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ABSTRACT

A PHYSICAL MODEL FOR DIMENSIONAL REDUCTION AND ITS
EFFECTS ON THE OBSERVABLE PARAMETERS OF THE UNIVERSE

KARACA, KORAY
Ph.D., Department of Physics

Supervisor: Prof. Dr. Selcuk Bayin

June 2005, 66 pages.

In this thesis, assuming that higher spatial dimensions existed only during the infla-
tionary prematter phases of the universe, we construct a (1 + D)-dimensional (D > 3),
nonsingular, homogeneous and isotropic Friedmann model for dimensional reduction.
In this model, dimensional reduction occurs in the form of a phase transition that
follows from a purely thermodynamical consideration that the universe heats up dur-
ing the inflationary prematter phases. When the temperature reaches its Planck value
Ty, p, which is taken as the maximum attainable physical temperature, the phase of the
universe changes from one prematter era with D space dimensions to another prematter
era with (D — 1) space dimensions where T}, p is higher. In this way, inflation gets an-
other chance to continue in the lower dimension and the reduction process stops when
we reach D = 3 ordinary space dimensions. As a specific model, we investigate the
evolution of a (1 + 4)-dimensional universe and see that dimensional reduction occurs
when a critical length parameter /4 3 reaches the Planck length of the lower dimension.

Although the predictions of our model for the cosmological parameters are beyond the

v



ranges accepted by recent measurements for closed geometry, for a broad range of ini-

tial conditions they are within the acceptable ranges for open geometry.

Keywords: Dimensional reduction, inflation, phase transition.



Oz

BOYUTSAL INDIRGENME VE EVRENIN GOZLEMSEL
PARAMETRELERINE ETKISI ICIN FIZIKSEL BIR MODEL

KARACA, KORAY
Doktora, Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Selcuk Bayin

Haziran 2005, 66 sayfa.

Bu tezde yiiksek boyutlu uzaylarin sadece evrenin gigtigi madde-oOncesi adi verilen
evrelerinde varoldugunu kabul ederek boyutsal indirgenme igin (1+D)-boyutlu (D > 3),
tekil olmayan, homojen ve izotropik bir Friedmann evren modeli kuruyoruz. Bu mod-
elde boyutsal indirgenme 1sinin evrenin gigtigi madde-oncesi evreler boyunca arttig
diiguncesinden kaynaklanan bir faz donugiimi seklinde meydana geliyor. Sicaklik erigile-
bilecek en yiiksek sicaklik olan Planck sicakligina (T p) ulastiginda evren D boyuttan
(D — 1) boyutlu ve ayni zamanda Planck sicakhiginin da daha yiiksek oldugu baska
bir madde-oncesi evreye gecis yapiyor. Bu yolla sisme diigiik boyutta da devam ede-
bilme olanagini elde ediyor ve indirgenme siireci D = 3 olan olagan uzay boyutlarina
ulagildiginda sona eriyor. Ozel bir model olarak (1 + 4)-boyutlu bir evrenin geligimini
inceliyoruz ve boyutsal indirgenmenin uzunluk parametresinin (l43) dusiik boyutun
Planck uzunluguna yaklagtiginda meydana geldigini goriiyoruz. Kapali geometri igin
modelimizin 6ngoriileri son gozlemsel veriler 151g1nda kabul goren araliklarin diginda

olmasina kargin, genis bir ilk baglangic durumu araliginda agik bir geometri i¢in kabul
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edilebilir araliklardadar.

Anahtar Kelimeler: Boyutsal indirgenme, gisme, faz dontstumi.
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CHAPTER 1

INTRODUCTION

Although the standard model of hot big bang cosmology has been successful in
explaining the homogeneous expansion of the universe and the 2.73 K cosmic
microwave background radiation, it has certain difficulties stemming from the
puzzling initial conditions. These difficulties include the well known singular-
ity, flatness and horizon problems (see e.g., Wald 1984, pp. 91-117 and Kolb &
Turner 1990, pp. 261-269). In the standard model, flatness problem arises from
the extreme fine tuning of the initial values of the energy density p and Hubble
parameter H so that p is close to the critical value p., (= 3H%¢*/87G) to an
accuracy of one part in 1075, This kind of fine tuning is necessary to produce
a universe that survives ~ 10'° years which is an age prediction that complies
with observational results. The horizon problem originates from the homogeneity
assumption of the early universe, which consists of at least ~ 10%% separate re-
gions which are causally disconnected. On the other hand, the problem of initial
singularity weakens the model in the sense that it causes infinities in the initial

values of the physical quantities such as density, pressure and temperature.



Inflation mechanism was first suggested as a rescue from the horizon and the
flatness problems by incorporating into the standard model an initial phase of
accelerated expansion called the “inflationary epoch” (Guth 1981, Linde 1982
and Albrecht & Steinhardt 1982). During this epoch, inflation is provided by the
vacuum dominance of the universe which is filled by an unusual form of matter
having a positive energy density and negative pressure. In this context, the idea of
starting the evolution of the universe from the Planck density p,; (= 5.1581-10%
gr/em?3) (Gliner 1970, Markov 1982 and Rosen 1985) was considered together with
the idea of inflation. During the past two decades, several cosmological models
aiming the singularity-free description of the universe were proposed (Israelit &
Rosen 1989, Blome & Priester 1991, Starkovich & Cooperstock 1992, Bayin et al.

1994, Rebhan 2000 and Karaca & Bayin 2002).

In the paper by Israelit & Rosen (1989), the universe was modelled as a closed
Friedmann-Robertson-Walker spacetime which starts with inflation from a cold
nonsingular Planck-state characterized by a density equal to p, and a vacuum
equation of state P = —p. Since the matter filling the universe during the
inflationary phase would be under extreme conditions, and thus it would behave
very differently from the ordinary matter, it is called “prematter” to distinguish it
from the ordinary matter. After the period of inflation, there is a transition period
into a radiation dominated era. Once the universe enters into the radiation era,

it behaves as predicted by the standard cosmological models. Furthermore, all



different eras and transition periods between these eras are governed by suitably
chosen general equations of state which reduce under appropriate conditions to

that of the desired era.

Few years later, Blome & Priester (1991) constructed a closed model according
to which the universe starts contracting from an infinite size towards a minimum
radius, which is larger than Planck length [, (= 1.6160 - 1073¢m), and then
re-expands. According to this bouncing model, during the contraction phase
the universe is in a quantum vacuum state and after attaining a minimum size,
it experiences a phase transition into the radiation dominated period where its
evolution is a Friedmann-Lemaitre evolution as in the big bang models of the

universe.

A field theoretical description of the evolution of a singularity-free cosmo-
logical model was given by Starkovich & Cooperstock (1992) who proposed a
cosmological field theory to describe the evolution of the universe by means of a
single scalar field which is minimally coupled to the Ricci curvature, and which de-
scribes all the phases that the universe undergoes. The cosmological model built
upon the consideration of this field theory describes an oscillating singularity-free
closed universe in which transitions between different eras (prematter, radiation
and matter) result from thermodynamically imposed boundary conditions rather
than a finely tuned mechanism. In this oscillating singularity-free closed universe

model, the universe initially is in a “vacuum-like” state described by an equation



3 and inflation arises due to

of state of the form P = (v — 1)p, where v =~ 10~
this “vacuum-like” characteristic of the equation of state. During the inflationary
phase, due to the unusual characteristics of the equation of state, temperature
rises although the universe expands. Inflation ends when the temperature reaches

the Planck temperature Tp; (= 1.4170 - 103 K) which is taken as the maximum

attainable temperature.

In a paper by Bayin et al (1994), a closed singularity-free cosmological model
was built upon the ideas presented in the paper by Starkovich & Cooperstock
(1992). Furthermore, in this work inflation is driven by a scalar field which is
conformally coupled to the Ricci curvature and the scalar field potential, which
is responsible for the vacuum energy, was obtained from the equation of state in-
stead of being assumed a priori. The approach developed by Bayin et al. (1994)
was applied to open geometry by Karaca & Baymn (2002) and it was shown that
a singularity-free cosmological model is realistically possible. This model starts
with an initial expansion rate, i.e., @ # 0, because the initially static condition
(@ = 0) used in the closed universe models can no longer be used in the open
universe case. This gives a two-parameter universe model in which one of the pa-
rameters determines the strength of the initial vacuum dominance of the universe,

while the other corresponds to its initial expansion rate.

Recently, a “soft bang” model of the universe instead of “big bang” was pro-

posed by Rebhan (2000). According to this model, the universe is initially in a



static state with a closed geometry and devoid of any singularity. Its expansion is
triggered by an instability and is initially quite slow but later reaches a rate of a
typical inflationary universe model that starts from a big bang. Then the universe

is carried to the usual Friedmann-Lemaitre evolution by a phase transition.

Higher dimensions played an important role in the search for a unified de-
scription of the known fundamental interactions of nature (strong, weak, electro-
magnetic and gravitational interactions) and a big industry has been generated
for several decades by the works aiming a unified description of nature which
requires theories with additional space dimensions such as Kaluza-Klein, eleven-
dimensional supergravity and ten-dimensional superstring theories. We do not
know whether we, human beings, possess the capacity of having the access to
higher dimensions. But, if theories with additional space dimensions exist, then
our universe would probably be in their low-energy limit. Thus, the above men-
tioned theories are expected to make predictions which comply with observations.
Unfortunately, so far none of these theories have been successful in this sense. Al-
though an acceptable physical mechanism necessary to explain how one could go
from these theories to our familiar low-energy spacetime cosmology is still lack-
ing, it is generally believed that such processes could take place in the form of
compactification as in Kaluza-Klein theories (see e.g. Kolb & Turner 1990, Over-
duin & Wesson 1997), where the evolution of the extra dimensions is considered

different from that of today’s observed ones. In this scenario, extra dimensions



somehow contract to a size at the order of /,;, while the others continue expanding.

From the fact that we perceive the world to have three spatial dimensions,
the discussions about the existence of higher dimensions become meaningful at
sufficiently small length scales and the existence of higher dimensions is generally
correlated with the very early phases of the universe where we reach very small
length scales (~ [,;) at which it is believed that higher spatial dimensions become
resolvable and come onto the same footing as the standard ones. As mentioned
earlier, inflation was originally proposed to solve the long standing problems of
modern cosmology such as flatness and horizon. But, what forces us to consider
inflation in the same context with higher dimensions is the scale (Planck scale)

at which it starts.

In this thesis, we explore the cosmological consequences of the possibility that
the universe once had more than three space dimensions during the prematter
phase and study how it may have evolved into the present three dimensional state.
Reduction of dimensions could take place as in Kaluza-Klein theories (Kolb &
Turner 1990), where the extra dimensions contract to Planck size homogeneously

and isotropically, while the observed three dimensions expand.

The remainder of this thesis is organized as follows. In Chapter II, we discuss
the laws of physics in higher dimensions and write the corresponding Planck scale.
In Chapter III, we present our model together with its dynamical equations and

solve them analytically under the initial conditions inspired by Gliner-Markov



ideas as in the previous papers (Starkovich & Cooperstock 1992, Baymn et al.
1994, Karaca & Bayin 2002). In Chapter IV, we present a specific dimensional
reduction scenario from D = 4 to D = 3 space dimensions for closed and open
geometries, respectively. Finally, Chapter V contains a summary and discussion

of our main results.



CHAPTER 2

PHYSICS IN HIGHER DIMENSIONS

2.1 Laws of Nature and Fundamental Constants

Since we have no direct experience of a higher dimensional world, we can only
guess how the laws of nature might have looked like in higher dimensions by
expressing the current laws of nature in D dimensions. In this way, we could gain
some insight about how a D-dimensional universe might have looked like, and if
it existed, how it may have evolved into its present state. In this context, we are
primarily interested in expressing the Einstein’s gravitational field equations in D
dimensions. Effects of other interactions are naturally included in the equations

of state that we use.

In the study of a D-dimensional universe even if we could extend the current
laws of nature to D dimensions, it is still not certain that the current constants of
nature, namely the speed of light ¢, Newton’s constant of gravitation GG, Planck
constant (divided by 27 ) i and Boltzmann’s constant &, will remain the same.
Hence, our next task is to decide upon the numerical values of the natural con-

stants to be used in D dimensions.



In quantum mechanics, i represents our inability of measuring the momen-
tum p and position x of a particle simultaneously with complete precision. In
D dimensions, assuming that quantum properties of matter are independent of

direction, uncertainty for each dimension is given as

Uncertainty for D dimensions can then be written as
A.{ElAZEQ ..... AJ?DAplApQ ..... ApD 2 (hD/2)D . (22)

We now isolate the contribution of the “disappearing” dimension and write Eq.

(2.2) as

(h/2)”

7(Ax1Ap1)' (2.3)

Before dimensional reduction, one could say that the existence of dimensions
greater than D are excluded a priori. After dimensional reduction we expect the
reduced dimensions to be evacuated, however they may continue to exist at the

Planck scale. Hence, we could take
A.TlApl ~ hD, (24)
which converts Eq. (2.3) into

Azy... AzpAp,....App > (hp/2)° (2.5)



as the uncertainty relation for the remaining (D — 1)-dimensional space. In the
light of the foregoing discussion, we argue that dimensional reduction does not
affect the value of hp and take it as a constant which is independent of D and
set hp = i = 1.0546 x 10727 cm?gr/ sec.

In (1 + 3)-dimensional space-time, ¢ represents the speed of light in vacuum
and its significance lies in the fact that in special theory of relativity it defines an
upper limit to the speed of propagation of causal effects. In (1 4+ D)-dimensional

Minkowski space-time, line element is given as

ds® = c3dt* — d3, (2.6)

where d&p is the proper distance in D dimensions. Speed of light could in prin-
ciple be measured by bouncing light between two points in space with a proper
distance Ad'p, and by measuring the transit time At. Then the speed of light cp
is obtained from the ratio (cp =) ddp/dt. From this we conclude that as long as
the proper distance between the selected points remains the same and the speed
of light is isotropic, we could take cp as a constant independent of D and use
cp = ¢ = 2.9979 x 10'%m/ sec for the speed of light in vacuum for all D.

In Newton’s theory of gravitation, the strength of the gravitational force be-
tween two masses m; and my is proportional to the Newton’s constant of gravi-
tation GG, whose numerical value is equal to 6.6720 x 1078 ¢m?/gr sec® . Assuming

that Newton’s gravitational field equation holds also in D dimensions, we write

10



ﬁD - g'D = _ADGDPD- (27)

Here, gp is the gravitational field vector representing the gravitational force per
unit mass, pp is the mass density, Vp is the divergence operator in D dimensions
and Ap is the solid angle subtended by a sphere in a D-dimensional space. In-
tegrating both sides of Eq. (2.7) in a D-dimensional space and applying Gauss’s

divergence theorem, we write the force law between two masses m; and ms as

FD = —Gp%ér. (28)
"D

As can be seen from Eq. (2.8), the force law goes as 1/r”~'. For example, if we
set D = 3, which corresponds to the current number of space dimensions, the
force law goes as 1/r? as it should be. We can now relate Gp to the acceleration

of a test mass m; and its separation from another mass my as

D-1

p
2.9
L 29)

&7y

Gp =~

where 7'p represents the radius vector connecting my to msy in D dimensions. We
immediately notice that Gp has a dimension that depends on D, i.e., [Gp] =
emP /grsec?. Assuming that the equivalence principle is also valid in D dimen-
sions, we argue that the acceleration of the test masses are independent of their
masses. If we take the ratio of Eq. (2.9) for two different test masses with the
same distance r, we see that Gp should be treated as a constant in a given di-

mension. However, neither Eq. (2.7) nor Eq. (2.9) can guarantee that its value

11



will remain the same in a universe with a different D. Later, we will consider
different numerical values for Gp in our calculations and by comparing our nu-
merical results with observational data we will argue in favor of an expression
that relates Gp in different dimensions.

Finally, in classical statistical mechanics, equipartition theorem asserts that
the mean value of each independent quadratic term in the Hamiltonian is equal
to %kT. Provided that the laws of thermodynamics do not change with D, we
argue that each space dimension will bring a new quadratic degree of freedom to
the Hamiltonian and take k£ = 1.3807 x10~'%erg/K as the Boltzmann constant
for all D.

The foregoing discussion makes it clear that the value of G' as a fundamental
constant of nature is not as firm as that of ¢, & and k. Now, we are ready to write

the Planck scale applicable to (1 + D)-dimensional space-time.

2.2 Planck Quantities in D dimensions

The traditionally admitted view among cosmologists is to start the evolution of
the universe from the Planck scale which is formed by the fundamental constants
of nature in ordinary four dimensional space-time and which represents the scale
of extreme physical quantities such as length, time, density and temperature. In

ordinary (1 + 3)-dimensional space-time, Planck scale quantities are given as

12



Planck length = — = 1.6160 - 10~33¢m,
c
Gh
Planck time tty =\ — = 5.3907 - 10™*sec,
C
he 5
Planck mass P My = Yel = 2.1768 - 10 °gr,
&

Planck density = 5.1584 - 10%gr /cm?,

e
hed 1

Planck temperature : T),; = P 1.4170 - 102 K.

5]

The fact that the force law for gravitational field depends on D, affects the

definitions of various Planck quantities which can now be given as

1
Gph\ -1
Planck length tpp = ( [3) ) ;
c
cD+2 D
Planck ti “tpp =
anck time pl,D (Gph> .
{D—2pA-D o1
Planck mass S Mypp = (7c> )
Gp
A+2D Dot
Planck density D Ppl.D = (7) )
D hQGg—}—l
pD-2,D+2\ BT
Planck temperature : T p = | ———— —.
) GD k

Naturally, numerical values of these quantities will depend on the model
adapted for the D dependence of Gp and the D itself. In order to get an idea
about how the various Planck quantities change with D, we take the numeri-
cal value of Gp to be the same as that of G35 and present our results in Table

2.1. From this table it is striking to note that as the number of dimensions in-

13



creases Planck length and Planck time increase while the other Planck quantities

decrease.

Table 2.1: Various Planck Quantities for Gp = 6.6720 x 108 em? /gr sec?.

D 3 4 5

L.p(cm) 1.6160 - 10~ | 1.4170 - 10~%* | 4.0200 - 10~**
My p(gr) 2.1768-107° | 2.5545- 10716 | 8.7508 - 10722
tp1,p(sec) 5.3905 - 10™* | 4.5935 - 1033 | 1.3409 - 1027
pp.p(gr/emP) | 5.1581-10% | 7.1031-10™ | 8.3355 - 10%
To,n(K) 1.4170-10%2 | 1.6628-10%! | 5.6962 - 10

2.3 Adiabatic and Isothermal Processes in D Dimensions

In a D dimensional universe we write the first law of thermodynamics as

dQp = dUp + PpdVp, (2.10)

where Up is the internal energy of the system, and d@)p and PpdVp represent
the heat exchanged and the work done by the system on the environment, respec-
tively. For the cosmological models we use the so-called “gamma-law” equation

of state

Pp = (yp —1) pp, (2.11)

which covers the entire range of basic equations of state corresponding to different

eras in the history of the universe. Here, vp is a dimensionless constant parameter,

14



and Pp and pp represent the pressure and the energy density in the universe,
respectively. For homogeneous and isotropic models we can now write the first

law as
dQ = d(ppVp) + (7o — 1) ppdVp. (2.12)
Integrating Eq. (2.12) for adiabatic processes where d@ = 0, we get
ppVpP =cip, PpVp” = cop, (2.13)

where ¢; p and c; p are integration constants which have units that depend on
the space dimensions of the universe. We now combine the first and second laws

of thermodynamics to give
TdSp = dUp + PpdVp. (2.14)
Using
ASp(V, T) = 7ld(ppVo) + PodVi], (2.15)

for homogeneous and isotropic models, we get from Eq. (2.15)

v, T lpp(T) + Pp(T)], (2.16)
8SD(VD,T) . VD apD(T)
— a7  — T or (2.17)
Using the integrability condition of Eq. (2.15):
0 (0Sp\ 0 [(0Sp
oTp <6VD) —OVp (aTD> ’ (2.18)

15



we obtain

dPp  pp+ Pp
ar T

(2.19)
Substituting the equation of state given in Eq. (2.11) into Eq. (2.19), we get
)
PDTI_'VD = C3,D, (220)

which is also true for adiabatic processes. Here, c3 p stands for a constant of
integration. Using Eq. (2.15) and the integrability condition given in Eq. (2.19),
we could now obtain, aside from an additive constant, a general expression for

the entropy of the universe as

S (Vo T) = % (P + pp) . (2.21)

This expression is valid for both isothermal and isentropic processes. Using the

equation of state given in Eq. (2.11), it is now possible to write the entropy as

v,
S(Vp,T) = D;“’ oD, (2.22)

or by using Eqgs. (2.11) and (2.20) in the following form:

YD
YD-1

SD = VD TEC&D. (223)

As in the standard model of the universe, we assume that the expansion of the
universe is adiabatic in all eras. Then, the conservation of energy can be expressed

as

— (ppVp) = —Pp—~. (2.24)

16



With the help of Eqgs. (2.19) and (2.24), it is possible to express the conservation

of entropy as

d
S0 =0, (2.25)

where Sp is given in Eq. (2.21). For isentropic processes in D dimensions,

S = constant and from Eq. (2.23) we get
Dol
a”T -1 = constant, (2.26)

where a represents the scale factor of the universe. For instance, for D = 3 and

isotropic radiation, yp = 3 = 4/3, we get
a®T? = constant. (2.27)

Thus, as the universe expands adiabatically temperature of the radiation de-
creases. This is in contrast to what happens during the prematter era, where the

universe heats up due to the fact that (yp — 1) is a negative number.

2.4 Blackbody Formula for the Massless Scalar Field

Finally, for later use we derive the general form of the energy density of ho-
mogeneous massless scalar field with a thermal spectrum in D dimensions. This

energy can be written as

up = Yp = / h:.:gi(w)dw, (2.28)
VD 0 (

err — 1)

17



where

glw) = 22 (2.29)

represents the total number of effectively massless degrees of freedom. Integrating

Eq. (2.28), we obtain

Ap D+1
Up = (ZWCH)DF(D + 1)C(D + 1)(kT) , (2.30)

where I'(D+1) and {(D+1) are gamma and Riemann zeta functions, respectively.
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CHAPTER 3

DESCRIPTION OF THE COSMOLOGICAL MODEL

In our model, the universe starts its journey as a D (> 3) dimensional Friedmann
model (D denotes the number of space dimensions) with a density equal to the
Planck density of the corresponding dimension. Existence of higher dimensions
and their reduction to ordinary dimensions is assumed to take place during the in-
flationary prematter phases of the universe. Evolution of the universe starts with
a period of exponentially rapid expansion called inflationary prematter phase,
which is characterized by a “vacuum-like” equation of state Pp =~ —pp. Here,
we exclude the case Pp = —pp because it gives rise to eternal inflation. It is to
be noted from Eq.(2.26) that due to the unusual characteristics of the equation
of state that we adopt (Lima & Maia 1995), temperature increases while the
universe expands isentropically. This expansion continues until the maximum
allowed temperature, i.e., the Planck temperature (7}, p) of that dimension is
reached. At this point, we postulate that the universe undergoes a phase transi-
tion to a lower dimension where the Planck temperature is higher. In this way,

the universe finds more room for further inflation. This process continues un-
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til we reach D = 3, which is the current number of space dimensions. At this
point, either the last reduction may carry the universe directly into the standard
radiation era where 7, = 4/3 or the prematter era may continue one more time
before the radiation era begins. After the radiation era, the universe is eventually
carried to the era of matter dominance where v3 = 1. In what follows, we con-
sider the second alternative in which the prematter era continues also in ordinary

dimensions.

3.1 Field Equations

We consider homogeneous and isotropic (1+D)-dimensional space-times where

the metric is given as
ds* = dt? — a3 (t)do?. (3.1)

Here, ap(t) represents the scale factor of the universe, ¢ is the comoving time and

k is the curvature parameter, while do? is given as

doy = dx* + FZ(x)[d0} + sin® 0,d05 + ..... + sin” 0, sin® b,..... sin? Op_odb?,_,],
(3.2)
where
siny if k=+1, 0< x <m,

Fr(x) =4 yv if k=0, 0 < x < o0, (3:3)

sinhyif k=—-1, 0 < x < o0,
\
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and the independent variables are in the following ranges: 0 < 6, < 7, 0 <
Op_1<2m,n=1,2,....,D—2.
We also consider that the universe is filled with a perfect fluid whose energy-

momentum tensor is given as

T = (p+ P)uyu, — Py, (3.4)

where u,, is the four-velocity of comoving observers and it has the following non-

vanishing components:

™o=pp, T =T?,=..=TP,=—"Pp. (3.5)

Using these in Einstein’s gravitational field equations written in (1+D)-dimensional

space-time:
1 ADGD
RIJV - §g'w/R = —QTTMV, (36)
we get
D(D-1) |(ap\® ApGp
— | = k|l =2 3.7
o [() ¥ 222 o, (37)
7 D-1)(D-2) |(ap\’ A
(1—D)< oD )—( “2 ) [(“—D> L k| =220 p  (3g)
cHap 2a7, Cp )

where the subscript D denotes the value of that quantity in D dimensions, Ap
is the solid angle subtended by a sphere in a D dimensional space (A3 = 4,

Ay = 272, A5 = %, ...) and a dot denotes differentiation with respect to the
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cosmic time t. Using the equation of state in the form Pp = (yp — 1) pp and
combining Egs. (3.7) and (3.8) we find an equation involving only the scale

factor ap(t):

. .2
I 4 2 (%—1) (“D;rk> = 0. (3.9)

ap
3.2 Differential Equations for the Scale Factor

The evolution of the scale factor during different eras of the universe could be
obtained by solving Eq. (3.9) for a given 7p. In order to solve this equation for

any 7yp, we introduce conformal time 7 defined through the following relation:
cdt = ap(n)dn. (3.10)

Under this transformation, Eq. (3.9) takes the following form:

" D 1\ 2 D
% , (Ep o) (%) (0D 1)k —o. (3.11)
ap 2 ap 2

Here, a prime denotes differentiation with respect to the conformal time. If we

define a new dependent variable given as

_ap dlnap

Up = — =
D ap d77 )

Eq. (3.11) becomes the Riccati equation of the following form:

up + cpuy, + kep =0, (3.12)
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where

D
Cp = §’YD —1. (313)

During the prematter eras, cp is a negative number and its closeness to —1
represents the strength of the inflation that the universe undergoes. We will later
see that c¢p will be treated as one of the parameters of our cosmological model.
In what follows, we will consider equations of state such that cp # 0. Eq. (3.9)

can be solved by defining a new variable wp through

up = ——=2 = [ln (wlD/CD)}I. (3.14)

In terms of this new variable, Eq. (3.12) can be written as
wh + kepwp = 0. (3.15)
In order to find the evolution of the scale factor in different geometries, this

equation has to be solved for different values of k.

3.3 Solutions for the Scale Factor

From Eq. (3.15), we now obtain the solutions for the scale factor for different

geometries as follows:

1
ag,plcos(cpn + 0p)|p, if k=+1,

ap(n) = < aO,D(n‘{‘(SD)%: if k=0, (3.16)

ao.p[sinh(cpn + (5D)]$, if k=-1.
\
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Here, we have introduced the subscript D to identify the era to which it applies,
and app and dp are integration constants to be determined from the initial and

boundary conditions.

We now choose closed geometry, i.e., K = 1 to demonstrate how our model
works. However, it is to be noted that our results are easily adaptable to other
geometries, i.e., k = 0 and k = —1. If the initial number of space dimensions of
the universe is D, then the total number of prematter eras in our model will be
(D — 2). We now write the solutions for the scale factor and the corresponding

equations of state for £ =1 as

ap(n) = aé’:)D[cos(ch + dp|°p,

1% prematter era: { <n<np,

Py = (22422) o,

\

1
ap-1(n) = a(()%_ﬂCOS(CDA?? +dp_1]°pT,

ond prematter era: < np <n<np_1,

QCD_1—|—3—D
Pp_, = (7D,1 ) PD-1-
\
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f

_,® 5l
a(n) = ay[cos(can + 6p_1]%T,

(D —2)™ prematter era:{ 5, <5 <,

| P=(57)p

(

a(n) = a((f) [cos(n + 6,],

radiation era: ¢ p <p<np,.,

P:%p.

a(n) = ag" [cos(3 + 6],

matter era: < Nm <,

P=0.

\

Here, we have used p, r and m as subscripts (or superscripts) to denote the pre-
matter, radiation and matter eras, respectively, and subscript D identifies the
prematter era in higher dimensions. In this thesis, physical quantities which do
not carry superscripts or subscripts are understood to correspond to ordinary

four-dimensional space-time.

3.4 Initial and Boundary Conditions

We start the evolution of the universe with a prematter era from D (> 3)

dimensions, and take the initial density as the Planck density of D, i.e., py.p. We
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now write Eq. (3.7) in terms of conformal time

DD —-1) | [(dy\> 1
2 [\&) &
D D

Considering Eq. (3.17) at n = 0, we get the following quadratic equation in

2ApG
= D4 D,OD. (317)

Cc

a%(0) :
dpat(0) — a%(0) —v? =0, (3.18)
where v is the initial expansion rate of the universe, i.e.,
v = ap(0), (3.19)

and

4ApGp

dp = =222 4 p.
P = DD 1)

(3.20)

Eq. (3.18) is quadratic in a%(0) and has the following physical solution for the

initial size of the universe:

V1+4dpv? +1
ap(0) = \/ dev , (3.21)

which reflects the singularity-free character of our cosmological model.
According to our consideration, dimensional reduction takes place by a first

order phase transition whose duration can be taken as negligibly short compared

with the durations of the constant D eras in the history of the universe. De-

noting the time of the transition as 7p, we may write Eq. (3.7) just before the
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dimensional reduction at n = np— | € | as

DD -1) | (d)p 2+ 1
2 a% a%

where € is a small number. After the dimensional reduction at np, the number of

2ApG
=2, (3.22)

space dimensions becomes D — 1 and Eq. (3.7) takes the following form:

o=t

at 1 = np+ | € | . Since the dimensional reduction takes place in a time interval

2Ap_1Gp_
= Dcl4 P 1pD*1, (3'23)

whose duration is expected to be significantly smaller than those of the constant
D eras and the evolution of the universe during the constant D eras is inflation-
ary, we could argue that during the transition from D to D — 1, the change in
ap(n) is negligible. Hence, as one of our junction conditions for dimensional re-
duction we take the scale factor of the universe to be continuous at the transition
point. Moreover, from the field equations in Egs. (3.7) and (3.8) we see that
the kinematics of the evolution of the universe is driven by Gppp and GpPp
combinations. Thus, in the limit as € — 0 a discontinuity in a’,(n) would imply
an infinite jump in either Gppp or GpPp. Indeed, we should expect that during
dimensional reduction there would be a discontinuity in pp due to the fact that
the available volume is reduced. However, since the change in volume is finite,
a discontinuity in pp should also be expected to be finite. Thus, in this case an
infinite jump in Gppp would also imply an infinite jump in Gp. Since all the

physically relevant quantities change by finite amounts, it seems difficult to jus-
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tify an infinite jump in G p. Hence, for the time being we argue that taking a',(n)

as continuous during dimensional reduction is also a good working assumption.

Similarly, the phase transitions between prematter and radiation eras as well
as between radiation and matter eras are also expected to be significantly smaller
than those individual eras. We can thus use the same junction conditions for
the evolution of the scale factor at the boundaries between different eras. Fur-
thermore, since Hubble parameter is defined as the ratio of scale factor and its
derivative, this assumption would also make the Hubble parameter continuous at

the transition points.

Of course, strictly speaking neither the scale factor nor its derivative is contin-
uous during the course of dimensional reduction. We should also expect that the
universe deviates from both homogeneity and isotropy assumptions during the
transition. What is worse is that due to the decomposition of higher dimensions,
our understanding of the concept of dimension would be significantly different
from the current one. In this case, it would be hard to talk about the applicabil-
ity of the Friedmann models. In this thesis, we are not interested in the details
of dimensional reduction. So, the study of what happens during the course of

dimensional reduction is beyond the scope of the present work.

In the light of the foregoing assumptions we consider Egs. (3.22) and (3.23)
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in the limit as € — 0 and take their ratios to obtain

Gp D Ap_, [,OD1:| (3 24)
n=1D

Gp_1 ~ D-2 Ap PD
With the help of the equation (3.24), we have thus related the change in Gp to
that in pp. Thus, in order to find how G p changes as D changes, we have to know

the discontinuity in density when the universe undergoes dimensional reduction.

We may express this discontinuity by defining a “critical length” parameter:

Ipp 1 = [pD‘l] , (3.25)
PD  Ip=np

with [Ip p—1] = cm. We then get the following expression for the change in Gp:

Gp D Ap .

= Ipp_1.
Gp_1 D—-2 Ap b,p—1

(3.26)

Here, Ip p_1 defines a characteristic length scale which marks the point at which
dimensional reduction takes place. In the next section, when we discuss a specific
dimensional reduction scenario from D = 4 to D = 3, we will see that the critical
length parameter will play the role of one of the parameters of our cosmological
model.

Furthermore, since the expansion of the universe is assumed to be adiabatic
during the constant D eras of the universe, total entropy is constant. However,
during dimensional reduction from D to (D — 1), which we interpret as a phase
transition, entropy is expected to change; either in the form of an increase or a

decrease. As can be seen from Eq. (2.22), entropy is defined up to an additive
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constant. Since we do not know whether this constant would differ in different di-
mensions, the zero level of entropy in different dimensions cannot be determined.
Thus, we cannot make any decision about the nature of the change in entropy in
this model.

Finally, the boundary conditions that the scale factor and its derivative are
continous at points np, Np_1, ..., N4, N and 7, allow us to determine the integra-

tion constants as

d cp+l1
®) _ D e i 3.97
a’O,D [dD _ H%(O):| D > ( . )
(p) (p) e
Go,p—1 = p [cos (cpnp +dp)]P p-1, (3.28)
1
a(()p) = a((fi [cos (cama + 04)]t &, (3.29)
0§ = ) [cos (cam, + 63)]55 ", (3.30)
(r)
V= (3.31)

- coS(Nm + 05)’

dp = —arctan ( Ho(0) ) , (3.32)
dp — H%(0)
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6D—1 = 5D + (CD — CD—l) Mo, (333)

03 = 04 + (¢4 — ¢3) M4, (3.34)
(57- = 53 + (03 - 1) Nrs (335)
I ’777” (3.36)

where Hp(0) denotes the initial value of the Hubble parameter in D dimensions.

3.5 Transition Times in the Model

During the prematter era, the universe is assumed to be comprised of a mate-
rial substance which expands adiabatically and which is described by an equation
of state similar to that of the vacuum, i.e., Pp ~ —pp. Using Eq. (2.23) we write

the corresponding entropy as

YD
YD-1

SD = VD TECE;’D. (337)

From the form of the equation of state, it is clear that vp < 1. In this case,
the fluid filling the universe will be under tension rather than pressure. So, the

properties of this fluid will be very different than the ones that we are acquainted.
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As can be seen from Eq. (3.37), unlike the ordinary matter, temperature of the
prematter with vp < 1 increases in the course of an adiabatic expansion. Thus,
the universe heats up while it inflates during the prematter era, and inflation
continues until the maximum allowed temperature T}, p is reached. When the
temperature reaches the Planck temperature of that dimension, we postulate
that the universe undergoes a phase transition to a lower dimension where the
Planck temperature is higher. Thus, inflation gets another chance to continue
in the lower dimension. Of course, whether this is necessary or not will be seen
when we compare the final results with observational data.

We also assume that the fluid filling the universe attained thermal equilibrium
at the at the end of the prematter era and has a thermal spectrum. At this point,
we take the density of the universe equal to that of a massless scalar field with a

thermal spectrum at 7}, p as

i 5T (D+1)¢(D+1) (kTp)""". (3.38)

p(np) = m

Using this expression for energy density in Einstein’s field Eq. (3.17), we find the

conformal time at which dimensional reduction occurs as follows

ApT'(D + 1)¢(D + 1) (KT, dp

Hp(0)
+ arctan ( - H,%(O)) } , (3.39)

which also represents the duration of the first prematter era.

¢D
(2mch)” pp,p w0t Jdp — H3(0)
cp )D+1

1 (
Np = — { arccos

In order to find conformal times corresponding to transitions between different
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eras we return back to Eqgs. (2.21) and (2.25), and express the conservation of

entropy in terms of the scale factor as

d (appp
- = A
dt( T ) 0 (340)

where the general form of the equation of state in Eq. (2.11) was used. Carrying

out differentiation in Eq. (3.40), we obtain

ap T po
D———+4+—=0. 3.41
ap T pp (3.41)

From the Einstein’s field Egs. (3.7) and (3.8), one may write

) a
Pp + DVDPD—D =0, (3.42)
ap

which describes the time evolution of the energy density. Using Eq. (3.41) in Eq.

(3.42) and, as usual, defining the Hubble parameter H as

Hp = a—D, (3.43)
ap
we could write Eq. (3.42) in the form
T

T

In terms of the conformal time 7, this gives us the equation describing the time

evolution of the temperature as follows:

— 4+ D=L (’YD — 1) = 0. (345)
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Upon integration in conformal time, Eq. (3.45) gives

an(ny) _ [T(nf)] 55-0)

ap(mi) | T(mi) ’ (3.46)

where subscripts ¢ and f denote the initial and final instants of conformal time
in a given era, respectively. Similarly, we can obtain the time evolution of the

density by returning back to Eq. (3.42) as

] " (3.47)

Like first order phase transitions, we assume that during the stage of dimensional
reduction, temperature remains constant. Then, Eqs. (3.46) and (3.47) are useful
in finding transition times between different eras in the history of the universe as

well as densities corresponding to phase transitions and present.
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CHAPTER 4

A SPECIFIC DIMENSIONAL REDUCTION SCENARIO

In this chapter, in the light of the foregoing chapter we present a numerical
model for both closed and open geometries, respectively. According to this model,
the universe starts from D = 4 prematter and evolves into D = 3 prematter.
The second prematter evolves into radiation, and finally into an era of matter

dominance.

4.1 Closed Universe Case

For closed geometry, i.e., k& = 1, the scale factor in different eras with the

corresponding equations of states are as follows:

35



( (

(p) 5 L
ag 4lcos(cans + d4)] 4,

1 prematter era: ¢ 0 < p < n,,

Pi= (52 pu

(

1
al [cos(csmy + 64)]%

2" prematter era: ¢ p, <p<p,,

P = (221,
a(n) = 4 ) 5570 (4.1)

agfeos(n + &)
radiation era: ¢ p < p <,

Pz%p.

\

a(()m) [cos(2 + 6m)]?,

matter era: < N < 1,

P=0.

Here, the integrations constants can be found by setting D = 4 in Eqgs. (3.27)-

(3.36). The results are as follows

W= @ (12)
o = aff) [cos (cams + )] 7, (4.3)
al” = o [cos (csmy + 53)]%_1 : (4.4)
o™ = a(()T) (4.5)

~ cos(Ny +6,)’
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dy = 3t Prls (4.6)
H

04 = — arctan #0)2 , (4.7)

(53 = (54 + (04 - 03) N4, (48)

Op = 03 + (c3 — 1)y, (4.9)

S = 6, + %m (4.10)

At the point of dimensional reduction, we take the density equal to that of a
massless scalar field having a thermal spectrum at 7, 4. And, making use of Eq.
(3.38) and setting D = 4, we obtain the energy density at the end of the first

prematter era as

AT (5)C(5) (KT pr4)°
P4(774) = (27rhc)4 )

(4.11)

Then, solving Eq. (3.17) for n4, which marks the conformal time at which di-

mensional reduction takes place, we get the duration of the first prematter era

as
1
ny = —[arccos(argml) — d4), (4.12)
C4
where
_ea dy— HZ(0
argml = (3.1727) %4+ [4d74()]. (4.13)
4

According to our previous consideration, the universe starts its journey from

ppi,a and while it expands, its temperature rises due to the unusual form of the
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equation of state describing the universe during the first prematter era, i.e.,
P, ~ —p,. However, the temperature cannot go beyond 7} 4. At this point,
we postulate that when the temperature reaches 7),; 4, the universe undergoes a
phase transition to the D = 3 universe where the Planck temperature is higher
and the equation of state takes the form P ~ —p. And, inflation continues in this
second prematter era until the temperature reaches 7p; 3 and a phase transition
that links the second prematter era to the radiation era occurs. The rest is like
the standard model of the universe, where the radiation era (P = p/3) is linked
by a first order phase transition to the era of matter dominance (P = 0). We also
assume that after the transition between radiation and matter eras, radiation is
decoupled from matter, and behaves like a perfect fluid with v3 = 4/3.

Eq. (3.46) would allow us to determine the durations of different eras once we
know the temperatures at which different phase transitions take place. For the
second prematter era, initial and final temperatures are given as 7; = T4 and

Ty = Tp,3, respectively. Upon this, one can get from Eq. (3.46)

a(ny) (pr) =
- , 4.14
T (4.14)

which gives the duration of the second prematter era in conformal time as

1
ns = —[arccos(argm?2) — d3), (4.15)
C3
where
Tpl 3 lf—g%
argm?2 = | == argml. (4.16)
Tpia
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At this point, for our later purposes it would be useful to write the gravitational

constant G4 and the remaining Planck quantities in D = 4. They are as follows:

Al
Gy = %Gg, (4.17)
4.7496 - 107"
Ppis = —5m—— gr/em?, (4.18)
l4 3
1.5356 - 102!
2 1/3 Ka (419)
14,3
by = 1.4924- 1072 1}/ em, (4.20)

where Eq. (3.24) has been used to relate G4 to G3. Then one may write

3

l 3(2c3—1)

argm?2 = argml Tl L (4.21)
4ly 3

Similarly, we can find the conformal time at which radiation era ends, i.e., 7.

From Eq. (3.46), one may write

a(”f) jpl
= — 4.22
T ? ( )

where T; = T} and Ty = T,, have been used for the radiation era. Here, T,,
represents the temperature at the last phase transition which is also known as

the “recombination temperature.” Solving Eq. (4.22), we end up with

Nm = Ny + arccos(argm3) — arccos(argm?2), (4.23)
where
T,
argm3 = L argm?. (4.24)
T,
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Making use of Eq. (3.46), we write

S (4.25)

where T}, is the present day temperature of the cosmic microwave background
radiation (CMBR). Solving this equation, we obtain the age of the universe in

conformal time as

Nnow = 2[arccos(argmd) — 6], (4.26)

where

T
argmd = T argm3. (4.27)

4.1.1 Observable Parameters in the Model

We can now obtain expressions for physical quantities such as Hubble parame-
ter, age and density. We can find comoving times corresponding to the conformal
ones by going back to the definition given in Eq. (3.10). Assuming that ¢ = 0 at

n =0, we get
n
t = aO’D/ [cos (cp’ + 6p)]"°" dny. (4.28)
0

This integral depends upon the values of ¢p and has to be computed numer-
ically in the prematter eras. Whereas, for the radiation (¢, = 1) and matter
(cm = 1/2) eras, integration yields analytical expressions. The expressions cor-

responding to the comoving times corresponding to 74, 7y, M and 7,4, can be
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given as

M4
ty = a((fi/ [cos (cam + 64)]* dn, (4.29)
0

_ (p) " 1/c3

tr =ts + ay [cos (c3m + d3)] ' dn, (4.30)
uz
tm =t + a7 [sin(nm + 6,) — sin(n, + 6,)] (4.31)
4™

tnow = tm + OT [Sin(nnow + 25m) - Sin(nm + 25m) + (nnow - nm)] . (432)

Hubble parameters at 74, 1r, 7m and 7y, can now be obtained by using

H(n) = : (4.33)

as

sin CaT)y + 54

H(m) = —— ( ) 7 % 9.2503 - 10% km s™'Mpc™',  (4.34)
%],)4 [cos (camy + 04)]°4
in (com. + 6
H(n) = —— sin (¢t + ) o X 9.2503 107 km s~ Mpc™',  (4.35)
ag’ [cos (c3my + 3)]<s
i m 57' — —
H (1) = = U £00) 99508 10% kem s~ Mpe, (4.36)
) cos? (nm + 57")
1 now 2 6m — —
H (lnow) = =~ Unow/24 Om) g 9505 10% km s~ Mpe™'.  (4.37)

Qg COS3 (77'now/2 + 5m)

Finally, to find densities at the transition points and present we make use of
Eq. (3.47). First, we choose (n;,ny) = (0,74) and get the density at the point of

dimensional reduction as
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() = [—2 | o (4.38)

Here, we should notice the fact that during the dimensional reduction from D =
4 — 3, the density has a discontinuity given by Eq. (3.25) and at the beginning

of the second prematter era the universe has the following density:

p3(Ma) = la3pa(ma). (4.39)

By ChOOSiIlg (n'w 77f) = (7747 777‘) ’ (771'7 n’m) ’ (nma nno’w)a we Obta‘ina respectively

. 2(c3+1)
argm °3
) = , 4.40
o) = (2222) 7 (4.40)
Tw\*
plm) = (72) ol (4.41)
pl

D) = (T"°w)3p<nm>. (1.42)

4.1.2 Comparison with Observations

Even though we have listed all the physical parameters in the previous section,
different regimes have to be investigated to construct numerical models. To this
end, we will consider different cases corresponding to GG4. Let us start with the
special case in which the numerical value of the gravitational constant in D =4

does not differ from the one currently used. In this case, from Eq. (4.17) it
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follows that

4l4,3
™

=1cm. (4.43)

From Eqs. (4.16) and (4.42), we may write the present value of the density as

2(2—c3)
4] 3(2c3—1) _14c
P(Mnow) = 6.2269 - 107%°T,, (ﬁ) ’ (1- %7 o gr/em?, (4.44)
D
where we have set
H,(0)
= (4.45)

From Eq. (3.7), we notice that for closed geometry 0 < x < 1. And, since the

evolution of the universe is inflationary during the prematter eras, we have
¢y and c3 € (—1,0). (4.46)
Then, one may write the inequality:

_ldeq

0<(1—-+k%) = <1 (4.47)

Furthermore, the power of the term (4ly3/7ly) in Eq. (4.44) is in the following

range:

4 22— ) 2
S 7 S 4.48
37 302c;—1) 3 (4.48)

Thus, using Eqs. (4.43), (4.44), (4.47) and (4.48) we end up with

P(Mnow) < 8.5750 - 10757 Tp,,. (4.49)
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At this point, following Kolb & Turner (1990, p.77) we may write

T = (1 + 2gec) Trow, (4.50)

where zg.. represents the red shift at recombination and 7;,,, = 2.73 K. Using
the numerical value z4,. = 1090 which is in good agreement with the recent

measurements (see e.g., Spergel et al. 2003 and Bennett et al. 2003) one gets
T, =2978 K. (4.51)
Upon this numerical value, from Eq. (132) we end up with
P(Mnow) < 2.5536 - 10°°3 gr/cm?. (4.52)

The present value of the total density of the universe py is given through the
present value of the density parameter Qy = po/per, Wwhere p, = 3ch2 /871G and
H, represents the present value of the Hubble parameter. The recent Wilkinson
Microwave Anisotropy Probe (WMAP) data based on CMBR anisotropy (see
e.g., Spergel et al. 2003 and Bennett et al. 2003) strongly suggests that we live
in a universe with a nearly flat geometry (€9 ~ 1) and which is composed of ~ 1/3
of matter (baryonic+dark with €2, &~ 0.3) and ~ 2/3 of an exotic form of matter
usually called dark energy or quintessence (€2, ~ 0.7). Upon this, one may write
po ~ 107%h? gr/em3 where h = Hy/(100 km s *Mpc!). In the light of recent
measurements (see e.g., Jimenez et al. 2003, Koopmans et al. 2003, Altavilla et

al. 2004), h could be considered to be restricted to the interval [0.6, 0.8]. This
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3. Hence, for the special case in

implies that py is at the order of 1073°gr/cm
which the numerical value of G4 is equal to that of (G5, the prediction of our
model for the present value of the total density of the universe is too far away
from the values suggested by recent measurements.

We have investigated the special case where the numerical value of G is equal
to that of G3. We have seen that this does not produce meaningful numerical
results. We now consider the possibility that the gravitational constant in D = 4

is different from the one in D = 3. To this end, we consider a general expression

for G4 as in the following:

o 4[4,3

4=
™

G Gs, (4.53)

and look for values that will produce observationally meaningful results. It is
possible to see that the arguments in Eqgs. (4.13), (4.16), (4.24) and (4.27) satisfy

the following relations:

argml > argm?2, (4.54)

argmd > argm3 > argm2, (4.55)

which guarantee the correct time ordering of the various eras in the history of
the universe, i.e., 0 < 1y < N < N < Nnow- From Egs. (4.21) and (4.54), we
also see that (4ly3/7l,) which is a relation that we will use when we discuss the

numerical results of our model.
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Furthermore, argml, argm?2, argm3 and argm4 should be numbers smaller
than or equal to unity. From Egs. (4.13), (4.16) , it is easy to see that argml
and argm?2 satisfy this requirement. From Eqs. (4.24) and (4.27), we have the

following conditions:

T
2 argm2 < 1, (4.56)
T
T
#;_;WUGTQ’ITLZ S ]., (457)

where we will consider only the second condition because it is more restrictive

than the other one. Making use of Eq. (4.13) and re-arranging, we get

127.22 — 0.87 |In(T},) + =2 In(242)| 4+ 1.731n |1 — 2|
< o7l i (4.58)
Cp S — y .
[128.22 —0.87 [m(Tm) + e 1n(4ﬁ)] +1.73In[1 — nﬂ

l
c3—1 Tl

which determines an upper limit for c¢4. On the other hand, the lower bound is
already known to be —1 from the inflationary character of the equation of state
describing the universe in the first prematter era.

Then, using Eqs. (4.44), (4.47) and (4.48) we write

Wit

4] -
P(Mpow) < 1.8544 - 1073 (%) gr/cem?®. (4.59)

7Tpl

Here, we conclude that l43 ~ [, to produce the results compatible with the

observed figures of the density. In this case, from Eq. (4.53) we see that Gy is

at the order of 107*°cm*/grsec?. In addition to this, since 0 < 2 < 1, the

inequality will not be affected too much by the choice of ¢3. Thus, Eq. (4.58)
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reduces to

127.22 — 0.871n(7},) + 1.731In[1 — £?]

— 4.60
“~ 712822 - 0.871n(T,,) + L.731n[1 — #?]’ (4.60)
and using the above mentioned numerical value for 7;,,, we get
120.10 + 1.73In[1 — 2
¢4 *+ 1731 -« ] (4.61)

~ 12110+ 1.731n[1 — 2]’

as the upper bound for ¢;.

4.1.3 Numerical Results for Observable Parameters

In this model, in order to produce numerical results for the cosmological pa-
rameters of the universe one has to assign numerical values to the characteristic
parameters of the model, i.e., c3, c4, l43 and the initial value of the Hubble con-
stant H(0). Since these parameters are interconnected, some experimentation
with numbers is necessary to produce meaningful results. In determining the
critical parameters of the model we first consider the present value of the density

predicted by our model, i.e.,

2(2—c3)

4] 3(2c3—1)
P(Thow) = 1.8544 - T, (W;’j) C gr/em?. (4.62)
p

It is evident that as the numerical value of the term (4l,3/7l,) gets far from
unity, the present value of the density predicted in Eq. (14) falls rapidly be-
low 1073%gr/ecm3, which represents the order of the present value of the to-

tal density. We also notice that within an interval very close to unity, the
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predictions of the model for the cosmological parameters of the universe do
not change appreciably. We accordingly choose (4l43/7l,) = 1.1, which gives
G4 = 1.1862-107% em*/grsec?.

Considering different values of k, which is a measure of the initial expansion
rate of the universe, we determine upper bounds for ¢; from Eq. (4.61). The
lower bound is already known to be -1. Within these limiting values, in Tables
4.1-4.4 we give the ranges for ¢, in which we obtain observationaly meaningful
results. On the other hand, we note that numerical results do not depend sig-
nificantly on ¢3. In order to see the dependence of the numerical results on the
parameter ¢y, we also present numerical results corresponding to the current val-
ues of Hubble parameter Hy, age ty, density py. Although the results we obtain
for density are in compliance with the recent measurements, the results for Hub-
ble parameter and age are beyond the observed ranges, i.e., Hubble constant H
(60 km s 'Mpct — 80 km s 'Mpc1), age to (1.2 109 yr — 1.6 - 10'° yr) and

density py (~ 1073 gr/em?).
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Table 4.1: Results for k =0, ¢ = —0.1, l43 = 1.3961 - 107** em, T,, = 2978 K.

—0.9929 < ¢4 < —0.9918

9.94 km s~ 'Mpc=' < Hy < 13.60 km s~ ' Mpc!
4.89 x 10 yr <ty < 5.70 x 1010 yr

po = 3.48 x 1073 gr em™3

Table 4.2: Results for k = 0.3, cg = —0.1, l4 3 = 1.3961 - 1072 em, T,, = 2978 K.

—0.9929 < ¢4 < —0.9918
10.66 km s *Mpct < Hy < 13.60 km s ' Mpc™?

4.32 x 100 yr <ty < 5.50 x 10! yr
3

po = 3.48 x 1073 gr em~

Table 4.3: Results for k = 0.6, c = —0.1, l;3 = 1.3961 - 10 ** em, T,, = 2978 K.

—0.9929 < ¢4 < —0.9918

12.20 km s 'Mpc ! < Hy < 13.56 km s *Mpc !
5.10 x 1010 yr < ¢y < 6.22 x 10 yr

po = 3.47 x 1073 gr em ™3

Table 4.4: Results for k = 0.9, ¢3 = —0.1, I, 3 = 1.3961 - 10 % e¢m, T,,, = 2978 K.

—0.9928 < ¢4 < —0.9916
9.67 km s 'Mpc=! < Hy < 13.45 km s~ Mpc!

4.04 x 10 yr < t, < 5.78 x 100 yr
3

po = 3.44 x 1073 gr em~
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4.2 Open Universe Case

In the previous section, we have seen that the numerical results that we ob-

tained for today’s value of Hubble parameter and age of the universe are beyond

the ranges accepted by observations. We now consider the solutions of the field

equations for the open geometry. We already know that the solution for the scale

factor for open geometry is

ap (n) = ao,p [sinh (cpn + 0p

)]er (4.63)

Then, the scale factor in different eras will take the following forms:

4

1% prematter era: <

(

e

matter era: <

\

274 prematter era: <

radiation era: {

(P)1.s h S o
ag a[sinh(camy + 04)]°1,

0§77§7)4a

2cq4—1
2

P, = (

(

) P4-
) [ =,
ay’ [sinh(c3ny + 04)]°4;

e <n<n,

) p-

a(()r) [sinh(n + 4,)],

2c3—1

P:(s

\
(

(4.64)

M <N < N,

P:%p.

\

a{™ [sinh(2 + 6,,)],

M < 1,
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The boundary condition that the scale factor and its derivative are continous at

points 1y, 1, and n,,, allows us to determine the integration constants as

c4+1

(r) _ dy :| a4 1/2
s = | 557 d, 7, 4.65
0,4 [HZ(O) . d4 4 ( )
® _ @) o s
ag’ = ag j[sinh(camy + d4) Jo4 o3, (4.66)
al” = o [sinh(csn, + 63) ]%_1, (4.67)
(r)
R p— R 4.68
%o sinh(n,, + 6,)’ (4.68)
AyGy
dy = — =Py (4.69)

5 =1In \/H4(O) + VHI0) - da (4.70)

53 = 54 + (C4 - 03) M4, (471)
or =03+ (3 — 1)y, (4.72)
5, =6, + %’” (4.73)

For open geometry, using conformal time we may write Eq. (2.3) as in the
following form:

245G

C4 PD, (474)

)

which, when considered at n = 0 with D = 4, gives the following quadratic

equation in a3(0) :

dsa3(0) + a3(0) —v? =0, (4.75)
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which has the following physical solution:

V1+4dpo? —1
ay(0) = [ (4.76)
2d,
where v again represents the initial expansion rate of the universe, i.e.,
v =ay(0) > 0. (4.77)

We may solve Eq. (4.74) to obtain the conformal time n4 that gives the duration

of the prematter era

C4 C4
|t T
"= Ha(0) 1/ H3(0)—da

V/HZ(0)—ds

This expression indicates also the conformal time at which dimensional reduction

(4.78)

from D =4 to D = 3 occurs. The conformal time corresponding the duration of

the radiation era can be found from Eq. (4.14) as

2c3

1 T 1—2c
= —In |1+ (—”) " sinh? (g + 63)
C3 Tpl,4
T, \ T
+ (_p) sinh (63’1']4 + 53) — 53. (479)
Tpl,4

Similarly, the duration of the matter dominated era and the age of the universe

in conformal time can be obtained from Egs. (4.22) and (4.95) respectively as

T, T 2
Nm = 4 In T—pl sinh (93 + 6,) + \/1 + (T—pl sinh (93 + (5T)) -6, 2, (4.80)
T . Tm .
nnow = 2 {ln ! T Slnh (777' + 57') + \/T Slnh2 (777' + 57') + 1 - 5m} .
(4.81)
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4.2.1 Observable Parameters in the Model

Using Egs. (3.10) and 4.63), one gets real time corresponding to conformal

time as

n
t = a,()’D/ [sinh (cp’ + 6p)] dny, (4.82)
0

where again we assumed that ¢ = 0 at 7 = 0. As in the closed case, the integral
in Eq. (4.82) depends upon the values of ¢p and has to be computed numerically

in the first and second prematter eras,respectively

T4
s = af) / (sinh (can + 0)]/ dn, (4.83)
0
n3 1
ty =ty + a(()p) / [sinh (csn + 63)]"/** dn. (4.84)
T4

Since ¢, = 1 and ¢, = 1/2 for radiation and matter eras, respectively, Eq. (4.82)

can be integrated to yield analytical expressions as follows:

tm = tr + ai” [cosh (1 + 6,) — cosh (1, + 6,)] , (4.85)

(m)
tow =t + %T [$inh (1now + 20m) — Sinh (1m + 261m) + (T — Tnow)] - (4.86)

Using Eq. (4.33), we get Hubble parameters at 7y, 0, 7y, and 7,4, respectively

h 5
H(p) = —22 (cam +04) - % 9.2503-10% km s\ Mpc™',  (4.87)

af) [sinh (cama + 64)]% "

h (esmy + 0
H(y) = — 2 (cgmny +0s) - % 9.2503-10% km s\ Mpc™',  (4.88)

a(()p) [sinh (c3n, + 53)]§jL
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cosh (Mnow/2 + Oy
H(y) = S hou/2+ 0

=-m x 9.2503 - 10% km s~ ' Mpc™" | (4.89)
ay’ sinh? (1, + 6,)

H ) cosh (Mnow/2 + 0m)
Nnow) = m
a(() ) cosh® (Mnow/2 + Om)

x 9.2503 - 10%° km s~ Mpc™' . (4.90)

As in the closed case, during dimensional reduction density has a discontinuity
given by Eq. (4.39) and the expressions corresponding to densities at phase

transitions can be expressed as

Po,
palm) = 5o (4.91)
Al 2((63+1))
3 203—1
pmn=(—ﬁ) os(m), (4.92)
7Tlpl

st = () ot (4.99)

pl

o) = (222) ) (4.94

4.2.2 Comparison with Observations

Firstly, we again consider the special case in which the numerical values of
gravitational constants in different space dimensions are the same. For this case,
from Eq. (4.94) the present value of the density can be obtained as

2(2—c3)
Aly 3

3(2c3—1)
P(Tnow) = 6.2269 - 107°°T,, (m) ’ gr/em?, (4.95)
P

which is the same expression that we obtained in closed universe case. From the

previous section, we know that this expression cannot produce observationally
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meaningful results for density. We now allow the numerical value of G4 to differ
from that of G'3 and write the relation between them as in the following:

4
Gy = %03 (4.96)

For the recombination temperature previously specified as 2978 K, we end up
with the same expression for density as in Eq. (4.59). Thus, we conclude that
the requirement that l4 3 >~ [,; to produce the results compatible with the observed
figures of the density is also valid for the open geometry. Then, making use of
Eq. (4.68) we may write the expression corresponding to the present value of the

Hubble parameter in Eq. (4.90) as

203
3(1—2c3)
H(T]now) = \/3 1797 [1 -+ /\2Tm1]:,iow (W?Z,S) ’ :|

o (4.97)
7T;2me (ﬁff) sl 9.2503 - 102 km s Mpc!,
where
(3.1727)4ep
A= BAEDTTY (4.98)

_ da
H;(0)—d

Referring to Eq. (4.46), one may write the following inequalities:

2 2cg3
4 -9 4 3(1—2c3)
(ﬁ) < <£) V<, (4.99)
7Tlpl 7Tlpl

1 ey
4] ~3 4] 3es=T)
(ﬁ) < (ﬁ) <, (4.100)
7Tlpl 7Tlpl

and since Iy 3 >~ [, we obtain

H (Nnow) = 10.73v/1 + 2.06 - 105002 km s~ Mpc . (4.101)
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Recent observations indicate that Hubble parameter is in the following range:

60 km s ' Mpc™' < H(Nnow) < 80 km s~ Mpc™. (4.102)

Then, combining Eq. (4.101) and (4.102), we get

5.59 < V1 +2.06- 1090)2 < 7.46. (4.103)

Then, using Eqgs. (4.45) and (4.98) we end up with two cases depending on the

initial value of the expansion rate. These are:

V14 2.06 - 108072 < 7.46, (4.104)

which determines an upper bound for ¢, as

116.80 + 0.87In[x? — 1]

“~ T117.80 + 0.87In[k2 — 1’ (4.105)
and
V14 2.06-1080)2 > 5.59, (4.106)
which sets a lower bound for ¢4 as
117.30 4 0.87In[x? — 1] (4.107)

“% 711830 + 0.87In[w? — 1]’
4.2.3 Numerical Results for the Observable Parameters

Since the present value of the density is bounded by the same expression for

both geometries, as we do in the closed universe case may choose the critical
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length parameter again as l; 3 = 1.3961- 1032 ¢m. We again note that our model
is insensitive to the choice of c3, whereas it is sensitive to the value of ¢4. In order
to see the nature of this dependence, we choose as a particular case k = 1.1.
Upon this, we make use of Egs. (4.105) and (4.107) which together set a range
for ¢4 in the light of recent Hubble constant measurements. For x = 1.1, we
find the corresponding range as [—0.99145, —0.99141] . The numerical results for
the cosmological parameters (Hubble parameter, age, density and scale factor)
for ¢4 = —0.99145, —0.99144, —0.99143, —0.99142, —0.99141 are listed in Tables
4.5-4.9. In these tables, the first line correspond to the beginning of the universe.
The other lines correspond to the transitions between different eras in the history
of the universe. The discontinuity in density during dimensional reduction from
D =4 to D = 3 is also indicated in the third line. We see that the predictions
of our cosmological model for this range are within the observed ranges for the
cosmological parameters.

At this point, we note that the above range for the parameter c, is not the only
range that produces numerical results in accord with the observational data. For
different k values corresponding to different initial expansion rates of the universe,
from Egs. (4.105) and (4.107) we obtain different ranges for ¢4. For example, if
we consider k = 10.0, the range for ¢, that yields numerical results compatible
with observations is [—0.99182, —0.99179] . Finally, for I, 3 = 1.3961-107%% cm we

give some Planck quantities in our model in Table 4.10.
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= —0.1, ly3 = 1.3961 - 1073 cm,

Table 4.5: Results for ¢4, = —0.99145, ¢3 =
T, = 2978 K.
t (o) alem) | (&) | H ()
0 1.42-10733% | 2.72-10'% 1.57 - 10%3
very small # | 2.99-10~* | 8.58-10'% | 7.99 - 1052
1.20 - 10%
104 1062
very small # | 3.07 - 10 114 10% 7.44-10
4.49-10° 1.22 -10% 4.63-107% | 5.02-10°
1.58 - 10%° 1.59-10% | 2.06-1073 | 59.03
Table 4.6: Results for ¢4 = —0.99144, ¢3 =
T, = 2978 K.
t(yr) alem)  |p() | H ()
0 1.42-10°33% | 2.72-10%% 1.57 - 10%3
very small # | 2.76 - 10~* | 8.58 - 10 | 7.99 - 1052
1.20 - 10”3
104 1062
very small # | 2.83 - 10 11410 7.44-10
4.48 - 10° 1.12-10% | 4.63-107%* | 5.03-10°
1.47-10% 1.47-10% | 2.06-10731 | 63.73
Table 4.7: Results for ¢4 = —0.99143, c3
T, =2978 K.
t(yr) alem)  |p(Z) (22
0 1.42-10°33% | 2.72-10'% 1.57-10%3
very small # | 2.55-10~* | 8.58-10'%® | 7.99 - 1052
1.20 - 10”3
104 1062
very small # | 2.62 - 10 114 10% 7.44-10
4.48 -10° 1.04 - 10% 4.63-107% | 5.04-10°
1.37- 1010 1.36-10% | 2.06-1073! | 68.81
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Table 4.8: Results for ¢4, =

—0.99142, ¢5 = —0.1, I3 = 1.3961 - 10733 cm

—0.99141, ¢ = —0.1, lyz = 1.3961 - 107 em

T, =2978 K.
t(yr) alem) | o(Z) | H ()
0 1.42-107% | 2.72-10'%¢ | 1.57-10%3
very small # | 2.36-10~* | 8.58-10**° | 7.99 - 10%?
very small # | 2.42-107* 1,20 107 7.44 - 1052
1.14 - 10%
4.47-10° 9.60 - 10%* | 4.63-10"* | 5.06-10°
1.27-10%° 1.26-10% | 2.06-10 3" | 74.31
Table 4.9: Results for ¢4 =
T, = 2978 K.
t(yr) alem) | p(Z) | H ()
0 1.42-107% | 2.72-10'%¢ | 1.57-10%3
very small # | 2.18-10"* | 8.58-10'% | 7.99 - 1052
very small # | 2.24-107* 1.20 - 107 7.44 - 1082
1.14-10%
4.47-10° 8.88-10% | 4.63-10722 |5.07-10°
1.18-10% 1.16-10%® | 2.06-1073" | 80.25

Table 4.10: Some Planck quantities and gravitational constant in our model for

D =3and D = 4.

D 3 4

Gp (emP/grsec?) | 6.6720-107% | 1.1862- 10~
plD(c ) 1.6160 - 10 ** | 1.6680 - 10 *3
tp,p(seC) 5.3905 - 10~** | 5.5648 - 1033
p,,l p(gr/em?) 5.1581-10% | 2.7243 - 101%°
T.p(K) 1.4170 - 103 | 1.3740 - 10
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CHAPTER 5

DISCUSSION AND SUMMARY

We have constructed a nonsingular cosmological model for dimensional reduction
with the assumption that the universe once had more than three space dimen-
sions during the inflationary prematter phase and investigated the possibility
that it underwent a dimensional reduction to lower and eventually to three spa-
tial dimensions. The key ingredient to obtain a singularity-free model was the
assumption that physical quantities are limited by their Planck values. In this
model, inflation arises due to the form of the equation of state used to describe the
perfect fluid filling the universe. And, heating is compatible with inflation in the
sense that inflation stops in a given era as a result of a purely thermodynamical
requirement which is the attainment of a maximum physical temperature; namely
the Planck temperature corresponding to the number of space dimensions in a
given era. In this way, different prematter eras in the history of the universe are
linked to each other by first order phase transitions during which the universe is
assumed to lower the number of space dimensions. The discontinuities across the

boundaries manifested themselves in the forms of the equations of state used to
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describe consecutive eras.

Dimensional reduction may occur as generally believed in the form of com-
pactification by some unknown effects which are probably of quantum-gravity
character. In this work, we are not interested in the details of what happens
during dimensional reduction; but in a way independent of the details of the
mechanism governing dimensional reduction, we impose the boundary conditions
that the scale factor and its first derivative are continuous accross the boundaries
between D and (D — 1) dimensional prematter eras. The legitimacy of boundary
conditions follows from the fact that we use inflationary “vacuum-like” equations
of state (Pp =~ —pp) to describe the constant D prematter eras and argue that
the transition period is sufficiently smaller than the durations of the prematter
eras. From the field Eqgs. (3.7) and (3.8), it is obvious that as long as the scale
factor and its derivative remain continuous during transition periods, the prod-
ucts Gppp and G p Pp, which drives the kinematics of the dimensional reduction,
are continuous physical quantities accross the boundaries and neither G nor p (or

P) is assumed to be a priori continuous physical quantity at the transitions.

In order to demonstrate the basic features of our cosmological model for both
closed and open FRW geometries, we have considered a specific model which
starts with a D = 4 prematter era and evolves into a D = 3 prematter era.
In this numerical model, the magnitude of the discontinuities in G, p and P

are represented by a critical length parameter /, 3 which signals the dimensional
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reduction and which is shown to be one of the parameters of our cosmological
model. Indeed, from the definition given in Eq. (3.25) alone, the critical length
parameter can also be interpreted as the size or volume in which the extra di-
mension continues to exist. It is of considerable importance to conclude that the
critical length parameter has to approach the Planck length of the lower dimen-
sion (D = 3) if the later epochs are to yield the present features of the universe.
The possibility that the universe evolves with a gravitational constant that re-
mains numerically the same in all D is ruled out by showing that in such a case
the critical length parameter takes a value at the order of 1 ¢m and the model

predicts a density that is far beyond the recent density measurements.

Although we neither propose nor give preference to any mechanism to explain
the details of how the extra dimensions became so small that they are currently
unobservable, one may think of the critical length parameter as the Kaluza-
Klein radius which represents the size of the compact extra dimension in the
five-dimensional Kaluza-Klein models with inflation (see e.g. Abbott, Barr &
Ellis 1984 and references therein). In this work, we derive the size of the extra
dimension from purely observational constraints, instead of assuming a priori.
In this way, it is shown that the current size of extra dimension, which is the
most important relic of a dimensional reduction in the past of the universe, has

a crucial observational effect on its future evolution.

Moreover, the specific model we have presented here has the property of being
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parametric in the sense that the numerical results are heavily dependent on the
values of the parameters ¢4 and x which determine the vacuum dominance of the
first prematter era and the initial expansion rate of the universe, respectively.
We should expect that higher dimensions present a flatness problem like the one
which is present in traditional big bang models of the universe. In our model,
the flatness problem is solved by carrying the universe to a nearly flat geometry
with the help of a vacuum like equation of state used in the first prematter era.
Since the geometry of the universe is already made flat at the beginning of the
second prematter era, the existence of the second prematter era should not have
a significant effect on the observable parameters of the universe. As expected,
the numerical results about the present properties of the universe reflect this
fact. They are hardly dependent on the value of ¢3 which represents the vacuum
dominance of the second prematter era. It should be noted that for a closed
geometry the predictions of our model for the present properties of the universe
are not in agreement with the currently accepted range for Hubble parameter and
age. On the other hand, for an open geometry the predictions of our model for
the present values of the cosmological parameters comply with observations for a
broad range of initial conditions. We believe that this feature of the model could
shed light on discussions centering on the question concerning the topological
character of space by favoring an open geometry if our universe once experienced

a dimensional reduction in its past.
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