controlled by numbers,” as all

information is supplied in digital format. [5]

 5

Numeric Control (NC) is the technique of giving instructions to a machine in the format of a

code which consists of numbers, letters, punctuation marks and other symbols. All NC machine

responds to this coded information in precise and ordered manner to carry out various

machining functions. These functions may range from the positioning of the machine spindle

relative to the workpiece, to controlling the speed and direction of spindle rotation, tool

selection, and so on. [6]

The combination of all this numerical information in a sequence understood by the machine

tool’s controller is called part program, and the process of creating data in a correctly structured

format is called programming. [5]

Automatic control of NC machine tools relies on the presence of the part program in a form that

is external to the machine itself. The NC machine does not possess any memory of its own and

is only capable of executing a single block of information, fed to it, at a time. For this reason

part program is stored on punched tape. The machine control unit (MCU) will read a block of

information, then execute that block, read the next block of information and execute that block,

and so on.

Since a part cannot be produced automatically without a tape being run through the machine

block by block, they are often referred to as tape controlled machines. The production of

repetitive, identical parts thus relies on the tape being present and the tape being in good

condition. [6]

Computer Numerical Control (CNC) retains the fundamental concepts of NC but utilizes a

dedicated stored-program computer within the machine control unit. CNC is largely the result of

technological progress in microelectronics, rather than any radical departure in the concept of

NC. CNC attempts to accomplish as many MCU functions as possible within the computer

software which is programmed into the computerized control unit. This greatly simplifies the

CNC hardware, significantly lowers purchase costs, and improves reliability and

maintainability.

Updates and upgrades are relatively simple. In many cases it is only the stored operating

program that needs to be modified.

 6

CNC control units, like the computers on which they are based, operate according to stored

program held in computer memory. This means that part programs are now able to become

totally resident within the memory of the control unit, prior to their execution. No longer do the

machines have to operate on the “read-block/execute-block” principle. This eliminates the

dependency on slow and often unreliable, tapes and tape reading devices. [6]

1.2.1 CNC Machine Tools

Many CNC machine tools still retain many of the constructional and physical design aspects of

their NC counterparts. However, many new control features are made available on CNC

machines, which were impractical or uneconomical to implement on early NC machines [6].

Such new features include:

• Stored programs

• Editing facilities of part programs

• Stored patterns

• Sub-programs for repetitive machining sequences

• Enhanced cutter compensation

• Optimize machining conditions

• Communication facilities

• Diagnostic

• Management information

1.3 Control Systems

Proper control of the machine tool motions is an essential requirement of any CNC machining

application. Without it we would still be reliant on the manual skills of the conventional

machine tool operator. A control system may be defined as; One or more interconnected

devices which work together to automatically maintain or alter the condition of the machine tool

in a prescribed manner.

 7

Such a system may be mechanical, electrical, electronic, hydraulic or pneumatic. In practice,

many control systems are combinations of these and are termed hybrid systems. [6]

In theory, an input signal is generated in response to an inputted program command. This

produces an output signal which turns a motor, which then moves the machine tool slide.

One important distinction that must be made in relation to control systems is between open loop

and closed loop operation.

1.3.1 Open-Loop Control

In a control system, when the output quantity has no effect on the input quantity the system is

called open loop control system. The adoption of open loop control requires very careful

consideration since any change in external conditions may cause the output of the system to

fluctuate, or drift.

The open-loop control scheme has the advantages simplicity and low cost. A typical

microprocessor-based open-loop motor control system is shown in Figure 1-2. As seen in Figure

1-2, the digital phase control signals are generated by the microprocessor and amplified by the

drive circuit before being applied to motor.

Motor

Figure 1-2: A Typical Microprocessor-based Open-loop Control

In an open-loop system there is no feedback of load position to the controller and therefore it is

imperative that the motor responds correctly to each excitation change. If the excitation changes

are made too quickly the motor is unable to move the load to the new demanded position and so

Microprocessor Drive Circuit Load

timed phase phase torque
currentscontrol signals

 8

there is a permanent error in the actual load position compared to the expected one. Also it is

important that in the applications where the load is likely to fluctuate the timings must be set for

the worst conditions, i.e. the largest load, and the control scheme is then non-optimal for all

other loads. As there is no feedback in this type of control, the need for expensive sensing and

feedback devices such as optical encoders are eliminated. [8, 18]

1.3.2 Closed-Loop Control

When a feedback loop is introduced into the control system, the output quantity is having effect

on the input quantity. This control system is classified as closed loop control system. A closed

loop system can overcome the difficulties met in an open-loop control system by using feedback

A block diagram illustrating a closed-loop control scheme of a motor is shown in Figure 1-3.

With the closed loop control, one not only determines the proper positions of the load, but more

achieves much higher speeds and more stability in speed. Each command is issued only when

the motor has responded satisfactorily to the previous command and so there is no possibility of

the motor losing synchronism.

The closed loop systems, of necessity, require more component parts, and extra control

circuitry, in order for them to perform the feedback function, and they are consequently more

complex than their open-loop counterparts. This inevitably means higher costs for the design

and implementation of closed loop systems in CNC machine tools. [8, 18]

Logic
Circuit Controller Motor

Reference
 Input

Feedback
sensor

Figure1-3: Block diagram of a closed-loop control of a stepping motor

 9

1.1.1 Position Control Systems

The degree of accuracy in positioning of machine members is directly related to the characteristics of

the principal system components, which are data input, position transducer, amplifier and controlled

drive elements. Figure 1-4 shows schematically generalized positioning control system. A data input

device provides a signal to the input section of a comparing device. And a position feedback is

provided by position transducer to the comparing device. An error signal corresponding to the

difference between the data input and the physical position of the controlled members exists as an

output to the amplifier block.

Figure 1-4: Generalized positioning control system

Appropriate amplification, dictated by the system’s accuracy and repeatability requirements, provides

excitation for the machine control actuator. Motion of the actuator shaft is converted to appropriate

machine member position by means of gearing, or by lead screws. Other positioning systems use

hydraulic or pneumatic transducers, amplifiers, and/or linear actuators.

1.1.1.1 Position Transducers

A transducer is a device that converts energy in one form into energy in another form. For example

tachogenerator is a transducer that converts angular velocity into voltage. Basically three types of

position measuring transducer are employed on CNC machine tools: INDUCTIVE,

PHOTOELECTRIC and MAGNETIC transducers.

 10

Inductive Transducers

Resolvers, synchro and inductosyn scales are belong to this category. These are old technology

and replaced by photoelectric and magnetic transducers.

The synchro transducer utilizes the principle of magnetic induction. Its rotor is attached to lead

screw and the stator windings are supplied with constant voltage which sets up the magnetic

field around them. As the rotor rotates, with the lead screw a voltage is induced in the rotor

winding. This induced voltage varies from a minimum to a maximum, depending on its

position, in a sinusoidal fashion. The magnitude of this voltage represents the angular position

of rotor. [6]

The inductosyn operates on the synchro resolver principle but is effectively laid out flat. The

amplitude and phase shift of the induced voltage via the linear motion depends on the relative

position of two elements, that is, the fixed scale windings corresponding to rotor windings, and

the sliding scale windings corresponding to stator windings. [5]

Photoelectric Transducers

The most popular type of transducer is the photoelectric transducer, which consists of a linear or

radial grating, a light source, and a photo detector (light sensor).

Photoelectric systems are available in both linear and rotary forms. The rotary transducers are

mounted on the rotating shaft of the motor or on the end of the lead screw. In the rotary

transducer, LED provides a light source on one side of the wheel and a photo transistor detects

light on the other side of the wheel (see Figure 1-5). Light passing through the slots in the wheel

will turn the photo transistor on. As the shaft turns, the photo transistor turns on and off with the

passing of the slots in the wheel. The frequency at which the transistor toggles is an indication

of motor speed. In the case of positioning applications, an optical encoder will also provide

feedback as to the position of the motor. [7, 9, 10]

The operating principle is same in the linear encoder. The instrument is attached to the slide of a

moving table. This type of transducers measures the actual movement of the carriage because

they move with the carriage.

 11

Figure 1-5: Basic rotary photo electric transducer

The photoelectric transducers are use two output channels (A and B) to sense position. Using

two code tracks with sectors positioned 90 degrees out of phase; the two output channels

indicate both position and direction of rotation. If A leads B, for example, the disk is rotating in

a clockwise direction. If B leads A, then the disk is rotating in a counter-clockwise direction. By

monitoring both the number of pulses and the relative phase of signals A and B, you can track

both the position and direction of rotation. Some transducers also include a third output channel,

called a zero or index or reference signal, which supplies a single pulse per revolution. This

single pulse is used for precise determination of a reference position. An example for the output

signals can be seen in Figure 1-6.

Figure 1-6: Output signals of a photo electric encoder

 12

Magnetic Transducer

A magnetic encoder consists of a rotating gear made of ferrous metal and a magnetic pick-up

that contains a permanent magnet and the sensing element. The gear, which is mounted on the

rotating shaft, has precisely machined teeth that provide the code pattern. As the disk rotates,

these teeth disturb the magnetic flux emitted by the permanent magnet, causing the flux field to

expand and collapse. These changes in the field are sensed by the sensing element, which

generates a corresponding digital or pulse signal output. [9, 10] Two kinds of magnetic pick-ups

exist:

• Hall effect: pick-ups use a semiconducting sensing element that relies on the Hall effect to

generate a pulse for every gear tooth that passes the pickup

• Variable reluctance: pick-ups use a simple coil of wire in the magnetic field. As the gear

teeth pass by the pick-up and disturb the flux, they cause a change in the reluctance of the

gear/magnet system. This induces a voltage pulse in the sensing coil that is proportional to

the rate flux change.

Figure 1-7: Magnetic Encoder

 13

CHAPTER 2

CONTROL MOTOR TYPES

High-precision control of electrical motors plays a critical role in many industrial applications,

such as CNC machine tools, automation, robotics, flexible manufacturing systems. Among

many electric motors, step and servo motors are widely used.

2.1 Step Motors

A stepping motor is a permanent magnet or variable reluctance dc motor that has the following

performance characteristics:

• rotation in both directions,

• precision angular incremental changes,

• repetition of accurate motion or velocity profiles,

• a holding torque at zero speed, and

• Capability for digital control.

It is an electromechanical device which converts electrical pulses into discrete mechanical

movements. Basically, it is a synchronous motor with the magnetic field electronically switched

to rotate the armature magnet around. The shaft or spindle of a stepper motor rotates in discrete

step increments when electrical command pulses are applied to it in the proper sequence.

The number and rate of the pulses control the position and speed of the motor shaft. The motor

rotation has several direct relationships to these applied input pulses. The sequence of the

applied pulses is directly related to the direction of motor shafts rotation. The speed of the

 14

motor shaft’s rotation is directly related to the frequency of the input pulses and the length of

rotation is directly related to the number of input pulses applied

Theoretically, a stepping motor is a marvel in simplicity. They are very reliable at low cost,

since there are no brushes or contacts in the motor. Therefore the life of the motor is simply

dependent on the life of the bearing.

Stepping motors have precise positioning and repeatability of movement since good stepper

motors have an accuracy of 3 – 5% of a step and this error is non cumulative from one step to

the next. They give excellent responses to starting/stopping/reversing actions and it is possible

to achieve very low speed synchronous rotation with a load that is directly coupled to the shaft.

Also, there is a wide range of rotational speeds that can be realized as the speed is proportional

to the frequency of the input pulses. Besides all these advantages, resonances that can occur and

the difficulty of operation at high speeds are the disadvantages of using a stepping motor.

 Generally, stepping motors produce less than one horsepower (746W) and therefore they are

frequently used in low-power position control applications. A stepper motor can be a good

choice whenever controlled movement is required. They can be used to advantage in

applications where you need to control rotation angle, speed, position and synchronism.

There are three basic types of stepping motors: permanent magnet, variable reluctance and

hybrid. They differ in terms of construction based on the use of permanent magnets and/or iron

rotors with laminated steel stators. The type of the motor determines the type of the circuit

driver and the type of the translator to be used.

Permanent Magnet Motors: The permanent magnet (PM) motor has, as the name implies, a

PM rotor. It is a relatively low speed, low torque device with large step angles of either 45 or 90

degrees. Its simple construction and low cost make it an ideal choice for non industrial

applications. Unlike the other stepping motors, the permanent magnet motor’s rotor has no teeth

and is designed to be magnetized at a right angle to its axis.

Variable Reluctance Motors: The variable reluctance motor does not use a permanent magnet.

As a result, the motor rotor can move without constraint or “detent” torque. This type of

 15

construction is good in non industrial applications that do not require a high degree of motor

torque, such as the positioning of a micro slide.

Hybrid Motors: Hybrid motors combine the best characteristics of the variable reluctance and

permanent magnet motors. They are constructed with multi-toothed stator poles and a

permanent magnet rotor. Standard hybrid motors have two hundred rotor teeth and rotate at 1.80

step angles. As they exhibit high static and dynamic torque and run at very high step rates,

hybrid motors are used in a wide variety of industrial applications.

2.1.1 Drive Circuits

The stepper motor driver receives low-level signals from the indexer or control system and

converts them into electrical (step) pulses to run the motor. One step pulse is required for every

step of the motor shaft. This process is shown in Figure 2-1.

Figure 2-1: Step motor drive circuit scheme

Speed and torque performance of the step motor is based on the flow of current from the driver

to the motor winding. The factor that inhibits the flow, or limits the time it takes for the current

to energize the winding, is known as inductance. The lower the inductance, the faster the current

gets to the winding and the better the performance of the motor. To reduce inductance, most

types of driver circuits are designed to supply a greater amount of voltage than the motors rated

voltage. [18]

The stepper motor driver circuit has two major tasks:

• To change the current and flux direction in the phase windings

 16

• To drive a controllable amount of current through the windings, and enabling as short

current rise and fall times as possible for good high speed performance.

2.1.1.1 Flux Direction Control

Stepping of the stepper motor requires a change of the flux direction independently in each

phase. The direction change is done by changing the current direction. It may be done in two

different ways, using a bipolar or a unipolar drive.

Bipolar drive refers to the principle where the current direction in one winding is changed by

shifting the voltage polarity across the winding terminals. The bipolar drive method requires

one winding per phase.

The unipolar drive principle requires a winding with a center-tap or two separate windings per

phase. Flux direction is reversed by moving the current from one half of the winding to the

other half. This method requires only two switches per phase. On the other hand, the unipolar

drive utilizes only half the available copper volume of the winding. Power loss in the winding is

therefore twice the loss of a bipolar drive at the same output power. [15]

2.1.1.2 Current Control

To control the torque as well as to limit the power dissipation in the winding resistance, the

current must be controlled or limited. Furthermore, when half stepping a zero current level is

needed, while microstepping requires a continuously variable current. There are two principles

to limit the current, the resistance limited drive and the chopper drive. Any of the methods may

be realized as a bipolar or unipolar driver. [15]

 17

2.1.2 Torque-Speed Characteristics

The torque-speed characteristics, that show the maximum torque which the motor can develop

at each operating speed, are the key to selecting the right motor and drive method for a specific

application. These characteristics are dependent upon the motor, excitation mode and type of

driver or drive method. A typical torque-speed characteristic of a stepping motor is given in

Figure 2

In which there are pull-in and pull-out curves. The former defines an area referred to as the start

stop region and this is the maximum frequency at which the motor can start/stop

instantaneously, with a load applied, without loss of synchronism while the latter defines an

area referred to as the slew region and it defines the maximum frequency at which the motor can

operate without losing synchronism. Since this region is outside the pull-in area the motor must

accelerated or decelerated into this region.

The pull-in characteristics vary also depending on the load as having the larger the load inertia

the smaller the pull-in area. From the shape of the curve, it can be seen that the step rate affects

the torque output capability of stepper motor. The decreasing torque output as the speed

increases is caused by the fact that at high speeds the inductance of the motor is the dominant

circuit element. The shape of the speed - torque curve can change quite dramatically depending

on the type of driver used. [18]

Figure 2-2: A typical torque-speed characteristics of a stepping motor

Torque

Speed

Pull-out
torque curve

Pull-in
torque curve

 18

2.2 Servo Motors

A servo motor is an AC or DC powered motor that uses feedback and controllers to achieve a

specific angular location. Servo motors can achieve the same levels of accuracy as stepping

motors, but must use a closed loop feedback system whereas stepping motors operate using

open loop systems.

A characteristic of servo motors that is appealing is their speed. When comparing servo motor

speed to stepping motor speed, the servo motors are much faster. Their speed offsets their

greater costs due to the control system that must accompany them. Without the use of an

accompanying control system, servo motors would have very little precision, which is their only

drawback. [19]

2.2.1 DC Servo Motors

DC servo motors are Permanent magnet DC (PMDC) servo motors with brushes, widely used in

applications ranging from CNC machine tools, automation, and robotics. PMDC are

inexpensive, easy to drive, easy to control speed and torque and are readily available in all sizes

and shapes.

2.2.1.1 Drive circuit

Drive circuits are used in applications where a controller of some kind is being used and speed

control is required. The purpose of a drive circuit is to give the controller a way to vary the

current in the windings of the BDC (brushed dc) motor. The common drive circuits allow the

controller to pulse width modulate the voltage supplied to a BDC motor. In terms of power

consumption, this method of speed control is a far more efficient way to vary the speed of a

BDC motor compared to traditional analog control methods. [12]

 19

Bidirectional control of a BDC motor requires a circuit called an H-bridge. The H-bridge,

named for its schematic appearance, is able to move current in either direction through the

motor winding.

Figure 2-3: Bidirectional BDC motor drive (H-BRIDGE) circuit

The different drive modes for and H-bridge circuit are shown in Table 2-1. In Forward mode

and Reverse mode one side of the bridge is held at ground potential and the other side at

VSUPPLY. In Figure 2-3 the IFWD and IRVS arrows illustrate the current paths during the

Forward and Reverse modes of operation. In Coast mode, the ends of the motor winding are left

floating and the motor coasts to a stop. Brake mode is used to rapidly stop the BDC motor. In

Brake mode, the ends of the motor are grounded. The motor behaves as a generator when it is

rotating. Shorting the leads of the motor acts as a load of infinite magnitude brings the motor to

a rapid halt. The IBRK arrow illustrates this.

Table 2-1: H-BRIDGE modes of operation

 Q1 Q2 Q3 Q4
 (CTRL1) (CTRL2) (CTRL3) (CTRL4)

Forward on off off on
Reverse off on on off
Coast off off off off
Brake off on off on

 20

2.2.1.2 Speed Control

The speed of a BDC motor is proportional to the voltage applied to the motor. When using

digital control, a pulse-width modulated (PWM) signal is used to generate an average voltage.

The motor winding acts as a low pass filter so a PWM waveform of sufficient frequency will

generate a stable current in the motor winding. The relation between average voltage, the supply

voltage, and duty cycle is given by:

VAVERAGE = D × VSUPPLY (2.1)

Speed and duty cycle are proportional to one another. For example, if a BDC motor is rated to

turn at 15000 RPM at 12V, the motor will (ideally) turn at 7500 RPM when a 50% duty cycle

waveform is applied across the motor.

Feedback Mechanisms

Though the speed of a BDC motor is generally proportional to duty cycle, no motor is ideal.

Heat, commutator wear and load all affect the speed of a motor. In systems where precise speed

control is required, some sort of feedback mechanism must be included in the system.

Speed feedback is implemented in one of two ways. The first involves the use of a speed sensor

of some kind. The second is back electro magnetic flux (BEMF) control method which uses the

BEMF voltage generated by the motor.

Sensored Feedback

There are a variety of sensors used for speed feedback. The most common are optical encoders

and Hall Effect sensors, described in section 1.3.3.1.

Back Electro Magnetic Flux (BEMF) Control Method

Another form of velocity feedback for a BDC motor is BEMF voltage measurement. BEMF

voltage and speed are proportional to one another. A voltage divider is used to drop the BEMF

voltage into the 0-5V range so that it can be read by an analog-to-digital converter. The BEMF

voltage is measured between PWM pulses when one side of the motor is floating and the other

 21

is grounded. At this instance in time the motor is acting like a generator and produces a BEMF

voltage proportional to speed. [12]

2.2.1.3 Torque-Speed Characteristics

Torque-Speed Characteristic of a dc motor can be determined from two main equations and

their connection diagrams.

T= Ka.Φd.Ia (2.2)

Ea= Ka.Φd.Wm (2.3)

T= Torque,

Ka=Winding constant,

Φd= Direct axis flux per pole,

Ia= Armature current,

Ea=armature voltage,

Wm= Speed of rotation

The PMDC motor has a fixed source of field-winding flux which is supplied by permanent

magnet. Consequently, increased torque must be accompanied by a very nearly proportional

increase in armature current. These motors respond to changes in voltage very quickly because

the stator field is always constant. The PMDC motor is substantially a constant speed motor.

The speed is relatively independent of load. [16]

 22

Figure 2-4: Speed – Torque Characteristic of PMDC motor

2.2.2 AC Servo Motor

AC servo motors are polyphase synchronous motors with permanent magnet rotors, referred to

as brushless dc motors (BLDC) [16]. The AC servo motors can be used in any application

where torque, speed or position control is required. AC servo are electronically commutated.

These motors have many advantages over brushed DC motors. A few of these are:

• Better speed versus torque characteristics

• High dynamic response

• High efficiency

• Long operating life

• Noiseless operation

• Higher speed ranges

2.2.2.1 Construction and Operating Principle

AC servo motors are a type of synchronous motor. This means the magnetic field generated by

the stator and the magnetic field generated by the rotor rotates at the same frequency. AC servo

motors come in single-phase, 2-phase and 3-phase configurations. Corresponding to its type, the

 23

stator has the same number of windings. Out of these, 3-phase motors are the most popular and

widely used.

Unlike a brushed DC motor, the commutation of an AC servo motor is controlled electronically.

To rotate these motors, the stator windings should be energized in a sequence. It is important to

know the rotor position in order to understand which winding will be energized following the

energizing sequence. Rotor position is sensed using Hall effect sensors embedded into the

stator.

Based on information supplied by the rotor position sensors, the electronic controller decides

which stator phases should be energized at any instant. The controller consists of a set of power

electronic devices which are controlled by low-level logic or a microprocessor. [11]

Figure 2-5: AC servo motor control block diagram

2.2.2.2 Torque Control

Torque control is usually accomplished by direct control of armature winding current. The rotor

permanent magnets produce a constant flux that links the armature windings. Since output

torque is nearly equal to the product of flux and current, it is suficient to use armature as a

measure of output torque. In a control system the current can be sensed and fed back to the

 24

electronics that control the power switching devices. Th feedback of current is also used to

limit the peak current by chopping the input voltage available at the input of the motor

terminals. When negative or breaking torque is required, the motor current must be reversed,

otherwise the motor would decelerate only due to losses. This requires that the controller be

capable of allowing the motor as a generator.[21]

2.2.2.3 Speed Control

Because of the constant armature flux, the speed of a AC servo motor (BLDC) at a steady state

condition is propotional to applied armature voltage. For applications requiring speed control it

is sufficient to control the voltage applied to the motor terminals by chopping the dc voltage

supply. However, this form of open-loop control results in the requirement of some means of

current limiting or the current will exceed the component current ratings. This is because the

motor back emf is substantially is less than the applied voltage. Also, the actual speed achieved

will vary with load since ther will be no compensation for the resistance voltage drop. A more

accurate speed-control system will require a speed feedback from some form of tachometer or

rotary transducer.[21]

2.2.2.4 Torque- Speed Characteristic

Figure 2-6 shows an example of torque/speed characteristics. There are two torque parameters

used to define a BLDC motor, peak torque (TP) and rated torque (TR). During continuous

operations, the motor can be loaded up to the rated torque. As discussed earlier, in a BLDC

motor, the torque remains constant for a speed range up to the rated speed. The motor can be

run up to the maximum speed, which can be up to 150% of the rated speed, but the torque starts

dropping. Applications that have frequent starts and stops and frequent reversals of rotation with

load on the motor, demand more torque than the rated torque. This requirement comes for a

brief period, especially when the motor starts from a standstill and during acceleration. During

this period, extra torque is required to overcome the inertia of the load and the rotor itself. The

 25

motor can deliver a higher torque, maximum up to peak torque, as long as it follows the speed

torque curve. [11]

Figure 2-6: A typical torque-speed Characteristic of AC Servo motor

 26

CHAPTER 3

MOTOR CONTROL HARDWARE

Contemporary electrical drives are usually equipped with a motion controller utilizing one or

more micro-processors/micro-controllers and/or digital signal processors (DSPs). Such motor

drive interfaces are mostly through RS-485 and motor drive control is mostly performed by a

dedicated digital-motion controller.

The aim of this thesis is to design and implementation of a DC motor drive system suitable for

controlling a sphere gap setting for high voltage measurement, Figure 3-2 and controlling

position and motion of a three axes machine, Figure 3-3 and Figure 3-4, requiring high

precision motion control. In this study, a three axis motion controller is designed with a

microcontroller, a data storage unit and three servo motor controllers. The general overview of

the design is shown below.

Microcontroller Card Servo Controller DC Servo MotorUSB Port

Data Storage Unit

Figure 3.1 General overview of the design

 27

Figure 3-2: Sphere Gap Setting

 28

Figure 3-3: 3-axes Position and Motion Controller

Figure 3-4: XY Positioning Table

 29

3.1 General Overview to PIC Microcontroller

A microcontroller is an inexpensive single-chip computer. The entire computer system lies

within the confines of the integrated circuit chip. Primarily, the microcontroller is capable of

storing and running a program. It contains a central processing unit (CPU), RAM, ROM,

input/output lines, serial and parallel ports, timers, and sometimes other built-in peripherals

such as A/D (analog to digital) and D/A (digital to analog) converters.

The microcontroller’s ability to store and run unique programs makes it extremely versatile. For

example, one can program microcontroller to make decisions based on predetermined situations

and selections. The microcontroller’s ability to perform math and logic functions allows it to

mimic sophisticated logic and electronic circuits. One of the most popular and easy to use

microcontroller families available on the market today is the MICROCHIP “PICmicro®

microcontroller”. Originally known as the “PIC” or Peripheral Interface Controller consists of

over two hundred variations, each designed to be optimal in different applications. These

variations consist of a number of memory configurations, different I/O pin arrangements,

amount of support hardware required, packaging and available peripheral functions. [27, 24]

What has made the PICmicro® MCU successful is:

• Speed : PIC executes most of its instructions in 0.2 microseconds;

• Programmable timer options

• Instruction set simplicity: the instruction set consist of 35 instructions;

• Integration of operational features: power on reset, brown-out protection, watchdog

timer, four clock options and low power options.

• Interrupt control

• Powerful output pin control

• I/O port expansion; The built-in serial peripheral interface can make use of standard 16

pin shift registers parts to add any number of I/O

• Serial programming via two pins

• EPROM/OTP/ROM options

• The availability of excellent, low cost (free) development tools

 30

• The largest and strongest user interne based community of probably any silicon chip

family

• An outstanding distributor family

• A wide range of devices with various features that is suitable for any application

PICmicro devices are grouped by the size of their Instruction Word. The three current PICmicro

families are:

1. Base-Line: 12-bit Instruction Word length

2. Mid-Range: 14-bit Instruction Word length

3. High-End: 16-bit Instruction Word length

3.1.1 PIC 16F877 Microcontroller

In this study a Mid-range microcontroller 16F877 is used. Figure 3-1 shows the layout of

architecture of the PIC 16F877 microcontroller and key features of the PIC 16F877

microcontroller are shown in the Table 3-1 below.

Table 3-1 Basic features of PIC 16F877

Key Features PIC16F877
Operating Frequency DC-20Mhz
Resets (and Delays) POR, BOR(PWRT, OST)

FLASH Program Memory 8K x 14 bit
Data Memory 368 Bytes

EEPROM Data Memory 256 Bytes
Interrupts 14
I/O Ports Ports A, B, C, D, E
Timers 3

Serial Communication MSSP, USART
Capture/Compare/PWM 8 input channels

Instruction Set 35 instructions

 31

Figure 3.5: PIC 16F877 Block Diagram

 32

3.1.2 General Architecture

PICmicro microcontrollers are use RISC instruction set and Harvard architecture to have an

exceptionally fast execution speed for a given clock rate.

RISC stands for Reduced Instruction Set Computer. This means that the instruction set that the

chip supports is small, lean, and mean. RISC architectures allow for a useful set of instructions

that are typically executed in a single clock.

Harvard architecture has the program memory and data memory as separate memories and are

accessed from separate buses. This improves bandwidth over traditional von Neumann

architecture in which program and data are fetched from the same memory using the same bus.

To execute an instruction, a von Neumann machine must make one or more (generally more)

accesses across the 8-bit bus to fetch the instruction. Then data may need to be fetched, operated

on, and possibly written. As can be seen from this description, that bus can be extremely

congested. While with a Harvard architecture, the instruction is fetched in a single instruction

cycle (all 14-bits). While the program memory is being accessed, the data memory is on an

independent bus and can be read and written. These separated buses allow one instruction to

execute while the next instruction is fetched. A comparison of Harvard vs. von-Neumann

architectures is shown in Figure 3-6. [23]

Figure 3-6: Harvard vs. von Neumann Block Architectures

 33

3.1.3 Clocking Scheme/Instruction Cycle

The clock input is internally divided by four to generate four non-overlapping quadrature

clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every

Q1, and the instruction is fetched from the program memory and latched into the instruction

register in Q4. The instruction is decoded and executed during the following Q1 through Q4.

The clocks and instruction execution flow are illustrated in Figure 3-7.

Figure 3-7: Clock/Instruction Cycle

The CPU executes each instruction during the cycle following its fetch, pipelining instruction

fetches and instruction executions to achieve the execution of one instruction every cycle. This

is illustrated in Figure 3-8. It can be seen that while each instruction requires two cycles (a fetch

cycle and followed by a execute cycle), the overlapping of the execute cycle of one instruction

with the fetch cycle of the next instruction leads to the execution of a new instructions every

cycle.

This lockstep progression is broken whenever an instruction includes a branch operation, as

illustrated in Figure 3-8. An instruction is fetched during the fourth cycle, CALL SUB_1,

whose job is to change the normal flow of instruction fetches from one address to the next

address. During the fifth cycle, the CPU carries out the sequential fetch from address 4. At the

 34

end of that fifth cycle, the CPU executes the goto new address instruction by changing the

program counter to new address instead of simply incrementing program counter and it ignores

the instruction automatically fetched from address 4.

All instructions are single cycle, except for any program branches. These two cycles since the

fetch instructions is flushed from the pipeline while the new instruction is being fetched and

then executed. [24]

Figure 3-8: Instruction Pipeline Flow

3.1.4 CPU and ALU

The Central Processing Unit (CPU) is responsible for using the information in the program

memory (instructions) to control the operation of the device. The CPU controls the program

memory address bus, the data memory address bus, and accesses to the stack. Many of these

instructions operate on data memory. To operate on data memory, the Arithmetic Logical Unit

(ALU) is required. In addition to performing arithmetical and logical operations, the ALU

controls status bits (which are found in the STATUS register). The results of some instructions

force status bits to a value depending on the state of the result. The machine codes that the CPU

recognizes are show in Appendix A

PICmicro MCUs contain an 8-bit ALU and an 8-bit working register. The ALU is a general

purpose arithmetic and logical unit. It performs arithmetic and Boolean functions between the

data in the working register and any register file.

 35

The ALU is 8-bits wide and is capable of addition, subtraction, shift and logical operations.

Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-

operand instructions, typically one operand is the working register (W register). The other

operand is a file register or an immediate constant. In single operand instructions, the operand is

either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable

register. Depending on the instruction executed, the ALU may affect the values of the Carry

(C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as

a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and

SUBWF instructions for examples.

Figure 3-9: Operation of the ALU and W Register

 36

3.1.4.1 CPU Registers

Status Register

The STATUS register, shown in Figure 3-10, contains the arithmetic status of the ALU, the

RESET status and the bank select bits for data memory. Since the selection of the Data Memory

banks is controlled by this register, it is required to be present in every bank. Also, this register

is in the same relative position (offset) in each bank.

Figure 3-10: Status Register

Bit 7: IRP: Register Bank Select bit (used for indirect addressing)

Bit 6:5: RP1:RP0: Register Bank Select bits (used for direct addressing)

Bit 4: TO: Time-out bit

Bit 3: PD: Power-down bit

Bit 2: Z: Zero bit

Bit 1: DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF

Bit 0: C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)

Working Register

W, the working register, is used by many instructions as the source of operand. It may also

serve as the destination for the result of instruction execution. It serves a function similar to that

of accumulator in many other microcontrollers.

 37

3.1.5 Program Memory Organization and Program Counter

There are two memory blocks program memory and data memory. Each block has its own bus,

so that access to each block can occur during the same oscillator cycle. The data memory can

further be broken down into General Purpose RAM and the Special Function Registers (SFRs).

 Program memory is addressed word-wise, so the first instruction is located at 0x000, the

second at 0x001, etc. Program memory is organized into pages. Memory pages can be selected

using the PCLATH register. PIC16F877 microcontrollers have a 13-bit program counter

capable of addressing an 8K x 14 program memory space. The width of the program memory

bus (instruction word) is 14-bits. Since all instructions are a single word, a device with an 8K x

14 program memory has space for 8K of instructions.

Figure 3-11: Architectural Program Memory Map and Stack

 38

Figure 3-11 shows the program memory map as well as the 8 level deep hardware stack. To

jump between the program memory pages, the high bits of the Program Counter (PC) must be

modified. This is done by writing the desired value into a SFR called PCLATH (Program

Counter Latch High). If sequential instructions are executed, the program counter will cross the

page boundaries without any user intervention

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC

is 13-bits wide. The low byte is called the PCL register. This register is readable and writable.

The high byte is called the PCH register. This register contains the PC<12:8> bits and is not

directly readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 3-12 shows the four situations for the loading of the PC. Situation 1 shows how the PC is

loaded on a write to PCL. Situation 2 shows how the PC is loaded during a GOTO instruction.

Situation 3 shows how the PC is loaded during a CALL instruction, with the PC loaded

(PUSHed) onto the Top of Stack. Situation 4 shows how the PC is loaded during one of the

return instructions where the PC loaded (POPed) from the Top of Stack. PCLATH is never

updated with the contents of PCH.

Figure 3-12: Loading of PC in Different Situations

 39

3.1.6 Data Memory

Data Memory is organized as file registers (usually 8 bit) which are both readable and writable.

Data RAM can be used to hold data for calculations, temporary variable storage, or user

settings. The data memory of the PIC 16F877 microcontroller is partitioned into multiple banks

each of which has 128 bytes long. A specific bank can be selected by setting special bits (RP0

and RP1) of the STATUS register. All implemented banks contain Special Function Registers,

which may be mirrored in another bank for code reduction and quicker access. Special Function

Registers are registers used by CPU and peripheral modules for controlling the desired

operation of the device.

Data memory is made up of the Special Function Registers (SFR) area, and the General Purpose

Registers (GPR) area. The SFRs control the operation of the device, while GPRs are the general

area for data storage and scratch pad operations. The data memory is banked for both the GPR

and SFR areas. The GPR area is banked to allow greater than 96 bytes of general purpose RAM

to be addressed. SFRs are for the registers that control the peripheral and core functions.

Banking requires the use of control bits for bank selection.

3.1.6.1 Banking

The data memory is partitioned into four banks. Each bank contains General Purpose Registers

and Special Function Registers. Switching between these banks requires the RP0 and RP1 bits

in the STATUS register to be configured for the desired bank when using direct addressing. The

IRP bit in the STATUS register is used for indirect addressing.

Table 3-2: Direct and Indirect Addressing of Banks

Accessed Bank Direct (RP1:RP0) Indirect (IRP)
0 0 0
1 0 1 0

2 1 0
3 1 1

1

 40

3.1.7 Hardware Features

3.1.7.1 I/O Ports

General purpose I/O pins can be considered the simplest of peripherals. They allow the

PICmicro™ to monitor and control other devices. To add flexibility and functionality to a

device, some pins are multiplexed with an alternate function(s). These functions depend on

which peripheral features are on the device. In general, when a peripheral is functioning, that

pin may not be used as a general purpose I/O pin.

 For most ports, the I/O pin’s direction (input or output) is controlled by the data direction

register, called the TRIS register. TRIS<x> controls the direction of PORT<x>. A ‘1’ in the

TRIS bit corresponds to that pin being an input, while a ‘0’ corresponds to that pin being an

output. An easy way to remember is that a ‘1’ looks like an I (input) and a ‘0’ looks like an O

(output). The PORT register is the latch for the data to be output. When the PORT is read, the

device reads the levels present on the I/O pins (not the latch). This means that care should be

taken with read-modify-write commands on the ports and changing the direction of a pin from

an input to an output.

Figure 3-13: PIC16F877 Pin Diagram

 41

The PIC 16F877 microcontroller is 40-pin device as shown in Figure 3-10. Vdd and Vss pins

provide power and ground references, respectively. There are two ports for external oscillator

connection. The Master Clear/Reset pin (MCLR) is used to reset the PIC device externally. This

could be tied to a system reset circuit. If no external reset is used, the pin should be tied to Vdd.

The PIC16F877 microcontroller has A (6 pins), B (8 pins), C (8 pins), D (8 pins) and E (3 pins)

ports, totally 33 pins.

3.1.7.2 Timers

Timers can be used to time events. Timers have an advantage over merely using wait loops in

that other processing can take place while the timer is running. 16F877 has three independent

timers. Timer0 and Timer2 are 8 bit timer/counter whereas Timer1 is 16 bit. All of them are

readable and writable and all have software prescaler, and Timer2 also has a postscaler.

3.1.7.3 USART (Universal Synchronous/Asynchronous Receiver/Transmitter)

This device allows the microcontroller to interface serially with other devices through protocols

such as RS232.

3.1.7.4 Capture/Compare/PWM Modules

This module allows the microcontroller to watch an input until it reaches a certain value, and

then take some action. It is especially useful for implementing Pulse Width Modulation (PWM)

schemes. The PIC 16F877 microcontroller has two CCP modules; each contains 16-bit register

which can operate as a Capture, Compare and PWM master/slave Duty Cycle register.

3.1.7.5 A/D Converter

The analog-to-digital (A/D) converter module can have up to eight analog inputs for a device.

The analog input charges a sample and hold capacitor. The output of the sample and hold

 42

capacitor is the input into the converter. The converter then generates a digital result of this

analog level via successive approximation. This A/D conversion, of the analog input signal,

results in a corresponding 10-bit digital number. The analog reference voltages (positive and

negative supply) are software selectable to either the device’s supply voltages (AVDD, AVss)

or the voltage level on the AN3/VREF+ and AN2/VREFpins. The A/D module has four

registers. These registers are:

• A/D Result High Register (ADRESH)

• A/D Result Low Register (ADRESL)

• A/D Control Register0 (ADCON0)

• A/D Control Register1 (ADCON1)

The ADCON0 register controls the operation of the A/D module. The ADCON1 register

configures the functions of the port pins. The port pins can be configured as analog inputs (AN3

and AN2 can also be the voltage references) or as digital I/O.

3.1.7.6 Synchronous Serial Port (SSP) Module

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with

other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs,

shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two

modes:

• Serial Peripheral Interface (SPI)

• Inter-Integrated Circuit (I2C)

SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received

simultaneously. All four modes of SPI are supported, as well as Microwire™ (sample edge)

when the SPI is in the master mode. To accomplish communication, typically three pins are

used:

• Serial Data Out (SDO)

• Serial Data In (SDI)

 43

• Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

• Slave Select (SS)

Figure 3-14: SSPSTAT: Synchronous Serial Port Status Register

Figure 3-15: SSPCON: Synchronous Serial Port Control Register

Operation

When initializing the SPI, several options need to be specified. This is done by programming

the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>.

These control bits allow the following to be specified:

• Master Mode (SCK is the clock output)

• Slave Mode (SCK is the clock input)

• Clock Polarity (Idle state of SCK)

• Clock edge (output data on rising/falling edge of SCK)

• Data Input Sample Phase

• Clock Rate (Master mode only)

• Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or

reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit

SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins.

 44

SSP I2C Operation

The SSP module in I2C mode fully implements all master and slave functions (including general

call support) and provides interrupts-on-start and stop bits in hardware to determine a free bus

(multi-master function). The SSP module implements the standard mode specifications, as well

as 7-bit and 10-bit addressing.

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in

both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output,

there is a slew rate control of the pin that is independent of device frequency.

Two pins are used for data transfer. These are the SCL pin, which is the clock, and the SDA pin,

which is the data. The SDA and SCL pins are automatically configured when the I2C mode is

enabled.

The SSPCON register allows control of the I2C operation. Four mode selection bits

(SSPCON<3:0>) allow one of the following I2C modes to be selected:

• I2C Slave mode (7-bit address)

• I2C Slave mode (10-bit address)

• I2C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I2C mode, the SCL and SDA pins must be programmed to inputs by setting

the appropriate TRIS bits. Selecting an I2C mode, by setting the SSPEN bit, enables the SCL

and SDA pins to be used as the clock and data lines in I2C mode. The CKE bit

(SSPSTAT<6:7>) sets the levels of the SDA and SCL pins in either master or slave mode.

When CKE = 1, the levels will conform to the SMBUS specification. When CKE = 0, the levels

will conform to the I2C specification.

3.2 Digital I/O Interface

 As computer power and the number of peripherals have increased, the older interfaces (serial

and parallel port) have become a bottleneck of slow communications, with limited options of

expansion. The Universal Serial Bus (USB) was designed from the ground up to be a simple

 45

and efficient way to communicate with many types of peripherals, without the limitations and

frustrations of existing interfaces. And today every PC has several USB interface on it. [28, 29].

Following features make USB so popular;

• Ease of use:

- One interface for many devices

- Automatic configuration

- No user settings

- Frees hardware resources for other devices

- Easy to connect

- Hot pluggable

- No power supply required

• Speed: USB supports three bus speeds: high speed at 480 Megabits per second, full speed

12 Megabits per second and low speed at 1.5 Megabits per second. Every USB capable PC

supports low and full speeds. High speed was added in version 2.0 of the specification, and

requires USB 2.0 capable hardware on the motherboard or an expansion card.

• Reliability: The reliability of USB results from the hardware design and the data-transfer

protocols. The hardware specifications for USB drivers, receivers, ad cables eliminate most

noise that could otherwise cause data errors. In addition, the USB protocol enables detecting

of data errors and notifying the sender so it can retransmit.

• Low Cost

• Low Power Consumption

3.2.1 USB Hardware

3.2.1.1 Connectors

All devices have an upstream connection to the host and all hosts have a downstream

connection to the device. Upstream and downstream connectors are not mechanically

interchangeable, thus eliminating illegal loopback connections at hubs such as a downstream

port connected to a downstream port. There are commonly two types of connectors, called type

A and type B which are shown below.

 46

Figure 3-16: USB connector Types

Type A plugs always face upstream. Type A sockets will typically find themselves on hosts and

hubs. For example type A sockets are common on computer main boards and hubs. Type B

plugs are always connected downstream and consequently type B sockets are found on devices.

Table 3-3: USB pin functions

Pin Name Cable Colour Function

1 Red Vbus (5 volts)

2 White D-

3 Green D+

4 Black Ground

3.2.1.2 Electrical

USB uses a differential transmission pair for data. This is encoded using Non-Return to Zero

Inverted (NRZI) and is bit stuffed to ensure adequate transitions in the data stream. On low and

full speed devices, a differential ‘1’ is transmitted by pulling D+ over 2.8V with a 15K ohm

resistor pulled to ground and D- under 0.3V with a 1.5K ohm resistor pulled to 3.6V. A

differential ‘0’ on the other hand is a D- greater than 2.8V and a D+ less than 0.3V with the

same appropriate pull down/up resistors. The receiver defines a differential ‘1’ as D+ 200mV

greater than D- and a differential ‘0’ as D+ 200mV less than D-. The polarity of the signal is

inverted depending on the speed of the bus. Therefore the terms ‘J’ and ‘K’ states are used in

signifying the logic levels. In low speed a ‘J’ state is a differential 0. In high speed a ‘J’ state is

a differential 1. USB transceivers will have both differential and single ended outputs. Certain

bus states are indicated by single ended signals on D+, D- or both. [28]

 47

3.2.1.3 Speed Identification

A USB device must indicate its speed by pulling either the D+ or D- line high to 3.3 volts. A

full speed device, pictured below will use a pull up resistor attached to D+ to specify itself as a

full speed device. These pull up resistors at the device end will also be used by the host or hub

to detect the presence of a device connected to its port. Without a pull up resistor, USB assumes

there is nothing connected to the bus. Some devices have this resistor built into its silicon,

which can be turned on and off under firmware control, others require an external resistor.

Figure 3-17: Full and Low Speed Device with pull up resistor

High speed devices will start by connecting as a full speed device (1.5k to 3.3V). Once it has

been attached, it will do a high speed chirp during reset and establish a high speed connection, if

the hub supports it. If the device operates in high speed mode, then the pull up resistor is

removed to balance the line. [24]

3.2.1.4 Power Distribution

USB Devices have three forms of power classification:

• The Self-powered device has its own power supply and do not sink current from the USB

cable.

 48

• The bus-powered device will take all their power from the USB bus.

• A hybrid powered device takes power from both the USB bus as well as from it's own

power supply.

3.2.2 USB Protocols

Unlike RS-232 and similar serial interfaces where the format of data being sent is not defined,

USB is made up of several layers of protocols. In fact most USB controller I.C.s will take care

of the lower layer, thus making it almost invisible to the end designer.

Each USB transaction consists of a

• Token Packet (Header defining what it expects to follow), an

• Optional Data Packet, (Containing the payload) and a

• Status Packet (Used to acknowledge transactions and to provide a means of error

correction)

USB is a host centric bus. The host initiates all transactions. The first packet, also called a token

is generated by the host to describe what is to follow and whether the data transaction will be a

read or write and what the device’s address and designated endpoint is. The next packet is

generally a data packet carrying the payload and is followed by an handshaking packet,

reporting if the data or token was received successfully, or if the endpoint is stalled or not

available to accept data.

3.2.2.1 Common USB Packet Fields

Data on the USBus is transmitted LSBit first. USB packets consist of the following fields,

• Sync: All packets must start with a sync field. The sync field is 8 bits long at low and full

speed or 32 bits long for high speed and is used to synchronize the clock of the receiver

with that of the transmitter. The last two bits indicate where the PID fields starts.

 49

• PID: PID stands for Packet ID. This field is used to identify the type of packet that is being

sent.

• ADDR: The address field specifies which device the packet is designated for. Being 7 bits

in length allows for 127 devices to be supported. Address 0 is not valid, as any device

which is not yet assigned an address must respond to packets sent to address zero.

• ENDP: The endpoint field is made up of 4 bits, allowing 16 possible endpoints. Low speed

devices, however can only have 2 additional endpoints on top of the default pipe. (4

endpoints max)

• CRC: Cyclic Redundancy Checks are performed on the data within the packet payload. All

token packets have a 5 bit CRC while data packets have a 16 bit CRC.

• EOP: End of packet. Signaled by a Single Ended Zero (SE0) for approximately 2 bit times

followed by a J for 1 bit time

3.2.2.2 USB Packet Types

USB has four different packet types. Token packets indicate the type of transaction to follow,

data packets contain the payload, handshake packets are used for acknowledging data or

reporting errors and start of frame packets indicate the start of a new frame.

1. Token Packets

There are three types of token packets:

• In - Informs the USB device that the host wishes to read information.

• Out - Informs the USB device that the host wishes to send information.

• Setup - Used to begin control transfers.

2. Data Packets

There are two types of data packets, Data0 and Data1, each capable of transmitting up to 1024

bytes of data. High Speed mode defines another two data PIDs, DATA2 and MDATA. Data

packets have the following format,

 50

• Maximum data payload size for low-speed devices is 8 bytes.

• Maximum data payload size for full-speed devices is 1023 bytes.

• Maximum data payload size for high-speed devices is 1024 bytes.

• Data must be sent in multiples of bytes.

3. Handshake Packets

 There are three types of handshake packets which consist simply of the PID

• ACK - Acknowledgment that the packet has been successfully received.

• NAK - Reports that the device temporary cannot send or received data. Also used during

interrupt transactions to inform the host there is no data to send.

• STALL - The device finds it’s in a state that it requires intervention from the host.

Handshake

4. Start of Frame (SOF)Packets

The SOF packet consisting of an 11-bit frame number is sent by the host every 1ms

± 500ns on a full speed bus or every 125 µs ± 0.0625 µs on a high speed bus.

3.2.3 Endpoints

Endpoints can be described as sources or sinks of data. As the bus is host centric, endpoints

occur at the end of the communications channel at the USB function. At the software layer, your

device driver may send a packet to your devices EP1 for example. As the data is flowing out

from the host, it will end up in the EP1 OUT buffer. Your firmware will then at its leisure read

this data. If it wants to return data, the function cannot simply write to the bus as the bus is

controlled by the host. Therefore it writes data to EP1 IN which sits in the buffer until such time

when the host sends a IN packet to that endpoint requesting the data. Endpoints can also be seen

as the interface between the hardware of the function device and the firmware running on the

function device.

 51

All devices must support endpoint zero. This is the endpoint which receives all of the devices

control and status requests during enumeration and throughout the duration while the device is

operational on the bus.

3.2.4 Pipes

While the device sends and receives data on a series of endpoints, the client software transfers

data through pipes. A pipe is a logical connection between the host and endpoint(s). Pipes will

also have a set of parameters associated with them such as how much bandwidth is allocated to

it, what transfer type (Control, Bulk, Iso or Interrupt) it uses, a direction of data flow and

maximum packet/buffer sizes. For example the default pipe is a bi-directional pipe made up of

endpoint zero in and endpoint zero out with a control transfer type.

3.3 Microcontroller Card

In this study, DLP-IO26 microcontroller card with USB interface is chosen from Dlpdesign [30]

to control the servo motor driver through the PC’s USB port. The DLP-IO26 consists of a USB

interface, a PIC 16F877 (target) microcontroller and a Flash programming system. In Figure

3-18 the block diagram of DLP-IO26 card is shown. The USB interface is designed around

FTDI’s FT8U245AM and is used for both the Flash download process and host

communications (16F877 to Host PC) at run time.

The Flash programming system is comprised of a PIC 16F872 and a 12.5-volt DV-DC

converter and is used exclusively to perform the download process. Hex file data can be written

directly into the 16F877’s Flash memory without the need for an external device programmer.

PC application software that runs under Windows 98/2000/XP is available from dlpdesign.com

as a free download that performs the Flash download process.

 52

Figure 3-18: Block diagram of DLP-IO26

The DLP-IO26 connects to the user’s hardware via 8 buffered digital inputs and 18 general

purpose I/O lines. The 18 general purpose I/O lines are directly connected to the 16F877

microcontroller.

Download Microcontroller

The download microcontroller serves two purposes: the reset function and the firmware

download process.

USB Interface

FTDI’s FT8U245AM is a USB FIFO - Fast Parallel Data Transfer IC. No in-depth knowledge

of USB required as all USB Protocol is handled automatically by the USB protocol engine

within the I.C. The USB Protocol Engine manages the data stream from the device USB control

endpoint. It handles the low level USB protocol requests generated by the USB host controller.

The FT8U245AM provides an easy cost-effective method of transferring data to / from a

peripheral and a host P.C. at up to 8 Million bits (1 Megabyte) per second. Its simple FIFO-like

design makes it easy to interface to any CPU (MCU) either by mapping the device into the

Memory / IO map of the CPU, using DMA or controlling the device via IO ports. [31]

 53

FTDI’s Virtual COM port and "D2XX Direct Drivers" for Windows drivers eliminate the need

for USB driver development in most cases. In this study DLL version of the drivers (D2XX

direct drivers) is used.

Figure 3-19: The interface between FT8U245AM and Microcontroller

Four basic hand-shaking lines and eight data lines D [7...0] are provided to interface with the

chip, as shown in Figure 3-19. The FT8U245AM's (refer to Appendix B) internal FIFO is

comprised of two buffers which can hold 128 bytes of received data coming from the host PC

and 384 bytes of data to be transmitted to the host. Connection to a microcontroller is made with

these 12 lines.

RD# (input) When pulled low, RD# takes the 8 data lines from a high impedance state to the

current byte in the FIFO's receive buffer. Taking RD# high returns the data pins to a high

impedance state and prepares the next byte (if available) in the FIFO to be read.

WR (input) When taken from a high state to a low state, WR# reads the 8 data lines and writes

the byte into the FIFO’s transmit buffer. Data written to the transmit buffer is immediately sent

to the host PC and placed in the RS-232 buffer opened by the application program.

TXE# (output) When high, the FIFO’s 384-byte transmit buffer is full or busy storing the last

byte written. Do not attempt to write data to the transmit buffer when TXE# is high.

 54

RXF# (output) When low, at least 1 byte is present in the FIFO’s 128-byte receive buffer and is

ready to be read with RD#. RXF# goes high when the receive buffer is empty.

Since both the download and target microcontrollers need to access the USB interface, a pair of

AND gates were added to handle the read and write functions. During the firmware download

process, the target microcontroller is disabled, and its outputs to the AND gates are left high.

This allows the download microcontroller to perform both the USB read and write functions.

When the target microcontroller is running, the download microcontroller leaves its USB read

and writes outputs high so that the target microcontroller can have access to the USB port.

Inputs and Outputs

The DLP-IO26 provides 8 latched digital outputs (D0-D7) and 18 bi-directional, general-

purpose digital I/O lines, 8 of which can be configured as 10-bit analog-to-digital converter

inputs for measuring voltages in the range of 0-5 volts.

Table 3-4: Description of DLP-IO26 40 pin header pins

Pin Number Description
1 External Reset for the USB interface (input)
2 Target Microprocessor Reset (active high)(output)
3 USB Port Ground
4 USB Port VCC

13, 14, 24, 33, 34 Switched Ground
23 Switched Vcc
25 SLEEP# USB Standby Indicator
26 SW2 Test Switch

5, 6, 7, 8, 9, 10, 11, 12 Digital Outputs

15,16,17,18,19,20,21,22 Port C General Purpose I/O, Timer1 I/O, PWM1 Output,
SPI/I2C, Synchronous Serial Data output, and USART I/O.

27 Port B General Purpose I/O and External Interrupt Input
with programmable weak pull-up.

28,30,32 Port E General Purpose I/O and A/D channels 5, 6, 7

35, 36, 37, 38, 39, 40 Port A General Purpose I/O, Open Drain Output (A4 only),
and A/D channels 0, 1, 2, 3, 4

 55

Figure 3-20: DLP-IO26 40 pin header

The External reset pin (pin 1) can be used by the target electronics to reset the USB interface on

the DLP-IO26. The target microcontroller reset signal (pin 2) is made available such that target

electronics can also be held in the reset state, if desired, during the firmware download process.

Five-volt power is made available for target electronics but care must be taken to not exceed a

total of 500mA drawn from the USB port.

On DLP-IO26 PORTD of PIC16F877 is used as 8-bit I/O data bus by the USB port. And it can

be also used as digital output by the help of the D flip flop. See Appendix B, for DLP-IO26 card

schematic diagram.

3.4 Precision Motion Controller LM629

LM629 is a microcontroller peripheral that incorporates in one device all the functions of a

sample-data motion control system controller. Using the LM628/629 makes the potentially

complex task of designing a fast and precise motion control system much easier. Both position

and velocity motion control systems can be implemented with the LM629.[32]

LM629 is itself a purpose designed microcontroller that implements a position decoder, a

summing junction, a digital PID loop compensation filter, and a trajectory profile generator,

 56

Figure 3-21. The LM629 provides a 7-bit plus sign PWM signal with sign and magnitude

outputs. Interface to the host microcontroller is via an 8-bit bi-directional data port and six

control lines which include host interrupt and hardware reset.

In operation, to start a movement, a host microcontroller downloads acceleration, velocity and

target position values to the LM629 trajectory generator. At each sample interval these values

are used to calculate new demand or “set point” positions which are fed into the summing

junction. Actual position of the motor is determined from the output signals of an optical

incremental encoder. Decoded by the LM629’s position decoder, actual position is fed to the

other input of the summing junction and subtracted from the demand position to form the error

signal input for the control loop compensator. The compensator is in the form of a “three term”

PID filter (proportional, integral, derivative); this is implemented by a digital filter. The

coefficients for the PID digital filter are downloaded from the host before commencing a move.

For a load that varies during a movement more coefficients can be downloaded and used to

update the PID filter at the moment the load changes. All trajectory parameters except

acceleration can also be updated while a movement is in progress.

Figure 3-21: LM628 and LM629 Typical System Block Diagram

 57

Features:

• 32-bit position, velocity, and acceleration registers

• Programmable digital PID filter with 16-bit coefficients

• Programmable derivative sampling interval

• 8-bit sign-magnitude PWM output data (LM629)

• Internal trapezoidal velocity profile generator

• Velocity, target position, and filter parameters may be changed during motion

• Position and velocity modes of operation

• Real-time programmable host interrupts

• 8-bit parallel asynchronous host interface

• Quadrature incremental encoder interface with index pulse input

3.4.1 Hardware Architecture

Four major functional blocks make up the LM629 in addition to the host and output interfaces.

These are the Trajectory Profile Generator, Loop Compensating PID Filter, Summing Junction

and Motor Position Decoder. Details of how LM629 is implemented by a purpose designed

microcontroller are shown in Figure 3-22.

The control algorithm is stored in a 1k x 16-bit ROM and uses 16-bit wide instructions. A PLA

decodes these instructions and provides data transfer timing signals for the single 16-bit data

and instruction bus. User variable filter and trajectory profile parameters are stored as 32-bit

double words in RAM. To provide sufficient dynamic range a 32-bit position register is used

and for consistency. 32 bits are also used for velocity and acceleration values. A 32-bit ALU is

used to support the 16 x 16-bit multiplications of the error and PID digital filter coefficients.

 58

Figure 3-22: Hardware Architecture of LM629

3.4.2 Motor Position Decoder

LM629 provides an interface for an optical position shaft encoder, decoding the two quadrature

output signals to provide position and direction information. From these the decoder PLA

determines if the motor has moved forward, backward or stayed still and then drives a 16-bit

up-down counter that keeps track of actual motor position.

3.4.3 Velocity Profile (Trajectory) Generation

The trapezoidal velocity profile generator computes the desired position of the motor versus

time. In the position mode of operation, the host processor specifies acceleration, maximum

velocity, and final position. The LM629 uses this information to affect the move by accelerating

as specified until the maximum velocity is reached or until deceleration must begin to stop at

the specified final position. The deceleration rate is equal to the acceleration rate. At any time

during the move the maximum velocity and/or the target position may be changed, and the

 59

motor will accelerate or decelerate accordingly. Figure 3-23 illustrates two typical trapezoidal

velocity profiles. Figure 3-23(a) shows a simple trapezoid, while Figure 3-23(b) is an example

of what the trajectory looks like when velocity and position are changed at different times

during the move.

When operating in the velocity mode, the motor accelerates to the specified velocity at the

specified acceleration rate and maintains the specified velocity until commanded to stop. [33]

Figure 3-23: Typical Velocity Profiles

All trajectory parameters are 32-bit values. Position is a signed quantity. Acceleration and

velocity are specified as 16-bit, positive-only integers having 16-bit fractions. The integer

portion of velocity specifies how many counts per sampling interval the motor will traverse.

The fractional portion designates an additional fractional count per sampling interval. Although

the position resolution of the LM629 is limited to integer counts, the fractional counts provide

increased average velocity resolution. Acceleration is treated in the same manner. Each

sampling interval the commanded acceleration value is added to the current desired velocity to

generate a new desired velocity (unless the command velocity has been reached).

 60

Figure 3-24: Position, Velocity and Acceleration Registers

3.4.4 PID Compensation Filter

The LM629 uses a digital Proportional Integral Derivative (PID) filter to compensate the

control loop. The motor is held at the desired position by applying a restoring force to the motor

that is proportional to the position error, plus the integral of the error, plus the derivative of the

error. The following discrete-time equation and Figure 3-25 illustrates the control performed by

the LM629:

 n
u(n)= kp*e(n) + ki Σ e(n) + kd [e(n’)-e(n’-1)] (3.1)
 N=0

Figure 3-25: LM629 PID control block diagram

 61

where u(n) is the motor control signal output at sample time n, e(n) is the position error at

sample time n, n' indicates sampling at the derivative sampling rate, and kp, ki, and kd are the

discrete-time filter parameters loaded by the users. [33]

The first term, the proportional term, provides a restoring force proportional to the position

error, just as does a spring obeying Hooke’s law.

The second term, the integration term, provides a restoring force that grows with time, and thus

ensures that the static position error is zero. If there is a constant torque loading, the motor will

still be able to achieve zero position error.

The third term, the derivative term, provides a force proportional to the rate of change of

position error. It acts just like viscous damping in a damped spring and mass system (like a

shock absorber in an automobile). The sampling interval associated with the derivative term is

user-selectable; this capability enables the LM629 to control a wider range of inertial loads

(system mechanical time constants) by providing a better approximation of the continuous

derivative. In general, longer sampling intervals are useful for low-velocity operations.

In operation, the filter algorithm receives a 16-bit error signal from the loop summing-junction.

The error signal is saturated at 16 bits to ensure predictable behavior. In addition to being

multiplied by filter coefficient kp, the error signal is added to an accumulation of previous

errors (to form the integral signal) and, at a rate determined by the chosen derivative sampling

interval, the previous error is subtracted from it (to form the derivative signal). All filter

multiplications are 16-bit operations; only the bottom 16 bits of the product are used.

The integral signal is maintained to 24 bits, but only the top 16 bits are used. This scaling

technique results in a more usable (less sensitive) range of coefficient ki values. The 16 bits are

right-shifted eight positions and multiplied by filter coefficient ki to form the term which

contributes to the motor control output. The absolute magnitude of this product is compared to

coefficient il, and the lesser, appropriately signed magnitude then contributes to the motor

control signal. The derivative signal is multiplied by coefficient kd each derivative sampling

interval. This product contributes to the motor control output every sample interval, independent

of the user-chosen derivative sampling interval. The kp, limited ki, and kd product terms are

 62

summed to form a 16-bit quantity. Depending on the output mode (word size), either the top 8

or top 12 bits become the motor control output signal.

3.4.5 Motor Outputs

The LM629 provides 8-bit, sign and magnitude PWM output signals for directly driving switch-

mode motor-drive amplifiers. Figure 3-26 shows the format of the PWM magnitude output

signal.

Figure 3-26: PWM Output Signal Format

3.4.6 LM629 Reading and Writing Operations

The host processor writes commands to the LM629 via the host I/O port when Port Select (PS)

input (Pin 16) is logic low. The desired command code is applied to the parallel port line and

the Write (WR) input (Pin 15) is strobed. The command byte is latched into the LM629 on the

rising edge of the WR input. When writing command bytes it is necessary to first read the status

byte and check the state of a flag called the “busy bit” (Bit 0). If the busy bit is logic high, no

command write may take place. The busy bit is never high longer than 100 µs, and typically

falls within 15 µs to 25 µs. The host processor reads the LM629 status byte in a similar manner:

by strobing the Read (RD) input (Pin 13) when PS (Pin 16) is low; status information remains

valid as long as RD is low.

 63

Writing and reading data to/from the LM629 (as opposed to writing commands and reading

status) are done with PS (Pin 16) logic high. These writes and reads are always an integral

number (from one to seven) of two-byte words, with the first byte of each word being the more

significant. When transferring data words (byte-pairs), it is necessary to first read the status byte

and check the state of the busy bit. When the busy bit is logic low, the user may then

sequentially transfer both bytes comprising a data word, but the busy bit must again be checked

and found to be low before attempting to transfer the next byte pair (when transferring multiple

words). If a command is written when the busy bit is high, the command will be ignored. The

busy bit goes high immediately after writing a command byte, or reading or writing a second

byte of data.

3.4.7 User Command Set

The Table 3-5 describes the user command set of the LM629. Some of the commands can be

issued alone and some require a supporting data structure. Commands are categorized by

function: initialization, interrupt control, filter control, trajectory control, and data reporting.

[33]

Table 3-5: LM629 User Command Set

Command Type Description HEX Data Bytes
RESET Initialize Reset LM628 0 0 0

DFH Initialize Define Home 0 2 0
SIP Interrupt Set Index Position 0 3 0

LPEI Interrupt Interrupt on Error 1B 2
LPES Interrupt Stop on Error 1A 2
SBPA Interrupt Set Breakpoint, Absolute 20 4
SBPR Interrupt Set Breakpoint, Relative 21 4
MSKI Interrupt Mask Interrupts 1C 2
RSTI Interrupt Reset Interrupts 1D 2
LFIL Filter Load Filter Parameters 1E 2 to 10
UDF Filter Update Filter 0 4 0
LTRJ Trajectory Load Trajectory 1F 2 to 14

 64

Table 3-5: LM629 User Command Set (Continued)

Command Type Description HEX Data Bytes
STT Trajectory Start Motion 0 1 0

RDSTAT Report Read Status Byte None 1
RDSIGS Report Read Signals Register 0 C 2

RDIP Report Read Index Position 0 9 4
RDDP Report Read Desired Position 0 8 4
RDRP Report Read Real Position 0A 4
RDDV Report Read Desired Velocity 0 7 4
RDRV Report Read Real Velocity 0B 2

RDSUM Report Read Integration Sum 0D 2

3.4.8 Programming LM629

As indicated in the Figure 3-22, the LM629 is a bus peripheral and must be programmed by a

host processor. Breaking programs for the LM629 into sets of functional blocks simplifies the

programming process; each block executes a specific task. [34]

1. Busy-Bit Check Module

The first module required for successful programming of the LM629 is a busy-bit check

module. The busy-bit, bit zero of the status byte, is set immediately after the host writes a

command byte, or reads or writes the second byte of a data word. While the busy-bit is set, the

LM629 will ignore any commands or attempts to transfer data. A busy-bit check module that

polls the Status Byte and waits until the busy-bit is reset will ensure successful host/LM629

communications.

Reading the Status Byte is accomplished by executing a RDSTAT command. RDSTAT is

directly supported by LM629 hardware and is executed by pulling CS, PS, and RD logic low.

 65

Figure 3-27: Status Byte Bit Allocation

2. Initialization Module

In general, an initialization module contains a reset command and other initialization; interrupt

control, and data reporting commands. The example initialization module, detailed in Table 3-6,

contains a hardware reset block

Hardware Reset Block

Immediately following power-up, a hardware reset must be executed. Hardware reset is

initiated by strobing RST (pin 27) logic low for a minimum of eight LM628 clock periods.

The reset routine begins after RST is returned to logic high. During the reset execution time, 1.5

ms maximum, the LM629 will ignore any commands or attempts to transfer data.

Reset Interrupts

An RSTI command sequence allows the user to reset the interrupt flag bits, bits one through six

of the status byte. See Figure 3-27. The RSTI command initiates resetting the interrupt flag bits.

Command RSTI also resets the host interrupt output pin (pin 17). Immediately following the

RSTI command, a single data word is written. The first byte is not used. Logical zeros in bits

one through six of the second byte reset the corresponding interrupts. See Figure 3-28.

Mask Interrupts

An MSKI command sequence allows the user to determine which interrupt conditions result in

host interrupts; interrupting the host via the host interrupt output (pin 17). It contains an MSKI

command and one data word. The MSKI command initiates interrupt masking. See Figure 3-28.

Any zeros in this 6-bit field mask (disable) the corresponding interrupts while any ones unmask

(enable) the corresponding interrupts.

 66

Table 3-6: Initialization Module (with Hardware Reset)

Port Bytes Command Comments

 hardware
reset Strobe RST, pin 27, logic low for eight clock periods minimum.

 wait
The maximum time to complete hardware reset tasks is 1.5 ms.
During this reset execution time, the LM628 will ignore any
commands or attempts to transfer data.

command xx RDSTAT

This command reads the status byte. It is directly supported by
LM628 hardware and can be executed at any time by pulling CS,
PS, and RD logic low. Status information remains valid as long
as RD is logic low.

 decision If the status byte is C4 hex or 84 hex, continue. Otherwise loop
back to hardware reset.

command 1D RSTI

This command resets only the interrupts indicated by zeros in
bits one through six of This command resets only the interrupts
indicated by zeros in bits one through six of interrupt output pin
(pin 17).

 Busy-bit Check Module
data xx HB don’t care
data 0 0 LB Zeros in bits one through six indicate all interrupts will be reset.

Busy-bit Check Module
command RDSTAT This command reads the status byte.

 decision If the status byte is C0 hex or 80 hex, continue. Otherwise loop
back to hardware reset.

Figure 3-28: Interrupt Mask/Reset Bit Allocations

 67

3. Filter Programming Module

Load Filter Parameters (Coefficients)

An LFIL (Load FILter) command sequence includes command LFIL, a filter control word, and

a variable number of data words. The LFIL command initiates loading filter coefficients into

input buffers. The two data bytes, written immediately after LFIL, comprise the filter control

word. The first byte programs the derivative sampling coefficient, ds (i.e. selects the derivative

sampling interval). The second byte indicates, with logical ones in respective bit positions,

which of the remaining four filter coefficients will be loaded. See Figure 3-29, Table 3-7. Any

combination of the four coefficients can be loaded within a single LFIL command sequence.

Figure 3-29: Filter Control Word Bit Allocation

In the case of the example module, the first byte of the filter control word, 00 hex, programs a

derivative sampling coefficient of one. The second byte, x8 hex, indicates only the proportional

gain coefficient will be loaded. The update filter command, UDF, transfers new filter

coefficients from input buffers to working registers. Until UDF is executed, the new filter

coefficients do not affect the transfer characteristic of the filter.

 68

Table 3-7: Filter Programming Module

Port Bytes Command Comments

command 1E LFIL This command initiates loading the filter coefficients input
buffers.
Busy-bit Check Module

data 0 0 HB

data x8 LB

These two bytes are the filter control word. A 00 hex HB sets
the derivative sampling interval to 2048/fCLK by setting ds
to one. A x8 hex LB indicates only kp will be loaded.The
other filter parameters will remain at zero, their reset default
value.
Busy-bit Check Module

data 0 0 HB
data 0A LB These two bytes set kp to ten.

Busy-bit Check Module

command 4 UDF

This command transfers new filter coefficients from input
buffers to working registers. Until UDF is executed,
coefficients loaded via the LFIL command do not affect the
filter transfer characteristic.
Busy-bit Check Module

4. Trajectory Programming Module

Load Trajectory Parameters

An LTRJ (Load TRaJectory) command sequence includes command LTRJ, a trajectory control

word, and a variable number of data words. The LTRJ command initiates loading trajectory

parameters into input buffers. The two data bytes, written immediately after LTRJ, comprise the

trajectory control word. The first byte programs, with logical ones in respective bit positions,

the trajectory mode (velocity or position), velocity mode direction, and stopping mode. The

second byte indicates, with logical ones in respective bit positions, which of the three trajectory

parameters will be loaded. It also indicates whether the parameters are absolute or relative. See

Figure 3-30. Immediately following the trajectory control word, the trajectory parameters are

written. The start motion control command, STT (STarT), transfers new trajectory parameters

from input buffers to working registers and begins execution of the new trajectory. Until STT is

executed, the new trajectory parameters do not affect shaft motion.

 69

Table 3-8: Trajectory Programming Module

Port Bytes Command Comments

command LTRJ This command initiates loading the trajectory parameters
input buffers.
Busy-bit Check Module

data xx HB

data LB

These two bytes are the trajectory control word. A 0A hex
LB indicates velocity and position will be loaded and both
parameters are absolute.
Busy-bit Check Module

data xx HB
data 0 0 LB

Velocity is loaded in two data words. These two bytes are
the high data word.
Busy-bit Check Module

data xx HB
data 0 0 LB Velocity data word (low)

Busy-bit Check Module
data xx HB
data 0 0 LB

Position is loaded in two data words. These two bytes are
the high data word.
Busy-bit Check Module

data Xx HB
data 0 0 LB Position data word (low)

Busy-bit Check Module
command STT STT must be issued to execute the desired trajectory.

Busy-bit Check Module

Figure 3-30: Trajectory Control Word Bit Allocation

 70

In the case of the example module, the first byte of the trajectory control word, 00 hex,

programs the LM629 to operate in position mode. The second byte, 0A hex, indicates velocity

and position will be loaded and both parameters are absolute. Four data words, two for each

parameter loaded, follow the trajectory control word.

3.5 Data Storage

To store the position data of the digitized object, a storage unit is added to the study. For storage

MultiMediaCard (MMC) is used. The position data is first saved into MMC through the PIC.

After the storage of data the positions are read from MMC by PIC. And these position data is

processed and motors are activated. SPI (Serial Peripheral Interface) communication protocol is

used between MMC and PIC.

All transactions between PIC and MMC must be in chunks of 512 bytes. Data to be stored or

read is first saved to the external I2C (Inter-Integrated Circuit) EEPROM and is then

automatically transferred to the MMC or PIC when 512 bytes accumulate. Storage is limited to

a single file only, mainly due to the constraints of the PIC and available RAM on PIC (368

byte). [39]

General overview to MMC [37]

The MMC and Reduced-Size MultiMediaCard (RS-MMC) are very small, removable flash

storage devices, designed specifically for storage applications that put a premium on small form

factor, low power and low cost.

To support this wide range of applications, the MMC Protocol, a simple seven-pin serial

interface, Figure 3-31, is designed for maximum scalability and configurability. All device and

interface configuration data (such as maximum frequency, card identification, etc.) are stored on

the card.

 71

Figure 3-31: MMC Pinout and Pad Assignment

The MMC interface allows for easy integration into any design, regardless of microprocessor

used. For compatibility with existing controllers, the card offers, in addition to the card

interface, an alternate communication protocol, which is based on the Serial Peripheral Interface

(SPI) standard.

The MMC wake up in the MultiMediaCard mode. The card will enter SPI mode if the CS signal

is asserted (CS signal low) during the reception of the reset command (CMD0, refer to

appendix). The module will switch to SPI mode and respond with the SPI mode R1 response.

Figure 3-32: MultiMediaCard/RS-MultiMediaCard Block Diagram

 72

The MMC memory space is byte addressable with addresses ranging from 0 to the last byte, and

is divided into several structures. Memory bytes are grouped into 512-byte blocks called

sectors. Every block can be read, written and erased individually. Sectors are grouped into

erase groups of 16 or 32 sectors depending on card size. Any combination of sectors within

one group, or any combination of erase groups can be erased with a single erase command. A

write command implicitly erases the memory before writing new data into it.

Read and Write Operations

The MMC support two read/write modes as shown in Figure 3-33. In single block mode the

host reads or writes one data block in a pre-specified length. The data block transmission is

protected with 16-bit CRC that is generated by the sending unit and checked by the receiving

unit. The block length for read operations is limited by the device sector size (512 bytes) but can

be as small as a single byte. Misalignment is not allowed. Every data block must be contained in

a single physical sector. The block length for write operations must be identical to the sector

size and the start address aligned to a sector boundary.

In single block mode the host reads or writes one data block in a pre-specified length. The data

block transmission is protected with 16-bit CRC that is generated by the sending unit and

checked by the receiving unit. The block length for read operations is limited by the device

sector size (512 bytes) but can be as small as a single byte. Misalignment is not allowed. Every

data block must be contained in a single physical sector. The block length for write operations

must be identical to the sector size and the start address aligned to a sector boundary.

Figure 3-33: Data Transfer Formats

 73

Multiple block mode is similar to the single block mode, except for the host can read/write

multiple data blocks (all have the same length) that are stored or retrieved from contiguous

memory addresses starting at the address specified in the command. The operation is terminated

with a stop transmission command. Misalignment and block length restrictions apply to

multiple blocks and are identical to the single block read/write operations.

Figure 3.34: MMC Read and Write operations

I2C Serial EEPROM [40]

For the 512 byte buffer I2C two wire serial eeprom 24C512 from Atmel Corporation is used.

The AT24C512 provides 524,288 bits (64 Kbytes) of serial electrically erasable and

programmable read only memory (EEPROM) organized as 65,536 words of 8 bits each. The

device is cascadable feature allows up to 4 devices to share a common 2-wire bus.

 74

Figure 3.35: I2C EEPROM Pinout diagram and Pin functions

The serial clock (SCL) input is used to positive edge clock data into each EEPROM device and

negative edge data out of each device. The Serial data (SDA) pin is bidirectional for serial data

transfer.

The I2C EEPROM requires an 8-bit device address word following a start condition to enable

the chip for a read or write operation (see Figure 3-36). The device address word consists of a

mandatory one, zero sequence for the first five most significant bits as shown. This is common

to all 2-wire EEPROM devices. The 512K uses the two device address bits A1, A0 to allow as

many as four devices on the same bus. These bits must compare to their corresponding

hardwired input pins.

Figure3-36: I2C Device Address Format

Write and Read Operations

Byte Write: A write operation requires two 8-bit data word addresses following the device

address word and acknowledgment. Following receipt of the 8-bit data word, the EEPROM will

output a zero. The addressing device, such as a microcontroller, then must terminate the write

sequence with a stop condition. At this time the EEPROM enters an internally-timed write

cycle, tWR (10 ms for 24c512), to the nonvolatile memory. See Figure 3-37

 75

Page Write: The 512K EEPROM is capable of 128-byte page writes. A page write is initiated

the same way as a byte write, but the microcontroller does not send a stop condition after the

first data word is clocked in. Instead, after the EEPROM acknowledges receipt of the first data

word, the microcontroller can transmit up to 127 more data words. If more than 128 data words

are transmitted to the EEPROM, the data word address will “roll over” and previous data will

be overwritten. See Figure 3-37

Figure 3.37: I2C Write Operation

Read operations are initiated the same way as write operations with the exception that the

read/write select bit in the device address word is set to one. There are three read operations:

current address read, random address read and sequential read.

Current Address Read: The internal data word address counter maintains the last address

accessed during the last read or write operation, incremented by one. This address stays valid

between operations as long as the chip power is maintained.

Sequential Read: Sequential reads are initiated by either a current address read or a random

address read. After the microcontroller receives a data word, it responds with an acknowledge.

As long as the EEPROM receives an acknowledge, it will continue to increment the data word

 76

address and serially clock out sequential data words. When the memory address limit is reached,

the data word address will “roll over” and the sequential read will continue. The sequential read

operation is terminated when the microcontroller does not respond with a zero but does generate

a following stop condition (see Figure 3-38).

Figure 3-38: I2C Read Operation

3.6 Data Storage Circuit

As mentioned in section 3.5, all transactions between PIC and MMC must be in chunks

of 512 bytes to read from and write to MMC, an external 64 KB I2C EEPROM is used.

As shown in the Figure 3-39, RA4 and RA5 ports are used for the connection between

I2C and PIC. RA4 and RA5 are used for serial clock and serial data (refer to Appendix F

for PIC pin variables and Functions). The serial clock is generated by bus master (PIC)

and 8 bit data transmitted serially, synchronized by the clock, on the bi-directional data

line. Since there is no write protection on the EEPROM, WP port is connected to the

 77

ground. A0 and A1 device address inputs are also connected to the ground. So the device address is

chosen as hex A0.

For the MMC connection PORTE is used for clock, unidirectional data in and data out pins and RA3

is used for Chip select. For every command, a card (slave) is selected by asserting (active low) the CS

signal. The CS signal must be continuously active for the duration of the SPI transaction (command,

response and data). To supply MMC 3.3 volt, LM317 voltage regulator is used, as shown in the

Figure 3-39

Figure 3-39: MMC storage Circuit

 78

3.7 Motor driver circuit

As shown in Figure 3-40, to control LM629, six control line and eight I/O data bus is needed

(see section 3.4). In the figure only one axis motor driver is shown. For I/O data bus PortC is

selected since the other 8 pin ports (PortD and PortB) are used for USB interfacing and

controlling PIC (refer to Appendix F for PIC pin variables and Functions). The host interrupt

(HI) pin of LM629 is connected to RB0 pin to control whether the trajectory is complete or not.

The other pins are used for controlling command writing and reading status.

For H-bridge LMD18201 is chosen from National Semiconductor. The LMD18201 is a 3A H-

Bridge designed for motion control applications (see Appendix C). The device is built using a

multi-technology process which combines bipolar and CMOS control circuitry with DMOS

power devices on the same monolithic structure. The H-Bridge configuration is ideal for driving

DC and stepper motors. The LMD18201 accommodates peak output currents up to 6A.

The LMD18201 can directly interface to any Sign/Magnitude PWM controller. The LM629 is a

motion control processor that outputs a Sign/Magnitude PWM signal to coordinate either

positional or velocity control of DC motors. The LMD18201 provides fully protected motor

driver stage.

The Break input of LMD18201 is connected to RD7 pin of PIC. Break input is used to break a

motor by effectively shorting its terminals. When braking is desired, this input is taken to a

logic high level. RD7 is used to break the motors on the power on stage.

Index pulse input of LM629 is connected to logical high level because it is not used. The

encoder interface must be connected to A, B input of LM629. If it is not connected in the right

order the motor will run away (a condition characterized by the motor running continuously at

high speed). Changing the order of A and B input solves the problem.

 79

RD

WR

PS

HI

RST

CS

8
RC0-RC7

RB0

RD6

RD2

RA1

RA2

RA0

P
IC

 1
6F

87
7

LM
62

9

D0-D7

PWM

SIGN

Encoder

Motor

A
B

Break

RD7

IN +5V

LM
D

18201Dir

PWM

Out1 Out2

Figure 3-40: X axis Motor driver circuit

3.8 Buffer Circuit

Since there is not enough pin on PIC 16F877 to control three servo controllers, LM629, there is

a need to multiplex the pins of PIC 16F877. To multiplex the control and the I/O lines, octal tri-

state Buffers/Line Drivers/Line Receivers 74LS541 and octal bus transceiver 74LS245 (see

Appendix D) integrated circuits are used.

The RC port of the PIC16F877 is used for 8 bit I/O data port. And the RA0-2 and RD2 ports are

used for the pins which control the servo controllers (LM629). These ports are common for

three servo controllers.

The RD1, RD5, RD6 and RD3 pins of the PIC16F877 are used to control the enable and

direction pins of line and bus drivers. By these pins the flow of data between PIC and servo

controllers is controlled. As shown in the Figure 3-41, RD6 pin is the enable pin of X axis

 80

buffer and line I.Cs. RD1 is Y axis and RD5 is Z axis Enable pin. And direction pin RD3 is

common for three axes buffer and line I.Cs. When the enable pin is logic high, the

corresponding servo controller’s line I/O and control line is isolated from PIC.

The selection of axis controller is done by pulling down the corresponding enable pin to logic

low. When a command will be written, the data flow is from bus A (microcontroller side) to B

(LM629 side) so the direction pin must be high. And to read data from LM629, the data flow is

from bus B to A, the direction pin (RD3) must be low, as in the truth table in Appendix D.

To control trajectory complete interrupt from three LM629, the Host Interrupt (HI) outputs are

ANDed with three input AND gate (Motorola MC74AC11N). And the output of the AND gate

is connected to RB0 pin of PIC. To execute the next position, PIC waits for RB0 pin to become

logical high level. When RB0 is high PIC gives the STarT command to all LM629 and until the

trajectories are completed the HI pins will be logical low.

 81

74LS541

74LS245I/O BUS

CONTROL LINE

Dir

G1 G2

E

RC0

RC7

.

.

.

.

.

RD6

RD3

RA0
RA1
RA2
RD2

PIC16F877

RD1
RD5

X axis buffer and line I.Cs
Y axis buffer and line I.Cs
Z axis buffer and line I.Cs

X- AXIS
Servo

controller

HI pin of X- axis Servo controller
HI pin of Y- axis Servo controller
HI pin of Z- axis Servo controller

74AC11N

RB0

Figure 3-41: Buffer and line control circuit of X axis

 82

CHAPTER 4

MOTOR CONTROL SOFTWARE

In this study, Visual Basic software which digitizes two and three dimensional drawings is used,

and a firmware is written for PIC16F877 by using PIC Basic Pro.

The digitizing software recognizes objects from standard image files (BMP, JPG, TIFF, etc.)

and generates the points. Then the software analyzes these points and converts them to lines

which constitute the object. The absolute distance of the start and end point of the lines are

calculated according to the reference point (origin of a coordinate system) which is the

beginning point and these distances are converted to motor’s encoder count value. For example

to move the XY table 4 cm the motor must turn 10 times (depends on the lead screw, drives the

XY table) and if the encoder gives 2000 count per revolution the software must send 20000

count (hex4E20). Then these calculated distances converted to hexadecimal and sent through

the PC’s USB port in an order by the software. When PIC receives these position values, it

stores to them to MMC or activate the motors according to the control command sent by the PC.

The firmware is described in detail in section 4.2.

The firmware waits 3 bytes for each axis (6 bytes for two dimensional, 9 bytes for three

dimensional moves). The first byte is the sign byte (sign of the axis hex0-positive, hex1-

negative) and the other two bytes are the high and low byte the encoder count value of the

desired position. For example to move the X axis of XY table from origin to 10 mm on the

positive axis (assuming every 10 encoder count is 1 mm), the firmware must read hex00 (first

byte), hex0064 (second and third bytes) .

 83

Figure 4-1: Trajectory Example

After digitizing the two dimensional object, the software calculates the start and end points of the lines

A(-4,4), B(-4,-4), C(8,-4). The digitizing software sent the calculated points and PIC calculates the

accurate acceleration and velocity of the motors according the absolute distances between the current

and desired positions that the motors will cover. The calculated values are loaded to corresponding

servo motor controller (LM629) to start the motion. When the start command is received, First the x

and y axis motors moves from origin to point A and complete the trajectory, as shown in the Figure 4-

1. From point A to B only the x axis motor and from point B to C x axis motor moves. But from point

C to A both motors must start and finish the motion at the same time to move the workpiece through

the straight line. In the Figure 4-1, x motor must move 12 cm and y motor must move 8 cm between

the points C and A. So the ratio of velocity and acceleration of x and y motors must be directly

proportional to the ratio of the absolute distances. For example, if the maximum velocity of x motor is

24 revolutions per second, y motor’s maximum velocity must be 16 revolutions per second.

 84

The following sections describe programming PIC microcontroller and the written firmware for

this study.

4.1 PIC Programming

In this study, PICBASIC PRO [41] software is used to program the PIC. PICBASIC PRO

converts BASIC programs into files that can be programmed directly into a PICmicro MCU.

The PICBASIC PRO Compiler gives you direct access to all of the PICmicro MCU registers -

I/O ports, A/D converters, hardware serial ports, etc. - easily and in BASIC. It automatically

takes care of the page boundaries and RAM banks.

4.1.1 PIC Basic Pro

Simplicity and ease which higher programming languages bring in, as well as broad

application of microcontrollers today, were reasons to incite some companies to adjust

and upgrade BASIC programming language to better suit needs of microcontroller

programming. By the help of BASIC programming language, developing applications is

faster and easier with all the predefined routines which BASIC brings in, whose

programming in assembly would take the largest amount of time. This allows

programmer to concentrate on solving the important tasks without wasting his time. [41,

43]

First program written in PIC Basic

 For writing BASIC program code, any text editor that can save the program file as pure ASCII

text (without special symbols for formatting) can be used. For this purpose editors like Notepad

or WordPad are also good. In this study CSMicro Systems CodeDesigner Lite [42] is used as

the text editor. It is specially devised for program code writing. The advantage of this program

package is that it takes care of the code syntax, free memory and provide more comfortable

environment when writing a program.

 85

The first step is the writing of a program code in some of enumerated text editors. Every written

code must be saved on a single file with the ending .BAS exclusively as ASCII text. An

example of one simple BASIC program - BLINK.BAS is given.

‘ Example of a program where the LED diode connected on PORT B pin 7 switches

‘ on and off every 0.5 seconds

 Loop:

 High PORTB.7 ‘ Switched on LED on pin 7 of port B

 Pause 500 ‘ 0.5 sec pause

 Low PORTB.7 ‘ switched on LED on pin 7 of port B

 Pause 500 ‘ 0.5 sec pause

 Goto Loop ‘ Go back to Loop

 End ‘ End of program

When the original BASIC program is finished and saved as a single file with .BAS ending it is

necessary to start PIC BASIC compiler. The compiling procedure takes place in two

consecutive steps.

Step 1: In the first step compiler will convert BAS file in assembler s code and save it as

BLINK.ASM file.

Step 2: In the second step compiler automatically calls assembler, which converts ASM type

file into an executable HEX code ready for reading into the programming memory of a

microcontroller.

In case of a syntax error of a program code, the compilation will not be successful and HEX file

will not be created at all. Errors must be then corrected in original BAS file and repeat the

whole compilation process.

Loading a program into the microcontroller memory

As a result of a successful compilation of a PIC BASIC program the following files will be

created.

BLINK.ASM - assembler file

 86

BLINK.LST - program listing

BLINK.MAC - file with macros

BLINK.HEX - executable file which is written into the programming memory

File with the HEX ending is in effect the program that is written into the programming memory

of a microcontroller. The programming device with accessory software installed on the PC is

used for this operation. Programming device is a contrivance in charge of writing physical

contents of a HEX file into the internal memory of a microcontroller. The PC software reads

HEX file and sends to the programming device the information about an exact location onto

which a certain value is to be inscribed in the programming memory. PIC BASIC creates HEX

file in a standard 8-bit Merged Intel HEX format accepted by the vast majority of the

programming software.

Besides reading of a program code into the programming memory, the programming device

serves to set the configuration of a microcontroller. Here belongs the type of the oscillator,

protection of the memory against reading, switching on of a watchdog timer etc. The connection

between PC, programming device and the microcontroller is shown.

Figure 4-2: Programming Device

See Appendix E for Pic Basic Pro basics and Statement reference.

 87

4.2 Firmware Description

PIC16F877’s firmware is the code controlling the storage of data to the MMC, reading/sending

data through USB and all the critical tasks of motion controller such as, calculating velocity and

acceleration of each servomotor and loading the trajectory parameters to LM629. The developed

firmware (see Appendix G) has five parts:

• Initialization part: Initialization part includes the variables and simply sets the initial

conditions and activates certain peripherals of the micro-controller. For more information refer

to Appendix G.

• Storage part: In this part, the MMC is initialized in SPI mode and position data is stored into

and read from MMC.

• Servo controller part: In this part of the firmware, LM629 chips are initialized and the

variables about trajectory like speed, acceleration and PID are updated. Also motors can be

manually controlled by entering desired position.

• Data processing part: the stored position data is read from I2C EEPROM, processed and

trajectory is started in this part.

• Subroutine part: this part includes the subroutines, frequently used by other parts.

Initilization Storage Part LM629 Data
Processing

SUBROUTINES

Figure 4-3: General Overview of the Firmware

 88

4.2.1 Storage Part

This is the MMC related part of the firmware. This part includes 3 main modules which are

described in the following sections. [37, 39]

As shown in the Figure 4-4, the firmware first waits for a control byte from PC. If there is data

the firmware reads the control byte and checks it. According to the value of the control byte the

program executes corresponding module.

MMC Initialization Module

In this module the MMC is reset and SPI mode is activated for the communication protocol

between PIC and MMC. The MMC requires a defined reset sequence. After power on reset or

software reset (CMD0), the card enters an idle state. By sending CMD1 repeatedly, MMC is

polled until the “in-idle-state” bit in the card response indicates, by being set to 0 that the card

completed its initialization processes and is ready for the next command.

To initiate the card in SPI, CS signal is asserted (negative) during the reception of the reset

command (CMD0).

Read Index and MMC Module

If there is previously loaded position data in the MMC and if these data will be used, the index

of the last byte is read from the address 65500 of the I2C EEPROM. The index is 6 byte long.

The first 4 byte of the index is the address of the last sector and the last two byte is the number

of byte loaded to the last memory sector. After reading these values, they assigned to sector1,

sector0 and load_ee variables to use in the data processing part of the firmware.

After reading index, the second part of the subroutine begins with READMMC label. Firmware

reads the MMC memory sector (512 byte) from previously assigned 32 bit address. Firmware

reads the 512 bytes one by one from the Dataout pin and write it to I2C eeprom. When all data

read from I2C EEPROM, Firmware jumps to data processing part or LM269 part according to

control variable read_cntrl.

 89

Storage

Check
if Datain=0

Read the
control byte

Check the
control byte

Read 6 byte index
from I2C eprom

and save for data
processing part

Write 6 byte index
to USB as
feedback

Yes

hex11 hex12 hex13 hex14

Initialize MMC in
SPI mode

Information led
blink 2 times

Goto LOOP3

Goto LM629

Read 2 byte
information how

many bytes will be
sent max. 504

Read position
data and write to

I2C eeprom

Send the 1 byte
information to

USB

Read the data
from I2C and load

MMC

Goto Storage

Goto Storage

No

Initilize MMC
Module

Read Index
Module and MMC

Load MMC
Module

Update variables
about Memory

adresses

Read 512 byte
from MMC and

write to i2c eprom

READMMC

Check
read_cntrl=1

Goto LM629

Yes

No

Figure 4-4: Flowchart of Storage part

 90

Load MMC Module

In this module the number of data bytes that will be loaded to the MMC memory sector is read

from USB. According to that value the firmware calculates the loop count of For..Do loop. In

every loop the position data is loaded into the 64 byte array in_array variable and written into

I2C EEPROM. After loading data into I2C EEPROM one byte feedback is sent to PC. Then the

data in the EEPROM is read one by one and loaded to MMC memory sector. At the end the

memory address variables are updated. And the index of the last byte is written to I2C

EEPROM.

4.2.2 LM629 Part

This part is LM629 servo controller and the parameters about trajectory related part of the

firmware. In this part there are eight main modules, as shown in the Figure 4-6.

Trajectory Complete Check Module

After every processing of position data in MMC part, the firmware loops back to label LOOP3

in LM629 part. In this module first the USB interface is checked whether a control byte is send

or not. If there is data, the control byte is read and executed. If there is no data, firmware waits

for the interrupt that indicates the trajectory is completed by all motors. To execute the other

positions, RB0 pin (see Figure 3-40) is checked by the firmware and when this pin is high the

firmware jumps to Data Processing part. All saved positions are executed one by one by the

help of this module.

Hardware Reset Module

The hardware reset of LM629 is described in section 3.4.8 Programming LM629 section. In this

module all the servo controllers are reset and the status byte is checked in the order of X, Y, Z

axis controllers. If the reset is successful, the information led blinks three times. Then the

previously assigned PID parameters are loaded to servo controllers.

 91

Stop Module

To stop the motion of motors, stop smoothly bit of the trajectory control word (See Figure 3-30)

is set and sent to servo controllers. After loading the trajectory control word (hex40), by giving

the STarT command to LM629, the motors stops with the current programmed acceleration.

After stopping the motors, the current positions are read by the RDRP subroutine and equated to

position variables (SIGNxcurr, SIGNycurr, SIGNzcurr, xcurr, ycurr, zcurr). Then read

address variable of the EEPROM is taken 9 steps back. So by sending start command byte

(hex26), the execution of the points starts again where it is stopped. And the stop flag (frstop) is

set. This flag is checked at the end of the data processing part. And if it is set the firmware

jumps to label LM629 from data processing part. At the end the firmware loops to LM629

label.

Manual Load Position Module

The motors can be driven manually by sending the desired positions of X, Y, Z motors

according to the home position (origin). The firmware waits for 3 bytes for each axis motor.

After reading nine bytes of position data, the firmware equates these positions to xread, signx,

yread, signy, zread and signz variables, then the frusb flag, indicates the 9 byte position data is

loaded manually, is set. At the end, firmware jumps to LTRJ2 label, in the data processing part,

to execute the loaded point.

Update PID Module

To update the PID parameters of the servo controller this module is used. After the first control

byte (hex24), the firmware waits for the second control byte. According to second control byte,

firmware updates the corresponding servo controllers PID parameters (hex0-all, hex1-X, hex2-

Y, hex3-Z axis motor). In the firmware the filter control word, refer to the section 3.4.8 Figure

3-29, is set to hex 000F. By this value the derivative sampling term is set to one and the servo

controllers waits for all PID parameters. So the firmware waits 8 byte PID data to update servo

controllers. After reading 8 bytes these parameters are loaded and updated by UDF command of

LM629.

 92

LM629

Check
if Datain=1

Read the
control byte

Check the
control byte

Hardware
Reset Module

Stop
Module

Load
Position
Manually

Update PID
Module

Update
velocity and
acc. Module

Start
Module

 Load pid
filters to all
lm629 I.Cs

Read 9 bytes
x, y, z

positions

Read 8
bytes Kp,
Kd, il, Ki

parameters
and update

Blink 3
times the
Inform led

Check the
hardware reset

by reading
status byte

Read 4 bytes
velocity and
accelaration

constants

Goto
lm629

Stop
motors

smoothly

Goto
LTRJ2

Goto
lm629

Goto
lm629

Goto
LTRJ

hex21 hex22 hex23 hex24 hex25 hex26 hex27
 Goto

Storage

Yes

NoGosub
Error

Update
velocity and
acc. constant

Read control
byte from

USB

Check the
control byte

According the
control byte
activate the

corresponding
LM629

Yes

No

Read
current

positions
of motors

Set stop
flag

Goto
lm629

Check
if Datain=0

Loop3

Check
HI pin =0

Yes
No

Yes

No

Figure 4-5: Flow chart of LM629 part

 93

Update Velocity and Acceleration Module

The velocity and acceleration parameters are calculated in the data processing part by the help

of the velocity and acceleration variables, cv and acc. The velocity of the system is directly

proportional to these variables. These variables are equated to 7 and 1 in the initial part of the

firmware. To update these variables this module is used. The firmware waits four data bytes,

two for velocity and two for acceleration variables. After reading four data bytes, firmware

equates them to cv and acc variables.

Other Modules

There is also Start module in the LM629 part. To process the position data loaded in to MMC

the firmware jumps to data processing part by this module. And to loop back to Storage part

Goto storage module can be used.

4.2.3 Data processing Part

In this part, previosly loaded data is read from I2C EEPROM, velocity and accelaration

parameters are calculated and LM629 servo controllers are programmed and at last the

trajectory is started.

The 9 byte position data is read from EEPROM sequentially and equated to signx, xread, signy,

yread and signz, zread position variables. And rd_addr variable is incremented by nine, for

the next I2C reading. These variables are sent to position subroutine to calculate the absolute

position and the direction of the motion.

The velocity and accelaration of the motors are calculate by multiplying the absolute position

and the velocity and accelaration constants. the high word of the position data (hxread, hyread

and hzread) is determined according to sign byte (signx, signy and signz). If sign byte is zero

(positive), high word of the position is assigned to zero and if sign byte is one (negative), high

word is assigned to hexFFFF. And low word of position data is subtracted from hexFFFF, if the

sign byte is negative. At last the calculated trajectory values are loaded to servo controllers one

by one. While loading the parameters the trajectory control word of LM629, Figure 3-30, is set

 94

to hex2A. This means accelaration, velocity and postion will be loaded. Then the trajectory is

satrted by giving start command to all LM629 servo controllers.

Then the frusb flag is checked whether the position data is sent manually or not. According to

the flag value, firmware jumps to label LM629 or go on its ordinary execution. Then the index

of the trajectory (sector0,sector1, load_ee) is checked whether all trajectroy is completed or not.

If completed hex CC is sent to USB and the firmware returns MMC part. If it is not completed ,

the EEPROM read address variable (rd_addr) is compared with the limit address (limitaddr)

which is 504. if the rd_addr is equal or greater than the limit address, the read address is

equated to zero and 32 bit MMC address is incremented by 512 (hex200) and firmware jumps to

label READMMC. After checking address variables the stop flag (frstop) is checked.

If it is set, firmware jumps to label LM629. At the end of the data processing part, if there is no

extraordinary situation, firmware loops to label LOOP3 to complete trajectory loaded to

MMC.

 95

Read from eprom and assign
x y z parameters

Load parameters to lm629
and start Trajectory

Goto MMC

LTRJ

LTRJ2

Calculate velocity accelearion

Check
if the positions

loaded manually
frusb=1

YES

NO

Check
if the all saved
positions are
processed

YES

Goto LM629

Goto LOOP3

NO

Check
the stop flag

frstop=1

Check
 the I2C read address
rd_addr >= limitaddr

Update reading adress

Goto
READMMC

Goto LM629

YES

NO

YES

NO

Figure 4-6: Flowchart of data processing part

 96

4.2.4 Subroutines

To reduce redundancy and to improve readability and ease of extension of a program, some

subroutines are coded in the firmware

4.2.4.1 MMC Subroutines

To initialize, read and write MMC the following subroutines are used. [37, 39]

Send_cmd

To send command to MMC this subroutine is used in the firmware. In this subroutine the

command (cmd variable) and 32 bit address is sent by the help of the shiftout5 subroutine. At

the end of the subroutine the response of the card is checked. The card sends this response (R1)

token after every command [37]. This response is one-byte long, the MSB is always set to zero,

and the other bits are error indications (1= error).

Shiftout_dat and shiftout5-1

To send an assigned value to MMC these subroutines are used. In shiftout_dat subroutine the

cntr and dat variables are assigned in storage part. The same dat variable is sent from one to

assigned Cntr.

Shiftout5-1 subroutines are called by the main program according the number of argument that

will be sent. To sent 3 arguments (variable arg) shiftout3 is called.

Shiftin_Res

To read the response of the MMC from the Dataout pin of MMC (SO pin of PIC) this

subroutine is used.

Chk_res

To check the response of MMC to the written commands this subroutine is used.The chck

variable is compared with response (res variable) in a while loop. The dataout line is read in the

while loop until the expected response (chck) is read.

 97

4.2.4.2 LM629 subroutines

Usbread

To read the data sent from PC through the USB port this subroutine is used. In the main

program the number of data byte that will be read from USB must be assigned to readusb

variable. First DATAIN (PORTB.4) is checked, if there is data or not. When DATAIN is zero,

the data is read by strobing RDUSB (PORTB.1) logical low then logical high again. The data

taken by PORTD is equated to 64 byte array in_array.

Check

This subroutine is used to read the status byte of LM629 as described in section 3.4.8. After

reading the status byte, according to variable x, firmware returns (x=1) from subroutine after

hardware reset or interrupt reset of LM629, or the busy bit of status byte is checked after the

host writes a command byte or reads or writes the second byte of a data word (x=2). The

firmware continues to read status byte and to check busy bit, until it is reset to zero. While the

busy-bit is set, the LM629 will ignore any commands or attempts to transfer data.

Hwreset

Immediately following power-up, a hardware reset must be executed. Hardware reset is initiated

by strobing rst (PORTA.1) logic low for a minimum of eight LM629 clock periods. The reset

routine begins after RST is returned to logic high. The reset execution time is maximum 1.5 ms.

Wrcomm

WRCOMM subroutine is used for writing commands to LM629. The value of COMMAND

variable is assigned and then it is written to LM629 by equating COMMAND variable to

PORTC and pulling cs, ps and wr pins logical low. At the end CHECK subroutine is called for

check the busy bit.

Wwrd

When writing data, trajectory or PID filter parameters etc., WWRD subroutine is used.The

in_array[0] and in_array[1] variables are also used here as high and low byte data that will be

 98

loaded The data is assigned in the main program. The data is written by strobing wr pin while

PS is high. At the end CHECK subroutine is called for check the busy bit.

Position

In this subroutine, the calculations about position and direction of movement are made. Since

servo controllers are programmed to operate in position mode, all position values are calculated

according to the home position where LM629 chips are reset. The target position and sign

values, according to the origin, are read from USB and equated to xread, yread, zread, signx,

signy and signz variables. Then the difference between the current and target position is taken

to calculate the absolute distance that the motor will take. The actual positions are equated to

posx, posy and posz variables. By the help of these variables the velocity and acceleration of

each motor is calculated in the main program. And to keep update the current positions and sign

values for the next calculations, the target positions and signs are equated to xcurr, ycurr,

zcurr, signxcurr, signycurr and signzcurr .

Rdrp

To learn the real position of motors RDRP subroutine is used in trajectory module and stop

module of main program. After RDRP command is written to all servo controllers, the RDRP

subroutine reads the 32 bit position data from the profile generator of LM629. And the lower 16

bit position data is equated RDRP1 and RDRP2 variables and written to USB for feedback. And

rdrp3 variable is used in the stop module to determine the sign of the axis. If rdrp3 is zero,

current position is on the positive axis. If rdrp3 is hexFF, current position is on the negative

axis.

Error and Blink

If the reset procedure of servo controllers is not successful, ERROR subroutine is called to give

information by blinking the D4 led of DlP-IO26 card.

BLINK subroutine is used for giving information by blinking the D4 led of DlP-IO26 card. For

example, when the initialization of MMC is completed it blinks two times, when the hardware

reset of LM629 is successful, it blinks three times. By assigning bcount variable in the

firmware, the count of blink is determined.

 99

Clock

This subroutine is used to give a clock pulse to D flip-flop which is connected to PORTD of

PIC microcontroller.

 100

CHAPTER 5

CONCLUSION

In this study, a high precision three-axes DC servo motor driver has been developed. The

operating principle of the designed system and used parts such as PIC microcontroller, LM629,

USB interface and the other integrated circuits are explained.

In the high voltage sphere gap application as in the machine positioning table application ,

the mechanical accuracy of the systems were found to be limited to the resolution of

the optical position encoders used.

The PIC 16F877 microcontroller, which is used in the design, was described in detail.

Additionally, the external memory usage with microcontrollers is mentioned. Also operating

principle of motion controller processor LM629 and the control method by microcontroller is

described. The firmware of microcontroller written in PicBasic Pro including the procedures of

serial communication, SPI and I2C, between memories and PIC and programming LM629 is

presented.

The driver has the ability to store the position data up to the memory capacity of used MMC

card. In this study 128 MB MMC is used. By the storage ability, the system can work

independent of a PC. Just giving a start command, the motor driver begins to work by reading

previously loaded position data. Also the loaded data can be used several times. If the position

data is below 512KB I2C EEPROM can also be used instead of MMC, by using cascade feature

of I2C EEPROM. The only drawback of designed system’s storage unit is waiting state of after

a write operation to I2C EEPROM. If a standard I2C EEPROM is used, a 5 or 10 ms pause must

be inserted after each write statement depending on the EEPROM used.

 101

For future work, to increase the speed of communication between PC and Microcontroller USB

2.0 interface can be implemented to the system. And with PIC microcontrollers only 16 bit

mathematical operations can be done. By using more powerful microcontrollers this can be

increased to 32 bit. So the operating range of the driver system can be increased Finally to make

the system totally independent from a PC, a controller module by the help of a microcontroller

circuit with a keypad to enter commands and LCD panel can be designed.

 102

REFERENCES

[1] E. Kuffeland-M.Abdullah, ” High Voltag Engineering”, Pergamon Press Ltd., 1979

[2] Sefa Akpınar, “Yüksek Gerilim Tekniğini Temelleri”, K.A.T.Ü. Basımevi, 1997

[3] A.J. Schwab, “High Voltage Measurement Techniques”, MIT Press, 1972

[4] Lux Jim, “High voltage experimenter’s Handbook”, http://home.earthlink.net/

~jimlux/hv/sphgap.htm, Last Checked: 15.june.2005

[5] Hans B. Kief – T. Frederick Warters, “Computer numerical control” , The McGraw-

Hill Companies, Inc., Second Edition, 1992.

[6] Barry Leatham-Jones, “Introduction to Computer numerical control”, Longman, 1986

[7] G. E. Thyer, “Numeric Control of Machine Tools”, Oxford:Butterworth-Heinemann,

Second Edition, 1991

[8] Benjamin C. Kuo, “Theory and Applications of Step Motors”, West Publishing Co.,

1974

[9] National Instruments, “Fundamentals of Motion”, http://zone.ni.com/devzone/
 conceptd.nsf/webmain/722ECF56222AAD5086256F7B007072C4?opendocument&nod

e=1506_US#7, Last Checked: 15.June.2005

[10] Lepkowski J., “Motor Control Sensor Feedback Circuits”, Microchip Application Note

No: AN894

[11] Yedamale, Padmaraja, “Brushless DC (BLDC) Motor Fundamentals”, Microchip

Technology Inc., Application Note No: AN885

 103

[12] Reston Condit, “Brushed DC (BDC) Motor Fundamentals”, Microchip
 Technology Inc., Application Note No: AN905

[13] Ward Brown, “Brushless DC Motor Control Made Easy”, Microchip Technology

Inc., Application Note No: AN857

[14] Douglas W. Jones, “Control of Stepping Motors”, http://www.cs.uiowa.edu/

~jones/step#introduction, Last Checked: 15.June.2005

[15] Solarbotics, “Step motor drive circuit basics “, http://library.solarbotics.net

/pdflib/pdf/drive.pdf, Last Checked: 15.June.2005

[16] A.E. Fitzgerald, Charles Kingsley, Jr, Stephen D. Umans, “Electric Machinery”, Fifth
Edition in SI Units, McGraw-Hill, 1992.

[17] P.P. Acarnley, “Stepping Motors: A guide to modern theory and practice”, Revised

Second Edition, IEE Control Engineering Series 19, 1984.

[18] Feza Başar, “Development of a 3 axes PC numerical control system for industrial

applications”, METU MS Thesis, 2003

[19] Brian Rhoney, Chad Zimmer, Derek Murr, “Principles of AC, DC, Linear, Step, and

Servo Motors”, MAE 789 C, 2000

[20] Freescale Semiconductor, “Motion Control”, http://www.freescale.com/webapp/sps/

site/homepage.jsp?nodeId=02nQXG, Last Checked: 15.June.2005

[21] Richard H. Engelmann, William H. Middendorf, “Handbook of Electric Motors”, M.

Dekker, 1995

[22] Machine Design, “Electric Motors Reference Center”, http://www.electricmotors.

machinedesign.com/BDEList.aspx, Last Checked: 15.June.2005

[23] PIC16F877 Datasheet, Microchip, DS30292C

[24] PICmicro™ Mid-Range MCU Family Reference Manual, Microchip, DS33023A

 104

[25] John B. Peatman, “Design with PIC Microcontrollers”, Prentice Hall, 1998

[26] Micheal Predko, “Programming and Customizing PICmicro Microcontrollers”, Second

Edition, McGraw-Hill, 2001

[27] Fırat Beştepe, “Microcontroller-Based Multiport Communication System for Digital

Electricity Meters”, METU MS Thesis, 2004

[28] John Iovine, “PIC Microcontroller Project Book”, McGraw-Hill, 2000

[29] Beyondlogic, “USB in a Nutshell”, http://www.beyondlogic.org/usbnutshell/
 Last Checked: 15.June.2005

[30] Jan Axelson, “USB Complete”, Second Edition, LVR, 2001

[31] DLP Design, “DLP-IO26”, http://www.dlpdesign.com/usb-prev, Last Checked:

15. June.2005

[32] Future Technology Devices International Ltd., “FT8U245AM USB FIFO”,
 http://www.ftdichip.com/FTProducts.htm#FT8U245AM, Last Checked:
 15. June.2005

[33] AN-706: Application Note 706 LM628/629 User Guide, National Semiconductor, 2002

[34] LM628 LM629 Precision Motion Controller, National Semiconductor, 2003

[35] AN-693: Application Note 693 LM628 Programming Guide, National Semiconductor,

2002

[36] National Semiconductor, “LMD18201 Product Folder”, http://www.national.com/pf/

LM/LMD18201.html, Last Checked: 15.June.2005

[37] Sandisk SanDisk MultiMediaCard and Reduced-Size MultiMediaCard Product Manual,

Version 1.0, Document No. 80-36-00320, 2004

 105

[38] Captain’s Universe, “PIC-MMC Flash Memory Extension”, http://www.captain.at/
electronics/pic-mmc/, Last Checked: 15.June.2005

[39] Compsys System Consultation, “MMC Project”,http://www.compsys1.com/workbench/

On_top_of_the_Bench/MMC_Project/mmc_project.html, Last Checked: 15.June.2005

[40] Atmel Corporation,” Serial EEPROMS AT24C512”, http://www.atmel.com/dyn/

products/product_card.asp?family_id=647&family_name=Serial+EEPROM&part_id=2
489, Last Checked: 15.June.2005

[41] Micro Engineering Labs Inc., “PIC Basic Pro Compiler Manual”,

http://www.microengineeringlabs.com/resources/pbpmanual/, Last Checked:
15.June.2005

[42] CSMicro Systems, “Code Designer Lite”, http://www.csmicrosystems.com/
Last Checked: 15.June.2005

[43] Nebojsa Matic, “Basic for PIC microcontrollers”,2003

 106

APPENDIX A: MACHINE CODES

Table A-1: Mid-Range MCU Instruction Set

 107

APPENDIX B: DLP-IO26 USB Interface and Schematic

B.1) FTU245AM

Features

• Single Chip Fast Data Transfer Solution

• Send / Receive Data over USB at up to 1 M Bytes / sec

• 384 byte FIFO Transmit buffer / 128 byte FIFO receive buffer for high data throughput

• Simple interface to CPU or MCU bus

• No in-depth knowledge of USB required as all USB Protocol is handled automatically

within the I.C.

• FTDI’s Virtual COM port drivers eliminate the need for USB driver development in most

cases.

• Compact 32 pin (7mm x 7mm) MQFP package

• Integrated 6MHz - 48MHz Clock Multiplier aids FCC and CE compliance

• Integrated 3.3v Regulator – No External Regulator Required

• 4.4v.. 5.25v Single Supply Operation

• UHCI / OHCI Compliant

• USB 1.1 Specification Compliant

• USB VID, PID, Serial Number and Product Description Strings in external EEPROM.

• Virtual COM Port Drivers for – Windows 98 and Windows 98 SE, Windows 2000,

Windows XP, Windows Millennium ** , Apple iMAC **, Linux **

• Application Areas

 USB ISDN and ADSL Modems

 High Speed USB Ù PDA Communications

 USB I/F for Digital Cameras

 USB I/F for MP3 players

 High Speed USB Instrumentation

 USB - USB data transfer cables

 USB -USB null-modem cables

 108

General Description

The FT8U245AM provides an easy cost-effective method of transferring data to / from a

peripheral and a host P.C. at up to 8 Million bits (1 Megabyte) per second. It’s simple FIFO-like

design makes it easy to interface to any CPU (MCU) either by mapping the device into the

Memory / IO map of the CPU, using DMA or controlling the device via IO ports.

To send data from the peripheral to the host P.C. simply write the byte wide data into the device

when the transmitter empty status bit is not active. If the (384 byte) transmit buffer fills up, the

device de-asserts transmit empty in order to stop further data being written to the device until

some of the FIFO data has been transferred over USB. When the host P.C. sends data to the

peripheral over USB, the device will assert the receiver full status bit to let the peripheral know

that data is available. The peripheral then reads the data until the receiver full status bit goes

inactive, indicating no more data is available to read.

By using FTDI’s virtual COM Port drivers, the peripheral looks like a standard COM Port to the

application software. Commands to set the baud rate are ignored – the device always transfers

data at its fastest rate regardless of the application’s baud rate setting.

 109

Figure B-1: FT8U245AM Block Diagram

FT8U245AM – Functional Block Description

3.3V LDO Regulator

The 3.3V LDO Regulator generates the 3.3 volt reference voltage for driving the USB

transceiver cell output buffers. It requires an external decoupling capacitor to be attached to the

3V3OUT regulator output pin.

USB Transceiver

The USB Transceiver Cell provides the USB 1.1 full-speed physical interface to the USB cable.

The output drivers provide 3.3 volt level slew rate control signaling, whilst a differential

receiver and two single ended receivers provide USB data in, SEO and USB Reset condition

detection.

 110

USB DPLL

The USB DPLL cell locks on to the incoming NRZI USB data and provides separate recovered

clock and data signals to the SIE block.

6MHz Oscillator

The 6MHz Oscillator cell generates a 6MHz reference clock input to the X8 Clock multiplier

from an external 6MHz crystal or ceramic resonator.

X8 Clock Multiplier

The X8 Clock Multiplier takes the 6MHz input from the Oscillator cell and generates a 12MHz

reference clock for the SIE, USB Protocol Engine and UART FIFO controller blocks. It also

generates a 48MHz reference clock for the USB DPPL and the Baud Rate Generator blocks.

Serial Interface Engine (SIE)

The Serial Interface Engine (SIE) block performs the Parallel to Serial and Serial to Parallel

conversion of the USB data. In accordance to the USB 1.1 specification, it performs bit stuffing

/ un-stuffing and CRC5 / CRC16 generation / checking on the USB data stream.

USB Protocol Engine

The USB Protocol Engine manages the data stream from the device USB control endpoint. It

handles the low level USB protocol requests generated by the USB host controller and the

commands for controlling the functional parameters of the UART.

FIFO Receive Buffer (128 bytes)

Data sent from the USB Host to the FIFO via the USB data out endpoint is stored in the FIFO

Receive Buffer and is removed from the buffer by reading the FIFO contents using RD#.

FIFO Transmit Buffer (384 bytes)

Data written into the FIFO using WR# is stored in the FIFO Transmit Buffer. The Host removes

Data from the FIFO Transmit Data by sending a USB request for data from the device data in

endpoint.

 111

FIFO Controller

The FIFO Controller handles the transfer of data between the external FIFO interface pins and

the FIFO Transmit and Receive buffers.

EEPROM Interface

The FT8U245AM uses an external 93C46 EEPROM to customize the USB VID, PID, Serial

Number and Strings of the FT8U245AM for OEM applications. The FT8U245 Virtual Com

Port Drivers rely on a unique device serial number for to bind a unique virtual COM port to

each individual device.

 112

B-2) SCHEMATIC DIAGRAM

Figure B-2: DLP-IO26 Schematic Diagram

 113

APPENDIX C: MOTOR DRIVER

LMD18201, 3A, 55V H-Bridge

General Description

The LMD18201 is a 3A H-Bridge designed for motion control applications. The device is built

using a multi-technology process which combines bipolar and CMOS control circuitry with

DMOS power devices on the same monolithic structure. The H-Bridge configuration is ideal for

driving DC and stepper motors. The LMD18201 accommodates peak output currents up to 6A.

Current sensing can be achieved via a small sense resistor connected in series with the power

ground lead. For current sensing without disturbing the path of current to the load, the

LMD18200 is recommended.

Features:

• Delivers up to 3A continuous output

• Operates at supply voltages up to 55V

• Low RDS(ON) typically 0.33per switch

• No “shoot-through” current

• Thermal warning flag output at 145°C

• Thermal shutdown (outputs off) at 170°C

• Internal clamp diodes

• Shorted load protection

• Internal charge pump with external bootstrap capability

Applications:

• DC and stepper motor drives

• Position and velocity servomechanisms

• Factory automation robots

• Numerically controlled machinery

• Computer printers and plotters

 114

Figure C-1: Functional Block Diagram of LMD18201

Absolute Maximum Ratings

Total Supply Voltage (VS, Pin 6) 60V

Voltage at Pins 3, 4, 5 and 9 12V

Voltage at Bootstrap Pins (Pins 1 and 11) VOUT + 16V

Peak Output Current (200 ms) 6A

Continuous Output Current (Note 2) 3A

Power Dissipation (Note 3) 25W

Sense Voltage (Pin 7 to Pin 8) +0.5V to -1.0V

Power Dissipation (TA = 25°C, Free Air) 3W

Junction Temperature, TJ(max) 150°C

ESD Susceptibility (Note 4) 1500V

Storage Temperature, TSTG -40°C to +150°C

Lead Temperature (Soldering, 10 sec.) 300°C

 115

APPENDIX D: BUFFER CIRCUIT

D.1) SN54/74LS245 OCTAL BUS TRANSCEIVER

74LS245 is used for control 8 bit I/O bus. The SN54/74LS245 is an Octal Bus

Transmitter/Receiver designed for 8-line asynchronous 2-way data communication between

data buses. Direction Input (DR) controls transmission of Data from bus A to bus B or bus B to

bus A depending upon its logic level. The Enable input (E) can be used to isolate the buses.

• Hysteresis Inputs to Improve Noise Immunity

• 2-Way Asynchronous Data Bus Communication

• Input Diodes Limit High-Speed Termination Effects

Figure D-1: Logic and Connection Diagram of LS245

Table D-1: Truth Table

 116

D.2) DM74LS241 Octal TRI-STATE… Buffers/Line Drivers/Line Receivers

74LS541 is used for control the control line of the servo controller. These buffers/line drivers

are designed to improve both the performance and PC board density of TRI-STATE

buffers/drivers employed as memory-address drivers, clock drivers, and bus oriented

transmitters/receivers

Features:

• TRI-STATE outputs drive bus lines directly

• PNP inputs reduce DC loading on bus lines

• Hysteresis at data inputs improves noise margins

• Data flow-thru Pinout (All inputs on opposite site from inputs)

The three-state control gate is a two input NOR such that if either G1 or G2 are high, all eight

outputs are in the high impedance state. 74LS541 offers true data at the output.

.

Figure D-2: Pinout and Logic Diagram of LS541

 117

APPENDIX E: PIC BASIC PRO

E.1) PicBasic Pro Basics [35]

Line Labels

In order to mark statements that the program might wish to reference with GOTO or GOSUB

commands, PBP uses line labels. Unlike many older BASICs, PBP doesn't allow line numbers

and doesn't require that each line be labeled. Rather, any PBP line may start with a line label,

which is simply an identifier followed by a colon (:).

 here: Serout 0,N2400,["Hello, World!",13,10]

 Goto here

Variables

Variables are where temporary data is stored in a PicBasic Pro program. They are created using

the VAR keyword. Variables may be bits, bytes or words. Space for each variable is

automatically allocated in the microcontroller’s RAM by PBP. The format for creating a

variable is as follows:

 Label VAR Size{.Modifiers}

Label is any identifier, excluding keywords, as described above. Size is BIT, BYTE or WORD.

Optional Modifiers add additional control over how the variable is created. Some examples of

creating variable are:

 dog var byte

 cat var bit

 w0 var word

 118

The number of variables available depends on the amount of RAM on a particular device and

the size of the variables and arrays. PBP reserves approximately 24 RAM locations for its own

use. It may also create additional temporary variables for use in sorting out complex equations.

Numeric Constants

PBP allows numeric constants to be defined in the three bases: decimal, binary and

hexadecimal. Binary values are defined using the prefix '%' and hexadecimal values using the

prefix '$'. Decimal values are the default and require no prefix.

 100 ' Decimal value 100

 %100 ' Binary value for decimal 4

 $100 ' Hexadecimal value for decimal 256

Ports and Other Registers

All of the PICmicro registers, including the ports, can be accessed just like any other byte-sized

variable in PicBasic Pro. This means that they can be read from, written to or used in equations

directly:

 PORTA = %01010101 ' Write value to PORTA

 anyvar = PORTB & $0f ' Isolate lower 4 bits of PORTB and

 place result in anyvar

Pins

Pins may be accessed in a number of different ways. The best way to specify a pin for an

operation is to simply use its PORT name and bit number:

 PORTB.1 = 1 ' Set PORTB, bit 1 to a 1

To make it easier to remember what a pin is used for, it should be assigned a name using the

VAR command. In this manner, the name may then be used in any operation:

 led var PORTA.0 ' Rename PORTA.0 as led

 High led ' Set led (PORTA.0) high

 119

Pins may be referenced by number (0 - 15), name (e.g. Pin0, if one of the bsdefs.bas files are

included or you have defined them yourself), or full bit name (e.g. PORTA.1). Any pin or bit of

the microcontroller can be accessed using the latter method.

The pin names (i.e. Pin0) are not automatically included in your program. In most cases, you

would define pin names as you see fit using the VAR command:

 led var PORTB.3

When a PICmicro powers-up, all of the pins are set to input. To use a pin as an output, the pin

or port must be set to an output or a command must be used that automatically sets a pin to an

output.

To set a pin or port to an output (or input), set its TRIS register. Setting a TRIS bit to 0 makes

its pin an output. Setting a TRIS bit to 1 makes its pin an input. For example:

 TRISA = %00000000 ' Or TRISA = 0

sets all the PORTA pins to outputs.

 TRISB = %11111111 ' Or TRISB = 255

sets all the PORTB pins to inputs.

 TRISB = %11111111 ' Or TRISB = 255

Sets all the even pins on PORTC to outputs, and the odd pins to inputs. Individual bit directions

may be set in the same manner.

 TRISA.0 = 0

sets PORTA, pin 0 to an output. All of the other pin directions on PORTA are unchanged.

 120

Comments

A PBP comment starts with either the REM keyword, the single quote ('), or the semi-colon (;).

All following characters on this line are ignored.

Include

Other BASIC source files may be added to a PBP program by using INCLUDE. These files

may be included in programs where they are necessary, but kept out of programs where they are

not needed. The included files source code lines are inserted into the program exactly where the

INCLUDE is placed.

 INCLUDE "modedefs.bas"

Define

Some elements, like the clock oscillator frequency and the LCD pin locations, are predefined in

PBP. DEFINE allows a PBP program to change these definitions, if desired.

DEFINE may be used to change the predefined oscillator value, the DEBUG pins and baud rate

and the LCD pin locations, among other things.

These definitions must be in all upper case. If not, the compiler may not recognize them. No

error message will be produced for DEFINEs the compiler does not recognize.

 DEFINE OSC 4 ‘Oscillator speed in MHz: 20

 Math Operators

The PicBasic Pro Compiler performs all math operations in full hierarchal order. All

math operations are unsigned and performed with 16-bit precision.

 121

Table E-1: Pic Basic Pro Math Operators

Math Operators Description

+ Addition

- Subtraction

* Multiplication

** Top 16 Bits of Multiplication

*/ Middle 16 Bits of Multiplication

/ Division

// Remainder (Modulus)

<< Shift Left

>> Shift Right

ABS Absolute Value*

COS Cosine

DCD 2n Decode

DIG Digit

DIV 32 31-bit x 15-bit Divide

MAX Maximum*

MIN Minimum*

NCD Encode

REV Reverse Bits

SIN Sine

SQR Square Root

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise NOT

&/ Bitwise NOT AND

|/ Bitwise NOT OR

^/ Bitwise NOT Exclusive OR

 122

Comparison Operators

Comparison operators are used in IF..THEN statements to compare one expression with

another. These comparisons are unsigned. They cannot be used to check if a number is less than

0.

Table E-2: Comparisaon Operators

Comparison Operator Description

= or == Equal

<> or != Not Equal

< Less Than

> Greater Than

<= Less Than or Equal

>= Greater Than or Equal

Logical Operators

Logical operators differ from bitwise operations. They yield a true/false result from their

operation. Values of 0 are treated as false. Any other value is treated as true. They are mostly

used in conjunction with the comparison operators in an IF..THEN statement. The operators

supported are:

Table E-3: Logical Operators

Logical Operator Description

AND or && Logical AND

OR or || Logical OR

XOR or ^^ Logical Exclusive OR

NOT AND Logical NAND

NOT OR Logical NOR

NOT XOR Logical NXOR

 123

E.2) PicBasic Pro Statement Reference [35]

@ Insert one line of assembly language code.
ADCIN Read on-chip analog to digital converter.
ASM..ENDASM Insert assembly language code section.
CALL Call assembly language subroutine.
CLEAR Zero all variables.
COUNT Count number of pulses on a pin.
DATA Define initial contents of on-chip EEPROM.
DEBUG Asynchronous serial output to fixed pin and baud.
DEBUGIN Asynchronous serial input from fixed pin and baud.
EEPROM Define initial contents of on-chip EEPROM.
END Stop execution and enter low power mode.
FOR..NEXT Repeatedly execute statements.
FREQOUT Produce up to 2 frequencies on a pin.
GOSUB Call BASIC subroutine at specified label.
GOTO Continue execution at specified label.
HIGH Make pin output high.
HPWM Output hardware pulse width modulated pulse train.
HSERIN Hardware asynchronous serial input.
HSEROUT Hardware asynchronous serial output.
I2CREAD Read bytes from I2C device.
I2CWRITE Write bytes to I2C device.
IF..THEN..ELSE..ENDIF Conditionally execute statements.
INPUT Make pin an input.
LCDIN Read from LCD RAM.
LCDOUT Display characters on LCD.
LOW Make pin output low.
OUTPUT Make pin an output.
PAUSE Delay (1mSec resolution).
PAUSEUS Delay (1uSec resolution).
PULSIN Measure pulse width on a pin.
PULSOUT Generate pulse to a pin.
PWM Output pulse width modulated pulse train to pin.
RCTIME Measure pulse width on a pin.
READ Read byte from on-chip EEPROM.
READCODE Read word from code memory.
RETURN Continue at statement following last GOSUB.
REVERSE Make output pin an input or an input pin an output.
SELECT CASE Compare a variable with different values.
SERIN Asynchronous serial input (BS1 style).
SERIN2 Asynchronous serial input (BS2 style).
SEROUT Asynchronous serial output (BS1 style).
SEROUT2 Asynchronous serial output (BS2 style).
SHIFTIN Synchronous serial input.
SHIFTOUT Synchronous serial output.
SLEEP Power down processor for a period of time.
STOP Stop program execution.
SWAP Exchange the values of two variables.
TOGGLE Make pin output and toggle state.
WHILE..WEND Execute statements while condition is true.
WRITE Write byte to on-chip EEPROM.

 124

APPENDIX F: PIC Pin Variables and Functions

.
Table F.1: PIC Pin Variables and Functions

Pin Name Function Input/Output Variable Name

RA0 Connected to RD pin of LM629, to control reading status or
data Output RD

RA1 Connected to WR pin of LM629, to control writing
command or data Output WR

RA2 Connected to PS pin of LM629, to control writing command
or data Output PS

RA3 Connected to CS pin of MMC, to select the Card Output SS
RA4 Connected to the serial clock of I2C eeprom Input SCK
RA5 Connected to serial data of I2C eeprom Input SDA

RB0 Connected to HI output of LM629, to control whether the
trajectory is completed or not Input HI

RB1 Connected to FTDI USB controller chip, to give clock to
read data from FTDI, sent from PC Output RDUSB

RB2 Connected to FTDI USB controller chip, to give clock to
write data to FTDI Output WRUSB

RB3 Connected to the clock input of d-flip flop that controls the
PORTD latched output. Output DCLOCK

RB4 Connected to the RXF# output of FTDI, to control if there is
data or not in the receive buffer of FTDI. Input DATAIN

RB5 Connected to the TXE# output of FTDI, to control if the
transmit buffer of FTDI is full or not. Input DATAOUT

RB6-RB7 Connected to Download microcontroller on the DLP-IO26
card, to control firmware download Input

RC0-RC7 8-Bit data bus between LM629 and PIC Input/Output
RD0-RD7 8-Bit data bus between USB and PIC Input/Output

D0 Used for debugging events by blinking the led on the DLP
card. Output INFORM

D1 Enable line and data bus driver ICs and LM629 of Y axis Output CSY
D2 Connected to RST pin of LM629, to reset LM629 Output RST

D3 Connected to Direction pin of bi-direction data bus driver, to
control the direction of data flow Output DIRECT

D5 Enable line and data bus driver ICs and LM629 of Z axis Output CSZ
D6 Enable line and data bus driver ICs and LM629 of X axis Output CSX

D7 Connected to break input of LMD18201, to break motors on
power on stage Output BREAK

RE0 Connected to the Clock input of MMC Output CLK
RE1 Connected to the data output of MMC Input Dout
RE2 Connected to the data input of MMC Output Din

 125

APPENDIX G: FIRMWARE

INCLUDE "modedefs.bas" 'Adjust to suit your design
DEFINE OSC 20 'Adjust clock
ADCON1 = 7 'Adjust ADC for your needs
' PIC PIN ASSIGNMENTS
rd VAR PORTA.0 'read from LM629
wr VAR PORTA.1 'write to LM629
ps VAR PORTA.2 'port select 1=DATA,0=command
'I2C Eeprom Pins
scl VAR PORTA.4 'I2C SCL for ext eeprom
sda VAR PORTA.5 'I2C SDA for ext eeprom
' USB control pins
hi VAR PORTB.0 ' lm629 interrupt control pin
rdusb VAR PORTB.1 ' to give read clock to FTU chip
wrusb VAR PORTB.2 ' to give wite clock to FTU chip
datain VAR PORTB.4 ' to check input buffer of usb chip
dclock VAR PORTB.3 ' to give clock d flip-flop connected to portd
dataout VAR PORTB.5 ' to check usb chip output buffer
dataout=1
wrusb=1
dclock=1
rdusb=1
'driver and buffer cicuit control pins
inform VAR PORTD.0 ' controls the led4 on dlp card
csy VAR PORTD.1 ' chip select Y axis
rst VAR PORTD.2 ' LM629 hardware reset
direct VAR PORTD.3 ' controls the direction of data flow 0 LM-->PIC, 1 PIC-->LM
csz VAR PORTD.5 ' chip select z axis
csx VAR PORTD.6 ' chip select x axis
break VAR PORTD.7 ' breaks the motor motion
'MMC Connections
SCK VAR PORTE.0 ' Clock pin MMC pin 5
SO VAR PORTE.1 ' Data from MMC pin 7
SI VAR PORTE.2 ' Data to MMC pin 2
SS VAR PORTA.3 ' MMC Slave select pin 1
TRISA=%110000
TRISB.0= 1 ' TRIS register 0=OUTPUT,1=INPUT
TRISB.1= 0
TRISB.2= 0
TRISB.3= 0
TRISB.4= 1
TRISB.5= 1
TRISC=255
TRISD=0
PORTD=255
dclock=0
dclock=1
TRISE = 5

 126

'I2C Variables
ctl VAR BYTE 'EEPROM control code
edata VAR BYTE 'Data byte to be written
rd_addr VAR WORD
wr_addr VAR WORD

' General MMC Variables used
mmc_status VAR BYTE
mmc_status=0
addr VAR WORD
addr_H VAR WORD ' MMC Address is a 32 bit address, addr_h is bits 31-16
addr_L VAR WORD ' and addr_l is is bits 0-15
rdaddr_H VAR WORD ' read MMC Address is a 32 bit address, addr_h is bits 31-16
rdaddr_L VAR WORD
arg0 VAR BYTE ' args used
arg1 VAR BYTE
arg2 VAR BYTE
arg3 VAR BYTE
arg4 VAR BYTE
cmd VAR BYTE 'command var
crc VAR BYTE 'crc var
dat VAR BYTE 'data var
y VAR BYTE 'counter var
c VAR BYTE
idx VAR BYTE
res VAR BYTE 'response var
reswr VAR BYTE 'response w/r
res2 VAR WORD 'response var
hex_nibble VAR BYTE
erase_flag VAR BYTE
erase_flag = 0
limitaddr VAR WORD
last_addr VAR WORD 'index of sector and last data
load_ee VAR WORD 'number byte that will send
load_ee0 VAR load_ee.byte0
load_ee1 VAR load_ee.byte1
rest_data VAR BYTE
in_dat VAR BYTE 'Serial vars
chk VAR BYTE
cntr VAR BYTE
in_array VAR BYTE[64] '64 byte in coming array
sector0 VAR WORD 'first16-bit number of memory sectors used
sector00 VAR sector0.byte0
sector01 VAR sector0.byte1
sector1 VAR WORD 'second 16-bit number of memory sectors used
sector10 VAR sector1.byte0
sector11 VAR sector1.byte1
carry_flag VAR status.0
zero_flag VAR status.2
addr=$0000 'Used for eeprom etc
read_cntrl VAR BYTE
read_cntrl=0
j VAR BYTE ' reset control variable

 127

readusb VAR BYTE ' number of byte that will be read from usb
setd VAR BYTE
stop_flag VAR BYTE
bcount VAR BYTE 'blink count
bcount=1
command VAR BYTE
stat VAR BYTE
frusb VAR BYTE
frstop VAR BYTE
frstop=0
'motor position variables
rdrpw VAR WORD 'current motor position read from LM629
rdrp1 VAR RDRPW.BYTE0
rdrp2 VAR RDRPW.BYTE1
rdrp3 VAR BYTE
Xcurr VAR WORD ' keeps the current position of x
Ycurr VAR WORD
Zcurr VAR WORD
Xcurr = 0
Ycurr = 0
Zcurr = 0
hxread1 VAR BYTE ' high byte of next positions that motor will go
hxread0 VAR BYTE
Xread VAR WORD ' low byte of next positions that motor will go
Xread1 VAR xread.BYTE1
Xread0 VAR xread.BYTE0
hyread1 VAR BYTE
hyread0 VAR BYTE
yread VAR WORD
yread1 VAR yread.BYTE1
yread0 VAR yread.BYTE0
hzread1 VAR BYTE
hzread0 VAR BYTE
zread VAR WORD
zread1 VAR zread.BYTE1
zread0 VAR zread.BYTE0
posx VAR WORD ' absolute distances
posx1 VAR posx.BYTE1
posx0 VAR posx.BYTE0
hposx VAR BYTE
hposy VAR BYTE
posy VAR WORD
posy1 VAR posy.BYTE1
posy0 VAR posy.BYTE0
posz VAR WORD
posz1 VAR posz.BYTE1
posz0 VAR posz.BYTE0
hposz VAR BYTE
signx VAR BYTE ' sign of axis
signxcurr VAR BYTE
signxcurr=0
signy VAR BYTE
signycurr VAR BYTE

 128

signycurr=0
signz VAR BYTE
signzcurr VAR BYTE
signzcurr=0
'velocity and accelaration variables
hv VAR WORD
hv0 VAR hv.BYTE0
hv1 VAR hv.BYTE1
lvx VAR WORD
lvx1 VAR lvx.BYTE1
lvx0 VAR lvx.BYTE0
hvx VAR WORD
hvx1 VAR hvx.BYTE1
hvx0 VAR hvx.BYTE0
hvy VAR WORD
hvy1 VAR hvy.BYTE1
hvy0 VAR hvy.BYTE0
lvy VAR WORD
lvy1 VAR lvy.BYTE1
lvy0 VAR lvy.BYTE0
lvz VAR WORD
lvz1 VAR lvz.BYTE1
lvz0 VAR lvz.BYTE0
hvz VAR WORD
hvz1 VAR hvz.BYTE1
hvz0 VAR hvz.BYTE0
cv VAR WORD
cv0 VAR cv.BYTE0
cv1 VAR cv.BYTE1
acc VAR WORD
acc0 VAR acc.BYTE0
acc1 VAR acc.BYTE1
Yacc0 VAR accY.BYTE0
Yacc1 VAR accY.BYTE1
Xacc0 VAR accX.BYTE0
Xacc1 VAR accX.BYTE1
accY VAR WORD
accX VAR WORD
Zacc0 VAR accz.BYTE0
Zacc1 VAR accz.BYTE1
accz VAR WORD
acc=1 'acceleration constant
cv=7 ' speed constant
i VAR BYTE 'counter var
x VAR BYTE 'control var
usb_loop VAR BYTE
rest VAR BYTE
X=2
j=1
c=0
sector0=0
sector1=0
addr_H = $0000

 129

addr_L = $0200
rdaddr_H = $0000
rdaddr_L = $0000
rd_addr=0
limitaddr=504
'**********MMC PART OF THE FIRMWARE********
'//
'// 11-MMC INITIALIZATION in SPI mode //
'// 12-READ THE PREVIOUSLY SAVED DATA and Index //
'// 14-WRITE MMC //
'// 13-goto LM629 //
'//
MMC:
frstop=0
readusb=1
wr_addr =0
last_addr=65500
ctl=$A0
setd=0
IF datain=1 Then MMC 'check ftu inpu buffer if there is data or not
GoSub USBREAD
'**
'***** MMC INITIALIZATION in SPI mode ******
'**
IF in_array[0]=$11 Then
ss= 1
dat =$ff
cntr = 10
GoSub shiftout_dat
ss = 0
Pause 50
cmd = $40 'MMC Command 0
crc = $95
dat = cmd
ShiftOut SI, SCK, MSBFIrst,[dat]
dat = 0
cntr = 4
GoSub shiftout_dat
dat = crc
ShiftOut SI, SCK, MSBFIrst,[dat]
chk = 1
GoSub chk_res
ss = 1
Pause 50
ss = 0:
While res <> 0
ss = 1
dat = $ff
ShiftOut SI, SCK, MSBFIrst,[dat]
GoSub shiftin_res
ss = 0
dat = $41 'MMC Command 1
ShiftOut SI, SCK, MSBFIrst,[dat]

 130

dat = 0
cntr = 4
GoSub shiftout_dat
dat = $ff
GoSub shiftout2
GoSub shiftin_res
Wend
dat = $ff

'MMC now successfully initialized in SPI mode
addr_H = $0000'mset_blok length:
addr_L = $0200
cmd = $50 'Cmd16
crc = $ff
GoSub send_cmd
bcount = 2
GoSub BLINK
GoTo MMC
Else
'**
'****** Read MMC and index ****************
'**
IF in_array[0]=$12 Then
I2CRead sda,scl,ctl,last_addr,[sector11,sector10,sector01,sector00,load_ee1,load_ee0]
TRISD=0
PORTD=sector11
wrusb=0
wrusb=1
PORTD=sector10
wrusb=0
wrusb=1
PORTD=sector01
wrusb=0
wrusb=1
PORTD=sector00
wrusb=0
wrusb=1
PORTD=load_ee1
wrusb=0
wrusb=1
PORTD=load_ee0
wrusb=0
wrusb=1
READMMC:
ctl=$A2
ss = 1
arg4 = $ff
GoSub shiftout1
GoSub shiftin_res
ss = 0
arg0 = $51
arg1 = addr_H.BYTE1
arg2 = addr_H.BYTE0
arg3 = addr_L.BYTE1

 131

arg4 = addr_L.BYTE0
GoSub shiftout5
arg4 = $ff
GoSub shiftout1
GoSub shiftin_res
chk = 0
GoSub chk_res
chk = $FE
GoSub chk_res
 ' Read cmd successful
 ' Read the MMC data and save in eeprom
For wr_addr = 0 TO 511 ‘read 512 bytes can be any number
ShiftIn SO, SCK, MSBPRE, [dat]
'We now have a byte do something with it!
I2CWrite sda,scl,ctl,wr_addr,[dat] 'Write to eeprom from 0 to 511
Pause 10 'Required after a MMCread
Next wr_addr

GoSub shiftin_res
GoSub shiftin_res
GoSub mstatus 'Get read status
rd_addr=0
GoSub blink
IF read_cntrl=1 Then
read_cntrl=0
GoTo loop3
EndIF
Else
'***
'****** MMC WRITE ****************
'***
IF in_array[0]=$14 Then
readusb=2
GoSub USBREAD
load_ee0=in_array[1] ' how many byte will be loaded to eeprom
load_ee1=in_array[0]
idx=load_ee/64
readusb=64
rest_data=load_ee//64

IF idx=0 Then
idx=1
readusb=load_ee
rest=0
Else
rest=1
EndIF
i = 0
While i < idx
i=i+1
GoSub USBREAD
I2CWrite sda,scl,ctl,wr_addr,[STR in_array\64]
Pause 10

 132

wr_addr = wr_addr + 64
Wend
IF rest = 1 AND rest_data <> 0 Then
readusb=rest_data
GoSub USBREAD
I2CWrite sda,scl,ctl,wr_addr,[STR in_array\64]
Pause 10
wr_addr = wr_addr + rest_data
EndIF
PORTD=wr_addr.byte0
wrusb=0
wrusb=1
‘Write into I2C EEProm then write to MMC
IF c=0 Then
addr_H = $0000
addr_L = $0200
c=c+1
EndIF
ss = 1
arg4 = $ff
GoSub shiftout1
GoSub shiftin_res
ss = 0
arg0 = $58
arg1 = addr_H.BYTE1
arg2 = addr_H.BYTE0
arg3 = addr_L.BYTE1
arg4 = addr_L.BYTE0
GoSub shiftout5
arg4 = $ff
GoSub shiftout1
GoSub shiftin_res
chk = 0
GoSub chk_res

'Write command was a success
'File token tells the MMC data is to follow

arg4 = $FE
GoSub shiftout1
'MMC now ready to write data in blocks of 512 bytes assumes eeprom address in addr
For addr = 0 TO 511
I2CRead sda,scl,ctl,addr,[dat] 'Read from I2C ext eeprom
ShiftOut SI, SCK, MSBFIrst,[dat]
Next addr
dat=$ff
cntr = 2
GoSub shiftout_dat
GoSub shiftin_res
y=res & $0f
GoSub shiftin_res
While res = 0 'MMC is busy writing until response is not = 0
ShiftIn SO, SCK, MSBPRE, [res]
Wend
GoSub mstatus 'Get write status

 133

I2CWrite
sda,scl,ctl,last_addr,[addr_H.byte1,addr_H.byte0,addr_L.byte1,addr_L.byte0,load_ee1,load_ee0]
Pause 10
addr_L = addr_L + $0200
IF carry_flag = 1 Then
addr_H = addr_H + 1
EndIF
GoTo MMC
Else
'***
'****** GOTO LM629 PART ********
'***
IF in_array[0]=$13 Then
GoTo loop2
Else
GoTo MMC
EndIF
EndIF
EndIF
EndIF
'***************LM629 PART OF THE FIRMWARE***************
'///
'// 21-RESET LM629 //
'// 22-STOP MODULE //
'// 23-LOAD POSITIONS MANUALLY //
'// 24-UPDATE PID PARAMETERS //
'// 25-UPDATE VELOCITY AND ACCELARATION CONSTANTS //
'// 26-START READING MMC AND TRAJECTORY //
'// 27-GOTO STOP POINT //
'// 28-GOTO MMC PART //
'// 29-MOVE Z AXES //
'///
loop2:
IF setd=0 Then
TRISD=0
PORTD=255
GoSub CLOCK
setd=1
EndIF
LM629:
readusb=1
IF DATAIN=1 Then LM629
LOOP3:
'*****Trajectory complete module***********************
IF datain=0 Then INIT ' check if a control command is sentor not
Pause 1
IF HI= 0 Then loop3 ' check the trajectory is complete or not
IF DATAIN=0 Then
INIT:
readusb=1
GoSub USBREAD

 134

'**
'**** RESET LM629 *********
'**
IF in_array[0]=$21 Then
addr_H = $0000
addr_L = $0200
j=1
ctl= $A2
Xcurr = 0
Ycurr = 0
Zcurr = 0
signxcurr=0
signycurr=0
signzcurr=0
rd_addr=0
IF j=1 Then
CSX=0
CSY=1
CSZ=1
GoSub CLOCK
j= 2
Else
RESETY:
IF j=2 Then
j=3
CSX=1
CSY=0
CSZ=1
GoSub CLOCK
Else
RESETZ:
j=1
CSX=1
CSY=1
CSZ=0
GoSub CLOCK
EndIF
EndIF
GoSub HWRESET
X=1
GoSub CHECK
IF stat =196 OR stat =132 Then
GoTo GORST
Else
GoSub ERROR
EndIF
GORST:
command=29 'RSTI
GoSub WRCOMM
in_array[0] = 0
in_array[1] = 0
GoSub WWRD
X=1

 135

GoSub CHECK
IF stat = 192 OR stat= 128 Then
command = 28 'MSKI
GoSub WRCOMM
in_array[0]=0
in_array[1]=4
GoSub WWRD
Else
GoSub ERROR
EndIF
IF j=2 Then RESETY
IF j=3 Then RESETZ
bcount=3
GoSub BLINK
' Load PID parameters to all lm629/
CSY = 0
CSX = 0
CSZ = 0
GoSub CLOCK
command = 30 'LFIL
GoSub WRCOMM
in_array[0]=0
in_array[1]=15 ' set all PID parameters bit which indicate all of them will be loaded
GoSub WWRD
in_array[0]=1 'KP var
in_array[1]=0
GoSub WWRD
in_array[0]=0 'KI var
in_array[1]=0
GoSub WWRD
in_array[0]=0 'KD var
in_array[1]=0
GoSub WWRD
in_array[0]=0 'IL var
in_array[1]=0
GoSub WWRD
COMMAND= 4 'UDF
GoSub WRCOMM
GoTo LM629
Else
'**
'******* STOP MODULE ***************
'**
IF in_array[0]=$22 Then
CSX=0
CSY=0
CSZ=0
GoSub CLOCK
COMMAND= 31 'LTRJ
GoSub WRCOMM
in_array[0]=4 'set smoothly stop bit of tahectory complete word
in_array[1]=0
GoSub WWRD

 136

COMMAND= 1 'STT
GoSub WRCOMM
CHCK:
Pause 1
IF HI= 0 Then CHCK

'read positions
CSX=0
CSY=1
CSZ=1
GoSub CLOCK
GoSub RDRP
IF RDRP3=255 Then ' check the position of motors if it is on negative axis
signxcurr=1
Xcurr =65535-RDRPW
Else
signxcurr=0
Xcurr = RDRPW
EndIF
CSX=1
CSY=0
CSZ=1
GoSub CLOCK
GoSub RDRP
IF RDRP3=255 Then
signycurr=1
ycurr=65535-rdrpw
Else
signycurr=0
Ycurr= RDRPW
EndIF
CSX=1
CSY=1
CSZ=0
GoSub CLOCK
GoSub RDRP
IF RDRP3=255 Then
signzcurr=1
zcurr=65535- RDRPW
Else
signzcurr=0
zcurr= RDRPW
EndIF
CSX=0
CSY=0
CSZ=0
GoSub CLOCK
frstop=1 ' set stop flag
rd_addr=rd_addr-9 ' take read addres of I2C eeprom back
GoTo LM629
Else

 137

'***
'******** LOAD POSITION MANUALLY * ******
'***
IF in_array[0]=$23 Then
frusb=1
GoSub BLINK
readusb=9
GoSub USBREAD
signx= in_array[0] ' read 9 byte position
xread1=in_array[1]
xread0=in_array[2]
signy= in_array[3]
yread1=in_array[4]
yread0=in_array[5]
signz= in_array[6]
zread1=in_array[7]
zread0=in_array[8]
GoTo LTRJ2
Else
'**
'*********** UPDATE PID ************
'**
IF in_array[0]=$24 Then
GoSub USBREAD
IF in_array[0]=$0 Then 'enable all
CSY= 0
CSX= 0
CSZ= 0
Else
IF in_array[0]=$1 Then 'enable x
CSY= 1
CSX= 0
CSZ= 1
Else
IF in_array[0]=$2 Then 'enable y
CSY= 0
CSX= 1
CSZ= 1
Else
IF in_array[0]=$3 Then 'enable z
CSY= 1
CSX= 1
CSZ= 0
EndIF
EndIF
EndIF
EndIF
GoSub CLOCK
command = 30
GoSub WRCOMM 'LFIL
in_array[0]=0
in_array[1]=15
GoSub WWRD

 138

PauseUs 150
readusb=2
GoSub USBREAD
GoSub WWRD 'KP
GoSub USBREAD
GoSub WWRD 'KI
GoSub USBREAD
GoSub WWRD 'KD
GoSub USBREAD
GoSub WWRD 'IL
GoSub USBREAD
GoSub WRCOMM 'UDF
GoSub BLINK
GoTo LM629
Else
'***
'****** UPDATE VELOCITY AND ACC *****
'***
IF in_array[0]=$25 Then
readusb=2
GoSub USBREAD
cv1=in_array[0]
cv0=in_array[1]
GoSub USBREAD
acc1=in_array[0]
acc0=in_array[1]
GoSub BLINK
GoTo LM629
Else
'***
'******* START FROM MMC *********
'***
IF in_array[0]=$26 Then
frusb=0
GoTo LTRJ
Else
'***
'******** GO TO MMC part *****************
'***
IF in_array[0]=$28 Then
GoSub BLINK
GoTo MMC
Else
EndIF
EndIF
EndIF
EndIF
EndIF
EndIF
EndIF
GoTo LM629
EndIF

 139

'************ DATA PROCESSING PART *********
'///
'// READ POSITIONS FROM I2C EPROM //
'// LOAD TRAJECTORY PARAMETERS TO LM629 //
'///
LTRJ:
I2CRead sda,scl,ctl,rd_addr,[signx,xread1,xread0,signy,yread1,yread0, signz ,zread1, zread0]
rd_addr=rd_addr + 9
LTRJ2:
GoSub POSITION
IF signx = 0 Then
hxread1=0
hxread0=0
Else
hxread1=255
hxread0=255
xread=65535-xread
EndIF

IF signy=0 Then
hyread1=0
hyread0=0
Else
hyread1=255
hyread0=255
yread=65535-yread
EndIF

IF signz = 0 Then
hzread1=0
hzread0=0
Else
hzread1=255
hzread0=255
zread=65535-zread
EndIF
'calculation of velocity and accelaration according to absolute distance
lvx=cv*posx
hvx=(cv**posx) + (hposx*cv)
accx=acc*posx
lvy=cv*posy
hvy=(cv**posy) + (hposy*cv)
accy=acc*posy
lvz=cv*posz
hvz=(cv**posz) + (hposz*cv)
accz=acc*posz
CSX=0 ' load x servo controller
CSY=1
CSZ=1
GoSub CLOCK
command = 31
GoSub WRCOMM
in_array[0] = 0

 140

in_array[1]= 42
GoSub WWRD ' ACCELARATION
in_array[0]=0
in_array[1]=0
GoSub WWRD
in_array[0]=Xacc1
in_array[1]=Xacc0
GoSub WWRD ' VELOCITY
in_array[0]=hvX1
in_array[1]=hvX0
GoSub WWRD
in_array[0]=lvx1
in_array[1]=lvx0
GoSub WWRD 'POSITION
in_array[0]=Hxread1
in_array[1]=Hxread0
GoSub WWRD
in_array[0]=xread1
in_array[1]=xread0
GoSub WWRD
CSX=1
CSY=0 ' load y servo controller
CSZ=1
GoSub CLOCK
command = 31
GoSub WRCOMM
in_array[0] = 0
in_array[1]= 42
GoSub WWRD
in_array[0]=0
in_array[1]=0
GoSub WWRD ' ACCELARATION
in_array[0]=Yacc1
in_array[1]=Yacc0
GoSub WWRD
in_array[0]=hvY1
in_array[1]=hvY0
GoSub WWRD ' VELOCITY
in_array[0]=lvy1
in_array[1]=lvy0
GoSub WWRD
in_array[0]=Hyread1
in_array[1]=Hyread0
GoSub WWRD ' POSITION
in_array[0]=yread1
in_array[1]=yread0
GoSub WWRD
movez:
CSX=1
CSY=1
CSZ=0 ' load z servo controller
GoSub CLOCK
command = 31

 141

GoSub WRCOMM
in_array[0]= 0
in_array[1]= 42
GoSub WWRD
in_array[0]=0
in_array[1]=0
GoSub WWRD ' ACCELARATION
in_array[0]=Zacc1
in_array[1]=Zacc0
GoSub WWRD
in_array[0]=hvZ1
in_array[1]=hvZ0
GoSub WWRD ' VELOCITY
in_array[0]=lvZ1
in_array[1]=lvZ0
GoSub WWRD
in_array[0]=Hzread1
in_array[1]=Hzread0
GoSub WWRD ' POSITION
in_array[0]=zread1
in_array[1]=zread0
GoSub WWRD
BREAK = 0
' give start command to all servo controllers to provide synchronization
CSX=0
CSY=0
CSZ=0
GoSub CLOCK
command= 1
PauseUs 10
GoSub WRCOMM 'STT
command=29
PauseUs 10
GoSub WRCOMM 'RSTI
in_array[0] = 0
in_array[1] = 0
GoSub WWRD
PauseUs 10
command=28
PauseUs 10
GoSub WRCOMM 'MSKI
in_array[0] = 0
in_array[1] = 4
GoSub WWRD
IF frusb=1 Then
frusb=0
GoTo lm629
EndIF
' check the updated address
IF addr_H >= sector1 AND addr_L >= sector0 Then
limitaddr= load_ee
IF rd_addr >= limitaddr Then
PORTD=$cc

 142

wrusb=0
wrusb=1
GoTo MMC
EndIF
Else
IF rd_addr >= limitaddr Then
addr_L = addr_L + $0200
IF carry_flag = 1 Then
addr_H = addr_H + 1
EndIF
rd_addr=0
read_cntrl=1
GoTo READMMC
EndIF
EndIF
IF frstop <> 0 Then
frstop=0
GoTo LM629
EndIF
GoTo loop3
'**
'******* SUBPROCEDURES ************
'**
USBREAD :
TRISD= 255
For usb_loop=1 TO readusb
wfd:
IF datain = 1 Then wfd ' wait for data
rdusb=0
rdusb=1
in_array[usb_loop-1] = PORTD
PauseUs 3
Next
TRISD=0
Return
' ************** MMC subroutines********************

'Send a command to the mmc assumes CMD, addr_H and addr_L
SEND_CMD:
ss = 1
arg4 = $ff
GoSub shiftout1
GoSub shiftin_res
ss = 0
arg0 = cmd
arg1 = addr_H.BYTE1
arg2 = addr_H.BYTE0
arg3 = addr_L.BYTE1
arg4 = addr_L.BYTE0
GoSub shiftout5
Dat = $FF
cntr = 2
GoSub shiftout_dat
GoSub shiftin_res

 143

IF erase_flag = 1 Then Return
chk = 0
GoSub chk_res
Return
shiftout_dat:
For y = 1 TO cntr
ShiftOut SI, SCK, MSBFIrst,[dat]
Next y
Return

'Shift out 5 (ARG0-ARG4)
shiftout5:
ShiftOut SI, SCK, MSBFIrst,[arg0]
shiftout4:
ShiftOut SI, SCK, MSBFIrst,[arg1]
shiftout3:
ShiftOut SI, SCK, MSBFIrst,[arg2]
shiftout2:
ShiftOut SI, SCK, MSBFIrst,[arg3]
shiftout1:
ShiftOut SI, SCK, MSBFIrst,[arg4]
Return

shiftin_res:
ShiftIn SO, SCK, MSBPRE, [res]
Return

chk_res:
While res <> chk
ShiftIn SO, SCK, MSBPRE, [res]
Wend
Return
'MMC status

mstatus:
ss = 1
dat = $ff
ShiftOut SI, SCK, MSBFIrst,[dat]
GoSub shiftin_res

ss = 0
arg4 = $4D
GoSub shiftout1
dat = 0
cntr = 4
GoSub shiftout_dat
arg4 = $ff
GoSub shiftout1
ShiftIn SO, SCK, MSBPRE, [res2\16]
mmc_status = res2
Return

 144

' ******** LM629 subroutines *****************
CHECK:
TRISC = 255
direct = 0
dclock=0
dclock=1
PauseUs 300
ps = 0
rd = 0
PauseUs 3
stat = PORTC
rd =1
ps =1
IF x=1 Then
x=2
Return
EndIF
IF stat.0 = 1 Then CHECK
Return

HWRESET :
direct = 0
rst = 0
GoSub CLOCK
rst = 1
dclock=0
dclock=1
PauseUs 1500
Return

WRCOMM:
TRISC = 0
direct = 1
GoSub CLOCK
ps = 0
wr = 0
PORTC =command
PauseUs 25
wr = 1
ps = 1
PauseUs 15
GoSub CHECK
Return

WWRD :
direct =1
GoSub CLOCK
ps=0
TRISC = 0
PauseUs 5
ps = 1
PORTC = in_array[0]
wr = 0

 145

PauseUs 5
wr= 1
ps= 0
PauseUs 3
ps=1
PORTC = in_array[1]
wr =0
PauseUs 5
wr= 1
ps= 0
PauseUs 15
GoSub CHECK
Return

POSITION:
IF signx=0 AND signxcurr=0 Then
hposx=0
IF xcurr > xread Then
posx = xcurr - xread
Else
IF Xcurr < xread Then
posx = xread - xcurr
Else
posx=1
xread=xread+1
EndIF
EndIF
EndIF

IF signx=1 AND signxcurr=1 Then
hposx=0
IF xcurr > xread Then
posx = xcurr - xread
Else
IF Xcurr < xread Then
posx = xread - Xcurr
Else
posx=1
xread=xread+1
EndIF
EndIF
EndIF

IF signx <> signxcurr Then
posx=xread+xcurr
IF Xcurr < posx Then
hposx =0
Else
hposx=1
EndIF
EndIF

IF signy=0 AND signycurr=0 Then

 146

hposy=0
IF ycurr > yread Then
posy = ycurr - yread
Else
IF Ycurr < yread Then
posy = yread - ycurr
Else
posy=1
yread=yread+1
EndIF
EndIF
EndIF

IF signy=1 AND signycurr=1 Then
hposy=0
IF ycurr > yread Then
posy = ycurr - yread
Else
IF Ycurr < yread Then
posy = yread - Ycurr
Else
posy=1
yread=yread+1
EndIF
EndIF
EndIF

IF signy <> signycurr Then
posy=yread+Ycurr
IF ycurr < posy Then
hposy =0
Else
hposy=1
EndIF
EndIF

IF signz=0 AND signzcurr=0 Then
hposz=0
IF zcurr > zread Then
posz = zcurr - zread
Else
IF zcurr < zread Then
posz = zread - zcurr
Else
posz=1
zread=zread+1
EndIF
EndIF
EndIF

IF signz=1 AND signzcurr=1 Then
hposz=0
IF zcurr > zread Then

 147

posz = zcurr - zread
Else
IF zcurr < zread Then
posz = zread - zcurr
Else
posz=1
zread=zread+1
EndIF
EndIF
EndIF

IF signz <> signzcurr Then
posz=zread+zcurr
IF zcurr < posz Then
hposz =0
Else
hposz=1
EndIF
EndIF

signxcurr=signx
signycurr=signy
signzcurr=signz
Xcurr=xread
Ycurr=yread
zcurr=zread
Return

ERROR:
IF DATAIN=1 Then
inform=0
GoSub CLOCK
Pause 220
inform=1
GoSub CLOCK
Pause 220
GoTo ERROR
Else
GoTo INIT
EndIF
GoTo ERROR
Return

BLINK:
For i=1 TO bcount
inform=0
GoSub CLOCK
Pause 480
inform=1
GoSub CLOCK
Pause 480
Next i

 148

bcount=1
Return

RDRP:
command = 10
GoSub WRCOMM
direct = 0
GoSub CLOCK
TRISC = 255
PauseUs 10
ps = 0
PauseUs 3
ps = 1
rd = 0
PauseUs 15
'RDRP4 = PORTC
rd =1
ps =0
PauseUs 10
ps = 1
rd = 0
PauseUs 25
RDRP3 = PORTC
rd =1
ps =0
PauseUs 5
ps = 1
rd = 0
PauseUs 25
RDRP2 = PORTC
rd =1
ps =0
PauseUs 5
ps = 1
rd = 0
PauseUs 25
RDRP1 = PORTC
rd =1
ps =0
Return

CLOCK:
dclock=0
dclock=1
PauseUs 100
Return
End

 149

APPENDIX H: SPI Command Set

Table H-1: Command Classes in SPI Mode

Command Description

Table H-2 provides a detailed description of the SPI Mode commands. . A “yes” in the SPI

Mode column indicates that the command is supported in SPI Mode.

With these restrictions, the command class description in the CSD is still valid. If a command

does not require an argument, the value of this field should be set to zero. Reserved SPI

commands are also reserved in MultiMediaCard mode. The binary code of a command is

defined by the mnemonic symbol. As an example, the content of the CMD Index field for

CMD0 is (binary) “000000” and for CMD39 is (binary) “100111”.

 150

Table H-2: SPI Bus command description

 151

Table H-2: SPI Bus command description (continued)

 152

Table H-2: SPI Bus command description (continued)

 153

	TOC.pdf
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS

	TEZ.pdf
	INTRODUCTION
	Sphere Gaps
	Computer Numerical Control (CNC) Application
	CNC Machine Tools
	Control Systems
	Open-Loop Control
	Closed-Loop Control
	Position Control Systems
	Position Transducers

	CONTROL MOTOR TYPES
	Step Motors
	Drive Circuits
	Flux Direction Control
	Current Control

	Torque-Speed Characteristics

	Servo Motors
	DC Servo Motors
	Drive circuit
	Speed Control
	Torque-Speed Characteristics

	AC Servo Motor
	Construction and Operating Principle
	Torque Control
	Speed Control
	Torque- Speed Characteristic

	MOTOR CONTROL HARDWARE
	CHAPTER 4
	MOTOR CONTROL SOFTWARE
	CHAPTER 5
	CONCLUSION
	APPENDIX A: MACHINE CODES

	Position Control System1.pdf
	Position Control Systems
	Position Transducers

